
Tesi di Dottorato in Informatica

Synthesis of Recursive State

Machines from Libraries of Game

Modules

Dipartimento di Scienze Matematiche, Fisiche e Naturali
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Abstract

This thesis is focused on synthesis. In formal verification synthesis can be

referred to the controller synthesis and the system synthesis. This work

combines both this area of research.

First we focus on synthesizing modular controllers considering game on

recursive game graph with the requirement that the strategy for the pro-

tagonist must be modular. A recursive game graph is composed of a set

of modules, whose vertices can be standard vertices or can correspond to

invocations of other modules and the standard and the set of vertices is

split into two sets each controlled by one of the players. A strategy is

modular if it is local to a module and is oblivious to previous module invo-

cations, and thus does not depend on the context of invocation. We study

for the first time modular strategies with respect to winning conditions that

can be expressed languages of pushdown automata. We show that push-

down modular games are undecidable in general, and become decidable for

visibly pushdown automata specifications. We carefully characterize the

computational complexity of the considered decision problem. In particu-

lar, we show that modular games with a universal Büchi or co-Büchi visibly

pushdown winning condition are Exptime-complete, and when the win-

ning condition is given as a CaRet or Nwtl temporal logic formula the

problem is 2Exptime-complete, and it remains 2Exptime-hard even for

simple fragments of these logics. As a further contribution, we present a

different synthesis algorithm that runs faster than known solutions for large

specifications and many exits.

In the second part of this thesis, we introduce and solve a new component-

based synthesis problem that subsumes the synthesis from libraries of recur-

sive components introduced by Lustig and Vardi with the modular synthesis



introduced by Alur et al. for recursive game graphs. We model the com-

ponents of our libraries as game modules of a recursive game graph with

unmapped boxes, and consider as correctness specification a target set of

vertices. To solve this problem, we give an exponential-time fixed-point

algorithm that computes annotations for the vertices of the library compo-

nents by exploring them backwards. We show a matching lower-bound via a

direct reduction from linear-space alternating Turing machines, thus prov-

ing Exptime-completeness. We also give a second algorithm that solves

this problem by annotating in a table the result of many local reachability

game queries on each game component. This algorithm is exponential only

in the number of the exits of the game components, and thus shows that

the problem is fixed-parameter tractable.

Finally, we study a more general synthesis problem for component-based

pushdown systems, the modular synthesis from a library of components

(Lms). We model each component as a game graph with boxes as place-

holders for calls to components, as in the previous model, but now the

library is equipped also with a box-to-component map that is a partial func-

tion from boxes to components. An instance of a component C is essentially

a copy of C along with a local strategy that resolves the nondeterminism of

pl0. An RSM S synthesized from a library is a set of instances along with a

total function that maps each box in S to an instance of S and is consistent

with the box-to-component map of the library. We give a solution to the

Lms problem with winning conditions given as internal reachability objec-

tives, or as external deterministic finite automata (FA) and deterministic

visibly pushdown automata (VPA) (6). We show that the Lms problem is

Exptime-complete for any of the considered specifications.
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Introduction

In formal and automatic verification, the system synthesis is one of the most relevant

areas of research. From its first definition, posed by Church in (14) to express the prob-

lem of synthesizing digital circuits from specifications written in a restricted logic of

arithmetic, the synthesis problem has always attracted the attention of the researchers,

because it is related to the long-term dream for computer scientists of realizing the auto-

matic development of programs that are correct ( i.e. that satisfy a given specification)

by construction.

In spite of the rich theory developed for synthesis in the last two decades, little of

this theory has been used in practice.

The main problem concerns the fact that in general the synthesis process can not

be automatized and synthesis problems have usually very high complexities, that are

critically determined by the size of the specification (43).

Another problem is that typically the synthesized systems are monolitic and the

classical synthesis algorithms create flat system with subroutines or subsystems that

may be repeated many times.

The natural structure of a complex hardware or software system in real-life is re-

cursive in such way that the components are defined only once and then can be invoked

many times. Complex systems are in fact usually composed by relatively simple mod-

ules that interacts with each other using procedure calls. For this reason, in the last

years the research has focused its attention on component-based approaches to synthesis

(see (1, 30, 37) for a sample of such research).
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1. INTRODUCTION

There is another remarkable observation that can be done about component-based

synthesis. In real practice few programs are built by scratch and often the programmers

develop complex system starting from a set of templates or of pre-existing reusable

function, typically contained in a library.

Component-based design plays a key role in configurable and scalable development

of efficient hardware as well as software systems. For example, it is current practice to

design specialized hardware using some base components that are more complex than

universal gates at bit-level, and programming by using library features and frameworks.

Moreover sometimes the employment of standard preexisting components is unavoid-

able.

A component can be seen as a piece of hardware or software that can be directly

plugged into a solution or a template that needs to be customized for a specific use.

In the procedural-programming world, a general notion of component composition can

be obtained by allowing to synthesize some modules from generic templates and then

connect them along with other off-the-shelf modules via the call-return paradigm (syn-

thesis from libraries(28)). In such synthesis from library, the main aim is to usually

resolve the external game, finding a composition of the system such that it satisfies the

given specification. However the constructed system is typically a close system that

does not interact with the environment.

With the evolution of computer science, systems have become more and more com-

plex and nowadays the large number of hardware and software systems as procedu-

ral and object-oriented programs, distributed systems, communication protocols and

web services, acts not only with a recursive behaviour, but also with a reactive be-

haviour:“reactive” means that the considered system works in an open setting, where

the system interacts with an external environment that introduces an uncontrollable

nondeterminism. An execution is the product of the interaction between these two

entities in opposition and in general the role of the system itself is to maintain the

ongoing interaction with the environment. Therefore, an essential aim for such systems

is to synthesize a controller which supplies input to the system such that the system is

correct whatever will be the behaviour of the external environment. This problem is

named controller synthesis problem.

In automata theory, the standard controller synthesis problem is studied on games

on graphs that can serve as a general model for reactive system. A game graph is a

2



direct graph where the set of vertices is partitioned between positions that belong to

the system (the protagonist) and positions that belong to environment (the adversary).

A play is a possible execution on such graph and it is a sequence of vertices: it starts

from an initial vertex and each round, if the play is in a vertex, the player that owns

such vertex must choose the next move among those that are possible. A winning

condition allows to define the goal of the game and to decide when a play is considered

winning for a player.

Synthesizing a controller corresponds to computing winning strategies in two-player

games. In general, a strategy is a function that associates a next move to each prefix

of a play that ends in a vertex of the protagonist (global history) and a strategy is

a winning strategy if each play obtained according to the strategy is winning for the

protagonist.

This standard formulation of the controller synthesis problem lacks of a compo-

sitional point of view, regarding both the chosen model and the kind of considered

strategy. Finite state game graph are not adequate for the analysis of component-

based open systems and a better choice is to consider recursive game graphs as model.

A recursive game graph (RGG)(5) corresponds to a pushdown games but the em-

phasis is on the modules composing the system. An RGG is composed by a set of

graph named modules. In a module the vertices can be ordinary state or represent call

to other module of the RGG. As usual, the game is modelled splitting the vertices into

two sets, each controlled by one of the players.

The compositional structure of RGG has inspired the definition of a component-

based strategy, named modular strategy, introduced formally in (5). A modular strategy

is formed of a set of strategies, one for each RGG module, that are local to a module

and oblivious of the history of previous module activations, i.e., the next move in such

strategies is determined by looking only at the local memory of the current module acti-

vation (by contrast, if one allows the local memory to persist across module activations,

deciding these games becomes undecidable already with reachability specifications (5)).

Note that in modular games it is required only that the strategy of one player must

be modular and no restrictions are placed on the strategy of the other player: this

choice is reasonable because a set of synthesized modular controllers must operate with

no assumptions on the uncontrollable nondeterminism of the system. Moreover each

3



1. INTRODUCTION

modular controller makes the related module correct and independent by the context

where it is invoked and such trait matches perfectly the component-based approach.

If we consider recursive and reactive systems in component-based synthesis a natural

question arises: what happens if we want to synthesize an open system from a library

of open components, which adds also the resolution of the internal game to overcome

the nondeterminism generated by the behaviour of the external environment?

The work presented in this thesis goes in the direction of providing a new framework

for component-based synthesis that requests the composition of elements obtained from

library of open components and the modularity of the solutions.

The first step in this direction requires to define a new model. On the one hand,

the standard library models proposed as in (28) are not enough expressive to handle

appropriately the internal game. On the other, in the modular synthesis of recursive

game graphs the call-return structure is given and cannot be modified. Our model

combines and subsumes the best features of both such approaches.

The game modules for our component-based synthesis are taken from a finite set

(library) of game components. We model each component as a game graph with vertices

split between player 0 (pl0) and player 1 (pl1), and the addition of boxes as place-holders

for calls to components. The library can be equipped with a box-to-component map

that is a partial function from boxes to components (in (16) we do not consider such

partial mapping). An instance of a component C is essentially a copy of C along with

a local strategy that resolves the nondeterminism of pl0. A recursive state machine

(2, 12) (in short RSM) S synthesized from a library is a set of instances along with a

total function that maps each box in S to an instance of S and is consistent with the

box-to-component map of the library.

In this thesis, we formalize the modular synthesis from library (in short Lms )

problem and we prove that such problem is decidable if we consider winning conditions

given as internal reachability objectives, or as external deterministic finite automata

(FA) and deterministic visibly pushdown automata (VPA) (6). We show that the Lms

problem is Exptime-complete for any of the considered specifications. In particular,

for reachability we first present the algorithm that solves a simpler case of the Lms

problem where the boxes of the components are all un-mapped (i.e., the library has

no box-to-component map) and then we modify it to the general setting. For safety

and VPA specifications, the lower bounds can be obtained by standard reductions from

4



alternating linear-space Turing machines. The upper bound for safety specifications

is based on a reduction to tree automata emptiness that is based on the notion of

library tree: an infinite tree that encodes the library along with a choice for a total

box-to-component map where both the components and the total map are unrolled.

The construction is structured into several pieces and exploits the closure properties

of tree automata under concatenation, intersection and union. The upper bound for

VPA specifications is obtained by a reduction to safety specifications that exploits the

synchronization between the stacks of the VPA and the synthesized RSM.

A solution to the Lms problem can involve arbitrarily many instances of each library

component with possibly different local strategies. Such a diversity in the system design

is often not affordable or unrealistic, therefore we also consider restrictions of this

problem by focusing on solutions with few component instances and designs. In our

setting, a natural way to achieve this is by restricting the synthesized RSMs such that:

1) at most one instance of each library component is allowed (few component instances),

or 2) all the instances of a same library component must be controlled by a same local

strategy (few designs). We refer to the Lms problems with these restrictions as the

single-instance Lms problem and the component-based Lms problem, respectively. Note

that in the component-based Lms there is no restriction imposed on the local strategy

to be synthesized for a component and two instances of the same component can still

differ in the mapping of the boxes.

For the component-based Lms problem we get the same complexity as for the general

Lms problem: the upper bounds are obtained by adapting the constructions given for

the general case.

The single-instance Lms problem can be reduced to the modular synthesis on re-

cursive game graphs by guessing a total box-to-component map for the library, and

thus we immediately get that the problem is NP-complete for reachability (5), and

Exptime-complete for FA (4) and VPA specifications. Changing the point of view, the

synthesis of modular controllers becomes a specific case of the Lms problem, where the

box-to-component maps is total and each component can be instantiated only once.

Therefore, we also extend the previous results on modular synthesis considering several

classes of non-regular specifications, expressed as pushdown automata. We show that in

the general case, i.e., by allowing any pushdown automaton as a specification, the mod-

ular synthesis problem is undecidable. For this, we give a reduction from the problem

5



1. INTRODUCTION

of checking the emptiness of the intersection of deterministic context-free languages.

We thus focus on visibly pushdown automata (VPA) (7) specifications with Büchi or

co-Büchi acceptance and we show that the corresponding problems are decidable.

The LMS problem also gives a general framework for program repair where besides

the intra-module repairs considered in the standard approach (see (22, 23)) one can

think of repairing a program by replacing a call to a module with a call to another

module (function call repairs). This relation will be discussed in the last chapter of

this thesis.

Relatex work. The contributions and result presented in this thesis have been pub-

lished in (16, 17, 18). A preliminary work of (17) can be found in (15).

The problem of deciding the existence of a modular strategy in a recursive game

graph has introduced in (5) and it has been already studied with respect to ω-regular

specifications. The problem is known to be NP-complete for reachability specifications

(5), Exptime-complete for specifications given as deterministic and universal Büchi or

Co-Büchi automata, and 2Exptime-complete for Ltl specifications (4).

We want to recall that, if we consider pushdown games with global winning strategy

according to reachability specifications or parity conditions, the decision problem is

known to be Exptime-complete (46). This result holds also for other regular winning

conditions, as sample given by a Büchi / Rabin / Muller automaton and, in general, for

each specification that can be translated into a parity condition (clearly the complexity

of the reduction must be considered in the computation of the overall complexity).

Beside the already mentioned papers on the modular controller synthesis, the notion

of modular strategy is also of independent interest and has recently found application in

other contexts, such as, the automatic transformation of programs for ensuring security

policies in privilege-aware operating systems (20).

Component-based synthesis of software is the subject of several papers in the last

years. In (28, 29) is described the component-based synthesis problem based on libraries

of components. In (28) the components are modelled with finite-state transducers, and

the correctness specification is given as an Ltl formula. The same synthesis problem

with specification is given as a temporal logic formula over nested words and compo-

nents modelled as transducers with call-return structures is addressed in (29). In (11),

this problem is formulated for synthesizing hierarchical systems bottom-up with respect

6



to a different µ-calculus specification for each component in the hierarchy. All these

synthesis problem turn out to be 2Exptime-complete. The synthesis from libraries of

components with simple specifications has been also implemented in tools: an example

is presented in (21) where it is described an oracle-guided learning from examples and

constraint-based synthesis from components via SMT solvers are combined to achieve

the automatic synthesis of loop-free programs.

The synthesis problem presented in (28) can be rephrased in terms of game modules:

given a library of component and an Ltl formula, we can construct a game graph and

considering the same specification we obtain a modular game such that there exists a

winning modular strategy in this modular game if and only if there exists a composition

that fulfils the Ltl formula.

In addition to the previously cited works on library of components, we also want

to recall some examples of researches on component-based synthesis: the component-

based construction in (39), the work (37), where modules are expressed as terms of

the λY -calculus, the interface-based design (1) and the development of web services

(38). Moreover, component-based synthesis has been implemented and incorporated

(in simple cases) in tools. As a sample research we cite: (31) where code-fragments are

automatically generated from simple queries describing the desired input and output

using as components a set of API methods; and (24), where an AI planner is incorpo-

rated in a compiler to automatically generate a sequence of library calls for an abstract

algorithm given by the user.

We want also to recall the synthesis problem from (30) that deals with the auto-

matic development of a program composed by a bounded number of functions. This

framework differs from our setting in that programs and not transition systems are

dealt with, and the number of functions of a synthesized program is bounded a priory

but no structure of the functions is given.

Organizzation of the thesis. This thesis is structured as follows.

In Chapter 2, we introduce the basic notions on automata, pushdown automata and

tree automata.

In Chapter 3, we focus on game on graph, first presenting the “ flat” games and

then focusing on pushdown games (standard pushdown games and visibly pushdown

games). For these games we recall some of the result about their decidability according

7



1. INTRODUCTION

to regular and non-regular specifications. Most of these results will be used to prove

the lower bounds of the problems introduced in the subsequent chapters.

In Chapter 4, we present the formal definition of RGG. We recall the notion of

modular strategies introduced by Alur and al. and briefly the approaches to solve

modular game problems. Some of such approaches will be extended and adapted into

new algorithms. This chapter summarizes the state of art of the synthesis of modular

controllers.

In Chapter 5 we complete the framework depicted by the previous works, intro-

ducing and solving modular games according to winning conditions that express non-

regular requirements. We consider also simpler specifications, considering fragment

of logic and analysing the decidability and the complexity of the proposed problems.

Moreover, we give a quite accurate picture of the modular game problems, refining the

complexity of the previous results to expose the critical and unavoidable issues that

such setting determines.

In Chapter 6 we move our attention from synthesis of modular controllers to syn-

thesis from libraries. The first section of this chapter deals with the works of Vardi

and al. that are focused on the synthesis from libraries of plain or recursive transduc-

ers. We present the model and recall the complexity results of the related synthesis

problems. Then, we analyse the connection between modular synthesis and synthesis

of components.

In Chapter 7 we first introduce informally the ideas of the new model which com-

bines modular synthesis and synthesis from libraries of components. We point out the

features that we expect to realize through such new model proposed for the synthesis

from library of open components. We give the formal definitions of a library of game

components and composition from library. Therefore we introduce a general definition

for the modular synthesis from library problem (Lms ), that asks to decide if there is a

system synthesized from the library such that there exists a winning modular strategy

for the protagonist according to a given winning condition. We also introduce some

restrictions (single-instance and component-based Lms problems) that are natural in

this setting and we expose the connections between single-instance Lms problems and

modular controller synthesis.

In Chapter 8 we solve a simpler modular synthesis problem, that starts from a

library that is an evolution of the RGG and considers as correctness specification only

8



reachability objectives. We solve the proposed problem presenting a fix-point algorithm

that decides the considered problem in exponential time. Moreover, we show that

the computational complexity becomes PTIME when the number of exits of the input

model is fixed. Then, we modify the proposed algorithm to solve the general Lms and

component-based Lms reachability problems. Both problems turn out to be Exptime-

complete.

In Chapter 9 we consider more complex winning condition, given as regular and

non-regular languages. We prove that the algorithms that solve such problems have

the same complexity of the corresponding solution for synthesis of modular controllers

or synthesis from library of transducers. We also extended these results to the related

component-based Lms problems.

The Lms problems has many connections with different well-studied problems. We

discuss about these connections in Chapter 10. Moreover, we propose some ideas about

the future directions of this research.

9
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2

Automata

The formal verification requires to define three essential elements. The first of them

is the mathematical model that is used to model the behaviour of the system that

we want to study and verify. The second necessary element is the model to express

the correctness requirements that our systems must fulfil. The third element consists

in the algorithmic procedures that, given a modelled system and a given correctness

requirement, decides if the input system fulfils the specification.

The automata theory represents an unifying framework for the formal verification.

On the one hand, automata can be used as models and their study allows to develop

methods that can describe and analyse the dynamic behaviour of discrete systems.

On the other hand, automata are closely related to formal language theory, whose

constructs are typically used to express the specifications. An automaton can be seen

as a finite representation of a formal language that may be an infinite set and automata

are often classified by the class of formal languages they can recognize.

In this chapter, we introduce the definitions of some basic automata. Such automata

will be consider in the rest of this work to express specifications and, in few cases, as

models. Moreover, we recall some fundamental results that will be used to prove the

correctness of some of our automata-theoretic solutions .
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2. AUTOMATA

2.1 Preliminaries

2.1.1 Notation

Given two positive integers i and j, i ≤ j, we denote with [i, j] the set of integers k

with i ≤ k ≤ j, and with [j] the set [1, j].

2.1.2 Words and alphabets

Let Σ be a finite alphabet of symbols.

A finite word w over Σ is a finite sequence of elements of Σ. With Σ∗ we denote

the set of finite words on Σ. With Σ+ we denote the set of finite nonempty words over

Σ.

The length of a word w is denoted by |w| and is the number of symbol composing

the word, i.e. if w = σ1...σn then |w| = n.

The empty word, denoted by ε, is the string that consists of no symbols. The length

of the empty word is consequently zero.

An infinite word, named also ω-word, w over Σ intuitively is an infinite sequence of

elements of Σ. With Σω we denote the set of the infinite words on Σ.

For an infinite sequence π = σ0, σ1, ... from Σω the infinite set Inf(π) is the set of

elements that repeat infinitely often, i.e. Inf(π) = {σ ∈ Σ| there exist infinitely many

i such that σi = σ}.
A nested ω-word is a tuple w̄ = (w, µ, call, ret) where w ∈ Σω is an ω − word,

(µ, call, ret) is a matching on N. For a nested word, a matching on N is formed by a

binary relation µ and two unary relation call annd ret satisfying the following:

• (1) if µ(i, j) holds then call(i) and ret(j) and i < j;

• (2) if µ(i, j) and µ(i, j′) hold then j = j′ and if µ(i, j) and µ(i′, j) hold, then

i = i′;

• (3) if i ≤ j and call(i) and ret(j) then there exists i ≤ k ≤ j such that either

µ(i, k) or µ(k, j).

We say that a position i in a nested word w̄ is a call position if call(i) holds; a return

position if ret(i) holds; and an internal position if it is neither a call nor a return. If

µ(i, j) holds, we say that i is the matching call of j, and j is the matching return of

12
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i Calls without matching returns are unmatched calls (or pending call), and returns

without matching calls are unmatched returns (or pending return). A nested word is

said to be well-matched if no calls or returns are pending. Note that for well-matched

nested words, the unary predicates call and ret are uniquely specified by the relation

µ.

2.1.3 Trees

Graphs and trees. A graph is a pair G = (V,E) where V is a set of elements named

vertices and E is a pairs of vertices, named edges. If a graph G is a directed graph if

(v1, v2) ∈ E then the edge is directed from v1 to v2.

A tree T is a connected graph with no cycles and a forest is a set of graphs with no

cycle, i.e. it is a disjoint union of one or more trees.

Labeled k-trees. Let k ∈ N and Ω be a finite alphabet. A Ω-labeled k-tree T is a pair

([k]∗, ν) where the set [k]∗ denotes the vertices and ν : [k]∗ → Ω is a labeling function,

that labels every vertex of the tree with a letter in Ω. To distinguish the vertices of a

tree, we named them tree vertices. The symbol ε (denoting as usual the empty word)

is the root and for each tree vertex x ∈ [k]∗, the tree vertex x.i is the ith child of x. We

denote with Tk,Ω the set of all the possible finite Ω-labeled k-trees and with Tωk,Ω the

set of all the possible infinite Ω-labeled k-trees and with T∞k,Ω = Tk,Ω ∪ Tωk,Ω the set of

all possible Ω-labeled k-trees.

Domain, frontier and concatenation of trees. We named domain of a tree T

the non-empty set dom(t) ⊆ {1, ..., k}∗ that satisfies the rule that for w ∈ dom(T ) and

j ∈ [k], w.j ∈ dom(T ) if exists i < j such that w.i ∈ dom(T ).

The frontier of a tree T is the set of word frt(T ) = {w ∈ dom(T )| 6 ∃i such that

w.i ∈ dom(T )}.

A tree concatenation is an operation that allows to “glue”other trees to a finite tree,

substituting the nodes of the frontier with the given trees. Let T ⊆ Tk,Ω T′ ⊆ Tωk,Ω and

c ∈ Ω. Then the tree concatenation T.cT
′ contains all the trees which result from some

T ∈ T by replacing each occurrence of c on frt(T ) by a tree from T′. Different trees

are admitted only for different occurrences of c.

13
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Instead of a single symbol, we can have a tuple of concatenation symbols c =

{c1, ..., cn}. For T,T1, ...,Tn ⊆ Tk,Ω let T.cT1, ...,Tn be the set of trees obtained from

trees T ∈ T by substituting each occurrence of ci in frt(T ) by some tree in Ti for

i ∈ [n]. The set (T1, ...,Tn)ωc is named the ω-fold concatenation and contains all the

trees obtained by ω-iteration of the standard tree concatenation.

A tree language T ⊆ Tk,Ω is called regular if and only if it can be express starting

from a finite subsets of trees and applying the union, the concatenation .c and the star

∗c operations. A tree language is recognizable if and only if T is regular (see (40)).

2.2 Automata

2.2.1 Finite state automata and ω -automata

A deterministic finite state automaton (FA) is a quintuple AFA = (Σ, Q, q0, δ, F ) where:

• Σ is a set of symbols, named alphabet

• Q is a finite set of states

• q0 ∈ Q is a initial state

• δ : Q× Σ→ Q is the transition function

• F ⊆ Q is the set of final states

A run of AFA is a finite sequence of states π = π0, π1, π2, ..., πn ∈ Q∗ such that

π0 = σ0 and for each i ∈ [n− 1] such that σi is the ith letter if σi, then πi+1 ∈ δ(πi, σi).
A word w ∈ Σ∗ is accepted if AFA has a run on w and δ(q0, w) = qf with qf ∈ F .

In nondeterministic finite state automaton (NFA) for some state and input symbol,

the next state may be nothing or one or two or more possible states. Formally an NFA,

is quintuple ANFA = (Σ, Q, q0, δ, F ) where:

• Σ is a set of symbols of the alphabet

• Q is a finite set of states

• q0 ∈ Q is a initial state

• δ : Q× Σ→ 2P is the transition function and 2P is the power set of Q

14
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• F ⊆ Q is the set of final states

The definition of run of an NFA is the same as run of an FA, but now the transition

can lead to a subset of state of Q. A word w is accepted if ANFA if δ(q0, w) ∩ F 6= ∅.

A ω-automaton (ω-FA) is a quintuple A = (Σ, Q, q0, δ, F ) where:

• Σ is the finite alphabet

• Q is a finite set of states

• q0 ∈ Q is a initial state

• δ : Q× Σ→ Q is the transition function

• F is the acceptance condition.

For an ω-automaton a run over an infinite word σ ∈ Σω is a sequence of states π =

π0, π1π2, ... ∈ Qω if π0 = σ0 and for each i such that σi is the ith letter if σi, then

πi+1 ∈ δ(πi, σi). The difference between ω-automaton and finite state automaton relies

in the acceptance conditions and, consequently, in the accepted words. A run π is

accepting by A if it satisfies the acceptance condition.

For either a deterministic or a nondeterministic ω-automata, an ω-word w ∈ Σω is

accepted if there exists an accepting run on it. For universal ω-automata an ω-word w

is accepted if all the runs on it are accepting.

In the following subsection we discuss about the main acceptance conditions. We

refer the reader to (40) for more details on ω-words automata.

Safety automata A safety automaton A is a deterministic ω-automaton with no

final states, and the language accepted by A, denoted WA, is the set of all ω-words

on which A has a run. We denote a safety automaton by (Σ, Q, q0, δA) where Σ is a

finite set of input symbols, Q is a finite set of states, q0 ∈ Q is the initial state, and

δA : Q× Σ→ Q is a partial function (the transition function). The language accepted

by a safety automaton A is the set of all ω-words such that A has a run on it.
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Büchi and co-Büchi automata A Büchi automaton A is ω-automaton and the

language accepted by A, denoted WA, is the set of all ω-words such that a state in F

repeats infinitely often. We denote a Büchi automaton by (Σ, Q, q0, δA, F ) where Σ is

a finite set of input symbols, Q is a finite set of states, q0 ∈ Q is the initial state, and

δA : Q× Σ→ Q is the transition function and F ⊆ Q is the set of final state. A run π

over an infinite word σ ∈ Σω is accepted by A if Inf(π) ∩ F 6= ∅.
A co-Büchi automaton is defined by the same tuple (Σ, Q, q0, δA, F ), but in this

case the set F represents the set of state that the automaton must visited finitely

often. Consequently, the language accepted by a co-Büchi automaton is the set of all

ω-words such that a state in F ⊆ repeats finitely often, i.e. a run π of a word w is

accepting if Inf(π) ∩ F 6= ∅.

Parity automata A parity automaton A is an ω-automaton and the language ac-

cepted by A, denoted WA, is the set of all the ω-words such that the smallest number

that is visited infinitely often is even. Formally, a parity automaton is defined by the

tuple (Σ, Q, q0, δA, F ) where Σ is a finite set of input symbols, Q is a finite set of states,

q0 ∈ Q is the initial state, and δA : Q×Σ→ Q is the transition function and F : Q→ [c]

for some c ∈ N, i.e. a colouring function that maps each vertex with a natural number

in [c]. A run π over an infinite word σ ∈ Σω is accepted by A if min{c(q)|q ∈ Inf(π)}
is even.

For more information on infinite automata, we refer the reader to (41).

2.2.2 Pushdown automata

A pushdown automaton P is a tuple (Q, q0,Σ,Γ, δ, γ
⊥, F ) where Q is a finite set of

states, q0 ∈ Q is the initial state, Σ is a finite alphabet, Γ is a finite stack alphabet,

γ⊥ is the bottom-of-stack symbol, F ⊆ Q defines an acceptance condition, and δ :

Q × {Σ ∪ ε} × Γ → Q × Γ∗ is the transition function. A pushdown automaton is

deterministic if it satisfies the following two conditions:

• δ(q, σ, γ) has at most one element for any q ∈ Q, γ ∈ Γ and σ ∈ {Σ ∪ ε};

• for any q ∈ Q, γ ∈ Γ and σ ∈ Σ, if δ(q, ε, γ) 6= ∅ then δ(q, σ, γ) = ∅ .

The transition relation is interpreted as follows: δ(q, σ, γ) = (q′, γ′) where q and q′ are

state of P, σ ∈ Σ, γ ∈ Γ and γ′ ∈ Γ∗ and it means that the pushdown automaton is in
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the state q with γ as symbol of the top of the stack and, when the input symbol σ is

read, the automaton enters in a state q′ and it can replace the top symbol γ with the

string γ′. A word w ∈ Σ∗ is accepted by P if there is some run of P on w, starting from

q0 with symbol on the top of the stack γ⊥ and finishing at any control state with the

empty stack having consumed all of w (acceptance by empty stack).

2.2.3 Visibly pushdown automata

Consider a finite alphabet Σ, and let call , ret , and int be new symbols. We denote

Σcall = Σ× {call}, Σret = Σ× {ret}, Σint = Σ× {int}, and Σ̂ = Σcall ∪ Σret ∪ Σint .

A visibly pushdown automaton (VPA) (see (6)) P is a tuple (Q,Q0,Σ,Γ∪{γ⊥}, δ, F )

where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, Σ is a finite alphabet,

Γ is a finite stack alphabet, γ⊥ is the bottom-of-stack symbol, F ⊆ Q defines an

acceptance condition, and δ = δint ∪ δpush ∪ δpop where δint ⊆ Q × Σint × Q, δpush ⊆
Q× Σcall × Γ×Q, and δpop ⊆ Q× Σret × (Γ ∪ {γ⊥})×Q.

A configuration (or global state) of P is a pair (α, q) where α ∈ Γ∗.{γ⊥} and

q ∈ Q. Moreover, (α, q) is initial if q ∈ Q0 and α = γ⊥. We omit the semantics

of the transitions of P being quite standard (see (6) for details). It can be obtained

similarly to that of RGG with the addition of the input symbols on transitions. Here

we just observe that we allow pop transitions on empty stack (a stack containing only

the symbol γ⊥). In particular, a pop transition does not change the stack when γ⊥ is

at the top, and by the definition of δpush , γ⊥ cannot be pushed onto the stack.

A run ρ of P over the input σ0σ1 . . . is an infinite sequence C0
σ0−→ C1

σ1−→ . . . where

C0 is the initial configuration and such that, for each i ∈ N, Ci+1 is obtained from Ci by

applying a transition on input σi. Acceptance of an infinite run depends on the control

states that are visited infinitely often. Fix a run ρ = (γ⊥, q0)
σ0−→ (α1, q1)

σ1−→ (α2, q2) . . ..

With a Büchi acceptance condition, ρ is accepting if qi ∈ F for infinitely many i ∈ N

(Büchi VPA). With a co-Büchi acceptance condition, ρ is accepting if there is a j ∈ N

such that qi 6∈ F for all i > j (co-Büchi VPA).

A VPA P is deterministic if: (1) |Q0| = 1, (2) for each q ∈ Q and σ ∈ Σcall ∪ Σint

there is at most one transition of δ from q on input σ, and (3) for each q1 ∈ Q, σ ∈ Σret ,

γ ∈ Γ ∪ {γ⊥} there is at most one transition from q on input σ and stack symbol γ.

Note that a deterministic VPA has at most one run over any given input word w.

17



2. AUTOMATA

For a word w, a deterministic/nondeterministic VPA accepts w if there exists an

accepting run over w. A universal VPA accepts w if all runs over w are accepting.

2.2.4 Tree automata

Trees are a natural data structure and they can be use to model many objects or be-

haviours in computer science, for example to represent hierarchical/nested data struc-

tures or functional/imperative programs. When it is necessary to reason on these

settings, it is crucial to have finite representation of infinite sets of trees and tree au-

tomata allows us to have such finite representation. If finite state automata recognize

strings, tree automata deal with tree structure. Tree Automata are strictly related to

regular tree grammars and both describe sets of trees, and have well known algorithms

for veryfing inclusion.

