
Università degli Studi di Salerno

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

(Ciclo XIV - Nuova Serie)

Tesi di Dottorato in Informatica

The Role of Distributed Computing
in Big Data Science: Case Studies
in Forensics and Bioinformatics

Candidato:

Gianluca Roscigno

Matr.: 8880900108

Tutor:

Prof. Giuseppe Cattaneo

Coordinatore: Prof. Gennaro Costagliola

A.A. 2014/2015

To my wonderful family

�In theory, theory and practice are the same.

In practice, they are not.�

Albert Einstein

Acknowledgements

First of all I would like to thank my tutor Prof. Giuseppe Cattaneo

for taking care of me for all these years of study, and for the active

collaboration during my research activities. It has been an honor to

be his Ph.D. student. I would also like to thank him for giving me

the opportunity to work in his research group.

I would like to thank Dr. Umberto Ferraro Petrillo of the Department

of Statistical Sciences of University of Rome - La Sapienza for the

active collaboration during my research activities.

I would also like to thank Prof. Ra�ele Giancarlo of the Department

of Mathematics and Computer Science of University of Palermo for

having assisted my research in the Bioinformatics �eld.

The activities related to Source Camera Identi�cation (SCI) project

are a joint work with the �Centro Nazionale per il Contrasto alla

Pedopornogra�a Online� (CNCPO), part of the �Dipartimento della

Pubblica Sicurezza� within the Italian Ministry of Interior.

I would like to thank the Department of Statistical Sciences of Uni-

versity of Rome - La Sapienza for computing time on the TeraStat

cluster and for other supercomputing resources.

Special thanks also goes out to the students and research scientists of

the laboratory �Benchmarking & Algorithm Engineering� of the Prof.

G. Cattaneo.

I would also like to thank my colleagues of studies, Antonio and Ar-

cangelo, and the Ph.D. School Director, Prof. Gennaro Costagliola.

Lastly, I would like to thank my family for all their love and encour-

agement. Thank you.

Abstract

The era of Big Data is leading the generation of large amounts of data,

which require storage and analysis capabilities that can be only ad-

dressed by distributed computing systems. To facilitate large-scale

distributed computing, many programming paradigms and frame-

works have been proposed, such as MapReduce and Apache Hadoop,

which transparently address some issues of distributed systems and

hide most of their technical details.

Hadoop is currently the most popular and mature framework sup-

porting the MapReduce paradigm, and it is widely used to store and

process Big Data using a cluster of computers. The solutions such

as Hadoop are attractive, since they simplify the �transformation�

of an application from non-parallel to the distributed one by means

of general utilities and without many skills. However, without any

algorithm engineering activity, some target applications are not alto-

gether fast and e�cient, and they can su�er from several problems

and drawbacks when are executed on a distributed system. In fact, a

distributed implementation is a necessary but not su�cient condition

to obtain remarkable performance with respect to a non-parallel coun-

terpart. Therefore, it is required to assess how distributed solutions

are run on a Hadoop cluster, and/or how their performance can be

improved to reduce resources consumption and completion times.

In this dissertation, we will show how Hadoop-based implementations

can be enhanced by using carefully algorithm engineering activity,

tuning, pro�ling and code improvements. It is also analyzed how to

achieve these goals by working on some critical points, such as: data

local computation, input split size, number and granularity of tasks,

cluster con�guration, input/output representation, etc.

iv

In particular, to address these issues, we choose some case studies

coming from two research areas where the amount of data is rapidly

increasing, namely, Digital Image Forensics and Bioinformatics. We

mainly describe full-�edged implementations to show how to design,

engineer, improve and evaluate Hadoop-based solutions for Source

Camera Identi�cation problem, i.e., recognizing the camera used for

taking a given digital image, adopting the algorithm by Fridrich et al.,

and for two of the main problems in Bioinformatics, i.e., alignment-

free sequence comparison and extraction of k-mer cumulative or local

statistics.

The results achieved by our improved implementations show that they

are substantially faster than the non-parallel counterparts, and re-

markably faster than the corresponding Hadoop-based naive imple-

mentations. In some cases, for example, our solution for k-mer statis-

tics is approximately 30× faster than our Hadoop-based naive im-

plementation, and about 40× faster than an analogous tool build on

Hadoop. In addition, our applications are also scalable, i.e., execution

times are (approximately) halved by doubling the computing units.

Indeed, algorithm engineering activities based on the implementation

of smart improvements and supported by careful pro�ling and tun-

ing may lead to a much better experimental performance avoiding

potential problems.

We also highlight how the proposed solutions, tips, tricks and insights

can be used in other research areas and problems.

Although Hadoop simpli�es some tasks of the distributed environ-

ments, we must thoroughly know it to achieve remarkable perfor-

mance. It is not enough to be an expert of the application domain

to build Hadop-based implementations, indeed, in order to achieve

good performance, an expert of distributed systems, algorithm engi-

neering, tuning, pro�ling, etc. is also required. Therefore, the best

performance depend heavily on the cooperation degree between the

domain expert and the distributed algorithm engineer.

v

Sommario

L'era dei �Big Data� sta dando vita alla generazione di grandi quan-

tità di dati, che richiedono capacità di memorizzazione e di analisi

le quali possono essere indirizzate solo dai sistemi di computazione

distribuita. Per facilitare la computazione distribuita su larga scala,

sono stati proposti molti paradigmi di programmazione e soluzioni,

come MapReduce e Apache Hadoop, che in modo trasparente risolvo-

no alcuni problemi relativi ai sistemi distribuiti e nascondono molti

dei loro dettagli tecnici.

Hadoop è attualmente il più popolare e maturo framework che sup-

porta il paradigma MapReduce, ed è ampiamente usato per memo-

rizzare e processare grosse quantità di dati adoperando un insieme

di computer. Le soluzioni come Hadoop sono attraenti poiché sem-

pli�cano la �trasformazione� di un'applicazione non parallela a quella

distribuita, adoperando strumenti generali e senza richiedere molte

competenze. Tuttavia, senza qualsiasi attività di ingegnerizzazione

degli algoritmi, alcune applicazioni realizzate non sono del tutto velo-

ci ed e�cienti, e possono so�rire di diversi problemi ed inconvenienti

quando sono eseguite su un sistema distribuito. Infatti, un'implemen-

tazione distribuita è una condizione necessaria ma non su�ciente per

ottenere prestazioni notevoli rispetto ad una controparte non paralle-

la. Quindi, è necessario valutare come le soluzioni distribuite vengono

eseguite su un cluster Hadoop, e/o come le loro prestazioni posso-

no essere migliorate per ridurre il consumo delle risorse e i tempi di

completamento.

In questa tesi mostreremo come le implementazioni basate su Hadoop

possono essere migliorate utilizzando attentamente le attività di in-

gegnerizzazione degli algoritmi, di messa a punto, di pro�lazione e i

vi

miglioramenti al codice. È anche analizzato come è possibile raggiun-

gere questi obiettivi lavorando su alcuni punti cruciali, tali come: la

computazione locale ai dati, la dimensione della partizione di input,

il numero e la granularità dei sotto-problemi, la con�gurazione del

cluster, la rappresentazione dell'input/output, etc.

In particolare, per indirizzare queste questioni, noi scegliamo alcuni

casi di studio provenienti da due aree di ricerca dove il problema del

grande ammontare dei dati sta crescendo, ossia Digital Image Foren-

sics e Bioinformatica. Noi descriviamo principalmente vere e proprie

implementazioni per mostrare come progettare, ingegnerizzare, mi-

gliorare e valutare soluzioni basate su Hadoop per il problema della

Source Camera Identi�cation, cioè il riconoscimento della fotocamera

usata per scattare una data immagine digitale, utilizzando l'algoritmo

di Fridrich et al., e per due dei principali problemi in Bioinformatica,

ovverosia il confronto senza allineamento delle sequenze e l'estrazione

delle statistiche globali o locali dei k-meri.

I risultati ottenuti dalle nostre implementazioni migliorate mostrano

che esse sono sostanzialmente più veloci delle corrispondenti applica-

zioni non parallele, e notevolmente più veloci rispetto alle corrispon-

denti semplici implementazioni basate su Hadoop. In alcuni casi, per

esempio, la nostra soluzione per le statistiche dei k-meri è all'incir-

ca 30 volte più veloce rispetto alla nostra semplice implementazione

basata su Hadoop, e circa 40 volte più veloce rispetto ad un analogo

strumento costruito su Hadoop. Inoltre, le nostre applicazioni sono

anche scalabili, ossia i tempi d'esecuzione sono (approssimativamen-

te) dimezzati quando si raddoppiano le unità di computazione. In-

fatti, le attività di ingegnerizzazione degli algoritmi basate sull'imple-

mentazione di miglioramenti astuti, e coadiuvate da accurate attività

di pro�lazione e messa a punto, possono portare a migliori risultati

sperimentali, evitando possibili problemi.

Noi anche evidenziamo come i miglioramenti, i consigli, gli stratagem-

mi e gli approfondimenti proposti possono essere adoperatati in altre

vii

aree di ricerca e problemi.

Sebbene Hadoop sempli�ca alcune attività degli ambienti distribui-

ti, dobbiamo accuratamente conoscerlo per raggiungere prestazioni

degne di nota. Non è su�ciente essere un esperto del dominio ap-

plicativo per costruire implementazioni basate su Hadoop, infatti, al

�ne di ottenere buone prestazioni, un esperto di sistemi distribuiti,

d'ingegneria degli algoritmi, di messa a punto, di pro�lazione, etc. è

anche richiesto. Quindi, le migliori prestazioni dipendono pesante-

mente dal grado di cooperazione tra l'esperto di dominio e l'ingegnere

degli algoritmi distribuiti.

viii

Contents

Contents ix

List of Figures xiv

List of Tables xviii

1 Introduction 1

1.1 Big Data . 2

1.1.1 Real Life Scenarios . 3

1.2 Overview on Big Data Computing 4

1.3 Motivation and Main Objectives of the Thesis 7

1.3.1 Benchmark Problems, Methods and Results 8

1.4 Organization of the Thesis . 12

2 Parallel and Distributed Computing 14

2.1 State of the Art . 14

2.1.1 Flynn's Taxonomy . 16

2.1.2 Parallel Systems with Shared-Memory versus Distributed

Systems . 18

2.2 History of Parallel and Distributed Systems 20

2.2.1 Scienti�c High Performance Computing 26

2.2.2 Explicit and Implicit Parallelism 28

2.3 Storing, Processing and Analyzing Big Data 29

2.4 Emerging Distributed Architectures and Solutions 31

2.4.1 Cloud Computing . 32

ix

CONTENTS

2.4.2 Grid Computing . 34

2.4.3 Comparisons between Cloud and Grid Computing 36

2.4.4 Mobile and Ubiquitous Computing 37

2.4.5 Current Technologies . 37

2.5 Performance Measurement in Parallel and Distributed Environments 42

2.5.1 Speed up . 43

2.5.2 Size up . 44

2.5.3 How to Improve the Performance 47

3 Apache Hadoop Framework 48

3.1 MapReduce Paradigm . 48

3.2 Overview on Hadoop . 52

3.2.1 The First Hadoop Version 54

3.2.2 The Newer Hadoop Version 54

3.3 Hadoop Distributed File System (HDFS) 56

3.3.1 HDFS Architecture . 57

3.3.2 HDFS Main Features . 58

3.4 Lifetime of a Hadoop MapReduce Application 60

3.4.1 Splitter and Records Reader 61

3.5 Hadoop Main Features . 62

3.5.1 The Future of Hadoop . 66

3.6 Hadoop Combiner versus In-Mapper Local Aggregation 67

3.7 Pro�ling, Tuning and Improving Hadoop Applications 68

4 Processing Big Data in Digital Image Forensics 70

4.1 Digital Forensics and Big Data . 70

4.2 Analyzing Massive Datasets of Images 74

4.2.1 Our Contribution . 75

4.3 Source Camera Identi�cation Problem 78

4.3.1 The Algorithm by Fridrich et al. 79

4.3.2 Reference Implementation 81

4.4 Source Camera Identi�cation on Hadoop 82

4.4.1 The Algorithm by Fridrich et al. on Hadoop 82

x

CONTENTS

4.4.1.1 Setup: Loading Images 83

4.4.1.2 Step I: Calculating Reference Patterns 83

4.4.1.3 Step II: Calculating Correlation Indices 84

4.4.1.4 Step III: Recognition System Calibration 88

4.4.1.5 Step IV: Performing Source Camera Identi�cation 88

4.4.2 Experimental Analysis . 90

4.4.2.1 Performance Metrics 90

4.4.2.2 Dataset . 92

4.4.2.3 Experimental Settings 92

4.4.2.4 Preliminary Experimental Results 94

4.4.3 Pro�ling Activities for Detecting Bottlenecks 99

4.4.4 Code Improvements . 104

4.4.4.1 Excessive Network Tra�c 105

4.4.4.2 Poor CPU Usage 106

4.4.4.3 Bad Intermediate-data Partitioning Strategy . . . 106

4.4.5 Advanced Experimental Analysis 109

4.4.5.1 Speed up Analysis 112

4.5 Final Remarks . 115

5 Processing Big Data in Bioinformatics 117

5.1 Biology and Big Data . 117

5.1.1 A Brief Overview about the Sequence Analysis 120

5.1.2 Applications for Big Data Analysis in Bioinformatics . . . 125

5.2 Selected Benchmark Problems . 132

5.2.1 Alignment-free Sequence Comparison Problem 133

5.2.2 K-mer Statistics Problem 134

5.3 A Distributed Framework for the Development of Alignment-free

Sequence Comparison Methods 134

5.3.1 Alignment-free Sequence Comparison Methods 136

5.3.1.1 Methods based on Exact-Word Counts 138

5.3.1.2 Methods based on Inexact-Word Counts 143

5.3.2 Alignment-free Sequence Comparison on a Single-Core . . 146

5.3.2.1 Stand-alone Implementation 146

xi

CONTENTS

5.3.2.2 Datasets . 147

5.3.2.3 Preliminary Experimental Results 149

5.3.3 Alignment-free Sequence Comparison on Hadoop 152

5.3.3.1 Improvements . 155

5.3.4 Experimental Analysis on Hadoop 157

5.3.4.1 Experimental Settings 157

5.3.4.2 Experimental Results 157

5.3.5 Remarks . 161

5.4 K-mer Statistics on Hadoop . 162

5.4.1 A Naive Solution for K-mer Statistics on Hadoop 165

5.4.2 KCH: Fast and E�cient Solution for K-mer Statistics on

Hadoop . 167

5.4.2.1 E�cient FASTA Input Management 173

5.4.2.2 Fast Local K-mers Aggregation 174

5.4.2.3 Two-levels K-mer Counts Aggregation 175

5.4.3 Experimental Analysis . 176

5.4.3.1 Datasets . 176

5.4.3.2 Experimental Settings 178

5.4.3.3 Tuning Phase . 180

5.4.3.4 Experimental Results 185

5.5 Final Remarks . 199

6 Conclusion and Future Works 201

6.1 Outcomes . 201

6.1.1 Results about Source Camera Identi�cation on

Hadoop . 202

6.1.2 Results about Alignment-free Sequence Comparison

on Hadoop . 203

6.1.3 Results about K-mers Statistics on Hadoop 204

6.1.4 General Remarks . 205

6.2 Future Directions . 207

Appendices 210

xii

CONTENTS

A Bioinformatics 211

A.1 FASTA File Format . 211

A.2 State of the Art on Algorithms Collecting K-mer Statistics 212

A.2.1 Algorithms for Exact Cumulative Statistics 220

A.2.1.1 Tallymer . 221

A.2.1.2 Meryl . 221

A.2.1.3 Jelly�sh . 221

A.2.1.4 KAnalyze . 223

A.2.1.5 MSPKmerCounter 223

A.2.1.6 KMC . 223

A.2.1.7 DSK . 225

A.2.1.8 BioPig . 225

A.3 Comparison between KCH and Other Solutions for CS 226

B Publications during the Ph.D. 232

B.1 Personal Publications . 232

B.2 Submitted or Accepted Papers . 234

References 235

Nomenclature 271

xiii

List of Figures

2.1 The NIST cloud computing de�nitions 33

2.2 Overview of Grids and Clouds Computing 37

2.3 An example of Speed up analysis 44

2.4 An example of Size up analysis 46

3.1 An overview of a MapReduce execution. 51

3.2 The software architectural di�erence between Hadoop v1.x and v2.x. 55

3.3 An overview of the YARN services in Hadoop. 56

3.4 Hadoop InputFormat class hierarchy. 63

3.5 Example of logical records and HDFS blocks for a text input �le

using TextInputFormat class. 63

4.1 The components of the noise in a digital image. 79

4.2 Conceptual view of our distributed algorithm for SCI when running

the Step I on a cluster. 86

4.3 An enrollment image from ISO 15739. 93

4.4 An example of training and testing images from the dataset of

Nikon D90 cameras. 93

4.5 Average CPU usage of slave nodes in Step I of HSCI. 97

4.6 Average incoming network throughput in Step I of HSCI. 97

4.7 Overview of map and reduce tasks launched during an execution

of Step I of HSCI_Seq. 101

4.8 CPU usage of slave1 in Step I of HSCI_Seq. 102

4.9 Incoming network throughput of slave1 in Step I of HSCI_Seq. . . 103

4.10 CPU usage of slave1 in Step II of HSCI_Seq. 104

xiv

LIST OF FIGURES

4.11 Focus on the behavior of a slave node when running a map task

during Step I of HSCI_Sum. 107

4.12 Focus on the behavior of a slave node when running a map task

during Step II of HSCI_PC. 108

4.13 Execution times of the di�erent steps of the variants of the Fridrich

et al. algorithm on a Hadoop cluster. 110

4.14 CPU usage of slave1 in Step II of HSCI_PC. 111

4.15 Overview of map and reduce tasks launched during an execution

of Step I of HSCI_All. 112

4.16 Speed up of HSCI_All compared to SCI when running on a cluster

of increasing size. 114

4.17 E�ciency of HSCI_All compared to SCI when running on a cluster

of increasing size. 115

5.1 The taxonomy of 15 species obtained by the NCBI. 125

5.2 Hierarchical Clustering of the same 15 species. 126

5.3 The Java Interface DissimilarityMeasure used in our framework

to manage a dissimilarity measure for alignment-free sequence com-

parison. 147

5.4 The Class Diagram related to the dissimilarity measures initially

implemented in our framework for alignment-free sequence com-

parison. 148

5.5 Overall CPU time required to evaluate the dissimilarities between

randomly-generated sequences in collections of increasing size us-

ing several di�erent types of dissimilarities. 150

5.6 Total memory used when running algorithms for evaluating the

dissimilarities between di�erent collection of randomly-generated

sequences with increasing size. 151

5.7 Elapsed times for evaluating the Squared Euclidean dissimilarity

measure between 20 di�erent sequences with k = 10 and an in-

creasing number of concurrent map/reduce tasks. 158

xv

LIST OF FIGURES

5.8 CPU usage pro�le of a slave node of the Hadoop cluster used for

evaluating the Squared Euclidean dissimilarity between 20 di�erent

sequences with k = 10 and 8 concurrent map/reduce tasks on each

slave node. 159

5.9 Elapsed times for evaluating the Squared Euclidean dissimilarity

between 20 di�erent sequences using 32 concurrent map/reduce

tasks and increasing values of k. 161

5.10 Input and output pairs of a MapReduce naive algorithm designed

to compute k-mer statistics for both Local Statistics (LS) and Cu-

mulative Statistics (CS) with Hadoop. 166

5.11 Input and output pairs of KCH algorithm designed to compute k-

mer statistics for both Local Statistics (LS) and Cumulative Statis-

tics (CS) with Hadoop. 170

5.12 Physical cluster hardware used in KCH experiments. 179

5.13 A schematic representation of a cluster for the experiments on KCH. 181

5.14 Comparison of KCH versus Hadoop-based naive solutions for k = 15. 186

5.15 Comparison of KCH versus Hadoop-based naive solutions for k = 31. 187

5.16 Comparison of KCH versus BioPig. 188

5.17 Comparison between di�erent Hadoop-based InputFormat solu-

tions to process FASTA �les. 189

5.18 Scalability of KCH for LS and k = 3. 191

5.19 Scalability of KCH for LS and k = 7. 191

5.20 Scalability of KCH for LS and k = 15. 192

5.21 Execution times of KCH on LS for the all datasets and for k =

3, 7, 15 using 32 total workers. 192

5.22 Scalability of KCH for CS and k = 3. 193

5.23 Scalability of KCH for CS and k = 7. 194

5.24 Scalability of KCH for CS and k = 15. 194

5.25 Scalability of KCH for CS and k = 31. 195

5.26 Execution times of KCH on CS for the all datasets and for k =

3, 7, 15, 31 using 32 total workers. 195

5.27 Scalability of KCH for CS. 196

5.28 Speed up of KCH for CS. 197

xvi

LIST OF FIGURES

5.29 Scalability of KCH with respect to KMC2 for CS. 199

A.1 An example of FASTA �le with two multi-lines sequences. 212

A.2 Scalability of KCH with respect to KMC2 for CS. 228

A.3 Scalability of KCH with respect to DSK for CS. 229

A.4 Scalability of KCH with respect to Jelly�sh for CS. 230

A.5 Scalability of KCH with respect to KAnalyze for CS. 231

xvii

List of Tables

4.1 Overview of our Hadoop-based implementation of the Fridrich et

al. algorithm. 83

4.2 Execution times of di�erent distributed variants of the Fridrich et

al. algorithm on a Hadoop cluster. 95

4.3 Average number of images processed in a minute of the di�erent

variants of the Fridrich et al. algorithm on a Hadoop cluster. . . . 96

4.4 Map and reduce timing during Step I of HSCI_Seq. 100

4.5 Execution times of the di�erent variants of the Fridrich et al. al-

gorithm on a Hadoop cluster compared with the sequential coun-

terpart run on a single node. 111

4.6 Running times of the HSCI_All algorithm on a Hadoop cluster of

increasing size. 114

5.1 Information collected when evaluating the dissimilarities between

20 di�erent sequences using values of k increasing up to 15. 162

5.2 Execution times of KCH when run on dataset of size CS_8GB with

k = 31, while using an increasing number of workers per node and

of reduce tasks. 184

5.3 Execution times of KCH when run on dataset of size CS_128GB

with k = 31, while using an increasing number of workers per

node and of reduce tasks. 184

A.1 Summary of the main features of each of the algorithms designed

for the collection of k-mer statistics. 214

xviii

LIST OF TABLES

A.2 A synopsis of the experimental setup used to evaluate the algo-

rithms listed in Table A.1. 217

xix

List of Algorithms

1 Pseudo-code of HSCI for Calculating Reference Patterns (Step I) . 85

2 Pseudo-code of HSCI for Calculating Correlation Indices (Step II) 87

3 Pseudo-code of HSCI for Recognition System Calibration (Step III) 89

4 Pseudo-code of HSCI for Source Camera Identi�cation (Step IV) . 90

5 Pseudo-code of KCH Mapper for the case of CS. 171

6 Pseudo-code of KCH Reducer for the case of CS. 172

xx

Chapter 1

Introduction

Nowadays, technologies provide to decision-makers the ability to collect a huge

amount of data, making possible to deal with problems that, only a few years ago,

were out of their reach. This trend is shown by the spread of terms like petabytes

(PB)1, exabytes (EB)2 and zettabytes (ZB)3 (see [35]), which are quickly replacing

terms like megabytes (MB)4, gigabytes (GB)5 and terabytes (TB)6 to denote

a large amount of data. Such a wealth of data, called Big Data, requires the

development of tools and methodologies with a high scalability degree and able

to process virtually unbounded amounts of data.

In this dissertation, with the term scalability we indicate that the execution

times of an application are (approximately) halved by doubling the computing

units (e.g., processors or computers).

In addition, the drop in hardware cost has allowed to put together clusters

of commodity computers with huge computational power and storage, which are

used to save and process Big Data in distributed manner (see Chapter 2 for

details).

1One petabyte (PB) is approximately 1015 bytes of information.
2One exabyte (EB) is approximately 1018 bytes of information.
3One zettabyte (ZB) is approximately 1021 bytes of information.
4One megabyte (MB) is approximately 106 bytes of information.
5One gigabyte (GB) is approximately 109 bytes of information.
6One terabyte (TB) is approximately 1012 bytes of information.

1

1. INTRODUCTION

1.1 Big Data

Short et al. [248] estimated that enterprise servers processed 9.57 ZB of data

globally in 2008, that is 12 GB of information daily for the average worker, or

about 3 TB of information per worker per year. The companies in the world on

average processed 63 TB of information in 2008. In 2012 the 90% data in the

world were created approximately in 2011-2012 years ([245, 210]). Since 2012,

the use of the word Big Data in the USA has increased of 1, 211% on the Internet

[109]. According to Cisco Systems company [68], the global mobile data tra�c

reached 2.5 EB per month at the end of 2014, up from 1.5 EB per month at the

end of 2013. In addition, one EB of tra�c traversed the global Internet in 2000,

and in 2014 mobile networks carried nearly 30 EB of tra�c. In fact, to manage

these increasing data, the US NSA built a large datacenter at Blu�dale (Utah),

capable of storing yottabytes (YB)1 of data [31].

The challenges of the era of Big Data are represented by three V s, i.e., Volume

(large size of data), Velocity (fast data creation) and Variety (heterogeneous

structured and unstructured sources of data). Thanks to a dramatic increase

in the volume, velocity and variety of data, the term Big Data has emerged as

new research area. In addition to the three V s to the Big Data de�nition, some

authors (e.g., [271]) also introduce the Veracity, that is an indication of data

integrity and the ability for an organization to trust the data, and be able to

con�dently use them to make crucial decisions.

Although the term �big� in Big Data implies such, it is not simply de�ned

by volume, but it also is about complexity [271]. Many small datasets, that are

considered Big Data, not consume much physical space, but they are particularly

complex in nature to analyze. At the same time, there could be large datasets

that require signi�cant physical space, but they may not be complex enough to

be processed.

1One yottabyte (YB) is approximately 1024 bytes of information.

2

1. INTRODUCTION

1.1.1 Real Life Scenarios

Nowadays science and industry are undergoing a profound transformation. In

fact, large-scale and di�erent datasets present a huge opportunity for data-driven

decision making. Besides the sheer volume of data, they come in a variety of data

formats, origin, quality, and so forth. In fact, Big Data comes from heterogeneous

data sources, ranging from structured data (such as the traditional databases) to

unstructured data, such as images, audio, video, textual information obtained

through web scraper, email, telephone conversations, surveys, readings from sen-

sors, transactions, complex simulations, data taken from Online Social Networks

(OSNs) or blogs, scienti�c experimental data, user statistics, and so on.

Some examples of areas, where the Big Data problem is spreading, are: scien-

ti�c measurements and experiments (astronomy, physics, genetics, bioinformat-

ics, etc.), peer-to-peer communication (text messaging, chat lines, digital phone

calls, etc.), broadcasting (news, blogs, etc.), Online Social Networks (Facebook,

Twitter, etc.), authorship (digital books, magazines, Web pages, images, videos,

etc.), administrative (enterprise or government documents, legal and �nancial in-

formation, etc.), business data (e-commerce, stock markets, business intelligence,

marketing, advertising, etc.).

Therefore, not only computer scientists, but also bioinformaticians, physi-

cists, sociologists, economists, political scientists, mathematicians, etc. require

to storage, access and process large quantities of data produced during everyday

activities.

In particular, an area where there is a large amount of data is the scienti�c

�eld. According to Guarino in [129], Data Science is an emerging �eld basically

growing at the intersection between statistical techniques and machine learn-

ing, completing this toolbox with domain speci�c knowledge, having as fuel big

datasets. Hal Varian, Google's Chief Economist, in [276] has said: �Data Science

is the ability to take data - to be able to understand it, to process it, to extract

value from it, to visualize it, to communicate it�.

3

1. INTRODUCTION

1.2 Overview on Big Data Computing

As mentioned in the previous section, the term Big Data refers to collections of

large datasets, which are so large to require highly specialized tools implementing

di�erent approaches with respect to traditional ones. The four V s put pressure on

developers to become comfortable with new programming paradigms. In fact, ad

hoc solutions are required to capture, store, manage, share, analyze and visualize

huge amount of data.

A single computer cannot store a very large amount of data. In fact, a com-

puter would take a long time just to read these data assuming that it has fast

access to the �les. The solution is to divide storage and work on multiple ma-

chines.

In the Big Data era, storing huge amounts data is not the biggest challenge.

In fact, e�cient parallel and distributed computations are necessary to meet

the scalability and performance requirements required by analyses on Big Data.

The goal of an e�cient implementation is to reduce resources consumption and

completion time as much as possible. Indeed, a good distributed algorithm tries to

e�ciently exploit, at each instant of time, the set of hardware resources available.

Large-scale data analysis tasks need to run on a cluster (or group) of comput-

ers, splitting the input dataset across the di�erent nodes. Many problems working

on Big Data can individually act on each data item, that is, they are embarrass-

ingly parallel, i.e., little or no e�ort is needed to split the problem into a number

of independent subproblems that can be simultaneously solved. For example, in

some cases there could be little or no dependency between the subproblems.

Some applications operating on Big Data only spend a little bit of CPU time

on each data item, but they work with an enormous number of data items. On

the other side, other applications may spend large amount of CPU time on each

data item. In any case, processing each data item in parallel can reduce the �nal

response time.

Therefore, Big Data requires a massive computing power and dedicated stor-

age system. In the last decade we have seen a huge deployment of cheap computers

clusters to run data analytics workloads. Some applications that require months,

with about 1, 000 commodity computers networked could require a few hours.

4

1. INTRODUCTION

A programmer could develop an application working on Big Data using the

traditional parallel programming constructs for multi-processor systems. In fact,

these systems has always been considered a good solution to reduce computational

time, but using a parallel implementation does not imply shorter execution times.

Whereas shared-memory architectures can led to e�cient implementations on a

rather limited number of processors, distributed architectures require more spe-

ci�c solutions (mapping between algorithm and architecture) because signi�cant

overheads may be introduced that could compromise the e�ciency of the entire

solution. Unfortunately the shared-memory approach is not very scalable, e.g.,

doubling the number of working processors, the execution times of an application

not are always halved. In fact, these architectures can present many bottle-

necks (due to bus congestion), therefore this approach is suited only for a limited

amount of processors. For instance in this architecture all processors can share

a single storage saturating the Input/Output (I/O) bus capacity and request-

ing the use of locking strategies to protect shared-memory areas. In many Big

Data applications, I/O is concurrently performed by all processes, which leads

to I/O bursts [89]. This causes resource contention and substantial variability of

I/O performance, which signi�cantly impacts the overall application performance.

On the other hand, distributed architectures are inherently more scalable because

each computer can access local resources without racing conditions with others.

This can radically improve the architecture scalability with a large number of

nodes. In order to get e�cient solutions, the implementation strategy should

carefully consider the underlying architecture exploiting data locality and reduc-

ing inter-node communications. There are some issues to address in distributed

programming, such as: a lot of programming work, communication, coordination,

managing and working with very large �les, recovery from failure, status report-

ing, debugging, improvements, locality, scalability. Scaling out1 using a cluster

of commodity machines could be better for some Big Data analyses than scaling

up2 by adding more resources to a single server.

A computational strategy that is becoming popular for processing Big Data

1Scale out (or scale horizontally) means to add more nodes (i.e., computers) to a distributed
system.

2Scale up (or scale vertically) means to add resources to a single node in a system (e.g.,
adding CPUs or memory to a single computer).

5

1. INTRODUCTION

in distributed environments requires to break down the size of a problem into

a (possibly large) number of smaller subproblems, to be solved using MapRe-

duce (MR) paradigm ([81, 82]). This approach is fostered by the development

of MapReduce distributed computing frameworks allowing to develop in a rela-

tively simple way and without dealing with some of the most intricate aspects

of distributed programming, such as inter-process data communication. Many

problems on Big Data �t a MapReduce paradigm, and they can be solved using

modern distributed middleware solutions which address many issues. In fact,

adopting a MapReduce framework (e.g., Apache Hadoop [14]), a developer can

reduce the e�ort required to produce these distributed implementations operating

on Big Data. In addition, an important element in all Big Data applications is

the requirement for a scalable and distributed �le system where input and output

data can be e�ciently stored and retrieved.

Nowadays, there is currently considerable enthusiasm around the MapReduce

paradigm for large-scale data analysis. In fact, the sheer volume of data to process

has led to interest in distributed processing on commodity hardware resources.

For example, Google uses its MapReduce framework to process over 20 PB of

data per day [82]. Clearly, large clusters of commodity computers are the most

cost-e�ective way to process exabytes, petabytes, or terabytes of data.

Data Volume in Real Jobs Appuswamy et al. in [21] have measured that

the majority of real world analytic jobs process less than 100 GB of input. For

example, at least two analytics production clusters at Microsoft and Yahoo have

median job input sizes under 14 GB ([95, 235]). In particular, 174, 000 jobs

submitted to a production analytics Microsoft cluster in a single month in 2011

were analyzed by the authors. The median job input dataset size was less than

14 GB, and 80% of the jobs had an input size under 1 TB. Although there are

jobs operating on terabytes and petabytes, these still are the minority.

In addition, Ananthanarayanan et al. in [9] show that at least 90% of the

Facebook jobs have input sizes under 100 GB. Chen et al. in [62] have studied

some Hadoop workloads for Facebook and Cloudera customers. They show that

a very small minority of jobs achieves terabyte scale or larger, and most jobs have

input, intermediate, and output �le sizes in the megabytes to gigabytes range.

6

1. INTRODUCTION

Although some applications should be fed with large amounts of data, they

still work on few data, because, generally, they are still too ine�cient to manage

them.

1.3 Motivation and Main Objectives of the Thesis

Nowadays, whereas Big Data are rapidly generated, they must also be analyzed

in short amount of time exploiting distributed computing. The Big Data era pro-

vides new challenges developing algorithms for distributed systems. The spread

of commodity computers clusters has allowed to design parallel implementations

adopting new programming paradigms (e.g., MapReduce) and distributed com-

puting frameworks (e.g., Apache Hadoop). In fact, many organizations are using

Hadoop for developing applications working on Big Data exploiting clusters of

computers. Methodological insights into the design, engineering and experimen-

tation of scalable algorithms for Hadoop-based distributed systems are required

to improve the execution times of the analyses on Big Data.

Hadoop could be at hand, however, to get acceptable results, much engineering

work should be done to improve an algorithm in each step of the execution.

One may even get the feeling that, with the use of sophisticated software like

Hadoop, it is very easy to �transform� (�porting�) a non-parallel program into

a distributed one, with immediate performance gains. Although this may be

the case, fundamental question relating to how well those transformations use

the computational resources available is, at best, must be addressed. Tuning

and pro�ling steps, in addition to the engineering and experimentations phases,

are required in a Hadoop-based application. Therefore, a deep knowledge of the

framework also should be addressed before to implement a distributed code.

In 2002 Moret [201] has said that in the last 30 years have seen enormous

progress in the design of algorithms. However, comparatively little of it has been

put into practice, even within academic laboratories. Indeed, the gap between

theory and practice has continuously widened over these years. The algorithms

and data structures community require to return to implementation as one of

its principal standards of value. Experimental Algorithmics studies algorithms

and data structures by joining experimental studies with the traditional theo-

7

1. INTRODUCTION

retical analyses. The experimentation is also the key to the transfer of research

results from paper to production code, providing as it does a base of well-tested

implementations.

In 1999 Cattaneo and Italiano [52] have outlined that despite the wealth of

theoretical results, the transfer of algorithmic technologies has not experienced a

comparable growth. Algorithm designers are starting to pay more attention to

the details of the machine model that they use, and to investigate new and more

e�ective computational measures. In fact, more attention has been devoted to the

engineering and experimental evaluation of algorithms, exploiting the Algorithm

Engineering approach. It consists of the design, analysis, experimental testing

and characterization of robust algorithms, and it is mainly concerned with issues

of realistic algorithm performance. It also studies algorithms and data structures

by carefully combining traditional theoretical methods together with thorough

experimental investigations. Experimentation can provide guidelines to realistic

algorithm performance whenever standard theoretical analyses fail. Cattaneo and

Italiano also said that the experimentation is a very important step in the design

and analysis of algorithms, as it tests many underlying assumptions and tends to

bring algorithmic questions closer to the problems that originally motivated the

work.

The intent of this thesis is to provide studies and insights, supported by im-

plementations and experimentations, into the development of fast and e�cient

distributed algorithms on Apache Hadoop. Our goal is to show that when port-

ing algorithms on Hadoop, algorithm engineering, careful pro�ling and tuning

activities are often required to fully exploit the real potential of the distributed

computing system.

1.3.1 Benchmark Problems, Methods and Results

In particular, we provide in this dissertation some methodological insights into the

design, engineering and experimentation of scalable and e�cient algorithms for

Hadoop-based distributed systems in two research areas: Digital Image Forensics

and Bioinformatics. These �elds were selected because they are treating more

and more data than ever before. In fact, the number of images uploaded on Web

8

1. INTRODUCTION

are increasing (e.g., [253]), therefore it is required to rapidly analyze them for

investigative purposes; and the Next-generation DNA sequencing (NGS) machines

are generating an enormous amount of sequence data to analyze (e.g., [145]).

In addition, we provide the experience of Hadoop using two types of com-

puters clusters: a commodity cluster of 33 PCs and one of 5 multi-processor

workstations, as examples of those used in real environments.

Digital Image Forensics Nowadays the digital images are more pervasive

in everyday life. In fact, there is an enormous amount of photos exchanged

through Online Social Networks, and the crimes related to digital images are

spreading. The digital image forensics is focused on the acquisition and the

analysis of images (or videos) found on digital devices or Web for investigation

purposes. It may be useful, for example, for establishing if a digital image has

been altered after it has been captured (e.g., [51, 53, 54, 60, 98, 301]), if it contains

hidden data (e.g., [59, 110]) or what camera has been used to capture that image

(e.g., [28, 46, 48, 122, 181]). The digital image forensics �eld is very active, as

shown by the many contributions proposed, and valuable solutions are available

in literature. However, with the spread of images in the Web, it is required to

assess how these solutions scale when dealing with Big Data and/or how their

performance can be improved to respond faster to investigators. In addition, only

few scienti�c contributions concern the processing of large amounts of images in

distributed environments for forensics purposes.

In Chapter 4 is presented our work done for e�ciently engineering on Hadoop

a reference algorithm for the Source Camera Identi�cation (SCI) problem, i.e.,

recognizing the camera used for acquiring a given digital image, also distinguished

between camera of the same brand and model. We have chosen the algorithm by

Fridrich et al. [181] as our benchmark. A �rst distributed implementation has

been obtained, with little e�ort, using the default facilities available with Hadoop.

However, its performance, analyzed using a commodity cluster produced discour-

aging e�ects. A careful pro�ling allowed us to pinpoint some serious performance

issues related to a bad usage of the cluster resources. Several theoretical and prac-

tical improvements were then tried, and their e�ects were measured by accurate

experimentations. This allowed for the development of alternative implementa-

9

1. INTRODUCTION

tions that were able to improve the usage of the underlying cluster resources as

well as of the Hadoop framework, thus resulting in a much better performance

than the original naive implementation. In addition, our proposal is scalable, and

faster than our non-parallel version.

Bioinformatics NGS has led to the generation of billions of sequence data,

making it increasingly infeasible for sequences analyses to be performed on a single

commodity computer. The evident mismatch between sequencing capability ver-

sus storage and CPU power poses new and staggering computational challenges to

the future of genomic data [153]. Fundamental for their solution are both the full

use of the power of the hardware available, and the deployment of fast and e�cient

algorithms. Due to remarkable advances in the development of software systems

supporting them, the use of distributed architectures in bioinformatics has started

to be investigated (e.g., [90, 105, 139, 171, 190, 192, 207, 226, 241, 244, 288]) be-

cause of the intrinsic limitations that are found while expanding the hardware

capabilities, in terms of CPU processing power, memory and storage, of a single

computer. Instead, a distributed approach would allow both to deal with large

genomic datasets as well as to reduce the computational time required to solve a

problem at a desired scale, by proportionally increasing the number of processing

units. Unfortunately, the mentioned studies are exploratory and the real impact

that distributed architectures can have on bioinformatics, as well as all the tech-

nical challenges one has to overcome to get competitive results, has not even been

delineated.

Sequence comparison, i.e., the assessment of how similar two biological se-

quences are to each other, is a fundamental and routine task in computational

biology and bioinformatics. Classically, alignment methods are the de facto stan-

dard for such an assessment. Due to the growing amount of sequence data being

produced, a new class of methods has emerged: Alignment-free methods. Re-

search in this ares has become very intense in the past few years, stimulated by

the advent of NGS technologies, since those new methods are very appealing in

terms of computational resources needed. Despite such an e�ort and in contrast

with sequence alignment methods, no systematic investigation of how to take

advantage of distributed architectures to speed up some alignment-free methods,

10

1. INTRODUCTION

has taken place. Another issue to be analyzed is related to the possibility of using

a distributed architecture to solve problem instances that are hard to solve on a

single commodity machine because of memory constraints.

The aim of this research project is to advance the state of the art in this

�eld by identifying and/or developing alignment-free algorithms based on the

MapReduce paradigm and able to perform e�ciently when run on very long

genomic sequences. In Chapter 5 we initially provide a contribution of that

kind, by evaluating the possibility of using the Hadoop distributed framework to

speed up the running times of these methods, compared to their original non-

parallel formulation. In particular, a distributed framework for the development

of alignment-free sequence comparison methods based on word counts is proposed.

Our experimental results show that the execution times of our solution scale well

with the number of used concurrent processing units.

Another important case study presented in Chapter 5 is the collection of k-

mer statistics (or counting) for genomic sequences exploiting a Hadoop cluster.

A k-mer is one of the all the possible substrings of length k that are contained in

a string. For example, let us assume a string ACTAGACGAT and k = 3. The

possible k-mers for the given string are: ACT, CTA, TAG, AGA, GAC, ACG,

CGA and GAT. Since the chosen problem is at the start of many bioinformat-

ics pipelines, we set the foundation for the development of e�cient distributed

pipelines that use k-mer statistics. In particular, let S be a set of sequences, we

are interested in collecting Local Statistics (LS), i.e., how many times each of the

k-mers appears separately in each of the sequences in S, or Cumulative Statistics

(CS), i.e., how many times each of the k-mers appears cumulatively (globally) in

sequences in S. We propose a set of highly engineered distributed algorithms for

both LS and CS managing di�erent values of k, such as 3 or 31. Although both

versions of the problem are algorithmically very simple, the sheer amount of data

that has to be processed in a typical application has motivated the development

of many algorithms and software systems that try to take advantage either of

parallelism or of sophisticated algorithmic techniques or both.

The comparison between our proposal and di�erent Hadoop-based solutions

are also shown. In particular, the results highlight that our algorithm is faster and

e�cient than these solutions. In addition, our analyses show that the execution

11

1. INTRODUCTION

times of our solution scale well with the number of used concurrent processing

units. Moreover, a careful pro�ling of some of the most successful methods that

have been developed for CS in parallel environments, from which it is evident

that they do not scale well with computational resources, is also presented. The

bottlenecks responsible for these problems are also identi�ed.

General Results Taking advantage of the experience gained in these �elds, we

also give suggestions for researchers on how to improve scalability and e�ciency

of a distributed implementation on Hadoop. In fact, it is also possible to use

the strategies used in this dissertation to develop e�cient Hadoop-based variants

of algorithms belonging to di�erent domains. An interesting future direction for

our work would be the formalization of this methodology and its experimentation

with other case studies.

1.4 Organization of the Thesis

In Chapter 2 is presented the parallel and distributed computing with emphasis

on emerging software solutions to process Big Data, such as Apache Hadoop [14],

a distributed MapReduce computing framework. A brief history of parallel and

distributed systems is also presented. In addition, are outlined the performance

measurement metrics in parallel and distributed environments, such as Speed up

[8] and Size up [132], which are useful to measure the scalability and the e�ciency

of a distributed implementation.

In Chapter 3 is presented an overview on MapReduce paradigm, and then it is

discussed Apache Hadoop, that is the most popular and used MapReduce frame-

work. In addition, are discussed the main features of Hadoop and its distributed

�le system. The chapter is concluded with a section describing how to pro�le,

tune up and try to improve Hadoop-based distributed applications to obtain a

high-level of scalability and e�ciency.

In Chapter 4 is shown a very popular algorithm in digital image forensics �eld

for Source Camera Identi�cation problem, that is the algorithm by Fridrich et al.

[181]. Here is described our work done to e�ciently speed up the running times

of Fridrich et al. approach using a Hadoop application running on a commodity

12

1. INTRODUCTION

cluster. The �rst implementation has been developed in a straightforward way

with the help of the standard facilities available with Hadoop. However, its

performance produced discouraging e�ects. In fact, a closer investigation revealed

the existence of several performance issues, therefore, we describe how to put

in practice an engineering methodology aiming, �rst, at pinpointing the causes

behind the performance issues we observed, and, second, at solving them through

the introduction of several theoretical and practical improvements.

In Chapter 5 are presented our Hadoop-based e�cient implementations to

solve two problems in bioinformatics �eld: Alignment-free Sequence Comparison

and K-mer Statistics. Initially, is presented an overview on biology and Big

Data, and then are described the aspects related to the sequence comparison.

Then our activities for developing and experimenting a Hadoop-based implemen-

tation for word-based alignment-free sequence comparison methods are presented.

Subsequently, we deeply focus on the problem of the extraction of k-mer local

and cumulative statistics. Here, we describe and validate a very fast and e�-

cient Hadoop implementation for k-mer counting. Experimentations of the some

successful parallel solutions for k-mer counting that have been developed for cu-

mulative statistics are also addressed. These methods do not scale well with

computational resources, in fact, the bottlenecks responsible for this are also

identi�ed.

In Chapter 6 is reviewed the work done in this thesis, by focusing on the

experience gained and general lessons learned useful to other researchers when

they would like to implement an algorithm on Hadoop.

In Appendix A is described some information related to Chapter 5, while in

Appendix B are listed the publications written during Ph.D. studies.

13

Chapter 2

Parallel and Distributed Computing

In this chapter are addressed some aspects related to parallel and distributed

computing. In particular, in Section 2.1 is presented the state of the art, while in

Section 2.2 is discussed the history of parallel and distributed systems. Storing,

processing and analyzing Big Data in parallel and distributed environments is

addressed in Section 2.3. The emerging distributed architectures and distributed

computing middleware solutions are treated in Section 2.4. Lastly, Section 2.5

presents the performance measurements in parallel and distributed environments.

2.1 State of the Art

In general, most real-life large problems can be split up into a large number of

small subproblems that can be solved individually, therefore, also at the same

time.

A sequential program (also called stand-alone or serial in this dissertation) is

a single-thread program, i.e., non-parallel, able to be only run on a single CPU

core at a speci�c time instant. A CPU may have one or more cores to perform

tasks at a given time, while a CPU core is the hardware on a computer that

executes a stream of machine instructions. In addition, a modern computer can

have a single-core or multiple cores. Given a sequential program that performs a

complex computation, the execution time can be reduced designing its concurrent

counterpart able to exploit multiple computational resources at the same time,

14

2. PARALLEL AND DISTRIBUTED COMPUTING

such as more CPU cores1 in a same machine and/or more machines. For improv-

ing the performance of an application, it can be necessary to design a parallel

program, do not increase CPU clock speeds.

In parallel computing, a computational job is generally split in several, often

many, very similar subtasks that can be processed independently on a same ma-

chine, and whose results are combined afterwards, upon completion. Here all

cores of a same machine may access to a shared-memory to exchange informa-

tion between them ([219]). According to Kaminsky in [154], parallel computing

is concerned with designing computer programs having two characteristics: they

run on multiple processors/cores, and all the cores cooperate with each other to

solve a single problem. Therefore, a parallel program runs on multiple CPU cores

at the same time, with all the cores cooperating with each other to solve a single

job.

Multi-processor machines have always been considered a good solution to

speed up the response time, but engineering a parallel algorithm on a hardware

architecture with more computational resources does not imply shorter execution

times. In fact, a parallel application (i.e., program) is scalable if the execution

time linearly decreases adding more processors/cores.

A Distributed System (DS) is composed of many independent (autonomous)

computers (also called nodes) that communicate over a network. They interact

with each other in order to achieve a common goal (see e.g., [33, 74, 262]). A

node is an independent and autonomous computer with its own CPU cores, its

own main and external memory, and its own network interface. Therefore, in

distributed computing, each computing node has its own private memory, the

components are located on networked computers, and communicate and coor-

dinate their actions by message-passing. Some important characteristics of a

distributed system are: concurrency of components, lack of a global clock, and

independent failure of components [74].

Kaminsky ([154]) states that a �parallel computer � can consist of a single

node, or of multiple nodes. A cluster is a multi-node parallel computer (i.e.,

a distributed system), where the main memory is distributed and cannot be

1Generally speaking, the terms single-core processor, core or computing unit can be used
interchangeably.

15

2. PARALLEL AND DISTRIBUTED COMPUTING

shared by all the CPU cores, requiring to the application to do inter-process

communication to move data from node to another, and, therefore, increasing the

program overhead. Whether a program needs more main memory, it is possible

to add more nodes to the cluster. In fact, memory hungry program can scale up

to much larger problem sizes on a cluster. An easy way to utilize the parallelism

of a cluster is to run multiple independent instances of a sequential program on

each subproblem, and, subsequently, to aggregate the results.

Therefore, distributed computing uses a network of many computers, each

accomplishing a portion of an overall task, to achieve a computational result

much more quickly than with a single computer. Generally, modern distributed

systems use a distributed computing middleware (also called framework), which

enables computers to coordinate their activities and to share the resources of the

system, so that end users perceive the system as a single and integrated computing

facility.

Generally speaking, there are di�erent approaches to parallel or distributed

programming, such as: parallel algorithms in shared-memory model, parallel al-

gorithms in message-passing model and distributed algorithms in message-passing

model. A same system may be characterized both as �parallel� and �distributed�.

In fact, in a generic distributed system, the cores of a same computer run con-

currently in parallel to solve the same problem ([182]).

2.1.1 Flynn's Taxonomy

Flynn's taxonomy [104] is a classi�cation of computer architectures, proposed by

Michael Flynn in 1966. In this section we review the four classes de�ned by

Flynn.

Single Instruction stream Single Data stream (SISD) This class indicates

a standard computer which exploits no parallelism in either the instruction or

data streams, e.g., traditional single-processor machines such as old PCs or old

mainframes.

16

2. PARALLEL AND DISTRIBUTED COMPUTING

Single Instruction stream Multiple Data streams (SIMD) This class in-

dicates a computer which exploits multiple data streams against a single instruc-

tion stream to perform operations which may be parallelized. SIMD is adopted in

Streaming SIMD Extension (SSE) or Altivec macros, some database operations,

some operations in data structure libraries, array/vector processor and Graphics

Processing Unit (GPU). In particular, the vector processors take one single vector

instruction that can simultaneously operate on a series of data arranged in array

format. Therefore, SIMD is a paradigm in which the parallelism is con�ned to

operations on corresponding elements of vectors.

Multiple Instruction streams Single Data stream (MISD) This class

indicates multiple instructions which operate on a single data stream. Heteroge-

neous components operate on the same data stream and must agree on the result,

such as the pipeline architectures and fault-tolerant computers. For example, a

fault-tolerant machine executes the same instructions redundantly (task replica-

tion) in order to detect and solve errors, e.g., the Space Shuttle �ight control

computer uses this paradigm.

Multiple Instruction streams Multiple Data streams (MIMD) This

class indicates multiple independent processors/cores or machines simultaneously

executing di�erent instructions on more data. This paradigm assumes multiple

cooperating processes executing a program. Generally, distributed systems and

multi-core processors are examples of MIMD architectures.

The MIMD architectures with private memory are a computational model

where di�erent computing units with private memory communicate through the

network by message-passing, e.g., clusters of workstations communicating through

a Local Area Network (LAN). The �rst private memory distributed computer was

the Cosmic Cube1 with 64 computing nodes, where each node having a direct,

point-to-point connection to 6 others like it. Subsequently were developed other

architectures, such as hypercubes, meshes and data�ow machines.

In fact, in a MIMD architecture with private memory, each processor has its

1The Caltech Cosmic Cube was a parallel computer, developed by Charles Seitz and Geof-
frey C. Fox from 1981 onward.

17

2. PARALLEL AND DISTRIBUTED COMPUTING

own local memory, therefore, data are transfered from one processor to another

through message-passing. To avoid to connect each processor directly to each

other, each is just connected to a few processors. Thus, some systems, such as

hypercubes and meshs, were designed to reduce these links. For example, in a

hypercube system with 4 processors, a processor and a memory are placed at

each vertex of a square, while the processors are placed in a two-dimensional grid

in a mesh network.

In addition, the MIMD class can be split into two subcategories:

• Single Program Multiple Data streams (SPMD)

Multiple autonomous computing units simultaneously run the same pro-

gram on di�erent data ([23, 78]). Tasks are split up and run simultaneously

on multiple cores with di�erent input in order to obtain results faster.

• Multiple Programs Multiple Data streams (MPMD)

It allows to run di�erent programs on each of the multiple autonomous

computing units. Typically, they simultaneously operating at least two in-

dependent programs: one called slave (host) program and one called master

(manager) program. For example, the master can run a program that sends

data to all the other computing units which all execute a slave program.

The slaves then return their results directly to the master process.

2.1.2 Parallel Systems with Shared-Memory versus Dis-

tributed Systems

Roughly speaking concurrent architectures can be split in two main classes:

Shared-Memory Systems versus Distributed Systems. In this section we propose

an handsome evaluation of the di�erences existing between the shared-memory

and the distributed computer architectures.

Whenever some data requires to be very frequently accessed, a common alter-

native is shared-memory architecture within a single-node, where the computing

elements share the same memory bus. Shared-memory architecture is able to

exploit parallelism on a machine equipped with multiple CPU cores by running

several execution units at the same time. The main memory is shared among

18

2. PARALLEL AND DISTRIBUTED COMPUTING

all units, this allows two units to communicate by just sharing a same variable

without any explicit data transmission. A consistent access to shared variables

is typically guaranteed by locking mechanisms that allows two or more units to

use a same shared variable in a safe and predictable way. Some examples of this

architectures are the Symmetric Multi Processor (SMP) computers.

A distributed architecture di�ers from a shared-memory system in that each

computing unit of the architecture is autonomous and share no memory or storage

resources with the others. The execution of a distributed algorithm is typically

achieved thanks to a network connection that allows two or more units (nodes)

to communicate by exchanging messages. Each node could also have many CPU

cores.

The shared-memory approach is usually more convenient than the one based

on a distributed architecture, when the number of execution units is relatively low.

This holds because the communication between di�erent units in the distributed

case su�ers of much higher latencies and lower bandwidth than the corresponding

cost paid in the shared-memory case. On the other side, the performance gain

achievable by increasing the number of computing units (i.e., scalability) in the

shared-memory case is inherently limited by the underlying hardware architecture

because of several serial bottlenecks, such as the bus used to access the shared-

memory or the disk used for I/O operations. In fact, shared-memory systems

do not well scale because these architectures present many bottlenecks (due to

bus congestion), therefore this approach has been proved to be suited only for

a limited number of processors. For instance, in this architecture all processors

share a single storage and the I/O bus capacity can easily be saturated. Moreover

sharing resources requires the introduction of a locking mechanism to protect

them against unwanted concurrent accesses. Many of these bottlenecks do not

exist in a distributed setting, thus allowing a distributed algorithm to achieve a

virtually unlimited scalability on a large range of applications.

Whereas shared-memory architectures can led to e�cient implementations on

a rather limited number of processors, distributed architectures require more spe-

ci�c engineering activities (to map the algorithm against the target architecture).

This is necessary because signi�cant issues can arise compromising the e�ciency

of the entire solution. The distributed architectures are inherently more scal-

19

2. PARALLEL AND DISTRIBUTED COMPUTING

able because each processing element (node) can access local resources without

incurring in racing conditions with other nodes. This can radically improve the

architecture scalability supporting large number of nodes. The distributed sys-

tems can be more fault tolerant because if a node fails the system yet works.

However in order to get e�cient solutions, the implementation strategy should

consider the underlying architecture exploiting data locality, and reducing inter-

node communications and the related overheads.

2.2 History of Parallel and Distributed Systems

Law in [149] has said that the idea of harnessing the unused CPU cycles of a

computer is as old as the �rst networks that later became the Internet. The

use of concurrent processes that communicate by message-passing has its roots

in architectures studied in the 1960s [10]. Initially, supercomputers were used

to solve huge computational problems, but when the price of personal computer

declining rapidly, and supercomputers still very expensive, an alternative was

necessary.

In the following, the evolution of parallel and distributed systems is brie�y

presented (for details see e.g., [146, 149, 233]).

Since 1945 until mid 1980s the computers were large and expensive. For

example, a mainframe cost millions and a minicomputer cost tens of thousand.

In the 1960s and the 1970s the supercomputers were shared-memory multi-

processor systems, with multiple processors working side-by-side on shared data.

In 1964 were produced the IBM/360 mainframe systems. This system performed

large computation and massive processing, but communication was rare. In fact,

it communicated by manually mounting data into a tape and transfer it from one

system to another.

The 1969 saw the birth of the Advanced Research Projects Agency NETwork

(ARPANET), that was the predecessor of the Internet. In the 1970s were spread:

ARPANET Email1, Ethernet for Local Area Network, mainframes and central-

ized hosts, minicomputers and user terminals. In the same years were born the

1ARPANET Email was invented in the early 1970s and probably the earliest example of a
large-scale distributed application.

20

2. PARALLEL AND DISTRIBUTED COMPUTING

decentralized stand-alone systems, deployed mainly in organizations. They were

not really a from of distributed system, but they were the predecessor of Enter-

prise Resource Planning (ERP) systems.

The �rst programs working in a net were a pair of applications called Creeper

and Reaper invented in the 1970s. Creeper [281] was possibly one of the �rst

programs that resembled an Internet worm. It ran on the old Tenex Operat-

ing System (OS) and spread through the ARPANET. Another similar program,

called Reaper, was created to �ght the Creeper infections. Reaper was the �rst

nematode, that is a computer virus that attempts to remove another virus. In

particular, Creeper was a worm program and it used the idle CPU cycles of pro-

cessors in the ARPANET to copy itself onto the next system and then delete itself

from the previous one. It was modi�ed to remain on all previous computers, and

so Reaper was created which traveled through the same network and deleted all

copies of the Creeper.

In the 1980s the workstation servers became demanding and increase exponen-

tially. In addition, the drop in hardware price did spread the Personal Computer

(PC). The massively parallel architectures started rising, and message-passing

interfaces and other libraries were developed. In fact, in the early 1980s, the idea

of using parallelism to solve several tasks at the same time was spread.

In the 1980s the INMOS Transputer (Transistor Computer) was a micropro-

cessor architecture for parallel computing systems that used integrated memory

and serial communication links. These chips could be wired together to form a

complete parallel computer.

In the mid 1980s was born the Connection Machines (CMs) supercomputers

series of Thinking Machines Corporation (TMC) for massively parallel computing.

For example, the �rst version, called CM-1, has used up to about 65, 000 single

bit processors interconnected to exchange data in a hypercube architecture.

Since mid 1980s the di�usion of microprocessors and computer networks LAN

and Wide Area Network (WAN) have determined the dissemination of the dis-

tributed systems. In fact, the microprocessors o�ered a better price and perfor-

mance than mainframes, and some distributed systems had more total computing

power than a mainframe. Indeed, the computing resources in a distributed sys-

tem can be added in small increments. However, little software existed in these

21

2. PARALLEL AND DISTRIBUTED COMPUTING

years for distributed systems, and, in some case, the network saturated or caused

other problems.

In the mid 1980s the Caltech Concurrent Computation project built a su-

percomputer for scienti�c applications from 64 Intel 8086/8087 processors. This

system showed that extreme performance could be achieved with Commercial O�-

The-Shelf (COTS) microprocessors (that is, they are ready-made and available

for sale to the general public).

In 1983 was delivered the Goodyear Massively Parallel Processor, a Massively

Parallel Processing (MPP) supercomputer built for the NASA. It was designed

to deliver enormous computational power at lower cost than other existing super-

computer architectures. It used thousands of simple processing elements, rather

than one or a few highly complex CPUs. In this system each processor performs

the same operations simultaneously, on di�erent data elements.

The �rst Internet-based distributed computing project was started in 1988

by the DEC System Research Center. This application sent tasks to volunteers

through email, who would run these programs during idle time, then they sent

the results back and, �nally, they got a new task. For example, in the 1990s some

tasks were factoring and prime number searching, and encryption cracking.

In the 1980s the interest in distributed computing is also evidenced by two

conferences. In fact, in 1982 the Symposium on Principles of Distributed Comput-

ing (PODC) was the �rst conference in the distributed computing. Then, in 1985

was held the �rst European counterpart, that is the International Symposium on

DIStributed Computing (DISC).

Between late 1980s and early 1990s was born Parallel Virtual Machine (PVM),

a framework designed to allow a network of heterogeneous computers to be used

as a �single distributed parallel processor�. PVM adopted a runtime environment

and a library for message-passing, tasks and resources management, and fault

noti�cation. It was used by various types of computers, such as: shared-memory

or local-memory multiprocessors, vector supercomputers, specialized graphics en-

gines, or scalar workstations and PCs, which were interconnected by many types

of networks.

