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Chapter 1 
 

Introduction 
 

The knowledge of the propagation characteristics of the 
electromagnetic fields is fundamental in the analysis and planning of 
antennas and optical systems. The propagation prediction models 
based on ray-tracing are the most employed techniques in modern 
radio communication systems. The ray-based models allow one to 
calculate magnitude and phase of the received electromagnetic field 
and also the delay of each ray due to the propagation mechanisms. 
These last are often complex and can be generally attributed to the 
phenomena of reflection, transmission, diffraction and scattering. As 
well known, when the dimensions of the systems are large in terms of 
the electromagnetic wavelength, diffraction contributions due to 
material discontinuities can’t be negligible and must be accurately 
calculated. By using the numerical discretization methods such as the 
Finite-Difference Time-Domain (FDTD) method, the Finite Element 
Method (FEM), and the Method of Moments is possible to obtain 
reliable solutions for the scattering problems. Unfortunately, such 
techniques have the drawback of the increasing with frequency of the 
number of unknowns and so the computations become inefficient or 
intractable at the high frequencies. Furthermore, the physical 
understanding of the propagation mechanisms is difficult with this 
kind of approach. 
 The asymptotic methods result to be an efficient alternative for 
solving high frequency scattering problems. The Geometrical Theory 
of Diffraction (GTD) [1] has received great attention in the last 
decades because of its simplicity and strength. It is based on the ray-
oriented theory of the Geometrical Optics (GO) and describes the 
diffraction at the edge of a structure like a local phenomenon at the 
high frequencies basing on a generalization of the Fermat principle. 
The major GTD disadvantage is the presence of field singularities at 
the GO shadow boundaries. Therefore, a uniform version of GTD was 
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elaborated, the Uniform Theory of Diffraction (UTD) [2]. It uses the 
same GTD rays but furnishes uniform asymptotic solutions for the 
diffracted field that are valid also in the transition regions. As 
consequence of the local properties of high frequency electromagnetic 
fields, the diffraction phenomenon depends only on the geometric and 
electromagnetic features of the obstacle in proximity of the diffraction 
point. Accordingly, for many canonical structures (half-plane, wedge, 
etc.) the corresponding diffraction coefficients, associating the 
diffracted field to the incident field, are available in literature. It’s 
important to highlight that the rigorous, closed form diffraction 
coefficients have been derived only for particular canonical 
configurations and material. In [1], [2] the authors produced the exact 
diffractions coefficients for structures with perfectly conducting 
surfaces. In the next research activities the material discontinuities 
have been modelled by impedance or transmissive boundary 
conditions, and the solutions are generally expressed in terms of the 
Maliuzhinets’ function ([6], [14], [19]-[21]). This last is almost 
complicated and can be easily evaluated only for particular geometric 
configurations. Therefore, their application to the new practical 
engineering problems is limited. 
 This work has the purpose to produce approximate but reliable, 
closed form Uniform Asymptotic Physical Optics (UAPO) solutions 
for several canonical problems of diffraction concerning wedges made 
of dielectric materials. UAPO diffraction coefficients are quite 
accurate and easy to handle since expressed in terms of the GO 
response of the structure and the transition function of the UTD. 
Furthermore, their knowledge allows one to evaluate the 
corresponding diffraction coefficients in the time domain (TD) for the 
same geometries. The thesis is structured as follows. 
 In Chapter 2 are presented some of the most common high 
frequency techniques for analysing wave propagation in presence of 
obstacles. In particular GO, GTD, Physical Optics (PO) methods are 
discussed and the UAPO technique is introduced. 
 In Chapter 3 the state of research about diffraction by dielectric 
wedges is examined and a high-frequency solution for the problem of 
plane wave diffraction by an arbitrary-angled dielectric wedge is 
shown. Although such a problem has been already tackled in literature 
[26]-[32], the solution proposed here is fully formulated in the UTD 
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framework and then, it is a user-friendly worthwhile alternative for the 
considered diffraction problem. It is obtained by a decomposition of 
the considered scattering problem into two sub-problems, respectively 
external and internal to the wedge region. For each of them, is 
considered a PO approximation of the electric and magnetic 
equivalent surface currents in the radiation integral and a uniform 
asymptotic evaluation of this last is performed. The found UAPO 
solution has been implemented in a computer code, and the 
simulations show that it compensates the GO field discontinuities at 
the shadow boundaries. Moreover, its accuracy is weighed by the 
good agreement achieved with numerical results obtained via the 
commercial tool Comsol Multiphysics® based on FEM and via a 
FDTD computer code.  
 Chapter 4 is devoted to the study of the diffraction of plane waves 
by an arbitrary-angled dielectric wedge in the TD framework. 
Differently from the Frequency Domain (FD) framework, in the TD 
one no closed form solutions are available in literature for this kind of 
problem, except those concerning right- and obtuse-angled lossless 
wedges [58], [59]. The inverse Laplace transform is applied to the FD-
UAPO solutions for the diffraction coefficients found in Chapter 3 by 
taking advantage of their UTD-like nature. Then, the transient 
diffracted field is evaluated via a convolution integral. The results 
provided by simulations for these solutions have verified their 
goodness. The TD-UAPO formulation has the same advantages and 
limitations of the FD-UAPO ones, arising from the use of a PO 
approximation. Anyway, at the writing time of this thesis the TD-
UAPO formulation is the only one analytical solutions to TD 
scattering problems involving penetrable wedges. 
 Although unavoidably approximate, the FD-UAPO solutions are 
simple, efficient and quite accurate for solving several diffraction 
problems involving penetrable obstacles. Furthermore, the 
corresponding TD-UAPO solutions are reliable and the only available 
in closed form for solving the same problems in the TD framework. 
Accordingly, they can be surely useful from an engineering viewpoint 
when no rigorous and efficient solutions for the diffracted field are 
available.  
 



 

 

 



 

 

 

Chapter 2 
 

High frequency techniques  

The intent of this chapter is to discuss some of the most common high 
frequency techniques for analysing the propagation of electromagnetic 
waves in presence of obstacles. As well-known, when an object is 
inserted in the path of a propagating electromagnetic wave it modifies 
the field distribution in the surrounding space. Then, the total field at a 
given observation point is given by the superposition of the incident 
field and the scattered field. The evaluation of the scattered field can 
be performed via different analytical techniques. In particular, 
Geometrical Optics (GO), Geometrical Theory of Diffraction (GTD) 
and Physical Optics (PO) are illustrated in the following, because they 
constitute the bases for the UAPO method shown at last. 

 
2.1 Geometrical Theory of Diffraction 
 

When the dimensions of a radiating element or a scattering object are 
large in terms of wavelength, is possible to use the high frequency 
asymptotic techniques to solve in a quite simple way many problems 
that would otherwise be mathematically intractable. In the past years 
GTD, defined by Keller [1] and later developed by Kouyoumjian and 
Pathak [2], has received great attention. It is an extension of GO 
which is an approximate and well-known high frequency technique 
based on the theory of propagation of electromagnetic waves along 
rays. According to GO, only direct, reflected and refracted rays exist; 
as a consequence the field exhibits sharp transitions in correspondence 
of the shadow boundaries and it is null in the space regions not 
directly illuminated by the incident field. In the framework of GTD, a 
new type of rays, namely the diffracted rays, is introduced to 
overcome the GO inaccuracies. 
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 The GTD is based on the principle of locality and on a 
generalization of the Fermat’s principle. The first one states that, at 
the high frequencies, reflection, refraction and diffraction are local 
phenomena depending only on the geometric and electromagnetic 
properties of an object in proximity of the reflection, refraction and 
diffraction point, respectively. Therefore, many diffraction 
coefficients relating the diffracted field to the incident field have been 
determined for several canonical problems. For example, the simplest 
configurations are the wedges of infinite dimension, made of perfectly 
conducting material and illuminated by uniform plane waves. Its 
diffraction coefficients have been determined by rigorous solutions of 
Maxwell’s equations. As consequence, the basic method of GTD to 
tackle and solve a scattering problem is to decompose the original 
geometry in simpler geometric configurations, whose diffraction 
coefficients are known. In fact, is possible to obtain the final solution 
as the superposition of the contributions relevant to each canonical 
problem. 
 The generalization of the Fermat’s principle allows one the ray 
tracing and the determination of the diffraction points. As well-
known, it states that in a homogeneous medium a ray moves along the 
shortest path from the source to the observation point. Such a principle 
can be also generalized to diffracted rays. 
 The application of GTD to solve scattering problems is simple in 
principle but some problems may arise. At first, the number of rays to 
consider grows rapidly with the geometrical complexity of the 
problem. Moreover, even diffraction coefficients related to simple 
structures are still unknown. Finally, it is difficult to determinate the 
lower frequency limit beyond which the results obtained by GTD can 
be considered accurate. 
 According to GTD, when an electromagnetic wave at high 
frequency is incident on a truncated surface, it generates a reflected 
wave, an edge diffracted wave and a surface wave propagating along 
the structure. This last, can also be excited in the shadow region of a 
curved surface. Such a phenomenon is represented in Fig. 2.1, where a 
plane perpendicular to the edge at the diffraction point D is shown. A 
ray impinging on the edge at the point D produces edge diffracted rays 
(ed) and surface rays (sr). With reference to convex geometries, the 
surface ray produce rays diffracted from the surface at any point Q 
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along its path. As a result, ES is the borderline between the rays 
diffracted from the edge and the rays diffracted from the surface and it 
is tangent to the surface in D. Moreover, SB bounds the zone 
illuminated by incident field and RB that illuminated by reflected rays. 
The structure in Fig. 2.1 is non penetrable otherwise also refracted 
rays and diffracted rays in the inner region must be considered. When 
both the surfaces are illuminated by the incident field, there are no 
shadow boundaries but two reflection boundaries arise. Since the 
behaviour of the optic rays is different in the two regions delimited by 
a boundary (ES, SB, RB), a transition region wherein the field exhibits 
an abrupt variation is found near each boundary. 
 

 
Figure 2.1 Incident, reflected and diffracted rays. Shadow boundaries. 

