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Introduction

Quantum Mechanics, together with General Relativity, is one of the best
achievement of the human mind in the last Century. From its formulation it
has passed an uncountable number of experimental tests and it has been of
fundamental importance in the comprehension of the laws of Nature.

Quantum systems can necessarily be viewed as open systems. As in
classical physics, any realistic description of a system must take into account
the coupling to an environment that strongly influences the system itself.
Since perfect isolation of a quantum system is not feasible and the complete
description of the degrees of freedom of the environment is not possible,
it is required a description that accounts for these aspects. Furthermore,
not all the degrees of freedom are of interest in order to effectively describe
the system. Hence a probabilistic approach to a quantum evolution is most
appropriate: the idea is to consider only the degrees of freedom that are
useful, thus reducing to a small set the number of variables needed to describe
the evolution of the system.

Another reason forces to consider open quantum systems. Any informa-
tion about the system can be obtained only through a measurement process
that requires a coupling of the system with the measuring apparatus. At
variance with the classical case, in the quantum instance the measuring ap-
paratus influences in a non trivial way the systems. Therefore, the notion of
open system is implicitly induced in quantum mechanics by the measurement
process.

In last years the remarkable progress of quantum technologies opened up
new perspective in the investigation of the dynamics of open systems; in this
sense, particularly relevant are the techniques which allow to control the de-
grees of freedom of the environment that influence the system of interest. Till
now the attention was focused on the methods to reduce the detrimental effect
on the quantum properties of the system-environment interaction; namely, on
the methods allowing to make the system the more isolated as possible. On
the other hand, it has been experimentally checked that in situations requir-
ing effective quantum transfer a system-environment coupling can become a
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resource: an example is provided by efficient quantum-information process-
ing , in which the present thesis is specifically framed. The question is that
a set of approximations usually exploited in describing quantum evolution
(collectively known as Markovian approximation) are too strong to carefully
manage some quantum phenomena. Therefore, in recent years a complete
review of the definition of Markovian process is in progress, due to our ever
deeper understanding of the multiple aspects of a quantum evolution.

Historically, the fundamental idea of Markovian dynamics was connected
to the integro-differential form of the equation describing the evolution which
implies that the state of the system at a given time t depends on all the pre-
vious instants of time; this has been traditionally interpreted as a ”memory”
effect, i.e. as the fact that, during the evolution, the system retains memory
of its past history. Finding the solution of the problem in this fully general
form is highly difficult; so this difficulty has led to describe the evolution
through an ordinary differential equation, the master equation in Lindblad
form, that neglects the memory aspects of the dynamics. In the framework
of this approximation the evolution is known as Markovian evolution. The
remarkable accuracy of this equation in describing various systems, above all
in quantum optics, has decreed its enormous success.

On the other hand, studying of new systems which are not well described
by the Lindblad master equation, as superconducting circuits, photonic band
gap materials [1, 2] and light harvesting processes in photosynthesis [3], has
led to a renewed interest for non-Markovian dynamics and to the develop-
ment of various mathematical techniques allowing to describe the evolution
in full generality. The scientific community has realized that it is possible to
describe dynamics incorporating memory effects even with a master equation
local in time; furthermore, the master equation in Lindblad form is not the
only equation that can describe memoryless evolutions. Consequently the
following problems arise: what do we mean when we say that the dynam-
ics is non-Markovian, and how can we characterize non-Makovianity? This
question is known as the characterization problem. Different approaches have
been proposed, which have led in some cases to inequivalent conclusions. A
logically subsequent problem is the possibility to quantify the degree of non-
Markovianity of a channel: in other words, how can we quantify the deviation
from a Markovian evolution of a given process? This is known as the quan-
tification problem. Finally, non-Markovian dynamics are really useful for
quantum technologies?

The aim of this thesis is twofold. On the one hand, the characterization
and quantification of non-Markovian content for continuous-variable quan-
tum systems; on the other hand, its possible usefulness as a resource in the
framework of Quantum Information. The attention is focused mainly on the
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class of Gaussian states and Gaussian channels; this choice is motivated by
their experimental relevance, and by the advantage to pass from the infinite-
dimensional Hilbert space to a finite-dimensional Hilbert space because, in
this case, we can exploit the finite-dimensional matrix analysis. However,
we consider also some non-Gaussian resources, which are anyway needful for
implementing universal quantum computation, an potentially more powerful
for all the quantum protocols.
The thesis is organized as follows.
The first Chapter presents a short introduction to the concept of isolated
system in Quantum Mechanics and the related concept of decoherence.
Chapter 2 contains a short review of the main formalisms describing the dy-
namics of open systems, together with the concepts of Markovian dynamics.
In Chapter 3 we describe the concepts of non-Markovian dynamics, together
with the principal approaches to characterize and quantify its properties.
In Chapter 4 we briefly review the phase-space formulation of Quantum Me-
chanics. Indeed, this is the best formalism in managing continuous variable
systems, and in particular for the description of Gaussian states and Gaus-
sian channels. We also describe the states and channels we use in this thesis
in order to highlight the new ideas that will be proposed, and the actual
approaches to non-Markovianity for Gaussian channels.
Chapter 5 and Chapter 6 contain the original part of this thesis. In Chapter
5 [4] we introduce a new measure of non-Markovianity for Gaussian channels;
the measure is based on the definition of non-Markovianity as violation of
the divisibility condition. We provide also a comparison with the equivalent
measure (the Rivas-Huelga-Plenio measure) introduced for finite-dimensional
systems, and we present some considerations about the possible range of ap-
plicability. In the same chapter we finally discuss some simple examples, i.e.
the Damping master equation and the Quantum Brownian Motion in the sec-
ular approximation, and we apply the new measure to this cases. In Chapter
6 we describe the generalization of the realistic Braunstein-Kimble Contin-
uous Variable Quantum information protocol to the case of non-Markovian
evolution [5], namely in the case in which the mode sent to Bob travels
through a non-Markovian channel. In fact, we exploit the performance of
the teleportation fidelity to quantify the detrimental effects of the environ-
ment, with the aim of contrast these effects by maximizing the fidelity with
respect to the available resources and parameters. As relevant result, we
show that a crucial role in highly improving the performance is played by
the phases. This is anyway true if one considers Gaussian resources; fur-
thermore, we study the interplay between the non-Markovianity and another
possible key feature of quantum states, the non-Gaussianity, and we show
that the combined effect of these two key features, non-Markovian channels
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and non-Gaussian resources, allows to obtain a further sensible improvement
of the teleportation fidelity.
In Chapter 7 we briefly discuss some recent proposals to measure the non-
Markovianity of a quantum evolution.
In the conclusions we sum up and comment the results, and we propose some
possible future developments.
With the aim of avoid to introduce inside the chapters cumbersome details,
we added also some technical appendices.
Finally, in concluding this introduction we stress that the improvement,
shown in the thesis, which is obtained by using non-Markovian channels was
not at all obvious ”a priori”, as not all non-Markovian evolutions influence
the state dynamics.



CHAPTER 1

Introduction to decoherence

1.1 The concept of isolated system

To study the laws of Nature, i.e. to grasp the physical law underlying the
particular aspect of a phenomenon under scrutiny, it is necessary to devise
the experiment in a “controlled environment”, i.e. in such a way to minimize
every form of disturbance on the desired aspect of the system of interest.
For example, suppose an experimenter is interested in measuring the effect
of gravity on free falling bodies. As done by Galileo [6] a possibility is to
consider a ball rolling down an inclined plane. To arrive at the “exact” laws
of motion it is then necessary to minimize all the sources of noise, primarily
the friction.

This method of investigation has proven extremely successful and fruitful
in the history of physics, leading to the idea that it is always possible to
shield our system of interest from unwanted environmental disturbances in
a sufficient manner such that to highlight the interesting properties of the
system. Consequently, even when the advent of Quantum Mechanics led to a
change of perspective in the way of looking at nature, the notion of isolated
systems remains accepted without being subjected to a thorough review. On
the other hand, in the early days of Quantum Mechanics the tremendous
success in explaining some experimental facts, as the discrete spectrum of
the hydrogen atom, was based on the model of completely isolated atom.
Furthermore the laws of Quantum Mechanics seem to apply only to the
microscopic word, in which the systems may be considered isolated to a
good approximation.

Notwithstanding these spectacular results, it soon became clear that some
consequences of the theory were non-intuitive and “spooky”, that is the in-
trinsic probabilistic nature of the theory (i.e. its non-epistemic character)
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and the macro-objectification problem. We will briefly discuss this two prob-
lems and how they forced us to completely change our way of thinking about
the concept of physical systems (we refer to the literature [7, 8] for further
discussion).

1.2 The Einstein-Podolsky-Rosen paradox and

the non-local aspect of Quantum Mechan-

ics

Despite the remarkable experimental results of Quantum Mechanics, the the-
ory was not universally accepted by the physics community, due to its unsat-
isfactory intrinsic probabilistic nature. Indeed the Copenhagen interpreta-
tion [8], according to which physical systems, before being measured, do not
have definite properties, imposed a new viewpoint about the fundamental
nature of reality, namely it required to give up the existence of an objective
physical reality in favor of the privileged point of view by the experimenter.

The debate on the epistemic/non-epistemic nature of Quantum Mechan-
ics dates to a seminal paper appeared in 1935 by Einstein, Podolsky and
Rosen [9]. Their goal was to reconcile the experimental results with the
view of the world arising from classical physics, showing that Nature is de-
terministic and that its apparent intrinsic probabilistic nature is an artifact
of the theory, due to our ignorance of some parameters; namely, Quantum
Mechanics is not a complete theory.

Following the authors line of reasoning, to show the incompleteness of
Quantum Mechanics it is necessary to introduce the following definitions:

• Element of reality : if, without disturbing the system, it is possible to
predict with certainty the value of a physical quantity, then there is
an element of reality corresponding to this quantity (the hypothesis of
realism).

• Completeness : a theory is complete if every element of reality has a
counterpart in the theory.

Furthermore special relativity imposes a constraint on an admissible physical
theory:

• Locality : Any non-local action on a given system is forbidden.

The above assumptions defines the concept of local realism. We now show
that, under this hypothesis, Quantum mechanics is not a complete theory1

1For simplicity, here we present the Bohm version of the EPR argument.
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Let us consider the singlet state of two spin 1/2 particles:

|ψ0〉 =
|↑〉 |↓〉 − |↓〉 |↑〉√

2
, (1.1)

where |↑〉 and |↓〉 represent, respectively, a particle with spin up and spin
down. Suppose now that the particles are separated and sent to two mea-
surement apparatuses. The two experimenters Alice and Bob, standing the
possibility of only local action, can take any measurement on the respective
particle; in particular they can measure the spin of their own particle along
a generic direction. Let us suppose that Alice measures the z component of
the spin of its particle; from Eq. (1.1) follows that we can infer the spin z
component of the second particle with certainty without the need to take a
measurement. Thus, according to the previous definition, the z component
of the second particle is an element of reality.

Now, since the singlet state Eq. (1.1) is invariant under rotation, we can
repeat the procedure referring to another direction (as x or y) and obtain
that the respective component of the spin of the second particle is an element
of reality. However the spin components on different axes are incompatible
observable in Quantum Mechanics, they does not commute; consequently the
theory cannot be complete, in the sense of EPR argument, since it does not
allow a prediction for all elements of reality.

We do not enter in the long debate about the various ways to resolve
the EPR paradox, such as the construction, in the sense of EPR paper, of
complete theories that contain variables corresponding to all the “elements
of reality” (the so called hidden variables theories), and whose Quantum
Mechanics represents a kind of statistical approximation [10]. It is sufficient
to say that, thanks to the theoretical formulation, due to Bell [11, 12, 13], of
a way to distinguish between any local hidden variable theory and Quantum
Mechanics2, it was possible to experimentally test the validity of the EPR
argument: the results was in agreement with Quantum Mechanics.

We are thus forced to reconsider the concept of locality. The correct way
to describe a physical system is through a non-local theory; indeed, though
the interaction remains local, the states obtained by this interaction can
be non-local : the measurement of an observable for one of the subsystems
fixes instantaneously3 the value of the correlated observable of the other
subsystem, independently of the distance between the subsystems. The two

2The reader interested to the Bell’s theorem and the other Bell type inequalities can
refer to [10].

3It can be proven that these results are not in contrast with special relativity. For a
proof see [10].
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subsystems, loosely speaking, are entangled : it no longer make sense to speak
of two individual systems, as the physical properties are at least partially
encapsulated in the non-local quantum correlations that have been created
by the interaction. Citing Schrödinger [14]:

“When two systems, of which we know the states by their respec-
tive representatives, enter into temporary physical interaction due
to known forces between them, and when after a time of mutual
influence the systems separate again, then they can no longer be
described in the same way as before, viz. by endowing each of
them with a representative of its own. I would not call that one
but rather the characteristic trait of quantum mechanics, the one
that enforces its entire departure from classical lines of thought.
By the interaction the two representatives [the quantum states]
have become entangled.”

Now the following question arises: is the entanglement a property of
quantum systems in accordance with the established idealization of isolated
systems? Indeed in the classical realm this concept is closely connected with
the property of locality.
As an example we consider a small grain of pollen immersed in a liquid.
The particle is subjected to a random motion due to the collision with the
molecules of the fluid (known as Brownian motion [15, 16]), which act as a
source of noise. Nevertheless, during the motion the system is always well
identifiable, i.e. the grain of pollen maintains all its physical properties,
so we can always identify the physical system, separating it ideally from the
surrounding particles (the environment). But in the quantum realm the same
concept of system loses meaning : the local interaction lead to entanglement
between the two subsystems, changing the nature of the objects itself and
altering them in a fundamental way.

1.3 The macro-objectification problem and the

Schrödinger’s cat paradox

The other largely debated foundation problem of Quantum Mechanics is
the macro-objectification problem: as a consequence of the linearity of the
Schrödinger equation, every macroscopic system in interaction with an en-
tangled system gets entangled as well.

Consider the following measurement scheme discussed for the first time
by Von-Neumann [17]. A quantum system S is in interaction with a measure-
ment apparatus A. Suppose that the apparatus has some indicator whose
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Figure 1.1: Schematic illustration of the Schrödinger’s cat paradox. Left : The
laws of Quantum Mechanics allow for a superposition of the states corresponding
respectively to the two distinct situations, one of which contain an alive cat, the
other one a dead cat. Right : When the observer opens the box the superposition
“collapses” onto either one of the two components. However, this begs the question
of the state of the cat before the box was opened.

value is i, represented by the state |ai〉, when the system is in the state |si〉.
If the instrument is in the initial default state |ainit〉, the effect of the mea-
surement will be to shift the state of the apparatus in the state corresponding
to the i position:

|si〉 |ainit〉 −→ |si〉 |ai〉 . (1.2)

We note that this measurement scheme is ideal, as we have tacitly assumed
that the interaction does not change the state of the system.

Now we face the key point. Consider the case in which the system is in
the following superposition of states:

|ψ〉 =
∑
i

ci |si〉 ; (1.3)

from the linearity of Schrödinger equation the system state evolves according
to: (∑

i

ci |s1〉

)
|ainit〉 −→

∑
i

ci |si〉 |ai〉 . (1.4)

The last equation shows that the state after the interaction is in general an
entangled state, i.e. it is no longer possible to distinguish between the system
and the measurement apparatus.

In describing the procedure we do not refer to the “size” of the system
(i.e. its microscopic/macroscopic nature), so the argument is still valid when
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the measurement apparatus, now in the broader sense of a system in inter-
action with the given system, is macroscopic.
A very illuminating example is the Schrödinger’s cat paradox [18] Fig. (1.1).
Imagine a cat confined to a box. In that box there is an unstable atom that
triggers an hammer to break a vial of poison, so killing the cat. The micro-
scopic system S is the decaying atom, that in general lives in a superposition
of decayed/non-decayed states:

|ψ〉 = α |decayed〉+ β |not decayed〉 , (1.5)

where α and β are time-independent coefficients, fulfilling the constraint
|α|2 + |β|2 = 1. The macroscopic apparatus A is represented by the cat
state4, in the sense that its vitality is an “indicator” of the state of the atom.
If |cinit〉 is the initial state of the cat, the measurement scheme returns:

|not decayed〉 |cinit〉 −→ |not decayed〉 |calive〉 , (1.6)

|decayed〉 |cinit〉 −→ |decayed〉 |cdead〉 . (1.7)

From Eq. (1.5), Eq (1.6) and Eq (1.7) the final atom-cat state will be:

|ψ〉 |cinit〉 −→ α |decayed〉 |cdead〉+ β |not decayed〉 |calive〉 , (1.8)

namely, it is not possible to assign a individual quantum state to the cat.
So is seems that we should observe quantum properties even at the macro-

scopic level. Why is not this the case? Indeed, when an external observer
opens the box, he does not observe the superposition but only the situation
represented by the states |calive〉 and |cdead〉 respectively with probability |β|2
and |α|2 .
A first answer can be to postulate the existence of intrinsically classical mea-
surement apparatuses not subject to the laws of quantum mechanics, i.e. to
split the word into a microscopic world that follows Quantum Mechanics,
and a macroscopic one, described by the Classical Mechanics (substantially
the Copenhagen interpretation of quantum mechanics). This working hy-
pothesis, indeed useful for practical calculation, is not satisfactory from a
conceptual point of view. First of all it is not clear what we have to consider
as “macroscopic”: how many particles a body must have to be considered
a macroscopic object? Furthermore this situation does not account for the
macroscopic systems that exhibit quantum properties, such as superconduc-
tors.

4Strictly speaking the system is represented by the hammer, the vial and the cat. Due
to the von-Neumann chain, for simplicity, we consider this state uniquely as the cat state.
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Indeed, instead of introducing the ad hoc hypothesis to distinguish be-
tween microscopic/macroscopic objects, it is reasonable that the measure-
ment procedure requires some process breaking the system/apparatus en-
tanglement. In the next paragraph we discuss a possible solution to this
problem.

1.4 Introduction to decoherence and the ap-

pearance of the classical world

In Sec. (1.2) we have introduced the most distinguishing characteristic of
Quantum Mechanics, namely the property of quantum systems to lose their
individuality and become entangled; furthermore in Sec. (1.3) we have shown
how the linearity of Quantum Mechanics allows to “transmit” this quantum
property between systems.

We now discuss qualitatively, in the particular case of the Collisional
Model, how the appearance of the classical world, a phenomenon known as
decoherence, can be explained as a consequence of these distinctive aspects
of Quantum Mechanics [7].
Consider as a system a body subject to incident light (i.e. photons), Fig. (1.2).
In the classical situation the motion of the body is only negligibly influenced,
as the amount of momentum transferred by the photons is very small; fur-
thermore the incident light is distributed isotropically, i.e. the average of the
momentum is zero.
In the Quantum realm the situation is completely different. Now the in-
teraction between the body and the incident photons causes the formation
of quantum correlation between the objects which “carry away” coherence
from the body, diminishing in this way its degree of “quantumness”; i.e. the
body is subject to decoherence. This also does not depend on the momen-
tum transferred: the body can also remain unperturbed classically. Hence
the decoherence can be thought of as a continuous monitoring process of the
system by the environment; in the next Chapter we will see effectively how
the environment performs non-demolition measurements on the system.
Hence, next to the classical process of dissipation (namely the loss of energy
from the system) the body is subject to a pure Quantum decoherence effect.

The following considerations arise immediately. In principle, if we are
sufficiently able to isolate the system of interest, we can avoid the decoher-
ence effect due to the environmental interaction. However in practice it is
impossible to shield the system completely: even in extreme conditions such
as for example deep-vacuum the density of air molecules is sufficient to cause
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Figure 1.2: The influence of the environment in the Classical and Quantum Set-
tings. Left : In the classical case, even if the system-environment interaction is
strong, the motion of the system is influenced only in a negligible way. Right :
The effect of the interaction causes the formation of an entangled object–photon
state; the coherence becomes de-localized from the object, making quantum effects
unobservable at the level of the system.

the decoherence; furthermore, the inscapable influence of some environments,
as microwave background radiation, is already sufficient to cause a fast de-
coherence. Hence, in the vast majority of cases, a realistic description of a
quantum system requires necessarily to take into account the influence of the
environment to the system evolution.
Another important point are the characteristic time-scales that rule the dy-
namics. Between two interacting systems, an energy exchange will take place
up reaching a thermal equilibrium. The characteristic time necessary to
reach the equilibrium, known as relaxation time, depends on the system-
environment interaction: the weaker the interaction, the greater the time
required to reach equilibrium. Furthermore, depending on the particular
type of interaction, it may be that the dissipation is negligible. However,
even if the interaction does not cause dissipation, it still always cause deco-
herence. It can hence be possible to have decoherence without dissipation,
but not vice versa. If both are present, theoretical and experimental studies
have shown that the characteristic time-scale of the decoherence is many or-
ders of magnitude shorter than the relaxation time-scale. Zurek [19] gave the
first estimation of the decoherence time-scale for a coherent superposition of
two different objects with mass m and spatial separation ∆x:

τR
τD
∼
(

∆x

λdB

)2

, (1.9)
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where λdB is the de Broglie wavelength of the object:

λdB =
~√

2mkBT
, (1.10)

T is the temperature of the object and kB is the Boltzmann constant. For a
macroscopic object Eq. (1.9) shows that in the vast majority of cases5 the de-
coherence time-scale is completely negligible. For example, for a massm = 1g
at room temperature T = 300K the de Broglie wavelength is λdB ≈ 10−23m;
consequently, for a macroscopic separation for ∆x = 1cm Eq. (1.9) returns
τR/τD ∼ 1040, that is the decoherence time-scale is orders of magnitude
shorter than the relaxation time-scale.