A one-way nondeterministic tree automaton is defined by a tuple A = (Q,Q0, δ, F ),

where Q is a set of states, the set of initial states Qf ⊆ Q, and δ is a transition relation

i.e. δ ⊆ Q × Ω × Qk, and F is the acceptance condition. One way deterministic

tree automaton has the same definition of nondeterministic tree automaton but the

set of initial state is composed only by a single initial state q0 and there are no two

transition rules with the same left hand side. We want to remember that deterministic

tree automata are strictly less powerful than nondeterministic ones.

A one-way nondeterministic tree automaton is a nondeterministic Büchi (resp. co-

Büchi) tree automaton over Ω-labeled k-trees if F is a Büchi (resp. co-Büchi) accep-

tance condition i.e. F ⊆ Q.

A run R of A on a Ω-labeled k-tree T = ([k]∗, ν) is a Q-labeled k-tree ([k]∗, τ) such

that τ(ε) ∈ Q0 and for each x ∈ [k]∗, (τ(x), ν(x), τ(x.1), . . . , τ(x.k)) ∈ δ. The labeling

of R is such that the first component tracks the current node of the input tree T and

the second component the current state of the automaton.

A path in a k-tree is a sequence of vertices x1x2 . . . where for all i ∈ N, xi+1 = xi.ji+1

for ji+1 ∈ [k]. In a Büchi tree automaton a run R is accepting if each path is accepting,

i.e., for every infinite path x1x2 . . ., τ(xi) ∈ F for infinitely many i ∈ N. In a co-Büchi

tree automaton a run R is accepting if each path is accepting, i.e., for every infinite

path x1x2 . . ., there is a j ∈ N s.t. τ(xi) 6∈ F for every i > j.

A universal Büchi or co-Büchi tree automaton A = (Q, q0, δ, F ) is defined as a

nondeterministic tree automaton except that δ : Q× Σ→ 2[k]×Q, where δ(q, σ) means
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that at a node x labeled with σ, from a state q, A moves to state q′ on x.i for each

(i, q′) ∈ δ(q, σ). Without loss of generality we can assume that |δ(q, σ)| = r for each

q ∈ Q and σ ∈ Σ. For a Ω-labeled k-tree T = ([k]∗, ν), a run R of A on T is a

([k]∗×Q)-labeled r-tree ([r]∗, τ) such that τ(ε) = (ε, q0), and for each x ∈ [r]∗, denoting

τ(x) = (y, q), then for all i ∈ [r], τ(x.i) = (y.j, qi) such that j ∈ [k], {(j, qi) | i ∈ [r]} =

δ(q, ν(y)). Acceptance is as for nondeterministic tree automata. An automaton A

accepts a Ω-labelled k-tree T iff there is an accepting run of A on T ; the language of

A, denoted L(A), is the set of all Ω-labelled k-trees that A accepts.

Two-way Alternating tree automata. In nondeterministic automata each transi-

tion sends exactly one state to each successor node in the tree. Alternating automata

relax this restriction: it is possible to send several states to the same successor or to

ignore some subtrees by not sending states to the corresponding node at all. Two-way

tree automata extend ordinary tree automata by allowing transitions that not only

construct terms but also destruct terms.

A two-way alternating parity tree automaton. (see (44)) over Ω-labelled k-trees is

tuple A = (Q, q1, δ,W ), where Q is a finite set of states, q1 ∈ Q is the initial state,

W is a parity condition on Q and δ : Q× Ω→ B+(({−1, 0, 1, . . . , k)×Q). Intuitively,

{−1, 0, . . . , k} code the directions from a tree-vertex, where {1, . . . , k} stand for the k

children of the tree vertex, −1 stands for the parent of the tree vertex, and 0 stands for

the current tree-vertex itself. Let us extend the definition of concatenation of words

over [k]∗ as follows: (xi.(−1)) = x and x.0 = x, for any x ∈ [k]∗, i ∈ [k], i.e. when a

word is concatenated with −1, it removes the last letter and concatenating with 0 is

the identity function.

A run of A over a Ω-labelled k-tree (Tk, ν), where Tk = (Z,E), is a labelled tree

Tρ = (Vρ, Eρ) where each tree-vertex in Vρ is labelled with a pair (x, q) where x ∈ Z is

a tree-vertex of the input tree and q ∈ Q is a state of the automaton A, such that: (a)

the root of Tρ is labelled (ε, q1), and (b) if a tree-vertex y of Tρ is labelled (x, q), then

we require that there is a set F ⊆ {−1, 0, 1, . . . , k} ×Q such that F satisfies δ(q, ν(x))

and for each (i, q′) ∈ F , y has a child labelled (x.i, q′). A run is accepting, if for every

infinite path in the run tree, if one projects the second component of the labels along

the path, then it is a sequence of states in Q that satisfies the winning condition of

A. Note that there is no condition for finite paths of the run tree. An automaton A
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accepts a Ω-labelled k-tree T iff there is an accepting run of A on T ; the language of

A, denoted L(A), is the set of all Ω-labelled k-trees that A accepts.

In (44), Vardi introduced and studied two-way alternating tree automata and its

conversion to one-way nondeterministic tree automata:

• Let A be a two-way alternating parity tree automaton. Then there is a one-way

nondeterministic parity tree automaton A′ such that L(A) = L(A′), where the

number of states in A′ is exponential in the number of states in A, and the number

of colours in the parity condition of A′ is linear in the number of colours in the

parity condition of A.

For the emptiness problem of one-way nondeterministic tree automata (see (42)),

we recall that:

• The emptiness of a one-way parity tree automaton A can be checked in time that

is polynomial in the number of states and exponential in the number of colours

in the parity condition.

A one-way nondeterministic tree automaton can be seen as a two-way alternating

tree automaton where the transition function is always a disjunction of formulas of the

kind
∧k
j=1(j, qj), i.e. the automaton guesses nondeterministically to send exactly one

copy of itself in each forward direction. Two-way automata, though related to push-

down automata, are quite different. In fact, for every pushdown automaton, it is easy

to construct a two-way automaton which accepts the possible contents of the stack .

However, two-way tree (resp. word) automata have the same expressive power as stan-

dard tree (resp. word) automata: they only accept regular languages, while pushdown

automata accept context-free languages, which strictly contain regular languages.
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Games on pushdown systems

The theory of two player game on graph is an important area in formal verification,

automata theory and logics. Infinite games are useful in many different contexts. First,

the model-checking problem for the µ-calculus is intimately related to solving parity

games (19), the precise complexity of which is still open. The monadic second order

logic are also related to infinite games and it is proven that MSO-formulas can define

the winning region of a parity game. The theory of games finds, moreover, a natural

application in many synthesis problems, as example they forms a natural abstraction of

the synthesis and control-synthesis problems, where the aim is to synthesize a system

that satisfies a given specification (35).

In the standard setting of verification and synthesis the study of games is focused

on finite games that can represent to infinite computations. A finite game is given as

a pair composed by an arena, a finite graph where the set of vertices is split between

two players, and a winning condition, that defines when a play is considered winning

for a player. Flat game graphs are a good choice to model plain open system, but if we

consider to model system with recursive procedures calls, pushdown games attract our

attention, because correctly capture the behaviour of reactive and recursive systems. In

this model a graph of a game is given by a configuration graph of a pushdown automa-

ton. Such games are more suitable to model phenomena like procedure invocations,

because the stack and the operations on it are explicitly present in the model. Most re-

sults in formal verification of pushdown games involve problems on finite graphs which

maintains the call-stack of the system. Against regular specification the pushdown

game problems are proving to be decidable (46). However solving games on pushdown
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system against non-regular specification is in general undecidable. To overcome this

issue, the researchers have focused their attention on a class of automata, the visi-

bly pushdown automata (7), that have a decidable model-checking. This decidability

extends also to the corresponding visibly pushdown game problems (27).

3.1 Games on graphs

Informally, a two-player game is played on an arena, a graph where the vertices are

split in position of Player0 (named pl0) and Player1 (named pl1). The game starts

with a token in an initial position and, each turn, if the vertex where the token is

positioned belongs to a player, then such player chooses a move between the possible

moves defined by the arena and moves the token in such position. Intuitively a play is

defined the sequence of vertices generates by the choices of both players.

Formally an arena (named game graph) is a triple (Vpl0 , Vpl1 , E). The set Vpl0 is

the set of pl0-vertices, Vpl1 is the set of pl1-vertices. The set of all the vertices of the

graph is V = Vpl0 ∪ Vpl1 and Vpl0 and Vpl1 are a partition of V , i.e. Vpl0 ∩ Vpl1 = ∅.
With E ⊆ V × V we represent the set of directed edges: if (v, v′) ∈ E then from the

vertex v the token can be moved on a vertex v′.

Given initial vertex v0 ∈ V , a play π is a (possible infinite) sequence of vertices

π = π0π1... with πi ∈ V for i = 0, 1... such that I) π0 = v0, II) for each i = 0, 1, ...

(vi, vi+1) ∈ E. The player pl l with l = [0, 1] moves the token from vi to vi+1 if and only

if vi ∈ Vpl l . If the play is finite, the player that should do the next move loses. If the

play is infinite, to decide the winner we must consider winning conditions.

Winning conditions can express different aims. In Section 2.2.1 we have yet discuss

the main basic winning conditions, but related to automata. We briefly recall here

some of them and we add some new.

• Reachability: Given a target set F ⊆ V , pl0 wins if the play π reaches a vertex

in the target set, i.e. π = π0π1... and ∃i ≥ 0 such that πi ∈ F .

• Safety: Given a set F ⊆ V of safe vertices, pl0 wins if the play π is composed

only of vertices in the safe vertices, i.e. π = π0π1.... and ∀i ≥ 0 vi ∈ F .

• Büchi: Given a set of vertices F ⊆ V , pl0 wins the play π if π visits at least one

vertex in F infinitely often.
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• Co-Büchi: Given a set of vertices F ⊆ V , pl0 wins the play π if in π visits the

vertices in F only finitely often.

• Parity: Given a colouring function F : V → [c], pl0 wins if in the play π the

minimum number seen infinitely often is even.

Each winning condition defines a winning set W ⊆ V ω, i.e. the set of all the play

that are winning for pl0. Note that Büchicondition is more general that the reachability

condition and we can always transform a reachability game into a Büchigame. The same

holds between parity condition and Büchicondition, i.e. a Büchicondition can be always

transform into an equivalent parity condition using only two colours.

Given a game, i.e. a game graph equipped with a winning condition, the decidability

problem for games asks to determine if pl0 has a winning strategy, i.e. whatever the

other player decides to move, pl0 can has a way to choice its next moves such that the

resulting play is always winning for him. Informally, a strategy is a function that says

how pl0 must behave during a play against pl1. If applying its strategy, pl0 wins each

play regardless of how pl1 moves,we say that this strategy is a winning strategy. In

general case, a strategy (named global strategy) for pl0 is a function strg : V ∗.Vpl0 → V

which associates to each prefix π0π1...πn (with π0 = v0 and πn ∈ Vpl0) of a play π (the

global history of π) the next move. Different strategies can be defined according on the

information that can be used to decide the next move. In this thesis, we are interested

also in memoryless strategies, i.e. the choice of the next move does only depend on

the current vertex. Formally a memoryless strategy is a function strm : Vpl0 → V

that associates to each prefix π0π1...πn (with π0 = v0 and πn ∈ Vpl0) of a play π a

next move only looking at πn. A third kind of strategy, named modular strategy, can

be defined for models for recursive procedure systems and the next move is chosen

according to the history of the current activation of the module. We give the formal

definition of modular strategy and discuss about the related decidability problems in

detail in Chapter 4.

The choice of amount of information that can be used by the strategy to decide the

next move is crucial and it influences the decidability of the game. Winning strategies

that remember a bounded amount of informations lead to simpler solutions and in

general the complexity of the decidability game problem is easier, but the non-existence
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of simple winning strategy does not implies the non-existence of a winning strategy with

complete information.

3.2 Winning conditions as formulas of temporal logics

Logics have found an important application in formal verification because they allows

to express requirements for hardware or software systems. Moreover, the equivalence

between many logical formalisms and automata constitutes a solid theoretical basis

to the development of powerful algorithms and software system for the verification of

finite-state programs. In the eighties, temporal logics have been introduced to express

correctness requirement referring to time and they represent a convenient formalism for

specifying and verifying properties of reactive systems. Using temporal logic formulas

we can express statements as “This property always holds ”or “Finally this requirement

becomes true”. Their relevance in the theoretical computer science has motivate the

researches of the last decades to build on an extensive literature, composed by many

different formalisms and important results. In the following subsections, we introduce

some temporal logics that are relevant in this work because we had used their formalisms

to specify our correctness requirements.

3.2.1 Linear Temporal Logic

The Linear Temporal Logic (Ltl ) is a modal temporal logic proposed by Amir Pnueli

for the formal verification of computer programs. Ltl can encode formulae that can

express requirements about the future, as example condition that eventually will be

true or condition that are true until another fact becomes true. However, branching

time, quantifiers or past modalities can not be express using the set of Ltl operators.

(LTL) is a popular choice for specifying correctness requirements of reactive systems.

LTL formulas are built from atomic propositions using temporal modalities such as

next, always, until... and are interpreted over infnite sequences of states that assign

values to atomic propositions. The syntax and the semantics of Ltl are reported in

Fig. 3.1.

The basic temporal operators of Ltl are:

• © or X is the next operator and requires that a property holds in the next state

of the path

24



3.2 Winning conditions as formulas of temporal logics

Syntax ϕ := p | ϕ ∨ ϕ | ¬ ϕ | ©ϕ | ϕ Uϕ

Semantics for a word α ∈ 2AP and n ∈ N :

• (α, n) |= p iff α0 = (X, d) and p ∈ X or p = d (where p ∈ AP)

• (α, n) |= ϕ1 ∨ ϕ2 iff (α, n) |= ϕ1 or (α, n) |= ϕ2

• (α, n) |= ¬ϕ iff (α, n) 2 ϕ

• (α, n) |=©ϕ iff (α, n+ 1) |= ϕ

• (α, n) |= ϕ1 Uϕ2 iff there is a sequence of position i0, i1, ..., ik, where

i0 = n, (α, ik) |= ϕ2 and for every 0 ≤ j ≤ k − 1 (α, ij) |= ϕ1

Figure 3.1: Syntax and semantics of Ltl .

• U or U is the until operator there is a state on the path where the second property

holds and, at every state before that, the first property holds

Additional temporal operators are:

• ♦ or F is the eventually operator and it is used to assert that a property will hold

at some state in the path

• � or G is the always operator and it specifies that a property holds in every state

of the path

• R or R is the release operator and it asserts that the second property will hold

until the first will become true.

• W or W is the weak until operator and it is similar to the until operator, but the

second property is not required to occur.

Such additional temporal operators (and the logical operators ∧,→,↔ can be defined

in terms of the fundamental operators to write LTL formulas succinctly.

3.2.2 Temporal Logic of Calls and Returns

Model checking Ltl specifications with respect to pushdown systems has been shown

to be a useful tool for analysis of programs with potentially recursive procedures. LTL,

however, can specify only regular properties. If we must express properties such as cor-

rectness of procedures with respect to pre and post conditions, that require matching of
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Syntax ϕ := p | ϕ ∨ ϕ | ¬ ϕ | ©gϕ | ©aϕ | ©−ϕ | ϕ Ugϕ | ϕ Uaϕ | ϕ U−ϕ

Semantics for a word α ∈ 2AP × {call, ret, int} and n ∈ N :

• (α, n) |= p iff α0 = (X, d) and p ∈ X or p = d (where p ∈ AP)

• (α, n) |= ϕ1 ∨ ϕ2 iff (α, n) |= ϕ1 or (α, n) |= ϕ2

• (α, n) |= ¬ϕ iff (α, n) 2 ϕ

• (α, n) |=©gϕ iff (α, succgα(n)) |= ϕ, i.e., iff (α, n+ 1) |= ϕ

• (α, n) |=©aϕ iff (α, succaα(n)) 6= ⊥ and (α, succaα(n)) |= ϕ

• (α, n) |=©−ϕ iff (α, succ−α (n)) 6= ⊥ and (α, succ−α (n)) |= ϕ

• (α, n) |= ϕ1 Ubϕ2 (for any b ∈ {g, a,−}) iff there is a sequence of

position i0, i1, ..., ik, where i0 = n, (α, ik) |= ϕ2 and for every 0 ≤ j ≤
k − 1, ij + 1 = succbα(ij)) and (α, ij) |= ϕ1

Figure 3.2: Syntax and semantics of CaRet.

calls and returns and are not regular, Ltl is not enough expressive to formalize such re-

quirements and we must consider richer specification languages. One of such languages

is the Temporal Logic of Calls and Returns (CaRet ), a temporal logic that can ex-

press requirements about matching calls and returns, along with the necessary tools

for algorithmic reasoning. The formulas of such logic are interpreted over structured

computations . A structured computation is an infnite sequence of states, where each

state assigns values to atomic propositions, and can be additionally tagged with call

or ret symbols. Besides the global temporal modalities (as Ltl ), CaRet admits their

abstract counterparts, that capture the local computations within a module removinng

the computation fragments corresponding to calls to other modules. Moreover, CaRet

introduces the notion of the caller position which gives the most recent unmatched call

position.These modality allows to espress the specification of properties that require

inspection of the call-stack.

The syntax and the semantics of CaRet are reported in Fig. 3.2. We refer the

reader to (3) for a detailed definition of CaRet.

In this logic, three different notions of successor are used:

• the global-successor (succg) which is the usual successor function. It points to

next node, whatever module it belongs;
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• the abstract-successor (succa) which, for internal moves, corrensponds to the

global successor and for calls corresponds to the matching returns;

• the caller successor (succ−) which is a ”past” modality that points to the inner-

most unmatched call.

Typical properties that can be expressed by the logic CaRet are pre and post

conditions. An example is the formula G[(call ∧ p ∧ pp1) → Xaq]. If we assume

that all calls to procedure p1 are characterized by the proposition pp1 , the formula

expresses that if the pre-condition p holds when the procedure p1 is invoked, then the

procedure terminates and the post-condition q is satisfied upon the return. This is the

requirement of total correctness. Observe the use of the abstract next operator to refer

to the return associated with the call. In (3) it is proven that given a CaRet formula

ϕ it is possible to construct a nondeterministic Büchi VPA of size exponential in |ϕ|
that accepts exactly all the words that satisfy ϕ.

3.2.3 Nested Word Temporal Logic

Nested word Temporal Logic (Nwtl ) is an other formalism that is well suited for

systems that work with a call/return paradigm. As CaRet , Nwtl has abstract and

previous modalities. Its operators are:

• not (¬), or (∨), next (©), as Ltl

• abstract next (©µ), previous (	), abstract previous (	µ) as CaRet

• summary until (Uσ) and summary since (Sσ) and they are interpreted over a

summary path that is the unique shortest directed path one can take between a

position in a run and some future position, if one is allowed to use both successor

edges and matching call-return summary edges.

The syntax and the semantics of Nwtl are reported in Fig. 3.3. We refer the

reader to (8) for a detailed definition of Nwtl .

In (8) it is shown that even a Nwtl formula ϕ can be translate in a nondeterministic

Büchi VPA of size exponential in |ϕ| that accepts exactly all the words that satisfy ϕ.
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Syntax ϕ := p | ϕ ∨ ϕ | ¬ ϕ | ©ϕ | ©µϕ | 	ϕ | 	µϕ | ϕ Uσϕ | ϕ Sσϕ

Semantics for a word w in 2AP and the related nested word α = (w, µ, call, ret) and

n ∈ N :

• (α, n) |= p iff α0 = (X, d) and p ∈ X or p = d (where p ∈ AP)

• (α, n) |= ϕ1 ∨ ϕ2 iff (α, n) |= ϕ1 or (α, n) |= ϕ2

• (α, n) |= ¬ϕ iff (α, n) 2 ϕ

• (α, n) |=©ϕ iff (α, n+ 1) |= ϕ

• (α, n) |= ©µϕ iff n is a call and j is the matching return (i.e.µ(n, j)

holds) and (α, j) |= ϕ

• (α, n) |= 	ϕ iff n < 1 and (α, n− 1) |= ϕ

• (α, n) |= 	µϕ iff n is a return and j is its matching call (i.e. µ(j, n)

holds) and (α, j) |= ϕ

• (α, n) |= ϕ1 Uσϕ2 iff there exists a j ≥ n for which (α, j) |= ϕ1 and

for the summary path n = n0 < ni < · · · < nk = j between n and j,

we have for every p < k that α, np) |= ϕ2

• (α, n) |= ϕ1S
σϕ2 iff there exists a j < n for which (α, j) |= ϕ2 and for

the summary path j = n0 < ni < · · · < nk = n between j and n, we

have for every p < k that α, np) |= ϕ1

Figure 3.3: Syntax and semantics of Nwtl .
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3.3 Algorithmic problems related to games

Verification of reactive systems with recursive procedures The natural appli-

cation of games is the modelling of reactive systems. A reactive (or open) system is a

system whose role is to maintain an ongoing interaction with an external environment.

In fact, in an open system, some of the input are controllable by the system itself, and

other choices are uncontrollable and represent the behaviour of an external environ-

ment. The external environment can change the execution within the limits, that are

defined by model. The system can react to the behaviour of the environment using one

move taken from a set of available choices represented in the model. Typical examples

of reactive system are programs that control mechanical devices or that interact with

users. In general we consider a reactive system each ongoing and controller programs.

This setting can be nicely represented by a two player game. One player (named

protagonist or pl0) represents the controller. The other player (named adversary or

pl1) models the environment. The game graph defines the limits of the behaviour of

both players: if a node of the graph belongs to pl0 the next move is under the controll

of the system itself,

The winning condition of the controller defines its goal. Determining the winner of

the game answers the question whether there exists a controller, whereas computing a

winning strategy realizes the controller synthesis.

Game graphs can be used to model “flat ”system. However, if we consider systems

that act using recursive procedure calls, we need to consider richer models. Pushdown

games, visibly pushdown games and recursive game graphs allows to study the controller

synthesis problem for such kind of open systems.

The µ-calculus The modal µ-calculus is an extension of the basic formalisms of stan-

dard logics, with a great number of attractive logical properties. For instance, it is the

bisimulation invariant fragment of second order logic, it enjoys uniform interpolation,

and the set of its validities admits a transparent, finitary axiomatization, and has the

finite model property. The modal µ-calculus naturally generalizes all the properties of

ordinary modal logic. The completeness theory of modal logic is an undeveloped field

and there are still a set of open problems related to µ-calculus, as example the exact
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expressiveness of the logic and the exact complexity of the model checking problem are

still not known.

There is a direct connection between µ-calculus model checking and games on

graphs. Given a graph G and a µ-calculus formula ϕ, in (48) it is shown that the

formula can be translated in an alternating parity automaton and, taken the product

of the graph with the alternating parity automaton, we construct a parity game and

there exists a winning strategy for the protagonist for a vertex v0 of G if and only if

the µ-calculus formula ϕ is satisfied in v0. The same reduction can be applied in the

reverse: starting from a given parity game, it is always possible to write an equivalent

µ-calculus formula that specify that a vertex is winning for the protagonist (see (46)).

Therefore, parity games and model-checking for the µ-calculus are very close to each

other and they are inter-reducible in linear time. Due to these transformations, it is

sufficient to focus on solving games instead of model checking problem for µ-calculus.

Monadic Second Order Logic The determinacy theorem for games and the resolv-

ability of infinite games on finite graphs are closely related to the decidability of the

monadic second-order logic on trees. In fact, it is shown that there is a correspondence

between automata on infinite trees and MSO-formulas. As consequence the monadic

second-order theory turns out to be decidable. MSO-formulas define the winning re-

gion of a parity game where the alternation depth is constant and independent of the

number of colours.

3.4 Pushdown games with regular winning conditions

In (46) the author considers pushdown parity games, i.e. pushdown processes where

the set of the state is split among two players and equipped with a specification given

as a colouring function that maps the states of the automaton to natural numbers.

The pushdown process is a transition system that is form of pushdown automaton

with emphasis on graph configurations. The author proves the Exptime-completeness

of the model checking problem for pushdown parity games and consequently also the

µ− calculus model checking problem. The upper bound is proved reducing the model

checking from the pushdown process to the model checking problem for finite state

transition system. The size of the resulting transition system after the reduction is
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exponential in the number of states of the pushdown process and in the size of the for-

mula. The exponential lower bound is proven presenting a reduction to the alternating

linear Turing Machine, constructing a simulating automaton as the one presented in

(13). These reductions are quite standard, bet we recall them because we will apply

such similar approach to prove the lower bounds of the solutions presented in Chapters

5 and 9. The decidability of the model checking problem of pushdown parity games can

be easily extended even to pushdown games with different winning conditions, provided

that the specification could be translated into a parity automaton.

Pushdown processes Consider a finite alphabet Γ, let Γ⊥ the finite alphabet such

that Γ⊥ = Γ ∪ γ⊥ and let Γc⊥ = {skip, pop} ∪ {push(γ)|γ ∈ Γ⊥} be the set of stack

commands over Γ⊥.

In this setting, a pushdown automaton P is a tuple (Q,Σ, q0, γ
⊥, δ) where Q is the

finite set of states, Γ⊥ is the stack alphabet, q0 ∈ Q is the initial state, γ⊥ is the initial

stack symbol, and δ : Q×Γ⊥ → 2Q×Γc⊥ is the transition function. A configuration of P

is a pair (α, q) where α ∈ Σ+
⊥ and q ∈ Q. The bottom-stack symbol can not be pushed

or popped.

A pushdown tree TP is defined by a pushdown automaton P according to the

following rules: (i) the root of the tree is labelled with (γ⊥, q0) and (ii) for every

node (α0, q0), ..., (αi, qi) if (α, q) ∈ δ(αi, qi) then the node has a son labelled with

(α0, q0), ..., (αi, qi), (α, q).

Pushdown parity games Given an automaton P, where the set of state Q is split

in two subsets Qpl0 and Qpl1 , and a colouring function F (as in a parity automaton) we

can define a pushdown game GP = (V,E,F), where (V,E) defines the pushdown tree

TP and F : V → [0, n] such that for each v ∈ V then F(v) = F(q) if q is the state in

the label of v. We have a partition of V in two subsets Vpl0 and Vpl1 according to the

partition of the set Q: we say that v ∈ Vpl0 if and only if the state that occurring in

the label of v belongs to Qpl0 , otherwise v ∈ Vpl1 .

From a state labelled with a vertex v ∈ Vpl0 (resp. v ∈ Vpl1) a play in such game

means that the player pl0 (resp. pl1) chooses the next state. To ease the presentation

and without loss of generality, the visit of vertex of pl0 and pl1 is considered as strictly

alternated. The play goes on indefinitely unless one of the players cannot make a move

31



3. GAMES ON PUSHDOWN SYSTEMS

and in such case that player loses. If the the projection of the resulting plays on the

labelled vertices is an infinite sequence v1, v2, ... and if in the corresponding infinite

word F (v0)F (v1)... the smallest number that is seen infinitely often is even, then this

play is winning for pl0.

A pushdown strategy is a function that, reading the moves of pl1, defines the ac-

cording moves of pl0. The product of the moves done by both players defines a path

on TP. The choice of the next move for pl0 can be done only looking at the current

state and the current symbol on the top of the stack.

A move is pair that consists of a state of P and a stack command, i.e. it is an element

of Q × Γc⊥. A path on TP determines a sequence of moves that automaton made on

this path and a sequence of moves may determine a sequence of configurations. Not

al the sequences of moves determines paths because they could contain invalid moves.

A strategy automaton is a deterministic finite state automaton with input and output

Pstr = (QPstr ,Σi,Σo,ΓPstr , q0, γ⊥, δPstr) where QPstr is a finite set of states, Σi is the

input alphabet, Σo is the output alphabet, ΓPstr is the stack alphabet, γ⊥ is the initial

stack symbol , and δPstr is the transition function δPstr : QPstr × Γ⊥ × (Σi × {τ}) →
QPstr × Γc⊥ × (Σo × {τ}). Intuitively, if δPstr(q, γ, α) = (q′, c, β) this means that when

the automaton is the state q with γ on the top of the stack, the automaton changes

its state in q′, performs the stack command c and returns as output the symbol β. If

γ = τ then the automaton does not read the input and if s = τ the automaton does not

return an output symbol. For each pushdown strategy in GP, then there is a strategy

automaton for P.

Let P be a pushdown automaton and let F be a colouring function. As we said, they

define a pushdown parity game GP. The problem that is considered is to establish the

existence of a winning strategy in such game GP for pl0. The solution of such problem

relies in the reduction to the problem of deciding the existence of a winning strategy in

game on finite graphs. Such reduction is handled as a kind of power-set construction,

which leads the complexity immediately to be exponential in size of the game.

Lower bound. The exponential time lower bound follows from a reduction from

alternating Turing machine. Let M be an alternating linear space Turing Machine

and let Q be the set of state of M partitioned in two sets Q∃ and Q∀, respectively

the set of existential states and universal states. Let Γ be the tape alphabet and
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δ : Q×Γ→ (Q×Γ×{L,R}) be the transition function. Assume that M has only one

tape and let n− 1 be the number of cells used by M on an input word w of size n.

Remember that a configuration of M is a word σ1 . . . σi−1q, σi . . . σn where σ1 . . . σn

is the content of the tape cells, q is a state of M and q, σi denotes that the tape head

is on cell i.

For a give word w it is possible to construct a pushdown automaton P with the state

partitioned in Qpl0 and Qpl1 such that pl0 has a strategy to reach a leaf in the game if

and only if the word w is recognized by M . Initially, P must guess the a sequence of n

letters of the configuration. To produce a correct configuration, the automaton must

guess one and only one letter q ∈ Q in such sequence. Then the automaton pushes

such letters on the stack. After such pushing, the automaton arrives in a state in Qpl0

if q ∈ Q∃, or in a state in Qpl1 if q ∈ Q∀. From this state, the automaton simulates

the transition function of M and that P pushes on the stack the another sequence

that represents the previous configuration and the process repeats. At this point the

automaton has encoded two configurations and a selected transition and it must verify

that such triple simulates a legal move of M and, to do that, the automaton enters

a state named Check. This state is a pl1-state and the adversary here can choose to

verify that the two configuration are legal according to the transition of M or to assume

that the simulation has been done correctly and move on. If pl1 forces the verification,

the automaton enters a state Check1 and tests the consistency of the two guessed

configurations according to the selected move. If the test succeeds P stops, otherwise P

goes in an infinite loop. If pl1 decides to do not check the consistency of two consecutive

configuration, the process of choose transitions and guess the configurations proceeds

until the first configuration is reached. At this point pl1 checks if this configuration

is an initial one and if the test succeeds P stops, otherwise it goes in an infinite loop.

Then the following holds:

Theorem 1. The problem of deciding the existence of a winning strategy in a pushdown

parity game is Exptime-complete.

3.5 Visibly pushdown games

Formal verification of pushdown games against regular specification is in general tractable,

because the emptiness of pushdown automata is decidable. However, solving pushdown
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games with pushdown winning conditions is undecidable. Checking software models

against regular specifications is useful, but there are important context-free require-

ments as specification of pre-post conditions for procedures, security properties,etc...

that require the stack inspection. The logic CaRet and Nwtl allow to express speci-

fication of such context-free properties and preserves decidability of pushdown model-

checking. Visibly pushdown automata (VPA ) can recognize the corresponding lan-

guages and have a decidable model-checking. In (27) it is shown that the decidability

can be extended also to Visibly Pushdown Games (VPG ) with winning condition given

as a VPA .

Infinite Two-Player Games A game graph over a finite alphabet Σ is a graph

G = (V, Vpl0 , Vpl1 , E) where (V,E) is a graph with its edges labeled with letters of Σ

and (Vpl0 , Vpl1) is a partitions of V between the two players.

An infinite two player game is a pair (G,W ) where the winning condition W can

be an internal winning condition, i.e. W is a subset of V ω, or an external winning

condition, i.e. W is a subset of Σω.

Intuitively a play in this setting starts from an initial node v0 and then proceeds as

follows: for i ∈ N if vi ∈ Vplj with j ∈ [0, 1] then pl j moves the token and it can move

it on a vertex vi+1 such that exists and edge e = (vi, σ, vi+1) ∈ E. If a players cannot

make a move, the other player wins, otherwise the play π = v0σ0v1σ1... is an infinite

sequence and if the winning condition is internal (resp.external) pl0 wins if v0v1... ∈W

(resp.σ0σ1... ∈W ), otherwise pl1 wins.

Visibly Pushdown Games A visibly pushdown game (VPG ) is a tuple (S,Qpl0 , Qpl1 , P )

where S is a visibly pushdown system and a VPA P , both over a common alphabet Σ̂,

and a partition 〈Qpl0 , Qpl1〉 of the state of S between the two players.