 
 It is assumed in the following that the field sources and the 
observation point are far enough from both the surface and the 
boundary ES in order to neglect the contributions due to the surface 
rays. Consequently, the total electric field can be expressed as: 
 

 i r dE E E E    (2.1) 
 

wherein iE  denotes the incident electric field, namely the field free 

space which is null in the shadow region, rE  is the reflected field and 
dE  is the diffracted field. 
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2.2 Geometrical Optics 
 

2.2.1 General expression for the field 
 
In line with the GO, rays can be interpreted as flux lines of the power 
density and the variation of the field intensity along a ray can be 
determined by applying the principle of conservation of the power 
flux in a tube of rays. Let’s suppose that a point source emanates 
isotropically waves and denote with 0L  and 0L L  wavefronts at the 

time t and t t  , respectively (see Fig. 2.2). 
 

 
Figure 2.2 Primary and secondary wavefronts of a radiated wave. 
 
It is possible to consider the tube of rays between the cross-sectional 
areas 0d  at 0P  and d  at P  through which the power flux is 

constant. Therefore, the following identity holds: 
 
 0 0S d Sd   (2.2) 

 
wherein 
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2

2

E
S


  (2.3) 

 
is the power density and   the intrinsic impedance of the medium. 
Eq. (2.2) can be rewritten as:  
 

 
2 2

00E d E d   (2.4) 

 
or 
 

 0
0

d
E E

d




  (2.5) 

 
It can be useful to express 0d  and d in terms of the curvature radii 

of the wavefronts. To this end, let us consider the general case of an 
astigmatic tube of rays shown in Fig. 2.3.  
 

 
Figure 2.3 Astigmatic tube of rays. 

 
The surfaces 0d  and d have principal radii of curvature 1 , 2  

and 1 s  , 2 s  , respectively, where s denotes the distance along 
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the ray path from 0P  to P . Since both 0d  and d  subtend the same 

solid angle, it results:  
 

 
  

0

1 2 1 2

d d

s s

 
   


 

 (2.6) 

 
or equivalently 
 

 
  

1 2
0

1 2
E E

s s

 
 


 

 (2.7) 

 
It is evident in Fig. 2.3 that rays focus (cross) at different points. As a 
matter of fact, the tube of rays degenerates into a line and the field 
intensity approaches infinity when 1s    or 2s   . The locus of 

points where this occurs is called caustic. It must be stressed that 
fields have always a finite value and, as a consequence, neither GO or 
GTD can be used to predict the field strength at caustic points. 
 As the phase variation along a ray is given by ks , the electric 
field along a ray can be written as follows: 
 

 0 ( ) jksE E A s e  (2.8) 

 
wherein 0E  denotes the electric field at a reference point 0P  ( 0s  ), 

k is the propagation constant and ( )A s  is the spatial attenuation factor, 
also known as spreading factor. This last reduces to the following 
expressions in the special case of plane wave ( 1   , 2   ), 

cylindrical wave ( 1   , 2  ) and spherical wave ( 1  ,

2  ):  

 

  
 

1 plane-wave

( ) / cylindrical-wave

/ spherical-wave

A s s

s

 

 


 




 (2.9) 
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 It is worth to note that when a caustic is crossed, i s   changes 

the sign and this corresponds to a phase variation of π/2. Eq. (2.8) 
allows evaluating the field at a given point P  in terms of its value at a 
reference point 0P . It has been derived by using the principle of 

conservation of energy in a tube of rays. Although it is a valid high 
frequency approximation for light waves, it could be not accurate for 
electromagnetic waves of lower frequencies. 
 
2.2.2 Reflection from surfaces 
 
GO laws such as Snell’s law can be used to determine the field 
reflected from surfaces. Let us consider a uniform plane wave 
impinging on a planar surface S assumed perfectly conducting. This 

case is illustrated in Fig. 2.4, where ˆis  and ˆrs  denote the unit vectors 
in the incidence and reflection directions, respectively. The total field 
at the reflection point rQ  on S must meet the boundary condition: 

 

  ˆ 0i rn E E    (2.10) 

 
n̂  being the unit vector normal to S.  
 

 
Figure 2.4 Reflection from a planar surface. 

 

It is opportune to express the incident and reflected fields iE  and rE  
in terms of their components parallel and perpendicular to the 

incidence plane (that is the plane defined by ˆis  and n̂ ): 
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 ˆ ˆi i i i iE E e E e     (2.11) 

 ˆ ˆr r r r rE E e E e     (2.12) 

 
Equation (2.12) can be rewritten in a compact form:  
 

 
r i

r i

E E
R

E E 

   
   
   
   

 
 (2.13) 

 

where 
1 0

0 1
R

 
   

 is the dyadic reflection coefficient for a perfectly 

conducting surface. 
 With reference to Fig. 2.4, ê  is a unit vector normal to the 

incidence plane, and ˆie , ˆre  are unit vectors parallel to the incidence 

plane defined by:  
 

 ˆ ˆ ˆi i ie e s   (2.14) 

 ˆ ˆ ˆr re e s   (2.15) 

 
 In agreement with the principle of locality, the field reflected from 
a surface does not change when this last is no more planar, being 
always possible to consider the local plane tangent at rQ . Obviously, 

the spreading factor changes to account for the variation of the 
reflected wavefront. Therefore, it is possible to express the reflected 
field as follows: 
 

 ( ) ( ) ( )r i jks
rE s R E Q A s e   (2.16) 

 
wherein 
 

 
  

1 2

1 2

( )
r r

r r
s s

A s
 

  
  (2.17) 
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and s is the distance between the reflection point rQ  and the 

observation point P . In addition, 1
r  and 2

r  are the principal 

curvature radii of the reflected wavefront in rQ . They are related to 

the principal curvature radii of the incident wavefront 1
i . 2

i  and to 

those relevant to the surface S ( 1a  and 2a ). It can be shown that 1
r  

and 2
r  are given by [2]: 

 

 
1 1 2 1

1 1 1 1 1

2r i i f  

 
    

 
 (2.18) 

 
22 1 2

1 1 1 1 1

2r i i f  

 
    

 
 (2.19) 

 
wherein the parameters 1f  and 2f  in the particular but more 

interesting case of spherical wave incidence simplify to:  
 

 
2 2

2 2

1,2 1 2

1 1 sin sin

cos if a a

 


 
    

 
  

 
2 2

2 2

1 2 1 2

1 sin sin 4

cos i a a a a

 


 
    

 
 (2.20) 

 

 In eq. (2.20), i  is the incidence angle, 1  and 2  are the angles 

formed by ˆis  and the directions associated to the principal radii of 
curvature of S. In the far field approximation, eq. (2.16) reduces to:  
 

 1 2( ) ( )
jks

r i r r
r

e
E s R E Q

s
 


   (2.21) 

 
 It is immediate to verify that in the case of plane wave incidence it 
results:  
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 1 2 1 2
r r a a    (2.22) 

 
 Accordingly, GO fails predicting the reflected field when one or 
both the curvature radii of S are infinite. 

 
2.3 Diffracted Field 
 

In agreement with eq. (2.8), the diffracted field can be expressed as:  
 

 
  

( ) ( ')d d jks'
E s E O e

s ' s


 


 

 (2.23) 

 

( ')dE O  being the diffracted field at a reference point 'O . It is 

convenient to choose the diffraction point dQ  as reference point.  

 Let us consider the case of diffraction from an edge which is, 
obviously, a caustic for the diffracted rays. Accordingly, the limit 
 

 
0

lim ( )d

'
E O' '





 (2.24) 

 
exists and is not zero. Moreover, the diffracted field must be 
proportional to the incident field in dQ  and thus it is possible to write: 

 

 
0

lim ( ) ( )d
d i

'
E O' ' DE Q





  (2.25) 

 
wherein D  is usually referred to as dyadic diffraction coefficient. As 

a consequence, the field diffracted from the point dQ  on the edge is 

given by:  
 

 ( ) ( )d
d i jksE s DE Q e

s







 (2.26) 
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  being the distance between the caustic at the edge and the second 
caustic for the diffracted rays. In [2] it has been demonstrated that:  
 

 
 

2

ˆ ˆ ˆ1 1

sin

i
e

i
e

n s s

a ' 

 
   (2.27) 

 

where i
e  is the curvature radius of the incident wavefront in dQ , 

taken in the plane containing the incident ray and the unit vector ê  
tangent to the edge in dQ  (see Fig. 2.5). Moreover, a is the curvature 

radius of the edge and ˆen  is the unit vector normal to the edge 

directed away from the center of curvature. When the distance   is 
positive, the diffracted ray encounters no caustic along its path. 
Indeed, such a distance is negative only when the second caustic is 
located on the same side of the observation point. It is opportune to 
remark that the diffracted field expressed by eq. (2.26) is undefined at 
the caustic points and crossing such points implies a phase variation of 
π/2. 
 

 
Figure 2.5 Diffraction from a curved edge. 

 
 In the case of vertex diffraction, diffracted rays are originated 
from a point caustic. Accordingly, it is possible to write: 
 

 
0

lim ( ) ( )d i
v

'
E O' ' DE Q





  (2.28) 
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and the field diffracted from the vertex can be evaluated as:  
 

 ( ) ( )
jks

d i
v

e
E s DE Q

s


  (2.29) 

 
2.3.1 Diffraction by perfectly conducting surfaces 
 
The canonical problem of plane wave diffraction by a perfectly 
conducting edge with planar surfaces has been treated by many 
authors but the most popular results have been presented by Keller [1]. 
The related diffraction coefficients are non-uniform, namely not valid 
at the GO shadow boundaries. This limitation has been overcome 
thanks to the solution provided by Kouyoumjian [2], [3]. 
 Let us consider a radiating source at a point S in presence of a 
perfectly conducting wedge and observe the field at a point P. In 
accordance with the Fermat’s principle, the diffraction points can be 
determined by minimizing the distance dSQ P . This leads to the law 

of diffraction:  
 

 ˆ ˆ ˆ ˆis e s e    (2.30) 
 

where ê  is the unit vector directed along the edge, ˆis  and ŝ  are the 
unit vectors in the incidence and diffraction directions, respectively. 
As consequence of eq. (2.30), when a ray impinges on the edge at 
oblique incidence forming an angle '  with respect to ê , the 
diffracted rays lie on a conical surface whose semi-aperture angle is 
still ' . The incident ray direction is usually described by a couple of 

angles  ', '   and the position of the diffracted ray on the cone is 

fixed by the angle   (Fig. 2.6). 
 As suggested by Kouyoumjian and Pathak, it is convenient to 
define the incidence plane (that containing the incident ray and the 
unit vector ê ) and the diffraction plane (that containing the diffracted 
ray and the unit vector ê ). A reference system in the incidence plane 

is introduced and fixed by the unit vectors ˆ ' , ˆ ' , ˆis . In a similar 

way, a reference system fixed by ̂ , ̂ , ŝ  is introduced for the 
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diffracted ray. The unit vectors ˆ '  and ̂  are perpendicular to the 

incidence and diffraction planes, respectively. The unit vectors ˆ '  and 

̂  are parallel to the incidence and diffraction planes and defined by:  
 

 ˆ ˆˆ' 'is   (2.31) 

 ˆŝ    (2.32) 
 

 

 
Figure 2.6 Reflection and diffraction by a wedge. 