Hence the entanglement is ubiquitous especially in the macroscopic do-
main. Furthermore, except in particularly controlled environments, the deco-
herence is virtually instantaneous. This aspect shows that it is very difficult
to manipulate and exploit entanglement and other quantum properties of the
systems in such a controlled way to be used as a technology resource. Histor-
ically, this perspective paved the way to a deeper understanding of Quantum
Mechanics and of the open quantum systems dynamics.

1.5 Quantum Information science

The first scientist that highlights the possibility to use Quantum-mechanical
systems to simulate physical systems was Richard Feynman [20]; in a seminal
paper of 1982 he argued that “nature isn’t classical, dammint, and if you want
to make a simulation of nature you’d better make it quantum mechanical”.
In the same year Bienoff [21] shows that every Quantum-mechanical system
can model Turing machine, proving that a quantum computer is powerful at
least as the classical one. In the eighties, a series of paper [22, 23] showed
the power of Quantum Mechanics in processing and transmitting information;
furthermore, it was shown that a Universal Quantum Computer can do things
that the Universal Turing machine cannot do, as generate genuinely random
numbers or perform some parallel calculations in a single register.

Later, a series of discoveries [24, 25, 26, 27] aroused great expectations
from the scientific community. First of all, the definition of a model of Com-
putation in the mid-ninenties through the discovery of the sets of quantum
gates necessary for quantum computing. Furthermore, in 1984 H. Bennett

5It is important to note that, in particular controlled environment, even a macroscopic
object must be treated as quantum; an example is the Weber bar, a macroscopic alu-
minium cylinders, used for the detection of gravitational waves, maintained at cryogenic
temperature and with ∆x = 10−17cm.
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and Gilles Brassard [28] introduced a cryptographic method, the ”Quantum
Key Distribution”, that permits to encrypt messages in such a way that an
eavesdropper cannot intercept messages undetected, regardless of computa-
tional resources; and in the same year David Deutsch and Richard Jozsa [29]
discovered the first quantum algorithm that determines whether a function
f is constant over all inputs (i.e., either equal to 1 for all x or equal to 0 for
all x), or balanced (namely, equal to 1 for half of the values of x and equal to
0 for the other half), and that runs faster than its classical counterparts. So,
they showed the great technological possibility of the new field of Quantum
Information.

As a consequence of these enormous successes it soon became clear that
the development of Quantum technologies needed, on the one hand, a better
understanding of the “quantumness” of the systems that can be exploited
to obtain an advantage with respect to the classical physics; on the other
hand, an efficient protection of these quantum properties from errors caused
by channel noise, and in particular from decoherence. As discussed by Di
Vincenzo in a famous paper [30], to obtain a physical implementation of
quantum computation it is essential to have long decoherence times, sufficient
to perform Quantum operation.

Consequently, a great effort of the scientific community was directed to
contrast the decoherence through the exploitation of new techniques, such as
the Quantum error correction [31] and the decoherence-free subspaces6 [32].
In the last years a deeper understanding of the open system dynamics has
led to a change of paradigm: the system-environment interaction can be a
resource to be exploited in quantum technologies, as we shall discuss later.

Moreover, a complete description of the dynamics shows that the process
of decoherence, through the information flow between the system and the
environment, is not a one way process : during the evolution, the quantum
properties can be in part recovered through a back flow of information from
the environment to the system. Due to this aspect, theoretical and exper-
imental analysis have shown that, in some cases, the effect of the system-
environment interaction can assist quantum processes, as in some biological
systems [33, 34, 35]. Furthermore, the possibility to experimentally control
the system-environment interaction [36, 37] can pave the way to an environ-
ment assisted Quantum Information science, namely the system-environment
interaction can be a resource for the Quantum Information technologies.

Great effort from the physics community has been spent in the last years
to characterize this property, i.e. the non-Markovianity, of the dynamics.

6We do not discuss these strategies and we remand to the literature for further inves-
tigation.
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In the next Chapters we will see how this aspect is related to the memory
effect of the dynamics, i.e. the fact that the system retains memory of its
past history during the evolution, and how at present it is characterized and
quantified.





CHAPTER 2

Open systems dynamics

Before discussing in detail the concept of non-Markovianity of a quantum
evolution and its implication in Quantum Information science, it is useful
to review some basic principles and tools used for the description of open
systems dynamics. The scientific community devoted great efforts to the
study of non-Markovianity mainly in the case of finite dimensional systems,
that we discuss in this section.

2.1 Dynamics of Open Systems

Following the principles of Quantum Mechanics, an isolated quantum system
is described at a given reference time t = t0 by a vector |ψ(t0)〉 ∈ H in an
Hilbert space, and its evolution in time is determined by the Schrödinger
equation [38]:

ı~
d

dt
|ψ(t)〉 = H |ψ(t0)〉 .

The evolution generated by this equation is unitary:

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , U † (t, t0) = U−1 (t, t0) ;

in particular, when the Hamiltonian which generates the dynamics is time-
independent, the unitary evolution takes the form U(t, t0) = exp(−ıH(t −
t0)/~).

In more general situations we lack a complete control on the preparation
of the initial state of the system S, and we can associate to the system only
a mixture of possible initial states ({pi}, {|ψi〉}), i = 1, . . . , n, where pi is the
probability of the system being in the |ψi〉 state. In this instance a more
general framework is needed: the system must be described by a density

23
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operator ρS : H → H, whose spectral decomposition is given by:

ρS =
∑
i

pi |ψi〉 〈ψi| ,
∑

i

pi = 1, pi ≥ 0. (2.1)

The knowledge of the density operator is sufficient to obtain all information
about a physical system. In fact, the expectation values of a generic operator,
in particular of an observable, is given by the relation:

〈A〉 = Tr [Aρ] . (2.2)

The properties of the set of probabilies {pi} imply that ρ must be positive
and trace-preserving:

ρS ≥ 0, tr [ρS] = 1;

furthermore, when one probability is one, i.e. when pj = 1 for some index j,
the state of the system must be of necessity the vector |ψj〉, and the density
formalism is reduced to the Schrödinger vectorial description. We denote
with D(ρ) the set of the density operators.

The dynamic equation describing the time evolution of the density oper-
ator is the von Neumann equation:

d

dt
ρ (t) = − ı

~
[H (t) , ρ] , (2.3)

and even in this case the evolution is unitary:

ρ (t) = U † (t, t0) ρ (t0)U (t, t0) .

Let us suppose now that the system S under scrutiny is not isolated but
is in interaction with a second system E, the environment (Fig. (2.1)). The
most general system-environment model can be described by the following
Hamiltonian structure:

H = HS +HE +HI ,

where HS is the free Hamiltonian of the system, HS is the free Hamilto-
nian of the environment, and HI is the interaction term. The goal is to
describe the evolution of the system taking into account the mutual influ-
ence between the system and the environment. Indeed, as discussed in the
previous Chapter, in a realistic situation a quantum system is never isolated;
the complete description of all the details of the composite system may be
too complicated or uninteresting, or it may happen that the modes of E are
not accessible. However, we are really interested in effectively describing the
evolution of the system S and, from Eq. (2.2), this kind of information is
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clearly encoded in the density operator ρS; therefore, the problem is how to
obtain the detectable physical content of its evolution.

Various mathematical formulations have been introduced to describe open
quantum systems, and in the subsequent sections we will discuss the most
important techniques. Before to further proceed, we establish that, unless
otherwise stated, from now on we will choose the initial system-environment
state as a product state:

ρ(t0) = ρS(t0)⊗ ρE(t0). (2.4)

2.1.1 Dynamical map

In the previous Section we have shown that, in the case of an isolated system,
there exists an unitary operator such that the density operator at time t is
given by ρ(t) = U †ρ(0)U . For not isolated systems we want to define, by
analogy, a superoperator Φ(t, t0), known as dynamical map, such that:

ρS (t) = Φ (t, t0) ρS (t0) . (2.5)

By construction this superoperator must to map density operators into den-
sity operators and it must preserve superpositions, i.e. it must satisfy:

Φ (t, t0) ρ = ρ̃ ∈ D (H) ,

Φ (t, t0) [λρ1 + (1− λ) ρ2] = λΦ (t, t0) ρ1 + (1− λ) Φ (t, t0) ρ2;
(2.6)

for every t ≥ 0, 0 ≤ λ ≤ 1 and ρ, ρ1, ρ2 ∈ D (H). Furthermore it must as
well preserve the trace of the density operator:

Tr [Φ (t, t0) ρS (t0)] = 1. (2.7)

The first condition in Eq. (2.6) is called the positivity condition: a map is
positive if it sends positive states into positive states; however, we require a
stronger property, the complete positivity. Consider the situation in which we
extend the map in an Hilbert space H̃ of arbitrary dimensions by introducing
the extended map as the direct product of the original map with a unit matrix
of arbitrary dimension: Φ(t, t0)→ Φ(t, t0)⊗ 1. The requirement of complete
positivity means that even the combined operation is a positive map. This is
a reasonable condition from a physical point of view, because the combined
map may be viewed as a map that operates locally on the first of two spatially
separated systems, without thus influencing the second system.
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S

E

Figure 2.1: Schematic picture of an open quantum system.

ρ (0)
Unitary evolution−−−−−−−−−−→ ρ (t)yTrE

yTrE

ρS (0)
dynamical map−−−−−−−−→ ρS (t)

Figure 2.2: Commutative diagram showing the construction of the dynamical
map.
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Intuitively, since we know how to describe the isolated system made up
by the system and the environment, we can start from Eq. (2.1)

ρ (t) = U †SE (t, t0) ρ (t0)USE (t, t0) , (2.8)

and, by applying the partial trace rule, we can neglect all the degrees of
freedom which are not interesting for us; so, we obtain the density operator
which provides an effective description of the system of our interest (see Fig.
(2.2)):

ρS (t) = TrE

[
U †SE (t, t0) ρ (t0)USE (t, t0)

]
= Φ (t, t0) ρS (t0) . (2.9)

Thus, a completely positive evolution can be seen as the reduced dynamics of
some unitary evolution which acts on an extended state of the form ρS ⊗ ρE,
where ρE remains unchanged independently of ρS.

A more explicit form of the dynamical map can be obtained [38, 7].
Consider the diagonal decomposition of the initial state of the environment
ρE(t0) =

∑
i pi |Ei〉 〈Ei|, where the vectors |Ei〉 form an orthonormal basis in

the Hilbert space of the environment and
∑

i pi = 1. If one considers the hy-
pothesis that the Hamiltonian which describes the system-plus-environment
evolution is time-independent, using Eq. (2.9) and the form of the initial state
Eq. (2.4) it is straightforward to obtain for the density ρS the expression:

ρS(t) =
∑
ij

pi 〈Ej|U(t)|Ei〉 ρS(t0) 〈Ei|U †(t)|Ej〉 .

By introducing the Kraus operators Wij :=
√
pi 〈Ej|U(t)|Ei〉, the last equa-

tion can be recast in the form:

ρS(t) =
∑
ij

WijρS(t0)W †
ij. (2.10)

It is customary to rewrite the Kraus operators with only one index in the form
Wk :=

√
pi 〈Ejk |U(t)|Eik〉; consequently the density matrix of the system can

be expressed as

ρS(t) =
∑
k

WkρS(t0)W †
k . (2.11)

Furthermore, since the global evolution is unitary, the Kraus operators satisfy
the completeness constraint: ∑

k

WkW
†
k = IS. (2.12)
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Eq. (2.11) and Eq. (2.12) show that the Kraus operators are the generators
of the dynamical map defined in Eq. (2.9); they describe the effect of the
environment as a sequence of (generally non-unitary) transformations of the
density matrix of the system generated by the operators Wk.

We now want to motivate, in a more formal way, the description of the
decoherence process in terms of environmental monitoring.
We denote by M a projective measurement on the environment, whose pro-
jectors are Pα = |α〉 〈α|, with P †α = Pα = P 2

α, and where the set {α} is
made up by the eigenvalues of M . Let us suppose that the measurement
process returns the outcome α; from the postulates of Quantum Mechanics,
the resulting density matrix will be:

ρ
(α)
S (t) =

TrE [(I ⊗ Pα)ρ(t)(I ⊗ Pα)]

Pr(α|ρs(t))
, (2.13)

where Pr(α|ρs(t)) = Tr(PαρE(t)) is the probability of obtaining the outcome
α. By exploiting the diagonal decomposition of the initial state of the envi-
ronment, Eq. (2.8) and Eq. (2.4), the last equation becomes:

ρ
(α)
S (t) =

∑
k

Mα,kρS(t)M †
α,k

Pr(α|ρs(t))
, (2.14)

where we introduced the measurement operator:

Mα,k :=
√
pk 〈α|U(t)|Ek〉 ,

∑
α,k

Mα,kM
†
α,k = IS. (2.15)

As we are not interested in the result of the measurement, the system will
be described by a density operator obtained through a weighted sum over all
the possible states ρ

(α)
S (t), with weights given by respective probabilities:

ρS(t) =
∑
α

Pr(α|ρs(t))ρ(α)
S (t) =

∑
α,k

Mα,kρS(t)M †
α,k. (2.16)

This expression is formally analogous to Eq. (2.10); furthermore, in the de-
coherence process we do not read out the environment, i.e. we do not inquire
about the result of the indirect measurement. Hence the decoherence process
can be viewed as a monitoring of the system carried out by the environment.

2.1.2 Master equation

In the previous section we have illustrated how, starting from an unitary
evolution, the open system dynamics can be described by Eq. (2.9). This
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approach inevitably requires the knowledge of the dynamics of the global
system {S, E} before we can obtain, through the trace operation, the reduced
description for the system S. This task is not practically achievable for
systems which are reasonably more complex. On the other hand, as we have
already noticed in the previous paragraph, the dynamics of the environment
or of the global system is not important. The really important aspect is the
influence of the environment on the system of interest.

We will now introduce another way to describe the decoherence dynamics
in terms of so-called master equations. Such equations directly yield the
time evolution of the reduced density matrix ρS(t), because they allow us to
calculate ρS(t) directly from Eq. (2.9):

ρS(t) = Φ (t, t0) ρS (t0) .

Various methods have been developed to obtain a valid master equation,
e.g. influence functional methods [39], projectors operators [40, 41], time
convolutionless techniques [42, 43, 44]. As the system evolution may be quite
complicated, the equation is, in general, an integro-differential equation. A
quite general example is the Nakajima-Zwanzing equation [42, 43, 44], whose
only significant assumption is the initial factorizing condition. Since we are
only interested in the system dynamics, we can define a superoperator P
that projects on the relevant part of the dynamics, in the sense that, having
the total density matrix ρ(t), it allows to reconstruct the density operator
ρS of the system under scrutiny: Pρ(t) = TrE[ρ(t)] ⊗ ρE = ρS ⊗ ρE. It can
be proven that the master equation describing the evolution of the projected
state is:

∂

∂t
Pρ =

∫ t

t0

ds K (t, s)Pρ (s) ,

where K(t, s), called the convolution kernel, depends on the total Hamilto-
nan and on the state of the environment. As this is an integro-differential
equation, the solution at time t depends on the history of the state evolution.

This dependence of the state of the system from the whole dynamical
evolution can be intuitively interpreted saying that the system ”remember”
its past history. At the end of the previous Chapter, we have briefly pointed
how this memory effect, the non-Markovianity of the evolution, is connected
with a back-flow of information from the environment to the system, how
this is necessary to describe some physical systems, and how this property
can be useful for the Quantum Information science. Despite its importance,
the difficulties to face this problem in full generality has led historically to
neglect this memory effect by exploiting a series of approximations. The
resulting evolution is called Markovian.
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In the next Section we will describe this situation both from an historical
perspective and from the modern point of view. For our aim, its importance
lies in the fact that the various characterizations of the more general non-
Markovian evolution will be defined as the violation of the properties of the
Markovian one.

2.2 Markovian dynamics

The mathematical difficulties deriving by the solution in full generality of the
problem of open system dynamics have led to consider a series of approxima-
tions that, roughly speaking, consist in completely neglecting any memory
effect (Markovian approximation). The system is now described by a simple
ODE (see next Section), and the relatively simple structure of the master
equation obtained in this approximation, added to the greatly accurate way
in the description of systems in quantum optics, has decreed its tremendous
success. Nowadays the definition of Markovian dynamic is under discussion:
indeed, if we want to assume the memoryless dynamics as the primary def-
inition, the usual approach with the master equation in the Lindblad form,
Eq. (2.19), is not the only possible.

We will briefly review the various approaches. For a deeper analysis we
refer to the literature [45, 46].

2.2.1 Markovianity through semigroup evolution

Historically the absence of memory effects is associated with the semigroup
property of the dynamical map [38]:

Φ (t1, 0) Φ (t2, 0) = Φ (t1 + t2, 0) . (2.17)

Under proper mathematical conditions, there exists a time-independent gen-
erator L such that:

Φ (t, t0) = eL(t−t0).

It is possible to construct the most general form of the generator by starting
only from this condition. It is however possible to obtain a second, more
physical, derivation that starts from the von-Neumann equation (2.3). Even
if we do not present in detail this construction, it is interesting to discuss the
various approximations needed to obtain the form of the generator, because
this allows us to have a reference with which the non-Markovian property of
the master equations that we present in Chapter 4 can be compared.

Generally, it is possible to identify three time scales of interest that de-
scribe the evolution. The first is the characteristic time scale of the system
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τS that, for an harmonic oscillator, is the inverse of the frequency, τS ' 1/ω0;
another one is the correlation time scale of the environment τE, that repre-
sents the characteristic time of the decay correlation function of the reservoir;
and, finally, it can be also defined the relaxation time scale τR, that repre-
sents the characteristic time along which the system varies appreciably. The
usually assumed approximations, listed below, introduce some hypotheses on
these characteristic time scales.

• Born approximation. As we showed in Sec. (2.1) the most general quan-
tum evolution takes into account a system-environment initial state of
generic form. We assume instead that the system-environment initial
state is of the factorized form ρ(t0) = ρS(t0)⊗ρE(t0). This feature is not
a specific characteristic of Markovian evolution: all the non-Markovian
evolutions we will consider satisfy this property. Furthermore we as-
sume that the coupling of the system with the environment is weak.
Under these hypotheses the system dynamics does not affect the envi-
ronment so that, for every instant of time, ρ(t) ' ρS(t)⊗ ρE, where ρE
is the stationary state of the environment.

• Markov approximation. Even after the decoupling (ρ(t) = ρS(t) ⊗ ρE)
the state of the system at a given time depends by all previous instants
of time. Furthermore, in general the dynamics depends on the initial
state of the system. The Markov approximation imposes a condition on
the time scales of the system-environment dynamics, given by τE � τR.
In this way the dynamics becomes ”local in time”, i.e. the state of the
system at time t depends only by this instant of time.

• Secular approximation. Even if, by assuming the previous two approxi-
mations, the dynamics becomes local in time, the dynamics is not yet a
semigroup dynamics. The secular approximation consists in assuming
the condition τS � τR that allows to neglect the rapidly oscillating
terms appearing in the master equation.

Under these hypotheses it is possible to show that the dynamics is a
semigroup dynamics and that the generator has the form [47, 48, 49]:

Lρ = −ı [Hρ] +
∑
k

γk

[
VkρV

†
k −

1

2

{
V †k Vk, ρ

}]
, (2.18)

where {γk ≥ 0} are the decay rates and Vk are the Lindblad operators.
The corresponding master equation:

dρ

dt
= Lρ, (2.19)
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with L given by Eq. (2.18), is called Markovian. The absence of mem-
ory effects is associated with the form local in time of the master equation
Eq. (2.19). This equation will be useful as a reference dynamics in the study
of non-Markovianity.

