
!"#$%&'#()*+%,-#*.(/+#*+#*.0-%&"1*
2#30&(#4%"(1*+#*50(%40(#60*%+*7"81&40(#60*

21((1&0(1*+#*9#6%&60*#"*.6#%":%*50(%40(#6;%<*=#'#6;%*%+*7"81&40(#6;%*
>/&/-/4*#"*7"81&40(#60*

?7*>#6-1*
*

*
*
*

@%'#*+#*+1((1&0(1*#"A*
!'#",*.(&/6(/&0-*0"+*.%40"(#6*7"81&40(#1"*(1*./331&(*

.18(B0&%*9%806(1&#",*
*

C""1*C660+%4#61*DEFG*
*

H;2*>0"+#+0(%*
*

I0J&#%-%*K0$1(0*
*
*
*
*
*
*
*
*

H;2*H&1,&04*>11&+#"0(1&*
*
H&18L*H0(&#:#0*M1",1J0&+#*

C+$#'1&*
*

H&18L*C"+&%0*2%*M/6#0*
*

ii

Advisor: Prof. Andrea De Lucia

Co-advisor: Dr. Rocco Oliveto

PhD Program Coordinator: Prof. Patrizia Longobardi

Day of the defense: February 7th, 2013

iii

Acknowledgements

It would not have been possible to write this thesis without the help and

support of many people during these three years of research. In this section I

will attempt to thank you all. My sincere apologies to anyone inadvertently

omitted.

Firstly, I would like to thank my advisor, Prof. Andrea De Lucia. He

patiently provided me all the encouragement and advise necessary to pro-

ceed in my research program. Any discussion with him has always been an

opportunity for learning something.

Special thanks to my co-advisor, Dr. Rocco Oliveto. Probably without

him I would never start my phd. In one way or another, he is advising me

by eight years becoming one of my best friends. Thanks for the hundreds

of hours spent together in talking about our research projects and, more

important, for the thousands spent in joking.

I am very grateful to Prof. Andrian Marcus for being actively involved in

my work and providing me precious advice for my research activity. We

started a strong collaboration that I hope to continue for a long time.

I would also thank Dr. Denys Poshyvanyk for the effort and enthusiasm he

always bring when working together. The passion he puts in his work has

made a deep impression on me.

Thanks to Prof. Max Di Penta for the work done together during my phd

and for giving me the opportunity to work with him during my post-doc. I

am glad to have this opportunity.

Thank to the SE@SA Lab group, and in particular to Dr. Carmine Gravino

for the support and contribution provided to my research, to Annibale

Panichella for being a great colleague and friend with whom spend the

days in the lab, and to Abdallah Qusef for all the work we made together.

I want to thank for the strong collaborations we had in these years: Sonia

Haiduc, Malcom Gethers, Bogdan Dit, Dave Binkley, Giuliano Antoniol,

and Yann-Gael Guhneuc.

Thank to my friends, and in particular to Marco Iannacone, Marco Scanna-

pieco, Alessandro Pugliese, Paolo Sabatino, and Fabio Palomba, for sharing

with me all these beautiful years in Salerno.

I want to thank my girlfriend Maura for the continuous encouragement she

gave me in these years and for all the beautiful moments spent together.

The best is yet to come.

Finally, I am very grateful to my parents and my sister for their never-ending

support and encouragement.

Abstract

In the software life cycle the internal structure of the system undergoes

continuous modifications. These changes push away the source code from

its original design, often reducing its quality. In such cases refactoring

techniques can be applied to improve the design quality of the system.

Approaches existing in literature mainly exploit structural relationships

present in the source code, e.g., method calls, to support the software engi-

neer in identifying refactoring solutions. However, also semantic information

is embedded in the source code by the developers, e.g., the terms used in

the comments.

This research investigates about the usefulness of combining structural

and semantic information to support software refactoring. In particular,

a framework of approaches supporting different refactoring operations, i.e.,

Extract Class, Move Method, Extract Package, and Move Class, is pre-

sented.

All the approaches have been empirically evaluated. Particular attention

has been devoted to evaluations conducted with software developers, to un-

derstand if the refactoring operations suggested by the proposed approaches

are meaningful from their point of view.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Research problem . 1

1.2 Motivation . 2

1.3 Research Contributions . 3

1.4 Thesis organization . 6

2 State of the Art 7

2.1 Introduction . 7

2.2 Refactoring . 7

2.2.1 Extract Class refactoring . 8

2.2.2 Extract Package refactoring . 12

2.2.3 Move Method refactoring . 16

2.2.4 Move Class refactoring . 20

2.2.5 Other refactoring operations . 20

2.3 On the use of Semantic Information in Software Engineering 22

3 A Framework of Software Refactoring Methods 25

3.1 Introduction . 25

3.2 Capturing Structural Relationships between Source Code Components . 28

3.2.1 Method’s Calls . 28

3.2.2 Shared Instance Variables . 30

3.2.3 Inheritance Relationships . 30

i

CONTENTS

3.2.4 Original Design . 31

3.3 Capturing Semantic Relationships between Source Code Components . . 31

3.3.1 Measuring Textual Similarity between Code Components through

IR Methods . 31

3.3.1.1 Vector Space Model . 33

3.3.1.2 Latent Semantic Indexing 33

3.3.2 Semantic Coupling Measures . 34

3.4 An Approach for Decomposing Complex Components 35

3.5 An Approach for Moving Misplaced Code Components 37

4 Extract Class Refactoring 43

4.1 Introduction . 43

4.2 The Approach . 46

4.2.1 Method-by-method matrix construction 47

4.2.2 Identifying Chains of Methods 48

4.2.3 Merging Trivial Chains . 49

4.3 Assessment of the Proposed Approach 50

4.3.1 Planning and Execution . 52

4.3.2 Analysis of the Results and Heuristics to Define the Configuration

Parameters . 54

4.3.3 Threats to Validity . 58

4.4 Evaluating the Quality of the Refactoring Solutions 62

4.4.1 Research Questions and Planning 63

4.4.2 Analysis of the Results . 65

4.4.3 Results of the metrics based evaluation (RQ1) 65

4.4.3.1 Results of the User Study (RQ2) 70

4.4.4 Threats to validity . 74

4.4.4.1 Software Metrics Evaluation 74

4.4.4.2 Subjects and Objects 75

4.4.4.3 Experimental Design 76

4.5 Evaluating the Usefulness of the Refactoring Solutions 78

4.5.1 Research Questions and Planning 78

4.5.2 Analysis of the Results . 80

ii

CONTENTS

4.5.3 Threats to Validity . 85

4.5.3.1 Subjects and Design of the User Study 85

4.5.3.2 Reliability of the Considered Oracle 85

4.5.3.3 On the Performance of Our Approach when approxi-

mating a Manually performed Refactoring 86

4.5.3.4 On the low Number of Refactoring Operations Analyzed 87

4.6 Final Remarks . 87

5 Extract Package Refactoring 89

5.1 Introduction . 89

5.2 The Approach . 90

5.2.1 Class-by-Class Matrix Construction 91

5.2.2 Class Chains Extraction . 92

5.3 Empirical Evaluation . 92

5.3.1 Planning . 92

5.3.1.1 Definition and Context 93

5.3.1.2 Research Questions and Planning 93

5.3.2 Analysis of the Results . 96

5.3.2.1 Influence of the parameters 98

5.3.2.2 Qualitative evaluation 102

5.3.3 Threats to Validity . 110

5.3.3.1 System Mutation . 110

5.3.3.2 Experiment Design and Results Analysis 111

5.3.3.3 The Role of CCBC in Software Re-modularization . . . 112

5.3.3.4 On the Use of PCA as Heuristic to Set the Metric Weights114

5.4 Final Remarks . 115

6 Move Method Refactoring 117

6.1 Introduction . 117

6.2 Methodbook . 118

6.2.1 Identifying Method Friendships 120

6.2.2 Identifying the Envied Class . 121

6.3 Evaluation Based on Quality Metrics . 124

6.3.1 Research questions and planning 126

iii

CONTENTS

6.3.2 Experiment results . 128

6.3.3 Threats to validity . 132

6.3.3.1 Choice of the quality metrics 132

6.3.3.2 Software metrics evaluation 133

6.4 Evaluating Methodbook with Software Developers 133

6.4.1 Evaluation with External Developers 134

6.4.1.1 Planning . 134

6.4.1.2 Analysis of the Results 137

6.4.2 Evaluation with Original Developers 140

6.4.2.1 Planning . 140

6.4.2.2 Analysis of the Results 141

6.4.3 Threats to validity . 144

6.4.3.1 Evaluation with External Developers 144

6.4.3.2 Evaluation with Original Developers 145

6.5 Final Remarks . 146

7 Move Class Refactoring 147

7.1 Introduction . 147

7.2 R3 : Rational Refactoring via RTM . 148

7.2.1 Semantic and Structural Information Extraction 151

7.2.2 Computing the RTM Similarity Matrix 151

7.2.3 Identifying Move Class Refactoring Opportunities 152

7.2.4 Putting Software Developers into the Loop 153

7.3 Software Metrics Evaluation . 156

7.3.1 Study Design . 157

7.3.2 Experiment results . 159

7.3.3 Threats to validity . 160

7.3.3.1 Employed quality metrics 161

7.3.3.2 Package cohesion . 162

7.4 Evaluating R3 with software developers 163

7.4.1 Evaluation with External Developers 164

7.4.1.1 Planning . 164

7.4.1.2 Analysis of the Results 166

iv

CONTENTS

7.4.1.3 Threats to validity . 167

7.4.2 Evaluation with Original Developers 168

7.4.2.1 Planning . 168

7.4.2.2 Analysis of the Results 170

7.4.2.3 Threats to validity . 176

7.5 Final Remarks . 177

8 ARIES: Automated Refactoring In EclipSe 179

8.1 Introduction . 179

8.2 ARIES at Work: Extract Class Refactoring 179

8.2.1 Identifying Candidate Blobs . 180

8.2.2 Analyzing Candidate Blobs . 181

8.2.3 Refactoring the Blobs . 183

8.3 Final Remarks . 185

9 Conclusion 187

9.1 Concluding Remarks . 187

9.2 Further Work . 189

A Publications Presented in this Thesis 191

A.1 Accepted . 191

A.1.1 Journal . 191

A.1.2 Conferences . 191

B Other Articles Published during the PhD period 193

B.1 Journal . 193

B.2 Conferences . 193

References 195

v

CONTENTS

vi

List of Figures

3.1 Weighted Graph representation of code components object of refactoring 26

3.2 An Approach for Decomposing Complex Components 36

3.3 An Approach for Moving Misplaced Code Components 38

4.1 Class extraction process . 46

4.2 Box plots of quality metrics for the systems used in the case study. . . . 50

4.3 Example: creating an artificial Blob. 52

4.4 Comparison between our approach and the approach presented in (1). . 59

4.5 Comparison between our approach and the approach presented in (1)

when applied iteratively. 62

4.6 GanttProject: Box plots of the ratings provided by students 70

4.7 Xerces: Box plots of the ratings provided by students 71

4.8 Topic Map of XIncludeHandler pre and post refactoring 72

5.1 Interaction between Weight and Threshold on GESA merging 2 packages. 98

5.2 Interaction between Weight and Threshold on GESA merging 3 packages. 99

5.3 Interaction between Weight and Threshold on GESA merging 5 packages.100

5.4 Topic Map eTour: original packages vs new packages. 106

5.5 Topic Map GESA: original packages vs new packages. 108

5.6 Topic Map of the moved classes in the SMOS re-modularization. 109

5.7 Performances on GESAComments and on GESANoComments merging 2

packages. 111

5.8 Performances on GESAComments and on GESANoComments merging 3

packages. 112

vii

LIST OF FIGURES

5.9 Performances on GESAComments and on GESANoComments merging 5

packages. 113

6.1 Methodbook: the process. 118

6.2 Three examples of envied class identification with different confidence

levels. 124

6.3 Evolution of the four quality metrics on JHotDraw by applying the refac-

toring operations suggested by Methodbook (67) and JDeodorant (26) . 128

6.4 Evolution of the four quality metrics on SMOS by applying the refactor-

ing operations suggested by Methodbook (27) and JDeodorant (69) . . . 129

6.5 Evolution of the four quality metrics on AgilePlanner by applying the

refactoring operations suggested by Methodbook (17) and JDeodorant

(28) . 130

6.6 Evolution of the four quality metrics on GESA by applying the refactor-

ing operations suggested by Methodbook (30) and JDeodorant (165) . . 131

6.7 Evolution of the four quality metrics on eXVantage by applying the

refactoring operations suggested by Methodbook (95) and JDeodorant

(80) . 132

6.8 An example of question belonging to the bothSameClass group 136

6.9 Box plots of the ratings provided by the 30 subjects 137

6.10 The method classroomOnDeleteCascade was moved by Methodbook from

its class ManagerClassroom to the envied class ManagerRegister 143

7.1 Identifying move class refactoring with R3. 149

7.2 Interaction between R3 and the software engineer. 154

7.3 An excerpt of the questionnaire used to evaluate R3. 165

8.1 ARIES: Identification of candidate Blobs. 180

8.2 ARIES: Analysis of candidate Blobs. 182

8.3 ARIES: Extract Class refactoring. 183

8.4 ARIES: Quality Check of the refactoring operation 184

viii

List of Tables

2.1 Trifu and Marinescu (2): metrics used to detect code smells 9

4.1 Best results achieved using constant thresholds 55

4.2 Best results achieved using variable thresholds 56

4.3 Results of PCA: Rotated Components 57

4.4 Results reconstructing merged classes: PCA based vs best configuration 58

4.5 Mann-Whitney test: our approach vs approach presented in (1) 59

4.6 Refactoring solutions proposed by our approach on the 17 Blobs object

of our study. 66

4.7 Cohesion: Results obtained refactoring the 17 Blobs 67

4.8 Coupling: Results obtained refactoring the 17 Blobs 68

4.9 Average Cohesion: our approach vs. approach in (1) 69

4.10 Average Coupling: our approach vs. approach in (1) 69

4.11 Results of the Mann-Whitney test. 71

4.12 Analysis of the refactoring operations. 76

4.13 Extract Class Refactoring Operations Identified in the Six Analyzed Sys-

tems . 79

4.14 Answers provided by the subjects . 81

4.15 MoJoFM between (i) the refactoring suggested by our approach and that

performed by the original developers (ii) the refactoring performed by

subjects and the refactoring proposed by our approach, and (iii) the

refactoring performed by subjects and that performed by the original

developers . 83

4.16 Our approach vs the approach in (1): MoJoFM achieved in reconstruct-

ing the refactoring performed by the original developers 86

ix

LIST OF TABLES

5.1 Systems used in the case study. 90

5.2 Subjects involved in the functional evaluation. 96

5.3 Descriptive statistics of results achieved reconstructing merged packages. 97

5.4 Results of PCA: Rotated Components 102

5.5 Results reconstructing merged classes: PCA based vs best configuration 103

5.6 Analysis of the failure cases. Answers to the question: “Is the proposed

package decomposition meaningful?” . 104

5.7 Results of PCA on the “NoComments” systems 114

6.1 Software systems used in the case study 126

6.2 Results of the T-test . 138

6.3 Number of refactoring operations suggested by Methodbook and JDeodor-

ant on the two object systems . 140

6.4 Subjects’ answers to the question “Would you apply the proposed refac-

toring?” . 141

7.1 Software systems used in the case study 157

7.2 Possible values for the R3 confidence level. 158

7.3 Percentage agreement between packages suggested by R3 and original

design. 159

7.4 Coupling improvement while applying move class refactoring operations

suggested by R3 . 160

7.5 Average coupling improvement for move class refactoring operations at

different confidence levels. 161

7.6 Average structural and semantic cohesion trend applying move class op-

erations suggested by R3 . 162

7.7 Developers’ answers in different scenarios. 166

7.8 Results of the Mann-Whitney test. 166

7.9 Participants’ evaluations of explanations provided by R3. 167

7.10 Participants’ evaluations of the refactoring operations proposed by R3

on eTour, GESA, SESA, and SMOS. 169

7.11 Participants’ evaluations of explanations provided byR3 on eTour, GESA,

SESA, and SMOS. 170

7.12 GESA customization parameters. 172

x

1

Introduction

1.1 Research problem

During software evolution change is the rule rather than the exception (3). A software

system evolves as changes in the environment and requirements are incorporated in

it. Unfortunately, due to strict deadlines programmers do not always have a bunch of

time to make sure the applied changes conforms to good design practices. Thus, in

consequence of changes, often software quality decreases, resulting in more and more

difficulties in maintaining existing software (4).

In such cases a refactoring of the system is recommended since several empirical

studies provide evidence that low design quality is generally associated with lower

productivity, greater rework, and more significant efforts for developers (5, 6, 7, 8, 9).

Refactoring has been defined as “the process of changing a software system in such

a way that it does not alter the external behavior of the code yet improves its internal

structure” (3, 10). Different refactoring operations1 might improve different quality

aspects of a system. As an example, in Object-Oriented systems low-cohesive classes,

i.e., classes implementing unrelated responsibilities, can be removed by splitting their

methods into different classes that group together strongly related responsibilities and

are easier to comprehend and maintain (this operation is known as Extract Class refac-

toring). Typical advantages of refactoring include improved readability and reduced

complexity of source code, a more expressive internal architecture and better soft-

ware extensibility (3). For this reasons refactoring is advocate as a good programming

1A complete refactoring catalog can be found at http://refactoring.com/catalog/.

1

1. INTRODUCTION

practice to be continuously performed during software development and maintenance

(3, 11, 12, 13). In fact, as explained by Kerievsky (12) “by continuously improving the

design of code, we make it easier and easier to work with. This is in sharp contrast to

what typically happens: little refactoring and a great deal of attention paid to expedi-

ently adding new features. If you get into the hygienic habit of refactoring continuously,

you’ll find that it is easier to extend and maintain code”.

Despite its advantages, perform refactoring in non-trivial software systems might be

very challenging. Firstly, the identification of refactoring opportunities in large systems

is very hard, due to the fact that the design flaws to correct are not always under the

sunlight (3). Secondly, when a design problem has been identified, it is not always easy

to apply the correct refactoring operation to solve it. As an example, splitting a non-

cohesive class into different classes with strongly related responsibilities (i.e., Extract

Class refactoring) requires the analysis of all the methods of the original class to identify

groups of methods implementing similar responsibilities and that should be clustered

together in new classes to be extracted. This task becomes harder and harder when the

size of the class to split increases. Moreover, even when the refactoring solution has been

defined, the software engineer must apply it without changing the external behavior of

the system. All these observations highlight the need for (semi)automatic approaches

supporting the software engineer in (i) identifying refactoring opportunities (i.e., design

flaws) and (ii) designing and applying a refactoring solution. For these reasons, a lot of

effort has been devoted to the definition of automatic and semi-automatic approaches

for software refactoring (14, 15, 16, 17, 18, 19, 20, 21). These are also the motivation

for the increasing interest in this field by the software engineering community which

led to the organization of international events focused on the refactoring topic, like the

ICSE 2011 4th Workshop on Refactoring Tools (22).

1.2 Motivation

Although several approaches are available in the literature to support different refactor-

ing operations, most of them only exploit structural information extracted from source

code (e.g., method calls) to suggest refactoring solutions. However, also semantic (i.e.,

textual) information is present in source code and in particular in the terms used by

the developers in the comments and identifiers.

2

1.3 Research Contributions

In the last years semantic information extracted from software artifacts have been

used to support a wide range of software engineering tasks, like software reuse (23, 24,

25, 26), recovery and management of traceability links (27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42), concept location (43, 44, 45, 46, 47, 48, 49, 50, 51, 52), impact

analysis (53, 54, 55, 56), clone detection (57, 58, 59), and computation of software

quality metrics like cohesion (60) and coupling (55).

Moreover, in a recent study we analyzed how developers actually perceive coupling

and which among the existing coupling measures align with this perception (61). The

results indicated that the peculiarity of the semantic coupling measure allows it to

better estimate the mental model of developers than the other coupling measures. This

is because, in several cases, the interactions between classes are encapsulated in the

source code vocabulary, and cannot be easily derived by only looking at structural

relationships, such as method calls (61).

All these successful applications of textual analysis in software engineering are in

someway based on the conjecture that artifacts containing similar terms are likely to

“talk” about similar things and thus, to be related. Since the goal of several refactoring

operations is to group together similar things (e.g., Extract Class, Move Method),

we are confident that semantic information can be useful to support these kinds of

refactoring, allowing to achieve better refactoring recommendations as compared to the

only use of structural measures (e.g., method calls). As an example, if the vocabulary

of two methods is very similar, it is likely that the developers used similar terms to

describe similar responsibilities implemented by the two methods. This information,

combined with structural ones like method calls and/or shared instance variables, can

be useful to support, for instance, Extract Class refactoring.

1.3 Research Contributions

In this thesis we present a framework of approaches to support four refactoring opera-

tions, namely Extract Class, Move Method, Extract Package, and Move Class.

All the approaches exploit a combination of structural and semantic information

extracted from the source code to identify relationships existing between the code

components (i.e., methods, classes) object of the refactoring. For instance, to support

Extract Class we identify structural (method calls and shared instance variables) and

3

1. INTRODUCTION

semantic (textual similarity) relationships between the methods of the class to be split.

In this way it is possible to understand which methods of the original class implement

similar responsibilities and thus, should be grouped together in new extracted classes.

When all relationships between code components are computed, a weighted-graph

is used to represent this information. In particular, each node in the graph represents

one of the code components under analysis (e.g., the methods of the class to be split in

case of Extract Class refactoring) while the weight on the edge connecting two nodes

represents the structural and semantic relationships between them.

Finally, depending on the supported refactoring operation, each of the four pro-

posed approaches applies a particular algorithm on the weighted graph to identify the

refactoring solution. The two approaches supporting refactoring operations aimed at

decomposing complex objects (i.e., Extract Class and Extract Package), exploit an al-

gorithm based on subgraph analysis. The complex object to refactor is modeled as

a weighted graph and the algorithm identifies sets of strongly connected nodes (i.e.,

subgraphs) representing the simpler objects to extract. For instance, in case of Ex-

tract Class refactoring the complex object represented by the original graph is the class

implementing several different responsibilities and having low cohesion, while the iden-

tified subgraphs are the classes that can be extracted from it. On the other side, the two

approaches supporting refactoring operations dealing with the movement of code com-

ponents (i.e., Move Method and Move Class), uses as algorithm the Relational Topic

Models (RTM) (62), a probabilistic topic model technique for analyzing document net-

works, their topics, and known relationships among them. In these cases RTM is used

to identify for a code component under analysis (i.e., a method for Move Method and a

class for Move Class refactoring), its strongest relationships in the network represented

by the weighted graph. Then, using this information, is easy to identify Move Method

or Move Class refactoring opportunities. For instance, given a method m, RTM can be

used to identify the set S of methods in the system having the strongest relationships

with it. Then, the class containing the highest number of S’s methods can be suggested

as the best one to place m.

Summarizing, the main contributions of this thesis are:

1. An Extract Class refactoring approach able to split a low-cohesive class (i.e.,

a Blob class (63)) grouping together heterogeneous responsibilities into several

4

1.3 Research Contributions

classes having high cohesion. The proposed approach has been experimented on

real Blobs of open source systems to evaluate (i) how good the proposed solution

is from a cohesion and coupling metrics point of view, (ii) how good the proposed

refactoring solution is considered by software engineers as it is, (iii) how much

the proposed solution is useful as starting point to perform a refactoring, and (iv)

how well the proposed refactoring solution approximate a refactoring made by the

original developers. The results show that (i) the refactoring solutions proposed

by our approach strongly increases the cohesion of the refactored classes without

leading to significant increases in terms of coupling, (ii) the refactoring solutions

proposed by our approach are considered useful to developers performing extract

class refactoring and (iii) the proposed approach is able to approximate a manually

performed refactoring at 91% on average.

2. An Extract Package refactoring technique to remove from object oriented software

systems promiscuous-low cohesive packages, decomposing them into smaller and

meaningful packages having higher cohesion. The approach has been evaluated

with developers on five software systems. The results show that our technique is

able to identify meaningful refactoring operations from the developers’ point of

view.

3. A Move Method refactoring approach coined as Methodbook, able to identify for

each method in an Object-Oriented system the best class in which it should be

placed (i.e., the one grouping the responsibilities most similar to those imple-

mented by it). We evaluated Methodbook in two case studies. The first study

has been executed on five software systems to analyze if the move method op-

erations suggested by Methodbook help to improve the design quality of the

systems. The second study has been conducted with 40 developers that eval-

uated the refactoring recommendations produced by Methodbook. The results

show that Methodbook is able to significantly improve cohesion and coupling of

the subject systems and that it provides meaningful recommendations for move

method refactoring from a developer’s point of view.

4. A Move Class refactoring approach, coined as R3, that exploits RTM to analyze

underlying latent topics in classes and packages as well as structural dependencies

5

1. INTRODUCTION

to recommend refactoring operations aiming at moving classes to more suitable

packages. R3 has been evaluated in two empirical studies. In the first study we

analyzed the ability of R3 to propose refactoring operations that lead to reduced

coupling among software modules in nine software systems. The results achieved

indicated that R3 provides a strong coupling reduction among the software mod-

ules. Then, in a second study we evaluated R3 refactoring recommendations with

developers in two case studies, one conducted with 14 original developers of four

software systems and one with 44 students and academics plus 4 professional soft-

ware developers on another open source software system. The results achieved

in this second case study indicated that more than 70% of the recommendations

provided by R3 are considered meaningful by developers.

The framework of approaches has also been implemented in an Eclipse plug-in called

ARIES (Automated Refactoring In EclipSe).

1.4 Thesis organization

This thesis is composed of 9 chapters including this introduction. Chapter 2 discusses

the state of the art and in particular approaches to automate refactoring operations

and previous work using semantic information in software engineering.

Chapter 3 presents the framework, showing the sources of information used by

our approaches, the problem representation, and the algorithms used to identify the

refactoring solutions. Chapters from 4 to 7 presents the four proposed approaches and

their evaluation in the following order: Extract Class refactoring (Chapter 4), Extract

Package refactoring (Chapter 5), Move Method refactoring (Chapter 6), and Move

Class refactoring (Chapter 7).

ARIES is presented in Chapter 8 while Chapter 9 gives conclusion remarks and

directions for future work.

6

2

State of the Art

2.1 Introduction

This Chapter presents the state of the art on the areas of interests of this thesis. In

particular, Section 2.2 discusses approaches existing in literature to support the software

engineer when performing refactoring operations while Section 2.3 sheds light on the

different usages of semantic (textual) information in software engineering.

2.2 Refactoring

There are more than 90 different refactoring operations in literature (64). Most of them

are very simple source code transformations aimed at increasing source code comprehen-

sion. As example, Rename Method refactoring simply changes the name of a method

in order to better reflect its purpose, while Remove Parameter removes a parameter

not used anymore by the method body. Clearly, given their simplicity, researchers’

efforts have been focused on providing support to developers when performing more

complex refactoring operations, e.g., Extract Class (3). These latter are generally used

to remove from the source code poor design solutions, known as design antipatterns.

A design antipattern is “something that looks like a good idea, but which back-fires

badly when applied” (65). It generally describes common pitfalls in object oriented

programming that defeat good design rules like creating classes having high cohesion

(i.e., grouping together strongly related responsibilities) and low coupling (i.e., having

few dependencies among them) (66). Applying the correct refactoring operations it is

possible to remove the design antipatterns increasing the internal software quality.

7

2. STATE OF THE ART

In the following we discuss the approaches existing in literature to support the

different refactoring operations by focusing more in depth on approaches supporting

the four tackled in this thesis, i.e., Extract Class, Move Method, Extract Package, and

Move Class refactoring.

2.2.1 Extract Class refactoring

Extract Class refactoring is used to remove the Blob antipattern (63) from a software

system. A Blob is a large and complex class that centralizes the behavior of a portion

of a system and only uses other classes as data holders, i.e., data classes. Implement-

ing several different responsibilities, Blobs are generally characterized by low cohesion

values. Moreover, due to the numerous dependencies with the data classes, Blobs also

exhibit high levels of coupling.

Extract Class refactoring is applied to split the many responsibilities implemented

in a Blob class into different classes having higher cohesion (i.e., grouping together

strongly related responsiblities). The necessity of removing Blob classes from a system

is due to the difficulty of performing comprehension and maintenance activities on them.

In fact, several empirical studies provided evidence that lack of cohesion is generally

associated with lower productivity, greater rework, and more significant design efforts

for developers (5, 6, 7, 8, 9). In addition, classes with lower cohesion have been shown

to correlate with higher defect rates (60, 67, 68). Given the complex nature of Blob

classes, performing Extract Class refactoring is a very hard task since the following

steps must be performed:

1. Analyzing the methods of the Blob class (that might be hundreds) trying to

understand what is the main responsibility implemented by each of them;

2. Identifying clusters of cohesive methods that seem to implement very similar and

related responsibilities;

3. Distributing the attributes of the Blob class among the identified clusters of meth-

ods, trying to assign each attribute to the cluster that uses it most;

4. Splitting the Blob class into the cohesive identified clusters of methods and at-

tributes, representing the classes to be extracted;

8

2.2 Refactoring

Table 2.1: Trifu and Marinescu (2): metrics used to detect code smells

Metric Description

AMW The average statical complexity (i.e., McCabes cyclomatic number) of all methods in a class.

ATFD #attributes from unrelated classes accessed directly or by invoking accessor methods

CINT #distinct operations called from the measured operation

LAA #attributes from the methods definition class, divided by #variables accessed

NAS #public methods of a class, that are not overridden or specialized from the ancestors

NOAM #accessor methods

NOM #methods of the measured class

NOPA #public attributes of the measured class

PNAS #public methods of a class not overridden or specialized from the ancestors, divided by #public methods

TCC #method pairs of a class that access in common at least one attribute of the measured class

WMC the sum of the statical complexity of all methods in a class.

WOC #functional public methods, divided by the total number of public members

5. Ensuring that no changes in the system behavior results from this refactoring.

It is clear that for very complex Blobs, implemented in complex systems, the Extract

Class refactoring is very challenging without a (semi-) automatic tool support. This is

the reason why researchers work on methods and tools supporting the software engi-

neer in the identification of (i) Blob classes in software systems and (ii) extract class

refactoring solutions to remove them.

As for the identification of Blob classes, Marinescu (69) proposes a mechanism

called “detection strategies” for formulating metrics-based rules that capture deviations

from good design principles and heuristics. The detection strategies are formulated in

different steps. Firstly, the symptoms that characterize a particular bad smell should be

defined (e.g., in case of Blob high complexity, low cohesion, and access of “foreign” data).

Second, a proper set of metrics measuring these symptoms should be identified (e.g.,

Weighted Method Count (WMC) for high complexity, Tight Class Cohesion (TCC)

for class cohesion, and Access to Foreign Data (ATFD) for measuring the access to

external attributes of a class). Having this information the next step is to define

thresholds to classify the class as affected (or not) by the defined symptoms. For

example, establishing for which values of TCC a class should by identified as a “low

cohesive class”. Finally, AND/OR operators should be used to correlate the symptoms,

leading to the final rule to detect the smells and thus, refactoring opportunities. The

evaluation conducted on two software systems shows how using customized “detection

strategies” it is possible to identify nine bad smells with an average accuracy of 70%.

9

2. STATE OF THE ART

Trifu and Marinescu (2) present an approach to support the decision making process

in object oriented refactoring. In particular, they exploit correlation between struc-

tural anomalies, i.e., different types of code smells that often occur together, to build a

pattern-like mapping of design problems to the adequate treatments. In particular, the

12 structural metrics reported in Table 2.1 are used in different combinations to cap-

ture symptoms that, when occurring together, can lead to design problems (e.g., Blob

classes) that should be solved using well-known refactoring operations (e.g., Extract

Class).

Joshi et al. (70) present a method for identifying less cohesive classes in a soft-

ware system. In particular, their approach examines lattices based on the structural

dependencies between attributes and methods. Unconnected nodes in a lattice signify

the elements that are not related with each other. In this way, is not only possible

to identify less cohesive classes but also to pick out which class members contribute

to the lack of cohesion of the identified classes. This information can be used to find

candidates for different refactoring operations, including Extract Class. In a reported

preliminary evaluation the authors show how, applying the refactoring opportunities

identified through their approach, it is possible to improve the value of some quality

metrics.

Khomh et al. (71) propose an approach based on Bayesian Belief Networks (BBNs)

to specify design smells and detect them in programs. In this work the authors focus

the attention on the detection of Blob classes and thus, of Extract Class refactoring

opportunities. In particular, given a class C as input, the output of the BBN is a

probability that C is a Blob class. The evaluation is performed on two open source

systems by measuring precision and recall of the model with manually located smells.

Moha et al. (72) introduced DETEX, a method for the specification and detection of

code and design smells. DETEX uses a Domain-Specific Language (DSL) for specifying

smells using high-level abstractions. Four design smells are identified by DETEX,

namely Blob class, Swiss Army Knife, Functional Decomposition, and Spaghetti Code.

The results achieved in the reported evaluation show that DETEX is able to reach a

recall of 100% and a precision greater than 50% in the detection of the four above

mentioned bad smells.

Other approaches are able not only to identify Extract Class refactoring opportuni-

ties, but also to propose a possible decomposition for the identified low cohesive classes

10

2.2 Refactoring

(i.e., the Extract Class solution). Simon et al. (73) provide a metric-based visualiza-

tion tool able to identify, among others, Extract Class refactoring opportunities. In

particular, each class is analyzed to verify what are the structural relationships (i.e.,

method calls and attribute accesses) between methods. If in the class it is possible to

identify different sets of cohesive attributes and methods, an Extract Class refactoring

opportunity is identified and, implicitly, the classes to be extracted represented by the

sets of cohesive attributes and methods. Examples of the proposed tool reported in the

work show its potential usefulness in integrated development environments.

Similarly, Fokaefs et. al. (19) use a clustering algorithm to perform Extract Class

refactoring. Their approach analyze the structural dependencies existing between the

entities of a class to be refactored, i.e., attributes and methods. Using this information,

they compute the entity set for each attribute, i.e., the set of methods using it, and for

each method, i.e., all the methods that are invoked by a method and all the attributes

that are accessed by it, of the class. Thus, the Jaccard distance between all couples

of entity sets of the class is computed in order to cluster together cohesive groups of

entities that can be extracted as separate classes. A hierarchical clustering algorithm is

used to this aim. Differently from our approach for Extract Class refactoring presented

in Chapter 4, in (19) only structural information is taken into account. Moreover,

while our approach is able to automatically identify the appropriate number of classes

that should be extracted from a Blob class, the approach presented in (19), like all the

approaches based on hierarchical clustering, requires the definition of a threshold to

cut the dendrogram. The authors tried to mitigate this issue by proposing different

refactoring opportunities that can be obtained using different thresholds. However, the

software engineer needs to analyze the different solutions in order to identify the one

that provides the most adequate division of responsibilities.

We proposed in (1) a different approach based on graph theory for Extract Class

refactoring, that presents commonalities and differences with the new approach pre-

sented in this thesis. Similarly to the approach presented in this thesis, in (1) a class to

be split is represented by a weighted graph, where each node represents a method of the

class and the weight of an edge that connects two nodes (methods) is a combination of

structural and semantic similarity measures between the two methods. However, while

in (1) the graph is always split in two sub-graphs (corresponding to the two extracted

classes) using a MaxFlow-MinCut algorithm, the new two-steps algorithm presented

11

2. STATE OF THE ART

in this thesis overcomes this limitation since it is able to split the graph in more sub-

graphs by automatically identifying the appropriate number of classes (which may be

more than two) that should be extracted from a Blob class, thus resulting in a better

division of responsibilities.

2.2.2 Extract Package refactoring

Strongly related to Extract Class refactoring, but at a different level of granularity,

is the Extract Package refactoring. As it is possible to have complex classes group-

ing together unrelated responsibilities (i.e., Blobs), it is also possible to observe the

same phenomenon at a higher granularity level: packages grouping together classes

implementing unrelated responsibilities. These packages are known as “Promiscuous

packages” (64) and clearly exhibit low cohesion. The aim of Extract Package refactor-

ing is to split a promiscuous package into different cohesive packages grouping together

classes implementing similar responsibilities. Also here (semi-) automatic support is

desirable. In fact, promiscuous packages often implement entire subsystems grouping

together hundreds of classes. Similarly as seen with the Extract Class, to perform Ex-

tract Package refactoring the developer needs to analyze all classes in the promiscuous

package, understand their responsibilities, and group together in new packages those

implementing similar things. This is clearly a hard and time-consuming task. For this

reason we present in Chapter 5 the first approach available in literature to explicitly

support this kind of refactoring. However, some of the techniques proposed in the past

for software re-modularization could be easily adapted to solve the problem of promis-

cuous packages. In fact, it is enough to consider the classes of the promiscuous package

as the entire set of classes to re-modularize and apply one of the approaches existing

in literature to organize the classes into new packages (i.e., to split the promiscuous

package into new ones). For this reason in the following we discuss the state of the art

in software re-modularization.

Most of the work on re-modularization is based on clustering techniques. Wig-

gerts (74) provides the theoretical background for the application of cluster analysis

in software re-modularization. The paper discusses how to establish similarity criteria

between the entities to cluster and gives a summary of possible clustering algorithms to

use in software re-modularization. Anquetil et al. (75) tested some of the algorithms

proposed by Wiggerts studying different issues that may influence the clustering results

12

2.2 Refactoring

when doing remodularization. In particular, they studied the impact of the following

choices:

• how the entities to be clustered are described ;

• how the coupling between entities is computed :

• what clustering algorithm should be used.

They performed this study on several software systems, including a real world legacy

system, evaluating the effect of these parameters on the proposed clusterings. Among

the results achieved in this study, one of the more interesting is that the used clustering

algorithm impacts the results less than the technique used to describe the entities and

to measure coupling between them (75).

Mitchell and Mancoridis (76) proposed some guidelines to compare the performance

of different clustering algorithms for source code decomposition. In particular, they

introduced two new measures, i.e., Edge Similarity (EdgeSim) and Merge Clusters

(MeCl), to compare a decomposition produced by a clustering algorithm with an expert

partition, measuring their similarity.

Wu et al. (77) conducted a comparative study of clustering algorithms in the context

of software evolution. In particular, the authors focused their attention on the stability

of clustering algorithms, i.e., a clustering algorithm is stable if it produces very similar

output given very similar input, like two subsequent versions of the same system with

no major changes. Their results show that for large systems the analyzed clustering

algorithms are not ready to be widely adopted.

Maqbool and Babri (78) focused on the application of hierarchical clustering in the

context of software architecture recovery and modularization. They investigated the

measures to be used in this domain, categorizing various similarity and distance mea-

sures into families according to their characteristics. The behavior of various clustering

algorithms was also studied on four large legacy systems.

Mancoridis et al. (79) introduce a search-based approach using hill-climbing based

clustering to identify the modularization of a software system. This technique is imple-

mented in Bunch (80), a tool supporting automatic system decomposition. To formulate

software re-modularization as a search problem, Mancoridis et al. define (i) a repre-

sentation of the problem to be solved (i.e., software module clustering) and (ii) a way

13

2. STATE OF THE ART

to evaluate the modularizations generated by the hill-climbing algorithm. Specifically,

the system is represented by the Module Dependency Graph (MDG), a language in-

dependent representation of the structure of the code components and relations (79).

The MDG can be seen as a graph where nodes represent the system entities to be

clustered and edges represent the relationships among these entities. An MDG can be

weighted (i.e., a weight on an edge measures the strength of the relationship between

two entities) or unweighted (i.e., all the relationships have the same weight).

Starting from the MDG (weighted or unweighted), the output of a software module

clustering algorithm is represented by a partition of this graph. A good partition of

an MDG should be composed by clusters of nodes having (i) high dependencies among

nodes belonging to the same cluster (i.e., high cohesion), and (ii) few dependencies

among nodes belonging to different clusters (i.e., low coupling). To capture these two

desirable properties of the system decompositions (and thus, to evaluate the modular-

izations generated by Bunch) Mancoridis et al. (79) define the Modularization Quality

(MQ) metric as:

MQ =

�
(1k

�k
i=1Ai)− (1

k(k−1)
2

�k
i,j=1Ei,j) if k > 1

A1 if k = 1

where Ai is the Intra-Connectivity (i.e., cohesion) of the ith cluster and Ei,j is the

Inter-Connectivity (i.e., coupling) between the ith and the jth clusters. The Intra-

Connectivity is based on the number of intra-edges, that is the relationships (i.e.,

edges) existing between entities (i.e., nodes) belonging to the same cluster, while the

Inter-Connectivity is captured by the number of inter-edges, i.e., relationships existing

between entities belonging to different clusters.

Search-based approaches are also used in (81), (82), (83), and (84). In particular,

in (81), (83), and (84) the authors used a genetic algorithm to improve the subsystem

decomposition of a software system. The fitness function to be maximized is defined

using a combination of quality metrics, e.g., coupling, cohesion, and complexity. How-

ever, hill-climbing have been demonstrated to ensure higher quality and more stable

solutions than a single objective genetic algorithm (85).

Praditwong et al. (86) introduce two multi-objective formulations of the software re-

modularization problem, in which several different objectives are represented separately.

The two formulations slightly differ for the objectives embedded in the multi-objective

14

2.2 Refactoring

function. The first formulation–named Maximizing Cluster Approach (MCA)—has the

following objectives: (i) maximizing the sum of intra-edges of all clusters, (ii) mini-

mizing the sum of inter-edges of all clusters, (iii) maximizing MQ, (iv) maximizing the

number of clusters, and (v) minimizing the number of isolated clusters (i.e., clusters

composed by only one class). The second formulation—named Equal-Size Cluster Ap-

proach (ECA)—attempts at producing a modularization containing clusters of roughly

equal size. Its objectives are exactly the same as MCA, except for the fifth one (i.e.,

minimizing the number of isolated clusters) that is replaced with (v) minimizing the

difference between the maximum and minimum number of entities in a cluster. The

authors compared their algorithms with Bunch. The conducted experimentation pro-

vides evidence that the multi-objective approach produces significantly better solutions

than the existing single-objective approach though with a higher processing cost.

The re-modularization approaches discussed above, even if applicable with little

modification to the problem of Extract Package refactoring, differently from the ap-

proach presented in this thesis only exploit information derived by structural metrics.

From this point of view our Extract Package approach (see Chapter 5) is closer to

(87), (88), (89), and (90). In particular, Maletic and Marcus (89) combined semantic

and structural measures to identify ADTs in legacy code. They used Latent Seman-

tic Indexing (LSI) (91), an Information Retrieval (IR) technique, to capture semantic

relationships between source artifacts.

Kuhn et al. (92) also used LSI to cluster together source artifacts that use a similar

vocabulary. Moreover, they provided a visual notation that gives an overview of all the

clusters and their semantic relationships. Their approach is focused on the identification

of topics in the source code and, for this reason, only uses semantic information ignoring

the structural ones.

Corazza et al. (87, 88) presented a clustering based approach to partition object

oriented systems into subsystems. In particular, they extracted lexical information from

the source code and use the K-Medoids partitioning algorithm (88) or the Hierarchical

Agglomerative Clustering algorithm (87) to build subsystems containing semantically

related classes. In (88) and (87) the structural dependencies between the classes are

ignored.

A clustering based approach using both structural and lexical information is pro-

posed by Scanniello et al. (90), but it is focused on recovering a layered architecture

15

2. STATE OF THE ART

from the source code of object oriented systems. In particular, the structural informa-

tion is used by the Kleinberg algorithm (93) to identify software layers, while lexical

information is employed to partition each identified layer into software modules using

the k-means algorithm (94).

The approach presented in this thesis to support Extract Package refactoring, dif-

ferently from all clustering techniques (e.g., k-means), does not require the number of

package to be extracted as input, but is able to automatically infer it.

Lastly, it is worth mentioning the work by Ducasse et al. (95), that present the

Package Surface Blueprint, a visual approach for understanding package relationships

in complex software systems. The authors showed that their approach helps users in

identifying poorly designed packages, and thus, good candidates for Extract Package

refactoring operations.

2.2.3 Move Method refactoring

Other common refactoring operations deal with moving software entities (e.g., methods)

in more appropriate parts (e.g., classes) of the software system. The final goal is

always the same: trying to group together similar responsibilities in order to ease code

comprehension and maintenance. An example of these refactoring operations is the

Move Method.

Move Method refactoring is targeted to solve the bad smell known in literature as

“Feature Envy” (3). This smell arises when a method seems to be more interested in a

class other than the one it is implemented in, e.g., the method invokes getter methods

on another object many times (3). Clearly, this negatively influences both the cohesion

and the coupling of the class in which the method is implemented. In fact, the method

suffering of feature envy reduces the cohesion of the class, because it likely implements

different responsibilities with respect to those implemented by the other methods of

the class and increases the coupling, due to the many dependencies with methods of

the envied class.

Applying Move Method refactoring the method is moved to the envied class. Un-

fortunately, not all the cases are cut-and-dried. Often a method uses features of several

classes, thus the identification of the envied class (as well as the method to be moved) is

not always trivial especially in large software systems (20). For this reason, approaches

16

2.2 Refactoring

to identify feature envy bad smells (and thus, move method refactoring opportunities)

are available in literature.

The visualization tool provided by Simon et al. (73), besides supporting the iden-

tification of Extract Class refactoring opportunities (see Section 2.2.1), also allows to

identify Move Method opportunities by analyzing structural information in the source

code. In particular, for each method in the system under analysis, the methods in-

voked and the instance variables accessed by it are analyzed. If a method uses many

attributes and/or methods of a class (not the one it is implemented in) a move method

refactoring opportunity is identified. Also the approaches by Marinescu (69) and Joshi

et al. (70) discussed in Section 2.2.1 can be used to identify move method refactoring

opportunites.

Du Bois et al. (96) analyze how refactoring impacts on coupling/cohesion charac-

teristics and how refactoring opportunities that improve these characteristics can be

identified. As an example, to identify good Move Method refactoring opportunities the

authors suggest the two following guidelines:

• G1 Localize dependencies : move methods that (i) do not use local resources, (ii)

are called upon seldom, and (iii) have dependencies mostly with a single external

class.

• G2 Separate concerns: break up a method that depends on many different exter-

nal classes into pieces which mostly refer to only a single external class. Apply G1

on each of these extracted methods. Thereafter, the original method will then act

as a coordinator which directs the collaborations between the responsible classes,

and can be moved itself to a class which fits this coordination responsibility.

The evaluation performed on one of the Apache Tomcat1 packages shows how it is pos-

sible to achieve quality improvements (as measured by quality metrics) with restricted

refactoring efforts, following the proposed guidelines.

Atkinson et al. (97) present a low-cost, syntactic approach for automatically identi-

fying poorly structured code, suitable for refactoring. The proposed approach uses the

symbol table and reference information together with simple structural code metrics,

such as line and statement counts, to identify refactoring opportunities of four differ-

ent types: Encapsulate Field, Decompose Conditional, Replace Magic Number, and

1http://tomcat.apache.org/

17

2. STATE OF THE ART

Move Method. To evaluate the proposed approach, the authors run it on 10 C++ sys-

tems identifying a set of refactoring opportunities. Then, they manually validate their

goodnesses, reporting 88% of the suggested refactoring opportunities as meaningful.

Seng et. al. (18) use a genetic algorithm to suggest move method refactoring

operations. The fitness function used to guide the identification of the refactoring op-

portunities is defined as a combination of structural metrics able to capture the quality

of the system classes. The performed evaluation show that their approach executed on

an open source software system is able to improve the value of some quality metrics

measuring class cohesion and coupling. Moreover, the authors manually inspected the

proposed move method refactoring operations finding all of them justifiable.

Genetic Algorithms are also used by Bodhuin et al. (98) in SORMASA, SOftware

Refactoring using software Metrics And Search Algorithms, a refactoring decision sup-

port tool to optimize the quality of a software system, e.g., maximizing the cohesion

and minimizing the coupling. In SORMASA refactoring operations involving eld and

method movements between classes are considered. No evaluation about the tool is

presented in (98).

Another approach to automate move method refactoring has been proposed by

Tsantalis et. al. (20). In particular, for each method of the system, their approach

forms a set of candidate target classes where a method should be moved. This set

is obtained by examining the entities (i.e., attributes and methods) that a method

accesses from the other classes. It is worth noting that unlike the approach presented

in this thesis, the approach presented in (20) also only exploits structural information

extracted from the source code to identify the envied class for a method under analysis.

The approach in (20) has been evaluated by (i) analyzing its capability to suggest

move method refactoring operations that improve design quality (in terms of class

cohesion and coupling) of two open source software system, (ii) asking an independent

designer to analyze and comment the refactorings proposed for a small application (34

classes) she developed, and (iii) evaluating the efficiency of the proposed algorithm in

terms of running time. The achieved results showed that while applying the proposed

refactorings (i) it is possible to achieve a decrease of the average class coupling of the

systems of about -1.25% and an increase of the average class cohesion of about +3.0%,

(ii) the 80% (8 out of 10) of the refactoring operations proposed by the approach

make sense from the point of view of the designer involved in the experimentation,

18

2.2 Refactoring

and (iii) the time needed by the approach to find refactoring operations went from

7 to 137 seconds, depending on the system’s size and on the number of operations

identified. The approach in (20) has also been implemented as an Eclipse plug-in,

coined as JDeodorant1.