 
 When adopting these ray-fixed reference systems for describing 
the incident and diffracted fields, it results:  
 

 
0

0 ( )

d d
'

d d
'

s jks

h

E ED
e

D s sE E

 

 





                 

 (2.33) 

 
wherein ,s hD  are the scalar diffraction coefficients for the Dirichlet 

(soft) and Neumann (hard) boundary conditions, respectively. 
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 The uniform diffraction coefficients for a perfectly conducting 
wedge [2] are reported in the following for reader’s convenience:  
 

 
/4

, ( , ', ')
2 2 sin '

j

s h
e

D
n k

  


 
  


  

 
   '

cot '
2

F kLa
n

 
              

  

 
   '

cot '
2

F kLa
n

 
          

   

 
   '

cot '
2

F kLa
n

 
         

    

 
   '

cot '
2

F kLa
n

 
            

  (2.34) 

 
where:  
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is the UTD transition function, a  and a  are defined by:  
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N  being the nearest integers satisfying the following relation:  
 

 2n N x      (2.37) 
 

 The distance parameter L in (2.34) can be determined by imposing 
the continuity of the total field at the shadow boundaries [4], thus 
obtaining:  
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where 1
i , 2

i  are the principal radii of curvature of the incident 

wavefront and i
e  is the curvature radius of the incident wavefront 

taken in the incidence plane. 
 Diffraction coefficients for the half-plane can be easily found by 
setting n = 2 in eq. (2.34).  
 It can be easily verified that in correspondence of a shadow 
boundary one of the cotangent functions becomes singular whereas its 
product with the corresponding transition function is finite. Grazing 
incidence must be considered separately. In this case, 0sD   and the 

expression of hD  in eq. (2.34) must be multiplied by the factor 1/2. 

 When the wedge surfaces are curved (see Fig. 2.1), it is possible to 
consider in accordance with the principle of locality a wedge with 
planar surfaces tangent to the faces of the curved wedge. Moreover, 
the diffraction coefficients (2.34) can be still applied but the parameter 
L must be properly modified to account for the curvature of the 
reflected wavefront [2].  
 
2.3.2 Slope diffraction 
 
In addition to the edge diffraction contribution (2.33), it is often 
necessary to consider a higher order term which is proportional to the 
normal derivative of the incident field at dQ . This contribution may 

be not negligible when the amplitude of the incident field at dQ  is 

small. Such type of diffraction is usually referred to as slope 
diffraction. By similar arguments, it is possible to consider high order 
slope diffraction terms. When only the first slope diffraction term is 
considered, the total diffracted field reads as:  
 

    ,1
( )

'
s h i d jks

d i d
D U Q

U U Q A s e
jk n

  
       

 (2.39) 
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where dU  denotes a component of the diffracted field, , / 's hD    are 

the slope diffraction coefficients and /iU n   is the normal derivative 

of the incident field in dQ . Compact expressions for the slope 

diffraction coefficients relevant to a perfectly conducting wedge can 
be found in [3]. 
 
2.3.3 Diffraction by finite conductivity surfaces: UTD 

heuristic solutions 
 
In the past years, the UTD has been successfully applied to solve a 
large variety of electromagnetic wave interaction problems with 
perfectly conducting surfaces, such as the analysis of radiation 
characteristics of simple and complex antenna systems [5]. However, 
its extension to finite conductivity structures is in general a non-trivial 
problem and still subject of continuing research. This interest is 
justified since in many application fields, such as radio propagation, 
Radar Cross Section (RCS) prediction, analysis of novel antenna 
systems, diffraction from not perfectly conducting objects is very 
frequent and the use of diffraction coefficients (2.34) could lead to 
inaccurate results. As a consequence, it is essential to have reliable 
solutions for the field diffracted by not perfectly conducting structures 
in order to make accurate field predictions. It is opportune to note that 
rigorous and exact diffraction coefficients have been developed for 
different surface impedance structures with the Maliuzhinets theory 
[6]. These are rather cumbersome and, due to their complexity, often 
not easy to use in routine applications such as propagation prediction 
tools. Thus, the difficulty arising in using such solutions forces 
simplifications to be made and to use approximate techniques. 
 Heuristic solutions have been proposed in the literature with 
reference to various scattering problems. They are not based on a 
rigorous solution of Maxwell’s equations but on a suitable 
modification to the diffraction coefficients (2.34) with the aim to 
compensate the geometrical optics field discontinuities at the shadow 
boundaries. Moreover, they are easy to handle and computationally 
simple. The problem of plane wave scattering by a thin lossless 
dielectric slab has been treated in both the normal and oblique 
incidence case [7]. The derived diffraction coefficients are an 
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extension of diffraction coefficients for the perfectly conducting half-
plane. Following the same idea in [7], two-dimensional diffraction 
coefficients have been proposed by Luebbers for the finite 
conductivity wedge [8] and are currently used in many ray tracing 
tools. Based on this solution, UTD slope diffraction coefficients have 
been later developed by the same author [9]. As discussed by 
Luebbers, the accurate use of these diffraction coefficients is restricted 
to applications involving wedges with large interior angles, and to the 
observation in proximity of shadow boundaries. Alternative heuristic 
UTD diffraction coefficients for not perfectly conducting wedges have 
been proposed in the recent years to improve the Luebbers’ solution 
accuracy within a wider angular region [10]-[12]. 

 
2.4 Physical Optics 
 

The field scattered in the far zone by a perfectly conducting object 
illuminated by an electromagnetic wave is given by:  
 

    0 0
ˆ ˆ ,S

s

S

E jk I RR J G r r' dS    (2.40) 

 
where sJ  denotes the current distribution induced on the surface S of 

the object, 0k  and 0  are the wavenumber and the impedance of free 

space,  0 '( , ') 4 'jk r rG r r e r r    is the Green function and r , 

'r  denote the position vectors at the observation and integration 

points respectively, R̂  is the unit vector from the radiating element at 
'r  to the observation point and I  is the (3×3) identity matrix. 

 Physical Optics approximates the current distribution sJ  by using 

geometrical optics and provides accurate results only when the object 
is far enough from the sources so that the incident field can be 
described in terms of wavefronts and rays. According to this 
approximation, the surface current is null in the shadow region. 
Whereas, at any point P on the object surface in the illuminated region 
it can be determined by assuming that the incident electric field is 
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reflected in the same way as it would be from the infinite plane 
tangent to the surface at P [13]. 
 When the surface S is perfectly conducting, the surface current 
distribution can be evaluated according to:  
 

  ˆ ˆ ˆ2S
i r iJ n H n H H n H        (2.41) 

 
where n̂  is the unit vector normal to the surface at the incidence point 

and iH  is the incident magnetic field. As a matter of fact, when a 
plane wave impinges on a perfectly conducting surface, it results for 
both polarizations (see Figs. 2.7(a) and 2.7(b)):  
 

 ˆ ˆi rn H n H    (2.42) 
 

 
      (a)      (b) 

Figure 2.7 Reflection from a perfectly conducting surface. Parallel 
polarization (a). Perpendicular polarization (b). 

 
 PO can be also employed to evaluate the field scattered from finite 
conductivity objects. In such a case, both electric sJ  and magnetic 

msJ  surface currents must be taken into account in the radiation 

integral and so eq. (2.40) becomes:  
 

     0 0
ˆ ˆ ˆ ,s

s ms
S

E jk I RR J J R G r r' dS        (2.43) 

 
 The accuracy of the results attainable with the PO method depends 
on the degree of approximation for the surface currents and on the 
observation direction. As a matter of fact, when the contributions due 



 

 

2.5 Uniform Asymptotic Physical Optics approach 23 

to the parts of the object not directly illuminated by the incident field 
are not negligible, some limitations in the field prediction are 
expected.  

 
2.5 Uniform Asymptotic Physical Optics 

approach 
 
In the recent years, Uniform Asymptotic Physical Optics solutions 
have been developed to solve various diffraction problems [14]-[18]. 
The basic idea to obtain such solutions is the use of a PO 
approximation of the equivalent surface currents induced by an 
incident field on a structure. As well-known, the scattered field is 
expressed by means of the radiation integral (eqns. (2.40) and (2.43)) 
and it includes both the geometrical optics and the diffraction 
contributions. The application of the steepest descent method and a 
uniform asymptotic evaluation of the radiation integral allow deriving 
the diffraction coefficients in closed form. These last are expressed in 
terms of the UTD transition function and perfectly compensate the GO 
field discontinuities. It is opportune to point out that these solutions 
are inevitably approximate since the surface currents in the radiation 
integral are not exact but based on a PO approximation. In spite of this 
they are quite accurate when compared with more rigorous solutions 
and are simple, easy to handle and to implement. For these reason, 
they are potentially useful for practical applications when no exact 
analytical solutions are available or when these last cannot be 
evaluated in an efficient way. Although heuristic and efficient 
solutions have been proposed in the literature (see Subsec. 2.3.3) to 
solve diffraction problems having no exact solutions, they are not 
based on a rigorous analytical procedure and, therefore, should be 
used with considerable attention.  
 The key points showing how to construct a UAPO solution are 
reviewed in the following with reference to the problem of plane wave 
diffraction by a penetrable half-plane surrounded by free-space [18]. 
 Let us consider the oblique incidence of an arbitrarily polarized 
plane wave over a penetrable half-plane surrounded by free-space (see 
Fig. 2.8). The incidence direction is fixed by the angles '  and ' . In 
particular, '  is a measure of the incidence direction skewness with 
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respect to the edge ( ' / 2    corresponds to the normal incidence). 
The observation direction is specified by the angles   and  . It is 

convenient to introduce the ray-fixed coordinate systems  ˆ ˆ, 'ˆ ',s    

and  ˆ,, ˆ ˆs    for the source and the observation points, respectively 

(see Fig. 2.8) and to assume the observation point P on the Keller’s 
diffraction cone, i.e. '  .  
 