2.2.2 Markovanity through divisibility condition

Due to the semigroup property of the dynamical map, Eq. (2.17), the master
equation Eq. (2.19) describes a memoryless evolution. Nevertheless, it is pos-
sible to obtain an evolution without memory even when the condition (2.17)
is not satisfied.
Consider the following master equation local in time:

d

dt
ρS(t) = K(t)ρ(t), (2.20)

where K(t) is the time-dependent generator. With the help of the chrono-
logical time-ordering operator T it is possible to define the following family
of Completely Positive and Trace Preserving (CPTP) maps:

Φ(t2, t1) = T exp

[∫ t2

t1

dt′K(t′)

]
.

From this definition it is easy to show that this dynamical map satisfies the
following property:

Φ (t3, t1) = Φ (t3, t2) Φ (t2, t1) , ∀ t3 ≥ t2 ≥ t1. (2.21)

Eq. (2.21) expresses the divisibility property ; indeed the possibility to sub-
divide the dynamics in two separated evolutions is a clear signature of a
memoryless dynamics.
It is important to remark that the condition (2.21) is more general than
the semigroup property, Eq. (2.17), to which it reduces when Φ(t2, t1) =
Φ(t2 − t1).

The definition expressed by Eq. (2.21) can be justified in terms of the
analogue classical concept. Consider a classical stochastic process, i.e. a
family of random variables {X(t), t ∈ I ⊂ R} that take values on a finite
set denoted by X . It is by definition a Markovian process [50, 51] if and only
if the probability that the random variable X takes the value xn at time tn
depends only on the value xn−1 that it assumes at the previous instant of
time tn−1

P (xn, tn|xn−1, tn−1, . . . , x0.t0) = P (xn, tn|xn−1, tn−1) , ∀tn ≥ . . . ≥ t0;
(2.22)
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this condition represents exactly the concept of memoryless evolution. A
direct consequence of this property is the Chapman-Kolmogorov equation,
obtained directly from the definition of conditional probability: for every
t3 > t2 > t1:

P (x3, t3|x1, t1) =
∑
x2∈X

P(x3, t3|x2, t2)P (x2, t2|x1, t1) . (2.23)

Consider now the stochastic evolution of one-point probabilities P(x, t).
The matrix which connects the probability at different instants of time t0
and t1

P (x1, t1) =
∑
x0∈X

T (x1, t1|x0, t0) P(x0, t0)

must satisfy the following conditions:∑
x1∈X

T (x1, t1|x0, t0) = 1,

T (x1, t1|x0, t0) ≥ 0, x1,x0 ∈ X ,
(2.24)

as directly follows from the relations
∑

x1∈X P(x1, t1) = 1 and P(x1, t1) ≥ 0.
Matrices satisfying these properties are called stochastic matrices.

If t0 is the initial instant of time of the stochastic process, then P(x2, t2) =∑
x0∈X P(x2, t2|x0, t0) P(x0, t0); as a consequence we have T (x2, t2|x0, t0) =

P(x2, t2|x0, t0). Furthermore, for a Markovian process even the intermediate
evolution is defined as T (x2, t2|x1, t1) = P(x2, t2|x1, t1), as follows from the
definition (2.22); finally, using Eq. (2.23) it is straightforward to obtain the
following further condition:

T (x3, t3|x1, t1) =
∑
x2∈X

T (x3, t3|x2, t2)T (x2, t2|x1, t1) . (2.25)

A process which satisfies Eq. (2.24) and Eq. (2.25) is called divisible. Thus
Markovianity condition and divisibility condition are equivalent.

We now return to the Quantum case. The problem of defining a Quantum
Markovian process as in Eq. (2.22) is more subtle: at variance with the
classical process, sample a Quantum system means make a measurement
that disturbs the state of the system and affects the subsequent outcomes.
Consequently, the quantity P (xn, tn|xn−1, tn−1, . . . , x0.t0) depends also on the
measurement process.

However, we can focus only on the one-time probabilities P(x, t) that
do not depend on the measurement process; as a consequence, even in the
Quantum case the Markovian character of the dynamics is equivalent to the
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concept of divisibility, and a very nice property is that divisibility may be
defined in the quantum case without referring to measurement processes.

Let us now consider the spectral decomposition (2.1) of the density matrix
at a reference time t0:

ρ (t0) =
∑
x

p (x, t0) |Ψ (x)〉 〈Ψ (x)| ,

where the set of eigenvalues p(x, t0) forms a classical probability distribution.
If the evolution preserves the spectral decomposition:

ρ(t0)→ ρ (t) =
∑
x

p (x, t) |Ψ (x)〉 〈Ψ (x)| , (2.26)

we can consider this process as a classical stochastic process for the x variable;
in particular we consider this process divisible if and only if p(x, t) satisfies
the divisibility condition, namely if the transition matrices defined by

p (x1, t1) =
∑
x0∈X

T (x1, t1|x0, t0) p (x0, t0) (2.27)

satisfy Eq. (2.24) and Eq. (2.25). As illustrated in Sec (2.1) the quantum
evolution can be described by a linear dynamical map ρ(t1) = Φ(t1, t0)ρ(t0)
that preserves the positivity of the state and the trace; furthermore, applying
the map to a density operator, from Eq. (2.27) we obtain:

Φ (t1, t0) ρ (t0) =
∑

x1,x0∈X

T (x1, t1|x0, t0) p (x0, t0) |ψ (x1)〉 〈ψ (x1)| .

From the conditions Eq. (2.24) and Eq. (2.25) we finally obtain the compo-
sition law (2.21).

We are now able to formulate the definition of a positive divisible (P-
divisible) process: a quantum evolution is P-divisible if, ∀t1, t2, Φ(t2, t1) is
a positive map and satisfies Eq. (2.21). On the other hand, as described in
Sec (2.2.2), the P-divisibility is not sufficient to preserve the positivity of the
density matrices if the selected system is in contact with an ancilla system;
consequently we add a more strong property, the Complete Positivity (CP)
condition, so arriving at the following definition of quantum Markovianity:
a quantum evolution is Markovian [52] if it is described by a trace-preserving
complete positive map satisfying the divisibility condition Eq. (2.21).

Finally, we want to characterize the divisibility property in terms of
master equation. For quantum Markovian processes for which the limit
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K(t) := limε→o+(Φ(t + ε, t) − 1)/ε is well defined, it is possible to charac-
terize the Markovian evolution through the form of the generator (Gorini-
Kossakowski-Sudarshan-Lindblad theorem): the operator K(t) is a generator
of a Markovian dynamic if and only if it can be written in the form:

K (t) ρ = −ı [H (t) ρ (t)] + (2.28)∑
k

γk (t)

[
Vk (t) ρ (t)V †k (t)− 1

2

{
V †k (t)Vk (t) , ρ (t)

}]
,

where H(t) is the Hamiltonian operator and γ(t) ≥ 0 for every k and t. This
is the most general form of the generator appearing in Eq. (2.20) [53, 54].

From now on we assume the divisibility property as definition of Marko-
vian evolution.

2.2.3 Markovianity through the contractive property

In the previous paragraph we have shown how the concept of memoryless
dynamics is connected with the divisibility property. In addition to the def-
inition, a divisible process possesses another remarkable feature that will be
useful in the characterization of the dynamics [55, 56]. Furthermore this
property allows to connect the abstract concept of divisibility with the more
intuitive concept of the information flow between the system and the envi-
ronment.

As before, we start by discussing the case of a classical stochastic process.
The following theorem allows to characterize divisible processes: a stochastic
process is divisible if and only if, for every vector v(x), x ∈ X and ∀ t1, t2:∥∥∥∥∥∑

x1∈X

T (x2, t2|x1, t1) v (x1)

∥∥∥∥∥
1

≤ ‖v (x2) ‖1, t1 ≤ t2, (2.29)

where ‖v(x)‖1 =
∑

x |v(x)| is the L1-norm.
Now let us suppose that we want to discriminate among the distributions

between p1(x) and p2(x) that the random variable X can follow. It is possible
to show that the minimum (averaged) probability of wrong answer is given
by:

Pfail =
1− ‖w (x) ‖1

2
,

where w(x) = qp1(x) − (1 − q)p2(x), and q is the probability that X is dis-
tributed according to p1(x). From the theorem it follows that Pmin(fail), for
a Markovian process, increases monotonically: the best chance to distinguish
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between the two probabilities is in the first stage of the dynamics. The sys-
tem losses information continuously and ”does not remember” its previous
state. This behaviour hence expresses in a more intuitive way the concept of
memoryless evolution.

For a quantum mechanical process the situation is similar. Suppose that
we want to distinguish between two states ρ1, ρ2 ∈ H in which the system
can be with probability q and 1− q, respectively. We want to determine, by
performing a measurement, which density matrix describes the state of the
system. It is possible to show that, by choosing appropriately the measure-
ment, the minimum total error is:

Pmin (fail) =
1− ‖∆‖1

2
, (2.30)

where ‖∆‖1 = Tr
√

∆†∆ is the trace norm and ∆ = qρ1 − (1 − q)ρ2 is the
Helstrom matrix [57].

Now it is possible to show [47, 58] that a trace-preserving linear map is
positive if and only if

‖Φ (∆) ‖1 ≤ ‖∆‖1 (2.31)

for any Hermitian operator ∆ acting on H. On the other hand, as shown
in Sec. (2.1.1), the positivity condition of a dynamical map is too weak
to represent a physical evolution, so we need to impose the more stringent
requirement of complete positivity. It is possible to obtain the following
fundamental result: A quantum evolution Φ(t2, t1), t2 ≥ t1 is Markovian if
and only if:

‖ (Φ (t2, t1)⊗ 1) (∆̃)‖1 ≤ ‖∆̃‖1, ∀ t2 ≥ t1, (2.32)

for every Hermitian operator ∆̃ acting on H⊗H. This relation is the equiv-
alent of Eq. (2.29) for a quantum dynamical map.

Therefore, as follows from this theorem and from Eq. (2.30), and in par-
allel with the classical case, the signature of a Markovian evolution is the
monotonic increase of the Pmin(fail) quantity: the information about the
state of the system is degrading during the evolution, namely we must make
the measurement as soon as possible. The same result applies even if we make
a measurement including an ancillary system, as follows from the imposed
condition of complete positivity of the map.

Finally we note that, in the scientific literature, a particular case of this
condition has been proposed by Breuer, Laine, Piilo (BLP definition) [55,
59, 60] as a definition of Markovianity. The contractive property, Eq. (2.32),
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clearly implies Eq. (2.31); choosing ∆ = 1
2
(ρ1 − ρ2), we obtain:

‖Φ (t2, t0) (∆) ‖1 ≤ ‖Φ (t1, t0) (∆) ‖1,⇔ (2.33)

‖ρ1 (t2)− ρ2 (t2) ‖1 ≤ ‖ρ1 (t1)− ρ2 (t1) ‖1, ∀ t2 ≥ t1.

Thus, if the evolution is Markovian the distance between two generic states
is monotonically decreasing. However the reverse implication does not hold:
since we have relaxed the CP hypothesis, there are dynamics which are com-
patible with Eq. (2.33), but not with Eq. (2.32). We will discuss in more
detail this definition in Sec. (3.2.1).





CHAPTER 3

Measures of non-Markovianity

In this Chapter we present the common approaches to detect and quantify the
non-Markovian character of a quantum evolution. Indeed, as we have already
characterized a Markovian dynamics, the usual approach to define a non-
Markovian evolution is based on a ”negative” definition: a non-Markovian
dynamics is a dynamics that violates the condition of Markovianity. Conse-
quently it depends on the specific definition of Markovianity that is chosen.
Indeed if we assume the semigroup property as the fundamental property,
as it was historically been done, we consider as non-Markovian even some
dynamics that are memoryless, and hence Markovian, in the sense of sections
(2.2.2), and (2.2.3). On the other hand, there are also some evolutions which
are apparently non-Markovian, but which anyway can be re-expressed in the
local form of Eq. (2.28) with positive decay rates for every instant of time.

In Sec. (2.2.2) we have shown how the intuitive concept of memoryless
evolution is connected with the divisibility property. Consequently, we as-
sume the violation of divisibility as the definition of non-Markovian evolution.
In addition to this quantity we can resort even to the contractive property
in the form of trace distance between states (the BLP definition) illustrated
in Sec. (2.2.3) and in Fig. (3.1.1). Nevertheless there are non-Markovian
evolutions which are not detected by this approach; in this case it is only
a sufficient condition. As a consequence we can define two types of quanti-
ties: genuine measure of non-Markovianity that are based on the divisibility
condition and witnesses that are based on the contractive property. These
last quantities even if providing only sufficient conditions, have a more clear
physical meaning and are more simply experimentally implemented.

In the remaining part of the chapter we discuss the principal techniques
to detect and quantify non-Markovianity.

39
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Figure 3.1: Schematic representation of the geometric measure of non-
Markovianity. The quantity N geo

t [Φ (t, t0)] measures, at each instant of time t, the
distance between the given map Φ (t, t0) and the non-convex set M of Markovian
maps. For a given interval of time the measure is the maximum of N geo

t [Φ (t, t0)].

3.1 Measures of Non-Markovianity

In this section we describe the more relevant measures of non-Markovianity
introduced in literature. It is important to note that, following an approach
that is usual in Quantum Information Science, it is possible to define through
a geometric approach an intuitive measure (i.e. a necessary and sufficient
condition for the non-Markovianity of a given map) that it is not based on a
particular property of the map (see Fig. (3.1)). At a given instant of time t
we define the punctual non-Markovianity through the distance between the
given channel and the set of Markovian channels:

N geo
t [Φ (t, t0)] := min

ΦM∈M
D
(
Φ (t, t0) ,ΦM (t, t0)

)
, (3.1)

whereM is the set of Markovian channels andD is an appropriate normalized
measure of distance. As a consequence of Eq. (3.1), for a given interval of
time I the geometric measure of non-Markovianity can be defined as the
maximum value of the punctual non-Markovianity in that interval:

DIGNM := max
t∈I
N geo
t [Φ (t, t0)] . (3.2)

As the value of the distance in Eq. (3.1) is confined between 0 and 1, and
since it is 0 if and only if the channel is Markovian, the definition provided
by Eq. (3.2) is a well defined measure of non-Markovianity.

Despite the conceptually clear meaning of this measure, it presents an
important drawback: it is mostly very hard to compute in practice because
of the involved optimization process. It has been shown that the set of
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Markovian maps is not convex [61], and so the problem becomes intractable
when the dimension of the system grows. Furthermore, from a computational
point of view, deciding if a given channel is Markovian is a very hard problem
in the sense of the complexity theory [62].
A better approach then would be to directly assume as starting point the
violation of the divisibility property that characterizes a Markovian evolution.

3.1.1 Measure based on the Helstrom matrix

In section (2.2.3) the contractive property of a Markovian evolution allows us
to define in mathematical terms the intuitive concept of flow of information.
There is in fact a continuous flow of information from the system to the envi-
ronment; as a consequence, the minimum-error probability Pmin(fail), used to
distinguish between two initial states, is a monotonically increasing function
of the time, implying that the states become less and less distinguishable as
time passes.
Consider now the situation in which, for some instant of time t and for ε > 0,
we have ‖∆(t + ε), ‖1 > ‖∆(t)‖1, where ∆ is the Helstrom matrix defined
in Sec. (2.2.3); i.e., we have that the probability to distinguish whether the
system was in state ρ1 or in state ρ2 is higher at t+ ε than it was at the time
t. Roughly speaking, this can be interpreted as a backflow of information
from the environment to the system. Furthermore, we have also to consider
the possible presence of an ancillary state A; consequently, from Eq. (2.32)
we have ‖∆̃(t+ ε), ‖1 > ‖∆̃(t)‖1, where ∆̃ = qρ1A− (1−q)ρ2A is the enlarged
Helstrom matrix. Therefore, the quantity

σ̃(∆̃, t) :=
d‖∆̃ (t) ‖1

dt
= lim

ε→0+

‖∆̃ (t+ ε) ‖1 − ‖∆̃ (t) ‖1

ε
(3.3)

encodes this increment of information: σ̃(∆̃, t) is positive if and only if the
evolution is non-Markovian.
However, the quantity (3.3) is not a characteristic of the channel, as it de-
pends on the chosen initial states. In order to obtain a state-independent
definition it is hence necessary to maximize over the initial Helstrom matrix
(i.e. over ρ1A, ρ2A and the bias q) and, finally, it is necessary to add every
increment of information. We thus get:

N I
H := max

∆̃

∫
t∈I,σ̃>0

dt σ̃(∆̃, t). (3.4)

Due to the ”if and only if condition” expressed by Eq. (2.32), the quantity
Eq. (3.4) is a well defined measure of non-Markovianity: it is 0 only for
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Figure 3.2: In the case of Markovian dynamics the evolution of ‖∆(t)‖1 decreases
monotonically from its initial value t0 (blue line). When the dynamics is non-
Markovian there exist revivals at some instants of time (red line).

Markovian channels. This measure so defined, as for the geometric approach,
has the main drawback of the optimization process that makes the measure
rather impractical.

3.1.2 Rivas-Huelga-Plenio measure

The approach proposed by Rivas, Huelga, Plenio (RHP) [63] is based directly
on the divisibility property of the dynamical map.
Consider a generic evolution from a reference time t0 to another instant
of time t2. The divisibility condition, Eq. (2.21), expresses the possibility,
for every t0 < t1 < t2, to split the evolution in terms of other two valid
dynamical maps which are CPTP (see Fig. (3.3)). Indeed, as the evolution
is memoryless, the description of the dynamics is independent of the initial
instant of time: starting from t1 is equivalent to start from t0.
At variance, if the evolution has memory, we cannot choose arbitrarily the
starting point, but we must start necessarily from t0. Stated in another way,
the intermediate dynamical map Φ(t1, t2) that describe the dynamics from
t1 to t2 is not a valid dynamical map.

Hence we can construct a criterion to verify the non-Markovianity of a
given evolution checking the properties of the intermediate map.
Under the hypothesis that the dynamical map Φ(t1, t0) is invertible, starting
from Eq. (2.21) we can express this evolution in terms of a backward evolution
from t1 to t0 and a forward evolution from t0 to t2 (see Fig. (3.4)):

Φ (t2, t1) = Φ (t2, t0) Φ−1 (t1, t0) , t2 ≥ t1 ≥ t0. (3.5)

For a non-Markovian evolution, Eq. (3.5) is not a CPTP map. In order to
justify this statement we start once again from the classical case.
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Figure 3.3: Schematic representation of the divisibility property. In the case of
Markovian (divisible) evolution the dynamics can be split in another two valid
dynamical maps (blue arrow). If the dynamics is non-Markovian the intermediate
map does not exists (red dashed arrow).

Figure 3.4: Schematic representation of the construction of the intermediate map.

In Sec. (2.2.2) we have shown that for a Markovian process the interme-
diate evolution is defined as T (x2, t2|x1, t1) = P(x2, t2|x1, t1). In general this
relation is not valid for t1 > t0: P(x2, t2|x1, t1) is not well defined, as depends
on the previous instant of time: P(x2, t2|x1, t1;x0, t0) 6= P(x2, t2|x1, t1;x′0, t0)
for x0 6= x′0. Nevertheless, if P(x1, t1|x0, t0) is invertible, as the evolution
from t1 to t2 must be the composition of a backward evolution from t1 to t0
and of a forward evolution from t1 to t2, we have:

T (x2, t2|x1, t1) =
∑
xo∈X

T (x2, t2|x0, t0)T (x0, t0|x1, t1) =∑
xo∈X

P (x2, t2|x0, t0) P−1 (x0, t0|x1, t1) .
(3.6)

although it is divisible, the intermediate map, Eq. (3.6), is not positive
semidefinite, i.e. does not satisfy the second condition in Eq. (2.24), thus
highlighting the non-Markovian character of the evolution. Eq. (3.5) is noth-
ing more than the quantum equivalent of the Eq. (3.6).

Hence, for a non-Markovian dynamics there must be some t1 such that
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Φ(t2, t1) is not CP. To quantify the degree of non-Markovianity of a dynamical
map we can then measure how the intermediate dynamics depart from the
complete positivity condition.
We can resort to the Choi-Jamolkowski (CJ) isomorphism [64, 65]. Starting
from the map Φ(t2, t1), we can construct the CJ matrix:

[Φ (t2, t1)⊗ (1)] (|Ψ〉 〈Ψ|) , (3.7)

where |Ψ〉 = 1√
d

∑d−1
n=0 |n〉 〈n| is the maximally entangled state. Then we

can check the CP condition of the map through the Choi theorem: the map
Φ(t2, t1) is CP if and only if the corresponding matrix, Eq. (3.7), is positive
semidefinite.