During 1980s and early 1990s were developed inexpensive PCs and networking

hardware. Until the beginning 1990s, the parallel computing was still expensive,

22

2. PARALLEL AND DISTRIBUTED COMPUTING

in fact, each vendor had its own proprietary hardware architectures, parallel

programming languages, and parallel software libraries. Indeed, various message-

passing environments were developed in the early 1980s. However, some were de-

veloped for special purpose computer architectures and/or networks. Therefore,

the parallel computing was mostly used for scienti�c, engineering and academia

applications.

In the early 1990s the client-server architectures andWorld Wide Web (WWW)

were born, and the �rst web sites were also developed. In 1991 was born Common

Object Request Broker Architecture (CORBA), a distributed computing protocol,

that enable the applications to tun on any hardware in anywhere and enable the

programs can be written in any language that has mappings with Interface De-

scription Language (IDL). Subsequently, the introduction of Java RMI demised

CORBA.

In 1992 some researchers agreed to develop and then implement a common

standard for message-passing. In this way, the Message Passing Interface (MPI)

was born as a standardized and portable message-passing system used to work

on a wide variety of parallel computers. In the mid 1990s, for MPPs and clusters

systems, a number of application programming interfaces converged to MPI. In

fact, since the mid 1990s, PVM and other libraries were supplanted by MPI

standard.

For shared-memory multi-processor computing systems, a similar process un-

folded with convergence around two standards by the mid 1990s to late 1990s:

pthreads and OpenMP.

In addition, a large number of competing parallel programming models and

languages have emerged over the years. For example, in 1993 was born the

Distributed Computing Object Model (DCOM), a Microsoft technology for com-

munication among software components distributed across networked computers.

From the point of view of the hardware, in the 1990s, the Intel Paragon was

released as a series of massively parallel supercomputers based on the Intel i860

RISC microprocessor. Here, up to 2, 048 (later, up to 4, 000) processors were

connected in a two-dimensional grid. In 1994, Donald Becker and Thomas Ster-

ling at NASA introduced Beowulf system, a cluster of commodity computers1

1The term commodity indicates a computer hardware which is a�ordable and easy to obtain.

23

2. PARALLEL AND DISTRIBUTED COMPUTING

networked into a small local network with libraries and programs installed which

allow processing to be shared among them. The result is a high performance par-

allel computing cluster from inexpensive personal computer hardware. Beowulf

was the �rst time that an e�ort was made to use the commodity hardware and

then build a cluster of computers that could compete with the top supercomput-

ers. However, a stable and suitable software layer was missing. Beowulf opened

the era of parallel and distributed computing made with commodity hardware

rather than proprietary machines to assemble a cluster of computers.

With the passage of time, parallel programming shifted to using standard

languages, such as Fortran, C, and C++ with standard parallel programming

libraries. MPI became the de facto standard for parallel programming on cluster

computers, and OpenMP became the de facto standard for parallel programming

on multi-core computers.

Distributed.net [87] was a project founded in 1997 which is considered the

�rst to use the Internet to distribute data for calculation and collect the results.

They allowed the users to download the program that would utilize their idle CPU

time instead of emailing it to them. Distributed.net completed several cryptology

challenges by RSA society.

In 1999 Napster introduced a early form of Peer-to-Peer (P2P) system with

the purpose to enable sharing of data, such as streaming audio or video. It

eliminates requirements of servers and associate infrastructure. The storage can

evenly distributed amongst nodes and the costs of bandwidth are spread.

Since 1999 SETI@Home project have analyzed in distributed manner the radio

signals that were being collected by the Arecibo Radio Telescope in Puerto Rico.

It has gained over 3 million independent users who volunteer their idle computers

to search for signals that may not have originated from Earth.

In the late 1990s were spread the Internet-based computing and web services,

e.g., the usage of Uniform Resource Locator (URL) to call upon to perform the

function as a service via the Internet. These systems enabled the communication

between client and web services, and they allowed a new way of application-to-

application communication.

Until early 2000s processor chip manufacturers had exploited Moore's Law to

increase both the number of transistors on a chip and the chip speed, doubling

24

2. PARALLEL AND DISTRIBUTED COMPUTING

the clock frequency about every two years. In 2004 the CPU clock frequencies

had gotten fast enough that any further increment would have caused the chips to

melt from the heat they generated. Therefore, the vendors started putting more

processor cores on the CPU chip. In fact, nowadays there are computers with

2, 4, 8, or more CPU cores. At the same time, memory chip densities continued

to increase. In fact, now there are PCs with 4 GB, 8 GB, 16 GB, or more of

RAM. In addition, they have Graphics Processing Units (GPUs) with dozens or

hundreds of cores. Despite the increase of the computing power and memory size,

there still are computational problems too big for a single machine.

Dobre and Xhafa [88] have said that in the 1990s the data volumes generated

were su�ciently low that the Database Management System (DBMS) itself would

�gure out the best access path to the data. They have said that the largest

databases increased tenfold in size between 2005 and 2008 showing the start of

Big Data era.

In the 2000s with the spread of Big Data and mobile technology, new form

of distributed systems, such as Cloud Computing, Grid Computing, Mobile and

Ubiquitous Computing, were born. Nowadays, cluster and grid architecture are

increasingly dominant also using commodity hardware, that is they use a large

number of low-cost and low-performance commodity computers working in par-

allel, instead of using fewer high performance and high cost computers. Google

and other companies, having to deal with exponentially growing web tra�c and

user demands, are doing this to the extreme using clusters of thousands of com-

putational nodes. In the early 2000s Google invented the MapReduce paradigm

([81, 82]), designed to work with distributed processing adopting a massively

distributed �le system ([115]). This has inspired an open source distributed com-

puting framework called Apache Hadoop ([14]) and its distributed �le system

([249]).

Nowadays, parallel programs are written using libraries, such as OpenMP,

MPI, CUDA, OpenCL, and so on. However, the parallel applications not only

use C, MPI and OpenMP, but they also adopt newer languages (e.g., Java), high-

level programming paradigms, such as MapReduce, and distributed computing

frameworks, such as Hadoop. This has opened the distributed computing to a

much broader range of common applications exploiting Big Data. The modern

25

2. PARALLEL AND DISTRIBUTED COMPUTING

�supercomputers� use the same commercial o�-the-shelf hardware (e.g., CPU and

RAM of desktop PCs) to assemble a cluster of computers. In fact, today, appli-

cations exploiting MapReduce running on Big Data and clusters of commodity

hardware are emerging. Indeed, most of the world's fastest supercomputers on

the Top500 List [259] are clusters of computers.

Nowadays, in database area, standard DBMS systems based on SQL are be-

came inapt for the manage Big Data. In fact, NoSQL database are di�using. For

example, Massively Parallel Processing (MPP) databases allow database loads to

be split amongst many nodes.

The future trend of distributed computing could be the Continuum Com-

puting and Smartphone Grids (or Smart Grids). The Continuum Computing

is composed by a highly heterogeneous interconnections of systems and/or de-

vices o�ering di�erent features. It also enables resource sharing and remote con-

trol easily, e.g., transferring information from personal computer to tablet. The

Smartphone Grids are a set of smartphone or smart devices interconnected into a

network. They provide slightly amount of computational power to solve complex

problems on smart devices. In fact, Anwar et al. in [11] have explored if a cluster

comprising of microservers (e.g., Raspberry Pi) can support the popular Hadoop

framework. They demonstrate that some applications can yield two orders of

magnitude better e�ciency than traditional servers.

2.2.1 Scienti�c High Performance Computing

High Performance Computing (HPC) refers to technologies used by computer

clusters to create systems that can provide very high performance in the range

of PetaFLOPS1, exploiting parallel computing. The term HPC is widely adopted

primarily for processing systems used in scienti�c area. For example, the Partial

Di�erential Equations are the source of a large fraction of HPC problems. Nowa-

days, some areas of science are facing an huge increasing in data volumes from

satellites, telescopes, high throughput instruments, sensor networks, accelerators,

and supercomputers, compared to the volumes generated only a decade ago [36].

Scienti�c computing is the cross-disciplinary �eld at the intersection of model-

1FLOPS is the acronym for �oating-point operations per second.

26

2. PARALLEL AND DISTRIBUTED COMPUTING

ing scienti�c processes, and the use of computers to produce quantitative results

from these models [93]. Modern architectures used for scienti�c computation,

starting from simple workstations up to parallel supercomputers with huge com-

putational power. An important concern in scienti�c computing is e�ciency.

The computational power of these HPC systems is huge. In fact, several tens

of TeraFLOPS are at disposal of researchers for solving their computing problems.

This level of performance is possible thanks to the parallel use of thousands nodes

connected with high throughput networks [93].

According to Guest et al. in [130], HPC is currently undergoing a major

change as the next generation of computing systems (named �exascale systems�)

is being developed for 2020. These new systems pose numerous challenges, such

as reduction of energy consumption, development of programming models for

computers that host millions of computing units, storage and integration of both

observational and simulation or modeling data.

Gray in [127] has de�ned data-intensive science (�eScience�) as the synthe-

sis of information technology and science that enables challenges on previously

unimaginable scales to be tackled.

Bell et al. in [32] have said that in recent decades, computer simulations

have become an essential standard tool for scientists to explore domains that are

inaccessible to theory and experiments. Whereas simulations and experiments

yield ever more data, new techniques and technologies are required to perform

data-intensive science. Bell et al. refer that new types of computer clusters

are emerging, which are targeted for data movement and analysis rather than

computing. In astronomy and other sciences, integrated data systems allow local

data analysis and local storage, instead of requiring download of large amounts

of data.

According to Juve et al. in [152], the developers of scienti�c applications have

many options when it comes to choosing a platform to run their applications. One

of the advantages of HPC systems over currently deployed commercial distributed

computing systems is the availability of high performance I/O devices. HPC sys-

tems commonly provide high-speed networks and distributed �le systems, while

most commercial infrastructures use commodity networking and storage devices.

These high performance devices increase work�ow performance by making inter-

27

2. PARALLEL AND DISTRIBUTED COMPUTING

task communication more e�cient.

2.2.2 Explicit and Implicit Parallelism

Parallel and distributed programs are harder to write than sequential ones. In

fact, a program that is divided into multiple concurrent tasks is more di�cult

to write, due to the necessary synchronization and communication that needs to

take place between those tasks. In the end of 1980s when the multi-processor

machines spread, a user took advantage of this architecture either with heavy

work loads which implicitly enable the use of all the resources or by explicitly

programming his own applications with parallel algorithms (explicit parallelism).

In fact, much work was left to the programmer, e.g., synchronization, communi-

cation, data partitioning, scheduling, data aggregation, failure management, and

so on. Over time high-level libraries and interfaces to facilitate the use of parallel

and distributed programming were developed, and more and more functionalities

were added.

The interest on parallel and distributed computing is increased thanks to

modern computing frameworks and middleware solutions able to facilitate the

implementation of parallel programs to be run on a single o more nodes exploit-

ing shared-memory (in a single node) or message-passing. These frameworks are

abstraction layers which hide details about hardware devices or other software

from an application. They lie between the operating system and applications on

each node of a distributed computing system, and they provide services beyond

those provided by the operating system to enable the various components of a

distributed system to communicate and manage data. In fact, these middleware

solutions support and simplify complex distributed applications, and they trans-

parently can provide high-level functionalities, such as: synchronization, commu-

nication, data partitioning, scheduling, data aggregation, failure management,

and so on.

For example, MapReduce-based frameworks allow to a programmer to write

a distributed algorithm in a simple way. In fact, he not needs to be an expert

of the distributed and parallel environments, because the programmer can write

distributed applications adopting an abstraction layer. Therefore, with the intro-

28

2. PARALLEL AND DISTRIBUTED COMPUTING

duction of the moder frameworks was coined the term: implicit parallelism.

In this chapter are also reviewed some modern distributed computing mid-

dleware solutions that allow to write applications even more easily respects to

MapReduce, exploiting very high-level instructions (e.g., SQL-like).

2.3 Storing, Processing and Analyzing Big Data

Big Data problem requires a massive computing power and dedicated storage

system. The structured Database Management System (DBMS) successfully em-

ployed to store applicative data are inadequate to store and process Big Data.

Timely and cost-e�ective analytics over Big Data is now a key success feature

in many businesses and disciplines. Nowadays the large amount of data to be

processed requires massively parallel and distributed software running on tens,

hundreds, or even thousands of computer nodes. Any given computer has singly a

series of absolute and practical limits, for example memory, disk capacity, proces-

sor speed, I/O throughput, etc. that can be increased only on the technological

evolution basis. In addition, today it is much more cost-e�ective to purchase

commodity computers than to acquire a single high performance computer, also

showing higher performance than a single server.

The consequence of this tsunami of data is that the traditional relational

data storage has reached its limit. In fact, people are aware of the limitations of

conventional approaches to storing, managing and processing data, and we need

a speci�c technology for Big Data archiving and to e�ciently process them within

an short elapsed time.

Therefore, it is not surprising that distributed computing is nowadays the most

successful (and adopted) known strategy for storing, processing and analyzing Big

Data. Additional technologies being applied to Big Data include: Massively Par-

allel Processing (MPP) databases, search-based applications, data-mining grids,

distributed �le systems, distributed databases and cloud-based infrastructure.

Esen Sagynov in [238] classi�es the various technology platforms that treat

Big Data into Storage Systems, Processing Systems, and Analysis Systems. This

categorization is not exclusive, and there are systems that simultaneously address

them.

29

2. PARALLEL AND DISTRIBUTED COMPUTING

• Storage Systems, as for example Parallel DBMSs and NoSQL systems.

Both the Parallel DBMS and NoSQL systems are identical in that they

use the scale out expansion approach in order to store large data. In this

category also are included the existing storage technologies, for example

Storage Area Network (SAN), Network Attached Storage (NAS), distributed

�le systems and cloud storage.

• Processing Systems. Once a large dataset has been distributed to mul-

tiple nodes, however, a huge advantage can be obtained by distributing the

processing as well. The key point of parallel processing is Divide and Con-

quer (D&C) paradigm, i.e., the dataset is divided in independent parts to

be processed in parallel. Big Data processing is performed by dividing a

problem into several sub-operations and then combining together the sub-

results. In order to be e�ective systems, the computation must involve as

much local data is possible, otherwise the impact introduced by network

transfers would be too expensive. The most famous Processing Systems are

based on the MapReduce paradigm.

• Analysis Systems. In this category there are the systems that analyzes

Big Data. The step of �nding meaning and information in data is called

Knowledge Discovery in Databases (KDD). These systems are used to store

data, process and analyze the whole or part of interested data in order to

infer unknown information. In these systems are applied various technolo-

gies as arti�cial intelligence, machine learning, statistics, and databases.

Belong to this class: On-Line Analytic Processing (OLAP), Data Cubes,

Databases and Statistical Packages.

Khandelwal in [157] outlines another high-level categorization of Big Data

platforms to store and process them in a scalable, fault tolerant and e�cient

manner. The �rst category includes Massively Parallel Processing (MPP) Data

Warehouses that are designed to store huge amount of structured data across a

cluster of autonomous nodes, connected via high-speed networks, and perform

parallel computations over it. Since they are designed to hold structured data, it

is required to extract the structure from the data using an Extract, Transform,

30

2. PARALLEL AND DISTRIBUTED COMPUTING

Load (ETL) tools and populate these data sources with the structured data.

According Khandelwal , these systems include:

• MPP Databases: these are generally the distributed systems designed

to run on a cluster of commodity servers, for example: Aster nCluster,

Greenplum, DATAllegro, IBM DB2, Kognitio WX2, Teradata, IBM DB2,

Teradata.

• Appliances: a purpose-built machine with precon�gured MPP hardware

and software designed for analytical processing, for example: Oracle Op-

timized Warehouse, Teradata machines, Netezza Performance Server and

Sun's Data Warehousing Appliance.

• Columnar Databases: they store data in columns instead of rows, allow-

ing greater compression and faster query performance, for example: Sybase

IQ, Vertica, InfoBrightData Warehouse, ParAccel.

2.4 Emerging Distributed Architectures and So-

lutions

The amount of computational resources required for applications grows out of

proportion. As said in the Section 2.2, Cloud and Grid Computing infrastructures

are emerging as new forms of distributed computing. In fact, these terms are

becoming more and more popular.

As previously stated, throughout computer history were designed di�erent

parallel and distributed architectures and solutions. We cite, as examples, multi-

threading1 computing for multi-core systems, symmetric multiprocessing, clus-

ter computing, massive parallel processing, recon�gurable computing with �eld-

programmable gate arrays (FPGA), general-purpose computing on graphics pro-

cessing units (GPGPU), application-speci�c integrated circuits (ASIC), vector

1A thread is a basic unit of CPU core utilization that shares with other threads belonging to
the same process its code section, data section, and other operating system resources ([113]). A
traditional process has a single thread of control, while a multi-threading process has multiple
threads of control which can perform more than one task at a time on di�erent CPU cores.

31

2. PARALLEL AND DISTRIBUTED COMPUTING

processors, and so on. Each of these solutions has its own pros and cons. One

approach that has gained consensus in the recent past is the one based on cluster

computing. The rationale of this approach is to build a virtual supercomputer

by linking together a set of network-connected machines, likely to be assembled

using commodity hardware, with the purpose to solve a complex problem by dis-

tributing it over di�erent machines. It is possible to deliver virtually unlimited

computing power using commodity or recycled calculators, at a fraction of the

cost of a multi-processor machine.

In this section we review the concepts of Cloud and Grid Computing, and are

also described other modern technologies used in Big Data era.

2.4.1 Cloud Computing

Cloud Computing (CC) is a model for enabling convenient, on-demand network

access to a shared pool of con�gurable computing resources (e.g., networks,

servers, storage, applications, and services) that can rapidly previsioned and

resealed with minimal management e�ort or service provider interaction [135].

Clustering a set of computers provides the scale and performance for cloud.

Cloud Computing is TCP/IP-based high-development and integrations of com-

puter technologies, and it is based on several other computing research areas,

e.g., HPC, virtualization, utility computing and Grid Computing.

The main features of CC are: resource sharing, service oriented, loose cou-

pling, strong fault tolerant and business model. Advantage for organizations are:

�exible response, reliability and cost reduction.

The NIST Cloud Computing Program [208] have emanated some de�nitions

about the Cloud Computing, e.g., the deployment and service models. Figure 2.1

shows some concepts described by NIST cloud computing.

A deployment model de�nes the purpose of the cloud and the nature of how

the cloud is located. The NIST de�nitions for the four deployment models are:

public cloud, private cloud, hybrid cloud and community cloud. The public cloud

infrastructure is available for public use or for a large industry group, and it is

owned by an organization selling cloud services. The private cloud infrastructure

is operated for the exclusive use of an company. This cloud may be managed

32

2. PARALLEL AND DISTRIBUTED COMPUTING

Figure 2.1: The NIST cloud computing de�nitions. The image was taken from
[135].

by that organization or a third party. A hybrid cloud combines multiple types

of clouds, such as private or community of public. A community cloud is one

where the cloud has been organized to serve a common function or purpose. It

may be for one organization or for several organizations, but they share common

concerns. A community cloud may be managed by the constituent organization(s)

or by a third party.

The NIST has also provided three service models, that is: Infrastructure-as-a-

Service (IaaS), Platform as-a-Service (PaaS) and Software-as-a-Service (SaaS).

IaaS, also called Hardware-as-a-Service (HaaS), is the delivery of huge comput-

ing resources such as the capacity of processing. Platform-as-a-Service generally

abstracts the infrastructures and supports a set of application program interface

to cloud applications. Instead, Software-as-a-Service aims at replacing the appli-

cations running on PC. In fact, there is no need to install and run the special

software on the user's computer if he uses the SaaS.

Cloud computing also is divided into �ve layers: clients, applications, plat-

form, infrastructure and servers.

Some companies o�er CC service, such as: Amazon Elastic Compute Cloud

(EC2) [7], Google App Engine [126], Cloudera [69], Sales force's CRM [76] and Mi-

crosoft's Azure Services Platform [198]. For example, Cloudera provides Apache

Hadoop-based software, and it is increasingly used in cloud computing deploy-

ments due to its �exibility with cluster-based, data-intensive queries and other

tasks.

33

2. PARALLEL AND DISTRIBUTED COMPUTING

Evangelinos and Hill in [97] have described the application of HPC standard

benchmarks to Amazon's EC2 cloud computing system, in order to explore the

utility of EC2 for modest HPC style applications. They �nd that this cloud

system is emerging as a credible solution for supporting responsive on-demand,

small sized, HPC applications.

2.4.2 Grid Computing

According to Foster et al. in [106], Grid Computing (GC) is composed by hard-

ware and software infrastructure which o�er a cheap, distributable, coordinated

and reliable access to powerful computational capabilities. Grid computing refers

to cooperation of multiple processors on more machines, and its objective is to

boost the computational power in the �elds which require high capacity of the

CPU [135]. Grid computing is a form of distributed computing that involves

coordinating and sharing computing, application, data and storage or network

resources across dynamic and geographically dispersed organizations [185]. GC is

a promising technology for future computing platforms and is expected to provide

easier access to remote computational resources that are usually locally limited.

According mainly Hashemi and Bardsiri in [135], the main features of GC are:

large-scale, geographical distribution, heterogeneity, opening, resource sharing,

multiple administrations, concurrency, resource coordination, transparent access,

ubiquity, dependable access, consistent access and pervasive access. They are

described in following:

Large-scale A grid must be able to deal with a variable number of resources

ranging from just a few to millions. In addition, new resources can be added

to the infrastructure at any time.

Geographical distribution A GC infrastructure also allows variety of geo-

graphically distributed resources to be shared and aggregate.

Heterogeneity of software and hardware resources Di�erent hardware and

software solutions can be used.

Opening Each subsystem is a system unto itself and can be accessed directly.

34

2. PARALLEL AND DISTRIBUTED COMPUTING

Resource sharing The resources in a grid belong to many di�erent organiza-

tions that allow other organizations or users to access them. A GC system

simpli�es the collaboration between people and resources from di�erent or-

ganizations.

Multiple administrations Each organization could establish di�erent access,

security and administrative policies.

Concurrency Di�erent processes must be able to work on di�erent nodes at the

same time.

Resource coordination The resources in a grid must be coordinated in order

to provide aggregated computing capabilities.

Transparent access The users do not need to know the implementation details.

In fact, they must have the perception of having a �virtual supercomputer�.

Ubiquity All services must be able to be accessed by a user regardless of where

it is.

Dependable access A grid must assure the delivery of services under estab-

lished Quality of Service (QoS) requirements.

Consistent access A grid must be built with standard services, protocols and

interfaces thus hiding the heterogeneity of the resources.

Pervasive access and fault tolerance The grid should continue to operate

even if one or more nodes fail.

A GC is used in many areas, such as �nancial operations, online multi-player

game, weather forecasting, scienti�c computations, and so on. Some famous

examples of grid are: SETI, BOINC, Folding@home, GIMPS.

Grid Computing technologies will promise to change the way organizations

tackle complex computational problems. In the next future, organizations and

single users will simply plug into a GC infrastructure in a similar fashion to how

they now plug into a grid of electric power. Thus, they would only need to pay for

what they use, and not buy expense hardware. In this way, the Grid Computing

35

2. PARALLEL AND DISTRIBUTED COMPUTING

provides a kind of on-demand access which improves the productivity using extra

resources to solve a speci�c problem.

2.4.3 Comparisons between Cloud and Grid Computing

Hashemi and Bardsiri in [135] have also discussed of the di�erence between Cloud

and Grid Computing. Instead of a few clients running massive, multi-mode jobs,

the Cloud Computing services thousands or millions of clients, typically serving

multiple clients per node. These clients have small, �eeting tasks (e.g., database

queries or HTTP requests) that are often computationally very lightweight but

possibly storage or bandwidth intensive. Indeed, in Cloud Computing there are

many jobs with short amount of work, while in the Grid Computing there are

little jobs with a big amount of work. The goal of GC is the collaborative sharing

of resources, while in the CC the goal is the use of service. The grid is focused on

computational intensive operations, while the cloud is centered on standard and

high-level instances. In the grid there are few users, while in the cloud there are

more users. The grid services are not real-time, while the cloud uses real-time

applications. In the GC the virtualization is not a commodity, while in the cloud

is vital. In fact, the grid infrastructure can use any operating systems (OSs),

while a cloud infrastructure uses a hypervisor on which multiple OSs are run. In

the grid the security is low, while in Cloud Computing there are high levels of

security. Mostly networks with latency and low bandwidth are used in the grids,

while the cloud uses dedicated, high-level with low latency and high-bandwidth.

The resource management, allocation and scheduling are distributed in the grid,

but in the cloud they can be either centralized or distributed. In addition, in

GC the failure management is limited (e.g., the failed tasks and applications

are restarted), while in the cloud is strong (e.g., virtual machines can be easily

migrated from one computer to other).

Figure 2.2 taken from Foster et al. [107] shows an overview of the relation-

ship between Clouds Computing, Grid Computing and other subdomains in dis-

tributed systems.

36

2. PARALLEL AND DISTRIBUTED COMPUTING

Figure 2.2: Overview of Grids and Clouds Computing in Distributed Computing.
The image is taken from [107].

2.4.4 Mobile and Ubiquitous Computing

Nowadays new forms of distributed computing are used, such as: Mobile Com-

puting (MC) and Ubiquitous Computing (UC).

Mobile Computing, also known as location-aware (or context-aware) comput-

ing, enables the use of a computer device even they are moving around. A user

can continue to use the resources in their home such as printer, disks, etc., while

he is touring the world. Mobile Computing allows the transmission of data, voice

and video via a computer or any other wireless enabled device without having to

be connected to a �xed physical link.

Ubiquitous computing is a new area of distributed computing that penetrates

in life of users enabling devices and computers become helpful. For example, an

user can remotely control appliances in home through own smartphone, and an

appliance will notify the user when a job is �nished.

2.4.5 Current Technologies

The assembling of a cluster of computers is just the �rst step for solving the

problem of processing Big Data. The subsequent problem is the choice of the

middleware solution to use for storing and processing data. There are several

options to this end. A �rst distinction is about commercial and free software.

37

2. PARALLEL AND DISTRIBUTED COMPUTING

On the commercial side, a popular choice is the MATLAB scienti�c computing

environment, which o�ers two modules performing parallel computing: Parallel

Computing Toolbox [189] and Distributed Computing Server [188]. Usually com-

mercial software are easier to use, provide a support service and are organized in

such a way to minimize the con�guration e�orts. These advantages may come

at a high cost as these tools are usually very expensive. On the free-software

side, there are several options available for running a cluster able to process Big

Data. These tools may vary according to the adopted computing paradigm and

to degree of e�ort that the researcher has to put in order to deploy the cluster.

Dobre and Xhafa in [88] review various parallel and distributed programming

paradigms, analyzing how they �t into Big Data era, and they also present mod-

ern emerging paradigms and framework. The authors have said that there is

much similarity between parallel and distributed framework, with both support-

ing message-passing with di�erent properties. The hardware support of paral-

lelism varies from shared-memory multi-core, closely coupled clusters, and higher-

latency (possibly lower bandwidth) distributed systems. The coordination, the

communication and the synchronization of the di�erent execution units vary from

threads with shared-memory on multi-core systems, MPI (between cores or nodes

of a cluster), work�ow or mash-ups linking services together, and the new gener-

ation of data-intensive programming systems based on MapReduce.

Nowadays, both the parallel MPI-based parallelism and the distributed frame-

works are implemented by message-passing, in fact this mechanism avoids many

errors related to shared-memory threads synchronization. MPI gives excellent

performance and ease of programming for MapReduce, in fact it has elegant sup-

port for general reductions. However, it does not have the fault tolerance, the

�exibility and other high-level features of the current MapReduce-based middle-

ware solutions.

Many of tools operating on Big Data can be thought of as Single Program

Multiple Data (SPMD) [78] paradigm or a collection thereof. These programs

can be implemented using di�erent parallelization techniques such as threads,

MPI, MapReduce, and mash-up or work�ow technologies, yielding di�erent per-

formance and usability characteristics.

In the following of the section, are brie�y reviewed some modern and popular

38

2. PARALLEL AND DISTRIBUTED COMPUTING

Big Data processing frameworks, such as MapReduce and Hadoop, Pig, HBase,

Hive and Spark.

MapReduce Paradigm and Hadoop In the recent years, several di�erent

architectural and technological solutions have been proposed for processing big

amounts of data. An increasingly popular computing paradigm is MapReduce

([81, 82]), which is designed for processing Big Data exploiting distributed re-

sources. MapReduce is appropriate to solve embarrassingly parallel data-intensive

problems. Although MapReduce-based frameworks can di�er in design and the

programming models that they provide, they share similar objectives, such as

hiding many problems of parallel programming, providing fault tolerance and ex-

ecution improvements from the developer. In theory, a programmer can typically

continue to write sequential programs. In fact, the processing framework takes

care of distributing the program among the available computing units, and it

executes each instance of the program on the appropriate chunk of input data.

In particular, a programmer can develop distributed algorithms just de�ning

two functions: map and reduce. Assuming the input is organized as a set of

<key, value> pairs, a generic map function takes as input one of these pairs and

returns, as output, a set of intermediate <key, value> pairs. A reduce function

is then used to process all the intermediate pairs having the same key. Generally,

it aggregates all the values with the same key, producing a single new value.

The MapReduce paradigm is detailed in Section 3.1, and its most popular and

used implementation, Apache Hadoop [14], is deeply described in Chapter 3.

In the MapReduce paradigm, the programmer writes the programs in a �low-

level� language in order to perform record-level manipulation on chunk of data.

However, application written in higher-level languages (e.g., SQL) are easier to

write, modify and understand, also for inexpert programmer (e.g., biologist,

chemist, astronomer, etc.). In fact, the MapReduce community is migrating

high-level languages on top of the current MapReduce interface to move such

functionality into the run time. These domain-speci�c high-level languages, de-

veloped on top of the MapReduce paradigm, hide some of the complexity from

the programmer, permitting to focus on the analysis and the application logic.

For example, Apache Pig [16] and Apache Hive [12, 266] are two projects oriented

39

2. PARALLEL AND DISTRIBUTED COMPUTING

in this direction.

Pig Apache Pig is a composed by high-level data�ow language, called Pig Latin

[213], and its execution framework. Pig Latin has the following key proper-

ties: ease of programming, optimization opportunities and extensibility. The Pig

compiler produces sequences of Hadoop MapReduce jobs starting from a set of

high-level instructions. Pig is designed for batch processing of data, and o�ers

SQL-style high-level data manipulation constructs, which can be assembled in an

explicit data�ow and interleaved with custom MapReduce functions.

However some Pig applications may su�er for lack of domain-speci�c and

application-speci�c improvements.

Hive Apache Hive is a data warehouse built on top of Hadoop framework for

providing data summarization, query and analysis. They provide querying and

managing large datasets residing in distributed storage adopting a SQL-like lan-

guage called HiveQL. In addition, when it is inconvenient or ine�cient to express

this logic adopting this language, a programmer can plug map and reduce code

using HiveQL.

HBase Apache HBase [15] is an open-source, distributed, versioned and non-

relational database modeled after Google's Bigtable [58]. HBase provides Bigtable-

like capabilities on top of Hadoop and its �le system, with the goal of hosting

very large tables atop clusters of commodity hardware. HBase is used when is

required random, real time read/write access to Big Data.

Spark Some MapReduce applications are built around an acyclic data�ow model.

Apache Spark [17, 304] is a framework that supports the applications adopting

this model and in-memory computing, while retaining the scalability and fault

tolerance of MapReduce applications. These classes of applications reuse a work-

ing set of data across multiple parallel operations (e.g., iterative machine learning

algorithms, interactive data analysis tools, clustering, machine learning, computer

vision and generic iterative algorithms).

40

2. PARALLEL AND DISTRIBUTED COMPUTING

OpenStack OpenStack [215] is an open-source software platform for Cloud

Computing, released under the terms of the Apache License, mostly deployed as

an Infrastructure-as-a-Service (IaaS). It is useful for creating private and public

clouds. In fact, OpenStack software controls large pools of computing, storage,

and networking resources throughout a data center, managed through a dash-

board or via the OpenStack API.

OpenStack works with popular enterprise and open source technologies mak-

ing it ideal for heterogeneous infrastructure. OpenStack Data Processing (Sa-

hara) provides a simple means to provision a data-intensive application cluster

(Hadoop or Spark) on top of OpenStack. For example, this enables users to set up

a multi-node Hadoop cluster using OpenStack and to run Hadoop applications.

Google Cloud Data�ow Nowadays Google is launching a new framework

called Cloud Data�ow ([147, 125]) to be useful to analyze live data. It allows to

create data pipelines for ingesting, transforming and analyzing arbitrary amounts

of data in both batch or streaming mode. In MapReduce paradigm, the data

analysis is in batch mode, that is all the data must be collected before it can

be analyzed, while in Google Cloud Data�ow it is possible to build complex

pipelines and analysis. For example, it could also be used to build a ETL system

by specifying data pipeline.

Cloud Data�ow is a fully-managed cloud service and programming model for

batch and streaming Big Data processing. It has a uni�ed programming model

and a managed service for developing and executing a wide range of data pro-

cessing patterns including ETL, batch computation and continuous computation.

This solution provides programming primitives such as powerful windowing and

correctness controls. It e�ectively eliminates programming model switching cost

between batch and continuous stream processing by enabling developers to ex-

press computational requirements regardless of data source.

41

2. PARALLEL AND DISTRIBUTED COMPUTING

2.5 Performance Measurement in Parallel and Dis-

tributed Environments

Moret in [201] states that is important to discover and analyze the speed up

achieved by parallel algorithms on real machines. In this section are described

the most used performance metrics used to measure a parallel/distributed im-

plementation respects to sequential (non-parallel) one. In particular, Kaminsky

in [154] has presented an accurate description of the measure performance in a

parallel system according to some major contributions in this area (e.g., [8, 132]).

Let a given program and N be the problem size, i.e., the amount of computa-

tion that this program has to do. This application can run on a certain number

K of processor units (e.g., cores or computers)1, therefore, the sequential version

of the program run with K = 1. The running time T of a program is the wall

clock time that it takes to run from start to �nish. The running time T (N,K)

depends on the problem size2 N and the number of processors K.

Tseq indicates the running time of the sequential version of the program, while

Tpar is the running time of the parallel version. In fact, the sequential version of

the program can be di�erent and more e�cient respects to the parallel version

executed on a single-processor.

Scaling refers to running the program on increasing numbers of processors.

There are two ways to scale up a parallel program onto more computing units:

strong scaling (called speed up) and weak scaling (called size up).

In strong scaling, the number of cores increases while the problem size is

�xed, therefore the program should ideally take 1/K the amount of time to com-

pute the results for the same problem in sequential setting. However, there are

portions of the program that cannot be parallelizable, and overheads related to

synchronizations and communication costs.

In weak scaling, as the number of cores increases, the problem size is also

increased in direct proportion to the number of processing units. This means

that the program should ideally take the same amount of time to compute the

1In this section, the terms: cores, computing units, processors, nodes and computers are
used interchangeably.

2The problem size is supposed to be de�ned so that T is directly proportional to N .

42

2. PARALLEL AND DISTRIBUTED COMPUTING

answer for a K times larger input to the problem.

2.5.1 Speed up

If we add more CPU cores or computers, we should be able to solve faster a

problem of a given size. Amdahl's Law [8] pointed out the limit on the speed

up of a parallel program as it runs on more processors while solving the same

problem:

Speed up(N,K) =
1

1− p+ p
K

≤ 1

1− p
, (2.1)

where p is the fraction of the program that can be parallelized, K is the number

of processors and N is the input size. The theoretical limit is the reciprocal of

the sequential fraction of the program (i.e., 1/1− p).

The computation rate (or computation speed), denotedR(N,K), is the amount

of computation per second the program performs:

R(N,K) =
N

T (N,K)
. (2.2)

Speed up is the main metric for measuring strong scaling, and it is the ratio

between the computational speed of the parallel program and the computational

speed of the sequential program:

Speed up(N,K) =
Rpar(N,K)

Rseq(N, 1)
, (2.3)

that is:

Speed up(N,K) =
Tseq(N, 1)

Tpar(N,K)
. (2.4)

Note that the numerator of Equation 2.4 is the running time of the sequential

version (or ideal program) executed on a single-core, not the version of the parallel

performed on a single-core. Ideally, the speed up should be equal to K, i.e.,

number of computing units, but due overheads and non-parallelizable code, this

value is less than K. Amdahl's Law places a limit on the speed up that a parallel

program can achieve under strong scaling, where the same problem is executed

on more processing units. As previously stated, this limit is the reciprocal of

43

2. PARALLEL AND DISTRIBUTED COMPUTING

Figure 2.3: An example of Speed up analysis. The image is taken from [154].

the sequential fraction (i.e., non-parallelizable) of the program. In fact, if this

fraction is substantial, the performance limit is severe.

E�ciency is a metric that tells how the speed up is close to ideal:

Efficiency(N,K) =
Speed up(N,K)

K
. (2.5)

If the speed up is maximum (i.e., speed up is K), then the e�ciency is 1 (re-

gardless of the number of processors). If the speed up is less than ideal, then the

e�ciency is less than 1.

Figure 2.3 shows an example of Speed up analysis. A �xed sequential program

on input of sizeN was �nished in T seconds, while its concurrent version onK = 4

computing units was �nished in T/K seconds.

During the experimental phase of a parallel/distributed program, it is ap-

propriate to �x the size of the input dataset N and to increase the number of

computing units K to perform speed up measurements. This methodology is the

most applied in parallel and distributed environments.

In Chapters 4 and 5 we will show some examples of speed up analysis.

2.5.2 Size up

If we add more processors or computers, we should be able to increase the size of

a problem that we can solve in a given amount of time. Gustafson [132] pointed

44

2. PARALLEL AND DISTRIBUTED COMPUTING

out that there is another way to measure the performance of a parallel program.

It is appropriate to increase the size of the problem being solved when the number

of computing units is increased. In fact, often a user do not want to solve the

same problem more quickly increasing the computation units, rather, he want to

solve a larger problem in the same amount of time. This methodology is known

as weak scaling.

Gustafson asserted that as the problem size increases, the running time of the

parallel portion of the program increases, and the running time of the sequential

portion of the program typically remains the same. Consequently, as the number

of computing units increases and the problem size also increases proportionately,

the sequential portion occupies less and less of the total running time of the

program. Therefore, the speed up continually increases without hitting the limit

imposed by Amdahl's Law (which applies only to strong scaling). However, the

running time of the sequential portion of the program does not always stay the

same. In particular, the running time of at least some of the sequential portion

could also increase as the problem size increases, e.g., the sequential portion uses

I/O operations.

Here it is assumed that as the number of computing units K increases then

the problem size N(K) will also increase, i.e., N increases in direct proportion

to K (e.g., N(K) = K ×N(1)).

The computation rate is the ratio of problem size to running time:

R(N,K) =
N(K)

T (N(K), K)
. (2.6)

Size up is the main metric for measuring weak scaling, and it is the ratio between

the computation rate of the parallel program and the computation rate of the

sequential program:

Size up(N,K) =
Rpar(N,K)

Rseq(N, 1)
, (2.7)

that is:

Size up(N,K) =
N(K)

N(1)
× Tseq(N(1), 1)

Tpar(N(K), K)
. (2.8)

The numerator of Equation 2.8 involves the running time of the sequential version

on a single-processor, not the parallel version. If the problem size of the parallel

45

2. PARALLEL AND DISTRIBUTED COMPUTING

Figure 2.4: An example of Size up analysis. The image is taken from [154].

program is the same as the problem size of the sequential program (which is

the case under strong scaling), i.e., N(K) = N(1) = N , then the �rst factor in

Equation 2.8 becomes 1, and the size up formula reduces to the speed up formula

(see Equation 2.4).

E�ciency is a metric that tell how close to ideal the size up is:

Efficiency(N,K) =
Size up(N,K)

K
. (2.9)

If the size up is ideal, the e�ciency is 1, regardless of the number of computing

units. If the size up is less than ideal, the e�ciency is less than 1.

Figure 2.4 shows an example of size up analysis. A �xed sequential program

on input of size N was �nished in T seconds, while its concurrent version on

K = 4 computing units and input of K × N size large was also �nished in T

seconds. Size up measures if x-fold larger systems can perform x-fold larger jobs

in the same running time as the original system.

In size up analysis, a user must �x the number of computing units and the

size of the input dataset is incremented.

Size up and speed up are measuring essentially the same phenomenon, i.e.,

the ratio of computation rates, but in di�erent contexts. Suppose the problem

size of the parallel program running on K computing units is K times larger than

the problem size of the sequential program running on a single computing unit.

Ideally, then, the parallel and sequential running times should be the same, and

46

2. PARALLEL AND DISTRIBUTED COMPUTING

the size up should be equal to K, the number of computing units.

2.5.3 How to Improve the Performance

In the previous we have analyzed the main performance metrics (or indices) used

to measure the scalability of a distributed or parallel implementation respects to

sequential implementation. Assuming that the sequential program uses e�ciently

the available resources and its code is �optimal�, an user could measure the speed

up of the corresponding parallel implementation. Although the related speed

up could be approximately linear increasing the number of computing nodes,

its e�ciency, as expressed in Equation 2.5, could be far from the maximum

due synchronizations, communications, resource contentions, I/O, sequential code

parts, overheads, code problems, memory leaks, memory trashing, and so on.

A parallel or distributed implementation is scalable when increasing the num-

ber of computing units, the execution times linearly decrease using the same

input. However, a parallel or distributed implementation is all the more �e�-

cient� when its e�ciency, as expressed in Equation 2.5, approaches to 1. In fact,

a parallel/distributed program could be scalable, but not e�cient. Hansen in

[133] has said: �E�cient programs save time for people waiting for results and

reduce to the cost of computation�. Indeed, the goal of an e�cient implementation

is to reduce resources consumption and completion time as much as possible. For

a programmer could be simple to write a distributed code for a given problem,

but it is very di�cult to write e�cient distributed applications.

When a new parallel application is developed, an accurate stage of pro�ling

and tuning is required to valuate its behavior with the purpose to improve the

performance. Some bottlenecks in the parallel code are only discovered in running

mode. Therefore, it is useful to monitor all the resources and the instructions,

trying to discovery potential problems that could limit the e�ciency.

In particular, in Chapters 4 and 5 we describe the methodology and the tech-

niques used to improve the scalability and e�ciency of some Hadoop distributed

applications in digital image forensics and bioinformatics �elds. However, before

to show these applications, it is appropriate to survey the MapReduce paradigm

and Apache Hadoop framework.

47

Chapter 3

Apache Hadoop Framework

This chapter presents the MapReduce paradigm ([81, 82]) and Apache Hadoop

([14]) framework, that is the most popular and used MapReduce-based distributed

computing solution. In particular, Section 3.1 introduces the MapReduce, while

in Section 3.2 is provided an overview on Hadoop. The distributed �le system

used by Hadoop is covered in Section 3.3. The lifetime of a Hadoop MapRe-

duce application is presented in Section 3.4. The main features of Hadoop are

provided in Section 3.5, while the di�erence between Hadoop Combiner versus a

custom solution, that can be adopted to improve some applications, is presented

in Section 3.6. Section 3.7 addresses the pro�ling, the tuning and how to improve

Hadoop applications.

3.1 MapReduce Paradigm

As previously stated in Chapter 2, in the recent years, several di�erent architec-

tural and technological solutions have been proposed for processing big amount

of data. Multi-core processors require parallelism, but many programmers �nd

it uncomfortable to write parallel programs. One computing paradigm that is

becoming popular is MapReduce ([81, 82]), which provides easy programming

model for a very large set of problems. In fact, a programmer can use it without

experience in parallel programming.

The MapReduce paradigm has �rst been successfully adopted by Google for

48

3. APACHE HADOOP FRAMEWORK

creating scalable, fault tolerance and massively-parallel programs that process

large amount of data using large commodity computer clusters. Google and

other Internet providers also use MapReduce-based distributed computing to

convert information gathered from the users (e.g., search queries, visited web

pages, emails, posts) into advertisements targeted at the speci�c user. Nowadays

many problems can be solved using a MapReduce-based framework exploiting a

cluster of computers. For example, Google uses MapReduce per many tasks, such

as: wordcount, adwords, pagerank, indexing data, text-indexing, reverse indexing,

and so on. In 2013 Facebook alone used the world's largest Hadoop cluster (see

[196]). In fact, just one of several Hadoop clusters operated by Facebook spans

more than 4, 000 machines, and it has saved over 100 petabytes of data.

MapReduce has now gained a wider audience and it is used in several �elds,

such as astronomical data processing (e.g., [124, 295, 296]), bioinformatics (e.g.,

[90, 105, 171, 190, 192, 207, 226, 241, 244, 288]), image and video processing

(e.g., [261, 298]), text analysis and document categorization/clustering (e.g.,

[72, 79, 96, 158, 159, 307, 308]), network tra�c measurement and analysis (e.g.,

[65, 167, 168]), sorting big amount of data (e.g., [214]), data mining (e.g., [162]),

computational mathematics, scienti�c computation, weather prediction, climate

modeling, astrophysics, chemistry, geology, engineering computation, computa-

tional �nance, web indexing, user characterization, targeted advertising, security

and cryptography, password cracking, computer games, and so on.

As said in Chapter 2, MapReduce is a computing paradigm designed for pro-

cessing Big Data exploiting distributed resources. Its main advantage is the

possibility to develop distributed algorithms able to scale on large cluster by

just de�ning two functions: map and reduce1. Assuming the input is organized

as a set of <key, value> pairs, a generic map function takes as input one of

these pairs and returns, as output, a set of intermediate <key, value> pairs.

A reduce function is then used to process all the intermediate pairs having the

same key. Generally, it aggregates all the values with the same key, producing

a single new value. Map and reduce functions are user-de�ned, and they are

executed, as tasks, in a concurrent way by workers running on the CPU cores

1The map and reduce primitives were present in many programming languages, such as
Lisp.

49

3. APACHE HADOOP FRAMEWORK

of the nodes of a MapReduce-compliant distributed system. A map task is also

called mapper, and a reduce task is also named reducer. Di�erently from tradi-

tional paradigms, such as explicit parallel constructs based on message-passing,

the MapReduce paradigm allows for implicit parallelism. The communication

between workers running map functions and workers running reduce functions is

accomplished in an automatic and transparent way by the underlying framework.

This allows the programmer to focus on the de�nition of the map and reduce

functions, while allowing to de�ne all the aspects related to the execution in a

distributed setting (e.g., the number of concurrent map and reduce tasks to issue)

through the proper de�nition of con�guration variables. This means that all the

operations related to the exchange of data between the tasks involved in a com-

putation are modeled according to a <key, value> �le-based approach, and they

are transparently accomplished by the underlying MapReduce framework. In

particular, many activities are in charge of the MapReduce middleware, such as:

synchronization, communications, data distribution, scheduling, parallelization

and automatic distribution of the workloads, load balancing, data replication,

fault tolerance, redundant execution, data locality computation, status and mon-

itoring of the cluster. In fact, the programmer may only be focused on de�ning

the behavior of the map and reduce functions, and on deciding how data will feed

the corresponding map and reduce phases, while, in general case, no particular

skill in parallel and distributed systems is required. Figure 3.1 shows an overview

of a MapReduce execution.

MapReduce very well works in contexts where there are very large data items

which can be processed one by one. In fact, MapReduce was designed for parallel

processing massive datasets, that is, data can be broken apart into discrete pieces

that can be simultaneously processed. We remember that in parallel computing

there is a class of problems, called embarrassingly parallel, where little or no

e�ort is required to split the work into a number of subtasks that can be simul-

taneously solved. In addition, there also are problems with some subtasks which

depend on the results of a few other tasks. However, in the opposite case, there

are the non-parallelizable problems, where, for any parallel algorithm resolving

a such problem, no speed up may be achieved by utilizing more than one CPU

core. In fact, some problems are non-parallelizable at all, while others are very

50

3. APACHE HADOOP FRAMEWORK

Figure 3.1: An overview of a MapReduce execution.

di�cult to e�ciently parallelize. In [103] the authors have analyzed which prob-

lems can be e�ciently modeled using MapReduce and which cannot. Usually,

in real scenarios, MapReduce paradigm is used to solve embarrassingly parallel

problems.

There are several frameworks implementing the MapReduce paradigm. For

example, Disco [86] is a lightweight, open source framework for distributed com-

puting adopting this paradigm. Instead, Dryad [197] implements an extension

of the MapReduce paradigm providing an infrastructure that allows a program-

mer to use the resources of a cluster of Microsoft Windows servers for running

data-parallel programs. Dryad combines the MapReduce programming style with

data�ow graphs to solve the computation tasks. A Dryad application developer

can specify an arbitrary directed acyclic graph to describe the communication

patterns of an application, and he expresses the data transport mechanisms be-

tween the computation vertices. DryadLINQ is a system and a set of language

extensions that enable a programming model for large-scale distributed comput-

ing [303]. However, the most popular and used MapReduce framework is Apache

Hadoop [14, 18].

Big Data is not necessarily equal to MapReduce, and MapReduce is not need-

ful equal to Hadoop [154]. In fact, Tudoran et al. in [270] present MapItera-

tiveReduce, an alternative framework which extends the MapReduce program-

ming model to better support reduce-intensive applications, while substantially

51

3. APACHE HADOOP FRAMEWORK

improving its e�ciency by eliminating the implicit barrier between the map and

the reduce phase. The programmers must implement an additional aggregator

that collects the output data from all reduce jobs and combines them into a sin-

gle result. However, in applications with a large number of reducers and large

amount of data, MapIterativeReduce can prove ine�cient. Yang et al. in [299]

have presented Map-Reduce-Merge, a model that adds to MapReduce a merge

phase that can e�ciently merge data already partitioned and sorted (or hashed)

by map and reduce modules. This programming model retains the many features

of MapReduce, while adding relational algebra (e.g., joins). Ekanayake et al.

in [94] present Twister, an another MapReduce extension, designed to e�ciently

support iterative jobs. Twister assumes that the intermediate data produced after

the map phase of the computation will �t in to the distributed memory.

3.2 Overview on Hadoop

Apache Hadoop ([14, 18, 292]) is currently the most popular and mature frame-

work supporting the MapReduce paradigm. It is a Java-based open source grid

computing environment useful for reliable, scalable and distributed computing.

From an architectural viewpoint, Hadoop is mainly composed of a data process-

ing framework (called YARN [277] in the second version of Hadoop, i.e., v2.x),

plus the Hadoop Distributed File System (HDFS) [249]. The data processing

framework is mainly based on MapReduce1 and it organizes a computation as

a sequence of user-de�ned MapReduce operations on datasets of <key, value>

pairs. These operations are executed as tasks on the nodes of a cluster. Instead,

the HDFS is a distributed �le system able to run on commodity hardware and

able to provide fault tolerance through replication of data (the HDFS is described

in Section 3.3). In addition, the framework provides the Hadoop Common, that

is a set of utilities that support the Hadoop and its sub projects. It also includes

�le system, RPC and serialization libraries.

Apache Hadoop is appropriate to solve embarrassingly parallel data-intensive

problems which requires fault tolerance features. It provides scalability, reliabil-

ity, fault-tolerance, easy deploy-ability, and so on. Hadoop is tailored to manipu-

1Hadoop v2.x can use other di�erent paradigms in addition to MapReduce, such as MPI.

52

3. APACHE HADOOP FRAMEWORK

late large datasets, in fact, it works more e�ciently with large �les that requires

longer computation time. This framework can be run on a private grid, but the

cloud providers already provide easy to install Hadoop services on the cloud en-

vironments, e.g., Hadoop on Microsoft Azure [198], Hadoop on Amazon EC2/S3

services and Amazon Elastic MapReduce [6]. In fact, Hadoop is designed to scale

from a single node to thousands of nodes, each of which o�ers local storage and

computing resources.

Hadoop is the main framework used to process Big Data. As a matter of fact,

it is currently used by many companies in the world, such as IBM, eBay, Twitter,

Facebook, Yahoo!, etc. (in [18] is presented the list of institutions that are using

Hadoop for educational or production uses). For example, Hadoop is useful to

sort big amount of data, to analyze text log, to pre-process raw data and for data

mining. However, it is not useful to interactive or on-line processes.

Overview of MapReduce Processing Generally, Hadoop v2.x uses MapRe-

duce paradigm to process data. Coarsely, the input records are split and assigned

to map tasks, where each is executed in a concurrent way on a node of the clus-

ter. Each map task processes a subset of input records, and it uses an instance

of map function to process a single input record. Therefore, a map function

processes an input record <K, V >, and it outputs a list of intermediate records

list(<K ′, V ′>). All the intermediate keys K ′ are partitioned and allocated to

reduce tasks. A reduce task receives a set of intermediate records and it sorts

them by key. For each group of keys, the reduce task invokes a reduce function,

that synthesizes (or aggregates) groups of records. Therefore, a reduce func-

tion processes as input <K, list(V)>, and it outputs a new list of records, i.e.,

list(<K ′, V ′>).

Generally, the records with the same key are processed by a single reduce

task. The partitioning of the reduce input records is controlled by the Hadoop

Partitioner, which establishes the order in which the records in output from the

map task (or optionally from Hadoop Combiner), reach a speci�c reduce task.

In Hadoop the input and output records are �les saved in HDFS, while the

intermediate records are saved directly on local �le system of the nodes. In

addition, to save network bandwidth, Hadoop can use the Combiner. It is an

53

3. APACHE HADOOP FRAMEWORK

optional component, and it is used as a �local reducer� on the same node where

a map task is executed.

3.2.1 The First Hadoop Version

Generally, a v1.x Hadoop cluster consists of a single master node and multiple

slave nodes : the master node runs the Job Tracker and the Name Node services,

while the slave nodes run the Task Tracker and the Data Node services useful to

execute map and reduce tasks. The Job Tracker service manages the assignment

of map and reduce tasks to the slave nodes, where they will be received and run by

Task Tracker service. The Data Node service manages the HDFS local storage

on the node running the Task Tracker service. Finally, the Name Node service

manages the HDFS namespace, by keeping the directory tree of all the �les in the

distributed �le system, and tracking where the �le data blocks are kept across

the cluster.

3.2.2 The Newer Hadoop Version

The newer version, i.e., v2.x, is mainly composed of two components: a data

processing framework called Yet Another Resource Negotiator (YARN) [277] and

the HDFS. Hadoop YARN replaces the �classic� MapReduce runtime of previous

releases, and it is a data processing framework supporting the execution of dis-

tributed algorithms through di�erent types of computing paradigms, including

MapReduce. So YARN is a framework for job scheduling and cluster resource

management, which includes Hadoop MapReduce. The software architectural

di�erence between Hadoop v1.x and v2.x are shown in Figure 3.2.

The Job Tracker services has been replaced. In fact, the new architecture

separates the two main functions of Job Tracker (cluster resource management

and job scheduling/monitoring) into two separate components: global Resource

Manager and per-application Application Master. Generally, a v2.x Hadoop

simple cluster consists of a single master node and multiple slave nodes: the mas-

ter node runs the Resource Manager and the Name Node services, while slave

nodes run the Node Manager and the Data Node services. On the master node,

the Resource Manager arbitrates the assignment of computational resources to

54

3. APACHE HADOOP FRAMEWORK

Hadoop v1.x Hadoop v2.x

MapReduce

Resource

Management

Data Processing

MapReduce

Data Processing

Other Frameworks

Data Processing (MPI)

YARN

Resource Management

HDFS

Distributed Redundant

Storage

HDFS

Distributed Redundant Storage

Figure 3.2: The software architectural di�erence between Hadoop v1.x and v2.x.

applications, and it is a global resource scheduler. On the slave nodes, the Node

Manager monitors and keeps informed the Resource Manager about the the sta-

tus of the node. Again, on the master node, the Name Node service maintains

the directory tree of all �les existing in the HDFS and keeps tracks of where

data blocks are physically placed. On the slave nodes, the Data Node service

maintains a subset of the HDFS data blocks using the local storage.

A Hadoop Application can be a set of MapReduce jobs, in particular, it can be

or a single job (MapReduce job classic) or a Directed Acyclic Graph (DAG) of such

jobs. These applications are run on Hadoop via an Application Master, that is

a service instantiated by a Node Manager on a slave node upon a request coming

from the Resource Manager. Once created, it asks the Hadoop framework for

all the resources required to perform a computation (mainly in terms of CPU

and memory). The Resource Manager responds by reserving to the application

a set of Containers (also called workers in this thesis), each being the basic

processing unit in Hadoop to execute a map or reduce task. A Container owns

a number of CPU cores and an amount of RAM, and, on a multi-core slave,

more concurrent workers can be run in parallel which execute map/reduce tasks.

Therefore, each running Hadoop application has its own Application Master

that manages application scheduling and executing tasks.

An overview of YARN services in Hadoop is shown in Figure 3.3.

55

3. APACHE HADOOP FRAMEWORK

Figure 3.3: An overview of the YARN services in Hadoop. The �gure was taken
from [13].

3.3 Hadoop Distributed File System

In a distributed system it is often a more e�cient approach to run a task on

local data, rather than move the data where the task is running. As a matter of

fact, one of the main characteristics of Hadoop is its ability to exploit data local

computing. In fact, the Hadoop Distributed File System (HDFS) [249] provides

functionality to enable applications to move closer to the data, minimizing net-

work congestion and increasing the overall throughput of the system. In other

words, it is the ability of the framework to run the computations on the node

hosting the data to be processed. This allows to signi�cantly reduce the overhead

typically spent in distributed applications to move data over the network.

In particular, the HDFS is a distributed and block-structured �le system,

able to also run on commodity hardware and able to provide fault tolerance

through replication of data. Indeed, it was inspired by Google File System (GFS)

[115]. The HDFS is able to reliably maintain very large �les, in fact, it works

by automatically splitting large �les in smaller blocks and spreading them across

nodes in a cluster. Each �le is a sequence of blocks, and all the blocks in the

�le, except the last, are the same size (referred to as HDFS block size). The

default HDFS block size (BS) is 64 MB for Hadoop v1.x and 128 MB for Hadoop

56

3. APACHE HADOOP FRAMEWORK

v2.x. Fault tolerance is guaranteed by a replication strategy that requires each

block to be replicated and stored on di�erent nodes, according to a replication

factor (RF). In addition, block size and replication factor are con�gurable for

each �le. One the one side, increasing the RF will increase as well the chances

for a task to be run on a node hosting the data it requires. On the other side, a

high replication factor implies a larger performance overhead to be spent initially

for writing di�erent replicas of a same �le.

3.3.1 HDFS Architecture

The HDFS has a master/slaves architecture. A simple cluster consists of a Name

Node, that is a master server that manages the �le system namespace and it rules

the client access to �les. There are many Data Nodes, usually one for each slave

node in the cluster. Each Data Node handles the local storage where such service

is running. Moreover, it serves read or write requests, and it creates, deletes,

and replicates the blocks on instruction of Name Node. For the nature of the

HDFS, the relationships between keys can be de�ned only within the MapReduce

application, not by HDFS.

Name Node Service The HDFS is a hierarchical �le system with �les and di-

rectories. The Name Node maintains the �le system namespace. In particular,

the Name Node keeps in memory the image of the entire namespace of the �le

system and the �le blockmap, that is the directory structure of all �les in the �le

system and the reference to the nodes where the �le blocks are contained. Name

Node supports copying, deleting and moving the �le operations. It also saves the

number of replicas that the �le requires (called �le replication factor).

Any change the �le system meta information is recorded by Name Node. It

uses a transaction log called EditLog to record every change that occurs to the

meta-data in the �le system. The EditLog is stored in the local �le system of

Name Node. The entire �le system namespace (including the mapping of blocks

to �les and �le system properties) is stored in a �le called FsImage, saved on

the local �le system of the Name Node. When the Name Node starts, it picks up

FsImage and EditLog from own local �le system. Then, it update FsImage with

57

3. APACHE HADOOP FRAMEWORK

information from EditLog. It saves a copy of FsImage on the �le system as a

checkpoint. Periodic checkpointing is done, so the system can restore everything

to the last checkpoint in the event of a crash.

If the Name Node goes o�ine, the whole system goes o�ine. This problem is

solved using a Secodary Name Node service and/or NameNode High Availability

(NN HA) functionality in Hadoop v2.x (see Section 3.3.2).

Data Node Service A Data Node stores in the own local disk the �les related

to HDFS blocks. It makes reading, writing, movement and replication of �les at

the request of Name Node. Once the Name Node has provided the location of a

�le block, clients can connect directly to Data Node for data transferring. The

Data Node has not information about the HDFS, in fact each Data Node stores

a HDFS block as an unknown �le. When the HDFS services start, a Data Node

generates a list of all blocks (called Blockreport) and it submits this report to the

Name Node. The Data Node provides blocks of data through the interconnection

network using a speci�c block protocol. In addition, they communicate among

themselves to balance data, to move copies between them and keep a high data

replication.

Block Replication The HDFS blocks are replicated for fault tolerance. The

HDFS uses the replication pipelining, that is when a client receives responses from

Name Node, it sends its block into small pieces to the �rst replication, which in

turn copy it at the next replication, and so on. In this way the data are pipelined

from Data Node to the next. The need for �re-replication� may result from: a

Data Node may be unavailable, a replica can become corrupt or a hard drive on

a Data Node can fail. The HDFS architecture is compatible with data balancing

schemes. A schema could move data from one Data Node to another if the free

space on a Data Node falls below a certain threshold.