 

 
 

Figure 2.8 Diffraction by the half-plane edge. 
 
At any observation point P, the total electric field E  is given by the 

superposition of the incident field iE  and the scattered field sE . By 
applying the equivalence theorem, the surface currents induced by an 
incident plane wave on the surface S of the half-plane can be 

interpreted as sources of sE  and therefore, in the far-field 
approximation, the scattered field can be expressed by means of the 
following radiation integral 
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in which the observation and source points are denoted by 
ˆ ˆ ˆ ˆr x x y y z z z z      and  ˆ ˆ ˆ' ' ' ' 'r x x z z z z    . 

 By using a PO approximation for the equivalent electric and 
magnetic surface currents on S and expressing the fields in terms of 
their parallel and perpendicular components, it results:  

 

 0 ( 'sin 'cos ' 'cos ')*
0 0

jk x zPO
s sJ J e       (2.45) 

 0 ( 'sin 'cos ' 'cos ')* jk x zPO
ms msJ J e     (2.46) 

 
and the three-dimensional Green function can be written as: 
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To evaluate the edge diffraction confined to the Keller cone for which 

'  , it is possible to approximate R̂  by the unit vector ŝ  in the 
diffraction direction [19] 
 
 ˆ ˆ ˆ ˆ ˆsin 'cos sin 'sin cos 'R s x y z         (2.48) 
 
Accordingly, it results:  
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The expressions of the PO surface currents in terms of the incident 
electric field are here obtained by assuming such currents as 
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equivalent sources originated by the discontinuities of the tangential 
GO field components across the layer, i.e.,  
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 (2.51) 

 
As well-known, it is convenient to work in the standard plane of 
incidence and to consider the GO field components parallel ( ) and 
perpendicular ( ) to it. Therefore, it results: 
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     ˆˆcos ii r t i r t
msJ E E E e E E E t
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wherein iE  and iE 	are the incident electric field components (at the 

origin) parallel and perpendicular to the ordinary plane of incidence, 
i  is the incidence angle in such a plane,  ˆ ˆ ˆ ˆ ˆ' 'e s y s y     is the 

unit vector normal to the ordinary plane of incidence, ˆ's  being the unit 
vector of the incidence direction, and ˆ ˆ ˆt y e  . The reflected and 

transmitted field components can be expressed in terms of the incident 
field components by means of the reflection matrix R  and 

transmission matrix T , and their expressions can be found in [18]. 

 As well-known, in the high-frequency approximation, the PO 
integral (2.44) extended to 0S  can be reduced asymptotically to a sum 

of ray field contributions from (isolated) interior stationary phase 
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points on 0S  and an edge diffracted field contribution. To this end, it 

is necessary to perform the evaluation of the following integral: 
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  (2.54) 
 
As reported in [19], by making the substitution ' ' sinhz z       

and using one of the integral representations of the zeroth order 

Hankel function of the second kind (2)
0H  it results: 

 

 
 

 

2 2
0

0

' '
' cos '

2 2
'

' '

jk z z
jk z e

e dz
z z

 


 

   





  

  

  0 (2)cos '
00 ' sin 'jk zj e H k        (2.55) 

 
The involved Hankel function can be now written with the useful 
integral representation  
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  (2.56) 
 
where C is the integration path in the complex  -plane (see Fig. 2.9). 
The angle   is between the illuminated face and the vector '  , 

and the sign   (+) applies if 0y   ( 0y  ). If   , according to 
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the geometry shown in Fig. 2.10, ' sin sin       and 

' cos cos 'x       , so obtaining 
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  (2.57) 
 
 

 

 
Figure 2.9 Integration path in the complex α-plane. 

 
and then: 
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By applying the Sommerfeld-Maliuzhinets inversion formula, it 
results: 
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Figure 2.10 Integration path in the complex  -plane. 

 
so that 
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where the sign   (+) applies in the range 0     ( 2    ). Such 
an integral can be evaluated by using the Steepest Descent Method 
[19]. To this end, the integration path C is closed with the Steepest 
Descent Path (SDP) passing through the pertinent saddle point s  as 

shown in Fig. 2.11. According to the Cauchy residue theorem, the 
contribution related to the integration along C (distorted for the 
presence of singularities in the integrand) is equivalent to the sum of 

the integral along the SDP and the residue contributions  Re i ps   

associated with all those poles that are inside the closed path C+SDP, 
i.e., 
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in which  
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0k    and    sin ' cosf j      . Note that   is typically 

large, 'p    and s   ( 2s    ) if 0     ( 2   

). Moreover, by putting ' "j     and imposing that 

   Im Im sf f        and    Re Re sf f       , the 

considered SDP is described by: 
 

  1 1
' sgn( '')cos ( '')

cosh ''s s gd    


     (2.64) 

 
where  "gd   is the Gudermann function. By using now the change 

of variable     2 0sf f      , eq. (2.62) can be written as 
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2

I G e d 






     (2.65) 

 
wherein 
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G g e
j d
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


 (2.66) 

 

 
Figure 2.11 SDP in the complex  -plane. 

 
When p  is approaching s , the function  G   cannot be expanded 

in a Taylor series. To overcome this drawback it is convenient to 
regularise the integrand in (2.65) using the Multiplicative Method. It 
requires introducing the regularised function  
 

      p pG G      (2.67) 

 
with 
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 2 '
2 sin 'cos

2
j j

       
 

 (2.68) 

 
and   is a measure of the distance between p  and s . Accordingly, 

 

    
2

p
p

e
I G d


 

 

 
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  
  (2.69) 

 
Since  pG   is analytic near 0  , it can be expanded in a Taylor 

series. By retaining only the first term (i.e., the 1 2 -order term) 
since 1  , it results: 
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in which 
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and 
 

  
2

2 j j
tF j e e d 



  


   (2.72) 

 
is the UTD transition function [2]. By substituting (2.68) and (2.71) in 
(2.70), the explicit form of the asymptotic evaluation of  I   is: 
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 (2.73) 

 
where the identities sin 's   and cos 'z s   are used on the 
diffraction cone. The above analytic result contributes to the UAPO 
diffracted field to be added to the GO field and is referred to as a 
uniform asymptotic solution because  I   is well-behaved when 

p s  . In the GTD framework, the matrix formulation for the 

scattered field can be written as 
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 (2.74) 

 

As a consequence the UAPO edge diffraction contribution dE is: 
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 (2.75) 

 
where the UAPO solution for the 2 2  diffraction matrix 
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 (2.76) 

 
where the sign  ( ) applies if 0     ( 2    ). The explicit 

expression of the coefficients ijM  (i, j = 1, 2) can be found in [18]. 

Accordingly, the UAPO solutions have the same ease of handling of 
those derived in the UTD framework and, in addition, they have the 
inherent advantage of providing the diffracted field from the 
knowledge of the GO response of the structure. In other words, it is 
sufficient to make explicit the reflection and transmission coefficients 
related to the considered structure for obtaining the UAPO diffraction 
coefficients. 
 
 



 

 



 

 

 

Chapter 3 
 

High frequency diffraction by an 
arbitrary-angled dielectric wedge 
 

The problem of diffraction by a dielectric wedge has great relevance 
for practical applications. The accurate path loss prediction in radio 
wave propagation environments requires a correct characterization of 
diffraction contributions arising from the presence of edges and 
corners. However, the research activity focused mainly on 
impenetrable structures at high frequency and rigorous solutions have 
been reported in the literature for perfectly conducting wedges or 
impedance wedges. Starting from these solutions, there have been 
some attempts to extend their validity to the penetrable structures. 
This methods result to be complicated and manageable just for simple 
configurations, so it has been necessary to build up new approaches 
for this kind of problems. The lack of an exact and, at the same time, 
computationally efficient solution which can be employed in ray 
tracing tools forces simplifications to be made and to apply 
approximate solutions. 
 The aim of this chapter is to provide a UAPO solution for the field 
diffracted by the edge of a lossless arbitrary-angled dielectric wedge 
in the case of normal incidence. The solution is derived by means of 
the decomposition of the considered scattering problem into two sub-
problems relevant to external and internal regions of the wedge. For 
each of them, proper equivalent currents, which can be interpreted as 
sources for the scattered fields, are determined by taking into account 
the penetrable nature of the structure. Then, uniform asymptotic 
evaluations of the radiation integrals allow deriving closed form 
expressions for the diffracted field. As demonstrated by numerical 
examples, the here developed UAPO solution compensates the GO 
field discontinuities in the exterior and interior regions. Furthermore, 
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its accuracy is confirmed by the good agreement attained with results 
provided by numerical methods. 