A good way to quantify the CP violation is through the trace norm: in
fact, since the map is trace preserving, we have

‖ [Φ (t2, t1)⊗ 1] (|Ψ〉 〈Ψ|) ‖1 =

{
1 if Φ(t2, t1) is CP
> 1 otherwise

,

and consequently the function [63]

g (t) := lim
ε→0+

‖ [Φ (t2, t1)⊗ 1 ()] (|Ψ〉 〈Ψ|) ‖1 − 1

ε
(3.8)

is greater than zero if and only if the evolution is non-Markovian. Finally,
the total amount of non-Markovianity in an interval t ∈ I will be given by:

N I
RHP :=

∫
I

g(t)dt.

It is important to note that, for some t1, the map Φ(t1, t0) may be not in-
vertible, but the singularity can be removed; a possible way is to compute
the inverse of 1η + Φ(t1, t0) (which always exists), taking at the end of com-
putation the limit η → 0+.

This measure has the great advantage of not requiring optimization pro-
cedures, though it is less intuitive if compared with some other approaches
to non-Markovianity as the BLP witness (see Sec. (3.2.1)).

The divisibility condition will be our starting point to define a measure
of non-Markovianity for the class of Gaussian channels.

3.1.3 Hall-Cresser-Lee-Andersson measure

Finally we want to present another measure that it is based directly on
the decay rates appearing in the generator, Eq. (2.28), of the master equa-
tion (2.20) [66]. This is not a serious drawback, as it is possible to show that
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for finite dimensional systems it is always possible to pass from a dynamical
map description of the dynamics to a quantum master equation and vice
versa, even if the problem is computationally hard [62].

For a finite N -dimensional system we start from the the Lindblad gener-
ator:

d

dt
L (t) ρ = −ı [H (t) ρ (t)] +

+
N∑

k,l=1

γkl (t)

[
Vk (t) ρ (t)W †

l (t)− 1

2

{
W †
l (t)Vk (t) , ρ (t)

}]
. (3.9)

From sec. (2.2.2) we know that for differential evolutions the Markovian/non-
Markovian nature of the process depends on the sign of the decay rates
coefficients. But the master equation Eq. (3.9) may be written in many
ways; as a consequence it seems that it is not possible to base a definition
of non-Markovianity directly on the form of the generator, unless a unique
form of the equation exists.

Hall, Cresser, Li and Andersson [66] proved that such a canonical form
exists. The first step is to rewrite the generator of the master equation in
a basis {Gj}N

2−1
j=0 which is orthonormal with respect to the Hilbert-Schmidt

product Tr(G†mGn) = δmn. As the obtained matrix of the decay rates is
Hermitian, it can be diagonalized via some unitary operation; furthermore,
as the eigenvalues are independent of the chosen basis, the obtained form is
unique up to degeneracy. The final resulting canonical form of the generator
is Eq. (2.28), where the decay coefficients are now the canonical decay rates.

Through this result and Eq. (2.28) of Markovian dynamics, it is then
possible to quantify the non-Markovianity of a given evolution directly by
the negativity of the decay rates.
The functions:

fj (t) := max {−γj (t) , 0} , j = 1, . . . , N2 − 1

are greater than zero if and only if the coefficients are negative, i.e. if the
channel is non-Markovian. Consequently the quantity:

N I
γ :=

∫
I

f (t) dt,

where f(t) =
∑N2−1

j=1 fj(t), is a good measure of non Markovianity. It is
possible to show that this measure is equivalent to the RHP measure: f(t) =
(N/2)g(t), where g(t) is defined in Eq. (3.8). This is not surprising, as both
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are necessary and sufficient conditions and, for every dynamical map, it is
possible to construct the corresponding generator.

We discuss briefly this measure in Chapter 4 in connection with the infi-
nite dimensional case and its difference with the finite-dimensional case.

3.2 Non-Markovian witnesses

In this Section we describe some of the different ways proposed in literature
to detect non-Markovianity via witnesses. A witness is a quantity that is
zero when the dynamics is Markovian; however it provides only a sufficient
condition because it can be zero even when the dynamics is non-Markovian.
We do not discuss all the proposed witnesses1, but we limit ourselves to
present the fundamental idea and the most used witnesses. In general they
can be classified according to their monotonic behaviour under completely
positive maps or under local completely positive maps.

3.2.1 Witnesses monotonic under completely positive
maps

These witnesses are based on the behaviour of certain quantities under com-
pletely positive maps. A quantity F (ρ1, ρ2) is contractive under CP map if
and only if

F (ρ1(t), ρ2(t)) ≤ F (ρ1, ρ2),

where ρi(t) = Φ(t, t0)ρ, i = 1, 2. As a consequence the quantity

σ (ρ1, ρ2, t) :=
dF (ρ1 (t) , ρ2 (t))

dt

is certainly greater than zero when the contractive property is violated, i.e.
when the dynamics is non-Markovian. The two examples we present in this
section are based on this idea.

• Breuer-Laine-Piilo (BLP) witness [55, 59]. This witness is based on
the contractive property of the trace distance under CPTP maps. In
fact, in Sec. (2.2.3) we have described how the non-Matkovianity is
linked to the intuitive idea of information flow from the environment
to the system (Eq. (2.33)): an increasing of the distance between any
two initial states is a signature of non-Markovian evolution.

1The interesting reader can be found a more in depth discussion in [45] and reference
therein.
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As a consequence, the quantity

NBLP := max
ρ1(t0),ρ2(t0)

∫
σ>0

dt σ (ρ1(t), ρ2(t), t) ,

where F (ρ1(t), ρ2(t)) = D1(ρ1(t), ρ2(t)) = (1/2)‖ρ1(t) − ρ2(t)‖1 is the
trace distance between ρ1(t) and ρ2(t), is a non-Markovianity quanti-
fier because, if it is greater than zero, the evolution is non-Markovian.
The maximization over all the possible initial pairs {ρ1(t0), ρ2(t0)} is
required in order to obtain a state-independent quantity, as it can hap-
pen that there are two particular initial states for which the distance
is a monotonic decreasing function.

• Quantum relative entropies. Another quantity that is monotone under
CPTP map is the relative entropy between two quantum states [67],
defined as

S (ρ1‖ρ2) := Tr (ρ1 log ρ1)− Tr (ρ1 log ρ2) .

Despite the fact that it is not symmetric, S(ρ1‖ρ2) 6= S(ρ2‖ρ1), nor
satisfies the triangle inequality, it fulfills the properties S(ρ1‖ρ2) ≥ 0,
and S(ρ1‖ρ2) = 0 if and only if ρ1 = ρ2. Consequently, it is a good
quantity to define a non-Markovian witness. The same considerations
as in the previous case can be applied.

This approach has the undoubted advantage of a clear physical interpre-
tation in terms of the backflow of information from the environment to the
system; furthermore it is more easily accessible from the experiment. For ex-
ample, the BLP measure is used in the experiments to test non-Markovianity;
therefore it is extensively used in the scientific literature. Despite these re-
markable aspects, this method suffer of a serious drawback: the optimization
over the initial states that it is often impracticable.

3.2.2 Witnesses monotonic under local completely pos-
itive maps

All these witnesses are correlation measures between the system S under
study and an ancillary system A, which do not increase under local operations
of the form Φ⊗ 1A. We present two examples:

• Entanglement. In the first chapter we have briefly discussed the prop-
erty that quantum systems have to lose their individuality and be-
come entangled. Furthermore an alternative characterization of the



48

entanglement is possible from the point of view of the resource theory:
the entanglement are those correlations among quantum systems that
cannot be generated by local operations and classical communication
(LOCC) [68, 69]. Every entanglement measure2 must fulfill some con-
ditions: in particular, it cannot increase under (LOCC). Consequently,
as local operations of the form Φ ⊗ 1, where Φ is a CP map, are par-
ticular cases of LOCC, then the entanglement measure cannot increase
when the system evolves according to the dynamical map Φ⊗ 1.

Hence, in order to characterize the evolution it is possible to study
the evolution of the system S coupled with an ancilla A: ρSA(t) =
[Φ(t, t0)⊗1](ρSA(t0)). We consider the case in which, the S+A system
is initially in the maximally entangled state ρSA(0) = |Φ〉 〈Φ|, with
|Φ〉 = (1/

√
d)
∑d−1

n=0 |n〉 |n〉.
The quantity:

I(E) := ∆E +

∫ t1

t0

∣∣∣∣dE[ρSA(t)]

dt

∣∣∣∣ dt,
where ∆E := E[ρSA(t1)] − E[ρSA(t0)]], is different from zero only if
Φ(t, t0) is non-Markovian in the interval (t0, t1) [63].

• Quantum mutual information. The quantum mutual information be-
tween two given systems is a measure of the total amount of correlation
(classical and quantum).
It is defined as:

I (ρSA) = S (ρS) + S (ρA)− S (ρSA) ,

where S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy, ρSA is the
system-plus-ancilla state, and ρS,A = TrA,S(ρSA).

Expressing this definition in terms of the relative entropy as I(ρSA) =
S(ρSA‖ρS ⊗ ρA), it is possible to show that:

I [(Φ⊗ 1) ρSA] ≤ S (ρSA‖ρS ⊗ ρA) = I (ρSA) .

Hence, the quantum mutual information is monotonic under local CPTP
maps, and thus it can be used to study non Markovianity [70].

The main drawback of these approaches is that they provide only sufficient
conditions: there are non-Markovian evolution compatible with a monotonic
decreasing of these quantities.

2The same argument applies to the more general case of entanglement monotone, i.e.
entanglement quantifiers that do not coincide with the entropy of entanglement for pure
states.



CHAPTER 4

Quantum Mechanics in phase space: an

overview

Before facing the central problem, i.e. the characterization and quantifica-
tion of non-Markovianity in Continuous Variable (CV) quantum systems, it
is necessary to “setting the stage”. In this chapter we present a brief review
of the phase space formulation of Quantum Mechanics [71, 72], aiming at
introducing the necessary concepts and tools for subsequent chapters. Par-
ticular attention is dedicated to the case of Gaussian State and Gaussian
Channels [73, 74, 75, 76] because of the central role they have in the cur-
rent theoretical and experimental scenario, and because of their extensive
use throughout the manuscript. However, also some especially interesting
non-Gaussian states are introduced.

4.1 Bosonic systems and symplectic transfor-

mations

Let us consider the system of N quantized radiation modes of the electro-
magnetic field represented by N bosonic modes. These modes live in the
Hilbert space H⊗N = ⊗Ni=1Hi that is the tensor product of the Hilbert spaces
associated to each of the modes; to the N modes are associated the bosonic
field operators {ak, a†k}, k = 1, ..., N satisfying the commutation relations

[ak, a
†
l ] = δkl.

The system is usually described even in terms of another pair of field
operators, the quadrature field operators {qk, pk}Nk=1, defined as:

qk =
1√
2

(ak + a†k), pk =
1√
2ı

(ak − a†k);

49
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these operators satisfy the canonical commutation relations1 (CCR) [qk, pl] =
ıδkl which are easily derivable from the commutator relations of the bosonic
modes.

A convenient way to deal with the calculations is to introduce the vectorial
operator R = (q1, p1, · · · , qN , pN)ᵀ. With this notation the CCR are rewritten
as:

[Rk, Rl] = ıΩkl, Ω =
N⊕
k=1

ω, ω =

(
0 1
−1 0

)
,

where Ω is the symplectic form.
Now we may ask: what are the transformations of the canonical variables

that preserve the CCR? Stated more formally, let us consider a transforma-
tion R′k = fk(R1, . . . , RN), k = 1, . . . , N ; what are the conditions on the
transformation ensuring that [R′k, R

′
l] = ıΩkl? We focus the attention on

affine transformations which assume the form:

R′ = FR + d, (4.1)

where F is a 2N × 2N matrix that represents a rotation in phase space, and
d is a displacement of the quadrature operator in phase space. By using the
commutation relations it can be proven that:

[R′k, R
′
l] = ıΩkl ⇐⇒ FΩF† = Ω. (4.2)

A transformation that satisfies Eq. (4.2) is called symplectic and the matrix
F is called symplectic matrix. By exploiting the expression of the symplectic
form and the condition expressed by Eq. (4.2), it can be easily proved that
the F matrices form a group, the symplectic group Sp(2N,R). Together with
the displacements they form the inhomogeneous symplectic group Isp(2N,R).

In what follows we deal exclusively with quantum operations in Hilbert
space that correspond to symplectic affine transformation in phase space.
For a more detailed discussion see Ref. [77, 78, 79] for the case of the real
symplectic group in quantum mechanics, and Ref. [80] for the single mode
case.

4.2 Phase-space representation of Continuous

Variable quantum states

As discussed in Sec. (2.1), all the information about the physical system
of interest are contained in its quantum state represented by the positive,

1From now on, for ease of notation, we set ~ = 1, unless otherwise stated.
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trace-one density operator ρ : H⊗N → H⊗N ; we denote the set of the density
operators with D(H⊗N). When a density operator satisfies the additional
property ρ2 = ρ (i.e. it is a projector), the state is termed pure and ρ is
represented in terms of the corresponding vector state |φ〉 ∈ H⊗N as ρ =
|φ〉 〈φ|.

An equivalent description of quantum systems can be obtained in terms
of quasi-probability distribution in phase space, as we now move to describe.

First we introduce the displacement or Weyl operator:

D (α) =
N⊗
k=1

D (αk) , D (αk) = eαka
†
k−α

∗
kak , (4.3)

where α = (α1, . . . , αN)ᵀ and αk ∈ C, k = 1, . . . , N . Every operator O can
be expressed in terms of Eq. (4.3) as:

O =

∫
CN

dαN

πN
Tr [OD (α)]D (α)† , (4.4)

i.e. the operators Eq. (4.3) form a complete set. In the particular case O = ρ
the last equation establishes a one-to-one correspondence between the density
operator and the characteristic function, given by:

χ (α) = χ [ρ] (α) = Tr [ρD (α)] . (4.5)

Equivalently, the equation establishes a one-to-one correspondence between
the density operator and the Wigner quasi-probability distribution that is
defined as the Fourier transform of the characteristic function:

W (ξ) =

∫
CN

dα2N

πN
χ (α) eα

†ξ+ξ†α.

Henceforth we will use exclusively the characteristic function, that will be
useful in Chapter 6 when we will describe the continuous-variable quantum
teleportation protocol.

The phase space representation of the density operator allows to obtain in
a straightforward way all the statistical moments < (a†k)

paql >S by exploiting
the formula:

< (a†k)
paql >S= (−1)q

∂p+q

∂αpk∂α
q∗
l

χ(α)

∣∣∣∣
α=0

, (4.6)

where < (a†k)
paql >S are the symmetrically ordered moments of mode opera-

tors.
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From Eq. (4.6) in particular it is possible to obtain the first moment,
called the displacement vector or the mean value:

R̄ := 〈R〉 = Tr [ρR] , (4.7)

and the second moment, called the covariance matrix σ:

σkl := [σ]kl =
1

2
〈{∆Rk,∆Rl}〉 , (4.8)

where ∆Rl = Rl − 〈Rl〉 and {, } is the anticommutator. The covariance
matrix, Eq. (4.8), is a 2N × 2N real and symmetric matrix by construc-
tion. Using the definition of Eq. (4.8) and the commutation relations Eq.
(4.2), it can be immediately shown that uncertainty relations impose on the
covariance matrix the constraint:

σ +
ı

2
Ω ≥ 0, (4.9)

that imply the positivity condition σ > 0.
The first and second moments play a central role in the description of

quantum systems in phase space; in particular, they are sufficient to charac-
terize completely the state of a system if this state is described by a Gaussian
characteristic function (Gaussian states). As we will see in the next section,
the vacuum state of quantum electrodynamics is itself a Gaussian state; fur-
thermore all states which are commonly produced in the laboratories are
Gaussian, since the current technology allows to easily implement quantum
evolutions described by Hamiltonians at most quadratic in the field opera-
tors, that have the property to preserve in time the Gaussian character of an
initial Gaussian state.

4.3 Gaussian states

The relevant class of Gaussian states plays a predominant role in Quantum
Information science. A state ρ is called Gaussian if its characteristic function
has a Gaussian form:

χ (α) = exp

(
−1

2
αᵀσα+ ıαᵀR̄

)
.

The particular shape of the characteristic function allows to characterize the
state of the system by the knowledge only of the first and of the second
moments (Eqs. (4.7) and Eq. (4.8)).
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It is possible to set a general theory for the N -modes Gaussian states.
The most general form for these states is:

ρ = UρthU † ρth =
N⊗
k=1

ρth
k , (4.10)

where ρth
k is the one mode thermal state2 and U is a Gaussian unitary (i.e. re-

versible) transformation U−1 = U † that sends Gaussian states into Gaussian
states.

Now the following question arises: what is the most general form of a
Gaussian unitary transformation? Let us consider the following general form
of a bilinear Hamiltonian:

H = a†G(1) + a†G(2)a + a†G(3)a† + h.c., (4.11)

where a := (a1, . . . , aN)ᵀ, a† := (a†1, . . . , a
†
N)ᵀ, G(1) ∈ CN , G(2) and G(3) are

complex N × N matrices. This Hamiltonian generates unitary transforma-
tions U = exp(−ıH) that, according to the rule ρ → UρU †, preserves the
Gaussian property, i.e. transforms Gaussian states into Gaussian states. In
terms of the quadrature operators this unitary transformation corresponds
to an affine map of the form given in Eq. (4.1) with the constraining con-
dition expressed by Eq. (4.2). Clearly, also the eigenvalues of the quadra-
ture operators transform according to the same affine transformation3, i.e.
(F,d) : R → FR + d. Consequently each Gaussian unitary transformation
is a transformation generated by a bilinear Hamiltonian whose general form
is described in Eq. (4.11). In phase space a Gaussian unitary transformation
corresponds to an affine symplectic transformation (F,d). In particular it is
possible to decompose every U as U(F,d) = D(d)U(F), where U(F) is the
canonical unitary transformation corresponding to the linear map R→ FR,
and D(d) = eıR

ᵀΩd is the Weyl operator of Eq. (4.3) and corresponds to the
phase space translation R→ R + d.

Hence, each Gaussian state is obtained starting from a thermal state and
applying the appropriate Gaussian unitary transformation. Moreover, by
applying the corresponding affine map of Eq. (4.1) to the definitions in Eqs.
(4.7) and (4.8), it follows that the action of U(F,d) on the first and second
moments is given by:

R̄→ FR̄ + d, σ → FσFᵀ. (4.12)

2By definition a thermal state is a bosonic state that maximize the von Neumann
entropy S := −Tr(ρ log(ρ)) at fixed energy.

3For ease of notation we indicate in the same way the vectorial operator R and the
corresponding vector formed by the eigenvalues, because the difference will be made clear
by the context.
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Since each Gaussian state is completely characterized from the knowledge of
these moments, a convenient way to obtain a generic Gaussian state is to
start from the first and second moments of the thermal state, and to apply
the affine map that corresponds to the unitary transformation.

For our purposes it is sufficient to consider only the cases N = 1 and
N = 2, i. e. one-mode and two-mode Gaussian states. Furthermore, we
introduce only the Gaussian states which play a major role in the CV Quan-
tum Information theory and which will be used in the manuscript. For a
more exhaustive discussion, we refer to the excellent reviews [71, 73].

4.3.1 One-mode Gaussian states

In the case of only one mode (N = 1) the Hamiltonian of Eq. (4.11) reduces
to H = G(1)a†+G(2)a†a+G(3)a†a†+h.c., and the decomposition (4.10) reads:

ρ = D (α)S (ζ) ρth (n̄)S (ζ)†D (α)† ,

where ρth(n̄) is the thermal state with n̄ (≥ 0) mean number of photons in
the bosonic mode, D(α) is the one-dimensional Weyl operator of Eq. (4.3)
generated by the linear terms of the Hamiltonian (H = G(1)a† + h.c.) and
S (ζ) = exp( ξ

2
(a†)2 − ξ∗

2
a2) is the one-mode squeezing operator generated by

the Hamiltonian terms H = G(3)a†a† + h.c. .
We now introduce the more relevant Gaussian states which will be ex-

ploited in the thesis.

Vacuum state

The simplest and most important Gaussian state is the state with zero pho-
tons (n̄ = 0), obtained from Eq. (4.3.1) putting θ = ζ = α = 0, i.e., the
vacuum state ρ = |0〉 〈0|. The vacuum state minimizes the Heisenberg un-
certainty principle, and is also defined as the eigenstate of the annihilation
operator with zero eigenvalue (a |0〉 = 0); its covariance matrix is propor-
tional to the identity matrix, i.e. σ = 1

2
I.

Coherent state

Coherent states are defined as the eigenstates of the annihilation operator:
a |α〉 = α |α〉, α ∈ C. They are generated by displacing the vacuum state:
|α〉 = D(α) |0〉. Their covariance matrix coincides with that of the vacuum
state, and the vector of the mean values is R̄ = dα, where dα = (q, p)ᵀ,
and q and p are, respectively, the real part and complex part of α. Also the
coherent states minimize the Heisenberg uncertainty principle, with the two
quadratures constrained to be equal.
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Squeezed state

Finally, the squeezed states are obtained by applying the one-mode squeezing
operator to the vacuum state: |ζ〉 = S(ζ) |0〉, ζ ∈ C. The corresponding
covariance matrix (for Im(ζ) = 0) is given by:

σ (r) =
1

2

(
e−2r 0

0 e−2r

)
.