A visibly pushdown system (VPS) over the alphabet Σ̂ is a tuple S = (Q, qin,Γ, δ)

where Q is a finite set of states, Qin ⊆ Q is a set of initial states, Γ is a finite stack

alphabet that contains the symbol ⊥, which represents the bottom of the stack, and

δ ⊆ Q× Σcall ×Q× (Γ\{⊥})) ∪ (Q× Σret × Γ×Q) ∪ (Q× Σint ×Q) is the transition

relation.
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The stack content wγ is a sequence of symbol of Γ or the bottom of the stack,

i.e. wγ ∈ (Γ\{⊥)} ∗ ∪{⊥}. We refer to the set of all possible stack contents with the

notation Stk.

A transition (q, σ, q′, γ) where γ ∈ Σcall and γ 6= ⊥ is a push transition, i.e. on

reading σ the stack symbol γ is pushed onto the stack and the control passes to q′.

Similarly (q, σ, q′, γ) is a pop transition if σ ∈ Σret and and γ ∈ Σret: when γ is read

from the top of the stack, it is popped and the control passes from q to q′. Note that

in the case of a pop transition, if the stack is empty, the stack is read but not popped.

On the internal operation, the stack is left unchanged.

A configuration graph of a VPS S is a graph GS = (VS , ES) where VS = {(q, wγ)|q ∈
Q and wγ ∈ Stk} and ES is the set composed by all triples of the form ((q, wγ), σ, (q′, w′γ))

that satisfy the following rules:

• Push: If σ is a call, then ∃γ ∈ Γ such that (q, σ, q′, γ) ∈ δ and w′γ = γ.wγ

• Pop: If σ is a return, then ∃γ ∈ Γ such that (q, σ, q′, γ) ∈ δ and either γ 6= ⊥
and wγ = γ.w′γ or γ = ⊥ and wγ = w′γ

• Internal: If σ is an internal action, then (q, σ, q′) ∈ δ and wγ = w′γ

For a word w = w0w1w2... ∈ Σω, a run of S is a sequence of configurations π =

(q0, w
0
γ)(q1, w

1
γ)... where q0 ∈ Qin, σ0 = ⊥ and ((qi, w

i
γ), σ, (qi+1, w

i+1
γ ))

The VPA P is define as in Section 2.2.3 and it represent the specification automaton.

The language of the VPA P is the set of words accepted by P and we denote it with

LP .

The visible pushdown game problem asks if, given a visibly pushdown game (S,Qpl0 , Qpl1)

and a state pin in S, there exists a (global) strategy for pl0 such that is winning from

the position (pin,⊥).

In (7) it is proven that such problem is decidable and it is 2Exptime-complete.

The main challenge to overcome is that in general specification automata given as VPA

are not determinazable and this prevents from taking the product of the game with

the specification automaton and reduce it to a pushdown game with internal winning

condition. The authors resolve such problem passing through a different kind of VPA,

named stair VPA. In such automata, the acceptance condition is not evaluated on the

whole run, but on a subsequence of it. Such subsequence is obtained from the whole
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3. GAMES ON PUSHDOWN SYSTEMS

run discarding the configurations for which a future configurations has a smaller stack

height. Such restriction does not decrease the expressive power of the automata and

the author proves that for each nondeterministic Büchi VPAP it is possible construct

an equivalent nondeterministic stair VPA P ′ with a number of states exponential in

the number of the states of P .

Using this result, it is possible internalize the winning condition, transforming it

into a deterministic stair VPA and, then, taking its product with the game graph

defined by the visibly pushdown game. The resulting game has now a stair parity

winning condition and it can be solved adapting a variant of the classical techniques

for pushdown parity game that leads to the 2Exptime-completeness. Due to the fact

that a CaRet is a subclass of context-free languages which is contained in the languages

expressible by VPAs and, given a CaRet formula ϕ over 2AP , it is possible to construct

an equivalent Büchi visibly pushdown automaton on a partition of 2AP with calls,

returns and internal action, and the size of the constructed automaton is 2O(|ϕ|). Hence

it follows that solving visibly pushdown games with specification given as a CaRet

formula is in 3Exptime. Therefore, in (7) the following results are proven:

• Given a visibly pushdown game a winning condition given as a nondeterministic

Büchi automaton, checking whether pl0 has a winning strategy is 2Exptime-

complete.

• Given a visibly pushdown game and a nondeterministic Büchi VPA, checking if

pl0 has a winning strategy is is 2Exptime-complete.

• Given a visibly pushdown game with specification given as a Ltl formula, check-

ing if pl0 has a winning strategy is is 3Exptime-complete.

• Given a visibly pushdown game with specification given as a CaRet formula,

checking if pl0 has a winning strategy is is 3Exptime-complete.

36



4

Modular strategies

As we said, the original motivation for studying games in the context of formal analysis

of systems comes from the controller synthesis problem. Given a description of the

system where some of the choices depend upon the input and some of the choices

represent uncontrollable internal non-determinism, designing a control ler that supplies

inputs to the system so that the product of the controller and the system satisfies

the correctness specification corresponds to computing winning strategies in two-player

games.

In traditional model checking, the model is a finite state machine whose vertices

correspond to states, and whose edges correspond to transitions. To define two-player

games in this model, the vertices are partitioned into two sets corresponding to the two

players, where a player gets to choose the transition when the current state belongs to

its own partition.

In this framework, the work (4) introduces the notion of modular strategies. A

modular strategy is a strategy that can remember only the history of the current

activation of a module, and thus, the resolution of choices within a module does not

depend on the context in which the module is invoked, but only its local history. This

notion allows to synthesize controllers that are indipendent from the context where the

modules are invoked.

In this chapter we present the definition of RGG , the model that is chosen to

represent the recursive system, and then we formilize the notion of modular strategy. In

the remaining sections, we recall the results presented in (4, 5), that consider modular

games where the acceptance condition is given as a reachability winning condition
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4. MODULAR STRATEGIES

or as deterministic/universal Büchi automata or expressed using Ltl formulas. The

first problem is solved using a fixed-point computation algorithm that generalizes the

symbolic solution to reachability games. For the remaining decidability problem, the

solution is presented as an automata-theoretic construction.

4.1 Recursive game graph

A recursive game graph (RGG) is composed of game modules that are essentially two-

player graphs (i.e., graphs whose vertices are partitioned into two sets depending on the

player who controls the outgoing moves) with entry and exit nodes and two different

kind of vertices: the nodes and the boxes. A node is a standard graph vertex and a box

corresponds to invocations of other game modules in a potentially recursive manner

(in particular, entering into a box corresponds to a module call and exiting from a box

corresponds to a return from a module). As an example consider the RGG in Figure 4.1,

where the vertices of player (pl0) are denoted with circles, those of adversary (pl1) with

squares and the rectangles denote the vertices where there are no moves that can be

taken by either players and correspond to calls and exits. Atomic propositions pa, pb,

pc, pd and pe label the vertices.

min

m1

pe
ein

pe

b :m1
pe

u1

pc

u2

pd

e1

pe
u3

pa

u4

pb
ex1

pe

Figure 4.1: A sample

RGG.

Each RGG has a distinct game module which is called

the main module (module min in the figure). In analogy

to many programming languages, we require that the main

module cannot be invoked by any other module. A typical

play starts in vertex ein. From this node, there is only one

possible move to take and thus the play continues at the

call to m1 on box b, which then takes the play to the entry

e1 in m1. This is a vertex of the adversary, who gets to

pick the transition and thus can decide to visit either u3

(generating pa) or u4 (generating pb). In either of the cases,

the play will reach the exit and then the control will return to module min at the return

vertex on box b. Here pl0 gets to choose if generating pc or pd and so on back to the

call to min. Essentially, along any play alternately pl1 chooses one between pa and pb,

and pl0 chooses one between pc and pd. Formally, we have the following definitions.
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4.1 Recursive game graph

Definition 1. (Recursive Game Graph) A recursive game graph G over AP is a

triple (M,min, {Sm}m∈M ) where M is a finite set of module names, min ∈M denotes

the main module and for each m ∈ M , Sm is a game module. A game module Sm is

(Nm, Bm, Ym,Enm,Exm, δm, ηm, P
0
m, P

1
m) where:

• Nm is a finite set of nodes and Bm is a finite set of boxes;

• Ym : Bm → (M \ {min}) maps every box to a module;

• Enm ⊆ Nm is a non-empty set of entry nodes;

• Exm ⊆ Nm is a (possibly empty) set of exit nodes;

• δm : Nm∪Retnsm → 2Nm∪Callsm is a transition function where Callsm = {(b, e)|b ∈
Bm, e ∈ EnYm(b)} is the set of calls and Retnsm = {(b, e)|b ∈ Bm, e ∈ ExYm(b)} is

the set of returns;

• ηm : Vm → 2AP labels in 2AP each vertex from Vm = Nm ∪ Callsm ∪ Retnsm;

• P 0
m and P 1

m form a partition of (Nm∪Retnsm)\Exm; P 0
m is the set of the positions

of pl0 and P 1
m is the set of the positions of pl1.

In the rest of the thesis, we denote with: G an RGG as in the above definition;

V =
⋃
m Vm (set of vertices); B =

⋃
mBm (set of boxes); Calls =

⋃
m Callsm (set of

calls); Retns =
⋃
m Retnsm (set of returns); Ex =

⋃
m Exm (set of exits); P ` =

⋃
m P

`
m

for ` ∈ [0, 1] (set of all positions of pl `); and η : V → 2AP the function such that

η(v) = ηm(v) where v ∈ Vm.

To ease the presentation and without loss of generality, we make the following assump-

tions (with m ∈M):

− there is only one entry point to every module Sm and we refer to it as em (we

can reduce a module with multiple entries to a set of modules with single entry by

duplicating this module one for each entry point and changing the calls and returns

appropriately);

− From within the same module, there are no transitions to an entry, i.e., em 6∈ δm(u)

for every u;

− From within the same module, there are no transitions from an exit, i.e., δm(x) is

empty for every x ∈ Exm;

− a module is not called immediately after a return from another module, i.e.,
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4. MODULAR STRATEGIES

δm(v) ⊆ Nm for every v ∈ Retnsm.

A (global) state of an RGG is composed of a call stack and a vertex, that is, each

state of G is of the form (α, u) ∈ B∗ × V where α = b1 . . . bh, b1 ∈ Bmin , bi+1 ∈ BY (bi)

for i ∈ [h− 1] and u ∈ VY (bh).

A play of G is a (possibly finite) sequence of states s0s1s2 . . . such that s0 = (ε, ein)

and for i ∈ N, denoting si = (αi, ui), one of the following holds:

− Internal move: ui ∈ (Nm ∪ Retnsm) \ Exm, ui+1 ∈ δm(ui) and αi = αi+1;

− Call to a module: ui ∈ Callsm, ui = (b, em′), ui+1 = em′ and αi+1 = αi.b;

− Return from a call: ui ∈ Exm, αi = αi+1.b, and ui+1 = (b, ui).

Fix an infinite play π = s0s1 . . . of G where si = (αi, ui)

With πk we denote s0 . . . sk, i.e., the prefix of π up to sk. For a finite play π′.s,

with ctr(π′.s) we denote the module m where the control is at s, i.e., such that u ∈ Vm
where s = (α, u). We define a predicate µπ such that µπ(i, j) holds iff for some m ∈M ,

ui ∈ Callsm and j is the smallest index s.t. i < j, uj ∈ Retnsm and αi = αj (µπ

captures the matching pairs of calls and returns in π).

4.2 Modular strategies

Fix ` ∈ [0, 1]. A strategy of pl ` is a function f that associates a legal move to every

play ending in a node controlled by pl `.

A modular strategy constrains the notion of strategy by allowing only to select legal

moves depending on the “local memory”of a module activation (every time a module

is re-entered the local memory is reset).

Formally, a modular strategy f of pl ` is a set of local functions {fm}m∈M , one for

each module m ∈M , where fm : V ∗m.P
`
m → Vm is such that fm(π.u) ∈ δm(u) for every

π ∈ V ∗m, u ∈ P `m.

The local successor of a position in a play π is: the successor according to the

matching relation µπ at matched calls, undefined at an exit or an unmatched call, and

the next position otherwise. Formally, the local successor of j, denoted succπ(j), is: h

if µπ(j, h) holds; otherwise, is undefined if either uj ∈ Ex or uj ∈ Calls and µπ(j, h)

does not hold for every h > j; and j + 1 in all the remaining cases.
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4.3 Winning conditions and modular games

For each i ≤ |π|, the local memory of πi, denoted λ(πi), is the maximal sequence

uj1 . . . ujk such that ujk = ui and jh+1 = succπ(jh) for each h ∈ [k − 1]. (Note that

since the sequence is maximal, uj1 = em where m = ctr(πi).)

A play π conforms to a modular strategy f = {fm}m∈M of pl ` if for every i <| π |,
denoting ctr(πi) = m, ui ∈ P `m implies that ui+1 = fm(λ(πi)).

Consider again the example from Figure 4.1. A strategy of pl0 that chooses alter-

nately to generate pc and pd is modular, in fact it requires as memory just to store

the last move from the return of b, and thus is local to the current (sole) activation of

module min. Instead, a strategy that attempts to match each pa with pc and each pb

with pd is clearly non-modular.

We remark that modular strategies are oblivious to the previous activations of a

module. In the RGG of Figure 4.1, a modular strategy for pl1 would only allow either

one of the behaviors: “pl1 always picks pa”or “pl1 always picks pb”.

4.3 Winning conditions and modular games

A modular game on RGG is a pair 〈G,L〉 where G is an RGG and L is a winning

condition. A winning condition is a set L of ω-words over a finite alphabet Σ = 2AP ,

where AP is a set of propositions.

Given an RGG G, for a play π = s0s1 . . . of G, with si = (αi, ui), we define the

trace of π, denoted wπ, as the word η(u0)η(u1) . . . that maps each position to the

corresponding symbol from Σ. A (modular) strategy f is winning if wπ ∈ L for every

play π of G that conforms to f .

The modular game problem asks to determine the existence of a winning (modular)

strategy of pl0 in a given modular game.

In the following sections, we will consider modular game with reachability winning

conditions, or L given by deterministic/universal Büchi automata and by Ltl formulas.

4.4 Solving modular games with reachability winning con-

ditions

In (4) the authors consider modular games with reachability winning conditions. The

approach to solve this problem is an evolution of the attractor set algorithm in flat
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games. The algorithm starts from the target set, that is marked as reachable, and it

updates the attractor set step by step, adding new vertices that are discovered “back-

ward” from the vertices that are it the set yet.

The algorithm is formulate as a fixed -point computation that generalizes the sym-

bolic solution to reachability games. The fixed-point algorithm starting with a set of

target vertices and iteratively grows the set of vertices from which winning is ensured.

In the case proposed in (4), when a node is found to be winning, the algorithm keeps

track of the strategies that are used within different module activations. The labeling

make sure that the same set of module strategies is used consistently everywhere and,

in this way, the algorithm guarantees that the strategy will be modular. When a play

enters a module, the strategy used for the module always drives the play such that

the play exits only in a subset Ereach of exit nodes. The strategy only allows that a

subset Mreach of modules to be called from a current module. This two set are the only

relevant aspects of the strategy that needs to be recorded.

Fix a RGG G = (M, 1, {Si}i∈[n]) where each module Si is (Ni, Bi, Yi,Eni,Ex i,

δi, ηi, P
0
i , P

1
i ) with i ∈ [n] and a target set X ⊆ Ex1. The first key observation is

that if there is a winning strategy for a reachability game, we can reduce this to a

hierarchical modular strategy. Intuitively, if a play reaches a target node executing one

or more cycles, this means that we can omit to go through the cycles, going directly

forward, and the resulting play will still reach the target node.

Now the authors can describe their solution to the considered problem. The pro-

posed algorithm is a labeling algorithm that iteratively labels vertices of the RGG with

tuples of sets of exit nodes according to some initialization and update rules. The

algorithm halts when it can not add any other label. Initially each exit node x ∈ X
is labeled by a tuple 〈E1, ..., En〉 where E1 = x and Ei = {>} for every i ∈ [n] All

the other vertices are unlabeled. The next updates are done according to the following

rules.

• For a node v ∈ P 0
i , if 〈E1, ..., En〉 labels u ∈ δi(v) then add 〈E1, ..., En〉 to the

labels of v.

• For a node v ∈ P 1
i and δi(v) = {v1, ..., vk} if (i)〈Ez1 , ..., Ezn〉 labels vz for z ∈ [k]

and (ii) for every j 6= i 〈Ey1 , ..., E
y
n〉 are pairwise consistent, then add 〈E′1, ..., E′n〉

to the labels of v, where E′j =
⋃k
z=1E

z
j for j ∈ [n].
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4.4 Solving modular games with reachability winning conditions

• For (b, e) ∈ Retnsi labeled by 〈E1, ..., En〉 where Yi(b) = j, add 〈E′1, ..., E′n〉 to

labels of x where E′j = {x} and E′z = > for z 6= j.

• For (b, e) ∈ Callsi such that Yi(b) = j, let (b, e1), ..., (b, ek) be any k distinct re-

turns of box b. Suppose that for z ∈ [k], 〈Ez1 , ..., Ezn〉 labels (b, xh) and 〈E0
1 , ..., E

0
n〉

labels e ∈ Enj . If E0
j = {x1, ..., xk} and E0

l , ..., E
k
l are pairwise consistent for ev-

ery l 6= i, then add 〈E1, ..., En〉 to the labels of (b, e) where El =
⋃k
z=1E

z
l for

l ∈ [n].

Each rule has a specific aim:

• The first rule allows to the pl0 nodes to inherit a label of the successor.

• The second rule allows to label the pl1 nodes. The algorithm must check the

consistency of all the labels of the successors.

• The third rules activates an exit node of the jth module, when there is a box b in

the ith module that is a call to the jth module and has a return (b, e) that has a

label.

• The fourth rules allows to label the calls. If the module ith calls a module jth,

such call can get the label of the entry of the jth module if the algorithm ensures

that there are a strategy which forces the plays that enter in the jth module to

reaches some exit nodes and the return of the ith module correspond to these exit

and they have the same assumption on all the modules.

The proposed algorithm requires exponential time, since it can at most generate expo-

nentially many labels. The algorithm works in time exponential in the number of the

exit nodes and in time linear in the size of the recursive game graph. The following

theorem holds:

Theorem 2. For an RGG G and a target set X, deciding if pl0 has a winning modular

strategy in such game is NP -complete.

Undecidability with incomplete information The choice of consider modular

strategies is motivated by the fact that, in a system composed by separated modules,

it is natural that even the controllers that have the role to keep the system correct

are implemented to represent the strategy of its related module. This feature can be
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relaxed and in (4) it is considered a different approach, where a module can remember

the history of the previous invocations and can use it to decide in each pl0 vertex the

next move. This approach is named persistent strategy, allowing to remember all the

parts of the play in a module.

In (4) it is proven that this subtle change in the definition a modular strategies leads

the problem to become undecidable. The proof of this claim is based on a reduction

from the undecidability of solving multi-player games with incomplete information. In a

multiplayer game, there are two players, plα0 e plβ0 , that form a team 0 that plays against

a team 1, represented by a single player, the adversary. The adversary choices the name

of a player of team 0 and challenge him with a symbol and, then, the chosen player

must respond with a symbol. In the multi-player game is with incomplete information,

after a play π if it is the turn of the player plα0 (respectively plβ0 ), the plα0 (respectively

plβ0 ) can decide the next move only using the portion of history that concern its choices

and the choices of the adversary.

To solve a multi-player game with incomplete information, it can be reduce to a

RGG composed of only three modules, min,m1 and m2, where min is the main module

and it calls m1 and m2. In these two last modules, there are no call to other modules.

The module m1 has an entry node for each letter of the pl1 alphabeth and an exit for

each plα0 symbol, and module m2 has an entry node for each letter of the pl1 alphabeth

and an exit for each plβ0 symbol. Intuitively, the persistent strategy in the module m1

corresponds directly to an incomplete information information for the player plα0 and the

persistent strategy in the module m2 corresponds directly to an incomplete information

for the player plβ0 . If in the RGG game graph a persistent winning strategy exists, then it

exists a winning strategy in the starting multi-player game with incomplete information.

Due to the fact that in (36) it is proven the undecidability of the multiplayer with

incomplete information, in (4) the authors have:

Theorem 3. Solving a modular game with persistent strategy is undecidable.

4.5 Solving modular games with regular winning condi-

tions

In (5) games on recursive game graphs with winning conditions given as an ω-regular

specification and with the requirement that the strategy must be modular are consid-
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ered.

The first considered case is when the specification is given as a deterministic Büchi

automaton and the problem is shown to be decidable. The same holds if specifica-

tions given as universal co-Büchi automata or Ltl formulas are considered. For the

deterministic Büchi automaton case, the presented solution is an automata-theoretic

construction. First, the authors introduce the definition of strategy tree, a tree that

encode modular strategies in the RGG. There exists an effectively constructible tree

automaton linear in the size of the game that recognizes strategy tree. Then the au-

thors describe the construction of a two way alternating tree automaton, that accepts

winning strategy trees.

In the following paragraphs we describe the strategy trees and the details of the

construction. Such approaches and results will be evolved in our following works to

solve different synthesis problems.

Strategy trees A strategy tree intended to encode a modular strategy. In a strategy

tree, the special label root is associated with the root of the tree. The children of the

root are labeled with the entries of each module in G. The subtree rooted in ith of

these nodes corresponds to the unrolling of the ith module. The root of such subtrees

is labelled by the entry point and the symbol >. The subtree for a module m encodes

the strategy for a module m, unrolling the module and annotating the nodes with the

corresponding name of the RGG vertex and > or ⊥. Such symbols encode if a move to

the corresponding node is possible or not.

If a vertex x of a subtree for m is labelled with (u,>), then:

• If u ∈ (Nm\Exm) ∪ Retnsm, the children of x are labelled by the successors of

u along with a >/⊥ annotation. Further, if u ∈ P 0, i.e. is a pl0 vertex, then

we must choose one successor of u, that corresponds to the move selected by the

strategy, and annotate it with the symbol >. If u ∈ P 1, that all the successors

are enabled and this means that all children of x are labelled with >

• If u ∈ Callsm, the call to the other module is not unrolled and the vertex x has its

children that correspond to the returns from the called module. The annotation

>/⊥ encodes that the call to the other module will end in that return (if tagged

with >) or the call will definitely not end in that return (if labelled with ⊥)
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root

(ein,⊤) (e1,⊤)

((b, e1),⊤) dummy (u3,⊤) (u4,⊤)

(ex1,⊤) dummy((b, ex1),⊤) dummy

(u1,⊥) (u2,⊤)

((b, e1),⊤) dummy

((b, ex1),⊤) dummy

(u1,⊥) (u2,⊤)

dummy dummy

Figure 4.2: A fragment of a strategy tree Tsmpl.

If a tree-vertex is labelled (u,⊥), this denotes a move that is disabled by the strategy.

The successors of this tree-vertex do not encode any strategy and are labelled with

dummy .The dummy nodes are also used to complete the k-tree.

In Figure 4.2 we show the top fragment of a strategy tree Tsmpl for pl0 of the RGG

from Figure 4.1.

Proposition 4. There exists an effectively constructible Büchi (resp. co-Büchi) tree

automaton of size O(|G|) that accepts a ΩG-labeled k-tree if and only if it is a strategy

tree.

Recognizing winning strategy tree The second step is define the algorithm to con-

struct the two-alternating tree automaton Awin such that the automaton Awin accepts a

strategy tree if and only if it encodes a winning modular strategy. The automaton Awin

must guarantee the consistency of the guess done on the reachable/unreachable exits

in the strategy tree, i.e. that the exits associated with a tree-vertices that are marked

with the symbol ⊥ are avoided by the strategy encoded by the strategy tree. More-

over, the construction must ensure that all the possible plays, that can be executed

according to the encoded strategy, are winning according to the given specification.

The automata-theoretic construction is presented considering specification given by a

safety automaton, but it can be extended to specification given as deterministic Büchi

or co-Büchi automata, universal Büchi or co-Büchi automata and LTL formulas.
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Safety automata Consider an RGG G = (M,min, {Sm}m∈M ) and a safety automa-

ton A = (Q, q0, δA). The authors construct an alternating tree automaton Awin that:

• i-Simulates A to ensure that the specification is satisfied by the strategy tree

• ii-Ensures that the plays are generated from the entry point of the initial module

and they are infinite (on any finite play pl0loses)

• iii-Guarantees that if a return is marked with ⊥, the calls to the module will

definitely not end in such return

The fulfilment of these tasks is obtained using avoid components. An avoid component

is a couple (u, q) ∈ Ex × Q, and corresponds to the assumption that a play must not

end at the exit u with the specification state q. Another kind of avoid component is

denoted by the symbol $m and it corresponds to the assumption that no play must exit

from the current invocation of the module m. In Awin, the correct fulfilment of the

task is guaranteed by the following behaviours:

• i-The transition function δA is simulated, whenever a node is read. If an exit is

read, the automaton must check the assumption on reachable/unreachable exit,

using the set of avoid components.

• ii-From the first transition the exits of the module min are never reached and this

mean that the automaton considers as avoid component each couple (u, q) such

that u ∈ Exmin and q ∈ Q

• iii-Using its alternating behaviour, the automaton checks the requirement sending

a copy of itself to the root of the subtree corresponding to the called module and

verifying that the exit that corresponds to the unreachable return, will be

The winning condition for Awin, is a parity condition, and the colouring of the states

is 0 for all of them. The automaton Awin s converted in a one-way nondeterministic

tree automaton, with an exponential blow-up, and its intersection with the automaton

that recognizes strategy tree accepts a strategy tree if and only if it encodes a winning

strategy for the considered game. Since the Exptime -hardness can be proved using

a direct reduction from linear-space Turing machines and, combining with Proposition

12, the following holds:
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Theorem 5. For an RGG G and a safety automaton A, deciding if pl0 has a winning

modular strategy in such game is Exptime -complete.

The authors extend the results of this main construction to games with determinis-

tic/universal Büchi or co-Büchiautomata. The main modification to handle determinis-

tic Büchi automaton (the co-Büchi is dual) is provide a way to expose, when a call that

will return will be executed, if in the all possible plays of the caller module that reaches

a specific exit, a final state of the specification automata is visited or not. This goal

is achieved forcing Awin, when the automaton sends a copy to simulate the call that

is guessed to visit a final state, to signal a Büchi final state before continuing the play

in the current module. If a universal Büchi or co-Büchi specification is considered, in

the construction of the automaton when we were updating the specification state, the

automaton creates a copy of itself for each possible update of the specification state.

Them, the authors get:

Theorem 6. Deciding recursive game graph with deterministic/universal Büchi /co-

Büchi automaton is Exptime -complete.

From (45) we know that, given an Ltl formula ϕ, it is possible to construct a

nondeterministic Büchi automaton, and its size is exponential in the size of the formula,

that accepts a word if and only if it satisfies ¬ϕ. Combining this construction and using

the Theorem 5 and recalling the 2Exptime-hardness of the Ltl games for normal

graphs, the authors have:

Theorem 7. Deciding recursive game graphs with specification given as Ltl formula

is 2Exptime-complete.
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Visibly modular pushdown games

In Chapter 4 we have recalled that the results on the decidability problems connected

the existence of a modular strategy in a recursive game graph. This results has been

studied only with respect to ω-regular specifications. However in recursive systems

many interesting properties are expressed by non-regular specifications. In the following

sections, we introduce and solve modular games 〈G,L〉 where G is an RGG and L is a

winning condition given by pushdown, visibly pushdown automata and by Ltl, CaRet

or Nwtl formulas.

5.1 Contribution

The main contributions present in this chapter are:

• We show a polynomial time reduction from the MVPG problem with determin-

istic or universal VPA specifications to recursive modular games over ω-regular

specifications. By (4), we get that this problem is Exptime-complete. We then

use this result to show the membership to 2Exptime for the MVPG problem

with nondeterministic VPA specifications.

• We show that when the winning condition is expressed as a formula of the tempo-

ral logics CaRet(3) and Nwtl(8) the MVPG problem is 2Exptime-complete,

and hardness can be shown also for very simple fragments of the logics. In par-

ticular, we show a 2Exptime lower bound for the fragment containing only con-

junctions of disjunctions of bounded-size path formulas (i.e., formulas expressing

either the requirement that a given finite sequence is a subsequence of a word or
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its negation), that is in contrast with the situation in finite game graphs where

Pspace-completeness holds for larger significant fragments (see (9, 10)). On the

positive side, we are able to show an exponential-time algorithm to decide the

MVPG problem for specifications given as conjunctions of temporal logic formu-

las that can be translated into a polynomial-size VPA (such formulas include the

path formulas).

• We also give a different solution for recursive games with finite-state automata

specifications. Our approach yields an upper bound of |G| 2O(d2(k+log d)+β) for

the MVPG problem, where d is the number of P (the VPA) states, k is the

number of G (the RGG) exits, and β is the number of call edges of G, i.e., the

number of module pairs (m,m′) such that there is a call from m to m′. The

known solution (4) yields an |G| 2O(kd2 log(kd)) upper bound. Thus, our solution is

faster when k and d are large, and matches the known Exptime lower bound (4).

In addition we use one-way nondeterministic/universal tree automata instead of

two-way alternating tree automata, thus we explicitly handle aspects that are

hidden in the construction from (4).

5.2 Pushdown modular games

Pushdown modular game A pushdown modular game is a pair 〈G,P〉 where G is

an RGG and P is a pushdown automaton, whose accepted language defines the winning

condition in G.

Undecidability of pushdown specification The modular game problem becomes

undecidable if we consider winning conditions expressed as standard (deterministic)

pushdown automata. This is mainly due to the fact that the stack in the specification

pushdown automaton is not synchronized with the call-return structure of the recursive

game graph.

We prove the undecidability of our problem with pushdown specification by pre-

senting a reduction from the problem of checking the emptiness of the intersection of

two deterministic context-free languages.

Consider two deterministic context-free languages L1 and L2 on an alphabet Σ

which are accepted by two pushdown automata P1 and P2, respectively. We want to

50



5.2 Pushdown modular games

construct an instance 〈G,P〉 of a deterministic pushdown modular game problem such

that a winning modular strategy for pl0 exists in 〈G,P〉 if and only if the intersection

of L1 and L2 is not empty.

The basic idea of the reduction is to construct a game where pl1 challenges pl0 to

generate a word from either L1 or L2, and pl0 must match the choice of pl1 without

knowing it in order to win. We construct an RGG G with two modules min and m (see

the Figure 5.1).

The module min is the main module and is composed of an entry ein, two internal

nodes u1 and u2, and one box b labeled with m. The entry ein belongs to pl1 and has

two transitions, one to each internal node. From u1 and u2 there is only one possible

move that leads to b. The labeling function associates the symbol a1 to u1 and the

symbol a2 to u2 with a1, a2 /∈ Σ. The node ein and the call (b, em) are both labeled with

] /∈ Σ ∪ {a1, a2}. Observe that since the only choice of pl1 is at ein, for any strategy f

of pl0 there are only two plays conforming to it: one going through u1 and the other

through u2.

min

ein

♯

u2

a2

u1

a1

b : m
♯

m

em

♯

s

♯

v1

σ1

vi

σi

vn

σn

Figure 5.1: The module min and m

The module m is essentially a determinis-

tic generator of any word in {]}.Σ∗.{]}. The

module m has one entry em, n internal nodes

v1, . . . , vn and a sink node s (i.e., a node with

only ingoing edges). All the vertices of m be-

long to pl0. There are only outgoing edges from

em, which go to each of the other vertices of

m. Moreover, there is a transition from vi to

vj for any i, j ∈ [n], and from any node there

is a move to s. Each node vi is labeled with σi,

for i ∈ [n]. The symbol ] labels em and s.

As winning condition, we construct a de-

terministic pushdown automaton P that is constructed on the top of the disjoint union

of P1 and P2 as follows. We add new states q0, q1, q2, q
′
1, q
′
2, and an initial state qst and

a final state qf . We take qf as the only final state. From qst , P reads ] and moves

into q0. For i ∈ [2], from q0 and on input ai, P enters qi, and then after reading two

occurrences of ], enters the initial state of Pi (stepping through q′i). From any Pi state,
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P behaves as Pi and in addition, from each final state of Pi, it has a move on input ]

that goes to qf . Thus, P accepts the language ({] a1 ] ]}.L1.{]}) ∪ ({] a2 ] ]}.L2.{]}).
Since the strategy must be modular, in the module m player pl0 has no information

about the choice of pl1 in min. Also, the local strategy in module m generates one

specific word (there are no moves of pl1 allowed inm) and this is the same independently

of the moves of pl1 in module min. Thus, in order to win, pl0 must generate a word in

the intersection of L1 and L2, and therefore, the following theorem holds.