 
3.1 Diffraction by dielectric wedges: state of the 

art 
 
The problem of plane wave diffraction by wedges has received great 
attention due to the importance of its solutions in radio propagation 
planning, analysis and design of radiating structures and waveguide 
theory. The first studies have concerned wedges with perfectly 
conducting surfaces [2], [6] or impedances faces [14], [20], [21]. 
Heuristic solutions have also been proposed in [8], [9] for solving 
diffraction problems in the case of dielectric structures. Although 
efficient, they are not based on a rigorous analytical procedure and, 
therefore, should be used with considerable attention. 
 Rawlins [22] presented an approximate solution for the field 
produced when an electromagnetic plane wave is diffracted by an 
arbitrary-angled dielectric wedge, whose refractive index is near unity. 
It was obtained from an application of the Kontorovich-Lebedev 
transform and a formal Neumann-type expansion. The results were in 
agreement with those derived by the same author with reference to a 
right-angled wedge [23]. The diffracted field of an E-polarized plane 
wave by a dielectric wedge was formulated in terms of integral 
equations by Bernsten in [24]. These were transformed into Fredholm 
integral equations and solved by iterative methods for limited values 
of the dielectric constant. Joo et al. [25] proposed an asymptotic 
solution for the field diffracted by a right-angled dielectric wedge 
based on a correction of PO approximation to the edge diffraction. 
The correction in the far-field zone was calculated by solving a dual 
series equation agreeable to simple numerical evaluation. The 
extension of the approach to arbitrary-angled wedges was addressed in 
two companion papers [26] and [27]. Burge et al. [28], starting from a 
PO version of the GTD, provided an edge coefficient for the external 
and internal diffraction by an arbitrary-angled dielectric wedges. 
 Rouviere et al. in [29] improved the Luebbers’ heuristic solution 
[8] in the UTD framework [2] by adding two new terms that 
compensate the discontinuity created by the field transmitted through 
the structure. Another heuristic solution for the diffraction coefficient 
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of a penetrable wedge has been proposed in [30] by Bernardi et al.. It 
is obtained by a modification of the exact UTD diffraction coefficient 
related to the metallic wedge. 
 The FDTD method was applied in [31] and [32], providing 
numerical results for the diffraction coefficient of right-angled wedges 
made of perfect electrical conductor (PEC), lossless dielectric and 
lossy dielectric material.  
 Another interesting attempt to solve the problem of the diffraction 
by a right-angled dielectric wedge was proposed by Radlow [33]. He 
used multidimensional Wiener-Hopf equations to model the problem, 
but the factorization of these equations needs function-theoretic 
techniques employing two complex variables that are cumbersome to 
handle. Bates [34] introduced iterative formulas to obtain a set of 
basic wave-functions useful to represent the sources situated on the 
plane of symmetry of an arbitrary-angled dielectric wedge. Seo and 
Ra [35] proposed a remarkable methodology to evaluate the scattering 
from a lossy dielectric wedge: reflected and refracted GO fields are 
obtained by inhomogeneous plane wave tracing in the lossy medium, 
while PO approximation in the edge diffracted fields are accurately 
corrected by adding the multipole line sources at the edge of the 
wedge to satisfy the extinction theorem. The unknown expansion 
coefficients used at the tip of the wedge to make disappearing the 
extinction integral are evaluated numerically. Salem et al. [36] 
extended Rawlins’ approach [22] to a more general form of excitation 
(line source) of a dielectric wedge. They expressed the Kontorovich-
Lebedev transform functions as a Neumann series and represented the 
scattered field as a Bessel function series, so extending solutions to the 
case of real valued wavenumbers and arbitrarily positioned source and 
observer. Daniele and Lombardi [37] analyzed the problem of 
diffraction of an incident plane wave by an isotropic penetrable wedge 
in the general case of skew incidence. They used generalized Wiener-
Hopf equations, and the solution is obtained using analytical and 
numerical-analytical approaches that reduce the Wiener-Hopf 
factorization to Fredholm integral equations of second kind. Vasilev et 
al. [38], [39] developed a numerical approach based on the method of 
integral equations to solve the problem. They represented the 
unknown surface currents on the dielectric wedge as a sum of uniform 
and non-uniform components (using the Ufimtsev’s method), making 
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possible the derivation of the numerical solution. Budaev [40] 
developed a hybrid methodology to solve the problem of diffraction 
by a dielectric wedge in an exact sense, which combines analytical 
and numerical techniques. 
 UAPO solutions were proposed in explicit closed form in [41] and 
[42] for evaluating the field diffracted by right- and obtuse-angled 
lossless dielectric wedges in the inner and outer regions. The UAPO-
based approach has been also applied to acute-angled wedges in [43] 
considering a specific range of incidence directions for both cases of 
E- and H-polarized plane wave. Then, in [44] the analysis has been 
extended to all possible cases of incidence direction providing 
generalized UAPO solutions which are valid for the diffraction by a 
wedge with arbitrary aperture.  

 
3.2 Diffraction by an arbitrary-angled dielectric 

wedge 
 
In this section the UAPO solutions for the diffracted field originated 
by an arbitrary-angled lossless dielectric wedge are determined for an 
incident plane wave. The geometry used as reference in the following 
is relevant to a wedge having an acute internal apex angle. This choice 
is justified by the complexity of the propagation mechanisms 
(multiple internal and external rays) which include those concerning 
right- and obtuse-angled wedges [41], [42], as will be demonstrated at 
the end of this chapter. 
 Let us consider the problem of the diffraction of an E-polarized 
plane-wave by the edge of an acute-angled dielectric wedge (see Fig. 
3.1). Its internal apex angle is   and its material is lossless, non-
magnetic ( 1r  ), with relative permittivity r  and propagation 

constant d d rk k  . The wedge surfaces are denoted by 0S  and nS . 

A Cartesian reference system  , ,x y z  is introduced with the y-axis 

normal to the face 0S  and the z-axis directed along the edge. The 

incidence direction is assumed perpendicular to the edge (see Fig. 3.1) 
and defined by the angle '  ( ' 0   corresponds to the grazing 

incidence with respect to 0S ). 
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Figure 3.1 Geometry of the diffraction problem. 

 
The observation point is denoted by ( , )P   . The structure divides the 

space in two regions: the exterior region  0 2     and the 

interior region  2 2     . 

 
3.2.1 GO field model for 0 < ϕ′ < π/2 
 
Closed form expressions for the GO response when 0 '      are 
derived in this section.  
 Only the face 0S  is directly illuminated by the incident field. A 

transmitted ray exists in the inner region and, in absence of total 
internal reflection on nS , it is transmitted through this last. The 

reflected ray travels toward 0S  and gives rise to following reflection 

and transmission mechanisms involving 0S  and nS . When the value of 

the internal angle of incidence makes to occur the inversion the rays 
begin to go far from the apex. Accordingly, two series of internal and 
external rays exist: the first contains rays (black arrows in Fig. 3.2) 
travelling towards the apex and the second comprises those (red 
arrows in Fig. 3.2) going far from the apex, as illustrated in Fig. 3.2. 
The external rays exist until the internal total reflection doesn’t occur. 
The number of pre- and post-inversion rays is determined by the 
values of ' ,   and r . In order to better understand the ray 

propagation inside and outside the wedge, the reader can refer to Fig. 

3.3. If 0 2 'i     is the external incidence angle, the wave 
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penetrates into the wedge through 0S  with the transmission angle 

 1
0 sin sint i

L r    and propagates toward nS . 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Internal reflection and external transmission. 
 

The ray impinges on nS  with the incidence angle 1
i  and, for the 

Snell’s laws, it is reflected ( 1 1
r i  ) and transmitted through nS  with 

the angle 1
t , as shown in Fig. 3.3. According to the considered values 

of '  and r , the total internal reflection can occur and no transmitted 

wave through nS  exists. In such a case, an evanescent wave 

propagating along nS  and attenuating in the direction normal to it 

arises. The condition ensuring the absence of total reflection at 1P  is:  

 

  1 arcsin 1i c
r     (3.1) 

 

where c  is the corresponding critical angle. 

 By denoting with  ˆ cos ', sin ',0is      the unit vector in the 

incidence direction, it results:  
 

  00 cosˆ
0 0ˆ ˆ

i jk 'jk s riE E e z E e z      (3.2) 
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wherein 0E  is the amplitude of the incident field at the origin. The 

field 0rE  reflected by 0S  can be determined as: 

 

  0 0 0
0 0

r jk driE R E P e  (3.3) 

 
where 0R  is the reflection coefficient at 0P  and 0dr  is the distance 

 
 
 
 
                                                                                                                                         '  
 
 
 
 
 
 

 
Figure 3.3 Rays transmissions/reflections through the wedge  

 
from 0P  to P  along the reflected ray:  

 
  0 cos cosrdr ' x '        (3.4) 

 
in which rx  is the coordinate of 0P . As a result, eq. (3.3) reads as:  
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As regards the field 0LtE  transmitted through 0S , it results: 
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0T  being the transmission coefficient at 0P  and 0dt  is the distance 

from 0P  to P along the transmitted ray: 

 

  0 0 0sin sinL L
t t

rdt x        (3.7) 

 
As a consequence, it results:  
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The field 1rE  transmitted through 0S  and then reflected at 1 1 1( , )P    

on nS  with 1 2    is given by:  

 

  0 11
1 1

L dt jk drrE R E P e  (3.9) 

 
wherein 1R  is the reflection coefficient at 1P  and 1dr  is the distance 

from 1P  to P  along the ray reflected from nS :  

 

  1 1 1 1sin sini idr           (3.10) 

 
Now, it is simple to verify that  
 

 1 0L
i t     (3.11) 

 
and so eq. (3.9) reads as 
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If 1
i c  , the field 1tE  transmitted through nS  can be evaluated as: 
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  0 0 11
1 1

t jk dttE T E P e  (3.13) 

 
wherein 1T  is the transmission coefficient at 1P  and 1dt  is the distance 

from 1P  to P along the transmitted ray: 

 

  1 1 1 1sin sint tdt           (3.14) 

 

where  1
1 1sin sint i

r    is the transmission angle at 1P . 

Therefore, eq. (3.13) reads as: 
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The field 2rE  reflected at  2 2 2,P   on 0S  with 2 0   is given by:  

 

   22 1
2 2

djk drr rE R E P e  (3.16) 

 
wherein 2R  is the reflection coefficient at 2P  and 2dr  is the distance 

from 2P  to P along the reflected ray:  

 

  2 2 2 2sin sini idr         (3.17) 

 

where 2 0 2L
i t    . It can be easily verified that: 
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If 2
i c  , the field 2tE  transmitted through 0S  can be evaluated as: 
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   0 22 1
2 2

jk dtt rE T E P e  (3.19) 

wherein 2T  is the transmission coefficient at 2P  and 2dt  is the 

distance from 2P  to P along the transmitted ray: 

 

  2 2 2 2sin sint tdt         (3.20) 

 

Since  1
2 2sin sint i

r    eq. (3.19) reads as: 
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The ray transmitted through 0S  travels toward the apex undergoing 

0Int t
i LN       reflections/transmissions (  Int   denotes the integer 

part of the argument) before moving away from it. Accordingly, 

0
i r t
n n L n       for 1,2,..., in N  and the total internal reflection 

doesn’t happen if i c
n  . 