These states define a further class of states which minimize the Heisenberg
uncertainy principle but, at variance with the coherent states, now the vari-
ance of one quadrature is ”squeezed” below the quantum shot noise, i.e.
below the corresponding value of the vacuum state, while the variance of the
other quadrature is ”anti-squeezed” and placed above this value.

4.3.2 Two-mode Gaussian states

The most general form of two mode Gaussian states is given by Eq. (4.10)
for N = 2. The general form of the covariance matrix is expressed in block
form by the equation

σ =

(
A C
Cᵀ B

)
,

where A = Aᵀ, B = Bᵀ and C are 2× 2 real matrices.

An important class of two-mode Gaussian states has a covariance matrix
of the form:

σ =

(
aI C
C bI

)
,

where C = diag(c1, c2) and a, b, c1, c2 ∈ R. In this case the physical con-
straints required from the Heisenberg principle, Eq. (4.9), read σ > 0,
detσ ≥ 1

2
and ∆ ≤ 1

2
+ 2 detσ, with ∆ = det A + det B + 2 det C.

Among the two-mode Gaussian states we consider two subclasses of states.

Two-mode squeezed thermal state

The first subclass we consider is the two-mode squeezed thermal state:

ρ = S2(ζ) ρν S
†
2(ζ),

where ρν = ρth1 ⊗ ρth2 is the two-mode thermal state and where S2(ζ) =

exp
(
ζa†1a

†
2 − ζ∗a1a2

)
is the two-mode squeezing operator generated by the
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Hamiltonian contribution of the form H = G(3)a†1a
†
2 +h.c. . The correspond-

ing covariance matrix is:

σ =
1

2

(
AI2 CR
CR BI2

)
, (4.13)

with:

A = cosh(2r) + 2n̄1 cosh2(r) + 2n̄2 sinh2(r),

B = cosh(2r) + 2n̄1 sinh2(r) + 2n̄2 cosh2(r),

C = (1 + n̄1 + n̄2) sinh(2r),

(4.14)

R =

(
cos(φ) sin(φ)
sin(φ) − cos(φ)

)
, (4.15)

where I2 is the 2× 2 identity matrix and where n̄1 and n̄2 are the number of
thermal photons respectively in the first and in the second mode.

Twin Beam states

The second subclass is made up by the so called Twin Beam States (TWBS)
which are obtained from the two-mode squeezed thermal state when n̄1 =
n̄2 = 0, leading to:

A = B = cosh(2r), C = sinh(2r).

As TWBS are entangled, we will consider these states when we generalize
the continuous variable quantum teleportation protocol in presence of a noisy
environment.

In the next section we will introduce also some classes of non-Gaussian
states. The Gaussian states described in the present section and the non-
Gaussian states introduced in the next section will be exploited in Chapter 6
as teleportation resources in the framework of realistic quantum teleportation
protocol.

4.4 Non-Gaussian states

Although the class of Gaussian states is of high relevance, exploitation of
non-Gaussian resources is not avoidable in order to realize universal quan-
tum computation [81]; furthermore, since various non-classical properties
are minimized by Gaussian states [82], non-Gaussian resources can provide
a potentially relevant improvement of performance in all the quantum infor-
mation protocols [83, 84, 85, 86], and more specifically when an interplay
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between the non-Gaussian character of the states and the non-Markovianity
of the channel is considered. It is also to be remarked that experimental
implementations of non-Gaussian states have been already realized or pro-
posed [87, 88, 89]. Therefore, in this section we introduce two classes of
entangled resources: the two-mode squeezed-Bell (SB) states |ψ〉SB [90], and
the two-mode squeezed-cat (SC) states |ψ〉SC [91, 92], whose expressions are
given, respectively, by

|ψ〉SB = S12(ζ){cos δ|0, 0〉+ eiθ sin δ|1, 1〉}, (4.16)

|ψ〉SC = NSCS12(ζ){cos δ|0, 0〉+ eiθ sin δ|γ, γ〉}, (4.17)

where S12(ζ) is the two-mode squeezing operator, ζ = reiφ, |m,n〉 ≡ |m〉1 ⊗
|n〉2 is the two-mode Fock state, |γ, γ〉 ≡ |γ〉1⊗|γ〉2 is a symmetric two-mode
coherent state with complex amplitude γ = |γ|eiϕ, and NSC is the normal-
ization factor. The presence of tunable parameters, as δ, θ, will be very
important in Chapter 6 in order to optimize the performance of the contin-
uous variable quantum teleportation protocol. In SB states the parameters
δ, θ rule the non-Gaussian character of the states, allowing a transition from
the Gaussian Twin Beam (TB) to the fully non-Gaussian squeezed number
states, passing through intermediate states which include photon-added (PA)
squeezed states and photon-subtracted (PS) squeezed states.

4.5 Gaussian channels

As described in Sec. (2.1), every quantum operation is represented by a
linear map, Eq. (2.5), that has to be completely positive, Eqs. (2.6), and
trace-decreasing; moreover, an operation Φ : ρ→ Φ(ρ) is a quantum channel
if the map is trace-preserving, i.e. if Tr[Φ(ρ)] = 1 (Eq. (2.7)).

On the same line of reasoning adopted for the classification of Gaussian
states we may ask: what is the general form of a channel that preserves the
Gaussian property of the input state?

Indeed, for a generic N -mode bosonic channel, a useful way to represent
the linear transformation Φ : ρ→ Φ(ρ) is through Eq. (2.2):

Φ = TrE

[
U (ρ⊗ |Φ〉 〈Φ|E)U †

]
, (4.18)

where ρ is a N -mode bosonic state and |Φ〉E is the ancillary N -mode state
associated with the environment; it can be shown [93] that Eq. (4.18) is
unique up to partial isometries, so one can always choose |Φ〉E ≡ |0〉E, the
multimode vacuum state.
In the particular case of Gaussian bosonic channels [94, 95, 96, 97] the unitary
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U is Gaussian and the environment is composed by NE ≤ 2N modes [95, 96].
It is possible to show that the action of a N -mode Gaussian channel on a
generic Gaussian state ρ in terms of first and second moments is expressed
by:

R̄→ XR̄ + d, σ → XσXᵀ + Y, (4.19)

where d ∈ R2N is a displacement vector and X and Y = Yᵀ are real 2N×2N
matrices. Clearly, not all the (X,Y) matrices describe allowable physical
transformations: indeed the state after the evolution must be a physical
state, i.e. the covariance matrix of the input state after the evolution must
satisfy the uncertainty relation Eq. (4.9). It can be shown that the matrix
that defines the channel must satisfy the complete positivity condition [98]:

Y +
ı

2
Ω− ı

2
XΩXᵀ ≥ 0, (4.20)

where Ω is the symplectic form.
The matrices (X,Y) have a clear physical significance [97]: the first repre-
sents an amplification or attenuation and rotation in phase space, the second
can be regarded as a quantum or classical noise term. From Eq. (4.20)
it follows that Y ≥ 0; furthermore, if Y = 0 the same condition reduces
to XΩXᵀ = Ω, implying that the matrix X is an element of the symplec-
tic group Sp(2N,R). Thus the subset of Gaussian channels with Y = 0
corresponds to the unitary (reversible) transformations already discussed in
Sec (4.3).

Clearly the concatenation of two Gaussian channels is another Gaussian
channel, as follow directly from the definition; furthermore for (X,Y) =
(1, 0) the covariance matrix does not change. Consequently the set of Gaus-
sian channels forms a semigroup. It can be shown that the semigroup product
is given by:

(X1,Y1) · (X2,Y2) = (X1X2,Y1 + X1Y2X
ᵀ
1) . (4.21)

The characterization of Gaussian channels and of their semigroup struc-
ture is a rich and active field of research; in particular, at moment a complete
characterization of infinitesimal divisible quantum channels is still lacking.
We remand to Ref. [97] for a deeper discussion.

4.5.1 Gaussian master equation

As illustrated in Sec. (2.1.2) another way to describe the evolution of a quan-
tum system is through the master equation approach. In the case of Gaussian
channels this description is less general: not every Gaussian channel admits
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a generator, i.e. not all Gaussian channels can be described by a master
equation [97]. On the other hand, when a master equation exists, from its
solution it is straightforward to obtain the form of the corresponding (X,Y)
matrices. Indeed it is possible to convert the master equation into a differen-
tial equation in phase space for the characteristic function representing the
state of the system. Every master equation (2.20):

d

dt
ρ(t) = K(t)ρ(t),

where K is a superoperator quadratic in terms of the ladder operators, be-
comes a linear partial differential equation in the canonical variables for the
characteristic function.

For Gaussian channels the solution of the corresponding PDE is given by:

χ (R)→ χ (X(t)R) e−
1
2
RᵀY(t)R,

as it can be also derived from the corresponding evolution, in the Heisenberg
picture, of the Weyl operator, Eq. (4.3), expressed in terms of Cartesian
coordinates:

D (R)→ D (X(t)R) e−
1
2
RᵀY(t)R.

4.6 Examples of Gaussian quantum channels

In this section we describe the channels we consider hereafter: in detail we
focus on two paradigmatic master equations, the Damping master equation
and the Quantum Brownian Motion.

4.6.1 Damping master equation

The Damping master equation [99]:

d

dt
ρ (t) = α

γ (t)

2

[
2aρa† −

{
a†aρ

}]
, (4.22)

where a, a† are the ladder operators, α is the coupling constant and γ(t) is
the time-dependent decay rate, is a phenomenological generalization of the
corresponding Markovian equation, Eq. (2.19), allowing the decay rate to be
time-dependent. It is the simplest arena to test criteria of non-Markovianity
because in this case we only have a single field mode and one time-dependent
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decay parameter. From Eq. (4.22) the (X,Y) matrices defining the channel
are found to be:

X (t, 0) = e−
Γ(t)

2 1 , (4.23)

Y (t, 0) =
[
1− e−Γ(t)

] 1
2
, (4.24)

where Γ(t) = 2α
∫ t

0
γ(s)ds.

4.6.2 Quantum Brownian Motion

The model consists of an harmonic oscillator in interaction with an envi-
ronment made up of independent harmonic oscillators [100, 101, 102]. The
Hamiltonian of the total system is:

H = HS +HE +HI +HR,

where HS and HE are the free Hamiltonians respectively of the system and
the environment:

HS =
p2

2M
+

1

2
Mω2

0q
2,

HE =
∑
n

(
p2
n

2mn

+
1

2
mnω

2
nq

2
n

)
,

(4.25)

the term HI represents the system-environment coupling, and the term HR

represents a normalization factor that allows to cancel the non-physical change
of the free energies of the mode of the system (ω0 → ω0 + δω0).

Various models of interaction can be considered: for our purposes we
consider the following coupling forms:

H(RWA)
I = α

∑
n

kn
(
ab†n + a†bn

)
, (4.26)

HI = −αq
∑
n

knqn, (4.27)

where a, a† and bn, b†n are the ladder operators, respectively, of the oscillator
representing the system and of the k-th bath mode, kn denote the interaction
strengths and α is a coupling constant. We don’t describe in detail the two
models corresponding to the different coupling forms; we make use of the
first interaction (the rotating wave coupling that contains only the terms
conserving the number of excitation of the total system) in the discussion of
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the measure of non-Markovianity defined in the next Chapter, and we will
observe the effect of the second, more complete interaction (the position-
position coupling) on the fidelity of teleportation in Chapter 6.

The equation that describes the harmonic particle dynamics in the case of
position-position coupling, under the assumption of factorized initial condi-
tion and the assumption of the environment in a thermal state at temperature
T is the Hu-Paz-Zhang equation:

d

dt
ρS =

1

ı~
[HS, ρS] + ır (t)

[
q2, ρS

]
− ıγ (t) [q, {p, ρS}]

−∆ (t) [q, [q, ρS]] + Π (t) [q, [p, ρS]] .
(4.28)

The first term is the unitary evolution, while the remaining terms represent
the system-bath interaction. The coefficient r(t) is called the normalization
term as it represents a change in the free-oscillator frequency. The coeffi-
cient γ(t) is the damping coefficient. Finally, the coefficients ∆(t) and Π(t)
are, respectively, the normal and the anomalous diffusion coefficients. The
form of the coefficients depends strictly on the properties of the environment
through the spectral density J(ω), that encapsulate the physical properties
of the environment, namely is a measure of the coupling strength between
the system and the environment. For weak coupling (α� 1), at the second
order in α the coefficients read:

∆ (t) = α2

∫ t

0

ds

∫ ∞
0

dωJ (ω) [2N (ω) + 1] cos (ωs) cos (ω0s) ,

Π (t) = α2

∫ t

0

ds

∫ ∞
0

dωJ (ω) [2N (ω) + 1] cos (ωs) sin (ω0s) ,

γ (t) = α2

∫ t

0

ds

∫ ∞
0

dωJ (ω) sin (ωs) sin (ω0s) ,

r (t) = α2

∫ t

0

ds

∫ ∞
0

dωJ (ω) sin (ωs) cos (ω0s) ,

(4.29)

where N(ω) = (exp{~ω/kBT} − 1)−1 is the mean number of photons at
frequency ω. In terms of characteristic function the solution of Eq. (4.28)
is [101]:

χ (R, t) = χ
(
e−

Γ(s)
2 F−1 (t) R, 0

)
e−RᵀW̄(t)R, (4.30)

where:

Γ(t) = 2

∫ t

0

γ(s) ds (4.31)
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and:

W̄ (t) = e−Γ(t)
[
F−1 (t)

]ᵀ
W (t) F−1 (t) , (4.32)

W (t) =

∫ t

0

eΓ(s)Fᵀ (s)

(
∆ (s) −Π (s) /2
−Π (s) /2 0

)
F (s) . (4.33)

The general form of the F(t) matrix depends on the coefficient r(t) and is
quite complicated; at the second order in α it is possible to show that it
assumes the r(t)-independent form:

F (t) =

(
cos (ω0t) sin (ω0t)
− sin (ω0t) cos (ω0t)

)
.

From the solution, Eq. (4.30), and from the definition of Gaussian char-
acteristic function, Eq. (4.5), it is straightforward to show that the evolution
preserves the Gaussian property of the initial state. The first and second
moments evolve as:

R̄ (t) = e−
Γ(t)

2 F (t) R̄ (0) ,

σ (t) = e−Γ(t)F (t)σ (0) Fᵀ (t) + 2W̄ (t) ,
(4.34)

and we use this last relations in Chapter 6 to study the behaviour in time of
the teleportation fidelity.

It is important to note that the long-time behaviour of the dynamics is
independent of the particular form of the spectral density: for t� τE, where
τE is the reservoir correlation time, it is possible to show that the dynamics
reduces to the Markovian equation Eq. (2.19).

Finally, when we introduce the non-Markovian measure for Gaussian
channels in the next Chapter, we refer to an approximate version of the
Eq. (4.28), that is called the secular approximation: it consists in neglecting
the fastly oscillating terms when τS � τR, i.e. when the free system dynam-
ics time-scale is less than the relaxation time-scale. In this case the master
equation Eq. (4.28), in the interaction picture, reduces to:

dρ (t)

dt
=

∆ (t) + γ (t)

2

[
2aρa† −

{
a†a, ρ

}]
+

∆ (t)− γ (t)

2

[
2a†ρa−

{
aa†, ρ

}]
.

(4.35)

For a generic Gaussian state the solution of Eq. (4.35) reads:

R̄ (t) = e−Γ(t)/2R̄ (0) ,

σ (t) = e−Γ(t)σ (0) + 2∆Γ (t) I,
(4.36)
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where ∆Γ(t) = e−Γ(t)
∫ t

0
dseΓ(s)∆(s).

It is possible to show [103] that the Markovian/non-Markovian behaviour
of Eq. 4.28 and its approximated version Eq. 4.35 depends on the reservoir pa-
rameters, in particular on the ratio x = ωc/ω0 between the cut-off frequency
of the bath and the free frequency of the harmonic oscillator, in particular for
x � 1 the evolution is non-Markovian, while it is Markovian in the regime
x� 1. This property allows us to test the measure of non-Markovianity that
will be introduced in the next Chapter.

4.7 Witness of non-Markovianity for Contin-

uous Variable systems

The approaches to characterize and quantify non-Markovianity of a quantum
evolution in the case of infinite dimensional systems follow the same line of
reasoning presented in the finite dimensional case. Nevertheless the opti-
mization procedure is more cumbersome: the number of parameters which
characterize a state in the infinite dimensional Hilbert space is infinite. As a
consequence all the quantities of interest are typically defined only for Gaus-
sian states and channels, for which a description in terms of finite dimensional
vector analysis exists.
In this section we present the two most common approach to non-Markovianity
in the Gaussian realm.

4.7.1 Witness of non-Markovianity based on the fi-
delity

Following the line of reasoning presented in Sec. (3.2.1), in Ref. [99] the
authors define a witness of non-Markovianity, for the particular case of one
mode channels, based on the contractive property of appropriate distance
measures under CPTP maps. In particular they consider the Bures distance:

DB(ρ1, ρ2) =

√
2− 2

√
F (ρ1, ρ2),

where F (ρ1, ρ2) = Tr
√√

ρ1ρ2
√
ρ1 is the fidelity, as this last quantity is well

know for the set of Gaussian states. Furthermore, as the fidelity and the
distance are monotonic each other, it is convenient to base the measure of
non-Markovianity directly on the fidelity. We have:

NG
F = max

P

[
−
∫
Ḟ<0

d

dt
F(P, t) dt

]
,
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where P = {n̄1, n̄2, r1, r2, φ1, φ2 α1, α2} are the parameters that define the
two one-mode Gaussian input states.

This approach suffers of some drawbacks. As we have described in the
last Chapter, it is only a sufficient condition. Furthermore the optimization
is only over the restricted set of Gaussian states. Finally, although it is
generalizable to the N -mode case, it is useless, due to the rapid increasing
of the parameters to be optimized.

4.7.2 Witness of non-Markovianity based on the Inter-
ferometric Power

This quantity is based on the monotonic behaviour of the Gaussian interfer-
ometric power (GPI) under local completely positive maps [104, 105], i.e. it
follows the approach discussed in Sec. (3.2.2).

The GIP allows estimation of a parameter embedded in a unitary dy-
namics applied to one subsystem only, in the worse-case scenario, through a
procedure known as a black-box interferometry.
Consider a two-mode Gaussian state ρAB that constitutes the probe for an
interferometer (Fig. (4.1 a)); the mode B is sent in a black box in which
the unitary transformation Uφ

B = eıφHB occurs, with φ an unknown phase,
while the spectrum of the generator HB is known. In the particular case of
transformations which preserve the Gaussian character of the state, Uφ

B can

be written as Uφ
B = V †BWBVB, where WB = e−ıφb

†b is the shift operator and
Vb is a unitary Gaussian transformation. Given the state at the output of
the black box, ρφ,VBAB , a measurement can be performed on the output state
to estimate the value φest of the parameter φ.

This estimation, in the case of N repetition, having N identical copies of
the initial state, is given by the Cramèr-Rao bound:

N∆φ2 ≥ 1

F(ρφ,VBAB )
, (4.37)

Figure 4.1: Schematic representation of the black box optical interferometry
setup. a) the evolution of A is unitary. b) the mode A is sent through a quantum
channel.
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where ∆φ2 =< (φest − φ)2 > is the variance and F(ρφ,VBAB ) is the Quantum
Fisher Information (QFI)4. The QFI quantifies, for any given black-box gen-
erator, the precision of estimation of the parameter φ; therefore to obtain,
for a given resource ρAB, the worse-case scenario, it is necessary to minimize
the (QFI) over the set of local generators. The GIP is then defined as:

QGA(ρAB) =
1

4
inf
VB
F(ρφ,VBAB ). (4.38)

It is possible to show that Eq. (4.38) satisfies the following properties: it
is zero if and only if the resource ρAB is a product state, it is invariant
under local unitaries transformation and, especially for what concern us, it
is monotonically non increasing under local CPTP operation on subsystem
A.
Exploiting this last property it is possible to check the non-Markovianity of
a quantum evolution. Indeed suppose now that the mode A, that does not
enter in the black-box, undergoes open evolution (Fig. (4.1 b)). Due to the
contractive property, for a Markovian evolution the derivative:

D(t)
.
=

d

dt
QG(ρAB(t))

is a strictly non-positive quantity for all t ≥ 0. As a consequence, if this
quantity is positive the evolution must be non-Markovian. We thus can
define the following witness with respect the given input resource as:

N σAB
Q =

∫
D(t)>0

D(t)dt,

where σAB is the covariance matrix of the two- mode input state. Finally we
can obtain a state-independent definition through an optimization procedure
over the set of possible initial states:

NQ = max
σAB(t0)

N σAB
Q .