Theorem 8. The (deterministic) pushdown modular game problem is undecidable.

5.3 Solving modular games with VPA specifications

Visibly pushdown modular games A visibly pushdown game on an RGG (VPRG)

is a pair 〈G,P 〉 where G is a recursive game graph and P is a visibly pushdown au-

tomaton.

Consider a VPRG 〈G,P 〉 where G is an RGG and P is a VPA. The visible trace

of a play of an RGG is essentially its trace where each symbol is augmented with the

annotation call , ret or int depending on whether the corresponding vertex of G is a

call, a return or a node. This trace allows to syncronize the RGG and VPA call-return

structure. Formally, for a play π = s0s1 . . . of G, with si = (αi, ui), we define the visible

trace of π, denoted vπ, as the word σ0σ1 . . . such that for i ∈ N, σi = (ηm(si), ti) where

ctr(πi) = m and ti is call if ui ∈ Calls, ret if ui ∈ Retns, and int otherwise.

The visibly pushdown (modular) game problem asks to determine the existence of

a winning (modular) strategy of pl0 in a given VPRG such that vπ is accepted by P

for every play π that conforms to f . We denote the visibly pushdown modular game

problem as the MVPG problem.

Solving games with VPA specifications We consider games with winning con-

ditions that are given by a VPA with different acceptance conditions. We present a

reduction from recursive games with VPA specifications to recursive games with spec-

ifications that are given as finite state automata.

The reduction is almost independent of the acceptance condition, and works for

reachability and safety conditions as well as for Büchi and co-Büchi acceptance con-

ditions. It transforms a recursive game graph with a visibly pushdown automaton
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dm

ein

vγg
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γ1
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γg

γg

u
j
γg
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ex1

exjbg : m

b1 : m

Figure 5.2: The module dm.

specification (with some acceptance condition) to a slightly different recursive game

graph with a finite-state automaton specification (with the same kind of acceptance

condition).

The key idea is to embed the top stack symbol of a VPA P in the states of a

finite-state automaton A. In addition, the states of A will simulate the corresponding

states of P and thus we will get that the winning conditions are equivalent. Clearly,

a finite-state automaton cannot simulate an unbounded stack: while it is easy to keep

track of the top symbol after a push operation, extracting the top symbol after a pop

operation requires unbounded memory.

To keep track of the stack of P in the RGG, we exploit the fact that the stacks of

the VPA P and the game graph G are synchronized. Thus, we introduce a new dummy

module dm for every module in G and replace every invocation of m by a call to dm

(recall that an invocation of a module m in G corresponds to a push operation in P ).

Denote by γ1, . . . , γg the stack symbols of P and let m be a module with j exits.

In dm (see Figure 5.2), pl1 first has to declare the top stack symbol in P by choosing a

node among vγ1 , . . . , vγg , and A can verify that pl1 is honest since it keeps track of the

current top symbol (if the player is not honest then A goes to a sink accepting state

and pl1 loses). After this declaration, the module invokes the actual module m and

when m terminates, we must restore the symbol that was at the top of the P stack

before the call to m. This is done by forcing a visit of vertex ulγi on returning at the

l-th return of bi and letting A change the stored symbol accordingly.
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Denoting with k the overall number of exits of the starting RGG, with g the number

of stack symbols of P , and d the number of states of P , we get that the resulting RGG

G has 2k exits and the resulting finite automaton A has O(dg) states. Thus combining

this with the algorithm from (4), we get an upper bound linear in |G| and exponential

in 2k(d g)2 log(2 k d g), and hence we get:

Theorem 9. The MVPG problem with winning conditions expressed as a deterministic

Büchi or co-Büchi VPA is Exptime-complete.

The proposed reduction can be extended to handle universal VPA specifications.

W.l.o.g we can assume that in the VPA for every state, stack symbol and input symbol

there are exactly two possible transitions. Then, we add a dummy module d′, that

comprises only pl1 nodes and has only one exit. Each transition from a node v to

a node u is split into two transitions, v → cuv and ruv → u where cuv and ruv are

respectively the call and the return of a new box that is mapped to d′. In module d′,

pl1 selects one of the two possible transitions for the VPA specification and exits. The

choices of pl1 in d are oblivious to pl0. Hence, the universal VPA accepts if and only if

pl0 has a strategy that wins against all pl1 choices in d′, and we get:

Theorem 10. The MVPG problem with winning conditions expressed as a universal

Büchi or co-Büchi VPA is Exptime-complete.

We can handle nondeterministic VPAs in the following way: Let P be a nondeter-

ministic Büchi VPA P . By (6), we can construct a nondeterministic Büchi VPA P ′

that accepts a word w iff P does not accept it, and such that the size of P ′ is expo-

nential in the size of P . Complete P ′ with transitions that go to a rejecting state so

that P ′ has at least one run over each word. Let P ′′ be the dual automaton of P ′,

i.e., P has the same components of P ′ except that acceptance is now universal and the

set of accepting states is now interpreted as a co-Büchi condition. Clearly, P ′′ accepts

exactly the same words as P and has size exponential in |P |. Similarly, we can repeat

the above reasoning starting from a co-Büchi VPA P . Therefore, we have:

Theorem 11. The MVPG problem with winning conditions expressed as a nondeter-

ministic Büchi or co-Büchi VPA is in 2Exptime.
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5.4 Improved tree automaton construction

In this section, we give a new solution to the modular synthesis problem with winning

conditions expressed as standard Büchi or co-Büchi automata (i.e., finite automata

equipped with a Büchi or co-Büchi acceptance).

For the notions of tree and automata accepting trees, we refer the reader to Chapter

1.

5.4.1 General structure of the construction

For the rest of this section we fix a modular game 〈G,B〉 where B = (Q, q0,Σ, δ, F ) is

a deterministic automaton and G = (M,min, {Sm}m∈M ) is an RGG (for each Sm we

use the same notation as in Definition 1).

For B we consider both a Büchi and a co-Büchi acceptance condition, and depending

on this, we construct a Büchi or a co-Büchi tree automaton AG,B that accepts a tree

if and only if pl0 has a winning modular strategy in the game 〈G,B〉. We will give a

single construction and point out the differences between the Büchi and the co-Büchi

cases whenever this will be needed.

The trees accepted by AG,B must encode G and a modular strategy on it (strategy

trees). Each such tree essentially has a subtree rooted at a child of the root for each

module of G and each such subtree is the unwinding of the corresponding module along

with a labeling that encodes a local function.

Assume that the input is a strategy tree T , AG,B nondeterministically guesses: a)

a call graph CG that expresses a call relation for the modules and marks a subset

of its edges as meaningful for acceptance, and b) an extended pre-post requirement

C = 〈Cpre,Cpost,Fin〉 which summarizes the effects of B executions in each module of

G as a relation of states at the module entry and states at each of its exits (Fin just

tells whether any state state in the acceptance set is visited).

Then, AG,B checks that the guessed call graph CG and extended pre-post require-

ment C are consistent with T and the specification B, and by using C and CG , that

the traces of all the plays of the strategy encoded in T are accepted by B.

We split the construction of AG,B into an automaton AG which checks that the

input tree is a valid strategy tree for G, and an automaton AB,C,CG for each guessed

CG and C, for checking the remaining properties.
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In the rest of this section, we give more details on these automata and argue their

correctness according to the stated properties.

5.4.2 Strategy trees and the automaton AG

Denote with #(u) the out-degree of a vertex u. Let k be the maximum over the

number of exits of G modules and the out-degree of G vertices. Denote with ΩG the set

{dummy , root} ∪ (V \ P 0) ∪Ω′ where Ω′ = {(u, i)|u ∈ P 0, i ∈ [#(u)]} (recall V and P 0

denote respectively the set of vertices and pl0 vertices of G). Note that |ΩG| = O(|G|).

We construct AG s.t. it recognizes the set of strategy trees for G, i.e. the set of

ΩG-labeled k-trees that encode modular strategies of pl0.

Strategy trees Intuitively, in a strategy tree, the label root is associated with the

root of the tree. The children of the root are labeled with the entries of each module in

G. A subtree rooted in one of these vertices corresponds to the unrolling of a module.

If a vertex is labeled with a node that belongs to pl0, the move according to the encoded

strategy is annotated with the index of the selected successor. If a node is associated

to a call, then its children are labeled with the matching returns. The dummy nodes

are used to complete the k-tree.

Formally, an ΩG-labeled k-tree T is a strategy tree of G (for player pl0) if:

• the root of T is labeled with root ;

• for i ∈ [|M |+ 1, k], the ith child of the root is labeled with dummy ;

• for i ∈ [1, |M |], the subtree Ti rooted at the ith child of the root corresponds to

an unrolling of module mi; the nodes of Ti are labeled with the corresponding

vertices of the module mi; thus, in particular, the root of Ti is labeled with emi

and the calls have as children the matching returns;

• all the other nodes are labeled with dummy , meaning that they are not meaningful

in the encoding; in particular, for each Ti all the descendants of the nodes labeled

with an exit of mi and all the other nodes that do not correspond to a vertex in

the unrolling of mi are labeled with dummy ;
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root

(ein, 1) (e1)

(b, e1) dummy (u3, 1) (u4, 1)
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(b, e1) dummy (b, e1) dummy

dummy dummy

Figure 5.3: A fragment of a strategy tree Tsmpl.

• each node x labeled with a vertex of pl0 is also labeled with i ∈ [k] such that

x.i is not labeled with dummy , and x.i is the selected child of x (selected by the

encoded strategy).

In Figure 9.1 we show the top fragment of a strategy tree Tsmpl for pl0 of the RGG

from Figure 4.1. Module min is unrolled from the first child of the root and mad from

the second one. Note that from the dummy leaves of the fragment, Tsmpl contains

only dummy nodes, and from the remaining leaves it continues with the unrolling of

the corresponding module. In particular, Tsmpl can be obtained from the considered

fragment by iteratively replacing the non-dummy leaves with any finite subtree rooted

at an internal node labelled with (b, e1) in Figure 9.1 where we possibly vary the selected

move at the nodes labelled with (b, e1) (which is the only vertex of the considered RGG

where pl0 has more that just one alternative).

Regularity of strategy trees Given a tree T , the automaton AG is constructed s.t.

it accepts T iff T is a strategy tree for G. AG can be easily constructed from G, and

thus we omit it (see (4) for a similar construction).

Proposition 12. There exists an effectively constructible Büchi (resp. co-Büchi) tree

automaton of size O(|G|) that accepts a ΩG-labeled k-tree if and only if it is a strategy

tree.
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Strategy trees and modular strategies Directly from the definitions, one can

show that a strategy tree identifies a modular strategy.

Proposition 13. For an RGG G, there exists a one-to-one mapping between the mod-

ular strategies of G and the strategy trees of G.

From the above proposition, the modular strategy corresponding to a strategy tree

T is well defined and we will refer to it as the T -strategy in the rest of Section 5.4.

To identify the plays of the T -strategy in the game, we introduce the notion of play

of T . For this, we denote with αi the call stack at the ith step, i.e., the stack of the

nodes corresponding to the unmatched calls within the π prefix up to xi.

For a strategy tree T of G, a play of T from module m is an ω-sequence of T -nodes

x1x2 . . . such that x1 is the child of the root corresponding to the entry of m, α1 = ε

(call-stack) and for i ∈ N: (1) if xi is labeled with a call to m′, then xi+1 is the child of

the T root corresponding to module m′ (and thus is labeled with the entry em′), and

αi+1 = αi.xi; (2) if xi is labeled with an exit ex and αi = αi+1.xj (with j < i), then xj

is a node labeled with a call (b, em) and xi+1 is the child of y labeled with the return

(b, ex); (3) otherwise, αi+1 = αi and xi+1 is the selected child of xi, if xi is labeled with

a pl0 vertex, and any child of xi in all the other cases.

As example, considering the fragment of the strategy tree Tsmpl proposed in Fig-

ure 9.1. A play π1 from the module min starts at the node labelled (ein, 1), then

continues with the node labelled with the call (b, e1), say x, then jumps to the second

child of the root of Tsmpl (x is pushed on the call stack) and descends on the leftmost

path up to the node labelled with exit ex1 (note that the second child of the root is

labelled with a pl1 vertex thus also descending on its second child would give a play),

then jumps back to the first child x.1 of x (which is popped from the call stack), then

continues on its second child (x.1 is labelled with a return from ex1 and the encoded

strategy at this point selects its second child), and so on.

In the following, when we refer to any play of T from any module m we will omit

m. Also, when the case (2) above applies for a node xj we say that along x1x2 . . . the

xj is a returned call, and is an unreturned call otherwise. Further, the labels of a play

π of a strategy tree T identifies a sequence of G vertices, we refer to a trace of π as

the trace of this sequence of G vertices. As example, the trace of G vertices along π1

is e1(b, e1)e1u3ex1(b, ex1)u2... and the trace of π1 is p3
epap

2
epd... .
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From the definitions, it is simple to verify that a play π of a strategy tree from min

identifies a play of G (given by the sequence of π labels).

Let π = x1x2 . . . be any play of a strategy tree T from m as above.

We say that xi and xj correspond to the same invocation of a module, if αi = αj

(same call-stack) and αi is a prefix of αl for all l ∈ [i, j]. A module play of T from m is

any prefix π′ of a play π from m s.t. π′ ends at a node xj , and x1 and xj correspond

to the same invocation of m. For example, the portion of the play π1 described before

is indeed a module play from min, instead any prefix of this module play up to a node

in the subtree corresponding to the unrolling of mad is not a module play.

We observe that the sequence of labels of a play either is an ω-sequence of vertices

of G or has a suffix formed of only occurrences of symbol dummy . In the first case, we

say that the play is non-terminating. Note that π1 is non-terminating. A terminating

play is the leftmost path of the subtree corresponding to the unrolling of mad in Tsmpl.

5.4.3 The automaton AB,C,CG

We start introducing the notions of pre-post requirement and call graph.

Pre-post requirements A pre-post requirement on the graph G is a pair 〈Cpre,Cpost〉
where Cpre ⊆M ×Q (set of pre-conditions), Cpost ⊆M ×Q× Ex ×Q (set of pre-post

conditions), and such that for each (m, q, exj , q
′) ∈ Cpost, also (m, q) ∈ Cpre (i.e., tuples

of Cpost add a post-condition to some of the pre-conditions of Cpre).

Intuitively, for a strategy tree T of G, a pre-post requirement is meant to cover all

the states q of B that can be reached on entering each module m of G along any play

of T , and for each reachable exit ex of a module m and each such state q, all the pairs

(q, q′) of B states s.t. there exists a play of T from m where B starts at q and exits m

from ex at q′.

An extended pre-post requirement C = 〈Cpre,Cpost,Fin〉 is a pre-post requirement

〈Cpre,Cpost〉 along with a function Fin : Cpost → {true, false}.

We now formalize the intended meaning of the extended pre-post requirements by

the notion of consistency.

For a play π = x1x2 . . . denote with ρπ(q) the only run of B over wπ starting from

q (recall B is deterministic).
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An extended pre-post requirement C = 〈Cpre,Cpost,Fin〉 is consistent with a strategy

tree T if for each play π = x1x2 . . . of T from module m, for each (m, q) ∈ Cpre, and for

each xi that is labeled with a call to module m′, denoting q′ the state visited in ρπ(q)

after reading the label at xi:

(1) (m, q′) belongs to Cpre and (2) if π′ = xi+1 . . . xj is a module play for m′, xj is

labeled with exit ex (of m′) and q′′ is the ending state in ρπ′(q
′), then (m′, q′, ex, q′′)

belongs to Cpost.

An extended pre-post requirement C = 〈Cpre,Cpost,Fin〉 is consistent with B accep-

tance if for each module play π = x1x2 . . . xj where xj is labeled with exit ex, denoting

q′ the end state of ρπ(q):

1. for a Büchi automaton B, we require that a state in F must be visited along ρπ(q)

whenever Fin(m, q, ex, q′) = true;

2. for a co-Büchi automaton B, we require that no state in F is visited along ρπ(q)

whenever Fin(m, q, ex, q′) = false.

An extended pre-post requirement that is consistent with T and B acceptance is

said to be (T,B)-consistent.

q1

pa, pb, pc, pe

q0

pa, pb, pd, pe

q2
pc pd

pa, pb, pc, pd, pe

Figure 5.4: The automaton

Bsmpl.

To illustrate the above definitions, we enrich our

running example with a specification automaton. Let

Bsmpl be the Büchi deterministic automaton shown

in Figure 5.4, where q0 is the starting state and q2 is

the only state in the acceptance set. This automa-

ton accepts the language of all ω-words where both

pc and pd occur infinitely often. We define the ex-

tended pre-post requirement C′ = 〈C′pre,C′post,Fin ′〉
on the RGG from Figure 4.1 as follows: C′pre = {(min, q0), (m1, q0), (m1, q1)}, C′post =

{(m1, q0, ex1, q0), (m1, q1, ex1, q0)} and Fin ′(m1, q0, ex1, q0) = Fin ′(m1, q1, ex1, q0) =

false. The pre-post requirement C′ is not consistent with Tsmpl. Intuitively, when a call

to m1 is executed, at the entry of m1 Bsmpl is in a state q0 or q1. All the plays reaches

ex1 and when such vertex is visited, the state of Bsmpl is not changed, because in m1

there is no vertex labeled with pc or pd. In particular, if a call to m1 is executed and

the state of Bsmpl is q1 after reading the label of the call, then q1 is the ending state of

Bsmpl at ex1. However, (m1, q1, ex1, q1) does not belongs to C′post and this means that
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C′ is not consistent with the strategy tree Tsmpl. Consider a different extended pre-

post requirement C′′ = 〈C′′pre,C′′post,Fin ′′〉, where C′′pre = C′pre, C
′′
post = {(m1, q0, ex1, q0),

(m1, q1, ex1, q1)}, Fin ′′(m1, q0, ex1, q0) = false and Fin ′′(m1, q1, ex1, q1) = true. The

pre-post requirement C′′ is consistent with Tsmpl, but is not consistent with Bsmpl accep-

tance, because when each play moves across m1, along each run Bsmpl visits or always

q0 or always q1, and such states are not in the acceptance set of Bsmtp. If we consider

C′′′ = 〈C′′pre,C′′post,Fin ′′′〉, where Fin ′′′(m1, q0, ex1, q0) = Fin ′′′(m1, q1, ex1, q1) = false,

such pre-post requirement is (Tsmpl,Bsmpl)-consistent.

Call graphs A call graph is a directed graph that captures the sequences of states

at the unreturned calls in the runs of B, and is a useful abstraction to deal with the

B acceptance over traces of plays with infinitely many unreturned calls. Intuitively,

a play π of this kind can be seen as the concatenation π1π2 . . . of infinitely many

portions, where each πi starts at the entry of a module mi and ends at an unreturned

call to a module mi+1 in the same invocation of mi. Thus, we can abstract the run ρ

of B over the trace of π, by replacing each portion ρi of ρ over each πi with an edge

(mi, qi)→ (mi+1, qi+1) where qi and qi+1 are respectively the starting and ending states

of ρi, and reporting also if a state of the acceptance set of B is visited along ρi. This will

suffice to witness the existence of ρ and check the fulfillment of the acceptance condition

of B for plays with infinitely many unreturned calls. We formalize this intuition below.

A call graph of G is a directed graph CG = (U,→, X→) where U ⊆M ×Q is the set

of vertices,→⊆ U ×U is the set of edges and
X→⊆→ denotes a subset of marked edges.

Fix a call graph CG = (U,→, X→) and a strategy tree T .

A call witness of T from a module m to a module m′ is a module play from m

that ends with a node labeled with a call to m′. For example, the module play πsmpl

corresponding to the trace ein(b, e1) is a call witness of Tsmpl from min to m1.

Let Cpre be a set of preconditions as above.

We say that CG is (T,B,Cpre)-consistent if for each call witness π from m to m′

and for each (m, q) ∈ Cpre, denoting with ρ the B run over the trace of π starting from

q and ending at q′:

1. (m, q)→ (m′, q′) holds;
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2. if B is a Büchi automaton and (m, q)
X→ (m′, q′) also holds, then a state in the

acceptance set of B must be visited in ρ;

3. if B is co-Büchi automaton and (m, q)
X→ (m′, q′) does not hold, then none of the

states in the acceptance set of B must be visited in ρ.

In our running example consider the call graph CGsmpl = (Usmpl,→,
X→) where

Usmpl = {(min, q0), (m1, q0), (m1, q1)} and (min, q0) → (m1, q0), (min, q1) → (m1, q1),

(min, q2) → (m1, q0) hold and (min, q0)
X→ (m1, q0) holds. We say that CGsmpl is not

(Tsmpl,Bsmpl,C
′
pre)-consistent. Consider the module play πsmpl. As mention previously,

πsmpl is a call witness from min to m1 and, moreover, we know that (min, q0) ∈ C′′pre. It

is easy to see that the run ρ of Bsmpl over the trace of π starts from q0, ends at q0 and no

other state is visited. From the definition of CGsmpl, we know that (min, q0)→ (m1, q0)

holds, but also (min, q0)
X→ (m1, q0) holds. Due to the fact that ρ of Bsmpl visits only

q0 and such state is not in the acceptance set of Bsmpl, the second rules of consistency

is violated and we said that CGsmpl is not (Tsmpl,Bsmpl,C
′
pre)-consistent.

Construction of AB,C,CG The automaton AB,C,CG is parameterized over the automa-

ton B, an extended pre-post requirement C and a call-graph CG . It is quite complex

and its tasks are:

1. to simulate B on a strategy tree (it uses C to update the state of B when moving

from calls to matching returns);

2. to check the correctness of the pre-post requirement C (i.e., that C is (T,B)-

consistent);

3. to check that CG is (T,B,Cpre)-consistent;

4. to check the fulfillment of the acceptance conditions of B on nonterminating plays

with finitely many unreturned calls.

We first construct an automaton AC
B which ensures task 1. Then on the top of AC

B

we construct three different automata AB,C, AB,CG and ABwin , one for each of the

remaining three tasks respectively. We then get AB,C,CG by taking the usual cross

product for the intersection of these automata (note that an efficient construction can

be obtained by discarding all the states that do not agree on the AC
B part, thus avoiding a
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cubic blow-up in the size of AC
B). Under the assumption that the input tree is a strategy

tree, we get that AB,C,CG accepts only trees T s.t. C is (T,B)-consistent and CG is

(T,B,Cpre)-consistent, and that satisfy the winning condition B on all the plays that

have a finite number of unreturned calls. In the rest of this section we give more details

on all these automata.

Construction of AC
B Let mi be the module mapped to the ith child of the root of a

strategy tree. Fix an extended pre-post requirement C = 〈Cpre,Cpost,Fin〉.
We construct a universal automaton AC

B to simulate B on an input strategy tree T

by using C. In particular, starting from the ith child, the automaton AC
B runs in parallel

a copy of B from each state q such that (mi, q) ∈ Cpre. When reading a node labeled

with a call, AC
B starts at each matching return a copy of B according to the applicable

tuples in C and performs updates according to Fin. On all the other enabled nodes,

the state of B is updated for each copy according to B transitions.

The states of AC
B are: an initial state q0, an accepting state qa, a rejecting state qr,

and states of the form (q, d, f, qmi ,C) where q, qmi ∈ Q, q is the state which is updated

in the simulation of B, qmi is the current pre-condition, and d, f ∈ {0, 1} are related

to acceptance. Namely, f is used to signal that a state in the acceptance set F of B

was seen between a call and its matching return, and d is used to expose that a state

from F occurred since the beginning of the current module invocation. A task of AC
B

is to handle the correct update of these bits but it does not check if the plays fulfill

the acceptance condition of B. This will be the task of ABwin that will use the bit f

for this task. The states qa and qr are sinks, i.e., once reached, the automaton cycles

forever on them.

We give an informal (though detailed) description of the transition rules. In the

description of the transition rules, we omit to refer to children marked with dummy and

we assume that transition rules mark them with qa except when the parent is marked

with qr. If not differently stated, in a transition, f is always set to 0 and d keeps its

value.

The automaton AC
B starts from q0 and enters on the ith child of the root, for i ∈ [|M |],

a state (q, 0, 0, q,C), for each q such that (mi, q) ∈ Cpre. If no such tuple exists, meaning

that the module is never invoked in this modular strategy, then qa is entered. (Note

that C is the same for all the states.)
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Now, consider a run at a tree-node x. Let s = (q, d, f, qm,C) be the AC
B state at x,

u ∈ V be the G vertex that labels x and mi be the current module.

If u∈ (Nmi ∪ Retnsmi)\Exmi , u∈P 0 and h∈ [k] labels x, then on its child x.h the

component q of s is updated to q′ where (q, ηmi(u), q′)∈δ. Additionally, if q′∈F , then

also the component d of s is set to 1. On the other children AC
B moves to qa.

If either u∈Exmi or u∈ (Nmi ∪ Retnsmi)\Exmi and u∈P 1, on each child y of x

the component q of s is updated to q′ if (q, ηmi(u), q′)∈ δ. Again, if q′∈F , then the d

component is set to 1.

If u=(b, emj )∈Callsmi (a call to module mj), let y be the child of x that corresponds

to the return from exit ex of mj :

• If there is a transition (q, ηmi(b, emj ), q
′)∈ δ, (mj , q

′)∈ Cpre and ex′ 6= ex for all

tuples of the form (mj , q
′, ex′, q′′)∈Cpost, then on y the automaton enters qa.

• for each (q, ηmi(b, emj ), q
′) ∈ δ and (mj , q

′, ex, q′′) ∈ Cpost, the automaton sends

on y a copy of B for each such q′′ and the components d and f are set both to 1

if Fin(mj , q
′, ex, q′′) = true holds, and d stays unchanged otherwise.

• In all the other cases, the automaton moves to qr. Note that if for each q′ ∈ Q,

(mj , q
′) /∈ Cpre, i.e., the guess is that mj should not be called, then the automaton

correctly moves to qr on all the children.

As a Büchi automaton, for AC
B we choose as acceptance set the set of all the states

except qr, and as a co-Büchi automaton, we choose {qr} as the acceptance set. Since

C is fixed, the size of AC
B is quadratic in |B| and linear in the number of exits of G.

The following lemma states that AC
B simulates B on the strategy trees provided that

C is consistent with the input.

Lemma 14. Let C = 〈Cpre,Cpost,Fin〉 be a pre-post requirement and B be a determin-

istic Büchi (resp., co-Büchi) automaton.

The Büchi (resp., co-Büchi) version of the tree automaton AC
B is s.t. if AC

B accepts a

strategy tree T and C is (T,B)-consistent then the following holds.

For each module play π of T from a module mi that does not end with a node labeled

either with a call or with an exit, and (mi, q) ∈ Cpre:

1. AC
B reaches a state of the form (q′, d, f, q,C) at the end of π iff

the only run ρ of B starting at q and over the trace of π ends at q′;
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2. further, d = 1 iff a state of the acceptance set is visited in ρ.

The size of AC
B is quadratic in |B| and linear in the number of G exits.

Proof. The size of AC
B can be determined by a simple counting of the states.

Let π be a module play and q as in the statement of the lemma. Note that π is of

the form α0β1 . . . βlαl where α0 . . . αl are the portions of π that contain only and all

the T nodes in π of the current invocation of mi. Also, each βi is a module play of T

for a different module or another invocation of mi.

By construction, AC
B updates the first component of its states of the form (q′, d, f, q,C)

by mimicking the transitions of B over each αi and using C to jump across each βi.

Since π is a module play, its first node x is the root of the subtree Ti corresponding to

mi and its last node y is a node of this subtree.

Now, suppose that the run of B over the trace of π and starting at q ends at q′.

Since C is consistent with T and at a node of subtree Ti a state (p′, d′, f ′, p,C) can be

reached only starting from a state (p, 0, 0, p,C) at x, we get that: AC
B reaches a state

of the form (q′, d, f, q,C) at the successor of y selected by the T -strategy, whenever y

is marked with a pl0 vertex of G, and at all the successors, otherwise. Conversely, if

AC
B reaches a state of the form (q′, d, f, q,C) at the end of π (i.e., at the successors of

the last node as before), we can define a run of B from the transitions of AC
B on the αi

portions, and using the fact that C is (T,B)-consistent, over the βi portions. Clearly,

the resulting run of B is from q to q′.

Further, observe that the d component of AC
B states gets updated to 1 in the tran-

sitions as soon as a state in the acceptance set of B is met along any αi or this is

signaled by the pre-post requirement C over any βi. Moreover, once it is set to 1, this

component is never reset. Thus, since C is consistent with B acceptance we get that a

state in the acceptance set of B is visited along ρ iff d = 1 holds.

Construction of AB,C The automaton AB,C is in charge of checking that C is consis-

tent with the input tree and the automaton B. We construct it from AC
B by modifying

the transitions from a state of the form (q′, d, f, q,C) at tree-nodes labeled with an exit.

Suppose the automaton reaches a state (q′, d, f, q,C) at a node labeled with the exit

ex of module m.

For a Büchi automaton B, AB,C enters qa, whenever (m, q, ex, q′) ∈ Cpost and if

Fin(m, q, ex, q′) = true then also d = 1 must hold. Otherwise AB,C enters qr.

For a co-Büchi automaton B, AB,C enters qa, whenever (m, q, ex, q′) ∈ Cpost and if

Fin(m, q, ex, q′) = false then also d = 0 must hold, and qr otherwise.
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The acceptance set for the Büchi (resp. co-Büchi) version of AB,C is the same as

for the Büchi (resp. co-Büchi) version of AC
B. We get:

Lemma 15. Let B be a Büchi (resp. co-Büchi) deterministic automaton and C be an

extended pre-post requirement. The universal Büchi (resp. co-Büchi) tree automaton

AB,C is s.t. if AC
B accepts a strategy tree T then:

AB,C accepts T iff C is (T,B)-consistent.

Proof. We only discuss the case when B is a Büchi automaton, the co-Büchi case being

similar.

(if ) By construction, AC
B and AB,C differ only on the transitions that can be taken at the

nodes that are labeled with an exit when starting from states of the form (q′, d, f, q,C).

Moreover, by Lemma 14, from such state and input node AB,C enters the accepting

state qa if and only if C is (T,B)-consistent. Therefore, starting from an accepting run

of AC
B we can construct a run of AB,C by replacing only the transitions involving the

scenario described above, and the resulting run is accepting for AB,C since by hypothesis

C is (T,B)-consistent.

(only if ) We use an assume-guarantee style argument to prove this direction. On each

subtree Ti of the root that corresponds to the unrolling of a module mi, AB,C assumes

that C is (T,B)-consistent possibly except for the part corresponding to module mi.

Now, AB,C on Ti uses this assumption to move from a call to its matching return

within Ti and witnesses the fulfillment of the part of the (T,B)-consistency properties

concerning to module mi by mimicking the transitions of B on all the nodes of Ti that

do not correspond to either a call or an exit. Then, it accepts if and only if these

properties are fulfilled. Therefore, if AB,C accepts T then the above assumptions must

hold for all modules, and thus C is (T,B)-consistent.

Construction of AB,CG The purpose of AB,CG is to check that CG is (T,B,Cpre)-

consistent where T is an input strategy tree. We construct it from AC
B by modifying

the transitions from the calls as follows.

For an input tree T , suppose that:

• the current node u is in the subtree of the ith child of the root (i.e., in the subtree

corresponding to the unrolling of module mi) and is labeled with a call to a

module mj ;

• the current state of AB,CG is of the form (q′, d, f, q,C);
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• there is a transition (q′, ηmi(u), q′′) ∈ δ.

For a Büchi automaton B, AB,CG must enter the rejecting state qr if either:

• (mi, q) → (mj , q
′′) does not hold (i.e., the call graph does not account for a run

of B from q to q′ on a call witness from the entry of mi to a call to mj), or

• (mi, q)
X→ (mj , q

′′) holds in CG and d = 0 (i.e., the call graph requires that a

state in the acceptance set of B must be reached along the run of B on a call

witness for (mi, q)→ (mj , q
′′), but this is not the case).

Analogously, for a co-Büchi automaton B, AB,CG must enter the state qr if either

(mi, q)→ (mj , q
′′) does not hold, or (mi, q)

X→ (mj , q
′′) does not hold in CG and d = 1.

In all the other cases AB,CG behaves as AC
B. The acceptance set for the Büchi (resp.

co-Büchi) version of AB,CG is the same as for the Büchi (resp. co-Büchi) version of AC
B.

We get:

Lemma 16. Let B be a Büchi (resp. co-Büchi) deterministic automaton, C be an

extended pre-post requirement and CG be a call graph.

The universal Büchi (resp. co-Büchi) tree automaton AB,CG is s.t. if AC
B accepts a

strategy tree T and C is (T,B)-consistent then:

AB,CG accepts T iff CG is (T,B,Cpre)-consistent.