Unlike the approaches described above, our approach to Move Method refactoring

described in Chapter 6, also takes into account semantic (i.e., lexical) information

embedded in the source code, such as terms present in the comments and identifiers of

source code classes. This information can be exploited to measure the lexical similarity

between a method and the classes of the system. The conjecture is that the higher the

overlap of terms between comments and identifiers of a method mi and a class Cj , the

higher the likelihood that they implement similar responsibilities (and thus the class

Cj might be a good candidate as an envied class for the method mi).

Note that, in (20) the authors thoroughly explain why their approach should be

preferred to that one proposed by Seng et. al. (18). Among the most important

weaknesses identified for the approach proposed in (18) are:

• it uses genetic algorithms making random choices on mutation and crossover

operations. Thus, the outcome of each execution on the same system may differ.

To overcome such an issue the authors propose to run the algorithm several times

(10 in the example reported in the paper) and suggest as move method operations

those present in all the performed executions. This will clearly negatively affect

the efficiency of the proposed technique, especially on large software systems.

Moreover, the results reported in the paper are not statistically significant due to

the small number of runs.

• it requires a long calibration procedure. In particular, a calibration run for each

metric exploited in the fitness function is necessary.

Thus, even if the approach by Seng et. al. (18) is valid from a theoretical point of

view, its practical application is quite hard. For this reason, we chose to compare our

Move Method technique (see Chapter 6) to the approach presented in (20) through the

JDeodorant plug-in in our case studies (see Sections 6.3 and 6.4).

1http://jdeodorant.com

19

2. STATE OF THE ART

2.2.4 Move Class refactoring

Move Class refactoring aims at solving one of the main reasons for architectural erosion

in software systems: inconsistent placement of source code classes in software packages

(82, 99). Such a scenario, on one hand negatively impacts the package cohesion and on

the other hand increases the number of dependencies (coupling) between packages (100).

In such cases, re-modularization of the system is necessary (3, 101). While most of the

approaches existing in literature and discussed in Section 2.2.2 focus on proposing a

whole new re-modularizations to the developer (e.g., (77, 79, 83)), using Move Class

refactoring it is possible to perform a focused and fine-grained remodularization moving

misplaced classes into a more suitable package of the system, i.e., one grouping classes

more functionally related to it than the one it is placed in. Clearly, identifying Move

Class refactoring opportunities in a large software system is not easy, due to the thou-

sands of classes contained in it and to the intricate web of relationships existing among

them. Despite this, the only approach existing in literature to support Move Class

refactoring is the one by Abdeen et al. (82). They proposed a heuristic search-based

approach for automatically reducing the dependencies between packages of a software

system. Their technique, starting from an initial decomposition, optimizes the exist-

ing package structure by moving classes between the original packages. Our approach,

described in Chapter 7, exploits not only structural information to derive refactoring

operations, but also conceptual information derived from identifiers and comments. In

addition, R3 is the first recommendation system able to provide an evaluation of the

proposed re-modularization based on quantitative and qualitative data (see Chapter

7).

2.2.5 Other refactoring operations

Besides the above discussed refactoring operations, a wide range of other ones have

been automated in the literature.

Casais (14) proposes an algorithm that analyses the redefinitions carried out on

inherited properties when a class is added to a hierarchy, and restructures the hierarchy

to maximize abstraction. In (15) the author presents Guru, a tool for restructuring

inheritance hierarchies and refactoring methods simultaneously. All the restructuring

20

2.2 Refactoring

operations suggested by Guru are focused on the minimization of the source code

duplication.

O’Keeffe et al. (17) formulate the task of refactoring as a search problem in the

space of alternative designs. The alternative designs are generated applying a set of

refactoring operations. In particular, the refactoring types considered in this work are:

push down field, pull up field, pull down method, pull up method, extract hierarchy,

and collapse hierarchy. The search from the optimal design is guided by a quality

evaluation function based on eleven object-oriented design metrics, i.e., the Chidamber

and Kemerer (CK) metrics (9) that reflects refactoring goals. The results achieved in

the reported experimentation show that the presented approach is able to improve the

design quality of a given system from a quality metric point of view. No evaluation

with software developers is reported. Note that while all the approaches described in

this thesis exploits a combination of structural and semantic measures, in (17) only

structural metrics are used.

Maruyama et al. (16) present a mechanism to improve the reusability of frame-

works through Extract Method refactoring operations. In particular, their approach

automatically refactors methods in Object-Oriented frameworks by using weighted de-

pendence graphs, whose edges are weighted based on the modification histories of the

methods. The assumption is that programmers will reuse and modify the code of their

frameworks in the future in the same way that they often did in the past. The results

of the reported experimentation show a reduction rate of up to 22% in the number of

statements a programmer has to write when creating several applications.

Abadi et al. (102) propose the use of fine slicing to support the Extract Method

refactoring, used to decompose a long method body into different methods, each with

a precise responsibility. The fine slicing is used to compute program slices that are

executable and extractable from their surrounding code and thus, useful to support

Extract Method refactoring. Another approach to support Extract Method refactoring

is presented by Tsantalis et al. (21). The approach in (21) automatically identifies

Extract Method refactoring opportunities by employing two slicing techniques:

1. A complete computation slice is used to identify all the statements in a method

affecting the computation of a given variable.

21

2. STATE OF THE ART

2. An object state slice is used to capture the statements affecting the state of a

given object.

The evaluation reported in (21) shows as the proposed methodology is able to capture

slices of code implementing a distinct and independent functionality compared to the

rest of the original method and thus lead to extracted methods with useful functionality.

Van Emden and Moonen (103) present jCOSMO, a code smell browser that detects

and visualizes code smells in Java source code. They focus the attention of two bad

smells related to the Java programming language, i.e., instanceof and typecast. The first

occurs when in the same block of code there is a concentration of instanceof operators

making the code difficult to understand. In these cases, refactoring operations aimed

at brake the method in different parts (e.g., Extract Method) could be recommendable.

As for the typecast bad smell, it appears when an object is explicitly converted from one

class type into another, possibly performing illegal casting which results in a runtime

error.

2.3 On the use of Semantic Information in Software En-

gineering

In the last years semantic (textual) information extracted from software artifacts have

been used to support a wide range of software engineering tasks. Note that, when

talking about software artifacts, we do not refer only to source code but to the whole

set of documents (e.g., requirements, use cases, test cases, etc.) created during software

development and maintenance.

The earliest applications of text analysis in software engineering are focused on

creating software libraries (104, 105) and supporting software reuse (23, 24, 25, 26).

In these cases Information Retrieval (IR) (91, 106) techniques are used to analyze the

text contained in software artifacts and understand which code components implement

similar concepts (in case of libraries building) or which code component implements a

particular functionality to be reused.

One of the most diffused application of IR in software engineering is the recovery

and management of traceability links between software artifacts (27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42). An IR-based traceability recovery method

compares a set of source artefacts (used as a query) against a set of target artifacts

22

2.3 On the use of Semantic Information in Software Engineering

and ranks the textual similarity of all possible pairs of artefacts (candidate traceability

links). The conjecture is that artifacts having a high textual similarity probably share

several concepts, so they are likely good candidates to be traced from one to another

(28).

Strongly related to the traceability recovery problem is concept location, i.e., iden-

tification of concepts, features, concerns in source code. Also here textual analysis

technique have been widely applied (43, 44, 45, 46, 47, 48, 49, 50, 51, 52). In particu-

lar, the developer formulates a query describing the concept for which she is looking for

in source code and the IR engine retrieves a list of code components hopefully relevant

for the provided query.

Another common application of textual analysis in software engineering is change

impact analysis (53, 54, 55, 56). Also here, given a modified code component (e.g.,

a method), the text in it is used as query to look in the source code for components

containing similar terms. The conjecture is that code component containing similar

terms are likely to implement similar responsibilities and thus, to change together

during software maintenance.

Textual analysis has also been applied to software clone detection (57, 58, 59).

Again, the basic idea is always the same: code components containing similar terms

are likely to implement similar responsibilities. Thus, textual analysis can identify

“similar” code components, representing possible clone instances.

Finally, an application of textual analysis in software engineering strongly related to

this thesis is the computation of software quality metrics like cohesion (60) and coupling

(55). These measures are based on the semantic information (i.e., domain semantics)

captured in the code by comments and identifiers. In particular, in (60) the authors

define the Conceptual Cohesion of Classes (C3): a class exhibits a high conceptual

cohesion if its methods have high textual similarity among them. On the other side, in

(55) the authors define the Conceptual Coupling Between Classes (CCBC): two classes

exhibit high coupling if their methods have a high textual similarity.

As it can be noticed, all these successful applications of textual analysis in software

engineering are in someway based on the conjecture that artifacts containing similar

terms are likely to “talk” about similar things and thus, to be related. Since the

goal of several refactoring operations is to group together similar things (e.g., Extract

23

2. STATE OF THE ART

Class, Move Method), we are confident that semantic information can be useful to sup-

port these kinds of refactoring, allowing to achieve better refactoring recommendations

as compared to the only use of structural measures (e.g., method calls). In fact, as

demonstrated in (60) and (55), semantic information is able to identify related code

components even if they are not explicitly (structurally) linked.

24

3

A Framework of Software

Refactoring Methods

3.1 Introduction

When designing an approach to identify refactoring solutions three are the main chal-

lenges to deal with:

1. Correctly capturing relationships existing between code components object of the

refactoring. This step is very important since the goal of several refactoring

operations (e.g., Extract Class, Move Method, Move Field, Extract Subclass,

Extract Package, Inline Class, etc), is to re-organize code components in such

a way that related components (i.e., those implementing similar responsibilities)

are grouped together. All the approaches presented in this thesis exploit both

structural and semantic information to capture relationships between the code

components object of the refactoring.

2. Define a convenient representations of the problem to be solved. Once the relation-

ships between code components have been captured, it is important to correctly

represent this information in order to simplify the problem to be solved, i.e., rec-

ommending the refactoring solution. When the refactoring operation is focused

on the decomposition of complex objects (e.g., Extract Class, Extract Subclass,

Extract Package) or on the movement of code components (e.g., Move Method,

Move Class) a weighted graph is a suitable representation for the available infor-

mation. Each node in the graph can represent one of the code components under

25

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

0.8

0.2

0.1

0.3

0.5

0.9

0.4

0.2

0.1

0.6

0.8 0.1

0.9

0.3
0.5

0.4

0.1

Code components object of refactoring

x Structural and/or semantic relationship between connected components

Figure 3.1: Weighted Graph representation of code components object of refactoring

analysis (see Figure 3.1). As example these components could be the classes of a

promiscuous package in need of Extract Package refactoring. As for the weight

on the edge connecting two nodes (i.e., code components), it can be used to rep-

resent the relationships between them (see Figure 3.1). Having a graph-based

representation has two keys advantages:

• All the information needed to perform the refactoring can be easily stored

in a very simple data structure: a squared matrix. In particular, if the

graph has n nodes (i.e., the code components to analyze are n), the matrix

has dimension n× n and its generic entry i, j shows the weight on the edge

connecting the nodes i and j. Clearly, if the weight is equal to zero, the

nodes i and j are not adjacent, i.e., there is no edge connecting them.

• A wide set of efficient algorithms from the graph-theory field available to

analyze in different ways the (weighted) graph. The interested reader can

find a complete treatment of graph-theory algorithms in (107).

All the approaches in this thesis exploit a graph-based representation of the in-

formation gathered from the analyzed source code.

3. Define the algorithm to generate the refactoring solution. Given the chosen prob-

lem representation it is crucial to define the algorithm to use to generate the

26

3.1 Introduction

refactoring solution. Since the approaches in this thesis exploit a graph-based

representation of the problem, it is possible to identify refactoring solutions by

applying appropriate graph-theory algorithms.

Algorithms based on subgraphs analysis can be useful to identify solutions for

refactoring dealing with decomposing complex objects into simpler ones (e.g.,

Extract Class refactoring). In fact, algorithms like the Max Flow-Min Cut or

different clustering algorithms can be used to identify, inside the weighted graph

representing the complex object to decompose, sets of strongly connected nodes

(i.e., subgraphs) representing the simpler objects to extract. Applying these al-

gorithms it is possible to automatically identify an appropriate number of objects

in which to decompose the complex object to refactoring.

As for refactoring operations dealing with moving specific code components (e.g.,

Move Method refactoring), algorithms based on network analysis can be a suitable

solution. These algorithms are generally designed to work on very large networks

(i.e., very large graphs) and are able to identify, given a node, its main network

relationships. As example, to identify the best class in which a method m should

be moved (i.e., Move Method refactoring), a network analysis algorithm can be

used to identify the set S of methods in the system having the strongest relation-

ships with it. Then, the class containing the highest number of S’s methods can

be suggested as the best one in which placing m.

In the following section we describe (i) how to capture in source code structural and

semantic information useful to support software refactoring and (ii) how the approaches

composing our framework exploit graph theory to support refactoring operations. In

this thesis our framework has been instantiated on four approaches presented in Sec-

tions 4, 5, 6, and 7. However, note that the foundation of our framework (i.e., the

information exploited to capture relationships between code components, the problem

representation, and the algorithm used to identify the solution) is general enough to

support several refactoring operations acting at different granularity levels (e.g., meth-

ods, classes), and in particular those related to:

• Decomposing Complex Components : Extract Class, Extract Subclass, Extract

Superclass, Extract Package;

27

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

• Moving Misplaced Components : Move Method, Inline Class, Inline Method, Re-

move Middle Man, Pull Up Method, Push Down Method.

3.2 Capturing Structural Relationships between Source

Code Components

In this section we discuss the sources of information capturing structural relationships

(i.e., structural coupling) between code components.

3.2.1 Method’s Calls

The most obvious source of information that can be exploited to capture structural

relationships between code components is the calls interaction. Methods generally call

each other when co-operating in the implementation of some responsibilities. This

source of information can be useful for refactoring operations acting at both method

(e.g., Extract Class, Move Method) and class (e.g., Extract Package, Move Class) level.

Methods with high calls interaction are good candidates to be grouped together

when performing refactoring operations acting at method level. As example, this source

of information is precious for Extract Class refactoring (which methods of the class to

be split should be grouped together), for Inline Method (which methods co-operate so

much that merging one into another would be better to reduce coupling) and so on.

A measure capturing method calls interaction is the Call-based Dependence between

Methods (CDM) (1). In particular, let calls(mi,mj) be the number of calls performed

by method mi to mj and callsin(mj) be the total number of incoming calls to mj .

CDMi→j is defined as:

CDMi→j =

�
calls(mi,mj)
callsin(mj)

if callsin(mj) �= 0;

0 otherwise.

CDMi→j values are in [0, 1]. If CDMi→j = 1 it means that mj is only called by mi.

Otherwise, if CDMi→j = 0 it means that mi never calls mj . To ensure that CDM

represents a commutative measure the overall CDM of mi and mj is computed as

follows:

CDM(mi,mj) = max {CDMi→j , CDMj→i}

28

3.2 Capturing Structural Relationships between Source Code Components

The CDM measure is exploited by our Extract Class and Move Method refactoring

approaches presented in Sections 4 and 6, respectively.

The calls between methods belonging to different classes also represent the most

used information to measure coupling between classes. In fact, it is reasonable to

think that classes having a high calls interaction co-operate to implement the same

(or strongly related) responsibilities and thus, are very coupled. This information is

particularly precious for refactoring operations aimed at improving the modularization

quality of Object-Oriented systems, e.g., Extract Package, Move Class.

There is a variety of metrics available in literature to measure the coupling between

classes based on their calls interaction. Examples are the Information-Flow-based Cou-

pling (ICP) (108) and the Message Passing Coupling (MPC) (109).

MPC is the basic coupling metric for measuring method-method interaction. MPC

measures the number of method calls defined in methods of a class to methods in other

classes, and therefore the dependency of local methods to methods implemented by

other classes.

As for the ICP, it measures the amount of information flowing into and out of a

class via parameters through method invocation, i.e., the measure sums the number of

parameters passed at each method invocation. Like the majority of coupling metrics in

literature, this metric is defined at the system level, i.e., for a given class c all method

calls between c and all other classes in the system are taken into account. However,

to capture coupling between pairs of classes (information needed when performing

refactoring) the ICP metric has been redefined in (55); the information-flow-based

coupling between a pair of classes ci and cj is measured as the number of method

invocations in the class ci to methods in the class cj , weighted by the number of

parameters of the invoked methods:

ICPi→j =
�|calls(ci,cj)|

k=1 p(call(ci, cj)k)

where p(call(ci, cj)k) is the number of parameters in the k − th call from ci to cj .

To ensure that ICP represents a commutative measure, the overall information-

flow-based coupling between the classes ci and cj is defined as follows:

ICP (ci, cj) = ICP (cj , ci) = max {ICPi→j , ICPj→i}

The ICP measure is exploited by our Extract Package and Move Class refactoring

approaches presented in Sections 5 and 7, respectively.

29

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

3.2.2 Shared Instance Variables

The instance variables shared by two methods are a precious source of information

for refactoring operations acting at method level (e.g., Extract Class, Move Method).

In fact, they also represent a form of communications between methods (performed

through shared data). Thus, methods sharing instance variables are more coupled that

methods do not sharing any data.

A measure to capture this form of coupling between methods is the Structural Sim-

ilarity between Methods (SSM) (110), used to compute the cohesion metric ClassCoh

(110). Let Ii be the set of instance variables referenced by method mi. The SSM of mi

and mj is calculated as the ratio between the number of referenced instance variables

shared by methods mi and mj and the total number of instance variables referenced

by the two methods:

SSM(mi,mj) =

�
|Ii∩Ij |
|Ii∪Ij | if |Ii ∪ Ij | �= 0;

0 otherwise.

SSM has values in [0, 1]; the higher the number of instance variables the two methods

share, the higher the SSM value and thus, the coupling between methods. The ClassCoh

is defined as the ratio of the sum of the similarities between all pairs of methods to the

total number of possible pairs of methods.

The SSM measure is exploited by our Extract Class and Move Method refactoring

approaches presented in Sections 4 and 6, respectively.

3.2.3 Inheritance Relationships

A source of structural information to capture relationships between classes (and thus,

useful to refactoring acting at class level) are the inheritance dependencies existing

among them. Exploiting this information is mandatory when working on approaches

aimed at supporting refactoring operations that modify the class hierarchy, e.g., Extract

Subclass, Extract Superclass, Pull Up Method, Push Down Method.

Generally, the measurement of inheritance relationships between two classes is per-

formed through a simple boolean value equals to true if two classes have inheritance

relationships, to false otherwise.

30

3.3 Capturing Semantic Relationships between Source Code Components

3.2.4 Original Design

A last source of structural information that can be exploited to capture relationships

between code components is the original design or, in other words, the choices made

by the developers when designing the system. For example, if the developers put two

methods inside the same class it is reasonable to think that from their point of view

these two methods are in some way related. For instance, in case of Move Method

refactoring, this information can be used to take into account the choices made by the

original developers when suggesting refactoring operations.

The same conjecture can be also made at class level: if two classes were put in

the same package by the developers it is likely that from their point of view these two

classes were in some way related.

We exploited information about the original design in our Move Method and Move

Class refactoring approaches presented in Sections 6 and 7, respectively.

3.3 Capturing Semantic Relationships between Source Code

Components

The semantic relationships between code components are computed by measuring their

textual similarity. If the vocabulary of two code components (i.e., methods or classes)

is very similar, it is likely that the developers used similar terms to describe similar

responsibilities implemented by the two components. This information can be useful to

support all kinds of refactoring aimed at grouping together similar code components,

at both method and class level.

To measure the textual similarity between code components Information Retrieval

(IR) (106) techniques are employed. In the following we describe the process used to

measure the textual similarity between code components using IR methods. Then, we

present the metrics existing in literature exploiting IR techniques to compute semantic

coupling between code components.

3.3.1 Measuring Textual Similarity between Code Components through

IR Methods

The first step to compute the textual similarity between code components (in the

following, simply “documents”) is the text normalization phase, generally composed of

31

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

two sub-steps:

1. Text pre-processing : white spaces and most non-textual tokens (e.g., special sym-

bols, some numbers) are pruned out from the text contained in the documents

and all capital letters are transformed into lower case letters. Moreover, code

identifiers composed of two or more words separated by using the under score or

camel case separators are split into separate words, e.g., getName is split into get

and name;

2. Word extraction and filtering : documents usually also contain common words

(i.e., articles, adverbs, programming language keywords, etc) that are not useful

to characterize their semantic. Thus, a stop word list is applied to discard such

words (term filtering) (106).

The output of the indexing process is represented by a m× n matrix (called term-by-

document matrix), wherem is the number of all terms that occur within the documents,

and n is the number of considered documents. A generic entry wi,j of this matrix de-

notes a measure of the weight (i.e., relevance) of the ith term in the jth document (106).

Various methods for weighting terms have been developed in the IR field. However,

two main factors come into play in the final term weight formulation:

1. Term Frequency (or tf): words that repeat multiple times in a document are

considered salient. Term weights based on tf have been used since the 1960s (106).

2. Document Frequency : words that appear in many documents are considered com-

mon and are not very indicative of document content. A weighting method based

on this, called inverse document frequency (or idf) weighting, was proposed by

Sparck-Jones early 1970s (111).

Generally, these two factors are combined in a weighted schema known as tf-idf (106),

which gives more importance to words having a high frequency in a document (high

tf) and appearing in a small number of documents, thus having a high discriminant

power (high idf).

Starting from the term-by-document matrix the computation of the textual similar-

ity between pairs of documents (pairs of code components in our case) depends on the

particular IR method adopted. The two of most interest for this thesis are the Vector

32

3.3 Capturing Semantic Relationships between Source Code Components

Space Model (VSM) (106) and its most important extension, namely Latent Semantic

Indexing (LSI) (91).

3.3.1.1 Vector Space Model

In the VSM (106) each document is represented by a vector of terms (112). To compute

the similarity between pairs of documents the model measures the similarity between

the their vector representations. The similarity between two vectors is not inherent in

the model. Typically, the angle between two vectors is used as a measure of divergence

between the vectors, and cosine of the angle is used as the numeric similarity (since

cosine has the nice property that it is 1.0 for identical vectors and 0.0 for orthogonal

vectors). If
−→
D1 and

−→
D2 are two vectors representing two documents for which we are

interested in computing their textual similarity, it can be calculated as follow (106):

sim(D1, D2) =

−→
D1 ·

−→
D2

�−→D1� · �
−→
D2�

=

�
ti∈D1,D2

wtiD1 · wtiD2��
ti∈D1

w2
tiD1

·
��

ti∈D2
w2
tiD2

(3.1)

where wtiD1 is the value of the ith component in the vector
−→
D2, and wtiD1 is the ith

component in the vector
−→
D1. Since any word not present in either the documents has a

wtiD2 or wtiD1 equals to 0 it is possible do the summation only over the terms common

in the two documents. How wtiD2 and wtiD1 are determined is not defined by the

model, but is dependent on the chosen weighting schema.

3.3.1.2 Latent Semantic Indexing

A common criticism of VSM is that it does not take into account relations between

terms (91). For instance, having “automobile” in one document and “car” in another

document does not contribute to the similarity measure between these two documents.

LSI (91) was developed to overcome the synonymy and polysemy problems, which occur

with the VSM model. In LSI the dependencies between terms and between documents,

in addition to the associations between terms and documents, are explicitly taken into

account. LSI assumes that there is some underlying or “latent structure” in word usage

that is partially obscured by variability in word choice, and uses statistical techniques to

estimate this latent structure. For example, both “car” and “automobile” are likely to

co-occur in different documents with related terms, such as “motor”, “wheel”, etc. LSI

33

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

exploits information about co-occurrence of terms (latent structure) to automatically

discover synonymy between different terms.

LSI starts, as well as VSM, by a term-by-document matrix A. Then it applies the

Singular Value Decomposition (SVD)(113) to decompose the term-by-document matrix

into the product of three other matrices:

A = T0 · S0 ·D0 (3.2)

where T0 is the m x r matrix of the terms containing the left singular vectors (rows

of the matrix), D0 is the r x n matrix of the documents containing the right singular

vectors (columns of the matrix), S0 is an r x r diagonal matrix of singular values, and

r is the rank of A. T0 and D0 have orthogonal columns, such that:

T T
0 · T0 = DT

0 ·D0 = Ir (3.3)

SVD can be viewed as a technique for deriving a set of uncorrelated indexing factors

or concepts (91), whose number is given by the rank r of the matrix A and whose

relevance is given by the singular values in the matrix S0. Concepts “represent extracted

common meaning components of many different words and documents” (91). In other

words, concepts are a way to cluster related terms with respect to documents and

related documents with respect to terms. Each term and document is represented by

a vector in the r-space of concepts, using elements of the left or right singular vectors.

The product S0 ·D0 (T0 ·S0, respectively) is a matrix whose columns (rows, respectively)

are the document vectors (term vectors, respectively) in the r-space of the concepts.

The cosine of the angle between two vectors in this space represents the similarity of the

two documents (terms, respectively) with respect to the concepts they share. In this

way, SVD captures the underlying structure in the association of terms and documents.

Terms that occur in similar documents, for example, will be near each other in the r-

space of concepts, even if they never co-occur in the same document. This also means

that some documents that do not share any word, but share similar words may none

the less be near in the r-space.

3.3.2 Semantic Coupling Measures

Semantic coupling can be captured at both method and class level. The Conceptual

Similarity between Methods (CSM) has been introduced in (60) to define the Concep-

tual Cohesion of Classes and used in (55) to define the Conceptual Coupling between

34

3.4 An Approach for Decomposing Complex Components

classes. Two methods are conceptually related if their (domain) semantics are sim-

ilar, i.e., they perform conceptually similar actions. To measure the CSM between

two methods, LSI is used to compute their textual similarity. The CSM measure is

exploited by our Extract Class refactoring approach presented in Section 4.

Concerning the classes, also in this case the conjecture is that classes having a high

textual similarity are likely to implement similar responsibilities and thus, to be related

(i.e., coupled).

To measure the semantic coupling between two classes, the Conceptual Coupling

Between Classes (CCBC) (55) is used. The conceptual coupling between two classes ci

and cj is defined as as:

CCBC(ci, cj) =

�
mh∈ci

�
mk∈cj CSM(mh,mk)

|ci|× |cj |

where |ci| (|cj |) is the number of methods in ci (cj). Thus, CCBC(ci, cj) is the

average of the coupling between all unordered pairs of methods from class ci and

class cj . The definition of this measure ensures that CCBC is symmetrical, i.e.,

CCBC(ci, cj) = CCBC(cj , ci).

The CCBC measure is exploited by our Extract Package refactoring approach pre-

sented in Section 5.

3.4 An Approach for Decomposing Complex Components

In this section we present an approach to support the decomposition of complex com-

ponents in software system. This approach can be instantiated to all the refactoring

having this aim, like Extract Class and Extract Package refactoring. The approach is

depicted in Figure 3.2.

Each complex component is built by several entities. For example, in case of Extract

Class refactoring the object to decompose is the Blob class composed by several methods

while in case of Extract Package refactoring it is the promiscuous package grouping

together several different classes. The first phase of the presented process (shown in

the top part of Figure 3.2) aims at building an entity-by-entity matrix representation

of the component to be refactored. The entity-by-entity matrix is a square matrix of

dimension n × n where n is the number of entities in the complex component to be

refactored. The generic entry ci,j of the matrix represents the likelihood that entity

35

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

entity1entity
extraction

entity similarity
computation

entity-by-entity
matrix

0.7

0.8

0.6

0.9 0.5

0.9Chain1

Chain2

Chain3

identifying chains
of entities

Trivial chain

merging trivial chains

Chain2
Chain3

Chain1

Candidate Class 1

Candidate Class 2

create new
components

entity-by-entity matrix construction

entity chains extraction

Complex
Code

Component

e1 e2en
e1
e2
en

The complex code component to
decompose could be a Blob Class in
case of Extract Class refactoring, a
Promiscuous Package in case of
Extract Package refactoring, etc.

The entities composing the complex
object could be Methods of the Blob
class, the classes of the promiscuous
package, etc

The entity-by-entity matrix stores the
structural and semantic relationships
between the entities composing the
complex object

Code
Component 1

Code
Component 1

Code
Component 1

Figure 3.2: An Approach for Decomposing Complex Components

ei and entity ej should be in the same extracted component1. This likelihood can be

computed by exploiting a combination of structural and semantic measures presented in

Sections 3.2 and 3.3. The particular measures to exploit and the importance to assign

at each of them must be chosen on the basis of the particular refactoring to support.

Using the information in the entity-by-entity matrix the second part (bottom path

of Figure 3.2) of the process decomposes the complex component into simpler ones.

Depending on the chosen measures, the weighted graph represented in the entity-by-

entity matrix could have very different characteristics. For example, if only structural

measures are used it is likely that the initial graph representation would be already

a disconnected graph and thus, no further steps would be required. However, since

our approache exploits a combination of structural and semantic measures it is very

likely that the initial graph representation would be in general a complete graph (i.e.,

it contains all possible edges), or at least a connected graph, since the semantic sim-

ilarity between two code components from the same system is very un-likely equal

to zero. Thus, a filtering step is used to remove spurious links and split the initial

1It is worth noting that the entity-by-entity matrix is just a convenient way of storing a weighted

graph representing the complex component to decompose.

36

3.5 An Approach for Moving Misplaced Code Components

graph represented in the entity-by-entity matrix into disconnected subgraphs. Then,

the transitive closure of the entity-by-entity matrix is computed to identify chains of

strongly related (or coupled) entities on the filtered graph (see Figure 3.2). Each com-

puted chain represents a new component to be extracted from the original complex

component. However, some of these chains could have a very short length grouping

together very few entities. We refer to these chains as trivial chains. For some kinds

of refactoring extracting components grouping together very few entities might not be

desirable. For example, in case of Extract Package refactoring could be not desirable to

extract from the promiscuous package a new package containing only one class, since

singleton modules are not considered a good design choice. To avoid the extraction

of components with a very low number of entities, in the second step of the approach

each trivial chain is merged with the most similar non-trivial chain to obtain the final

set of components to be extracted from the original complex component. It is worth

noting that (i) the threshold length for discriminating among trivial and non-trivial

chains should be customized on the basis of the particular refactoring to support and

(ii) the similarity between chains is also in this case computed exploiting the selected

structural and semantic measures.

We have instantiated this approach to support Extract Class (Section 4) and Extract

Package (Section 5) refactoring.

3.5 An Approach for Moving Misplaced Code Compo-

nents

The approach presented in this section can be used to support the movement of mis-

placed code components in software systems. The approach can be instantiated to all

the refactoring operations having this aim, like Move Method, and Move Class refac-

toring. The approach is depicted in Figure 3.3.

When supporting this kind of refactoring the challenge is to identify inside the sys-

tem of interest the misplaced code components among the hundreds contained in it. For

example, in case of move method refactoring, it is necessary to identify among the hun-

dreds of methods of the system those suffering of the Feature Envy bad smell (3). For

this reason, an approach supporting refactoring operations dealing with the movement

of misplaced code components generally works on very complex graphs representing

37

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

RTM

RTM similarity
matrix

Refactoring
Recommender

term-by-document
matrix

Identifying Components Relationships

Semantic information
extraction

Structural information
extraction

original design
matrix

structural-similarity
matrix Move

Component C1
from P1 to P2

Suggested Refactorings

Identifying the Envied Place

Code
Component

Code
Component

Figure 3.3: An Approach for Moving Misplaced Code Components

all the components of a system (e.g., all the methods for Move Method refactoring)

and the relationships between them. Thus, to identify the refactoring solution it is not

possible to apply simple splitting algorithms like the one seen in the previous section

(Section 3.4), but network analysis algorithms are needed to gather information from

the entire graph by efficiently analyzing all the relationships between the interested

code components.

Our approach starts by analyzing the structural and semantic relationships between

all components of the system (see Figure 3.3). To this aim, all the components of the

software system under analysis are pre-processed to extract necessary information, that

is, the current system design (i.e., which components are grouped together in the sys-

tem), structural relationships between components, and textual content of components.

Depending on the refactoring operation to support, the considered code components

can have different granularity levels (e.g., will be methods in case of Move Method

refactoring, classes in case of Move Class refactoring, etc.).

Information about the current system design is stored the original design matrix,

a simple boolean n × n matrix, where n is the number of components composing the

38

3.5 An Approach for Moving Misplaced Code Components

software system to analyze. A generic entry oi,j of this matrix equals to 1 if the

component ci and the component cj are grouped in the same place in the original

design, otherwise it is equal to 0. For example, in case of Move Method refactoring it

is possible to know which methods have been grouped in the same class by the original

developers by analyzing the original design matrix. This information is used to take

into account the choices made by the original developers when suggesting refactoring

operations.

Structural dependencies among code components can be derived by using the mea-

sures described in Section 3.2 and are stored in the structural-similarity matrix. Also

in this case, the particular measures to use depend on the refactoring operation on

which our approach is instantiated. As for the semantic information, terms present

in the identifiers, comments, and string literals are extracted from the code compo-

nents of interest and stored in a term-by-document matrix. Thus, at this stage three

graph-based representation of the relationships existing between the code components

to analyze are available in the three computed matrices. The next step is to identify,

for each code component, possible “envied places”, i.e., places in the system where a

code component should be moved.

To identify the envied place, the three computed matrices are supplied to RTM (Re-

lational Topic Model) (62), a hierarchical probabilistic model of document attributes

and network structure (i.e., links between documents). The basic idea behind RTM

is that textual documents (that is, the source code extracted by the components and

stored in the term-by-document matrix) are modeled as mixtures of latent topics, where

each topic is characterized by a probabilistic distribution over words and is represented

by a set of words mostly relevant for explaining the topic (62). RTM (62) is a hier-

archical probabilistic model of document attributes and network structure (i.e., links

between documents). RTM provides a comprehensive model for analyzing and under-

standing interconnected networks of documents. Other models for explaining network

link structure do exist (see related work of Chang et al. (62)), however the main distinc-

tion between RTM and other methods of link prediction is RTM’s ability to consider

both document context and links among the documents.

RTM requires two steps to generate a model, (1) model the documents in a given

corpus as a probabilistic mixture of latent topics and (2) model the links between

document pairs as a binary variable. Established as an extension of Latent Dirichlet

39

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

Allocation (LDA), step one is identical to the generative process proposed for LDA.

In the context of LDA, each document is represented by a corresponding multinomial

distribution over the set of topics T and each topic is represented by a multinomial

distribution over the set of words in the vocabulary of the corpus. LDA assumes the

following generative process for each document di in a corpus D (114):

1. Choose N ∼ Poisson distribution (ξ)

2. Choose θ ∼ Dirichlet distribution (α)

3. For each of the N words wn:

(a) Choose a topic tn ∼ Multinomial (θ).

(b) Choose a word wn from p(wn|tn,β), a multinomial probability conditioned

on topic tn.

The second phase for the generation of the model exploited by RTM is as follows:

For each pair of documents di, dj :

(a) Draw binary link indicator ydi,dj |ti, tj ∼ ψ (η · |ti, tj ,) where ti = {ti,1, ti,2, . . . , ti,n}

The link probability function ψ� is defined as:

ψ�(y = 1) = exp(ηT (tdi ◦ tdj) + v).

where links between documents are modeled by logistic regression. The ◦ notation

corresponds to the Hadamard product, td = 1
Nd

�
n zd,n and exp() is an exponential

mean function parameterized by coefficients η and intercept v.

Thus, the peculiarity of RTM as compared to other topic modeling techniques is in

its ability to adjust the probability distribution of each topic taking into account explicit

relationships among the documents. In our approach, explicit relationships among the

documents (code components) are modeled through structural dependencies among

them and original design (stored in the structural-similarity matrix and original design

matrix, respectively).

The model derived by RTM is then used to compute similarities among code com-

ponents based on both probabilistic distributions of latent topics and underlying depen-

dencies. After obtaining similarities among all the code components for a given system

40

3.5 An Approach for Moving Misplaced Code Components

(RTM similarity matrix in Figure 3.3), for each component the approach identifies a set

of highly similar components (that is, code components sharing similar topics and/or

having structural relationships). This set is then used to determine refactoring oper-

ations aiming at moving the code components in places of the system containing the

higher number of similar components. For example, given a method mi, it is possible

to identify its most similar methods in the system and suggest to move mi in the class

containing the higher number of mi’s similar methods. Clearly, if the identified class

coincides with the original class (i.e., the class in which mi is already implemented),

no refactoring is required.

We instantiate our approach to Move Method and Move Class refactoring in Sections

6 and 7, respectively.

41

3. A FRAMEWORK OF SOFTWARE REFACTORING METHODS

42

4

Extract Class Refactoring

The material in this Chapter has been presented in (1, 115, 116).

4.1 Introduction

As discussed in Chapter 2, Extract Class refactoring is a technique for splitting classes

with many responsibilities (i.e., Blobs) into different classes. Two good heuristics were

proposed in (3) for class extraction:

• responsibility-based : identifying a subset of the data and a subset of the methods

having similar responsibilities, i.e., having high (syntactic and semantic) cohesion;

• change-based : identifying subsets of the data attributes that usually change to-

gether or are dependent on each other.

Following the responsibility-based heuristic, several approaches have been proposed

to support the Extract Class refactoring. In (1) we proposed an approach based on

graph theory that is able to split a class with low cohesion in two classes having a

higher cohesion, using a MaxFlow-MinCut algorithm. An important limitation of this

approach is that often classes need to be split into more than two classes. Such a prob-

lem can be mitigated using partitioning or hierarchical clustering algorithms. However,

such algorithms suffer from important limitations as well. The partitioning algorithms

require as input the number of clusters, i.e., the number of classes to be extracted, while

the hierarchical clustering algorithms requires a threshold to cut the dendogram. Un-

fortunately, no heuristics have been derived to suggest good default values for all these

43

4. EXTRACT CLASS REFACTORING

parameters. Indeed, in (19) the authors tried to mitigate this issue by proposing differ-

ent refactoring opportunities that can be obtained using different thresholds. However,

this approach requires an additional effort by the software engineer who has to analyze

different solutions in order to identify the one that provides the most adequate division

of responsibilities.

To overcome these limitations we instantiated the approach aimed at decomposing

complex object presented in Section 3.4 to the Extract Class refactoring. Given a

class to be refactored, the approach computes a similarity measure between all possible

pairs of methods in the class. This is a composite measure that captures relationships

between methods, which impacts class cohesion (e.g., attribute references and semantic

content) and coupling (e.g., method calls). Then, a weighted graph is built where each

node represents a method and the weight of an edge that connects two nodes is given by

the similarity of the two methods. The higher the similarity between two methods, the

higher the likelihood that they should be in the same class. The extract class refactoring

method is composed of two steps. In the first step the proposed approach split the graph

in disconnected subgraphs by filtering out spurious relationships between methods and

then identifies chains of strongly related methods by performing a transitive closure of

the filtered graph. The extracted chains are then refined by merging trivial chains (i.e.,

chains with very few methods) with non-trivial chains. Using the extracted chains of

methods it is possible to create new classes—one for each chain—having higher cohesion

than the original class.

The approach has been deeply assessed and evaluated in the following studies:

1. Assessment of the configuration parameters of the approach: we empirically as-

sessed the proposed approach on a massive number of Blobs artificially created in

five open-source software systems, namely ArgoUML1, GanttProject2, Eclipse3,

JHotDraw4, and Xerces5. The artificial Blobs are created by merging classes of

the original system and the proposed approach is used to reconstruct the original

classes. This assessment was conducted to analyze the impact of the configuration

parameters on the performances of the proposed approach. As a result of this

1http://argouml.tigris.org/
2http://www.ganttproject.biz/
3http://www.eclipse.org/
4http://www.jhotdraw.org
5http://xerces.apache.org/

44

4.1 Introduction

study we define a heuristic based on Principal Component Analysis to identify a

customized optimal configuration of the parameters of the approach based on the

characteristics of the software system under analysis.

2. Evaluation of the refactoring solutions proposed by our approach from a quality

metrics and a developer’s point of view : we conducted a user study with 50 Master

students asking them to rate the refactoring suggested by the proposed approach

on 17 Blobs of two open-source systems, namely GanttProject and Xerces. In

this study we also evaluated the impact of the refactoring operations proposed

by our approach on the cohesion and coupling of the object systems.

3. Evaluation of the usefulness of the refactoring solutions proposed by our approach:

we conducted a second user study involving 15 Master students. This study has

been conducted on eleven classes identified in different versions of open source

systems that actually underwent extract class refactoring by the developers. We

identified these cases of extract class refactoring operations by using Ref-Finder

(117), an existing tool able to identify the refactoring operations performed be-

tween two subsequent versions of the same system. We provided each subject the

eleven classes together with the refactoring solution provided by our approach.

Then, we asked the subjects to provide a qualitative feedback about the usefulness

of the proposed refactoring solutions. Moreover, we also verified to what extent (i)

subjects were able to approximate the refactoring performed on the same classes

by the original developers given the suggestion of our approach and (ii) how well

the refactoring solution suggested by our approach is able to approximate the

refactoring made by the original developers.

The results show that (i) the refactoring solutions proposed by our approach strongly

increases the cohesion of the refactored classes without leading to significant increases

in terms of coupling, (ii) the refactoring solutions proposed by our approach are con-

sidered useful to developers performing extract class refactoring and (iii) the proposed

approach is able to approximate a manually performed refactoring at 91% on average.

In addition, we also compare the proposed extract class refactoring method with a pre-

vious approach proposed in (1), which uses the same graph representation of the class

to be refactored but a different algorithm based on Max Flow-Min Cut. The results

45

4. EXTRACT CLASS REFACTORING

method1
...
methodn

attr1
...
attrm

Class C

method1method
extraction

method similarity
computation

method1
...
methods

attr1
..
attrk

Class

method1
...
methods

attr1
..
attrk

Class

method1
...
methods

attr1
..
attrk

Class C1

method-by-method
matrixBlob Class

0.7

0.8

0.6

0.9 0.5

0.9Chain1

Chain2

Chain3

identifying chains
of methods

Trivial chain

merging trivial chains

Chain2
Chain3

Chain1

Candidate Class 1

Candidate Class 2

create
new classes

method-by-method matrix construction

class chains extraction

Figure 4.1: Class extraction process

clearly indicate that the new approach strongly outperforms the previous one. The ex-

perimental material and the raw data are available online for replication purposes(118).

4.2 The Approach

The approach takes as input a class previously identified by the software engineer

(or automatically) as a candidate for refactoring. Figure 7.1 shows the Extract Class

Refactoring process. In the top path of the process the candidate class is parsed to

build a method-by-method matrix, a n × n matrix where n is the number of methods

in the class to be refactored. A generic entry ci,j of the method-by-method matrix

represents the likelihood that method mi and method mj should be in the same class.

This phase of the refactoring process is described in Section 4.2.1.

Using the information in the method-by-method matrix the second part (bottom

path) of the refactoring process shown in Figure 7.1 extracts the new classes from the

input Blob. In particular, a filtering step is used to remove spurious links and split the

initial graph represented in the method-by-method matrix into disconnected subgraphs.

Then, the transitive closure of the method-by-method matrix is computed to identify

chains of strongly related (or coupled) methods on the filtered graph. Each computed

46

4.2 The Approach

chain represents a class to be extracted from the original class. However, some of these

chains could have a very short length (trivial chains). To avoid the extraction of classes

with a very low number of methods, in the second step of our algorithm we merge each

trivial chain with the most coupled non trivial chain to obtain the final set of classes to

be extracted from the original class. In subsections 4.2.2 and 4.2.3 we explain in detail

these two steps of our algorithm.

4.2.1 Method-by-method matrix construction

The first phase of the refactoring process aims at building a method-by-method matrix

representation of the class to be refactored, where a generic entry ci,j of the matrix

represents the likelihood that method mi and method mj should be in the same class.

This likelihood is computed as a hybrid coupling measure between methods (degree to

which they are related) obtained by combining three structural and semantic measures,

i.e., Structural Similarity between Methods (SSM) (110), Call-based Dependence be-

tween Methods (CDM) (1), and Conceptual Similarity between Methods (CSM) (55).

The definition of these three measured can be found in Sections 3.2 (SSM and CDM)

and 3.3 (CSM).

Since all the used similarity measures have values in [0, 1], we compute the likelihood

that methods mi and mj should be in the same class as:

ci,j = wSSM · SSM(mi,mj) + wCDM · CDM(mi,mj) + wCSM · CSM(mi,mj)

where wSSM + wCDM + wCSM = 1 and their values express the confidence (i.e.,

weight) in each measure.

It is worth noting that our choice of measures to use is not random, but it is based

on the results previously achieved in (1), where we have shown that these measures

are orthogonal, they capture different aspects of coupling between methods, and are

suitable for automating extract class refactoring. However, the refactoring method

defined in this paper is different than the refactoring method defined in (1), as it is

able to split the original class in more than two classes. Therefore, we cannot use the

same values of the weights identified in (1), but we need to empirically identify these

values for the new method. The experimental assessment of the parameters of the

approach is presented in Section 6.3.

47

4. EXTRACT CLASS REFACTORING

4.2.2 Identifying Chains of Methods

The aim of this step is to remove from the graph represented by the method-by-method

matrix spurious (but light) structural and/or semantic relationships between methods

(119). Indeed, due to the use of the semantic similarity between methods (that very un-

likely is equal to zero) the initial graph representation would be in general a complete

graph (i.e., it contains all possible edges), or at least a connected graph. We split the

graph representing the class to be refactored into disconnected subgraphs, containing

strongly related methods. We filter the method-by-method matrix, based on a threshold

minCoupling. All similarity values less than the threshold minCoupling are converted

to zero:

�ci,j =
�

ci,j if ci,j > minCoupling;
0 otherwise.

There are many ways to define a threshold aimed at removing spurious relation-

ships between methods. A simple classification allows identifying two different kinds of

thresholds:

• constant threshold : the value of the threshold is fixed a priori, e.g., minCoupling =

0.1. This kind of threshold is simple to implement, but in general it is very difficult

to choose a priori a constant value to prune spurious relationships. Indeed,

the values in the method-by-method matrix depend on the Blob chosen to be

refactored. In fact, there may be cases where the matrix contains a lot of high

values. In this case, if the fixed threshold is high, it will probably remove the

noise from the matrix, e.g., spurious relationships between the methods of the

class. Otherwise, almost all the values will be left in the matrix. On the other

hand, there may be cases where the matrix contains a large number of very low

values. In this case, a high constant threshold will remove almost all the values

from the matrix.

• variable threshold : the value of the threshold is automatically selected taking into

account the characteristics of the given input. For example, minCoupling can be

set as the median of the values present in the method-by-method matrix. This

kind of threshold should resolve the problems derived by the use of a constant

threshold and should ensure more stable filter performances across the different

inputs. Choosing the best threshold in this case is also far from trivial.

48

4.2 The Approach

We experimented with both constant and variable thresholds to empirically define

a heuristic for selecting the best threshold (see Section 6.3 for details).

After filtering the method-by-method matrix, the transitive closure of the matrix is

computed in order to extract chains of strongly coupled methods that represent the

new classes to be extracted from the original class.

4.2.3 Merging Trivial Chains

The set of computed chains (i.e., extracted classes) may include chains with a very

short length. To avoid the extraction of classes with a very low number of methods, we

use a length threshold minLength to identify trivial chains, i.e., chains with a length

less than minLength. In our approach we decided to set minLength = 3 since it

is unusual that a class extracted from a Blob and implementing a well-defined set of

responsibilities contains less than three methods. This minimum length can be easily

changed if needed. Then, we compute the (structural and semantic) coupling between

trivial and non-trivial chains and merge each trivial chain with the non-trivial chain

it is most coupled with. The coupling between chains is calculated using the same

measures used to calculate the coupling between methods. Specifically, the coupling

between chains Ci and Cj is computed as the average coupling between all possible

pairs of methods from Ci and Cj :

Coupling(Ci, Cj) =
1

|Ci|× |Cj |
�

mi∈Ci,mj∈Cj

ci,j

where |Ck| is the number of methods belonging to the chain Ck.

The methods of the original classes are distributed in different classes according to

the extracted chains. The attributes of the original class are also distributed among

the extracted classes according to how they are used by the methods in the new classes,

i.e., each attribute is assigned to the new class having the higher number of methods

using it1. At the end of the automated process, the extracted classes are analyzed by

the software engineer who can accept the proposed restructuring as is, or change it by

moving methods and attributes from one class to another.

1If a private field needs to be shared by two or more of the extracted classes, the implementation

of the needed getter and/or setter methods is left to the developer.

49

4. EXTRACT CLASS REFACTORING

0.1

0.2

0.3

0.4

0.5

0.6

2000

4000

6000

8000

10000

12000

14000

16000

18000

ArgoUML Eclipse JHotDraw
0

LCOM2 - Lower is better C3 - Higher is better

10

20

30

40

50

60

70

80

90

0

CBO - Lower is better

0
Xerces ArgoUML Eclipse JHotDraw Xerces

ArgoUML GanttProject JHotDraw Xerces

60

120

180

240

300

...

500

1000

1500

ArgoUML JHotDraw
0

MPC - Lower is better

GanttProject Xerces

GanttProject

Eclipse

GanttProject

Eclipse

Figure 4.2: Box plots of quality metrics for the systems used in the case study.

4.3 Assessment of the Proposed Approach

The proposed approach has several configuration parameters, i.e., the weights of the

similarity measures (wSSM , wCDM , and wCSM) and the threshold used to prune out

the spurious relationships between methods (minCoupling). While an assessment of

these parameters has been made in (1), we cannot just use the previously achieved

results, as the extract class refactoring algorithms are different and likely the values of

these parameters have a different impact on the different algorithms. For this reason,

in this section we conduct an empirical assessment of our approach with the goal of

defining a heuristic to identify an optimal setting for these parameters.