The main advantage of this approach is that it can be very useful to
achieve an experimental characterization of the non-Markovianity of a dy-
namical map. However the optimization procedure remains difficult to achieve
in complete generality, and numerical techniques are necessary.

4Under the smoothness hypothesis the QFI it is defined as:

F = −2 lim
ε→0

∂2

∂ε2
F (ρφAB , ρ

φ+ε
AB ),

where F is the fidelity.





CHAPTER 5

Measure of non-Markovianity for Gaussian

channels

The problem of characterization and quantification of non-Markovianity has
been mostly devoted, till now, to the case of finite-dimensional systems, while
less work has been done for the infinite-dimensional case.

In this chapter, starting from the definition provided in Eq. (4.20), we
introduce a proper measure of non-Markovianity for Gaussian channels based
directly on the divisibility property of the map [4]. We discuss the range
of applicability of this definition, and the differences with respect to the
finite-dimensional case. Finally, we apply the new measure to some of the
non-Markovian channels which has been previously introduced.

5.1 Non-Markovianity for Continuous Vari-

able systems

In Chapter 3 we illustrated various approaches recently introduced in order
to characterize and quantify quantum non-Markovianity. We have then dis-
cussed proper measures of non-Markovianity for finite-dimensional systems,
and we have introduced various witnesses, i.e. quantities whose non mono-
tonic behaviour in the presence of memory effects allows to identity and quan-
tify the non-Markovianity of the evolution. These quantities provide only
sufficient, but not necessary, conditions: in fact, there are non-Markovian
channels which are not identified by these quantities. Furthermore, the most
drawback is perhaps the not avoidable optimization procedure over states
that must be performed in order to obtain a state-independent quantity.

The importance to characterize and quantify non-Markovianity in the
infinite-dimensional systems is due to the relevant role that these systems
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(as for instance Gaussian states and Gaussian channels) play in quantum
optics, quantum information, and quantum technologies. If one considers
the most general bosonic channels the problem at moment is clearly irre-
solvable, because the need for an optimization over the states in an infinite-
dimensional space makes pointless the definition of witness. Furthermore,
a measure of non-Markovianity which is based on its definition requires a
method to characterize the complete positivity of the map, a condition that
currently lacks. If only Gaussian channels are considered, however, the situ-
ation becomes less problematic since, as illustrated in Chapter 4, the charac-
terization of Gaussian states and Gaussian maps requires simply the use of
the finite-dimensional matrix algebra. But, if we aim to construct a proper
measure of non-Markovianity which is based on its definition, a direct gen-
eralization of the Rivas measure is impossible due to the present lacks of the
Choi-Jamo lkovsky isomorphism for a generic Gaussian map. On the other
hand, for Gaussian channels a condition of complete positivity does exist
(Eq. (4.20)), and this will be our starting point to define a proper measure
of non-Markovianity .

5.2 Measure of Non-Markovianity

We consider a quantum evolution from the instant t0 to the instant t2, de-
scribed in full generality by some family of trace-preserving linear maps
{Φ(t2, t1), t2 ≥ t1 ≥ t0}, and we recall that this evolution is said to be
divisible or Markovian if, for each pair of times t2 and t1, it is fulfilled the
property

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0), t2 ≥ t1 ≥ t0 ,

and the intermediate map Φ(t2, t1) is completely positive (CP). Our strat-
egy is to obtain the characterization of divisible map Φ(t2, t1) for a generic
Gaussian channel, and then use this characterization in order to introduce
a definition of non-Markovianity based on the breaking of the Markovian
property. Since, as shown in Sec. (4.5), it is possible to characterize the map
through the set (X,Y) of 2N × 2N matrices, we want to describe the inter-
mediate evolution in terms of these matrices. To this aim, let us introduce
an auxiliary vectorial notation [106]. Given a generic Gaussian input state,
its time evolution in a Gaussian channel is given (see Sec. (4.5)) by the fol-
lowing transformation on the initial covariance matrix σ(0) that defines the
state (Eq. (4.19)):

σ (t) = X (t)σ (0) Xᵀ (t) + Y (t) .
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Now it is expedient to reorder the component of σ according to a lexico-
graphical ordering, as follows: ~σk(t)

.
= σij(t), where k = N(i − 1) + j

and i, j = 1, . . . , 2N . In the more familiar Dirac notation we can write
〈k|~σ(t)〉 ≡ 〈ij|~σ(t)〉 ≡ 〈i|σ(t)|j〉. Furthermore, we add to ~σ an auxiliary
vector entry of value 1, obtaining the vector (~σ, 1)ᵀ = (σ11, . . . , σnn, 1)ᵀ Con-
sequently we obtain the following representation: [X(t)σ(0)Xᵀ(t)]ij=[(X(t)⊗
X(t))~σ(0)]k ≡ [Φ(t)~σ(0)]k, where Φ(t) = X(t)⊗X(t); in Dirac notation:

〈i|X(t)σXᵀ(t)|j〉=
∑
n,m

〈i|X(t)|n〉〈n|σ(0)|m〉〈m|Xᵀ(t)|j〉 =

=
∑
n,m

〈ij|X(t)⊗X(t)|nm〉〈nm|~σ(0)〉=〈ij|X(t)⊗X(t)|~σ(0)〉,

where
∑

n |n〉〈n| = 1 is the identity resolution. One can now express Eq. (4.19)
in terms of a vector by matrix multiplication:(

~σ(t)
1

)
=

(
Φ(t) ~Y(t)
~0ᵀ 1

)(
~σ(0)

1

)
, (5.1)

where ~0 = (0, . . . , 0)ᵀ is the 2N -dimensional null vector and ~Y(t)) is the
vectorial form of the matrix Y(t). Vectorization is an isomorphism, thus re-
versible: de-vectorizing Eq. (5.1) yields exactly the standard representation.

Consider now the semigroup composition law of Gaussian channels, Eq.
(4.21):

(X1,Y1) · (X2,Y2) = (X1X2,X1Y2X
ᵀ
1 + Y1). (5.2)

In vectorial notation this expression assumes the following matrix multipli-
cation form:(

Φ2
~Y2

~0ᵀ 1

)(
Φ1

~Y1

~0ᵀ 1

)
=

(
Φ2Φ1 Φ2

~Y1 + ~Y2

~0ᵀ 1

)
. (5.3)

Setting for ease of notation t0 = 0, t1 = t and t2 = t + ε for generic instants
of time t and ε, continuity of time implies that the dynamics can be split
in two steps as [0, t + ε] = [0, t] ∪ [t, t + ε], and one can obtain the vectorial
expression for the intermediate map in the interval [t, t+ ε]:(

Φ(t+ ε, t) ~Y(t+ ε, t)
~0 1

)
=

(
Φ(t+ ε, 0) ~Y(t+ ε, 0)

~0 1

)(
Φ(t, 0) ~Y(t, 0)
~0 1

)−1

,(5.4)

or more explicitly(
Φ(t+ ε, t) ~Y(t+ ε, t)

~0 1

)
=(

Φ(t+ ε, 0)Φ−1(t, 0) −Φ(t+ ε, 0)Φ−1(t, 0)~Y(t, 0) + ~Y(t+ ε, 0)
~0 1

)
. (5.5)
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Here we must face the question of the invertibility of the matrix X(t, 0).
The possibility to invert the Φ(t, 0) matrix is connected to the possibility to
invert the X(t, 0) matrix. Examples of Gaussian channels characterized by
a non invertible X matrix, based on the classification of one-mode Gaussian
channels, can be found in Ref. [107]. Up to Gaussian unitary equivalence,
channels for which the matrix X is non invertible include the completely
depolarising channel, which projects every input state on a thermal state,
and channels which transform the canonical quadrature Q and P as: P → p,
Q→ Q+q. However, following the same reasoning used for the RHP measure
in Sec. (3.1.2), non invertible cases do not impose any restriction because
one can always introduce the matrix 1η+ X(t, 0), determine its inverse, and
evaluate the limit η → 0 that is always non-singular [45, 108, 106].

De-vectorizing the intermediate Gaussian map, we obtain its complete
expression in terms of the X and Y matrices:

X(t+ ε, t)=X(t+ε, 0)X−1(t, 0) ,

(5.6)

Y(t+ε, t)=Y(t+ε, 0)−X(t+ε, t)Y(t, 0)Xᵀ(t+ε, t) .

The condition of divisibility, Eq. (2.21), is equivalent to the complete posi-
tivity of the intermediate map, expressed in terms of the matrices defining
the channel by Eqs. (5.6), that, for Gaussian channels, gives Eq. (4.20):

Y (t)− ı

2
Ω +

ı

2
X (t) ΩXᵀ (t) ≥ 0.

Therefore, from Eqs. (4.20), (2.21) and (5.6), the condition of non-Markovianity
at any given time t reads:

Y (t+ ε, t)− ı

2
Ω +

ı

2
X (t+ ε, t) ΩXᵀ (t+ ε, t) < 0 . (5.7)

Since Eq. (4.20) is a necessary and sufficient condition for the complete pos-
itivity of Gaussian channels, it follows that Eq. (5.7) is a necessary and
sufficient criterion for the non-Markovianity of Gaussian channels.

Eq. (5.7) allows to introduce a proper measure of non-Markovianity for
Gaussian channels by quantifying the extent by which the intermediate dy-
namics fails to be CP. This corresponds clearly to the quantification of the
negative part of the spectrum of the matrix that appears in the l.h.s. of
Eq. (5.7). Denoting the set of eigenvalues by {νk(t + ε, t)}k=1,...,2N , the fol-
lowing functions

fk (t) =
1

2
lim
ε→0+

[|νk(t+ ε, t)| − νk(t+ ε, t)] (5.8)
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quantify the negative contribution at time t given by the kth eigenvalue.
Therefore, the amount of non-Markovianity quantified by the negative part of
the spectrum at a given time t is expressed by the punctual nonMarkovianity :

F (t) ≡
2N∑
k=1

fk (t) . (5.9)

Since F (t) > 0 if and only if the evolution is non-Markovian, and F (t) = 0
otherwise, the total amount of non-Markovianity in a generic time interval I
is

N I ≡
∫
I

F (t) dt. (5.10)

It is worthy to be remarked that, when the dynamics is described by means
of a master equation, the expressions in the phase space formalism of the
matrices (X,Y) which define the channel, as illustrated in Sec. (4.5.1), are
obtained directly from the expression of the characteristic function of the
evolved Gaussian state.

The measure we have introduced is based directly on the definition of
Markovian evolution and it checks the CP condition of the intermediate map.
So this measure seems the Gaussian infinite-dimensional equivalent of the
RHP measure described in Sec. (3.1.2). However, as discussed in Sec. (3.1.3),
Hall, Cresser, Li, and Andersson [66] recently showed that in the finite-
dimensional case for which (at variance with the infinite-dimensional case)
all processes always admit a generator, the necessary and sufficient criterion
for non-Markovianity based on divisibility is equivalent to the criterion based
on the negativity of the decoherence rates appearing in the canonical form
of the master equation. Therefore, one is tempting to conjecture that this
equivalence holds also in the infinite-dimensional case for channels that admit
a generator, but actually we are not able to provide a proof of this conjecture.

In the next section we apply the above measure to some of the Gaussian
channels defined in Chapter 4, and we compare the results with known facts
about the non-Markovianity of these maps.

5.3 Two simple examples

In this section, we discuss two paradigmatic cases that admit a representa-
tion in terms of master equations: the Damping master equation and the
Quantum Brownian motion.
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5.3.1 Non-Markovianity of the Damping master equa-
tion

As discussed in Sec. (4.6.1), the Damping master equation (4.22) is the sim-
plest example we can begin with as it describes the damping process for a
single field mode with a single decay rate:

dρ (t)

dt
= α γ (t)

[
aρa† − 1

2

{
a†a, ρ

}]
,

where α � 1 is the coupling constant and γ(t) is the damping rate. The
evolution of a generic Gaussian state in this Gaussian channel is described
by the corresponding evolution of the X and Y matrices (Eqs. (4.23) and
(4.24)):

X (t, 0) = e−
Γ(t)

2 1 ,

Y (t, 0) =
[
1− e−Γ(t)

] 1
2
,

where Γ(t) = 2α
∫ t

0
γ(s)ds. These equations allow to obtain, by exploit-

ing Eqs. (5.6), the matrix that appears in the l.h.s. of the CP condition,
Ineq. (5.7). It is straightforward to verify that the eigenvalues of this matrix
are negative if exp(−Γ(t+ ε, t)) < 1, where Γ(t+ ε, t) = Γ(t+ ε, 0)− Γ(t, 0).
Moreover, to first order in ε we have Γ(t + ε, t) ≈ 2γ(t)ε. Consequently,
the evolution is non-Markovian if and only if γ(t) < 0. This result corre-
sponds exactly to the violation of differential Markovian evolution given in
Sec. (2.2.2), and concerning the generator of the master equation. Using
Eqs. (5.8) and (5.9), the corresponding measure reads:

N I = −α
∫
I′
γ (t) dt , (5.11)

where I ′ are the sub-intervals of I in which γ(t) < 0.

5.3.2 Non-Markovianity of the Quantum Brownian mo-
tion under the secular approximation

We next consider the Quantum Brownian Motion in the weak coupling limit
and under the secular approximation [103] presented in Sec. (4.6.2). It
is described in the interaction picture by the Lindblad-type master equa-



73

tion (4.35):

dρ (t)

dt
=

∆ (t) + γ (t)

2

[
2aρa† −

{
a†a, ρ

}]
+

+
∆ (t)− γ (t)

2

[
2a†ρa−

{
aa†, ρ

}]
,

where the coefficients γ(t) and ∆(t) are the damping coefficient and the
diffusion coefficient, respectively. The general solution allows to obtain the
evolution of the displacement and covariance matrices for any input Gaussian
state (Eq. (4.36)). The corresponding X and Y matrices read:

X (t, 0) = e−
Γ(t)

2 R (t) , (5.12)

Y (t, 0) = e−Γ(t)∆̃ (t) 1 , (5.13)

where Γ(t) = 2
∫ t

0
γ(s)ds, ∆̃(t) =

∫ t
0
eΓ(s)∆(s)ds, R(t) is the matrix de-

scribing a rotation by the angle ω0t, and ω0 is the system’s characteristic
frequency. These expressions and Eqs. (5.6) determine the eigenvalues of the
matrix in the l.h.s. of Ineq. (5.7):

ν1(t+ ε, t) =
1

2

[
e−Γ(t+ε,t) + 2∆̃ (t+ ε, t) e−Γ(t+ε,0) − 1

]
,

ν2(t+ ε, t) =
1

2

[
1− e−Γ(t+ε,t) + 2∆̃ (t+ ε, t) e−Γ(t+ε,0)

]
, (5.14)

where Γ(t + ε, t) = Γ(t + ε, 0) − Γ(t, 0) and ∆̃(t + ε, t) = ∆̃(t + ε, 0) −
∆̃(t, 0). To first order in ε, we have: e−Γ(t+ε,t) ≈ 1− 2γ(t)ε and ∆̃(t+ ε, t) ≈
eΓ(t,0)∆(t)ε. Then, condition Eq. (5.7) on the eigenvalues, i.e. the violation
of the divisibility condition, implies ∆(t) < |γ(t)|. This is again equivalent
to negativity of the decoherence rates [∆(t) + γ(t)]/2 and [∆(t) − γ(t)]/2
appearing in Eq. (5.12). Finally, exploiting Eqs. (5.14) and (5.8) we obtain
the following expression for the punctual measure of non-Markovianity:

F (t) =
1

2
[|∆ (t)− γ (t) |+ |∆ (t) + γ (t) |]−∆ (t) . (5.15)

As discussed in Sec. (4.6.2), in order to investigate explicitly the behaviour
of non-Markovianity in the Quantum Brownian Motion we need to specify
the spectral density to obtain explicit expressions of the damping and dif-
fusion coefficients γ(t) and ∆(t). By considering the rather typical case of
an Ohmic bath with an exponential cut-off ωc, the parameters which control
the dynamics are the temperature T and the ratio, x = ωc/ω0, between the
cut-off frequency of the bath and the characteristic frequency of the system.
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Figure 5.1: Punctual non-Markovianity F (τ), Eq. (5.9). a): High-temperature
limit for x = 0.1 (blue full line), x = 0.2 (red dot-dashed line), and x = 0.3 (green
dashed line). Inset: ∆(τ) for x = 0.1 (blue full line), x = 0.2 (red dot-dashed line)
and x = 0.3 (green dashed line). b): Low-temperature limit for x = 0.2 (blue full
line), x = 1.0 (red dot-dashed line) and x = 2.0 (green dashed line). Inset: ∆(τ)
(red dot-dashed line) and γ(τ) (blue line) for x = 0.1.

As discussed in Sec. (4.6.2), it is expected that in the regime x� 1 the dy-
namics should be non-Markovian, while Markovianity should be recovered for
x� 1 [103]. It is also convenient to express the evolution in terms of the di-
mensionless reduced time τ = ωct. Furthermore, explicit analytic expressions
of the diffusion coefficient ∆(τ) can be quite straightforwardly obtained in
the high- and low-temperature regimes. The explicit expressions are reported
in Appendix (C). By considering first, both in the high-temperature and in
the low-temperature regimes [109], the asymptotic values of the damping and
diffusion coefficients in the large-time limit τ → ∞, it is straightforward to
verify that the asymptotic punctual non-Markovianity F (∞) = 0: at large
times Markovianity is always recovered, independently of the values of the
parameters that govern the dynamics.

Considering now generic times, in Fig. (5.1a) we report the behaviour of
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the punctual non-Markovianity F , Eq. (5.15), as a function of the reduced
time τ at fixed values of the parameter x = ωc/ω0 in the high-temperature
limit. In this regime ∆(τ) � γ(τ) [103], and the non-Markovianity of
the dynamics depends essentially only on the diffusion coefficient: F (τ) '
|∆(τ)| − ∆(τ). Hence, the time interval for which the evolution is non-
Markovian (F (τ) > 0) corresponds to the negativity of the decoherence rate,
∆(τ) < 0. Non-Markovianity is strong in the regime x� 1, corresponding to
the characteristic time of the bath much larger than the characteristic time
of the system. When x increases, the negative part of the oscillations and
F (τ) quickly vanish, and one recovers the Markovian regime.

In the low-temperature regime, see Fig. (5.1b), the diffusion and damping
coefficients are comparable, and the non-Markovianity F (τ) is given by the
full expression, Eq. (5.15). In this situation, a non-Markovian regime is ob-
served also for ∆(τ) > 0, provided ∆(τ) < γ(τ), and even if the characteristic
times of the bath start to be comparable or smaller than the characteristic
times of the system, x & 1. In these examples, the criterion based on the
X and Y matrices defining a Gaussian channel turns out to correspond to
the negativity of the decoherence rates. Indeed, even this is not a proof, it
is anyway an indication pointing in this direction. Furthermore, it should be
stressed that the criterion is much more general and applies to any Gaussian
evolution, including those that do not admit a generator and hence cannot be
described in terms of master equations. Finally, the criterion always allows,
at least in principle, the experimental verification of the Markovianity of the
evolution, in particular when it is expressed through the master equation co-
efficients that can be experimentally reconstructed [110]. Finally, we stress
what is probably the main advantage of this measure: it does not require
optimization over the set of input states since it is based directly on the
characteristic matrices that define intrinsically the dynamical map.





CHAPTER 6

Non-Markovian Continuous Variable

Quantum Teleportation

In previous Chapters we addressed the problem of characterization and quan-
tification of the non-Markovian character of a quantum channel. However,
a primarily important aspect is the usefulness of non-Markovian channels,
in particular as a tool in Quantum Information theory. In fact, the role of
the non-Markovianity as a prominent tool to contrast the decoherence effects
generated by the interaction of a quantum system with the environment and,
consequently, as a promising strategy to improve the efficiency of quantum
technologies, gave a decisive boost to his study. Here we focus our attention
on the Realistic Continuous-Variable (CV) Quantum Teleportation protocol,
historically one of the paradigmatic arenas to test new quantum ideas. In
particular, the teleportation fidelity, which is the figure of merit for eval-
uating the success of the protocol, can provide a quantitative estimate of
the advantage of exploiting non-Markovian channels; furthermore its simple
expression in terms of the characteristic functions of the input state and of
resources allows us to manage in a simple way even non Gaussian resources.