Proof. We only discuss the case when B is a Büchi automaton, the co-Büchi case being

similar.

Fix (m, q) ∈ Cpre and a module play π.x from m.

We first claim that if the properties stated in the notion of (T,B,Cpre)-consistency

of a call-graph hold for each prefix of π.x that is a call witness, then it is possible to

show the property stated in Lemma 14 also for AB,CG . Namely, we can show that:

AB,CG reaches a state of the form (q′, d, f, q,C) at x iff the only run ρ of B starting at

q and over the trace of π ends at q′; further, d = 1 iff a state of the acceptance set is

visited in ρ.

A proof by induction can be structured by splitting π.x as x0.π1.x1 . . . πj .xj where

x1, . . . , xj are all the nodes that correspond to the same occurrence of m as the start

node x0 and that are labeled with calls to modules m′1, . . . ,m
′
j . Then, the induction is

on the prefixes x0.π1.x1 . . . πi for i ∈ [1, j].

For the base case (i.e., i = 1), it suffices to apply Lemma 14 since AB,CG and AC
B

differ only in the transitions from nodes labeled with calls, and there are no such nodes
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in x0.π1 that correspond to the same occurrence of m as x0. For the induction step,

we first apply the induction hypothesis to x0.π1.x1 . . . πi with i ∈ [1, j − 1], and let

(q′, d, f, q,C) be the state of AB,CG at xi. Then, by hypothesis the properties stated in

the notion of (T,B,Cpre)-consistency of a call-graph hold for x0.π1.x1 . . . πi.xi and by

induction hypothesis d = 1 iff the run of B from q and over the trace of x0.π1.x1 . . . πi

visits a state in the acceptance set. Thus, AB,CG from (qi, di, fi, q,C) and at xi can

take exactly the same transitions as AC
B. Therefore, we can apply again Lemma 14 to

show that the property holds for i+ 1, that concludes the proof of the claim.

We conclude the proof by addressing the two directions of the lemma separately.

(only if ) Suppose that CG is not (T,B,Cpre)-consistent. Let π.x be a call witness

from m to m′ s.t. the properties stated in the notion of (T,B,Cpre)-consistency of a

call-graph do not hold for it and do hold instead for each of its proper prefixes that

forms a call witness.

Thus, by the above claim, AB,CG reaches a state of the form (q′, d, f, q,C) at x iff

the only run ρ of B starting at q and over the trace of π ends at q′; further, d = 1 iff a

state of the acceptance set is visited in ρ.

Now, let q′′ the ending state of the B run ρ over π.x. If the (T,B,Cpre)-consistency of

CG is violated because (m, q)→ (m′, q′′) does not hold, then the first case of the added

transitions in the construction of AB,CG applies. Otherwise, i.e., if the (T,B,Cpre)-

consistency of CG is violated because (m, q)
X→ (m′, q′′) and ρ does not visit states in

the acceptance set of B, by the above claim, the second case of the added transitions

in the construction of AB,CG applies. Thus, in both cases AB,CG enters qr and since qr

is a sink state, we get that AB,CG does not accept T .

(if ) We prove this direction by arguing that under the assumption that CG is (T,B,Cpre)-

consistent, any run of AC
B is also a run of AB,CG , and since from the hypothesis of the

lemma AC
B accepts T this will conclude the proof.

First observe that since CG is (T,B,Cpre)-consistent, the hypothesis of the claim

shown at beginning of this proof are fulfilled for each module play of T . Also, by

construction, AB,CG differ from AC
B only in the transitions from some states of the form

(q′, d, f, q,C) at some nodes labeled with a call. Thus let us consider the case of any

state of the form (q′, d, f, q,C) at a node x labeled with a call from m to m′. From the

mentioned claim, for any call witness π.x, AB,CG reaches (q′, d, f, q,C) at x iff the only

run ρ of B starting at q and over the trace of π ends at q′; further, d = 1 iff a state

of the acceptance set is visited in ρ. Since CG is (T,B,Cpre)-consistent, AB,CG from

(q′, d, f, q,C) at x moves as AC
B, that concludes the proof.
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Construction of ABwin The purpose of ABwin is to check that the winning conditions

of B are satisfied along all non-terminating plays of the input strategy tree with a finite

number of unreturned calls. Thus, when B is a Büchi (resp. co-Büchi) automaton, we

choose as the Büchi (resp. co-Büchi) acceptance set of ABwin the state qa (resp. qr)

and all the states of the form (q, d, f, q′,C) such that either q ∈ F or f = 1. We get:

Lemma 17. Let B be a Büchi (resp. co-Büchi) deterministic automaton and C be an

extended pre-post requirement. The universal Büchi (resp. co-Büchi) tree automaton

ABwin is s.t. if AC
B accepts a strategy tree T and C is (T,B)-consistent then:

ABwin accepts T iff B accepts the traces of all the non-terminating plays of T

with finitely many unreturned calls.

Proof. We recall that in the construction of AC
B and thus ABwin , f is always 0 except

when starting from a state of the form (q, d, f, qm,C) at a node labeled with call from m

to m′ to to a node labeled with a return that matches the call, and the pre-post tuple

(m′, q′, ex, q′′) that summarizes this module invocation is marked true by function Fin

of of the extended pre-post requirement C. Thus, by Lemma 14 and since C is (T,B)-

consistent, for each module play x1x2 . . . from m, each matching call xi and return

xj corresponding to the same invocation of m as x1 and each (m, qm) ∈ ppre, the f -

component of the state at xj is 1 iff the a state in the acceptance set F of B is visited

in the run of B from qm over the trace of xi+1 . . . xj−1. Therefore, denoting with ξπ the

path of T that is formed by all the nodes xi that correspond to the same invocation of

m as x1, for each non-terminating play π with finitely many unreturned calls: starting

from (qm, 0, 0, qm,C) at x1, states of the form (q, d, f, qm,C) with either q ∈ F or f = 1

are visited infinitely often over ξπ iff the only run of B from qm over the trace of π visits

infinitely often at least a state in the acceptance set. Hence, the lemma holds.

5.4.4 Checking B acceptance on strategy-tree plays with infinitely

many unreturned calls

From part 2 of Lemma 14, if a call graph CG = (V,→, X→) is (T,B)-consistent for

a strategy tree T , then each edge in → that admits a call witness π summarizes the

(only) run of B over the trace of π, and the relation
X→ carries the information whether

a state of the acceptance set of B is visited along this run. Since a play of a strategy

tree that contains infinitely many unreturned calls is the concatenation of infinitely

many call witnesses, a call graph summarizes all the information that is needed to

check for the fulfillment of the acceptance condition of B along such plays. In fact,
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by replacing the call witnesses with the corresponding edges, we get an infinite path

in the call graph (we are assuming that the call graph is (T,B)-consistent). Since call

graphs are finite, all the edges that repeat infinitely often on this path are parts of a

strongly connected component of the call graph where the path gets trapped. Thus,

for a Büchi acceptance condition it is sufficient to require that each loop of the call

graph has at least a marked edge (i.e., the edge also belongs to
X→). For a co-Büchi

acceptance condition, it is sufficient to require that each strongly connected component

of the call graph has no marked edges.

Denote with Büchi (resp. co-Büchi) the set of all call graphs s.t. each loop has

at least a (resp. none) edge that is marked. Thus, by Lemma 17, we get the following

lemma:

Lemma 18. Let B be a Büchi (resp. co-Büchi) deterministic automaton, C be an

extended pre-post requirement and CG∈Büchi (resp. CG∈co-Büchi). The universal

Büchi (resp. co-Büchi) tree automaton ABwin is s.t. if AC
B accepts a strategy tree T , C

is (T,B)-consistent and CG is (T,B,Cpre)-consistent then:

ABwin accepts T iff B accepts all the traces of the T plays.

5.4.5 Reducing modular synthesis to emptiness of tree automata

We construct the automaton AG,B as the intersection of AG and an automaton A′ that

does the following: at the root, A′ nondeterministically guesses an extended pre-post

requirement C and a call graph CG ∈Büchi (resp. CG ∈co-Büchi) if B is a Büchi

(resp. co-Büchi) automaton; then it behaves as AB,C,CG .

We observe that AB,C,CG can be translated into an equivalent nondeterministic

Büchi (resp. co-Büchi) tree automaton with 2O(|Q|2 log |Q|) states (33). Denoting with

k the number of G exits and β the number of call edges of G, the number of different

choices for an extended pre-post requirement is 2O(k |Q|2) and for a call graph is 22β.

Since AG is of size O(|G|), the automaton AG,B (obtained as described earlier in this

section) is of size |G| 2O(|Q|2(k+log |Q|)+β). Thus, by Propositions 12 and 13, and Lemmas

15, 16 and 18, we get:

Theorem 19. For an RGG G and a deterministic Büchi (resp. co-Büchi) automa-

ton B, pl0 has a winning modular strategy in 〈G,B〉 iff the nondeterministic Büchi

(resp. co-Büchi) tree automaton AG,B accepts a non-empty language. Moreover, each
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tree accepted by AG,B encodes a winning modular strategy and the size of AG,B is

|G| 2O(|Q|2(k+log |Q|)+β), where k is the number of G exits.

5.5 Temporal logic winning conditions

5.5.1 Solving modular CaRet and Nwtl games

As we said in Chapter 2, CaRet and Nwtl are temporal logics that extend Ltl

with new operators that allow to express properties on ordinary words and also on the

matching call-return structure, in the future and in the past. As example, CaRet

and Nwtl formulas can express specifications as stack inspection properties, partial

correctness and local properties.

By (3), we know that given a CaRet formula ϕ it is possible to construct a non-

deterministic Büchi VPA of size exponential in |ϕ| that accepts exactly all the words

that satisfy ϕ. From (8), we know that the same holds for the temporal logic Nwtl.

Thus, given a formula ϕ in any of the two logics, we construct a Büchi VPA P for its

negation ¬ϕ. By dualizing as in the case of nondeterministic VPA specifications, we

get a co-Büchi VPA that accepts all the models of ϕ and whose size is exponential in

|ϕ|. Since both CaRet and Nwtl subsume Ltl (34), and Ltl games are known to be

2Exptime-hard (35) already on standard finite game graphs, we get:

Theorem 20. The MVPG problem with winning conditions expressed as CaRet and

Nwtl formulas is 2Exptime-complete.

In the rest of this section we discuss the complexity of the modular synthesis in

simple fragments of temporal logic.

5.5.2 Path formulas

We consider as winning condition for the MVPG a fragment of the logic Ltl (34) that

contains Boolean combinations of bounded-size path formulas.

A path formula is formula expressing either the requirement that a given sequence

appears as a subsequence in an ω-word or its logical negation. Path formulas are

captured by Ltl formulas of the form 3(p1 ∧ 3(p2 ∧ . . .3(pn−1 ∧ 3pn) . . .)) and by

their logical negation, where each pi is state predicate, 3ψ (eventually ψ) denotes that
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ψ holds at some future position, and ∧ is the Boolean conjunction. We denote such a

fragment of Ltl as PATH-Ltl.

Note that in this logic negation is allowed only at the level of atomic propositions

or at the top level of a formula.

We interpret the formulas on an ω-word over 2AP . At each position i of w: a state

predicate holds true if it evaluates to true on σi; the Boolean connectives are interpreted

as usual, i.e., a formula ϕ1 ∧ ϕ2 holds true at i iff both ϕ1 and ϕ2 hold true at i, and

¬ϕ holds true at i iff ϕ does not hold at i; and 3ϕ holds true if there is a j > i such

that ϕ holds true at j.

It is known that each formula ϕ from PATH-Ltl admits a deterministic Büchi

word automaton accepting all the models of ϕ and that is linear in its size (9). The

same can be shown for Büchi VPA, by extending PATH-Ltl allowing the versions of

the 3 operator of CaRet and Nwtl, that include top-down call-stack inspection and

local future (where calls to other modules are skipped moving from a call directly to its

matching return). For more details on CaRet and Nwtl operators see (3) and (8).

By the closure properties of universal visibly pushdown automata we can easily

extend Theorem 10 to winning conditions given as intersection of deterministic VPAs

and thus:

Theorem 21. The MVPG problem with winning conditions expressed as a conjunction

of CaRet and Nwtl formulas that admit a deterministic Büchi or co-Büchi VPA

generator of polynomial size is Exptime-complete.

5.5.3 Modular synthesis in simple fragments of Ltl

The complexity of the temporal logic MVPG problem remains 2Exptime-hard even if

we consider simple fragments.

To simplify our description, first we present the reduction from polynomial-space

alternating Turing machines for disjunctions of bounded-size PATH-Ltl formulas and

then we extend this approach to prove the 2Exptime lower bound for conjunctions of

disjunctions of bounded-size PATH-Ltl formulas, by a reduction from the acceptance

problem for exponential-space alternating Turing machines.
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Alternating Turing machine An alternating Turing machine extends the standard

Turing machine as follows. The states are partitioned into existential and universal.

A run is a tree of configurations where the root is mapped to an initial configuration,

and each child of a node mapped to a configuration C is mapped to a configuration

that can be reached in one step from C. For existential configurations only one child

configuration is selected nondeterministically and for each universal configuration all

the possible child configurations are selected. Thus, an input word is accepted if there

is a run that reaches a final configuration on all of its paths.

Formally an alternating Turing machine is M = (Σ, Q,Q∃, Q∀, δ, q0, qf ), where Σ is

the alphabet, Q is the set of states, (Q∃, Q∀) is a partition of Q, δ : Q×Σ×{D1, D2} −→
Q×Σ×{L,R} is the transition function, and q0 and qf are respectively the initial and

the final states. (We assume that for each pair (q, σ) ∈ Q × Σ, there are exactly two

transitions that we denote respectively as the D1-transition and the D2-transition.)

A d-transition of M is δ(q, σ, d) = (q′, σ′, L/R) meaning that if q is the current state

and the tape head is reading the symbol σ on cell i, M writes σ′ on cell i, enters state

q′ and moves the head tape to the left/right on cell (i− 1)/(i+ 1).

Let n be the number of cells used by M on an input word w. A configuration

of M is a word σ1 . . . σi−1(q, σi) . . . σn where σ1 . . . σn is the content of the tape cells,

q is a state of M and (q, σi) denotes that the tape head is on cell i. The initial

configuration contains the word w and the initial state. An outcome of M is a sequence

of configurations, starting from the initial configuration, constructed as a play in the

game where the ∃-player picks the next transition when the play is in a state of Q∃, and

the ∀-player picks the next transition when the play is in a state of Q∀. A computation

of M is a strategy of the ∃-player, and an input word w is accepted iff there exists

a computation that reaches a configuration with state qf on all the possible plays. A

polynomial-space alternating Turing machine M is an alternating Turing machine that

on an input word w uses a number of tape cells that is at most polynomial in |w|.

Exptime lower bound for disjunctions of bounded-size PATH-Ltl formulas

We sketch a reduction directly from polynomial-space alternating Turing machines. Let

A be a polynomial-space alternating Turing machine with set of control states Q and

input alphabet Σ, and let N be the number of cells used by A on an input word w. An

encoding of a configuration of A is a sequence of
⋃N
i=1(Σ1 . . .Σi−1(Q×Σi)Σi+1 . . .ΣN )
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where each Σj is Σ × {j}. The transition function of A is given as tuples of the

form (a, b, c, d, e) where a, b, c, e are symbols used in the configuration encoding, d is

the transition name, and e encodes the effect of d on the middle cell of three cells

containing respectively a, b, c.

A path of a computation is encoded as a sequence C0d0$ . . . Cidi$ . . . where each Ci

is a configuration encoding (C0 is initial) and di denotes the transition taken from Ci

to Ci+1.

We construct an RGG Gexp with two modules Min and M1. In Min , initially,

pl0 generates an encoding of an initial configuration, then, a transition is selected by

pl0, if the initial state is existential, or by pl1, otherwise. In both cases, an end-

of-configuration marker $ is generated and then pl0 is in charge to generate again a

configuration encoding, and so on. A call to M1 is placed before generating the first

cell encoding of each configuration and after generating each cell encoding. We omit

further details on Min which are quite standard.

In M1, pl1 selects one among ok , obj 1, . . . , obj 6. If obj 6 is selected, then an infinite

sequence of a fresh symbol ∂ is generated and the call is not returned. In all the other

cases, the call is returned through the only exit of M1.

The goal of pl0 is to build an encoding of an accepting run of A on input w, while

the goal of pl1 is to point out errors in such encoding by generating objections. The

symbol ok is used to denote that no objection is raised. The objections obj 1, . . . , obj 4

are used to delimit three consecutive cells of a configuration, say cells i− 1, i, i+ 1 (we

can assume that the first and the last cell of each configuration are never changed and

their consistency through the encoding is ensured by the construction of Min), and

obj 5 and obj 6 are used to delimit the cell i in the next configuration. Every other use

of these objections will make pl1 lose.

We construct a formula ϕexp as ψwr1 ∨ ψ∆ ∨ 3F where: (1) F denotes a state

predicate that is true only on the final sink state ; (2) ψwr1 captures all the illegal

uses of the objections by pl1; and (3) ψ∆ checks the transition relation between two

consecutive configurations on the cells selected by the objections raised by pl1.

Note that a path formula 3(a1∧3(a2∧. . .3ar) . . .), where for each i the state predi-

cates ai and ai+1 cannot be satisfied at the same position, is satisfied on all the sequences

where a1a2 . . . ar appears as a subsequence. Formula ψ∆ is quite standard and is a dis-
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junction of formulas such that check a subsequence obj 1.a.obj 2.b.obj 3.c.obj 4.d.obj 5.e.obj 6

for each A transition (a, b, c, d, e).

Formula ψwr1 is a disjunction of formulas that check subsequences corresponding

to violations in the use of the objections by pl1, that is, such that: (1) obj j precedes

obj i for some i < j; (2) obj i repeats for some i; (3) there are two symbols among those

generated in Min between obj i and obj i+1 for some i ∈ [3] or i = 5; (4) there are two

occurrences of $ between obj 4 and obj 5; (5) the cell number between obj 2 and obj 3 is

not the same as that between obj 5 and obj 6.

Note that both ψ∆ and ψwr1 are disjunctions of bounded-size PATH-Ltl formulas

(the longest sequence to check has eleven symbols). Furthermore, by the construction of

Min we ensure besides the already mentioned requirements also that each configuration

has exactly one cell containing a state (which denotes also the position of the tape head).

Finally, in order to win with a modular strategy in the game 〈Gexp, ϕexp〉, pl0 has to

provide a correct encoding of the computations without knowing where pl1 raises the

objections (since that happens in a different module).

The proposed modular game has a winning strategy for pl0 if and only if A accepts

the input. On the one hand, if A accepts the input, then, by construction, pl0 can

generate the right sequences of encodings that form an accepting run. On these plays,

pl0 wins for 3F since the final sink state is reached. If pl1 tries to cheat, making any

objection obj6 thus forcing the play to be trapped in M1, then pl0 wins for either ψwr1 ,

because either the sequence of objections is illegal, or ψ∆, because the run is encoded

correctly. On the other, if pl0 has a winning strategy in this game, we take as run of

the TM A the one that is encoded by all the plays that do not get trapped in M1. To

see that this run is accepting, first observe that for each play that gets trapped into

M1, since the strategy is winning, either ψwr1 or ψ∆ must hold, and thus the plays that

do not get trapped correctly encode a run of A. Thus, since these plays are winning for

3F , the final sink state is reached and thus the final state is reached on all the paths

of the run of A that thus is accepting. Therefore, we get:

Lemma 22. The MVPG problem with winning conditions expressed as a disjunction

of bounded-size PATH-Ltl formulas is Exptime-hard.
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2Exptime lower bound The reduction given to show Lemma 22 can be adapted to

show 2Exptime-hardness when the formula is a conjunction of disjunctions of bounded-

size PATH-Ltl formulas.

The reduction is now from exponential-space alternating Turing machines, and thus

each configuration uses 2N cells, where N is the length of the input. Since we cannot

encode the cell number along with the cell content as before (we would have exponen-

tially many symbols), we explicitly encode it as a sequence of bits that precedes the

encoding of the cell content. We recall that a similar encoding is used in (10). We

use new atomic propositions d>i and d⊥i to denote that the ith bit of the cell number

is respectively 1 and 0. Thus a configuration encoding now is a sequence of the form

〈0〉σ0 . . . 〈2N 〉σ2N where there is an i s.t. σi ∈ Q × Σ (this denotes the current state,

the symbol of cell i and that the tape head is on cell i), σj ∈ Σ for all j 6= i (symbol in

cell j), and 〈h〉 is the binary encoding of h (cell number) over the new symbols d>r and

d⊥r for r ∈ [N ].

Module Min is modified such that in each iteration pl0 selects the cell number (bit-

by-bit) and then the encoding of the cell content. Also module M1 is modified by

adding three new objections (denoted obj ′1, obj ′2, obj ′3) that are used to check that the

cell numbering is correct in each configuration. By the construction of Min we also

ensure that the first and the last cells of each configuration are numbered respectively

d⊥1 . . . d
⊥
N and d>1 . . . d

>
N .

The winning condition is a formula ϕ2 exp where we add obj =
∨6
i=1 obj i and the

sub-formulas ψwr2 and ψ]. Formula ψwr2 checks the violations in the use of the newly

added objections and can be constructed similarly to ψwr1 . Formula ψ] checks that

the encoding of the cell numbers is correct, and in particular, for each two consecutive

cells, whose numbers are encoded respectively as d̂ = d1 . . . dN and d̂′ = d′1 . . . d
′
n, it

holds that 〈d̂′〉 = 〈d̂〉 + 1 (with 〈·〉 we have denoted the number corresponding to the

binary encoding). Denote with samej the formula checking for a subsequence either

of the form obj ′1.d
>
j .obj ′2.d

>
j .obj ′3 or of the form obj ′1.d

>
j .obj ′2.d

>
j .obj ′3 (the jth bits of

two consecutive cells are the same), with upj the formula checking for a subsequence

of the form obj ′1.d
⊥
j .obj ′2.d

>
j .obj ′3 (the jth bits of two consecutive cells are in the in-

creasing order), and with downj the formula checking for a subsequence of the form

obj ′1.d
>
j .obj ′2.d

⊥
j .obj ′3 (the jth bits of two consecutive cells are in the decreasing order).

The formula ψ] is then
∨N
i=1(

∧i−1
j=1 samej ∧ upi ∧

∧N
j=i+1 downj).
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Precisely, ϕ2 exp is (¬3obj ∨ ((ψwr1 ∨ ψ∆) ∧ (ψwr2 ∨ ψ]))) ∧ (3obj ∨3F ).

Observe that ψ] is the only formula in ϕ2 exp that would give an exponential

blow up in the conversion into a conjunction of disjunctions (CNF) of Ltl3,∧ for-

mulas. We can avoid this blow-up if we modify Min such that pl1 starts the num-

bering of each cell declaring at which bit there will be the first difference with the

encoding of the number of the following cell. Denoting with pi the symbol used to

declare the first difference at the bit i for i ∈ N , the formula ψ] would be writ-

ten as
∧N
i=1(

∧i−1
j=1 samei,j ∧ upi,j ∧

∧N
j=i+1 downi,j) where: (1) samei,j is the formula

checking for a subsequence of either one of the forms obj ′1.ph.obj ′2 for h 6= i, or

obj ′1.pi.d
>
j .obj ′2.d

>
j .obj ′3, or obj ′1.pi.d

⊥
j obj ′2.d

⊥
j .obj ′3; (2) upi,j is the formula checking for

a subsequence of either one of the forms obj ′1.ph.obj ′2 for h 6= i, or obj ′1.pi.d
⊥
j .obj ′2.d

>
j .obj ′3;

and (3) upi,j is the formula checking for a subsequence of either one of the forms

obj ′1.ph.obj ′2 for h 6= i, or obj ′1.pi.d
>
j .obj ′2.d

⊥
j .obj ′3.

All the above formulas are written with disjunctions of path formulas except for

ψ] that is a conjunction of disjunctions of path formulas. The overall formula can be

transformed into an equivalent formula of size polynomial in |ϕ|, which is a conjunction

of disjunctions of path formulas. All the used path formulas are of bounded size (the

most complex one uses eleven occurrences of 3). For the correctness of the reduction,

we can argue as in the previous case. Essentially, in a modular strategy pl0 cannot use

the fact that pl1 has raised an objection to decide the next move since the objections

are raised in a different module (which has just one exit). Therefore, in order to win,

pl0 must correctly generate the computations of the TM. We get the following:

Lemma 23. The MVPG problem with winning conditions expressed as a conjuction of

disjunctions of bounded-size PATH-Ltl formulas is 2Exptime-hard.
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Synthesis from libraries

Component-based design plays a key role in configurable and scalable development of

efficient hardware as well as software systems. For example, it is current practice to

design specialized hardware using some base components that are more complex than

universal gates at bit-level, and programming by using library features and frameworks.

In this framework, the synthesis is still the automatic construction of a system from

a specification, but such construction is not done from scratch, The final system will

be obtained by a composition of reusable elements, named components. This problem

was extensively studied by Lusting and Vardi in (28, 29) and their works introduced

and solved the problem of synthesized a system from a set of recursive components

(named library). In Section 6.1 we discuss about the model and the problems discussed

in the works (28, 29). Synthesis from libraries of recursive components and modular

synthesis are strictly related, and in Section 6.2 we analize the connection between

these problems.

A library of recursive components, however, resolves only the external compositional

game and does not allow to guide the composition. Our research focus on one hand

to extend the synthesis also to the internal game, considering components where the

set of vertices was split between two player, and on the other to allows to restrict or

relax the constraints on the composition of the final system. In Chapter 7 we present

formally our models and the general synthesis problem. The solution to a set of new

modular synthesis problems will be described in Chapter 8 and Chapter 9.
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6.1 Synthesis from libraries of transducers

In (28) the authors starts giving a first overview of the possible composition of system.

They define two notions of component composition. One relates to data-flow and is

motivated by hardware, while the other relates to control-flow and is motivated by

software. The authors show that whether or not synthesis is computable depends

crucially on the notion of composition.

The first composition notion is data-flow composition, in which the outputs of a

component are fed into the inputs of other components. In data-flow composition the

synthesizer controls the flow of data from one component to the other. In this case the

problem of LTL synthesis from libraries is undecidable. This claim is proven showing

that the LTL synthesis from libraries is undecidable even if we restrict ourselves to

pipeline architectures, where the output of one component is fed into the input of the

next component.

The second notion of composition is the control-flow composition, which is motivated

by software and web services. In the software context, when a function is called, the

function is given control over the machine. The computation proceeds under the control

of the function until the function calls another function or returns. Therefore, it seems

natural to consider components that gain and relinquish control over the computation.

A control-flow component is a transducer in which some of the states are designated

as exit states 1. Intuitively, a control-flow component receives control when entering

an initial state and relinquish control when entering an exit state. Composing control-

flow components amounts to deciding which component will resume control when the

control is relinquished by the component that currently is in control.

When a component is in control the entire system behaves as the component and

the system composition plays no role. The composition comes into play, however, when

a component relinquishes control. Choosing the next component to be given control

is the essence of the control-flow composition. A control-flow component relinquishes

control by entering one of several exit states. A suitable notion of composition should

specify, for each of the exit states, the next component the control will be given to.

Thus, a control-flow composition is a sequence of components, each paired with an

1The authors in their work named them final states. We preferred to change them in exit states, to

avoid confusion with the final states of the specification automata, that are presented in the previous

section of this thesis
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interface function that maps the various exit states to other components in system.

We refer to these pairs of a component coupled with an interface function as interfaced

component. Note that a system synthesized might choose to reuse a single component

from the library several times, each with a different interface. Therefore, the number

of interfaced components might differ from the number of components is the library.

In (28, 29) the basic model to represent a component is using the transducer, a finite-

state machine with outputs. The transducers allow to abstract the internal architecture

and to focus on the input/output behaviour. In (28) the authors prove that the Ltl

synthesis from libraries of transducers is 2Exptime -complete. In (29) the authors

extend the previous work, considering the call/return structure of the control flow.

This study requires the definition of the recursive components. A recursive component

must have exit points, i.e. nodes where the control flow exits from the transducer to

call an other transducer or to return to a caller transducer.

6.1.1 Synthesis from Components Libraries

A transducer is a deterministic finite state automaton with outputs. Formally, a trans-

ducer TR = 〈ΣI ,ΣO, Q, q0, δ, F, 〉 where ΣI is the finite input alphabet, ΣO is the finite

output alphabet, Q is the finite set of states, q0 ∈ Q is the initial state, δ : Q×ΣI → Q

is the transition function, F is the set of exit states, and L : Q → Σ0 is the output

function labelling states with output letters. For a transducer TR and an input word

w = w1w2...wn ∈ Σn
I a run is a sequence of states s = s0, s1, ..., sn ∈ Qn such that

s0 = q0 and for every i ∈ [n], si = δ(ri1 , wi). The trace of the run s is the word

u = u1, u2...un ∈ Σn
O where for each i ∈ [n] we have ui = L(ri−1). The notion of run

and trace are extended to infinite words in the natural way.

A transducer, for every input letter, returns as output an output letter. Therefore,

for an input word wI the transducer induces a word w ∈ (ΣI × ΣO)ω, that interleaves

each input letter with the corresponding output letter, generating an input-output

word. A transducers satisfies an Ltl formula ϕ if for every input word wi ∈ Σω
I , the

induced input-output word w ∈ (ΣI × ΣO)ω satisfies ϕ.

The control-flow components receives the control when entering the initial state and

returns such control when entering a exit state. When a control-flow component is in

control, the input/output interaction with the environment is done by component, and

this means that any component in the system must use the same input and output
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alphabets. In a control-flow mode, the composition plays its role when a component

releases the control, and at this point the system must choose the next component

that will receive the control. This means that a composition in a control-flow mode

is a sequence of components, each paired with an interfaces function, i.e. a function

that maps the exit states to call to other components in the system. Intuitively, a

single component can be reused several time, changing each time its interface, and this

means that the final system could be formed by a number of transducers higher than

the number of reusable components in the given library.

Formally, in this setting a composition from control-flow components library is a

finite sequence of pairs 〈C1, f1〉, 〈C2, f2〉, ..., 〈Cn, fn〉 where Ci = 〈ΣI ,ΣO, Qi, q
i
0, δi, Fi, 〉

for i ∈ [n] and fi : Fi → {1, ..., n} is the interface function. Each pair 〈Ci, fi〉 is named

interfaced component. For each interfaced component, when the component Ci is in

control and enters an exit state q ∈ Fi.
The control-flow library Ltl synthesis is, given a library of components and an Ltl

-formula ϕ, find if exists or does not a composition that realizes ϕ. In (28) the authors

prove the following theorem:

Theorem 24. The control-flow library synthesis problem is 2Exptime -complete.

The lower bound is proven reducing the classical synthesis problem to the control-

flow library synthesis. The classical synthesis problem consists to construct a transducer

such that for every sequence of input signals, the sequence of input and output signals

induced by the transducer computation satisfies ϕ. It is simply to provide a library of

control-flow components which implement a set of basic functionality, and then combine

them to produce any possible transducers. Each components with basic functionality

is named atomic transducer and that has only an initial state and a set of exit states.

Each atomic transducer differs from each other only in its output function. The set

of all such possible transducers will represent the library and it is easy to see that

every transducer can be composed out of this library. Such synthesis is possible from

this library of atomic control-flow components if and only if the classical synthesis is

possible.

To prove the upper bound, the authors propose an automata theoretic construc-

tion. Fixing a library of components, the idea is to model a type of labelled trees,

which represents compositions, such that every composition would induce a tree, and
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every regular tree would induce a composition. Then, the authors define control-flow

trees. Control-flow trees represent all possible flows of control during computations of

a composition and a single path in a control-flow tree represents the flow of control

between components in the system. A regular control-flow tree can be used to define

a composition of control-flow components from the library. It is possible to construct

a tree automaton whose language is the set of execution trees in which the LTL for-

mula is satisfied, and the realizability problem reduces to checking emptiness of this

automaton.Such tree automaton A accepts a infinite tree compositions if it satisfies

the formula ϕ. If the language of A is empty then the formula cannot be satisfied by

any control-flow composition. If, on the other, the language of A is not empty, then

there exists a regular tree in the language of A, from which we can extract a finite

composition.

6.1.2 Synthesis from Recursive Components Libraries

In (29) the authors shift the focus of their research from the “go to” control flow to the

“call and return” control flow. To model such control flow structure, the authors must

introduce small variation on the basic transducer model.