50

4.3 Assessment of the Proposed Approach

The context of our study is represented by five open source software systems, namely

ArgoUML 0.16, Eclipse 3.2, GanttProject 1.10.2, JHotDraw 6.0, and Xerces 2.7.0.

ArgoUML (1,071 classes and 97 KLOC) is a UML modeling CASE tool with reverse

engineering and code generation capabilities. Eclipse (23,462 classes and 1,710 KLOC)

is a multi-language integrated development environment with an extensible architecture

through plug-ins. GanttProject (273 classes and 28 KLOC) is a cross-platform desktop

tool for project scheduling and management. JHotDraw (275 classes and 29 KLOC)

is a Java GUI framework for structured drawing editors. Xerces (589 classes and 240

KLOC) is a family of packages for parsing and manipulating XML files. It implements

a number of standard APIs for XML parsing, including DOM, SAX, and SAX2. Three

of these systems, namely ArgoUML, JHotDraw, and Eclipse, have also been used to

assess the parameters of the method proposed in (1).

Figure 4.2 reports the box plot for some commonly used class quality metrics,

namely Lack of Cohesion of Methods (LCOM), Conceptual Cohesion of Classes (C3),

Coupling Between Object classes (CBO), and Message Passing Coupling (MPC) calcu-

lated considering all the classes of the object systems. The LCOM metric counts the

sets of methods in a class that are not related through the sharing of some of the fields

of a class. It is an inverse metric—i.e., the higher the value of LCOM, the lower the

class cohesion. C3 is a conceptual cohesion metric (60), complementary to structural

cohesion, which exploits LSI (Latent Semantic Indexing) to compute the overlap of se-

mantic information in a class expressed in terms of textual similarity among methods.

Higher values of C3 indicate higher class cohesion. The CBO metric (9) represents the

number of classes coupled to a given class. This coupling can occur through method

calls, field accesses, inheritance, arguments, return types, and exceptions. The higher

the value of CBO, the higher the class coupling. Finally, the Message Passing Coupling

(MPC) (109) is another coupling metric based on method-method interaction. MPC

measures the number of method calls defined in methods of a class to methods in other

classes, and therefore the dependency of local methods to methods implemented by

other classes. Higher MPC values indicate higher coupling.

The analysis of these metrics shows that the overall quality of the object systems,

in terms of coupling and cohesion, is quite high and comparable to each other. Even if

we do not have a quality model, this claim is supported by the comparable quality of

51

4. EXTRACT CLASS REFACTORING

ManagerUser()
insertUser(User)
deleteUser(int id)
updateUser(int id)
exists(User)
getAllUsers()
check(int id)

+ TABLE_USER
ManagerUser

ManagerTeaching()
insertTeaching(Teaching)
deleteTeaching(int id)
updateTeaching(int id)
exists(Teaching)
getAllTeachings()
check(int id)

+ TABLE_TEACHING
ManagerTeaching

ManagerClassroom()
insertClassroom(Classroom)
deleteClassroom(int id)
updateClassroom(int id)
exists(Classroom)
getAllClassrooms()
check(int id)

+ TABLE_CLASSROOM
ManagerClassroom

U U =

insertUser(User)
deleteUser(int id)
updateUser(int id)
exists(User)
getAllUsers()
check_0274(int id)
insertTeaching(Teaching)
deleteTeaching(int id)
updateTeaching(int id)
exists(Teaching)
getAllTeachings()
check_4813(int id)
insertClassroom(Classroom)
deleteClassroom(int id)
updateClassroom(int id)
exists(Classroom)
getAllClassrooms()
check_3361(int id)

+ TABLE_CLASSROOM
+ TABLE_USER
+ TABLE_TEACHING

ArtificialBlob

Figure 4.3: Example: creating an artificial Blob.

the object systems with JHotDraw, which has been developed as a “design exercise”

and its design relies heavily on some well-known design patterns.

4.3.1 Planning and Execution

To analyze the influence of the configuration parameters we identified different refac-

toring solutions on the same classes using different weights for the adopted similar-

ity measures and different values for the minCoupling threshold. For each metric

weight we varied this parameter (Weights) starting at 0 and increasing it until 1

by a step of 0.1. We exercised all possible combinations of such values assuring that

wSSM +wCDM +wCSM = 1. Concerning the parameter minCoupling (Threshold) we

experimented two kinds of thresholds: constant and variable. In particular, we used

four different constant thresholds and three different variable thresholds. The constant

thresholds we used are: 0.1, 0.2, 0.3, and 0.4. The variable thresholds we considered

are: the first (Q1), the second (Q2), and the third (Q3) quartile, respectively, of the

non-zero values in the method-by-method matrix. Note that the use of quartiles al-

lows to define a threshold that is less impacted—as compared to the other descriptive

statistics (e.g., mean)—by problems caused by skewed distributions of values in the

method-by-method matrix.

To have a high number of classes to assess the proposed approach, we artificially

created Blob classes with more responsibilities and low cohesion from classes of the

original systems. Specifically, we used a tool that randomly selects m ≥ 2 classes of the

52

4.3 Assessment of the Proposed Approach

system—from the same package and/or from different packages—and merges them in

a single class �Cm. We selected different values for the number of classes to merge1, i.e.,

m ∈ {2, 3}, and for each value of m we performed n = 50 different merging operations.

Thus, on each of the five object systems, we created 100 artificial Blobs, 50 obtained by

merging together 2 classes and 50 obtained by merging together 3 classes. The �Cm class

is obtained by merging methods and attributes of the selected classes. We excluded the

constructors of the classes when merging them in the artificial Blobs. If the classes to be

merged contain methods having the same signature, we renamed these methods adding

to their name a suffix composed by a random unique 4 digits number, e.g., 0343, and

changed all the calls to them consistently. Finally, we ignored methods inherited from

superclasses. Figure 4.3 shows an example of creating an artificial Blob by merging three

different classes, namely ManagerUser, ManagerTeaching, and ManagerClassroom. All

the merged classes have a method, i.e., check(int id), with the same signature that

has been renamed in the artificial Blob following the above rule. Moreover, all the

constructors have been ignored in the creation of the Blob.

By construction the merged classes have a worse cohesion than the original classes

(see the online Appendix (118) for the details). Note also that the randomly selected

classes are merged only if their cohesion is higher than the average class cohesion in

the system. The choice of this threshold was guided by the analysis of the box plots

reported in Figure 4.2. As we can see most of the classes of the object systems have

a good cohesion but there is a small set of outliers with a really low cohesion. By

considering the average cohesion as a threshold we exclude from our set of classes these

outliers, ensuring that the quality of the selected classes is rather good.

Once the mutated system is obtained, the proposed approach is applied to each

artificial Blob with the goal of reconstructing the original classes previously merged.

This is why it was important to select classes with high cohesion, because we can

consider them as the “golden standard”. Hence, to evaluate the results, the refactored

classes are compared with the original classes aiming at identifying the total number of

methods correctly and incorrectly moved in the split classes. To measure the accuracy

of the refactoring solutions we computed the MoJo eFfectiveness Measure (MoJoFM)

1It is worth noting that while the experimental design is the same, the method proposed in (1) was

experimented only on artificial Blobs created merging two classes, as it is only able to split a Blob in

two classes.

53

4. EXTRACT CLASS REFACTORING

(120) between the original classes and those extracted by our approach. The MoJoFM

is a normalized variant of the MoJo distance and it is computed as follows:

MoJoFM(A,B) = 1− mno(A,B)

max(mno(∀A,B))

where mno(A,B) is the minimum number of Move or Join operations one needs to

perform in order to transform the partition A into B, and max(mno(∀ A,B) is the

maximum possible distance of any partition A from the gold standard partition B.

Thus, MoJoFM returns 0 if a clustering algorithm produces the farthest partition

away from the gold standard; it returns 1 if a clustering algorithm produces exactly

the gold standard.

Summarizing, we performed on each object system 924 experiments, i.e., all the

possible combinations of weights, thresholds, and number of classes to be merged,

leading to 231,000 refactoring operations. The large number of refactoring operations

required to exercise the configuration parameters made a manual evaluation prohibitive

and justifies our choice to refactor artificial Blobs and compare the results automatically

with the original classes.

4.3.2 Analysis of the Results and Heuristics to Define the Configura-

tion Parameters

Tables 4.1 and 4.2 report the best results—in terms of MoJoFM—achieved using

constant and variable thresholds respectively1. The analysis of the results reveals that:

• the variable threshold generally provides better performances than the constant

threshold for the definition of minCoupling. We obtained comparable results

between constant and variable thresholds only on GanttProject. On the other

systems, the variable thresholds provide an average improvement in terms of Mo-

JoFM of about 0.06. In addition, unlike the constant threshold, the best results

are always achieved using as variable threshold the median (Q2) of the values of

the matrix on all the systems. In other words, the variable thresholds ensure a

more stable filtering performance across the different inputs, i.e., the different ar-

tificial Blobs to be refactored. Regarding the constant thresholds, generally better

results can be achieved using a low value. As we can see in Table 4.1, none of the

best configurations use 0.4 as the constant threshold;

1The complete results achieved with all possible combinations of parameters can be found in (118).

54

4.3 Assessment of the Proposed Approach

Table 4.1: Best results achieved using constant thresholds

System Best Configuration
Merging 2 Classes

Mean Median Std.dev.

ArgoUML wCDM = 0.1, wSSM = 0.3, wCSM = 0.6,minCoupling = 0.3 0.817 0.859 0.150

Eclipse wCDM = 0.0, wSSM = 0.8, wCSM = 0.2,minCoupling = 0.1 0.795 0.801 0.136

GanttProject wCDM = 0.3, wSSM = 0.5, wCSM = 0.2,minCoupling = 0.1 0.865 0.899 0.203

JHotDraw wCDM = 0.3, wSSM = 0.6, wCSM = 0.1,minCoupling = 0.1 0.810 0.877 0.189

Xerces wCDM = 0.1, wSSM = 0.3, wCSM = 0.6,minCoupling = 0.1 0.768 0.756 0.133

System Best Configuration
Merging 3 Classes

Mean Median Std.dev.

ArgoUML wCDM = 0.2, wSSM = 0.4, wCSM = 0.4,minCoupling = 0.2 0.722 0.818 0.232

Eclipse wCDM = 0.1, wSSM = 0.4, wCSM = 0.5,minCoupling = 0.2 0.651 0.674 0.134

GanttProject wCDM = 0.1, wSSM = 0.6, wCSM = 0.3,minCoupling = 0.1 0.765 0.795 0.145

JHotDraw wCDM = 0.3, wSSM = 0.4, wCSM = 0.3,minCoupling = 0.2 0.745 0.756 0.132

Xerces wCDM = 0.1, wSSM = 0.6, wCSM = 0.3,minCoupling = 0.1 0.662 0.691 0.161

• the combination of structural and semantic measures considerably improves the

accuracy of our approach. As expected, the best results are achieved when all the

weights of the three cohesion metrics are greater than zero. This means that the

combination of structural and semantic measures is worthwhile, thus confirming

the findings achieved in (1).

• the optimal settings of the weights of the three cohesion measures is not stable

across the object systems. The results highlight that the best configuration of

weights sensibly changes across the object systems. Unlike in (1), where in general

the best performances were achieved giving a high weight (greater than 0.6) to

the semantic similarity measure, in this experimental setting it is quite difficult

to identify an optimal setting of the weights for the three measures that can be

used in general for any system. This means that a different heuristic is required

to identify an optimal setting of the weights for different systems.

To better understand how the parameters of the proposed approach affect our re-

sults, we statistically analyzed the influence of the factors Weights and Threshold on

the reconstruction accuracy of our approach (MoJoFM) through interaction plots1.

The interaction plots confirmed that generally the best performances can be obtained

using as threshold the median, i.e., Q2, of the non-zero values of the method-by-method

matrix and both structural and semantic measures. However, the results also confirmed

1The interested reader can find the interaction plots for all systems in our online appendix (118).

55

4. EXTRACT CLASS REFACTORING

Table 4.2: Best results achieved using variable thresholds

System Best Configuration
Merging 2 Classes

Mean Median Std.dev.

ArgoUML wCDM = 0.1, wSSM = 0.3, wCSM = 0.6,minCoupling = Q2 0.868 0.940 0.181

Eclipse wCDM = 0.1, wSSM = 0.3, wCSM = 0.6,minCoupling = Q2 0.901 0.913 0.115

GanttProject wCDM = 0.3, wSSM = 0.3, wCSM = 0.4,minCoupling = Q2 0.873 0.865 0.138

JHotDraw wCDM = 0.3, wSSM = 0.2, wCSM = 0.5,minCoupling = Q2 0.904 0.948 0.152

Xerces wCDM = 0.3, wSSM = 0.2, wCSM = 0.5,minCoupling = Q2 0.830 0.831 0.158

System Best Configuration
Merging 3 Classes

Mean Median Std.dev.

ArgoUML wCDM = 0.2, wSSM = 0.4, wCSM = 0.4,minCoupling = Q2 0.767 0.792 0.200

Eclipse wCDM = 0.1, wSSM = 0.4, wCSM = 0.5,minCoupling = Q2 0.749 0.741 0.170

GanttProject wCDM = 0.4, wSSM = 0.2, wCSM = 0.4,minCoupling = Q2 0.750 0.718 0.160

JHotDraw wCDM = 0.2, wSSM = 0.3, wCSM = 0.5,minCoupling = Q2 0.773 0.730 0.172

Xerces wCDM = 0.4, wSSM = 0.2, wCSM = 0.4,minCoupling = Q2 0.683 0.685 0.195

that the weights that produce optimal results are different across the different object

systems.

For this reason, we use Principal Component Analysis (PCA) of the method cou-

pling data, in order to identify a heuristic able to set-up different configurations of the

weights for different software systems that result in near-optimal performances of the

refactoring technique. This allows to identify the different dimensions that describe a

phenomenon (e.g., the coupling between pairs of methods) and obtain an indication of

the importance of each dimension (captured by one or more coupling measures) in the

description of this phenomenon (i.e., the proportion of variance). Table 4.3 shows the

results of the PCA on all the object systems. As we can see, the semantic measure

is identified by the PCA as the measure that describes most of the coupling between

pairs of methods. In particular, the proportion of variance for the semantic similar-

ity measure is higher than 0.6 for all the object systems. Moreover, in general, both

structural measures are important, as they describe some of the relationships between

pairs of methods. This confirms the finding previously highlighted from the analysis of

Tables 4.1 and 4.2.

As expected, the proportion of variance values are rather different across the dif-

ferent systems, so our question was whether using the proportion of variance values to

define the weights of the similarity measures provides results of the MoJoFM close to the

optimal results shown in Table 4.2. Table 5.5 compares the results obtained using the

configuration parameters identified by the PCA proportion of variance (PCA-based con-

56

4.3 Assessment of the Proposed Approach

Table 4.3: Results of PCA: Rotated Components

PC1 PC2 PC3

Proportion of Variance 0.70 0.27 0.03

Cumulative Proportion 0.70 0.97 1.00

CDM -0.02 0.00 0.99

SSM -0.15 -0.98 0.00

CSM -0.99 0.15 -0.02

(a) ArgoUML

PC1 PC2 PC3

Proportion of Variance 0.62 0.21 0.17

Cumulative Proportion 0.62 0.83 1.00

CDM 0.02 -0.99 0.14

SSM 0.03 -0.14 -0.99

CSM 0.99 0.02 0.03

(b) GanttProject

PC1 PC2 PC3

Proportion of Variance 0.80 0.10 0.10

Cumulative Proportion 0.80 0.90 1.00

CDM 0.07 -0.02 0.99

SSM 0.06 -0.99 -0.02

CSM 0.99 0.06 -0.06

(c) JHotDraw

PC1 PC2 PC3

Proportion of Variance 0.66 0.24 0.10

Cumulative Proportion 0.66 0.90 1.00

CDM -0.04 0.02 0.99

SSM -0.26 -0.96 0.00

CSM -0.96 0.27 -0.05

(d) Xerces

PC1 PC2 PC3

Proportion of Variance 0.73 0.25 0.02

Cumulative Proportion 0.73 0.98 1.00

CDM -0.02 0.04 0.99

SSM -0.58 -0.81 0.02

CSM -0.81 0.58 -0.04

(e) Eclipse

figuration) with the best results obtained in our experimentation (best configuration).

As we can see, the difference between the reconstruction accuracy of the PCA-based

configuration compared with the accuracy obtained using the best configuration is very

small. Indeed the difference of MoJoFM is never higher than 0.04. We also executed

the Wilcoxon test to compare the accuracy of the two different configurations. The

results on all object systems do not highlight any statistically significant difference.

This result indicates that the PCA-based configuration provides an accuracy similar to

the best accuracy obtained by exercising all possible parameter configurations. Given

these findings we propose the following heuristics to set the parameters of our approach

in a real usage scenario:

• minCoupling : use the median of the non-zero values of the method-by-method

matrix as threshold to remove spurious relationships between the methods of the

class to refactor.

• weights: the weights assigned to the structural and semantic measures are estab-

lished based on the system under analysis by performing the PCA of the values

57

4. EXTRACT CLASS REFACTORING

Table 4.4: Results reconstructing merged classes: PCA based vs best configuration

System
#Merged

Best configuration PCA-based configuration
Classes

ArgoUML
2 wCDM = .1 wSSM = .3 wCSM = .6 (.87) wCDM = .0 wSSM = .3 wCSM = .7 (.84)

3 wCDM = .2 wSSM = .4 wCSM = .4 (.77) wCDM = .0 wSSM = .3 wCSM = .7 (.75)

Eclipse
2 wCDM = .1 wSSM = .3 wCSM = .6 (.90) wCDM = .0 wSSM = .3 wCSM = .7 (.88)

3 wCDM = .1 wSSM = .4 wCSM = .5 (.75) wCDM = .0 wSSM = .3 wCSM = .7 (.71)

GanttProject
2 wCDM = .3 wSSM = .3 wCSM = .4 (.87) wCDM = .2 wSSM = .2 wCSM = .6 (.84)

3 wCDM = .4 wSSM = .2 wCSM = .4 (.75) wCDM = .2 wSSM = .2 wCSM = .6 (.74)

JHotDraw
2 wCDM = .3 wSSM = .2 wCSM = .5 (.90) wCDM = .1 wSSM = .1 wCSM = .8 (.87)

3 wCDM = .2 wSSM = .3 wCSM = .5 (.77) wCDM = .1 wSSM = .1 wCSM = .8 (.74)

Xerces
2 wCDM = .3 wSSM = .2 wCSM = .5 (.83) wCDM = .1 wSSM = .2 wCSM = .7 (.79)

3 wCDM = .3 wSSM = .3 wCSM = .4 (.68) wCDM = .1 wSSM = .2 wCSM = .7 (.67)

In parenthesis the reconstruction accuracy, i.e., the average MoJoFM

of the similarity measures computed on all the classes of the system. The value of

the proportion of variance obtained for each measure will be used as the weight

for the corresponding measure.

4.3.3 Threats to Validity

The results achieved show a high reconstruction accuracy of the proposed approach.

A threat that could affect the validity of such a result is represented by the fact that

our approach was applied on artificial Blobs and thus reconstructing previously merged

classes might be trivial. To mitigate such a threat we analyzed the coupling between

the classes to be merged in order to understand if there is a correlation with the recon-

struction accuracy of our approach. If two merged classes have no coupling between

them, then the outcome of splitting might be close to perfect. On the other hand if

their coupling is high it might be “translated” as similarity between the members of

the merged class, affecting the results. We used the Conceptual Coupling Between

Classes (CCBC) (55) and the information-flow-based coupling (ICP) (108) to measure

the coupling between the merged classes. Then, we measured the statistical correlation

between the coupling of the merged classes and the splitting accuracy by computing the

Pearson product-Moment Correlation Coefficient (PMCC) (121). The results revealed

no correlation on all the object systems.

58

4.3 Assessment of the Proposed Approach

ArgoUML

Eclipse

GanttProject

JHotDraw

Xerces

Average MoJoFM - Merging 2 Classes
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Approach in Bavota et al., JSS 2011 Our approach

0.75
0.87

0.85

0.73

0.82

0.70
0.87

0.90

0.64
0.83

0.71
0.90

Figure 4.4: Comparison between our approach and the approach presented in (1).

Table 4.5: Mann-Whitney test: our approach vs approach presented in (1)

ArgoUML Eclipse GanttProject JHotDraw Xerces

Statistically
Yes (0.03) Yes (< 0.01) Yes (< 0.01) Yes (< 0.01) Yes (< 0.01)

significant difference

Moreover, to further mitigate this threat we compared the reconstruction accuracy

of the proposed approach with the accuracy achieved by the approach presented in (1),

which is based on the same graph-based representation of a class. Since the approach

presented in (1) is only able to split a Blob in two classes we performed this comparison

only on the artificial Blobs created merging two classes.

Figure 4.4 reports the results achieved using for both the approaches the best con-

figuration of parameters, respectively. As we can see the reconstruction accuracy of

our new approach always overcomes the reconstruction accuracy obtained with the ap-

proach we proposed in (1). In particular, the average difference of MoJoFM is 16.8%.

Note that our new approach is not only able to improve the reconstruction accuracy

of the approach we proposed in (1), but it also automatically derives that the artificial

Blobs have to be split in two classes, whereas the approach presented in (1) just split

the artificial Blobs in two classes by construction.

We also statistically analyzed the performances of the two approaches using the

59

4. EXTRACT CLASS REFACTORING

Mann-Whitney test (122). We chose this test as we cannot assume normality of data

and the test does not make normality assumptions. In particular, we used the test to

analyze the statistical significance of the difference between the reconstruction accuracy

provided by the two approaches. The results were intended as statistically significant

at α = 0.05. Table 4.5 reports the achieved results. As we can see, the reconstruction

accuracy of our new approach is significantly higher than the reconstruction accuracy

achieved by the approach presented in (1), for each system.

This result might be surprising since the two approaches use the same structural

and semantic measures and the same graph-based representation of the class to split.

The only difference is in the algorithm adopted to split the graph into sub-graphs.

Thus, to understand the reasons for performance gap between the two approaches, it

is important to point out the differences between the two algorithms:

1. Like the extract class refactroing algorithm presented in this thesis, also the Max

Flow-Min Cut algorithm in (1) is preceded by a filtering step aiming at removing

spurious connections between nodes. Indeed, due to the use of the semantic

similarity between methods (that very unlikely is equal to zero) the initial graph

representation would be in general a complete graph (i.e., it contains all possible

edges). In this case, the Max Flow-Min Cut algorithm would always split a graph

containing n nodes in two graphs containing n−1 and 1 node, respectively (123).

So, filtering and removing some edges is needed in this case to avoid a trivial

application of Max Flow-Min Cut algorithm. However, filtering in this case does

not disconnect the graph, as splitting the graph is in charge of the Max Flow-Min

Cut Algorithm.

On the other hand, the filtering step of our new approach is much more inten-

sive, as it aims at splitting the graph in subgraphs representing loosely coupled

components. So this step is a key for our new extract class refactoring method.

The other steps of the new method consists of (i) applying the transitive closure

to identify chains of nodes belonging to the same subgraph (and then methods

belonging to the same class) and (ii) aggregating the small subgraphs (i.e., the

trivial chains composed of less than 3 methods) with the most coupled non-trivial

chain previously identified. This merging step is also very important to correct

some surplus of the filtering step.

60

4.3 Assessment of the Proposed Approach

2. The Max Flow-Min Cut algorithm needs as input the source and sink nodes that

ideally represent two methods belonging to the two different classes to be ex-

tracted from the Blob. In (1) the heuristic used to identify the source and sink

nodes consists of selecting the two nodes in the graph connected by the edge with

the lowest weight, i.e., they are the two less coupled methods (according to the

used structural and semantic similarity measures) in the Blob class. Clearly, in

some cases this heuristic might not work properly and select two methods that

should instead be in the same class. In this case the splitting performed by the

algorithm will be negatively affected, since guided by wrong initial assumptions.

Our new technique does not suffer of similar problems, as the splitting is per-

formed by the filtering step.

We also tried to iteratively use the approach presented in (1) to refactor the artificial

Blobs created by merging three classes (M1, M2, and M3) together. In this case, in the

first iteration the Max Flow-Min Cut algorithm would split the artificial Blob in two

classes E1 and E2. Therefore, to be useful in an iterative usage, one of the extracted

class (suppose E1) should contain most of the methods of one of the original classes

(suppose M1) while the second extracted class (E2) should contain most of the methods

of the other two original classes (M2 and M3). The approach should then be re-applied

to E2 in order to extract M2 and M3 thus reconstructing the original classes. However,

this rarely happens, and the distribution of methods of the three original classes to

the classes E1 and E2 achieved after the first iteration is usually more smoothed. To

verify this, we applied the approach presented in (1) on the artificial Blob in the first

iteration and on both the extracted classes in the second iteration. Then, we selected

as refactoring solution the one achieving the highest reconstruction accuracy (i.e., the

highest MoJoFM) between the two generated. For example, suppose that E1 and

E2 are the two classes extracted from the artificial Blob at the first iteration. In

the second iteration we apply the Max Flow-Min Cut approach on both E1 and E2

obtaining the classes E3 and E4 extracted from E1 and E5 and E6 extracted from

E2. We then compute the reconstruction accuracy of the following two set of classes:

S1 = {E1, E5, E6} and S2 = {E2, E3, E4}. Supposing that the MoJoFM achieved by

S1 is 0.7 while the one achieved by S2 is 0.6, S1 is selected as the refactoring solution.

61

4. EXTRACT CLASS REFACTORING

Average MoJoFM - Merging 3 Classes
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.55
0.77

0.85

0.54

0.82

0.53
0.75

0.68

0.48
0.75

0.77

0.52

Approach in Bavota et al., JSS 2011
(Iteratively applied) Our approach

ArgoUML

Eclipse

GanttProject

JHotDraw

Xerces

Figure 4.5: Comparison between our approach and the approach presented in (1) when

applied iteratively.

Figure 4.5 reports the achieved results. As we can see the iterative application of

Max Flow-Min Cut produces results that in the best case are far from the performances

achieved by our new technique. The gap of performances with our approach in this

scenario is really high. In particular, our approach obtained a reconstruction accuracy

in terms of MoJoFM higher than the approach proposed in (1) of about 22% on average.

4.4 Evaluating the Quality of the Refactoring Solutions

The assessment performed on artificial Blobs discussed in Section 6.3 allowed us to

configure the parameters of our approach. In this study we evaluate our approach

(configured using the PCA-based heuristic defined in Section 6.3) with quality metrics

and from a developer’s point of view.

In particular, we conducted two experiments with a total of 50 subjects to quantita-

tively assess how much the refactoring solution suggested by our approach is considered

as a good division of the responsibilities implemented in a Blob class. The proposed

approach was used to refactor actual Blobs from two open source software systems,

namely GanttProject and Xerces. To set the parameters of our approach we used the

heuristics presented in Section 6.3. In particular, for GanttProject the configuration is

62

4.4 Evaluating the Quality of the Refactoring Solutions

wCDM = 0.2, wSSM = 0.2, wCSM = 0.6, and minCoupling = Q2, while for Xerces

is wCDM = 0.1, wSSM = 0.2, wCSM = 0.7, and minCoupling = Q2. This study

was conducted only on GanttProject and Xerces because a set of (manually identified)

Blobs for these systems (ten for Xerces and seven for GanttProject) is reported in the

literature (124). In particular, in the first user study a subset of 30 subjects performed

the experimentation on Blobs from the GanttProject system while in the second user

study 20 subjects performed the experimentation on Blobs from the Xerces system.

4.4.1 Research Questions and Planning

In the context of our study, the following research questions were formulated:

• RQ1: What is the impact of the refactoring suggested by our approach on class

cohesion and coupling?

• RQ2: Does the proposed refactoring results in a better division of responsibilities

from a developer’s point of view?

To respond to our first research question (RQ1) we analyzed the changes in terms of

cohesion and coupling in the object systems when applying the refactoring operations

suggested by our approach. We expect an increase of cohesion (desired effect) due to

the split in different classes of the responsibilities implemented in the Blobs. However,

we also expect an increase of coupling (side effect) since splitting a class in several

classes usually results in an increment of the total dependencies between classes. For

these reasons coupling and cohesion should be measured together to make a proper

judgment on the complexity and quality of a system, since improvement of cohesion

usually happens at the expense of increase in coupling and vice versa (125). To measure

the cohesion of the analyzed classes we used the LCOM and the C3 metrics while for the

coupling we used the MPC metric, since it allows to understand if the interactions due

to method calls between classes is increased after the refactoring operations suggested

by our approach. The cohesion and coupling metrics were measured before and after

refactoring. In particular, we measured the LCOM and C3 method of the Blob classes

and of the extracted classes to quantify the increment in terms of cohesion achieved

through the extract class refactoring. As for the coupling, also in this case we measured

the MPC for the Blob classes as well as for the extracted classes to quantify the new

63

4. EXTRACT CLASS REFACTORING

dependencies existing between the classes extracted from the refactored Blob. However,

there might also be an increase of coupling in the system due to new dependencies

existing between client classes using methods in the classes extracted from the Blob.

To verify this possible side effect, we also measured the changes in coupling as the sum

of MPC value for all the classes in the system affected by the refactoring (we will refer to

this measured value as MPCsum in the text). To detect the classes affected by each of

the 17 refactoring operations we apply them by using the extract class functionality of

Eclipse. As benchmark, we compared the results obtained applying our new approach

with those obtained using the approach presented in (1).

With regards to the research question RQ2 we analyzed the refactoring operations

proposed by our approach from the developers’ point of view. To this aim, we performed

two experiments involving a total of 50 Master Computer Science students from the

University of Salerno. Before the experiment students attended a two hours seminar

about the most common refactoring techniques, their objectives and usefulness during

the software lifecycle. During the semester in which the experimentation has been

carried out students were attending the courses of Advanced Software Engineering,

Advanced Databases, Programming Languages and Compilers, and Advanced Computer

Networks. As for their background, all students had in their Bachelor curriculum an

exam of Object Oriented programming (in Java) and of software engineering. Students

voluntarily participated to the study and no selection process was performed (i.e., all

the voluntary students were accepted). Finally, during the experiment students were

allowed to leave but no one did.

The first experiment involved 30 students who evaluated three different refactoring

operations for each of the seven Blobs of the GanttProject system: (i) the refactoring

suggested by our approach, (ii) the refactoring suggested by the approach presented

in (1), and (iii) a random refactoring. The second option was used to provide the

students with an alternative refactoring solution which makes sense but is likely worse

than the refactoring solution suggested by our approach (at least according to the

results obtained in Section 6.3). The last option does not make sense as a refactoring

solution and was only considered to verify whether participants seriously considered

this assignment (i.e., a sanity check). For each of the proposed refactoring the students

had to express their level of agreement to the claim “The proposed refactoring results

in a better division of responsibilities” proposing a score using a Likert scale (126): 1:

64

4.4 Evaluating the Quality of the Refactoring Solutions

Strongly disagree; 2: Disagree; 3: Neutral ; 4: Agree; 5: Fully agree. The students had

140 minutes to perform the assigned task (on average 20 minutes for each Blob). The

second experiment was conducted using the same design, but involved 20 subjects and

was performed on the ten Blobs of the Xerces system with a time limit of 200 minutes

(same 20 minutes average for each Blob).

To answer the research question RQ2, the results achieved in the two experiments

were analyzed through boxplots and statistical tests. As for the statistical analysis, we

decided to use the Mann-Whitney test (122) since we cannot assume normality of the

data. We collected the ranking for each of the three proposed refactoring solutions.

Then, for each pair of considered approaches (e.g., our new approach vs. the random

refactoring), we used the Mann-Whitney test to analyze the statistical significance of

the difference between the scores assigned by the students to the refactoring solutions

of the two approaches. The results were intended as statistically significant at α = 0.05.

4.4.2 Analysis of the Results

Table 4.6 reports information about the Blobs object of our study before and after the

refactoring suggested by our approach, and in particular the LOC and the number of

methods1.

4.4.3 Results of the metrics based evaluation (RQ1)

Table 7.6 reports the results achieved in our study in terms of cohesion while Table 4.8

reports the data about the coupling. Looking at Table 7.6 for almost all the classes

the cohesion is sensibly improved. In particular, the cohesion for the refactored Blobs

is on average more than five times better in terms of LCOM (1,310 for the Blobs, 257

for the extracted classes) and more than two times better in terms of C3 (0.13 for

the Blobs, 0.27 for the extracted classes). Table 4.9 compares the results in terms of

cohesion achieved by our approach with those achieved by the approach in (1). As we

can see, on the same set of Blobs, the approach in (1) achieved for the refactored classes

1In the number of methods we do not count the constructors (for both pre- and post-refactoring),

and eventual getters and setters methods to be add after the refactoring. In this way the sum of

methods of the extracted classes is equals to the number of methods of the Blob class.

65

4. EXTRACT CLASS REFACTORING

Table 4.6: Refactoring solutions proposed by our approach on the 17 Blobs object of our

study.

System Class
Split Pre-refactoring Post-refactoring

Classes LOC Methods LOC Methods

Xerces AbstractDOMParser 2 1,775 45
492 15

1,259 30

Xerces AbstractSAXParser 3 1,360 55

110 11

241 12

967 32

Xerces BaseMarkupSerializer 2 1,275 61
98 10

1,123 51

Xerces CoreDocumentImpl 3 1,497 119

82 11

79 14

1,350 94

Xerces DeferredDocumentImpl 2 1,612 76
1,061 34

430 42

Xerces DOMNormalizer 2 1,291 31
33 13

1,268 18

Xerces DOMParserImpl 2 820 17
454 7

431 10

Xerces DurationImpl 2 953 44
151 16

540 28

Xerces NonValidatingConfiguration 2 403 18
123 3

284 15

Xerces XIncludeHandler 4 1,331 111

372 32

440 26

169 17

524 36

GanttProject GanttOptions 3 513 68

438 51

72 11

37 6

GanttProject GanttProject 3 2,269 90

2,086 71

124 6

118 13

GanttProject GanttGraphicArea 2 2,160 43
2,025 32

197 11

GanttProject GanttTree 2 1,730 48
1,382 42

423 6

GanttProject GanttTaskPropertiesBean 2 1,685 27
1,164 21

524 6

GanttProject ResourceLoadGraphicArea 2 1,060 29
873 21

227 8

GanttProject TaskImpl 3 329 46

234 27

69 10

44 9

a cohesion on average almost 3 times better in terms of LCOM and two times better

66

4.4 Evaluating the Quality of the Refactoring Solutions

Table 4.7: Cohesion: Results obtained refactoring the 17 Blobs

System Class
Pre-refactoring Our approach

LCOM C3 LCOM C3

Xerces AbstractDOMParser 83 0.21
0 0.25

0 0.23

Xerces AbstractSAXParser 1,126 0.09

49 0.22

0 0.29

451 0.19

Xerces BaseMarkupSerializer 921 0.08
27 0.18

358 0.15

Xerces CoreDocumentImpl 6,825 0.05

143 0.19

190 0.33

3,322 0.12

Xerces DeferredDocumentImpl 0 0.14
0 0.18

41 0.20

Xerces DOMNormalizer 456 0.08
66 0.33

150 0.17

Xerces DOMParserImpl 132 0.24
15 0.38

54 0.33

Xerces DurationImpl 701 0.11
211 0.22

355 0.18

Xerces NonValidatingConfiguration 147 0.04
4 0.31

82 0.08

Xerces XIncludeHandler 4,652 0.08

30 0.42

602 0.14

75 0.22

188 0.27

Average Xerces 1,504 0.11 256 0.23

Gantt GanttOptions 2,100 0.18

1,117 0.27

295 0.32

0 0.36

Gantt GanttProject 2,318 0.08

1,233 0.16

0 0.36

0 0.37

Gantt GanttGraphicArea 845 0.13
511 0.18

4 0.29

Gantt GanttTree 649 0.14
493 0.22

15 0.36

Gantt GanttTaskPropertiesBean 183 0.13
52 0.18

4 0.44

Gantt ResourceLoadGraphicArea 252 0.17
146 0.28

63 0.35

Gantt TaskImpl 884 0.27

119 0.31

58 0.38

3 0.41

Average Gantt 1,033 0.16 242 0.31

Overall Average 1,310 0.13 257 0.27

in terms of C3 than the Blob classes1.

1The interested reader can find the results by the approach in (1) for each Blob in our online

appendix (118).

67

4. EXTRACT CLASS REFACTORING

Table 4.8: Coupling: Results obtained refactoring the 17 Blobs

System Class
Pre-refactoring Our approach

MPC MPCsum MPC MPCsum

Xerces AbstractDOMParser 561 1,483
221

1,503
356

Xerces AbstractSAXParser 320 1,375

13

1,40977

256

Xerces BaseMarkupSerializer 355 655
7

661
350

Xerces CoreDocumentImpl 341 1,693

15

1,70510

319

Xerces DeferredDocumentImpl 392 996
351

1,045
82

Xerces DOMNormalizer 441 819
1

826
441

Xerces DOMParserImpl 285 833
163

862
128

Xerces DurationImpl 352 594
42

609
312

Xerces NonValidatingConfiguration 91 441
32

453
60

Xerces XIncludeHandler 573 1,650

58

1,724
302

96

132

Sum Xerces 3,711 10,539 3,824 10,797

Gantt GanttOptions 472 1,047

443

1,07720

19

Gantt GanttProject 1,528 3,707

1,492

3,7248

29

Gantt GanttGraphicArea 575 1,319
605

1,362
4

Gantt GanttTree 358 2,654
262

2,678
106

Gantt GanttTaskPropertiesBean 276 432
179

485
149

Gantt ResourceLoadGraphicArea 447 853
355

877
105

Gantt TaskImpl 45 414

42

4286

4

Sum Gantt 3,701 10,426 3,828 10,631

Overall Sum 7,412 20,965 7,652 21,428

Concerning the coupling we analyzed both the increase of coupling limited to the

extracted classes (MPC column in Table 4.8) as well as the overall increase of coupling

for all the classes involved in the refactoring operations (MPCsum column in Table 4.8).

As we can see, extracting different classes from the original Blobs resulted in a small

68

4.4 Evaluating the Quality of the Refactoring Solutions

Table 4.9: Average Cohesion: our approach vs. approach in (1)

System
Pre-refactoring Our approach Approach in (1)

LCOM C3 LCOM C3 LCOM C3

Xerces 1,504 0.11 256 0.23 588 0.21

Gantt 1,033 0.16 242 0.31 310 0.27

Overall 1,310 0.13 257 0.27 473 0.24

Table 4.10: Average Coupling: our approach vs. approach in (1)

System
Pre-refactoring Our approach Approach in (1)

MPC MPCsum MPC MPCsum MPC MPCsum

Xerces 3,711 10,539 3,824 10,797 3,807 10,757

Gantt 3,701 10,426 3,828 10,631 3,780 10,569

Overall 7,412 20,965 7,652 21,428 7,587 21,326

increment of the MPC value of the extracted classes. For instance, the refactoring of

XIncludeHandler generated 4 different classes with a cohesion much higher than the

cohesion of the original class, e.g., LCOM for the original class is 4,652, while the

extracted classes have an average LCOM equals to 224 (more than 20 times better,

note that LCOM is an inverse measure of cohesion). On the coupling side the MPC

for the original Blob is 573, while the sum of the MPC of the extracted classes is 588.

Thus, the percentage increase in terms of MPC is only about 3%. Overall, the average

increment of coupling limited to the comparison of the MPC for the original Blobs and

of the MPCs for the extracted classes is only +3.2%. This result, as shown in Table

4.10, is just slightly higher than those achieved by the approach in (1) (+2.4%). Note

that the (slightly) better performances in terms of coupling ensured by the approach in

(1) are an expected results, since it extracts an overall number of classes from the Blobs

lower than our approach (i.e., 34 against 41). This clearly results in less dependencies

existing between the extracted classes.

As for the coupling measured for all classes involved in the refactoring operations

here the increase is very small in terms of percentage. In particular, our approach

increases the number of dependencies for these classes from 20,965 to 21,428 (+2.2%)

while the approach in (1) from 20,965 to 21,326 (+1.7%).

Summarizing, the application of the refactoring operations suggested by our ap-

proach results in a strong increase of cohesion much higher than those achieved by the

approach in (1). The price to pay in terms of coupling is quite low and similar for both

the approaches.

69

4. EXTRACT CLASS REFACTORING

OUR APPROACH APPROACH IN
Bavota et al., JSS 2011 RANDOM SPLITTING

Figure 4.6: GanttProject: Box plots of the ratings provided by students

4.4.3.1 Results of the User Study (RQ2)

Figures 4.6 and 4.7 show the boxplots summarizing the answers provided by the subjects

of our experiments to the questions regarding the division of responsibilities achieved

by the refactoring solutions of the different approaches1. In particular, Figure 4.6

reports the answers given in our first experiment (30 subjects evaluating the refactoring

of GanttProject’s Blobs) while Figure 4.7 reports the answers given in our second

experiment (20 subjects evaluating the refactoring of Xerces’s Blobs). From the analysis

of Figures 4.6 and 4.7 it is easy to see that in both experiments subjects gave higher

scores on the Likert scale to the refactoring proposed by our new approach. In fact,

concerning the Blobs in the GanttProject system (see Figure 4.6), the median of the

scores given to our approach is 4 (Agree) against 3 (Neutral) achieved by the approach

presented in (1) and 2 (Disagree) of the random splitting. This difference is more

evident for the evaluation of the ten Blobs of the Xerces system (see Figure 4.7). In

this case the median of the scores given to our new approach is 5 (Fully Agree) against

3 (Neutral) of the approach presented in (1) and 1 (Strongly Disagree) of the random

splitting. Thus, in both cases, the refactoring solutions suggested by our approach

were considered as a better division of responsibilities than (i) a random splitting (as

expected), and (ii) the splitting proposed by the approach proposed in (1). As also

1A fine grained analysis of the scores assigned by the students is reported in our online Appendix

(118).

70

4.4 Evaluating the Quality of the Refactoring Solutions

OUR APPROACH APPROACH IN
Bavota et al., JSS 2011 RANDOM SPLITTING

Figure 4.7: Xerces: Box plots of the ratings provided by students

Table 4.11: Results of the Mann-Whitney test.

α

First experiment Second experiment

our approach vs approach in (1) < 0.01 < 0.01

our approach vs random splitting < 0.01 < 0.01

approach in (1) vs random splitting < 0.01 < 0.01

expected, the refactoring solutions proposed by the approach in (1) obtained in both

the experiments a better evaluation than the random splitting, that was just used to

understand if subjects treat the experiment seriously.

The above considerations are also supported by statistical analysis. Table 7.8 re-

ports the results of the Mann-Whitney tests used to compare the scores given by the

students to the refactoring operations achieved by the different approaches. As we can

see, the solutions suggested by our approach always obtain a statistically significant

higher score than the other solutions. Moreover, the refactoring solutions suggested

by the approach in (1) obtains a statistically significant higher score than the random

splitting in both the experiments.

The quantitative data gathered from subjects allow us to positively answer our first

research question RQ2: the division of responsibilities proposed by our approach is

meaningful from a developer’s point of view. However, to have deeper insights about

71

4. EXTRACT CLASS REFACTORING

Refactoring operation proposed the approach presented in [12]

Include

XMLError

Augmentations

Refactoring operation proposed by our approach

Augmentations

Include

Error

DTD

Class1 Class2 Class3 Class4

XIncludeHandler

Class1 Class2

Original Blob

DTD

XML

Augmentations

Include

Error

DTD

XML

Augmentations

Include

Error

DTD

XML

Augmentations

Include

Error

DTD

XML

Augmentations

Include

Error

DTD

XML

Augmentations

Include

Error

DTD

XML

Figure 4.8: Topic Map of XIncludeHandler pre and post refactoring

the scores provided by the students we also analyzed some of the refactoring operations

proposed by our approach that have been generally marked with good scores (or not)

by the students.

Operations positively evaluated by students

For the Xerces system, two refactoring operations positively evaluated by almost all

the students are for the AbstractSAXParser and XIncludeHandler classes. In partic-

ular, we observed that one of the classes extracted from the AbstractSAXParser class

can be classified as an Entity class, since it contains only a set of attributes and the

corresponding getter and setter methods. Concerning the refactoring of the XInclude-

Handler class, it is particular interesting for two main reasons: (i) the refactoring

operation suggested by our novel approach in this case achieved the higher average

score, i.e., 5, (the refactoring operation suggested by the approach presented in (1)

for the same Blob obtained an average score of 2.7), and (ii) this is the case with the

higher difference in terms of number of extracted classes with respect to the approach

proposed in (1) (4 vs. 2). To better analyze this case we report in Figure 4.8 the topic

map (92) representing the main topics of (i) the original Blob, (ii) the classes extracted

by our approach, and (iii) the classes extracted using the approach presented in (1).

The topic map for a class C is computed analyzing the term frequency in the methods

of C. In particular, we count for each term present in C (excluding the java keywords),

72

4.4 Evaluating the Quality of the Refactoring Solutions

the number of methods that contain it. The five most frequent terms, i.e., the terms

present in the highest number of methods, are then used to construct the topic map

of C that, for this reason, is represented by a pentagon where each vertex represents

one of the main topics. Each vertex is connected to the center of the pentagon by an

axis representing the percentage of methods in the class that implements the corre-

sponding topic. The graphical representation of the main topics of C is then obtained

by tracing lines between the point on each of the five axes indicating the percentage

of methods belonging to C that implement the corresponding topic. The methods in

XIncludeHandler implement the XInclude handling of XML document according to the

W3C recommendations. The XInclude functionality allows to re-use a XML document

including it into other XML documents. The main topics in the class are reported in

the right side of Figure 4.8. As we can see, the most frequent terms are: XML (the

kind of document involved), DTD (Document Type Definition, a set of declarations

used to define the document type for markup languages like XML), Include (the main

responsibility of the class), Error (the management of the possible errors derived by the

XInclude operation), and Augmentations (the infoset augmentation that can be used

to modify a XML infoset during schema validation). Thus, even if the main responsi-

bility of this class is the implementation of the XInclude handling, it also implements

some auxiliary (and poorly related) responsibilities. The application of our approach

to XIncludeHandler produced four new classes, each one specialized in one particular

responsibility: Class1 principally deal with the Document Type Definition, Class2 with

the infoset augmentation of XML documents, Class3 with the implementation of the

XInclude operation, and Class4 with the management of possible errors derived by the

XInclude operation. Concerning the refactoring proposed by the approach presented in

(1) (bottom part of Figure 4.8), it is possible to observe that the two extracted classes

still represent a mixture of different topics, even if also in this case the distribution of

responsibilities is better than the original Blob.

Operations negatively evaluated by students

A particularly interesting case is represented by the refactoring of the NonValidating-

Configuration class. In particular, our approach splits the original Blob containing 19

methods into two classes, one composed of 15 methods and the other having only three

methods (see Table 4.6). The extraction of these three methods from the original class

73

4. EXTRACT CLASS REFACTORING

does not achieve a good distribution of responsibilities among the new classes. How-

ever, analyzing the original class we observed that it is not easy to find a meaningful

splitting from a functional point of view for this class. Even though this class has been

marked as Blob in (124), probably the Extract Class refactoring is not the best way

to improve the quality of this class. This is also supported by the fact that even if the

refactoring proposed by our approach achieved a low average score (3.2) it was the one

preferred by the students for this Blob.

With regards to the GanttProject software system, the only case of refactoring

negatively rated by the students is represented by the GanttTaskPropertiesBean class.

This is an expected results, since in our previous work (1) it was observed that for

this class it is difficult to achieve a meaningful division of responsibilities using the

Extract Class refactoring. Indeed, this Blob can be classified as “Data God Class” or

“Lazy Class” (3) because the class holds a lot of the system’s data in terms of number

of attributes (67). In this case, as suggested in (3), other types of refactoring should

be applied to improve the quality of the class, i.e., developers can redistribute the

attributes of the Blob to other classes closer to the data.

4.4.4 Threats to validity

In this section we discuss the threats that could affect the validity of our results.

4.4.4.1 Software Metrics Evaluation

In our study we measured the increase in cohesion/coupling derived by the extract class

operations suggested by our approach. To measure cohesion and coupling we employed

three well-established quality metrics, i.e., LCOM for the structural cohesion, C3 for

the semantic cohesion, and the MPC for the coupling. As in all the software metrics

evaluations, there is a risk that the improvement (in our case of cohesion) achieved by

applying the proposed refactoring operations is obtained by construction. In fact (i)

LCOM is based on the instance variable shared by the methods implemented in a class,

information exploited by our approach and (ii) the C3 metric is computed using the

Conceptual Similarity between Methods exploited by our approach to capture overlap

of semantic concepts between methods in the Blob class. For these reasons, even if

a software metric evaluation is needed to verify that a new refactoring approach does

not negatively affect the cohesion and coupling of the system, we believe that this

74

4.4 Evaluating the Quality of the Refactoring Solutions

kind of evaluation cannot be the only type of experimentation of a new technique

(as done in several previous papers (17, 18, 82, 84, 127)). So, besides achieving an

increase of cohesion it is necessary to show that the suggested refactoring operations

are consistent with the way developers would perform a refactoring. This is the reason

why we also performed user studies. It is worth noting that the results of the metrics-

based evaluation is consistent with the results of the user study reported in this section.

4.4.4.2 Subjects and Objects

In this user study 50 master students evaluated the refactoring solutions proposed by

our new approach, the approach presented in (1), and a random splitting. The students

did not know the goal of our experimentation or the techniques which produced the

suggested refactoring solutions, to avoid bias. Moreover, the three refactoring solutions

to be evaluated were presented in a random order.