 With reference to the first set of rays propagating towards the 
apex, the field contributions for 3,..., in N  can be evaluated by 

reiterating the previous approach. The expressions of the 

corresponding internal ( L
inE ) and external ( L

extE ) GO fields are: 
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where  
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 (3.24) 

 
the function ()W  is defined as: 
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   1 2
1 2
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,

0 elsewhere
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  
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 (3.25) 

 
()U  is the unit step function: 
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 (3.26) 

 
and the parameters p  and q  have been defined as: 
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The expression (3.24) allows one to keep in account both the possible 
cases of inversion so that (3.22) and (3.23) are generally valid, the unit 
step function ()W  is useful to keep into account the shadow 
boundaries and the parameters p  and q  have been introduced to have 
similar expressions for the two sets of interaction points, as will be 
shown in the following. 
 A crucial interaction point is the  1N  -th one which 

corresponds to the internal incidence angle  1 01i t
N LN      . 

The inversion occurs at this point and the ray travels far from the 
apex, as illustrated in Fig. 3.4. The use of the parameters p  (eq. 3.27) 
and q  (eq. 3.28) allows one to consider the first contribution of this 

set as arising from 0S . Then, it is opportune to describe this series of 

interactions starting from this ray. The angle 0 1 1
t r i
R N N      plays 

now the role of 0
t
L  for evaluating the field contributions. The number 

of interaction points of the ray propagating far from the apex is 
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Accordingly, the overall number of internal reflections is given by 

1N M   and the internal incidence/reflection angles after the 

inversion are: 0
i r t

R mm m       for 1,2,...,m M .  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.4 Rays transmissions/reflections after the inversion  

 
 The first ray reflected from the internal face of 0S  after the 

inversion is 0RtE  and it is simple to verify that: 
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The function ( )N  defined in (3.31) is useful to keep in account the 
cumulative product of the reflection coefficients related to the 
previous interaction points. 
 Accordingly, with reference to the second set of rays propagating 

far from the apex, the expressions of the corresponding internal ( R
inE ) 

and external ( R
extE ) GO fields are: 
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  (3.33) 
 
Then, the overall GO field expressions for the external and internal 
regions are: 
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3.2.2 Equivalent problems 
 
In this Section, suitable integral representations for the scattered field 
by an object in the exterior and interior regions are derived by using 
the equivalence principle. Let us consider the scattering problem 
depicted in Fig. 3.5(a) wherein a scatterer is illuminated by an 
electromagnetic source. The field in the exterior region is given by the 

superposition of the incident field iE  and the field 
s
extE  scattered by 

the object, whereas s
inE  is the field scattered into the wedge. 

 As well-known, the boundary conditions for the considered 
problem are given by: 
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    ˆ ˆ
S S

i s s
ext inn E E n E     (3.36) 

    ˆ ˆ
S S

i s s
ext inn H H n H     (3.37) 

 
i.e., the tangential components of the fields are continuous across the 
interface S. In addition, radiation boundary conditions must be 
satisfied at infinity. 
 Let us consider now the problem in Fig. 3.5(b) wherein the field 
inside the scatterer is null and the field outside is originated by 

equivalent electric ext
sJ  and magnetic ext

msJ  surface currents on S. The 

problem in Fig. 3.5(b) is equivalent to the original problem (Fig. 3.5 

(a)) for evaluating the scattered field in the exterior region sE  as long 

as the aforementioned surface currents equal the discontinuities of the 
tangential components of the electric and magnetic fields, namely: 
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  ˆ
S

ext ext i s
ms extJ n E E     (3.39) 

 
 In a similar way, the problem in Fig. 3.5(c) is equivalent to the one 
in Fig. 3.5(a) for determining the scattered field inside the wedge 
being: 
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S

in in s
s inJ n H   (3.40) 

  ˆ
S

in in s
ms inJ n E    (3.41) 

 
 It must be stressed that the major difficulty encountered when 
evaluating the currents (3.38)-(3.41) is the lack of exact expressions 
for the tangential components of the fields. As a consequence, only 
“approximate” surface currents can be easily evaluated. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
           (b)         (c) 

 
Figure 3.5 Original scattering problem (a). External problem (b). 

Internal problem (c). 
 
 Let us consider now the problem of plane wave scattering by an 
acute-angled dielectric wedge shown in Fig. 3.6(a). In light of the 
previous discussion, the problem can be decomposed into an external 
problem (Fig. 3.6 (b)) and an internal problem (Fig. 3.6 (c)).  
For each of them, proper equivalent electric and magnetic surface 
currents are introduced on 0S  and nS  in accordance with eqns. (3.38)-

(3.41). 
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Figure 3.6 Scattering by a dielectric wedge (a).  

External problem (b). Internal problem (c). 
 
 The field scattered by the wedge in the external and internal 
regions can be expressed as: 
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wherein  ,
0

s
ext inE and  ,

s
ext in

n
E  are the contributions to the scattered  

field in the external/internal region associated to 0S  and nS , 

respectively and can be written as: 
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3.2.3 Diffracted field: UAPO solutions for 0 < ϕ′ < π/2 
 
In this Section, closed form expressions for the field diffracted by the 
edge of a lossless acute-angled dielectric wedge are derived in both 
the external and the internal region (see Fig. 3.6(b) and 3.6(c)) by 
using the methodologies presented in Sec. 2.5 and Subsec. 3.2.2. For 
each region, the two series of contributions, towards and far from the 
apex, are considered separately to simplify reader’s understanding. 
 
 External problem 
 
In reference to the space surrounding the wedge it results 
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  (3.46) 
 
 Being present two series of rays, pre- and post-inversion, they are 
treated separately and only the main results are reported.  
 The explicit evaluation of the equivalent currents in the radiation 
integrals (3.45), (3.46) is carried out in Appendix A. 
 
 Pre-inversion contributions 
 
 By substituting eqns. (A.8), (A.9) and using the approximation 
ˆ ˆ (cos ,sin ,0)R s     ( ŝ  is the unit vector of the diffraction 

direction) into eq. (3.45), it is possible to rewrite this last as follows: 
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where 
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According to Subsec. 2.5, and taking into account that ' / 2     

the integral 0I  can be rewritten as: 
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and C is the integration path in Fig. 2.9. By applying the steepest 
descent method and performing a uniform asymptotic evaluation (

0 1k  ) of the integral (3.48) along the SDP, it is possible to 

determine the following expression of the UAPO diffracted field 

contribution related to 0I : 
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in which the sign + applies in the interval ( 0    ) and the sign   

applies in the interval ( 2    ). In the same way, the integrals 0n
I  

can be rewritten as: 
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and so the following expression of the UAPO diffracted field 
contributions originated by 0n

I  are: 
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in which the sign + applies in the interval ( 0    ) and the sign − 
applies in the interval ( 2     ). Therefore, the UAPO 

diffracted field pre-inversion contribution originated by 0S  can be 

determined by means of eqns. (3.53), (3.54) as: 
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 For what concerns the integral on nS  in eq. (3.46), it can be 

rewritten as: 
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The integral 

nnI  can be rewritten in the equivalent form: 

 

 
  

 
0 cos 2

1

4 cos cos /2

c n

n

jk q

n ct
nC

e
I d

j qc

   


 

     


     (3.58) 

 
where  
 

 
1 0

1 2nq
 

  
   

      
 (3.59) 

 
By applying the steepest descent method and performing a uniform 
asymptotic evaluation ( 0 1k  ) of the integral (3.58) along the SDP, 

the following expression for the UAPO diffracted field contribution 
due to nS  can be obtained: 
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in which the sign + applies in the interval  2         and 

the sign − applies in the interval  0      .  

 
 Post-inversion contributions 
 
 By substituting eqns. (A.21), (A.22) and using the approximation 
ˆ ˆ (cos ,sin ,0)R s     into eq. (3.45), it is possible to rewrite this last 

as follows: 
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where 
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The integral 0m

I  can be rewritten in the equivalent form: 
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where C is the integration path in Fig. 2.9. By applying the steepest 
descent method and performing a uniform asymptotic evaluation (

0 1k  ) of the integral (3.63) along the SDP, it is possible to 

determine the following expression of the UAPO diffracted field 
contribution originated by 0S : 
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in which the sign + applies in the interval 0     and the sign − 
applies in the interval 2     . 

 For what concerns the integral on nS  in eq. (3.46), it can be 

rewritten as: 
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where 
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wherein the integral 

mnI  can be rewritten in the equivalent form: 
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By applying the steepest descent method and performing a uniform 
asymptotic evaluation ( 0 1k  ) of the integral (3.67) along the SDP, 

the following expression for the UAPO diffracted field contribution 
due to nS  can be obtained: 
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  (3.69) 
 
in which the sign − applies in the interval 2       and the 
sign + applies in the interval 0     . 
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 Then, as for the GO field, the total diffracted field in the region 
external to the wedge is given by the superposition of the pre- 
inversion contributions (eqns. (3.55), (3.60)) with the post-inversion 
ones (eqns. (3.64), (3.69)). 
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 Internal problem 
 
For what concerns the internal region the scattered field contributions 
are: 
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Also for this problem, the pre- and post-inversion contributions are 
evaluated separately. 
 