A recursive transducer is a transducer in which some of the states are designed as

call states and exit states. The recursive component receives the control when entering

its initial state and relinquishes the control when entering in a call state or a exit

state. When a call is entered, the control is transferred from the current component

to the called component. When an exit is entered, the control is transferred from

the current component to the caller component. To model the values passed to the

caller, each transducer has several exit states, and each of them is associated with a

re-entry state in the caller module. In this setting, a recursive component is transducer

TRrec = 〈ΣI ,ΣO, Q, q0, QE , QC , QX , δ, F 〉 where ΣI is the finite set of states, q0 ∈ Q
is the initial state (when called by another component, the TRrec component enters

q0). The set QE ⊆ Q is a set of re-entry states and when the control returns from a

call to another component, TRrec enters one of the re-entry states. The set QC ⊆ Q

represents the set of call states and when a component TRrec in a call state, and the

control is transferred to the called module until the control is returned. The set QX ⊆ Q
represents the set of exit states and when the execution in the module TRrec reaches the

ith exit state, the control is passed to the caller module. The function δ : Q→ ΣI → Q
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is the transition function and the function F : S → ΣO is the output function, which

labels each state by an output symbol.

A library Lib of recursive component, intuitively, is a set of recursive components

i.e. Lib = {TR1
rec, ...,TR

l
rec}.

In this setting composing recursive transducers means to matching call states with

entry states and exit states with re-entry states. A composition over a library Lib

is a tuple 〈(1,TR1
rec, f1), ...(k,TRkrec, fk)〉 of a finite number of composition elements.

Each element is described by the triple (i,TRirec, fi〉), where i is an index, TRirec is a

recursive component in the given library and fi : TRrec → [k] is a interface function

that maps each call state of the component TRirec to an index of a recursive component

(remember that the control from the call state will be passed to the entry of the related

called module). Note that a same transducer can instantiate different elements of the

composition, with different interface function.

A run begins in the state q0 of the component TR1
rec and such component is in

control until a call/exit state is reached. In this case the control will be passed to

the called/caller component, according to the interface function. A composition fulfills

a specification given as a Nwtl formula ϕ if all the computation induced by such

composition satisfy ϕ.

The recursive library component synthesis problem asks if, given a library of re-

cursive component Lib and a Nwtl specification, exists a composition such that it

satisfies ϕ.

The solution to this synthesis problem is again an automata theoretic construction.

First, the authors construct a tree automaton that accepts composition trees (i.e. a

labeled tree that represents a possible composition obtained from the given library)

that do not satisfy the specification tree. The automaton can be complemented to get

an automaton which accepts composition trees that do satisfy the specification. Finally,

the author checks if the language expressed by such automaton is empty and, if it is

not, they construct the solution using a witness to identify the correct system. Then

the following holds:

Theorem 25. The recursive library component synthesis problem is 2Exptime -complete.
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6.2 Comparing synthesis of modular strategies with syn-

thesis from libraries

Synthesis of modular strategies and synthesis from recursive component libraries are

problems strictly related. The synthesis problem from a library of components intro-

duced in (28) uses a different formulation by modeling components as game modules

instead of finite state transducer. We rephrase the formulation in terms of game mod-

ules.

A component is a game module with a single entry and a single exit where there are

only vertices of pl1 and each vertex is a node (i.e., no boxes). A library of components

is any finite set of components. For a library of components L and an Ltl formula ϕ,

the synthesis problem from a library of components asks to determine the existence of

a finite sequence of components C1, . . . , Ch from L such that for each play πi that goes

from the entry of Ci to its exit, for i ∈ [h], the sequence wπ1 . . . wπh fulfills ϕ.

Fix a library of components L and an Ltl formula ϕ. We construct a recursive

game graph G formed of a main module and the components of L. The main module

has exactly one box bC for each component C ∈ L such that bC is mapped to C. The

entry e of the main module is a pl0 node and is connected to the call of each box bC

and the only return of each bC is connected back to e. Formula ϕ is translated to an

equivalent universal visibly pushdown automaton P that stutters on calls, returns and

the entry of the main module. Such automaton P is exponential in the size of ϕ. Thus

it is simple to verify that there exists a winning modular strategy of pl0 in 〈G,P 〉 if

and only if there exists a finite sequence of components from L that fulfills ϕ. Thus,

from Theorem 10 we get an alternative proof of the result stated in (28):

Theorem 26. The synthesis problem from a library of components is 2Exptime-

complete.

As we said, in the realizability problem studied in (29), each component is modeled

as a finite state transducer with entry, call, return and exit states, and a solution to

the related synthesis problem is a composition of components (taken from a library

of finitely many template components) that realizes a specification given as an Nwtl

formula. Composing components in this setting means to connect them by matching

calls and returns of a component respectively with entries and exits of components in
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the composition such that a call-return structure as in standard procedural programs

is obtained.

This realizability problem is a form of a pushdown game and by fixing a bound

on the number of components in a composition, can be easily modeled as an MVPG

problem with Nwtl specifications by using game modules instead of transducers as in

the case of non-recursive component libraries introduced above. Clearly, this gives a

semi-decision algorithm for the original problem and we need to show a bound to turn

it into a decision algorithm. The existence of such theorem is guaranteed by the results

from (29).
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7

Component-based synthesis of

open systems

In this chapter we formally introduce a new model that combines the synthesis from

libraries of recursive components introduced by Lustig and Vardi with the modular

synthesis introduced by Alur et al. for recursive game graphs.

In the following sections we limit the discussion only to the introduction and def-

inition of library of open components, systems synthesized from such kind of library

and the general modular synthesis problem. The problems related to specific winning

conditions and the proposed solutions will be discussed extensively in the remaining

chapters.

7.1 Contribution

The main contributions present in this chapter are:

• We introduce and formalize a new model that allows to sythesized open systems.

We consider libraries equipped with a box-to-component map. This map is a

partial function from boxes to components and, in this setting, an instance of a

component C is essentially a copy of C along with a local strategy that resolves

the nondeterminism of pl0. An RSM S synthesized from a library is a set of

instances along with a total function that maps each box in S to an instance of

S and is consistent with the box-to-component map of the library.
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• We define the modular synthesis from a library of components (Lms) in its general

formulation. Moreover, we introduce some restrictions to such general Lms prob-

lem. We refer to the Lms problems with these restrictions as the single-instance

Lms problem and the component-based Lms problem, respectively. Finally, we

show the relation between the modular synthesis and the single-instance Lms

problems.

7.2 From recursive components to open recursive compo-

nents

The connections between modular synthesis and synthesis from library inspired us to

dwell deeper on possible combinations of these two problem.

In the modular synthesis for recursive game graphs, the call-return structure is given

and cannot be modified. Therefore, the synthesis process concerns only the internal

structure of each module and the modules cannot be freely composed. On the other

hand, in the synthesis from library the call-return structure can be modified and the

synthesis concerns the external structure of the system, but we can not model a possible

behaviour against an external environment. As we said, the internal game is used to

model the uncontrollable nondeterminism caused by the interaction of the open system

with an external environment. The natural question that arise is: what happened if we

try to synthesize an open system from a library?

The first step to approach such problem is to find the right model to represent a

library of open components. Transducers are not a good choice to model elements of

this setting, therefore we must focus our attention on a different approach to define a

new model.

We propose a model based on a variation of the recursive game graphs, modifing the

definition of game module to meet the requirements that a component has to implement

in the synthesis from library setting. As we said in Chapter 4, a module is a two-player

finite game graphs with two kinds of vertices: standard nodes and boxes. Each box

has call and return points, and each module has distinguished entry and exit nodes.

The edges are from a node or a return to a node or a call within the same module.

Moreover, the nodes and the returns are split among the two players (pl0 and pl1).
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The call-return structure of a RGG is fixed and the invocations that can be exe-

cuted for a module are well defined by the mapping of its boxes. Our first idea was

to break these links to allow the free composition of the game modules. In the our

component-based synthesis, our game modules are taken from a finite set (library) of

game components. Game components differ from game modules in that the boxes are

not mapped to any module (as an empty position in a code where we could insert a

function call).

In this setting, we must define how we construct a system. A composition is obtained

duplicating a subset of open components from the library and defining a global mapping

that models the call-return mechanics between the generated modules.

Defining the composition, however, is not sufficient to obtain the final system. We

must also handle with the internal game of the modules. Each game module must be

coupled with a local strategy which defines how the module must behave according to

the moves done by external environment. The choices of providing modular strategy

are quite natural in this context. Due to the fact that the modules are independent,

realizing an independent controller is an evident consequence, even more if we consider

to realize system that works in distributed or security setting, where usually the single

elements have no access to the memory of the entire system.

This basic model can be extended with different features.

First, we can note that often in a given set of reusable components there are some

dependencies that can not be avoided, for example a component that can be called only

by a specific component that has the role to guarantee a preliminary execution. This

means that we want to realize a guided composition and we must provide our model of

a way to express and handle this additional feature. For this reason, we consider that

the library is equipped with a partial mapping, named box-to-component mapping, that

can express dependency between a caller and a called components. Intuitively if the

function is undefined for a box, no restriction is imposed on caller module, that can

invoke any module of the system.

A composition in such setting can involve arbitrarily many modules of each com-

ponent with possibly different local strategies. Such a diversity in the system design is

often not affordable or unrealistic. Therefore we also consider restrictions of this prob-

lem by focusing on solutions with few component instances and designs. In our setting,

a natural way to achieve this is by restricting the synthesized RSMs such that: 1) at
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most one instance of each library component is allowed (few component instances), or

2) all the instances of a same library component must be controlled by a same local

strategy (few designs).

7.3 A General Modular Synthesis from Libraries

7.3.1 Library of open components

For k ∈ N, a k-component is a finite game graph with two kinds of vertices, the standard

nodes and the boxes, and with an entry node and k exit nodes. Each box has a call

point and k return points, and each edge takes from a node/return to a node/call in

the component. Nodes and returns are split into player 0 (pl0) positions and player 1

(pl1) positions.

For a box b, we denote with (1, b) the only call of b and with (b, i) the ith return of b

for i ∈ [k]. A k-component C is a tuple (NC , BC , eC ,ExC , ηC , δC , P
0
C , P

1
C) where NC is

a finite set of nodes, BC is a finite set of boxes, eC ∈ NC is the entry, ExC : [k]→ NC

is an injection that maps each i to the ith exit, ηC : VC → Σ is a labeling map of

the set of C vertices VC = NC ∪ CallsC ∪ RetnsC , δ : NC ∪ RetnsC → 2NC∪CallsC is

a transition function with RetnsC = {(b, i) | b ∈ BC , i ∈ [k]} (set of C returns) and

CallsC = {(1, b) | b ∈ BC} (set of C calls), and P 0
C (the pl0 positions) and P 1

C (the pl1

positions) form a partition of NC ∪ RetnsC .

We introduce the notion of isomorphism between two k-components. Intuitively,

two components are isomorphic if and only if their game structures are equivalent, that

is: the properties of standard isomorphism of labeled graphs must hold, and additionally

isomorphic vertices must be assigned to the same player and be of the same kind.

Formally, the k-components C and C ′ are isomorphic, denoted C
iso≡ C ′, if there exists

a bijection iso : VC ∪ BC → VC′ ∪ BC′ s.t.: (1) for all u, v ∈ VC , v ∈ δC(v) iff

iso(v) ∈ δC′(iso(u)) and (2) for u ∈ VC ∪BC and u′ ∈ VC′ ∪BC′ , we get u′ = iso(u) iff

u and u′

• have the same labeling, i.e. ηC(u) = ηC′(u
′);

• are assigned to the same player, i.e., u ∈ P jC iff u′ ∈ P jC′ for j ∈ [0, 1];

• are of the same kind, i.e.:
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– u is an entry/box of C iff u′ is an entry/box of C ′;

– for i ∈ [k], u is the ith exit of C iff u′ is the ith exit of C ′;

– u = (1, b) iff u′ = (1, iso(b)) and for i ∈ [k], u = (b, i) iff u′ = (iso(b), i) (calls

and ith-returns of isomorphic boxes must be isomorphic).

For k > 0, a k-library is a tuple Lib = 〈{Ci}i∈[0,n],YLib〉 where:

• {Ci}i∈[0,n] is a finite set of k-components;

• C0 is the main component ;

• let BLib =
⋃
i∈[0,n]BCi be the set of all boxes of the library components, YLib :

BLib → {Ci}i∈[n] is a partial function (box-to-component map).

Running Example. We illustrate the definitions with an example. In Fig.7.1(a), we give

a library Lib of four components C0, C1, C2 and C3. Each component has two exits.

In the figure, we denote the nodes of pl0 with circles and the nodes of pl1 with squares.

Rounded squares are used to denote the boxes. Entries (resp., exits) are denoted by

nodes intersecting the frame of the component on the left (resp., on the right). For

example, C0 has entry e0 and two exits x1 and x2, one internal node u1 and two boxes

b1 and b2. With “b1 : C1” we denote that box b1 is mapped to component C1. The only

unmapped box is b3. To keep the figure simple, we only show the labeling of vertices

with labels α, β and γ, and hide the labeling for all the remaining vertices (meaning

that they are labeled with any other symbol).

Notes. For the ease of presentation, we have imposed a few restrictions. First, in the

definition of library, YLib can map a box to each component but the main component

C0. We observe that this is in accordance with the choice of many programming

languages where the main function cannot be called by other functions and is without

loss of generality of our results. Second, multiple entries can be handled by making for

each component as many copies as the number of its entries, and accommodating calls

and returns accordingly. Third, all the components of a library have the same number

of exits that also matches the number of returns for each box. This can be relaxed

at the cost of introducing a notion of compatibility between a box and a component,

and map boxes to components only when they are compatible. We make a further

assumption that is standard: in the components there are no transitions leaving from

exits (assigning them to pl0 or pl1 is thus irrelevant).
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Figure 7.1: A library (a) and RSMs from it: unrestricted (b), same local strategy for

instances of the same component (c), and at most one instance for each component (d).

7.3.2 Instances and recursive state machines

We are interested in synthesizing a recursive state machine (RSM) (2) from a library

of components. Such a machine is formed by a finite number of instances of library

components, where each instance is isomorphic to a library component and resolves the

nondeterminism of pl0 by a finite-state local strategy. The boxes of each instance are

mapped to instances in the machine with the meaning that when a call of a box b is

reached then the execution continues on the entry of the mapped instance and when

the ith exit of such instance is reached then it continues at the ith return of b (as in the

recursive call-return paradigm). The box-to-instance map of an RSM must agree with

the box-to-component map of the library when this is defined.

We observe that our definition of RSM differs from the standard one in that (i) each

finite-state machine is implicitly given by a component and a finite-state local strategy,

and (ii) the nodes are split between pl0 and pl1. (However the last is immaterial since

the nondeterminism of pl0 is completely resolved by the local strategies.)

For a component C, a local strategy is S : V ∗C .P
0
C → CallsC∪NC such that S (w.u) ∈

δC(u). The strategy is finite-state if it is computable by a finite automaton (we omit a

formal definition here, see (42)).
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An instance of C is I = (G,S ) where G is s.t. G
iso≡ C holds and S is a finite-state

local strategy of G. For example, in Fig. 7.1, X1 and X2 are two instances of C1 that

differ on the local strategy (we have denoted with dashed edges the transitions that

cannot be taken because of the local strategies). Also, Y1 is an instance of C1 and

has the same local strategy as X1. Note that, though the local strategies used in this

example are memoryless, this is not mandatory and thus the number of instances of

each component with different local strategies is in general unbounded.

Fix a library Lib = 〈{Ci}i∈[0,n],YLib〉. A recursive state machine (RSM) from Lib

is S = 〈{Ii}i∈[0,m],YS〉 where:

• for i ∈ [0,m], Ii = (Gi,Si) is an instance of a component Cji from Lib;

• I0 is an instance of the main component C0;

• the box-to-instance map YS :
⋃
i∈[0,m]BGi → {Ii}i∈[m] is a total function that is

consistent with YLib, i.e., for each i ∈ [0,m] and b ∈ BGi , denoting with b′ the box

of Cji that is isomorphic to b, it holds that if YLib(b
′) = Cjh then YS(b) = Gh.

Examples of RSM for the library from Fig. 7.1(a) are given in Fig.7.1(b)–(d).

We assume the following notation: VS =
⋃
i∈[0,m] VGi (set of all vertices); BS =⋃

i∈[0,m]BGi (set of all boxes); EnS =
⋃
i∈[0,m]{eGi} (set of all entries); ExS =

⋃
i∈[0,m]ExGi

(set of all exits); CallsS =
⋃
i∈[0,m] CallsGi (set of all calls); RetnsS =

⋃
i∈[0,m] RetnsGi

(set of all returns); and P jS =
⋃
i∈[0,m] P

j
Gi

for j = 0, 1 (set of all positions of pl j).

A state of S is (γ, u) where u ∈ VYS(bh) is a vertex and γ = γ1 . . . γh is a finite

sequence of pairs γi = (bi, µi) with bi ∈ BS and µi ∈ V ∗YS(bi)
for i ∈ [h] (respectively,

calling box and local memory of the called instance).

In the following, for a state s = (γ, u), we denote with V (s) its vertex u. Moreover,

we define the labeling map of S, denoted ηS , from the labeling ηGi of each instance

Ii in the obvious way, i.e., ηS(s) = ηGi(V (s)) for each V (s) ∈ VGi and i ∈ [0,m]. ηS

naturally extends to sequences.

A run of S is an infinite sequence of states σ = s0s1s2 . . . such that s0 = ((ε, eG0), eG0)

and for i ∈ N, denoting si = (γi, ui) and γi = (b1, µ1) . . . (bh, µh), one of the following

holds:

− Internal pl1 move: ui ∈ (NS ∪ RetnsS) \ ExS , and ui ∈ P 1
S , then ui+1 ∈ δS(ui)

and γi+1 = (b1, µ1) . . . (bh, µh.ui+1);
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− Internal pl0 move: ui ∈ (NS ∪ RetnsS) \ ExS , ui ∈ P 0
S and ui ∈ VGj with

j ∈ [0,m], then ui+1 = Sj(µh) and γi+1 = (b1, µ1) . . . (bh, µh.ui+1).

− Call to an instance: ui = (1, b) ∈ CallsS , ui+1 = eYS(b) and γi+1 = γi.(b, eYS(b));

− Return from a call: ui ∈ ExS and ui corresponds to the jth exit of an instance

Ih, then ui+1 = (bh, j) and γi+1 = (b1, µ1) . . . (bh−1, µh−1.ui+1).

An infinite RSM is defined as an RSM where we just relax the request that the set

of instances is finite. We omit a formal definition and retain the notation. Note that

the definitions of state and run given above still hold in this case.

7.3.3 A general synthesis problem

Fix a library Lib = 〈{Ci}i∈[0,n],YLib〉 with alphabet Σ.

A library game is (Lib,W ) where Lib is a library of components and W is a a

winning set, i.e., a language W ⊆ Σω.

The modular synthesis from libraries (Lms, for short) is the problem of determining

if for a given library game (Lib,W ) there is an RSM S = 〈{Ii}i∈[0,m],YS〉 from Lib

that satisfies W , i.e., ηS(σ) ∈W for each run σ of S.

As an example, consider the Lms queries Qi = (Lib,Wi), i ∈ [3], where Lib is from

Fig. 7.1(a) and denoting Σ = {α, β, γ}: W1 is the set of all ω-words whose projection

into Σ gives the word (γα)ω, W2 is the set of all words whose projection into Σ gives a

word in (γβα+γβ2α)ω, and W3 is the set of all ω-words with no occurrences of β. The

RMSs from Fig. 7.1(b)–(d) are solutions of the Lms queries Q1,Q2 and Q3 respectively.

In the figure, we use circles to denote all the nodes, this is to stress that the splitting

between the two players is not meaningful any more.

We recall that a solution in the considered synthesis problems over a library game

(Lib,W ) has two levels: the game within each component and the compositional game

among instances. Consequently, on the one hand, we must solve the internal game, de-

termining how many instances will compose our system and how they will be controlled.

This means that the first feature of the solution is to generate the set of instances ob-

tained from Lib components and, in particular, the set of finitely representable local

strategies associated to each element of the set. On the other hand,to construct the

system, we must decide how these instances interact using the procedure calls. This

means that the second feature of our solution is to determine the external compositional
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game, i.e., defining a box mapping compatible with the mapping of Lib, and, in such

way, constructing the recursive state machine.

In the following, we refer to the set of local strategies of a synthesized RSM that

fulfills the winning condition as a winning modular strategy.

7.4 Other formulations of the modular synthesis

We introduce two variations of the Lms problem based on the two restrictions for the

RSMs that can be synthesized. The idea is to constrain our algorithms to synthesize,

when possible, “simpler” RSMs. For example, in the function call repair we can imag-

ine that it is not good to fix a fault introducing or duplicating an arbitrarily large

number of new instances and we could be interested to construct a repaired system

that implements at most one instance of each library component.

Fix a library Lib. An RSM S from Lib is component-based if for any two S instances

I = (G, f) and I ′ = (G′, f ′) of a component C from Lib, the local strategies f and

f ′ coincide (up to a renaming). Moreover, S is single-instance if it has at most one

instance of each library component.

The component-based (resp. single-instance) Lms problem is the Lms problem

restricted to component-based (resp. single-instance) RSMs.

Denote with Psingle (resp. Pcomp , PLMS) the set of Lms queries (Lib,WA) for which

the single-instance Lms problem (resp. component-based Lms problem, Lms problem)

admits a positive answer. Directly from the definitions, a single-instance RSM is also

component-based. Thus we get that Psingle ⊆ Pcomp ⊆ PLMS . These inclusions are

indeed strict.

Let Lib be the library from Fig.7.1(a). The RSM in Fig.7.1(b) is not component-

based (and thus not single-instance): X1 and X2 are instances of C1 and use two

different local strategies. The RSM in Fig. 7.1(c) instead is component-based but not

single-instance since Y1 and Y2 are two instances of C1 (note that even if they have the

same local strategy, they differ on the reachable vertices because the box is mapped

differently). The RSM from Fig. 7.1(d) is clearly single-instance.

Let W1,W2 and W3 be the winning conditions given at the end of Section 7.3. Ob-

serve that they are all expressible by safety automata. Moreover, there is no component-

95



7. COMPONENT-BASED SYNTHESIS OF OPEN SYSTEMS

based RSM from Lib that satisfies W1 and no single-instance RSM from Lib that

satisfies W2. Thus, we get the following lemma:

Lemma 27. Psingle ⊂ Pcomp ⊂ PLMS.

The single-instance LMS problems and the synthesis of modular strategies on recur-

sive game graphs are strictly related: a modular game is a single-instance LMS game

where the box-to-component map is total. Given an instance of single-instance Lms

game, we guess a total box-to-component map for the library and then we can solve

all the considered single-instance Lms problems applying the algorithms proposed in

(4, 5) and in Section 5.3. We get:

Theorem 28. The safety and VPA single-instance Lms problems are Exptime-complete.

The reachability single-instance Lms problem is NP-complete.
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8

Modular synthesis with

reachability conditions

In this chapter we formally introduce and solve the simpler version of the component-

based synthesis problem seen in Chapter 7. In this case we want to synthesize a system

from a library of open components without guiding the composition and considering

only reachability winning conditions. To solve this problem, we give an exponential-

time fixed-point algorithm that computes annotations for the vertices of the library

components by exploring them backwards. We also show a matching lower-bound

via a direct reduction from linear-space alternating Turing machines, thus proving

Exptime-completeness. therefore, we give a second algorithm that solves this problem

by annotating in a table the result of many local reachability game queries on each

game component. This algorithm is exponential only in the number of the exits of the

game components, and thus shows that the problem is fixed-parameter tractable.

In the last part of this chapter, we modify the proposed algorithm to solve the Lms

and the component-based Lms problem with reachability winning condition.

8.1 Contribution

The main contributions present in this chapter are:

• We introduce and solve the simpler version of a component-based synthesis prob-

lem. We model the components of our libraries as game modules of a recur-

sive game graph with unmapped boxes (the synthesis is not guided by a box-
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to-component mapping), and we limit us to consider as correctness specification

only a target set of vertices. This problem is a restriction of a reachability Lms

problem, where there is no partial mapping.

• We show that the proposed problem (modular synthesis problem) is decidable

and we present a fixed-point algorithm A1 that decides in exponential time such

modular synthesis problem. This algorithm iteratively computes a set Φ of tuples

of the form (u,E, {µb}b∈B) where u is a vertex of a game component C, E is a

set of C exits, B is the set of C boxes and for each box b ∈ B, µb is either a set

of exits of another component Cb or undefined. Each such tuple summarizes for

vertex u a reachable local target E (via a modular strategy of pl0) and a set of

assumptions {µb}b∈B that are used to get across the boxes in order to reach the

local target. We start from the tuples of the target exits T and then propagate

the search backwards in the game components. Internally to each component,

the search proceeds as in the standard attractor set construction (32) and it is

propagated through calls to other components from the returns to the exits and

then back from the entries to the calls. In this, tuples that have incompatible

assumptions or refer to a different local target are treated as belonging to different

searches and thus are not used together in the update rules.

• We show the matching lower bound by a reduction from linear-space alternating

Turing machines. In the reduction, we use only four game components and O(n)

exits, where n is the number of cells used in the configurations of the Turing

machine.

• We give a second decision algorithm A2 and we introduce it to show that the

computational complexity of the proposed problem becomes PTIME when the

number of exits is fixed. The main idea here is to solve many reachability game

queries “locally” to each game component and maintain a table with the obtained

results to avoid recomputing. Each table entry corresponds to a game component

and a set of its exits (used as targets in the query), and for the successful queries,

contains a link to each table entry that has been used to reach the target (we

look up into the table to propagate the search across the boxes). We observe

that A2 takes time exponential only in the number of exits, while A1 takes time
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8.2 A simpler modular synthesis problem

exponential also in the number of boxes. This is due mainly to the fact that A1

may compute and store exponentially many different ways of assigning the boxes

to modules, in contrast, A2 computes and stores just one of them. Therefore,

since alternating reachability in finite game graphs is already PTIME-hard, by

algorithm A2 we get that the considered problem is PTIME-complete when the

number of exits is fixed.

• We consider the general reachability Lms problem and we modify the proposed al-

gorithm to handle the box-to-component mapping. We also present the solutions

for the reachability component-based Lms problems.

8.2 A simpler modular synthesis problem

In this section, we consider a simplified version of the Lms problem, the modular syn-

thesis problem. In this setting, our model does not allow to guide the composition

of the instances and as winning condition we consider only the reachability condition.

The solution of the general case, but still limited to reachability conditions, will be pre-

sented in the last part of this chapter. We discuss about complex winning conditions

in Chapter 9.

Library of (game) components. For h, k ∈ N, a (h, k)-component is a finite graph

with two kinds of vertices, the standard nodes and the boxes, and with h entry nodes

and k exit nodes. Each box has h call points and k return points, and the edges take

from a node/return to a node/call in the component.

Formally, for a box b, we denote with (i, b) the i-th call of b for i ∈ [h], and with (b, i)

the i-th return of b for i ∈ [k]. A (h, k)-component is a tuple (N,B,En,Ex , δ) where N

is a finite set of nodes, B is a finite set of boxes, En ⊆ N is the set of entries, Ex ⊆ N
is the set of exits, and δ : N ∪ Retns → 2N∪Calls where Retns = {(b, i) | b ∈ B, i ∈ [k]}
and Calls = {(i, b) | b ∈ B, i ∈ [h]}. The calls, returns and nodes of a component form

its set of vertices. In the following, when we do not need to specify h and k, we simply

write component.

A game component is a component whose nodes and returns are split into two sets

P 0 and P 1, where P 0 is the set of player 0 (pl0) positions and P 1 is the set of player 1

(pl1) positions. We denote it as a tuple (N,B,En,Ex , δ, P 0, P 1).
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For h, k > 0, a library of (game) components is a finite set Lib = {Ci}i∈[n] where

each Ci is a (game) (h, k)-component.

To ease the presentation we make the following standard assumptions:

• there is only one entry node for every (game) component and thus just one call

for each box, i.e., we refer to (game) (1, k)-components;

• in each (game) component there are no transitions taking to its entry and no

transitions leaving from its exits, i.e., the entries are sources and the exits are

sinks in the graph representation of the component;

• there is no transition from a return to a call, i.e., two boxes are not directly

connected by a single transition.

Instances from a library. Intuitively, an instance of a (game) component C is a

copy A of C where each box is mapped to an instance of a (game) component (possibly

A itself). Depending on whether we consider a library of components or of game

components, the instances define a recursive state machine (2) or a recursive game

graph (5).

Fix a library Lib = {C1, . . . , Cn} of game components.

A recursive game graph from Lib is G = (M,min, {Sm}m∈M ) where M is a finite set

of module names, min ∈M is the name of the initial module and for each m ∈M , Sm is

a game module. A game module Sm is defined as (Nm, Bm, Ym, {em},Exm, δm, P
0
m, P

1
m)

where:

• Ym : Bm → (M \ {min}) is a labeling function that maps every box to a game

module;

• (Nm, Bm, {em},Exm, δm, P
0
m, P

1
m) is equal to a component C of Lib up to a renam-

ing of nodes and boxes such that calls and returns of a box b are 1-to-1 mapped

to the entries and the exits of MYm(b), that is, denoting ExYm(b) = {x1, . . . , xk}:
the call of b is renamed to (eYm(b), b) and each return (b, i) is renamed to (b, xi).

The calls, returns and vertices of Sm are denoted respectively Callsm, Retnsm and Vm.

We also assume the following notation: V =
⋃
m Vm (set of all vertices); B =

⋃
mBm

(set of all boxes); Calls =
⋃
m Callsm (set of all calls); Retns =

⋃
m Retnsm (set of all

returns); and P i =
⋃
m P

i
m for i = 0, 1 (set of all positions of pl i).
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The definition of a recursive state machine from Lib can be obtained from that of

recursive game graph by ignoring the splitting among pl0 and pl1 nodes.

A (global) state of G is composed of a call stack and a vertex. Formally, the states

are of the form (γ, u) ∈ B∗ × V where γ = b1 . . . bh, b1 ∈ Bmin , bi+1 ∈ BY (bi) for

i ∈ [h− 1] and u ∈ VY (bh). In the following, for a state s = (γ, u), we denote with V (s)

its vertex, that is V (s) = u.

A play of G is a (possibly finite) sequence of states s0s1s2 . . . such that s0 = (ε, emin)

and for i ∈ N, denoting si = (αi, ui), one of the following holds:

− Internal move: ui ∈ (Nm ∪ Retnsm) \ Exm, ui+1 ∈ δm(ui) and αi = αi+1;

− Call to a module: ui ∈ Callsm, ui = (b, em′), ui+1 = em′ and αi+1 = αi.b;

− Return from a call: ui ∈ Exm, αi = αi+1.b, and ui+1 = (b, ui).

Modular strategies. A strategy of a player pl is a function f that associates a legal

move to every play ending in a node controlled by pl . A modular strategy (5) for G

consists of a set of local strategies, that are used together as a global strategy for a

player. A local strategy for a game module S can only refer to the local memory of S,

i.e. the sequence of S vertices that are visited in the play in the current invocation of

S.

Formally, fix j ∈ {0, 1}. A modular strategy f of pl j is a set of functions {fm}m∈M ,

one for each game module, where for every m, fm : V ∗m.P
j
m → Vm such that fm(π.u) ∈

δm(u) for every π ∈ V ∗m, u ∈ P
j
m.

Fix a play π = s0s1...sn where si = (γi, ui) for any i. Denote with πi = s0s1...si,

i.e., the prefix of π up to index i. With ctr(πi) we denote m ∈ M such that ui ∈ Vm,

that is the name of the game module where the control is after πi. The local history at

πi, denoted λ(πi), is the maximal sequence of Sm vertices uj , j ≤ i, starting with the

most recent occurrence of entry em where m = ctr(πi).

A play π conforms to a modular strategy f = {fm}m∈M of pl j if for every i <| π |,
denoting ctr(πi) = m, ui ∈ P jm implies that ui+1 = fm(λ(πi)).

Modular synthesis from libraries of game components. A modular game over

a library is (Lib, Cmain ,T) where Lib is a library of game components, Cmain ∈ Lib and

T is a set of exits of Cmain .
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Modular Game
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Figure 8.1: An example of modular synthesis

Given an instance (Lib, Cmain ,T) of a modular game over a library, the modular

synthesis problem is the problem of determining whether: for some recursive game

graph G from Lib whose initial module is an instance of Cmain , there exists a modular

strategy f for pl0 in G such that all the maximal plays that conform to f reach an exit

of the initial module of G that corresponds to an exit in T.

Such a strategy f for pl0 is called a winning modular strategy.

Example. We illustrate the definitions with an example. In the first column of Fig.