The type of subjects involved in our study, i.e., master students, represents an

important threat related to the generalization of the results. The students had good

analysis, development, and programming experience and they can be considered as

junior industrial analysts. In addition, as highlighted by Arisholm and Sjoberg (128) the

difference between students and professionals is not always easy to identify. Since there

are several differences between industrial and academic contexts we plan to replicate

the experiment with industrial subjects to corroborate the achieved findings. Also, it

is possible that subjects did not fully understand the code they judged, since they were

not the original developers of the object systems. This threat is in part mitigated by our

next studies where (i) we gathered more qualitative answers from students participating

in a second user study and (ii) we compared the refactoring solutions proposed by our

approach with those identified by original developers of six open source systems.

Another threat to the generalization of our findings is related to the limited number

of real Blobs analyzed (7 in the first and 10 in the second experiment, respectively).

However, this is the realistic number of tasks that we could possibly evaluate in ex-

periments lasting approximately for two/three hours. It is not easy to perform such

experiments using a substantially larger number of Blobs, unless they are conducted in

multiple sessions.

75

4. EXTRACT CLASS REFACTORING

Table 4.12: Analysis of the refactoring operations.

System Class
Response

PhD student Master student I Master student II

GanttProject

GanttOptions 5 5 5

GanttProject 5 5 5

GanttGraphicArea 4 5 5

GanttTree 4 5 4

GanttTaskPropertiesBean 3 4 3

ResourceLoadGraphicArea 4 5 5

TaskImpl 4 5 5

Xerces

AbstractDOMParser 5 5 5

AbstractSAXParser 5 5 5

BaseMarkupSerializer 4 5 5

CoreDocumentImpl 4 4 4

DeferredDocumentImpl 1 3 2

DOMNormalizer 5 5 5

DOMParserImpl 5 5 5

DurationImpl 3 4 3

NonValidatingConfiguration 3 3 3

XIncludeHandler 5 5 5

Average 4.1 4.6 4.4

1: Strongly disagree; 2: Disagree; 3: Neutral ; 4: Agree; 5: Fully agree

4.4.4.3 Experimental Design

An important threat is related to the claim rated by the subjects with respect to

the different refactoring solutions evaluated (i.e., The proposed refactoring results in

a better division of responsibilities). In fact, it seems unlikely that when splitting a

Blob the extracted classes exhibit a worse division of responsibilities than the Blob.

However, in this study we aimed at conducting a massive quantitative study to assess

how much the refactoring proposed by our approach was considered as a better division

of responsibilities than the selected Blobs. In addition to the refactoring solutions

suggested by our approach we also provided the students with the refactoring suggested

by the approach in (1) and a random one. It is worth noting that the students considered

not meaningful the random refactoring (which means that splitting does not necessarily

mean a better division of responsibilities), while they generally considered good (and

better than the original Blob) both the refactoring suggested by the new approach

76

4.4 Evaluating the Quality of the Refactoring Solutions

and by the approach presented in (1) and manifested a significantly higher preference

for the refactoring of the novel approach. Thus, we are confident that the positive

scores provided by the students to the refactoring solutions proposed by our approach

represent reliable quantitative data to assess the goodnesses of the splitting operations

proposed by our approach. Again, it is worth noting that the results of the user study

are consistent with the metrics-based evaluation.

Since students evaluated three different refactoring solutions, another important

threat is that they might have rated as meaningful the “least worst” proposed refac-

toring. We clearly explained to the students that for each analyzed Blob they could

rate all the refactoring solutions analyzed with low scores as well as with high scores

(there was not necessarily a winner to identify). However, to mitigate such a threat we

asked an additional Ph.D. student and two master students1 to evaluate for each of the

17 experimented Blobs only the refactoring solutions proposed by our approach. As in

the two cases before, for each refactored class, the students had to express their level of

agreement to the claim “The proposed refactoring results in a better division of respon-

sibilities” proposing a score using the same Likert scale used in the experiments. Table

4.12 reports the answers provided for each analyzed class. As we can see, they agreed or

strongly agreed with in most cases, with little disagreement between them. Moreover,

the cases were the students negatively evaluated the proposed refactoring operations

are almost the same as identified in the two experiments, e.g., DeferredDocumentImpl,

NonValidatingConfiguration. Thus, we are quite confident that the results achieved in

our experiments reflected well the quality of the refactoring solutions proposed by the

experimented approaches.

However, even with all the mitigations described above, the threats related to this

experimental design still remains, due to the purely quantitative nature of the study.

The user study presented in Section 4.5 will provide a more qualitative evaluation of

the proposed approach and will overcome the threats discussed here.

1To avoid bias in the experiment none of the authors have been involved in this evaluation.

77

4. EXTRACT CLASS REFACTORING

4.5 Evaluating the Usefulness of the Refactoring Solu-

tions

In our previous user study we performed an online experimental evaluation with soft-

ware engineers of the quality of the extract class refactoring solutions suggested by our

approach. In this Section, we present a second user study, performed with 15 Master

students from the University of Salerno1, aimed at gathering more data from develop-

ers about the usefulness of the refactoring solutions suggested by our approach. Also

in this case subjects voluntarily took part to the experimentation and had the same

academic background as the students involved in the previous user study. The study

has been conducted on a set of classes extracted from open source systems that under-

went extract class refactoring by the original developers. The subjects had to perform a

refactoring on these classes using as initial suggestion the refactoring solutions proposed

by our approach. In this way, we also have an oracle (the refactoring of the original

developers) to compare the suggested solution and the refactoring performed by the

students with. An important difference from the previous user study is that this time

we performed the evaluation off-line, by sending all the material needed to perform

the experiment via e-mail. We gave subjects two weeks to perform the required tasks.

The experimental material as well as the raw data of this study are available online for

replication purposes (118).

4.5.1 Research Questions and Planning

In the context of this study, the following research question has been formulated:

• RQ3: Are the refactoring solutions suggested by our approach useful for develop-

ers when performing extract class refactoring?

To obtain the objects needed by our study we mined six open source systems (i.e.,

Apache HSQLDB, ArgoUML, JEdit, JFreeChart, JHotDraw, Xerces) looking for ex-

tract class refactoring operations performed during their history by the original de-

velopers. We used Ref-Finder (117) to identify the refactoring operations performed

among two subsequent versions of the same system. Ref-Finder is a tool able to identify

1None of the 50 students involved in the user study reported in Section 6.4 has been involved in

this experiment.

78

4.5 Evaluating the Usefulness of the Refactoring Solutions

Table 4.13: Extract Class Refactoring Operations Identified in the Six Analyzed Systems

System Original Class Extracted Classes

Apache HSQLDB

Database (40)
Database (27)

SchemaManager (13)

Select (14)
Select (7)

Result (7)

UserManager (14)
UserManager (9)

GranteeManager (5)

ArgoUML

FileGeneratorAdapter (11)
FileGeneratorAdapter (3)

TempFileUtils (8)

Import (10)
Import (7)

ImportCommon (3)

JEdit JEditTextArea (214)

JEditTextArea (22)

SelectionManager (11)

TextArea (181)

JFreeChart

JFreeChart (24)
JFreeChart (16)

Plot (8)

NumberAxis (20)
NumberAxis (16)

ValueAxis (4)

JHotDraw DefaultApplicationModel (14)
DefaultApplicationModel (4)

AbstractApplicationModel (10)

Xerces

XMLDTDValidator (69)
XMLDTDValidator (38)

XMLDTDProcessor (31)

XMLSerializer (25)
XMLSerializer (12)

DOMWriterImpl (13)

In parenthesis the number of methods in each class

63 different types of refactoring, but unfortunately not the extract class one. However,

the latter can be identified by Ref-Finder as a set of move method and move field op-

erations from the original class to the new extracted classes. We manually validated

these sets of move method and move field refactoring retrieved by Ref-Finder to iden-

tify extract class refactoring operations performed by the original developers. In total,

we identified eleven meaningful extract class refactoring operations performed by the

original developers as shown in Table 4.13.

To answer our research question we provided each subject the eleven classes to

refactor together with the refactoring solution proposed by our approach. Then, since

for each of the eleven identified classes we have the original class as well as the new

classes extracted by the developers, we can answer RQ3 from both a qualitative and a

79

4. EXTRACT CLASS REFACTORING

quantitative point of view.

As for the qualitative analysis, we asked the subjects the following questions:

1. Would you split this class?

(a) if YES:

i. Why?

ii. Would you split the class differently than the provided refactoring solu-

tion? Why?

iii. Did you find the provided refactoring solution a good starting point to

perform your refactoring?Why?

(b) if NO:

i. Why?

As for the quantitative analysis we measured how much the refactoring produced

by the students (i) was different than the solution suggested by our approach and

(ii) approximated the refactoring performed by the original developers. We used the

MoJoFM (120) to measure the similarity between the refactoring performed by the

students, the ones proposed by our approach, and those performed by the original

developers. Moreover, we also measured (still through the MoJoFM) how far is the

refactoring suggestion proposed by our our approach from the refactoring performed

by the original developers on each of the eleven classes object of our study. Given the

low number of observations (i.e., eleven) we did not execute any kind of statistical test.

4.5.2 Analysis of the Results

Table 4.14 shows, for each of the eleven classes object of our study, the percentage of

subjects answering “YES” to the three YES/NO questions of our survey. For example,

13 out of the 15 students involved (87%) would split the class Database and 8 of them

(62%) would split the class differently than the solution suggested by our approach.

However, all these 13 subjects founded the provided refactoring solution (i.e., the one

proposed by our approach) a good starting point to perform the refactoring.

The analysis of Table 4.14 reveals interesting results. First of all, not always subjects

would split the provided classes. In particular, there are two of the analyzed eleven

classes (i.e., Select and Import) for which the majority of the students did not feel that

80

4.5 Evaluating the Usefulness of the Refactoring Solutions

Table 4.14: Answers provided by the subjects

Class

% Students answering YES

Would you split Would you split the Was the provided refactoring

this class? class differently? suggestion useful?

Database 87% 62% 100%

Select 27% 0% 100%

UserManager 100% 87% 67%

FileGeneratorAdapter 67% 40% 100%

Import 40% 0% 100%

JEditTextArea 100% 100% 100%

JFreeChart 100% 0% 100%

NumberAxis 87% 62% 100%

DefaultApplicationModel 80% 8% 100%

XMLDTDValidator 100% 0% 100%

XMLSerializer 87% 67% 100%

extract class refactoring was needed. As explained in the design, we also asked subjects

why they would/would not split each class. Analyzing these answers we found that

subjects judged the complexity of both classes acceptable and were not able to identify

different responsibilities implemented in them. Clearly, this result contrasts with the

choice made by the original developers. However, analyzing the refactoring performed

by the original developers on the classes Select and Import it is clear that their choice

was not driven by the high complexity of those classes but to the willingness to improve

their design. In fact, (i) the number of methods implemented in both classes is quite low

(i.e., 14 in Select and 10 in Import) and (ii) in both cases the developers performed the

extract class refactoring to split the classes into a Model class, responsible of modeling

an entity in the system, and a Controller class working on the Model. For the Import

class our approach proposes exactly the refactoring performed by the original developers

and the six students that would split this class accepted the refactoring suggested as

is (and clearly, found the suggestion useful). Moreover, three of them were also able

to motivate their choice by explaining that “the class Import seems a merge between a

Model and a Controller”, “it is possible to extract a model class”, and “to improve its

reusability a model class can be extracted”. As for the Select class, also in this case the

four subjects that would split it accepted the suggestion of our approach as is, explaining

its usefulness with the fact that “the extracted classes looks strongly cohesive”.

81

4. EXTRACT CLASS REFACTORING

On the other side there is a set of four classes that all subjects would like to split

(i.e., UserManager, JEditTextArea, JFreeChart, and XMLDTDValidator). As for the

UserManager class, the subjects explained that this class performs “more than just

managing the users” and they can identify “two different responsibilities implemented

in it”. Ten subjects (67%) found the suggestion of our tool useful explaining that “it

eases code comprehension” by “highlighting the main responsibilities implemented in the

class”. Our approach splits each of these classes in two new classes. It is interesting to

note that 87% of the subjects (13 out of 15) modified the suggested refactoring solution

and all of them moved just one method from one of the extracted classes to the other

obtaining exactly the refactoring performed by the original developers. Concerning

the 33% of subjects that did not find useful the suggestion of our approach for this

class, most of them motivated this answer by explaining that “the class was not really

complex” and thus “its main responsibilities can be identified without any suggestion”.

However, none of them complained about the quality of the proposed refactoring.

Interesting is also the case of the JEditTextArea class for which all subjects (i) think

that a refactoring would be necessary, (ii) would like to change the proposed refactoring,

and (iii) think that the suggested refactoring was useful as starting point. As for the

need to split this class most of the subjects explain it by highlighting that “the class

is very complex”, “intricate”, and “looks low cohesive”. Our technique extracts from

JEditTextArea three new classes. All subjects suggested that two of these classes can be

merged together and, four of them also extracted a new class managing “the scrolling

of a text area”. However, all subjects found the starting refactoring suggestion useful

commenting that “the proposed division of responsibilities makes sense, but perhaps it

is a bit excessive”. This motivation explains the fact that all of them merged together

two of the thee extracted classes.

For other classes like JFreeChart, and XMLDTDValidator all students accepted the

refactoring suggestion as is, commenting in most cases that “the extracted responsibili-

ties were meaningful” and “cohesive classes were extracted”.

Finally, another interesting case is concerned with the NumberAxis class. Most of

the students (87%) would like to split this class since “the management of the axis

values should be extracted”. Our approach suggested to split this class in three new

classes. While 38% of students appreciated this suggestion, the other 62% applied a

change to it by merging two of the three suggested classes. The students who applied

82

4.5 Evaluating the Usefulness of the Refactoring Solutions

Table 4.15: MoJoFM between (i) the refactoring suggested by our approach and that

performed by the original developers (ii) the refactoring performed by subjects and the

refactoring proposed by our approach, and (iii) the refactoring performed by subjects and

that performed by the original developers

Class

Our approach to Original Dev. Subjects to our approach Subjects to Original Dev.

MoJoFM #Move/Join
Avg. Avg. Avg. Avg.

MoJoFM #Move/Join MoJoFM #Move/Join

Database (40) 0.97 1 0.98 0.6 0.99 0.5

Select (14) 0.83 2 1.0 0 0.83 2

UserManager (14) 0.93 1 0.94 0.9 0.98 0.3

FileGeneratorAdapter (11) 0.86 1 0.92 0.6 0.94 0.4

Import (10) 1.00 0 1.00 0 1.00 0

JEditTextArea (214) 0.84 34 0.97 6 0.87 27

JFreeChart (24) 0.95 1 1.00 0 0.95 1

NumberAxis (20) 0.94 1 0.96 0.6 0.98 0.4

DefaultApplicationModel (14) 0.92 1 0.99 0.2 0.92 1

XMLDTDValidator (69) 0.88 8 1.00 0 0.88 8

XMLSerializer (25) 0.91 2 0.97 0.7 0.94 1.4

Average 0.91 4.7 0.98 0.9 0.93 3.8

In parenthesis the number of methods of the class

the change to the refactoring proposed our approach (just a join operation) were able

to replicate the refactoring performed by the original developers. Overall, all subjects

appreciated the refactoring suggestion highlighting as it “eases the comprehension of

the main responsibilities implemented in a class”.

Summarizing, except for the case of the UserManager class discussed above, sub-

jects always found useful the solutions suggested by our approach when performing

refactoring. Among the most frequent explanations we found:

1. it eases code comprehension;

2. it highlights the main responsibilities implemented in a class;

3. the extracted classes are cohesive.

Moreover, subjects stated that in some cases “without the refactoring suggestion it

would be too difficult to identify the main responsibilities of the classes”.

Concerning the quantitative data, Table 4.15 reports (i) the MoJoFM between

the refactoring solution suggested by our approach and that performed by the original

developers, (ii) the average MoJoFM between the refactoring performed by the subjects

and the refactoring solution suggested by our approach and (iii) the average MoJoFM

83

4. EXTRACT CLASS REFACTORING

between the refactoring performed by the subjects (starting from the suggestions of our

approach) and the refactoring performed by the original developers. Moreover, Table

4.15 also reports the number of Move/Join operations needed to convert one refactoring

into the other.

The first thing that leaps to the eyes is that our approach is able to well approxi-

mating the refactoring performed by the original developers, achieving on average 0.91

of MoJoFM. For example, for the Database class from the Apache HSQLDB system

our approach achieve 0.97 of MoJoFM. This class was split in 2 new classes by the

original developers (see Table 4.6), one containing 27 and one containing 13 methods.

Our approach splits the Database class into three classes. The first is composed of the

same 27 methods included in one of the two classes extracted by the developers. The

other two extracted classes contains the remaining 13 methods, 8 in one class and 5 in

another one. Thus, just performing one Join operation (i.e., merging the two smallest

classes extracted) it is possible to obtain the refactoring performed by the developers.

As for the average number of Move/Join operations required to convert the refactor-

ing suggested by our approach into the refactoring performed by the original developers,

on average 4.7 operations are required. The only case in which a quite high number of

Move/Join operations is required to convert the refactoring solution proposed by our

approach to the one performed by the developers is related to the class JEditTextArea.

In this case, 34 Move/Join operations are required. However, it is worth noting that

the original class was composed by 214 methods. Thus, in this case 34 Move/Join

operations required to convert the refactoring proposed by our approach into the one

performed by the developers represent a good results, as also demonstrated by the high

MoJoFM achieved (0.84). Note that, excluding the case of the JEditTextArea class,

the average number of required Move/Join operations required to convert the refactor-

ing solution proposed by our approach into the refactoring performed by the original

developers is only 1.8.

The second important result of our study is that the refactoring suggested by our

approach is only slightly modified by the 15 subjects. In fact, the average MoJoFM is

0.98 and the average number of required Move/Join operations to convert the sugges-

tion by our approach in the refactoring performed by subjects is less than one (0.9).

Moreover, starting from the suggestions by our approach, subjects were able to further

approximate the refactoring performed by the original developers achieving an average

84

4.5 Evaluating the Usefulness of the Refactoring Solutions

MoJoFM of 0.93. On average, only 3.8 Move/Join operations are needed to convert

their refactoring in the refactoring performed by the original developers.

This result highlights how the refactoring solutions suggested by our approach ob-

jectively represent a very good starting point for developers interested in performing

extract class refactoring operations. In fact, students having zero knowledge of the

object systems were able to comprehend the classes and perform refactoring operations

very close to those performed by the original developers having a deep knowledge of

these open source systems.

4.5.3 Threats to Validity

Here we discuss the main threats that could affect the validity of our results.

4.5.3.1 Subjects and Design of the User Study

As in our previous user study (see Section 6.4) also in this case our subjects were

Master students. This clearly results in the same threats related to their knowledge

of the source code under analysis. However, using the refactoring solutions suggested

by our approach, they were able to produce refactoring very close to those performed

by the original developers. Thus, we are confident that this threat did not affect the

validity of our study.

Another threat is related to the fact that we did not perform the experimentation

in a controlled setting, as we invited subjects to participate via e-mail. However, unlike

the user study presented in Section 6.4, which simply required to score refactoring

solutions, performing this type of study in a controlled setting is quite unfeasible since

the time needed to refactor 11 classes and provide all the required qualitative feedback

is much higher. Indeed, subjects invested between 6 and 10 hours to perform the

required tasks1.

4.5.3.2 Reliability of the Considered Oracle

In this study we considered the refactoring performed by the original developers as the

golden standard to which test the refactoring proposed by our approach. This is, to the

best of our knowledge, the first refactoring approach evaluated against real refactoring

1These data were provided by subjects when sending their results to us.

85

4. EXTRACT CLASS REFACTORING

Table 4.16: Our approach vs the approach in (1): MoJoFM achieved in reconstructing

the refactoring performed by the original developers

System Original Class
Our approach Approach in (1)

MoJoFM #Move/Join MoJoFM #Move/Join

Apache HSQLDB Database (40) 0.97 1 0.66 13

Apache HSQLDB Select (14) 0.83 2 0.42 7

Apache HSQLDB UserManager (14) 0.93 1 0.58 5

ArgoUML FileGeneratorAdapter (11) 0.86 1 0.67 3

ArgoUML Import (10) 1.00 0 0.63 3

JEdit JEditTextArea (214) 0.84 34 0.74 51

JFreeChart JFreeChart (24) 0.95 1 0.64 8

JFreeChart NumberAxis (20) 0.94 1 0.78 4

JHotDraw DefaultApplicationModel (14) 0.92 1 0.67 4

Xerces XMLDTDValidator (69) 0.88 8 0.54 31

Xerces XMLSerializer (25) 0.91 2 0.49 12

Average - 0.91 4.7 0.62 12.8

In parenthesis the number of methods of the class

operations performed by original developers of open source systems. However, we do

not know (i) the experience of the developer who actually performed the refactoring

and (ii) how the developer performed the refactoring (e.g., totally manually, using a

tool suggestion, etc.).

Concerning the first point, the open source community working on the considered

projects accepted the performed refactoring operations without modifying it in future.

This makes us at least confident that the performed refactoring operations were correct

and meaningful.

Concerning the second point we analyzed the commit messages wrote by the de-

velopers when uploading the changes resulting from the refactoring operation in the

software repository. We did not find any claim about the usage of tools to perform the

refactoring, although we cannot be 100% sure that this was not the case.

4.5.3.3 On the Performance of Our Approach when approximating a Man-

ually performed Refactoring

In the performed study our approach was able to approximate the refactoring performed

by the original developers with a very high accuracy (i.e., 0.91 of MoJoFM). To have a

benchmark, we compared the performance of our approach with that achieved by the

approach in (1). Table 4.16 reports the MoJoFM between the refactoring performed by

86

4.6 Final Remarks

the original developers and the refactoring suggested (i) by our approach and (ii) by the

approach in (1). Moreover, Table 4.16 also reports for both approaches the number of

Move/Join operations needed to convert the refactoring they suggest in the refactoring

performed by the original developers. As we can see the gap of performances between

the two approaches is very sharp, 0.91 for our approach against the 0.62 achieved by

the approach in (1). An interesting case is represented by the JEditTextArea class,

since it is the only one split by the original developers into three new classes. In this

case our approach achieves 0.84 of MojoFM, against the 0.74 achieved by the approach

in (1). However, we also iteratively applied the approach in (1) as explained in Section

4.3.3. The MoJoFM even decreases to 0.71, thus again demonstrating the unsuitability

of iteratively applying the approach proposed in (1).

4.5.3.4 On the low Number of Refactoring Operations Analyzed

To identify refactoring operations performed by the original developers we mined the

history of six software systems. However, we only identified 11 extract class refactoring

operations. This result is quite surprising but can be explained by analyzing the process

we used to identify the extract class operations. First the Ref-Finder tool we used to

identify refactoring operations does not identify extract class refactorings, but only

sets of move method and move field operations. We manually validated these sets to

recognize them as extract class refactoring operations, so it is possible that we miss the

identification of some extract class refactoring operations. Second and most important,

we found several operations which include a mixture of different refactoring operations.

For example, often some methods of a Blob class are deleted, others are moved to an

existing class (i.e., move method) and the remaining are split in new classes (i.e., extract

class). We decided to ignore these cases since they do not represent pure extract class

operations and testing an extract class refactoring approach in these cases would be

unreliable.

4.6 Final Remarks

This Chapter describes an approach to automate Extract Class refactoring. Given

a class to be refactored, the approach computes a measure of similarity between all

possible pairs of methods in the class. Such a measure captures relationships between

87

4. EXTRACT CLASS REFACTORING

methods that impact class cohesion (e.g., attribute references, method calls, and seman-

tic content) and gives the likelihood that two methods should be members of the same

class. The approach identifies chains of strongly related methods, i.e., highly coupled

methods. The set of extracted method chains is exploited to build new classes—one

for each chain—having higher cohesion than the original class.

An empirical assessment and evaluation of the proposed approach was performed

through three studies. The goal of the first study was to identify a heuristic for the

definition of the parameters of the proposed approach. Then, it has been experimented

on real Blobs of open source systems to evaluate (i) how good the proposed solution

is from a cohesion and coupling metrics point of view, (ii) how good the proposed

refactoring solution is considered by software engineers as it is. Finally, in a third

study we evaluated on eleven classes (i) how much the proposed solution is useful as

starting point to perform a refactoring, and (ii) how well the proposed refactoring

solution approximate a refactoring made by the original developers. The results show

that the refactoring solutions proposed by our approach strongly increases the cohesion

of the refactored classes without leading to significant increases in terms of coupling.

Moreover, the refactoring solutions proposed by our approach are considered useful to

developers performing extract class refactoring and are able to approximate a manually

performed refactoring at 91% on average.

88

5

Extract Package Refactoring

The material in this Chapter has been presented in (129, 130).

5.1 Introduction

In this Chapter we instantiate the approach aimed at decomposing complex object

presented in Section 3.4 to the Extract Package refactoring. As explained in Chapter

2, the aim of this refactoring is to decompose a package with poor cohesion (i.e., a

promiscuous package) into smaller and meaningful packages having higher cohesion.

The approach exploits two class-level coupling metrics (i.e., Information-Flow-based

Coupling (ICP) (108) and Conceptual Coupling Between Classes (CCBC) (55)) to cap-

ture structural and semantic relationships between classes, respectively. The use of the

ICP measure allows the technique to capture the amount of information flowing be-

tween the classes of the system via parameters through method invocations. In other

words the ICP measure provides information about the structural dependencies be-

tween classes. On the other side, the CCBC measure captures the lexical information

embedded in the comments and identifiers of the classes, allowing to identify seman-

tically (i.e., domain semantics) related classes, i.e., classes containing similar terms in

their comments and identifiers. These two sources of information are combined and

used to determine classes that should belong together in a package. The technique is

automated and suggests to developers how to split existing packages, when needed.

The evaluation of the approach has been performed on five systems. In particular,

we merged several packages of the object systems and used the proposed approach

89

5. EXTRACT PACKAGE REFACTORING

Table 5.1: Systems used in the case study.

System Version KLOC #Classes #Packages
Cohesion

Mean Median St. Dev

eTour 1.0 30 134 17 0.348 0.311 0.067

GESA 2.0 46 297 22 0.332 0.289 0.120

JHotDraw 6.0 b1 29 275 12 0.364 0.379 0.052

SESA 1.2 11 128 14 0.318 0.292 0.073

SMOS 1.0 23 121 12 0.400 0.424 0.039

to split the merged package aiming at reconstructing the original packages. Our as-

sumption is that the higher the reconstruction accuracy of our approach, the higher

the meaningfulness of the proposed re-modularization. This assumption is supported

in part by our choice of systems, which have high quality. However, to further verify

this assumption in the cases where the re-modularization proposed by our approach is

significantly different from the original decomposition of the system, we asked some of

the original developers of the object systems to analyze the proposed package decom-

positions and evaluate them from a functional point of view.

Section 5.2 presents the proposed approach, while Section 5.3 presents the design

and the results of the empirical study.

5.2 The Approach

The proposed approach takes as input a package identified by the software engineer as

a candidate for re-modularization. Then, a measure reflecting a relationship between

pairs of classes from the package is computed. The measured values between classes

are stored in a n × n matrix, called class-by-class matrix, where n is the number of

classes in the package under analysis. A generic entry mi,j in the class-by-class matrix

represents the likelihood that class ci and class cj should be in the same package.

Using the information in the class-by-class matrix the approach extracts chains of

strongly related classes. The classes of the original package are distributed in different

packages according to the extracted chains. If the number of extracted chains is one, no

re-modularization is suggested by the tool (this generally happens when the cohesion

of the analyzed package is high). Otherwise, based on the extracted class chains the

90

5.2 The Approach

approach suggests new packages with higher cohesion than the original package. Note

that the structure of individual classes in the package is not changed.

While the proposed approach is automated, it is actually supposed to serve as an

assistant to the developer. Design decisions are often more complex and subtle than

just trying to maximize package cohesion. In consequence, the extracted packages are

analyzed by the software engineer who can accept the proposed re-modularization as

is, or change it by moving classes from one package to another.

5.2.1 Class-by-Class Matrix Construction

The likelihood that class ci and class cj should be in the same package is estimated

by capturing different types of relationships between classes that can affect package

cohesion. In particular, we define the likelihood that two classes should be in the

same package by combining two different (structural and semantic) measures, i.e.,

information-flow-based coupling (ICP) (108) and Conceptual Coupling Between Classes

(CCBC) (55). The definition of these metrics can be found in Sections 3.2 (ICP) and

3.3 (CCBC).

The choice of metrics to use is not random, as it is based on previous research

(55) that analyzed the combination of structural and semantic coupling metrics to

predict changes in OO software. ICP and CCBC fared better than other structural and

conceptual metrics, respectively. Moreover, the empirical analysis conducted in (55)

have shown that structural and semantic coupling measures do not correlate, which

indicates that they capture different aspects of coupling. In light of these results,

we expect that (i) a package composition based on these metrics will group together

classes that tend to change together, which is a desirable property in order to localize

change, and (ii) the use of a combination of orthogonal quality metrics to guide the

re-modularization activity can provide better results than any one of its constituents

(89, 131).

The likelihood that classes ci and cj should be in the same package as:

couplingi,j = wICP · �ICP (ci, cj) + wCCBC · CCBC(ci, cj)

where wICP + wCCBC = 1 and their values express the confidence (i.e., weight) in

each measure. The weights assigned to these measures are empirically defined and the

methodology for this step is presented in Section 5.3.

91

5. EXTRACT PACKAGE REFACTORING

5.2.2 Class Chains Extraction

Once computer the relationships between the classes of the package to be refactored,

the extraction of the class chains is performed in two steps. Firstly, the class-by-class

matrix is filtered in order to remove spurious structural and/or semantic relationships

between classes using a threshold, minCoupling. Also in this case, we experiment in

our evaluation (Section 5.3) both constant and variable thresholds (see Section 4.2.2)

as done for the Extract Class refactoring approach.

Once the class-by-class matrix is filtered, its transitive closure is computed to iden-

tify the chains of strongly related classes (i.e., packages) that should be extracted from

the promiscuous package. Clearly, also for this approach it is possible that the set

of computed chains (i.e., suggested packages) include chains with a very short length

due to classes having poor relationships with other classes. To avoid suggesting very

small packages (i.e., packages with a very low number of classes), we use a chain length

threshold, minLength, to identify trivial chains, i.e., chains with a length less than

minLength. Similar to (132), in our approach we set minLength = 4 since a good

re-modularization approach should avoid the creation of packages with too few classes.

This minimum length can be easily changed if needed. Then, we compute the coupling

between trivial and non-trivial chains and merge each trivial chain with the strongest

coupled non-trivial chain. The coupling between chains is calculated using the same

measures used to calculate the coupling between classes. Specifically, the coupling be-

tween chains Chi and Chj is computed as the average coupling between all the possible

pairs of classes from Chi and Chj .

5.3 Empirical Evaluation

In this section we report the design and the results of the study conducted to evaluate

the proposed Extract Package approach.

5.3.1 Planning

The study follows the Goal-Question-Metrics paradigm (133).

92

5.3 Empirical Evaluation

5.3.1.1 Definition and Context

The goal of the empirical study is (i) to assess the parameters of the proposed approach,

i.e., the weights of the coupling metrics (wICP , and wCCBC) and the class-by-class ma-

trix filtering threshold (minCoupling), and (ii) to determine whether the proposed

approach generates meaningful re-modularization of packages in object-oriented soft-

ware systems.

The objects of our study are: an open source system, JHotDraw1 and four software

systems (eTour, GESA, SESA, and SMOS) developed by university students during a

Software Engineering course. Among these, GESA has been developed in an industrial

traineeship and it is operational at University of Molise since 2009. JHotDraw is a

Java GUI framework for structured drawing editors. eTour is an electronic touristic

guide, while GESA is a web-based application used in the management of university

courses. SESA is also a web-based application used to manage relevant information

of the Software Engineering Lab of the University of Salerno, e.g., people, projects,

publications. Finally, SMOS is a software developed for high schools, which offers a

set of functionalities aimed at simplifying the communications between the school and

the students’ parents. Table 7.1 reports the statistics (i.e., KLOC, number of classes,

and number of packages) as well as the versions of the systems used in the study. The

table also reports the descriptive statistics of the packages’ cohesion from the systems,

measured using a cohesion metric, namely CohesionQ, defined in (82). Our evaluation

strategy requires that the object systems have high package cohesion. The measures

support our choice, as the average cohesion values for the five systems are higher than

that of the systems analyzed in (82): JEdit (with average cohesion 0.288), ArgoUML

(0.172), Jboss (0.125), and Azureus (0.117).

5.3.1.2 Research Questions and Planning

By construction, the approach will extract from a package, class chains having higher

cohesion than the original package. However, as we mentioned before a good re-

modularization cannot be based only on the higher cohesion of the new packages. An

evaluation involving developers is required in order to assess the overall quality and

meaningfulness of the proposed re-modularization. For this reason, our study aims at

1http://www.jhotdraw.org

93

5. EXTRACT PACKAGE REFACTORING

(i) assessing the parameters of our approach and (ii) analyzing if the proposed approach

is able to identify meaningful re-modularization operations from a developer point of

view. Thus, two research questions are formulated:

• RQ1: How do the parameters of the proposed approach affect the results?

• RQ2: Is the proposed approach able to find meaningful re-modularizations?

To respond to our research questions we mutated the original version of the object

systems using a tool that randomly selects m ≥ 2 packages of the system and merges

them in a single package �Pm. The merging operation was recorded in a log file to allow

us to know the packages merged by the tool. At the end of the merging operation

we obtained a mutated system with a worse package decomposition compared to the

original system. The proposed approach is then applied to the �Pm package in order

to reconstruct (or improve) the original packages. At the end of the re-modularization

operation we obtained a new version of the mutated system. Specifically, given the

merged package �Pm, the proposed approach is expected to generate m packages. To

evaluate the proposed approach, the new packages were compared with the originally

merged packages aiming at identifying the total number of classes correctly and in-

correctly placed in the new packages. The ideal behavior is that the split packages

are the same (i.e., contain the same classes) as the original packages. In essence, we

consider them as a “golden standard”. This choice is supported by the fact that the

systems used in the study have a generally good package quality that is reflected in

terms of package cohesion (see Table 7.1). In particular, one of the object systems,

JHotDraw, has been developed as a “design exercise” and its design relies heavily on

using well-known design patterns. The other four systems were chosen among the best

projects developed during the software engineering course. As shown in Table 7.1 the

cohesion of the packages of the other four systems is close to that of JHotDraw. With

that in mind, recovering the original packages likely means that the approach is able

to identify meaningful re-modularizations.

In order to respond to our first research question, we identified different re-modula-

rization solutions on the same merged packages, i.e., mutated systems, using different

settings of weights for the selected metrics, i.e., wICP , and wCCBC , and different values

for the threshold used to remove spurious relationships from the class-by-class matrix,

i.e., the parameter minCoupling. In particular, for each metric weight we varied this

94

5.3 Empirical Evaluation

parameter starting at 0 and increasing it until 1 by a step of 0.1. We exercised all the

possible combinations of such values assuring that wICP+wCCBC = 1, i.e., 11 different

combinations. Concerning the parameter minCohesion we experimented both constant

and variable thresholds. In particular, we used five different constant thresholds and

three different variable thresholds. Concerning the constant thresholds we used 0.1,

0.2, 0.3, 0.4, and 0.5, while as variable thresholds we considered the first (Q1), the

second (Q2), and the third (Q3) quartile, respectively, of the non-zero values in the

class-by-class matrix. Note that the use of quartiles allows to define a threshold that is

less affected—as compared to the other descriptive statistics (e.g., mean)—by problems

caused by skewed distributions of the values in the class-by-class matrix. We selected

different values for the number of packages to be merged, i.e., m ∈ {2, 3, 5}, aiming

at obtaining merged packages with a low cohesion and varied set of responsibilities.

For each value of m we performed 10 different trials, i.e., n = 10, randomly selecting

each time different combinations of the merged packages. In total, we did 30 merging

and re-modularizations operations for each system (varying on the 11 combinations of

weights, i.e., wICP and wCCBS , and on 8 different values for minCoupling). Thus, the

total number of trials performed on each object system is 11 × 8 × 30 = 2, 640, for a

total of 13,200 re-modularizations for the five systems.

To evaluate the results produced by the configurations experimented for our ap-

proach we used the two Information Retrieval metrics recall and precision (106). In

our study recall measures the percentage of classes correctly placed in the split pack-

ages, while precision measures the percentage of classes that are correctly placed. Since

the two metrics measure two different concepts, we decided to use the F-measure (106)

as the dependent variable to assess the performances of the proposed approach and to

guide the selection of the best values for the weights and parameters described above.

Note that the F-measure is computed analyzing only the reconstruction of the merged

packages and not the entire system decomposition.

The reconstruction accuracy (F-measure) achieved using the best parameters setting

is also used to respond to our second research question. Our assumption is that the

higher the reconstruction accuracy of our approach, the higher the meaningfulness of

the proposed re-modularization. As explained before, this assumption is supported in

part by our choice of systems which have a high quality in terms of package cohesion.

However, it is possible that even in software systems having a good remodularization

95

5. EXTRACT PACKAGE REFACTORING

Table 5.2: Subjects involved in the functional evaluation.

System #Subjects Original Developers?

eTour 2 Yes

GESA 5 Yes

JHotDraw 2 No

SESA 2 Yes

SMOS 5 Yes

quality, some classes are misplaced in some packages. Thus, in our second research

question, we analyzed the proposed re-modularization operations from a functional

point of view. In particular, in the cases where the re-modularization proposed by our

approach is considerably different from the original decomposition of the system, we

asked some of the original developers of eTour, GESA, SESA, and SMOS to analyze

the proposed package decomposition and evaluate the performed re-modularizations.

For JHotDraw, the same evaluation was made by two graduate students who are very

familiar with the system. We involved a total of 16 subjects in the functional evaluation

distributed among the object systems as reported in Table 5.2. To identify the cases

to analyze, we set an F-measure threshold �. All the cases for which our approach was

not able to reconstruct the original packages with an F-measure higher than � were

analyzed by the students. For each of the selected cases the students responded to the

following question:

Is the proposed package decomposition meaningful?

with a score using a 5-point Likert scale (126): 1: Strongly agree; 2: Weakly agree; 3:

Neutral ; 4: Weakly disagree; 5: Strongly disagree.

5.3.2 Analysis of the Results

In this section we present the results of the empirical study. We discuss two aspects of

the results. First, we use the results to determine the best values for the weights and

parameters. Second, we analyze the results of the students’ evaluation of the proposed

re-modularizations.

96

5.3 Empirical Evaluation

Table 5.3: Descriptive statistics of results achieved reconstructing merged packages.

System m
Best Configuration F-Measure (After step 1) F-Measure (After step 2)

wCCBC wICP Threshold Mean Median Std.dev. Mean Median Std.dev.

eTour

2 0.9 0.1 Q3 0.804 0.852 0.094 0.891 0.936 0.086

3 0.9 0.1 Q3 0.688 0.703 0.102 0.760 0.774 0.082

5 0.9 0.1 Q3 0.559 0.562 0.084 0.668 0.659 0.057

GESA

2 0.9 0.1 Q3 0.917 0.936 0.039 0.967 0.981 0.044

3 0.9 0.1 Q3 0.763 0.795 0.114 0.822 0.897 0.131

5 0.9 0.1 Q3 0.603 0.578 0.104 0.720 0.706 0.073

JHotDraw

2 0.7 0.3 Q3 0.749 0.788 0.142 0.785 0.807 0.180

3 0.9 0.1 Q3 0.672 0.709 0.100 0.724 0.760 0.085

5 0.8 0.2 Q3 0.593 0.635 0.056 0.688 0.675 0.027

SESA

2 0.8 0.2 Q3 0.897 1.000 0.095 0.930 1.000 0.108

3 0.8 0.2 Q3 0.647 0.602 0.125 0.700 0.643 0.109

5 0.8 0.2 Q3 0.548 0.522 0.138 0.660 0.600 0.104

SMOS

2 0.8 0.2 Q3 0.769 0.846 0.206 0.804 0.920 0.263

3 0.8 0.2 Q3 0.705 0.720 0.108 0.770 0.790 0.101

5 0.9 0.1 Q3 0.558 0.604 0.126 0.668 0.700 0.138

The number of merged packages is m.

Table 5.3 reports the results produced—in terms of F-measure—by the best con-

figuration of parameters identified on each of the object systems1. The results in Table

5.3 highlight:

• the benefits of the second step of our approach. After merging each trivial chain

(i.e., a chain composed of less than 4 classes), with the most similar non-trivial

chain (see Section 5.2.2), we obtained an average increment of the F-measure by

about 7% (with respect to the previous step of the approach);

• the decrease of the reconstruction accuracy when increasing the number of merged

packages. Indeed, the average F-measure decreases from 88% when merging 2

packages, to 75% when merging 3 packages, until 68% when merging 5 packages;

• a general rule for setting the parameters of our approach. The results reveals that

the best performances can be obtained using as threshold the third quartile, i.e.,

1The complete results achieved with all the possible combination of parameters can be found in

(134).

97

5. EXTRACT PACKAGE REFACTORING

3rd quartilevariable
2nd quartilevariable
1st quartilevariable

0.5constant (max)
constant (best) 0.4

0.1constant (min)

0.00

F-
m

ea
su

re

Weights

ICP
CCBC

1.0
0.0

Threshold

0.9
0.1

0.8
0.2

0.7
0.3

0.6
0.4

0.5
0.5

0.4
0.6

0.3
0.7

0.2
0.8

0.1
0.9

0.0
1.0

0.40

0.20

0.60

0.80

1.00

kind value line

Figure 5.1: Interaction between Weight and Threshold on GESA merging 2 packages.

Q3, of the non-zero values of the class-by-class matrix and setting wCCBC ≥ 0.7.

However, the best configuration of weights is slightly different among the object

systems. Thus we need to investigate deeper the influence of the configuration

parameters on the performances of the proposed approach.

5.3.2.1 Influence of the parameters

To better analyze the influence of the configuration parameters Figs. 5.1, 5.2, and 5.3

show the interaction plots between Weights and Threshold on GESA, merging 2, 3,

and 5 packages, respectively. We report the results obtained using all the three variable

thresholds but for sake of readability we only report the results achieved using the lower,

the higher, and the best constant threshold (see (134) for the complete interaction plots

of all the systems).

The analysis indicates that the variable thresholds ensure better filtering perfor-

mances than the constant thresholds across the different inputs, i.e., the different arti-

ficial packages to be re-modularized. In particular, the best performances are achieved

using Q3 as threshold to remove spurious relationships in the class-by-class matrix.

98

5.3 Empirical Evaluation

3rd quartilevariable
2nd quartilevariable
1st quartilevariable

0.5constant (max)
0.4constant (best)
0.1constant (min)

0.00

F-
m

ea
su

re

Weights

ICP
CCBC

1.0
0.0

Threshold

0.9
0.1

0.8
0.2

0.7
0.3

0.6
0.4

0.5
0.5

0.4
0.6

0.3
0.7

0.2
0.8

0.1
0.9

0.0
1.0

0.40

0.20

0.60

0.80

1.00

kind value line

Figure 5.2: Interaction between Weight and Threshold on GESA merging 3 packages.

Regarding the weights, the results reveal that the weight for the semantic metric,

i.e., wCCBC , should be higher than 0.6. In fact, all combination of weights having

wCCBC ≥ 0.7 has a reconstruction accuracy almost equal to the best (see Figs. 5.1,

5.2, and 5.3). This trend (as well as the trend concerning the variable threshold Q3) is

confirmed across all the experimented systems (see (134)). The high importance (i.e.,

weight) of the semantic metric probably derives from the fact that even for packages

with good structural cohesion there might be pairs of classes with no structural in-

teraction, e.g., two classes with no method calls between each other. Note that the

method calls that we capture are just a subset of all possible ways in which two classes

can be structurally related. We extract method calls statically with a rather simple

and conservative analysis of the code using Eclipse’s AST parser. A more sophisti-

cated analysis would likely yield additional structural relations, which may increase

the weight of the structural component of the combined measure. In the cases where

there are no structural relationships between classes, only the semantic metric can help

to cluster together these pairs of classes, when needed. This fact is also highlighted

by the strong performances decrease affecting our approach when the weight for the

semantic metric is equal to zero. It is worth noting that even if our approach is really

99

5. EXTRACT PACKAGE REFACTORING

3rd quartilevariable
2nd quartilevariable
1st quartilevariable

0.5constant (max)
0.3constant (best)
0.1constant (min)

0.00

F-
m

ea
su

re

Weights

ICP
CCBC

1.0
0.0

Threshold

0.9
0.1

0.8
0.2

0.7
0.3

0.6
0.4

0.5
0.5

0.4
0.6

0.3
0.7

0.2
0.8

0.1
0.9

0.0
1.0

0.40

0.20

0.60

0.80

1.00

kind value line

Figure 5.3: Interaction between Weight and Threshold on GESA merging 5 packages.

stable across all the configurations of weights having wCCBC ≥ 0.7, it shows slight

decrease of performances when the structural metric, i.e., ICP, is set to zero (see Figs.

5.1, 5.2, and 5.3). All these observations suggest that the semantic metric captures

most of the coupling (relevant to our task) between the classes of the object systems

and consequently helps to better cluster together classes of the same original pack-

age, i.e., classes with high coupling. To verify such a conjecture we apply PCA to

the coupling measures. This allows identifying the different dimensions that describe

a phenomenon, e.g., the coupling between pairs of classes, and obtain an indication of

the importance of each dimension (captured by one or more coupling metrics) in the

description of this phenomenon, i.e., the proportion of variance. It is worth noting that

as it is defined, the structural metric ICP gives a value different than zero only in case

two classes are related at least by one method call. The problem is that the pair of

classes that are related through a method call represents only a small percentage of the

possible pairs of classes in a software system, e.g., in JHotDraw “only” 2% out of about

38,000 possible pairs of classes have method calls between them (about 650). In such

a situation, the output of the PCA is trivial since it assigns almost all the description

of the observed phenomenon, i.e., coupling between classes, to the semantic metric. To

100

5.3 Empirical Evaluation

avoid this problem, we executed the PCA only on the pairs of classes related trough at

least a method call. Table 5.4 shows the achieved results. As we can see, the semantic

metric is identified by the PCA as the metric that describes most of the coupling be-

tween pairs of classes (its proportion of variance is always higher than 0.6). Moreover,

the proportion of variance values provided by the PCA are close to the weights used

for the coupling metrics in the configurations with the best results of the F-measure.

Thus, as observed for the Extract Class refactoring approach (see Chapter 4) the PCA

could be used to weight the exploited coupling metrics taking into account the portion

of coupling captured by each metric (proportion of variance). In particular, the higher

the proportion of variance captured by one metric, the higher its weight. To verify the

usefulness of the PCA in setting the weights for the metrics exploited by our approach

we formulated an additional research question:

• RQ3: Can the proportion of variance obtained by PCA be used to weight the

coupling metrics exploited in our approach?

To respond to this research question, we compared the results obtained using as con-

figuration parameters the one identified by the proportion of variance of the PCA, i.e.,

PCA-based configuration, with the best results obtained in our experimentation, i.e.,

best configuration. Table 5.5 reports the achieved results. As we can see the difference

between the reconstruction accuracy of the PCA-based configuration compared with

the accuracy obtained using the best configuration is very small, i.e., the difference of

F-measure is never higher than 0.04. This result indicates that the PCA-based configu-

ration provides an accuracy similar to the best accuracy obtained exploiting all possible

configurations. Such results indicate that the proportion of variance provided by the

PCA can be used to weight the corresponding metric also in this approach.

Given these findings we propose the following heuristics to set the parameters of

our approach in a real usage scenario:

• minCoupling : use the third quartile of the non-zero values of the class-by-class

matrix as threshold to remove spurious relationships between the classes of the

package to re-modularize.

• weights: the weights assigned to the structural and semantic metrics are estab-

lished for the system under analysis by performing the PCA of the values of the

101

5. EXTRACT PACKAGE REFACTORING

Table 5.4: Results of PCA: Rotated Components

PC1 PC2

Proportion of Variance 0.62 0.38

Cumulative Proportion 0.62 1.00

CCBC 0.96 0.26

ICP 0.26 -0.96
(a) eTour

PC1 PC2

Proportion of Variance 0.90 0.10

Cumulative Proportion 0.90 1.00

CCBC 0.99 -0.05

ICP 0.05 0.99
(b) GESA

PC1 PC2

Proportion of Variance 0.82 0.18

Cumulative Proportion 0.82 1.00

CCBC -0.99 0.07

ICP -0.07 -0.99
(c) JHotDraw

PC1 PC2

Proportion of Variance 0.77 0.23

Cumulative Proportion 0.77 1.00

CCBC -0.98 0.21

ICP -0.21 -0.98
(d) SESA

PC1 PC2

Proportion of Variance 0.94 0.06

Cumulative Proportion 0.94 1.00

CCBC -0.99 -0.01

ICP -0.01 0.99
(e) SMOS

coupling metrics computed on the pair of classes of the system having ICP > 0.

The value of the proportion of variance obtained for each metric will be used as

the weight for the corresponding metric.

5.3.2.2 Qualitative evaluation

Even if our approach is able to reconstruct merged packages with very high accuracy,

in a minority of cases it does not reconstruct the original packages and proposes an

alternative decomposition of the system. In order to understand if the proposed de-

composition is still meaningful, even when different from the original, the developers

analyzed the proposed re-modularizations. To select the cases to analyze, we set an

F-measure threshold � = 0.7; all the cases under this threshold, i.e., 35 of 150, were an-

alyzed by the developers. Table 5.6 reports the answers to the question “Is the proposed

package decomposition meaningful?” given by the developers for each analyzed case.