3.3.2 HDFS Main Features

The HDFS is designed to be used on low-cost hardware, in fact, one of the main

objectives of HDFS is the recovery from the hardware failure. Fault detection

58

3. APACHE HADOOP FRAMEWORK

and fast automatic recovery are core architectural goals of the HDFS.

In the following are summarized the main features and goals of the HDFS.

• High fault-tolerant: detection and error recovery due to failure

In a distributed system, the failure is the norm rather than exception. Each

Data Node sends a heartbeat message periodically at Name Node which is

used to notify the state of Data Node. The failures of the Data Nodes

are manged through the data replications. Also meta-data disk failure are

managed using backup copies. In addition, snapshots1 can restore previous

HDFS state if severe malfunctions are experienced. Other functionalities

are added in Hadoop v2.x.

• Data Integrity

A checksum for each block is made. If the block is damaged, a replica of

the block is used.

• Large datasets

The HDFS is suitable for applications with large datasets ranging from

gigabytes to terabytes. In fact, it is not suitable for too many small �les

(see [291]).

• Batch processing

The HDFS is designed for processing in batch mode than interactive user

access. It is preferable a high throughput that low latency. This pattern is

MapReduce-compatible.

• Write-once and read-many model

HDFS applications require a �le access model of write-once and read-many

type. Once a �le is created, written and closed, it should not be changed.

This assumption simpli�es the data coherency issues and allows access to

data with the same high throughput.

• High throughput

HDFS provides high aggregated data bandwidth.

1A snapshot is the photography of the state of a system at a particular point in time.

59

3. APACHE HADOOP FRAMEWORK

• �Moving computation is cheaper than moving data�

Hadoop can use the data locality execution, that is the computation is more

e�cient if the data are taken from local disk than moving data through the

network.

• Portability across heterogeneous hardware and software platforms

The HDFS can be built on heterogeneous commodity hardware.

• Scalability

HDFS provides scalability to hundreds or thousands of nodes in the cluster.

• MapReduce support

MapReduce applications (e.g., web-crawler, text analyzer) �t perfectly to

HDFS.

New Features The Hadoop v2.x introduces many new functionalities related

to the HDFS, such as NameNode High Availability and HDFS Federation. In the

following are summarized these features.

• NameNode High Availability

The Name Node may be a single point of failure, in fact, a Secodary Name

Node can be used as backup. In addition, the newer Hadoop version provides

NameNode High Availability (NN HA) that uses a set of Name Nodes in

standby for failover.

• HDFS Federation

With the aim to scale out the name service, the federation uses more inde-

pendent Name Nodes (i.e., namespaces). The Name Nodes are federated and

independent, and they require no coordination between them. The federa-

tion partitions the HDFS namespace between multiple Name Nodes to use

cluster with a very large number of �les.

3.4 Lifetime of a Hadoop MapReduce Application

As previously stated, the execution of a Hadoop MapReduce application takes

place in two consecutive (and potentially overlapping) phases: the map phase

60

3. APACHE HADOOP FRAMEWORK

and the reduce phase. During the map phase, one or more map tasks are run by

Containers on the slave nodes of the Hadoop cluster. In general, each Container

may run one task a time, while several Containers may run in parallel on a same

slave node. Several Containers may be concurrently run on a same slave if there

are many unused resources on that node, such as CPU cores, RAM memory, I/O,

and so on. When an application is running, a worker (i.e., Container) in the

cluster is dedicated to the Application Master service.

The execution of a map task goes through four phases. At startup, the task

initializes the data structures required for managing the input and the output of

the task (init phase). Here, an important role is played by setup of the input

record reader. Then, the Container begins the execution of the map functions

(map execution phase). As soon as output pairs are returned, these are saved in

a temporary memory bu�er. When the bu�er gets almost full or when the map

functions execution ends, the output pairs are sorted, partitioned according to

the destination reduce task, and written on disk (spilling phase). Lastly, data

belonging to each partition are merged on disk, and moved to the slave nodes

where the reduce tasks will process them (shu�e or copy phase).

The execution of a reduce task requires three phases. At the beginning, all

the pairs produced by map tasks and included in a certain partition are moved

on the node where the reduce task assigned to that partition will be run (shu�e

or copy phase). As soon as new pairs are received by a node, they are sorted in

order to keep them grouped according to their key (sort/merge phase). Finally,

for each group of the pairs with the same key, a reduce function will be run by

the Container on that node (reduce execution phase).

The change for an execution to be slowed down by a task taking too much

time to run is managed in Hadoop through speculative execution. In such a case,

the Hadoop framework may decide to run the same task on a di�erent node.

Then, as soon as one of the two tasks �nishes, the other one is killed.

3.4.1 Splitter and Records Reader

The splitter determines how to divide the input into multiple parts. The access to

the input �les of a program is managed by Hadoop through the implementation

61

3. APACHE HADOOP FRAMEWORK

of a proper InputFormat used to read the �les. In particular, the splitter is a

speci�cation used by Hadoop to virtually organize and manage a data source in

smaller parts called input splits, where each split will be processed by a distinct

map task. The InputFormat is also used by map tasks when processing a split to

extract all the <key, value> pairs contained within and to be provided as input

to map functions.

In particular, the InputFormat de�nes how to read data from a �le split

in the map tasks. Hadoop has many implementations of the InputFormat, for

example, some implementations work with text �les and they describe di�erent

ways of interpreting these �les. Other implementations are built to read binary

�le formats (e.g., SequenceFileInputFormat). In general, the main work of a

splitter is to divide data �les in fragments (i.e., input splits), that are used by

the map tasks. Then these splits are divided further into records, which are used

one at a time in the map functions. The Java class hierarchy of InputFormat is

presented in Figure 3.4.

HDFS blocks have not to be confused with input splits. The former refers to a

physical organization of the input data. The latter refers to a logical organization

of the input data and do not necessarily corresponds to HDFS blocks (e.g., a split

organizing an input �le as a set of lines of text may require to access two HDFS

blocks to complete a dangling line - see Figure 3.5 for an example). The number

of input splits re�ects the total size of input �le divided by the HDFS block size.

As a consequence, a same logical split may include several HDFS blocks or a

single HDFS block may contain many logical splits.

3.5 Hadoop Main Features

Usually, when a developer writes an application to be run on Hadoop, he does

not have to care about the way the data are spread over and maintained in the

di�erent nodes of a cluster or transfered. However, in some cases an explicit

control over data locality and data management are required to achieve a better

performance. In order to cope with these needs, Hadoop o�ers several facilities.

In the following, we brie�y describe the Hadoop functionalities that have been

considered during the next chapters. Some concepts have already been treated

62

3. APACHE HADOOP FRAMEWORK

Figure 3.4: Hadoop InputFormat class hierarchy. The �gure was taken from
[292].

Figure 3.5: Example of logical records and HDFS blocks for a text input �le using
TextInputFormat class. A single �le is divided into text lines and the boundaries
do not match those of the HDFS block. The split follows the logical boundaries,
i.e., the �rst input split contains the line from 1 to 5, although the line 5 crosses
the �rst and the second HDFS block, while the second input split starts at line
6. This image was taken from [292].

63

3. APACHE HADOOP FRAMEWORK

before, but this section gives an emphasis on the possible code improvements

exploiting these features.

Data Locality Computation The strategy of moving computation to the

data, instead of transferring the data to the computation (slave node) allows to

achieve high data locality that translates into high performance. The developer

must also write e�cient splitter and record reader components to exploit data

locality.

Sequence Files The HDFS is known to perform poorly when handling a large

number of small �les, mainly because of indexing issues (see [291] for details).

This problem can be overcome by using the Hadoop Sequence Files1. These

�les, implemented through the SequenceFile object, store on HDFS sequences

of binary <key, value> pairs with arbitrary length, thus working as a container

of smaller �les. In addition, they can store arbitrary types of data, even com-

pressed. Moreover, they support a variety of serialization frameworks. Finally,

they provide a input split primitive that breaks their content in several parts to

be distributed in di�erent slave nodes. Consequently, data are put on the same

nodes where they will be processed so to reduce the amount of data to transmit

(i.e., data locality computation).

Cache File This facility is useful for caching read-only HDFS �les on slave

nodes, before any task is executed on that node. This may help to reduce the

I/O network activity during the execution of a task and related to the processing

of read-only �les (e.g., a library and shared �les), at the expense of an initial

slower start-up. In Hadoop v1.x this feature is available through a Hadoop object

known as DistributedCache.

Speculative Execution Some nodes may be much slower than others (a con-

dition called a straggler) due to network problems and/or excessive load, and so

1The reader should not confuse a Hadoop sequence �le with a �le containing genomic
sequences as described in Chapter 5.

64

3. APACHE HADOOP FRAMEWORK

on. Therefore, a task map or reduce can be slow and it could delay the com-

pletion of processing. Hadoop speculative execution indicates that a same task

can be run multiple times on di�erent slave nodes. As soon as a duplicate task

(also called backup task) ends, the other ones are killed. In Hadoop, a killed

task is usually a task duplicate that is killed due to the mirror task termination

(this is generally called speculative execution). In addition, the tasks are also

killed when a task does not notify its state of progress within a �xed timeout,

or the schedulers FairScheduler or CapacityScheduler need some other slot pool

(FairScheduler) or queue (CapacityScheduler).

Data Replication HDFS is designed to reliably maintain very large �les across

nodes in a cluster. This is done by storing each �le as a sequence of blocks, where

the blocks belonging to a same �le can be replicated several times over di�erent

nodes for fault tolerance, according to a replication factor (RF)1. As mentioned

above, a higher replication factor increases the chances for a task to be allocated

over a node hosting the data to be processed. However, it puts a heavy burden

on the time needed to write �les on the HDFS, as writing operations must be

propagated to the replicas according to this factor.

File Deleting When a �le is deleted, it is not removed immediately from HDFS,

but it is moved to a folder called trash. The �le remains in this directory for some

time (6 hours by default), and then it is deleted permanently. After this timeout

all blocks associated with it are freed and cleared out the reference in Name Node.

Cancellation policies can be con�gured manually. A client can restore �les deleted

prior to its �nal disposal, but the directory trash contains only the most recent

copy of the �le.

Combiner In order to save network bandwidth and local disk I/O, Hadoop

implements the Combiner, a mechanism able to reduce the data transferred be-

tween map and reduce tasks. It is a user-provided function that is invoked before

a map task sends its outputs, with the purpose, for example, of batching and

1The default HDFS replication factor is 3.

65

3. APACHE HADOOP FRAMEWORK

aggregating parts of the output data of a map task just using in-memory op-

erations, before sending the results to the destination reduce tasks. For some

problems, a developer could avoid this generic functionality and he could im-

plement a proper improved local in-mapper aggregation to get better speed up.

Section 3.6 describes the di�erence between the Combiner and a such custom

solution.

Partitioner This is responsible for key-space mapping to reducers, i.e., it es-

tablishes the partitioning in which the records in output from the map task

(or optionally from Combiner), reach a speci�c reduce task. In other words,

this component is in charge of deciding which reduce task has to process which

<key, value> pair outcoming from the map phase.

Hadoop stores the intermediate results of the computations in local disks,

where the computation tasks are executed, and it informs the appropriate reduc-

ers to retrieve (pull) them for further processing. The partitioning is typically

done by running a hash function on the input key. The default Partitioner is

the HashPartitioner, where the reduce task is chosen through a hash function

applied to the key, module the number of reduce tasks. The standard hash func-

tion can be replaced by a custom one, in order to gain control of the way the

partitioning is made.

3.5.1 The Future of Hadoop

Apache Hadoop is a working progress project, in fact, e�orts are made to accept

the changes proposed by many users to improve the performance. For example,

Appuswamy et al. in [21] have described several modi�cations to the Hadoop

runtime that target scale up con�guration. These changes are transparent, do

not require any changes to application code, and do not compromise scale out

performance. At the same time their evaluation shows that they do signi�cantly

improve scale-up performance of Hadoop.

Nowadays is spreading Apache Spark [17], a fast and general engine for large-

scale data processing. It run programs up to 100× faster than Hadoop MapRe-

duce in memory, or 10× faster on disk. Many Spark applications are run on

66

3. APACHE HADOOP FRAMEWORK

Hadoop clusters.

3.6 Hadoop Combiner versus In-Mapper Local Ag-

gregation

As explained in Section 3.5, Hadoop allows to use a Combiner function to aggre-

gate the map output pairs. The aggregated pairs of the Combiner are the input

to the reduce functions. In fact, if a Combiner function is speci�ed, it will be run

by a map task to reduce the amount of data written to disk, and this function

may be run repeatedly over the input without a�ecting the �nal result. The Com-

biner function is an �optimization�, in fact, Hadoop does not provide a guarantee

of how many times it will call it for a particular map output pair, if at all [292].

In fact, even if a programmer explicitly sets a Combiner class, Hadoop may or

may not run it at all [274]. When a map task with a Hadoop Combiner emits

the <key, value> pair, it is collected in a memory bu�er, and then the Combiner

may aggregate a batch of these <key, value> pairs before sending them to the

reduce tasks. Hadoop may also stores the <key, value> pairs in local �le system,

and run the Combiner later, which will cause expensive disk I/O [269]. Finally,

a Combiner only combines data in the same bu�er.

Unlike, an in-mapper local aggregation (or in-mapper local combining) is a

explicit solution written by the programmer, which is much more e�cient and

resource-frugal than a Hadoop Combiner, because it continually aggregates the

data in memory. In fact, as soon as it receives two values with the same key,

it combines them and stores the resulting <key, value> pair in a custom data

structure, e.g., a hash table. However, this explicit solution requires a lot of

programming work, which is completely absent using the Combiner.

In-mapper local aggregation solution is extensively used in the solutions pre-

sented in this dissertation to improve the performance (see Chapters 4 and 5).

67

3. APACHE HADOOP FRAMEWORK

3.7 Pro�ling, Tuning and Improving Hadoop Ap-

plications

Starting from the stand-alone (or sequential) reference implementation, the �rst

thing is to evaluate it, checking if it e�ciently solves the problem. Then we need

to check, for example, which operations are more expensive in terms of CPU

usage, and how often they are invoked. Then, it must be ascertained where we

can parallelize the sequential implementation.

In the previous sections it has been announced that Hadoop could be used to

easy develop a distributed version of a non-parallel (sequential) algorithm with-

out particular distributed skills. At �rst glance, an initial distributed solution

obtained from a simple �mapping/porting� (or transformation), without the in-

ternal knowledge of Hadoop, might su�ce. Unfortunately, this is not true for

many problems and solutions. In fact, a deep understanding of Hadoop could

impact positively on the development of an improved distributed application. In

general, a distributed implementation is a necessary but not su�cient condition

to obtain very good performance and scalable applications.

As will become clear in the next two chapters, a preliminary stage of pro�l-

ing of a Hadoop-based naive application is required to understand the potential

bottlenecks and for trying to improve its performance. For example, a devel-

oper must analyze, use, change or try to improve many components or facilities,

called critical points, such as: the I/O organization, the input splitter, the record

reader, the input split size, the number and the granularity of the map tasks,

data locality computation, the local aggregation in the map tasks, the key-space

partitioning to reducers, the total number of reducers, the number of transferred

data between mappers and reducers, the map or reduce functions, and so on.

Therefore, it is required to identify the internal and external factors that may

a�ect the distributed execution. We need to answers to some questions, such as:

What is the maximum number of map and reduce tasks that need to be allocated to

each slave node?; How HDFS replication factors and block sizes a�ect on running

times; Whether to compress or not the data; etc.

In addition, some strategies must be adopted which allow to monitor the

cluster to check for any abnormalities during the execution of the Hadoop jobs.

68

3. APACHE HADOOP FRAMEWORK

For analyzing the behavior of a MapReduce application is required the monitor

of the status of the job on each node of the cluster, for example: local disk

I/O, network I/O, memory and SWAP activities, CPU usage, bottlenecks in

the sequential code of map/reduce functions, the numbers of transferred/output

<key, value> pairs, data locality computation, and so on.

In fact, we should analyze if we can improve the distributed execution moni-

toring the allocated resources, checking any wastage of time and resources used to

manage the cluster. So automated tools which allow to monitor all these param-

eters on the cluster are required. Therefore, in addition to the Hadoop statistics,

tools as Dstat [293] and Java pro�lers are useful to gather such information. Once

highlighted the problems, they must be solved via code modi�cations or chang-

ing Hadoop con�guration parameters, so trying to develop e�cient solutions. For

example, if a data structure is used as in-mapper local aggregation to get bet-

ter performance, the number of expected initial elements could impact on the

execution times (e.g., a hash table continuously doubled).

Many technical choices will need to re�ect the current cluster architecture, in

addition to a generic cluster. In fact, many design choices used to improve the

execution times could be consequences of cluster architecture. We must answer

to questions, such as: How many physical nodes and CPUs are in the cluster;

Which hardware/software con�guration is used in the cluster; What are the phys-

ical limits of the resources (CPU, memory, network bandwidth, I/O throughput)?

In addition, a tuning phase related to various parameters is required to search

further improvements in the distributed code (e.g., [138, 151, 173]).

Finally, we should analyze as the running times vary changing number of

computing units in the cluster, for showing the speed up compared to a stand-

alone execution. In general, �xed an input dataset, it is required to vary the

computing units in the cluster (such as 4, 8, 16, 32 and 2x) to show how the

execution times change.

In the following chapters are shown as some Hadoop-based naive (or basic)

implementations can be improved to getter a better e�ciency and, therefore, a

good speed up. In particular, we will propose some naive solutions, obtained

according the simple Hadoop porting, and we will describe in details as they are

made fast and e�cient thanks to pro�ling, tuning and improving activities.

69

Chapter 4

Processing Big Data in Digital

Image Forensics

In this chapter is presented the work done for e�ciently engineering and exper-

imenting on Hadoop the algorithm by Fridrich et al. [181] used to solve the

Source Camera Identi�cation problem (i.e., recognizing the source camera used

for acquiring a given digital image).

Initially, in this chapter are introduced the issues about the Digital Foren-

sics and Big Data (see Section 4.1), while Section 4.2 addresses how to analyze

massive sets of images. The Source Camera Identi�cation problem is introduced

in Section 4.3, while our Hadoop solution for the algorithm by Fridrich et al. is

presented and analyzed in Section 4.4. Section 4.5 concludes this chapter with

some observations.

4.1 Digital Forensics and Big Data

Nowadays, the size of digital memories and the services running on the Web are

growing exponentially. In addition, data sources are much more di�erentiated and

heterogeneous than in the past. The data collected could be potential sources

of digital evidences in legal investigations and processes. In fact, it is customary

that a legal case can work on data originating from PCs, servers, cloud services,

Online Social Networks (OSNs), phones, tablets, digital cameras, GPS devices,

70

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

embedded systems, industrial control systems, audio systems, image repository

systems, and so on. In addition, the cyber security requires to manage and analyze

a large amount of data (e.g., texts, logs, images or video, network information,

etc.) to combat the crimes, such as terrorism.

In 2008 the FBI Regional Computer Forensics Laboratories (RCFLs) annual

report [99] explained that the RCFLs processed 27% more terabytes of data than

they did during the preceding year. These laboratories examined 58, 609 pieces

of digital media of all kinds for a total of 1, 756 terabytes of processed data. To

extract information from these data, it also required to use sophisticated analysis

tools.

Therefore, a �eld that is also taking advantage of the possibilities o�ered by

the distributed systems to save and process big amount of data is Digital Forensics

(or Computer Forensics). In general, it is concerned with the acquisition and the

analysis of digital media in order to �nd clues while investigating a crime.

In 2001 the Digital Forensic Research Workshop (DFRWS) [85, 218] marked

the guidelines for the determination of the science of Digital Forensics: �Digital

Forensic Science: The use of scienti�cally derived and proven methods toward

the preservation, collection, validation, identi�cation, analysis, interpretation,

documentation and presentation of digital evidence derived from digital sources

for the purpose of facilitating or furthering the reconstruction of events found to

be criminal, or helping to anticipate unauthorized actions shown to be disruptive

to planned operations�.

One of the �rst contributions in digital forensics �eld for distributed environ-

ments comes from Roussev et al. [234]. In their paper, the authors proposed a

novel framework based on the MapReduce paradigm that can be used to imple-

ment forensic computing techniques in a distributed fashion.

A more speci�c issue has been addressed by Raghava and Shelly in [227]. The

authors used the MapReduce paradigm to signi�cantly speed up the matching

process of biometric traits using iris recognition. A di�erent application has been

shown in [166] where the authors presented a MapReduce model for the e�cient

indexing and querying of text documents for digital forensics purposes. Federici

in [100] discussed the design goals, technical requirements and architecture of

AlmaNebula, a conceptual framework for the analysis of digital evidences built

71

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

on top of a cloud infrastructure, and aimed to embody the concept of �Forensics

as a service�.

Guarino in [129] explores the challenges in Digital Forensics and Data Science.

He proposes how techniques and algorithms used in Big Data analysis can be

adapted to the digital forensics, ranging from the managing of evidence through

MapReduce paradigm to machine learning techniques for analysis of big disk

images and network tra�c dumps. A common task is the attribution of a �le

fragment (coming from a �le system image or from unallocated space) to speci�c

�le type.

In [247] is presented a Network Forensics system, called ForNet. It is a dis-

tributed network logging mechanism to aid digital forensics over wide area net-

works, and it aims to address the lack of e�ective tools for aiding investigation

of malicious activity on the Internet. ForNet builds and stores summaries of

network events, based on which queries are answered.

Instead, Lu et al. in [180] have proposed a heavy network �ngerprint discrim-

inant algorithm. They have implemented it on the top of Apache Hadoop.

In addition to textual information and tra�c networks, nowadays, photos and

videos accompany us in our daily and personal life. For instance, it has been esti-

mated that about 1.1 billion digital still cameras were shipped worldwide in 2013

[42], and about a billion of cameras were shipped in 2014 [43]. From a common

viewpoint, photos and videos have become part of a new communication language,

that mixes together the spoken language with multimedia digital contents. This

is shown by the enormous amount of digital images exchanged through Online

Social Networks (OSNs) and photo sharing websites. In February 2015, for ex-

ample, the total number of photos uploaded to Facebook was about 400 billion

(they were 250 billion in September 2013), while the average number of photos

uploaded per user was about 217 images (September 2013) [253].

In fact, in the recent years, a new discipline, called Digital Image Forensics

(DIF), is born and it is one of the application �elds where the problem of process-

ing Big Data is arising. The digital image forensics is focused on the acquisition

and the analysis of images (or videos) found on digital devices or on the Web

for investigation purposes. This research �eld is very active, as witnessed by

the many contributions proposed in this area. It may be useful, for example,

72

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

for establishing if a digital image has been altered after it has been captured

(i.e., Digital Image Integrity) (e.g., [51, 53, 54, 60, 98, 301]), if it contains hid-

den data (i.e., Digital Image Steganography) (e.g., [59, 110]) or what camera

has been used to capture that image (i.e., Source Camera Identi�cation) (e.g.,

[28, 46, 48, 122, 181]).

Today, the manipulation of digital images is simpler than ever thanks to solu-

tions like sophisticated photo-editing software or photo-sharing social networks.

Indeed, one of the key characteristics of digital images is their pliability to ma-

nipulation. As a consequence, we can no longer take the authenticity of digital

photos for granted. This can be a serious problem in situations where the re-

liability of the images plays a crucial role, such as when conducting criminal

investigations. This is often referred to as Tampered Image Detection or Image

Integrity problem. Given an input image, is it possible to establish whether it has

been tampered with or not? That is, can we prove that the image has been modi-

�ed by any kind of operation or that it exactly corresponds to the camera output?

In fact, there are plenty of tools that allows even an inexperienced user to modify

the content of a digital image without leaving a visible trace of alternation. This

practice may be harmful if used, e.g., to alter the digital evidences in a criminal

trial or to support the spread of false news for political propaganda. In such a

scenario, it becomes often important to ensure that a digital image is authentic

and has not been subject to any form of manipulation, especially in some appli-

cation �elds such as journalism, criminal investigations and legal matters. This

risk is today higher than in the past, thanks to the �ourishing of applications and

online services for editing and tampering digital images.

Another important problem in digital image forensics is the recognition of the

camera that has shot an image, also distinguished between camera of the same

brand and model. This problem is well-studied in literature, e.g., [28, 46, 48, 122,

181]. In addition, classi�cation and clustering algorithms are useful to automat-

ically review sets of photos, for instance, to separate suspect images (or parts of

a photo) from the rest. These problems are widespread in the investigations to

the �ght against online child pornography. Indeed, it is required to evaluate if

a suspicious image has been taken by the same digital camera used to shoot the

photos which appear on an user's album published at a OSN.

73

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Most of these problems have already been discussed in the scienti�c literature

and valuable solutions are usually available. However, with the growth of digital

photography, there is required to assess how these solutions scale when dealing

with Big Data and/or how their performance can be improved to respond faster

to investigators.

For example, Fridrich et al. [181] were the pioneers solving the Source Camera

Identi�cation (SCI) problem exploiting the camera sensor noise as �ngerprint. In

fact, many solutions have been developed over the years to solve it. However,

with the spread of the images published OSNs, solutions for fast and e�cient SCI

are required. It is a big task not only to perform these computations, but also to

save images and their meta-data.

4.2 Analyzing Massive Datasets of Images

As previously stated, the explosion of images and videos through the OSNs could

limit the applicability of the existing algorithms and tools used to verify whether

photos (or videos) were forged (e.g., [51, 61, 111]), to semantically cluster and

organize images and videos (e.g., [27, 229]) or to identity the source camera or

its model (e.g., [120, 121, 181, 264]).

In fact, the way by which performing Source Camera Identi�cation on large

datasets, has not received much attention in the scienti�c literature. One of the

few contributions in this area, i.e., [122], presents a large-scale test of SCI from

sensor �ngerprints. The authors tested over one million images spanning 6, 896

individual cameras covering 150 models, and used an improved version of the

Fridrich et al. algorithm. The only piece of information available about the ex-

perimental setting they chose concerns the usage of a cluster of 40 2-core AMD

Opteron processors, where 50 cores were devoted to this application. Nothing is

said about the changes necessary to run the algorithm in a distributed environ-

ment and about its performance compared to its non-distributed counterpart.

Another contribution describing a large-scale experimentation of a Source

Camera Identi�cation algorithm is presented in [123]. The authors describe a

fast searching algorithm based on the usage of a collection of �ngerprint digests,

so to easily identify the origin camera of a given image if its �ngerprint is in

74

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

the database. The authors performed their experimentation with the help of the

Matlab software and a database of 2, 000 iPhones, proving the feasibility of the

approach proposed. Even in this case, no details are provided about the way the

experimentation has been conducted.

The authors in [29] represent camera �ngerprints in binary-quantized form to

store them more e�ciently and to speed up the identi�cation process. They

showed through both analytical study and simulations that the reduction in

matching accuracy due to quantization is insigni�cant if compared to conven-

tional approaches. The authors created a compact representation of �ngerprints

through the most severe form of quantization, i.e., by quantizing every element

of sensor �ngerprints into a single bit. They conducted experiments to deter-

mine the change in the performance due to the loss of information resulting from

binarization.

4.2.1 Our Contribution

In this chapter we focus on the development of a fast and e�cient distributed

solution for the Source Camera Identi�cation (SCI) problem (i.e., recognizing

the camera used for acquiring a given digital image) based on the algorithm by

Fridrich et al. [181]. A common approach adopted by many SCI algorithms re-

quires the extraction of a set of features, usually sensor �ngerprints of a camera,

from an image under scrutiny and their matching with a set of features of previ-

ously known cameras in order to identify the originating camera. As observed in

[29], these operations may be very computational expensive when dealing with a

large set of images, for two reasons. The �rst one is that the large dimensionality

and high precision representation of sensor �ngerprints put a heavy burden on

all the operations related to storing and loading �ngerprint data. The second

one concerns the high time complexity of some of the operations required by the

identi�cation algorithms, further increased by the high dimensionality of data to

process, both in terms of number of images and number of pixels. Therefore, the

process can be very time consuming. The operations are individually very CPU

and I/O-intensive, as they involve the processing of images containing millions of

pixels. Moreover, they are expensive as a whole, as this cost has to be multiplied

75

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

for the number of images (which may be thousands or millions) used to build, to

test and, �nally, to use a recognition system.

The SCI problem has already been dealt with in the recent past, as proved by

the contributions available in the scienti�c literature, such as [28, 29, 122, 123,

142, 181]. It may be approached either from an algorithmic viewpoint or from a

computational resources viewpoint. In the �rst case, for example, it is possible

to speed up the retrieval of a �ngerprint and its matching with the �ngerprint

of an input image by storing camera �ngerprints in a compressed way through a

binary quantized form ([29]). In the second case, it is possible to speed up the

operations by using faster processors or by spreading these activities over several

computing cores of a same calculator. In this second case, however, there could

be severe performance bottlenecks, precisely because the use of multiple CPU

cores on the same computer would require them to share and to contend memory

and storage resources at the same time.

These limitations may be overcome by resorting to a distributed approach

based on data local computation. In a few words, images are processed in parallel

by several computing nodes of a same cluster. All the images to be processed

are not concentrated on a same machine (or disk) but are distributed in the local

storage of the machines of the computer cluster. When a computation involving a

certain image has to take place, it is convenient to run it on the machine hosting

that image rather than moving the image to a di�erent computing machine. This

reduces the amount of data transferred over the network while allowing for a

virtually unlimited scalability.

In particular, in this chapter, we present the work done for e�ciently engi-

neering, on Hadoop, a reference algorithm for the Source Camera Identi�cation

problem. The selected algorithm is the Fridrich et al. algorithm [181], that is the

most popular and cited SCI solution. In particular, in Section 4.3 are provided

more information about the problem of Source Camera Identi�cation, followed

by a description of the algorithm by Fridrich et al. The �rst implementation

has been developed in a straightforward way, by adapting our stand-alone Java

implementation of the traditional Fridrich et al. algorithm and with the help of

the standard facilities available with Hadoop (see Section 4.4.1).

The resulting code, when run on our cluster system of commodity PCs, exhib-

76

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

ited much shorter execution times than the original one, by concurrently running

multiple instances of the algorithm on di�erent computing nodes. However, its

performance produced discouraging e�ects, in fact, the performance of the dis-

tributed version of the algorithm was quite below expectations. In particular, in

Section 4.4.2, are shown these experimental results obtained when running the

distributed implementation of the Fridrich et al. algorithm. In this same section,

are also described the datasets and the experimental settings employed for our

tests.

A closer investigation revealed the existence of several performance issues

due to the inability of our distributed implementation to take full advantage

of the underlying cluster resources. In Section 4.4.3 we focus on some serious

performance issues exhibited by our distributed implementation of the Fridrich

et al. algorithm, and we investigate their causes through an in-depth pro�ling

activity. Thus, we decided to monitor the status of each cluster node during the

execution of our experiments.

From this point on, we put in practice an engineering methodology aim-

ing, �rst, at pinpointing the causes behind the performance issues we observed,

through a careful pro�ling activity, and, second, at solving them through the in-

troduction of several theoretical and practical improvements. Through this pro-

�ling activities we were able to pinpoint some serious performance bottlenecks

that heavily a�ecting the performance of the distributed algorithm. Then, several

variants of the original code have been implemented in order to overcome these

problems and improve the overall performance. In fact, several improvements

were then tried, and their e�ects were measured by accurate experimentations.

This allowed for the development of alternative implementations that, while leav-

ing unaltered the original algorithm, were able to improve the usage of the un-

derlying cluster resources as well as of the Hadoop framework, thus resulting in

a much better performance than our original naive (or vanilla) implementation.

The impact of these improvements (see Section 4.4.4) on the performance and

on the scalability of the distributed version of the Fridrich et al. algorithm is

analyzed by conducting some more experiments. The resulting implementations

succeed in delivering a performance much better than the original distributed

implementation (see Section 4.4.5 for details).

77

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

A preliminary version of this work was presented in [55].

4.3 Source Camera Identi�cation Problem

Source Camera Identi�cation (SCI) problem concerns the identi�cation of the

digital camera used for capturing a given input digital image.

A very common identi�cation strategy consists in analyzing the noise in a

digital image to �nd clues about the digital sensor that originated it. In a dig-

ital image, the noise can be de�ned as color distortion in a pixel in comparison

with the original picture. These distortions may be due to the Shot Noise, a

random component, and/or to the Pattern Noise, a deterministic component.

The Pattern Noise, in turn, can be divided into two main components: the Fixed

Pattern noise (FP) and the Photo-Response Non-Uniformity noise (PRNU). The

FP noise is caused by dark currents, that is the information returned by the pixel

detectors of a digital sensor when they are not exposed to light. The PRNU

noise is caused mainly by the Pixel Non-Uniformity noise (PNU), resulted from

the di�erent sensitivity of the pixel detectors to light. This di�erence is due to

the inhomogeneity of the wafers of silicon and the imperfections derived from the

manufacturing process of the sensor. Figure 4.1 shows the di�erent components

of the noise in a digital image.

Thanks to their deterministic and systematic nature, the PNU noise and the

FP noise are the ideal candidates for providing a sort of �ngerprint of digital

cameras. For example, in [160] the authors used the dark current noise to identify

a camcorder from videotaped images. The idea of using the PNU noise for camera

identi�cation, instead, has been initially explored by Fridrich et al. in [181].

The authors observed that this method was successful in identifying the source

camera used to take the considered picture, even distinguishing between cameras

of the same brand and model. Satisfactory results were also obtained with images

subjected to post-processing operations such as JPEG compression [286], gamma

correction, and a combination of JPEG compression and in-camera resampling.

The e�ectiveness of this method has been further con�rmed by an experimental

evaluation whose results are available in [122]. The authors downloaded from

the Flickr image database a set of pictures taken by 6, 896 individual cameras

78

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Noise

Pattern Noise

PRNU

Low-frequency defectsPNU

FPN

Shot Noise

Figure 4.1: The components of the noise in a digital image.

(covering 150 camera models), for an overall number of more than one million

pictures. According to their results, the algorithm they used was able to exhibit,

in that setting, a False Rejection Rate (FRR, i.e., the rate of images not attributed

to their originating camera) smaller than 0.0238, and a False Acceptance Rate

(FAR, i.e., the rate of images attributed to the wrong camera) set to a very small

value (i.e., 2.4× 10-5).

4.3.1 The Algorithm by Fridrich et al.

In this section we describe the original version of the SCI algorithm by Fridrich et

al. [181], which is the basis of our reference implementation. All the operations

described hereafter have to be repeated either three times, if we choose to work

on the red, green and blue color channels (RGB), or just one time, if we consider

the grayscale representation of the input images. In our case, we decided to work

in the RGB space, following the instructions provided in [181].

Let I be the image under scrutiny and CamSet = {C1, C2, . . . , Cn} the set of
candidate origin cameras for I. The algorithm operates in four steps.

The �rst step (Step I) is the calculation of the Reference Pattern (i.e., the

camera sensor �ngerprint) RPC for each camera C belonging to CamSet. The

approach proposed by Fridrich et al. in [181] consists in estimating RPC by

79

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

extracting the residual noises (RNs) from a set of pictures taken by using C and,

then, combining these noises together, as an approximation of the PNU noise.

The residual noise RN of an image I can be de�ned as:

RNI = I − F (I) (4.1)

where F (I) is a �lter function that returns the noise-free variant of the image I.

The �lter F simulates the behavior of the Wiener �lter in the wavelet domain, fol-

lowing the approach suggested by Mihcak et al. in [199]. The operation described

above is applied pixel-by-pixel and is iterated over a group of images with the

same spatial resolution, here named enrollment images, taken by using C. This

returns a group of residual noises, including both a random noise component and

the PNU noise estimation of C. The sum of the residual noises is then averaged

to obtain a tight approximation of the camera C �ngerprint, as follows:

RPC =

∑m
k=1RNk

m
. (4.2)

The average operation reduces the contribution of the random noise components

while highlighting the contribution of the deterministic noise components.

Let n be the number of di�erent cameras, and let m be the number of enroll-

ment images for each camera, we must compute n×m residual noises.

The second step (Step II) is propaedeutic to the calculation of the decision

thresholds carried out during the third step of the algorithm. We �rst introduced

a set of calibration images (also called training images) using each of the cameras

belonging to CamSet. We then calculated the correlation between the �ngerprint

of each camera C (i.e., RPC) and the residual noise of each image T (i.e., RNT)

taken from the calibration set. The calculation is accomplished using the Bravais-

Pearson correlation index as follows:

corr(RNT , RPC) =
(RNT −RNT)(RPC −RPC)RNT −RNT

RPC −RPC

 , (4.3)

where the bar above a symbol denotes the mean value. This index returns a value

included in the interval [−1,+1], where higher values imply a higher probability

80

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

that an image T has been taken by using a camera C. In our case, it is evaluated

for each of the three RGB color channels and for each pixel of the input images.

Notice that if the spatial resolution of T does not match the resolution of the

images used for determining RPC , they could be adapted using a cropping or

resizing operation. The same step can be repeated for a second set of images,

called testing set, to be used for validation the recognition system during the

third step of the algorithm.

Let n be the number of cameras, and let k be the number of calibration/testing

images for each camera, then we must compute k × n2 correlation indices.

The third step (Step III) is about the calibration or training of the recognition

system used to recognize the source camera of a given image. The identi�cation

is based on the de�nition of a set of three acceptance thresholds (one for each

color channel) to be associated to each of the cameras under scrutiny. If the

correlation between the residual noise of I and the Reference Pattern of a camera

C, on each color channel, exceeds the corresponding acceptance threshold, then

C is assumed to be the camera that originated I. The thresholds are chosen so

to minimize the False Rejection Rate (FRR) for images taken by using C, given

an upper bound on the False Acceptance Rate (FAR) for images taken by using a

camera di�erent than C (Neyman-Pearson approach). For the de�nition of these

thresholds are used the correlation indices of the calibration images, while the

correlation indices of the testing images can be used to compute the recognition

rate (RR).

The last step (Step IV) concerns the identi�cation of the camera that captured

I. Here the algorithm �rst extracts the residual noise from I, RN I , then correlates

it with the Reference Patterns (RP s) of all the cameras under scrutiny using

the system calibrated in the third step. If the correlation exceeds the decision

threshold of a certain camera, on each of the three color channels, a matching

camera is found.

4.3.2 Reference Implementation

Our stand-alone (non-parallel) reference implementation of the Fridrich et al.

algorithm has been coded entirely in Java, and it is called Camera Hardware

81

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Identi�cation (CHI). An equivalent implementation of PNU �lter F was also writ-

ten in Java. CHI closely follows the original algorithm, but we also provide two

types of decision modules based on correlation indices: the �rst type is based

on Neyman-Pearson (like in Fridrich et al.), and the second one uses a multi-

class Support Vector Machine (SVM) [275] classi�er. We also have chosen to

use a multi-class SVM classi�er instead of using the original algorithm based on

the Neyman-Pearson approach, because of the better performance exhibited by

this classi�er in our experiments. However, these issues are outside the scope of

the dissertation because they not impact on the complexity of our distributed

algorithm.

A SVM classi�er belongs to the class of supervised learning classi�ers. These

classi�ers are able to estimate a function from labeled training data, with the

purpose of using it for mapping unknown instances (not labeled). In the classi-

�cation problem, the training data consist of a set of instances, where each is a

pair consisting of a vector of features and the desired group (class). In our case,

the features are the values extracted from correlating each RN of an image under

scrutiny with each Reference Pattern (RP). In particular, CHI uses the correla-

tion values of the calibration images to train SVM classi�er, while the correlation

values of the testing images are adopted to validate the trained SVM (see Step

III).

4.4 Source Camera Identi�cation on Hadoop

In this section is shown as Fridrich et al. algorithm is engineered as a distributed

solution according MapReduce paradigm. Initially is discussed a naive (or vanilla)

implementation of the algorithm, called HSCI, then, after a careful pro�ling, are

provided some improvements to speed up the performance.

4.4.1 The Algorithm by Fridrich et al. on Hadoop

It has been developed in Java a MapReduce-based implementation of the Fridrich

et al. algorithm, which it was split in four di�erent modules, each corresponding

to the four processing steps of the Fridrich et al. algorithm, plus a �fth module

82

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Table 4.1: Overview of our Hadoop-based implementation of the Fridrich et al.
algorithm.

Step Hadoop
Role

Input Output

(Step I)
Calculating
Reference Patterns

MapReduce
Job

Enrollment Images Reference
Patterns

(Step II)
Calculating
Correlation
Indices

Map-only Job Calibration and
Testing Images,
Reference Patterns

Correlation
Indices

(Step III)
Recognition
System
Calibration

- Correlation Indices Thresholds,
FAR, FRR,
Recognition
Rate

(Step IV) Source
Camera
Identi�cation

Map-only Job Input Image, Reference
Patterns, Thresholds

Camera Id

related to the preliminary image loading activity on the Hadoop Distributed File

System (HDFS). In the following, we describe in details these modules. Table 4.1

show an overview of the basic implementation.

4.4.1.1 Setup: Loading Images

With this preliminary step, the images to be used during the algorithm execution

are loaded on HDFS storage. In our implementation, this task was accomplished

by copying and keeping the images as separate �les.

4.4.1.2 Step I: Calculating Reference Patterns

The aim of this step is to calculate the Reference Pattern (RP) of a generic camera

C, by analyzing a set of enrollment images with the same spatial resolution and

taken by using C. In the map phase, each processing task receives a set of

images, extracts their corresponding residual noises and outputs them. In the

reduce phase, the processing function (one for each camera C) uses the set of

residual noises of C produced in the previous tasks and combines them, thus

83

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

generating the RPC . This operation is repeated for each camera under scrutiny.

The pseudo-codes of the map and reduce functions of this step are illustrated

in Algorithm 1. As said in Chapter 3, in Hadoop, each input record is structured

as a <key, value> pair. During this step, key is derived from the image meta-data

and value stores the Uniform Resource Locator (URL) of the image on HDFS.

When the map function is invoked, it receives this record, loads the corresponding

image in memory from HDFS and, �nally, extracts the residual noise (RN) from

the image. As an output, the function produces a new <key, value> pair, where

key is the camera id and value is the URL of RN directly saved on HDFS. During

the reduce phase, a function receives a tuple in the <key, value> format, where

key is the id of a camera, e.g., C, and values is a set of the URLs to RNs (saved

on HDFS) for that camera, as calculated during the map task. All the RNs of

the same camera are summed and then averaged to form the Reference Pattern

for C as described in Section 4.3.1 (see Equation 4.2). As an output, the function

generates a new <key, value> pair, where key is the id of C, and value is RPC .

The Figure 4.2 shows the overall and conceptual view of our distributed algo-

rithm when running the Step I on a cluster of 4 slave nodes.

4.4.1.3 Step II: Calculating Correlation Indices

During this step, the algorithm extracts the RN of each calibration image and

correlates it with the RP s of all the input cameras. The same operation is

repeated for the testing images.

In the map phase, each processing task receives a list of input images to be

correlated as <key, value> records, where key is derived from the image meta-

data and value stores the image URL on HDFS. For each URL, the corresponding

image is (possibly) transferred to the slave node, and the RN is extracted and

correlated with the RP s of all the input cameras calculated in the previous step.

If the resolution of the input image does not match the resolution of the RP

of a given camera, cropping and/or scaling techniques are used in order to correct

the issue. For each correlation, the map function generates a <key, value> pair,

where key is the keyword �Correlation� and value consists of: the image identi�er,

the camera identi�er used for shooting the image, the RP identi�er, a value

84

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Algorithm 1 Pseudo-code of HSCI for Calculating Reference Patterns (Step I)

function map(KeyI , PathI)
◃ It returns the RNI of an enrollment image I taken from camera C with the
purpose to compute the RPC in the reduce function. KeyI is a set of meta-data
used for identifying the enrollment image I, including the id of the camera C
used for shooting I, idC ; PathI is the HDFS path of I.

I ← Load(PathI)
FI ← ApplyPNUFilter(I)
RNI ← Subtract(I, FI)
Emit(idC , RNI)

end function

function reduce(idC , list(RNC))
◃ It returns RPC by averaging the RNs of the enrollment images of the camera
C. The variable idC is the id of the camera C; list(RNC) is the list of the
residual noises extracted from enrollment images taken by using C.

RPC ← New(Zeros)

for each PathRPi
in list(RNC) do

RNi ← Load(PathRPi
)

RPC ← Sum(RPC , RNi)
end for

RPC ← Average(RPC)
Emit(idC , RPC)

end function

85

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Network

HDFS Namespace

…

…

Enrollment Images

Enrollment Images

Calibration/Testing Images

Calibration/Testing Images

Master

HDFS

Local File

System

Reduce Task - RAM

Reduce Task
Temporary Output

RN

RP(t)

RP(t+1) Enrollment Images

Enrollment Images

Calibration/Testing Images

Calibration/Testing Images

Slave 3

HDFS

Local File

System

Reduce Task - RAM

Reduce Task
Temporary Output

RN

RP(t)

RP(t+1) Enrollment Images

Enrollment Images

Calibration/Testing Images

Calibration/Testing Images

Slave 4

 HDFS

Local File

System

 Map Task - RAM

 I RN
I

Map Task
 Temporary Output

 Enrollment Images

 Enrollment Images

 Calibration/Testing Images

 Calibration/Testing Images

 Slave 1

 HDFS

Local File

System

 Map Task - RAM

 I RN
I

Map Task

 Temporary Output

 Enrollment Images

 Enrollment Images

 Calibration/Testing Images

 Calibration/Testing Images

 Slave 2

Figure 4.2: Conceptual view of our distributed algorithm for SCI when running
the Step I on a cluster of 4 slave nodes. Images are not centralized but they are
saved on HDFS. Slave 1 and Slave 2 are extracting RNs from enrollment images
available on HDFS (map task). The result of this extraction can be bu�ered on
local �le system before being sent to HDFS. Slave 3 and Slave 4 are summing
and averaging all RNs of images shot using a same camera to compute the RP
(reduce task).

86

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

indicating the correlation preprocessing type (e.g., none, crop, resize, etc.), plus

the three correlation indices (one for each color channel). The output of all map

tasks is collected in a plain text �le, CORRs. Since each processing node has to

load the RP of all the input cameras, we used the Hadoop Cache File mechanism

to make each node transfer to its local �le system a copy of these �les, before

starting the Hadoop job (see Section 3.5 for details). In particular, it was used the

object DistributedCache, a facility provided by the Hadoop framework v1.x to

cache �les (text, archives, jars etc.) needed by applications. In this step, a reduce

task is not required. The pseudo-code of this step is illustrated in Algorithm 2.

Notice that the strategy of partitioning the input images while replicating a

copy of the RP s in all the nodes of a cluster is particularly advantageous when

the number of images is much larger than the number of input cameras. On

the other hand, if the number of cameras is much larger, then it is likely to be

convenient to do the opposite (i.e., partition the RP s over all the nodes while

replicating the input images).

Algorithm 2 Pseudo-code of HSCI for Calculating Correlation Indices (Step II)

function map(KeyI , PathI)
◃ It returns the correlation indices between RNI and all RP s. KeyI is a set of
meta-data used for identifying the calibration or the testing image I, including
the id of the camera C used for shooting I, idC ; PathI is the HDFS path of I.

I ← Load(PathI)
FI ← ApplyPNUFilter(I)
RNI ← Subtract(I, FI)

for each PathRPi
in list(RP s) do

RP ← Load(PathRPi
)

corr ← Correlate(RNI , RP)
Emit(�Correlation�,{idI , idC , calibration/testing, idRP , type, corr})

end for

end function

87

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

4.4.1.4 Step III: Recognition System Calibration

According Fridrich et al. algorithm, in this step a set of three acceptance thresh-

olds (one for each color channel) is calculated for each of the cameras under

scrutiny. The thresholds are determined using the Neyman-Pearson approach

and exploiting the correlation values of the calibration images computed in the

previous step. The correlation values of a set of testing images, calculated during

Step II, are then used to validate the recognition system according the recogni-

tion rate (RR) by comparing them to the aforementioned acceptance thresholds.

Since this step is computationally cheap, it is run directly on the only Hadoop

master node, without using any form of parallelization.

In particular, according to Fridrich et al. we adopt the Neyman-Pearson

approach and we determine the value of a threshold t for a camera C by maxi-

mizing the probability of detection (or, equivalently, minimizing the FRR) given

an upper bound on the FAR, FAR < αFAR. The pseudo-code used for comput-

ing the threshold for a camera C is illustrated in Algorithm 3. The function

computeThreshold is iterated for each camera and color channel.

Optionally, in this step we can use a SVM classi�er instead of Neyman-Pearson

approach. During this step, the SVM-based classi�er is trained and tested using

the correlation indices calculated in the previous step. In our case, we decided

to perform this operation on a single node (i.e., the master node) because, in

our setting, it features very short execution times when executed in a sequential

way. The SVM implementation we have used is the one available with the Java

Machine Learning Library (Java-ML) [1], including the LIBSVM module [57]. At

the end of this step, the classi�er has been trained and it is ready to be used for

the identi�cation step. Moreover, an estimation of the accuracy of the training

phase is returned to the user, organized as the number of successful matches

(recognition rate) between the testing source images and their corresponding

reference cameras.

4.4.1.5 Step IV: Performing Source Camera Identi�cation

The aim of this step is to establish which camera has been used for capturing an

image I. The input of the Hadoop job is the directory where the RP s have been

88

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Algorithm 3 Pseudo-code of HSCI for Recognition System Calibration (Step III)

function computeThreshold(idRPC
, idC , CORRs, αFAR, T , chn)

◃ It returns a threshold t for the camera C using chn as a color channel, in
addition also FAR and FRR are returned. The variable idRPC

is the id of the
RPC , idC is the id of camera C, CORRs is the �le containing the correlations
computed in Step II, αFAR is the FAR upper bound, T is a set of candidate
thresholds, chn is the color channel to use.

for each t in T do
FAR ← ComputeFAR(idRPC

, idC , CORRs, t, chn)
if FAR ≤ αFAR then

FRR ← ComputeFRR(idRPC
, idC , CORRs, t, chn)

return (FAR, FRR, t)
end if

end for

end function

function ComputeFAR(idRPC
, idC , CORRs, t, chn)

◃ It returns the FAR using images taken by using cameras di�erent from C,
but classi�ed as taken from C (exploiting idRPC

).

return 1−
∏

idC′∈CamSet,
idC′ ̸=idC

ComputeFRR(idRPC
, idC′ , CORRs, t, chn)

end function

function ComputeFRR(idRPC
, idC′ , CORRs, t, chn)

◃ It returns the FRR using the correlations between RPC and the residual
noises of the calibration images of C ′.

tot ← 0, count ← 0
for each correlation corr in CORRs between the residual noise of a cali-

bration image taken by using camera C ′ and RPC do
tot ← tot + 1
if getCorr(corr, chn)< t then

count ← count + 1
end if

end for
return count/tot

end function

89

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

stored. The output is the identi�er of the camera recognized as the originating

camera for the input image. For each input RP , a new map function is invoked.

This function uses a copy of the residual noise of I, i.e., RNI , for calculating

its correlation with the input RP . The pseudo-code of the map function of Step

IV is illustrated in Algorithm 4. Then, the job returns a �le containing the list

of the correlation values needed to perform the recognition phase exploiting the

results of the previous step (i.e., camera thresholds or trained SVM). Finally, the

predicted camera id is returned.

Algorithm 4 Pseudo-code of HSCI for Source Camera Identi�cation (Step IV)

function map(KeyRP , RP)
◃ It returns the correlation indices between the RNI of a �xed preloaded input
image I and the input RP . KeyRP are the meta-data of RP .

corr ← Correlate(RNI , RP)
Emit(�Correlation�,{idI , idRP , type, corr})

end function

This step works on a single image to perform the camera identi�cation. Al-

ternatively, when there are many unknown input images, the distributed func-

tionalities of Step II can be exploited to compute the correlation values between

each input image and each RP .

4.4.2 Experimental Analysis

In this section we discuss the results of a preliminary experimental analysis we

have conducted. We compared the performance of our Hadoop-based implemen-

tation of the Fridrich et al. algorithm with its non-distributed counterpart. The

discussion also includes a description of the performance metrics, the datasets

and the experimental settings used in our analysis.

4.4.2.1 Performance Metrics

The benchmarking methodology that have been instrumented to measure the

performance of Source Camera Identi�cation on Hadoop is here described. The

90

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

following Key Performance Indicators (KPIs) have been selected and collected

during the experiments, such as: real time elapsed to complete each step, overall

number of images processed for time unit on a cluster and recognition rate.

• RT : The real time (RT) elapsed to complete each step can be naturally

observed using the clock of the master node as a stopwatch with a pretty

good resolution (seconds) if we are considering total run times longer than

few hours.

• Imgs2Min: A more interesting KPI, more useful for end users, is the overall

number of images processed for time unit (e.g., minutes) on a cluster with

a �xed number of slave nodes. This is strictly related to the run time, but

is a�ected by several external factors, such as the image resolutions.

• RR: To measure the reliability of the �nal result of SCI, at the end of the

Step III, we observe another KPI called recognition rate (RR), which is

representative of the quality of the results of the previous steps. This is

an index that will show whether our Hadoop application returns results

comparable to the reference (sequential) implementation.

• PCsStat : It is important to monitor the overall health status of the com-

puter cluster used for distributed applications. In fact, for each slave node,

it is important to supervise indicators such as: CPU activities, RAM and

SWAP1 usages, I/O activities on local disk and network, and so on. The

Hadoop logs can register very useful systems counters and debug informa-

tion, but the operating system utilities can also detect node-level perfor-

mance statistics and possible bottlenecks. For gathering information, we

used Dstat tool [293] with data sampling every 10 seconds (to lower costs

and to obtain a good sampling). Dstat is a versatile resource statistics tool

and it is a replacement for vmstat, iostat, netstat and ifstat utilities. Dstat

is useful for monitoring systems during performance tuning tests, bench-

marks or troubleshooting. Adopting this tool, individually, for each node

1A process can be swapped temporarily out of main memory to a backing store (i.e., local
disk), and then brought back into memory for continued execution. Swapping makes it possible
for the total physical address space of all processes to exceed the real physical memory of the
system [113].

91

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

of the cluster, we can monitor CPU usage, RAM and SWAP used, bytes

written/read on local disk, number of send/received network packets and

incoming/outgoing network throughput.

4.4.2.2 Dataset

The dataset used in our experiments was created in conjunction with the CNCPO1.

It consists of 5, 160 JPEG images, shot using 20 di�erent Nikon D90 digital cam-

eras. This model has a CMOS image sensor (23.6×15.8mm) and maximum image

size of 4, 288×2, 848 pixels. 258 JPEG images were taken for each camera at the

maximum resolution and with a very low JPEG compression. The images were

organized in 130 enrollment images, 64 calibration images and 64 testing images

for each camera.

As for the enrollment images, we �rst made a preliminary experiment where

we tried di�erent numbers of images, ranging from 50 to 300. According to our

results, the value 130 o�ered a good trade-o� between the cameras recognition

rate and the performance overhead required for processing these images. We

also observed that it is possible to save computation time by choosing a smaller

number of enrollment images at the expense of a degradation of the identi�cation

results.

Enrollment images were taken from a ISO Noise Chart 15739 [223], as shown

in Figure 4.3. Calibration and testing images, instead, portray di�erent types of

subjects. Figure 4.4 shows an example of training and testing images from our

dataset.

The images were taken by using each of the 20 cameras used for our tests.

The overall dataset is about 20 GB large, and about 40% of that size is due to

enrollment images.

4.4.2.3 Experimental Settings

All the experiments shown in this chapter were conducted on a homogeneous

cluster of 33 commodity and commercial o�-the-shelf PCs equipped with 4 GB

1National Center for the Fight against Online Child Pornography (Centro Nazionale per
il Contrasto alla Pedopornogra�a Online, CNCPO) part of the �Dipartimento della Pubblica
Sicurezza� within the Italian Ministry of Interior.

92

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Figure 4.3: An example of enrollment image. The scene is from a test chart used
for noise measurements, ISO 15739 [223].

Figure 4.4: An example of training and testing images from the dataset of Nikon
D90 cameras.

93

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

of RAM, an Intel Celeron G530 @ 2.40 GHz x2 processor (i.e., dual-core CPU),

Windows 7 host operating system and a 100 Mbps Ethernet card. In this en-

vironment, we installed on each computer a virtual machine (VM) running the

Ubuntu 12.10 64-bit (Kernel 3.5) guest operating system through the VMware

Player software, and equipped with 3, 100 MB of RAM, 2 CPUs and 117 GB of

virtual disk storage (�le system type ext4)1.

The computing unit of a common cluster is mostly based on virtual machines,

therefore it is feasible to experiment with the MapReduce paradigm using a vir-

tualized data center, like in previous experimentations conducted with Hadoop

(see, e.g., [143]).

Our cluster included 32 slave nodes and a master node, and the Hadoop

version was 1.0.42. On each slave node, at most one map or reduce task was run

due to memory limits. In addition, on each slave node, we set the properties

that allow the framework to wait the end of all map tasks, before starting the

reduce tasks, due to memory limits. In our cluster, these choices were made

after noticing that the simultaneous presence of two map tasks or a map task

and reduce task on the same machine cause some problems related to the main

memory. This occurs because the �ltering operation requires a lot of memory.

In our preliminary experiments, we tried several di�erent combinations of HDFS

replication factors (i.e., 2, 4, 8) and HDFS block size (i.e., 32 MB, 64 MB, 128

MB). According to our results, the best performance and trade-o�s were achieved

when a replication factor set to 2 and a block size set to 64 MB were used. Thus,

in all the forthcoming experiments we always used these settings.

4.4.2.4 Preliminary Experimental Results

During our experiments, we developed several Hadoop-based variants of the orig-

inal Fridrich et al. algorithm. The �rst variant, here denoted HSCI, is the naive

(or vanilla) implementation of the algorithm described in Section 4.4.1. In this

implementation, all the image �les to be processed are initially loaded on the

Hadoop Distributed File System (HDFS). The �les containing the residual noises

1We used VMs because there are restriction policies in the laboratory where the experiments
were conducted.

2Our experimentation was conducted between end of 2013 and 2014.

94

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Table 4.2: Execution times, rounded in minutes, of di�erent distributed variants
of the Fridrich et al. algorithm on a Hadoop cluster of 32 slave nodes, compared
to the sequential counterpart, that is SCI, run on a single node. SCI has no
setup cost, as the input images are already loaded on the machine running the
algorithm.

Variant Setup Step I Step II
SCI 0 888 5, 257
HSCI 43 750 334
HSCI_Tar 88 581 322
HSCI_Seq 55 290 304

(RNs) obtained during the execution of the algorithm are also loaded on HDFS,

as soon as they become available. As a consequence, map and reduce tasks take

as an input (or provide as an output) not a copy of these images/RNs but a URL

pointing at them.

We made a preliminary and coarse comparison between the performance of

HSCI and the implementation running as a stand-alone application (i.e., sequen-

tial or non-parallel on a single node), here named SCI, by measuring the overall ex-

ecution time of the di�erent steps of the algorithm in both settings. SCI was exe-

cuted on our single slave node as a single-thread Java program. The results, avail-

able in Table 4.2, show that, when processing the second step, HSCI exhibits ap-

proximately a 16× speed up (Speed upStepII =TimeStepII(SCI)/T imeStepII(HSCI)

≈ 16), thus providing a performance that is about one half of the maximum the-

oretical speed up achievable using a cluster of 32 slave nodes. This is even more

evident in Table 4.3, where we show the (approximate) average number of images

processed in a minute by each implementation in each step. On the contrary, the

performance gain on the �rst step of the algorithm is almost negligible. Such a

result is due to the reduce phase of this step. Each reduce task, in fact, has to

collect from HDFS all the RNs generated during the map phase (in our experi-

ments, 130 RN �les for each RP �le to generate, with the average size of a RN

�le of about 140 MB). This activity puts a heavy burden on the running time of

the �rst step, as implemented by HSCI. Notice that through all the experimenta-

tions, we will focus only on Step I and Step II of the Fridrich et al. algorithm,

because they are, by far, the most computationally expensive.

95

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Table 4.3: Average number of images processed in a minute of the di�erent vari-
ants of the Fridrich et al. algorithm on a Hadoop cluster of 32 slave nodes,
compared against the sequential counterpart executed on a single node.

Variant Step I Step II
SCI 3 1
HSCI 3 8
HSCI_Tar 4 8
HSCI_Seq 9 8

In order to investigate the poor performance of HSCI during the �rst step

of the Fridrich et al. algorithm, we traced the CPU and the network usage of

slave nodes when running this step. The results, available in Figure 4.5 and

Figure 4.61, show that the CPU is mostly unused (i.e., the node runs on a dual-

core processor, hence a CPU usage of 50% stands for a single-core used at the

100%). Conversely, the network activity dominates both the map and reduce

phases: the map phase, because of the time required to download from HDFS

the input images and to write on HDFS the resulting RN �les; the reduce phase,

because of the time required to collect all the RN �les produced in the map phase.

A possible explanation for such long times is related to the problems faced by

Hadoop when managing a very large number of small �les, as documented in

[291].