8.1, we give (Lib, C0, {x1}), an instance of a modular game over a library of game

components. Each game component has two exits, and Lib is composed of two game

components C0 and C1. In the figure, we denote the nodes of pl0 with circles and the

nodes of pl1 with squares. Rounded squares are used to denote the boxes. The target

is marked with a double circle. C0 has one entry e0, two exits x1 and x2, and two boxes

b1 and b2. C1 has one entry e1, two exits x3 and x4, and one box b3.

In the second column of the figure, we show one of the possible recursive game

graphs that can be obtained from Lib and whose initial module C0
0 is an instance of

C0. Note that we have marked as target the vertex of C0
0 that corresponds to (i.e., is

a copy of) x1. The other modules C1
1 and C2

1 are instances of C1. Note that each box

now is mapped to a game module, for example b01 is mapped to C2
1 . Also, the box b13

of C1
1 is mapped to C2

1 and the box b23 of C2
1 is mapped to C1

1 thus forming a cycle in

the chain of recursive calls.
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Consider a modular strategy for pl0, where the local strategy of C0
0 selects the call

from u2, the local strategy of C1
1 selects the call from its entry and the local strategy

for C2
1 selects the upper exit from its entry. This strategy is winning and modular. In

the third column of the figure, we show a recursive state machine, obtained from the

considered recursive game graph by resolving the moves of pl0 according to this modular

strategy. To simplify the figure, we have deleted all the unreachable transitions. Clearly,

each run of this machine reaches the target. Also, note that in the considered game it

is not possible to win if we do not instantiate at least two instances of C1.

8.3 Solving our modular synthesis problem

In this section, we describe an exponential-time fixed-point algorithm to solve the

modular synthesis problem.

We fix a library of game components Lib = {Cmain , C1, . . . , Cn} and a target set T

of Cmain exits.

Intuitively, our algorithm iteratively computes a set Φ of tuples of the form (u,E, {µb}b∈B)

where u is a vertex of a game component C, E is a set of C exits, B is the set of C boxes

and for each box b ∈ B, µb is either a set of exits of a game component or undefined

(we use ⊥ to denote this). The intended meaning of such tuples is that: there is a

local strategy f of pl0 in C such that starting from u, each maximal play conforming

to f reaches an exit within E, under the assumption that: for each box b ∈ B, if µb is

defined, then from the call of b the play continues from one of the returns of b corre-

sponding to a x ∈ µb (if µb is undefined means that no play conforming to f visits b

starting from u). Thus, each tuple (u,E, {µb}b∈B) summarizes for vertex u a reachable

local target E and a set of assumptions {µb}b∈B that are used to get across the boxes.

For computing Φ, we use the concept of compatibility of the assumptions. Namely,

we say that two assumptions µ and µ′ are compatible if either µ = µ′, or µ′ = ⊥,

or µ = ⊥ (i.e., there is at most one assumption that has been done). Moreover, we

say that the assumptions µ1, . . . , µm are passed to µ if µ =
⋃
i∈[m] µi (we assume that

⊥ ∪X = X ∪ ⊥ = X holds for each set X).

The set Φ is initialized with all the tuples of the form (u,T, {⊥}b∈Bmain ) where u ∈ T

and Bmain is the set of boxes of Cmain . Then, Φ is updated by exploring the components

backwards according to the game semantics, and in particular: within the components,
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tuples are propagated backwards as in an attractor set construction, by preserving the

local target and passing to a node the assumptions of its successors (provided that

multiple assumptions on the same box are are passed they are pairwise compatible);

the exploration of a component is started from the exits with no assumptions on the

boxes, whenever the corresponding returns of a box b have been discovered with no

assumptions on b; the visit of a component is resumed at the call of a box b, whenever

(1) there is an entry of a component that has been discovered with local target X and

(2) there is a set of b returns corresponding to the exits X with no assumptions on b

(thus, that can be responsible for discovering the exits in X as in the previous case)

and with compatible assumptions on the remaining boxes; if this is the case, then the

call is discovered with the assumption X on box b and passing the local target and the

assumptions on the other boxes as for the above returns.

Below, we denote with bx the return of a box b corresponding to an exit x (recall

that all game components of a library have the same number of exits, and so do the

boxes). The update rules are formally stated as follows:

Update 1: For a pl0 vertex v, we add (v,E, {µb}b∈B) provided that there is a tran-

sition from v to u and (u,E, {µb}b∈B) ∈ Φ (the local target and the assumptions

of a v successor are passed on to a pl0 vertex v).

Update 2. For a pl1 vertex v, denote u1, . . . , um all the vertices s.t. there is a

transition from v to ui, i ∈ [m], then we add (v,E, {µb}b∈B) to Φ provided that

for each i, j ∈ [m] and b ∈ B: (1) there is a (ui, Ei, {µib}b∈B) ∈ Φ, (2) Ei = Ej ,

(3) µib and µjb are compatible, and (4) µb =
⋃
i∈[m] µ

i
b (all the v successors must be

discovered under the same target and with compatible assumptions; target and

assumptions are passed on to a pl1 vertex v).

Update 3. For an exit u, we add a tuple (u,E, {⊥}b∈B′) to Φ provided that u ∈ E
and for a box b′ it holds that there are tuples (b′x, Ex, {µxb }b∈B) ∈ Φ, one for each

x ∈ E, such that for all x, y ∈ E and b ∈ B, (1) µxb′ = ⊥, (2) Ex = Ey, and (3)

µxb and µyb are compatible (the discovery of the exits follows the discovery of the

corresponding returns under compatible assumptions and the same local target).

Update 4. For a call u of a box b′, we add a tuple (u,Eu, {µub }b∈B) to Φ provided

that (i) there is an entry e s.t. (e, Ee, {µeb}b∈B′) ∈ Φ, (ii) for each return b′x,
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x ∈ Ee, there is a tuple (bx, E, {µxb }b∈B) ∈ Φ s.t. all these tuples satisfy (1), (2)

and (3) of Update 3, and moreover, (iii) Eu = E, µub =
⋃
x∈Ee µ

x
b for b 6= b′, and

µub′ = Ee (the discovery of a call u of box b′ follows the discovery of an entry e

from exits Ee that in turn have been discovered by matching returns b′x, x ∈ E;

thus on u we propagate the local target and the assumptions on the boxes b 6= b′

of the returns b′x and make an assumption Ee on box b′).

We compute Φ as the fixed-point of the recursive definition given by the above rules

and outputs “YES” iff (e,T, {µb}b∈Bmain ) ∈ Φ for the entry e of Cmain .

Observe that, the total number of tuples of the form (u,E, {µb}b∈B) is bounded by

|Lib| 2O(kβ) where k is the number of exits of each game component in Lib and β is the

maximum over the number of boxes of each game component. Therefore, the algorithm

always terminates and takes at most time exponential in k and β, and linear in the size

of Lib.

Soundness of the algorithm is a consequence of the fact that each visit of a game

component is done according to the standard attractor set construction, and repeated

explorations of each component are kept separate by allowing to progress backwards in

the graph only with the same local target and compatible assumptions on the boxes.

By not allowing to change the box assumptions (when defined), we ensure that we

cannot cheat by using different assumptions in repeated visits of a box within the same

exploration. The computed strategy is clearly modular since we compute it locally to

each graph component. Note that we can end up computing more than a local strategy

for each graph component, but this does not break the modularity of the solution

since this happens when in the computed solution we use different instances of the

component. Also, observe that for each game component we construct at most a local

strategy for each possible subset of its exits, thus we bound the search of a solution to

modular strategies of this kind.

To prove completeness, we first observe that using standard arguments one can

show that:

Lemma 29. If there is a modular winning strategy for an instance of the modular

synthesis problem over a library Lib, then there is a winning modular strategy f for a

recursive game graph G from Lib such that: for each two instances S and S′ of a same

game component in Lib, the sets of exits visited along any play conforming to f in S

and S′ differ.
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Observe that by the above lemma, we can restrict the search for a solution within

the modular strategies of the instances of a Lib that have at most 2k copies of each

game component, where k is the number of exits for the components. Therefore, com-

bining this with the results from (5) we get a simple argument to show membership to

NEXPTIME of the considered problem.

The next step in the completeness argument is to show that if there is a winning

modular strategy f as for Lemma 29, then our algorithm outputs YES. Denoting with

G the recursive game graph from Lib for which f is winning, this can be shown by

proving by induction on the structure of G that: if on a game module S of G that is an

instance of C ∈ Lib, f forces to visit a set of exits corresponding to the exits X of C,

then the algorithm adds to Φ the tuples (x,X, {⊥}b∈B) for each x ∈ X and eventually

discovers the entry of C with local target X. We omit the proof of this here.

Therefore, we get that the algorithm is a solution of the modular synthesis problem

from game component libraries, and the following theorem holds.

Theorem 30. The modular synthesis problem from libraries of game components with

k exits and at most β boxes can be solved in time linear in the size of Lib and exponential

in k and β.

8.4 Computational complexity analysis

Lower-bound. We reduce the membership problem for linear-space alternating Tur-

ing machines to the modular synthesis problem for libraries of game components, thus

showing Exptime-hardness for this problem.

Consider a linear-space alternating Turing machine A and an input word w =

a1 . . . an. Without loss of generality, we assume that the transition function δ of A is

the union of two functions δ1 and δ2 where δi : Q × Σ → {L,R} × Q for i ∈ [2], and

Q is the set of control locations, Σ is the tape alphabet, and L/R cause to move the

tape head to left/right. A configuration of A is represented as b1 . . . (q, bi) . . . bn where

bj is the symbol at cell j of the input tape for j ∈ [n], q is the control state and the

tape head is on cell i. The control states are partitioned into states where the ∃-player

can move, and states where the ∀-player can move. A computation of M is a strategy

of the ∃-player, and an input word w is accepted iff there exists a computation ρ that

reaches a configuration with a final state on all the plays conforming to ρ.
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Cmain C∀
Cfin

b
b∀2

b∀1
D1

D2

Figure 8.2: Graphical representation of the game components Cmain , C∀ and Cfin

Denoting h = n |Σ| (|Q| + 1), fix two sets X = {x1, . . . , xh} and Y = {y1, . . . , yh}
such that each xi and yi correspond exactly to a symbol and a position in a configuration

of A (i.e., for each symbol in Σ∪Q×Σ we have exactly n variables from X and n from

Y , one for each position on the tape). We can encode each configuration σ1 . . . σn of A

by setting to true a variable xj (resp. yj) iff it corresponds to a σi for i ∈ [n] (that is,

to a configuration symbol and its position in the configuration). It is well-known that

for each δi, we can construct a Boolean circuit (using only the logical gates AND and

OR) with inputs x̄ = x1 . . . xh and outputs ȳ = y1, . . . , yh, such that if x̄ is an encoding

of a configuration, then ȳ is the next configuration after the application of the only

possible transition of δi.

From each such circuit we can construct a game graph by replacing each AND gate

with a node of pl1 and each OR gate with a node of pl0. We denote with D1 and D2

the game graphs corresponding to the above circuits for δ1 and δ2, respectively. The

encoding of the bits is done by reachability, that is, true at an input xi corresponds

to connecting it to a vertex that can lead to the target, and false otherwise. Since the

circuits compute a next configuration, from each output wire yi that evaluates to true

we will be able to get to the target by a strategy that resolves the choices on the pl0

nodes (and thus the OR gates), and this will not be possible for those yi that evaluates

to false.

We construct a library Lib containing exactly the game components Cmain , C∀, C∃,

and Cfin (see Fig. 8.2). Each component has exactly h exits, each one corresponding to

a variable xi for i ∈ [h]. In Cmain , we arbitrarily select an exit as the only vertex in the

target T, and link to it all the returns of the box that encode the initial configuration

(we can assume that A has only one initial state). In C∀, all the exits are wired as

inputs to both D1 and D2 except for those that correspond to states of the ∃-player.

We add a pl0 node that has no out-going edges and is wired as input to D1 and D2 for
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the remaining inputs. The outputs of D1 and D2 are wired respectively to the boxes

b∀1 and b∀2 , and the calls of these boxes are connected to the entry, that is a pl1 node.

C∃ is as C∀ except that the entry is a pl0 node and the exits that are not connected

correspond to ∀-player states. The component Cfin has just the entry and the exits.

The entry is a pl0 node and is connected to all the exits that correspond to a final state.

It is simple to verify that if, starting from an instance of Cmain , we map the boxes

such that to reproduce an accepting computation of A, then we get a recursive game

graph that admits a modular winning strategy of pl0. Vice-versa, suppose that there

is a modular winning strategy of pl0 in the synthesis problem (Lib, Cmain ,T). First,

observe that since the returns from which we reach the target encode a legal initial

configuration, each game module to which we map the box b will have the corresponding

exits with the same property. Moreover, in order to reach backwards the entries of all

the used instances of Cmain , C∀, and C∃, at some point we need to use a copy of Cfin .

Now, if the initial state is a ∀-player state and we map b to an instance of C∃, since

the exit encoding the head position and the state will not be wired to D1 and D2, in

all the modules below in the hierarchy of calls, none of such exits will be connected to

the target. Thus, also the entry of each copy of Cfin in this hierarchy would not be

connected to the target, and so all the entries up to the entry of the copy of Cmain ,

thus contradicting the hypothesis. A contradiction can be shown also in the dual case.

Thus, at any point we must have mapped each box to an instance of either C∃ or C∀

depending on whether the next move is of the ∃-player or the ∀-player. Since, the

graphs D1 and D2 ensure the correct propagations of the reachability according to

the computed configurations, we can correctly reconstruct a computation ρ of A from

the modular strategy. Moreover, since a winning modular strategy ensures that each

maximal sequence of module calls ends with a call to an instance of Cfin , then each

play of ρ ends in a final configuration and thus ρ is accepting, that concludes the proof.

Lemma 31. There is a polynomial-time reduction from the membership problem for

linear-space alternating Turing machines to the modular synthesis problem for libraries

of game components. Moreover, the resulting library has four game components each

one with at most two boxes and a number of exits which is linear in the size of the input

word.
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Complexity and fixed-parameter tractability. The algorithm from the previous

section, say A1, shows membership to Exptime for the modular synthesis problem.

Therefore, by Lemma 31, we get:

Theorem 32. The modular reachability problem is Exptime-complete.

Note that A1 takes time exponential in both the number of boxes β and the number

of exits k. We sketch a different algorithm that shows that this problem is indeed in

PTIME when the number of exits for each game component is fixed.

The main idea is to solve many reachability game queries on standard finite game

graphs, where each query asks to determine for a game component C and a subset

of its exits E: if there exists a modular strategy f of pl0 such that all the maximal

plays, which conform to f and start from the entry of C, reach one of the exits from

E. To avoid recomputing, the results of such queries are stored in a table T , and the

algorithm halts when no more queries can be answered positively.

To solve the query for a component C and a set of its exits E, we extend the

standard attractor set construction. Namely, we accumulate the winning set for pl0

as usual for nodes and returns. To add the call of a box b, we look in the table for a

positively answered query whose target set correspond to returns of b that are already

in the winning set. If the entry of C is added to the winning set, then we update the

T entry for E and C to YES, and store the links to the table entries that have been

used to add the calls (observe that we just need to store exactly a link for each box

that is traversed to win in the game query in order to synthesize the recursive game

graph and the winning modular strategy).

With similar arguments as those used in Section 8.3, we can show that pl0 has a

winning modular strategy in the input modular synthesis problem if and only if the T

entry for the target set T is set to YES. Since the size of the table is exponential in

k and linear in β, and that solving the “local” reachability games is linear in the size

of the game component and in the size of the table, we get that the whole algorithm

takes time exponential in k and linear in β (and the size of the library). Since already

alternating reachability is PTIME-hard, we get:

Theorem 33. The modular reachability problem for a fixed number of exits is PTIME-

complete.
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We observe that A1 computes all the solutions of the kind as from Lemma 29, by

trying all the possible ways of assigning each box with all the game components. This

causes the exponential in the number of boxes, but also gives a quite simple and direct

way to show completeness. Moreover, the fixed-point updates of A1 can be implemented

quite efficiently and only the sets of exits from which we can reach the target (in a series

of calls) are used in the computation.

Algorithm A2 arbitrarily computes, for each game component and each set of exits,

only one assignment of each box with a game module. Moreover, it computes (several

times) all the game queries, even those with exits that cannot reach the global target

T.

Both algorithms can be used to synthesize the winning modular strategy as a re-

cursive state machine. Also, we can modify them to compute optimal winning modular

strategies with respect to some criteria, such as minimizing the number of modules, the

depth of the call stack or the number of used exits.

8.5 Solving Lms and component-based Lms problems with

reachability winning conditions

Reachability Lms problem: The exponential-time fixed-point algorithm that we

have proposed solves the Lms problem with reachability winning conditions but the

considered model does not provide the box-to-component map.

In this section, we modify the algorithm presented in Section 8.3 to handle the

partial mapping function of our model.

Fix a library of components Lib = 〈{Ci}i∈[0,n],YLib〉 and a target set T of C0 exits.

The algorithm iteratively computes a set Φ of tuples of the form (u,E, {µb}b∈BC ) where

u is a vertex of a component C, E is a set of C exits, BC is the set of C boxes and for

each box b ∈ BC , µb is either a set of exits of a component or undefined (we use ⊥ to

denote this). The intended meaning of such tuples is that: there is a local strategy f

of pl0 in C such that starting from u, each maximal play conforming to f reaches an

exit within E, under the assumption that: for each box b ∈ BC , if µb is defined, then

from the call of b the play continues from one of the returns of b corresponding to a

x ∈ µb (if µb is undefined means that no play conforming to f visits b starting from u).
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Thus, each tuple (u,E, {µb}b∈BC ) summarizes for vertex u a reachable local target E

and a set of assumptions {µb}b∈BC that are used to get across the boxes.

For computing Φ, we use the concept of compatibility of the assumptions. Namely,

we say that two assumptions µ and µ′ are compatible if either µ = µ′, or µ′ = ⊥,

or µ = ⊥ (i.e., there is at most one assumption that has been done). Moreover, we

say that the assumptions µ1, . . . , µm are passed to µ if µ =
⋃
i∈[m] µi (we assume that

⊥ ∪X = X ∪ ⊥ = X holds for each set X).

The set Φ is initialized with all the tuples of the form (u,T, {⊥}b∈BC0
) where u ∈ T

and BC0 is the set of boxes of C0. Then, Φ is updated by exploring the components

backwards according to the game semantics, and in particular: within the components,

tuples are propagated backwards as in an attractor set construction, by preserving the

local target and passing to a node the assumptions of its successors (provided that

multiple assumptions on the same box are are passed they are pairwise compatible);

the exploration of a component is started from the exits with no assumptions on the

boxes, whenever the corresponding returns of a box b have been discovered with no

assumptions on b; the visit of a component is resumed at the call of a box b, whenever

(1) there is an entry of a component that has been discovered with local target X and

(2) there is a set of b returns corresponding to the exits X with no assumptions on b

(thus, that can be responsible for discovering the exits in X as in the previous case)

and with compatible assumptions on the remaining boxes; if this is the case, then the

call is discovered with the assumption X on box b and passing the local target and

the assumptions on the other boxes as for the above returns. Moreover the algorithm

must verify that the association between a box and an instance is done according to

the partial local function of the library YLib.

Below, we denote with bx the return of a box b corresponding to an exit x (recall

that all components of a library have the same number of exits, and so do the boxes).

The update rules are formally stated as follows:

Update 1: For a pl0 vertex v, we add (v,E, {µb}b∈BC ) provided that there is

a transition from v to u and (u,E, {µb}b∈BC ) ∈ Φ (the local target and the

assumptions of a v successor are passed on to a pl0 vertex v).

Update 2. For a pl1 vertex v, denote u1, . . . , um all the vertices s.t. there is a

transition from v to ui, i ∈ [m], then we add (v,E, {µb}b∈B) to Φ provided that
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for each i, j ∈ [m] and b ∈ BC : (1) there is a (ui, Ei, {µib}b∈BC ) ∈ Φ, (2) Ei = Ej ,

(3) µib and µjb are compatible, and (4) µb =
⋃
i∈[m] µ

i
b (all the v successors must be

discovered under the same target and with compatible assumptions; target and

assumptions are passed on to a pl1 vertex v).

Update 3. For an exit u, we add a tuple (u,E, {⊥}b∈BC′ ) to Φ provided that u ∈ E
and for a box b′ it holds that there are tuples (b′x, Ex, {µxb }b∈BC ) ∈ Φ, one for each

x ∈ E, such that for all x, y ∈ E and b ∈ BC , (1) µxb′ = ⊥, (2) Ex = Ey, and (3)

µxb and µyb are compatible (the discovery of the exits follows the discovery of the

corresponding returns under compatible assumptions and the same local target).

Update 4. For a call u of a box b′, we add a tuple (u,Eu, {µub }b∈BC ) to Φ provided

that (i) there is an entry e s.t. (e, Ee, {µeb}b∈BC′ ) ∈ Φ, (ii) for each return b′x,

x ∈ Ee, there is a tuple (bx, E, {µxb }b∈BC ) ∈ Φ s.t. all these tuples satisfy (1), (2)

and (3) of Update 3, and moreover, (iii) Eu = E, µub =
⋃
x∈Ee µ

x
b for b 6= b′, and

µub′ = Ee (the discovery of a call u of box b′ follows the discovery of an entry e

from exits Ee that in turn have been discovered by matching returns b′x, x ∈ E;

thus on u we propagate the local target and the assumptions to the boxes b 6= b′

of the returns b′x and make an assumption Ee on box b′), (iiii) if YLib(b
′) = C ′′,

then e = eC′′ .

We compute Φ as the fixed-point of the recursive definition given by the above rules

and outputs “YES” iff (e,T, {µb}b∈BC0
) ∈ Φ for the entry e of C0.

Observe that, the total number of tuples of the form (u,E, {µb}b∈BC ) is bounded

by |Lib| 2O(kβ) where k is the number of exits of each component in Lib and β is

the maximum over the number of boxes of each component. Therefore, the algorithm

always terminates and takes at most time exponential in k and β, and linear in the size

of Lib.

Theorem 34. The reachability Lms problem is Exptime-complete.

Reachability component-based Lms problem: For an instance of Lms problem,

if there is a set of winning local strategies for a reachability condition, then a modular

memoryless strategy exists such that it is winning according to the same reachability

condition.
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Proof. Consider a winning modular strategy f , a winning local strategy fm of f and

two plays π1 = π′.u and π2 = π′′.u such that π′, π′′ ∈ V ∗ and u ∈ P 0
m. Let f(λ(π1)) = v′

and f(λ(π2)) = v′′ with v′ 6= v′′ be two different moves defined by the winning local

strategy fm. Intuitively, if the two different moves v′ and v′′ of fm are executed in a

same vertex u, this means that such vertex is reachable with two different local histories.

We have two cases:

• One local history is a prefix of the other, i.e. λ(π1) = λ(π2).λ(π).u or λ(π2) =

λ(π1).λ(π).u with π ∈ V ∗.

• The local histories as no prefix in common and λ(π1) 6= λ(π2).

In the first case, suppose that λ(π2) = λ(π1).λ(π).u. We know that π1 = π′.u and we

replace it in the expression, obtaining λ(π2) = λ(π′.u).λ(π).u = λ(π′).u.λ(π).u (because

u is a vertex of the current module m). This means that, after visiting the vertex u

the first time, the run does a local loop λ(π) and reaches again the vertex u. The

modular memoryless strategy in u chooses always the move on v′′, avoiding to execute

the cycle λ(π), and all the resulting runs are still winning (acceptance does not depend

on the specific sequence of vertices to the target). In the second case we have that the

different moves are done according to two different and incomparable local histories.

In such case, the modular memoryless strategy in the vertex u chooses or always v′ or

always v′′. Such memoryless strategy is still winning, because, in both cases, all the

resulting runs will reach the target (acceptance does not depend on the context where

the instance was invoked).

Due to the fact that all the instances obtained by a same component must share

the same local strategy, we pair each component with a specific modular memoryless

strategy. We guess a modular memoryless strategy f̄C for each component. We must

force the algorithm to select always the same move defined by the strategy and we

change the Update 1 rule to ensure this feature in the following way:

Update 1: For a pl0-vertex v ∈ VC , we add (v,E, {µb}b∈B) provided that f̄C(v) = u

and (u,E, {µb}b∈B) ∈ Φ.

This new rule guarantees that, even if we have instances with a different mapping

on boxes, they are still controlled in the same way.

The following holds:

Theorem 35. The reachability component-based Lms problem is Exptime-complete.
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9

Modular synthesis with other

winning conditions

In this chapter, we solve the modular synthesis from a library of components (Lms)

according to more complex winning conditions. We consider both regular and non-

regular specifications.

The first proposed problem assumes that the winning conditions are given as safety

automata. The proposed solution is an automata-theoretic construction, that is based

on the notions of library tree, box summary and pre-post conditions. Due to the com-

plexity of the complexity of the construction, we split it in several pieces that guarantees

the fulfilment of specific subtasks.

We consider the Lms problem also with VPA specification and we prove its decid-

ability proposing a reduction from VPA Lms problem to safety Lms problem. In this

chapter we will also solve the corresponding component-based Lms problems.

9.1 Contribution

The main contributions present in this chapter are:

• We give a solution to the Lms problem with winning conditions given as external

deterministic finite automata (FA) and deterministic visibly pushdown automata

(VPA) (6). We show that the Lms problem is Exptime-complete for any of the

considered specifications.
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(a)

C1

e1 b3

(1, b3) x3

(b3, 1) (b3, 2)

x3 dummy x4 dummy

(b)

C0

e0 C1 C1

(1, b1) (1, b2) e1 C1 e1 C1

(b1, 1) (b1, 2)

x1 u1 dummy

e0 dummy

Figure 9.1: Top fragments of (a) the component tree of C1 and (b) the library tree from

our running example.

• We again consider the restrictions to the general Lms problem with winning

condition expressed as FA and VPA and we the prove that this problems are all

Exptime-complete.

9.2 Safety Lms

In the safety Lms problem the winning set is given by the set of words accepted by a

safety automaton (see Section 2.2.1). In this section we show that deciding this problem

is Exptime-complete. Our decision procedure consists of reducing the problem to

checking the emptiness of tree automata. We assume familiarity with tree automata

and refer the reader to 2.2.4 for the main definitions and to (40) for further details.

9.2.1 Overview of the construction.

Fix a safety Lms query (Lib,WA) where Lib = 〈{Ci}i∈[0,n],YLib〉 is a library and

A = (Σ, Q, qo, δA) is a safety automaton. We aim to construct an automaton A that

accepts the trees that encode an RSM S synthesized from Lib iff S satisfies WA.

For the RSM encoding we introduce the notions of component tree and library tree.

Intuitively, a component tree corresponds to the unrolling of a library component, and

a library tree is a concatenation of component trees that encodes a choice of the box-

to-instance map and of the components for the synthesis of the instances.

For a library tree t, denote with Roots(t) the set of all nodes of t that correspond

to a root of a component tree. A set I = {Ix}x∈Roots(t) is compatible with t if Ix is

an instance of the component corresponding to the component tree rooted at x. Such

a set I and the total box-to-instance map defined by the concatenation of component
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trees in t define a possibly infinite RSM (it is infinite iff Roots(t) is infinite). Denote

SI,t such RSM.

Intuitively, the automaton A checks that the input tree t is a library tree of Lib

and that there is a set of instances I that is compatible with t s.t. SI,t satisfies WA.

For this, A simulates the safety automaton A on the unrolling of each component and

on pl0 nodes also guesses a move of the local strategy (in this way we also guess an

instance of the component). To move across the boxes, A uses a box summary that is

guessed at the root of each component tree. For x ∈ Roots(t), denoting with Cx the

corresponding component and with xb the child of x corresponding to a box b of Cx,

the box summary guessed at x essentially tells for each such b (recall that Q is the set

of states of A):

1. the associated component Cxb in t, and

2. a non empty set Q′ ⊆ Q, and for i ∈ [k] and q ∈ Q′, sets Qbq,i ⊆ Q s.t. for any

run π of SI,t that starts at the entry of the instance Ixb and ends at its ith exit,

if the safety automaton A starts from q and reads the sequence of input symbols

along π then it must reach a state of Qbq,i.

The above assumption 2 is called a pre-post condition for Cxb . The correctness

of the pre-post condition for each such Cxb is checked in the simulation of A on the

unrolling of Cxb .

We give A as the composition of several tree automata: ALib checks that the input

tree is a library tree, and each AC
P,B checks on the unrolling of C that the pre-post

condition P holds provided that the box-summary B holds.

9.2.2 Component and library trees.

For a component C of Lib, the component tree of C is a tree where the subtree rooted

at the first child of the root is essentially the unrolling of C from its entry node and

the other children of the root are leaves s.t. each box of C is mapped to exactly one of

them.

Consider a library Lib = 〈{Ci}i∈[0,n],YLib〉. Let BLib =
⋃
i∈[0,n]BCi be the set of

all boxes and VLib =
⋃
i∈[0,n] VCi be the set of all vertices (i.e. nodes, calls and returns)

of the library components.
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Let d be the maximum over the number of exits, the number of boxes in each

component and the out-degree of the vertices of the library components.

Denote with Ω̂ the set {dummy ,C0 , ...,Cn} ∪ BLib ∪ VLib. A component tree of

some component Ci in Lib is an Ω̂-labeled d-tree such that its first subtree encodes the

unrolling of Ci and the children of its root, from the second through the (`+ 1)th, are

leaves corresponding respectively to each of the ` boxes of Ci. We make use of dummy

nodes to complete the d-tree.

Precisely, an Ω̂-labeled d-tree TCi is a component tree of Ci in Lib, if:

• the root of TCi is labeled with Ci ;

• the subtree T 1
Ci

that is rooted at the first child of the root corresponds to the

unrolling of the component Ci; the nodes of T 1
Ci

are labeled with the corresponding

vertices of the component Ci; thus, in particular, the root of T 1
Ci

is labeled with

eCi and the calls have as children the matching returns; a tree-node labeled with

an exit has no children; in T 1
Ci

all the nodes that do not correspond to a vertex in

the unrolling of Ci are labeled with dummy , meaning that they are not meaningful

in the encoding;

• for i ∈ [2, ` + 1], the jth child of the root is labeled with b ∈ BCi and for any

j, z ∈ [2, ` + 1] with j 6= z the labels of the jth child and the zth child must be

different;

• the tree-nodes labeled with b ∈ BCi have no children;

• the remaining tree-nodes are labeled with dummy .

As an example, in Fig. 9.1(a) we show a fragment of the component tree of the com-

ponent C1 from the library given in Fig. 7.1(a).

A library tree is a tree obtained by starting with the component tree of the main

component and then iteratively gluing at each leaf corresponding to a box b: any

component tree, if YLib(b) is not defined, and the component tree of YLib(b), otherwise.

One can formally define a library tree t as the ω-fold concatenation over languages

of component trees. (We refer the reader to (? ) for the main definitions and (40) for a

detailed definition of ω-fold concatenation.) For this, let TC be the component tree of

C for each component C of Lib and denote b = (b1, . . . , bn) where BLib = {b1, . . . , bn}
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(recall that with BLib we denote the union of the set of boxes over all the components

of Lib). For each i ∈ [n], we let Ti be the language {TC}, if YLib(bi) = C, and

{TC′ | C ′ is a component of Lib}, otherwise.

A library tree for Lib is thus any tree t ∈ T0 ·b (T1, . . . ,Tn)ωb where T0 = {TC0}.
In Fig. 9.1(b) we show the initial fragment of the library tree for the library from

Fig. 7.1(a). Note that the second and the third child of the root correspond respectively

to the boxes b1 and b2 of C0 and thus each of them is replaced by a copy of TC1 in the

sample library tree.

The construction of ALib can be obtained from the automata accepting the com-

ponent trees for Lib using the standard construction for the ω-fold concatenation (see

(40)). Thus, we get:

Proposition 36. There exists an effectively constructible Büchi tree automaton ALib

of size linear in the size of Lib, that accepts a tree if and only if it is a library tree of

Lib.

9.2.3 The construction of AC
P,B.

We first formalize the notions of pre-post condition and box summary that we have

informally introduced earlier in this section. Intuitively, box summaries are composed

of pre-post conditions and each postcondition summarizes the states of the safety au-

tomaton A that can be reached along a play of a strategy at the exits of a corresponding

component instance.