102

5.3 Empirical Evaluation

Table 5.5: Results reconstructing merged classes: PCA based vs best configuration

System # Merged Classes Best configuration PCA-based configuration

eTour

2 wCCBC = 0.9, wICP = 0.1 (0.89) wCCBC = 0.6, wICP = 0.4 (0.85)

3 wCCBC = 0.9, wICP = 0.1 (0.76) wCCBC = 0.6, wICP = 0.4 (0.74)

5 wCCBC = 0.9, wICP = 0.1 (0.67) wCCBC = 0.6, wICP = 0.4 (0.63)

GESA

2 wCCBC = 0.9, wICP = 0.1 (0.97) same as the best configuration

3 wCCBC = 0.9, wICP = 0.1 (0.82) same as the best configuration

5 wCCBC = 0.9, wICP = 0.1 (0.72) same as the best configuration

JHotDraw

2 wCCBC = 0.7, wICP = 0.3 (0.79) wCCBC = 0.8, wICP = 0.2 (0.77)

3 wCCBC = 0.9, wICP = 0.1 (0.72) wCCBC = 0.8, wICP = 0.2 (0.72)

5 wCCBC = 0.8, wICP = 0.2 (0.69) same as the best configuration

SESA

2 wCCBC = 0.8, wICP = 0.2 (0.93) same as the best configuration

3 wCCBC = 0.8, wICP = 0.2 (0.70) same as the best configuration

5 wCCBC = 0.8, wICP = 0.2 (0.66) same as the best configuration

SMOS

2 wCCBC = 0.8, wICP = 0.2 (0.80) wCCBC = 0.9, wICP = 0.1 (0.80)

3 wCCBC = 0.8, wICP = 0.2 (0.77) wCCBC = 0.9, wICP = 0.1 (0.77)

5 wCCBC = 0.9, wICP = 0.1 (0.67) same as the best configuration

In parenthesis the reconstruction accuracy, i.e., the average F-Measure

In particular, the table reports the number of students that have answered one of the

possible options. Moreover, Table 5.6 assigns a unique ID to each re-modularization

operation evaluated by the students. This is done to easily reference the operations

in the discussion of the results. As we can see in Table 5.6, the developers marked

as meaningful most of the re-modularization operations suggested by the tool. It is

worth noting that the answers given by the students for each of the analyzed cases

never differ by more than one point on the Likert scale, which indicates high agreement

among them.

Three of the cases for which the developers gave a positive evaluation will be the

object of discussion in the following. In particular, id = 1 for eTour, id = 14 from

GESA, and id = 21 from SMOS. In this discussion we will use topic maps (92) to

represent the main topics in a package. There are many ways to determine topics in

source code. In particular, given a generic set of classes S, e.g., a package or a group of

packages, it is possible to derive the main topics in S by analyzing the term frequency

in the classes it contains. We count, for each term present in S, the number of classes

103

5. EXTRACT PACKAGE REFACTORING

Table 5.6: Analysis of the failure cases. Answers to the question: “Is the proposed package

decomposition meaningful?”

System #Subjects ID operation
1: Fully agree; 5: Strongly disagree.

1 2 3 4 5

eTour 2

1 2 - - - -

2 - 1 1 - -

3 - 1 1 - -

4 1 1 - - -

5 - - 2 - -

6 - 1 1 - -

7 - - - - 2

JHotDraw 2

8 1 1 - - -

9 - 2 - - -

10 - - 2 - -

11 - 1 1 - -

12 - - 2 - -

13 - - 2 - -

GESA 5

14 4 1 - - -

15 - - - 3 2

16 - 3 2 - -

17 - 3 2 - -

18 2 3 - - -

19 - 1 4 - -

20 - - 2 3 -

SMOS 5

21 5 - - - -

22 - - - - 5

23 - - 3 2 -

24 - - 4 1 -

25 - - 3 2 -

26 - 1 4 - -

SESA 2

27 - - - - 2

28 1 1 - - -

29 - 1 1 - -

30 - - 2 - -

31 - - 2 - -

32 - 1 1 - -

33 - - - 2 -

34 1 1 - - -

35 - 2 - - -

that contain it with a frequency higher than 3. The five most frequent terms, i.e., the

terms present in the highest number of classes, are then used to construct the topic map

104

5.3 Empirical Evaluation

of S that for this reason is represented by a pentagon, where each vertex represents one

of the main topics. Each vertex is connected to the center of the pentagon by an axis

representing the percentage of classes in S that implements the corresponding topic.

The graphical representation of the main topics of S is then obtained by tracing lines

between the point on each of the five axes indicating the percentage of classes belonging

to S that implement the corresponding topic.

First, we present some of the cases for which the developers gave negative evalua-

tions (i.e., high values on the Likert scale; 4 or 5).

GESA – merging two packages

In a first case negatively evaluated by the developers (id = 15 in Table 5.6) the tool

merged the following three packages: examSessionManagement, timetableManagement,

and classroomManagement. The last two packages were reconstructed by our approach

as a single package. The re-modularization is most likely due to the semantic similar-

ity of the two packages. In fact, the timetableManagement package contains, among

others, classes for the management of the classroom timetable, which use identifiers

similar to those used in classroomManagement. Another case where the developers did

not agree with the suggested re-modularization is represented by id = 22 in Table 5.6.

In this case the tool merged five packages and only four packages were reconstructed

by our approach. In particular, the connectionManagement package, which contains

the set of classes responsible of the connection to the DBMS, was merged with the

classRegisterManagement package. This is due to the strong structural relationships

(i.e., method calls) between the classes of the two packages. In fact, the classRegister-

Management groups all the classes assigned to operations related to the class register,

e.g., absence, delay, disciplinary note, and most of these classes access the persistent

data in the DBMS using the classes in the connectionManagement package.

SESA – code clones

Two other interesting cases negatively evaluated by the developers regard the SESA

software system (id = 27 and id = 33 in Table 5.6). Both these cases have a common

reason that caused the failure of our approach. In particular, several classes in SESA

contain “source code clones”, e.g., pieces of codes copied and pasted among different

classes. Moreover, the comments used to describe the responsibilities assigned to the

classes follow a standard template containing a set of words shared between almost all

the classes of the system. This clearly results in a high semantic similarity even between

105

5. EXTRACT PACKAGE REFACTORING

Operator

Setting

Preference

Tour

Tourist

tourOperatorManagement(8)

touristManagement(10)

preferences(6)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

In parenthesis the number of classes of each package.

Operator

Setting

Preference

Tour

Tourist

P1(10)

P2(14)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 5.4: Topic Map eTour: original packages vs new packages.

classes having different responsibilities. Thus, our approach fails to reconstruct the

original packages when it attempts to decompose a package created by merging packages

containing classes with source code clones and/or very similar comments. A possible

solution to this limitation can be found in (135), where the authors propose the use

of smoothing filters to improve the performances of the IR-based traceability recovery

techniques. In particular, these filters reduce the weight of terms that frequently occur

among different artifacts (in our case classes), improving the precision of the IR method.

The application of this kind of filters to our approach is outside the scope of this paper.

However, we think that our approach could only benefit from the use of the smoothing

filters.

eTour – removing the preferences package

A first “failure” case positively evaluated by the developers regards the eTour software

system. The following three packages were merged together in a single artificial package:

• tourOperatorManagement : this package contains all the classes responsible with

the management of the users registered to the system as tour operators.

• touristManagement : similar to the previous package, touristManagement groups

together all the classes resposible with the management of the users registered as

106

5.3 Empirical Evaluation

tourists.

• preferences: package containing classes used to manage the preferences set by the

users of the system, e.g., favored cities for the tourist.

When applied to the resulting package, our technique suggested only two packages, with

the six classes from the preferences package distributed among the two suggested pack-

ages. In particular, two classes were moved to the tourOperatorManagement package

while four classes were moved to the touristManagement package. We deeply ana-

lyzed the original package in order to find some explanations. We observed that in

eTour three kind of roles are defined for the users: administrator, tour operator, and

tourist. However, only the last two have the possibility to customize the system using

the preference panel. In fact, two out of the six classes present in preferences are re-

sponsible for the management of the tour operator’s preferences, while the remaining

four deal with the tourist’s preferences. The high method interactions and semantic

consistency between the classes present in the tourOperatorManagement (touristMan-

agement) package and the two (four) classes responsible of the management of the tour

operator’s (tourist’s) preferences explain the output of our approach. Fig. 5.4 show the

topic map of the packages pre and post the re-modularization. It is worth noting that

the topics assigned to the new packages are almost the same as the topics assigned to

the original touristManagement and tourOperatorManagement packages.

GESA – two packages instead of three

In this case the tool merged in a single package the following three packages, all be-

longing to the application layer:

• lessonNegotiationManagement : GESA has a feature that allows teachers to ne-

gotiate the teaching schedule. This package contains all the classes responsible

for the schedule negotiation.

• reportManagement : this package contains a set of classes that provide differ-

ent kinds of reports to the administrator of the system. The reports contain a

schematic representation of a portion of the persistent data in the system.

• userManagement : this package contains all the classes assigned to the manage-

ment of the system’s users.

107

5. EXTRACT PACKAGE REFACTORING

User

Negotiation

Lesson

Role

Teaching

Role

TeachingLesson

Negotiation

User

userManagement(32)

lessonNegotiationManagement(38)

reportManagement(7)

P1(32)
P2(45)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

In parenthesis the number of classes of each package.

Figure 5.5: Topic Map GESA: original packages vs new packages.

We applied our approach to reconstruct the original packages. However, the output

of the tool was significantly different from the original package decomposition. In

fact, instead of three packages the approach reconstructed only two packages; we call

them P1 and P2. In particular, we noticed that P1 is equal to the userManagement

package, i.e., it contains the same set of classes, while P2 is the result of merging

the lessonNegotiationManagement package with the reportManagement package. To

understand if the proposed decomposition is still meaningful we compared the topic

map of the original packages with the topic map of the new packages (see Fig. 5.5).

Besides confirming the semantic equivalence of the packages userManagement and P1,

from the analysis of Fig. 5.5 we can observe that in the original decomposition the

main topics of reportManagement were completely subsumed by the main topics of

lessonNegotiationManagement. Analyzing the package reportManagement we noticed

that six out of the seven classes from this package provide the administrator with reports

directly or indirectly concerned with the entity lesson, e.g., course timetable report,

classroom timetable report, teacher’s lesson report, etc. The high conceptual coupling

between lessonNegotiationManagement and reportManagement is also confirmed by the

similarity of the topic map representing package lessonNegotiationManagement and the

topic map representing package P2 (see Fig. 5.5). So, while the original decomposition

is probably meaningful from a functional point of view, one can argue that the proposed

108

5.3 Empirical Evaluation

teachingManagement(5)
userManagement(14)
movedSubset(8)

AcademicYear

Teaching

User

Role

Student

Figure 5.6: Topic Map of the moved classes in the SMOS re-modularization.

decomposition is still semantically meaningful. This observation is useful in planning

our future research, as we could adapt our approach not only to split packages, but

also to recommend existing packages to be merged, when needed. As mentioned earlier,

design decisions regarding the structure of a system involve more considerations than

just high cohesion and low coupling. This is clearly such a case, where the user may or

may not agree with our tool’s suggestion in the end. It is important to note also that

the semantic analysis based on IR techniques, such as, LSI, is independent of grammar

and domain models, while it is dependent on consistent use of terms in the analyzed

code. Inconsistencies in the use of terms usually affect such an analysis negatively.

SMOS – moving classes between packages

The last case is from the SMOS software system. In particular, the following packages

were merged from the application layer:

• teachingManagement : this package contains all the classes assigned to the man-

agement of the lectures.

109

5. EXTRACT PACKAGE REFACTORING

• userManagement : this package contains all the classes assigned to the manage-

ment of the users.

In this case, the number of packages reconstructed is equal to the number of orig-

inal packages (two), yet our approach applied an interesting operation. Specifically, a

subset of eight classes from the userManagement package was moved in the teaching-

Management package. Analyzing this set we noticed that the eight classes implement

operations regarding the management of the association between users, i.e. teachers,

and teaching assignments (e.g., assign a new teaching assignment to a teacher, show

the teacher’s assignments, etc.). The topic map shown in Fig. 5.6 underlines that the

moved set of classes is semantically closer to the teachingManagement package than to

the userManagement package. This indicates that probably the set of moved classes is

more suited in the teachingManagement package than in the userManagement package.

Indeed, although it is different from the original design, the proposed modularization

has been evaluated as meaningful by the developers.

5.3.3 Threats to Validity

All the findings of our study might be affected by several threats to validity (136)

discussed in the following.

5.3.3.1 System Mutation

We decided to use the proposed approach to split previously merged packages and

then evaluated the re-modularization accuracy comparing the split packages with the

original packages. While the object systems were chosen because they are generally

well designed, there is the risk that the original packages are not a good oracle. To

mitigate such a threat we analyzed the package decomposition of the subject systems in

order to ensure its meaningfulness. Moreover, as we can see in Table 7.1, the cohesion

of the packages in the object systems is very high on average, which is also an indicator

of good modularization. In fact, the same metrics were used in (82) to evaluate the

decomposition quality of several open source systems, e.g., ArgoUML, JEdit. The

metric values obtained by the object systems are much better than the values obtained

by the systems in (82). Moreover, JHotDraw is generally considered a well-designed

system and it was developed using several design patterns. eTour, GESA, SESA, and

110

5.3 Empirical Evaluation

0.00

F-
m

ea
su

re

Weights

ICP
CCBC

1.0
0.0

System version

0.9
0.1

0.8
0.2

0.7
0.3

0.6
0.4

0.5
0.5

0.4
0.6

0.3
0.7

0.2
0.8

0.1
0.9

0.0
1.0

0.40

0.20

0.60

0.80

1.00

not commented
commented

Figure 5.7: Performances on GESAComments and on GESANoComments merging 2 pack-

ages.

SMOS were selected among the best systems developed during a Software Engineering

course and, as we can see in Table 7.1, have an average package cohesion comparable

to JHotDraw.

Another aspect of the evaluation is represented by the choice to split previously

merged packages. Indeed, given the high quality of the subject systems, the coupling

between classes from different packages is generally low. Thus, the splitting operation

seems to be trivial. However, we observed that in several cases, classes from different

packages have many structural dependencies between them, e.g., such a situation is

typical of classes from the subsystems responsible with the management of the system’s

users. In such cases, the semantic measures avoid the creation of class chains with

different responsibilities and help in the reconstruction of the original packages.

5.3.3.2 Experiment Design and Results Analysis

The meaningfulness of the proposed re-modularization operations was evaluated using

the F-measure, based on the precision and recall that reflect the reconstruction accuracy

111

5. EXTRACT PACKAGE REFACTORING

0.00

F-
m

ea
su

re

Weights

ICP
CCBC

1.0
0.0

System version

0.9
0.1

0.8
0.2

0.7
0.3

0.6
0.4

0.5
0.5

0.4
0.6

0.3
0.7

0.2
0.8

0.1
0.9

0.0
1.0

0.40

0.20

0.60

0.80

1.00

not commented
commented

Figure 5.8: Performances on GESAComments and on GESANoComments merging 3 pack-

ages.

of the proposed approach. The same approach was also used in previous work on class

refactoring (1, 17, 18, 115, 137).

To better evaluate the suggested re-modularizations, we also analyze the cases where

our approach does not reconstruct the original package decomposition. In particu-

lar, several students, familiar with the systems, analyzed the proposed alternative re-

modularization and evaluated its meaningfulness. The students did not know the goal

of our experimentation to avoid bias, however as in any such situation, user subjectivity

is part of the evaluation.

5.3.3.3 The Role of CCBC in Software Re-modularization

In order to find the optimal setting of parameters for our approach, we analyzed sev-

eral different configurations (see Section 7.3.1). The results showed that the weight

wCCBC for the semantic metric should be really high, generally higher than 0.7, to

obtain good performances. CCBC is highly dependent on the quality of the identifiers

and comments in the code, so, given its high influence on the approach, we expect

the approach also to be sensitive to the quality of the comments and identifiers. All

112

5.3 Empirical Evaluation

0.00

F-
m

ea
su

re

Weights

ICP
CCBC

1.0
0.0

System version

0.9
0.1

0.8
0.2

0.7
0.3

0.6
0.4

0.5
0.5

0.4
0.6

0.3
0.7

0.2
0.8

0.1
0.9

0.0
1.0

0.40

0.20

0.60

0.80

1.00

not commented
commented

Figure 5.9: Performances on GESAComments and on GESANoComments merging 5 pack-

ages.

the experimented systems have well commented classes besides exhibiting a generally

good package decomposition. Thus, to investigate the performances of our approach

(and the influence of the configuration parameters) in a completely different scenario,

we removed all the comments present in the source code from the object systems and

re-executed our experimentation. The goal was to assess the impact of the comments

on the approach. The results show again that the best performances of our approach

are achieved using as threshold the third quartile of the class-by-class matrix, as in

the cases where comments are included. Regarding the weights, Figs. 5.7, 5.8, and 5.9

compare the performances of our approach on GESA with comments (GESAComments)

and GESA without comments (GESANoComments) using all the possible combinations

of weights and merging 2, 3, and 5 packages, respectively1. It is worth noting that

the reconstruction accuracy achieved by our approach is almost identical on the two

“versions” of the system. However, our approach applied on GESANoComments shows

a strong decrease in performance when the weights assigned to the semantic metric

is higher than 0.8. Moreover, while the best performances on GESAComments are

1The complete results achieved with the other systems can be found in (134)

113

5. EXTRACT PACKAGE REFACTORING

achieved setting wCCBC = 0.9, on GESANoComments the best results are obtained set-

ting wCCBC = 0.8. Thus, even if the weight for the semantic metric slightly decreases,

its contribution in the software re-modularization remains essential. This is most likely

due to the semantic information present in the identifiers used by the developers. Note

that, the need to reduce the weight of the semantic metric in order to achieve good

results in the no comment scenario is confirmed on all the experimented systems (see

(134)).

Table 5.7: Results of PCA on the “NoComments” systems

PC1 PC2

Proportion of Variance 0.55 0.45

Cumulative Proportion 0.55 1.00

CCBC -0.84 0.45

ICP -0.45 -0.84
(a) eTour

PC1 PC2

Proportion of Variance 0.80 0.20

Cumulative Proportion 0.80 1.00

CCBC 0.99 -0.07

ICP 0.07 0.99
(b) GESA

PC1 PC2

Proportion of Variance 0.68 0.32

Cumulative Proportion 0.68 1.00

CCBC -0.99 0.07

ICP -0.07 -0.99
(c) JHotDraw

PC1 PC2

Proportion of Variance 0.71 0.29

Cumulative Proportion 0.71 1.00

CCBC 0.97 0.25

ICP 0.25 -0.97
(d) SESA

PC1 PC2

Proportion of Variance 0.84 0.16

Cumulative Proportion 0.84 1.00

CCBC -0.99 0.00

ICP 0.00 0.99
(e) SMOS

5.3.3.4 On the Use of PCA as Heuristic to Set the Metric Weights

The experimentation performed in the no comment scenario allows also to further

investigate the validity of the proposed PCA-based heuristic to set the metric weights.

In fact, we expected that applying the PCA on the object systems without comments,

we obtain a decrement of the proportion of variance assigned to the semantic metric,

114

5.4 Final Remarks

i.e., CCBC, with a consequent decrement of its weight, i.e., wCCBC . To verify such

a conjecture, we re-executed the PCA on the “NoComment” versions of the object

systems. Table 5.7 reports the achieved results. Analyzing Figs. 5.7, 5.8, and 5.9, and

Table 5.7, it is easy to see that in this scenario also, the weights suggested by the PCA

on the GESA system, i.e., wICP = 0.2 and wCCBC = 0.8, result in a configuration with

performances very close to the best. This trend is confirmed on all the experimented

systems (see (134)) and further supports the possibility to use PCA as a heuristic to

set the metric weights.

5.4 Final Remarks

In this Chapter is presented and evaluated a technique that suggests decompositions

of promiscuous packages to improve their cohesion. Central to proposed approach,

and a departure from previous work, is the combined use of structural and semantic

relationships between classes in this context. The evaluation revealed that the technique

produces meaningful decompositions from structural and functional point of view.

Although the approach has been applied on five realistic systems, as with all empir-

ical studies, the generalization of our findings cannot be ensured. Thus, replicating the

study on other systems is the only way to corroborate the results achieved and mitigate

the external threat to validity related to the generalization of our findings.

115

5. EXTRACT PACKAGE REFACTORING

116

6

Move Method Refactoring

The material in this Chapter has been presented in (138, 139).

6.1 Introduction

In this Chapter is presented Methodbook, an approach to support the software engi-

neer in identifying move method refactoring opportunities. Methodbook represents the

instantiation of the approach presented in Section 3.5 for moving misplaced code compo-

nents to the move method refactoring. Methodbook follows the Facebook1 metaphor.

Facebook is a well-known social networking portal, where users can add people as

friends, send messages, and update personal profiles to notify friends about their sta-

tus. The personal profile plays a crucial role. In particular, Facebook analyzes users’

profiles and suggests new friends or groups of people sharing similar interests.

In our implementation of Methodbook, methods and classes play the same role

as people and groups of people, respectively, in Facebook; methods’ implementations,

that is profiles, contain information about structural (e.g., method calls) and conceptual

relationships (e.g., similar identifiers and comments) with other methods in the same

class and in the other classes. Then, Methodbook uses Relational Topic Model (RTM)

(62) to identify “friends” of a method in order to suggest move method refactoring

opportunities in software. In particular, given a method, we exploit RTM to suggest

as a target class (i.e., group of methods), the class that contains the highest number of

“friends” of the method under analysis.

1http://www.facebook.com/

117

6. MOVE METHOD REFACTORING

method_1
...
method_n

Class

Software System

RTM

RTM similarity
matrix

Move Method
Recommender

term-by-document
matrix

Identifying Method Friendships

method_1
...
method_n

Class

method_1
...
method_n

Class

Semantic information
extraction

Structural information
extraction

original design
matrix

calls-interaction
matrix

Move Method M1
from C1 to C2

Suggested Refactorings

Identifying the Envied Class

shared-data
matrix

Refactoring
preconditions

surety

Preconditions
not satisfied

Preconditions
satisfied

Figure 6.1: Methodbook: the process.

In this paper we evaluate the usefulness of Methodbook in two case studies. In the

first study we evaluated Methodbook on five software systems through well-established

metrics that capture quality improvement achieved while applying the proposed refac-

toring operations. In the second study, we evaluated Methodbook’s refactoring rec-

ommendations with developers’ opinions in two case studies, one conducted with ten

original developers of two software systems and one with thirty academic software de-

velopers on an open source software system.

Methodbook is overviewed in Section 6.2. Section 6.3 reports the first case study

where Methodbook has been evaluated via quality metrics, while Section 6.4 reports

the results of the study with users.

6.2 Methodbook

In a nutshell, Methodbook works as depicted in Figure 6.1. The process used by

Methodbook to identify move method refactoring operations is composed of two main

steps: (i) identification of methods’ friendships1, and (ii) identification of the envied

1The concept of method friendship exploited in the proposed approach is different from the concept

of friend classes/methods in C++.

118

6.2 Methodbook

class. In the first step, semantic and structural information is extracted from the source

code. The semantic information is represented by words in comments and identifiers

of in source code and is stored in the term-by-document matrix. This matrix is used

by RTM to derive semantic relationships between methods and define a probability

distribution of topics (topic distribution model) among methods. Besides semantic

information, Methodbook also exploits static analysis to derive (i) structural depen-

dencies among methods (i.e., method calls stored in the calls-interaction matrix and

shared instance variables stored in the shared-data matrix) and (ii) the original design,

i.e., which methods are contained in each class of the system, stored in the original

design matrix. The structural matrices are used to adjust the topic probability distri-

bution taking into account structural relationships between methods, besides semantic

information. In particular, the calls-interaction matrix and the shared-data matrix

represent the two main forms of interaction among the methods of a system, i.e., calls

interaction and shared instance variables, while the aim of the original design matrix

is to take into account the design decisions made by the developers. Providing RTM

with the original design information enables it to suggest move method refactoring

operations only if they result in a clear improvement of the overall design quality.

The model derived by RTM is then used to compute “friendships” among methods

based on both probabilistic distributions of latent topics and underlying structural

dependencies. The friendship relationships among all the pairs of methods of the system

are stored in the RTM similarity matrix (see Figure 6.1). In the context of our approach

two methods are considered to be friends if they share responsibilities, i.e., they operate

on the same data structures or are related to the same features or concepts in the

program. Such a definition suggests that methods that are good friends should be

in the same class, since “a class should be a crisp abstraction, handle a few clear

responsibilities, or some similar guideline” (3). Based on this definition, if the “best”

friends of a method m implemented in Cm are in a class Cf , then m shares more

responsibilities with the methods of class Cf than with those in Cm. We conjecture

that such a scenario implies the presence of a Feature Envy bad smell with the class

Cf as an envied class. For this reason, in the second step of Methodbook, the envied

class is identified by analyzing the classes containing the best friends of the method

mi (i.e., methods having high similarity with mi). If the envied class coincides with

the original class, Methodbook does not suggests any refactoring operation. Otherwise,

119

6. MOVE METHOD REFACTORING

Methodbook verifies if a set of preconditions ensuring the preservation of the system

behavior post-refactoring are satisfied for the suggested envied class; if the preconditions

are satisfied, the refactoring is suggested, otherwise Methodbook will look for a new

envied class for mi. This process is repeated until (i) an envied class satisfying the

refactoring preconditions is identified or (ii) the envied class coincides with the original

class (and thus no refactoring is suggested). It is worth noting that Methodbook is

fully automated since it can analyze all the system’s methods to identify move method

refactoring operations. Moreover, Methodbook can also be applied only to a particular

method provided by the developer as an input (i.e., a method identified as suffering of

the Feature Envy bad smell). The interested reader can find more information about

RTM in Section 3.5, while in the next subsections we further detail about the two steps

behind the Methodbook’s process.

6.2.1 Identifying Method Friendships

The method friendships are identified using RTM through the analysis of structural and

semantic relationships among methods as well as the original structure of the classes

(see Figure 6.1).

As the very first step, methods are analyzed to extract words contained in comments

and identifiers. In order to extract words from compound identifiers and comments,

advanced algorithms for splitting identifiers are employed (140). The extracted infor-

mation is stored in a m× n matrix (called term-by-document matrix), where m is the

number of terms occurring in all the methods, and n is the number of methods in the

system (see Figure 6.1). A generic entry wi,j of this matrix denotes a measure of the

weight (i.e., relevance) of the ith term in the jth document. In order to weight the

relevance of a term in a document we employ the tf-idf weighting schema (106).

A light-weight static analysis1 is also applied to the software system to detect (i)

structural dependencies between methods (i.e., method calls and shared instance vari-

ables) and (ii) the original system design. The latter is a simple boolean n× n matrix

(called original design matrix), where n is the number of methods composing the soft-

ware system. A generic entry oi,j of this matrix is equal to 1 if the method mi and

the method mj are grouped in the same class in the original design, otherwise it is 0.

1The static analysis is performed using the Eclipse AST parser.

120

6.2 Methodbook

Concerning the structural dependencies among the methods of the system, Method-

book exploits two structural measures, namely, Structural Similarity between Methods

(SSM) (110) and Call-based Dependence between Methods (CDM) (1), previously used

to compute similarities between methods for identifying Extract Class refactoring op-

portunities (1, 115). These measures do not correlate and capture two orthogonal

aspects of method relationships (1). In particular, SSM captures attribute references

in methods and it is used to build the shared-data matrix while CDM (1) takes into

account the calls performed by the methods and it is used to build the calls-interaction

matrix. The interested reader can find the definition of these two measures in Section

3.2.

The set of friendships derived by analyzing structural similarity between methods

are supplied as existing links to RTM. The basic idea behind RTM is that textual doc-

uments (that is, methods represented by the term-by-document matrix) are modeled

as random mixtures over latent topics, where each topic is characterized by a prob-

abilistic distribution over words and is represented by a set of words mostly relevant

for explaining the topic (62). The strength of RTM as compared to other topic mod-

eling techniques is in its ability to adjust the probability distribution of each topic

taking into account explicit relationships between documents. In Methodbook, explicit

relationships between documents (methods) are modeled through (i) the structural

dependencies existing among the methods, and (ii) the original design.

The enriched topic distribution model (based on both semantic and structural in-

formation) obtained by RTM is used to compute similarities among all the methods of

the system. Such similarities are stored in a n × n matrix (where n is the number of

methods in the system), namely RTM similarity matrix, that is employed to identify

move method refactoring operations (see Figure 6.1).

6.2.2 Identifying the Envied Class

Once the RTM similarity matrix has been computed, the information stored in it is

used to determine the degree of similarity among methods in the system and rank

friendships among these methods. A cut point is then used to identify the µ best

friends of (the methods having the highest similarity with) the method under analysis.

Once the “best” friends of a given method are identified, Methodbook analyzes the

classes where these methods are implemented aiming at identifying the envied class.

121

6. MOVE METHOD REFACTORING

Having this information, the first possible way to identify the envied class is to simply

find the class containing the highest number of identified friend methods. However, in

this way the approach will not take into account the class dimension. In other words,

if for a method under analysis mk, a class Ci composed of 50 methods contains 4 best

friends of mk, while a class Cj composed by 4 methods contains 3 best friends of mk,

the approach will identify as envied class Ci totally ignoring the fact that only the

8% (4/50) of the methods in this class are friends of mk while the class Cj contains

a 75% of mk’ friends (3/4). To avoid this issue, the envied class is identified as the

one containing the higher percentage of mk’ best friends among its methods (in the

previous example, Cj with 75%). Note that if two or more classes contain identical

percentage of friend methods, the envied class is the class that contains the highest

ranked best friend methods.

When the envied class has been identified, Methodbook verifies that a set of refac-

toring preconditions is satisfied when moving the method from its original class to the

envied class. We use the same set of move method refactoring preconditions defined

by Tsantalis et. al (20) to ensure that the program behavior does not change after

the application of the suggested refactoring. These preconditions are classified in three

different categories (20): (i) compiling preconditions, e.g., the envied class does not

contain a method having the same signature with the moved method, (ii) behavior-

preservation preconditions, e.g., the envied class should not inherit a method having

the same signature with the moved method, and (iii) quality preconditions, e.g., the

method to be moved should not contain assignments of a source class field. A com-

plete explanation of verified preconditions can be found in (20). If refactoring involving

identified envied class satisfies all the preconditions, the move method operation is sug-

gested by Methodbook. Otherwise, the second class containing the higher percentage of

top friends for the method under analysis becomes the new candidate envied class and

thus, is object of the preconditions verification. This process is performed until (i) an

envied class satisfying the preconditions is identified or (ii) the original class becomes

a candidate envied class, leading Methodbook to not suggest any refactoring operation

for the analyzed method.

It is worth noting cases where identification of an envied class is trivial, i.e., there

is a class containing a sensibly higher percentage of friend methods as compared to

the other classes. However, there might also be cases where the envied class is difficult

122

6.2 Methodbook

to identify, i.e., there are two or more classes that contain a comparable percentage

of friend methods. To provide further support to software engineers, the suggestion

of envied class is supplemented with a confidence level that indicates the reliability of

the proposed refactoring. The confidence level uses the concept of information entropy,

which measures the amount of uncertainty of a discrete random variable (141). In

particular, we consider the suggestion of an envied class as a random variable, where

the probability of its states is given by the distribution of the friend methods over the

system classes. We compute the confidence level as the entropy of the suggestion of

the envied class. That is, the more scattered the friend methods among the classes,

the higher the entropy of the suggestion of the envied class, i.e., it is more difficult

to identify the envied class. On the contrary, if nearly all the friend methods are

implemented in a single class, the entropy of the suggestion is low.

The confidence level is computed as follows:

Confidence levelm = 1−
�

c∈Cm

l(c) · log|Cm|
1

l(c)

where C is the set of classes containing identified method friends for the method to be

moved m, while l(c) represents the likelyhood that the envied class is c. For a given

class ci, it is computed as:

l(ci) =
p(ci)�

c∈Cm
p(c)

where p(c) is the percentage of methods of the class c that are friends of m. The defined

confidence level has a value in the interval of [0, 1]. The higher the value, the higher

might be the goodness of provided recommendation.

Figure 6.2 shows three examples of identifying envied class with different confidence

levels. In these scenarios the number of best friends identified is ten. In the first case,

the friend methods are scattered across several classes. In this case the envied class

is C4 with a very low confidence level, i.e., 0.02. The situation is different in the

second example, where, even if three classes contain best friends of the method under

analysis, the class C3 contains a higher percentage of friend methods as compared to

the other classes. In this case the confidence level is higher (0.26) indicating a better

recommendation reliability as compared to the prior scenario. Finally, the last scenario

is the best possible: all the ten best friend methods are concentrated in a single class,

i.e., C1. This will result in a recommendation with the maximum confidence level (1.0).

123

6. MOVE METHOD REFACTORING

method_1
method_2
method_3
method_4
method_5

C1

method_6
method_7
method_8
method_9
method_10

C2

method_11
method_12
method_13
method_14
method_15

C3

method_16
method_17
method_18
method_19

C4

p(C1) = 0.60 p(C2) = 0.40 p(C3) = 0.40 p(C4) = 0.75

l(C1) = 0.27 l(C2) = 0.19 l(C3) = 0.19 l(C4) = 0.35

C4
Envied Class

0.02
Confidence

Level

method_1
method_2
method_3
method_4
method_5

C1

method_6
method_7
method_8
method_9
method_10

C2

method_16
method_17
method_18
method_19
method_20

C3

p(C1) = 0.60 p(C2) = 0.40 p(C4) = 1.00

l(C1) = 0.30 l(C2) = 0.20 l(C4) = 0.50

C3
Envied Class

0.26
Confidence

Level

friend method no friend method

method_1; method_2
method_3; method_4
method_5; method_6
method_7; method_8
method_9; method_10

C1

p(C1) = 1.00

l(C1) = 1.00

C1
Envied Class

1.00
Confidence

Level

Figure 6.2: Three examples of envied class identification with different confidence levels.

6.3 Evaluation Based on Quality Metrics

The goal of this case study is to evaluate the goodness of the move method refactor-

ing operations recommended by Methodbook. Good move method recommendations

should help improve the design quality of a given software system in terms of class

cohesion and coupling. In fact, these are the two main quality aspects that can be

improved while performing this kind of refactoring.

The experimentation was carried out on an open source software system, JHot-

Draw1, on three industrial projects, namely AgilePlanner2, eXVantage3, and GESA4,

and on a software system, SMOS, developed by a team of Master students at the

University of Salerno (Italy) during their industrial traineeship. JHotDraw is a Java

GUI framework for technical and structured graphics. AgilePlanner is an industrial

tool that supports agile teams in project planning, while eXVantage is a product line

of eXtreme Visual-Aid Novel Testing and Generation tools, focuses on providing code

1http://www.jhotdraw.org/ verified on 01/12/2013
2http://ase.cpsc.ucalgary.ca/
3http://www.research.avayalabs.com/
4http://www.distat.unimol.it/gesa/

124

6.3 Evaluation Based on Quality Metrics

coverage information to software developers and testers. GESA automates the most

important activities in the management of university courses, like timetable creation

and classroom allocation. It is operational since 2007 at the University of Molise (Italy).

Finally, SMOS is a software developed for high schools, which offers a set of features

aimed at simplifying the communications between the school and the students’ parents.

Table 6.1 reports the size, in terms of KLOC, number of classes, and number of

methods, and the versions of the object systems. The table also reports the average

value for four quality metrics aimed at measuring structural and semantic class cohesion

and coupling, namely Connectivity (142), Conceptual Cohesion of Classes (C3) (60),

Message Passing Coupling (MPC) (109), and Conceptual Coupling Between Classes

(CCBC) (55), calculated considering all the classes of the object systems. Connectivity

is a structural metric to measure class cohesion and it is computed as the number of

method pairs in a class sharing an instance variable or having a method call among

them divided by the total number of method pairs in the class. We did not consider

constructors and accessor methods (i.e., getter and setter) as methods since, as high-

lighted by Briand et al. (142), they can artificially increase the class cohesion. C3

is a conceptual cohesion metric, complementary to structural cohesion, which exploits

LSI (Latent Semantic Indexing) (91) to compute the overlap of semantic information

in a class expressed in terms of textual similarity among methods. Higher values of

C3 indicate higher class cohesion. The MPC is a structural coupling metric based on

method-method interaction. MPC measures the number of method calls defined in

methods of a class to methods in other classes, and therefore the dependency of local

methods to methods implemented by other classes. Higher MPC values indicate higher

coupling. Finally, CCBC is another coupling metric based on the semantic informa-

tion (i.e., lexical information) captured in the code by comments and identifiers. Two

classes are conceptually related if their (domain) semantics are similar, i.e., the terms

present in their comments and identifiers are similar.

We evaluate the impact on these four quality metrics of the move method operations

recommended by Methodbook. Note that these four metrics do not directly measure

the design quality of a system. However, they have been shown to measure desirable

quality aspects of a software system. In particular:

1. Classes with low cohesion and/or high coupling have been shown to correlate with

high defect rates (60).

125

6. MOVE METHOD REFACTORING

Table 6.1: Software systems used in the case study

System KLOC Classes Methods Connectivityavg C3avg MPCavg CCBCavg

AgilePlanner 2.5.0 24 299 2,731 0.195 0.220 3.460 0.070

eXVantage 2.01 36 352 2,172 0.240 0.283 2.707 0.077

GESA 2.2 46 295 1,643 0.144 0.082 10.955 0.349

JHotDraw 6.0 b1 29 275 2,976 0.159 0.291 3.084 0.053

SMOS 1.0 23 121 599 0.197 0.082 5.984 0.389

Total 122 990 7,949 - - - -

2. MPC has been shown to directly correlates with maintenance effort (109). Thus,

higher MPC values (higher coupling) indicate higher effort in maintaining a soft-

ware system.

3. CCBC has been used to support change impact analysis. In other words, two

classes exhibiting high CCBC are likely to be changed together during a modi-

fication activity performed in a system. Consequently, having classes with high

CCBC between them grouped together in the same software module could reduce

the effort needed by a developer to localize the change. This clearly results in

more manageable maintenance activities.

Thus, if we are able to increase the average class cohesion and/or reduce the average

class coupling of the subject systems while applying move method operations suggested

by Methodbook, this certainly represents a first indication of the goodnesses of the

Methodbook recommendations.

6.3.1 Research questions and planning

In the context of our study, the following research questions were formulated:

• RQ1: Is Methodbook able to improve the design quality of a software system in

terms of class cohesion and coupling?

• RQ2: Does the confidence level serve as a good indicator for the goodness of

Methodbook recommendations?

To respond to our research questions we used Methodbook to suggest an envied class

for all the methods in the studied software systems (for a total of 10,121 methods)1.

1We applied Methodbook in isolation on each object system.

126

6.3 Evaluation Based on Quality Metrics

The set of methods for which Methodbook did not identify the original class as envied

class represents the move method refactoring operations suggested by our approach.

To respond to our first research question (RQ1), we applied them incrementally start-

ing from those having the higher confidence level (see Section 6.2). After performing

each refactoring operation we measured the value for the four quality metrics presented

above, i.e., Connectivity, C3, MPC, and CCBC. In this way we were able to observe

the impact of the refactoring operations on the subject systems in terms of class co-

hesion and coupling. To better evaluate the goodnesses of the refactorings suggested

by Methodbook, we also executed the approach presented by Tsantalis and Chatzi-

georgiou (20) (using the JDeodorant Eclipse plug-in) on the same five object systems

in order to obtain the move method refactoring operations suggested by the competi-

tive approach. In this way, we were able to compare the cohesion and coupling trends

obtained using Methodbook with those obtained using the approach described by Tsan-

talis and Chatzigeorgiou (20). Note that the two structural quality metrics used in our

evaluation, i.e., Connectivity and MPC, were also used in the experimentation of the

approach presented by Tsantalis and Chatzigeorgiou (20).

Concerning our second research question (RQ2), the order in which these refactoring

operations are applied (refactoring from those having the higher confidence level to

those having low confidence level) allows to analyze a possible correlation between

the confidence level and the goodnesses of the suggested refactoring operations. In

particular, if the confidence level is a good indicator for the goodness of Methodbook

recommendations, we expect to observe higher increase in average class cohesion and

a higher decrease in average class coupling for higher confidence levels of a refactoring

operation (and vice versa).

In the following section we report the results while setting the number of top friends

considered by Methodbook (i.e., the µ parameter, see Section 6.2) to ten. Our choice

is not random since we tried several different values for this parameter (1, 3, 5, 7, and

10) and, after having manually analyzed the suggestions proposed by Methodbook1, we

believe that the best refactoring recommendations are usually obtained using µ = 10.

The move method recommendations formulated by both Methodbook and JDeodor-

ant are available online2.

1The training of Methodbook has been performed on a system not used in its empirical evaluation.
2http://distat.unimol.it/reports/methodbook

127

6. MOVE METHOD REFACTORING

670 5 10 15 20 25 30 35 40 45 50 55 60

0,161

0,157

0,158

0,159

0,16

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

670 5 10 15 20 25 30 35 40 45 50 55 60

0,313

0,29

0,295

0,3

0,305

0,31

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

670 5 10 15 20 25 30 35 40 45 50 55 60

0,054

0,051

0,0515

0,052

0,0525

0,053

0,0535

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

670 5 10 15 20 25 30 35 40 45 50 55 60

3,35

2,9

2,95

3

3,05

3,1

3,15

3,2

3,25

3,3

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

Mb confidence
level > 0.8 > 0.6 > 0.4 > 0.2 > 0.8 > 0.6 > 0.4 > 0.2

Mb confidence
level > 0.8 > 0.6 > 0.4 > 0.2 > 0.8 > 0.6 > 0.4 > 0.2

Figure 6.3: Evolution of the four quality metrics on JHotDraw by applying the refactoring

operations suggested by Methodbook (67) and JDeodorant (26)

6.3.2 Experiment results

Figures 6.3, 6.4, 6.5, 6.6, and 6.7 show the evolution of four employed quality metrics

by applying the refactoring operations suggested by Methodbook and JDeodorant on

JHotDraw, SMOS, AgilePlanner, GESA, and eXVantage, respectively. As explained

before, the suggestions by Methodbook are applied starting from those having the

higher confidence level to those having low confidence level.

The results achieved on JHotDraw (Figure 6.3) show that Methodbook is able to

sensibly improve the four cohesion and coupling quality metrics. In particular, the

Connectivity cohesion metric shows a strong increase during the application of the first

12 suggestions by Methodbook. Note that these 12 suggestions are those having a

confidence level higher than 0.8. Applying these 12 suggestions also results in a very

high increase of the semantic cohesion (C3 metric) together with a decrease of the

structural and semantic coupling (MPC and CCBC metric, respectively). However,

128

6.3 Evaluation Based on Quality Metrics

690 5 10 15 20 25 30 35 40 45 50 55 60 65

0,234

0,197

0,2

0,204

0,208

0,212

0,216

0,22

0,224

0,228

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

690 5 10 15 20 25 30 35 40 45 50 55 60 65

0,087

0,081

0,082

0,083

0,084

0,085

0,086

#Applied Refactoring Operations

C3

JDeodorantMethodbook

Mb confidence
level

690 5 10 15 20 25 30 35 40 45 50 55 60 65

0,398

0,379

0,382

0,384

0,386

0,388

0,39

0,392

0,394

0,396

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

690 5 10 15 20 25 30 35 40 45 50 55 60 65

6

4,8

4,9

5

5,1

5,2

5,3

5,4

5,5

5,6

5,7

5,8

5,9

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

> 0.6 > 0.4 > 0.2

Mb confidence
level > 0.6 > 0.4 > 0.2 > 0.6 > 0.4 > 0.2

> 0.6 > 0.4 > 0.2

Figure 6.4: Evolution of the four quality metrics on SMOS by applying the refactoring

operations suggested by Methodbook (27) and JDeodorant (69)

applying Methodbook’s recommendations having a confidence level lower than 0.8 is

quite different. In fact, there is no a clear improvement of the cohesion and/or coupling

of the system classes. On the contrary, more often than not, the application of these

move method operations results in deteriorating classes’ quality with respect to the

quality level reached after the application of the only recommendations having high

confidence level.

On the same system, the application of the move method operations suggested by

JDeodorant results in a decrease of the average structural and semantic class cohesion

together with an increase of the average structural and semantic class coupling (see Fig-

ure 6.3). This means that applying JDeodorant suggestions on this system deteriorates

the design quality in terms of class cohesion and coupling.

The situation is totally different on SMOS (see Figure 6.4). On this system JDeodor-

ant is able to achieve very good performances for the two structural metrics, i.e., Con-

nectivity and MPC, while on the semantic side it is able to improve only the cohesion

129

6. MOVE METHOD REFACTORING

280 5 10 15 20 25

0,198

0,192

0,193

0,194

0,195

0,196

0,197

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

280 5 10 15 20 25

0,239

0,219

0,221

0,223

0,225

0,227

0,229

0,231

0,233

0,235

0,237

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

280 5 10 15 20 25

0,07

0,068

0,0682

0,0684

0,0686

0,0688

0,069

0,0692

0,0694

0,0696

0,0698

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

280 5 10 15 20 25

3,68

3,28

3,32

3,36

3,4

3,44

3,48

3,52

3,56

3,6

3,64

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

Mb confidence
level > 0.8 > 0.4 > 0.2 > 0.8 > 0.4 > 0.2

Mb confidence
level > 0.8 > 0.4 > 0.2 > 0.8 > 0.4 > 0.2

Figure 6.5: Evolution of the four quality metrics on AgilePlanner by applying the refac-

toring operations suggested by Methodbook (17) and JDeodorant (28)

(the semantic coupling, i.e., CCBC, increases). This result is likely due to the fact that

JDeodorant does not take into account semantic information during the generation of

the move method recommendations. As for Methodbook, it suggests a lower number of

operations compared to JDeodorant (27 vs 69) on SMOS. Moreover, these suggestions

have a confidence level not so high (the highest recommendation rate is 0.771 and only

3 recommendations have a confidence level higher than 0.6 - see Figure 6.4). Con-

cerning the structural metrics, the Methodbook recommendations having confidence

level higher than 0.6 are able to strongly improve all the quality metrics, while, as ob-

served on JHotDraw, low confidence level operations are not always able to improve the

quality metrics. On the semantic side, as expected, Methodbook performs better than

JDeodorant, ensuring increase of semantic cohesion and decrease of semantic coupling.

As for the others software systems, on AgilePlanner and eXVantage the trend is

almost the same as JHotDraw (see Figures 6.5, 6.7). In fact, on these systems (i) the

130

6.3 Evaluation Based on Quality Metrics

1650 15 30 45 60 75 90 105 120 135 150

0,176

0,14

0,144

0,148

0,152

0,156

0,16

0,164

0,168

0,172

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

1650 15 30 45 60 75 90 105 120 135 150

0,086

0,08

0,081

0,082

0,083

0,084

0,085

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

1650 15 30 45 60 75 90 105 120 135 150

0,36

0,31

0,32

0,33

0,34

0,35

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

1650 15 30 45 60 75 90 105 120 135 150

11

8

8,5

9

9,5

10

10,5

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

Mb confidence
level > 0.6

> 0.4
> 0.2

Mb confidence
level > 0.6

> 0.4
> 0.2

> 0.6
> 0.4

> 0.2

> 0.6
> 0.4

> 0.2

Figure 6.6: Evolution of the four quality metrics on GESA by applying the refactoring

operations suggested by Methodbook (30) and JDeodorant (165)

Methodbook’s suggestions having high confidence level (i.e., higher than 0.6) strongly

increase the structural and semantic cohesion while decrease the structural and semantic

coupling, and (ii) JDeodorant generally decreases the design quality of the systems in

terms of the exploited quality metrics. Concerning GESA, the results are almost inline

with SMOS: JDeodorant is able to strongly improve structural cohesion and coupling

metrics while Methodbook is able to improve both the structural metrics (but less than

JDeodorant) as well as the semantic ones (see Figure 6.6). Note that, as for SMOS,

the suggestions by Methodbook generally have a low confidence level also in GESA.

Summarizing, our results highlight the importance of the confidence level as indi-

cator of goodnesses of the Methobook’s suggestions (RQ2). In particular, when the

confidence level is high (generally higher than 0.6) the Methodbook’s recommendations

are able to improve the design quality of a software system in terms of class cohesion

and coupling (RQ1). Moreover, on three out of five subject systems (AgilePlanner,

131

6. MOVE METHOD REFACTORING

970 10 20 30 40 50 60 70 80 90

0.241

0.234

0.235

0.236

0.237

0.238

0.239

0.24

#Applied Refactoring Operations

Co
nn

ec
tiv

ity

JDeodorant

Methodbook

970 10 20 30 40 50 60 70 80 90

0.287

0.282

0.283

0.284

0.285

0.286

#Applied Refactoring Operations

C3

JDeodorant

Methodbook

Mb confidence
level

970 10 20 30 40 50 60 70 80 90

0.077

0.0745

0.075

0.0755

0.076

0.0765

#Applied Refactoring Operations

CC
BC

JDeodorant

Methodbook

970 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

2.81

2.67

2.72

2.76

2.8

#Applied Refactoring Operations

M
PC

JDeodorant

Methodbook

> 0.6 > 0.4 > 0.2

Mb confidence
level > 0.6 > 0.4 > 0.2 > 0.6 > 0.4 > 0.2

> 0.6 > 0.4 > 0.2

Figure 6.7: Evolution of the four quality metrics on eXVantage by applying the refactoring

operations suggested by Methodbook (95) and JDeodorant (80)

eXVantage, and JHotDraw) Methodbook outperforms JDeodorant while on the re-

maining 2 systems (GESA and SMOS) Methodbook achieves a better quality metrics

improvement only on the semantic side.