A �rst attempt we tried for solving this problem has been to pack together

group of images. In the resulting implementation, here referred to as HSCI_Tar,

images are grouped in uncompressed archives stored on HDFS, with each archive

containing 10 images. Here, each map task takes, as input, the URL of an archive

and uses it to download and, then, unpack the corresponding archive �le from

HDFS. We expect this implementation to be faster than HSCI in the �rst step of

the algorithm, because of the much smaller number of �les to handle and because

of their larger size. This expectation has been con�rmed by the experimental

results, with HSCI_Tar exhibiting a 20% performance gain over HSCI during Step

I (see Table 4.2). This implies, in turn, the ability to process a higher number of

images in a �xed time window (see Table 4.3). Di�erently, the second step of the

1We used the tool of performance monitoring Dstat [293] to generate these �gures, doing a
sequence of samples ranging from before the beginning of the Step until after its conclusion.

96

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

0

5

10

15

20

25

30

35

40

45

50

0 60 120 180 240 300 360 420 480 540 600 660 720 780

%
 C

P
U

s

Timeline (minutes)

Figure 4.5: Average CPU usage of slave nodes, in percentage, when running Step
I of HSCI.

0

1

2

3

4

5

0 60 120 180 240 300 360 420 480 540 600 660 720 780

M
B

/s

Timeline (minutes)

Figure 4.6: Average incoming network throughput, in MB/s, when running Step
I of HSCI.

97

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

algorithm does not take any advantage from this improvement.

Despite of this improvement, the performance of MapReduce version of the

Fridrich et al. algorithm are still unsatisfying. The network congestion due to

the need of locating on HDFS the �les to process and moving them on the slave

running a task is still a major drawback, even if reduced thanks to the usage of

archive �les.

A more e�cient solution would be to fully exploit data local computation by

further reducing the number of �les to be processed and by placing the data on the

nodes running the tasks in charge to process them, and to avoid the large number

of small �les problem [291]. The solution we found consists in maintaining only

two very large �les containing all the image �les. They have been coded as Hadoop

SequenceFile objects and are: EnrSeq, used for storing a set of enrollment

images, and TTSeq, used for storing a set of training (calibration) and testing

images. In both �les, the images are ordered according to their originating camera

id. Then, we used the input split capability available with Hadoop sequence �les

for partitioning these two �les among the di�erent computing nodes, with the

aim of promoting data local execution. Notice that the residual noises calculated

during the �rst step of the algorithm are still written as separate �les on HDFS

as they become available, while the images are no longer directly downloaded

from HDFS as individual �les. In this case, in the Hadoop sequence �le input,

the key of each pair is the meta-data of an image, while the value of that pair

stores a binary copy of that image. The outcoming Hadoop implementation is

labeled as HSCI_Seq (where Seq stands for Hadoop SequenceFiles, not for stand-

alone or sequential implementation). The experimental performance of HSCI_Seq

implementation, when running the �rst step of the Fridrich et al. algorithm, is

much better than HSCI variant, with an execution time that is approximately

2.6× faster than HSCI1. Also the second step of the algorithm seems to take

advantage of this solution, as it is slightly faster than the HSCI solution.

These preliminary results seem to con�rm, on a side, that is possible to dras-

tically reduce the execution time of the Fridrich et al. algorithm by using the

MapReduce paradigm. On the other side, it is clear the HSCI_Seq implementation

of the algorithm still o�ers much room for improvement.

1Speed upStepI = TimeStepI(HSCI)/T imeStepI(HSCI_Seq) ≈ 2.6.

98

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

4.4.3 Pro�ling Activities for Detecting Bottlenecks

As already discussed in Section 4.4.2.4, a preliminary round of experimentations

led us to develop a Hadoop-based variant of the Fridrich et al. algorithm, named

HSCI_Seq, whose performance met enough our expectations. The same experi-

ments revealed that the performance of this algorithm in a distributed setting is

strongly in�uenced by the network activity required to load and/or to save �les

(RNs) on the underlying distributed �le system.

In this section, we further analyze these phenomenons. The results of a thor-

ough pro�ling activity aimed at charactering the behavior of the HSCI_Seq im-

plementation will be presented, in order to improve our understanding about the

way an algorithm, such as the one by Fridrich et al., performs when adapted to

run on Hadoop framework. We also assess the possibility of achieving further

performance improvements.

We recall from the previous section that the input dataset for our tests con-

tains two Hadoop sequence �les: EnrSeq and TTSeq. The �rst one contains 2, 600

enrollment images to be used for the Step I of the Fridrich et al. algorithm (cal-

culation of RP s). The second one contains 2, 560 calibration/testing images to

be used during the Step II (calculation of correlations). The images are equally

distributed over 20 cameras and the size of these �les is about 20 GB.

During Step I, the processing of the EnrSeq �le requires the creation of 130

map tasks, i.e., one for each HDFS block of input �le, where the size of EnrSeq

is about 8 GB and the HDFS block size is set to 64 MB. The average amount

of data exchanged between map tasks and reduce tasks is approximately 355 GB

(without considering tasks and data replicas). In our experimental analysis run of

HSCI_Seq, the framework executed, in the average, 141 map tasks: 130 completed

successfully, the remaining 11 killed by the framework. The existence of these

additional tasks is due to the Hadoop speculative execution1. Of these tasks, 122

were data local map tasks. In details, the EnrSeq �le contains 2, 600 enrollment

images, therefore we have 2, 600 map input records. For every such image, the

map function extracts the residual noise (RN) and it write it on HDFS, thus

1Hadoop speculative execution indicates that a same task can be run multiple times on
di�erent slave nodes. As soon as the duplicate tasks end, the other ones are killed. See
Section 3.5 for details.

99

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Table 4.4: Map and reduce timing in minutes during Step I of HSCI_Seq.

Step I Running Time
Map 72
Reduce 217

generating 2, 600 RN �les. The average size of a RN �le is of about 140 MB. In

the reduce phase, we set the number of reduce tasks to 20, that is the number of

RP s to be calculated. In our pro�ling experiment, 29 reduce tasks were launched

by the Hadoop framework, with only 20 completing their execution and the other

ones being killed by the framework.

Table 4.4 shows that about 75% of the running time of HSCI_Seq during Step

I is spent in the reduce phase. On one side, we suppose that this overhead is due

to the time consumed by each reduce function to retrieve from the HDFS the

corresponding RN �les to sum, i.e., 130 RNs for each RP to be calculated. On

the other side, we expected that this second phase would have lasted lesser as it

performed a simple operation from the computational viewpoint (i.e., multiple

sums of matrices).

In order to clarify this behavior, we traced the start and the end execution time

of each task, both map and reduce phase, ran in our experiment. In Figure 4.7,

we show an overview of the map and reduce tasks used by Hadoop when running

the Step I of the HSCI_Seq algorithm. In some cases, the Hadoop framework may

decide to issue a same task a second time (e.g., for recovering a task that has

been assigned to a free slave node, without being completed). These cases are

highlighted in the �gure by coloring black the tasks that are killed when their

twin tasks complete their executions.

As it can be seen in the �gure, the overall time spent by each slave node

for processing map tasks is almost the same, because, as soon as a slave node

�nishes processing a map task, a new one is allocated to it by the system, until

all map tasks are executed. When turning to the reduce phase, we observe that

some reduce tasks end as soon as they start or are killed immediately. That can

be explained by the fact that these tasks have not been assigned a RP to be

calculated, in fact, the overall number of slave nodes completing a reduce task

that computes at least one RP is 12 against a total number of 20 RP s to be

100

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Figure 4.7: HSCI_Seq variant - An overview of map and reduce tasks launched
during an execution of Step I. Notice that reduce tasks start only after the ter-
mination of all map tasks as described in Section 4.4.2.3.

calculated. Of these 12 nodes, 4 have a running time signi�cantly faster than the

other 8, because the 8 slowest nodes were calculating the RP s for 2 cameras and

the remaining 4 nodes (the fastest) were calculating the RP s for just one camera.

This unbalanced assignment is due to the standard hash function used by the

Hadoop Partitioner service (see Section 3.5) for the distribution of the keys (in

our case, the id of the cameras) to be processed in the reduce tasks.

We further analyzed the behavior of these tasks by pro�ling their CPU usage

and their network activity during the same �rst step of the algorithm. In Fig-

ure 4.8 we report, for example, the CPU activity of slave1. During the �rst 60

minutes, spent processing map tasks, a single-core of the node was used almost

at its maximum. Notice that, in our case, it is not possible to run two distinct

map tasks on the same node because the amount of memory in it would not be

enough. Therefore, we cannot fully exploit the two CPU cores available in each

node. Instead, the second signi�cant activity, i.e., that related to the execution

101

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

0

10

20

30

40

50

60

0 60 120 180 240 300

%
 C

P
U

s

Timeline (minutes)

Figure 4.8: CPU usage of slave1, in percentage, when running Step I of HSCI_Seq.

of a reduce task covering about 65 minutes, featured a 10% average CPU usage.

This seems to con�rm that, during the reduce phase, the CPU of the involved

slave nodes is nearly unused, as this phase is dominated by the network activity

related to the retrieval from HDFS of the RN �les to sum. This observation is

also supported by the analysis of the incoming network throughput for slave1

node during Step I, as demonstrated in Figure 4.9. The �gure shows that there

is an intense network activity for slave1 along all the map phase and the reduce

phase. The remaining CPU activity in Figure 4.8 is due to the overhead required

by Hadoop to keep alive the slave1 node services.

During Step II, at least 194 map tasks are created using the testing and

calibration images available in the TTSeq �le (i.e., one for each HDFS block of

input �le, with the size of TTSeq of about 12 GB). Considering only the map tasks

successfully completed, the framework invokes 2, 560 map functions, i.e., one for

each calibration/testing image. Therefore, 2, 560 RNs are calculated and each

of them correlated with the 20 RP s created in the previous step, thus requiring

2, 560 × 20 = 51, 200 correlations. In this run of the experiment, the framework

ran 210 map tasks: 194 completed successfully, the remaining 16 killed by the

102

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

0

2

4

6

8

10

12

0 60 120 180 240 300

M
B

/s

Timeline (minutes)

Figure 4.9: Incoming network throughput of slave1, in MB/s, when running Step
I of HSCI_Seq.

framework. Of all these tasks, 187 were data local map tasks.

We recall that the Step II of the HSCI_Seq does not make use of the reduce

phase, thus its execution time is approximately equal to the execution time of

the map phase. An in-depth analysis of the map tasks revealed that they are

characterized by an intense I/O activity, needed to load the Reference Patterns.

However, these tasks also feature a very intense CPU activity, due to the work

required to perform the correlations on big input �les, as shown in Figure 4.10,

where the average CPU usage stays around 40% during all the execution of the

map phase. That indicates, on one hand, that the CPU does not su�er much

from delays due to I/O activity, and, on the other hand, that there is a margin

for improving by taking advantage of the second core of the CPU, actually unused.

As already stated above, in fact, the available memory in each node is likely to

be insu�cient to run two tasks at the same time. In addition, Figure 4.10 shows

that the CPU of slave1 remains unused while waiting for the framework to copy

the RP s from HDFS to the local �le system.

103

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

0

10

20

30

40

50

60

70

80

90

100

0 60 120 180 240 300

%
 C

P
U

s

Timeline (minutes)

Figure 4.10: CPU usage of slave1, in percentage, when running Step II of
HSCI_Seq.

4.4.4 Code Improvements

Following the pro�ling activity presented in the previous section, we pinpointed

three issues a�ecting the performance of HSCI_Seq:

• Excessive network tra�c. The big amount of data exchanged between

map tasks and reduce tasks during Step I gives rise to network congestions

that slow down in a signi�cant way the data gathering phase of reduce

tasks.

• Poor CPU usage. The map phase during Step II is characterized by an

intense CPU activity, but it is not able to take advantage of the availability

of an additional CPU core.

• Bad intermediate-data partitioning strategy. The standard reduce

task partitioning strategy implemented by Hadoop does not guarantee dur-

ing Step I of the algorithm a fair and balanced assignment to the slave

nodes of the RP s to be calculated.

104

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Starting from here, we developed and tried several algorithmic and/or prac-

tical improvements to solve these issues. The most signi�cant ones are discussed

in the following.

4.4.4.1 Excessive Network Tra�c

The excessive network tra�c arising in Step I is mostly due to the transfer of

a large number of RN �les from map tasks to reduce tasks. Consequently, we

required each map task to aggregate all the RNs generated for a same camera

into one RN �le, before sending it to the corresponding reduce task. This allows

us to transmit the residual noise of a group of images at the same cost as that of

one of them. The aggregation is done by summing all the RN �les produced by a

same node for a same camera during a map task. To facilitate this operation, the

enrollment images are ordered by the camera id and the partial sum of the RN

�les is kept in memory by the node, without involving any I/O disk operation.

From a technical viewpoint, this aggregation would have not been possible

using the standard Hadoop Combiner, this facility requiring all the objects to

aggregate (i.e., the RN �les) to be stored in memory (see Sections 3.5 and 3.6

for additional details). Such a strategy is not adequate in our case, because the

size of all the RN �les exceeds the physical memory of the computing nodes. As

a workaround, we implemented an ad-hoc solution, by means of a code to run

during the map task. It does not require to store all the RN �les in memory, but

just their sum (this solution is denoted in-mapper local aggregation). In addition,

we use Hadoop implicit mechanism for directly passing this sum as value to the

pair output by the node, rather than saving it on HDFS. We named HSCI_Sum

the variant of HSCI_Seq featuring this improvement.

The Figure 4.11 focuses on the behavior of a slave node when running a map

task on a cluster during the Step I of HSCI_Sum.

A possible further re�nement of this improvement consists of compressing the

objects containing the residual noise sums and the Reference Patterns, before

sending them over the network. The expectation is that the time spent by each

node to compress and decompress a �le would be repaid by the smaller trans-

mission times required to exchange the compressed �les over the network. In

105

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

addition, the transmission of smaller �les would also reduce the probability of a

network congestion due to several nodes exchanging large �les at the same time.

The compression algorithm we have used is the Lempel-Ziv coding [309]. We

labeled HSCI_Zip this re�nement of HSCI_Sum.

4.4.4.2 Poor CPU Usage

The standard behavior of the map task during Step II requires the loading from

the local �le system of a camera RP , followed by the calculation of its correlation

with an input RN �le. While carrying out the �rst activity, the CPU is al-

most unused, as it is essentially an I/O-intensive operation. The second activity,

instead, is CPU-intensive and makes no use of the �le system.

A possible intra-parallelization of this task, allowing for the usage of a second

CPU core, consists in modeling the loading and the correlation activities on the

producer-consumer paradigm, then to be implemented as a multi-threaded appli-

cation. A �rst thread would be in charge of loading RP �les from the local �le

system and adding them to an in-memory shared queue. In the meanwhile, the

second thread would load RP �les from the shared queue and would use them to

calculate the correlation with an input RN . Both threads are executed concur-

rently, so that, while one thread is calculating the correlation between the input

RN �le and the RP of a given camera, the other thread is loading in memory

the RP of the next camera. Notice that it is not possible to maintain in memory

the RP of all the cameras because of their large size. The implementation of this

strategy, here denoted HSCI_PC1, also includes the improvements introduced by

HSCI_Sum.

Figure 4.12 focuses on the behavior of a slave node when running a map task

on a cluster during Step II of HSCI_PC.

4.4.4.3 Bad Intermediate-data Partitioning Strategy

The standard partitioning strategy implemented by Hadoop, when used for al-

locating reduce functions according to the camera id (as required by Step I of

HSCI_Seq), may assign multiple functions to a same slave node while leaving other

1
PC in HSCI_PC stands for producer-consumer paradigm.

106

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

slave nodes without functions to process. This may occur because the standard

hash function employed by Hadoop does not prevent the possibility of collisions.

We overcome this problem by introducing a custom partitioner featuring a per-

fect hash function, so that wherever the number of slave nodes is higher than the

number of cameras, no single node would be assigned to more than one reduce

function at time. This function maps distinct keys (i.e., camera id) on a set of

integers so to guarantee a more balanced partitions. For instance, in our case,

the adopted function guarantees that each node will process either none or one

RP . The implementation of this strategy, here denoted HSCI_All, also includes

the improvements introduced by HSCI_Sum and HSCI_PC.

HDFS

Slave

Local File

System

Map Task - RAM

I RNI SumRN

Map Task

Temporary Output

Enrollment Images

Calibration/Testing Images

Figure 4.11: Focus on the behavior of a slave node when running a map task
during Step I of HSCI_Sum on a cluster. The task is processing a block of pictures
taken by using a same camera C and available in its local HDFS partition. For
each image I in this block, the map function extracts its residual noise RNI and
adds it to SumRN . When no more images for C are available, the task emits,
as an output, a new pair <idC , SumRN>. This pair is saved on the local �le
system, while waiting to be transmitted to a reduce task.

107

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

HDFS

Slave

Map Task - RAM
I

Cur RP Next RP

Reference Patterns

RNI

Corr

Enrollment Images

Calibration/Testing Images

Figure 4.12: Focus on the behavior of a slave node when running a map task
during Step II of HSCI_PC on a cluster. The task is processing a block of cali-
bration/testing pictures available in its local HDFS partition. The same HDFS
partition is used for storing a copy of all the RP s calculated during the previous
step. For each image I in the input block, the map function extracts its resid-
ual noise RNI and correlates it with all the RP s. The output of the correlation
is saved on HDFS. Due to memory limits, only two RP s can be maintained in
memory at the same time. So, in order to amortize RP loading times, the map
task loads the next RP in an asynchronous way and using a di�erent thread,
while processing the current RP . The RP s are preloaded from HDFS to local
�le system at the start of the Step II.

108

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

4.4.5 Advanced Experimental Analysis

After developing the improvements presented in the previous section, we per-

formed another round of experiments in order to compare the improved codes

to HSCI. The results, available in Figure 4.13, report a signi�cant performance

improvement on HSCI_Seq. The �rst improved code we consider is HSCI_Sum.

This algorithm di�ers from HSCI_Seq in the way RNs are transmitted from map

tasks to reduce tasks. Namely, it implements an aggregation strategy that dras-

tically reduces the amounts of data exchanged between map and reduce tasks.

For instance, in our experiments, the amount of data exchanged during Step I

by HSCI_Sum is about 6% of that exchanged by HSCI_Seq in the same phase.

This led to a consistent performance improvement in our experiments, since the

Step I phase of HSCI_Sum required 49 minutes, in the average, to be accomplished

against the 290 minutes required for the same step by HSCI_Seq. It is interesting

to note that smaller amounts of data to exchange not only imply faster communi-

cations but could also result in a much smaller number of tasks being replicated

and re-run by the Hadoop framework, thanks to shorter network congestions. In

addition, an aggregated RN is not directly saved on HDFS, but we use a copy

of it as value in the <key, value> map output pair. Therefore, the HDFS is not

congested of residual noises, and its performance are improved, especially in Step

II.

Di�erently from HSCI_Sum, the performance of HSCI_Zip are more contrast-

ing. This algorithm requires the intermediate �les produced by map tasks to be

compressed before being transmitted, in order to reduce their size and shorten

transmission times. This strategy brought a very small advantage during the ex-

ecution of Step I, while heavily a�ecting the performance of Step II. The reason

of such a bad behavior is the overhead to be paid by map tasks for decompressing

RP s before correlating them with input images, during Step II.

We now turn to HSCI_PC. This algorithm uses the producer-consumer paradigm

to evaluate correlations during the map phase of Step II, by means of a multi-

threaded architecture. This approach brought a consistent performance gain

compared to HSCI_Seq and HSCI_Sum, as the overall execution time of Step II

dropped from 304 (HSCI_Seq) and 276 (HSCI_Sum) to 236 minutes (HSCI_PC).

109

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

290

49 50 48

304

276
236 234

0

100

200

300

400

500

600

700

HSCI_Seq HSCI_Sum HSCI_PC HSCI_All

T
im

e
(m

in
u

te
s)

Step II

Step I

Figure 4.13: Execution times, in minutes, of the di�erent steps of the variants of
the Fridrich et al. algorithm on a Hadoop cluster of 32 slave nodes. SCI is left
out from the chart because its performance is out of scale. We also exclude the
performance of HSCI, HSCI_Tar and HSCI_Zip.

The result also includes a consistent increasing in the CPU usage, exhibited by

HSCI_PC when processing the map phase of Step II and shown in Figure 4.14 (for

a comparison see Figure 4.10).

Finally, we consider HSCI_All. This algorithm uses a custom partitioner to en-

sure that, in our setting, two reduce functions cannot be assigned to a same slave

node during Step I, while leaving other nodes unused (unless duplicate tasks).

Even in this case, we noticed a slight performance improvement on HSCI_Sum

during Step I (48 minutes against 49 minutes), though smaller than we expected.

A closer investigation revealed that, on one side, the custom Partitioner was able

to avoid the assignment of two di�erent reduce functions to a same node (see

Figure 4.15), and that, on the other side, the stack of improvements decreased

the average execution time of the reduce functions so much that the e�ects of

this last improvement were quite negligible.

Table 4.5 shows the execution times, in minutes rounded, of the di�erent

variants of the Fridrich et al. algorithm on a Hadoop cluster of 32 slave nodes

110

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Table 4.5: Execution times, in minutes, of the di�erent variants of the Fridrich et
al. algorithm on a Hadoop cluster of 32 slave nodes compared with the sequential
counterpart run on a single node. The HDFS replication factor is 2 while HDFS
block size is 64 MB.

Variant Step I Step II
SCI 888 5, 257
HSCI_Seq 290 304
HSCI_Sum 49 276
HSCI_Zip 47 457
HSCI_PC 50 236
HSCI_All 48 234

0

10

20

30

40

50

60

70

80

90

100

0 60 120 180 240

%
 C

P
U

s

Timeline (minutes)

Figure 4.14: CPU usage of slave1, in percentage, when running Step II of HSCI_PC.

111

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Figure 4.15: HSCI_All variant - An overview of map and reduce tasks launched
during Step I. Notice that reduce tasks start only after the termination of all map
tasks as described in Section 4.4.2.3.

compared against the sequential counterpart run on a single node. Despite our

expectations, the usage of compression in order to reduce the exchange times of

the RP �les did not produce any advantage on the overall execution time, as

shown in Table 4.5. On the contrary, we observed a bad increasing of the Step

II execution time, likely to be due to the time spent uncompressing these �les.

Instead, the adoption of the producer-consumer pattern in the computation of

the correlation indices improved the execution time of Step II of HSCI_All (or

HSCI_PC) by about a 15% over the performance of HSCI_Sum.

4.4.5.1 Speed up Analysis

In this last round of experiments, we investigated the scalability of HSCI_All

compared to its sequential counterpart, that is SCI.

We focused our attention on the two more intensive computational steps of

112

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

the Fridrich et al. algorithm: the calculation of the RP s (i.e., Step I) and the

calculation of the correlation indices (i.e., Step II). We increased the size of the

cluster from 4 up to 32 slave nodes, and we measured the e�ciency of HSCI_All

compared to that of SCI according to the following formula:

E(n) =
TSCI

n · THSCI_All(n)
. (4.4)

See Section 2.5.1 for the explanation of speed up and e�ciency. In Equation 4.4, n

is the number of slave nodes of the cluster, TSCI and THSCI_All(n) are the execution

times of SCI and HSCI_All, respectively, when run on a cluster of size n. The

results are available in Table 4.6, Figures 4.16 and 4.17. We observe that, as

the cluster size increases, the performance improvement for Step I gets smaller

than the one achieved by Step II. This drawback is due to the fact that, when

processing the reduce phase of Step I using 32 slave nodes, only 20 of these

are employed (excluding duplicated tasks), since 20 is the number of RP s to be

calculated.

These results are likely to hold even when considering images shot using a

much larger number of cameras. Input images, independently of their overall

number, are always organized in blocks of �xed size, and each block is assembled

so to contain images shot using a same camera or two cameras at most. All

images of a block are stored on a same node and are likely to be processed by

that node. This implies that each node is able to calculate the sum of the residual

noises for a block of images without any interaction with the other nodes. An

increase in the number of images per node will result in a larger number of map

tasks to be executed sequentially on that node, and, again, the performance of

the other nodes will not be a�ected. Similarly, the number of reduce tasks is

proportional to the number of Reference Patterns to calculate and to the number

of the nodes in the cluster. Increasing the number of cameras to process would

increase proportionally the number of reduce tasks to run. These could be run

either in a sequential way, when running on a small cluster, or in a completely

parallel way, if executed on a much larger cluster.

In all our tests, the SVM classi�er was able to correctly identify the source

camera used to shoot 1, 277 images, thus achieving ≈ 99.8% of recognition rate.

113

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Table 4.6: Running times rounded to minute of the HSCI_All algorithm on a
Hadoop cluster of increasing size.

Number of Slaves Step I Step II
4 288 1, 725
8 146 858
16 78 451
32 48 234

3.1 3.0

6.1 6.1

11.5 11.7

18.6

22.4

0

5

10

15

20

25

Step I Step II

Sp
e

e
d

 u
p

4 slaves

8 slaves

16 slaves

32 slaves

Figure 4.16: Speed up of HSCI_All compared to SCI when running on a cluster
of increasing size.

114

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

0.77 0.76
0.72

0.58

0.76 0.77
0.73

0.70

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 28 32

E(
n

)

n

Step I

Step II

Figure 4.17: E�ciency of HSCI_All compared to SCI when running on a cluster
of increasing size (n is the number of slave nodes).

4.5 Final Remarks

In this chapter, we discussed the engineering of an e�cient Hadoop-based im-

plementation of the Fridrich et al. algorithm, in order to solving the Source

Camera Identi�cation problem. We were able to quickly obtain a running dis-

tributed implementation for this algorithm, by leveraging the standard facilities

available with the Hadoop framework to wrap up an existing implementation of

the algorithm and make distributed. However, this vanilla/naive distributed im-

plementation exhibited a very poor performance. This motivated us to perform a

thorough pro�ling activity which led, �rst, to pinpoint several performance issues

and, then, to develop several both theoretical and practical improvements. It is

interesting to note that none of these improvements required the modi�cation of

either the original Fridrich et al. algorithm or its implementation. They were

just geared toward a better usage of the underlying computing cluster as well

as more e�cient data communication and elaboration patterns. The resulting

improved code exhibited a much better performance than the vanilla distributed

implementation.

115

4. PROCESSING BIG DATA IN DIGITAL IMAGE FORENSICS

Our goal was to show that when porting Source Camera Identi�cation algo-

rithms to Hadoop, a careful pro�ling and engineering activity is often needed to

fully exploit the real potential of this distributed computing system.

Despite the focus on the algorithm by Fridrich et al., many of the improve-

ments we developed can be trivially used to improve the performance of other

Source Camera Identi�cation algorithms when run on Hadoop (e.g., [30, 120, 121,

264]). It is also possible to use these improvements to develop e�cient Hadoop-

based variants of algorithms belonging to di�erent digital image forensics domains

(e.g., [61, 111]). In particular, in Chapter 6 are provided some insights on how

our activities, e.g., engineering, methodology, pro�ling, improvements and re-

sults, can be extended to other Source Camera Identi�cation algorithms and to

other digital image forensics problems.

Finally, an interesting future direction for our work would be the formalization

of this methodology and its experimentation with other case studies. In fact, in

the following chapter is addressed another research area where the Big Data

problem is increasing, that is bioinformatics.

116

Chapter 5

Processing Big Data in

Bioinformatics

Initially, in Section 5.1, the problems and some solutions about Biology and Big

Data are introduced. A brief overview of the area is also presented. Section 5.2

introduces two benchmark problems studied in this chapter, and, then, our so-

lutions to speed up biological analyses in Big Data era for these problems are

presented. In particular, in Section 5.3 is described our distributed framework

for the development of Alignment-free Sequence Comparison methods, while in

Section 5.4 is discussed our fast distributed algorithm for the extraction of k-mer

local and cumulative statistics. Finally, the Section 5.5 concludes this chapter

with some remarks and comments.

5.1 Biology and Big Data

Another area where the problem of Big Data is emerging consists of the Com-

putational Biology and the Bioinformatics. Bioinformatics is an interdisciplinary

�eld that consists the collection, classi�cation, storage, and analysis of biologi-

cal data exploiting software tools. Nowadays, Next-generation DNA sequencing

(NGS) machines are generating an enormous amount of sequence data, placing

unprecedented demands on traditional single-processor read mapping [241]. NGS

technologies feature with low cost and high throughput, therefore, they generate

117

5. PROCESSING BIG DATA IN BIOINFORMATICS

an enormous amount of sequence data, called reads.

Here the term read means a short sequence of DNA (typically 25-400 base pairs

long) de�ned on the alphabet {A,C,G, T,N}, where the N symbol denotes a not

informative character. The reads are raw sequences that come o� a sequencing

machine, and a read is related a single genome. The reads containing one or more

occurrences of N are called untrimmed reads, while a trimmed read contains no

N characters. A base indicates a nucleotide's nucleobase in the context of a DNA

or RNA, and the primary DNA nucleobases are: A, C, G and T .

As said in [145], NGS machines are generating an enormous amount of genomic

data due to the decrease of genomic sequencing costs. The data output of NGS

has outpaced Moore's Law (more than doubling each year). In fact, in 2005 a

single sequencing run produced roughly one gigabase of data, while, in 2014 the

rate climbed to a 1.8 terabases of data in a single sequencing run. At the start

of 2000s, the �rst human genome required 15 years to sequence and cost nearly 3

billion dollars. In contrast, in 2014 modern sequencing machines sequenced over

45 human genomes in a single day for approximately 1, 000 dollars each ([145]).

Whereas the advancement of NGS and shotgun sequencing technologies pro-

duced massive amounts of genomics data, therefore, the bioinformatics researchers

must now face the analysis of large-scale datasets. Indeed, biological datasets are

more expensive to store, process and analyze than to generate them [212]. Nowa-

days all this determines the Big Data era in the computational biology, in fact,

genomic experiments have to process the so-called �Biological Big Data� [211].

Kahn [153] in his perspective on the future of genomic data, clearly states that

many of the challenges that lay ahead of genomics have a computational nature,

either in terms of data management or analysis or both. Those challenges seem to

arise by the now evident mismatch between sequencing capability versus storage

and CPU power. In order to tackle those challenges e�ectively, one needs to use

hardware e�ciently in conjunction with good algorithm. While this second aspect

has gained the prominence it deserves only recently [34], the use of hardware in

the form of High Performance Computing (HPC) is a classic and even the object

of courses dedicated to biologists with little background on the subject, e.g., [38].

However, it is not even clear that the hardware capabilities we have now are really

used to their full potential. The researchers could await weeks or months if they

118

5. PROCESSING BIG DATA IN BIOINFORMATICS

use their own PCs or workstations to process this huge amount of biological data.

In fact, parallel and distributed implementations can be developed for reducing

the total execution time, and to ease the management, treatment and analyses

of NGS data [211]. Several large-scale bioinformatics projects already bene�t

from parallelism techniques in HPC infrastructures as clusters, grids, graphics

processing units, and clouds (e.g., [22, 41, 285]).

Therefore, the dramatic fall in the cost of genomic sequencing and the increas-

ing convenience of distributed computing resources require to develop parallel and

scalable bioinformatics algorithms to analyze these data.

Masseroli et al. in [186] illustrated that the data generated by NGS technolo-

gies has not been matched by corresponding progress in data query, integration,

search and analysis, thus creating a gap in the potential use of NGS data.

Berger et al. in [34] have described that the big volume of biological data

makes the arising problems computationally infeasible. The widening gap be-

tween data generation and computing power implies that many of the established

ways of analyzing smaller datasets simply cannot scale, not even with faster com-

puters or with cloud computing. For example, popular search algorithms, such

as BLAST [205], are becoming too slow. Adopting the paradigm of compressive

genomics (e.g., [67, 116]), data are compressed in such a way that they can be

e�ciently and accurately searched without decompressing �rst. Several software

platforms have been developed for basic data analysis and integration. In [34] are

also described methods and tools to solve some problems, such as DNA assembly

and biologic data mining.

Giancarlo et al. in [116] have highlighted that the the Big Data era requires

the design of e�cient and e�ective methodologies for both their compression

and storage. In fact, in their paper, are surveyed methods and tools used to

compress DNA sequences, and in addition, some methods that use compressed

data are also presented (compressive sequence analysis). Another area in which

data compression has played a key role is alignment-free comparison of biological

sequences. For example, in [67] is presented a method for clustering based on

compression.

In this chapter we choose to work on two simple and most pervasive problems

in computational biology, and study the solutions available for their in terms of

119

5. PROCESSING BIG DATA IN BIOINFORMATICS

how e�ectively the computing power we have is used. Following [179], we con-

centrate on lab-scale hardware, and we use methods and techniques proper of

algorithm engineering [52]. It is appropriate to point out that algorithm engi-

neering have boomed in Computer Science in the past 15 years but seems to be

mostly undetected in bioinformatics.

The problem of comparing large collections of genomic sequences has been

only recently considered. Counting the number of occurrences of every k-mer1 in

a sequence is a central problem in many applications, such as genome assembly,

error correction of sequencing reads, fast multiple sequence alignment and repeat

detection (e.g., [44, 92, 137, 148, 156, 161, 169, 184, 200, 203, 252]). K-mer

counting is conceptually and programmatically one of the simplest jobs, if we

do not care about the e�ciency. In fact, the number of existing contributions on

this problem advises that an e�cient solution, with reasonable memory use, is far

from trivial. Many of the algorithms formulated so far perform e�ciently when

run on short sequence data, but they do not work well when run on much longer

sequences. Taking as an example the simplest problem of the k-mer counting on

very long sequences, the analysis of these sequences is slowed by the inability of

the currently available k-mer counting tools to process these sequences in an time

and memory e�cient way. In fact, the data generated by NGS technologies have

caused the growth of the sequence to be analyzed, whereby the current stand-

alone (non-parallel) k-mer counting tools too slow and memory-intensive. These

operations can be signi�cantly accelerated by reformulating the algorithms as

distributed algorithms and taking advantage from several computers at the same

time.

In the following we present the sequence analysis problem with a brief overview

of the area. In addition, a summary of the main contributions in bioinformatics

to process Big Data are also presented (see Section 5.1.2).

5.1.1 A Brief Overview about the Sequence Analysis

One of the main goals of Biology and, more in general, the Life Sciences in the

study of biological sequences is to assess either homology or function or both.

1A k-mer is one of the all the possible substrings of length k that are contained in a string.

120

5. PROCESSING BIG DATA IN BIOINFORMATICS

The �rst consists of establishing the evolution of a biological sequence, which can

be an entire genome or even a single gene. The second consists of discovering

what is the function of a biological sequence, usually newly discovered.

Both homology and function are nearly impossible to formalize in mathemati-

cal terms since they are inherently related to the evolution of living species, which

is a process that can be described only in part by Mathematics. Yet, it has been

observed and experimentally validated that �similarity� among a set of biologi-

cal sequences gives, in most cases, good indications about common ancestry and

function [131]. Therefore, in order to perform investigations about homology and

function with the use of computational methods, one fundamental step is the

design of good mathematical functions that can quantify how �similar� are a set

of sequences. A good similarity function must satisfy two criteria: be informative

in terms of biological research, be fast to compute and be frugal in terms of space

usage.

The Sequence Analysis is the major �eld of search in bioinformatics. It is a

way of arranging the sequences of DNA, RNA, or protein to identify regions of

similarity that may be a consequence of functional, structural, or evolutionary

relationships between the sequences [202]. Therefore, in bioinformatics particu-

larly relevant is the assessment of how similar to each other biological sequences

in a set are. Such an information may then be used for various further investiga-

tions, e.g., phylogenetic studies. For brevity, we refer to this area with the classic

term of Sequence Comparison, which it is a central part of Sequence Analysis (see

[91, 131]).

Sequence Comparison methods can be broadly divided into two main branches:

methods alignment-based or not. The �rst, which can be considered to be the

Holy Graal of Sequence Analysis [131], consists of methods that assess the simi-

larity among sequences via Alignments (see [20] for details). The traditional ap-

proaches for Sequence Alignment fall into two categories: Global Sequence Align-

ment and Local Sequence Alignment. The �rst attempts to align every residue

in every sequence, and it is useful when the sequences in the query set are sim-

ilar and of roughly equal size. Local sequence alignment is useful for dissimilar

sequences that are suspected to contain regions of similarity within their larger

sequence context. In fact, local alignments can identify regions of similarity

121

5. PROCESSING BIG DATA IN BIOINFORMATICS

within long sequences. Many types of algorithms are been used to global or local

alignment of the sequence, in fact, there are slow but formally correct methods

based on dynamic programming. A general global sequence alignment technique

is the Needleman-Wunsch algorithm [206], which is based on dynamic program-

ming. Instead, the Smith-Waterman algorithm [254] is a general local alignment

method also based on dynamic programming.

There are also e�cient, probabilistic, heuristic algorithms that do not guar-

antee to �nd best solutions. For example, word-based algorithms are heuristic

methods that are not guaranteed to �nd an optimal alignment solution, but are

signi�cantly more e�cient than dynamic programming. Word-based methods

identify a series of short, non-overlapping subsequences (called �words�) in the

query sequence that are then matched to candidate database sequences. Fa-

mous programs word-based are FASTA tool [273] and Basic Local Alignment

Search Tool (BLAST) [5, 205]. The FASTA programs �nd regions of local or

global similarity between protein or DNA sequences, either by searching protein

or DNA databases, or by identifying local duplications within a sequence. The

BLAST program, instead, �nds regions of local similarity between sequences.

This program compares nucleotide or protein sequences to sequence databases

and calculates the statistical signi�cance of matches.

In addition, there are two types of alignment analysis: Pairwise Sequence

Alignment (PSA) and Multiple Sequence Alignment (MSA). Pairwise sequence

alignment methods are used to �nd the best-matching piecewise (local) or global

alignments of two query sequences, whereas multiple sequence alignment is an ex-

tension of pairwise alignment to incorporate more than two sequences at a time.

Multiple alignment methods try to align all of the sequences in a given query

set, and alignments are also used to aid in establishing evolutionary relationships

by constructing phylogenetic trees1. A phylogenetic tree is a tree showing the

inferred evolutionary relationships among various biological species using similar-

ities and di�erences in their physical or genetic characteristics. In Phylogenetic

is important to create a phylogenetic tree (or distance tree) from the genomic

sequences. In general, these trees are derived by clustering the sequences through

their distances (or similarity). The clustering can be made using algorithms such

1The Phylogeny is concerned with the evolution of species and higher taxonomic order.

122

5. PROCESSING BIG DATA IN BIOINFORMATICS

as Unweighted Pair Group Method with Arithmetic Mean (UPGMA) [256, 255]

or Neighbor Joining (NJ) [239].

Song et al. in [257] said that the dominant approaches for sequence compari-

son are alignment-based including the Smith-Waterman algorithm and BLAST.

Although alignment-based approaches generally yield excellent results when the

molecular sequences of interest can be reliably aligned, their applications are lim-

ited when the sequences are divergent or come from di�erent regions of various

genomes, and a reliable alignment cannot be obtained.

Unfortunately, most of the alignment methods result to be slower and slower

to use, due to their intrinsic time complexity that compounds with the grow-

ing quantity of sequence data they have to process in each run. In fact, Next

Generation Sequencing (NGS) has led to the generation of billions of sequence

data, making it increasingly infeasible for sequence alignment to be performed

on stand-alone machines (e.g., single computer). In order to address, at least

in part, such a drawback, a second branch of Sequence Comparison methods has

emerged, named to as Alignment-free. Although fairly recent [280], it has boomed

[279], becoming very quickly populated with methods that are particularly ap-

pealing because their running time is proportional to the length of the input

sequences, even if they are usually less accurate than traditional alignment-based

approaches. Moreover, they have been proven to be e�ective and signi�cant for

biological investigations (e.g., [56, 102]). A recent account of the impact and

future developments of this area is presented by Vinga in [279].

Therefore, a limit of alignment-based approaches is the computational com-

plexity. In fact, very short sequences can be aligned in a short time, but most

interesting problems require the alignment of lengthy sequences that cannot be

aligned in a short period of time. Thus, algorithms based on Alignment-free

Sequence Comparison provide an attractive alternative compared to traditional

methods. Most of the alignment-free methods use word frequencies (or k-mer

counting), where the �words� are small fragments of sequence called k-mers (or

n-grams) in the literature, in which k (or n) is the �xed length of the oligonu-

cleotide1 to represent a sequence. In theory, these methods are not computa-

1The oligonucleotides are short (oligo) sequences of nucleotides (RNA or DNA), typically
with 20 or fewer base pairs. The nucleic acid notation uses: A, C, G and T , to represent the

123

5. PROCESSING BIG DATA IN BIOINFORMATICS

tionally expensive, but the large number of very long sequences implies long

execution times. Alignment-free methods, in which shared properties of subse-

quences (e.g., identity or match length) are extracted and used to compute a

distance matrix, have recently been explored for phylogenetic inference (see [136]

for details). Therefore, an alternative to MSA in phylogenetic inference is the

so-called alignment-free approach, in which pairwise similarity is computed from

subsequences, e.g., counts of exact (or inexact) subsequences of de�ned length, or

by extension, of conserved sequence patterns, or alternatively of match lengths.

Chan et al. in [56], using simulated sequence sets of various sizes in both

nucleotides and amino acids, systematically assess the accuracy of phylogenetic

inference using an alignment-free approach, based on D2 statistics (see Sec-

tion 5.3.1.1), under di�erent evolutionary scenarios. They have found strong

evidence for the scalability and the potential use of alignment-free methods in

large-scale phylogenomics.

In addition, genetic recombination and, in particular, genetic shu�ing are

at odds with sequence comparison by alignment, which assumes conservation of

contiguity between homologous segments. A variety of theoretical foundations

are being used to derive alignment-free methods that overcome this limitation

[280].

To better understand how the computer science can aid the biology, an exam-

ple may be of help in illustrating the impact of similarity functions on biological

research. Assume one is given a set of species for which one is interested in

knowing their common ancestry, i.e., an evolutionary taxonomy, which is usu-

ally represented via a phylogenetic tree. Usually a reliable taxonomy requires

many years of investigation and deep biological knowledge. Figure 5.1 provides a

taxonomy of 15 species that has been obtained solely with the use of biological

knowledge, with very little computational work. It would be certainly of great

bene�t to the biologists to start from a working hypothesis for their classi�cation.

Here clustering, in particular Hierarchical, can be of great help: for two species,

we can use as distance function the similarity between their genomes. Figure 5.2

provides an example of Hierarchical Clustering with the same 15 species as in

Figure 5.1. The two trees are remarkably close, therefore the tree built with com-

four nucleotides commonly found in DNA.

124

5. PROCESSING BIG DATA IN BIOINFORMATICS

Figure 5.1: The taxonomy of 15 species obtained by the National Center for
Biotechnology Information (NCBI).

putational techniques is a good starting point for a more re�ned taxonomy. Its

construction took only a few seconds on a conventional computer.

5.1.2 Applications for Big Data Analysis in Bioinformatics

Parallel and distributed solutions for processing Big Data in bioinformatics has

been explored in several scienti�c contributions so far. In fact, this is con�rmed

by the �ourishing of software, experimentations and applications in the �eld of

computational biology developed using distributed framework, e.g., MapReduce

paradigm.

High Performance Computing (HPC) in bioinformatics has a long history of

successes, and it has been classically associated with �Big Science Bioinformatics�

tasks, such as protein structure prediction (e.g., [3]), or genome assembly (e.g.,

[203]). However, the growing amount of data that the NGS technologies pro-

vide poses unprecedented computational challenges that even the most basic and

routine bioinformatics applications become amenable for HPC implementations.

Due to their routine use in Sequence Analysis, in particular for large database

searches, a considerable e�ort to parallelize the reference alignment methods has

taken place, with some degree of success (e.g., [172, 178, 284]). On the other

hand, alignment-free methods have not enjoyed all that attention.

The MapReduce paradigm is gaining consensus as a viable approach to the

125

5. PROCESSING BIG DATA IN BIOINFORMATICS

Figure 5.2: Hierarchical Clustering of the same 15 species as in Figure 5.1. It
is based on a quanti�cation of the similarity between each pair of mitochondrial
genomes of the species listed at the leaves of the tree. The sequence similarity
function is based on Kolmogorov Complexity and Data Compression [102].

processing of large amount of data in a scalable and e�cient way. This is con-

�rmed also by several contributions existing in bioinformatics and based on the

usage of Apache Hadoop.

In the following are reviewed some popular applications used for processing

Big Data in bioinformatics. These contributions are ordered by year.

Folding@home [258] is a distributed computing project for disease research

that simulates protein folding, computational drug design, and other types of

molecular dynamics. The project uses the idle processing resources of thousands

of PCs owned by volunteer users who have installed the software on their ma-

chines.

Pairwise distances are often used to construct multiple sequence alignments.

For example, the multiple sequence aligner ClustalW [265] is used for aligning

multiple protein or nucleotide sequences, computing all pairwise distances be-

tween the input sequences. The alignment is achieved via three steps: pairwise

alignment, guide-tree generation and progressive alignment. ClustalW-MPI [172]

is a distributed and parallel implementation of ClustalW where all three steps

have been parallelized to reduce the execution time. The software uses Message

Passing Interface (MPI) library and runs on distributed workstation clusters as

well as on traditional parallel computers.

Grid-K [128] is a Grid Aware service for Compression-based Classi�cation of

Biological Sequences and Structures. The application is a Grid tool for the classi-

126

5. PROCESSING BIG DATA IN BIOINFORMATICS

�cation of biological sequences and structures, based on Kolmogorov Complexity,

Universal Similarity Measures and Data Compression.

Gaggero et al. in [112] have parallelized BLAST ([5, 205]) application and

a gene expression analysis tool, called Gene Set Enrichment Analysis (GSEA)

[260], on Hadoop.

BlastReduce [240] is a parallel read mapping algorithm for aligning sequence

data from those machines to reference genomes, for use in a variety of biological

analyses, such as Single Nucleotide Polymorphism (SNP) discovery, genotyping,

and personal genomics. It is modeled after the widely used BLAST sequence

alignment algorithm, but it uses Hadoop to parallelize execution to multiple com-

pute nodes.

Kepler is a scienti�c work�ow management systems. In [289] has been inte-

grated Hadoop with Kepler, and it is provided an easy-to-use architecture that

facilitates users to compose and execute MapReduce applications in Kepler sci-

enti�c work�ows.

Liu et al. in [177] have designed a pattern �nding algorithm for motif based on

MapReduce to improve the e�ciency. In particular, it is described a MapReduce-

based �nding algorithm for analyzing the complex network.

Crossbow [77, 164] uses Hadoop for its calculations for whole genome rese-

quencing analysis and SNP genotyping from short reads. It combines the aligner

Bowtie [165] and the SNP caller SOAPsnp [174].

Biodoop [171] is a suite of parallel bioinformatics applications based on Hadoop

consisting of three qualitatively di�erent algorithms: BLAST, GSEA and GRAM-

MAR [25].

Qiu et al. in [225] have presented the experience in applying two Microsoft

technologies Dryad and Azure to three bioinformatics applications. They also

compare with traditional MPI and Hadoop implementations. The selected appli-

cations are an Expressed Sequence Tag (EST) sequence assembly program, Phy-

loD statistical package to identify HLA-associated viral evolution, and a pairwise

Alu gene alignment application.

In [241] is presented CloudBurst, a parallel read-mapping algorithm for map-

ping next-generation sequence data to the human genome and other reference

genomes. It is modeled after the short read-mapping program RMAP, and re-

127

5. PROCESSING BIG DATA IN BIOINFORMATICS

ports either all alignments or the unambiguous best alignment for each read

with any number of mismatches or di�erences. CloudBurst uses the Hadoop

framework to parallelize execution using more computers. In addition, in [190]

is described CloudBLAST, an implementation which integrates Hadoop, Virtual

Workspaces, and ViNe as MapReduce, virtual machine and virtual network tech-

nologies, respectively, to deploy the commonly used bioinformatics tool BLAST

on a WAN-ased test bed.

In [108] two use cases are described, one the analysis of gene sequence data

(35, 339 Alu sequences) and other a study of medical information (over 100, 000

patient records). Here the performance of MapReduce computing model with

MPI are compared. The authors look at initial processing (such as Smith-

Waterman dissimilarities), clustering (using robust deterministic annealing) and

Multi Dimensional Scaling to map high dimension data to 3D for convenient

visualization.

Myrna [163] is a Hadoop pipeline for calculating di�erential gene expression

in large RNA-Seq datasets. The authors apply Myrna to the analysis of publicly

available datasets and they assess the goodness of �t of standard statistical mode.

Hydra middleware was proposed to bridge the gap between the Current Sci-

enti�c Work�ow Management Systems (SWfMS) and the HPC environment, by

providing a transparent way for scientists to parallelize work�ow executions while

capturing distributed provenance. In [75] is presented an extension to Hydra

middleware through a speci�c cartridge that promotes data parallelism in bioin-

formatics work�ows.

In [285] the authors have redesigned a typical comparative genomics algo-

rithm, the Reciprocal Smallest Distance (RSD) to run on Hadoop. They then

employed the RSD-cloud for ortholog calculations across a wide selection of fully

sequenced genomes.

In [237] is proposed an approach that combines the dynamic programming

algorithm with the computational parallelism of Hadoop to improve accuracy and

to accelerate of multiple sequence alignment. In addition, MapReduce is used in

mapping and assembly sequence reads, and also in gene expression analysis and

SNP analysis.

McKenna et al. in [192] have described the Genome Analysis Toolkit (GATK),

128

5. PROCESSING BIG DATA IN BIOINFORMATICS

a structured Java programming framework designed to easy the development of

e�cient and robust analysis tools for NGS using the MapReduce paradigm. The

MapReduce architecture in GATK separates the complex infrastructure needed

to access the massive NGS data from logic speci�c to each analysis tool. In fact,

GATK provides a set of data access patterns that encompass the majority of

analysis tool needs.

Matthews and Williams in [191] have evaluated the viability of the MapRe-

duce framework for designing phylogenetic applications. The problem of interest

is generating the all-to-all Robinson-Foulds distance matrix, which has many ap-

plications for visualizing and clustering large collections of evolutionary trees. It

is introduced MapReduce Speeds up Robinson-Foulds (MrsRF), a multi-core algo-

rithm to generate a t× t Robinson-Foulds distance matrix between t trees using

the MapReduce paradigm.

Kelley et al. in [156] have proposed Quake, a program to detect and correct

errors in DNA sequencing reads using k-mer counting. Here Hadoop is used as

proof of principle in k-mer counting.

Wang et al. in [288] have presented mrClust, an k-mer MapReduce-based al-

gorithm for EST clustering, while Taylor in [263] has presented an overview of the

current usage within the bioinformatics community of Hadoop and of associated

open source software projects.

PeakRanger [101] describes a Hadoop-based framework with supports for

splitting the job by chromosomes to take advantage of the Chromosome-Level

Independence (CLI) of ChIP-seq datasets. In the CLI case, MapReduce becomes

�split-by-chromosome-then-call-peaks� where chromosomes are used as keys.

Niemenmaa et al. in [207] have presented Hadoop-BAM, a library between Bi-

nary Alignment/Map (BAM) �les1 and Hadoop-based analysis applications. The

alignment data is commonly stored in the standardized, compact and indexed

BAM format. Hadoop-BAM acts as an integration layer between analysis appli-

cations and BAM �les stored in the Hadoop Distributed File System (HDFS) that

are processed using Hadoop. Hadoop-BAM solves the issues related to BAM data

access by presenting a convenient API for implementing map and reduce functions

that can directly operate on BAM records.

1The BAM format is a binary format for storing sequence data.

129

5. PROCESSING BIG DATA IN BIOINFORMATICS

Almeida et al. in [4] have described a solution to sequence comparison that

can be thoroughly decomposed into multiple rounds of MapReduce operations.

The taken route makes use of iterated maps, a fractal analysis technique, that

has been found to provide an alignment-free solution to sequence analysis and

comparison. This solution not requires dynamic programming, but it uses a

numeric Chaos Game Representation (CGR) data structure.

Contrail [73, 242] uses Hadoop for de novo assembly from short sequencing

reads (without using a reference genome), scaling up de Brujin graph construc-

tion, while Zou et al. in [310] have presented MapReduce frame-based applica-

tions that can be employed in NGS and other biological domains.

Rasheed and Rangwala in [228] have described MrMC-MinH, a distributed al-

gorithm for clustering metagenome sequence reads. The algorithm is implemented

within Hadoop, and it approximates the computation of pairwise sequence simi-

larity with a minwise hashing approach. The algorithm is capable of performing

agglomerative hierarchical clustering or a greedy clustering approach.

Ekanayake et al. in [224] have described a wide range of topics using Dryad

MapReduce framework, including iterative MapReduce programming model to

analyses the metagenomics data.

Nordberg et al. in [209] have introduced the BioPig sequence analysis toolkit

as one of the solutions that scale to data and computation. It is built on Hadoop

and Pig data�ow language, and it runs di�erent types of analysis. For example,

given a set of sequences, the pigKmer module computes the frequencies of each

k-mer and it outputs a histogram of the k-mer counts. A number of variations

of k-mer counting are available, e.g., count only the number of unique reads that

contain the k-mers or group k-mers within one or two hamming distance.

Masseroli et al. in [187] have presented an application, called Bio Search

Computing (Bio-SeCo), to explorative search of distributed biomedical-molecular

data and the integration of the search results to answer complex biomedical

questions. The authors use services from existing applications, and they sup-

port explorative integrated search and ranking-aware combination of distributed

biomedical-molecular data. In fact, they have registered in Bio-SeCo a set of

bioinformatics services and their semantics connections. Bio-SeCo o�ers an in-

tegrated environment where to perform data exploration, which automatically

130

5. PROCESSING BIG DATA IN BIOINFORMATICS

saves intermediate results, combines them taking account their partial order and

supplies ordered global results.

Forer et al. in [105] have summarized a number of software solutions that exist

in the domain of bioinformatics that utilize the MapReduce paradigm. In order to

facilitate their utilization and integration, they then have described Cloudgene, a

graphical work�ow engine that allows these existing solutions to be easily chained

together.

Drew and Hahsler in [90] have presented the Super Threaded Reference-Free

Alignment-Free N-sequence Decoder (Strand), a highly parallel technique for the

learning and classi�cation of gene sequence data into any number of associated

categories or gene sequence taxonomies. Strand uses a much longer word length

with respect to RDP1, and it does so e�ciently by implementing a Divide and

Conquer algorithm leveraging MapReduce style processing and locality sensitive

hashing. Strand performs word extraction using lock-free data structures to iden-

tify unique gene sequence words. It is able to learn gene sequence taxonomies

and classify new sequences faster than the RDP classi�er while still achieving

comparable accuracy results.

De Witte et al. in [80] have presented a parallel framework for comparative

motif2 discovery. The framework is word-based and gene-centric, and the authors

have implemented two methodologies for phylogenetic footprinting: an alignment-

based approach, where conservation is scored based on pregenerated multiple

sequence alignments, and an alignment-free approach, where conservation does

not depend on the relative position or orientation of the candidate motif. The

framework was implemented in C/C++ and the MPI was used to handle the

inter-node communication.

Karimi et al. in [155] have proposed a scalable method in which are used opti-

mization techniques borrowed from database technology, namely bitmap indexes.

They are used to speed up searching and matching of billions of DNA signatures3

1A word-based method for alignment-free is a naive Bayesian classi�er called Ribosomal

Database Project (RDP) Classi�er [290].
2A sequence motif is DNA or amino-acid sequence pattern that is widespread and it has a

biological signi�cance.
3A DNA signature is a short nucleotide sequence fragment which is used to distinguish

species across all other species.

131

5. PROCESSING BIG DATA IN BIOINFORMATICS

in the short reads of thousands of di�erent microorganisms, using Hadoop, Hive

and HBase.

Hill et al. in [139] have presented K-mulus, an application that performs

distributed BLAST queries via Hadoop using a collection of established paral-

lelization strategies. In addition, it is provided a method to speed up BLAST by

clustering the sequence database to reduce the search space for a given query.

Radenski and Ehwerhemuepha in [226] have proposed a Hadoop application

to codon1 counting using Hadoop API Streaming and local aggregation.

Schumacher et al. in [244] have presented SeqPig, a collection of tools to ma-

nipulate, analyze and query sequencing datasets in a scalable and simple manner,

using Apache Hadoop and Apache Pig.

Wiewiórka et al. in [294] have presented SparkSeq, a general-purpose, �exible

and easily extensible library for genomic cloud computing adopting Apache Spark.

This tool can be used to build genomic analysis pipelines in Scala programming

language and run them in an interactive way.

Zhao et al. in [306] have presented SparkSW, a system that implements the

Smith-Waterman algorithm on Apache Spark distributed computing framework,

with a couple of o�-the-shelf workstations.

5.2 Selected Benchmark Problems

In the biological sciences, the collection of k-mer statistics, i.e., how many times

each k-mer occurs in a given set of genomic or proteomic sequences, is one of the

earliest and still most valuable sequence analysis tools since those statistics can

be used to infer information about function, structure and evolution of biological

sequences (e.g., [44, 118, 119, 137, 161, 169]). Since the chosen problem is at the

start of many bioinformatics pipelines, we set the foundation for the development

of e�cient distributed pipelines that use k-mer statistics.

Nowadays, as said in Section 5.1.1, there is a big growth of the alignment-free

methods, mostly word-based, such as [56, 136, 141, 251, 257, 267, 287]. Although

these methods are computationally lighter than those alignment-based, in the

1A codon is a sequence of 3 nucleotides along the mRNA.

132

5. PROCESSING BIG DATA IN BIOINFORMATICS

NGS era becomes important to speed up the running times of such comparisons

when very large sequences are used.

We have seen in Section 5.1.2 that there already have been several proposals

in the past about the possibility of analyzing genomic sequences in a parallel

or distributed way. Many of these contributions, such as ClustalW-MPI and

the Genome Analysis Toolkit, focus on problems di�erent than the word-based

alignment-free sequence comparison.

In this chapter are separately treated these two problems, i.e., Alignment-

free Sequence Comparison (based on word counts or word features) and K-mer

Statistics (or Counting).

5.2.1 Alignment-free Sequence Comparison Problem

As said in Section 5.1.1, Sequence Comparison i.e., the assessment of how similar

two biological sequences are to each other, is a fundamental and routine task in

computational biology and bioinformatics. Classically, alignment methods are

the de facto standard for such an assessment. Due to the growing amount of se-

quence data being produced, a new class of methods has emerged: Alignment-free

methods. Research in this ares has become very intense in the past few years,

stimulated by the advent of NGS technologies, since those new methods are very

appealing in terms of computational resources needed. Despite such an e�ort

and in contrast with sequence alignment methods, no systematic investigation

of how to take advantage of distributed architectures to speed up alignment-free

methods, has taken place. Another issue that has not received many attention

is related to the possibility of using a distributed architecture to solve problem

instances that are hard to solve on a stand-alone setting (or single machine, non-

parallel) because of memory constraints. In Section 5.3 is provided a contribution

of that kind, by evaluating the possibility of using the Hadoop distributed frame-

work to speed up the running times of alignment-free methods based on word

counts, compared to their original stand-alone (non-parallel) formulation. It is

also explored the possibility of running alignment-free sequence methods on very

long sequences, by using a proper MapReduce formulation able to spread on the

several nodes of a Hadoop cluster the data structures required to run them.

133

5. PROCESSING BIG DATA IN BIOINFORMATICS

5.2.2 K-mer Statistics Problem

Due to its fundamental nature, many algorithms computing those statistics have

been developed, supported by various architectures, such as [24, 37, 83, 84, 161,

175, 184, 200, 209, 231, 244, 288]. In fact, although the problem is algorithmically

very simple, the sheer amount of data that has to be processed in a typical appli-

cation has motivated the development of many algorithms and software systems

that try to take advantage either of parallelism or of sophisticated algorithmic

techniques or both. Some of the current tools only work on short sequence data,

in fact, some not work or scale well when run on much longer sequences. See Sec-

tion A.2 for additional details about the state of the art on algorithms collecting

K-mer statistics.

Let S be a set of genomic sequences, we are interested in collecting Local

Statistics (LS), i.e., how many times each of the k-mers appears exactly and

separately in each of the sequences in S, or Cumulative Statistics (CS), i.e., how

many times each of the k-mers appears exactly and cumulatively (globally) in

sequences in S.

In Section 5.4 is presented a highly engineered, scalable and e�cient Hadoop

solution to compute k-mer exact statistics for both LS and CS on short or long

sequences. The proposed solution can exceed in performance the current faster

implementations (Hadoop-based or not), in addition, a careful pro�ling of some

of the most successful methods that have been developed for CS, from which it is

evident that they do not scale well with computational resources, is also presented

in Section A.3.

5.3 A Distributed Framework for the Development

of Alignment-free Sequence Comparison Meth-

ods

Alignment-free methods are an alternative to traditional alignment-based algo-

rithms able to process e�ciently very long sequences. They are interesting from

this viewpoint because their running time is proportional to the length of the in-

134

5. PROCESSING BIG DATA IN BIOINFORMATICS

put sequences, although they are usually less accurate than traditional alignment-

based approaches. Despite this, many of these methods and the corresponding

programs are likely to perform very poorly or may not work at all, when run on

very long sequences in NGS era. Following a trend that has been established in

the last decades, the e�cient processing of big amount of sequence data does not

necessarily require very expensive super computing facilities. Instead, it is often

more convenient to distribute the processing activity on a large number of com-

modity computers. Many of the alignment-free sequencing algorithms have been

originally conceived as stand-alone (sequential) algorithms and, thus, they must

be reformulated as distributed algorithms. Moreover, it is also required to rethink

in a distributed fashion all the support activities related to the management of

the input sequences to analyze. Starting from this premise, we experimented with

the possibility of reformulating several of the alignment-free sequence analysis al-

gorithms proposed so far in the literature as distributed algorithms by means of

the MapReduce paradigm. This paradigm seems to be very well suited for activi-

ties like those required by alignment-free sequencing algorithms, usually requiring

the independent processing of several (potentially very long) sequences.