 Pre-inversion contributions 
 
The currents involved in eqns. (3.71), (3.72) are reported in Appendix 

A (see eqns. (A.12)-(A.15)). As regards  
0

Ls
inE , the substitution of 

eqns. (A.12), (A.13) in the integral (3.70) leads to: 
 

    0 0 0 0
0

sin cos
Ls t

in LE T E I 


  



  



 

 

3.2 Diffraction by an arbitrary-angled dielectric wedge 63 

    
1

0
1 1

ˆ1 sin 1 cos
n

neven

nN
i

p n n n
n p

R R R I z 


 


             

    

    
0

1

0 01 n
neven

NL L
s s
in in

T Rn

E E




            (3.73) 

 
where  
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The integral 0I  can be rewritten in the equivalent form: 
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 After performing a uniform asymptotic evaluation of the integral 
(3.76) along SDP, the following expression for the first contribution of 
UAPO diffracted field originated by 0S  can be obtained: 

 

    
0

/4

0 0 0
0

sin cos
2 2

jLd t
in L

dT

e
E T E

k
 

  
     

  



 

64 Chapter 3 High frequency diffraction by an arbitrary-angled dielectric wedge 

 

 

 

0

0

2
/ 2

2 cos
2

ˆ
cos cos / 2

t
L

d

L

t d
jk

t

F k

e
z



 


 



    
  
  
   

  
 (3.77) 

 
The integrals 0n

I  can be rewritten in the equivalent form: 
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After performing a uniform asymptotic evaluation of the integral 
(3.78) along SDP, the following expression for the second 
contribution of UAPO diffracted field originated by 0S  can be 

obtained: 
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Therefore the UAPO diffracted field contribution originated by 0S  

can be determined by means of eqns. (3.77), (3.79) as:  
 



 

 

3.2 Diffraction by an arbitrary-angled dielectric wedge 65 

      
0

1

0 0 01 n
neven

NL L Ld d d
in in in

T Rn

E E E




   
    
   

  (3.80) 

 

With reference to the contribution  Ls
in

n
E , let us substitute the 

currents (A.14), (A.15) in the integral (3.72). Accordingly, it results: 
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where 
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It is possible to rewrite 

nnI  as a line integral in the complex α-plane: 
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 A uniform asymptotic evaluation of (3.83) leads to the following 
expression for the UAPO diffracted field contribution originated by 

nS : 
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 Post-inversion contributions 
 
The currents involved in eqns. (3.71), (3.72) are reported in Appendix 

A (see eqns. (A.25)-(A.28)). As regards  
0
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inE , the substitution of 

eqns. (A. 25), (A.26) in the integral (3.71) leads to: 
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The integral 0I  can be rewritten in the equivalent form: 
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 After performing a uniform asymptotic evaluation of the 
contribution of the integral (3.88) along SDP, the following 
expression for the first contribution of UAPO diffracted field 
originated by 0S  can be obtained: 
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The integral 0m

I  can be rewritten as: 
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 After performing a uniform asymptotic evaluation of the 
contribution of the integral (3.90) along SDP, the following 
expression for the second contribution of UAPO diffracted field 
originated by 0S  can be obtained: 
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Therefore the UAPO diffracted field post-inversion contribution 
originated by 0S  can be determined by means of eqns. (3.89), (3.91) 

as:  
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 With reference to the contribution  Rs
in

n
E , let us substitute the 

currents (A.27), (A.28) in the integral (3.72). Accordingly, it results: 
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where 
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It is possible to rewrite 

mnI  as a line integral in the complex α-plane: 
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 A uniform asymptotic evaluation of (3.95) leads to the following 
expression for the UAPO diffracted field contribution originated by 

nS : 
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 Consequently, the total diffracted field in the region internal to the 
wedge is given by the superposition of the pre-inversion contributions 
(eqns. (3.80) and (3.84)) with the post-inversion ones (eqns. (3.92) 
and (3.96)). 
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3.2.4 Formulation of the problem for π/2 < ϕ′ < π-α 
 
The geometry of the problem is the same of Fig. 3.1 and the values of 

'  are here considered in the range from 2  to   so that only 

the face 0S  is directly illuminated by the incident field. A transmitted 

ray exists in the inner region and, in absence of total internal 
reflection, it is partially transmitted at the interface nS . Then, a series 

of internal and external rays propagating far from the apex arises as 
illustrated in Fig. 3.7. The external rays exist until the total reflection 
doesn’t occur.  
 By matching Fig 3.7 with Fig 3.2 it is evident that this ray-tracing 
is the same of that related to the post-inversion case. Consequently, 
the contributions to GO and diffracted field are the same of the post-
inversion series of rays. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Internal reflection and external transmission. 
 
Under the assumption that surface wave effects can be neglected, the 
total field at any observation point  ,P    can be expressed as the 

superposition of the GO fields present in each region and the edge 
diffracted field. 
 

nS  
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'  
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GO field model for π/2 < ϕ′< π-α 
 
 Closed form expressions for the GO response when 

2 '       are shown in this section. The physical mechanism of 
ray propagation inside and outside the wedge is depicted in Fig. 3.8. 
As can be seen, the incident ray undergoes a double transmission 

through the interfaces 0S  and nS , respectively. If ' 2i     is the 

external incidence angle, the waves penetrate into the wedge through 

0S  with the transmission angle  1
0 0sin sint i

R r    and 

undergoes multiple reflections in the internal region until the 

reflection angle 0
r i t
m m Rm       at the m-th interaction becomes 

greater than 2   . As a consequence, the number of total internal 

reflections is  0Int 2 t
RM       

, where  Int   denotes the 

integer part of the argument. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Rays transmissions/reflections through the wedge. 
 
Transmitted waves through 0S  and nS  exist until the total reflection 
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define shadow boundaries fixed by the angles  1sin sint i
m r m    

in the space surrounding the wedge.The unit vectors relevant to the 
propagation direction of the rays incident and reflected at the 
interfaces 0S  are: 
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and the expressions (3.2), (3.3) for the incident electric field iE  and 

the field reflected from 0S , still hold. 

 As regards the field 0RtE  transmitted through 0S , it can be 

expressed as: 
 

 0 0
0

sin( )
0 ˆ

t
dR RjktE E T e z

   (3.99) 

 
and the likeness with (3.30) is evident, except for the absence of 
function  N .  

 For the next interaction points, by taking advantage of the analogy 
of ray-tracing with the post-inversion case, the expressions of the GO 
fields are equal to (3.32) (3.33), excluding the function  N . 

Consequently, the overall expressions of the internal and external GO 
fields are: 
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  (3.101) 
 
where ()W  is defined in (3.25) and ()U  is defined in (3.26). 

 
Diffracted field: UAPO solutions for π/2 < ϕ′< π-α 
 
The closed form expressions for the field diffracted by the edge of a 
lossless acute-angled dielectric wedge when '        are here 
presented in both the external and the internal region (see Fig. 3.6(b) 
and 3.6(c)). The methodology used to obtain them is the same 
described in Subsec. 3.2.3 and only the final results are reported here, 
because of the evident analogy with the post-inversion case. In fact, as 
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direct consequence of the equality of the GO fields expression with 
the post-inversion ones (aside from the absence of  N ), also the 

expressions of the equivalent electric ,ext in
sJ  and magnetic ,ext in

msJ  

surface currents, defined in (3.38)-(3.41) and reported in the post-
inversion section of Appendix A, still hold. 
 As regards the external problem, the field scattered by the wedge 
in the surrounding space is represented by the radiation integral (3.43) 
and consequently by the (3.45) and (3.46). The field scattered inside 
the wedge (internal problem) can be evaluated by the (3.44) and 
therefore by solving (3.71) and (3.72).  
 
 External problem 
 
 The UAPO diffracted field contribution originated by 0S  can be 

expressed as:  
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and 
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  (3.104) 
 
in both expression the sign + applies in the interval  0     and 

the sign − applies in the interval  2     . 

 The UAPO diffracted field contribution due to nS  is: 
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  (3.105) 
 
in which the sign - applies in the interval  2       and the 

sign + applies in the interval  0     .  

 Then, the total diffracted field in the region external to the wedge 
is given by the superposition of the contributions (3.102) and (3.105) 
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 Internal problem 
 
The UAPO diffracted field contribution originated by 0S  can be 

expressed as:  
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and 
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 The expression of the UAPO diffracted field contribution 
originated by nS  is: 
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  (3.110) 
 
So, the total diffracted field in the region internal to the wedge is 
given by the superposition of the contributions (3.107) and (3.110). 
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3.2.5 Numerical results 
 
In this Section, numerical results are reported in order to prove the 
validity and accuracy of the UAPO solution for the field diffracted by 
the edge of an acute-angled and lossless dielectric wedge developed in 
Subsecs. 3.2.1, 3.2.3 and 3.2.4. For what concerns simulations in Figs. 
3.9-3.12, the considered wedge is characterized by 20    and 

3r   and the field amplitude is evaluated over a circular path having 

radius 04  . Numerical results shown in Figs. 3.9 and 3.10 are 

relevant to an E-polarized plane wave having 0 1E   V/m illuminating 

only the face 0S  and propagating in the direction ' 35   . These 

values produce 1N   pre-inversion interaction point and other 3M   
points associated to the post-inversion series. Therefore, the complete 
number of internal reflection is 1 5N M   , but the total internal 
reflection occurs at the fourth interaction. Consequently, in addition to 
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the boundaries related to the incident and specular reflection 
directions, three transmission boundaries exist in the external region.  
 

 
Figure 3.9 Amplitude of the z-component of the GO and UAPO 

diffracted field: ' 35   . 

 
Figure 3.10 Amplitude of the z-component of the total field: ' 35   . 
 
As can be seen, the GO pattern in Fig. 3.9 is discontinuous in 
correspondence of the shadow boundaries: 

0
145RB   , 

0
215SB   , 

1 235.6
nTB    , 

0 1 69.3TB    , 2 315.7
nTB    . However, the 

UAPO diffracted field is significant at these boundaries and perfectly 
compensates the GO field discontinuities (see Fig. 3.10). 
 Figs. 3.11 and 3.12 are relevant to E-polarized plane wave having 

0 1E   V/m propagating in the direction ' 110   . In this case, the 

GO field boundaries are located at 
0

70RB   , 
0

290SB    and 
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1 314.4
nTB     since the total internal reflection occurs at the second 

interaction (see Fig. 3.11). The developed UAPO solution removes 
also in this case the discontinuities at the shadow boundaries (see Fig. 
3.12). 
 

 
Figure 3.11 Amplitude of the z-component of the GO and UAPO 

diffracted field: ' 110   . 
 

 
Figure 3.12 Amplitude of the z-component of the total field: 

' 110   . 
 