6.3.3 Threats to validity

This section describes some threats to validity (136) that may affect the results of our

first case study.

6.3.3.1 Choice of the quality metrics

We evaluated the goodness of the Methodbook’s suggestions from a quality metrics

point of view through two cohesion (i.e., Connectivity and C3) and two coupling (i.e.,

MPC and CCBC) metrics. Since the choice of employed metrics could strongly influence

the results, we carefully selected them. Firstly, for both cohesion and coupling we

employed one structural and one semantic metric in order to have a complete picture

132

6.4 Evaluating Methodbook with Software Developers

of the changes obtained in the system quality by applying suggested move method

operations. Among the structural metrics, Connectivity and MPC were preferred for

several reasons: (i) Connectivity, on the contrary of other structural cohesion metrics,

e.g., Lack of Cohesion of Methods (LCOM) (9), considers two methods to be cohesive

not only if they share an instance variable, but also if they have a call among them,

(ii) MPC is able to capture coupling at a finer granularity level (i.e., method-calls

interaction) compared to other coupling metrics, e.g., Coupling Between Object classes

(CBO) (9), and (iii) the same structural metrics were also used in the evaluation of

JDeodorant (20). To the best of our knowledge, on the semantic side the C3 metric is

the only semantic cohesion metric available in literature while the CCBC was preferred

to the semantic coupling metric presented in (143), since the latter is based on RTM,

which represents the foundation of Methodbook.

6.3.3.2 Software metrics evaluation

The achieved results indicate that Methodbook is able to improve the quality of sub-

ject systems in terms of class cohesion and coupling. Moreover, on three out of the five

employed systems it is able to outperforms the state-of-the-art tool JDedorant (20).

While this result can be encouraging it is not enough to state superiority of the move

method operations suggested by Methodbook. In fact, the refactoring operations sug-

gested by a tool should not only improve the value of some quality metrics but, more

importantly, be meaningful from a developer’ point of view. For this reason, we do not

only base our evaluation on metrics measurement, but also performed two user studies

reported in Section 6.4.

6.4 Evaluating Methodbook with Software Developers

In our previous case study (Section 6.3) we evaluated the Methodbook’s recommenda-

tions by measuring the difference between pre- and post-refactoring design quality in

terms of class cohesion and coupling. However, the refactoring operations should not

only improve the quality of a software system in terms of metrics but should also be

meaningful from a developer’s point of view. For this reason, we performed two studies

involving software developers in the evaluation of refactoring operations proposed by

Methodbook. The first study was conducted on JHotDraw and involved 30 developers.

133

6. MOVE METHOD REFACTORING

Since these subjects have not participated in the development of the subject system,

i.e., JHotDraw, we refer to them as “external developers”. The second study was con-

ducted on GESA and SMOS with the original developers of the systems (5 developers

for each system). It was necessary to perform both of these studies to evaluate Method-

book from all possible perspectives. Indeed, the only study with external developers

is not enough since they do not have a deep knowledge of the design of the software

system. Thus, they may be not aware of some of the design choices that could appear

wrong, but that are the results of a conscious choice. This is the reason why we also

performed a user study with original developers. However, this study alone is also not

enough. Even if the original developers have deep knowledge of all the design choices

that led to the original design, they could be the “fathers” of some bad design choices

and consequently could not recognize a good move method suggested by Methodbook

as meaningful. This threat is mitigated by the study conducted with the external de-

velopers. Thus, the two experiments are complementary and allow us to investigate

the meaningfulness of the suggestions performed by Methodbook from different points

of view. Also in these two studies we compare suggestions performed by Methodbook

with those performed by the competitive approach proposed by Tsantalis et al (20).

In the context of the two studies, the following research question was formulated:

• RQ3: Are the refactoring recommendations produced by Methodbook meaningful

from a functional point of view?

6.4.1 Evaluation with External Developers

In this section we report the design of the study and the results achieved in our first

evaluation conducted with external developers.

6.4.1.1 Planning

The study with external developers was executed at the University of Salerno (Italy)

and replicated at the University of Molise (Italy) with different software developers.

We involved a total of 30 bachelor students, 14 at the University of Salerno and 16

at the University of Molise. All the subjects were third year bachelor students and

had good knowledge of Java and object oriented programming. In the context of this

study we compared the meaningfulness of refactoring recommendations proposed by

134

6.4 Evaluating Methodbook with Software Developers

Methodbook with those proposed by JDeodorant on JHotDraw in order to respond to

our research question (RQ3). To this aim, we selected 20 methods from JHotDraw

and, for each of them, we asked participants to identify appropriate class(es) where the

method could be implemented. The participants evaluated the meaningfulness of the

Methobook’s refactoring suggestions through a questionnaire. The 20 methods were

selected among four different groups. In particular, we selected:

• 5 methods for which only Methodbook suggests to move them from their original

class to a new envied class (onlyMethodbook group - OM). For each method in

this group the participants had three possible options in the questionnaire (three

possible classes from JHotDraw): (i) the original class, i.e., the class where the

method was originally implemented (implicitly preferred by JDeodorant), (ii) the

class suggested by Methodbook, and (iii) a randomly selected class.

• 5 methods for which only JDeodorant suggests to move them from their original

class to a new envied class (onlyJDeodorant group - OJ). For each method in this

group the participants had three possible options in the questionnaire: (i) the

original class (implicitly preferred by Methodbook), (ii) the class suggested by

JDeodorant, and (iii) a randomly selected class.

• 5 methods for which both Methodbook and JDeodorant suggest to move them

from their original class to the same new envied class (bothSameClass group -

BS). For each method in this group the participants had three possible options in

the questionnaire: (i) the original class, (ii) the class suggested by Methodbook

and JDeodorant, and (iii) a randomly selected class.

• 5 methods for which both Methodbook and JDeodorant suggest to move them

from their original class to two different new envied classes (bothDifferentClasses

group - BD). For each method in this group the participants had four possi-

ble options in the questionnaire: (i) the original class, (ii) the class suggested

by Methodbook, (iii) the class suggested by JDeodorant, and (iii) a randomly

selected class.

A randomly selected class was considered only to verify whether participants seriously

considered the given assignment (that is a sanity check). For each of the proposed class

the subjects had to assign a score on a five-point Likert scale (126) from 1 (the class is

135

6. MOVE METHOD REFACTORING

Method Class_1 Class_2 Class_3

_clearQuadTree

util.GraphLayout

1 2 3 4 5

standard.QuadTree

1 2 3 4 5

standard.CompositeFigure

1 2 3 4 5

Figure 6.8: An example of question belonging to the bothSameClass group

not at all suitable to implement the analyzed method) to 5 (the class is very suitable to

implement the analyzed method). Figure 7.3 shows an example of a question belonging

to the bothSameClass group: clearQuadTree is the method to place, util.GraphLayout

is the random class, standard.QuadTree is the class suggested by Methodbook and

JDeodorant, and standard.CompositeFigure is the original class.

Given the results of our first case study (see Section 6.3), for the onlyMethodbook

group we selected 5 methods for which Methodbook suggests move method operations

with the maximum confidence level, i.e., 1.0. On the contrary, for the groups bothSame-

Class and bothDifferentClasses we were not able to select Methodbook’s suggestions

having high confidence level. In fact, as for the bothDifferentClasses group there were

only 5 methods for which Methodbook and JDeodorant suggest to move them from

the original class in different envied classes (we selected all of them) and for no one

of them Methodbook exhibits high confidence level (the average confidence level for

these 5 methods is 0.4). Concerning the bothSameClass group, 6 were the methods for

which Methodbook and JDeodorant suggest to move them from the original class in

the same envied class (we randomly selected 5 out of 6 of them) and also in this case

for no one of them the Methodbook’s suggestions have high confidence level (average

0.5). The differences in the confidence level of the Methodbook’s operations present

in the questionnaire will allow us to further investigate about the goodnesses of the

confidence level as indicator of the quality of the suggested refactoring operations.

Note that the subjects were not aware of the experimented techniques, i.e., Method-

book and JDeodorant, of the questionnaire structure nor of the different groups of

questions. The 20 methods were removed from the JHotDraw system together with all

the references to them in the source code. The removed methods were copied in 20

text documents and provided to the subjects, together with the questionnaire and the

mutated version of JHotDraw (i.e., the one without the 20 removed methods), at the

beginning of the experimentation.

136

6.4 Evaluating Methodbook with Software Developers

1

2

3

4

5

Original Mb Random Original JD Random Original Mb & JD Random Original Mb JD Random

OM group OJ group BS group BD group

Figure 6.9: Box plots of the ratings provided by the 30 subjects

We analyzed the answers provided by the subjects through boxplots and statistical

tests. As for the statistical tests, for each of the four groups of methods, we collected

the ranking of classes in each of the different sets of proposed classes, i.e., original,

suggested by Methodbook, suggested by JDeodorant, and random. Then, considering

two particular sets, e.g., original vs. suggested packages, we used the t-test (122) to

analyze the statistical significance of the difference between the ranking of classes in

the two sets. The results were intended as statistically significant at α = 0.05.

6.4.1.2 Analysis of the Results

Figure 6.9 shows the boxplots summarizing the answers provided by 30 subjects in-

volved in our study while Table 6.2 reports the results of the t-test. All the data are

presented by group of methods, i.e., OM, OG, BS, and BD.

Concerning the OM group, i.e., only Methodbook suggests to move the method

from its original class to a new envied class, the boxplots in Figure 6.9 highlights that

the subjects generally preferred the class suggested by Methodbook (median 4) to the

original class (median 3). Moreover, the result of the t-test shows that the difference

of preferences in favor of the class suggested by Methodbook is statistically significant

(see Table 6.2). Note that, as explained before, in this scenario JDeodorant implicitly

prefers the original class for the five methods under analysis.

In the OJ group, i.e., only JDeodorant suggests to move the method from its original

class to a new envied class, the students tend to reward the original class (median 4.5)

compared to the envied class suggested by JDeodorant (median 3). Also in this case,

this difference in the subjects’ preferences is classified as statistically significant by the

137

6. MOVE METHOD REFACTORING

Table 6.2: Results of the T-test

Group Test α
Mean of

differences

OM

original vs suggested < 0.01 -0.89

original vs random < 0.01 +1.33

suggested vs random < 0.01 +2.21

OJ

original vs suggested < 0.01 +1.09

original vs random < 0.01 +2.83

suggested vs random < 0.01 +1.74

BS

original vs suggested < 0.01 +0.53

original vs random < 0.01 +2.46

suggested vs random < 0.01 +1.93

BD

original vs suggested Methodbook < 0.01 +1.21

original vs suggested JDeodorant < 0.01 +1.57

original vs random < 0.01 +2.30

suggested Methodbook vs suggested JDeodorant 0.02 +0.36

suggested Methodbook vs random < 0.01 +1.09

suggested JDeodorant vs random < 0.01 +0.73

t-test (see Table 6.2). It is worth noting that for this group of methods, Methodbook

implicitly preferred the original class to the other classes of the system.

When both the approaches suggest to move a method from its original class to the

same envied class, i.e., BS group, the original class is still preferred by the subjects

(median 5) compared to the suggested class (median 4). Even for this comparison the

t-test shows a statistically significant difference.

Finally, for the BD group, i.e., both the approaches suggest to move a method

from its original class to two different envied classes, the students’ preferences are also

this time targeted to the original class (median 4) followed by the class suggested by

Methodbook (median 3) and the class suggested by JDeodorant (median 2). More-

over, the t-test shows that (i) the scores assigned to the original class are statistically

significant higher than those assigned to the suggestions by Methodbook as well as to

138

6.4 Evaluating Methodbook with Software Developers

those by JDeodorant is statistically significant and (ii) also the scores assigned to the

Methodbook’s suggestions are statistically significant higher than those assigned to the

JDeodorant’s suggestions (see Table 6.2).

Note also that in all the analyzed groups of questions the suggested random classes

achieved as median lo lowest possible (i.e., 1), confirming that the participants seriously

considered the given assignment.

Summarizing, the results of this study highlight that:

• When Methodbook does not suggest any refactoring operation (OJ group) the

subjects confirm that the original class is the best place for the method under

analysis.

• The suggestions produced by Methodbook are generally preferred to those pro-

duced by JDeodorant. In particular: (i) in the OM group, JDeodorant implic-

itly prefer the original class, while the students rewarded the class suggested

by Methodbook, (ii) in the OJ group, the original class (implicitly preferred by

Methodbook) achieved the highest scores, and (iii) in the BD group, the class

suggested by Methodbook is generally preferred to that suggested by JDeodorant

(median 3 vs 2).

• The confidence level is confirmed as an important indicator of the goodnesses

of the Methodbook’s suggestions. In fact, when the suggestions proposed by

Methodbook have high confidence level (OM group, with average confidence level

equals to 1), the subjects generally prefer the class suggested by Methodbook to

the original class. On the contrary, when Methodbook suggests a move method

operation with low confidence level (groups BS with average confidence level

equals to 0.5 and BD with average confidence level equals to 0.4), the subjects

prefer the original class to the class suggested by Methodbook.

The performed analysis allow us to positively answer to our research question

(RQ3): Methobook is indeed able to identify meaningful refactoring operations from a

functional point of view. However, this is true under a precise condition: the confidence

level must be high. In fact, even if Methodbook achieved good scores (median 4) in the

BS group where the average confidence level is 0.6, the students in this scenario still

preferred the original class (median 5).

139

6. MOVE METHOD REFACTORING

Table 6.3: Number of refactoring operations suggested by Methodbook and JDeodorant

on the two object systems

System JDeodorant Methodbook

GESA 2.2 165 30

SMOS 1.0 69 27

Total 234 57

6.4.2 Evaluation with Original Developers

In this section we report the design and the results achieved in the evaluation conducted

with original developers.

6.4.2.1 Planning

In this study we executed both Methodbook and JDeodorant on the two subject sys-

tems, i.e., GESA and SMOS. Then, in order to answer our research question (RQ3),

we asked the original developers of these two systems to evaluate all the refactoring op-

erations suggested by the two techniques. Note that for GESA we were able to involve

the entire team (composed of 5 people) that developed the system while for SMOS 5

out of 7 of the programmers that have worked to its development.

The subjects evaluated all the refactoring operations suggested by the two ap-

proaches through a questionnaire where, for each operation, they had to answer to the

question “Would you apply the proposed refactoring?” assigning a score on a five point

Likert scale: 1 (definitely not), 2 (no), 3 (maybe), 4 (yes), and 5 (absolutely). The

number of refactoring operations suggested by two approaches (and thus, evaluated

by the subjects) is reported in Table 6.3. As we can see the number is rather high

for both the systems, and thus we gave four days to the subjects to evaluate all the

refactoring operations. Each subject filled-in her two questionnaires, i.e., one with the

Methodbook’s suggestions and one with the JDeodorant’s suggestions, independently.

After that, all the subjects involved in the development of each system performed a

review meeting to discuss their scores and reach a consensus. At the end of the meeting

the subjects provided only two filled-in questionnaires (and thus, one for each system)

reporting their comprehensive evaluation. We also asked the developers to comment

on some particular cases.

140

6.4 Evaluating Methodbook with Software Developers

Table 6.4: Subjects’ answers to the question “Would you apply the proposed refactoring?”

definitely not no maybe yes absolutely

JDeodorant

GESA (165 suggestions) 24% 7% 57% 11% 1%

SMOS (69 suggestions) 6% 12% 59% 22% 1%

Overall (234 suggestions) 19% 8% 58% 14% 1%

Methodbook

GESA (30 suggestions) 12% 30% 14% 37% 7%

SMOS (27 suggestions) 11% 15% 37% 30% 7%

Overall (57 suggestions) 11% 22% 26% 34% 7%

6.4.2.2 Analysis of the Results

Table 6.4 summarizes the subjects’ answers to the question “Would you apply the

proposed refactoring?”. Concerning the GESA software system the developers gave a

positive answers to the 12% of operations suggested by JDeodorant (11% yes + 1%

absolutely) against a 44% achieved by Methodbook (37% yes + 7% absolutely).

On the “negative answers side” the two approaches almost reached a tie with the

31% of JDeodorant’s suggestions (24% definitely not + 7% no) and the 32% of Method-

book’s suggestions (12% definitely not + 30% no) discarded by the subjects. Finally,

there is a huge percentage (57%) of the JDeodorant’s refactorings marked with maybe

by the developers against a 14% achieved by Methodbook.

Thus, despite the average low confidence level of Methodbook’s suggestions on

GESA (0.22 with only one suggestion having confidence level higher than 0.6), the

original developers generally preferred them to those generated by JDeodorant. In

fact, while the percentage of move method suggestions discarded (through a definitely

not or a no answer) is almost the same, the developers accepted (through a yes or a

absolutely answer) a much higher percentage of Methodbook’s suggestions than of the

JDeodorant’s ones.

The get a deeper view of the achieved results we asked GESA developers to comment

on some of their decisions. One of the refactoring operations suggested by Method-

book that the developers would absolutely apply is moving the method executeOp-

eration(Connection pConnect, String pSql) from its class Utility to the envied class

ControlConnection. Thus, we asked them to comment on the rationale behind these

refactoring operation. The developers explained that the method executeOperation is

in charge to execute a given query (the parameter pSql) in the database by using an

141

6. MOVE METHOD REFACTORING

existing connection to it (the parameter pConnect). The class containing this method,

i.e., Utility, groups together miscellaneous services that (i) can be useful for different

classes in the system, e.g., convert a date in SQL format, and (ii) have not a clear

collocation in other classes of the system. However, in GESA a class is also present

implementing all the operations needed to exchange data with the database, that is the

class ControlConnection. Thus, the developers feel that the envied class identified by

Methodbook is a better place to implement the method executeOperation.

On the other hand, ad example of Methodbook’s suggestion that the subjects would

not apply is the move of the method daysBetween(Date pDate1, Date pDate2) from

the class Utility to the class ServletExportTimetableStampToPdf. In fact, daysBetween

represents a clear example of the kind of methods that should be placed in the Utility

class (it computes the number of days between two given dates). The wrong suggestion

of Methodbook was the result of the high number of calls that the ServletExportTimeta-

bleStampToPdf class performs to this method. This is a clear example of move method

refactoring that improve the software system from a quality metric point of view, but

that is not meaningful from a developer point of view.

Concerning the SMOS software system, the developers accepted the 23% of opera-

tions suggested by JDeodorant (22% yes + 1% absolutely) against a 37% achieved by

Methodbook (30% yes + 7% absolutely). As for the “rejected” refactoring operations,

the 18% of the JDeodorant suggestions (6% definetly not + 12% no) and the 26% of

the Methodbook suggestions (11% definetly not + 15% no) were classified as bad. Fi-

nally, also in this case a high percentage of JDeodorant suggestions were classified with

maybe (59%) against a 37% of Methodbook. Note that also on this system the average

confidence level of the SMOS suggestions is quite low (0.42) with only 3 move method

operations recommended with a confidence level higher than 0.6.

As for GESA, we asked the SMOS developers to comment for us some of their deci-

sions. Figure 6.10 shows the method classroomOnDeleteCascade moved by Methodbook

from the class ManagerClassroom to the class ManagerRegister. All the SMOS devel-

opers agreed that this refactoring should be absolutely applied. Indeed, this method

is invoked when a classroom from the system is deleted in order to remove from the

database all the information related to it. As we can see, the information related to a

classroom are mostly concerned with the class register, e.g., students absences. Thus,

142

6.4 Evaluating Methodbook with Software Developers

public void classroomOnDeleteCascade(Classroom pClassroom) throws ... {

 ...

 try {
sql = "DELETE FROM " + ManagerRegister.TABLE_ABSENCE

+ " WHERE id_classroom= " + Utility.isNull(pClassroom.getIdClassroom());

Utility.executeOperation(connect, sql);

sql = "DELETE FROM " + ManagerRegister.TABLE_DELAY
+ " WHERE id_classroom= " + Utility.isNull(pClassroom.getIdClassroom());

Utility.executeOperation(connect, sql);

sql = "DELETE FROM " + ManagerRegister.TABLE_JUSTIFY
 + " WHERE id_classroom= " + Utility.isNull(pClassroom.getIdClassroom());

Utility.executeOperation(connect, sql);

sql = "DELETE FROM " + ManagerRegister.TABLE_NOTE
 + " WHERE id_classroom= " + Utility.isNull(pClassroom.getIdClassroom());

Utility.executeOperation(connect, sql);
} finally {
DBConnection.releaseConnection(connect);

}
}

Figure 6.10: The method classroomOnDeleteCascade was moved by Methodbook from

its class ManagerClassroom to the envied class ManagerRegister

the method classroomOnDeleteCascade invokes several times the classManagerRegister

that, for this reason, is identified by Methodbook as envied class.

On the other side, there is a group of three move method refactoring operations

suggested by Methodbook with a confidence level lower than 0.2 that were rejected

by the developers. For these operations, the developers did not find any explanation,

confirming that when the confidence level is too low, the Methodbook suggestions are

generally not recommendable to apply.

Finally, we also asked both the GESA and SMOS developers to comment on the

high number of JDeodorant move method suggestions answered with a maybe (135 out

of 234). The explanation was quite simple. In both GESA and SMOS there is a clear

separation between the entity objects of the systems (e.g., user, classroom), that are

implemented through specific java bean classes (e.g., User, Classroom), and the control

143

6. MOVE METHOD REFACTORING

classes managing that objects (e.g., ManagerUser, ManagerClassroom). JDeodorant

suggests to move several of the methods present each control class to the corresponding

entity object (e.g., move the method getUserList() from ManagerUser to User). While

these move methods will result in improving quality metrics, they are only considered

as an alternative to the original design by the developers that generally prefer their

choice of clearly separate entity and control objects in the systems. This set of move

method operations suggested by JDeodorant also explain (i) the very high number of

suggestions on these two systems and (ii) the very good performances achieved by it

on GESA and SMOS in the software metrics evaluation reported in Section 6.3.

In conclusion, Methodbook suggestions were generally preferred to the JDeodorant

ones (41% of accepted suggestions for Methodbook, 15% for JDeodorant) on both of the

subject systems. However, the Methodbook suggestions also achieved a higher number

of “rejected” suggestions compared to the JDeodorant ones (33% vs 27%). This is an

expected result given the average low confidence level of the Methodbook suggestions

on the two systems.

6.4.3 Threats to validity

This section describes some threats to validity (136) that may affect the results of our

evaluations conducted with the users.

6.4.3.1 Evaluation with External Developers

As for the generalization of the results achieved in our experiment conducted with exter-

nal developers, the population of subjects involved in the experimentation, i.e., bachelor

students, represents the main threat. However, the subjects had acceptable analysis,

development, and programming experience. In particular, in the context of the Soft-

ware Engineering courses, bachelor students from both Universities had participated

in software projects, where they practiced software development and documentation

production. Moreover, as highlighted by Arisholm and Sjoberg (128) the difference

between students and professionals is not always easy to identify.

Another threat is represented by the system domain knowledge of subjects. Before

the controlled experiment execution meetings were organised with the aim of giving

an acceptable system domain knowledge to the students and mitigating such a threat.

144

6.4 Evaluating Methodbook with Software Developers

Moreover, we also executed the experiment with original developers where this threat

is not present.

Also the number of refactoring operations (20) evaluated by the subjects is a possible

threat to the generalization of the achieved results. We were not able to perform a

complete evaluation of all the refactoring operations suggested by both approaches, i.e.,

Methodbook and JDeodorant, on JHotDraw for time constraints. In fact, for each of

the analyzed methods, the subjects had to evaluate at least 3 (4 in the BD group) classes

in which the method could be placed. Thus, 20 is the realistic number of refactoring

operations that we could possibly evaluate in a user study lasting approximately for

three hours (on average 9 minutes available to analyze each refactoring operation).

Finally, it is worth noting that in our evaluation we did not use any computer tool

but preferred to provide a printed copy to the subjects, i.e., the questionnaires, of the

move method refactoring operations identified by each approach since in this way we

avoid confounding the results with how well subjects could use the tools interfaces.

6.4.3.2 Evaluation with Original Developers

In our second user study we were able to involve the original developers of two systems,

i.e., GESA and SMOS, in the evaluation of the refactoring operations suggested by

Methodbook and JDeodorant. Six of the subjects involved in this experimentation

(three for each system) work in industry while among the remaining, one is a Ph.D.

student, and three are master students. Thus, the kind of subjects involved in our two

user studies is quite different, allowing a good generalization of the achieved results.

The system domain knowledge could also represent a threat in this experiment but

in a different way. In fact, as explained before some of the subjects could be the “fa-

thers” of some bad design choices and consequently not recognize a good move method

refactoring as meaningful. However, the results obtained and the deep discussion with

them about some of the good suggestions provided by the two approaches demonstrate

that the subjects provided an objective evaluation of the analyzed move method oper-

ations.

Finally, also in this experiment we avoided the use of tools preferring printed ques-

tionnaires to exclude biases derived by the subjects ability with the tools interfaces.

145

6. MOVE METHOD REFACTORING

6.5 Final Remarks

In this Chapter is presented and evaluated Methodbook, an approach to automate Move

Method refactoring. Methodbook uses RTM to analyze both structural and conceptual

information gleaned from software to suggerst move method refactoring operations.

Methodbook has been evaluated in two case studies comparing its performance with

the state-of-the-art tool JDeodorant.

In the first case study we analyzed if move method suggestions produced by Method-

book are able to improve the design quality of five software systems from a quality

metrics point of view. The results indicate that the Methodbook’s suggestions hav-

ing high confidence level are able to significantly improve cohesion and coupling of

the subject systems. Moreover, on three out of five experimented systems Method-

book uniformly outperforms JDeodorant, while on the remaining two systems the two

approaches almost reached a tie.

In a second case study we evaluated the refactoring recommendations by Method-

book in two user studies, one conducted with ten original developers of two software

systems and one with 30 students on an open source software system. The results indi-

cate that Methodbook provides meaningful recommendations for move method refac-

toring from a developer’s point of view. In addition, the developers generally prefer

Methodbook’s recommendations compared to those produced by JDeodorant. The

achieved results strongly support the potential usefulness of Methodbook in integrated

development environments.

146

7

Move Class Refactoring

The material in this Chapter has been presented in (144).

7.1 Introduction

During maintenance, the structural design of the software system evolves and changes

are not always performed following OO guidelines (3, 145). Indeed, software evolution

is often driven by market forces that put pressure on stake-holders to reduce the time

to market, which may lead to suboptimal design choices. One of the main reasons for

such an architectural erosion is inconsistent placement of source code classes in software

packages (82, 99). Such a scenario, on one hand negatively impacts the package cohe-

sion and on the other hand increases the number of dependencies (coupling) between

packages (100).

In such cases, re-modularization of the system is necessary (3, 101). Most of the

existing approaches focus on proposing a whole new re-modularizations to the devel-

oper, i.e., they produce a completely new decomposition of classes in packages (e.g.,

(77, 79, 83)). The results of a totally new re-modularization might be difficult to in-

terpret by software developers unless they provide explicit mapping (and explanation)

to the original design. For this reason, this kind of re-modularization is preferable

only when the structure of the system is too degraded and prevents the possibility of

adopting focused and fine-grained refactoring operations (3), e.g., move a class between

the existing packages. Focused refactoring operations have to be preferred when refac-

toring is systematically applied during software evolution. To this aim, we propose an

147

7. MOVE CLASS REFACTORING

automated approach to support re-modularization through move class refactoring that

takes into account the existing package structure and the content. The approach is

an instantiation of the approach presented in Section 3.5 for moving misplaced code

components to the move class refactoring.

The proposed approach analyzes underlying latent topics in classes and packages

and uses structural dependencies to recommend refactoring operations aiming at mov-

ing classes to more suitable packages. In addition, the topics extracted from the classes

and packages are used to identify their responsibilities and provide some rationale be-

hind the proposed refactoring recommendation, e.g., the class ActionExportProfileXMI

is very relevant to the topic [profile, model, url] and should be moved into package

org.argouml.profile, which is described by the topic [profile, ocl, model]. As for our

move method approach described in Chapter 6, the topics are acquired via Relational

Topic Models (RTM) (62) (see Section 3.5 for details). RTM is used as an underlying

solution to analyze conceptual (that is, topics in classes and packages) and structural

(that is, dependencies) information to recommend refactoring solutions. The resulting

tool, coined as R3 (Rational Refactoring via RTM), has been evaluated in two empir-

ical studies. In the first study we analyzed the ability of R3 to propose refactoring

operations that lead to reduced coupling among software modules in nine software sys-

tems. However, refactoring operations should not only improve the quality of a software

system in terms of metrics, but, most importantly, should be meaningful from a devel-

oper’s point of view. This observation calls for our second study, where we evaluated R3

refactoring recommendations with developers in two case studies, one conducted with

14 original developers of four software systems and one with 44 students and academics

plus 4 professional software developers on another open source software system.

Section 7.2 presents the details behind R3. Section 7.3 reports the first case study

where R3 has been evaluated via quality measures, while Section 7.4 reports the results

of the study with users.

7.2 R3 : Rational Refactoring via RTM

We propose an approach, namely R3, that automatically analyzes the underlying latent

topics inferred from identifiers, comments, and string literals in the source code classes

as well as structural dependencies among these classes. Using the results of the analysis

148

7.2 R3 : Rational Refactoring via RTM

method_1
...
method_n

attr_1
...
attr_m

Class

method_1
...
method_n

attr_1
...
attr_m

Class

method_1
...
method_n

attr_1
...
attr_m

Class

Software System

RTM

RTM similarity
matrix

Move Class
Recommender

Move Class
C1 from P2

to P4

Suggested
Refactorings

term-by-document
matrix

package
decomposition matrix

structural coupling
matrix

Semantic and Structural Information Extraction

Move Class Recommendation

Semantic
information
extraction

Structural
information
extraction

Figure 7.1: Identifying move class refactoring with R3.

we are able to identify possible move class refactoring opportunities (i.e., identify more

suitable packages for relocating a class under analysis). The integrated analysis of

structural and semantic information, as modeled by R3 allows us to analyze the quality

of software packages both from a conceptual (that is, responsibilities implemented in

classes in different packages) and structural (that is, dependencies among classes in a

package and among other packages) points of view.

In a nutshell, R3 works as depicted in Figure 7.1. Semantic information (identi-

fiers, comments, and string literals) is extracted from source code classes and stored

in a term-by-document matrix. The term-by-document matrix is required by RTM to

derive semantic relationships between classes and define a probability distribution of

149

7. MOVE CLASS REFACTORING

topics (topic distribution model) among classes. Besides semantic information, R3 also

exploits static analysis to (i) derive dependencies among classes (stored in the struc-

tural coupling matrix) and (ii) the existing package composition (stored in the package

decomposition matrix). These two matrices are used to adjust the probability distri-

bution taking into account structural relationships between classes, besides semantic

information. In particular, the structural coupling matrix is employed to provide RTM

with information concerning the dependencies (i.e., calls) between classes (that is the

main information used for software modularization). The package decomposition ma-

trix is used in the context of a fine-grained re-modularization to take into account the

design decisions made by the developers. Providing RTM with information on the orig-

inal design induces the technique to suggest a move class refactoring operation only if

it results in a clear improvement of the design quality.

The model derived by RTM is then used to compute similarities among classes based

on both probabilistic distributions of latent topics and underlying dependencies. After

obtaining similarities among all the classes for a given system (RTM similarity matrix

in Figure 7.1), for each class the approach identifies a set of highly similar classes (that

is, classes sharing similar topics and/or having structural relationships). The set of

identified classes is then used to determine refactoring operations aiming at moving the

class into a package that contains the higher number of similar classes. Clearly, if the

identified package coincides with the original package, no refactoring is required.

As it can be seen, the approach is completely automated; once the refactoring

operations are identified, they can be applied to the software system obtaining a new

modularization. The new modularization should have a better quality in terms of cohe-

sion and coupling. However, design decisions are oftentimes more intricate and delicate

than just trying to minimize coupling and maximize cohesion. As a result, the proposed

recommendations should be analyzed by developers who can accept or reject proposed

move class refactoring operations or make alternative decisions based on underlying

recommendations and analysis information. Unfortunately, without a deep knowledge

of the complete system, it may be difficult to reach an agreement on which refactoring

should (not) be applied. The proposed approach aims at mitigating such a problem.

Indeed, one unique characteristic that distinguishes R3 from all the other refactoring

approaches is its ability to generate an evaluation (based on quantitative analysis) and

explanation (based on qualitative analysis) for the refactoring recommendations.

150

7.2 R3 : Rational Refactoring via RTM

7.2.1 Semantic and Structural Information Extraction

One key prerequisite for generating refactoring recommendations using R3 is the se-

mantic and structural information that should be extracted and analyzed. As the very

first step, classes are analyzed to extract words contained in comments, identifiers, and

string literals. In order to extract the single words advanced algorithms for splitting

identifiers are employed (140). The extracted information is stored in a m× n matrix

(called term-by-document matrix), where m is the number of terms occurring in all the

classes, and n is the number of classes in the system (see Figure 7.1). A generic entry

wi,j of this matrix denotes a measure of the weight (i.e., relevance) of the ith term in

the jth document. In order to weight the relevance of a term in a document we employ

the tf-idf weighting schema (106).

A light-weight static analysis is also applied to the current release of the software

system to detect (i) dependencies between classes (i.e., method calls) and (ii) existing

package decomposition. The latter is a simple boolean n × n matrix (called package

decomposition matrix), where n is the number of classes composing the software system

to re-modularize. A generic entry oi,j of this matrix equals to 1 if the class Ci and the

class Cj are grouped in the same package in the original modularization, otherwise

it is equal to 0. Concerning the dependencies among the classes of the system, we

capture them using the Information-Flow-based Coupling (ICP) (108) and store this

information in another n×n matrix (called structural coupling matrix). ICP measures

the amount of information flowing into and out of a class via parameters through

method invocation, i.e., the measure sums the number of parameters passed at each

method invocation. The interested reader can find its definition in Section 3.2.

7.2.2 Computing the RTM Similarity Matrix

The three computed matrices, i.e., term-by-document matrix, package decomposition

matrix, and structural coupling matrix, are supplied to RTM to generate a topic dis-

tribution model (see Figure 7.1). As explained in Section 3.5, the peculiarity of RTM

as compared to other topic modeling techniques is in its ability to adjust the proba-

bility distribution of each topic taking into account explicit relationships among the

documents. In our approach, explicit relationships among the documents (classes) are

151

7. MOVE CLASS REFACTORING

modeled through dependencies among classes and original design (stored in the calls

interaction matrix and original design matrix, respectively).

The enriched topic distribution model (based on both semantic and structural in-

formation) obtained by RTM is used to compute similarities among all the classes of

the system. Such similarities are stored in a n × n matrix, namely RTM similarity

matrix, that is employed to identify move class refactoring operations (see Figure 7.1).

7.2.3 Identifying Move Class Refactoring Opportunities

R3 uses the RTM similarity matrix to determine the degree of similarity among classes

in the system and identify classes similar to a given class candidate for move class

refactoring. A cut point then is used to detect the µ most similar classes. We tried

several values for µ and the best results were achieved setting µ = 5. R3 then analyzes

these classes and the packages containing them to identify the best target package for

a given class. In our current implementation, target package is the one that contains

the highest number of most similar classes. Note that more sophisticated criteria can

be used to select the best target package for a class under analysis, given the list of

similar classes. However, we experimented with different possible solutions by manually

analyzing resulting refactoring suggestions and found no significant differences between

the simple, adopted, solution and more sophisticated heuristics. Moreover, the adopted

solution is justified by the observation that the higher the number of related classes in

the package, the higher the quality of the package in terms of cohesion and coupling

metrics (3). Finally, in those cases where two or more packages contain the same number

of similar classes, the target package is the one that contains the highest ranked similar

class.

The following example illustrates the process of identifying the target package for

the class org.argouml.ui.explorer.ActionExportProfileXMI that represents a well-know

design problem in ArgoUML 0.161. Given the textual information extracted from this

class as well as a list of other classes, which are structurally connected to ActionEx-

portProfileXMI, R3 recommends a more appropriate package where the class should

be moved. RTM-based analysis reveals that the topic “profiles” is the dominant topic

in ActionExportProfileXMI. Additionally, the package, which ActionExportProfileXMI

is most structurally dependent on is org.argouml.profile. That is, strong structural

1http://argouml.tigris.org/

152

7.2 R3 : Rational Refactoring via RTM

dependencies exist between the class being considered and the classes Profile and Pro-

fileException, which are implemented in org.argouml.profile package. After supplying

these dependencies into RTM, R3 discovers that the top five similar classes include all

the classes belonging to the package org.argouml.profile, i.e., StreamModelLoader.java,

ProfileManager.java, CoreProfileReference.java, ResourceModelLoader.java, and File-

ModeLoader.java. This means that for R3, the class ActionExportProfileXMI should

be placed in the package org.argouml.profile.

Although the version 0.16 of ArgoUML implements it in the package org.argouml.ui.explorer,

evidence suggests that it should actually be moved to the package org.argouml.profile.

After moving the package we observe a noticeable decrement in coupling. The de-

scriptions of the class and packages, which appear in the Javadocs1, also support

the recommendation by R3. The external documentation summarizes the package

org.argouml.ui.explorer as follows, “contains classes for the explorer tree view of ar-

gouml.” The package org.argouml.profile is said to “Contains support for UML pro-

files” while the class ActionExportProfileXMI “Exports the model of a selected profile

as XMI“. The Javadocs also suggest that the package org.argouml.profile may be a

more appropriate place to implement the class. This example illustrates the strength

of R3 to make suggestions that both improve software quality from the perspective of

structural and conceptual metrics.

7.2.4 Putting Software Developers into the Loop

While R3 is a completely automated approach, it is designed to serve as a refactoring

assistant for software developers. The approach can take as an input a class or a set

of classes that may be candidates for move class refactoring. A specific class may be

supplied as an input to R3 to identify if there are any other more suitable packages for

this class. Alternatively, the whole system can be used as an input to R3 resulting in

a set of recommendations about possible move class refactoring opportunities.

To facilitate software developer’s task of accepting or rejecting a suggested move

class refactoring operation, R3 provides an evaluation and an explanation behind the

recommended refactoring operation (see Figure 7.2). This evaluation is provided in the

form of a confidence level, while the explanation is based on qualitative data extracted

via topic analysis.

1http://argouml-stats.tigris.org/nonav/javadocs/javadocs-0.32/

153

7. MOVE CLASS REFACTORING

method_1
...
method_n

attr_1
...
attr_m

Class A

Move Class
Recommender

Suggested
Refactoring

Move Class A
from P3 to P2

Developer

Select a class to be
re-packaged

Rationale

Confidence
Level1.0

Topic Class A
[user, role, admin]

Topic P2
[user, role]

Figure 7.2: Interaction between R3 and the software engineer.

For the computation of the confidence level, we employ information entropy to

analyze distributions of µ similar classes across different packages and quantify the

confidence of the proposed refactoring recommendation. We consider the most similar

classes as an outcome of a random variable X. For a random variable X with µ

outcomes {xi : i = 1, . . . , µ} the Shannon information entropy, a measure of uncertainty,

is defined as:

H(X) =
µ�

i=1

p(xi)
1

logµ(xi)

where p(xi) is the probability value of outcome xi. Note that, as defined, H(X) can

assume values in [0,1]. Thus, the confidence level for the suggested package is defined

as follows:

confidenceLevel = 1−H(X)

That is, the more scattered similar classes among the packages, the higher the entropy

of the suggestion of the target package (the confidence is low, since we have many candi-

date packages). On the other hand, if all the similar classes are implemented in a single

package, the entropy of this suggestion is low (the confidence is high, since we have

154

7.2 R3 : Rational Refactoring via RTM

one or a few target packages). Consider the example where we want to move the class

ActionExportProfileXMI. In this case the top five similar classes include all classes be-

longing from the same package, org.argouml.profile. Thus, the suggestion has the lowet

uncertainty (H(X) = 0) and, consequently, the highest confidence (confidenceLevel =

1).

As for the explanation of the suggested refactoring, R3 analyzes and presents the

topics for a given class as well as topics for packages suggested as target packages for

refactoring operation. Conceptual overlap between a class candidate to be moved and

a suggested target package in terms of underlying latent topics (generated by RTM)

serves as a good indication for the rationale behind the proposed refactoring. Start-

ing from the extracted topics, the explanations provided by R3 are in the following form:

MOVE class C implementing the topics [T1, . . . , Tn]

FROM its package Pi grouping the topics [T1, . . . , Tm]

TO the package Pj grouping the topics [T1, . . . , Tk]

where C is the class to be moved, Pi is the original package, Pj is the target package,

and Ti is a topic composed by a set of words.

We use the same example from ArgoUML to illustrate how this feature of R3 works

in a real scenario. Our running example focuses on identifying the appropriate pack-

age to implement the class ActionExportProfileXMI. For each class and package within

a software system R3 identifies relevant topics based on the analysis of textual and

structural information, which was provided as an input. As previously mentioned, each

class has a probability of being associated with every topic extracted. We use the key

words from the topic with the highest probability to provide additional insight into the

suggestions. ActionExportProfileXMI ’s most significant topic is [profile, model, url].

Likewise, for each package in a software system, our approach also identifies the most

prevalent topics. The packages org.argouml.profile and org.argouml.ui.explorer, which

were discussed in Section 7.2.3, are best described by the topics [profile, ocl, model]

and [tree, node, explor], respectively. Thus, in this case the R3’s explanation will be:

MOVE class ActionExportProfileXMI implementing the topics [profile, model, url]

FROM its package org.argouml.ui.explorer grouping the topics [tree, node, explor]

155

7. MOVE CLASS REFACTORING

TO the package org.argouml.profile grouping the topics [profile, ocl, model]

Based on the topic analysis, implementing the class ActionExportProfileXMI in the

package org.argouml.profile appears to be a better option than implementing it in the

package org.argouml.ui.explorer. These findings support the recommendation made by

R3.

7.3 Software Metrics Evaluation

One widely accepted rule to increase the maintainability of software systems is to pursue

low coupling among the software modules (146, 147, 148). The goal of our first case

study is to (i) verify whether the move class operations suggested by R3 are able to

reduce the coupling among the packages of an OO software system and (ii) analyze the

relationship between the confidence level and the changes in terms of coupling.

The subjects of our study are nine software systems. Four of them, namely GanttPro-

ject1, jEdit2, JHotDraw3, and jVLT4, are open-source projects, two are industrial

projects, namely eXVantage5, GESA6, and three, eTour, SESA, and SMOS, have been

developed by a team of Master students of the University of Salerno during the Software

Engineering course. Table 7.1 reports the size, in terms of KLOC, number of classes,

and number of packages, and the versions of the systems. Moreover, Table 7.1 reports

the average (structural and semantic) coupling between the packages of each system.

We measured the structural coupling between two packages Pi and Pj as:

StructuralCoupling(Pi, Pj) =

�|Pi|
l=1

�|Pj |
s=1MPC(Cl, Cs)

|Pi|× |Pj |

where Cl ∈ Pi, Cs ∈ Pj , and MPC(Cl, Cs) is the Message Passing Coupling (MPC)

(109) between Cl and Cs. MPC is a coupling metric based on method-method inter-

action. MPC measures the number of method calls defined in methods of a class to

methods in other classes, and therefore the dependency of local methods to methods

1http://www.ganttproject.biz/
2http://www.jedit.org/
3http://www.jhotdraw.org/
4http://jvlt.sourceforge.net/
5http://www.research.avayalabs.com/
6http://www.distat.unimol.it/gesa/

156

7.3 Software Metrics Evaluation

Table 7.1: Software systems used in the case study

System KLOC Classes Packages
StructuralCoupling SemanticCoupling

Mean Median St. Dev. Mean Median St. Dev.

eTour 1.0.1 30 134 17 0.105 0.02 0.155 0.261 0.227 0.105

eXVantage 2.01 36 352 85 0.045 0.008 0.363 0.202 0.141 0.204

GanttProject 1.10.2 28 273 27 0.036 0.009 0.113 0.136 0.105 0.098

GESA 2.2 46 295 22 0.097 0.002 0.108 0.364 0.332 0.087

jEdit 4.4 101 537 29 0.011 0.006 0.040 0.177 0.191 0.106

JHotDraw 6.0 b1 29 275 12 0.096 0.001 0.279 0.089 0.075 0.068

jVLT 1.3.2 24 214 23 0.067 0.012 0.221 0.127 0.142 0.041

SESA 1.4 11 128 14 0.019 0.003 0.092 0.463 0.429 0.215

SMOS 1.0 23 121 12 0.082 0.010 0.119 0.273 0.301 0.128

Total 328 2,329 241 - - - - - -

implemented by other classes. It has been demonstrated that the MPC directly cor-

relates with the maintenance effort (109). Thus, higher MPC values (higher coupling)

indicate higher effort in maintaining a software system.

As for the semantic coupling, we measure it between two packages Pi and Pj as:

SemanticCoupling(Pi, Pj) =

�|Pi|
l=1

�|Pj |
s=1CCBC(Cl, Cs)

|Pi|× |Pj |

where Cl ∈ Pi, Cs ∈ Pj , and CCBC(Cl, Cs) is the Conceptual Coupling Between

Classes (CCBC) (55) Cl and Cs. CCBC is based on the semantic information (i.e.,

domain semantics) captured in the code by comments and identifiers. Two classes

are conceptually related if their (domain) semantics are similar, i.e. they have similar

responsibilities. Higher CCBC values indicate higher coupling. Note that the CCBC

has been used to support change impact analysis. In other words, two classes exhibiting

high CCBC are likely to be changed together during a modification activity performed

in a system. Consequently, having classes with high CCBC between them grouped

together in the same software module could reduce the effort needed by a developer to

localize the change. This clearly results in more managable maintenance activities.

7.3.1 Study Design

We used R3 to suggest a package for all the classes in the subject software systems.

Thus, we applied R3 on a total of 2,329 classes. Then, we identified the move class

refactoring operations suggested by R3 comparing the suggested package of each class

with its original package. If the suggested package is different from the original package

157

7. MOVE CLASS REFACTORING

Table 7.2: Possible values for the R3 confidence level.

Value Five most similar classes (C1 . . . C5) distribution among packages Probability distribution

0.00 C1 ∈ P1 and C2 ∈ P2 and C3 ∈ P3 and C4 ∈ P4 and C5 ∈ P5
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

0.17 C1, C2 ∈ P1 and C3 ∈ P3 and C4 ∈ P4 and C5 ∈ P5
2
5 ,

0
5 ,

1
5 ,

1
5 ,

1
5

0.34 C1, C2 ∈ P1 and C3, C4 ∈ P3 and C5 ∈ P5
2
5 ,

0
5 ,

2
5 ,

0
5 ,

1
5

0.41 C1, C2, C3 ∈ P1 and C4 ∈ P4 and C5 ∈ P5
3
5 ,

0
5 ,

0
5 ,

1
5 ,

1
5

0.58 C1, C2, C3 ∈ P1 and C4, C5 ∈ P4
3
5 ,

0
5 ,

0
5 ,

2
5 ,

0
5

0.69 C1, C2, C3, C4 ∈ P1 and C5 ∈ P5
4
5 ,

0
5 ,

0
5 ,

0
5 ,

1
5

1.00 C1, C2, C3, C4, C5 ∈ P1
5
5 ,

0
5 ,

0
5 ,

0
5 ,

0
5

this means that R3 suggests a move class refactoring. To evaluate the coupling changes

achieved by instantiating the recommended refactoring operations we applied them

incrementally starting from those having the higher confidence level (see Section 7.2).

After each performed refactoring operation we measured the average (structural and

semantic) coupling between the packages of the system as defined above. In this way

we were able to observe if performed refactoring operations were able to reduce the

average package coupling for a given system. Moreover, the order of the refactoring

operations (refactoring from those having the higher confidence level to those having low

confidence level) allows to easily analyze if there is a correlation between the confidence

level of the suggested refactoring operations and increase/decrease in coupling in the

system. In particular, if the confidence level is a good indicator for the goodness of R3

recommendations, we expect to observe higher decrease in average package coupling

for higher confidence levels of a refactoring operation (and viceversa). Note that since

R3 considers the 5 most similar classes of a class C to identify the best package for C,

we can obtain as confidence level one of the 7 possible values reported in Table 7.2.

For example if all the top 5 most similar classes belonging to different packages, the

entropy will be 1 and thus, the confidence level will be 0. On the contrary, if all the top

5 most similar classes belonging to the same package, the entropy will be 0 and thus,

the confidence level will be 1.

158

7.3 Software Metrics Evaluation

Table 7.3: Percentage agreement between packages suggested by R3 and original design.

System % Agreement
Confidence level distribution

1.00 0.69 0.58 0.41 0.34 0.17 0.00

eTour 62% 63% 1% 18% 12% 5% 0% 1%

eXVantage 55% 75% 9% 5% 4% 4% 3% 0%

GanttProject 70% 62% 24% 6% 4% 2% 2% 0%

GESA 55% 92% 4% 4% 0% 0% 0% 0%

jEdit 51% 71% 14% 4% 4% 4% 2% 1%

JHotDraw 52% 46% 15% 15% 11% 8% 5% 0%

jVLT 30% 49% 13% 10% 9% 8% 8% 3%

SESA 26% 53% 10% 20% 7% 7% 0% 3%

SMOS 68% 72% 8% 8% 7% 5% 0% 0%

Average 52% 65% 11% 10% 6% 5% 2% 1%

7.3.2 Experiment results

In this section we analyze the results obtained in the case study.