In this section we investigate systematically how alignment-free methods can

be designed and engineered to take full advantage of computer architectures,

exploiting Hadoop framework. The choice of a distributed architecture is due to

the fact that, although neglected in the past in bioinformatics, it is now being

considered as a viable framework for the fast solution of computational biology

problems, e.g., [244]. Moreover, we also concentrate on a representative sample

of the word-based alignment-free methods available, presented in Section 5.3.1,

focusing on how one can achieve e�ective gains using a distributed environment

by starting with rather simple implementations. The selected methods are based

on exact-word counts algorithms (e.g., Euclidean [136, 300], D2 Statistics [56, 257,

267, 287], Feature Frequency Pro�le [251]) and inexact-word counts algorithms

(e.g., Spaced-Words [141], Co-phylog [302]).

In order to obtain a systematic study, a software framework has been designed

and developed with the intent to simplify the implementation and the experimen-

tation with alignment-free sequence comparison algorithms based on word counts.

The stand-alone framework is described in Section 5.3.2 and it has been used for

135

5. PROCESSING BIG DATA IN BIOINFORMATICS

implementing several of the algorithms presented in Section 5.3.1.

A �rst round of experiments has been conducted on a single CPU core, where

we measured the performance of these algorithms on a reference dataset. The

aim of these experiments was not to compare neither to evaluate the quality of

the solutions found by the di�erent algorithms. Instead, we were interested in

characterizing the maximum size of the problems that could be practically solved

by these algorithms on a stand-alone setting and, also, to pinpoint the issues that

would prevent these algorithms to work e�ciently, or to work at all, on larger

problems.

Starting from these considerations, in Section 5.3.3, it is presented a reformula-

tion of the most promising traditional alignment-free sequence analysis according

to the MapReduce, and their consequent implementations. Then, we developed

an implementation for these algorithms on the top of the Apache Hadoop dis-

tributed framework. By taking advantage of careful pro�ling analysis of the algo-

rithms, we engineer very fast implementations of them. The proposed framework

is called Alignment-free Sequence Comparison on Hadoop (HAFS).

Finally, in Section 5.3.4, we repeated the same experiments performed on

the stand-alone setting (i.e., single-core) on a cluster of 5 multi-processor work-

stations running Hadoop, and we have compared the corresponding results. We

also present a performance analysis and pro�ling of the implementations acquired

during the previous activities.

A preliminary version of the research work presented in this section was pub-

lished in [49].

5.3.1 Alignment-free Sequence Comparison Methods

In the following, we brie�y review the alignment-free methods used in this study.

They are a representative set of the myriads available, and they have been chosen

either because considered fundamental in the literature or because particularly

innovative.

As already stated, generally, the similarity of biological sequences is estab-

lished via alignments. However, the scales of the problems have drastically

changed. For instance, one could easily face taxonomic classi�cation tasks that

136

5. PROCESSING BIG DATA IN BIOINFORMATICS

involve millions of species. Indeed, the study of entire bacterial populations is

becoming a standard in metagenomics [243].

Fortunately, the need for similarity functions substantially di�erent than the

ones based on sequence alignment was readily realized, although it goes to the

merit of Vinga and Almeida [280] to have given to this area a very fortunate

name: Alignment-free Sequence Comparison. The area has boomed in the past

10 years, going from a handful of papers to hundreds of them (see [279]).

Algorithms in this area can be broadly classi�ed into two main categories:

explicit collection of (sub)-sequence statistics and implicit collection of (sub)-

sequence statistics.

• Explicit Collection of (Sub)-Sequence Statistics

Consider a sequence S, and let DS be the number of subsequences of length

k that appear in S, together with their number of occurrences. In fact, DS

is an explicit collection of a sequence statistics about S. Letting DQ be

for a sequence Q as DS for S, how �close� are DQ and DS is certainly an

indication of how �close� Q and S are. All methods described in this section

belong to this category.

• Implicit Collection of (Sub)-Sequence Statistics

It is well known that classic data compression algorithms, e.g., Lempel-Ziv

[309], reduce the dimension of a text by eliminating redundancy, which in

many cases consists of repeated parts of the text. In a sense, in doing their

job, those algorithms implicitly collect and use sequence statistics about

the text to compress. Although not entirely obvious, such a feature has

deep connections with Kolmogorov Complexity which, in turn, is at the

base of universal similarity metrics for sequences. Additional information

is presented in Ferragina et al. [102].

Alignment-free methods in biology and the life sciences have been applied in

order to extract universal genomic, proteomic and epigenomic features. That is,

sequence features that characterize a class of biological processes in the mentioned

areas. For example in genomics and proteomics there are the following stud-

ies: composition of amino acidic sequences: common rules, even for structurally

137

5. PROCESSING BIG DATA IN BIOINFORMATICS

and evolutionarily diverse sequences [19]; k-mers distribution across species: uni-

modality and additional common features [66]; informational genome analysis:

how di�erent are genomes? [45]; mammalian enhancers comparison [70]. In-

stead, in epigenomics, for example, there are the following studies: motif-free

sequence speci�city detection in epigenomics [221] and epigenomic dictionaries

for nucleosome positioning [117].

As mentioned above, alignment-free methods became popular in recent years,

since their run time is usually proportional to the total sequence length, but it is

known that alignment-free methods are generally less accurate than alignment-

based approaches. E�cient distance computation is the major contribution of

alignment-free methods. In fact, as de�ned by Haubold in [136], there are many

methods used to compute the distance (or the similarity) between two sequences.

These methods are mainly based on frequencies of words of some �xed length

(i.e., word counts or k-mer counts), or on the lengths of exact matches (i.e., match

lengths) between pairs of sequences. When counting frequencies of words, we can

count the exact-word or inexact-word. An inexact-word (or approximate-word)

pattern contains do not care (wildcard) characters, where a do not care character

is denoted by 0, while 1 denotes a match. For example, if a word pattern is de�ned

as 101, then word ATA matches AAA and ATA, but not TAA. In general, all

of these methods are used to give a data representation, i.e., phylogenetic tree

(or distance tree), from a set of input sequences using pairwise distances between

the sequences (distance matrix). A distance matrix can be used to construct

phylogenetic tree using clustering algorithms.

In this section we only use alignment-free methods based on exact-word counts

or inexact-word counts.

5.3.1.1 Methods based on Exact-Word Counts

Consider an alphabet Σ of n symbols and an integer k ≥ 1 (sometimes called word

pattern). Formally, Σk is the set of k-mers and here it is assumed to be sorted

lexicographically, so that the integer i in [1, nk] can represent the i-th k-mer in

the list. A k-mer1 is a substring of exactly k characters. This term, typically,

1K-mers are also called k-tuples, k-grams, k-words or k continuous words. Therefore,
throughout this chapter, we use these terms interchangeably.

138

5. PROCESSING BIG DATA IN BIOINFORMATICS

refers to all the possible substrings, of length k, that are contained in a string.

Comparison of the similarities between two segments of biological sequences

using k-mers arises from the need for rapid sequence comparison. This very

simple method computes the di�erence of overlapping k-mer frequencies between

sets of sequences. The amount of k-mers possible given a string of length L, is

L− k + 1, whereas the amount of possible k-mers given n possibilities1 is nk.

In particular, in the methods based on k-mers, for alignment-free sequence

comparison of two input sequences S and Q, the �rst step is to count the number

of occurrences of every k-mer in the sequences separately and then it needs to

record the k-mer frequencies for each sequence (this counting can be carried out

in linear time assuming k as a constant). In addition, a measure d of �di�erence�

between the two sequences is de�ned based on the two frequencies vectors. If

the measure satis�es distance constraints (i.e., d(S,Q) ≥ 0; d(S,Q) = 0 ⇐⇒
S = Q; d(S,Q) = d(Q,S); and ∀S,Q, T : d(S, T) ≤ d(S,Q) + d(Q, T)), then the

measure is a distance (or metric), otherwise we called it dissimilarity measure2.

A dissimilarity measure indicates how two sequences are di�erent.

In literature a large number of measures are been calculated using k-mer

frequencies (e.g., [63, 140, 230]). A simple example is the Squared Euclidean Dis-

similarity Measure [136]. The next three methods are representative of the ones

collecting the number of exact occurrences of each k-mer in the two sequences to

be compared. In fact, we present some popular methods based on word frequen-

cies, that is: Squared Euclidean dissimilarity measure, D2 Statistics (or Scores)

and Feature Frequency Pro�le (FFP).

Squared Euclidean Dissimilarity Measure It is a dissimilarity measure,

proposed in [300], and de�ned as:

dSE(S,Q) =
nk∑
i=1

(si − qi)
2 (5.1)

1In the case of DNA sequences, n is 4, i.e., Σ = {A,C,G, T}.
2In this section, generally, the term dissimilarity measure is also used for referring to a

distance measure.

139

5. PROCESSING BIG DATA IN BIOINFORMATICS

where n is the number of characters in the input alphabet (e.g., n = 4 with

alphabet Σ = {A,C,G, T}); S and Q are two sequences; si is the number of

occurrences of the i-th k-mer in S, while qi is its analogous in Q. The Squared

Euclidean measure is not a metric as it does not satisfy the triangle inequality.

Typically k is set to 5 in [300].

D2 Statistics Another exact-word counts approach for alignment-free sequence

comparison uses the D2 statistics (see [56, 257, 267, 287, 310] for details). A D2

score is calculated based on the exact count of shared k-mers between any two

sequences, thus representing the extent of similarity they share. Formally:

D2(S,Q) =
nk∑
i=1

si × qi (5.2)

where si and qi are the same as in the Squared Euclidean dissimilarity.

It was pointed out in [176] that D2 is not appropriate for the comparison

of two sequences because it may have biases. In fact, D2 statistic tends to be

dominated by single-sequence noise. In particular, one can normalize the D2

score, e.g., via the use of the a priori probability of occurrence for each k-mer

observed in a sequence (DS
2 Statistic) or via an a priori estimate of the mean and

variance of k-mer occurrences (D∗
2 Statistic) in a sequence.

DS
2 (see [230, 287]) is a self-standardized statistic and it is based on Shepp's

statistic, in which a D2 score is normalized based on probability of occurrences of

speci�c k-mer in the sequence1. For a k-mer w = (w1, ..., wk), pw =
∏k

i=1 pwi
is

the probability of occurrence of w. In particular, pw is the probability of word w

under the null model. Let s̄ and q̄ be the number of all possible w (i.e., k-mers)

respectively in sequences S and Q (i.e., s̄ = s−k+1 and q̄ = q−k+1, where s and

q are the lengths of S and Q respectively), and that pSw and pQw the probability

of a speci�c k-mer w respectively in sequences S and Q. Sw counts the number

of occurrences of w in S, and similarly, Qw counts the number of occurrences of

w in Q. Sw and Qw can be normalized as:

S̃w = Sw − s̄pSw and Q̃w = Qw − q̄pQw . (5.3)

1In DS
2 the superscript �S � stands for �Shepp� and also for �self-standardized �.

140

5. PROCESSING BIG DATA IN BIOINFORMATICS

The probabilities pSw and pQw are the probability of k-tuple w under the back-

ground model for the two input sequences.

DS
2 statistic is de�ned as:

DS
2 =

∑
w

S̃wQ̃w√
S̃2
w + Q̃2

w

. (5.4)

Reinert et al. [230] set 0
0
= 0 in Equation 5.4, and they said that, under reason-

able assumptions, the DS
2 statistic is approximately normally distributed, when

sequence lengths tend to in�nity, and not dominated by the noise in the individual

sequences.

The statistic D∗
2 is based on centered counts, divided by the square root of

their means. Similarly, D∗
2 is based on the postulation that number of occurrences

of word w (i.e., k-mer) is approximately Poisson, therefore its mean and variance

are approximately the same for long word w (see [230, 287]). In Song et al. [257]

D∗
2 is de�ned as:

D∗
2 =

∑
w

S̃wQ̃w√
q̄s̄pSwp

Q
w

. (5.5)

In [230] the authors replaced pa, the (unobserved) letter probabilities, by p̂(a),

that is the relative count of letter a in the concatenation of the two sequences,

based on the null hypothesis that the two sequences are independent and both are

generated by i.i.d. (independent and identically distributed) letters from the same

distribution. Then it is estimated the probability of occurrence of w = w1, ...wk

by p̂w =
∏k

i=1 p̂wi
. In Reinert et al. [230] are estimated the letter probabilities,

even when it is assumed that all letters are equally likely.

D∗
2 =

∑
w

S̃wQ̃w√
s̄q̄p̂w

. (5.6)

The authors in [230] set 0
0
= 0 in Equation 5.6; and they have shown that D∗

2

outperforms DS
2 in terms of power for detecting the relatedness between the two

sequences.

D∗
2 is based on the intuitive idea that the number of occurrences of k-mer w

141

5. PROCESSING BIG DATA IN BIOINFORMATICS

is approximately the same for relatively long tuples.

Feature Frequency Pro�le (FFP) This technique, proposed by Sims and

Kim in [251], always computes the count of each possible feature (i.e., k-mer) in

an input sequence. Each word count in each sequence is normalized by dividing

it by the total number of features existing in that sequence. Then, the resulting

features with associated normalized count are grouped together to form the fea-

ture pro�le of that sequence. It has been shown that similar sequences exhibit

similar pro�les. Thus, it is possible to estimate the distance between two se-

quences by measuring the dissimilarity between their respective FFPs. This can

be calculated by measuring the similarity between two probability distributions,

using the Jensen-Shannon Divergence (JSD) method ([250]).

The JSD is a popular method of measuring the similarity between two proba-

bility distributions, and it is a symmetric and smoothed version of the Kullback-

Leibler Divergence (KLD).

JSD of Q from S, denoted DJS(S ∥ Q), is de�ned as:

dFFP (S,Q) = DJS(S ∥ Q) =
1

2
DKL(S ∥M) +

1

2
DKL(Q ∥M) (5.7)

where

M =
1

2
(S +Q) (5.8)

and the KLD of Q from S, denoted DKL(S ∥ Q), is de�ned as:

DKL(S∥Q) =
nk∑
i=1

si ln
si
qi
. (5.9)

KLD is a non-symmetric measure of the di�erence between two probability dis-

tributions S and Q. Speci�cally, the KLD of Q from S, denoted DKL(S∥Q), is a

measure of the information lost when Q is used to approximate S. KLD measures

the expected number of extra bits required to code samples from S when using a

code optimized for Q, rather than using the true code optimized for S.

142

5. PROCESSING BIG DATA IN BIOINFORMATICS

5.3.1.2 Methods based on Inexact-Word Counts

The previous word count methods are designed to recover the topology of a

phylogeny rather than its branch lengths [136]. A well-known drawback of using

exact-word counts in sequence comparison is that word matches at neighbouring

sequence positions are statistically far from independent. In view of how biological

sequences evolve, i.e., via insertions, deletions and substitutions of symbols, it is

quite natural to consider alignment-free methods that account for occurrences of

inexact-words in sequences. We consider here some very recent proposals.

Spaced-Word Frequencies A spaced-word over an alphabet Σ can be seen as

a word composed of symbols from Σ and wild-card symbols, e.g., T∗∗AG∗T . The
basic version of this spaced-word approach uses one single �xed pattern P ofmatch

and do not care positions, represented as a sequence of 1 and 0, respectively, and

calculates the relative frequencies of spaced-words with respect to this pattern

(see [40, 141, 272] for details). The �rst and last characters in P must be 1.

For example, the pattern P = 101 reports a central do not care position and

two lateral match positions. In this example, the word ATA matches with AAA

and ATA, but not TAA. We call this type of pattern P as spaced pattern1.

Having calculated the frequencies of spaced-words in the input sequences, their

similarity/dissimilarity can be determined using a proper measure, e.g., the ones

described in Section 5.3.1.1, such as Euclidean or JSD. The dissimilarity measure

between two sequences S and Q using a pattern P , dP (S,Q), is the distance

between the corresponding frequency vectors.

Multiple Patterns Spaced-Words The spaced-word technique has been fur-

ther extended by Leimeister et al. in [170] with the replacement of the single

pattern P with a set of patterns P = {P1, .., Pm}. To be more precise, given two

sequences S and Q, this technique averages the dissimilarity measures calculated

with respect to all individual patterns in the set P. Therefore, the dissimilarity

measure dP is de�ned as:

1We call the matching k-mers of a spaced pattern as spaced-words or spaced-k-mers.

143

5. PROCESSING BIG DATA IN BIOINFORMATICS

dP(S,Q) =
1

m

∑
P∈P

dP (S,Q) . (5.10)

In the results presented in [170], Leimeister et al. have shown that spaced-

word frequencies based on a single pattern with a small number of do not care

positions lead to better phylogenetic trees than contiguous word1 frequencies

(although the improvement achieved with this �rst approach is limited). But a

signi�cant improvement is obtained by using the multiple patterns approach: the

resulting phylogenetic trees are superior to the trees constructed with contiguous

word frequencies or single-pattern spaced-words, and the results are less sensitive

to the number of do not care positions. In particular, the results of spaced-words

are improved if the number of patterns is increased, but this also increases the run

time. On simulated DNA and protein sequences, the authors have observed that

the quality of the results converges to an optimum between 60 and 70 patterns,

in fact, a further increase does not lead to a signi�cant improvement of tree

quality. Under an i.i.d. sequence model, the expected number of occurrences

of a spaced-word is approximately the same as for the corresponding contiguous

word (obtained by removing the do not care positions), and spaced-word matches

at neighboring sequence positions are less dependent on each other if a non-

periodic pattern P is used. A main advantage of spaced-word frequencies is that

occurrences of spaced-words at di�erent sequence positions are statistically less

dependent on each other. Therefore, dissimilarity measures using spaced-words

can be expected to be more stable.

Co-phylog Yi and Jin in [302] have presented Co-phylog, an assembly-free

phylogenomic approach that creates a �micro-alignment� at each object in the

sequence using the context of the object. It uses these objects to calculate pairwise

distances. Therefore, it is not only as e�cient as the existing alignment-free

approaches but also as accurate as the alignment-based methods.

We de�ne a structure of a pattern P to match by using a formula:

Ca1,a2,...,amOb1,b2,...,bm−1 (5.11)

1A contiguous word indicates a k-mer without do not care positions, i.e., an exact-word.

144

5. PROCESSING BIG DATA IN BIOINFORMATICS

where ai (i = 1, ...,m) and bi (i = 1, ...,m − 1) are the lengths of the i -th

consecutive 1s segment (i.e., the context) and the i -th consecutive 0s segment

(i.e., the objects) respectively. Here, 1 always denotes a match/care position and

0 denotes a do not care position. For example, P = 1110111 has a structure

C3,3O1, i.e., a seed with length k = 7 and a wildcard character in the middle

position. In the structure, C is called context and O is called object. Fixed

P , the technique works by converting an input sequence in the set containing

context-object pairs.

In particular, given the structure of a pattern P , for each input sequence S,

we index each O-gram in S (i.e., the consecutive do not care characters) by its

respective C-gram (i.e., the consecutive match characters). If di�erent O-grams

with the same C-gram occur while indexing the genome, the C-gram is �agged

(i.e., marked). After all of the O-grams are indexed, the unmarked C-grams and

their respective O-grams, i.e., the context-object pairs, are output.

After calculating the previous step for each input sequence, for each pair of

sequences, e.g., S and Q, we de�ne dco as:

dco(S,Q) =

∑|R|
i=1 Ii
|R|

(5.12)

where R is the intersection of the context sets of S and Q. Moreover, Ii = 0 if

objectS,P (ci) = objectQ,P (ci), otherwise Ii = 1, where ci is the i -th context of R

and objectS,P (ci) indicates the object associated to the context ci in the sequence

S with the structure of the pattern P . The same explanation applies to object

objectQ,P (ci).

Haubold in [136] has concluded that when it comes to choosing an alignment-

free dissimilarity measure, dco is a strong candidate, especially when analyzing

large genomes where the time and/or memory consumption of other methods is

often prohibitive. However, dco did not return the correct primate phylogeny, so

the jury is still out on which method is best.

145

5. PROCESSING BIG DATA IN BIOINFORMATICS

5.3.2 Alignment-free Sequence Comparison on a Single-

Core

A �rst round of experiments was performed to evaluate the scale of the problems

that can be conveniently solved with each of the implementations considered in

this study, on a Linux machine equipped with 32 GB of RAM and 2 AMD Opteron

@ 2.10 GHz processors (16 total cores). The maximum amount of RAM mem-

ory allocated to these experiments has been set to 4, 096 MB, so as to re�ect the

availability of RAM memory for each task of our subsequent Hadoop experiments.

Here we only use a single-core, in fact, only a stand-alone (non-parallel) imple-

mentation is experimented. In these experiments, we measured the CPU and the

memory usage of the algorithms, when processing di�erent types of sequences.

Performance measurement has been done by instrumenting the Java source code

of the implementations.

5.3.2.1 Stand-alone Implementation

A set of Java classes has been implemented, featuring the general implementation

template that can be extracted from the techniques reviewed in Sections 5.3.1.1

and 5.3.1.2.

Let DS be the set of input sequences to be compared and let P be the pattern

(spaced or not) to be taken into account, where |P | = k. The implementation

pattern we consider consists of two steps:

• Indexing: Each sequence S ∈ DS is processed individually in order to

extract a set of features (e.g., the k-mer counts) which are then stored using

a Java hash map (i.e., hash table1) data structure. Currently, the features

extracted are the ones needed by the algorithms described in Sections 5.3.1.1

and 5.3.1.2. That is, exact and inexact k-mer counts and the context-object

information used by the Co-phylog technique.

• Pairwise Comparisons: For each pair of distinct sequences Si, Sj ∈ DS, a

measure of their dissimilarity is computed, based on the features collected

during the �rst step. The framework supports many of the dissimilarity

1In this chapter the terms hash table or hash map are used interchangeably.

146

5. PROCESSING BIG DATA IN BIOINFORMATICS

Figure 5.3: The Java Interface DissimilarityMeasure used in our framework to
manage a dissimilarity measure for alignment-free sequence comparison.

measures, such as those presented in Section 5.3.1. In particular, it supports

the dissimilarity measures: Euclidean, Squared Euclidean, KLD, JSD with

absolute and relative frequencies of counts. Moreover, several variants of

D2, DS
2 andD∗

2 are also available, using di�erent methods for calculating the

probability of a k-mer or of a single character of the alphabet. Finally, there

is an implementation of the dissimilarity measure used by the Co-phylog

method described in [302].

This implementation is sequential1, i.e., no parallel or distributed tasks are ex-

ecuted concurrently. In addition, the implementation is extensible to new dissim-

ilarity measures. In fact, a developer can create a new dissimilarity measure, sim-

ply writing a Java Class that implement the Interface DissimilarityMeasure, as

reported in Figure 5.3. The Class Diagram related to the dissimilarity measures

initially implemented in our framework is presented in Figure 5.4.

5.3.2.2 Datasets

Our experiments have been conducted on a randomly-generated dataset D con-

sisting of several sequences de�ned on the {A,C,G, T} alphabet. The dimensions

we considered for this purpose are: the length len of each sequence, the overall

1We remember that a sequential or stand-alone implementation only uses a single CPU core
at a �xed time instant, i.e., it is not parallel.

147

5. PROCESSING BIG DATA IN BIOINFORMATICS

F
ig
ur
e
5.
4:

T
he

C
la
ss

D
ia
gr
am

re
la
te
d
to

th
e
di
ss
im

ila
ri
ty

m
ea
su
re
s
in
it
ia
lly

im
pl
em

en
te
d
in

ou
r
fr
am

ew
or
k
fo
r

al
ig
nm

en
t-
fr
ee

se
qu
en
ce

co
m
pa
ri
so
n.

148

5. PROCESSING BIG DATA IN BIOINFORMATICS

number numb of sequences to be compared and the length k of the k-mers to be

extracted.

We tested several di�erent numeric assignments to these variables. Here, are

reported the settings that were more challenging for the considered algorithms on

our experimental platform: (len ∈ {52, 428, 800; 524, 288, 000; 1, 620, 000, 000},
numb ∈ {5, 10, 15, 20, 25, 30}, k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}). Smaller values

for those variables were handled by the input algorithms considered in this study

with no problems at all, while it was not possible to experiment with larger values

due to the resulting excessive memory usage and/or to the very long execution

time. All the sequences have been created with the help of the Java standard

pseudorandom number generator assuming a uniform distribution and have been

saved individually as FASTA1 �les. See Section A.1 for additional information

about FASTA �le format.

5.3.2.3 Preliminary Experimental Results

In our �rst round of experiments, we measured the overall CPU time spent for

evaluating the dissimilarity between collections of sequences having the same size

and belonging to D. For example, in Figure 5.5, we report the time spent for

processing an increasing number of sequences, each having a size of 52, 428, 800

characters, while using several di�erent types of dissimilarities. We set k to 6

(i.e., P = 111111), when using dissimilarities based on k-mers, and the pattern

1110111, when using dissimilarities based on context-object extraction. Accord-

ing to those results, most of the considered measures based on k-mers exhibit

very similar execution time, except for the ones based on the DS
2 and D∗

2 statis-

tics with estimated probabilities. This is probably due to the overhead required

by these methods for estimating the k-mer probabilities on the input sequences.

Moreover, the Co-phylog measure always exhibits a longer execution time than

the other dissimilarities. This is probably due to the fact that the algorithm for

the extraction of the context-object information from an input sequence is more

complex than the one for k-mers extraction. We were unable to run tests with

values of k higher than 11 because the available memory (i.e., 4 GB) was not

1A FASTA �le is a �le format, which should not be confused with FASTA software [273].

149

5. PROCESSING BIG DATA IN BIOINFORMATICS

0

3

6

9

12

15

18

21

24

27

5 10 15 20 25 30

C
P

U
 T

im
e

(i
n

 m
in

u
te

s)

Number of Sequences

Euclidean D2 KLD Squared Euclidean

JSD Estimated Prob D2S Estimated Prob D2* Uniform Prob D2S

Uniform Prob D2* Co-phylog

Figure 5.5: Overall CPU time required to evaluate the dissimilarities between
randomly-generated sequences in collections of increasing size, with each sequence
having a size of 52, 428, 800 characters, while using several di�erent types of
dissimilarity measures. The parameter k is set to 6 for dissimilarities based on
k-mers (i.e., P = 111111). The Co-phylog measure uses the pattern P = 1110111
as its parameter.

enough to run the algorithms without loss of performance.

We then pro�led the considered algorithms to better understand their internal

behavior and to explain the performance we measured in our tests. We �rst

noticed that the execution time of these algorithms is dominated by the time

spent interacting with the hash map data structure used to store the k-mers

or the context-object information. This explains why most of the algorithms

based on k-mers exhibit approximately the same execution time. In addition,

the memory required by this data structure grows exponentially with k (when

counting the k-mers) or with the size of the pattern (when extracting the context-

object information). As a consequence, increasing the value of k may easily

lead to the creation of a hash map too big to �t in the available memory. The

size of this data structure grows also when we increase the number of sequences

150

5. PROCESSING BIG DATA IN BIOINFORMATICS

0

50

500

1,500

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

5
10

15
20

25
30

S
eq

u
en

ce
 L

en
g

th
 (

M
B

)

R
A

M
 i

n
 M

B

Number of Sequences

Figure 5.6: Total memory used when running algorithms for evaluating the dis-
similarities between di�erent collection of randomly-generated sequences with
increasing size (in MB), using k-mer counts, with k set to 11.

to compare, because we have to maintain the k-mer counts (or of the context-

object information) for each of the input sequences. Instead, if we keep �xed the

number of sequences to be compared while increasing their size, we experience a

much smaller expansion of the required memory. This phenomenon is visible in

Figure 5.6, where we plot the memory usage of algorithms based on k-mer counts

when comparing di�erent collections of sequences of increasing size, with k �xed

at 11.

Our stand-alone implementation only works in main memory. It is known

that there are hybrid algorithms that periodically �ush a hash table on the disk,

but the I/O bottlenecks can reduce the performance. This aspect is studied in

Section 5.4.

151

5. PROCESSING BIG DATA IN BIOINFORMATICS

5.3.3 Alignment-free Sequence Comparison on Hadoop

In our �rst round of experiments, we pinpointed one important performance issue

a�ecting the implementations being evaluated. Their performance is dominated

by the time required to interact with the hash maps used to store information

about the input sequences. Similarly, most of the memory they use is required

again by this hash map. Consequently, when the number of sequences to be

compared and/or the length of the pattern to be extracted increases, the size

of these data structures becomes so large to drain the physical memory of the

computer, thus preventing the execution of the algorithms. In addition, these

tasks could be executed in parallel manner.

This issue can be addressed by resorting to a distributed approach. First, it is

possible to speed up the extraction operation by processing several sequences at

the same time and in a distributed fashion. Second, it may be possible to extend

the range of problems that could be solved e�ciently by virtually spreading over

several machines the hash maps used to store the information of the sequences.

We investigated such a possibility and, correspondingly, we developed this idea

by reformulating the original algorithms according to the MapReduce paradigm.

This has been done by implementing the algorithms on top of the Apache Hadoop

framework and by running them as distributed algorithms on the same datasets

used for our preliminary tests. It is worth pointing out that, although the imple-

mentation of the algorithms under Hadoop was quite simple and straightforward

to achieve, the performance of these implementations was pretty below our ex-

pectations. A careful pro�ling activity allowed us to design and develop several

improvements that led to a much better performance.

When developing the MapReduce-based formulation of the algorithms chosen

in Section 5.3.1, we adapted the decomposition strategy proposed by Elsayed et al.

in [96] for computing pairwise document similarity in large document collections.

In their work, the authors used two types of MapReduce jobs to compute the

similarity between each pair of documents. The �rst type of job determines the

occurrences of each word in each of the documents under analysis. The second

type of job establishes the similarity between pairs of documents by compar-

ing the occurrences of the words therein contained. We adopted this approach

152

5. PROCESSING BIG DATA IN BIOINFORMATICS

and further developed it. In our case, the �rst type of job is able to process

an input sequence using one or more indexing strategies (e.g., k-mer counting,

context-object extraction) at the same time according to the input con�guration.

Similarly, the second type of job is able to determine the dissimilarity between

two sequences according to a user-provided dissimilarity measure. It is possible to

process several sequences at the same time or to establish the dissimilarity among

the sequences of a collection by running multiple instances of the two types of

jobs. In the following, we provide more details about this approach.

Step 1 - Indexing Hadoop Job This job is used to extract, for each genomic

sequence and for each (spaced or not) pattern P of length |P | = k, the k-mers or

the context-object information that will be later used to compute the dissimilarity

between sequences.

• Mapper The map function takes as an input a pair <idSeq, S>, where id-

Seq is a unique identi�er for the input sequence and S can be either the en-

tire genomic sequence or part of it (in case of very long sequences exceeding

the HDFS block size). Then, for each k-mer it �nds in the input sequence, it

outputs either the pair <kmer, (idSeq, 1)> or <context, (idSeq, object)>.

In addition, each map function outputs the pair <idSeq, |S|>. Notice that
if the input sequence is split initially in several parts, the size of the original

sequence is established at the end of this step by summing the size of all

the sequence splits/parts having the same idSeq.

• Reducer The reduce function receives, as an input, a set of pairs <K,L>.

K can be either a k-mer or a context. In the �rst case, L reports the list of

(idSeq, 1) values generated by the map functions for that k-mer. In the sec-

ond case, it reports the list of (idSeq, object) values generated by the map

functions for that context. If the input genomic sequences are split before

being processed by the map function, in the reduce function all the pairs

pointing to the same sequences are summed or all the contexts having at

least two di�erent objects are marked. A new record <K,L′> is provided

as an output for each input key K, where L′ is a list of pairs (idSeq, count)

or (idSeq, object) (the marked contexts are excluded). In other words, for

153

5. PROCESSING BIG DATA IN BIOINFORMATICS

each k-mer, a reduce function returns the frequencies in each input se-

quence. After that, each reduce task will save the records it produced in

a distinct Hadoop SequenceFile F to be processed in the second step.

Finally, some support �les, shared through the HDFS cache mechanism,

contain the sequence identi�ers and their lengths, the probability for each

symbol of the alphabet (for each sequence or for all sequences) and/or the

absolute frequencies of each symbol of the alphabet in each sequence (i.e.,

k = 1).

Step 2 - Dissimilarity Measurement Hadoop Job In this step we evaluate

the pairwise dissimilarity for each pair of input genomic sequences via dissimi-

larity measures. In order to speed up this operation, each map task is provided

with a local copy of the support �les generated at the end of the previous step.

• Mapper A map function reads a pair <K,L′> generated in the previous

step. Then, for each pair of distinct sequences and for each dissimilarity

measure compatible with the related pattern P (associated to k-mer or

context), this function computes the partial dissimilarity measure accord-

ing to the chosen method (e.g., symmetric or asymmetric measure for k-mer

counts, or context-object information). As an output, the map function pro-

duces a <(idSeqA, idSeqB, P,D), (pdiss, 1)> pair, where idSeqA and idSeqB

are the identi�er of two input sequences, P is the pattern of the k-mers or

the context, D is a dissimilarity measure, pdiss is the partial dissimilarity,

and 1 indicates the number of computed pdiss (i.e., the number of k-mers

or shared contexts used to compute the dissimilarity value).

• Reducer The partial dissimilarities are used by reducers to compute the

�nal dissimilarities. In particular, a reduce function receives, as an input,

the pairs <(idSeqA, idSeqB, P,D), list{(pdiss′, 1)}> and produces, as an

output, a <(idSeqA, idSeqB, P,D), diss> pair, where diss reports the �nal

dissimilarity measure between idSeqA and idSeqB using D as a dissimilarity

measure and P as a pattern. Therefore, we can compute more dissimilarity

measures also using di�erent patterns on each pair of sequences.

154

5. PROCESSING BIG DATA IN BIOINFORMATICS

5.3.3.1 Improvements

We developed in a pretty straightforward way a �rst MapReduce formulation of

the implementations presented, by using the facilities provided with the Hadoop

framework. However, the performance of these implementations was bad. A

careful pro�ling activity allowed us to isolate some performance bottlenecks that

prevented our implementations from fully exploiting the computational capabil-

ities of the underlying Hadoop cluster. Then, we developed two improvements

able to partially solve these problems.

In-Mapper Local Aggregation According to our preliminary experimenta-

tions, the choice of having a map task output a pair for each k-mer it �nds, while

analyzing the input sequence, is very space and time expensive. Indeed, it would

be better for each map task to use a local data structure to maintain the statistics

about the k-mers found during its analysis and, then, return these statistics at

the end of its execution. This approach could be adopted with no e�ort by using

the Combiner facility available with Hadoop (Section 3.5). This facility allows a

map task to bu�er all of its output pairs and to summarize them, through the ex-

ecution of a user-de�ned Combiner function. In our case, the usage of the Hadoop

Combiner would allow a map task to sum, on its own, the frequencies of the k-

mers or aggregate the context-object information found while scanning the input

sequences. The aggregated information would be returned at the end of the map

task. However, according to our results, this solution has an important drawback:

the aggregation is not incremental but, generally, takes place at the end of the

task. This implies that the map task could keep in memory all of its output pairs

before combining them (see Section 3.6 for details). As a consequence, a map

task would likely run out of memory when processing long sequences and multi-

ple patterns, therefore, bu�ering the pairs on local disk or partial aggregations

can be provided. We signi�cantly improved this operation by not using the stan-

dard function used by Hadoop to combine these results. Instead, we introduced

in each map task of Step 1 a persistent Java hash map data structure that is used

to progressively index and sum the frequencies of the k-mers, or to progressively

index and update the context-object information. This improvement resembles

155

5. PROCESSING BIG DATA IN BIOINFORMATICS

to the aggregation of RNs presented in Section 4.4.4.1. Conversely, in Step 2 we

have used the Combiner to aggregate the partial dissimilarities in each map task.

Input Split Strategies One of the most challenging aspects to face when

analyzing very long genomic sequences is about the strategy used to read these

sequences from input and keep them in memory. A naive solution would be to

feed the map tasks carrying out the analysis with a copy of the whole sequences

to be analyzed. This solution works well when dealing with short sequences, but

it is doomed to fail when processing very long sequences: they are likely to be too

big to �t in the physical RAM of a single node. In addition, we would like to take

advantage of the case where the number of nodes of the Hadoop cluster is higher

than the number of sequences to analyze. Finally, breaking long sequences into

smaller parts while increasing, at the same time, the number of tasks, would allow

the nodes of the Hadoop cluster to better interleave CPU-bound, disk-bound and

network-bound activities.

Thus, a more sophisticated approach is required, able to feed all the comput-

ing nodes of a cluster while exploiting the data local computation capability of

Hadoop.

We developed two di�erent strategies for managing the input of the sequences.

The �rst strategy assumes that the sequence to process is short enough to �t in

the physical memory of the calculator that will be used to analyze it. Thus,

for each input sequence, it works by creating one single record <Key, V alue>,

where Key is the sequence identi�er (idSeq) and V alue is the entire genomic

sequence. The second strategy, to be used with very long sequences, works by

splitting the input sequence in several records <Key, (V1, V2)>, where Key is a

unique sequence identi�er, V1 contains the characters of the j-th row of the input

FASTA �le of the genomic sequence and V2 contains the �rst k − 1 characters of

the j + 1-th row (V2 is empty if the j-th row is the last row of the input �le). A

FASTA line consists of few tens of characters (see Section A.1 for details).

156

5. PROCESSING BIG DATA IN BIOINFORMATICS

5.3.4 Experimental Analysis on Hadoop

5.3.4.1 Experimental Settings

All our experiments with Hadoop have been conducted on a cluster of 5 nodes

equipped each with 32 GB of RAM, 2 AMD Opteron @ 2.10 GHz processors (16

total cores), Linux CentOS 6 operating system, approximately a TB of disk drive

and a Giga-Ethernet network card. Our Hadoop cluster includes 4 slave nodes

and a master node. The master node runs the Resource Manager and the Name

Node services, while the slave nodes run the Node Manager and the Data Node

services. The Hadoop version is 2.7.11. On each slave node, up to 8 concurrent

map/reduce tasks were allowed. We used a HDFS replication factor set to 2 and

a block size set to 128 MB.

5.3.4.2 Experimental Results

We recall that when developing the MapReduce version of the algorithms pre-

sented in Section 5.3.3 we had two objectives. First, we were interested in obtain-

ing an e�cient distributed implementation able to keep pace with the performance

of the sequential one while being able to scale well with the size of the underlying

computing cluster. Second, we were interested in increasing the size of the prob-

lems that could be managed, thus overcoming the memory limits experienced

with the stand-alone implementations. Along this track, we repeated the same

experiments presented in Section 5.3.2.3.

In particular, for the sake of brevity, we �rstly evaluated the scalability of our

distributed implementation by evaluating the Squared Euclidean dissimilarity (see

Equation 5.1) between di�erent sequences using an increasing number of concur-

rent map/reduce tasks in execution at the same time, i.e., workers/Containers

(see Section 3.2.2). We report in Figure 5.7 the result for this experiment when

considering 20 di�erent sequences of ≈ 1, 600, 000, 000 characters each and with

k = 10. The size of this datasets is approximately 30 GB. For the execution

times, we distinguish among the time spent extracting the k-mers from the in-

put sequences (i.e., Step 1) and the time spent evaluating the Squared Euclidean

1The experimentations were conducted between July and August 2015.

157

5. PROCESSING BIG DATA IN BIOINFORMATICS

0

10

20

30

40

50

60

70

80

90

100

110

Sequential 4 8 16 32

E
la

p
se

d
 T

im
e

(m
in

u
te

s)

Number of Total Workers

Step 2

Step 1

Figure 5.7: Elapsed times for evaluating the Squared Euclidean dissimilarity
measure between 20 di�erent sequences of ≈ 1, 600, 000, 000 characters each, with
k = 10 and an increasing number of concurrent map/reduce tasks at the same
time (i.e., workers or Hadoop Containers).

dissimilarity between the k-mer frequency vectors (i.e., Step 2). The outcoming

results are compared with the executions times required by the sequential (non-

parallel) version of the same algorithm. The �rst thing we notice is that the

distributed implementation using 4 workers has just ≈ 1.5× speed up with re-

spect to its sequential counterpart. Indeed, the distributed implementation incurs

in a performance overhead that is related to the need of saving on �le and, then,

transmitting over the network the k-mer counts. This overhead is completely ab-

sent in the sequential implementation where there is no need of transferring data

since Step 1 and Step 2 of the algorithm are carried out by the same process using

its own main memory space. There is also a performance overhead due to the

stack of network, �le system and job scheduling protocols required by Hadoop.

The e�ect of this overhead is visible in Figure 5.8, where we show the CPU usage

of one of the nodes running the map/reduce tasks. The load spikes are due to the

158

5. PROCESSING BIG DATA IN BIOINFORMATICS

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500 550 600

U
se

d
 C

P
U

 %

Timeline (seconds)

Step 1 Step 2

Figure 5.8: CPU usage pro�le of a slave node of the Hadoop cluster used for
evaluating the Squared Euclidean dissimilarity between 20 di�erent sequences of
≈ 1, 600, 000, 000 characters each, with k = 10 and 8 concurrent map/reduce
tasks on each slave node (i.e., 32 total workers). For gathering information, we
used Dstat tool [293].

extraction of the k-mer counts and to the evaluation of the distance between pairs

of sequences. The remaining intervals, where the CPU is almost unused, are due

to the activity carried our by the Hadoop framework for saving data on disk, for

transferring it from map tasks to reduce tasks and for partitioning it before start

feeding reducer. If we focus only on the distributed implementation, we notice

that our solution is able to scale fairly. These results are also maintained using

di�erent dissimilarity measures and patterns.

In second experiment, we were interested in assessing whether the adoption

of a distributed approach would allow us to (e�ciently) solve larger problems

than the ones solvable in our stand-alone setting. We recall, to this end, that the

main memory issues we found in our tests were related to the experimentations

with large values of k. In such a setting, the size of the hash maps used to store

the k-mer frequency counts tends to exceed the available physical memory. We

expect our distributed approach to implicitly solve this problem, as map tasks

running on separate nodes would be able to calculate and maintain, each, the

159

5. PROCESSING BIG DATA IN BIOINFORMATICS

frequency counts for just a subset of the input sequences (i.e., at most, 128 MB).

The subsequent operation of merging the partial frequency counts would be run

in a distributed way as well thus avoiding again the excessive memory usage

problem.

The results of this second experiment, reported in Figure 5.9, are not com-

pletely in line with these results presented in previous. In these tests we measured

the time required for evaluating the Squared Euclidean dissimilarity between

20 di�erent sequences of ≈ 1, 600, 000, 000 characters each, using 32 concurrent

workers, and increasing values of k. On a side we notice that, di�erently from the

sequential case, we have been able to run our distributed implementation with

k = 15. On the other side, we observe that the outcoming execution times for

k = 15 are one order of magnitude longer than the ones measured with k = 10.

Moreover, we notice that di�erently from previous experiments, the execution

cost paid to evaluate the dissimilarity between di�erent frequency vectors is now

larger than the one spent for extracting the frequency vectors. To explain such a

di�erence, we pro�led the overall number of distinct k-mers extracted during the

execution of each of these tests as well as the amount of data produced at the

end of Step 1 and used to feed Step 2.

As shown in Table 5.1, the number of k-mers found with k = 15 is about

1, 000-fold larger than the number of k-mers found with k = 10. Moreover, the

size of the data produced at the end of Step 1 grows from ≈ 200 MB to ≈ 200

GB. Indeed, the much increased number of k-mers to handle puts pressure on the

Step 2 of the algorithm, thus magnifying its execution time. Moreover, there is

an additional performance overhead due to the need of saving twice the output

of the map tasks on disk. This occurs because the output is �rst saved on the

local �le systems of the nodes running the map tasks. Then, it is transmitted to

the nodes running the reduce tasks. Here, it is saved again on disk before being

processed. This overhead, that is characteristic for Hadoop, becomes problematic

when the size of the output of map tasks is very big, like in our case.

160

5. PROCESSING BIG DATA IN BIOINFORMATICS

0

300

600

900

1,200

1,500

1,800

2,100

2,400

2,700

2 3 4 5 6 7 8 9 10 15

E
la

p
se

d
 T

im
e

(m
in

u
te

s)

k

Step 2

Step 1

Figure 5.9: Elapsed times for evaluating the Squared Euclidean dissimilarity
between 20 di�erent sequences of ≈ 1, 600, 000, 000 characters each, using 32
concurrent workers, and values of k increasing up to 15.

5.3.5 Remarks

In this section was presented a �rst systematic study of word-based alignment-free

sequence comparison methods on Hadoop framework, yielding valuable informa-

tion both for the programmers and the users of those methods, in terms of usage

of computational resources. In details, we have been able to develop a MapRe-

duce formulation of a generic alignment-free sequence analysis algorithm that is

able to scale well with the number of used concurrent tasks. Moreover, our so-

lution allows to conveniently process problem instances that are usually hard to

solve in a stand-alone setting because of memory limitations.

Our engineering, tuning and pro�ling activities were allowed to create HAFS, a

distributed framework useful to easy develop word-based alignment-free sequence

comparison methods. In fact, new word-based dissimilarity measures can be easy

integrated in HAFS, further than those presented in Figure 5.4.

161

5. PROCESSING BIG DATA IN BIOINFORMATICS

Table 5.1: Pro�ling information collected when evaluating the dissimilarities be-
tween 20 di�erent sequences of ≈ 1, 600, 000, 000 characters each, using values of
k increasing up to 15.

k Number of Distinct k-mers Step 1 Output Size (KB)
2 16 3
3 64 14
4 256 54
5 1, 024 217
6 4, 096 873
7 16, 384 3, 506
8 65, 536 14, 090
9 262, 144 56, 623
10 1, 048, 576 227, 541
15 1, 073, 741, 824 196, 681, 472

However, our results are only an initial step and there are still some open

performance issues. In fact, there is to analyze in detail the related problem of

the computation of k-mer statistics on a Hadoop cluster, which has already been

mentioned in the previous. In particular, in the Section 5.4 will be presented an

more e�cient and scalable Hadoop solution for counting large value of k (e.g.,

k = 31), which is also compared with the state of art of parallel k-mer counting

tools.

5.4 K-mer Statistics on Hadoop

As an important case study, we concentrate on a very simple paradigmatic prob-

lem that has become data-intensive due to the growing sequence capabilities

mentioned earlier: the collection of k-mer statistics (or counting) for sequences

de�ned over a �nite alphabet Σ. We recall that k-mer typically refers to all the

possible subsequences of length k that are contained in a sequence. Formally, let

S be a set of sequences, each coming from Σ∗, we are interested in collecting two

types of statistics: local and cumulative.

• Local Statistics (LS): how many times each of the k-mers in Σk appears

separately in each of the sequences in S.

162

5. PROCESSING BIG DATA IN BIOINFORMATICS

• Cumulative Statistics (CS): how many times each of the k-mers in Σk

appears cumulatively (globally) in sequences in S.

Throughout this section, we assume that Σ = {A,C,G, T}, therefore, when
experimenting with untrimmed reads, the subsequences of length k which contain

at least a character N will be discarded and they will not a�ect the statistics.

The canonical representation of a k-mer is by de�nition itself or the reverse

complement1 of it, whichever comes �rst lexicographically. When we extract

canonical k-mer statistics, the count of a k-mer is the number of occurrences of

both the k-mer and its reverse complement (see [134] for details about the reverse

and/or the complement DNA sequences).

The interesting scenario in which to study LS is given by long sequences, mod-

eling a preprocessing step typical of genome-scale alignment-free classi�cation and

compositional analysis of species (e.g., [66, 118, 119]). It is also worth to men-

tioning that k-mer statistics are becoming increasingly important in epigenomics

(e.g., [117, 222]) and metagenomics (e.g., [297]). The interesting scenario in which

to study CS is given by a large set of short sequences, i.e., reads, modeling the

preprocessing step that reads go through before assembly (e.g., [71]).

The k-mers extraction is a simple task, but counting them in NGS era can

easily pass the memory capacity of a single traditional computer. In fact, usually

each k-mer is stored in a hash map and the exact memory requirements depends

on the length of k and the type of hash map that is used. Therefore, although

both versions of the problem are algorithmically very simple, the sheer amount of

data that has to be processed in a typical application has motivated the develop-

ment of many algorithms and software systems that try to take advantage either

of parallelism or of sophisticated algorithmic techniques or both. Section A.2

presents the state of the art on algorithms collecting k-mer statistics. To the

best of our knowledge, attention has been given mainly to CS, evidently due to

its foundational role in sequence assembly. Those algorithms can be broadly di-

vided into the ones that compute the statistics exactly and those that provide

only estimates. It is very unfortunate that the at least equally important LS has

been given very little consideration with respect to CS. In fact, to the best of our

1The reverse complement of the k-mer ATCG is CGAT.

163

5. PROCESSING BIG DATA IN BIOINFORMATICS

knowledge, none of the methods working on CS has been designed to explicitly

support also the local statistics.

Among the algorithms designed for cumulative statistics and reported in Sec-

tion A.2, we have selected only the ones that provide exact statistics. In fact,

we have chosen the most representative according to the literature, for each type

of computer architecture we are interested in. The algorithms so selected are

as follows. First, the most representative of the algorithms that are disk-based

and that work in a shared-memory environment using multi-threading: KAnalyze

[24], Jelly�sh2, an evolution of Jelly�sh [184], KMC2 [84] and DSK [231]. Then,

we selected BioPig (k-mer counting module) [37, 209] as a representative of al-

gorithms supported by distributed architectures. Between these algorithm, the

most popular and faster is KMC2, as is testi�ed in literature (see Section A.2). It

is to be pointed out that all these algorithms work by skipping all the k-mers of an

input sequence containing at least one N character. We also observe that BioPig

and KMC2 have been designed to work on short sequences only, e.g., reads. This

could imply that may exhibit very bad performance when processing long se-

quences or fail at all to work. A careful pro�ling of some of the most successful

methods that have been developed for CS is presented in Section A.3, where it

shows that these methods do not scale well with computational resources.

The k-mer counting is a fundamentally I/O-bound problem, so we could ex-

pect that one major performance bottleneck to face, when solving it, is about the

amount of time required to physically load in memory from disk and process the

(potentially very large) input sequences. This is a problem that cannot be solved

by using only a multi-threaded approach as the di�erent concurrent threads would

have to share and compete for the same I/O devices. We overcome this problem

by adopting a completely distributed approach.

In literature there are some solutions for k-mer cumulative counting on Hadoop,

such as those presented in a Hadoop textbook [220], in k-mer counting module

of BioPig [37, 209], or in Pahadia et al. [216, 217]. However, these solutions are

very simple, and they have many problems as it will be explained in Section 5.4.1

and experimented in Section 5.4.3.4.

In this section is presented a highly engineered distributed algorithm on

Hadoop for both LS and CS cases. The solution proposed here is called K-mer

164

5. PROCESSING BIG DATA IN BIOINFORMATICS

Counting on Hadoop (KCH). It is e�cient, with respect to other previous solu-

tions based on distributed architectures, and fully scalable in terms of processing

units. Since the chosen problem is at the start of many bioinformatics pipelines,

we set the foundation for the development of e�cient distributed pipelines that

use k-mer statistics.

Initially, in Section 5.4.1 is described a simple and ine�cient solution for k-

mer local and cumulative statistics. The related problems are also highlighted.

Subsequently, in Section 5.4.2 is outlined our fast and e�cient solution, called

KCH, for computing these statistics.

5.4.1 A Naive Solution for K-mer Statistics on Hadoop

We present here a very simple MapReduce-based k-mer counting algorithm. We

assume that the input data are initially available in a distributed form, in general

execution occurs in a data local way (i.e., computation can take place where data

are available) and output data are saved, again, in a distributed form. This means

that, in our case, input data are partitioned a priori on a cluster of computers,

and each slave node of the cluster initially processes only its own partition of the

data.

A �rst naive algorithm was designed to exploit this approach, and able to

compute k-mer statistics for both Local Statistics (LS) and Cumulative Statistics

(CS) with Hadoop. It is worth pointing out that an analogous algorithm for

cumulative statistics is given in a Hadoop textbook [220] and BioPig [37, 209]

(see Section 5.4.3.4 for a comparison about BioPig).

Di�erently to other Hadoop solutions, our statistics are also computed on

very long input sequences (e.g., a sequence that crosses many HDFS blocks), in

addition to short sequences (e.g., reads).

Our naive approach consists of a map phase and a reduce phase.

• Mapper The map function takes as input a genomic sequence Seq (or part

of it) and its identi�er idSeq and returns, as output, the list of k-mers it

contains. Each k-mer is returned as soon as it is found. In particular, for

each k-mer occurrence found in its input (sub)-sequence, a map function

emits a pair <kmer, 1> in the case of CS, or <(idSeq, kmer), 1> in the

165

5. PROCESSING BIG DATA IN BIOINFORMATICS

case of LS. Therefore, multiple occurrences of the same k-mer are reported

as distinct pairs.

• Reducer The reduce function aggregates all the pairs returned by map

functions and related to the same k-mer. In the case of local statistics, they

are also aggregated according to the sequence they belong to. Therefore,

as output for LS, the reduce function also returns the identi�er of each

sequence containing the k-mer with associated frequency. Otherwise, in the

case of cumulative statistics, the reduce function only returns the k-mer

and its frequency.

See Figure 5.10 for details about an example of map/reduce input/output

pairs.

Local Statistics
Map: <idSeq, Seq> → list(<(idSeq, kmer), 1>)
Reduce: <(idSeq, kmer), list{1}> → <(idSeq, kmer), frequency>

Cumulative Statistics
Map: <idSeq, Seq> → list(<kmer, 1>)
Reduce: <kmer, list{1}> → <kmer, frequency>

Figure 5.10: Input and output pairs of a MapReduce naive algorithm designed to
compute k-mer statistics for both Local Statistics (LS) and Cumulative Statistics
(CS) with Hadoop.

The strategy just outlined is ine�cient when processing many large sequences

because the Hadoop middleware has to manage and process even billions or tril-

lions of pairs emitted from map tasks essentially equal to the size of the collection

(see Section 5.4.3.4 for experiments). In detail, all these pairs have to be sorted,

partitioned and saved �rst on the local disk of the worker node during the spilling

phase of the map function (see Section 3.4), then they are moved on the local disk

of a (possibly) distinct node where they will be processed by a reduce function.

Those operations become particularly expensive when applied to a very large

number of pairs. In this case, the presence of several workers running concur-

rently on a same slave node makes the I/O bus congested when they are trying to

166

5. PROCESSING BIG DATA IN BIOINFORMATICS

save at the same time on the local disk a huge number of output pairs. Therefore,

the executions times can be deteriorated. Similarly, the huge amount of items

that have to be moved, through the shared network, from map tasks to reduce

tasks produces a similar congestion e�ect on the shared network connections.

As a result, when implemented on Hadoop, this strategy exhibits very dis-

appointing execution times. Indeed, a careful pro�ling of it reveals that the

I/O-bound nature of the problem is one of its major performance bottlenecks.

A �rst solution to elude these problems could be the adoption of the Hadoop

Combiner, that aggregates the output pairs of a map task. However, this facility

could be use more memory or it could not e�ciently work [292]. In fact, the

execution of Combiner is not guaranteed, and Hadoop may temporarily store

the <key, value> pairs in local �le system. Therefore, running the Combiner

later which will cause expensive operations on disk. See Sections 3.5 and 3.6 for

additional details.

In alternative, a map task could use a hash map for in-mapper local aggrega-

tion, as used in Section 5.3.3. An in-mapper aggregation is much more e�cient

and resource-frugal than the Hadoop Combiner, because it continually aggregates

the data in memory. In fact, as soon as it receives two values with the same key,

it combines them and stores (or updates) the resulting <key, value> pair in the

hash map.

In particular, in the next subsection, we outline how the problems of this naive

implementation have been addressed to obtain good performance.

5.4.2 KCH: Fast and E�cient Solution for K-mer Statistics

on Hadoop

In this section is described our algorithm for k-mer statistics on Hadoop, called

KCH. Starting from our previous experience, we developed a re�ned k-mer counting

algorithm improving the previous one in several respects, both in terms of the

design and of the implementation, such as: e�cient input management, fast local

k-mers extraction, two-levels k-mers aggregation with explicit partitioning and

memory-frugal requirements.

We next provide a high-level description of our MapReduce algorithm for CS

167

5. PROCESSING BIG DATA IN BIOINFORMATICS

case, followed by additional details of its most relevant parts. The modi�cations

for the case LS are also detailed in following.

Mapper Each map task uses a set of r local hash tables Hts to maintain the

frequency counts of the k-mers found while scanning its own input sequences or

subsequence. These hash tables represent a partitioning of the universe of pos-

sible k-mers (i.e., Σk) and they are used to perform a �rst level of aggregation.

With reference to Algorithm 5 that gives the pseudo-code for CS, we next pro-

vide details about the various functions composing the algorithm. Explanatory

comments are indicated with the symbol �◃� in the pseudo-code.

At the start of a map task (setup function), it creates r local hash tables each

with Cmap entries.

The input of a map function is the identi�er of the sequence idSeq and the

sequence (or part of it, in case of very long sequences) Seq. Our algorithm uses

the standard binary encoding of a letter of the alphabet {A,C,G, T} to pack a

k-mer into an integer number. Since now each character of a k-mer needs two

bits rather than eight, we have a saving in memory usage but also an additional

one in the transmission of partial statistics from the tasks performing map to the

ones performing reduce. Moreover, it makes possible a signi�cant advantage also

in the scanning strategy used to extract k-mers from an input sequence, which is

organized as follows. Initially, a new k-mer kmer′ is extracted by looking at the

�rst k characters of the input sequence and packed into a single integer. The same

can be done for its canonical representation. From this point on, new k-mers (or

their canonical representations) are extracted by processing the last k-mer found

by means of binary shift and AND operations. The process goes on until the

end of the sequence is reached or a N character is found. In this last case, the

algorithm skips all the subsequences of length k containing the N character and

starts over the scanning strategy. In addition, when a newline character is found,

it is ignored. Whenever a new k-mer kmer′ is found, its local partial frequency

count is updated accordingly but no output is provided. In particular, the hash

table for which one needs to increment the counter or start a new one is identi�ed

as follows: kmer′ is placed in the hash table having id obtained by taking the

numerical representation of k-mer, i.e., kmer′, mod r. Once that its input has

168

5. PROCESSING BIG DATA IN BIOINFORMATICS

been scanned, the map task proceeds by emitting as output the copy of each hash

table, together with an identi�er, by executing the endupFlush function.

It is worth pointing out that, once �xed an initial size for the hash tables, some

of them may need to be expanded at run time and that, in turn, may cause a map

task to run out of memory. In order for that to be avoided, the algorithm follows

a �ushing strategy by means of which a hash table can be output even if the task

has not completed yet its execution. In fact, a function, named intermediateFlush,

is executed to check if the number of elements in a hash table ht exceeds a certain

threshold t. If this is true, the algorithm emits the id of the table as key, i.e.,

idHt, and its binary copy as value, i.e., ht. Then, this local table is replaced with

one empty. Therefore, after analyzing the whole input, the map task proceeds

by emitting as output the copy of each hash table, accompanied by identi�er

executing a function called endupFlush.

Reducer At the end of the map phase, all hash tables related to a same parti-

tion of Σk are sent for aggregation to the same distinct reduce task. Therefore,

a reduce function receives as input all the hash tables of the same partition to

compute their aggregated statistics. In particular, it merges the hash tables using

a new hash table, called htmerge, that aggregates their counters. In addition, the

reduce function will dump on a distinct textual �le on HDFS the counts of all

k-mers found in its corresponding aggregated hash table. The pseudo-code of a

reduce task for CS is presented in Algorithm 6.

The interesting scenario in which to study LS is given by long sequences. In

fact, the formulation of our algorithm for the case of LS on long sequences is

simple starting from the one presented for CS. In fact, each map task processes

the input of a same sequence, therefore, all the frequencies in the hash tables are

related to the same genomic sequence. When a copy of a hash table is emitted as

value, the related key is the combination of the identi�er of the sequence and the

id of the hash table. In this way, a reduce function receives all the hash tables

of a certain partition belonging to a same sequence. For saving output space, a

distinct HDFS directory will be created for each sequence, with each directory

containing a number of text �les equal to the number of reducers. Each �le will

169

5. PROCESSING BIG DATA IN BIOINFORMATICS

be named after the reducer it refers to and will contain the statistics for all k-mers

aggregated from the reduce task (without the sequence identi�er).

Figure 5.11 gives an example of the map/reduce input/output pairs.