Formally, a pre-post condition P is a set of tuples (q, [Q1, . . . , Qk]) where q ∈
Q and Qi ⊆ Q for each i ∈ [k], and s.t. for any pair of tuples (q, [Q1, . . . , Qk]),

(q′, [Q′1, . . . , Q
′
k]) ∈ P: (1) q 6= q′, and (2) Qi = ∅ implies Q′i = ∅ for each i ∈ [k] (i.e.,

for each q there is at most a tuple with q as first component and each other compo-

nent is either the empty set for all the tuples or it is non-empty for all of them). For

such a pre-post condition P, each q is a precondition and each tuple [Q1, . . . , Qk] is a

postcondition. Note that according to the above intuition, part (2) above captures the

fact that all the postconditions of a pre-post condition must agree on the assumption

on whether the ith exit is reachable (i.e., Qi = ∅) or not (i.e., Qi 6= ∅).
A box summary of an instance of C is a tuple BC = 〈ŶC , {Pb}b∈BC 〉, where ŶC :

BC → {Ci}i∈[n] is a total map that is consistent with the library box-to-component

map YLib and for each box b ∈ BC , Pb is a pre-post condition.
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Fix a component C, a pre-post condition P = {(qi, [Qi1 , ..., Qik ])}i∈[h] and a box

summary B = 〈ŶC , {Pb}b∈BC 〉.

Denote TC the component tree of C and T 1
C the subtree rooted at the first child of

TC . Recall that T 1
C corresponds to the unrolling of C from the entry node. For a local

strategy f for C, a path x1 . . . xj of T 1
C conforms to f if the corresponding sequence of

C vertices v1 . . . vj is s.t. for i ∈ [j − 1] if vi is a node of pl0 then vi+1 = f(v1 . . . vi).

For each path π of T 1
C , a run of the safety automaton A on π according to box

summary B is a run where a state q is updated (1) according to a transition of A, from

a tree-node corresponding to a node or a return of C, and (2) by nondeterministically

selecting a state from Qi with (q, [Q1, . . . , Qk]) ∈ Pb (i.e., a state from the postcondition

for box b in B), from a tree-node corresponding to a call (1, b) to one corresponding to

a return (b, i). Note that, we do not consider the case of an empty postcondition for

a return. This is fine for our purposes since we need to simulate the safety automaton

A only on the returns (b, i) that can be effectively reached in a play (according to the

guessed box summary).

We construct AC
P,B s.t. it rejects any tree other than TC and accepts TC iff (recall

h is the number of tuples in the pre-post condition P):

(P1) There is a local strategy f for C s.t. for each i ∈ [h], j ∈ [k], and path π of T 1
C

from the root to the jth exit that conforms to f , each run of A on π according to

B that starts from qi ends at a state in Qij (i.e., the pre-post condition P holds).

For this, we define AC
P,B such that it summarizes for each precondition of P the

states of the safety automaton A that can be reached at a given node.

The states of AC
P,B are:

• an initial state qs,

• an accepting sink state qa,

• a rejecting sink state qr, a state qe ,

• a state qb for each box b of C,

• summary states of the form (R1, . . . , Rh) where Ri ⊆ Q for i ∈ [h].
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AC
P,B accepts on a finite path if it ends at qa upon reading its sequence of labels. No

condition is required in order to accept on infinite paths (the existence of a run suffices

in this case).

At the root of TC , from qs the automaton enters qe on the first child and for each

box b of C, qb on the child corresponding to b. From qb, it then accepts entering qa if

the node is labeled with b. From qe , it behaves as from ({q1}, . . . , {qh}) if the current

node corresponds to the entry of C (where q1, . . . , qh are the preconditions of P).

In each run of AC
P,B, for a state of the form (R1, . . . , Rh) at a tree-node x, we keep

the following invariant: for i ∈ [h], Ri is the set of all the states that end any run

of A starting from qi on the path from the root of T 1
C up to x (according to the box

summary B).

From a tree-node corresponding to a node or a return of C, the transitions of AC
P,B

update each Ri as in a standard subset construction provided that there is a transition

of A from all the states in
⋃
j∈[h]Rj (we recall that a run is unsafe if A halts), thus

maintaining the invariant. The updated state is entered on all the children from pl1

vertices, and on only one nondeterministically selected child from pl0 vertices (this

correspond to guessing a local strategy in C).

The update on tree-nodes corresponding to a call (1, b) of C is done according to

the pre-post condition Pb from the box summary B. In particular, denoting Pb =

{(q′i, [Q′i,1, . . . , Q′i,k])}i∈[h′], from (R1, . . . , Rh) we enter qa on the tree-node correspond-

ing to any return (b, j) that is not reachable according to Pb, i.e., each Q′i,j = ∅ (we

accept since the guessed local strategy excludes such paths and thus the condition

P does not need to be checked). On the reachable returns (b, j), we enter the state

(R′1, . . . , R
′
h) where R′i =

⋃
q′d∈Ri

Q′d,j for i ∈ [h], i.e., according to the above invariant,

for each position i in the tuple we collect the postconditions of the jth exit for each

precondition of Pb that applies.

At a tree-node corresponding to the ith exit of C, AC
P,B accepts by entering qa iff P

is fulfilled, i.e., AC
P,B is in a state (R1, . . . , Rh) s.t. Ri ⊆ Qi for i ∈ [h].

The state qr is entered in all the remaining cases.

By a simple counting, we get that the size of AC
P,B is linear in the number of boxes

and exponential in the number of states of the specification automaton A. Thus, we

get:
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Lemma 37. AC
P,B accepts TC iff property P1 holds. Moreover, the size of AC

P,B is linear

in the number of C boxes and exponential in the number of A states.

9.2.4 The construction of A.

We first construct an automaton A′. For this, we extend the alphabets such that AC
P,B

accepts the trees that are obtained from the component tree TC of C by labeling the leaf

corresponding to b, for each box b of C, with any tuple of the form (Ŷ (b),Pb,Bb) where

Ŷ is the total map of the box summary B and Bb is any box summary for component

Ŷ (b). Denote LCP,B the set of all trees accepted by any such automaton.

Let P0 = {(q0, [∅, . . . , ∅])} where q0 is the initial state of A and Lab be the set

of all labels (C,P,B) s.t. C is a component, P is a pre-post condition of C, and B

is a box summary of C. For each box summary B0 for C0 denote TB0 the language

LC0
P0,B0

·c̄ (〈LCP,B〉(C,P,B)∈Lab)ωc̄ where c̄ = 〈(C,P,B)〉(C,P,B)∈Lab , i.e., the infinite trees

obtained starting from a tree in LC0
P0,B0

and then for all (C,P,B) ∈ Lab iteratively

concatenating at each leaf labeled with (C,P,B) a tree from LCP,B until all such leaves

are replaced.

By standard constructions (see (40)), we construct the automaton A′ that accepts

the union of the languages TB for each box summary B of the main component.

The automaton A is then taken as the intersection of ALib and A′. Thus, from

Proposition 36, Lemma 37 and known results on tree automata (40), we get that the

size of A is exponential in the sizes of Lib and A. Recall that the emptiness of (Büchi)

nondeterministic tree automata can be checked in linear time and if the language is

not empty then it is possible to determine a finite witness of it (regular tree) (40).

The finiteness of a regular tree ensures both the finiteness of the local strategies and

of the number of instances. Moreover, it encodes an RSM and thus starting from the

automaton A, we can use standard algorithms for tree automata to synthesize an RSM

that fulfills the specification A. Note that from Proposition 36 and Lemma 37 we also

get that the encoded strategy for each instance is local and, consequently, the set of

synthesized strategies is modular.

Further, we can show an Exptime lower bound, proving the Exptime-hardness,

with a direct reduction. Such reduction is from the membership problem for alternating

linear-space Turing machines.
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Proof. An alternating Turing machine is M = (Σ, Q,Q∃, Q∀, δ, q0, qf ), where Σ is the

alphabet, Q is the set of states, (Q∃, Q∀) is a partition of Q, δ : Q×Σ× {D1, D2} −→
Q × Σ × {L,R} is the transition function, and q0 and qf are respectively the initial

and the final states. (We assume that for each pair (q, σ) ∈ Q × Σ, there are exactly

two transitions that we denote respectively as the D1-transition and the D2-transition.)

A d-transition of M is δ(q, σ, d) = (q′, σ′, L/R) meaning that if q is the current state

and the tape head is reading the symbol σ on cell i, M writes σ′ on cell i, enters

state q′ and moves the read head to the left/right on cell (i − 1)/(i + 1). Let n be

the number of cells used by M on an input word w. A configuration of M is a word

σ1 . . . σi−1(q, σi) . . . σn where σ1 . . . σn is the content of the tape cells and q is a state of

M . The initial configuration contains the word w and the initial state. An outcome of

M is a sequence of configurations, starting from the initial configuration, constructed

as a play in the game where the ∃-player picks the next transition when the play is in

a state of Q∃, and the ∀-player picks the next transition when the play is in a state

of Q∀. A computation of M is a strategy of the ∃-player, and an input word w is

accepted iff there exists a computation that reaches a configuration with state qf . A

polynomial-space alternating Turing machine M is an alternating Turing machine that

on an input word w uses a number of tape cells that is at most polynomial in |w|.
Let M = (Σ, Q,Q∃, Q∀, δ, q0, qf ) be polynomial-space alternating Turing machine,

and n be the number of cells used by M on an input word w. In the following, we

define a library of recursive component LibA and a safety automaton AA such that an

RSM S from LibA exists and each its possible run is winning according to AA if and

only if M accepts w. The library LibA has two components: C0 and C1. Let Σ′ be

Σ∪ (Q×Σ)∪{D1, D2}, C0 generates sequences from (Σ∗ · (Q×Σ) ·Σ∗ · {D1, D2})∗ ·Σ′ω

interspersed with a new symbol $. 1 C0 has a cyclic structure, that repeatedly executes

a call using a box b. The box-to-component map of LibA relates such box b to C1.

After the execution of each call, the component C0 enters a node labeled with a symbol

of Σ∪ (Q×Σ). Also, it ensures that symbols from {D1, D2} are selected according to a

move of pl0 (resp. pl1) if the last pair from Q×Σ which is generated on the current play

has a state from Q∃ (resp. Q∀). In C1, there is only one exit, each node is controlled

by pl1 and two new labels ok and obj are used. Intuitively pl1 simply chooses between

“let the play continue” (ok is generated) or “raise an objection” (obj is generated),

then the control is returned to C0 that generates the next symbol in the sequence. The

objection obj along with the specification automaton AA is used to check that on each

1This symbol is only needed for labeling entry and exit nodes, and has no particular meaning in

this encoding.
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run according to the local strategies for pl0, if we delete all the occurrences of ok , obj

and $ we obtain a sequence w ·w′ such that w ∈ (Σ∗ ·(Q×Σ) ·Σ∗ ·{D1, D2})∗, w′ ∈ Σ′ω,

and w encodes an outcome of a halting computation of M on w. In particular, AA is

a safety automaton that checks the following:

1. the first n symbols of w encode the starting configuration;

2. each subsequence w′′ of w such that d′ · w′′ · d′′, for d′, d′′ ∈ {D1, D2}, and w′′ ∈
Σ∗ · (Q× Σ) · Σ∗, contains exactly n symbols;

3. while generating a configuration c, if the content of cell i is generated right after

objection obj is raised, and on the current play this is the first time that obj

is raised, then the (i + 1)th cell of the next configuration is consistent with the

transition selected after generating c and the contents of cells i, (i+1) and (i+2)

of c. 1

Whenever AA finishes reading the configuration containing the final state qf , if the

above part 2 holds, it enters a state where it stays on each input (and thus accepts).

Also when obj is raised, if the above part 3 holds then AA accepts. If one of the above

checks fails AA halts, thus rejects all the the plays that are obtained as a continuation

of the word it has read. Automaton AA also checks whether the configuration sequence

ends at a halting configuration.

Due to the box-to-component map and the lack of boxes in C1, an RSM S from

LibA is forced to have only two instances, I0 that is an instance of C0, and I1 that is an

instance of C1. The choices done by pl1 can be done only in I1 and, consequently, they

are hidden to the other player. Since strategies of pl0 are local and the strategy for I0

is oblivious to the objection being raised in I1, pl0 needs to generate an accepting run

of A in order to win. Hence, each run of S is winning according to AA if and only if

M accepts its input, and the theorem holds.

Therefore, we get:

Theorem 38. The safety Lms problem is Exptime-complete.

9.3 Lms with deterministic VPA specification

As we said in Chapter 2, a visibly pushdown automaton (VPA) is a pushdown automaton

where the stack operations are determined by the input symbols: a call symbol causes

1Here, we skip the description of the limit cases concerning the cases when there are only two or

one cells left to the end of the current configuration.
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a push, a return symbol causes a pop and an internal symbol causes just a change of

the finite control (6).

In the VPA Lms problem the specification is giving as a deterministic VPA. The

labeling of the library components is synchronized with the usage of the stack of the

VPA: calls are labeled with call symbols, returns with return symbols and nodes with

internal symbols.

VPAs are strictly more expressive than finite state automata and they allow to ex-

press many additional specifications, as stack inspection properties, partial correctness

or local properties (see (3)). For example, with a VPA we could express the require-

ment that along any run of an RSM M , every γ must be followed by at least an α in

the same instance invocation where γ occurs. The RMS in Fig. 7.1(b) does not satisfy

this requirement. In fact, though in any run each occurrence of γ is always followed by

an occurrence of α, indeed each γ occurs during an invocation of either X1 or X2 while

α always occurs in the only invocation of X0 (when the invocations of X1 and X2 have

already returned).

We give a reduction from the VPA Lms problem to the safety Lms problem. The

idea is to achieve the synchronization on the stack symbols between automaton and

specification using the mechanics of the game, such that the specification can be con-

sidered as a finite state automaton. The top symbol of the stack is embedded in the

states of the specification automaton. Before every invocation of an instance, the ad-

versary pl1 has to declare the top symbol pushed by the specification automaton and

the specification automaton has to verify that the adversary is honest (otherwise, pl1

loses). After such declaration, the instance is invoked and, when its execution termi-

nates, the adversary repeats the declared top-of-the-stack symbol such that the finite

state automaton can update the simulated top symbol accordingly.

Consider a VPA Lms query with library Lib = 〈{Ci}i∈[0,n],YLib〉 and determin-

istic VPA Av. We define a new library game (L̂ib,WA), where L̂ib = 〈{Ci}i∈[0,n] ∪
{Cstack i}i∈[n],YL̂ib

〉 and WA is the language recognized by a finite state automaton A.

The structure of a component Cstack i with i ∈ [1, n] is given in Fig. 9.2 where with

g we denote the number of stack symbols. Recall that k denotes the number of exits

of any possible component C. Also, note that all the vertices are controlled by pl1 and

all the boxes are mapped to component Ci.
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Figure 9.2: The component Cstacki
for i ∈ [n]

The main purpose of the new components is to store the symbol that is pushed

onto the stack in the Av pushes. This is achieved by letting pl1 to guess a stack symbol

γj , then call the corresponding Lib component and on returning from exit x of such

component, restore γj before exiting from the exit corresponding to x (thus reporting

to the caller the exit of the callee).

We encode the stack of the specification in the library by enforcing each call to a

component Ci of Lib to occur through a call to the new component Cstack i , for i ∈ [n].

For this, we define the box-to-component map Y
L̂ib

, such that it preserves the original

box-to-component of the input library and partially guarantees the interleaving of calls

of components and calls of stack components. Namely, for i ∈ [n], if YLib maps a box

b to a component Ci, then Y
L̂ib

maps such box to the new component Cstack i . Then,

Y
L̂ib

maps all the boxes of Cstack i to Ci. In all the other case, i.e., if YLib is undefined

for a box b, also Y
L̂ib

is undefined for it.

The winning condition is given as a finite state automaton A given as the inter-

section of two finite state automata A1 and A2. We embed the top stack symbol of

the deterministic VPA in the states of A1. Moreover, the states of A1 simulate the

corresponding states of Av, and the winning condition is equivalent. On calls, A1 must

mimic a push transition t from the current state, by first storing in the control the

pushed symbol γ and the next control state according to t, then, if the next input is

γ, it continues, otherwise it enters an accepting sink state. Returns are handled simi-

larly (the popped symbol occurs after the return, and the fact that this corresponds to

the symbol actually pushed in the current run on the matching call is ensured by the

instance of a component Cstack i).
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The alternation of calls to instances of components Cstack i and calls to instances of

the components Ci is guaranteed by the box-to-component map except for the case of

the calls from unmapped boxes of instances of the input library. In fact, since these

are unmapped also in the library L̂ib, in an RSM from L̂ib, we could map them to

instances of both kinds of components Cstack i and Ci. Thus, in order to enforce the

alternation, and thus prevent them to be mapped directly to instances of Ci, we use

the second finite state automaton A2. This automaton cycles on a state qin until it

reads a node labeled with the call of an unmapped box. Then, the automaton enters a

state qwait and cycles on it, waiting for an entry. If the first encountered entry e is the

entry of a component Cstack i , then the automaton enters again qin, otherwise it enters

a rejecting sink state.

Note that pl0 has no moves in the Cstack i instances, and the moves of pl1 there are

not visible to her in the other instances. Thus, the local strategies for pl0 in the original

game are exactly the same in the new game.

Denote with g the number of stack symbols. Each of the new components Cstack i

has O(g k) size. Since there are only n additional components, the resulting library L̂ib

has O(|Lib| + n g k) size. Also, the constructed automaton A has O(g |Av|) size. By

Theorem 38, we thus have:

Theorem 39. The VPA Lms problem is Exptime-complete.

9.4 On component-based Lms problems

The construction given in Section 9.2 is based on the notion of library tree that es-

sentially encodes the components and the box-to-instance map of an RSM. The local

strategies are guessed on-the-fly by the tree automaton. To constrain the RSM to be

component-based we should guess a strategy for each component C and then use it

while visiting each component tree of C in the input library tree. This requires to

prove first boundedness of the local strategies if there is a component-based RSM that

satisfies the winning condition.

A simpler solution can be obtained by adapting the solution given in (4) for the

synthesis of modular strategies. This problem is a particular case of the single-instance

Lms problem where the box-to-component map is total, i.e., each box is pre-assigned.

The solution given in (4) is based on the notion of strategy tree that unrolls each
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component as a subtree of the root and encodes in the labels of this encoding a local

strategy. To adapt their automaton construction for the component-based Lms we just

need to guess the mapping for the boxes that are not mapped by the box-to-component

map of the library, every time a component subtree is visited. The following holds:

Theorem 40. The safety component-based Lms problem is Exptime-complete.

Cleary the reduction presented in Section 9.3 applies also to component-based and

we get the same complexity. Thus, we say:

Theorem 41. The VPA component-based Lms problem is Exptime-complete.
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10

Discussion and Conclusion

10.1 On visibly modular pushdown games

In Chapter 5 we have considered modular games with winning conditions expressed by

pushdown, visibly pushdown and temporal logic specifications. The winning strategies

that we compute are modular and thus the local strategy of an instance that is called

several times is oblivious of previous calls, i.e., it does not keep the memory of previous

invocations. It is known that non-oblivious modular games are undecidable (5).

We have proved that the modular game problem with respect to standard pushdown

specifications is undecidable. Then we have presented a number of results that give

a quite accurate picture of the computational complexity of the MVPG problem with

visibly pushdown winning conditions.

With some surprise, we have found that MVPG with temporal logic winning con-

ditions becomes immediately hard. In fact, the complexity for Ltl specifications is

2Exptime-complete both for MVPG and games on finite graphs. However, for the

fragment consisting of all the Boolean combinations of PATH-Ltl formulas, solving

the corresponding games on finite graphs is Pspace-complete while the MVPG prob-

lem is already 2Exptime-complete. As a consequence, the computational complexity

of many interesting fragments of Ltl, that have a better complexity than full Ltl on

finite game graphs, collapses at the top of the complexities (see (9, 10)). This also

differs with the scenario of the complexities of model-checking RSMs in Ltl fragments

(see (26)).

The tree automaton construction proposed in Section 5.4 can be easily adapted
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to handle visibly pushdown winning conditions to get a direct solution of the MVPG

problem. We only need to modify the transition rules to synchronize the calls and

returns of the RGG with the pushes and pops of the specification automaton, and

this would be possible since they share the same visibly alphabet. The change does not

affect the overall complexity, however it will slightly improve on the approach presented

in Section 5.3 that causes doubling the number of exits and gives a complexity with an

exponential dependency in the number of stack symbols.

We have also shown that the synthesis problem from a library of components with

respect to Ltl specification (28) can be reduced to an MVPG problem with a universal

Büchi automaton winning condition. Since the size of the resulting RGG is linear

in the size of the library and the universal Büchi automaton is exponential in the

size of the Ltl formula, we get an alternative proof of the 2Exptime-completeness of

this component-based synthesis problem. Such reduction points out the connections

between game with modular strategies and the synthesis from library and it inspired

us to the following works.

10.2 On modular synthesis

In Chapter 7 we have introduced a new model and related problems, that generalize

both the modular synthesis of recursive game graph and the synthesis from component

libraries.

In Chapter 8 we have considered the reachability winning condition and we have

shown that it is Exptime-complete and is fixed-parameter tractable when the number

of exits is fixed.

In Chapter 9 we have presented a decidable synthesis problem for an expressive

class of systems. Our decision algorithms for reachability specifications are fixed-point

labeling computations and can be easily turned into an automatic synthesis of RSMs.

All the other decision algorithms that we have presented are based on a reduction to

tree automata, and thus also can be turned into automatic synthesis using standard

results of this theory (see (40)).

Our model and its related problems are still strictly entangled with many interesting

area of research. It can easily be imagined that Lms problem has connections with the

synthesis in (29) and in particular it is a generalization of this setting. It is more difficult
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to see relations between the Lms problem and the setting of the program repair. The

last interesting remark is that even if in our setting we allow to duplicate components

change modular strategies and compose the final system with no restriction the final

system does not act as it could see the entire history of the system. We can also show

that there are Lms queries for which a global strategy exists while a modular one does

not. Moreover if we extend the class of solutions in the LMS problems by allowing to

resolve the internal nondeterminism of pl0 by a global strategy, we can show that the

resulting problem is still decidable (this does not contradict the previous undecidability

result since each pl1 move is now observable by pl0 in all the instances).

In the following subsections we discuss about these three relations.

10.2.1 Modular synthesis and synthesis from recursive-component li-

braries

As we said in Chapter 6, in the synthesis from recursive-component libraries (see Chap-

ter 6 or (29) for more details), the library of reusable components is modeled using a

set of transducers with call-return structures. The related synthesis problem asks to

find a composition of these elements such that the synthesized system fulfills a given

LTL specification. This problem is a specific restriction of our Lms problem. In fact,

an instance of the problem proposed in (29) can be considered as an instance of the

component-based Lms problem, where the library only has standard (non-game) com-

ponents, i.e. components without the internal game between two players. In this case,

a potential solution must determine only the correct external composition, as in (29).

However, note that the problem solved in (29) is a model checking problem, i.e. it asks

that all the possible runs of the resulting system must be winning. This means that

if we want to have the equivalence, the input library for the component-based Lms

library game must be formed by components with all pl1 vertices.

Rephrasing an Lms problem in terms of synthesis from library of recursive-components

determines a significant difference. Consider a node where the local strategy, according

to two different local histories, can choose two different moves. If we want to model

such behavior with the recursive (non-game) components presented in (29), we must

solve the choices of pl0. In this particular example, we should define two distinct re-

cursive components, one that models the first choice, and, an other that models the

second choice, splitting the considered node in two distinct nodes. This means that, if
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1 main(){ 11 void MergeSort1(int a[], 20 void MergeSort2(int a[],

2 const int n=4; int left, int right){ int left, int right){
3 bool done=false; 12 int center= 21 if (left<left)

4 int a[n]={7,4,5,1} (left+right)/2; 22 {
5 MergeSort1(a,0,n-1); 13 MergeSort1(a,left, 23 int center=

6 done=true; center); (left+right)/2;

7 } 14 MergeSort1(a,center+1, 24 MergeSort2(a,left,

right); center);

15 Merge(a,left, 25 MergeSort2(a,center+1,

center,right); right);

8 void Merge(int a[], 16 } 26 Merge(a,left,

int left,int center, center,right);

int right){ ... 27 }
9 //code with no errors 28 }
10 ...}

(a) (b)

Figure 10.1: A faulty program (a) and a pre-existing function (b).

we want to use a library of recursive-components to model a library of components, we

could need to generate a library with a potentially infinite number of transducers.

10.2.2 Modular synthesis and program repair

We can extend the results presented in Chapter 8 in a complete different direction.

In fact, The LMS problem also gives a general framework for program repair where

besides the intra-module repairs considered in the standard approach (see (22, 23)) one

can think of repairing a program by replacing a call to a module with a call to another

module (function call repairs).

Given a misbehaving program according to a correctness specification, the program

repair looks for the fault localization and a possible small modification of the program

such that the repaired program satisfies its specification. The repair problem is closely

related to the synthesis problem. In (23) the fault localization and correction of the

problem are achieved using infinite games: the system chooses which component is

incorrect, then, if for any input sequence, the system can select a behavior of this

component such that the specification is satisfied, the replacement behavior for the

component can be used to make the system correct.

Consider the program in Fig. 10.1(a) and the correctness specifications requiring

that statement (done=true) is reachable (termination) and condition (a[0]<=a[1])
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&& (a[1]<=a[2]) && (a[2]<=a[3]) holds at the end of the program execution (cor-

rect result). This program does not fulfill both specifications. In fact, it contains an

error that causes an infinite cycle of unreturned function calls: in function MergeSort1

there is no control over the values of left and right, and no return statement before

executing the recursive calls.

Note that this error cannot be repaired, because there is no assignment or condition

on which we can set a diagnosis. However, MergeSort1 is a sorting algorithm. Thus,

we could look within an available library for a different function implementing a sorting

algorithm, and possibly this function is either correct or could be repaired.

In our example, suppose now that we can use a library that contains the function

MergeSort2 given in Fig. 10.1(b). This function is faulty, but repairable, and the

location of the error and its correction can be found using the approach in (23): by

assuming that in main we call MergeSort2, the algorithm suggests to change the left-

hand side of the condition in Line 21 from left<left to left<right. Therefore, by

fixing this error and replacing the call in Line 5 with a call to MergeSort2, the repaired

program will now satisfy the given specification.

We can generalize this approach and apply it directly using the modular synthe-

sis. Given a program P and a correctness specification, we construct a library game.

Intuitively, we use the internal game to find and repair fixable faults and the external

compositional game to substitute the components that can not be repaired (function

call repair). As library we consider a given set of standard pre-existing components

and the components of the program P , both modeled as game components to find and

fix possible bugs as in the standard program repair approach. All the call assignments

of the boxes that invoke suspected faulty functions are modeled as unassigned boxes.

The correctness specification is unchanged. If there is a solution to such library game,

we can obtain a repaired version of the program P that fulfills the given specification.

10.2.3 Modular vs. global synthesis

Fix a library Lib = 〈{Ci}i∈[0,n],YLib〉 . A global RSM S = 〈{Gi}i∈[0,m],YS ,Sg〉 where:

• for i ∈ [m], Gi
iso≡ Cji holds,

• G0
iso≡ C0 holds,
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• the box-to-instance map YS :
⋃
i∈[0,m]BGi → {Gi}i∈[m] is a total function that is

consistent with YLib, i.e. for each i ∈ [0,m] and b ∈ BGi , denoting with b′ the box

of Cji that is isomorphic to b, it holds that if YLib(b
′) = Cjh then YS(b) = Gh

• Sg is a global strategy, i.e. Sg : V ∗S .P
0
S → CallsS ∪NS such that Sg(w.u) ∈ δS(u)

and Sg is computable by a pushdown automaton.

Given a library and an ω-regular specification, the global Lms (Lgs for short) problem

asks to construct a global RSM S such that S satisfies the given specification.

We introduce the Lgs problem to show that, even if the Lms problem allows to gen-

erate a solution with a potentially unbounded number of instances and, consequently,

new local strategies for each of them, the constructed system can not act as it knew

the complete history of the plays (as using a global strategy). To support this claim,

we present an example (Figure 10.2).

Consider the depicted library and a winning condition that asks to see alternatively

often the symbols α and β. It is easy to see that a solution S exists if we admit a

global strategy: S is composed of two instances, one from C0 and one from C1, and,

each time the play reaches e1, looking at the global memory of the play, the strategy

can see if x1 was the last visited exit, and then x2 is selected, or it is x2, and then x1

is selected. However, if only local strategies can be used, there is no solution for the

proposed problem: in fact, the box b can be assigned only one time to a fixed instance

of C1. In this case, each time the play reaches e1, the strategy is forced to move always

on x1 or always on x2, because at the entry point, the instance has no memory about

the previous moves/calls of the play.

C0

C1

b :C1

e1

α

β

Figure 10.2: A sample

library.

The Lgs problem is decidable and can be solved intro-

ducing some changes to the algorithm for the Lms prob-

lem presented in Section 9.2. We give only the idea for

this solution. The key intuition is that in an RSM synthe-

sized using the Lms restrictions, if in an activation of an

instance two different paths reach a same box, they must

call the same instance. The behavior of the called instance

is summarized using a pre-post condition. Using the global

strategy, even if in an activation of an instance two paths
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reach a same box, the invoked instance can implement dif-

ferent behaviors according to the different global histories. This means that an instance

can implement a set of behaviors that can be modeled by a set of single pre-post con-

ditions. Each single pre-post condition is independent and it can be verified using a

different strategy.

A single pre-post condition p̄ is a tuple of the form (q, [Q1, . . . , Qk]) where q ∈ Q,

for each i ∈ [k], Qi ⊆ Q.

A global pre-post condition is a set P̄ = {p̄i}i∈[z] of single pre-post conditions such

that for any i, j ∈ [z] with i 6= j then p̄i 6= p̄j . Due to the fact that the set Q is finite

and, fixed a precondition q, there are 2|Q|k distinct postconditions, this means that

z ≤ 2|Q|
2k.

A global box summary of an instance of C is a tuple B̄C = 〈ŶC , {P̄ŶC(b)}b∈BC 〉, where

ŶC is a a box mapping and {P̄ŶC(b)}b∈BC is a set of global pre-post conditions, one for

each box.

If we consider safety winning condition, we slightly change the structure of the

solution for the Lms problem to solve the Lgs problem, handling these different as-

sumptions. We introduce a set of automata of the form AC
P̄,B̄

that starts an automaton

AC
p̄,B̄

for each p̄ ∈ P̄. An automaton of the form AC
p̄,B̄

is a simplified form of AC
P,B. In

fact, the states are: an initial state qs, an accepting sink state qa, a rejecting sink state

qr, a state qe , a state qb for each box b of C, and states of the form (R) where R ⊆ Q.

If p̄ = (q, [Q1, . . . , Qk]) from qe , it behaves as from ({q}) if the current node corre-

sponds to the entry of C (remember that q is the precondition of p̄). On the update

on tree-nodes corresponding to a call (1, b), AC
p̄,B̄

must nondeterministically choose a

particular single pre-post condition p̄ in P̄ŶC(b) and, then, use it to execute the update

of its state (R). The choice of the single pre-post condition can change each time a

tree-nodes corresponding to a call is read. In the remaining cases, the automaton AC
p̄,B̄

acts as AC
P,B, with the simplification that it works only on the single set R.

In A′ we extend the alphabets such that AC
P̄,B̄

accepts each tree that differs from the

component tree TC of C only for the labeling of the leaves corresponding to the boxes

of C. The labels are of the form (C, P̄, B̄). The working of A′ is exactly the same, up

to a renaming from P/B to P̄/B̄.

Further, the global Lms problem can be reduced to a standard pushdown game

(PDG) with an exponential blow-up and vice-versa a PDG can be polynomially trans-
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lated to a global Lms with a total box-to-component map (see also (2, 5)). We can also

show that there are Lms queries for which a global strategy exists while a modular one

does not.

10.3 Future research

The setting that we have introduce still presents several future directions that could be

investigated.

Synthesis is an important area of research in formal verification, but in spite of a

rich set of results in the theory, there are few practical solutions that were implemented.

The reason of this imbalance relies in the high complexity of the algorithms that solve

problems related to the synthesis. Hierarchical system are a “special”case of recursive

system where the nesting of calls forces the stack-depth to be bounded. This repre-

sents a very interesting feature in formal verification because it limits the state-space

explosion when we compute solutions to problems that involves hierarchical systems

and in many cases the complexities of such solutions are not exponentially higher than

the solutions of the same problems for flat systems.

It could be interesting to investigate the effect of a hierarchical labeling such as in

(11) and (25) on the complexities of our proposed problem and could be meaningful

in the Lms setting. Positive results in this setting could also motivate efforts in the

development of a software that automatically and efficiently implements the modular

synthesis approaches.

For the same reason, we think that it deserves further investigations the analysis of

synthesis with simpler specification that could be meaningful in this setting and could

lead to lower complexities.

Program repair is an appealing area of interest and we think that in this setting

the notion of modular strategy and modular synthesis could have an interesting impact

on the development of new models and techniques. We have given an example on how

our formalism can be used to include in program repair a notion of function call repair

and we believe that this direction deserves further investigation and leave it for future

research.
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