Table 7.3 reports the percentage of agreement between the original design of each

subject system and the suggested package provided by R3 as well as the distribution of

the confidence level in these cases. As we can see, R3 suggests the original package on

average for 52% of the classes. Moreover, it is worth noting that generally when there

is an agreement between R3 and the original design, the R3’s suggestions are generally

provided with a high confidence level (86% have a confidence level ≥ 0.58).

The remaining 48% of classes that are placed in different packages than the origi-

nal ones represent our disagreement scenario, i.e., the suggested move class refactoring

operations. Table 7.4 shows the changes in terms of structural and semantic coupling

achieved while applying move class operations suggested by R3. Analyzing the JHot-

Draw system it is possible to observe that by applying only the 9 move class operations

having confidence level of 1 it is possible to achieve a reduction in the average struc-

tural coupling in the system by 86% and of the average semantic coupling by 41%. A

reduction of coupling is still achieved when applying move class refactoring operations

with confidence levels of 0.69 and 0.58 (globally, -3% for the StructuralCouplingavg

and -7% for the SemanticCouplingavg), while when applying the move class operations

having confidence level lower than 0.58 we achieve an increase of the average coupling

159

7. MOVE CLASS REFACTORING

Table 7.4: Coupling improvement while applying move class refactoring operations sug-

gested by R3

System

Confidence level

1.00 0.69 0.58 0.41 0.34 0.17 0.00

StC SeC StC SeC StC SeC StC SeC StC SeC StC SeC StC SeC

eTour -6% -3% -11% -7% -5% -3% -40% -44% -41% 22% 0% 0% n.a. n.a.

eXVantage -50% -48% -6% -7% -4% -24% +1% 0% -3% -15% +39% +16% +44% +9%

GanttProject -36% -10% -9% -6% +4% -2% -12% -8% +1% -3% -5% +9% +7% +1%

GESA -25% -27% -14% -33% -37% -50% +8% +18% 0% -7% -4% 0% n.a. n.a.

jEdit -21% -4% -9% -8% -15% 0% +73% +15% +2% -15% +8% -1% +2% 0%

JHotDraw -86% -41% 0% -7% -3% 0% +16% +18% +9% 0% +10% +4% +1% +1%

jVLT -22% -5% -3% -2% -2% -4% -5% -3% +48% +18% +60% +16% +1% +5%

SESA -3% -1% -14% -2% -6% -12% +67% -6% +22% -2% +6% +1% 0% 0%

SMOS n.a. n.a. -16% -6% 0% -3% +69% -3% +3% +1% -1% 0% +5% 0%

Average -31% -17% -9% -9% -8% -11% +20% +5% +5% 0% +13% +5% +7% +2%

StC = δStructuralCouplingavg, SeC = δSemanticCouplingavg

On eTour and GESA no move class refactoring operations have been proposed with confidence level equal to 0.0

On SMOS no move class refactoring operations have been proposed with confidence level equal to 1.0

of the system. Note that this trend is confirmed for all the object systems (see Table

7.4).

We also analyzed the average improvement provided by the single refactoring oper-

ations at different confidence levels to further investigate different effects of move class

operations having different confidence levels. Table 7.5 reports the achieved results. As

we can see on average each move class operation having the highest confidence level

reduces the StructuralCouplingavg by 2.7% and the SemanticCouplingavg by 1.2%.

From the data in Table 7.5 it is also possible to observe that applying move class op-

erations having confidence level higher or equal to 0.58 we are generally able to reduce

the coupling between the packages, while move class operations having confidence level

lower than 0.58 generally results in an increase of coupling.

The obtained results demonstrate that R3 is able to reduce the coupling between

software modules for a given software system by recommending useful move class refac-

toring operations. However, this empirical observation holds only when the confidence

level for suggested operations is higher than 0.58, thus highlighting the goodness of the

confidence level as an indicator of the quality of R3 recommendations.

7.3.3 Threats to validity

In this section we analyze the main threats that could affect the findings of our first

case study.

160

7.3 Software Metrics Evaluation

Table 7.5: Average coupling improvement for move class refactoring operations at differ-

ent confidence levels.

System

Confidence level

1.00 0.69 0.58 0.41 0.34 0.17 0.00

StC SeC StC SeC StC SeC StC SeC StC SeC StC SeC StC SeC

eTour -1.9% -1.1% -2.6% -1.8% -0.4% -0.3% -1.2% -1.3% -6.7% -3.6% 0% 0% n.a. n.a.

eXVantage -1.8% -1.7% -0.1% -0.1% -0.2% -1.2% +0.1% 0.0% -0.2% -1.1% +4.3% +0.9% +4.4% +0.9%

GanttProject -4.0% -1.2% -0.3% -0.2% +0.6% -0.1% -0.7% -0.5% +0.3% -0.7% -0.5% +1.7% -0.6% +0.7%

GESA -0.3% -0.3% -1.9% -4.7% -3.1% -4.1% +8.2% +18.2% -0.4% -0.7% -0.9% 0% n.a. n.a.

jEdit -0.5% -0.1% -0.2% -0.2% -0.4% 0.0% +2.3% +0.2% +0.1% -1.0% +1.3% -0.1% +2.2% +0.3%

JHotDraw -9.6% -4.6% 0.0% -0.2% -0.1% 0.0% +0.9% +1.4% +0.9% 0.0% +0.5% +0.2% +0.3% +0.2%

jVLT -1.8% -0.5% -0.2% -0.1% -0.2% -0.3% -0.2% -0.1% +1.2% +0.4% +1.7% +0.4% +0.2% +1.1%

SESA -1.3% -0.4% -1.7% -0.2% -0.1% -0.3% +3.5% -0.3% +11.1% -0.8% +0.6% +0.1% 0% 0%

SMOS n.a. n.a. -1.7% -0.7% 0% -1.3% +5.7% -0.3% +0.4% +0.2% -0.3% 0% +0.7% 0%

Average -2.7% -1.2% -1.0% -0.9% -0.4% -0.8% +2.0% +2.0% +0.7% -0.8% +0.7% +0.4% +1.0% +0.4%

StC = δStructuralCouplingavg, SeC = δSemanticCouplingavg

On eTour and GESA no move class refactoring operations have been proposed with confidence level equal to 0.0

On SMOS no move class refactoring operations have been proposed with confidence level equal to 1.0

7.3.3.1 Employed quality metrics

In our study we measured the increase/decrease in coupling provided by the move

class operations suggested by R3 using the average structural and semantic coupling

of the packages. To measure these types of coupling we employed two well-established

quality metrics, i.e., CCBC on the semantic side and MPC on the structural side.

Unlike other previous work (see e.g. (18, 127)), we have intentionally chosen quality

metrics that are not exploited by R3 to suggest move class operations (R3 analyzes

topics via RTM on the semantic side and ICP on the structural side). However, as

in all the software metrics evaluations, there is a risk that the improvement achieved

by applying the proposed remodularization is obtained by construction. In fact (i)

both MPC and ICP, even if in a different way, are based on calls interaction between

the classes of the system and (ii) CCBC and RTM exploit the same information, i.e.,

terms in comments, identifiers, and string literals of the classes, to capture overlap of

semantic concepts between classes. Thus, even if a software metric evaluation is needed

to verify that a new re-modularization approach does not negatively affect the coupling,

this kind of evaluation cannot be central in the experimentation of a new technique

(as done in several previous papers (17, 18, 82, 84, 127)). Indeed, different approaches

provide different re-modularizations of a software system that reduce coupling. So,

besides achieving a reduction of coupling it is necessary to show that a suggested re-

modularization is meaningful from a developer’s point of view. This is the reason why

we performed the user studies, with a total of 62 developers, reported in Section 6.4.

161

7. MOVE CLASS REFACTORING

Table 7.6: Average structural and semantic cohesion trend applying move class operations

suggested by R3

System

Confidence level

1.00 0.69 0.58 0.41 0.34 0.17 0.00

StC SeC StC SeC StC SeC StC SeC StC SeC StC SeC StC SeC

eTour +37% +7% +4% 0% 0% +1% +43% +17% 0% 0% +10% +6% n.a. n.a.

eXVantage +12% +5% +11% 0% +8% +4% -9% 0% 0% +2% +5% +4% 0% 0%

GanttProject 0% +5% +12% 0% +4% +8% 0% +1% +1% +2% -22% +7% -1% 0%

GESA +140% +34% 0% +5% -10% +10% -5% 0% -10% 0% -42% 0% n.a. n.a.

jEdit +7% +8% +17% +2% 0% -2% -3% -2% +2% +4% +6% 0% 0% 0%

JHotDraw +1% 0% 0% -1% -3% -1% 0% -7% +10% +17% 0% 0% 0% 0%

jVLT +17% +1% +18% +1% -10% -7% -36% +2% +51% 0% -4% +15% 0% 0%

SESA +5% +1% +7% 0% +75% +1% -71% -3% -23% +2% +25% -3% -15% 0%

SMOS n.a. n.a. +1% +7% +8% +0% -33% -12% -4% +1% +24% +12% -31% -3%

Average +27% +8% +8% +2% +8% +2% -13% 0% +3% +3% 0% +5% -6% 0%

StC = δStructuralCohesionavg, SeC = δSemanticCohesionavg

On eTour and GESA no move class refactoring operations have been proposed with confidence level equal to 0.0

On SMOS no move class refactoring operations have been proposed with confidence level equal to 1.0

7.3.3.2 Package cohesion

We evaluated move class refactorings suggested by R3 only from the coupling point of

view. Even if low coupling among the software modules is one of the main goal for a

good modularization (146, 147, 148), there is a risk that R3 might move a class into an

unrelated package, i.e., the package that groups many unrelated responsibilities with

the only goal of reducing the coupling between packages. To mitigate this threat we

also measured the changes in terms of average (structural and semantic) cohesion of

the packages in the studied systems. To measure the average structural and semantic

cohesion we exploited the same metrics used for the coupling, i.e., CCBC and MPC.

We measured the structural cohesion of a package Pi as the average MPC between all

the possible couples of classes in Pi and the semantic cohesion of a package Pi as the

average CCBC between all the possible couples of classes in Pi. Table 7.6 reports the

achieved results showing that, besides strongly decreasing coupling between packages,

R3 is also able to improve their cohesion for the move class refactoring operations

having high confidence level, i.e., higher or equal to 0.58. In the low confidence level

scenario, i.e., lower than 0.58, the cohesion of the packages does not show a stable

trend, i.e., sometimes the cohesion increases and sometimes it decreases.

162

7.4 Evaluating R3 with software developers

7.4 Evaluating R3 with software developers

In our previous case study (Section 6.3) we evaluated recommended move class refac-

toring operations by analyzing the difference in terms of quality metrics between pre-

and post-refactoring. However, the refactoring operations should not only improve the

quality of a software system in terms of metrics, but should also be meaningful from a

developer’s point of view. For this reason, we performed two studies involving software

developers. The first study was conducted on JHotDraw and involved 48 developers,

i.e., 29 CS Master students from the University of Salerno, 7 CS Masters, 8 Ph.D.

students and faculty members from the College of William and Mary, and 4 industry

practitioners from elsewhere. Since the participants of this first study did not par-

ticipate in the development of JHotDraw, we refer to them as “external developers”.

The second study was conducted on eTour, GESA, SESA and SMOS with the original

developers of the subject systems. In particular, we were able to involve 14 original

developers in this study (i.e., 5 for GESA, 5 for SMOS, 2 for eTour, and 2 for SESA). It

was necessary to perform both these studies to have a complete evaluation of R3. In-

deed, the only study with external developers may not be enough since they do not have

a deep knowledge of the design of the subject system under analysis. They may not be

aware of some of the design choices that could appear as suboptimal, but that are the

results of a rational choice. This is the reason why we also performed a user study with

original developers. However, this study alone is also not enough. Even if the original

developers have deep knowledge of all the design choices that led them to the original

design, they could be the “fathers” of some bad design choices and consequently could

not recognize good move class recommendations as meaningful as suggested by R3.

This threat is mitigated by the study conducted with the external developers. Thus,

the two experiments are complementary and allow us to investigate the meaningfulness

and usefulness of the recommendations suggested by R3 from different points of view.

In the context of the two studies, the following research questions were formulated:

• RQ1: Are the refactoring recommendations produced by R3 meaningful from a

functional point of view?

• RQ2: Is the rationale provided by R3 meaningful for the proposed refactoring

operations?

163

7. MOVE CLASS REFACTORING

7.4.1 Evaluation with External Developers

In this section we report the design of the study and the results achieved in our first

evaluation conducted with external developers.

7.4.1.1 Planning

In the context of our first study with developers, to respond to our research questions

we selected ten classes from JHotDraw and for each class we asked the participants to

identify the package(s) where the class could be placed. The ten classes were selected

among those where R3 suggests a move class refactoring, i.e., the package identified by

R3 is different from the original design package. Specifically, five classes were selected

with the confidence level of the suggested package higher or equal to 0.58 and five with

the confidence level being lower than 0.58. This choice was the result of our first case

study (Section 6.3) where we found that, generally, suggested move class operations

having a confidence level higher or equal to 0.58 are able to improve the package

modularization, while those having confidence level lower than 0.58 often reduce the

quality of the software modularization increasing its average coupling.

The participants evaluated the accuracy of R3 through a questionnaire (see see

Figure 7.3 for an excerpt of the questionnaire and Appendix ?? for the materials used

in our study). For each class in the survey, the participants had three possible options

(three possible packages from JHotDraw). The three packages consisted of (i) the

original package, i.e., the package where the class was originally implemented, (ii) the

suggested package by R3, and (iii) a randomly selected package. The latter option

was considered only to verify whether participants seriously considered this assignment

(that is a sanity check).

In order to respond to our first research question (RQ1), for each suggested package

the developers had to specify if the package was adequate to contain the class under

analysis (YES), was not adequate (NO), or might have been adequate (MAYBE). Note

that more than one package could be marked as adequate for each class in the survey.

Developers that often identify a randomly selected package as a correct answer should

be considered as outliers and excluded from the analysis1. Note that the participants

1In our study we did not identify any outliers.

164

7.4 Evaluating R3 with software developers

Analyze class FigureAttributeConstant and indicate for each package whether or not the package has the right
responsibility for containing the class.1

org.jhotdraw.framework org.jhotdraw.figures org.jhotdraw.util

YES MAYBE NO YES MAYBE NO YES MAYBE NO

Topic1: [constant, layer, remove]
Topic2: [change, handle, check]
Topic3: [connect, locate, mous]
Topic4: [active, find, insert]
Topic5: [implement, found, start]

Topic1: [connect, active, decor]
Topic2: [constant, image, holder]
Topic3: [font, angle, type]
Topic4: [active, find, insert]

Topic1: [format, storage, point2d]
Topic2: [stream, wrap, filter]
Topic3: [active, image, storable]
Topic4: [command, next store]

FigureAttributeConstant

Topic1: [constant, map, entries]
Topic2: [font, area, style]
Topic3: [applica, service, align]

AGREE NEUTRAL DISAGREE AGREE NEUTRAL DISAGREE AGREE NEUTRAL DISAGREE

Figure 7.3: An excerpt of the questionnaire used to evaluate R3.

were not aware of the experimental goals and they did not know the original structure

of the system nor the actual packages suggested by R3.

We were also interested in evaluating the usefulness of the rationale provided by

R3 aimed at explaining suggested move class refactoring to the developers (RQ2). As

outlined in Section 7.2, the analysis of underlying latent topics should provide the

rationale on why a class should be moved in the suggested package. Thus, for each

suggested package and for each class under analysis we also provided the description

of their topics extracted using RTM. The developers had to specify whether the ratio-

nale provided was meaningful to explain the proposed refactoring (AGREE), was not

meaningful (DISAGREE), or could be meaningful (NEUTRAL).

In summary, we had two groups of classes that allowed us to investigate the accuracy

of move class refactoring operations recommended by R3 in case of high confidence level

and low confidence level, respectively. In particular, we had the possibility to analyze

whether the package suggested by R3 could represent an alternative package for placing

the class under analysis.

We analyzed the answers provided by the developers through statistical tests. We

collected the rankings of packages in each of the different sets of proposed packages,

i.e., original, suggested by R3, and random. Then, considering two particular sets, e.g.,

original vs. suggested packages, we used the Mann-Whitney test (122) to analyze the

statistical significance of the difference between the ranking of packages in the two sets.

The results were intended as statistically significant at α = 0.05.

165

7. MOVE CLASS REFACTORING

Table 7.7: Developers’ answers in different scenarios.

Scenario
Original package R3 suggested package Random package

YES MAYBE NO YES MAYBE NO YES MAYBE NO

High Conf. 53% 23% 24% 54% 21% 25% 5% 12% 83%

Low Conf. 69% 23% 8% 36% 28% 36% 3% 8% 89%

Table 7.8: Results of the Mann-Whitney test.

High Conf. Low Conf.

original vs random < 0.01 < 0.01

original vs suggested 0.48 < 0.01

suggested vs random < 0.01 < 0.01

7.4.1.2 Analysis of the Results

In order to respond to our first research question (RQ1), Table 7.7 summarizes the

answers provided by the participants to the questions regarding the meaningfulness of

the suggested refactoring operations. The answers were grouped based on the particular

scenario analyzed, i.e., high confidence level and low confidence level, respectively.

Interesting results have been achieved considering R3 suggestions with high confi-

dence level. In this case, the analysis of the results provided by the participants reveals

that R3’s recommendations represent a good alternative choice as compared to the

original design. In particular, the developers marked as correct 76% of the original

packages (53% YES + 23% MAYBE) and 75% of the suggested packages (54% YES

+ 21% MAYBE). In addition, in 43% of the cases in this scenario the developers pre-

ferred the package suggested by R3 instead of the original package, i.e., they marked

the package suggested by R3 with a better score compared to those assigned to the

original package.

In the low confidence level scenario, developers generally preferred the original pack-

ages as design choice, marking the original packages as correct in 92% of cases (69%

YES + 23% MAYBE) while the packages suggested by R3 were not considered as a

good alternative (36% YES + 28% MAYBE).

All these considerations are also supported by the statistical analysis. Table 7.8

reports the results of the Mann-Whitney tests used to compare the ranking of packages

in different sets, i.e., original, suggested by R3, and random. As we can see, the only

166

7.4 Evaluating R3 with software developers

Table 7.9: Participants’ evaluations of explanations provided by R3.

Evaluation of the suggested refactoring AGREE NEUTRAL DISAGREE

Accepted package 55% 34% 11%

“Maybe” package 24% 60% 16%

Rejected package 11% 16% 73%

case where the original packages did not obtain a statistically significant higher score

than the packages suggested by R3 is when the confidence level is high. This confirms

that in such a scenario the recommendation by R3 represents a valuable alternative

to the original design. It is worth noting that this result, together with the significant

improvement of quality metrics observed in our first study, highlights the goodness of

the refactoring operations suggested with high confidence level by R3.

Concerning the analysis of the rationale (or explanation) provided by R3 when

suggesting a move class refactoring (RQ2), Table 7.9 shows the answers provided by

the participants to the related questions. As we can see, the developers considered the

rationale provided by R3 as meaningful when they accepted a recommended move class

refactoring operation. In such cases, they did not agree on the provided rationale only

in 11% of cases (59 out of 420). As expected, the scenario completely changed when the

developers were not convinced about the refactoring operations, i.e., “Maybe” package.

In this case, they were neutral with respect to explanations in 60% of cases while they

did not find the rationale useful in 16% of cases. Finally, when the developers did not

accept a move class refactoring, they generally disagreed with the rationale provided

by R3 (expected result).

Summarizing, we can conclude that when R3 suggests a move class refactoring

operation with high confidence level, the refactoring is usually meaningful from a func-

tional point of view. Moreover, the rationale detailing the purpose of the refactoring

recommendation is generally rated as useful by the developers.

7.4.1.3 Threats to validity

In this first user study we involved 48 external developers in the evaluation of the move

class refactoring operations proposed by R3. The main problem with this study is that

external developers did not have deep knowledge of the design of the subject system,

i.e., JHotDraw, and, as we explained before, they might not have been aware of some

167

7. MOVE CLASS REFACTORING

of the design choices that could appear wrong but that are the results of a rational

choice. Moreover, the presence of R3 explanations in the questionnaire might have

driven the external developers (having only partial knowledge of the system) to accept

R3 suggestions just because the latent topics in the moved class were similar to those

present in the target package. To mitigate these threats we conducted the second user

study (see Section 7.4.2) involving original developers of two software systems.

Concerning the number of classes (10) analyzed by the participants, it is rather low

if compared to the number of classes in the subject system. However, it is important

to note that for each class in our survey external developers had to analyze (i) the

responsibilities implemented by the class, and (ii) the responsibilities of each of the

three proposed packages. It is clear that for a developer who does not have intimate

knowledge of the design of the studied system this is a hard and time consuming task.

Thus, that was the realistic number of classes that we could possibly evaluate in the

user study, which lasted approximately for two hours. It is not easy to perform such

an experimentation using a substantially larger number of classes, unless this user

study is conducted in multiple sessions, which would involve substantial organizational

overhead.

7.4.2 Evaluation with Original Developers

In this section we report the design of the study with original developers and the results

obtained.

7.4.2.1 Planning

The four systems involved in the experimentation were eTour, GESA, SESA, and SMOS

(see Table 7.1 for the size and versions of these four systems). We asked 14 of the original

developers of eTour, GESA, SESA, and SMOS (5 for GESA, 5 for SMOS, 2 for eTour

and 2 for SESA) to analyze 20 move class operations suggested by R3 (ten having high

confidence level, i.e., ≥ 0.58, and ten having low confidence level, i.e., < 0.58). In

particular, the developers filled-in a questionnaire (see Appendix ?? for the material

used in our study) where, for each of the suggested operations, they had to respond

to the question “Would you apply the proposed refactoring?” choosing between YES,

i.e., the suggested package represents a better design choice than the original package,

MAYBE, i.e., the suggested package represents an equivalent alternative to the original

168

7.4 Evaluating R3 with software developers

Table 7.10: Participants’ evaluations of the refactoring operations proposed by R3 on

eTour, GESA, SESA, and SMOS.

System Scenario YES MAYBE NO

eTour
High Confidence 70% 10% 20%

Low Confidence 0% 50% 50%

GESA
High Confidence 70% 20% 10%

Low Confidence 0% 30% 70%

SESA
High Confidence 60% 20% 20%

Low Confidence 0% 50% 50%

SMOS
High Confidence 50% 40% 10%

Low Confidence 10% 50% 40%

design, and NO, i.e., the original package represents a better design choice than the

suggested package. Clearly, the answers provided to this question allowed us to respond

to our first research question (RQ1) related to the meaningfulness of the refactoring

operations suggested by R3.

Also in this case we evaluated the usefulness of the rationale provided by R3 to

explain suggested refactoring operations (RQ2). Thus, for each package (original and

envied) and for each class involved in a refactoring operation we also provided the

description of their topics extracted using RTM. As in the previous study, the devel-

opers had to specify whether the rationale provided was meaningful to explain the

proposed refactoring (AGREE), was not meaningful (DISAGREE), or could be mean-

ingful (NEUTRAL).

Developers analyzed suggested move class refactoring operations independently. Af-

ter that, they performed a review meeting to discuss their scores and reach a consen-

sus. At the end of the meeting the developers provided only one filled-in questionnaire

reporting their comprehensive evaluation. We also asked the developers to provide

comments on those positively and negatively evaluated cases.

169

7. MOVE CLASS REFACTORING

Table 7.11: Participants’ evaluations of explanations provided by R3 on eTour, GESA,

SESA, and SMOS.

System Evaluation of the suggested refactoring AGREE NEUTRAL DISAGREE

eTour

Accepted move class 72% 0% 28%

“Maybe” move class 43% 57% 0%

Rejected move class 0% 33% 67%

GESA

Accepted move class 72% 14% 14%

“Maybe” move class 10% 80% 10%

Rejected move class 12% 12% 76%

SESA

Accepted move class 67% 33% 0%

“Maybe” move class 0% 100% 0%

Rejected move class 0% 13% 87%

SMOS

Accepted move class 83% 17% 0%

“Maybe” move class 12% 66% 22%

Rejected move class 0% 0% 100%

7.4.2.2 Analysis of the Results

Table 7.10 summarizes the answers provided by the original developers to the question

“Would you apply the proposed refactoring?” while Table 7.11 shows the evaluations

provided by the developers to the rationale provided by R3.

As we can see, the study conducted with the original developers confirms the findings

of the previous study with external developers. In particular, when R3 suggests a

move class operation with high confidence level, it is generally meaningful from the

developers’ point of view (RQ1). In fact, they accepted in the high confidence scenario

62.5% of operations on average, considering a further 22.5% as a good alternative to

the original design. In other words, the percentage of suggested refactoring operations

appreciated by original developers in the high confidence level scenario hovers at 85%

on average. Only 15% of the operations, on average, are discarded by the developers

in the high confidence level scenario. On the contrary, operations suggested with low

confidence level are generally discarded by developers (see Table 7.10). In particular,

only one out of the 40 refactoring operations suggested with low confidence level are

accepted by the developers, while the others are either rejected (52,5% on average) or

170

7.4 Evaluating R3 with software developers

considered as a possible alternative to the original design (45%). Note that this result,

together with the findings of our previous software metrics evaluation and user study

with external developers, confirms the goodness of the confidence level as indicator of

the quality of the suggested refactoring operations.

Concerning the rationale provided by R3 (RQ2), as already observed for the exter-

nal developers, also the original developers generally find meaningful the R3’s expla-

nation when they accept a move class operation (74% of cases on average - see Table

7.11). On the other hand, when developers discard a refactoring operation generally

do not find the R3’s explanation meaningful (85% of cases).

Since this study was conducted with original developers, we performed a lot of

discussions with them about the reasons behind their evaluations, in order to get qual-

itative insight about R3’s strengths and weaknesses. The results of these discussions

are reported in the following grouped by four different cases:

1. refactoring operations having high confidence level and accepted by developers;

2. refactoring operations having low confidence level and rejected by developers;

3. refactoring operations having high confidence level and rejected by developers;

4. refactoring operations having low confidence level and accepted by developers.

If we consider the confidence level as an indicator to filter good suggestions of the R3

method, the first two cases correspond to success cases, while the remaining two cases

correspond to failure cases.

R3’s suggestions accepted in the high confidence level scenario

In the high confidence level scenario the original developers accepted most of the refac-

toring operations suggested by R3. Some of these refactoring operations accepted by

the developers are discussed in the following.

An interesting case from the eTour system was represented by the move of the class

Point3D from the package etour.util to the package etour.bean. The two developers

involved in the evaluation of the R3 suggestions on eTour agreed on the fact that this

move class refactoring should be applied. In fact, the package etour.bean in eTour

groups together all the entity classes (i.e., Java beans) used in the system and, as

explained in the comments of Point3D, it represents one of the system’s entity classes:

171

7. MOVE CLASS REFACTORING

Table 7.12: GESA customization parameters.

Name
Involved

Description
Functionality

startTimeLessons Timetable String: the start time of the lessons

endTimeLessons Timetable String: the end time of the lessons

lunchBreakFlag Timetable Boolean: true if a fixed lunch break for all the lessons is planned

lunchBreakStart Timetable String: [if lunchBreakFlag==true] the start time of the lunch break

lunchBreakEnd Timetable String: [if lunchBreakFlag==true] the end time of the lunch break

availableDays Timetable String: the days available to define a timetable, e.g., Mon-Fri

/*Bean containing the coordinates of a point on the earth’s surface.

The values of the coordinates must be represented in radians. */

Also the GESA’s developers provided us interesting insight about the reasons behind

the acceptance of some refactoring operations in the high confidence level scenario. In

particular, interesting cases are those related to four move class operations suggested

from the package customization to the package timetableManagement. R3 suggests to

move these four classes composing the package customization to the package timetable-

Management. All the developers involved in the experimentation marked these four

move class refactoring operations as meaningful. Thus, we asked them to comment

for us on the rationale behind these refactoring operations. The developers explained

that the goal of the package customization was to group together all the classes that

allowed customizing GESA according to the needs of the University using it. Table

7.12 shows the parameters that can be customized using the classes contained in the

customization package. It is worth mentioning that all the customization parameters

were related to the core functionality of GESA, i.e., the timetable management. For

this reason, the developers agreed that the package customization should be entirely

moved into the package timetableManagement, possibly creating a package timetable-

Management.customization.

Finally, a refactoring operation particularly appreciated by the SESA developers was

the move of the class ShowPendingProjectAction from its package personManagement

to the envied package projectManagement. The reason is quite simple. SESA assigns

“pending” status to all the information (e.g., publications, research projects) input

to the system by a user, who is not an administrator. This simply means that the

inserted information must be approved by an administrator to be visible to all the

172

7.4 Evaluating R3 with software developers

users. The class ShowPendingProjectAction shows ‘pending research projects” that

need to be approved by the administrators. This class was put inside the package per-

sonManagement by the system developers since it was logically linked to the system

administrator. However, there is also a package in SESA grouping all the classes related

to the research projects management, i.e., projectManagement. For this reason the de-

velopers felt that the R3’s suggested package is a better place to put the analyzed class.

R3’s suggestions rejected in the low confidence level scenario

In the low confidence level scenario the original developers rejected most of the refac-

toring operations suggested by R3. In the following we discuss some of these cases

explaining the reasons behind the decision of the developers.

A first case is the one from the eTour system and related to the move of the class

AdvertisementManagement from the package etour.control.advertisementManagement

to the envied package etour.control.restaurantManagement. eTour allows the restau-

rants registered to the system to insert advertisements shown to the tourists when they

are near them. For this reason there are a lot of structural dependencies among the

class AdvertisementManagement and the package etour.control.restaurantManagement.

These dependencies are the main explanation behind the R3 suggestion, although it is

provided with a low confidence level. However, in eTour all the classes implementing

responsibilities related to the advertisement management are grouped inside the pack-

age control.AdvertisementManagement and this explains the negative evaluation of this

refactoring by the developers.

Another interesting example of R3’s suggestion in the low confidence level scenario

is the move of the class ManagerStudent from the package userManagement to the

package examSessionManagement in the GESA system. The class ManagerStudent is

the class managing the user role “Student” and was correctly included in the package

userManagement (that includes all the classes for the users of the system), while the

package examSessionManagement is the only package that implements functionality

that students can access, in particular the reservation for the examination sessions.

Both the class ManagerStudent and the package examSessionManagement where in-

cluded in the version 2.0 of GESA, while the previous version did not implement any

functionality that the students could access. All the developers agree that the move

173

7. MOVE CLASS REFACTORING

class refactoring suggested by R3 did not make sense and that the package userMan-

agement is a good place to put this class. We investigated this to better understand

the reasons behind R3 recommendations. Besides the fact that the user “Student” can

only access the functionality concerned with the reservation of examination sessions, we

discovered that the class ManagerStudent and the package examSessionManagement

were implemented by the same developer, who used a standard template (containing

the same terms) for the comments describing the responsibilities of both, the classMan-

agerStudent and all the classes in the package examSessionManagement. This clearly

results in textual similarity even between classes having different responsibilities. In

this case, the topic analysis performed by R3 identifies strong semantic relationships

between classes implementing unrelated responsibilities. However, it is worth noting

that R3 also identifies meaningful dependencies with other packages, including the cur-

rent package of the class and this is the reason of the low confidence level provided with

the refactoring suggestion.

Finally, most of the suggestions with low confidence level discarded by the SESA

developers concerned the move of some of the entity classes (i.e., Article, Book, and

Publication) from the package publicationManagement to the package researchTopic-

Management. The developers explained that the research topics management in SESA

strongly depends on the classes contained in the package publicationManagement. In

fact, Article, Book, and Publication are linked to each research topic stored in the

system.

In general, the analysis performed with software developers about discarded refac-

toring operations in the low confidence level scenario highlighted that while in some

cases refactoring operations can be reasonable when looked from a quality metric point

of view1 (i.e., structural and semantic coupling), they are not necessarily meaningful

from the developers’ point of view.

R3’s suggestions rejected in the high confidence level scenario

The refactoring operations rejected in the high confidence level scenario represent the

real failure cases of R3. In fact, in this cases the R3’s confidence level is not able to filter

out these that seem to be bad refactoring suggestions. Thus, even if the percentage of

1Note that, as observed in our software metrics evaluation, only few refactoring operations having

low confidence level are able to improve software quality metrics.

174

7.4 Evaluating R3 with software developers

move class operations rejected by the developers in the high confidence level scenario

is very low it is important to analyze some of these cases in order to understand the

reasons behind the developers’ choice.

An example of move class refactoring proposed by R3 with a high confidence level

and negatively evaluated by developers can be found in the SMOS system. In that par-

ticular case R3 proposed to move the class LoginException from the package exceptions

to the package userManagement. Even if the class LoginException is used only by two

classes of the userManagement package, the developers did not find this move class

meaningful since all the classes implementing possible exceptions in the SMOS system

are grouped in the exceptions package. This design choice was dictated by the fact

that most of the exceptions in SMOS are generic and thus, used by more subsystems

(e.g., MandatoryFieldException). However, it is worth noting that an alternative de-

sign choice could be the one proposed by R3, where a class implementing an exception

used only by one subsystem is placed inside it.

Also the eTour developers discussed with us an interesting case of high confidence

level suggestion that makes no sense from their point of view. It is related to the

move of the class ConvertFile from its package etour.utility to the suggested package

etour.control.advertisementManagement. ConvertFile is used by the classes contained

in the etour.control.advertisementManagement package to convert all the images up-

loaded as advertisements by the restaurants registered to the system in the JPEG

format. While this explain the rational behind the R3 suggestion, the eTour devel-

opers felt that the right package to place ConvertFile is the utility package, grouping

together miscellaneous functionalities that might be useful to different subsystems.

The two reported examples of rejected R3’s suggestions having high confidence level

pinpoint how even reasonable refactoring operations do not always justify the need to

change the original design from developers’ point of view. This highlight as the last

word about the application of a refactoring operation should always be left to the de-

veloper.

R3’s suggestions accepted in the low confidence level scenario

While several refactoring operations suggested with a low confidence level have been

classified by the developers as possible alternatives to the original design, only one for

the SMOS system has been accepted, thus confirming the ability of the confidence level

175

7. MOVE CLASS REFACTORING

as indicator of the goodnesses of the suggested refactoring operation. We considered

this as an interesting case to discuss with the developers. The refactoring involved

the move of the class ServletLoadYear from its package userManagement to the en-

vied package classroomManagement. The class ServletLoadYear is used only by classes

in these two packages to load at runtime the list of academic years for which SMOS

stores information in the system (e.g., information about the classrooms, students, etc.).

ServletLoadYear was originally included in the package userManagement, because this

package was developed before classroomManagement. The developers accepted the

refactoring suggestion, because this class is used by more classes in classroomManage-

ment than in userManagement. However, as this class is an utility class the choice of

whether it should be placed in one or the other package is questionable. Indeed, the de-

velopers clarified that this class would have been a candidate to be placed in a package

grouping other utility classes, but such a package was not included in the system. It is

worth noting that R3 supports move class refactoring operations and is not intended to

create new packages. However, while R3 suggestions with low confidence level should

not be considered as good move class refactoring operations, they could be investigated

to possibly identify other types of refactoring opportunities.

7.4.2.3 Threats to validity

In our second user study we involved 14 original developers of four software systems,

namely eTour, GESA, SESA, and SMOS. The original developers had thorough knowl-

edge of all the design choices that led to the original design. Thus, they were good

candidates for evaluating the meaningfulness of the refactoring operations proposed by

R3. However, as with external developers, involving original developers as participants

has a downside. In fact, as explained before, some of them could be the “fathers” of

some of bad design choices and consequently might not have been able to recognize a

good move class suggested by R3 as meaningful. However, the results obtained and

thorough discussions with them about some of the good suggestions provided by R3

demonstrate that the developers provided an objective evaluation of the analyzed move

class operations.

The number of move class operations (20) in the experimentation with the original

developers is twice as large as compared to the study with external developers. This

is reasonable as in this case the participants had knowledge of system modularization

176

7.5 Final Remarks

and they only had to analyze the move class operations recommended by R3 as an

alternative to the original design. Still such a number of refactoring operations might

be considered as small. However, we preferred to dedicate more time to have more

meaningful and detailed discussions with the developers about some interesting cases

rather than asking them to analyze a higher number of move class operations.

7.5 Final Remarks

In this Chapter is presented and evaluated R3, an approach based on RTM, a prob-

abilistic topic modeling technique, to improve the quality of software modularization.

The proposed approach analyzes underlying latent topics in classes and packages as

well as it uses structural dependencies to recommend refactoring operations aiming

at moving classes to more suitable packages. Unlike most of the previous work, the

proposed approach avoids the creation of a whole new remodularization (and the conse-

quent creation/removal of existing packages), proposing a set of move class operations

that can be applied independently one from each other. In addition, R3 is the first

refactoring recommendation tool also providing some feedback to the developer about

the goodnesses of the suggested operations (i.e., confidence level) and rationale behind

the proposed recommendations.

The approach has been first evaluated through well-established metrics that cap-

ture quality improvement achieved while applying the proposed refactoring operations

on nine software systems. The results achieved indicated that R3 provides a coupling

reduction ranging from 10% to 30% among the software modules. Then, we evaluated

the refactoring recommendations by R3 in two user studies: one conducted with 14

original developers of four software systems and one with 44 students and academics

plus four professional software developers on an open source software system. The

results achieved in this second case study indicated that more than 70% of the rec-

ommendations provided by R3 with high confidence level were considered meaningful

from a functional point by developers.

177

7. MOVE CLASS REFACTORING

178

8

ARIES: Automated Refactoring

In EclipSe

The material in this Chapter has been presented in (149).

8.1 Introduction

ARIES is an Eclipse plug-in born with the aim of providing the software engineer a

complete support in performing different refactoring operations. ARIES implements

the approaches to support Extract Class, Extract Package, Move Method, and Move

Class refactoring described in Chapter 3.

In the following is presented the Extract Class functionality of ARIES. The other

functionalities are implemented following the same design. A video of the ARIES

Extract Class feature is available on Youtube1.

8.2 ARIES at Work: Extract Class Refactoring

ARIES supports Extract Class refactoring with a three steps wizard. In the first two

steps the tool provides support to the software engineer to identify and analyze Blobs

in the system under analysis. In the third step the software engineer receives recom-

mendations on how to refactor the candidate Blobs. The following sections present

details on the three steps of the Extract Class refactoring process in ARIES.

1http://www.youtube.com/watch?v=csfNhgJlhH8

179

8. ARIES: AUTOMATED REFACTORING IN ECLIPSE

Threshold

Metrics' values

Threshold Candidate Blobs

Figure 8.1: ARIES: Identification of candidate Blobs.

8.2.1 Identifying Candidate Blobs

ARIES supports the software engineer in the detection of Blobs through a quality check

of the entire software system (or of a specified subsystem). Note that ARIES does not

compute an overall quality of the classes, but it considers only cohesion and coupling

as the main indicators of class quality in this context. Hence, Blobs are usually outliers

or classes having a quality much lower than the average quality of the system under

analysis (100). The identification of Blobs in ARIES is based on such a conjecture.

The software engineer starts the quality check selecting the Check Quality command

in the main menubar. ARIES computes three quality metrics for each class of the

(sub)system, namely, Lack of Cohesion of Methods (LCOM5) (9), Conceptual Cohesion

of Classes (C3) (60), and Message Passing Coupling (MPC) (109). The results are

shown to the developers as three boxplots (one for each quality metric) highlighting

any negative outlier, i.e., classes having cohesion (coupling) markedly lower (higher)

than the other classes of the system (see Figure 8.1). Note that for the C3 metric

ARIES shows the values of 1−C3. In this way for all the three measures the negative

outliers are reported on the top of the boxplot.

All the outliers are reported in the list shown in the right side of Figure 8.1. Note

180

8.2 ARIES at Work: Extract Class Refactoring

that the list will include all the classes that are negative outliers for at least one of the

three metrics. In case no outliers are identified, ARIES allows to “relax” the process

used to identify candidate Blobs. In particular, instead of a statistical identification of

the outliers, the software engineer can select a threshold λ ∈ {70, 50, 30} that allows to

recover as candidate Blobs all the classes having a quality (in terms of the employed

quality metrics) lower than λ% of the average quality. In the scenario shown in Figure

8.1 the software engineer decides to analyze the quality of the system in order to identify

Blobs. ARIES shows the boxplots for the values of LCOM, C3 and MPC. The software

engineer decides to improve the quality of some classes having a quality (in terms of

cohesion and coupling) sensibly worse than the average quality of the system. In the top

of the list of outliers there is the class ManagerUserTeaching that seems to be a good

candidate for refactoring. In order to obtain a detailed view on ManagerUserTeaching,

the developer selects the class from the list and clicks on the “Next” button activating

the second step of the wizard.

Note that the Identification step is not mandatory in order to perform Extract

Class refactoring. The developer can directly select a class in the Package Explorer

and start the class extraction process by clicking the Extract Class refactoring button

in the main toolbar.

8.2.2 Analyzing Candidate Blobs

The second step of the ARIES wizard aims at helping the software engineer in better

analyzing the classes that are candidates for refactoring. The tool shows the preview

of the class under analysis as well as its topic map (see Figure 8.2). The topic map of

a generic class C is built by analyzing the term frequency in the methods it contains.

The five most frequent terms (the terms present in the highest number of methods) are

used to construct the topic map of C that, for this reason, is represented by a pentagon

where each vertex represents one of the main topics. Each vertex is connected to

the center of the pentagon by an axis representing the percentage of methods in C

that implements the corresponding topic. The graphical representation of the main

topics of C is then obtained by tracing lines between the percentage points on each

of the five axes indicating the percentage of methods belonging to C that implement

the corresponding topic. Note that a stop-word list is used to automatically prune out

common English words and Java keywords. This stop-word list can be customized using

181

8. ARIES: AUTOMATED REFACTORING IN ECLIPSE

Candidate Blobs

Topic Map Class Preview

Figure 8.2: ARIES: Analysis of candidate Blobs.

the ARIES preference panel. The topic map provided for the Blob is meant to help the

developer in understanding which are the different responsibilities implemented in the

class. Clearly not all topic maps will be equally helpful, as they depend on identifiers

and comments in the code.

In the scenario shown in Figure 8.2 the software engineer is analyzing the class

ManagerUserTeaching. From the analysis of the topic map it is easy to identify three

different responsibilities of the class, i.e., database connection (indicated by the terms

connection, db, and rs), user management (indicated by the term user), and teaching

management (indicated by the term teaching). While the first responsibility is a

common for each control class (each control class in the analyzed system accesses the

database to manage particular information), the other two responsibilities are quite

different suggesting that the quality of the class (in terms of cohesion) could be improved

splitting it in different classes.

182

8.2 ARIES at Work: Extract Class Refactoring

First class
extracted

Topic map original class Parameters' sliders

Second class
extracted

Figure 8.3: ARIES: Extract Class refactoring.

8.2.3 Refactoring the Blobs

Figure 8.3 shows the final step of the Extract Class refactoring feature of ARIES.

The upper part of Figure 8.3 contains the topic map of the class to be refactored.

The right part contains all the sliders to configure parameters of the Extract Class

refactoring approach, i.e., the weights for the similarity measures and the threshold

minCoupling (see Chapter 4). Although initial default values achieved through an

empirical assessment 4 are provided to the developer, she can modify any parameter,

changing on-the-fly the resulting refactoring recommendation, shown in the bottom

part of Figure 8.3.

ARIES reports for each class that should be extracted from the Blob the following

information: (i) its topic map; (ii) the set of methods composing it; and (ii) a text field

where the developer can assign a name to the class. The tool also allows the developer to

183

8. ARIES: AUTOMATED REFACTORING IN ECLIPSE

Figure 8.4: ARIES: Quality Check of the refactoring operation

customize the proposed refactoring moving the methods between the extracted classes.

In the scenario of Figure 8.3, ARIES splits the class ManagerUserTeaching into

two classes. The topic maps of the extracted classes help to understand the rationale

behind the refactoring recommendation. The first class is in charge of managing the

users, while the second class is responsible of teaching management. From the analysis

of the topic maps it is also possible to see that database connection is a responsibility

of both classes. This means that both classes access the database to manage users and

teachings, respectively.

Besides a conceptual analysis (based on the topic maps) of the refactoring proposed

by ARIES, the developer can quantify the quality improvement obtained applying the

proposed refactoring. Using the functionality “Quality Check”, ARIES highlights on

the boxplots of the metrics showed in the first step of the wizard, the values of the

metrics for the new classes and the original Blob (see Figure 8.4). In this way the

developer can analyze the quality of the new classes as compared to the overall quality

of the system.

To terminate the extraction process and automatically generate the new classes,

the software engineer can click the “Finish” button (see right lower corner in Figure

8.3). ARIES will generate the new classes making sure that the changes made by the

refactoring do not introduce any syntactic error.

184

8.3 Final Remarks

8.3 Final Remarks

This Chapter presented ARIES, an Eclipse plug-in supporting the software engineer

during refactoring operations. ARIES provides support in (i) the identification of the

design flaws to remove from the system through quality metrics, (ii) their analysis

supported by topic maps, and (iii) the identification and application of the refactoring

solution. Future work will be devoted to the implementation of more sophisticated

approaches to detect design flaws in a software system (see e.g., (72)).

185

8. ARIES: AUTOMATED REFACTORING IN ECLIPSE

186

9

Conclusion

9.1 Concluding Remarks

This thesis presented a framework of approaches to support the software engineer in

performing four different refactoring operations, i.e., Extract Class, Extract Package,

Move Method, and Move Class refactoring. All the approaches exploit both structural

and semantic (lexical) information extracted from the source code to suggest refactor-

ing solutions. The proposed techniques have been deeply evaluated posing particular

attention on evaluation conducted with software developers.

The contributions can be summarized as follow:

1. A novel approach to support Extract Class refactoring (115, 116). Structural and

semantic information are exploited to identify which methods of the Blob class

implement similar responsibilities and thus, should be grouped together inside a

new extracted class. Unlike the approaches based on clustering algorithms (see

e.g., (19)) the proposed approach automatically identifies the appropriate number

of classes that should be extracted from a Blob class. The proposed approach

has been experimented on real Blobs of open source systems to evaluate how

good the proposed solution is from a cohesion and coupling metrics point of

view, and how good the proposed refactoring solution is considered by software

engineers as it is. Then, we evaluated on a set of 11 classes how much the

proposed solution is useful as starting point to perform a refactoring, and how

well the proposed refactoring solution approximate a refactoring made by the

original developers. The results show that (i) the refactoring solutions proposed

187

9. CONCLUSION

by our approach strongly increases the cohesion of the refactored classes without

leading to significant increases in terms of coupling, (ii) the refactoring solutions

proposed by our approach are considered useful to developers performing extract

class refactoring and (iii) the proposed approach is able to approximate a manually

performed refactoring at 91% on average.

2. A novel approach to support Extract Package refactoring (130). The approach

splits a given promiscuous package into new packages having higher cohesion by

analyzing structural and semantic dependencies between the classes grouped in it.

The approach is able to automatically identify the correct number of packages that

should be extracted from the promiscuous one. A deep evaluation conducted with

16 developers on five software systems highlights the goodnesses of the suggested

Extract Package refactoring operations.

3. Methodbook, an approach to support Move Method refactoring (138, 139). Method-

book exploits Relational Topic Model (RTM) (62) to suggest Move Method refac-

toring opportunities in software. We evaluated Methodbook in two case studies

comparing its performance with the state-of-the-art tool JDeodorant. In the first

case study we analyzed if move method suggestions produced by Methodbook

are able to improve the design quality of five software systems from a quality

metrics point of view. The results indicate that the Methodbook’s suggestions

having high confidence level are able to significantly improve cohesion and cou-

pling of the subject systems. Moreover, on three out of five experimented sys-

tems Methodbook uniformly outperforms JDeodorant, while on the remaining

two systems the two approaches almost reached a tie. In a second case study

we evaluated the refactoring recommendations by Methodbook in two user stud-

ies, one conducted with ten original developers of two software systems and one

with 30 students on an open source software system. The results indicate that

Methodbook provides meaningful recommendations for move method refactoring

from a developer’s point of view. In addition, the developers generally prefer

Methodbook’s recommendations compared to those produced by JDeodorant.

4. R3 (Rational Refactoring via RTM) (144), an approach to improve the modu-

larization quality of an object-oriented system through Move Class refactoring

188

9.2 Further Work

operations. R3 exploits RTM to analyze underlying latent topics in classes and

packages and uses structural dependencies to recommend refactoring operations

aiming at moving classes to more suitable packages. In addition, R3 is the first

refactoring recommendation tool also providing some feedback to the developer

about the goodnesses of the suggested operations (i.e., confidence level) and ra-

tionale behind the proposed recommendations. R3 has been evaluated in two

empirical studies. In the first study we analyzed the ability of R3 to propose

refactoring operations that lead to reduced coupling among software modules in

nine software systems. The results achieved indicated that R3 provides a coupling

reduction ranging from 10% to 30% among the software modules. In the second

study, we evaluated R3 refactoring recommendations with developers in two case

studies, one conducted with 14 original developers of four software systems and

one with 44 students and academics plus 4 professional software developers on

another open source software system. The results achieved in this second case

study indicated that more than 70% of the recommendations provided by R3

with high confidence level were considered meaningful from a functional point by

developers.