Local Statistics
Map: <idSeq, Seq> → list(<(idSeq, idHt), ht>)
(ht is a list of <kmer′, frequency> elements)
Reduce: <(idSeq, idHt), list{ht}> → list(<(idSeq, kmer), frequency>)

Cumulative Statistics
Map: <idSeq, Seq> → list(<idHt, ht>)
(ht is a list of <kmer′, frequency> elements)
Reduce: <idHt, list{ht}> → list(<kmer, frequency>)

Figure 5.11: Input and output pairs of KCH algorithm designed to compute k-
mer statistics for both Local Statistics (LS) and Cumulative Statistics (CS) with
Hadoop.

170

5. PROCESSING BIG DATA IN BIOINFORMATICS

Algorithm 5 Pseudo-code of KCH Mapper for the case of CS.

function setup(r, Cmap)
◃ r is the number of local hash tables in a map task; Cmap is the number of
entries of each hash table. This function is executed at the start of the map
task.

Hts ← getHtList(r, Cmap) ◃ It creates r hash tables each
with Cmap as the initial number of entries. Each hash table ht in Hts has an
identi�er idHt ∈ [0, r − 1].

end function

function map(idSeq, Seq)
◃ idSeq represents the header of the sequence while Seq is a short sequence
(e.g., reads) or a part of very large genomic sequence.

for each k-mer kmer′ in Seq do ◃ kmer′ is the integer encoding of a
k-mer.

idHt ← kmer′ mod r
addTo(kmer′, 1, idHt) ◃ It increments by 1

the counter of a k-mer kmer′ if it exists in the hash table idHt (i.e., <kmer′,
frequencyold + 1>), otherwise a new entry is added with counter 1 for kmer′

(i.e., <kmer′, 1>).
intermediateFlush(Hts, t)

end for

end function

function intermediateFlush(Hts, t)
◃ If the number of elements in a hash table ht (in Hts list) exceeds a custom
threshold t, this hash table is �ushed and a new table is used.

for each ht (with id idHt) in Hts do
if Size(ht) ≥ t then

Emit(idHt, ht) ◃ It emits the pairs consisting idHt as key and a
binary copy of ht as value.

Empty(ht) ◃ The hash table ht is emptied.
end if

end for

end function

171

5. PROCESSING BIG DATA IN BIOINFORMATICS

Algorithm 5 Continued. Pseudo-code of KCH Mapper for the case of CS.

function endupFlush
◃ It emits the pairs consisting idHt as key and ht as value, where idHt is the
index of a hash table, and ht is a binary copy of this table. This function is
executed at the end of the map task.

for each ht (with id idHt) in Hts do
Emit(idHt, ht)

end for

end function

Algorithm 6 Pseudo-code of KCH Reducer for the case of CS.

function reduce(idHt, list(ht))
◃ It performs the second level of counter aggregation exploiting all k-mer coun-
ters emitted in hash tables with id idHt.

htmerge ← emptyHt(Cred) ◃ It creates a empty hash table with Cred

entries and id idHtmerge. It is used to perform the second stage of aggregation.

for each htcurr in list(ht) do
for each <kmer′, frequency> in htcurr do

addTo(kmer′, frequency, idHtmerge) ◃ The counter of kmer′ is
incremented by frequency in the hash map idHtmerge.

end for
end for

for each <kmer′, frequency> in htmerge do
textKmer ← num2Text(kmer′)
Emit(textKmer, frequency) ◃ It emits the pairs consisting of the

textual representation of the k-mer kmer′ as key and its frequency as value.
end for

end function

172

5. PROCESSING BIG DATA IN BIOINFORMATICS

In the following, are detailed the main features of KCH, such as the use of the

e�cient FASTA input management, the fast local k-mers aggregation, and the

two-levels k-mer counts aggregation with explicit partitioning.

5.4.2.1 E�cient FASTA Input Management

The access to the input �les of an application is managed by Hadoop through

the implementation of a proper InputFormat used to read the �les. The Hadoop

splitter organizes a data source in smaller parts called input splits, where each

split is processed by a distinct map task. The InputFormat mechanism is also

adopted to extract the <key, value> pairs from an input split for being used as

input to the map functions. As said in Section 3.4.1, HDFS blocks have not to

be confused with input splits. The former refers to a physical organization of the

input data, while the latter refers to its logical organization. For instance, a text

�le would be divided by HDFS in several blocks having the same size, with the

possibility for a line of text to fall across two di�erent blocks. Instead, a split

would be able to provide a more abstract view of the input �le, where each line

is contained in only one split. To make this possible, a split may need to access

two HDFS blocks to complete a dangling line.

We have developed FASTAshortInputFileFormat and FASTAlongInputFile

Format Java classes speci�cally designed to e�ciently handle large FASTA �les

and that can be used by any Hadoop-based bioinformatics application requiring

that type of input. The �rst class handles short sequences, such as reads, while

the second sequences of arbitrary length, such as a single sequence of tens of

gigabytes (crossing several HDFS blocks).

The FASTAshortInputFileFormat class handles short sequences, and it works

by initially reading into a memory bu�er the whole content of a split to be

processed, with the help of some low-level byte-oriented functions provided by

Hadoop. This acquisition includes also all the (potential) characters that are

found at the beginning of the subsequent split and that may be the terminal part

of a short sequence starting in the current split. Once loaded in memory, this

bu�er is directly processed by map functions using our input routine. That is,

whenever a map function of an application using this input routine is executed,

173

5. PROCESSING BIG DATA IN BIOINFORMATICS

a reference to the bu�er is passed rather than a copy of the sequence to be

processed. Moreover, the indices marking, in the bu�er, the beginning and the

end of the sequence to be processed are also provided.

FASTAlongInputFileFormat follows a similar approach, but it manages a very

large sequence in a FASTA �le. In particular, it reads in memory all the bytes

of the current input split plus at most k − 1 characters (di�erent from newline

characters) belonging at the next input split. Those additional characters are

used to extract the k-mers which start in the current split, but they fall in the

next split.

Therefore, FASTAshortInputFileFormat and FASTAlongInputFileFormat are

designed according to maximize data locality computation.

In Section 5.4.3.4 are reported some experimental evaluations between our

readers and some solutions presented in literature.

5.4.2.2 Fast Local K-mers Aggregation

The choice of the hash table implementation to use for maintaining the k-mer

counts has an important impact on the performance of our algorithm, both in

terms of CPU time and memory requirements. For this reason, we had to look

at an alternative to the standard hash table implementation available with Java,

since we found that it is not memory-frugal. Our solution uses the OpenHashMap

classes included in the fastutil library [278] to maintain k-mer counts. Indeed,

it is among the most e�cient implementations available in Java [283]. In addition,

it provides an e�cient implementation of hash tables both in terms of memory

and CPU time. Memory e�ciency is achieved by using a very compact internal

representation that avoids to store any supplementary information apart from

the inserted keys and their corresponding values. Time e�ciency is achieved in

several ways like by dropping any support for synchronization (i.e., having two or

more threads manipulate the same hash table simultaneously may lead to errors).

We did not need this feature as, in our case, each map function uses its own hash

tables to maintain k-mer counts while the aggregation of these statistics is done in

parallel by di�erent reduce functions, each on its own set of hash tables. Another

important feature available with the OpenHashMap classes is the availability of

174

5. PROCESSING BIG DATA IN BIOINFORMATICS

an an addTo operation, that allows to increase the value associated to a key

without �rst fetching it. By using this operation, our algorithm is able to update

in place the frequency count associated to a k-mer whereas other hash table

implementations typically require two operations to this end (i.e., �rst retrieve

the count from the hash table using a key, then write the updated count in the

hash table using the same key).

5.4.2.3 Two-levels K-mer Counts Aggregation

A serious performance issue of the naive approach to k-mer counting on Hadoop

is related to the huge amount of k-mer statistics returned by map functions,

especially when working with large values of k. This bulk of data has to be

�rst saved on the worker nodes running the map functions and, then, has to

be transmitted to worker nodes running the reduce functions to be aggregated

and counted. To solve this problem we have introduced a two-levels aggregation

strategy with explicit partitioning.

Initially, we have tried to use a single hash table in each map task with the

purpose to aggregate the counters of k-mers extracted. These aggregations are

not written to local disk, but they occur in-memory in the mapper itself. A

similar approach was also adopted in Section 5.3.3 and it is called in-mapper local

aggregation. Here this solution is named Preliminary KCH.

However, the number of exchanged pairs between map and reduce tasks was

still very high, and, for CS, a reduce function is started for each distinct k-mer.

This is a serious problem with large value of k. Therefore, we have thought to

emit as map output a binary copy of the hash table used as local aggregation.

Unfortunately, the aggregation is made in a single reduce function. Consequently,

we have adopted the strategy to divide the hash table in a map task in a �xed

number of bins (partitions or hash tables), so the reduce phase could be par-

allelized. This strategy, used in KCH, is called in-mapper local aggregation with

explicit partitioning.

Therefore, in KCH, at a �rst level, each map function uses a vector of hash

tables to maintain partial statistics about the k-mers found when scanning its

own input. At a second level, each reduce function will now get in input a list

175

5. PROCESSING BIG DATA IN BIOINFORMATICS

of hash tables containing the partial statistics for a certain family/partition of

k-mers. These statistics will be aggregated in one single hash table containing the

�nal statistics. In the map phase, the contents of the hash tables are serialized and

saved using a low-level byte array encoding. This ensures optimal performance

with respect to other encoding solutions o�ered by Hadoop. This strategy has

two important advantages. First, the number of output pairs returned by a map

function when processing the sequences using large values of k scales down by

several orders of magnitude (e.g., few hash tables against millions or billions k-

mers occurrences). This has the important side e�ect of greatly speeding up

the Hadoop shu�e and the sort phase, as the number of involved records is

signi�cantly smaller. Second, the overall amount of data to transmit between

map and reduce functions is shrank as well because most part of the aggregation

is performed by map functions.

Compressing the copy of a hash table not brings any advantage between map

and reduce phases.

The proposed aggregation strategy with partitioning is useful when the num-

ber of distinct k-mers is high. In fact, with low value of k, such 3 and 7, this

partitioning could not bring no advantage compared to simple in-mapper local

aggregation where the map output pairs are aggregated in a single hash map.

A comparison between KCH and our Hadoop-based naive solution for k-mer

counting is presented in Section 5.4.3.4. In addition, is also shown a comparison

with an implementation of KCH that uses the in-mapper local aggregation without

partitioning strategy (i.e., Preliminary KCH).

5.4.3 Experimental Analysis

5.4.3.1 Datasets

Following [231], we use the Illumina human genome dataset [144] in order to

obtain datasets for our experiments. It contains short sequences, referred to as

reads, which are de�ned on the alphabet {A,C,G, T,N}, where N corresponds

to an inde�nite base.

This dataset contains 111 compressed FASTQ �les. The compressed size of

the dataset is ≈ 109 GB, while an estimation of the size of the FASTQ �les is

176

5. PROCESSING BIG DATA IN BIOINFORMATICS

≈ 480 GB as total. Each FASTQ �le contains a large collection of reads, where

each read is composed by 4 lines:

1. The �rst line starts with a @ character, and it is followed by a read identi�er

and an optional description. Reads from the Illumina software use a �xed

format for the identi�er, while FASTQ �les from the NCBI/EBI Sequence

Read Archive [204] often can include a description.

2. The second line contains the raw sequence letters (i.e., a read).

3. The third line starts with a + character, and is optionally followed by the

same sequence identi�er and any description.

4. The last line encodes the quality values for the sequence in the second line,

and it must contain the same number of symbols as letters in the sequence.

When used in [231], all these �les have been transformed and merged into a

single very large FASTA �le without performing any trimming [232].

Notice that, although a typical dataset for LS would consist of entire genomes

while a typical one for CS of reads, for uniformity and ease of comparison, it is

best to construct arti�cial datasets for LS based on a real dataset (the Illumina

one) for CS.

Let l denote the number of bytes, i.e., characters, that a dataset to be gener-

ated must have. The generation procedure for CS is very simple: pick as many

reads (and their headers) from the Illumina dataset as needed to obtain the re-

quired size. The reads are selected in the order in which they appear in the

original dataset. This grants that, as the sizes of the generated datasets grow,

the smaller ones are contained in the larger ones, ensuring consistency of exper-

imentation. Each generated dataset is stored in a FASTA �le. In particular, we

have generated the datasets of 2, 8, 32 and 128 GB, i.e., CS_2GB , CS_8GB ,

CS_32GB and CS_128GB .

The procedure to generate a dataset of l bytes for LS is slightly more compli-

cated. First, a random number n in the interval [1, ⌊log l⌋] is picked. That gives
the number of sequences in the dataset. The choice of the interval assures that

we get sequences whose lengths are much larger than the number of sequences

177

5. PROCESSING BIG DATA IN BIOINFORMATICS

contained in the dataset, as it is typical in genomic studies. Then, the inter-

val [1, l] is partitioned uniformly and at random in n segments. The length of

each segment gives the number of characters in a sequence to be included in the

dataset. Those segments and the Illumina dataset are swept from left to right,

concatenating reads until a sequence of the length corresponding to the current

segment length is obtained. Such a process may require rounding of the segment

length values. Each of the sequences so obtained is stored in a separate FASTA

�le with a single header line. In particular, we have generated the datasets of 2,

8, 32 and 128 GB, i.e., LS_2GB , LS_8GB , LS_32GB and LS_128GB .

In what follows, we provide details about the datasets used for the LS exper-

iments. Each sequence is coded in a separate multi-lines FASTA �le.

1. LS_2GB dataset consists of 8 sequences, with lengths approximately: 377

MB, 234MB, 517MB, 129MB, 15MB, 9MB, 75MB, 692MB, respectively.

2. LS_8GB dataset consists of 30 sequences, with lengths approximately: 302

MB, 242 MB, 647 MB, 315 MB, 528 MB, 30 MB, 114 MB, 6 MB, 20 MB,

611 MB, 247 MB, 217 MB, 358 MB, 149 MB, 354 MB, 4 MB, 174 MB, 13

MB, 720 MB, 9 MB, 47 MB, 586 MB, 205 MB, 16 MB, 1138 MB, 613 MB,

180 MB, 43 MB, 204 MB, 100 MB, respectively.

3. LS_32GB dataset consists of 26 sequences, with lengths approximately:

6112 MB, 927 MB, 1103 MB, 3100 MB, 2147 MB, 1265 MB, 591 MB, 183

MB, 1272 MB, 1361 MB, 454 MB, 699 MB, 552 MB, 1085 MB, 797 MB,

359 MB, 593 MB, 740 MB, 50 MB, 164 MB, 1295 MB, 3387 MB, 2544 MB,

618 MB, 728 MB, 642 MB, respectively.

4. LS_128GB dataset consists of 16 sequences, with lengths approximately:

1223 MB, 19029 MB, 6936 MB, 2626 MB, 5801 MB, 3894 MB, 11932 MB,

3175 MB, 16900 MB, 7554 MB, 1524 MB, 18257 MB, 2844 MB, 10510 MB,

1565 MB, 17302 MB, respectively.

5.4.3.2 Experimental Settings

All the experiments described in the next sections have been performed on a su-

percomputing cluster with the following con�guration: a server, acting as master

178

5. PROCESSING BIG DATA IN BIOINFORMATICS

Figure 5.12: Physical cluster hardware used in KCH experiments.

node, with 2 processors quad core Intel Xeon 1.6 Ghz CPU family 6 model 26

stepping 5, and 32 GB of RAM; and 4 servers, acting as slave nodes, equipped

each with 64 GB of RAM and 4 AMD Opteron 6272 @ 2.10 GHz processors with

32 total cores. Each server runs CentOS 6.7 Linux 64 bit operating system (ker-

nel version 2.6.32) and it owns a local 791 GB disk drive (197 GB disk drive on

master node) and a Gigabit Ethernet connection. The experiments to estimate

the performance of KCH and other distributed algorithms (e.g., BioPig) use all

these nodes, whereas the other selected tools only use a single slave node. The

Hadoop version is 2.7.11.

A schematic rendering of the cluster hardware, with one master and four slave

nodes is provided in Figure 5.12, while a schematic representation of the cluster

con�gured to run KCH is presented in Figure 5.13. At start-up, input �les are

available in HDFS, where they have been originally split in several parts of equal

size (except for the last one) and scattered among the slave nodes of the cluster.

Then, a map task (i.e., a set of map functions) for each �le part will be run by

a Container (worker) on a slave. As soon as are to be completed all the map

tasks, the framework Hadoop starts the running of reduce tasks on the output of

the previous phase. The computation ends when all tasks have been executed.

1The experimentations were conducted between September and December 2015.

179

5. PROCESSING BIG DATA IN BIOINFORMATICS

5.4.3.3 Tuning Phase

The setup of a Hadoop cluster for KCH requires the de�nition and setting of several

con�guration parameters that will determine the �nal performance of the entire

implementation. Here we have identi�ed three of those parameters and we have

experimentally determined their best setting. They are highly correlated and

they must be carefully set up depending on the hardware available.

How Many Workers per Node With reference to Figure 5.12, that schemat-

ically depicts the hardware, we have described in Section 5.4.3.2, one obvious de-

cision is to have the master node to run the Hadoop cluster management services,

typically task scheduling and distributed �le system management. Next task is

to decide how many workers to assign to each slave node. Indeed, as already

mentioned, and schematically illustrated in Figure 5.13, the degree of parallelism

that can be achieved by a node of a Hadoop cluster is de�ned by the number of

workers (i.e., Hadoop Containers) that can run concurrently on that node. The

number of workers per node should be equal to the number of cores available on

that node. However, this rule may not work with multi-core systems, where each

node may be equipped with tens or hundreds of CPU cores and it has a single

local disk.

In our case, each slave node is equipped with 32 cores and 64 GB of RAM. This

would allow us to run up to 32 workers in parallel on a same slave node. However,

this would lead to a severe performance degradation for two main reasons. First,

running 32 workers on the same node would leave each worker with less than 2

GB of RAM, an amount of memory that would prevent the worker from e�ciently

processing long genomic sequences for large values of k. Second, the 32 workers

would share the same local disk and the same network connection. For the nature

of our problem, this would imply several performance bottlenecks due to two or

more workers trying to access the same resource (either the network or the local

disk) at the same time. Therefore, the advantage of scaling a computation over

a larger number of cores could be canceled out by the computational overhead

due to virtual memory thrashing and I/O bus congestions. A rule of thumb is to

analyze te performance of the algorithm as a function of workers per node up to

180

5. PROCESSING BIG DATA IN BIOINFORMATICS

Gigabit Ethernet

Master

Operating System

Hadoop
Services

NameNode Srv

ResourceManager Srv

HistoryServer

Slave 3

Operating System

Local disk

Hadoop
Services

DataNode Srv

NodeManager Srv

Worker3.1

Map/Reduce Tasks

Worker3.2

Map/Reduce Tasks

...

Slave 1

Operating System

Hadoop
Services

DataNode Srv

NodeManager Srv

Local disk

Worker1.1

Map/Reduce Tasks

Worker1.2

Map/Reduce Tasks

...

Slave 4

Operating System

Worker4.1

Map/Reduce Tasks

Worker4.2

Map/Reduce Tasks

...
Local disk

Hadoop
Services

DataNode Srv

NodeManager Srv

Slave 2

Operating System

Hadoop
Services

DataNode Srv

NodeManager Srv

Local disk

Worker2.1

Map/Reduce Tasks

Worker2.2

Map/Reduce Tasks

...

Figure 5.13: A schematic representation of a cluster con�gured to run KCH algo-
rithm designed for Hadoop. The communication among nodes uses the Gigabit
Ethernet, while the storage of input and output �les is distributed among the
local disks present in each slave node.

the physical number of cores available on that node, exploiting all the available

RAM. Then, one choose the number of workers resulting in the best performance.

Input Partitioning Another important parameter is the size of the pieces in

which the input �les are split (i.e., HDFS block size), where each piece (called

input split) is then processed by a distinct map task. The input block size de�nes

the overall number of total map tasks and the workload of each of them (i.e., task

granularity).

A small block size would require the execution of many short-lasting map

tasks, each counting a relatively small number of k-mers. Consequently, the

map tasks lifetime would be dominated by the time required to manage them.

Splitting an input �le in many small pieces would improve the parallelism in

the execution of the map tasks, but would increase the amount of intermediate

data to be transferred. This happens because the two-levels aggregation strategy

employed by KCH is less e�ective when the size of the input sequences for each

map task gets smaller.

181

5. PROCESSING BIG DATA IN BIOINFORMATICS

Conversely, splitting an input �le in few very large pieces would signi�cantly

help the data compression performed by the two-levels aggregation strategy, but

at the expense of reducing the degree of parallelism. A block size too large would

likely increase proportionally the number of distinct k-mers to count with the side

e�ect of consuming all the memory of a map task, thus causing its interruption.

In order to exploit parallelism, a general strategy is to choose the block size

so to have a number of map tasks that is, at least, equal to the overall number

of workers in the cluster. Moreover, the block size should be as large as possible,

provided that each map task would have enough memory to process input blocks

with that size. Thus, the performance of KCH in regard to this parameter must

be analyzed as a function of the number of workers. That is, by experimenting

with block sizes resulting in a number of map tasks that is an increasing multiple

of the number of workers.

Partitioning Σk Another con�guration parameter is the number of partitions

(i.e., hash tables or bins) of the universe of possible k-mers to be used during the

two-levels aggregation strategy. Notice that all the k-mers found while scanning

the input sequences and falling in each partition are processed by a distinct reduce

function. Thus, as for the case of splitting the input, keeping this number low

implies the execution of a small number of long-lasting reduce functions. This

decreases the overhead related to the execution of reduce functions but prevents

from fully exploiting the parallelism of the cluster (few long tasks are more di�cult

to be scheduled in an e�cient way than many short tasks) and it requires the

usage of more memory for maintaining the k-mer counts. Instead, using many

short reduce functions would improve parallelism, but would increase as well the

performance overhead due to the execution of all these functions. In our case,

the number r of reduce tasks (i.e., the number of hash tables) must be analyzed

as a function of k in order to obtain an appropriate value rk, for each k.

Tuning Results Given k, one should tune the previous parameters by varying

them while running KCH on datasets of di�erent sizes chosen for the tuning. This

would return, for each dataset, a 3-dimensional grid reporting the execution times

measured while running KCH with each of the considered assignments to the tuning

182

5. PROCESSING BIG DATA IN BIOINFORMATICS

parameters. Then, one would choose, for each dataset size, the parameters-

assignment yielding the lower execution time. However, such an approach would

be cumbersome and very time-consuming. Here, we propose a heuristic that is

able to produce a good calibration of these parameters in a smaller amount of

time. We just �x two tuning datasets that are representative, in size, for large

datasets and small datasets, i.e., CS_8GB and CS_128GB . Then, we proceed

by running the tuning procedure on these two datasets and use the outcoming

parameters assignments as standard con�gurations for the more general case.

Moreover, we also experiment with a single �large� value of k, i.e., k = 31, that is

a worst case scenario. In all our experiments the HDFS replication factor is set

to 2.

The results of this tuning are reported in Tables 5.2 and 5.3, and they are

summarized in the following:

• Number of workers per node. The number of workers per node return-
ing the best execution times for KCH is 16, when processing a light workload,

and 8, when processing a heavy workload.

• HDFS block size. The HDFS block size m returning the best execution

times for KCH is either 64 MB or 128 MB, when processing a light workload,

and 256 MB, when processing a heavy workload.

• Number of reduce tasks The number r of reduce tasks returning the

best execution times for KCH is 279 both for light and heavy workloads.

Due to the small timing di�erences between the con�gurations arising from

the tuning on a light workload and on a heavy workload, and because of the

need of conducting the rest of our experiments at scale, we decided to use for

our tests only the con�guration emerging from the tuning on a heavy workload

(i.e., 8 workers per node, 279 reduce tasks, and a block size set to 256 MB).

In particular, adopting 8 workers for each slave node, each worker has 8 GB of

RAM. In the experiments presented in following we alway use these parameters

unless otherwise stated in the text.

183

5. PROCESSING BIG DATA IN BIOINFORMATICS

Table 5.2: Execution times of KCH in minutes when run on dataset of size CS_8GB
with k = 31, while using an increasing number of workers per node and of reduce
tasks r. In this experiment, the HDFS block size m is set to 64 MB, 128 MB, 256
MB or 512 MB. The shortest execution times are marked in bold. Empty cells
report failed executions.

Dataset CS_8GB

m = 64 MB m = 128 MB m = 256 MB m = 512 MB

Workers # Workers # Workers # Workers
per Node per Node per Node per Node

r 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

15 9 8 - - 8 12 - - 11 11 - - - - - -
31 9 6 8 - 9 7 8 - 9 8 13 - 26 30 - -
62 9 7 6 - 8 6 6 - 8 6 - - 9 10 - -
93 10 7 6 6 9 6 6 - 8 6 10 - 9 10 - -
124 10 7 6 - 9 6 6 - 8 7 9 - 9 14 - -
155 10 6 6 6 9 6 5 - 8 6 11 - 9 10 - -
186 10 7 6 6 9 6 6 - 9 6 9 - 9 10 - -
217 10 6 5 6 9 6 6 - 8 7 - - 9 - - -
248 10 7 6 6 9 6 6 - 9 7 9 - 9 9 - -
279 10 7 6 6 9 6 5 - 9 6 9 - 9 9 - -
310 11 7 6 7 9 6 6 - 9 7 - - 9 11 - -

Table 5.3: Execution times of KCH in minutes when run on dataset of size
CS_128GB with k = 31, while using an increasing number of workers per node
and of reduce tasks r. In this experiment, the HDFS block size m is set to 64
MB, 128 MB, 256 MB or 512 MB. The shortest execution times are marked in
bold. Empty cells report failed executions.

Dataset CS_128GB

m = 64 MB m = 128 MB m = 256 MB m = 512 MB

Workers # Workers # Workers # Workers
per Node per Node per Node per Node

r 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

- - - - - - - - - - - - - - - - -
31 282 - - - 196 - - - 177 - - - - - - -
62 161 - - - 133 - - - 117 - - - 126 - - -
93 159 125 - - 133 119 - - 112 110 - - 104 139 - -
124 149 151 - - 118 125 - - 104 - - - 106 145 - -
155 147 109 - - 118 91 - - 101 83 - - 93 110 - -
186 155 109 - - 117 91 - - 102 82 - - 94 103 - -
217 139 101 - - 118 85 - - 103 88 - - 100 - - -
248 145 106 - - 118 87 - - 104 82 - - 98 - - -
279 135 87 94 - 115 81 86 - 103 73 - - 93 96 - -
310 142 97 96 - 118 81 94 - 104 79 - - 96 96 - -

184

5. PROCESSING BIG DATA IN BIOINFORMATICS

5.4.3.4 Experimental Results

We have conducted a sets of experiments to evaluate KCH on di�erent scenario.

It is important to emphasize that a stand-alone implementation, that only works

in memory for extracting k-mers, fails with large datasets and k due to RAM

problems. Therefore, many solutions in literature are designed to use the disk

as auxiliary memory. Section A.2 presents the state of the art on algorithms

collecting k-mer statistics.

Initially, we compare KCH with other Hadoop-based solutions, then is shown

the scalability of KCH increasing the number of total workers in LS and CS

case. Finally, the scalability of KCH for cumulative statistics is compared with

the most popular and fast k-mer counting tool in multi-threading environments,

i.e., KMC2 (see Section A.2.1.6 for details about KMC2).

Our datasets of 2 GB, 8 GB, 32 GB and 128 GB are loaded on HDFS in

approximately 20 seconds, 80 seconds, 5 minutes and 20 minutes, respectively.

KCH versus Other Hadoop-based Solutions Initially, we have compared

KCH, which uses the in-mapper local aggregation with explicit partitioning, with

the naive solution for k-mer cumulative statistics as described in Section 5.4.1.

Here the naive solution also uses the Hadoop Combiner to aggregate the partial

counters for improving the performance. In addition, we have also compared these

solutions with a variant of KCH that adopts in-mapper local aggregation without

partitioning called Preliminary KCH (i.e., a map task uses a single hash table for

in-mapper aggregation, and it simply emits the pairs at the end). Section 5.4.2.3

describes the di�erence between Preliminary KCH and KCH.

Figures 5.14 and 5.15 show the results of these comparisons for k = 15 and 31,

respectively, extracting canonical k-mers. We have used 4 slave nodes with 32 to-

tal workers. For the case k = 15 (see Figure 5.14) with the dataset CS_128GB ,

KCH is ≈ 30× faster than the naive solution, while Preliminary KCH is ≈ 6×
faster than the naive implementation. In other words, KCH is approximately 5×
faster than Preliminary KCH solution. For the case k = 31 with the dataset

CS_128GB (see Figure 5.15), the naive solution has failed due to memory prob-

lems after about 24 hours, while KCH is approximately 3.4× faster than the other

185

5. PROCESSING BIG DATA IN BIOINFORMATICS

69

171

304

1,137

8 16
44

178

2 4 9
37

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

2GB 8GB 32GB 128GB

Time in

minutes

Naive with Combiner Preliminary KCH KCH

Figure 5.14: Cumulative Statistics. Comparison of KCH versus the Hadoop-based
naive solution with Combiner and Preliminary KCH using k = 15 for all datasets.

solution. Incrementing the k, e.g., k = 31, there are many unique k-mers due to

errors in reads (e.g., [194]), therefore, the aggregation strategy of KCH brings less

advantages with respect to case k = 15.

In addition, we have compared these three solutions with very small value of

k, such as 3 and 7. In this scenario, the performance of KCH (in-mapper local

aggregation with explicit partitioning) are similar to Preliminary KCH that uses

in-mapper local aggregation without partitioning. However, these two solutions

are much faster than the naive solution with Combiner.

Another Hadoop-based solution for k-mer counting is contained in the tool

BioPig ([37, 209]), which is build on Hadoop and Pig data�ow language [213].

BioPig is a collection of cloud computing tools to scale data analysis and man-

agement, and it also includes a tool for k-mer counting (kmerCount.pig) [150].

Section A.2.1.8 presents additional details about BioPig.

Figure 5.16 reports the results related to cumulative statistics on 4 slave nodes

and 32 total workers between KCH and BioPig. In BioPig experiments we have

selected our CS datasets of 32 GB and 128 GB (CS_32GB and CS_128GB)

186

5. PROCESSING BIG DATA IN BIOINFORMATICS

75

162

313

11
22

65

251

3 6
20

73

0

50

100

150

200

250

300

350

2GB 8GB 32GB 128GB

Time in

minutes

Naive with Combiner Preliminary KCH KCH

Figure 5.15: Cumulative Statistics. Comparison of KCH versus the Hadoop-based
naive solution with Combiner and Preliminary KCH using k = 31 for all datasets.

using non-canonical1 k-mers for k = 3 and k = 7. BioPig only extracts non-

canonical k-mers on short sequences, using the query kmerCount.pig provided in

[150]. We have used the same number of reducers (i.e., 64 for k = 3 and 279

for k = 7) and block size (i.e., 256 MB) for KCH and BioPig. We have only used

small k values because the execution times of BioPig are very slow. In fact, KCH

is on average approximately 40× faster than BioPig in these settings2. BioPig is

not at all competitive with respect to KCH since it su�ers of exactly the kind of

problems outlined when presenting the naive implementation of k-mer counting

for Hadoop (see Section 5.4.1).

Comparison about FASTA Input Management We have performed a sim-

ple test to compare the experimental performance of our FASTA reader classes (as

discussed in Section 5.4.2.1), against the two provided by BioPig (i.e.,FASTAInput

Format and FASTABlockInputFormat). We also included in our test the Hadoop

1The term non-canonical k-mers indicates the standard/traditional k-mers.
2The average speed up of KCH with respect to BioPig is ≈ 40.

187

5. PROCESSING BIG DATA IN BIOINFORMATICS

90 151 400 479

3,955
4,846

16,271

19,759

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

32GB - k=3 32GB - k=7 128GB - k=3 128GB - k=7

Time

in seconds
KCH

BioPig

Figure 5.16: Cumulative Statistics. Results of KCH with respect to BioPig, for the
case k = 3, 7 (non-canonical k-mers), for CS_32GB and CS_128GB datasets.

default TextInputFormat class. The BioPig readers are only able to deal with

short sequences, whereas the TextInputFormat class does not support sequences

spanning multiple lines. For this reason, we used, as reference datasets, those

containing a set of short sequences and used for cumulative statistics (see Sec-

tion 5.4.3.1 for details). Since we were interested just in benchmarking the time

required to read input sequences, we considered a very simple Hadoop job with

no reduce function. The map function of this job just counts the occurrences of

each character in an input sequence (i.e., k = 1) without any form of output. We

have used for this test a single slave node with 2 workers (only a worker runs map

functions because one executes the Application Master service). The HDFS

block size was always set to 256 MB.

Our experimental results are visible in Figure 5.17. Notice the very bad

performance of the two BioPig reader classes. Although being more engineered

than the standard TextInputFormat, these two classes pay the penalty of being

more complex because of the support for multi-lines sequences. Instead, the

naive line-based approach of TextInputFormat pays o� in such a simple scenario.

Despite this, we notice that our reader class FASTAshortInputFileFormat is

188

5. PROCESSING BIG DATA IN BIOINFORMATICS

0.0E+00

6.0E+02

1.2E+03

1.8E+03

2.4E+03

3.0E+03

3.6E+03

4.2E+03

0 8 16 24 32

Time

in seconds

Gigabytes

BioPig - FastaInputFormat

BioPig - FastaBlockInputFormat

KCH - FASTAshortInputFileFormat

Hadoop - TextInputFormat

Figure 5.17: Comparison between di�erent Hadoop-based InputFormat solutions
to process FASTA �les. The benchmark counts the number of di�erent characters
in each short sequence (i.e., read) without any output, while using datasets of
increasing size.

always consistently faster than the other ones.

Local Statistics Since none of the algorithms available in the literature for

k-mer statistics (summarized in Section A.2.1) can be used in this setting, we

take as a measure of performance only the scalability of our algorithm KCH. The

speed up in time is obtained as a function of the number of total workers that it

has available from the Hadoop cluster.

The experiments are performed with varying dataset sizes and values of k. For

the former, we have used LS_2GB , LS_8GB , LS_32GB and LS_128GB , re-

spectively, since that range of sizes well represents possible input sizes of datasets

coming from genomic and metagenomic studies. Likewise, the chosen values of k,

i.e., 3, 7 and 15, are representative of the ones that are expected to be used in ap-

plications such as alignment-free sequence comparison and compositional analysis

of biological sequence (e.g., [66, 116, 118]), where values of k substantially above

10 are hardly found. In this case, we are interested in extracting non-canonical

189

5. PROCESSING BIG DATA IN BIOINFORMATICS

k-mer counts as we are using entire genomes as input sequences.

Figures 5.18, 5.19, 5.20 and 5.21 report the results of the LS experiments for

KCH. Here we have used 4 slave nodes varying the number of workers (i.e., Hadoop

Containers) for each slave (i.e., 1, 2, 4 and 8). We have used our datasets for

LS extracting local statistics about non-canonical k-mers for k = 3, 7, 15. For

the case k = 3 and 7 we have used a single hash map for each mapper, and the

number of the reduce tasks was 279. In this case the map function simply emits

the pairs <(idSeq, kmer), frequency>. For k = 15 we used 279 hash maps for

each map function and 279 reducers. In this case the map function emits the

pairs <(idSeq, idHt), ht>. In our tests the hash tables sizes are right according

datasets and k values to prevent intermediate hash tables �ush.

As it is evident from Figures 5.18, 5.19 and 5.20, the advantage of using more

and more workers, i.e., the scalability of the algorithm, becomes more and more

evident as the dataset size increases. Indeed, when processing relatively small

datasets (i.e., LS_2GB), there is almost no bene�t from scaling the processing

of our algorithm on a high number of workers. This holds mainly because Hadoop,

based on the block sizem = 256MB, splits the input sequences in a small number

of parts that are distributed to the map tasks, thus preventing the parallelism to

be exploited on the map side. The opposite case occurs when processing relatively

large sizes (i.e., LS_128GB). Here, the input sequences are split in a much larger

number of parts (519 parts in the LS_128GB case) thus allowing to fully exploit

the intrinsic parallelism of Hadoop.

Cumulative Statistics Here the experiments are performed varying dataset

sizes and values of k. The selected datasets are: CS_2GB , CS_8GB , CS_32GB

and CS_128GB . In addition to the values of k used in the previous, we have

also used k = 31, which is a value that �nds use in k-mer statistics for sequence

assembly [71]. Moreover, since we are dealing with reads that have yet to be

assembled, we consider canonical k-mer counts.

The results for KCH are reported in Figures 5.22, 5.23, 5.24, 5.25 and 5.26.

Here we have used 4 slave nodes varying the number of workers (i.e., Hadoop

Containers) for each slave (i.e., 1, 2, 4 and 8). We have used our datasets

extracting cumulative statistics about canonical k-mers for k = 3, 7, 15, 31. For

190

5. PROCESSING BIG DATA IN BIOINFORMATICS

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.18: KCH Local Statistics. Scalability of KCH, for the case k = 3, for
all datasets, which are indicated in the �gure according to the legend to the
right. The abscissa gives the number of workers used, while the ordinate gives
the corresponding time.

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

4.0E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.19: KCH Local Statistics. Scalability of KCH, for the case k = 7, for
all datasets, which are indicated in the �gure according to the legend to the
right. The abscissa gives the number of workers used, while the ordinate gives
the corresponding time.

191

5. PROCESSING BIG DATA IN BIOINFORMATICS

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.20: KCH Local Statistics. Scalability of KCH, for the case k = 15, for
all datasets, which are indicated in the �gure according to the legend to the
right. The abscissa gives the number of workers used, while the ordinate gives
the corresponding time.

0.0E+00

1.0E+03

2.0E+03

3.0E+03

4.0E+03

5.0E+03

6.0E+03

3 7 11 15

Time

in seconds

k

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.21: KCH Local Statistics. Execution times of KCH for the all datasets and
for k = 3, 7, 15 using 32 total workers.

192

5. PROCESSING BIG DATA IN BIOINFORMATICS

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.22: KCH Cumulative Statistics. Scalability of KCH, for the case k = 3,
for all datasets, which are indicated in the �gure according to the legend to the
right. The abscissa gives the number of workers used, while the ordinate gives
the corresponding time.

the case k = 3 and 7 we have used a single hash map for each mapper, and

the number of the reducers was 32 and 279, respectively. In this case the map

function simply emits the pairs <(idSeq, kmer), frequency>. For k = 15 and 31

we used 279 hash maps for each map task and the number of the reducers was

279. In this case the map function emits the pairs <(idSeq, idHt), ht>. In our

tests the hash tables sizes are right according datasets and k values to prevent

intermediate hash tables �ush. It is evident from Figures 5.22, 5.23, 5.24 and 5.25

that the performance of KCH for CS is as that for LS, in particular scalability is

preserved. Therefore, doubling the number of total workers the execution times

are approximately halved for CS_8GB , CS_32GB and CS_128GB .

Figure 5.27 shows the comparison between KCH using 4 slave nodes varying

the number of workers per slave and KCH using a variable number of slave nodes

with always 8 workers per slave. Cumulative statistics for k = 31 are extracted.

The solid lines indicates experiments running on 4 slaves varying the number

of workers for slave (i.e., 2, 4 and 8, respectively). The dashed lines indicates

the experiments running on 1, 2 and 4 slave nodes, respectively, always using

193

5. PROCESSING BIG DATA IN BIOINFORMATICS

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.23: KCH Cumulative Statistics. Scalability of KCH, for the case k = 7,
for all datasets, which are indicated in the �gure according to the legend to the
right. The abscissa gives the number of workers used, while the ordinate gives
the corresponding time.

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.24: KCH Cumulative Statistics. Scalability of KCH, for the case k = 15,
for all datasets, which are indicated in the �gure according to the legend to the
right. The abscissa gives the number of workers used, while the ordinate gives
the corresponding time.

194

5. PROCESSING BIG DATA IN BIOINFORMATICS

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.25: KCH Cumulative Statistics. Scalability of KCH, for the case k = 31,
for all datasets, which are indicated in the �gure according to the legend to the
right. The abscissa gives the number of workers used, while the ordinate gives
the corresponding time.

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

4.0E+03

4.5E+03

5.0E+03

3 7 11 15 19 23 27 31

Time

in seconds

k

KCH - 2GB

KCH - 8GB

KCH - 32GB

KCH - 128GB

Figure 5.26: KCH Cumulative Statistics. Execution times of KCH for the all datasets
and for k = 3, 7, 15, 31 using 32 total workers.

195

5. PROCESSING BIG DATA IN BIOINFORMATICS

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

4.0E+03

4.5E+03

5.0E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers

KCH - Conf 1 - 2GB

KCH - Conf 1 - 8GB

KCH - Conf 1 - 32GB

KCH - Conf 2 - 2GB

KCH - Conf 2 - 8GB

KCH - Conf 2 - 32GB

Figure 5.27: KCH Cumulative Statistics. Scalability of KCH, for the case k = 31
using a di�erent number of slave nodes, for all datasets, which are indicated in
the �gure according to the legend to the right. The solid lines indicates experi-
ments running on 4 slaves varying the number of workers for slave (i.e., 2, 4 and
8, respectively), i.e., Con�guration 1 (Conf 1). The dashed lines indicates the
experiments running on 1, 2 and 4 slave nodes, respectively, using 8 workers for
slave node, i.e., Con�guration 2 (Conf 2). The abscissa gives the number of total
workers used, while the ordinate gives the corresponding time.

8 workers for slave node. In particular, the �gure shows that the scalability is

preserved both when the number of slave nodes varies and when is varied only the

number of workers for slave. The running times adopting 1 and 2 slaves, with 8

and 16 total workers, are major than the corresponding case (4 slaves with 8 and

16 total workers), because there always are 8 workers for slave which compete on

the same resources, e.g., I/O bus, memory and disk.

Figure 5.28 shows the speed up between our stand-alone (sequential) Java

implementation executed on a single-core and KCH varying the number of total

workers on 4 slave nodes. It is used the dataset CS_32GB with k = 15. In

particular, the �gure shows that the speed up is very close to the maximum for

the cases 4, 8 and 16 workers.

196

5. PROCESSING BIG DATA IN BIOINFORMATICS

3.4

7.1

14.0

22.3

0

4

8

12

16

20

24

28

32

4 8 16 32

S
p

ee
d

 u
p

Number of total workers

Figure 5.28: KCH Cumulative Statistics. Speed up of KCH for the case k = 15
and dataset CS_32GB . The abscissa gives the number of workers used, while the
ordinate gives the corresponding speed up than our stand-alone implementation
executed on a single-core.

Comparison between KCH and KMC2 Here we compare KCH with an e�-

cient and fast solution for CS in a multi-threading system, i.e., KMC2. Many

contributions in literature have said that KMC2 is a fast and e�cient tool (see

Section A.2).

In [83] Deorowicz et al. have proposed K-mer Counter (KMC), a simple, e�-

cient, parallel disk-based algorithm for counting k-mers. The authors in [84] have

presented a new version for KMC, i.e., KMC2, that borrows from the e�cient

architecture of preliminary version of KMC, but reduces the disk usage several

times and improves the speed usually about twice. KMC2 has been designed and

highly engineered on a shared-memory parallel architecture having in mind NGS

genome assembly problems and, in fact, it only works with short reads as input.

Therefore, such an algorithm is not as general as KCH.

KMC2 provides, as output, the k-mer counts in a binary �le. In fact, in our

performance report, we also include the time required to convert these binary

�les in a human-readable format, an operation that can be usually carried out

using the support tool provided with KMC2.

197

5. PROCESSING BIG DATA IN BIOINFORMATICS

When considering in our experiments a multi-threading shared-memory algo-

rithm, tests are carried out using only one of the available slave nodes. Therefore,

in order to obtain results as fair as possible, a thread is considered as a worker in

our setting.

Figure 5.29 shows the results of KCH compared with KMC2, for k = 31. In

particular, we notice that KMC2 hardly scales with the number of threads. This

seems to be an inherent limitation of that algorithm. It is clear that the advantage

granted by the specialization of KMC2 to short reads versus the generality of KCH

disappears as the degree of parallelism and the dataset sizes increase. However,

the performance of KCH can be improved on cluster bigger than the one we have

used, since KCH is scalable. In fact, if the number of the slave node is doubled,

the execution times of KCH can be approximately halved (see Figure 5.27 for a

comparison).

It is methodologically important to highlight that here we see an excellent ex-

ample of the di�erences in performance between two algorithms that use di�erent

architectures. Indeed, KMC2 adopts a multi-threaded shared-memory architec-

ture, as it works by running multiple threads on the same machine that share the

same memory space. This implies that there is no communication overhead due

to data being transferred from one thread to another, while the small number of

threads prevents the occurrence of performance bottlenecks. Instead, KCH runs

in a fully distributed environment and it does incur in a signi�cant performance

overhead that it has to pay whenever two workers have to communicate via the

network connection. Such an overhead is o�set by the gain of parallelism only

when the number of worker increases. This is clearly visible, again, in Figure 5.29

where we see that, for the CS_32GB case, KCH exhibits better execution times

than KMC2, when using at least 16 workers. Such an analysis is largely con�rmed

for other values of k, although they may also in�uence the point in which KCH

outperforms KMC2. The results for other values of k are reported in Section A.3.

However, low values of k are hardly of any use in k-mer counting for sequence

assembly.

Section A.3 also presents the comparison between KCH and other solutions for

cumulative statistics in multi-threading environments. In general, the considera-

tions about KMC2 can be also extended for this tools.

198

5. PROCESSING BIG DATA IN BIOINFORMATICS

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KMC2 - 2GB

KCH - 8GB

KMC2 - 8GB

KCH - 32GB

KMC2 - 32GB

KCH - 128GB

KMC2 - 128GB

Figure 5.29: Cumulative Statistics. Scalability of our algorithm (KCH) with respect
to KMC2, for the case k = 31 and for all datasets, which are indicated in the
�gure according to the legend to the right. The abscissa indicates the number of
workers/threads used, while the ordinate gives the corresponding time in seconds.

5.5 Final Remarks

Although MapReduce and Hadoop are very powerful computational paradigms

and programming environments, respectively, to exploit parallelism, relying on

the top level functions and macros o�ered by Hadoop does not allow to take full

advantage of the computational power of the hardware resources available. For

that to happen, a solution must be entirely conceived in a distributed way, it must

ensure data locality and it must be based on the low-level I/O primitives that

Hadoop o�ers. Therefore, it is not trivial to �transform� a stand-alone (sequential)

program into a scalable and e�cient distributed implementation, although the

problem is simple in nature. On one side, the implicit distributed programming

199

5. PROCESSING BIG DATA IN BIOINFORMATICS

can reduce the implementation work. On the other side, a programmer must

evaluate how much performance loss exists. In fact, designing, engineering, tuning

and pro�ling activities in Hadoop are vital to obtain fast and scalable solutions.

The simple k-mer counting is extremely used in bioinformatics, therefore,

scalable, e�cient, fast and distributed solutions must be taken into account.

The Hadoop-based naive solution for k-mer counting is conceived as a toy for

beginners, therefore, in Big Data era it cannot be adopted. On the other hand,

KCH is much more fast, although there is much work of design and engineering to

improve the performance.

The improvements achieved by KCH (see Section 5.4) could be also adopted

in the framework HAFS presented in Section 5.3 during the indexing phase (i.e.,

�rst step). In addition, in HAFS, it is required to develop more e�cient and fast

solutions for computation of distances. In fact, the objective is to use KCH as the

�rst line of a distributed pipeline in bioinformatics operations.

The algorithmic engineering methodology [52] is also being recognized as use-

ful for the development of the fast and e�cient implementations. In fact, the

interactions and bene�cial feedback among algorithm design, experimental eval-

uation and software tuning are becoming part of the development of algorithms

for bioinformatics.

200

Chapter 6

Conclusion and Future Works

In this chapter we review the work presented in this thesis with emphasis on the

obtained results, the lessons learned, which could help other researchers, and the

future works. In particular, Section 6.1 summarizes the main obtained results,

and in Section 6.2 are presented the future directions of our research.

6.1 Outcomes

Nowadays storing and processing Big Data are important tasks to be addressed

exploiting the distributed systems. Initially, in Chapter 1, we have presented

the Big Data problem, and the motivation and objectives of our thesis. Then,

in Chapter 2 was presented the parallel and distributed computing with empha-

sis on emerging paradigms and software solutions to process Big Data, such as

MapReduce ([81, 82]) and Apache Hadoop ([14]), and how to measure the perfor-

mance in parallel and distributed environments. The MapReduce paradigm and

Hadoop are deeply treated in Chapter 3.

In this dissertation, we have experimentally evaluated as the distributed com-

puting, in the present case Hadoop, can be used to speed up a heavy computation

using a set of computers. We have discussed as the algorithm engineering, the

tuning, the pro�ling, the code improvements, and the experimental activities on

a Hadoop application can improve its performance, i.e., to reduce the execution

times, obtaining scalable, fast and e�cient solutions. Our goal was to show that,

when porting algorithms to Hadoop, a careful pro�ling and engineering activity

201

6. CONCLUSION AND FUTURE WORKS

is often required to fully exploit the real potential of the distributed computing

system. In addition, we also provided an experimental methodology that can be

used to validate or to improve the distributed implementations.

In particular, in this thesis, we have taken as benchmarks some problems

of two research areas where the Big Data problem is increasing: Digital Image

Forensics and Bioinformatics. In the �rst �eld, we have analyzed the algorithm by

Fridrich et al. [181] for the Source Camera Identi�cation (SCI), i.e., recognizing

the digital camera used for acquiring a given digital image. In Chapter 4 are

shown the details of this algorithm, and then is described our work done to

e�ciently speed up the running times of Fridrich et al. approach using a Hadoop

application executing on a commodity cluster. Our results are summarized in

Section 6.1.1.

Nowadays, there is still a lot gap between the available applications and Big

Data in bioinformatics. We have tried to reduce this gap using distributed com-

puting on two main problems: Alignment-free Sequence Comparison and ex-

traction of K-mer Statistics. These problems were introduced in Sections 1.3

and 5.2. In Chapter 5 are presented our Hadoop-based distributed implementa-

tions to solve these problems: Alignment-free Sequence Comparison on Hadoop

(HAFS) and K-mer Counting on Hadoop (KCH). The obtained results are brie�y

summarized in Sections 6.1.2 and 6.1.3, respectively.

In the following we brie�y review our contributions solving these problems,

and the general lessons useful to other researchers. The general remarks are

shown in Section 6.1.4.

6.1.1 Results about Source Camera Identi�cation on

Hadoop

In Chapter 4, we discussed the engineering of an e�cient Hadoop-based imple-

mentation of the algorithm by Fridrich et al., in order to solving the Source Cam-

era Identi�cation problem. We were able to quickly obtain a naive distributed

implementation for this algorithm, by leveraging the standard facilities available

with the Hadoop framework to wrap up an existing Java implementation and to

202

6. CONCLUSION AND FUTURE WORKS

make it distributed. However, this naive distributed implementation exhibited

a very poor performance. This motivated us to perform a thorough pro�ling

activity which led, �rst, to pinpoint several performance issues and, then, to de-

velop several improvements. The enhanced distributed implementation exhibited

a much better performance than the initial distributed implementation exploit-

ing a commodity cluster of 33 PCs. In addition, as pointed out by experimental

results, the proposed implementation is also scalable.

Despite the focus on the identi�cation algorithm by Fridrich et al., many of

the developed improvements can be trivially used to improve the performance

of other Source Camera Identi�cation algorithms, such as [30, 120, 121, 264],

when run on Hadoop. Most of these algorithms, in fact, share a same execution

pattern, where a set of features is extracted from each image of a given input set,

in order to build a digital �ngerprint for the camera used for shotting it. This

�ngerprint is compared to the �ngerprint of an image under scrutiny to determine

whether the photo has been taken by using that camera or not. For instance,

the usage of Hadoop SequenceFiles with an associated custom splitter would

allow for a more e�cient processing of a large number of images. The usage of

an in-mapper local aggregation would allow a map task to aggregate together the

features extracted from a set of images before sending them to the reduce task,

so to save network bandwidth and reduce the overall execution time. The usage

of the producer-consumer pattern would allow a map task or a reduce task (in a

multi-core setting) to drastically reduce the waiting time due to the input of the

images or �ngerprints to be processed.

6.1.2 Results about Alignment-free Sequence Comparison

on Hadoop

In Section 5.3 we have presented a �rst systematic study of word-based alignment-

free sequence comparison methods on Hadoop. We have evaluated the possibility

of using Hadoop to speed up the running times of these methods, compared to

their original stand-alone (non-parallel) formulation. In details, we have been able

to develop a MapReduce formulation of a generic alignment-free sequence com-

203

6. CONCLUSION AND FUTURE WORKS

parison algorithm that is able to scale well with the number of used concurrent

processing units. In fact, HAFS is a distributed framework for the development of

word-based alignment-free sequence comparison methods, and it is extensible to

new dissimilarity measures between sequences. Indeed, our framework includes

many measures of dissimilarity to compare two sequences, and, it is easy extensi-

ble, that is a new word-based dissimilarity measure can be included only writing

a Java Class to manage it.

Moreover, our solution allows to conveniently process problem instances that

are usually hard to solve in a stand-alone setting because of memory limitations.

It is also explored the possibility of running alignment-free sequence methods on

very long sequences, by using a proper MapReduce formulation able to spread

on the several computers of a Hadoop cluster the data structures needed to run

them.

In details, a �rst round of experiments has been conducted on a single machine

adopting a Java stand-alone implementation, where we measured the performance

of these algorithms on a reference dataset. Then, we developed an implementation

for these algorithms on the top of the Apache Hadoop. By taking advantage of

careful pro�ling analysis of the algorithms, we engineer very fast implementations

of them. We repeated the same experiments performed on the stand-alone setting

on a homogeneous cluster of 5 multi-processor workstations running Hadoop,

and we have compared the corresponding results. We have also presented a

performance analysis and pro�ling of the implementations acquired during the

previous activities.

6.1.3 Results about K-mers Statistics on Hadoop

The k-mers extraction is a simple task, but counting them in Next-generation

DNA sequencing (NGS) era can easily pass the memory capacity of a single PC.

This counting is extremely used in bioinformatics, therefore, scalable, e�cient,

fast and distributed solutions must be taken into account in Big Data era.

In Section 5.4 we have provided a well-designed and properly engineered

Hadoop algorithm, called KCH, for this fundamental task in bioinformatics. It

works extracting cumulative statistics (CS) or local statistics (LS) on short or

204

6. CONCLUSION AND FUTURE WORKS

long sequences. Although both versions of the problem are algorithmically very

simple, the big amount of data to be processed has motivated the development

of many algorithms and tools that try to take advantage either of parallelism or

of sophisticated algorithmic techniques or both.

In fact, for example, in literature there are some solutions for k-mers cumula-

tive counting on Hadoop, such as [37, 209, 216, 217, 220]. However these solutions

are very simple and they have many problems as extensively discussed and ex-

perimented in Sections 5.4.1 and 5.4.3.4. Indeed, a naive Hadoop solution for

k-mers counting is considered as a toy for beginner, therefore, in Big Data era it

cannot be adopted. On the other hand, KCH is much more fast, although there is

much work of design and engineering to improve its performance.

Therefore, KCH is a highly engineered, scalable and e�cient Hadoop solution

to compute k-mers statistics for both LS and CS, and these features are exper-

imentally evaluated in Section 5.4.3.4. In addition, our analyses show that KCH

can be very competitive with respect to algorithms whose parallelism is supported

by computer architectures other than distributed. In fact, KCH is e�cient, with

respect to some solutions based on parallel and distributed architectures, and

fully scalable in terms of processing units.

The k-mer counting problem is at the start of many bioinformatics pipelines,

and KCH, thanks to its performance and generality with respect to algorithms for

k-mer counting, is the �rst example clearly showing that competitive bioinfor-

matics pipelines based on Hadoop can be built for pervasive tasks, e.g., sequence

analysis.

6.1.4 General Remarks

In the era of Big Data only the distributed storage and computing can be used to

analyze these data. Nowadays, it is well known that the distributed middleware

solutions (e.g., Apache Hadoop) could be adopted to easy develop a distributed

version of a sequential algorithm without particular distributed skills. Indeed,

frameworks like Hadoop are attractive because they o�er the possibility of coding

full-�edged distributed applications with very low e�orts and, in some cases, by

just wrapping up in a proper way some existing applications. Indeed, a novice

205

6. CONCLUSION AND FUTURE WORKS

developer could use Hadoop to easy transform a stand-alone application in one

distributed with little e�ort using the general and common utilities of Hadoop.

Although these middleware solutions can facilitate a �painless transformation�

of an sequential implementation into one distributed, without any engineering and

pro�ling activities, some deployed solutions are not entirely fast and e�cient. In

fact, in this dissertation we have seen that some Hadoop-based naive implementa-

tions may su�er from some problems, as shown in Chapters 4 and 5. We have also

evaluated that some Hadoop-based applications on textbooks (e.g., those based

on word counts) may have many problems, such as: they are not resource-frugal;

they are very simple (few lines of codes which delegate to standard and general

Hadoop facilities); they are very general. In fact, also a novice programmer can

easy use and understanding these implementations.

Although MapReduce and Hadoop are very powerful computational paradigms

and programming environments, respectively, to exploit parallelism, relying on

the top level functions and macros o�ered by Hadoop does not allow to take

full advantage of the computational power of the hardware resources available.

For example, a solution must be entirely conceived in a distributed way, it must

ensure data locality and it must be based on the low-level I/O primitives that

Hadoop o�ers. In fact, a simple-minded use of such a powerful tool is not enough

to �cash in� all the advantages of distributed architectures. The easiness of use

implies a cost, that is the resulting implementations may not be able to fully

exploit the potential of a distributed system and they can have pitfalls.

Hadoop hides most of technicalities and transparently addresses some issues of

the distributed systems. In fact, this framework very well does many distributed

activities, such as: tasks scheduling, fault tolerance management, distributed �le

system management, coordinations, data input partitioning, data local comput-

ing, and so on. However, engineering activities and improvements in records input

readers, in map and/or reduce functions, and between map and reduce phases,

must be explicitly done by the developer.

In some case, the initial distributed solution obtained from simple mapping

(without understanding the internal details of Hadoop) might su�ce, but this is

not true for many problems and solutions. A deep knowledge of Hadoop could

impact positively on the development of an improved distributed application.

206

6. CONCLUSION AND FUTURE WORKS

We cannot a�ord to write ine�cient code in map/reduce functions, just because

we have multiple computers together, and, therefore, we can take the luxury of

wasting resources.

Therefore, from our experience, we have seen as the Hadoop facilities are

targeted to the general case, and according the problem to solve, accurate en-

gineering, tuning, pro�ling activities can improve greatly the performance with

respect to a naive MapReduce solution. In these cases, an engineering method-

ology based on the implementation of smart improvements driven by a careful

pro�ling activity, like in our dissertation, may lead to a much better experimental

performance. In our experience we have seen as using algorithm engineering can

be reduced disk I/O activities and network tra�c, maximized the CPU usage,

reduced the intermediate-data or improved the data partitioning strategy.

It is easy to write distributed applications with Hadoop, but it is very di�-

cult to make them e�cient, fast and scalable without a deep knowledge of the

framework itself, of distributed computing and hardware available. On the one

side, the implicit distributed programming can reduce the implementation work.

On the other side, a developer must evaluate how much performance loss exists.

An accurate design and engineering phase in Hadoop is vital to obtain fast and

scalable solutions. It is not enough to be a simple expert of the application do-

main (e.g., bioinformatics) to build programs on Hadoop, a programmer must

also be an expert of distributed systems, hardware, algorithm engineering, etc.

(e.g., [212]). In fact, in the era of implicit parallelism is yet required the expert of

distributed environments and algorithm engineering, which must have new skills

compared to the past. Therefore, the domain expert must be accompanied by a

person with these capabilities, or he must acquire these skills.

6.2 Future Directions

Our distributed implementation of algorithm by Fridrich et al., proposed in Chap-

ter 4, could be experimented on a very large number of images exploiting a bigger

cluster. In addition, it is also required to analyze techniques which reduce the di-

mension in bytes of a Reference Pattern without a signi�cant loss of information

207

6. CONCLUSION AND FUTURE WORKS

(e.g., [29]). In this way, it will be possible to e�ciently manage more �ngerprints.

Then, it is also suggested to exploit the data locality of the Reference Patterns

to compute the correlation values for each image. In addition, other massive

search methods for matching �ngerprints could also be evaluated. In fact, more

advanced research techniques such as composite-based �ngerprint search or short

digest �ngerprint search could be used, instead of the standard linear search.

Clustering the images in a dataset according the corresponding �ngerprint could

also be considered.

It is also possible to use the proposed improvements in Chapter 4 to develop

e�cient Hadoop-based variants of algorithms belonging to di�erent digital image

forensics domains. The image forgery detection algorithms, for example, are

based on the analysis of the PNU noise, like those discussed in [51, 61, 111].

These algorithms use a notion of camera �ngerprint and an execution pattern

similar to the one introduced by the Fridrich et al., but for a di�erent purpose.

Here, the absence of the camera �ngerprint in a region of the image under scrutiny,

taken by that camera, is used as a clue to determine whether the image has been

forged or not.

We also remark that our �ndings for SCI can be also helpful to develop e�-

cient Hadoop-based solutions for completely di�erent application domains. We

may consider the case of astronomical observations, where a set of exposures

portraying a same region of the sky and taken in di�erent moments of time, are

�stacked� and then combined to produce a single high-quality image that, in turn,

will be used to assemble a mosaic of images portraying a wider region of the sky

(see, e.g., [183]). In this case, we have both a huge amount of data to process and

an execution pattern that resembles the one used by the Fridrich et al. algorithm.