6.1 The realistic Braunstein-Kimble Quantum

Teleportation protocol

In this section we describe the realistic Braunstein-Kimble (BK) Quantum
Teleportation protocol, by extending the scheme presented in Ref. [85] to
the non-Markovian case [5]. Even following the same procedure, we present
the protocol from a different perspective. In fact, a Markovian channel that
describes the uncontrollable noise affecting the protocol can only have a detri-
mental effect on the positive realization of the teleportation. At variance, a
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Figure 6.1: Realistic Braunstein-Kimble continuous variable quantum teleporta-
tion protocol.

non Markovian channel is a structured environment, because it is possible
to experimentally control the parameters characterizing the dynamics; this
allows to extend also to the parameters associated to the channel the opti-
mization procedures exploited in Refs. [86, 83, 85] on the parameters which
characterize the quantum resources. Fig. (6.1) illustrates the protocol. In
the standard procedure the first user (Alice) wants to teleport a single-mode
input state ρin to a second user (Bob). They share a classical communication
channel, characterized by the gain g, and an entangled two-mode quantum
state ρ12 (the resource); in particular, the mode 1 is available to Alice, while
mode 2 is sent to Bob through a non-Markovian quantum channel1. The
success of the procedure is measured by the teleportation fidelity that, for a
pure input state, is expressed in terms of the characteristic functions of the
input and output state as [111]:

F =
1

π

∫
d2αχin (α)χout (−α) . (6.1)

The fidelity is equal to 1 if and only if the input and output states coincide,
and is equal to 0 if and only if the two states can be distinguished with

1A more general situation would be to consider the case in which even the Alice’s mode
is affected by noise. However the results do not change significantly.
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certainty by performing a quantum measurement.
Now we proceed to compute the characteristic function of the output

state, and in the following we illustrate the transformations on the charac-
teristic function which correspond to the various steps of the protocol.

We assume that the input state is a pure state: this is not a serious
limitation because one can always map the case of a non ideal teleportation
protocol with noisy (mixed) inputs and resources to an equivalent protocol
with pure inputs and resources, but with a correspondingly larger amount of
noise affecting the protocol. As a first step Alice mixes the single-mode input
state with the mode 1 of the resource (her available mode) through a 50-50
beam splitter. Before the operation the characteristic function of the initial
three-mode field is given by ρ0 = ρin⊗ρres and the global characteristic func-
tion, from the definition Eq. (4.5), is χ0 (αin;α1;α2) = χin (αin)χres (α1;α2).
Furthermore, it is convenient to express all the quantities in terms of quadra-
ture operators (xi, p1), i = in, 1, 2:

χ0 (xin, pin;x1, p1;x2, p2) = χin (xin, pin)χres (x1, p1;x2, p2) . (6.2)

Applying the beam splitter transformation, Eq. (A.5), with t = r = 1√
2

Alice
obtains:

χ′0 (x′in, p
′
in;x′1, p

′
1;x2, p2) =χin

(
1√
2

(x′in + x′1) ,
1√
2

(p′in + p′1)

)
×

χres

(
1√
2

(x′in − x′1) ,
1√
2

(p′in − p′1) ;x2, p2

)
.

(6.3)

Alice then faces the next step, that is a (non-ideal) Bell measurement (a
homodyne detection) on the modes in and 1. In order to describe a non-ideal
measurement, we need to consider the inefficiencies of the photo-detectors.
As depicted in Fig. (6.2), a realistic detector can be modelled by placing a
fictitious beam-splitter, i.e. a partly transmitting mirror, in front of an ideal
detector. The modes in′ and 1′ at the output of the first beam splitter are
sent into the ports of the two remaining beam splitters, characterized by the
same transmissivity η. The remaining input ports of the beam splitters are
then fed with two vacuum states |0〉3′ , |0〉4′ , whose characteristic function is
of the form:

χk (x′k, p
′
k) = exp

[
−1

2

(
x′2k + p′2k

)]
, (6.4)

with k = 3, 4. With this procedure, starting from the characteristic function
Eq. (6.3) and exploiting again the beam splitter transformation Eq. (A.5),
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we obtain:

χBS

(
x′′in, p

′′
in;x′′1, p

′′
1;x2, p2, x

′′
3, p
′′
3, x
′′
4, p
′′
4

)
=

=χin

(
1√
2

[
Tx′′in +Rx′′3 + Tx′′1 +Rx′′4

]
,

1√
2

[
Tp′′in +Rp′′3 + Tp′′1 +Rp′′4

])
×

×χres

(
1√
2

[
Tx′′in +Rx′′3 − Tx′′1 −Rx′′4

]
,

1√
2

[
Tp′′in +Rp′′3 − Tp′′1 −Rp′′4;x2, p2

])
×

×χ3

(
Tx′′3 −Rx′′in, Tp′′3 −Rp′′in

)
χ4

(
Tx′′4 −Rx′′1, Tp′′4 −Rp′′1

)
.

(6.5)

Alice applies the two homodyne measurements, by measuring the first quadrature
on the mode 1 and the second quadrature on the mode in, and obtains as a result
x̃ and p̃, respectively. After the measurements, the remaining mode 2 is left in a
mixed state. In Appendix B it is shown that the characteristic function after the
measurements becomes:

χBm(x2, p2) =
P−1(p̃, x̃)

(2π)2

∫
dx′′indp

′′
1 e

ix′′inp̃−ix̃p′′1χBS(x′′in, 0; 0, p′′1;x2, p2; 0, 0; 0, 0),

with:

P(p̃, x̃) = Tr[|p̃〉in′′ in′′〈p̃| ⊗ |x̃〉1′′ 1′′〈x̃| ρBS ] =

=
1

(2π)2

∫
dx′′indp

′′
1 exp{ix′′inp̃− ix̃p′′1}χBS(x′′in, 0; 0, p′′1; 0, 0; 0, 0; 0, 0).

The mode 2 of the resource is sent to Bob in a non-Markovian noisy channel.
Clearly the dynamics depends on the particular channel that has been selected.
We choose the Quantum Brownian Motion, Eq. (4.28); consequently, in the char-
acteristic function description the evolution of the characteristic function χBm is
given by the Eq. (4.28). After receiving the mode 2, Bob finally performs on
it a displacement λ = g(x̃ + p̃) depending by the results communicated by Alice
through the classical channel.

After the entire process, the characteristic function of the output state reads:

χout(x2, p2) = χin(gT x2, gT p2)×

×χres
(
gT x2,−gT p2; e−

Γ(t)
2 [x2 cosω0t− p2 sinω0t], e

−Γ(t)
2 [x2 sinω0t+ p2 cosω0t]

)
×

×exp

[(
W̄11 +

g2R2

2

)
x2

2 +

(
W̄22 +

g2R2

2

)
p2

2 + 2W̄12x2p2

]
.

(6.6)

The teleportation fidelity is then finally obtained by using Eqs. (6.1), (6.6), and
by choosing the input state, namely the characteristic function χin(xin, pin).

Once given the general description of the non ideal protocol in terms of the
characteristic functions, we must now chose the states used as a resource. We will
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Figure 6.2: Scheme of a realistic Bell measurement. The model takes into account
that the detectors D performing the homodyne measurement are not ideal (their
efficiency is not 1). In the scheme, such inefficiency is simulated by the introduction
of two fictitious beam splitters, BS2 and BS3, with equal transmissivity η.

refer to two classes of entangled resources already discussed in Sec. (4.4): the two-
mode squeezed-Bell (SB) states |ψ〉SB, and the two-mode squeezed-cat (SC) states
|ψ〉SC . In fact, although our main interest are the non-Markovian effects, the use of
non Gaussian resources allows us, on the one hand a more complete investigation
targeted to a possible engineering of effective experimental implementations of
the protocol, and on the other hand a better insight on the relation between the
quantum property of a state and the corresponding behaviour of the fidelity in a
non-Markovian environment.

By summarizing, we want to observe the interplay between the non-Markovian
property of the channel and its relation with the quantum properties of the re-
sources, as this allows to improve the teleportation fidelity with respect to the
Markovian case [85]. From an operational point of view, identify the values of the
parameters associated to these aspects is equivalent to assuming the control on
the characteristics of the experimental apparatus, including the characteristics of
the entangled resources and the length and memory of the noisy channel. The
tunable experimental parameters are: for all the resources (included the Gaussian
TB), the squeezing phase φ; for the SB resources, the parameters δ , θ (the angle
in cosine and sine, and the relative phase within the superposition, respectively);
for the SC resources, the parameters δ , θ , |γ| , ϕ (the angle in cosine and sine, the
relative phase, the modulus and the phase of the coherent parameter within the
superposition); for the channel, the parameter x of non-Markovianity (or, equiva-
lently, the cut-off frequency ωc) and the dimensionless time τ = ωct. In the next
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section we present an analysis of the performance of the teleportation protocol
based on a procedure of optimization of these controllable parameters.

6.2 Results

As resources for the CV Quantum Teleportation protocol we use the TB state
described in Sec. (4.3.2) (as Gaussian reference state) and the non-Gaussian states
described in Sec. (4.4), namely the Squeezed Cat (SC) state, the (optimized)
Squeezed Bell (SB) state and the Photon-Subtracted (PS) state. Furthermore we
choose as input state the coherent state ρin = |β〉in in〈β| with complex amplitude
β. Finally, in order to make the fidelity β-independent, we fix the value of the gain
as g = 1/T , and we choose R2 = 0.05.

Under the above assumptions the analytical expressions of the teleportation
fidelities associated with the entangled resources depend explicitly on the re-
maining tunable parameters: FSB = FSB(r, φ, δ, θ), FSC = FSC(r, φ, δ, θ, |γ|, ϕ),
FPS = FPS(r, φ), FTB = FTB(r, φ); the last two fidelities can be obtained as
particular cases of the fidelity for the SB resources. The numerical maximization
of the teleportation fidelity are carried out over a subset, or over all the tunable
parameters φ, δ, θ, |γ|, ϕ, at fixed (finite) values of the squeezing r, and at fixed
values of x, τ . The analytic expressions of the above fidelities, being very cum-
bersome, are not reported. Nevertheless, in order to better clarify the role in the
optimization procedure of the various parameters, and in particular of the phases,
it is sufficient to look at the exact expression of the fidelity in the case of Gaussian
TB resources, that is reported in the Appendix D.

6.2.1 Partially optimized fidelities

At first, as in the articles where Markovian channels were considered, we limit the
optimization procedure to the parameter δ for the squeezed Bell resources |ψSB〉,
and to the parameters δ and |γ| for the squeezed cat states |ψSC〉, by choosing for
the phases φ, θ, ϕ the fixed values φ = π and θ = ϕ = 0. Indeed, in the case of
propagation along Markovian channels these values of the phases are sufficient to
guarantee always the best performance (see Appendix D). Therefore, the partially
optimized fidelities of teleportation are defined as:

F (SB)
p−opt = max

δ
FSB(r, δ)

∣∣∣
φ=π,θ=0

, (6.7)

F (SC)
p−opt = max

δ,|γ|
FSC(r, δ, |γ|)

∣∣∣
φ=π,θ=ϕ=0

. (6.8)

As previously remarked, the fidelities associated with PS resources and with Gaus-
sian TB resources can be easily obtained from FSB(r, δ) by suitably choosing the
value of δ. Fig. (6.3) contains an array of plots which display the partially op-
timized fidelities of teleportation Fp−opt as functions of the dimensionless time τ ,
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Figure 6.3: Array of plots of the partially optimized fidelities of teleportation
Fp−opt, as functions of the dimensionless time τ , for different values of the pa-
rameter x = 0.1, 0.2, 0.3 (plots ordered from left to right for increasing x) and of
the squeezing r = 0.5, 1.5, 2.5 (plots ordered from top to bottom for increasing
r). The curves correspond to the fidelities of teleportation of single-mode input
coherent states |β〉 obtained by using SB (full line), SC (dashed line), PS (dotted
line), and TB (long-dashed line), as entangled resources. In the last row (r = 2.5),
the fidelities associated with SC and PS states are omitted.

for different choices of the squeezing parameter r and of the parameter of non-
Markovianity x. Inside each row, the value of the squeezing parameter is kept
fixed, while the parameter x takes, from left to right, the values x = 0.1, 0.2, 0.3;
so the environment ranges from a strongly non-Markovian regime (x = 0.1), to
a behaviour characterized by the presence of both Markovian and non-Markovian
regimes (x = 0.3). Instead, if one moves from the first to the third row, the squeez-
ing parameter increases from a low value (r = 0.5) to the maximum value that in
principle is at present attainable (r = 2.5). The oscillating behaviour exhibited by
each fidelity is a clear signature of the non-Markovian regime; however, the curves
associated with the value x = 0.3, i. e. with a lower content of non-Markovianity,
clearly exhibit a global decreasing trend for increasing values of τ , due to the
emergence of the Markovian regime. The first row of plots is associated with a low
value of the squeezing parameter (r = 0.5); the optimized SB resources provide the
best performance with respect to the other resources. In particular, the fidelities

satisfy the hierarchy F (SB)
p−opt ≥ F

(SC)
p−opt ≥ F

(TB)
p−opt, that do not include PS states. In
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fact, the PS resources exhibit a performance comparable with the SB resources
around the peaks, but the worst performance elsewhere. Such a behaviour of the
PS resources is due to the lack of an optimizable parameter ruling the efficiency
of the state. Passing to the second (r = 1.5) and the third (r = 2.5) rows of plots,
we observe the same features as in the first row, but we see also that the curves
around the peaks (relative maxima) are tighter and the relative minima are lower.
For high values of the squeezing parameter, the weight of the non-Gaussianity (at
least for the here considered non-Gaussian resources) becomes less significant, and
the curves become quite indistinguishable around the peaks.

6.2.2 Fully optimized fidelities

Now we show the unexpected role that phases can play in the non-Markovian
channels. In fact, we include in the optimization procedure also the phases which
previously were kept fixed, i. e. the squeezing phase φ and the phases of the non-
Gaussian resources. We thus consider the fully optimized fidelities of teleportation,
defined as:

F (SB)
f−opt = max

φ,δ,θ
FSB(r, φ, δ, θ) , (6.9)

F (SC)
f−opt = max

φ,δ,θ,|γ|,ϕ
FSC(r, φ, δ, θ, |γ|, ϕ) , (6.10)

F (PS)
f−opt = max

φ
FPS(r, φ) , (6.11)

FTB)
f−opt = max

φ
FTB(r, φ) . (6.12)

As shown in the Appendix D, in the instance of TB resources the optimal phase

φ is given by the τ -dependent relation φ = π +
τ

x
. We have numerically checked

that, although non-trivially connected with the polynomial structure of the fidelity
corresponding to non-Gaussian resources, the optimal phase is again given by the
same relation. Therefore, the optimization on the phase φ in Eqs. (6.9), (6.10),

(6.11), (6.12) is equivalent to the substitution φ = π +
τ

x
(Eq. (D.6)). Fig.( 6.4)

contains an array of plots which display the fully optimized fidelities of telepor-
tation Ff−opt as functions of the dimensionless time τ , for different choices of the
squeezing parameter r and of the parameter of non-Markovianity x. We observe
that the present situation is quite different from the case of partial optimization:
the further optimization carried out on the phases leads to the curves of Fig. (6.4),
which can be obtained as a sort of interpolation of the absolute maxima of the
corresponding curves of Fig. (6.3). Therefore, at variance with the Markovian
channels, non-Markovian channels are very sensitive to the phases included in the
resources, and the exploitation of these phases allows a complete control of the
optimized fidelity at any instant of time τ , by suppressing the oscillations typical
of the non-Markovian regime. This is true both for Gaussian and for non-Gaussian
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Figure 6.4: Array of plots of the fully optimized fidelities of teleportation Ff−opt,
as functions of the dimensionless time τ , for different values of the parameter
x = 0.1, 0.2, 0.3 (plots ordered from left to right for increasing x) and of the
squeezing r = 0.5, 1.5, 2.5 (plots ordered from top to bottom for increasing r). The
curves correspond to the fidelities of teleportation of single-mode input coherent
states |β〉 obtained by using SB (full line), SC (dashed line), PS (dotted line),
and TB (long-dashed line), as entangled resources. In the last row (r = 2.5), the
fidelities associated with SC and PS states are omitted.
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resources. The behaviour of the fidelity in each row, at fixed squeezing and for
increasing values of the parameter x, is similar to that described from the corre-
sponding row in the case of partial optimization: the performance deteriorates if
the degree of non-Markovianity decreases (moving from left to right inside a sin-
gle row). Increasing the value of the squeezing (moving from the first to the last
row) increases the performance; concerning the comparison between Gaussian and
non-Gaussian resources, we see that optimized SB non-Gaussian resources retain
an advantage for not too high values of the squeezing parameter (till about r = 1),
but that their performance becomes practically indistinguishable from that of the
Gaussian TB if r ≥ 1.5.

Summarizing, the dependence of the teleportation fidelity from the phases is
very different, and much more complex, in the non-Markovian regime if compared
with the ideal case or with the Markovian limit. In these last two cases, the
maximum value of the fidelity, for each value of the other parameters, is always
obtained for a unique fixed value, while in the non-Markovian channels the complex
intertwinement among time and phases makes the optimization much less trivial.

The crucial point is the sensitivity of the non-Markovian channels to the values
assumed by the free phases of the entangled resources, an aspect that is not present
in Markovian channels. Therefore, in principle, in the presence of a high degree
of non-Markovianity one can obtain at intermediate times highest and almost
constant values of the fidelities. Obviously, efficiency grows for increasing values of
the squeezing parameter and decreases if the degree of non-Markovianity decreases.

Concerning the comparison between Gaussian and non-Gaussian resources,
we verified that non-Gaussian resources, and in particular optimized SB states,
guarantee a sensibly better efficiency with respect to the Gaussian TB if the value
of the squeezing parameter is not overly large, while Gaussian and non-Gaussian
resources become practically equivalent for high squeezing.

From a practical point of view, it is clear that a continuous tuning, at each
instant, of the optimizable parameter is not accessible, but the experimentalist
can compute ”a priori” the length of the fiber (and thus the travelling time) and
the values of the free parameters, in such a way to determine a high value of the
fidelity at the receiver’s location.



CHAPTER 7

Some recent proposals

Till now we have identified the non-Markovianity of a quantum evolution with
the violation of the complete positivity of the intermediate map. Some recent
works [112, 113, 114] try to generalize the definition, following different directions.
In this Chapter we give a brief review of some of the latest proposals.

7.1 Degree of non-Markovianity

The assumption of the divisibility property as the definition of a Markovian evo-
lution is in some sense a coarse definition; a more fine one can be obtained using
the concept of k-divisible map. A family of map {Φ(t0, t2), t2 ≥ t0} is k-divisible if
and only if its extension Φ(t0, t2)⊗ 1k is positive, while Φ(t0, t2)⊗ 1k+1 is not. In
particular, if the dimension of the system is d, when the map is k-divisible, with
k ≥ d, we return to the complete positivity condition; at the other side, if the
intermediate map is 0-divisible, the process is not even positive.

Therefore, considering the k-divisible property of the intermediate map Φ(t1, t2),
the authors in [112] define the degree k of non-Markvovianity. They start from the
generalization to k-divisible maps of the Eq. (2.31) and Eq. (2.32) proving that,
for a k-divisible process:

‖[Φ(t0, t)⊗ 1k]∆‖1 ≤ ‖∆‖1, t ≥ t0,

for every Helstrom matrix ∆ with an ancillary space of k dimension. As a con-
sequence they define the k-degree of non-Markovianity quantifying the departure
from the k-divisibility condition, in a way similar to Eq. (3.4):

DIk = sup
∆

N+
k (∆, I)

|N−k (∆, I)|
,

where N±k (∆, I) :=
∫
t∈I,σ≶0 dtσ(∆, t) and σ(∆, t) := d

dt‖[Φ(t0, t)⊗ 1k]∆‖1.
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It can be show that N+
k (∆, I) ≤ |N−k (∆, I)| and hence 0 ≤ DIk ≤ 1. Further-

more, as the dimension of the optimization space increases with k increasing, it
follows that:

0 ≤ DIk ≤ . . . ≤ DId ≤ 1,

where DId is the degree of non-Markovianity corresponding to the complete positiv-
ity violation. This hierarchy allows to define a maximally non-Markovian dynam-
ics: it is the dynamics for which DI1 = 1 and, consequently, DI2 = . . . = DId = 1.

7.2 Generalized trace distance measure

In Sec. (3.1.2) and Sec. (3.2) we have described two different approaches to non-
Markovianity, namely the divisibility and the contractive properties of the dy-
namical map. Furthermore we have introduced the BLP definition based on the
distinguishably between states and we have discussed its intuitive physical meaning
in terms of flow of information between the system and the environment. Despite
its clear interpretation, as this quantity is not based on the divisibility of the dy-
namical map, it is only a sufficient condition. Now we may ask is there is a way
to reconcile these two different aspects of the dynamics.