The framework of approaches described in this thesis has also been implemented in

ARIES (Automated Refactoring In EclipSe) (149), an Eclipse plug-in supporting

the software engineer in performing different refactoring operations.

9.2 Further Work

We are working to enrich our framework by experimenting new ways of supporting

refactoring/re-modularization activities. In particular, we started analyzing the use

of Interactive Genetic Algorithms (IGAs) in the context of software re-modularization

(150). IGAs are a variant of Genetic Algorithms (GAs) in which the fitness function is

partially or entirely evaluated by a human while the GA evolves. In (150) we presented

an approach in which part of the fitness (capturing aspects such as intra-module, extra-

module dependencies, or modularization quality) is automatically evaluated, while the

human adds penalties for artifacts that are not where they should be. We performed a

preliminary evaluation showing that the IGAs are able to propose re-modularizations

(i) more meaningful from a developers point-of-view, and (ii) not worse, and often

189

9. CONCLUSION

even better in terms of modularization quality, with respect to those proposed by the

non-interactive GAs. For these reasons we plan to further investigate the performances

of IGAs in software re-modularization as well as in supporting different refactoring

operations.

A second direction we are investigating is the application of Game-Theory in the

context of refactoring (137). The rational behind this choice is that during refactoring

developers must often find solutions to problems while balancing competing goals, e.g.,

cohesion versus coupling. We believe contrasting goals can be often dealt with game

theory techniques. Indeed, game theory is successfully used in other fields, especially in

economics, to mathematically propose solutions to strategic situation, in which an indi-

vidual’s success in making choices depends on the choices of others. We demonstrated

the applicability of game theory (and in particular of its non-cooperative game field)

to refactoring in (137). The preliminary evaluation performed in an artificial scenario

demonstrates the applicability and the benefits provided by the use of Game-Theory.

However, we still need to investigate additional game theory techniques, such as coop-

erative games, and determine through a deeper evaluation how refactoring techniques

based on Game-Theory compare to the approaches presented in this thesis and to the

state of the art in general.

Finally, we are also investigating through empirical studies what is the “price to pay”

for refactoring in terms of bug introduction. In (151) we used an existing tool, namely

Ref-Finder (117), to automatically detect refactoring operations of 52 different types on

63 releases of three Java software systems. Of the 15,008 refactoring operations detected

by the tool, 12,922 operations have been manually validated as actually refactorings.

Then, we used the SZZ algorithm (152, 153) to determine whether the 12,922 refactoring

operations induced bug fixes. Results show that while, in general, the percentage of

bugs fixes likely induced by refactorings is relatively low (i.e., 15%), there are some

specific kinds of refactorings that are very likely to induce fixes. In particular, Pull Up

Method and Extract Subclass (two refactoring operations related to changes applied to

the class hierarchy) induce (in percentage) more fixes than the others. In this context we

want to replicate our study in order to corroborate the achieved results. Moreover, we

are planning more studies aimed at analyzing what is the effect of refactoring operations

on several quality aspects of software systems (e.g., quality metrics, design patterns,

etc.).

190

Appendix A

Publications Presented in this

Thesis

A.1 Accepted

A.1.1 Journal

• G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, A. De Lucia. Methodbook: Rec-

ommending Move Method Refactorings via Relational Topic Models. Trans-

actions on Software Engineering (TSE). 2013. To Appear.

• G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, A. De Lucia. Improving Software

Modularization via Automated Analysis of Latent Topics and Dependencies.

Transactions on Software Engineering and Methodologies (TOSEM) (2013) To appear.

• G. Bavota, A. Marcus, A. De Lucia, R. Oliveto. Automating Extract Class Refac-

toring: an Improved Method and its Evaluation. Empirical Software Engineering

(EMSE). 2013. To appear.

• G. Bavota, A. Marcus, A. De Lucia, R. Oliveto. Using Structural and Semantic

Measures to Improve Software Modularization. Empirical Software Engineering

(EMSE) (2013) To appear. doi: 10.1007/s10664-012-9226-8

• G. Bavota, A. De Lucia, R. Oliveto. Identifying Extract Class Refactoring Op-

portunities Using Structural and Semantic Cohesion Measures. The Journal of

Systems and Software (JSS) 84 (2011), pp. 397-414.

A.1.2 Conferences

• G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia. An Empirical

Study on the Developers Perception of Software Coupling. In: Proceedings of

191

A. PUBLICATIONS PRESENTED IN THIS THESIS

the 35th International Conference on Software Engineering (ICSE 2013), San Francisco,

USA, 2013. 10 pages. To appear.

• G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, O. Strollo. When

does a Refactoring Induce Bugs? An Empirical Study. In: Proceedings of the 12th

International Working Conference on Source Code Analysis and Manipulation (SCAM

2012), Riva del Garda, Italy, 2012, pp. 104-113.

• G. Bavota, F. Carnevale, A. De Lucia, M. Di Penta, R. Oliveto. Putting the Developer

in-the-loop: an Interactive GA for Software Re-Modularization. In: Proceedings

of the 4th Symposium on Search Based Software Engineering (SSBSE 2012), Riva del

Garda, Italy, 2012, pp. 75-89.

• G. Bavota. Using Structural and Semantic Information to Support Software

Refactoring. In: Proceedings of the 34th International Conference on Software Engi-

neering (ICSE 2012), Zurich, Switzerland, 2012, Doctoral Symposium, pp. 1479-1482.

• G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, F. Palomba. Supporting Extract

Class Refactoring in Eclipse: The ARIES Project. In: Proceedings of the 34th

International Conference on Software Engineering (ICSE 2012), Zurich, Switzerland,

2012, Formal Tool Demo, pp. 1419-1422.

• R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk, A. De Lucia. Identifying Method

Friendships to Remove the Feature Envy Bad Smell (NIER Track). In: Proceed-

ings of the 33rd International Conference on Software Engineering (ICSE 2011), Waikiki,

Honolulu, Hawaii, 2011, pp. 820-823.

• G. Bavota, A. De Lucia, A. Marcus, R. Oliveto. Software Re-Modularization based

on Structural and Semantic Metrics. In: Proceedings of the 17th Working Con-

ference on Reverse Engineering (WCRE 2010), Beverly, Massachusetts, USA, 2010, pp.

195-204.

• G. Bavota, R. Oliveto, A. De Lucia, G. Antoniol, Y-G. Gueheneuc. Playing with

Refactoring: Identifying Extract Class Opportunities through Game Theory.

In: Proceedings of the 26th International Conference on Software Maintenance (ICSM

2010), Timisoara, Romania, 2010.

• G. Bavota, A. De Lucia, A. Marcus, R. Oliveto. A Two-Step Technique for Extract

Class Refactoring. In: Proceedings of the 25th International Conference on Automated

Software Engineering (ASE 2010), Antwerp, Belgium, 2010, pp. 151-154.

192

Appendix B

Other Articles Published during

the PhD period

B.1 Journal

• A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, D. Binkley. Evaluating Test-to-Code

Traceability Recovery Methods through Controlled Experiments. Journal of

Software: Evolution and Process (JSME) (2013) To appear.

• G. Bavota, C. Gravino, R. Oliveto, A. De Lucia, G. Tortora, M. Genero, J. Cruz-Lemus.

A Fine-Grained Analysis of the Support Provided by UML Class Diagrams

and ER Diagrams During Data Model Maintenance. Software and Systems Mod-

eling (SOSYM) (2013) To appear.

B.2 Conferences

• S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, Tim Menzies. Automatic

Query Reformulations for Text Retrieval in Software Engineering. In: Pro-

ceedings of the 35th International Conference on Software Engineering (ICSE 2013), San

Francisco, USA, 2013, To appear.

• S. Haiduc, G. Bavota, R. Oliveto, A. De Lucia, A. Marcus. Automatic Query Perfor-

mance Assessment during the Retrieval of Software Artifacts. In: Proceedings

of the 27th International Conference on Automated Software Engineering (ASE 2012),

Essen, Germany, 2012, pp. 90-99.

• G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, D. Binkley. An Empirical Analysis of

the Distribution of Unit Test Smells and Their Impact on Software Mainte-

193

B. OTHER ARTICLES PUBLISHED DURING THE PHD PERIOD

nance. In: Proceedings of the 28th International Conference on Software Maintenance

(ICSM 2012), Riva del Garda, Italy, 2012, pp. 56-65.

• S. Haiduc, G. Bavota, R. Oliveto, A. Marcus, A. De Lucia. Evaluating the Specificity

of Text Retrieval Queries to Support Software Engineering Tasks. In: Proceed-

ings of the 34th International Conference on Software Engineering (ICSE 2012), Zurich,

Switzerland, 2012, NIER Track, pp. 1273-1276.

• G. Bavota, A. De Lucia, F. Fasano, R. Oliveto, C. Zottoli. Teaching Software En-

gineering and Software Project Management: An Integrated and Practical

Approach. In: Proceedings of the 34th International Conference on Software Engineer-

ing (ICSE 2012), Zurich, Switzerland, 2012, Software Engineering Education Track, pp.

1155-1164.

• G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto, A. Panichella. TraceME:

Traceability Management in Eclipse. In: Proceedings of the 28th International

Conference on Software Maintenance (ICSM 2012), Tool Demo, Riva del Garda, Italy,

2012, pp. 642-645.

• G. Bavota, C. Gravino, R. Oliveto, A. De Lucia, G. Tortora, M. Genero, J. A. Cruz-

Lemus. Identifying the Weaknesses of UML Class Diagrams during Data

Model Comprehension. In: Proceedings of the 14th International Conference on Model

Driven Engineering Languages and Systems (MoDELS 2011), Wellington, New Zealand,

pp. 168-182.

• A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, D. Binkley. SCOTCH: Improving Test-

to-Code Traceability using Slicing and Conceptual Coupling. In: Proceedings of

the 27th International Conference on Software Maintenance (ICSM 2011), Williamsburg,

VA, USA, 2011, pp. 63-72.

• A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, D. Binkley. SCOTCH: Slicing and

Coupling based Test to Code trace Hunter. In: Proceedings of the 18th Working

Conference on Reverse Engineering, Tool Demo, Limerick, Ireland, 2011, pp. 443-444.

194

References

[1] Gabriele Bavota, Andrea De Lucia, and

Rocco Oliveto. Identifying Extract Class

refactoring opportunities using struc-

tural and semantic cohesion measures.

Journal of Systems and Software, 84:397–414,

March 2011. vii, ix, 11, 28, 43, 45, 47, 50, 51,

53, 55, 59, 60, 61, 62, 64, 65, 67, 69, 70, 71, 72,

73, 74, 75, 76, 77, 86, 87, 112, 121

[2] Adrian Trifu and Radu Marinescu. Diag-

nosing Design Problems in Object Ori-

ented Systems. In Proceedings of the 12th

Working Conference on Reverse Engineering,

pages 155–164, Pittsburgh, PA, USA, 2005.

IEEE Press. ix, 9, 10

[3] M. Fowler. Refactoring: improving the design

of existing code. Addison-Wesley, 1999. 1, 2, 7,

16, 20, 37, 43, 74, 119, 147, 152

[4] T. Mens and T. Tourwe. A survey of

software refactoring. IEEE Transactions on

Software Engineering, 30(2):126–139, 2004. 1

[5] Victor R. Basili, Lionel Briand, and

Walcélio L. Melo. A Validation Of

Object-Oriented Design Metrics As

Quality Indicators. IEEE Transactions on

Software Engineering, 22(10):751–761, 1995. 1,

8

[6] Aaron B. Binkley and Stephen R. Schach.

Validation of the coupling dependency

metric as a predictor of run-time failures

and maintenance measures. In Proceed-

ings of the 20th International Conference on

Software Engineering, pages 452–455, Kyoto,

Japan, 1998. 1, 8

[7] Lionel C. Briand, Juergen Wuest, and

Hakim Lounis. Using Coupling Measure-

ment for Impact Analysis in Object-

Oriented Systems. In Proceedings of the

15th IEEE International Conference on Soft-

ware Maintenance, pages 475–482, Oxford,

UK, 1999. IEEE Press. 1, 8

[8] Lionel C. Briand, Jürgen Wüst, Stefan V.

Ikonomovski, and Hakim Lounis. Investi-

gating quality factors in object-oriented

designs: an industrial case study. In Pro-

ceedings of the 21st International Conference

on Software Engineering, pages 345–354, Los

Angeles, California, United States, 1999. ACM

Press. 1, 8

[9] S. R. Chidamber and C. F. Kemerer. A

Metrics Suite for Object Oriented De-

sign. Transactions on Software Engineering,

20(6):476–493, June 1994. 1, 8, 21, 51, 133,

180

[10] William F. Opdyke. Refactoring Object-

Oriented Frameworks. PhD thesis, 1992. 1

[11] Kent Beck and Cynthia Andres. Extreme

Programming Explained: Embrace Change.

Addison-Wesley Professional, 2004. 2

[12] Joshua Kerievsky. Refactoring to Patterns.

Pearson Higher Education, 2004. 2

[13] Robert C. Martin. Clean Code: A handbook

of agile software craftsmanship. Prentice Hall,

2009. 2

[14] E. Casais. An Incremental Class Reorga-

nization Approach. In Proceedings of Euro-

pean Conference on Object-Oriented Program-

ming, pages 114–132, Utrecht, the Netherlands,

1992. 2, 20

[15] I. Moore. Automatic inheritance hierar-

chy restructuring and method refactor-

ing. In Proceedings of 11th ACM SIGPLAN

Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages

235–250, San Jose, California, USA, 1996.

ACM Press. 2, 20

[16] K. Maruyama and K. Shima. Automatic

method refactoring using weighted de-

pendence graphs. In Proceedings of 21st In-

ternational Conference on Software Engineer-

ing, pages 236–245, Los Alamitos, California,

USA, 1999. ACM Press. 2, 21

195

REFERENCES

[17] M. O’Keeffe and M. O’Cinneide. Search-

Based Software Maintenance. In Proceed-

ings of 10th European Conference on Software

Maintenance and Reengineering, pages 249–

260, Bari, Italy, 2006. IEEE CS Press. 2, 21,

75, 112, 161

[18] Olaf Seng, Johannes Stammel, and David

Burkhart. Search-based determination

of refactorings for improving the class

structure of object-oriented systems. In

Proceedings of the Genetic and Evolutionary

Computation Conference, pages 1909–1916,

Seattle, Washington, USA, 2006. 2, 18, 19, 75,

112, 161

[19] Marios Fokaefs, Nikolaos Tsantalis,

Alexander Chatzigeorgiou, and Jörg

Sander. Decomposing object-oriented

class modules using an agglomerative

clustering technique. In Proceedings of

the 25th International Conference on Soft-

ware Maintenance, pages 93–101, Edmonton,

Canada, 2009. 2, 11, 44, 187

[20] Nikolaos Tsantalis and Alexander Chatzi-

georgiou. Identification of Move Method

Refactoring Opportunities. IEEE Trans-

actions on Software Engineering, 35:347–367,

2009. 2, 16, 18, 19, 122, 127, 133, 134

[21] Nikolaos Tsantalis and Alexander Chatzi-

georgiou. Identification of extract

method refactoring opportunities for the

decomposition of methods. Journal of Sys-

tems and Software, 84(10):1757–1782, October

2011. 2, 21, 22

[22] [online]2011 [cited June 15, 2011]. [link]. 2

[23] L.H. Etzkorn and C.G. Davis. Automat-

ically identifying reusable OO legacy

code. IEEE Computer, 30(10):66 –71, 1997.

3, 22

[24] A. Michail and D. Notkin. Assessing

software libraries by browsing similar

classes, functions and relationships. In

Proceedings of 21st International Conference

on Software Engineering, pages 463–472, Los

Angeles, California, USA, 1999. IEEE CS

Press. 3, 22

[25] Yunwen Ye and Gerhard Fischer. Sup-

porting reuse by delivering task-relevant

and personalized information. In Proceed-

ings of the 24th International Conference on

Software Engineering, ICSE ’02, pages 513–

523, 2002. 3, 22

[26] Y. Pan, L. Wang, L. Zhang, B. Xie, and

F. Yang. Relevancy based semantic in-

teroperation of reuse repositories. In Pro-

ceedings of 12th ACM SIGSOFT International

Symposium on Foundations of Software Engi-

neering, pages 211–220, Newport Beach, Cali-

fornia, USA, 2004. ACM Press. 3, 22

[27] G. Antoniol, G. Canfora, G. Casazza, and

A. De Lucia. Information Retrieval Mod-

els for Recovering Traceability Links be-

tween Code and Documentation. In Pro-

ceedings of 16th IEEE International Confer-

ence on Software Maintenance, pages 40–51,

San Jose, California, USA, 2000. IEEE CS

Press. 3, 22

[28] G. Antoniol, G. Canfora, G. Casazza,

A. De Lucia, and E. Merlo. Recovering

traceability links between code and doc-

umentation. IEEE Transactions on Software

Engineering, 28(10):970–983, 2002. 3, 22, 23

[29] A. Marcus and J. I. Maletic. Re-

covering Documentation-to-Source-Code

Traceability Links using Latent Seman-

tic Indexing. In Proceedings of 25th Inter-

national Conference on Software Engineering,

pages 125–135, Portland, Oregon, USA, 2003.

IEEE CS Press. 3, 22

[30] J. H. Hayes, A. Dekhtyar, and J. Osborne.

Improving Requirements Tracing via In-

formation Retrieval. In Proceedings of 11th

IEEE International Requirements Engineering

Conference, pages 138–147, Monterey, Califor-

nia, USA, 2003. IEEE CS Press. 3, 22

[31] A. De Lucia, F. Fasano, R. Oliveto, and

G. Tortora. Enhancing an Artefact Man-

agement System with Traceability Re-

covery Features. In Proceedings of 20th

IEEE International Conference on Software

Maintenance, pages 306–315, Chicago, Illinois,

USA, 2004. IEEE CS Press. 3, 22

196

REFERENCES

[32] M. Lormans and A. Van Deursen. Recon-

structing requirements coverage views

from design and test using traceability

recovery via LSI. In Proceedings of 3rd Inter-

national Workshop on Traceability in Emerg-

ing Forms of Software Engineering, pages 37–

42, Long Beach, California, USA, 2005. ACM

Press. 3, 22

[33] S. Yadla, J. Huffman Hayes, and A. Dekht-

yar. Tracing Requirements to Defect

Reports: An Application of Informa-

tion Retrieval Techniques. Innovations in

Systems and Software Engineering: A NASA

Journal, 1(2):116–124, 2005. 3, 22

[34] A. Marcus, J. I. Maletic, and A. Sergeyev.

Recovery of Traceability Links Between

Software Documentation and Source

Code. International Journal of Soft-

ware Engineering and Knowledge Engineering,

15(5):811–836, 2005. 3, 22

[35] A. De Lucia, F. Fasano, R. Oliveto, and

G. Tortora. Can Information Retrieval

Effectively Support Traceability Link

Recovery? In Proceedings of 14th IEEE In-

ternational Conference on Program Compre-

hension, pages 307–316, Athens, Greece, 2006.

IEEE CS Press. 3, 22

[36] A. De Lucia, R. Oliveto, and P. Sgueglia.

Incremental Approach and User Feed-

backs: a Silver Bullet for Traceability

Recovery. In Proceedings of 22nd IEEE Inter-

national Conference on Software Maintenance,

pages 299–309, Sheraton Society Hill, Philadel-

phia, Pennsylvania, 2006. IEEE CS Press. 3,

22

[37] J. H. Hayes, A. Dekhtyar, and S. K. Sun-

daram. Advancing Candidate Link Gen-

eration for Requirements Tracing: The

Study of Methods. IEEE Transactions on

Software Engineering, 32(1):4–19, 2006. 3, 22

[38] M. Lormans and A. van Deursen. Can

LSI help Reconstructing Requirements

Traceability in Design and Test? In Pro-

ceedings of 10th European Conference on Soft-

ware Maintenance and Reengineering, pages

45–54, Bari, Italy, 2006. IEEE CS Press. 3,

22

[39] M. Lormans, H. Gross, A. van Deursen,

R. van Solingen, and A. Stehouwer. Moni-

toring Requirements Coverage using Re-

constructed Views: An Industrial Case

Study. In Proceedings of 13th Working Con-

ference on Reverse Engineering, pages 275–

284, Benevento, Italy, 2006. IEEE CS press. 3,

22

[40] A. De Lucia, F. Fasano, R. Oliveto,

and G. Tortora. Recovering Traceabil-

ity Links in Software Artefact Man-

agement Systems using Information Re-

trieval Methods. ACM Transactions on

Software Engineering and Methodology, 16(4),

2007. 3, 22

[41] A. Abadi, M. Nisenson, and Y. Simionovici.

A Traceability Technique for Specifica-

tions. In Proceedings of 16th IEEE Interna-

tional Conference on Program Comprehension,

pages 103–112, Amsterdam, the Netherlands,

2008. IEEE CS Press. 3, 22

[42] Marco Lormans, Arie Deursen, and Hans-

Gerhard Gross. An industrial case study

in reconstructing requirements views.

Empirical Software Engineering, 13(6):727–

760, 2008. 3, 22

[43] R. Helm and Y. S. Maarek. Integrating in-

formation retrieval and domain specific

approaches for browsing and retrieval in

object-oriented class libraries. In Proceed-

ings of ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages,

and Applications, pages 47–61, Phoenix, Ari-

zona, USA, 1991. ACM Press. 3, 23

[44] A. Marcus, A. Sergeyev, V. Rajlich, and

J. I. Maletic. An Information Retrieval

Approach to Concept Location in Source

Code. In Proceedings of 11th Working Confer-

ence on Reverse Engineering, pages 214–223,

Delft, The Netherlands, 2004. IEEE CS Press.

3, 23

[45] A. Chen, E. Chou, J. Wong, A. Y. Yao,

Q. Zhang, S. Zhang, and A. Michail.

CVSSearch: searching through source

code using CVS comments. In Proceed-

ings of 17th IEEE International Conference

on Software Maintenance, pages 364–373, Flo-

rence, Italy, 2001. IEEE CS Press. 3, 23

197

REFERENCES

[46] D. Liu, A. Marcus, D. Poshyvanyk, and

V. Rajlich. Feature Location via Informa-

tion Retrieval based Filtering of a Single

Scenario Execution Trace. In Proceedings

of 22nd IEEE/ACM International Conference

on Automated Software Engineering, Atlanta,

Georgia, USA, 2007. ACM Press. 3, 23

[47] G. Antoniol, J.H. Hayes, Y.-G. Gueheneuc,

and M. di Penta. Reuse or rewrite: Com-

bining textual, static, and dynamic anal-

yses to assess the cost of keeping a sys-

tem up-to-date. In Software Maintenance,

2008. ICSM 2008. IEEE International Confer-

ence on, pages 147 –156, 2008. 3, 23

[48] Pierre F. Baldi, Cristina V. Lopes, Erik J.

Linstead, and Sushil K. Bajracharya. A

theory of aspects as latent topics. In

Proceedings of the 23rd ACM SIGPLAN con-

ference on Object-oriented programming sys-

tems languages and applications, pages 543–

562, New York, NY, USA, 2008. ACM. 3, 23

[49] Emily Hill, Lori Pollock, and K. Vijay-

Shanker. Automatically capturing source

code context of NL-queries for software

maintenance and reuse. In Proceedings of

the 31st International Conference on Software

Engineering, ICSE ’09, pages 232–242, 2009. 3,

23

[50] Brendan Cleary, Chris Exton, Jim Buck-

ley, and Michael English. An empirical

analysis of information retrieval based

concept location techniques in software

comprehension. Empirical Software Engi-

neering, 14(1):93–130, 2009. 3, 23

[51] F. Asadi, M. Di Penta, G. Antoniol, and

Y.-G. Gu andh andneuc. A Heuristic-

Based Approach to Identify Concepts in

Execution Traces. In Software Maintenance

and Reengineering (CSMR), 2010 14th Euro-

pean Conference on, pages 31 –40, 2010. 3, 23

[52] Denys Poshyvanyk, Malcom Gethers, and

Andrian Marcus. Concept Location us-

ing Formal Concept Analysis and Infor-

mation Retrieval. Transactions on Software

Engineering and Methodologies, 21(4):To ap-

pear, 2012. 3, 23

[53] G. Canfora and L. Cerulo. Impact Anal-

ysis by Mining Software and Change Re-

quest Repositories. In Proceedings of 11th

IEEE International Symposium on Software

Metrics, pages 20–29, Como, Italy, 2005. IEEE

CS Press. 3, 23

[54] Emily Hill, Lori Pollock, and K. Vijay-

Shanker. Exploring the neighborhood

with dora to expedite software mainte-

nance. In Proceedings of the twenty-second

IEEE/ACM international conference on Auto-

mated software engineering, pages 14–23, 2007.

3, 23

[55] Denys Poshyvanyk, Andrian Marcus,

Rudolf Ferenc, and Tibor Gyimóthy. Us-

ing information retrieval based coupling

measures for impact analysis. Empirical

Software Engineering, 14(1):5–32, 2009. 3, 23,

24, 29, 34, 35, 47, 58, 89, 91, 125, 157

[56] Malcom Gethers, Huzefa Kagdi, Bogdan

Dit, and Denys Poshyvanyk. An adaptive

approach to impact analysis from change

requests to source code. In Proceedings of

the 2011 26th IEEE/ACM International Con-

ference on Automated Software Engineering,

pages 540–543, 2011. 3, 23

[57] A. Marcus and J. I. Maletic. Identification

of High-Level Concept Clones in Source

Code. In Proceedings of 16th IEEE Interna-

tional Conference on Automated Software En-

gineering, pages 107–114, San Diego, Califor-

nia, USA, 2001. IEEE CS Press. 3, 23

[58] Scott Grant and James R. Cordy. Vector

space analysis of software clones. In Pro-

ceedings of International Conference on Pro-

gram Comprehension, pages 233–237, 2009. 3,

23

[59] Robert Tairas and Jeff Gray. An informa-

tion retrieval process to aid in the anal-

ysis of code clones. Empirical Software En-

gineering, 14(1):33–56, February 2009. 3, 23

[60] Andrian Marcus, Denys Poshyvanyk, and

Rudolf Ferenc. Using the Conceptual

Cohesion of Classes for Fault Prediction

in Object-Oriented Systems. IEEE Trans-

action on Software Engineering, 34(2):287–

300, 2008. 3, 8, 23, 24, 34, 51, 125, 180

198

REFERENCES

[61] Gabriele Bavota, Bogdan Dit, Rocco

Oliveto, Massimiliano Di Penta, Denys

Poshyvanyk, and Andrea De Lucia. An

Empirical Study on the Developers Per-

ception of Software Coupling. In Proceed-

ings of the 35th International Conference on

Software Engineering, ICSE 2013, page To ap-

pear., 2013. 3

[62] Jonathan Chang and David M. Blei. Hier-

archical Relational Models for Document

Networks. Annals of Applied Statistics, 2010.

4, 39, 117, 121, 148, 188

[63] William J. Brown, Raphael C. Malveau,

William H. Brown, Hays W. McCormick

III, and Thomas J. Mowbray. Anti Pat-

terns: Refactoring Software, Architectures,

and Projects in Crisis. John Wiley and Sons,

1st edition, 1998. 4, 8

[64] Martin Fowler. Refactoring Catalog.

http://refactoring.com/catalog/. 7, 12

[65] James O. Coplien and Neil B. Harrison. Or-

ganizational Patterns of Agile Software Devel-

opment. Prentice-Hall, Upper Saddle River, NJ

(2005), 1st edition, 2005. 7

[66] Wayne P. Stevens, Glenford J. Myers, and

Larry L. Constantine. Structured Design.

IBM Systems Journal, 13(2):115–139, 1974. 7

[67] Tibor Gyimóthy, Rudolf Ferenc, and

István Siket. Empirical Validation

of Object-Oriented Metrics on Open

Source Software for Fault Prediction.

IEEE Transactions on Software Engineering,

31(10):897–910, 2005. 8

[68] Yixun Liu, Denys Poshyvanyk, Rudolf Fer-

enc, Tibor Gyimóthy, and Nikos Chriso-

choides. Modeling class cohesion as mix-

tures of latent topics. In Proceedings of

25th IEEE International Conference on Soft-

ware Maintenance, pages 233–242, Edmonton,

Canada, 2009. IEEE CS Press. 8

[69] Radu Marinescu. Detection Strategies:

Metrics-Based Rules for Detecting De-

sign Flaws. In Proceedings of the 20th IEEE

International Conference on Software Mainte-

nance, pages 350–359, Washington, DC, USA,

2004. IEEE Computer Society. 9, 17

[70] Padmaja Joshi and Rushikesh K. Joshi.

Concept Analysis for Class Cohesion. In

Proceedings of the 13th European Conference

on Software Maintenance and Reengineering,

pages 237–240, Kaiserslautern, Germany, 2009.

10, 17

[71] Foutse Khomh, Stéphane Vaucher, Yann-

Gaël Guéhéneuc, and Houari Sahraoui. A

Bayesian Approach for the Detection of

Code and Design Smells. In Proceedings

of the 2009 Ninth International Conference on

Quality Software, pages 305–314, Washington,

DC, USA, 2009. IEEE Computer Society. 10

[72] Naouel Moha, Yann-Gael Gueheneuc,

Laurence Duchien, and Anne-Francoise

Le Meur. DECOR: A Method for the

Specification and Detection of Code and

Design Smells. IEEE Transactions on Soft-

ware Engineering, 36(1):20–36, January 2010.

10, 185

[73] F. Simon, F. Steinbr, and C. Lewerentz.

Metrics based refactoring. In Proceedings

of 5th European Conference on Software Main-

tenance and Reengineering, pages 30–38, Lis-

bon, Portugal, 2001. IEEE CS Press. 11, 17

[74] T. A. Wiggerts. Using Clustering Algo-

rithms in Legacy Systems Remodulariza-

tion. In Proceedings of 4th Working Confer-

ence on Reverse Engineering, page 33, Amster-

dam, The Netherlands, 1997. IEEE CS Press.

12

[75] Nicolas Anquetil and Timothy Leth-

bridge. Experiments with Clustering as

a Software Remodularization Method.

In Proceedings of 6th Working Conference on

Reverse Engineering, pages 235–255, Atlanta,

Georgia, USA, 1999. IEEE CS Press. 12, 13

[76] Brian S. Mitchell and Spiros Mancoridis.

Comparing the Decompositions Pro-

duced by Software Clustering Algo-

rithms Using Similarity Measurements.

In Proceedings of the 17th International Con-

ference on Software Maintenance, pages 744–

753, 2001. 13

[77] Jingwei Wu, Ahmed E. Hassan, and

Richard C. Holt. Comparison of Cluster-

199

REFERENCES

ing Algorithms in the Context of Soft-

ware Evolution. In Proceedings of 21st IEEE

International Conference on Software Main-

tenance, pages 525–535, Budapest, Hungary,

2005. IEEE CS Press. 13, 20, 147

[78] Onaiza Maqbool and Haroon A. Babri. Hi-

erarchical Clustering for Software Archi-

tecture Recovery. IEEE Transactions on

Software Engineering, 33(11):759–780, 2007.

13

[79] Spiros Mancoridis, Brian S. Mitchell,

C. Rorres, Yih-Farn Chen, and Emden R.

Gansner. Using Automatic Clustering

to Produce High-Level System Organi-

zations of Source Code. In Proceedings of

6th International Workshop on Program Com-

prehension, Ischia, Italy, 1998. IEEE CS Press.

13, 14, 20, 147

[80] Brian S. Mitchell and Spiros Mancoridis.

On the Automatic Modularization of

Software Systems Using the Bunch Tool.

IEEE Transactions on Software Engineering,

32(3):193–208, 2006. 13

[81] D. Doval, S. Mancoridis, and B. S.

Mitchell. Automatic Clustering of Soft-

ware Systems Using a Genetic Algo-

rithm. In Proceedings of the Software Technol-

ogy and Engineering Practice, STEP ’99, pages

73–82. IEEE Computer Society, 1999. 14

[82] Hani Abdeen, Stéphane Ducasse, Houari A.

Sahraoui, and Ilham Alloui. Automatic

Package Coupling and Cycle Minimiza-

tion. In Proceedings of the 16th Working Con-

ference on Reverse Engineering, pages 103–

112, Lille, France, 2009. IEEE CS Press. 14,

20, 75, 93, 110, 147, 161

[83] Mark Harman, Robert M. Hierons, and

Mark Proctor. A New Representation

And Crossover Operator For Search-

based Optimization Of Software Modu-

larization. In Proceedings of the Genetic and

Evolutionary Computation Conference, New

York, USA, 2002. Morgan Kaufmann Publish-

ers Inc. 14, 20, 147

[84] Olaf Seng, Markus Bauer, Matthias

Biehl, and Gert Pache. Search-based

improvement of subsystem decomposi-

tions. In Proceedings of the Genetic and

Evolutionary Computation Conference, pages

1045–1051, Washington, Columbia, USA, 2005.

ACM Press. 14, 75, 161

[85] Brian S. Mitchell. A Heuristic Search Ap-

proach to Solving the Software Clustering Prob-

lem. PhD thesis, Drexel University, Philadel-

phia, 2002. 14

[86] Kata Praditwong, Mark Harman, and

Xin Yao. Software Module Clustering

as a Multi-Objective Search Problem.

IEEE Transactions on Software Engineering,

37(2):264–282, 2011. 14

[87] Anna Corazza, Sergio Di Martino, Vale-

rio Maggio, and Giuseppe Scanniello. In-

vestigating the Use of Lexical Informa-

tion for Software System Clustering. In

Proceedings of the 14th European Conference

on Software Maintenance and Reengineering

(CSMR), pages 35–44, 2010. 15

[88] Anna Corazza, Sergio Di Martino, and

Giuseppe Scanniello. A Probabilistic

Based Approach towards Software Sys-

tem Clustering. In CSMR, pages 88–96,

2010. 15

[89] J. I. Maletic and A. Marcus. Supporting

Program Comprehension Using Seman-

tic and Structural Information. In Pro-

ceedings of 23rd International Conference on

Software Engineering, pages 103–112, Toronto,

Ontario, Canada, 2001. IEEE CS Press. 15, 91

[90] Giuseppe Scanniello, Anna D’Amico,

Carmela D’Amico, and Teodora D’Amico.

Using the Kleinberg Algorithm and

Vector Space Model for Software Sys-

tem Clustering. In Proceedings of the

18th International Conference on Program

Comprehension, pages 180–189, 2010. 15

[91] S. Deerwester, S. T. Dumais, G. W. Furnas,

T. K. Landauer, and R. Harshman. Index-

ing by Latent Semantic Analysis. Journal

of the American Society for Information Sci-

ence, 41(6):391–407, 1990. 15, 22, 33, 34, 125

[92] A. Kuhn, S. Ducasse, and T. Gı̂rba. Se-

mantic Clustering: Identifying Topics

200

REFERENCES

in Source Code. Information and Software

Technology, 49(3):230–243, 2007. 15, 72, 103

[93] Jon M. Kleinberg. Authoritative Sources

in a Hyperlinked Environment. Journal of

the ACM, 46(5):604–632, 1999. 16

[94] J. A. Hartigan. Clustering Algorithms. Wiley,

1975. 16

[95] Stéphane Ducasse, Damien Pollet, Math-

ieu Suen, Hani Abdeen, and Ilham Al-

loui. Package Surface Blueprints: Vi-

sually Supporting the Understanding of

Package Relationships. In Proceedings of

the 23rd International Conference on Software

Maintenance, pages 94–103, 2007. 16

[96] B. Du Bois, S. Demeyer, and J. Verelst.

Refactoring - improving coupling and co-

hesion of existing code. In Proceedings of

11th Working Conference on Reverse Engi-

neering, pages 144–151, Delft, the Netherlands,

2004. IEEE CS Press. 17

[97] D. C. Atkinson and T. King. Lightweight

Detection of Program Refactorings. In

Proceedings of 12th Asia-Pacific Software En-

gineering Conference, pages 663–670, Taipei,

Taiwan, 2005. IEEE CS Press. 17

[98] T. Bodhuin, G. Canfora, and L. Troiano.

SORMASA: A tool for suggesting model

refactoring actions by metrics-led genetic

algorithm. In Proceedings of 1st Workshop

on Refactoring Tools, pages 23–24, Berlin, Ger-

many, 2007. 18

[99] W. G. Griswold and D. Notkin. Auto-

mated assistance for program restructur-

ing. ACM Transactions on Software Engineer-

ing and Methodologies, 2(3):228–269, 1993. 20,

147

[100] Michele Lanza and Radu Marinescu.

Object-Oriented Metrics in Practice: Using

Software Metrics to Characterize, Evaluate,

and Improve the Design of Object-Oriented

Systems. Springer, 2006. 20, 147, 180

[101] Oscar Nierstrasz, Stéphane Ducasse, and

Serge Demeyer. Object-Oriented Reengineer-

ing Patterns. Morgan Kaufmann Publishers

Inc., 2003. 20, 147

[102] A. Abadi, R. Ettinger, and Y. A. Feldman.

Fine slicing for advanced method extrac-

tion. In 3rd Workshop on Refactoring Tools,

2009. 21

[103] E. Van Emden and L. Moonen. Java Qual-

ity Assurance by Detecting Code Smells.

In Proceedings of the Ninth Working Con-

ference on Reverse Engineering (WCRE’02),

pages 97–106, Washington, DC, USA, 2002.

IEEE Computer Society. 22

[104] Y. S. Maarek, D. M. Berry, and G. E.

Kaiser. An Information Retrieval Ap-

proach for Automatically Constructing

Software Libraries. IEEE Transactions on

Software Engineering, 17(8):800–813, 1991. 22

[105] B. Fischer. Specification-based browsing

of software component libraries. In Au-

tomated Software Engineering, 1998. Proceed-

ings. 13th IEEE International Conference on,

pages 74 –83, oct 1998. 22

[106] R. Baeza-Yates and B. Ribeiro-Neto. Mod-

ern Information Retrieval. Addison-Wesley,

1999. 22, 31, 32, 33, 95, 120, 151

[107] K. Thulasiraman and M. N. S. Swamy.

Graphs: theory and algorithms. John Wiley

& Sons, Inc., 1992. 26

[108] YS. Lee, BS. Liang, SF. Wu, and FJ. Wang.

Measuring the Coupling and Cohesion of

an Object-Oriented Program Based on

Information Flow. In Proceedings of Interna-

tional Conference on Software Quality, pages

81–90, Maribor, Slovenia, 1995. 29, 58, 89, 91,

151

[109] W. Li and S. Henry. Maintenance metrics

for the object oriented paradigm. In Proc.

of METRICS, pages 52–60, 1993. 29, 51, 125,

126, 156, 157, 180

[110] G. Gui and P. D. Scott. Coupling and co-

hesion measures for evaluation of compo-

nent reusability. In Proceedings of the 5th

International Workshop on Mining Software

Repositories, pages 18–21, Shanghai, China,

2006. ACM Press. 30, 47, 121

201

REFERENCES

[111] K. Sparck Jones. A statistical interpreta-

tion of term specificity and its applica-

tion in retrieval. Journal of Documentation,

28:11–21, 1972. 32

[112] G. Salton, A. Wong, and C. S. Yang.

A vector space model for information

retrieval. Communications of the ACM,

18(11):613–620, 1975. 33

[113] J. K. Cullum and R. A. Willoughby. Lanc-

zos Algorithms for Large Symmetric Eigen-

value Computations, 1, chapter Real rectan-

gular matrices. Birkhauser, Boston, 1998. 34

[114] David M. Blei, Andrew Y. Ng, and

Michael I. Jordan. Latent dirichlet allo-

cation. The Journal of Machine Learning Re-

search, 3:993–1022, 2003. 40

[115] Gabriele Bavota, Andrea De Lucia, An-

drian Marcus, and Rocco Oliveto. A Two-

Step Technique for Extract Class Refac-

toring. In Proceedings of 25th IEEE Interna-

tional Conference on Automated Software En-

gineering, pages 151–154, 2010. 43, 112, 121,

187

[116] Gabriele Bavota, Andrea De Lucia, An-

drian Marcus, and Rocco Oliveto. Au-

tomating Extract Class Refactoring: an

Improved Method and its Evaluation.

Empirical Software Engineering, page To ap-

pear, 2013. 43, 187

[117] Kyle Prete, Napol Rachatasumrit, Nikita

Sudan, and Miryung Kim. Template-based

reconstruction of complex refactorings.

In 26th IEEE International Conference on

Software Maintenance (ICSM 2010), Septem-

ber 12-18, 2010, pages 1–10. IEEE Computer

Society, 2010. 45, 78, 190

[118] Gabriele Bavota, Andrea De Lucia,

Andrian Marcus, and Rocco Oliveto.

Automating Extract Class Refac-

toring: an Improved Approach

and its Evaluation. Online Ap-

pendix. https://dl.dropbox.com/u/

20652688/emseAppendix.zip, 2012. 46,

53, 54, 55, 67, 70, 78

[119] Rainer Koschke, Gerardo Canfora, and

Jörg Czeranski. Revisiting the Delta IC

approach to component recovery. Sci-

ence of Computer Programming, 60(2):171–

188, 2006. 48

[120] Zhihua Wen and Vassilios Tzerpos. An Ef-

fectiveness Measure for Software Clus-

tering Algorithms. In Proceedings of the

12th IEEE International Workshop on Pro-

gram Comprehension, IWPC ’04, pages 194–

203. IEEE Computer Society, 2004. 54, 80

[121] J. Cohen. Statistical power analysis for the

behavioral sciences. Lawrence Earlbaum Asso-

ciates, 2nd edition edition, 1988. 58

[122] W. J. Conover. Practical Nonparametric

Statistics. Wiley, 3rd edition edition, 1998. 60,

65, 137, 165

[123] T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein. Introduction to Al-

gorithms, chapter 26 (Maximum Flow). MIT

Press and McGraw-Hill, 2nd edition, 2001. 60

[124] Foutse Khomh, Stéphane Vaucher, Yann-

Gaël Guéhéneuc, and Houari Sahraoui. A

Bayesian Approach for the Detection of

Code and Design Smells. In Proceedings

of the 9th International Conference on Quality

Software, pages 305–314, Hong Kong, China,

2009. IEEE CS Press. 63, 74

[125] K. J. Stewart, D. P. Darcy, and S. L.

Daniel. Opportunities and challenges ap-

plying functional data analysis to the

study of open source software evolution.

Statistical Science, 21(2):167–178, 2006. 63

[126] A. N. Oppenheim. Questionnaire Design, In-

terviewing and Attitude Measurement. Pinter

Publishers, 1992. 64, 96, 135

[127] Kata Praditwong, Mark Harman, and

Xin Yao. Software Module Clustering

as a Multi-Objective Search Problem.

IEEE Transactions on Software Engineering,

37(2):264–282, 2011. 75, 161

[128] E. Arisholm and D.I.K. Sjoberg. Evalu-

ating the effect of a delegated versus

centralized control style on the main-

tainability of object-oriented software.

IEEE Transactions on Software Engineering,

30(8):521–534, 2004. 75, 144

202

REFERENCES

[129] Gabriele Bavota, Andrea De Lucia, An-

drian Marcus, and Rocco Oliveto. Soft-

ware Re-Modularization Based on Struc-

tural and Semantic Metrics. In Pro-

ceedings of the 17th Working Conference on

Reverse Engineering, pages 195–204, Beverly,

MA, USA, 2010. IEEE CS Press. 89

[130] Gabriele Bavota, Andrea De Lucia, An-

drian Marcus, and Rocco Oliveto. Us-

ing Structural and Semantic Measures to

Improve Software Modularization. Em-

pirical Software Engineering, page To appear,

2013. 89, 188

[131] Andrea De Lucia, Rocco Oliveto, and

Luigi Vorraro. Using structural and se-

mantic metrics to improve class cohesion.

In Proceedings of 28th International Confer-

ence on Software Maintenance, pages 27–36,

Beijing, China, 2008. IEEE CS Press. 91

[132] Roberto Almeida Bittencourt and Dal-

ton Dario Serey Guerrero. Compari-

son of Graph Clustering Algorithms for

Recovering Software Architecture Mod-

ule Views. In Proceedings of the 2009 Eu-

ropean Conference on Software Maintenance

and Reengineering, pages 251–254, Washing-

ton, DC, USA, 2009. IEEE Computer Society.

92

[133] V. Basili, G. Caldiera, and D. H. Rombach.

The Goal Question Metric Paradigm. John Wi-

ley and Sons, 1994. 92

[134] Gabriele Bavota, Andrea De Lucia,

Andrian Marcus, and Rocco Oliveto.

Software Re-Modularization based

on Structural and Semantic Met-

rics. Technical report, University of Salerno,

http://www.sesa.dmi.unisa.it/TR2011 EMSE.pdf,

2011. 97, 98, 99, 113, 114, 115

[135] Andrea De Lucia, Massimiliano Di Penta,

Rocco Oliveto, Annibale Panichella,

and Sebastiano Panichella. Improving

IR-based Traceability Recovery Using

Smoothing Filters. In Proceedings of the

19th IEEE International Conference on Pro-

gram Comprehension, pages 21–30, 2011. 106

[136] R. K. Yin. Case Study Research: Design

and Methods. SAGE Publications, 3rd edition,

2003. 110, 132, 144

[137] Gabriele Bavota, Rocco Oliveto, An-

drea De Lucia, Giuliano Antoniol, and

Yann-Gaël Guéhéneuc. Playing with

refactoring: Identifying extract class op-

portunities through game theory. In Pro-

ceedings of the 26th IEEE International Con-

ference on Software Maintenance, pages 1–5,

2010. 112, 190

[138] R. Oliveto, M. Gethers, G. Bavota,

D. Poshyvanyk, and A. De Lucia. Identify-

ing Method Friendships to Remove the

Feature Envy Bad Smell. In Proceedings of

the 33rd IEEE/ACM International Conference

on Software Engineering, Hawaii, USA, 2011.

ACM Press. 117, 188

[139] Gabriele Bavota, Malcom Gethers, Rocco

Oliveto, Denys Poshyvanyk, and Andrea

De Lucia. Methodbook: Recommend-

ing Move Method Refactorings via Rela-

tional Topic Models. Transactions on Soft-

ware Engineering, page To appear, 2013. 117,

188

[140] B. Dit, L. Guerrouj, D. Poshyvanyk, and

G. Antoniol. Can Better Identifier

Splitting Techniques Help Feature Loca-

tion? In Proceedings of 19th IEEE Interna-

tional Conference on Program Comprehension,

Kingston, Canada, 2011. IEEE CS Press. 120,

151

[141] T. M. Cover and J. A. Thomas. Elements of

Information Theory. Wiley-Interscience, 1991.

123

[142] Lionel C. Briand, John W. Daly, and

Jürgen Wüst. A Unified Framework

for Cohesion Measurement in Object-

OrientedSystems. Empirical Software Engi-

neering., 3:65–117, July 1998. 125

[143] M. Gethers and D. Poshyvanyk. Using

Relational Topic Models to capture cou-

pling among classes in object-oriented

software systems. In Software Maintenance

(ICSM), 2010 IEEE International Conference

on, pages 1 –10, 2010. 133

203

REFERENCES

[144] Gabriele Bavota, Malcom Gethers, Rocco

Oliveto, Denys Poshyvanyk, and Andrea

De Lucia. Improving Software Modular-

ization via Automated Analysis of Latent

Topics and Dependencies. Transactions on

Software Engineering and Methodologies, page

To appear., 2013. 147, 188

[145] S. Eick, T. Graves, A. Karr, J. Marron,

and A. Mockus. Does code decay? As-

sessing the evidence from change man-

agement data. IEEE Transactions on Soft-

ware Engineering, 27(1):1–12, 2001. 147

[146] Edward Yourdon and Larry Constantine.

Structured Design: Foundamentals of a Dis-

cipline of Computer Program and System De-

sign. Prentice-Hall, 1979. 156, 162

[147] Roger Pressman. Software Engineer-

ing: A Practitioner’s Approach. 3rd Edition.

McGraw-Hill, 1992. 156, 162

[148] Iann Sommerville. Software Engineering. 6th

Edition. Addison-Wesley, 2001. 156, 162

[149] Gabriele Bavota, Andrea De Lucia, An-

drian Marcus, Rocco Oliveto, and Fabio

Palomba. Supporting extract class refac-

toring in Eclipse: The ARIES project. In

ICSE, pages 1419–1422, 2012. 179, 189

[150] Gabriele Bavota, Filomena Carnevale,

Andrea De Lucia, Massimiliano Di Penta,

and Rocco Oliveto. Putting the Devel-

oper in-the-Loop: An Interactive GA for

Software Re-modularization. In SSBSE,

pages 75–89, 2012. 189

[151] Gabriele Bavota, Bernardino De Carluc-

cio, Andrea De Lucia, Massimiliano Di

Penta, Rocco Oliveto, and Orazio

Strollo. When does a Refactoring

Induce Bugs? An Empirical Study. In

Proceedings of the 12th International Working

Conference on Source Code Analysis and

Manipulation (SCAM 2012), pages 104–113,

2012. 190

[152] Jacek Sliwerski, Thomas Zimmermann, and

Andreas Zeller. When do changes induce

fixes? In Proceedings of the 2005 Interna-

tional Workshop on Mining Software Reposi-

tories, MSR 2005. ACM, 2005. 190

[153] Sunghun Kim, E. James Whitehead Jr., and

Yi Zhang. Classifying Software Changes:

Clean or Buggy? IEEE Transactions

on Software Engineering, 34(2):181–196, 2008.

190

204