The improvements achieved by KCH (see Section 5.4) could be also adopted

in the framework HAFS (presented in Section 5.3) during the indexing phase. In

fact, KCH can be used as a pipeline for other bioinformatics applications. In

addition, HAFS could use more e�cient and fast solutions for computation of

dissimilarity measures. A Hadoop-based toolbox for bioinformatics applications

could be arranged starting from KCH and HAFS, extending our work to other

bioinformatics problems.

Some current experimentations of the algorithms for alignment-free sequence

208

6. CONCLUSION AND FUTURE WORKS

comparison use still �toy sequences� (i.e., few sequences, each of few KB or MB),

so these methods must be experimental evaluated on very large real sequences to

assess the real performance of these algorithms. The next step could be to exploit

the framework HAFS to speed up large-scale experimentations on real sequences

adopting large clusters (e.g., Amazon EC2 or Microsoft Azure). In addition, HAFS

could also be adapted and applied to metagenomics studies (e.g., [243, 246, 268]).

It could be interesting to use di�erent distributed middleware solutions to

solve the problems studied in this dissertation. In fact, as future direction, HAFS

and KCH could be transformed to use Apache Spark ([17, 304]) on the top of

Hadoop. For example, in-memory operations in Spark could speed up the pairwise

comparisons in HAFS.

As we have seen, in the Big Data era, only the distributed computing can

be used to manage and process large amounts of data. In any case, Hadoop

and MapReduce are not always the cure for all problems in Big Data era. In

fact, there could be other distributed middleware solutions (also customized for

a speci�c problem) to speed up a computation in Big Data world, and the same

middleware on di�erent architectural clusters could have di�erent performance.

Indeed, Appuswamy et al. in [21] said that map-intensive Hadoop jobs to do

relatively well for scale out, and shu�e-intensive jobs to do well on scale up. They

have �nd that scale out works better for CPU-intensive tasks since there are more

cores and more aggregate memory bandwidth. Instead, scale up works better

for shu�e-intensive tasks since it has fast intermediate storage and no network

bottleneck. An evaluation on such topics could use the Hadoop applications

proposed in this dissertation.

In addition, as we seen in Chapter 3, some solutions have been proposed to

improve Hadoop framework. In fact, Hadoop is a vital and evolving project,

therefore, some improvements experimented in this dissertation, such as the in-

mapper local aggregation proposed in Chapters 4 and 5, could be incorporated

in Hadoop in the future.

Finally, as an important future direction for this thesis, we believe that our

activities, such as algorithm engineering, tuning, pro�ling, experimental method-

ology and analyses could be adopted in other di�erent case studies with respect

to digital image forensics and bioinformatics.

209

Appendices

210

Appendix A

Bioinformatics

In this Appendix additional information about the Chapter 5 is gathered. In

particular, Section A.1 presents some information about FASTA �le format. Sec-

tion A.2 describes the state of the art on algorithms collecting k-mer statistics,

while in Section A.3 is illustrated the comparison between our Hadoop-based so-

lution for k-mer statistics, i.e., KCH, and other solutions for Cumulative Statistics

(CS).

A.1 FASTA File Format

FASTA format is a textual �le type for representing either nucleotide sequences

or peptide sequences, in which nucleotides or amino acids are depicted in the

standard IUB/IUPAC amino acid and nucleic acid codes. The FASTA format

also allows to use sequence names and other comments to precede the sequences.

In fact, a sequence in FASTA format begins with a single-line description, followed

by one or more lines of sequence characters. The description line is distinguished

from the sequence data by a greater-than (�>�) symbol in the �rst position of

the line. Other optional characters following this symbol are the identi�er of the

sequence and its possible description. A sequence ends when another description

line is starting. It is recommended that all lines of �le should be shorter than 80

characters.

211

A. BIOINFORMATICS

>SEQUENCE_1

TATAACCTCTTTGGTCCATACACGGTGATGCTGTACCTCACATGTTCCTCAAGCCAACAATGTTCCATTCCTCCTTACAT

AGTAATTTTCATTCTATTACATTCCATTCCATTCGAGTACATTGCATTCCGTTCCATTCCATTGCATTCCATTCGAATCC

TGTAAAGGTGTTTCTCCAAGGCTGGCTGCTGGCTGGAGACAGAAAACTTTTTTGTTTTAAGNTTTTTAGCAAACTCCTTC

GGTTCTGAGTGTTTTGAACGAAGACCTTGGAAGCTCTGGGTGGGATTCAGAAATGCTATACNCAGAGCATTCAGATGAGA

>SEQUENCE_2

TCCAGGTNTGTTTCTAACTCCTGCATTACTGATAATATGAAACCTAAACATATAAGCAAAACATATACTACATTCAAGGC

GTGGCTGGTATTGCCCTGTTATCAGGATTTCCTCTGGAGTTTCGGTGTGTGTTTGTTTGATGGCATCTTCGAGGACCCCT

TTTACTAAGTTTGCTTTCAAAATGGTCTCATAATTGTAATAGTACATAGAGGTAACATTATCATGCAGCTTTGGTCCATT

TTCTAAGATAGCTTTAGATTGGTCTTAAATTGAATTTCAAATTATAAAATGATGACCGTAAGTCACTCATGAATTTCTTT

TAGCATTAGGAGATATACCTAATGTAAATGATGAGTTAATGTGTGCAGCACACCAATATGGCACATGTATACATATGTAA

Figure A.1: An example of FASTA �le with two multi-lines sequences.

An example of a FASTA �le with multi-lines sequences is illustrated in Fig-

ure A.1.

A.2 State of the Art on Algorithms Collecting K-

mer Statistics

In this section we review the state of the art on algorithms collecting k-mer

statistics.

In the biological sciences, there are two basic versions of the general problem

of collecting k-mer statistics, as already discussed in Section 5.2.2, i.e., Local

Statistics (LS) and Cumulative Statistics (CS). The Local Statistics are very

useful in genomic and proteomic studies since such a statistics can be used to

infer information about function, structure and evolution of biological sequences

(e.g., [44, 118, 119, 137, 161, 169]). In addition, LS is also rapidly assuming a

central role in epigenomic studies (e.g., [117, 222]). On the other side, Cumulative

Statistics are essential for de novo genome assembly, certainly with the use of

Sanger sequencing technology (e.g., [148, 203]), and even more so with the use

of most of the up-to-date technologies in which assembly seems to be intimately

related to the construction of suitable de Bruijn graphs [71].

From the algorithmic point of view, both LS and CS can hardly be considered

as a di�cult problem. In addition, the amount of sequence data being produced

212

A. BIOINFORMATICS

nowadays makes both tasks challenging, both in terms of time and space. Due

to the pressing needs of the novel sequencing technologies, there has been a con-

siderable activity regarding mainly e�cient algorithms for CS, with LS receiving

virtually no attention. In general, for extracting LS, one could independently run

a CS tool for each sequence. However, this solution could not bene�t of the all

advantages of the algorithm and it could require an input �le for each sequence.

The corresponding algorithms and software systems that have been developed,

for the purposes of this research are best classi�ed as follows:

• The ones that compute CS exactly and that take advantage of computer

architectures to be resource-e�cient. They can be further subdivided ac-

cording to the architectural features that they exploit.

� Sequential systems or (stand-alone/non-parallel systems), e.g., Meryl

[200] and Tallymer [161].

� Multi-threading shared-memory systems, e.g., DSK [231], Jelly�sh [184],

KMC [83, 84], MSPKmerCounter [175]. Here many solutions are

disk-based, i.e., they either fall completely in the External Memory

paradigm ([2, 282]) for the design of algorithms or use essential as-

pects of it.

� Distributed systems, e.g., BioPig (k-mer counting module) [37, 209].

• The ones that estimate k-mer statistics, possibly �ltering out rare k-mers.

That is, k-mers that occur only once or a few times are typically not

counted, and in all other cases the count is a good approximation of the real

value. Here the resource-e�ciency is achieved by using sophisticated algo-

rithmic techniques, some of which have been devised recently to deal with

Big Data (see [26]). This category includes: BFCounter [194], Khmer [305],

KmerGenie [64], KmerStream [193] and Turtle [236]. These tools calculate

approximate statistics.

Algorithms for exacts statistics have a much broader use with respect to the

ones for approximate statistics, since those latter seem to be speci�cally dedi-

cated to assembly problems. For this reason, algorithms and software in the �rst

213

A. BIOINFORMATICS

category are the most relevant for this research. Therefore, in what follows, we

adhere as much as possible to the common features of the experimental method-

ology already used in the mentioned systems.

Table A.1 presents the main aspects of each of the algorithms available in the

literature for k-mer statistics, while Table A.2 presents a synopsis of the main

experiments that have been performed to assess the competitiveness of each of

the mentioned tools. A selection of algorithms for exact cumulative statistics is

presented in Section A.2.1.

Table A.1: Summary of the main features of each of the algorithms designed for
the collection of k-mer statistics. In view of the classi�cation given in Section A.2,
the �rst two columns of the table are self-explanatory. The column �Range of
K� indicates the operating range of algorithms with respect to k-mer length.
Two types of input come-up in applications: the �rst consisting of a collection of
sequences each up to a given length (called short sequences, e.g., read size) and the
second consisting of collection of sequences of arbitrary length, including reads.
The last column indicates the type of statistics that the algorithm computes,
while column 4 indicates whether it is exact or approximate.

Algorithm Class Range of

K

Exact and/or

Approximate

Statistics

Input Type Statistics

Type

KMC

(Deorowicz et

al. [83, 84])

Multi-threading

and disk-based

k ≤ 256 Exact Short sequences,

e.g., reads

CS

KAnalyze

(Audano and

Vannberg [24])

Multi-threading

and disk-based

k ≤ 31 Exact Sequences of

arbitrary length,

including reads

CS

Jelly�sh

(Marçais and

Kingsford

[184])

Multi-threading

and disk-based

k > 1 Exact and

approximate

Sequences of

arbitrary length,

including reads

CS

DSK (Rizk et

al. [231])

Multi-threading

and disk-based

k ≤ 31 Exact Sequences of

arbitrary length,

including reads

CS

214

A. BIOINFORMATICS

Table A.1: Continued. Summary of the main features of each of the algorithms
designed for the collection of k-mer statistics. In view of the classi�cation given in
Section A.2, the �rst two columns of the table are self-explanatory. The column
�Range of K� indicates the operating range of algorithms with respect to k-mer
length. Two types of input come-up in applications: the �rst consisting of a
collection of sequences each up to a given length (called short sequences, e.g.,
read size) and the second consisting of collection of sequences of arbitrary length,
including reads. The last column indicates the type of statistics that the algorithm
computes, while column 4 indicates whether it is exact or approximate.

Algorithm Class Range of

K

Exact and/or

Approximate

Statistics

Input Type Statistics

Type

BioPig -

k-mer

Counting

(Nordberg et

al. [209])

Distributed

System

k ≥ 1 Exact Short sequences,

e.g., reads

CS

MSPKC (Li

and Yan [175])

Multi-threading

and disk-based

k ≤ 64 Exact Short sequences,

e.g., reads

CS

BFCounter

(Melsted and

Pritchard

[194])

Multi-threading k ≤ 31 Exact and

approximate

Short sequences,

e.g., reads

CS

Tallymer

(Kurtz et al.

[161])

Sequential k ≤ 4, 961 Exact Sequences of

arbitrary length,

including reads

CS

Meryl (Miller

et al. [200])

Multi-threading k ≤ 32 Exact Sequences of

arbitrary length,

including reads

CS

Turtle (Roy et

al. [236])

Multi-threading k ≤ 64 Approximate Short sequences,

e.g., reads

CS

Khmer

(Zhang et al.

[305])

Sequential and

multi-threading

k ≤ 255 Approximate Short sequences,

e.g., reads

CS

215

A. BIOINFORMATICS

Table A.1: Continued. Summary of the main features of each of the algorithms
designed for the collection of k-mer statistics. In view of the classi�cation given in
Section A.2, the �rst two columns of the table are self-explanatory. The column
�Range of K� indicates the operating range of algorithms with respect to k-mer
length. Two types of input come-up in applications: the �rst consisting of a
collection of sequences each up to a given length (called short sequences, e.g.,
read size) and the second consisting of collection of sequences of arbitrary length,
including reads. The last column indicates the type of statistics that the algorithm
computes, while column 4 indicates whether it is exact or approximate.

Algorithm Class Range of

K

Exact and/or

Approximate

Statistics

Input Type Statistics

Type

KmerGenie

(Chikhi and

Medvedev [64])

Multi-threading k ≤ 121 Approximate Short sequences,

e.g., reads

CS

KmerStream

(Melsted and

Halldórsson

[193])

Sequential k ≥ 1 Approximate Short sequences,

e.g., reads

CS

216

A. BIOINFORMATICS

Table A.2: A synopsis of the experimental setup used to evaluate the algorithms
listed in Table A.1. The new columns, with respect to that table, indicate the
datasets used in the experimentation, the relevant parameters for the main exper-
iments, the algorithms used for comparison and the top performers, respectively.

Algorithm Datasets Main

Experiments

Comparison with Top

Algorithms

Tallymer

(Kurtz et al.

[161])

Whole genome

shotgun sequences

from maize (B73)

chromosome 8 (total

size 109 bp)

k = 20 Tallymer

Jelly�sh 1

(Marçais and

Kingsford

[184])

M.gallopavo from

Turkey genome (≈ 24

GB), Homo sapiens (3

GB), Drosophila

ananassae (3.5 GB),

Coxiella burnetii

(35.6 GB), Zea mays

(33 GB)

k = 22; k = 5, 10,

15, 20, 25, 30

Tallymer (serial)

1.3.4, meryl 5.4,

meryl 6.1

Jelly�sh 1

BFCounter

(Melsted and

Pritchard

[194])

Human genomic DNA

of 7.5 M 100 bp from

NA19240;

genome-wide

sequence data from

the 1000 Genomes

Project Pilot II

k = 25, 31 Jelly�sh 1 and naive

k-mer counting

Jelly�sh 1 and

BFCounter

217

A. BIOINFORMATICS

Table A.2: Continued. A synopsis of the experimental setup used to evaluate
the algorithms listed in Table A.1. The new columns, with respect to that table,
indicate the datasets used in the experimentation, the relevant parameters for the
main experiments, the algorithms used for comparison and the top performers,
respectively.

Algorithm Datasets Main

Experiments

Comparison with Top

Algorithms

DSK (Rizk et

al. [231])

Human genome

Illumia dataset

NA18507

(SRX016231);

Escherichia coli

(≈ 20.8 million of

reads of average

length 36 bp) and

Drosophila ananassae

(≈ 9.1 million of reads

of average length 150

bp) datasets

k = 27 for

comparisons with

other algorithms

on the NA18507

dataset; k = 21 for

E.coli DNA and

Drosophila RNA

BFCounter 0.2,

Jelly�sh 1.1.5

DSK-SSD,

Jelly�sh 1

KmerGenie

(Chikhi and

Medvedev [64])

Staphylococcus

aureus (size 2.8 MB),

human chromosome

14 (size 88 MB) and

Bombus impatiens

(size 250 MB)

k = 21, 31, 41, 51,

61, 71, 81

DSK KmerGenie

KMC 1

(Deorowicz et

al. [83])

Homo sapiens

NA19238 (353 GB)

and HG02057 (208

GB); Caenorhabditis

elegans (16.4 GB)

NA19238 with

k = 22, 25, 28, 31.

HG02057 and

Caenorhabditis

elegans with

k = 22, 28, 40, 55

Jelly�sh, BFCounter,

DSK

KMC 1,

Jelly�sh, DSK

BioPig -

pigKmer

(Nordberg et

al. [209])

Cow rumen

Metagenomic data

(100 MB- 500 GB)

k = 20 Tallymer (serial),

Kmernator

(MPI-version)

Kmernator,

BioPig

218

A. BIOINFORMATICS

Table A.2: Continued. A synopsis of the experimental setup used to evaluate
the algorithms listed in Table A.1. The new columns, with respect to that table,
indicate the datasets used in the experimentation, the relevant parameters for the
main experiments, the algorithms used for comparison and the top performers,
respectively.

Algorithm Datasets Main

Experiments

Comparison with Top

Algorithms

KAnalyze

(Audano and

Vannberg [24])

Human chromosome 1

(hg19 Chr1, 249 MB)

and NA18580 (1.5

million sequence

reads; 453 MB).

HG01889 (≈ 72 GB

with about a million

of reads)

k = 31 Jelly�sh 1.1.10, DSK

1.5280, custom Perl

script

KAnalyze,

Jelly�sh 1

Turtle (Roy et

al. [236])

D. Melanogaster (size

122 Mbp), G. Gallus

(size 1× 103 Mbp), Z.

Mays (size 2.9× 103

Mbp), H. Sapiens

(size 3.3× 103 Mbp)

k = 31, 48, 64 Jelly�sh, DSK,

BFCounter

cTurtle

Khmer

(Zhang et al.

[305])

5 soil metagenomic

read datasets: 1.90

GB, 2.17 GB, 3.14

GB, 4.05 GB, 5.00

GB (entire dataset)

k = 22 Tallymer 1.3.4,

Jelly�sh 1,

BFCounter 1.0, DSK

1.5031, KMC 0.3,

Turtle 0.3, KAnalyze

KMC, Turtle,

Jelly�sh 1

KmerStream

(Melsted and

Halldórsson

[193])

Dataset of 2, 656

whole genome

sequenced individuals

using Illumina HiSeq

sequencers. Homo

Sapiens chr 14 (36 M

reads) and B.

Impatiens (303 M

reads).

k = 21, 31 KmerGenie KmerStream

219

A. BIOINFORMATICS

Table A.2: Continued. A synopsis of the experimental setup used to evaluate
the algorithms listed in Table A.1. The new columns, with respect to that table,
indicate the datasets used in the experimentation, the relevant parameters for the
main experiments, the algorithms used for comparison and the top performers,
respectively.

Algorithm Datasets Main

Experiments

Comparison with Top

Algorithms

MSPKC (Li

and Yan [175])

Short-reads datasets

(bird 107 GB, snake

182 GB, �sh 137 GB,

soybean 40 GB)

Experiments on a

single thread with

k = 31 and various

levels of coverage.

Preliminary tests

on multi-threading

version called

MSPKmer-

Counter(MT)

Jelly�sh 1 (only

memory, also disk),

BFCounter

Jelly�sh 1

(RAM only),

MSPKC,

Jelly�sh 1

KMC2

(Deorowicz et

al. [84])

5 datasets from 10 to

313 GB

k = 28, 55 Jelly�sh 2, KAnalyze,

MSPKmerCounter,

Turtle, DSK, KMC 1.

KMC2,

Jelly�sh 2,

DSK

A.2.1 Algorithms for Exact Cumulative Statistics

Among the algorithms designed for CS, we have included in this study only the

ones that provide exact statistics. We have chosen the most representative ac-

cording to the literature, for each type of computer architecture we are interested

in. Moreover, we include the latest release of each algorithm since writing of this

dissertation.

The algorithms so selected are as follows. First, the most representative of the

algorithms that are disk-based and that work in a shared-memory environment

using multi-threading: KAnalyze [24], Jelly�sh2, an evolution of Jelly�sh [184],

KMC2 [84] and DSK [231]. Then, we selected BioPig (k-mer counting module)

[37, 209] as a representative of algorithms supported by distributed architectures.

It is to be pointed out that all these algorithms work by skipping all the k-mers

220

A. BIOINFORMATICS

of an input sequence containing at least one N character. We also observe that

BioPig and KMC2 have been designed to work on short sequences only. This could

imply that may exhibit very bad performances when processing long sequences

or fail at all to work.

A careful pro�ling of some of the most successful methods that have been

developed for CS is also presented in Section A.3. From these analyses, it is

evident that they do not scale well with computational resources.

In the next subsections we describe some popular tools used to exactly count

the k-mer frequencies.

A.2.1.1 Tallymer

The authors in [161] present Tallymer, a �exible and memory-e�cient collection

of programs for k-mer counting, indexing, and searching of large sequence sets.

Tallymer is part of the GenomeTools [114] software. The authors have employed

enhanced su�x arrays to compute the counts and construct the k-mer frequency

index from which they can e�ciently retrieve the counter of each k-mer. However,

Tallymer does not support multi-threading.

A.2.1.2 Meryl

Meryl [195] comes from the k-mer tool of the Celera assembler [200], and it is a

multi-threaded and multi-process k-mer counter. This tool is capable of gener-

ating the k-mer counting table and of performing simple operations on multiple

tables (e.g., adding counts, subtracting counts, logical operations) along with

reporting statistics on individual tables (e.g., histograms).

A.2.1.3 Jelly�sh

Marçais and Kingsford in [184] have proposed a k-mer counting algorithm called

Jelly�sh (version 1.x, i.e., v1.x), which is fast and memory e�cient. It is based

on a multi-threaded, lock-free hash table for counting k-mers up to 31 bases in

length (only v1.x). Jelly�sh stores k-mer counts in memory hash table, and makes

221

A. BIOINFORMATICS

use of disk storage to scale to larger datasets. It uses several lock-free data struc-

tures that exploit a widely available hardware operation called compare-and-swap

(CAS) to implement e�cient shared access to the data structures. In particular,

Jelly�sh uses lock-free queues for communication between worker threads and a

lock-free hash table to store the k-mer frequencies. Jelly�sh is also very memory

e�cient, in fact, it uses an reduced memory usage for a hash table entry and an

space-e�cient encoding of keys. In particular, it implements a key compression

scheme that allows it to use a constant amount of memory per key in the hash

table, regardless of the length k of the k-mers counted. It also uses a bit-packed

data structure to reduce wasted memory due to memory alignment requirements.

The tool stores only a part (pre�x) of the k-mer in the hash table, since its su�x

can be deduced from the hash position.

When the hash table is full, it could be written to disk as a list of key-

value records instead of doubling its size in memory. This situation occurs when

there is not enough memory to carry out the entire computation and, therefore,

intermediary results are saved to disk. Sorting the output has the advantage that

the results can be queried quickly using a binary search, and two or more hash

tables to be merged into one easily. The user could decide if use disk operation,

instead of do size doubling. In particular, Jelly�sh will detect when a hash table

needs to expand beyond the available memory and will, instead, write the current

k-mer counts to disk, clear the hash table and begin counting afresh.

The �nal phase is the writing, where the results are sorted and written to

disk. In this phase, the operations are bounded by I/O bandwidth.

The second version (v2.x) of Jelly�sh does not have any limitation on the size

of k-mers, unlike version 1.x which was limited to k ≤ 31. This version also o�ers

two way to count only high-frequency k-mers (meaning only k-mers with count

> 1), which reduces signi�cantly the memory usage. Both methods are based on

using Bloom �lters [39]. The �rst method is a one pass approach, which provides

approximate count for some percentage of the k-mers. The second method is a

two pass approach which provides exact count. In both methods, most of the

low-frequency k-mers are not reported.

222

A. BIOINFORMATICS

A.2.1.4 KAnalyze

Audano and Vannberg in [24] have presented KAnalyze, a Java program that

counts k-mers, and that can process large datasets with 2 GB of memory. The

counting phase takes place in two steps over two components, i.e., split component

and merge component. The split component writes sorted subsets of data to disk,

and the merge component accumulates counts from each subset. Split and merge

operations can be performed in multiple steps and, therefore, exploiting multi-

threading.

In particular, the split component reads k-mers into a memory array until it

is full. Then the array is sorted, and k-mers are counted by traversing the sorted

array. Each k-mer and its count are written to disk. The memory array is then

�lled with the next set of k-mers, and a new �le of k-mer counts is created. The

process repeats until all k-mers have been written. Finally, the merge component

reads k-mers and their counts from each �le, and sums the counts for each k-mer.

A.2.1.5 MSPKmerCounter

Li and Yan in [175] have described MSPKmerCounter (MSPKC), a disk-based

approach, to e�ciently perform k-mer counting for large genomes using a small

amount of memory. The approach is based on Minimum Substring Partitioning

(MSP) that breaks short reads into multiple disjoint partitions such that each

partition can be loaded into memory and processed individually. By leveraging

the overlaps among the k-mers derived from the same short read, MSP can achieve

big compression ratio so that the I/O cost can be signi�cantly reduced.

A.2.1.6 KMC

Preliminary Version of KMC In [83] Deorowicz et al. have proposed K-

mer Counter (KMC), a simple, e�cient, parallel disk-based algorithm for k-mer

counting. The basic idea is to obtain a compact on-disk dictionary structure

with k-mers as keys and their counts as values. The structure can then be read

sequentially, or individual k-mers (with their associated counts) can be found

using the standard binary search technique. The proposed technique follows the

223

A. BIOINFORMATICS

disk-based distribution sort paradigm. In the �rst phase, called distribution, the

reads are scanned one by one, all the k-mers are extracted from each and sent

each to one of multiple disk �les based on the k-mer pre�x of length p1. The �rst

phase starts with storing the data in bu�ers in the main memory where another

pre�x part, of length p2, is removed from each k-mer, and the pre�x counts are

maintained for further recovery. Once the bu�er reaches the prede�ned capacity,

its content is sent to a �le. The k-mers scattered over hundreds of �les are

the outcome of the distribution phase. Each �le corresponds to a unique pre�x

of length p1. In each �le, the k-mers are also grouped by their successive p2

symbols. Removing the pre�xes reduces the disk usage depending on the value of

k. The sorting phase collects the data from disk in the order of lexicographically

sorted pre�xes of length p1, it recovers the p2-symbol long pre�xes, then it sorts

the k-mers, it counts their frequencies (after sorting repeating k-mers are at

adjacent positions), and (optionally) it removes unique k-mers. These steps are

implemented as parallel algorithm using threads. In KMC the space resources are

bounded, i.e., the RAM usage is user-selected and the upper bound on the amount

of disk space can be approximately estimated from standard input parameters.

KMC2 Deorowicz et al. in [84] have presented a new version for KMC that

borrows from the e�cient architecture of preliminary version of KMC, but reduces

the disk usage several times (sometimes about 10 times) and improves the speed

usually about twice. The experiments also show that the memory usage of KMC2

is even smaller than its predecessor.

There are two main ideas behind these improvements. The �rst is the use

of signatures of k-mers that allow signi�cant reduction of temporary disk space.

These were used for the �rst time for the k-mer counting in MSPKmerCounter

[175], but the modi�cation in KMC2 signi�cantly reduces the main memory re-

quirements and the disk space. The second main novelty is the use of (k, x)-mers

for reduction of the amount of data to sort. In particular, instead of sorting some

amount of k-mers, the authors sort a much smaller portion of (k, x)-mers and

then obtain the statistics for k-mers in the post-processing phase.

Experiments show that it usually o�ers the fastest solution to the considered

problem, while demanding a relatively small amount of memory.

224

A. BIOINFORMATICS

A.2.1.7 DSK

Rizk et al. in [231] have presented Disk Streaming of K-mers (DSK), a streaming

algorithm for k-mer counting, which only requires a �xed user-de�ned amount

of memory and disk space. The multi-set of all k-mers present in the reads

is partitioned, and the partitions are saved to disk. Then, each partition is

separately loaded in memory in a temporary hash map. The k-mer counts are

returned by traversing each hash table. This tool uses little memory, but its

processing time is increased due to more iterations, thus the I/O is increased.

As the algorithm relies heavily on I/O to the disk, the authors also use a solid-

state drive (DSK-SSD variant). In this con�guration, the algorithm is no longer

limited by disk I/O and it could bene�t from multi-threading. DSK does not

provide random access to k-mer counts, but only an arbitrarily small subset of

k-mers is loaded in memory at any time.

A.2.1.8 BioPig

In [37] is introduced the BioPig sequence analysis toolkit as one of the solutions

that scale to data and computation. It is build on Hadoop and Pig data�ow

language [213]. Pig is a �exible data scripting language that uses Hadoop data

structure and MapReduce framework to process very large data �les in parallel

and combine the results (see Section 2.4.5 for details about Pig). In particular,

BioPig extends Pig with capability of sequence analysis.

Nordberg et al. in [209] have discussed the design principles of BioPig, they

give examples on use of this toolkit for speci�c sequence analysis tasks, and they

compare its performance with alternative solutions on di�erent platforms. Using

the BioPig modules, they provide a set of scripts that show the functionality

provided by the framework. Given a set of sequences, the module pigKmer of

BioPig computes the frequencies of each k-mer and outputs a histogram of the

k-mer counts. The histogram of the counts is generated in a second MapReduce

iteration. A number of variations of k-mer counting are available: count only the

number of unique reads that contain the k-mers or group k-mers within one or

two hamming distance.

The lasted BioPig version includes a query for only k-mer counting (kmer-

225

A. BIOINFORMATICS

Count.pig) [150]. It is a simple Hadoop-based version of k-mer counting that

presents some bottleneck, as experimented in Section 5.4.3.4.

Other Naive Hadoop-based Solutions Pahadia et al. in [217] have proposed

a naive Hadoop-based solution for k-mer counting similar to BioPig. In addition,

each input �le is only read line by line, and, from each line, the substrings of

length k are easily extracted. In [216] the authors have used this solution for

classi�cation of multi-genomic data with k ≤ 4. Another analogous algorithm for

cumulative statistics is given by Parsian in [220].

A.3 Comparison between KCH and Other Solu-

tions for CS

In this section we present some comparison results between our solution, i.e., KCH,

and some popular tools for CS for multi-threading environments. These tools are

experimented on a single slave node (see Section 5.4.3.2), while KCH uses the same

setting presented in Section 5.4.3.4.

We again recall that some of the considered algorithms provide, as output,

the k-mer counts in a �le saved using a human-readable format whereas other

algorithms return these statistics as a binary �le. In this last case, we include in

our performance also the time required to convert these binary �les in a human-

readable format, an operation that can be usually carried out using a support

tool provided with the k-mer counting algorithm. Some conversion tools are

non-parallel.

The selected programs are:

• KMC 2.3.0 (KMC2).

In KMC2 experiments we have selected our CS datasets using canonical

k-mers for k = 3, 7, 15, 31 varying the number of threads (4, 8, 16, 32). The

version of KMC 2.3.0 also works on k < 10. The KMC2 signature length

(used to extract the super k-mers) was 7. Other details are presented in

Section 5.4.3.4. Figure A.2 reports the results of the CS experiments for

226

A. BIOINFORMATICS

KMC2. For ease of comparison and for the convenience of the reader, we

also report the performance of KCH.

• DSK 2.0.5 (64 bits) with parallel dump (DSK).

In DSK experiments we have selected our CS datasets using canonical k-

mers for k = 7, 15, 31 varying the number of threads (4, 8, 16, 32). We have

not used k = 3, because k ≥ 4 in DSK 2.0.5. DSK uses a parallel tool for

transforming the binary representation of k-mers in textual one. Figure A.3

reports the results of the CS experiments for DSK. For ease of comparison

and for the convenience of the reader, we also report the performance of

KCH.

• Jelly�sh 2.2.0 (JF2).

In JF2 experiments we have selected our CS datasets (excluding CS_128GB)

using canonical k-mers for k = 3, 7, 15, 31 varying the number of threads

(4, 8, 16, 32). Figure A.4 reports the results of the CS experiments for JF2.

For ease of comparison and for the convenience of the reader, we also report

the performance of KCH. The dataset CS_128GB was excluded because the

execution time was estimated be very high.

• KAnalyze 0.9.7 (KA).

In KA experiments we have selected our CS datasets (excluding CS_128GB)

using canonical k-mers for k = 3, 7, 15, 31 varying the number of threads

(4, 8, 16, 32). Figure A.5 reports the results of the CS experiments for KA.

For ease of comparison and for the convenience of the reader, we also report

the performance of KCH. The dataset CS_128GB was excluded because the

execution time was estimated be very high.

Notice that each of the considered algorithm has been run using, as parame-

ters, the ones yielding the best performance.

227

A. BIOINFORMATICS

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KMC2 - 2GB

KCH - 8GB

KMC2 - 8GB

KCH - 32GB

KMC2 - 32GB

KCH - 128GB

KMC2 - 128GB

(a)

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KMC2 - 2GB

KCH - 8GB

KMC2 - 8GB

KCH - 32GB

KMC2 - 32GB

KCH - 128GB

KMC2 - 128GB

(b)

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KMC2 - 2GB

KCH - 8GB

KMC2 - 8GB

KCH - 32GB

KMC2 - 32GB

KCH - 128GB

KMC2 - 128GB

(c)

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KMC2 - 2GB

KCH - 8GB

KMC2 - 8GB

KCH - 32GB

KMC2 - 32GB

KCH - 128GB

KMC2 - 128GB

(d)

Figure A.2: Cumulative Statistics. (a) Scalability of KCH with respect to KMC2,
for the case k = 3, for all datasets, which are indicated in the �gure according to
the legend to the right. The abscissa gives the number of workers/threads used,
while the ordinate gives the corresponding time in seconds. (b)-(d) As in (a), but
for k = 7, k = 15 and k = 31, respectively.

228

A. BIOINFORMATICS

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

DSK - 2GB

KCH - 8GB

DSK - 8GB

KCH - 32GB

DSK - 32GB

KCH - 128GB

DSK - 128GB

(a)

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

DSK - 2GB

KCH - 8GB

DSK - 8GB

KCH - 32GB

DSK - 32GB

KCH - 128GB

DSK - 128GB

(b)

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

DSK - 2GB

KCH - 8GB

DSK - 8GB

KCH - 32GB

DSK - 32GB

KCH - 128GB

DSK - 128GB

(c)

Figure A.3: Cumulative Statistics. (a) Scalability of KCH with respect to DSK,
for the case k = 7, for all datasets, which are indicated in the �gure according to
the legend to the right. The abscissa gives the number of workers/threads used,
while the ordinate gives the corresponding time in seconds. (b)-(c) As in (a), but
for k = 15 and k = 31, respectively.

229

A. BIOINFORMATICS

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

4.0E+03

4.5E+03

5.0E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

JF2 - 2GB

KCH - 8GB

JF2 - 8GB

KCH - 32GB

JF2 - 32GB

(a)

0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

1.2E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

JF2 - 2GB

KCH - 8GB

JF2 - 8GB

KCH - 32GB

JF2 - 32GB

(b)

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

4.0E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

JF2 - 2GB

KCH - 8GB

JF2 - 8GB

KCH - 32GB

JF2 - 32GB

(c)

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4.0E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

JF2 - 2GB

KCH - 8GB

JF2 - 8GB

KCH - 32GB

JF2 - 32GB

(d)

Figure A.4: Cumulative Statistics. (a) Scalability of KCH with respect to Jelly�sh,
for the case k = 3, for all datasets, which are indicated in the �gure according to
the legend to the right. The abscissa gives the number of workers/threads used,
while the ordinate gives the corresponding time in seconds. (b)-(d) As in (a), but
for k = 7, k = 15 and k = 31, respectively.

230

A. BIOINFORMATICS

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KA - 2GB

KCH - 8GB

KA - 8GB

KCH - 32GB

KA - 32GB

(a)

0.0E+00

5.0E+02

1.0E+03

1.5E+03

2.0E+03

2.5E+03

3.0E+03

3.5E+03

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KA - 2GB

KCH - 8GB

KA - 8GB

KCH - 32GB

KA - 32GB

(b)

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KA - 2GB

KCH - 8GB

KA - 8GB

KCH - 32GB

KA - 32GB

(c)

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

0 4 8 12 16 20 24 28 32

Time

in seconds

Number of total workers/threads

KCH - 2GB

KA - 2GB

KCH - 8GB

KA - 8GB

KCH - 32GB

KA - 32GB

(d)

Figure A.5: Cumulative Statistics. (a) Scalability of KCH with respect to KAna-
lyze, for the case k = 3, for all datasets, which are indicated in the �gure according
to the legend to the right. The abscissa gives the number of workers/threads used,
while the ordinate gives the corresponding time in seconds. (b)-(d) As in (a), but
for k = 7, k = 15 and k = 31, respectively.

231

Appendix B

Publications during the Ph.D.

In Appendix B are listed the publications of Gianluca Roscigno written during the

Ph.D. years. Section B.1 presents the list of published papers, while Section B.2

gives the list of submitted or accepted papers (but not yet published). We also

include the papers not covered in this thesis.

The updated publications of Gianluca Roscigno are listed at OrcID: http:

//orcid.org/0000-0001-6034-150X.

B.1 Personal Publications

List of papers published during the Ph.D. studies:

• Nuovi Metodi di Indagine basati su Immagini Digitali e Rumore

Caratteristico del Sensore (Giuseppe Cattaneo, Umberto Ferraro Petrillo,

Mario Ianulardo, Gianluca Roscigno), In IISFA Memberbook 2015 DIGI-

TAL FORENSICS: Condivisione della conoscenza tra i membri dell'IISFA

ITALIAN CHAPTER, 2015, [50].

• A PNU-Based Technique to Detect Forged Regions in Digital Im-

ages (Giuseppe Cattaneo, Umberto Ferraro Petrillo, Gianluca Roscigno,

Carmine De Fusco), In Advanced Concepts for Intelligent Vision Systems

(ACIVS 2015), 2015, DOI: 10.1007/978-3-319-25903-1_42, [51].

232

http://orcid.org/0000-0001-6034-150X
http://orcid.org/0000-0001-6034-150X
http://www.amazon.it/IISFA-Memberbook-2015-DIGITAL-FORENSICS-ebook/dp/B018KYASUE
http://www.amazon.it/IISFA-Memberbook-2015-DIGITAL-FORENSICS-ebook/dp/B018KYASUE
http://dx.doi.org/10.1007/978-3-319-25903-1_42
http://dx.doi.org/10.1007/978-3-319-25903-1_42

B. PUBLICATIONS DURING THE PH.D.

• Alignment-free Sequence Comparison over Hadoop for Compu-

tational Biology (Giuseppe Cattaneo, Umberto Ferraro Petrillo, Ra�aele

Giancarlo, Gianluca Roscigno), In 44rd International Conference on Parallel

ProcessingWorkshops (ICCPW 2015), 2015, DOI: 10.1109/ICPPW.2015.28,

[49].

• Reliable Voice-based Transactions over VoIP Communications

(Giuseppe Cattaneo, Luigi Catuogno, Fabio Petagna, Gianluca Roscigno),

In Ninth International Conference on Innovative Mobile and Internet Ser-

vices in Ubiquitous Computing (IMIS 2015), 2015, DOI:

10.1109/IMIS.2015.20, [47].

• A Possible Pitfall in the Experimental Analysis of Tampering De-

tection Algorithms (Giuseppe Cattaneo, Gianluca Roscigno), In 17th

International Conference on Network-Based Information Systems (NBiS),

2014, DOI: 10.1109/NBiS.2014.82, [53].

• A Scalable Approach to Source Camera Identi�cation over Hadoop

(Giuseppe Cattaneo, Gianluca Roscigno, Umberto Ferraro Petrillo), In IEEE

28th International Conference on Advanced Information Networking and

Applications (AINA), 2014, DOI: 10.1109/AINA.2014.47, [55].

• Experimental Evaluation of an Algorithm for the Detection of

Tampered JPEG Images (Giuseppe Cattaneo, Gianluca Roscigno, Um-

berto Ferraro Petrillo), In Information and Communication Technology -

Proceedings of Second IFIP TC5/8 International Conference (ICT-EurAsia

2014), 2014, DOI: 10.1007/978-3-642-55032-4_66, [54].

233

http://dx.doi.org/10.1109/ICPPW.2015.28
http://dx.doi.org/10.1109/ICPPW.2015.28
http://dx.doi.org/10.1109/IMIS.2015.20
http://dx.doi.org/10.1109/NBiS.2014.82
http://dx.doi.org/10.1109/NBiS.2014.82
http://dx.doi.org/10.1109/AINA.2014.47
http://dx.doi.org/10.1007/978-3-642-55032-4_66
http://dx.doi.org/10.1007/978-3-642-55032-4_66

B. PUBLICATIONS DURING THE PH.D.

B.2 Submitted or Accepted Papers

List of submitted or accepted papers (but not yet published) during the years of

Ph.D., in addition papers to be submitted are also reported.

• Speeding up Alignment-Free Sequence Comparison Algorithms

with Hadoop (Giuseppe Cattaneo, Umberto Ferraro Petrillo, Ra�aele Gi-

ancarlo, Gianluca Roscigno) - Submitted at Journal of Supercomputing.

• Improving the Experimental Analysis of Tampered Image Detec-

tion Algorithms for Biometric Systems (Giuseppe Cattaneo, Umberto

Ferraro Petrillo, Gianluca Roscigno) - to be submitted.

• Achieving E�cient Source Camera Identi�cation on Hadoop

(Giuseppe Cattaneo, Umberto Ferraro Petrillo, Gianluca Roscigno) - Sub-

mitted at Concurrency and Computation: Practice and Experience Journal.

• Ensuring Non-repudiability of Human Conversations over VoIP

Communications (Giuseppe Cattaneo, Luigi Catuogno, Fabio Petagna

and Gianluca Roscigno) - Accepted at International Journal of Communi-

cation Networks and Distributed Systems (in press).

• The Design and Engineering of a Fast Hadoop Algorithm for K-

mer Statistics (Umberto Ferraro Petrillo, Gianluca Roscigno, Giuseppe

Cattaneo, Ra�aele Giancarlo) - to be submitted.

234

References

[1] Thomas Abeel, Yves Van de Peer, and Yvan Saeys. Java-ML: a machine

learning library. Journal of Machine Learning Research, 10:931�934, 2009.

[2] Alok Aggarwal and Je�rey S. Vitter. The input/output complexity of sort-

ing and related problems. Communications of the ACM, 31(9):1116�1127,

1988.

[3] Frances Allen, G. Almasi, Wanda Andreoni, D. Beece, Bruce J. Berne,

A. Bright, Jose Brunheroto, Calin Cascaval, J. Castanos, Paul Coteus, et al.

Blue Gene: a vision for protein science using a peta�op supercomputer. IBM

Systems Journal, 40(2):310�327, 2001.

[4] Jonas S. Almeida, Alexander Grüneberg, Wolfgang Maass, and Susana

Vinga. Fractal MapReduce decomposition of sequence alignment. Algo-

rithms for Molecular Biology, 7(1):1�12, 2012.

[5] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and

David J. Lipman. Basic local alignment search tool. Journal of Molecular

Biology, 215(3):403�410, 1990.

[6] Amazon Web Services. Amazon Elastic MapReduce (Amazon EMR).

(Available from: https://aws.amazon.com/elasticmapreduce/), 2015.

[Accessed on 28 December 2015].

[7] Amazon Web Services. Amazon Elastic Compute Cloud (EC2). (Available

from: http://aws.amazon.com/), 2016. [Accessed on 10 January 2016].

235

https://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/

REFERENCES

[8] Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the Spring Joint Com-

puter Conference, April 18-20, 1967, pages 483�485. ACM, 1967.

[9] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, Dhruba Borthakur,

Srikanth Kandula, Scott Shenker, and Ion Stoica. PACMan: coordinated

memory caching for parallel jobs. In Proceedings of the 9th USENIX con-

ference on Networked Systems Design and Implementation, pages 1�14.

USENIX Association, 2012.

[10] Greg R. Andrews. Foundations of parallel and distributed programming.

Addison-Wesley Longman Publishing Co., Inc., 1999.

[11] Ayesha Anwar, K. R. Krish, and Ali R. Butt. On the use of microservers

in supporting Hadoop applications. In IEEE International Conference on

Cluster Computing (CLUSTER), 2014, pages 66�74. IEEE, 2014.

[12] Apache Software Foundation. Hive. (Available from: https://hive.

apache.org/), 2014. [Accessed on 14 January 2016].

[13] Apache Software Foundation. Apache Hadoop NextGen MapReduce

(YARN). (Available from: http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html), 2015. [Accessed on 28 De-

cember 2015].

[14] Apache Software Foundation. Hadoop. (Available from: http://hadoop.

apache.org/), July 2015. [Accessed on 15 July 2015].

[15] Apache Software Foundation. HBase. (Available from: https://hbase.

apache.org/), 2015. [Accessed on 14 January 2016].

[16] Apache Software Foundation. Pig. (Available from: https://pig.apache.

org/), 2015. [Accessed on 14 January 2016].

[17] Apache Software Foundation. Spark. (Available from: http://spark.

apache.org/), 2015. [Accessed on 29 December 2015].

236

https://hive.apache.org/
https://hive.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/
http://hadoop.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/
https://pig.apache.org/
https://pig.apache.org/
http://spark.apache.org/
http://spark.apache.org/

REFERENCES

[18] Apache Wiki. Hadoop Wiki - PoweredBy. (Available from: https://wiki.

apache.org/hadoop/PoweredBy), 2016. [Accessed on 29 January 2016].

[19] Alberto Apostolico and Fabio Cunian. The subsequence composition of

polypeptides. Journal of Computational Biology, 17:1011�1049, 2010.

[20] Alberto Apostolico and Ra�aele Giancarlo. Sequence alignment in molec-

ular biology. Journal of Computational Biology, 5(2):173�196, 1998.

[21] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion Hod-

son, and Antony Rowstron. Scale-up vs scale-out for Hadoop: Time to

rethink? In Proceedings of the 4th annual Symposium on Cloud Comput-

ing, pages 20:1�20:13. ACM, 2013.

[22] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D. Joseph,

Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,

Ion Stoica, et al. A view of cloud computing. Communications of the ACM,

53(4):50�58, 2010.

[23] Mikhail J. Atallah. Algorithms and theory of computation handbook. CRC

press, 1998.

[24] Peter Audano and Fredrik Vannberg. KAnalyze: a fast versatile pipelined

k-mer toolkit. Bioinformatics, 30(14):2070�2072, 2014.

[25] Yurii S. Aulchenko, Dirk-Jan De Koning, and Chris Haley. Genomewide

rapid association using mixed model and regression: a fast and simple

method for genomewide pedigree-based quantitative trait loci association

analysis. Genetics, 177(1):577�585, 2007.

[26] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-

nifer Widom. Models and issues in data stream systems. In Proceedings of

the Twenty-�rst ACM SIGMOD-SIGACT-SIGART Symposium on Princi-

ples of Database Systems, PODS '02, pages 1�16, New York, NY, USA,

2002. ACM.

237

https://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/PoweredBy

REFERENCES

[27] Sebastiano Battiato, Giovanni Maria Farinella, Giovanni Gallo, and En-

rico Messina. Naturalness classi�cation of images into DCT domain. In

IS&T/SPIE Electronic Imaging, volume 7250, pages 1�12. International

Society for Optics and Photonics, 2009.

[28] Sevinç Bayram, Hüsrev Taha Sencar, and Nasir Memon. E�cient tech-

niques for sensor �ngerprint matching in large image and video databases.

In IS&T/SPIE Electronic Imaging, volume 7541, pages 1�8. International

Society for Optics and Photonics, 2010.

[29] Sevinç Bayram, Hüsrev Taha Sencar, and Nasir Memon. E�cient sensor

�ngerprint matching through �ngerprint binarization. IEEE Transactions

on Information Forensics and Security, 7(4):1404�1413, 2012.

[30] Sevinç Bayram, Hüsrev Taha Sencar, Nasir Memon, and Ismail Avcibas.

Source camera identi�cation based on CFA interpolation. In IEEE Inter-

national Conference on Image Processing (ICIP), volume 3, pages 69�72.

IEEE, 2005.

[31] BBC News Business. Big Data: are you ready for blast-o�? (Available

from: http://www.bbc.com/news/business-26383058), 2014. [Accessed

on 4 March 2014].

[32] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,

323(5919):1297�1298, 2009.

[33] Mordechai Ben-Ari. Principles of concurrent and distributed programming.

Pearson Education, 2006.

[34] Bonnie Berger, Jian Peng, and Mona Singh. Computational solutions for

omics data. Nature Reviews Genetics, 14(5):333�346, 2013.

[35] Riza Berkan. Big Data: a blessing and a curse. (Available from: http:

//www.searchenginejournal.com/big-data-blessing/53528/), 2012.

[Accessed on 2 December 2015].

238

http://www.bbc.com/news/business-26383058
http://www.searchenginejournal.com/big-data-blessing/53528/
http://www.searchenginejournal.com/big-data-blessing/53528/

REFERENCES

[36] Fran Berman, Geo�rey Fox, and Anthony J. G. Hey. Grid computing:

making the global infrastructure a reality, volume 2. John Wiley & Sons,

Inc., 2003.

[37] Karan Bhatia and Zhong Wang. BioPig: developing cloud computing ap-

plications for next-generation sequence analysis. Technical report, Ernest

Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2011.

[38] Bioinformatics.org. CS201 High Performance Computing. (Available from:

http://www.bioinformatics.org/wiki/CS201_High_Performance_

Computing), 2013. [Accessed on 17 December 2015].

[39] Burton H. Bloom. Space/time trade-o�s in hash coding with allowable

errors. Communications of the ACM, 13(7):422�426, 1970.

[40] Marcus Boden, Martin Schöneich, Sebastian Horwege, Sebastian Lindner,

Chris Leimeister, and Burkhard Morgenstern. Alignment-free sequence

comparison with spaced k-mers. In OASIcs-OpenAccess Series in Infor-

matics, volume 34, pages 24�34. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2013.

[41] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud com-

puting: principles and paradigms, volume 87. John Wiley & Sons, Inc.,

2010.

[42] Camera and Imaging Products Association. Production, shipment of dig-

ital still cameras 2013. (Available from: http://www.cipa.jp/stats/

documents/e/d-2013_e.pdf), 2013. [Accessed on 16 November 2014].

[43] Camera and Imaging Products Association. Production, shipment of dig-

ital still cameras 2014. (Available from: http://www.cipa.jp/stats/

documents/e/d-2014_e.pdf), 2014. [Accessed on 15 December 2015].

[44] Davide Campagna, Chiara Romualdi, Nicola Vitulo, Micky Del Favero,

Matej Lexa, Nicola Cannata, and Giorgio Valle. RAP: a new computer

program for de novo identi�cation of repeated sequences in whole genomes.

Bioinformatics, 21(5):582�588, 2005.

239

http://www.bioinformatics.org/wiki/CS201_High_Performance_Computing
http://www.bioinformatics.org/wiki/CS201_High_Performance_Computing
http://www.cipa.jp/stats/documents/e/d-2013_e.pdf
http://www.cipa.jp/stats/documents/e/d-2013_e.pdf
http://www.cipa.jp/stats/documents/e/d-2014_e.pdf
http://www.cipa.jp/stats/documents/e/d-2014_e.pdf

REFERENCES

[45] Alberto Castellini, Giuditta Franco, and Vincenzo Manca. A dictionary

based informational genome analysis. BMC Genomics, 13(1):485, 2012.

[46] Aniello Castiglione, Giuseppe Cattaneo, Maurizio Cembalo, and Umberto

Ferraro Petrillo. Experimentations with source camera identi�cation and

online social networks. Journal of Ambient Intelligence and Humanized

Computing, 4(2):265�274, 2013.

[47] Giuseppe Cattaneo, Luigi Catuogno, Fabio Petagna, and Gianluca

Roscigno. Reliable voice-based transactions over VoIP communications. In

9th International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS 2015), pages 101�108, July 2015.

[48] Giuseppe Cattaneo, Pompeo Faruolo, and Umberto Ferraro Petrillo. Ex-

periments on improving sensor pattern noise extraction for source camera

identi�cation. In Sixth International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS), pages 609�616, July

2012.

[49] Giuseppe Cattaneo, Umberto Ferraro Petrillo, Ra�aele Giancarlo, and Gi-

anluca Roscigno. Alignment-free sequence comparison over Hadoop for

computational biology. In 44th International Conference on Parallel Pro-

cessing Workshops (ICCPW 2015), pages 184�192. IEEE, September 2015.

[50] Giuseppe Cattaneo, Umberto Ferraro Petrillo, Mario Ianulardo, and Gi-

anluca Roscigno. IISFA Memberbook 2015 DIGITAL FORENSICS: Con-

divisione della conoscenza tra i membri dell'IISFA ITALIAN CHAPTER,

chapter XII - Nuovi metodi di indagine basati su immagini digitali e rumore

caratteristico del sensore, pages 301�324. IISFA, 2015.

[51] Giuseppe Cattaneo, Umberto Ferraro Petrillo, Gianluca Roscigno, and

Carmine De Fusco. A PNU-based technique to detect forged regions in dig-

ital images. In Advanced Concepts for Intelligent Vision Systems (ACIVS

2015), pages 486�498. Springer, October 2015.

[52] Giuseppe Cattaneo and Giuseppe Italiano. Algorithm engineering. ACM

Computing Surveys (CSUR), 31(3es):582�585, 1999.

240

REFERENCES

[53] Giuseppe Cattaneo and Gianluca Roscigno. A possible pitfall in the ex-

perimental analysis of tampering detection algorithms. In 17th Interna-

tional Conference on Network-Based Information Systems (NBiS 2014),

pages 279�286, September 2014.

[54] Giuseppe Cattaneo, Gianluca Roscigno, and Umberto Ferraro Petrillo. Ex-

perimental evaluation of an algorithm for the detection of tampered JPEG

images. In Information and Communication Technology - Proceedings of

Second IFIP TC5/8 International Conference, ICT-EurAsia 2014, Bali,

Indonesia, April 14-17, 2014, volume 8407, pages 643�652. Springer, April

2014.

[55] Giuseppe Cattaneo, Gianluca Roscigno, and Umberto Ferraro Petrillo. A

scalable approach to source camera identi�cation over Hadoop. In IEEE

28th International Conference on Advanced Information Networking and

Applications (AINA 2014), pages 366�373. IEEE, May 2014.

[56] Cheong Xin Chan, Guillaume Bernard, Olivier Poirion, James M. Hogan,

and Mark A. Ragan. Inferring phylogenies of evolving sequences without

multiple sequence alignment. Scienti�c Reports, 4(6504), 2014.

[57] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vec-

tor machines. ACM Transactions on Intelligent Systems and Technology

(TIST), 2(3):1�27, 2011. (Available from: http://www.csie.ntu.edu.tw/

~cjlin/libsvm).

[58] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.

Gruber. Bigtable: a distributed storage system for structured data. ACM

Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[59] Abbas Cheddad, Joan Condell, Kevin Curran, and Paul Mc Kevitt. Digi-

tal image steganography: survey and analysis of current methods. Signal

processing, 90(3):727�752, 2010.

241

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

REFERENCES

[60] Mo Chen, Jessica Fridrich, Miroslav Goljan, and Jan Luká². Determin-

ing image origin and integrity using sensor noise. IEEE Transactions on

Information Forensics and Security, 3(1):74�90, 2008.

[61] Mo Chen, Jessica Fridrich, Jan Luká², and Miroslav Goljan. Imaging sensor

noise as digital X-ray for revealing forgeries. In Information Hiding, pages

342�358. Springer, 2007.

[62] Yanpei Chen, Sara Alspaugh, and Randy Katz. Interactive analytical pro-

cessing in Big Data systems: A cross-industry study of MapReduce work-

loads. Proceedings of the VLDB Endowment, 5(12):1802�1813, 2012.

[63] Jinkui Cheng, Fuliang Cao, and Zhihua Liu. AGP: a multi-methods web

server for alignment-free genome phylogeny. Molecular Biology and Evolu-

tion, pages 1�6, 2013.

[64] Rayan Chikhi and Paul Medvedev. Informed and automated k-mer size

selection for genome assembly. Bioinformatics, 30(1):31�37, 2013.

[65] Junho Choi, Chang Choi, Byeongkyu Ko, Dongjin Choi, and Pankoo Kim.

Detecting web based DDoS attack using MapReduce operations in cloud

computing environment. Journal of Internet Services and Information Se-

curity (JISIS), 3(3/4):28�37, November 2013.

[66] Benny Chor, David Horn, Nick Goldman, Yaron Levy, Tim Massingham,

et al. Genomic DNA k-mer spectra: models and modalities. Genome

Biology, 10(10):1�10, 2009.

[67] Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by compression. IEEE

Transactions on Information Theory, 51(4):1523�1545, 2005.

[68] Cisco. Cisco Visual Networking Index: global mobile data tra�c forecast

update 2014�2019. (Available from: http://www.cisco.com/c/en/

us/solutions/collateral/service-provider/visual-networking-

index-vni/white_paper_c11-520862.html), 2015. [Accessed on 2

January 2016].

242

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html

REFERENCES

[69] Cloudera. Data helps solve the world's biggest problems. (Available from:

http://www.cloudera.com), 2016. [Accessed on 10 January 2016].

[70] Matteo Comin and Davide Verzotto. Beyond �xed-resolution alignment-

free measures for mammalian enhancers sequence comparison. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 11:628�637,

2014.

[71] Phillip E. C. Compeau, Pavel A. Pevzner, and Glenn Tesler. How to apply

de Bruijn graphs to genome assembly. Nature Biotechnology, 29(11):987�

991, 2011.

[72] Javier Conejero, Pete Burnap, Omer Rana, and Je�rey Morgan. Scaling

archived social media data analysis using a Hadoop cloud. In IEEE Sixth

International Conference on Cloud Computing (CLOUD), 2013, pages 685�

692. IEEE, 2013.

[73] Contrail Project. Contrail: Assembly of large genomes using cloud com-

puting. (Available from: http://sourceforge.net/projects/contrail-

bio/), 2013. [Accessed on 30 December 2014].

[74] George F. Coulouris, Jean Dollimore, and Tim Kindberg. Distributed sys-

tems: concepts and design. Pearson education, 2005.

[75] Fábio Coutinho, Eduardo Ogasawara, Daniel De Oliveira, Vanessa Bragan-

holo, Alexandre A. B. Lima, Alberto M. R. Dávila, and Marta Mattoso.

Data parallelism in bioinformatics work�ows using Hydra. In Proceedings of

the 19th ACM International Symposium on High Performance Distributed

Computing, pages 507�515. ACM, 2010.

[76] CRM. Salesforce Customer Success Platform. (Available from: http://

www.salesforce.com/), 2016. [Accessed on 10 January 2016].

[77] Crossbow Project. Crossbow: Genotyping from short reads using cloud

computing. (Available from: http://bowtie-bio.sourceforge.net/

crossbow/index.shtml), 2013. [Accessed on 30 December 2014].

243

http://www.cloudera.com
http://sourceforge.net/projects/contrail-bio/
http://sourceforge.net/projects/contrail-bio/
http://www.salesforce.com/
http://www.salesforce.com/
http://bowtie-bio.sourceforge.net/crossbow/index.shtml
http://bowtie-bio.sourceforge.net/crossbow/index.shtml

REFERENCES

[78] Frederica Darema. The SPMD model: past, present and future. In Recent

Advances in Parallel Virtual Machine and Message Passing Interface, pages

1�1. Springer, 2001.

[79] Toon De Pessemier, Kris Vanhecke, Simon Dooms, and Luc Martens.

Content-based recommendation algorithms on the Hadoop MapReduce

framework. In 7th International Conference on Web Information Systems

and Technologies (WEBIST-2011), pages 237�240. Ghent University, De-

partment of Information Technology, 2011.

[80] Dieter De Witte, Michiel Van Bel, Pieter Audenaert, Piet Demeester, Bart

Dhoedt, Klaas Vandepoele, and Jan Fostier. A parallel, distributed-memory

framework for comparative motif discovery. In Parallel Processing and Ap-

plied Mathematics, pages 268�277. Springer, 2014.

[81] Je�rey Dean and Sanjay Ghemawat. MapReduce: simpli�ed data pro-

cessing on large clusters. Operating Systems Design and Implementation

(OSDI), pages 137�150, 2004.

[82] Je�rey Dean and Sanjay Ghemawat. MapReduce: simpli�ed data process-

ing on large clusters. Communications of the ACM, 51(1):107�113, 2008.

[83] Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, and Szymon Grabowski.

Disk-based k-mer counting on a PC. BMC Bioinformatics, 14(1):160, 2013.

[84] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka

Debudaj-Grabysz. KMC 2: fast and resource-frugal k-mer counting. Bioin-

formatics, 31(10):1569�1576, 2015.

[85] DFRWS. DFRWS (Digital Forensics Research Conference). (Available from:

http://dfrws.org), 2001. [Accessed on 16 December 2015].

[86] Disco Project. Disco MapReduce. (Available from: http://discoproject.

org/), 2014. [Accessed on 14 June 2014].

[87] Distributed.net. Distributed.net main page. (Available from: http://www.

distributed.net/Main_Page), 2015. [Accessed on 9 December 2015].

244

http://dfrws.org
http://discoproject.org/
http://discoproject.org/
http://www.distributed.net/Main_Page
http://www.distributed.net/Main_Page

REFERENCES

[88] Ciprian Dobre and Fatos Xhafa. Parallel programming paradigms and

frameworks in Big Data era. International Journal of Parallel Program-

ming, pages 1�29, 2013.

[89] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, and Leigh

Orf. Damaris: How to e�ciently leverage multicore parallelism to achieve

scalable, jitter-free I/O. In IEEE International Conference on Cluster Com-

puting (CLUSTER), 2012, pages 155�163. IEEE, 2012.

[90] Jake Drew and Michael Hahsler. Strand: fast sequence comparison using

MapReduce and locality sensitive hashing. In Proceedings of the 5th ACM

Conference on Bioinformatics, Computational Biology, and Health Infor-

matics, pages 506�513. ACM, 2014.

[91] Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Bio-

logical sequence analysis: probabilistic models of proteins and nucleic acids.