Indeed the difference is due to the fact that the BLP definition is based on
Eq. (2.31) and not on the stronger condition Eq. (2.32); as a consequence there
are non-completely positive evolutions that are not identified by this approach.
On the other hand in the previous paragraph we have discussed the possibility to
resort to a more general definition of non-Markovianity, through the concept of
k-divisible map. It is then possible to generalize the contractive approach so as
to be equivalent to the violation of the P divisibility of the dynamical map [113].
With this generalization the until now assumption of divisibility as the violation
of complete positivity condition turns out to be only a sufficient condition.

We start from the property Eq. (2.31); by this condition, for a dynamical map
Φ(t0, t), it follows that:

‖p1Φ(t0, t)ρ1(t0)− p2Φ(t0, t)ρ2(t0)‖1 ≤ ‖p1ρ1(t0)− p2ρ2(t0)‖, (7.1)

where ∆ = p1ρ1(t0) − p2ρ2(t0) is the Helstrom matrix introduced in Sec. (3.1.1)
and where {pi|p1,2 ≥ 0, p1 + p2 = 1} is an arbitrary probability distribution. As
a consequence we now assume the following definition for a Markovian process: a
quantum process is Markovian if and only if ‖p1Φ(t0, t)ρ1(t0) − p2Φ(t0, t)ρ2(t0)‖1
is a monotonically decreasing function of the time t ≥ 0 for all sets {pi, ρi}. Fur-
thermore, we define a P -divisible evolution a dynamical process in which the in-
termediate map Φ(t1, t2) is positive for all t ≥ s ≥ 0. It can be shown that, under
the hypothesis that the dynamical map is bijective, Φ is Markovian if and only if
it is P -divisible.
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As a consequence of this result it is possible to define a measure of non-
Markovianity as :

NGTD ≡ max
{pi,ρi}

∫
σ>0

dt σ(t, pi, ρi), (7.2)

where σ(t, pi, ρi) = d
dt‖p1Φ(t0, t)ρ1(t0)−p2Φ(t0, t)ρ2(t0)‖1 and ”GTD“ means ”‘Gen-

eralized trace distance“. By construction the process is non-Markovian if and only
if NGTD > 0

We have reconciled in this way the concept of memoryless evolution, expressed
by the divisibility of the map, with the concept of flow of information, expressed
by the monotonic decreasing of the possibility to distinguish between states.

We finally note that this definition of Markovian process can be connected to
the corresponding definition of classical Markovian stochastic processes [113].

7.3 Generalization of information distinguisha-

bility measure

In Sec. (7.2) we success to connect the flow of information between the system
and the environment with the divisibility property, provided to extend the latter
in terms of P -divisibility. Now we present another approach [114] that allows
to obtain the same equivalence, provided to track the evolution of an arbitrary
ensemble of quantum states with arbitrary a priori probabilities.

We consider a discrete evolution t0 ≤ t1 ≤ . . . ≤ tn and an initial system-
environment state of the form Eq. (2.4). Furthermore, for ease of notation, we

indicate the dynamical map Eq. (2.9) as: Φ(t0, ti)ρ(t0) = TrE [U †SE (t, ti) ρS (t0) ⊗
ρEUSE (t, ti)] = Φi(ρs(t0)).

Suppose that the initial state of the system is modelled by the ensemble E =
{p(x), ρxS}, namely the system state is ρxS with probability p(x). The information
on the initial state therefore depends on the distinguishability of the states in the
ensemble. A measure of this information is given by the guessing probability :

Pguess(E) = max
∑
x

p(x)Tr[P xSρ
x
S ],

where the maximization is carried on all over the POVM1 P xS defined on the system
Hilbert space.

We consider the case in which the initial state evolves according to the discrete
time mapping {Φi}i≥0. The evolution will be information decreasing by definition
if, for any ensemble E = {p(x), ρxS}:

Pguess(Ei) ≥ Pguess(Ei+1)

1A positive operator valued measure (POVM) is a family {P x}x∈X of positive semidef-
inite operators defined on a Hilbert space H such that

∑
x P

x = 1.
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for all i > 0, where Ei = {p(x),Φi(ρxS)}.
Furthermore we can consider the case in which the discrete time mapping is given
by a sequence of linear, complete positive, trace preserving map. In this case the
evolution is said to be completely information decreasing if:

Pguess(Ẽi) ≥ Pguess(Ẽi+1),

fo every ensemble Ẽi where now Ẽi = {p(x)|[1S′ ⊗ Φi
S)]ρxS′S} is the ensemble ob-

tained extending the map with an arbitrary Hilbert space HS′ .
It can be shown that a given discrete dynamical map is divisible, in the sense of

Sec. (2.2.2), if and only if it is completely information decreasing. As a consequence
a given evolution is non-Markovian if and only if there exists an auxiliary Hilbert
space HS′ , an ensemble Ẽ and a time tk such that:

Pguess(Ẽk) > Pguess(Ẽk−1),

namely there is a time step in which the distinguishability increases with respect
to the initial ensemble.



Conclusions and outlook

In this thesis we have discussed the concept of quantum non-Markovianity, partic-
ularly regarding its characterization and quantification. Indeed for finite dimen-
sional systems a lot of work has yet been done. For the infinite dimensional case
the situation is more subtle: we have shown that the major part of the approaches
requires some optimization, that in the infinite dimensional Hilbert space is in-
feasible. As a consequence the possibility to resort to the divisibility property is
particularly advantageous in the case of Gaussian channels: the violation of divis-
ibility condition is expressed by a simple matrix relation involving the matrices
that define the channels.
Another great advantage of this procedure is the easy generalization of the measure
to the more interesting case of many modes. Indeed, if we consider the channel
ΦX,Y given by the tensor product of the channels ΦXi,Yi : ΦX,Y =

⊗
i ΦXi,Yi ,

since the tensor products structure in Hilbert spaces correspond to direct sums in
phase space, we have ΦX,Y = Φ⊕

Xi,
⊕

Yi
.

Regarding the usefulness of non-Markovianity in Quantum Information sci-
ence, namely its potential applications, some work has yet been done, such as the
possibility to prepare steady state entanglement [115], to enhance the resolution in
quantum metrology [116] and help in the realization of some tasks [117, 118, 119].
In this direction we have generalized the Continuous Variable Quantum Telepor-
tation protocol when the mode of the resource sent to Bob undergoes an open
non-Markovian evolution. We have show how the non-Markovian property of the
bath leads to an optimized phase that results time-dependent. As a consequence
the possibility to choose in an appropriate manner the squeezed resource allows to
improve significantly, at a given time, the teleportation fidelity.

Notwithstanding these significant results achieved by the scientific community,
there are many unresolved issues.
First of all the relation between the various measures of non-Markovianity: it is
not clear if the various measures induce the same ordering, and the unavoidable
optimization procedure makes difficult to achieve some explicit results, except in
very simple cases. Furthermore a more in depth study of the behaviour of inter-
esting properties, such as quantum correlations, is necessary. Indeed some results
are known, but their relation with the defined measures of non-Markovianity is
in general unknown. Some recent results show [120], for particular choice of a
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Gaussian channel and input states, that the revival of quantum correlations is not
strictly connected with the divisibility of the map: the map is always not divisible,
but the revival is present only when there is a backflow of information. Indeed this
is due to the non-equivalence between the divisibility and the contractive property
and, as we have discussed in Sec. (7.2) and in Sec. (7.3), some recent results try
to recover this equivalence.
Regarding the potential applications of non-Markovianity there are two major di-
rections to follow. First of all the conceptual problem to link non-Markovianity
with other phenomena. Some work has already been done regarding, for example,
criticality and phase transitions [121, 122, 123, 124], Loschmidt echo [125, 121, 122]
and symmetry breaking [126]. The second important point is to exploit the non-
Markovianity to eventually enhance other tasks in quantum information and quan-
tum computation.
Probably the most important objective is to formulate a resource theory for non-
Markovianity. Indeed this is of fundamental interest, as allows us to understand if
there are some tasks that cannot be done without non-Markovianity and how to
implement them.
Finally we want to stress another important point that we do not have treated in
this thesis. When the initial system-environment state is entangled, and hence it
is not of the form Eq. (2.4), the description of the system evolution can be very
different from the approach presented: in particular the map can not be completely
positive. Without entering in this long debate we want to stress that this prob-
lem requires some completely new approaches. In particular in [127] the authors
define a measure of non-Markovianity without violating the complete positivity
condition.

The understanding of the non-Markovianity property of a quantum evolution
is yet at its infancy. Apart the great expectations for quantum technologies, a
deep understanding of the phenomenon is indeed necessary to acquire a better
understanding of the quantum world.
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APPENDIX A

Beam splitter in phase space

In order to discuss the beam splitter in quantum optics, first of all it is necessary to
discuss the classical case, as the quantum case is obtained directly through modes
quantization.

A beam splitter, represented in Fig. (A.1), consists in a dielectric medium,
typically a thin plate, that mixes two input modes of the electromagnetic field.
If the dielectric medium is linear the modes are coupled linearly: if ai′ is the
amplitude of the i′-th mode on one side of the beam splitter, the amplitude ai of
the i-th mode on the other side is obtained through the relation:

ai′ =
∑
i

Ti′iai,

where the elements Ti′i of the linear transformation are determined by the prop-
erties of the dielectric medium and by the boundary conditions. Explicitly:(

a1

a2

)
=

(
t r
r t

)(
a1′

a2′

)
, (A.1)

where t and r denotes respectively the transmission and reflection coefficients.
Moreover, for a lossless beam splitter the energy conservation imposes the con-
straint:

|a2
1|+ |a2

2| = |a2
1′ |+ |a2

2′ |; (A.2)

through the matrix in Eqs. (A.1) and (A.2) it is straightforward to obtain the
relations:

|t2|+ |r2| = 1,

tr∗ + t∗r = 1 = 0;
(A.3)

the first equation states that there is no absorption in the beam splitter, the second
simply correlates the modes.

The quantum case is obtained directly by replacing the amplitudes with the
corresponding operators: (ai → âi, ai′ → âi′), while the transformation matrix
remains the same.
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Figure A.1: Schematic representation of a beam splitter.

We now want to obtain the effect of the beam splitter transformation on a
generic input state ρin. As we use the phase-space formulation of Quantum Me-
chanics, we are interested in the corresponding transformation on the characteris-
tic function of the input state. We start by expressing the density operator ρin in
terms of the characteristic function, Eq. (4.4), for the two modes case:

ρin =
1

π2

∫
C2

d2α1′d
2α2′χin (α1′ , α2′)D†1′ (α1′)D†2′ (α2′) ; (A.4)

the beam splitter transformation ρin → UBSρinU
†
BS thus corresponds to the trans-

formation UBSD†1′ (α1′)D†2′ (α2′)U
†
BS . As USB is a unitary operator, expanding

D†1′ (α1′) and D†2′ (α2′)U
†
BS in series and using the Baker-Campbell-Hausdorf for-

mula we obtain:

D†1′ (α1′)→ D†1 (tα1′)D†2 (rα2′) , D†2′ (α2′)→ D†1 (rα1′)D†2 (tα2′) ;

substituting these expressions in Eq. (A.4) we have:

ρout =
1

π2

∫
C2

d2α1′d
2α2′χin (α1′ , α2′)D†1 (α1′t+ α2′r)D†2 (α1′r + α2′t) .

Finally, considering the transformation rules ξ1 = α1′t+α2′r, ξ2 = α1′r+α2′t and
their hermitian conjugates, and nothing, looking at Eqs. (A.3,) that the Jacobian
of the transformation is equal to one, we obtain:

ρout =
1

π2

∫
C2

d2ξ1d2ξ2χin (t∗ξ1 + r∗ξ2, r
∗ξ1 + t∗ξ2)D†1 (ξ1)D†2 (ξ2) .

Hence applying the beam splitter transformation we obtain the following relation
between the characteristic functions of the input and output state:

χout (ξ1, ξ2) = χin (t∗ξ1 + r∗ξ2, r
∗ξ1 + t∗ξ2) .
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Finally, as it is always possible to take t real and choose an arbitrary phase for r,
the last relation can be put in the equivalent, final form:

χout (ξ1, ξ2) = χin (tξ1 + rξ2, rξ1 + tξ2) . (A.5)





APPENDIX B

Homodyne measurement in the characteristic

function description

In this appendix we describe the homodyne measurement in the characteristic func-
tion formalism. In particular, we calculate the expression of the density operator
and of its characteristic function for the reduced state that is obtained applying
the homodyne measurements on appropriately selected modes. For this Appendix
we refer to [85].

Let us consider the three-mode density operator ρ123 whose characteristic func-
tion is given by Eq. (6.2). In terms of Weyl expansion the density operator can be
written explicitly through Eq. (4.4) as:

ρ123 =
1

π3

∫
d2α1d

2α2d
2α3χ123(α1, α2, α3)D1(−α1)D2(−α2)D3(−α3).

Homodyne measurements reduce the three-mode state to a single-mode one. Sup-
pose that p1 = p̃ and x2 = x̃ are the results of the measurements of the quadratures
p1 and x2. If |p̃〉1 and |x̃〉2 are the projectors on the quadrature eigenvalues, the
state after the measurements will be:

ρ̃3 = P−1(p̃, x̃)Tr12 [|p̃〉 〈p̃| ⊗ |x̃〉 〈x̃| ρ123] ,

where P(p̃, x̃) = Tr3[ρ̃3] is the distribution function of the outcomes p̃ and x̃.
Using the relations:

〈p̃|D1(−α1)|p̃〉 = e−
ı
2
x1p1+ıx1p̃δ(p1),

〈x̃|D2(−α2)|x̃〉 = e−
ı
2
x2p2+ıp2x̃δ(x2),

it is possible to rewrite ρ̃3 in the following form:

ρ̃3 =
P−1(p̃, x̃)

(2π)3

∫
dx1dp2dx3dp3 e

ix1p̃−ix̃p2×

χ123(x1, 0; 0, p2;x3, p3)D3

(
−x3 + ip3√

2

)
;
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furthermore, remembering the expression of the density operator in the character-
istic function description, given by:

ρ̃3 =
1

2π

∫
dx3dp3 χ3(x3, p3)D3

(
−x3 + ip3√

2

)
,

and comparing the last two equations we obtain:

χ3(x3, p3) =
P−1(p̃, x̃)

(2π)2

∫
dx1dp2 eix1p̃−ix̃p2χ123(x1, 0; 0, p2;x3, p3) .

Finally, from this last relation and the definition P(p̃, x̃) = Tr3[ρ̃3] we obtain:

P(p̃, x̃) =
1

(2π)2

∫
dx1dp2 eix1p̃−ix̃p2χ123(x1, 0; 0, p2; 0, 0) . (B.1)



APPENDIX C

Coefficients of Quantum Brownian motion

master equation

In this Appendix we report the explicit expression of the coefficients of the master
equation Eq. (4.28) and, consequently, of its secular approximation (4.35) for the
ohmic spectral density of the form:

J(ω) = ωe−ω/ωc .

The explicit expressions are obtained through Eqs. (4.29). The function Ci(x)
and Si(x) are respectively the cosine integral and the sine integral [128]. The
coefficients are expressed in terms of the ratio x = ωc/ω0 and the dimensionless
time τ = ωct (see Sec. (4.6.2)).

The dissipation coefficient is temperature-independent:

γ(τ) =
α2ω0

2 (τ2 + 1)
×

×
(
−2x sin

(τ
x

)
+
(
τ2 + 1

)(
−i cosh

(
1

x

)(
Ci

(
−i+ τ

x

)
−

−Ci

(
i+ τ

x

)
+ log

(
i

x

)
− log

(
− i
x

))
−

− sinh

(
1

x

)(
Si

(
−i+ τ

x

)
+ Si

(
i+ τ

x

))))
. (C.1)
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High temperature limit

In the high-temperature limit the coefficients, Eq. (4.29), can be computed using
the approximation 2N(ω) + 1 ' 2KBT

~ω :

∆(τ) =
1

2
α2kBT

~

(
cosh

(
1

x

)(
−iCi

(
−i+ τ

x

)
+ iCi

(
i+ τ

x

)
+ π

)
−

− sinh

(
1

x

)(
Si

(
−i+ τ

x

)
+ Si

(
i+ τ

x

)))
, (C.2)

Π(τ) =
1

2
α2kBT

~

(
sinh

(
1

x

)(
Ci

(
−i+ τ

x

)
+ Ci

(
i+ τ

x

)
− Ci

(
i

x

)
−

−Ci

(
− i
x

))
+ cosh

(
1

x

)(
2Shi

(
1

x

)
−

−i
(

Si

(
−i+ τ

x

)
− Si

(
i+ τ

x

))))
. (C.3)

Zero temperature limit

In the zero temperature limit the coefficients Eq. (4.29) can be calculated using
the approximation 2N(ω) + 1 ' 1.

∆(τ) =
α2ω0

2 (τ2 + 1)

(
2τx cos

(τ
x

)
+
(
τ2 + 1

)(
i sinh

(
1

x

)(
Ci

(
−i+ τ

x

)
−Ci

(
i+ τ

x

)
+ log

(
i

x

)
− log

(
− i
x

))
+

+ cosh

(
1

x

)(
Si

(
−i+ τ

x

)
+ Si

(
i+ τ

x

))))
(C.4)

Π(τ) =
α2ω0

2 (τ2 + 1)

(
2τx sin

(τ
x

)
+
(
τ2 + 1

)(
cosh

(
1

x

)(
−Ci

(
−i+ τ

x

)
−

−Ci

(
i+ τ

x

)
+ Ci

(
i

x

)
+ Ci

(
− i
x

))
+ sinh

(
1

x

)(
−2Shi

(
1

x

)
+

+i

(
Si

(
−i+ τ

x

)
− Si

(
i+ τ

x

)))))
(C.5)



APPENDIX D

Non-Markovian teleportation fidelity in the

case of Gaussian TWBS resources

We now give the explicit expression of the teleportation fidelity when the resource
is a Twin Beam state.

From Eq. (6.1) we know how to compute the fidelity in terms of characteristic
functions of the input and output states; furthermore, as both the input coherence
state and the entangled resource are Gaussian, at every transformation on the char-
acteristic function corresponds a transformation on the corresponding covariance
matrix. Consequently we exploit this property to perform the calculation.

The starting point are the covariance matrix of the unknown input coherence
state (σin = 1

2I) and the covariance matrix of the TWBS resource, Eq. (4.13) and
Eqs. (4.14). From these expressions, through Eq. (6.6), the covariance matrix of
the output state is given by σout = σin + σ̃res + σexp, with:

σexp = −
(
g2R2 + 2W̄11 2W̄12

2W̄12 g2R2 + 2W̄22

)
, (D.1)

where W̄11, W̄12 and W̄22 are the coefficients (Eq. (4.32)) expressing the state
evolution described by the Quantum Brownian Motion master equation (4.28), g
is the gain of the classical communication channel and R is the reflectivity of the
beam splitters. Furthermore:

σ̃res=

(
−1

2e
−Γ(t)

((
eΓ(t)g2T 2 + 1

)
cosh(2r) + 2e

Γ(t)
2 gT cos(φ− tω0) sinh(2r)

)
0

0

−1
2e
−Γ(t)

((
eΓ(t)g2T 2 + 1

)
cosh(2r) + 2e

Γ(t)
2 gT cos(φ− tω0) sinh(2r)

)) ,
(D.2)

where T is the transmissivity of the beam splitters and Γ(t) is the master equa-
tion coefficient Eq. (4.31). Finally, the covariance matrix of the Gaussian state
appearing in the Eq. (6.1) is σfin = σin + σout.
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It can be shown [129] that, when the resource is a Gaussian state, the telepor-
tation fidelity, Eq. (6.1), has a simple expression in terms of the covariance matrix
as:

FTWBS =
1√

detσ
; (D.3)

consequently, through σfin, this last expression and Eq. (D.3), we obtain:

F (r, φ) =
1√

−4W̄ 2
12 +

1

4
e2Γ(τ)Λ11Λ22

, (D.4)

with:

Λii = cosh(2r) + eΓ(τ)
(
2 + 4W̄ii (D.5)

+2
R2

T 2
+ cosh(2r)

)
+ 2e

Γ(τ)
2 cos

(
φ− τ

x

)
sinh(2r) Λii = 1, 2.

Let us analyse the behaviour of FTWBS Eq. (D.3) as a function of the squeezing
phase φ, with the other variables fixed. The dependence of the above fidelity on φ
appears only in the Λii terms (the argument of the cosine is φ− τ

x); it is easy to show
that the minimization of these terms (and of their product) and, consequently, the
maximization of the fidelity, are obtained by letting φ to satisfy the simple relation:

φ = π +
τ

x
(D.6)

At variance with the Markovian case, with which the relation Eq. (D.6) is in
agreement in the limit x� 1 (φ = π), the optimal phase is time-dependent.
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