Cambridge University Press, New York, NY, USA, 1998.

[92] Robert C. Edgar. MUSCLE: multiple sequence alignment with high accu-

racy and high throughput. Nucleic Acids Research, 32(5):1792�1797, 2004.

[93] Victor Eijkhout. Introduction to High Performance Scienti�c Computing.

Lulu.com, 2015.

[94] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-

Hee Bae, Judy Qiu, and Geo�rey Fox. Twister: a runtime for iterative

MapReduce. In Proceedings of the 19th ACM International Symposium on

High Performance Distributed Computing, pages 810�818. ACM, 2010.

[95] Khaled Elmeleegy. Piranha: optimizing short jobs in Hadoop. Proceedings

of the VLDB Endowment, 6(11):985�996, 2013.

[96] Tamer Elsayed, Jimmy Lin, and Douglas W. Oard. Pairwise document

similarity in large collections with MapReduce. In Proceedings of the 46th

Annual Meeting of the Association for Computational Linguistics on Hu-

man Language Technologies, pages 265�268, 2008.

245

REFERENCES

[97] Constantinos Evangelinos and Chris N. Hill. Cloud computing for paral-

lel scienti�c HPC applications: Feasibility of running coupled atmosphere-

ocean climate models on Amazon's EC2. In 1st Workshop on Cloud Com-

puting and its Applications (CCA), pages 1�6, 2008.

[98] Hany Farid. Exposing digital forgeries from JPEG ghosts. IEEE Transac-

tions on Information Forensics and Security, 4(1):154�160, 2009.

[99] FBI - Computer Forensics Labs. RCFL program annual report for �scal

year 2008. (Available from: http://www.fbi.gov/news/stories/2009/

august/rcfls_081809), 2008. [Accessed on 16 December 2015].

[100] Corrado Federici. AlmaNebula: a computer forensics framework for the

cloud. Procedia Computer Science, 19:139�146, 2013.

[101] Xin Feng, Robert Grossman, and Lincoln Stein. PeakRanger: a cloud-

enabled peak caller for ChIP-seq data. BMC Bioinformatics, 12(1):1�11,

2011.

[102] Paolo Ferragina, Ra�aele Giancarlo, Valentina Greco, Giovanni Manzini,

and Gabriel Valiente. Compression-based classi�cation of biological se-

quences and structures via the universal similarity metric: experimental

assessment. BMC Bioinformatics, 8:252, 2007.

[103] Benjamin Fish, Jeremy Kun, Adám D Lelkes, Lev Reyzin, and György

Turán. On the computational complexity of MapReduce. In Distributed

Computing, volume 9363, pages 1�15. Springer, 2015.

[104] Michael J. Flynn. Some computer organizations and their e�ectiveness.

IEEE Transactions on Computers, 100(9):948�960, 1972.

[105] Lukas Forer, Tomislav Lipic, Sebastian Schonherr, Hansi Weisensteiner,

Davor Davidovic, Florian Kronenberg, and Enis Afgan. Delivering bioin-

formatics MapReduce applications in the cloud. In 37th International Con-

vention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), 2014, pages 373�377. IEEE, 2014.

246

http://www.fbi.gov/news/stories/2009/august/rcfls_081809
http://www.fbi.gov/news/stories/2009/august/rcfls_081809

REFERENCES

[106] Ian Foster and Carl Kesselman. What is the grid. Daily News and Infor-

mation for the Global Grid Community, 1(6), 2002.

[107] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and

grid computing 360-degree compared. In Grid Computing Environments

Workshop, 2008, (GCE'08), pages 1�10. IEEE, 2008.

[108] Geo�rey Fox, Xiaohong Qiu, Scott Beason, Jong Choi, Jaliya Ekanayake,

Thilina Gunarathne, Mina Rho, Haixu Tang, Neil Devadasan, and Gilbert

Liu. Biomedical case studies in data intensive computing. In Cloud Com-

puting, volume 5931, pages 2�18. Springer, 2009.

[109] Christopher Frank. Forbes: improving decision making in the world

of Big Data. (Available from: http://www.forbes.com/sites/

christopherfrank/2012/03/25/improving-decision-making-in-

the-world-of-big-data/), 2012. [Accessed on 2 December 2015].

[110] Jessica Fridrich, Miroslav Goljan, and Rui Du. Steganalysis based on JPEG

compatibility. In International Symposium on the Convergence of IT and

Communications (ITCom), volume 4518, pages 275�280. International So-

ciety for Optics and Photonics, 2001.

[111] Jessica Fridrich, Jan Luká², and Miroslav Goljan. Detecting digital image

forgeries using sensor pattern noise. In SPIE, Electronic Imaging, Security,

Steganography, and Watermarking of Multimedia Contents VIII, volume

6072, pages 1�11, 2006.

[112] Massimo Gaggero, Simone Leo, Simone Manca, Federico Santoni, Omar

Schiaratura, and Gianluigi Zanetti. Parallelizing bioinformatics applica-

tions with MapReduce. Cloud Computing and its Applications, pages 22�23,

2008.

[113] Peter B. Galvin, Greg Gagne, and Abraham Silberschatz. Operating system

concepts - Ninth edition. John Wiley & Sons, Inc., 2013.

[114] Genome Informatics Research Group and Center for Bioinformatics, Uni-

versity of Hamburg. GenomeTools - the versatile open source genome anal-

247

http://www.forbes.com/sites/christopherfrank/2012/03/25/improving-decision-making-in-the-world-of-big-data/
http://www.forbes.com/sites/christopherfrank/2012/03/25/improving-decision-making-in-the-world-of-big-data/
http://www.forbes.com/sites/christopherfrank/2012/03/25/improving-decision-making-in-the-world-of-big-data/

REFERENCES

ysis software. (Available from: http://genometools.org), 2016. [Accessed

on 25 January 2016].

[115] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The Google �le

system. ACM SIGOPS Operating Systems Review, 37(5):29�43, 2003.

[116] Ra�aele Giancarlo, Simona E. Rombo, and Filippo Utro. Compressive

biological sequence analysis and archival in the era of high-throughput se-

quencing technologies. Brie�ngs in Bioinformatics, 15(3):390�406, 2014.

[117] Ra�aele Giancarlo, Simona E. Rombo, and Filippo Utro. Epigenomic k-mer

dictionaries: shedding light on how sequence composition in�uences in vivo

nucleosome positioning. Bioinformatics, 2015.

[118] Ra�aele Giancarlo, Davide Scaturro, and Filippo Utro. Textual data com-

pression in computational biology: a synopsis. Bioinformatics, 25:1575�

1586, 2009.

[119] Ra�aele Giancarlo, Davide Scaturro, and Filippo Utro. Textual data com-

pression in computational biology: algorithmic techniques. Computer Sci-

ence Review, 6(1):1�25, 2012.

[120] Thomas Gloe. Feature-based forensic camera model identi�cation. In

Transactions on Data Hiding and Multimedia Security VIII, pages 42�62.

Springer, 2012.

[121] Thomas Gloe, Karsten Borowka, and Antje Winkler. Feature-based camera

model identi�cation works in practice. In Information Hiding, pages 262�

276. Springer, 2009.

[122] Miroslav Goljan, Jessica Fridrich, and Tomá² Filler. Large scale test of

sensor �ngerprint camera identi�cation. In IS&T/SPIE, Electronic Imag-

ing, Security and Forensics of Multimedia Contents XI, volume 7254, pages

1�12. International Society for Optics and Photonics, 2009.

[123] Miroslav Goljan, Jessica Fridrich, and Tomá² Filler. Managing a large

database of camera �ngerprints. In SPIE Conference on Media Forensics

248

http://genometools.org

REFERENCES

and Security, volume 7541, pages 1�12. International Society for Optics and

Photonics, 2010.

[124] Navid Golpayegani and Milton Halem. Cloud computing for satellite data

processing on high end compute clusters. In IEEE International Conference

on Cloud Computing, pages 88�92. IEEE, 2009.

[125] Google. Cloud Data�ow. (Available from: https://cloud.google.com/

dataflow/), 2015. [Accessed on 16 January 2016].

[126] Google. Google Cloud Platform. (Available from: https://cloud.google.

com/appengine/), 2015. [Accessed on 10 January 2016].

[127] Jim Gray and Alex Szalay. eScience - a transformed scienti�c

method. In presentation to the Computer Science and Technology

Board of the National Research Council (NRC-CSTB). (Avail-

able from: http://research.microsoft.com/en-us/um/people/gray/

talks/nrc-cstb_escience.ppt), 2007.

[128] Valentina Greco and Ra�aele Giancarlo. Grid-K: a cometa VO service

for compression-based classi�cation of biological sequences and structures.

Symposium GRID Open Days at the University of Palermo, Italy, pages

87�93, 2007.

[129] Alessandro Guarino. Digital forensics as a Big Data challenge. In ISSE 2013

Securing Electronic Business Processes, pages 197�203. Springer, 2013.

[130] Martyn Guest, Giovanni Aloisio, Richard Kenway, et al. The scienti�c

case for HPC in Europe 2012-2020. Technical report, PRACE, Octo-

ber 2012. http://www.prace-ri.eu/prace-the-scientific-case-for-

hpc/, 2012.

[131] Dan Gus�eld. Algorithms on strings, trees, and sequences: computer science

and computational biology. Cambridge University Press, New York, NY,

USA, 1997.

[132] John L. Gustafson. Reevaluating Amdahl's law. Communications of the

ACM, 31(5):532�533, 1988.

249

https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
http://research.microsoft.com/en-us/um/people/gray/talks/nrc-cstb_escience.ppt
http://research.microsoft.com/en-us/um/people/gray/talks/nrc-cstb_escience.ppt
http://www.prace-ri.eu/prace-the-scientific-case-for-hpc/
http://www.prace-ri.eu/prace-the-scientific-case-for-hpc/

REFERENCES

[133] Per Brinch Hansen. The architecture of concurrent programs. Prentice-Hall,

Inc., 1977.

[134] Harvard-Lipper Center for Computational Genetics. Reverse and/or com-

plement DNA sequences. (Available from: http://arep.med.harvard.

edu/labgc/adnan/projects/Utilities/revcomp.html), 2016. [Accessed

on 6 March 2016].

[135] Seyyed Mohsen Hashemi and Amid Khatibi Bardsiri. Cloud vs. Grid com-

puting. ARPN Journal of Systems and Software, 2(5), 2012.

[136] Bernhard Haubold. Alignment-free phylogenetics and population genetics.

Brie�ngs in Bioinformatics, 15(3):407�418, 2014.

[137] John Healy, Elizabeth E. Thomas, Jacob T. Schwartz, and Michael Wigler.

Annotating large genomes with exact word matches. Genome Research,

13(10):2306�2315, 2003.

[138] Dominique Heger. Hadoop performance tuning - a pragmatic & iterative

approach. CMG Journal, 4:97�113, 2013.

[139] Christopher M. Hill, Carl H. Albach, Sebastian G. Angel, and Mihai Pop.

K-mulus: strategies for BLAST in the cloud. In Parallel Processing and

Applied Mathematics, pages 237�246. Springer, 2014.

[140] Michael Höhl and Mark A. Ragan. Is multiple-sequence alignment required

for accurate inference of phylogeny? Systematic Biology, 56(2):206�221,

2007.

[141] Sebastian Horwege, Sebastian Lindner, Marcus Boden, Klaus Hatje, Mar-

tin Kollmar, Chris-André Leimeister, and Burkhard Morgenstern. Spaced

words and kmacs: fast alignment-free sequence comparison based on inex-

act word matches. Nucleic Acids Research, 42(W1):7�11, 2014.

[142] Yongjian Hu, Chang-Tsun Li, and Zhimao Lai. Fast source camera iden-

ti�cation using matching signs between query and reference �ngerprints.

Multimedia Tools and Applications, 74(18):7405�7428, 2014.

250

http://arep.med.harvard.edu/labgc/adnan/projects/Utilities/revcomp.html
http://arep.med.harvard.edu/labgc/adnan/projects/Utilities/revcomp.html

REFERENCES

[143] Shadi Ibrahim, Hai Jin, Lu Lu, Li Qi, Song Wu, and Xuanhua Shi. Evaluat-

ing MapReduce on virtual machines: the Hadoop case. In Cloud Computing,

volume 5931, pages 519�528. Springer, 2009.

[144] Illumina. Human genome Illumina dataset. (Available from:

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA010/

SRA010896/SRX016231/), May 2015. [Accessed on 4 May 2015].

[145] Illumina. An introduction to Next-Generation Sequencing Technol-

ogy. (Available from: http://www.illumina.com/content/dam/

illumina-marketing/documents/products/illumina_sequencing_

introduction.pdf), 2016. [Accessed on 19 January 2016].

[146] Intel - Universal Parallel Computing Research Centers. Parallel comput-

ing: background. (Available from: http://www.intel.com/pressroom/

kits/upcrc/ParallelComputing_backgrounder.pdf), 2008. [Accessed on

9 January 2016].

[147] Joab Jackson. Google service analyzes live streaming data. (Available

from: http://www.infoworld.com/d/business-intelligence/google-

service-analyzes-live-streaming-data-245079), June 2014. [Ac-

cessed on 3 December 2015].

[148] David B. Ja�e, Jonathan Butler, Sante Gnerre, Evan Mauceli, Kerstin

Lindblad-Toh, Jill P. Mesirov, Michael C. Zody, and Eric S. Lander. Whole-

genome sequence assembly for mammalian genomes: Arachne 2. Genome

Research, 13(1):91�96, 2003.

[149] Law Jia Jge. The history, evolution & trends in distributed comput-

ing. (Available from: https://prezi.com/9gobleqbzgp-/the-history-

evolution-trends-in-distributed-computing/), 2013. [Accessed on 9

December 2015].

[150] JGI-Bioinformatics. BioPig - GitHub. (Available from: https://github.

com/JGI-Bioinformatics/biopig), November 2015. [Accessed on 11

November 2015].

251

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA010/SRA010896/SRX016231/
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA010/SRA010896/SRX016231/
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://www.intel.com/pressroom/kits/upcrc/ParallelComputing_backgrounder.pdf
http://www.intel.com/pressroom/kits/upcrc/ParallelComputing_backgrounder.pdf
http://www.infoworld.com/d/business-intelligence/google-service-analyzes-live-streaming-data-245079
http://www.infoworld.com/d/business-intelligence/google-service-analyzes-live-streaming-data-245079
https://prezi.com/9gobleqbzgp-/the-history-evolution-trends-in-distributed-computing/
https://prezi.com/9gobleqbzgp-/the-history-evolution-trends-in-distributed-computing/
https://github.com/JGI-Bioinformatics/biopig
https://github.com/JGI-Bioinformatics/biopig

REFERENCES

[151] Shrinivas B. Joshi. Apache Hadoop performance-tuning methodologies and

best practices. In Proceedings of the 3rd ACM/SPEC International Con-

ference on Performance Engineering, pages 241�242. ACM, 2012.

[152] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berriman,

Benjamin P. Berman, and Phil Maechling. Scienti�c work�ow applications

on Amazon EC2. In 5th IEEE International Conference on E-Science Work-

shops, 2009, pages 59�66. IEEE, 2009.

[153] Scott D. Kahn. On the future of genomic data. Science, 331(6018):728�729,

2011.

[154] Alan Kaminsky. BIG CPU, BIG DATA: solving the world's toughest com-

putational problems with parallel computing. Mountain View, CA: Creative

Commons, 2013.

[155] Ramin Karimi, Ladjel Bellatreche, Patrick Girard, Ahcene Boukorca, and

Andras Hajdu. BINOS4DNA: bitmap indexes and NoSQL for identifying

species with DNA signatures through metagenomics samples. In Infor-

mation Technology in Bio- and Medical Informatics, pages 1�14. Springer,

2014.

[156] David R. Kelley, Michael C. Schatz, Steven L. Salzberg, et al. Quake:

quality-aware detection and correction of sequencing errors. Genome Biol-

ogy, 11(11):1�13, 2010.

[157] Ankit Khandelwal. Business insights from Big Data. (Available

from: http://bigdataanalytics.blogspot.it/2010/10/business-

insights-from-big-data.html), October 2013. [Accessed on 7 October

2013].

[158] Vinh Ngoc Khuc, Chaitanya Shivade, Rajiv Ramnath, and Jay Ra-

manathan. Towards building large-scale distributed systems for Twitter

sentiment analysis. In Proceedings of the 27th Annual ACM Symposium on

Applied Computing, pages 459�464. ACM, 2012.

252

http://bigdataanalytics.blogspot.it/2010/10/business-insights-from-big-data.html
http://bigdataanalytics.blogspot.it/2010/10/business-insights-from-big-data.html

REFERENCES

[159] Yong-Il Kim, Yoo-Kang Ji, Sun Park, Ok-kyoon Ha, Izzat Alsmadi, Ikdam

AlHami, Saif Kazakzeh, Soyoung Hwang, Donghui Yu, Byung Do Chung,

et al. Big text data clustering using class labels and semantic feature based

on Hadoop of cloud computing. International Journal of Software Engi-

neering and its Applications, 8(4):1�10, 2014.

[160] Kenji Kurosawa, Kenro Kuroki, and Naoki Saitoh. CCD �ngerprint

method-identi�cation of a video camera from videotaped images. In Inter-

national Conference on Image Processing (ICIP), volume 3, pages 537�540,

1999.

[161] Stefan Kurtz, Apurva Narechania, Joshua C. Stein, and Doreen Ware. A

new method to compute k-mer frequencies and its application to annotate

large repetitive plant genomes. BMC Genomics, 9(1):517, 2008.

[162] Yang Lai and Shi ZhongZhi. An e�cient data mining framework on Hadoop

using Java persistence API. In IEEE 10th International Conference on

Computer and Information Technology (CIT), 2010, pages 203�209. IEEE,

2010.

[163] Ben Langmead, Kasper D. Hansen, Je�rey T. Leek, et al. Cloud-scale RNA-

sequencing di�erential expression analysis with Myrna. Genome Biology,

11(8):1�11, 2010.

[164] Ben Langmead, Michael C. Schatz, Jimmy Lin, Mihai Pop, and Steven L.

Salzberg. Searching for SNPs with cloud computing. Genome Biology,

10(11):1�10, 2009.

[165] Ben Langmead, Cole Trapnell, Mihai Pop, Steven L. Salzberg, et al. Ultra-

fast and memory-e�cient alignment of short DNA sequences to the human

genome. Genome Biology, 10(3):R25, 2009.

[166] Jooyoung Lee and Sungyong Un. Digital forensics as a service: a case study

of forensic indexed search. In International Conference on ICT Convergence

(ICTC), pages 499�503. IEEE, 2012.

253

REFERENCES

[167] Yeonhee Lee and Youngseok Lee. Toward scalable Internet tra�c measure-

ment and analysis with Hadoop. ACM SIGCOMM Computer Communica-

tion Review, 43(1):5�13, 2013.

[168] Youngseok Lee, Wonchul Kang, and Hyeongu Son. An Internet tra�c

analysis method with MapReduce. In IEEE/IFIP Network Operations and

Management Symposium Workshops (NOMS Wksps), 2010, pages 357�361.

IEEE, 2010.

[169] Arnaud Lefebvre, Thierry Lecroq, Hélene Dauchel, and Joël Alexandre.

FORRepeats: detects repeats on entire chromosomes and between genomes.

Bioinformatics, 19(3):319�326, 2003.

[170] Chris-André Leimeister, Marcus Boden, Sebastian Horwege, Sebastian

Lindner, and Burkhard Morgenstern. Fast alignment-free sequence com-

parison using spaced-word frequencies. Bioinformatics, 30(14):1991�1999,

2014.

[171] Simone Leo, Federico Santoni, and Gianluigi Zanetti. Biodoop: bioin-

formatics on Hadoop. In International Conference on Parallel Processing

Workshops, 2009 (ICPPW'09), pages 415�422. IEEE, 2009.

[172] Kuo-Bin Li. ClustalW-MPI: ClustalW analysis using distributed and par-

allel computing. Bioinformatics, 19(12):1585�1586, 2003.

[173] Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R. Butt,

and Nicholas Fuller. MRONLINE: MapReduce online performance tuning.

In Proceedings of the 23rd International Symposium on High-performance

Parallel and Distributed Computing, pages 165�176. ACM, 2014.

[174] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. SOAP: short

oligonucleotide alignment program. Bioinformatics, 24(5):713�714, 2008.

[175] Yang Li and Xifeng Yan. MSPKmerCounter: a fast and memory e�cient

approach for k-mer counting. draft, (Available from: http: // cs. ucsb.

edu/ ~yangli/ paper/ bio14_ li. pdf), 2014.

254

http://cs.ucsb.edu/~yangli/paper/bio14_li.pdf
http://cs.ucsb.edu/~yangli/paper/bio14_li.pdf

REFERENCES

[176] Ross A. Lippert, Haiyan Huang, and Michael S. Waterman. Distributional

regimes for the number of k-word matches between two random sequences.

Proceedings of the National Academy of Sciences, 99(22):13980�13989, 2002.

[177] Yang Liu, Xiaohong Jiang, Huajun Chen, Jun Ma, and Xiangyu Zhang.

MapReduce-based pattern �nding algorithm applied in motif detection for

prescription compatibility network. In Advanced Parallel Processing Tech-

nologies, pages 341�355. Springer, 2009.

[178] Scott Lloyd and Quinn Snell. Accelerated large-scale multiple sequence

alignment. BMC Bioinformatics, 12:466, 2011.

[179] Glenn Lockwood. DNA sequencing: Not quite HPC yet. (Available

from: http://www.nextplatform.com/2015/03/03/dna-sequencing-

not-quite-hpc-yet/), 2015. [Accessed on 11 February 2016].

[180] Wei Lu, Jun Huang, and Lin Hong. Massive data MapReduce �ngerprint

discriminant algorithm based on Hadoop. In Applied Mechanics and Mate-

rials, volume 263, pages 2655�2660. Trans Tech Publications, 2012.

[181] Jan Luká², Jessica Fridrich, and Miroslav Goljan. Digital camera iden-

ti�cation from sensor pattern noise. IEEE Transactions on Information

Forensics and Security, 1:205�214, November 2006.

[182] Nancy A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[183] David Makovoz and I�at Khan. Mosaicking with MOPEX. In Astronomical

Data Analysis Software and Systems XIV, volume 347, pages 81�85, 2005.

[184] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for e�-

cient parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764�

770, 2011.

[185] Ami Marowka. The GRID: Blueprint for a new computing infrastructure.

Scalable Computing: Practice and Experience, 3(3), 2001.

255

http://www.nextplatform.com/2015/03/03/dna-sequencing-not-quite-hpc-yet/
http://www.nextplatform.com/2015/03/03/dna-sequencing-not-quite-hpc-yet/

REFERENCES

[186] Marco Masseroli, Barend Mons, Erik Bongcam-Rudlo�, Stefano Ceri,

Alexander Kel, François Rechenmann, Frederique Lisacek, and Paolo Ro-

mano. Integrated Bio-Search: challenges and trends for the integration,

search and comprehensive processing of biological information. BMC Bioin-

formatics, 15(1):1�15, 2014.

[187] Marco Masseroli, Matteo Picozzi, Giorgio Ghisalberti, and Stefano Ceri.

Explorative search of distributed bio-data to answer complex biomedical

questions. BMC Bioinformatics, 15(1):1�14, 2014.

[188] MATLAB. MATLAB Distributed Computing Server. (Available from:

http://www.mathworks.com/products/distriben/index.html), August

2013. [Accessed on 17 August 2013].

[189] MATLAB. MATLAB Parallel Computing Toolbox. (Available from: http:

//www.mathworks.com/products/parallel-computing/), August 2013.

[Accessed on 17 August 2013].

[190] Andréa Matsunaga, Maurício Tsugawa, and José Fortes. CloudBLAST:

combining MapReduce and virtualization on distributed resources for

bioinformatics applications. In IEEE Fourth International Conference on

eScience, 2008. eScience'08, pages 222�229. IEEE, 2008.

[191] Suzanne J. Matthews and Ti�ani L. Williams. MrsRF: an e�cient MapRe-

duce algorithm for analyzing large collections of evolutionary trees. BMC

Bioinformatics, 11(Suppl 1):1�9, 2010.

[192] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kris-

tian Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler,

Stacey Gabriel, Mark Daly, et al. The genome analysis toolkit: a

MapReduce framework for analyzing next-generation DNA sequencing

data. Genome Research, 20(9):1297�1303, 2010.

[193] Páll Melsted and Bjarni V. Halldórsson. KmerStream: streaming algo-

rithms for k-mer abundance estimation. Bioinformatics, 30(24):3541�3547,

2014.

256

http://www.mathworks.com/products/distriben/index.html
http://www.mathworks.com/products/parallel-computing/
http://www.mathworks.com/products/parallel-computing/

REFERENCES

[194] Pall Melsted and Jonathan K. Pritchard. E�cient counting of k-mers in

DNA sequences using a Bloom �lter. BMC Bioinformatics, 12(1):1�7, 2011.

[195] Meryl. Getting started with Meryl. (Available from: http://kmer.

sourceforge.net/wiki/index.php/Getting_Started_with_Meryl),

2012. [Accessed on 30 June 2015].

[196] Cade Metz. Meet the data brains behind the rise of Facebook. (Available

from: http://www.wired.com/2013/02/facebook-data-team/), 2013.

[Accessed on 2 December 2015].

[197] Microsoft Corporation. Dryad. (Available from: http://research.

microsoft.com/en-us/projects/dryad/), 2011. [Accessed on 19 June

2014].

[198] Microsoft Corporation. Azure. (Available from: https://azure.

microsoft.com), 2015. [Accessed on 28 December 2015].

[199] M. Kivanc Mihcak, Igor Kozintsev, and Kannan Ramchandran. Spatially

adaptive statistical modeling of wavelet image coe�cients and application

to denoising. In IEEE International Conference on Acoustics, Speech, and

Signal Processing, volume 6, pages 3253�3256. IEEE, Mar 1999.

[200] Jason R. Miller, Arthur L. Delcher, Sergey Koren, Eli Venter, Brian P.

Walenz, Anushka Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and

Granger Sutton. Aggressive assembly of pyrosequencing reads with mates.

Bioinformatics, 24(24):2818�2824, 2008.

[201] Bernard M. E. Moret. Towards a discipline of experimental algorithmics.

Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth

DIMACS Implementation Challenges, 59:197�213, 2002.

[202] David W. Mount. Sequence and genome analysis. Bioinformatics: Cold

Spring Harbour Laboratory Press: Cold Spring Harbour, 2, 2004.

[203] Eugene W. Myers, Granger G. Sutton, Art L. Delcher, Ian M. Dew, Dan P.

Fasulo, Michael J. Flanigan, Saul A. Kravitz, Clark M. Mobarry, Knut

257

http://kmer.sourceforge.net/wiki/index.php/Getting_Started_with_Meryl
http://kmer.sourceforge.net/wiki/index.php/Getting_Started_with_Meryl
http://www.wired.com/2013/02/facebook-data-team/
http://research.microsoft.com/en-us/projects/dryad/
http://research.microsoft.com/en-us/projects/dryad/
https://azure.microsoft.com
https://azure.microsoft.com

REFERENCES

H. J. Reinert, Karin A. Remington, et al. A whole-genome assembly of

drosophila. Science, 287(5461):2196�2204, 2000.

[204] National Center for Biotechnology Information European (NCBI) and

Bioinformatics Institute (EBI). NCBI/EBI sequence read archive. (Avail-

able from: http://www.ncbi.nlm.nih.gov/sra/), 2015. [Accessed on 4

May 2015].

[205] National Center for Biotechnology Information (NCBI). BLAST: Basic

Local Alignment Search Tool. (Available from: http://blast.ncbi.nlm.

nih.gov/Blast.cgi), 2014. [Accessed on 30 December 2014].

[206] Saul B. Needleman and Christian D. Wunsch. A general method applicable

to the search for similarities in the amino acid sequence of two proteins.

Journal of Molecular Biology, 48(3):443�453, 1970.

[207] Matti Niemenmaa, Aleksi Kallio, André Schumacher, Petri Klemelä, Eija

Korpelainen, and Keijo Heljanko. Hadoop-BAM: directly manipulating

next generation sequencing data in the cloud. Bioinformatics, 28(6):876�

877, 2012.

[208] NIST. NIST Cloud Computing Program. (Available from: http://www.

nist.gov/itl/cloud/), 2015. [Accessed on 2 January 2016].

[209] Henrik Nordberg, Karan Bhatia, Kai Wang, and Zhong Wang. BioPig: a

Hadoop-based analytic toolkit for large-scale sequence data. Bioinformat-

ics, 29(23):3014�3019, 2013.

[210] Graeme Noseworthy. Infographic: managing the big �ood of Big Data in

digital marketing. (Available from: http://analyzingmedia.com/2012/

infographic-big-flood-of-big-data-in-digital-marketing/), 2012.

[Accessed on 2 December 2015].

[211] Kary Ocaña and Daniel de Oliveira. Parallel computing in genomic research:

advances and applications. Advances and Applications in Bioinformatics

and Chemistry: AABC, 8:23, 2015.

258

http://www.ncbi.nlm.nih.gov/sra/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.nist.gov/itl/cloud/
http://www.nist.gov/itl/cloud/
http://analyzingmedia.com/2012/infographic-big-flood-of-big-data-in-digital-marketing/
http://analyzingmedia.com/2012/infographic-big-flood-of-big-data-in-digital-marketing/

REFERENCES

[212] Aisling O'Driscoll, Jurate Daugelaite, and Roy D. Sleator. 'Big Data',

Hadoop and cloud computing in genomics. Journal of Biomedical Infor-

matics, 46(5):774�781, 2013.

[213] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and

Andrew Tomkins. Pig latin: a not-so-foreign language for data processing.

In Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data, pages 1099�1110. ACM, 2008.

[214] Owen O'Malley. Terabyte sort on Apache Hadoop. Yahoo, (Available from:

http: // sortbenchmark. org/ YahooHadoop. pdf), pages 1�3, 2008.

[215] Openstack.org. OpenStack. (Available from: https://www.openstack.

org/), 2015. [Accessed on 2 January 2016].

[216] Mayank Pahadia, Akash Srivastava, Divyang Srivastava, and Nagamma

Patil. Classi�cation of multi-genomic data using MapReduce paradigm.

In International Conference on Computing, Communication & Automation

(ICCCA), 2015, pages 678�682. IEEE, 2015.

[217] Mayank Pahadia, Akash Srivastava, Divyang Srivastava, and Nagamma

Patil. Genome data analysis using MapReduce paradigm. In Second Inter-

national Conference on Advances in Computing and Communication Engi-

neering (ICACCE), 2015, pages 556�559. IEEE, 2015.

[218] Gary Palmer et al. A road map for digital forensic research. In First Digital

Forensic Research Workshop, Utica, New York, pages 27�30, 2001.

[219] Christos H. Papadimitriou. Computational complexity. John Wiley & Sons,

Inc., 2003.

[220] Mahmoud Parsian. Data algorithms - recipes for scaling up with Hadoop

and Spark. O'Reilly Media, July 2015.

[221] Luca Pinello, Giosuè Lo Bosco, Bret Hanlon, and Guo-Cheng Yuan. A

motif-independent metric for DNA sequence speci�city. BMC Bioinformat-

ics, 12(1), 2011.

259

http://sortbenchmark.org/YahooHadoop.pdf
https://www.openstack.org/
https://www.openstack.org/

REFERENCES

[222] Luca Pinello, Giosuè Lo Bosco, and Guo-Cheng Yuan. Applications

of alignment-free methods in epigenomics. Brie�ngs in Bioinformatics,

15:419�430, 2013.

[223] Precision Optical Imaging. ISO Noise Chart 15739. (Available from:

http://www.precisionopticalimaging.com/products/products.asp?

type=15739), 2011. [Accessed on 16 June 2014].

[224] Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-

Hee Bae, Yang Ruan, Saliya Ekanayake, Stephen Wu, Scott Beason, Geof-

frey Fox, et al. Data intensive computing for bioinformatics. Bioinformatics:

Concepts, Methodologies, Tools, and Applications, 287, 2013.

[225] Xiaohong Qiu, Jaliya Ekanayake, Scott Beason, Thilina Gunarathne, Geof-

frey Fox, Roger Barga, and Dennis Gannon. Cloud technologies for bioin-

formatics applications. In Proceedings of the 2nd Workshop on Many-Task

Computing on Grids and Supercomputers, pages 1�10. ACM, 2009.

[226] Atanas Radenski and Louis Ehwerhemuepha. Speeding-up codon analysis

on the cloud with local MapReduce aggregation. Information Sciences,

263:175�185, 2014.

[227] Nallanthighal S. Raghava and Shelly. D. Iris recognition on Hadoop: a

biometrics system implementation on cloud computing. In IEEE Interna-

tional Conference on Cloud Computing and Intelligence Systems (CCIS),

pages 482�485. IEEE, 2011.

[228] Zeehasham Rasheed and Huzefa Rangwala. A Map-Reduce framework for

clustering metagenomes. In IEEE 27th International Parallel and Dis-

tributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013,

pages 549�558. IEEE, 2013.

[229] Daniele Ravì, M. Bober, Giovanni Maria Farinella, Mirko Guarnera, and Se-

bastiano Battiato. Semantic segmentation of images exploiting DCT based

features and random forest. Pattern Recognition, 52:260�273, 2016.

260

http://www.precisionopticalimaging.com/products/products.asp?type=15739
http://www.precisionopticalimaging.com/products/products.asp?type=15739

REFERENCES

[230] Gesine Reinert, David Chew, Fengzhu Sun, and Michael S. Waterman.

Alignment-free sequence comparison (I): statistics and power. Journal of

Computational Biology, 16(12):1615�1634, 2009.

[231] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. DSK: k-mer

counting with very low memory usage. Bioinformatics, 29(5):652�653, 2013.

[232] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. Software: DSK.

(Available from: http://minia.genouest.org/dsk/), 2015. [Accessed on

3 May 2015].

[233] Eric Roberts. A brief history of the Internet. (Available from: http:

//cs.stanford.edu/people/eroberts/courses/soco/projects/2001-

02/distributed-computing/html/history.html), 2006. [Accessed on 3

January 2016].

[234] Vassil Roussev, Liqiang Wang, Golden Richard, and Lodovico Marziale. A

cloud computing platform for large-scale forensic computing. In Advances

in Digital Forensics V, pages 201�214. Springer, 2009.

[235] Antony Rowstron, Dushyanth Narayanan, Austin Donnelly, Greg O'Shea,

and Andrew Douglas. Nobody ever got �red for using Hadoop on a cluster.

In Proceedings of the 1st International Workshop on Hot Topics in Cloud

Data Processing, pages 1�5. ACM, 2012.

[236] Rajat Shuvro Roy, Debashish Bhattacharya, and Alexander Schliep. Turtle:

identifying frequent k-mers with cache-e�cient algorithms. Bioinformatics,

30(14):1950�1957, 2014.

[237] G. Sudha Sadasivam and G. Baktavatchalam. A novel approach to multiple

sequence alignment using Hadoop data grids. In Proceedings of the 2010

Workshop on Massive Data Analytics on the Cloud, pages 1�7. ACM, 2010.

[238] Esen Sagynov. Commercial and open source Big Data platforms com-

parison. (Available from: http://architects.dzone.com/articles/

commercial-and-open-source-big), October 2013. [Accessed on 6 Oc-

tober 2013].

261

http://minia.genouest.org/dsk/
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2001-02/distributed-computing/html/history.html
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2001-02/distributed-computing/html/history.html
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2001-02/distributed-computing/html/history.html
http://architects.dzone.com/articles/commercial-and-open-source-big
http://architects.dzone.com/articles/commercial-and-open-source-big

REFERENCES

[239] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new

method for reconstructing phylogenetic trees. Molecular Biology and Evo-

lution, 4(4):406�425, 1987.

[240] Michael C. Schatz. BlastReduce: high performance short read mapping

with MapReduce. University of Maryland, (Available from: http: // cgis.

cs. umd. edu/ Grad/ scholarlypapers/ papers/ MichaelSchatz. pdf),

2008.

[241] Michael C. Schatz. CloudBurst: highly sensitive read mapping with MapRe-

duce. Bioinformatics, 25(11):1363�1369, 2009.

[242] Michael C. Schatz, Daniel Sommer, David Kelley, and Mihai Pop. De novo

assembly of large genomes using cloud computing. In Proceedings of the

Cold Spring Harbor Biology of Genomes Conference, 2010.

[243] Matthias Scholz, Adrian Tett, and Nicola Segata. Chapter 5 - Computa-

tional tools for taxonomic microbiome pro�ling of shotgun metagenomes.

In Jacques Izard and Maria C. Rivera, editors, Metagenomics for Microbi-

ology, pages 67 � 80. Academic Press, Oxford, 2015.

[244] André Schumacher, Luca Pireddu, Matti Niemenmaa, Aleksi Kallio, Eija

Korpelainen, Gianluigi Zanetti, and Keijo Heljanko. SeqPig: simple and

scalable scripting for large sequencing data sets in Hadoop. Bioinformatics,

30(1):119�120, 2014.

[245] Science Daily. Big Data, for better or worse: 90% of world's data gen-

erated over last two years. (Available from: http://www.sciencedaily.

com/releases/2013/05/130522085217.htm), 2013. [Accessed on 16 Jan-

uary 2016].

[246] Nicola Segata, Levi Waldron, Annalisa Ballarini, Vagheesh Narasimhan,

Olivier Jousson, and Curtis Huttenhower. Metagenomic microbial commu-

nity pro�ling using unique clade-speci�c marker genes. Nature Methods,

9(8):811�814, 2012.

262

http://cgis.cs.umd.edu/Grad/scholarlypapers/papers/MichaelSchatz.pdf
http://cgis.cs.umd.edu/Grad/scholarlypapers/papers/MichaelSchatz.pdf
http://www.sciencedaily.com/releases/2013/05/130522085217.htm
http://www.sciencedaily.com/releases/2013/05/130522085217.htm

REFERENCES

[247] Kulesh Shanmugasundaram, Nasir Memon, Anubhav Savant, and Herve

Bronnimann. ForNet: a distributed forensics network. In Computer Net-

work Security, pages 1�16. Springer, 2003.

[248] James E. Short, Roger E. Bohn, and Chaitanya Baru. How

much information? 2010 report on enterprise server information.

uc san diego (ucsd) global information industry center. (Available

from: http://clds.sdsc.edu/sites/clds.sdsc.edu/files/pubs/ESI-

Report-Jan2011.pdf), 2011. [Accessed on 5 January 2016].

[249] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The Hadoop distributed �le system. In IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), 2010, pages 1�10, Washington,

DC, USA, 2010. IEEE Computer Society.

[250] Gregory E. Sims, Se-Ran Jun, Guohong A. Wu, and Sung-Hou Kim.

Alignment-free genome comparison with feature frequency pro�les (FFP)

and optimal resolutions. Proceedings of the National Academy of Sciences,

106(8):2677�2682, 2009.

[251] Gregory E. Sims and Sung-Hou Kim. Whole-genome phylogeny of Es-

cherichia coli/Shigella group by feature frequency pro�les (FFPs). Proceed-

ings of the National Academy of Sciences, 108(20):8329�8334, 2011.

[252] Suzanne S. Sindi, Brian R. Hunt, and James A. Yorke. Duplication count

distributions in DNA sequences. Physical Review E, 78(6):061912, 2008.

[253] Craig Smith. By the numbers: 200+ amazing Facebook statistics.

(Available from: http://expandedramblings.com/index.php/by-the-

numbers-17-amazing-facebook-stats/15/), 2015. [Accessed on 21 De-

cember 2015].

[254] Temple F. Smith and Michael S. Waterman. Identi�cation of common

molecular subsequences. Journal of Molecular Biology, 147(1):195�197,

1981.

263

http://clds.sdsc.edu/sites/clds.sdsc.edu/files/pubs/ESI-Report-Jan2011.pdf
http://clds.sdsc.edu/sites/clds.sdsc.edu/files/pubs/ESI-Report-Jan2011.pdf
http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/15/
http://expandedramblings.com/index.php/by-the-numbers-17-amazing-facebook-stats/15/

REFERENCES

[255] Peter H. A. Sneath and Robert R. Sokal. Unweighted pair group method

with arithmetic mean. Numerical Taxonomy, pages 230�234, 1973.

[256] Robert R. Sokal and Michener Charles D. A statistical method for eval-

uating systematic relationships. University of Kansas Science Bulletin,

38:1409�1438, 1958.

[257] Kai Song, Jie Ren, Gesine Reinert, Minghua Deng, Michael S. Waterman,

and Fengzhu Sun. New developments of alignment-free sequence compar-

ison: measures, statistics and next-generation sequencing. Brie�ngs in

Bioinformatics, 15(3):343�353, 2013.

[258] Stanford University. Folding@home. (Available from: http://folding.

stanford.edu), 2013. [Accessed on 16 January 2015].

[259] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer.

TOP500 lists. (Available from: http://www.top500.org/lists/), 2016.

[Accessed on 11 January 2016].

[260] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukher-

jee, Benjamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L.

Pomeroy, Todd R. Golub, Eric S. Lander, et al. Gene set enrichment anal-

ysis: a knowledge-based approach for interpreting genome-wide expression

pro�les. Proceedings of the National Academy of Sciences, 102(43):15545�

15550, 2005.

[261] Chris Sweeney, Liu Liu, Sean Arietta, and Jason Lawrence. HIPI: a Hadoop

Image Processing Interface for image-based MapReduce tasks. (Available

from: http://hipi.cs.virginia.edu/), 2011. [Accessed on 17 May 2014].

[262] Andrew S. Tanenbaum and Maarten Van Steen. Distributed systems.

Prentice-Hall, 2007.

[263] Ronald C. Taylor. An overview of the Hadoop/MapReduce/HBase frame-

work and its current applications in bioinformatics. BMC Bioinformatics,

11(Suppl 12):1�6, 2010.

264

http://folding.stanford.edu
http://folding.stanford.edu
http://www.top500.org/lists/
http://hipi.cs.virginia.edu/

REFERENCES

[264] Thanh Hai Thai, Remi Cogranne, and Florent Retraint. Camera model

identi�cation based on the heteroscedastic noise model. IEEE Transactions

on Image Processing, 23(1):250�263, 2014.

[265] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. CLUSTAL

W: improving the sensitivity of progressive multiple sequence alignment

through sequence weighting, position-speci�c gap penalties and weight ma-

trix choice. Nucleic Acids Research, 22(22):4673�4680, 1994.

[266] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy.

Hive - a petabyte scale data warehouse using Hadoop. In IEEE 26th Inter-

national Conference on Data Engineering (ICDE), 2010, pages 996�1005.

IEEE, 2010.

[267] David C. Torney, Christina Burks, Daniel Davison, and Kart M. Sirotkin.

Computation of d2: a measure of sequence dissimilarity. In Computers and

DNA: the proceedings of the Interface between Computation Science and

Nucleic Acid Sequencing Workshop. Redwood City, Calif.: Addison-Wesley

Pub. Co., 1990., 1990.

[268] Duy Tin Truong, Eric A. Franzosa, Timothy L. Tickle, Matthias Scholz,

George Weingart, Edoardo Pasolli, Adrian Tett, Curtis Huttenhower, and

Nicola Segata. Metaphlan2 for enhanced metagenomic taxonomic pro�ling.

Nature Methods, 12(10):902�903, 2015.

[269] DB Tsai and Jenny Thompson. Implementing the in-mapper

combiner for performance gains in Hadoop. (Available from:

https://www.dbtsai.com/blog/2013/implementing-the-in-mapper-

combiner-for-performance-gains-in-hadoop/), 2013. [Accessed on 5

February 2016].

[270] Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. Mapiterativere-

duce: a framework for reduction-intensive data processing on Azure clouds.

In Proceedings of third International Workshop on MapReduce and its Ap-

plications Date, pages 9�16. ACM, 2012.

265

https://www.dbtsai.com/blog/2013/implementing-the-in-mapper-combiner-for-performance-gains-in-hadoop/
https://www.dbtsai.com/blog/2013/implementing-the-in-mapper-combiner-for-performance-gains-in-hadoop/

REFERENCES

[271] University Alliance - Villanova University. What is Big Data? (Available

from: http://www.villanovau.com/resources/bi/what-is-big-data/

#.VpuZUFKo2HR), 2015. [Accessed on 17 January 2016].

[272] University of Göttingen - Dep. of Bioinformatics. The Spaced Words ap-

proach to alignment-free sequence comparison. (Available from: http:

//spaced.gobics.de/), 2015. [Accessed on 7 January 2015].

[273] University of Virginia. FASTA Sequence Comparison. (Available

from: http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.

shtml), 2014. [Accessed on 30 December 2014].

[274] Jee Vang. The �in-mapper combining� design pattern for Map/Reduce

programming in Java. (Available from: https://vangjee.wordpress.

com/2012/03/07/the-in-mapper-combining-design-pattern-for-

mapreduce-programming/), 2012. [Accessed on 5 February 2016].

[275] Vladimir N. Vapnik. The nature of statistical learning theory. Springer

Science & Business Media, 2013.

[276] Hal Varian. Hal Varian on how the web challenges managers. (Available

from: http://www.mckinsey.com/insights/innovation/hal_varian_

on_how_the_web_challenges_managers), 2009. [Accessed on 2 January

2016].

[277] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,

Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

Siddharth Seth, et al. Apache Hadoop YARN: yet another resource nego-

tiator. In Proceedings of the 4th annual Symposium on Cloud Computing,

pages 1�16. ACM, 2013.

[278] Sebastiano Vigna. fastutil: Fast & compact type-speci�c collections for

Java. (Available from: http://fastutil.di.unimi.it/), 2015. [Accessed

on 22 May 2015].

[279] Susana Vinga. Editorial: Alignment-free methods in computational biology.

Brie�ngs in Bioinformatics, 15:341�342, 2014.

266

http://www.villanovau.com/resources/bi/what-is-big-data/#.VpuZUFKo2HR
http://www.villanovau.com/resources/bi/what-is-big-data/#.VpuZUFKo2HR
http://spaced.gobics.de/
http://spaced.gobics.de/
http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
https://vangjee.wordpress.com/2012/03/07/the-in-mapper-combining-design-pattern-for-mapreduce-programming/
https://vangjee.wordpress.com/2012/03/07/the-in-mapper-combining-design-pattern-for-mapreduce-programming/
https://vangjee.wordpress.com/2012/03/07/the-in-mapper-combining-design-pattern-for-mapreduce-programming/
http://www.mckinsey.com/insights/innovation/hal_varian_on_how_the_web_challenges_managers
http://www.mckinsey.com/insights/innovation/hal_varian_on_how_the_web_challenges_managers
http://fastutil.di.unimi.it/

REFERENCES

[280] Susana Vinga and Jonas Almeida. Alignment-free sequence comparison - a

review. Bioinformatics, 19:513�523, 2003.

[281] Virus Encyclopedia. Creeper. (Available from: http://virus.wikidot.

com/creeper), 2015. [Accessed on 9 December 2015].

[282] Je�rey Scott Vitter. External memory algorithms and data structures:

Dealing with massive data. ACM Computing Surveys (CsUR), 33:209�271,

2001.

[283] Mikhail Vorontsov. Large HashMap overview: JDK, FastUtil, Goldman

Sachs, HPPC, Koloboke, Trove � January 2015 version. (Available from:

http://java-performance.info/hashmap-overview-jdk-fastutil-

goldman-sachs-hppc-koloboke-trove-january-2015/), 2015. [Accessed

on 3 May 2015].

[284] Panagiotis D. Vouzis and Nikolaos V. Sahinidis. GPU-BLAST: using graph-

ics processors to accelerate protein sequence alignment. Bioinformatics,

2010.

[285] Dennis P. Wall, Parul Kudtarkar, Vincent A. Fusaro, Rimma Pivovarov,

Prasad Patil, and Peter J. Tonellato. Cloud computing for comparative

genomics. BMC Bioinformatics, 11(1):1�12, 2010.

[286] Gregory K. Wallace. The JPEG still picture compression standard. IEEE

Transactions on Consumer Electronics, 38(1):18�34, 1992.

[287] Lin Wan, Gesine Reinert, Fengzhu Sun, and Michael S. Waterman.

Alignment-free sequence comparison (II): theoretical power of comparison

statistics. Journal of Computational Biology, 17(11):1467�1490, 2010.

[288] Chunyu Wang, Maozu Guo, and Yang Liu. EST clustering in large dataset

with MapReduce. In First International Conference on Pervasive Com-

puting Signal Processing and Applications (PCSPA), 2010, pages 968�971.

IEEE, 2010.

267

http://virus.wikidot.com/creeper
http://virus.wikidot.com/creeper
http://java-performance.info/hashmap-overview-jdk-fastutil-goldman-sachs-hppc-koloboke-trove-january-2015/
http://java-performance.info/hashmap-overview-jdk-fastutil-goldman-sachs-hppc-koloboke-trove-january-2015/

REFERENCES

[289] Jianwu Wang, Daniel Crawl, and Ilkay Altintas. Kepler + Hadoop: a gen-

eral architecture facilitating data-intensive applications in scienti�c work-

�ow systems. In Proceedings of the 4th Workshop on Work�ows in Support

of Large-Scale Science, pages 1�8. ACM, 2009.

[290] Qiong Wang, George M. Garrity, James M. Tiedje, and James R. Cole.

Naive bayesian classi�er for rapid assignment of rRNA sequences into

the new bacterial taxonomy. Applied and Environmental Microbiology,

73(16):5261�5267, 2007.

[291] Tom White. The small �les problem. Cloudera. (Available from: http://

blog.cloudera.com/blog/2009/02/the-small-files-problem/), 2009.

[Accessed on 5 April 2014].

[292] Tom White. Hadoop: the de�nitive guide, 3rd edition. O'Reilly Media /

Yahoo Press, May 2012. Storage and Analysis at Internet Scale.

[293] Dag Wieers. Dstat: Versatile resource statistics tool. (Available from:

http://dag.wiee.rs/home-made/dstat/), 2012. [Accessed on 6 July

2014].

[294] Marek S. Wiewiórka, Antonio Messina, Alicja Pacholewska, Sergio Ma�o-

letti, Piotr Gawrysiak, and Michaª J. Okoniewski. SparkSeq: fast, scalable,

cloud-ready tool for the interactive genomic data analysis with nucleotide

precision. Bioinformatics, 30(18):2652�2653, 2014.

[295] Keith Wiley, Andrew Connolly, Je� Gardner, Simon Krugho�, Magdalena

Balazinska, Bill Howe, YongChul Kwon, and Yingyi Bu. Astronomy in the

cloud: using MapReduce for image co-addition. Astronomy, 123(901):366�

380, 2011.

[296] Keith Wiley, Andrew Connolly, Simon Krugho�, Je� Gardner, Magdalena

Balazinska, Bill Howe, YongChul Kwon, and Yingyi Bu. Astronomical

image processing with Hadoop. In Astronomical Data Analysis Software

and Systems XX, volume 442, page 93, 2011.

268

http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://dag.wiee.rs/home-made/dstat/

REFERENCES

[297] Derrick Wood and Steven Salzberg. Kraken: ultrafast metagenomic se-

quence classi�cation using exact alignments. Genome Biology, 15:R46, 2014.

[298] Muneto Yamamoto and Kunihiko Kaneko. Parallel image database pro-

cessing with MapReduce and performance evaluation in pseudo distributed

mode. International Journal of Electronic Commerce Studies, 3(2):211�228,

2013.

[299] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-

reduce-merge: simpli�ed relational data processing on large clusters. In

Proceedings of the 2007 ACM SIGMOD International Conference on Man-

agement of Data, pages 1029�1040. ACM, 2007.

[300] Kuan Yang and Liqing Zhang. Performance comparison between k-tuple

distance and four model-based distances in phylogenetic tree reconstruction.

Nucleic Acids Research, 36(5):1�9, 2008.

[301] Shuiming Ye, Qibin Sun, and Ee-Chien Chang. Detecting digital image

forgeries by measuring inconsistencies of blocking artifact. In IEEE In-

ternational Conference on Multimedia and Expo 2007, pages 12�15. IEEE,

July 2007.

[302] Huiguang Yi and Li Jin. Co-phylog: an assembly-free phylogenomic ap-

proach for closely related organisms. Nucleic Acids Research, 41(7):e75,

2013.

[303] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,

Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: a system for general-

purpose distributed data-parallel computing using a high-level language. In

OSDI, volume 8, pages 1�14, 2008.

[304] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,

and Ion Stoica. Spark: cluster computing with working sets. In Proceed-

ings of the 2nd USENIX Conference on Hot Topics in Cloud Computing,

volume 10, page 10, 2010.

269

REFERENCES

[305] Qingpeng Zhang, Jason Pell, Rosangela Canino-Koning, Adina Chuang

Howe, and C. Titus Brown. These are not the k-mers you are looking

for: e�cient online k-mer counting using a probabilistic data structure.

PloS one, 9(7):1�13, 2014.

[306] Guoguang Zhao, Cheng Ling, and Donghong Sun. SparkSW: scalable dis-

tributed computing system for large-scale biological sequence alignment.

In 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), 2015, pages 845�852. IEEE, 2015.

[307] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering

based on MapReduce. In Cloud Computing, pages 674�679. Springer, 2009.

[308] Ping Zhou, Jingsheng Lei, and Wenjun Ye. Large-scale data sets clustering

based on MapReduce and Hadoop. Journal of Computational Information

Systems, 7(16):5956�5963, 2011.

[309] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data

compression. IEEE Transactions on Information Theory, 23(3):337�343,

1977.

[310] Quan Zou, Xu-Bin Li, Wen-Rui Jiang, Zi-Yu Lin, Gui-Lin Li, and Ke Chen.

Survey of MapReduce frame operation in bioinformatics. Brie�ngs in Bioin-

formatics, 15(4):637�647, 2013.

270

Nomenclature

Acronyms

ASIC Application-Speci�c Integrated Circuits

BAM Binary Alignment/Map

bp Base Pair

BS Block Size

CAS Compare-and-Swap

CC Cloud Computing

CGR Chaos Game Representation

CHI Camera Hardware Identi�cation

CLI Chromosome-Level Independence

CNCPO Centro Nazionale per il Contrasto alla Pedopornogra�a Online

CORBA Common Object Request Broker Architecture

COTS Commercial O�-The-Shelf

CPU Central Processing Unit

CS Cumulative Statistics

DAG Directed Acyclic Graph

271

NOMENCLATURE

DBMS DataBase Management System

D&C Divide and Conquer

DCOM Distributed Computing Object Model

DF Digital Forensics

DIF Digital Image Forensics

DS Distributed System

DSK Disk Streaming of K-mers

EB Exabyte

ERP Enterprise Resource Planning

ETL Extract, Transform, Load

FFP Feature Frequency Pro�le

FPGA Field-Programmable Gate Arrays

GB Gigabyte

GC Grid Computing

GFS Google File System

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

HAFS Alignment-free Sequence Comparison on Hadoop

HDFS Hadoop Distributed File System

HPC High Performance Computing

HSCI Hadoop for Source Camera Identi�cation

IaaS Infrastructure-as-a-Service

272

NOMENCLATURE

i.i.d. independent and identically distributed

IDL Interface Description Language

I/O Input/Output

JF2 Jelly�sh v2

JSD Jensen-Shannon Divergence

KA KAnalyze

KB Kilobyte

KCH K-mer Counting on Hadoop

KDD Knowledge Discovery in Databases

KLD Kullback-Leibler Divergence

KMC2 K-mer Counter v2

KMC K-mer Counter

KPI Key Performance Indicator

LAN Local Area Network

LS Local Statistics

MB Megabyte

Mbp Megabase Pair

Mbps Megabit per second

MC Mobile Computing

MIMD Multiple Instruction streams Multiple Data streams

MISD Multiple Instruction streams Single Data stream

MPI Message Passing Interface

273

NOMENCLATURE

MPMD Multiple Programs Multiple Data streams

MPP Massively Parallel Processing

MR MapReduce

MSA Multiple Sequence Alignment

MSP Minimum Substring Partitioning

MSPKC MSPKmerCounter

NAS Network Attached Storage

NCBI National Center for Biotechnology Information

NJ Neighbor Joining

NN HA NameNode High Availability

OLAP On-Line Analytic Processing

OS Operating System

OSN Online Social Network

P2P Peer-to-Peer

PaaS Platform as-a-Service

PB Petabyte

PC Personal Computer

PSA Pairwise Sequence Alignment

QoS Quality of Service

RAM Random Access Memory

RF Replication Factor

RMI Remote Method Invocation

274

NOMENCLATURE

RN Residual Noise

RP Reference Pattern

RR Recognition Rate

RT Running Time

SaaS Software-as-a-Service

SAN Storage Area Network

SIMD Single Instruction stream Multiple Data streams

SISD Single Instruction stream Single Data stream

SMP Symmetric Multi Processor

SNP Single Nucleotide Polymorphisms

SPMD Single Program Multiple Data streams

SQL Structured Query Language

SSE Streaming SIMD Extension

TB Terabyte

UC Ubiquitous Computing

UPGMA Unweighted Pair Group Method with Arithmetic Mean

URL Uniform Resource Locator

VM Virtual Machine

WAN Wide Area Network

WWW World Wide Web

YARN Yet Another Resource Negotiator

YB Yottabyte

ZB Zettabyte

275

	Contents
	List of Figures
	List of Tables
	Introduction
	Big Data
	Real Life Scenarios

	Overview on Big Data Computing
	Motivation and Main Objectives of the Thesis
	Benchmark Problems, Methods and Results

	Organization of the Thesis

	Parallel and Distributed Computing
	State of the Art
	Flynn's Taxonomy
	Parallel Systems with Shared-Memory versus Distributed Systems

	History of Parallel and Distributed Systems
	Scientific High Performance Computing
	Explicit and Implicit Parallelism

	Storing, Processing and Analyzing Big Data
	Emerging Distributed Architectures and Solutions
	Cloud Computing
	Grid Computing
	Comparisons between Cloud and Grid Computing
	Mobile and Ubiquitous Computing
	Current Technologies

	Performance Measurement in Parallel and Distributed Environments
	Speed up
	Size up
	How to Improve the Performance

	Apache Hadoop Framework
	MapReduce Paradigm
	Overview on Hadoop
	The First Hadoop Version
	The Newer Hadoop Version

	Hadoop Distributed File System (HDFS)
	HDFS Architecture
	HDFS Main Features

	Lifetime of a Hadoop MapReduce Application
	Splitter and Records Reader

	Hadoop Main Features
	The Future of Hadoop

	Hadoop Combiner versus In-Mapper Local Aggregation
	Profiling, Tuning and Improving Hadoop Applications

	Processing Big Data in Digital Image Forensics
	Digital Forensics and Big Data
	Analyzing Massive Datasets of Images
	Our Contribution

	Source Camera Identification Problem
	The Algorithm by Fridrich et al.
	Reference Implementation

	Source Camera Identification on Hadoop
	The Algorithm by Fridrich et al. on Hadoop
	Setup: Loading Images
	Step I: Calculating Reference Patterns
	Step II: Calculating Correlation Indices
	Step III: Recognition System Calibration
	Step IV: Performing Source Camera Identification

	Experimental Analysis
	Performance Metrics
	Dataset
	Experimental Settings
	Preliminary Experimental Results

	Profiling Activities for Detecting Bottlenecks
	Code Improvements
	Excessive Network Traffic
	Poor CPU Usage
	Bad Intermediate-data Partitioning Strategy

	Advanced Experimental Analysis
	Speed up Analysis

	Final Remarks

	Processing Big Data in Bioinformatics
	Biology and Big Data
	A Brief Overview about the Sequence Analysis
	Applications for Big Data Analysis in Bioinformatics

	Selected Benchmark Problems
	Alignment-free Sequence Comparison Problem
	K-mer Statistics Problem

	A Distributed Framework for the Development of Alignment-free Sequence Comparison Methods
	Alignment-free Sequence Comparison Methods
	Methods based on Exact-Word Counts
	Methods based on Inexact-Word Counts

	Alignment-free Sequence Comparison on a Single-Core
	Stand-alone Implementation
	Datasets
	Preliminary Experimental Results

	Alignment-free Sequence Comparison on Hadoop
	Improvements

	Experimental Analysis on Hadoop
	Experimental Settings
	Experimental Results

	Remarks

	K-mer Statistics on Hadoop
	A Naive Solution for K-mer Statistics on Hadoop
	KCH: Fast and Efficient Solution for K-mer Statistics on Hadoop
	Efficient FASTA Input Management
	Fast Local K-mers Aggregation
	Two-levels K-mer Counts Aggregation

	Experimental Analysis
	Datasets
	Experimental Settings
	Tuning Phase
	Experimental Results

	Final Remarks

	Conclusion and Future Works
	Outcomes
	Results about Source Camera Identification on Hadoop
	Results about Alignment-free Sequence Comparison on Hadoop
	Results about K-mers Statistics on Hadoop
	General Remarks

	Future Directions

	Appendices
	Bioinformatics
	FASTA File Format
	State of the Art on Algorithms Collecting K-mer Statistics
	Algorithms for Exact Cumulative Statistics
	Tallymer
	Meryl
	Jellyfish
	KAnalyze
	MSPKmerCounter
	KMC
	DSK
	BioPig

	Comparison between KCH and Other Solutions for CS

	Publications during the Ph.D.
	Personal Publications
	Submitted or Accepted Papers

	References
	Nomenclature