It is opportune to point out that the compensation of the GO field 
discontinuities indicates only the consistency of the UAPO solution. 
On the other hand, an exact and reliable reference solution is needed 
to test its accuracy. To this end, numerical simulations are performed 
by using two reliable numerical solvers. The former is the 
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radiofrequency module of Comsol Multiphysics, a commercial tool 
based on FEM. The latter is an in-house code based on FDTD 
technique [45]. Such a code implements the total field/scattered field 
technique to generate an accurate incident numerical plane wave. The 
outer boundaries of the computational domain are terminated with a 
Uniaxial Perfectly Matched Layer (UPML) [46] backed with a perfect 
electric conductor wall. As well-known, UPML’s function is able to 
absorb the incoming electromagnetic waves with very low retro 
reflections in the simulation region. 
 Comparison between the UAPO and numerical results are shown 
in Figs. 3.13-3.16. They refer to lossless wedges characterized by 

2r   and 15 ,30 ,45 ,60       illuminated by an E-polarized plane 

wave having 0 1E   V/m and impinging at ' 110   .  

 

 
Figure 3.13 The z-component of the electric field when 15   . 

 
The field magnitude (normalized to the peak value and expressed in 
decibel) is collected on a circular path with 04  . Fig. 3.13 is 

relevant to 15   , so that 5M  . In addition to the boundaries 
related to the incident and specular reflection directions, two 
boundaries exist in the external region since the total internal 
reflection occurs at the third interaction. As can be seen, a remarkably 
good agreement is attained with both the COMSOL solution and the 
FDTD-based results. In particular, the UAPO solution accuracy is 
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confirmed not only outside the wedge but also inside it. Analogous 
considerations can be drawn from the results in Figs. 3.14, 3.15 and 
3.16 relevant to higher values of  . Note that Fig. 3.14 refers to the 

case 30    ( 2M  ) with one transmission contribution through nS  

in addition to the incident and specular reflection contributions. 
Finally, Figs. 3.15 and 3.16 are relevant to cases for which no 
transmission contributions exist in the external region since the total 
internal reflection occurs at the one and only interaction on the 
internal face of nS . 

 

 
Figure 3.14 The z-component of the electric field when 30   . 
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Figure 3.15 The z-component of the electric field when 45   . 

 
 

 
Figure 3.16 The z-component of the electric field when 60   . 

 
 The proposed UAPO solutions are characterized by some 
limitations due to the use of the PO approximation in the radiation 
integral. By looking at Figs. 3.10 and 3.12 it is evident the fact that 
they break the boundary condition at the dielectric interfaces. This 
limitation can be appreciated also in the case of dielectric constant 
going to infinity for simulating a perfectly conducting wedge. 
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Moreover, the UAPO solutions give unreliable results in the case of 
grazing incidence as demonstrated in [47]. 
 
3.2.6 Formulation of the problem for H-polarized plane 

waves 
 
In Subsecs. 3.2.1, 3.2.3 and 3.2.4 the effects of an E-polarized plane 
wave impinging on a dielectric acute-angled wedge have been 
analyzed. The aim of this section is to provide UAPO solutions for the 
field diffracted by the same wedge now illuminated by a H-polarized 
plane wave. Being the problem almost similar to the previous ones, 
only the simplest case of one series of rays has been considered and 
just the final results have been reported in the following.  
 The geometry of the problem is the same of Fig. 3.1 with the 
difference that the uniform plane wave illuminating the wedge has the 
magnetic field H  directed along ẑ , as shown in Fig. 3.17. The 
direction of propagation is still fixed by the angle '  and its values are 
here considered in the range from 2  to   so that only the face 

0S  is directly illuminated by the incident field. As for the E-

polarization case, a series of internal and external rays propagating far 
from the apex arises (Fig. 3.17) and the external rays exist until the 
total reflection doesn’t occur. 
 By matching Fig 3.17 with Figs. 3.8 and 3.4 it is evident that this 
ray-tracing is the same of those related to the E-polarization case apart 
for the magnetic field H  directed along ẑ . Consequently, the 
contributions to GO magnetic fields are analogous to those related to 
the GO electric fields in the E-polarization case.  
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Figure 3.17 Rays transmissions/reflections through the wedge  

 
The expressions for GO electric fields in the H-polarization case can 
be simply obtained by applying the property of plane wave. 
 Then, the whole expressions of the GO response for the electric 
field are: 
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  (3.113) 
 
It must be stressed that now the expression of the coefficients of 
reflection and transmission present in eqns. (3.112) and (3.113) are 
relative to the H-polarization case. 
 The closed form expressions for the electric field diffracted by the 
edge of the wedge in both the external and the internal region (see Fig. 
3.6(b) and 3.6(c)) have been obtained following the same approach of 
Subsecs. 3.2.3 and 3.2.4. The expression of the diffracted magnetic 
field can be easily obtained by the relationship: 
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The expressions of the equivalent electric ,ext in
sJ  and magnetic 

,ext in
msJ  surface currents, defined in (3.38)-(3.41) are reported in the H-

polarization section of Appendix A.  
 As regards the external problem, the field scattered by the wedge 
in the surrounding space is represented by the radiation integral (3.43) 
and consequently by the (3.45) and (3.46). The field scattered inside 
the wedge (internal problem) can be evaluated by the (3.44) and 
therefore by solving (3.71) and (3.72). The corresponding magnetic 
fields can be found by (3.114). 
 
 External problem 
 

 By defining the unit vector ˆ ˆ ˆ( sin , cos , 0)x y   , the UAPO 

diffracted electric field contribution originated by 0S  can be 

expressed as:  
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and 
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in both expression the sign + applies in the interval  0     and 

the sign − applies in the interval  2      . 

 The UAPO diffracted electric field contribution due to nS  is: 
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in which the sign − applies in the interval  2        and the 

sign + applies in the interval  0      . Then, the total diffracted 

electric field in the region external to the wedge is given by the 
superposition of the contributions (3.115) and (3.118).  
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The corresponding diffracted magnetic field d
extH  can be found by 

(3.114) and it results to be directed along the z-axis. 
 
 Internal problem 
 
 The UAPO diffracted electric field contribution originated by S0 

can be expressed as:  
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 The expression of the UAPO diffracted field contribution 
originated by nS  is: 
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  (3.123) 
 
So, the total diffracted field in the region internal to the wedge is 
given by the superposition of the contributions (3.120) and (3.123). 
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The corresponding diffracted magnetic field d
inH  can be found by 

(3.114) and it results to be directed along z-axis. 
 By matching the expressions (3.119) and (3. 124) of the UAPO 
diffracted electric fields for an H-polarized plane wave with those 
found in the E-polarization hypothesis (eqns. (3.106) and (3.111)), it is 
possible to notice a strong and useful analogy that have to be 
underlined. In fact, if the diffracted electric field for the H-polarization 
is written as 
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where ,int ext
zzD  is the diffraction coefficient for the E-polarization, on 

the condition to use the appropriate Fresnel reflection and 
transmission coefficients (see also [41]-[43]). 

 
3.3 Particular cases: right- and obtuse-angled 

dielectric wedges 
 
In Subsec. 3.2.3 UAPO solutions for the diffracted field originated by 
an acute-angled lossless dielectric wedge have been determined for an 
E-polarized incident plane wave and for values of '  in the range 

from 0 to 2 . By matching these solutions with those proposed for a 
right- and an obtuse-angled wedges [41], [42] it is evident that a high 
correspondence exists between them. The aim of this section it to 
show that the UAPO solutions for the diffracted field found in Subsec. 
3.2.3 have general validity and can be applied to a wedge with 
arbitrary apex angle. The Subsecs. 3.3.1 and 3.3.2 are devoted to 
demonstrate that such solutions include those proposed for a right- and 
obtuse-angled wedges as particular cases.  
 
3.3.1 Comparisons with a right-angled dielectric wedge 
 
Let us consider the problem of plane-wave diffraction by the edge of a 
right-angled dielectric wedge, which solutions for GO fields and 
UAPO diffracted fields are well-known [41]. By considering the 
geometry of Fig. 3.1, the expressions of UAPO diffracted fields 
(3.55), (3.60), (3.64), (3.69), (3.80), (3.84), (3.92) and (3.96) found in 
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Subsec. 3.2.3 lead to the same solutions of [41], if made particular for 

2   . In fact, being 00 2L
t    it results: 
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As a consequence, 1 1iN N    and so the function  N  defined 

in eq. (3.31) becomes: 
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Therefore, the expression of the external UAPO diffracted fields 
become: 
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In eq. (3.129), in the first term the sign + applies in the interval 

 0     and the sign − applies in the interval 
3

2
     

 
and in 

the second term the sign + applies in the interval 
2

     
 

and the 

sign − applies in the interval 
2 2

     
 

. The expression of the 

UAPO internal diffracted field becomes: 
 

    
0

d d d
in in in

n
E E E     

  
 

 

0

0

2

4

0 0 0
0

2
2 cos

2
sin cos

2 2 cos cos 2

t
L

L

t d
j

t
L t

F k

e
E T

k

 


 
 

 


        
   

     
   





  

    01 11 sin 1 cosL
tR R          

 

   

 

1

0

2

0

2 2
2 cos

2
ˆ

cos 2 cos

i

t d
jk

t
L

F k

e
z



 


 



         
  

     
   





 (3.130) 

 
The expressions (3.129) and (3.130) agree with those reported in [41] 
and so the available solutions of UAPO diffracted fields for a right-
angled dielectric wedge can be considered as particular solutions of 
those relative to an acute-angled dielectric wedge, reported in Subsec. 
3.2.3. 
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3.3.2 Comparisons with an obtuse-angled dielectric 
wedge 

 
In this subsection the solutions for the plane-wave diffraction by the 
edge of an obtuse-angled dielectric wedge reported in [42] are taken 
as reference. Starting from the geometry of Fig. 3.1, the expressions of 
UAPO diffracted fields (3.55), (3.60), (3.64), (3.69), (3.80), (3.84), 
(3.92) and (3.96) found in Subsec. 3.2.3 are considered for values of 
the aperture of the wedge   greater than 2 . By following the same 
approach of [42], two separated cases, relative to different ranges of 

values of the internal transmission angle 0
t
L  have been studied. In the 

first case the values of 0
t
L  are such to avoid the illumination of the 

internal face of nS . In the second one it is illuminated by the ray 

transmitted through 0S  giving arise to a further reflected/transmitted 

ray. 
 

 CASE 1: nS  not illuminated ( 0 2t
L    ) 

 

Being 0 2t
L     and 2    it results 0Int 0t

i LN       and 

so 1 1iN N   . Then, the function  N  defined in (3.31) 

becomes: 
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Therefore, the expression of the external UAPO diffracted field 
becomes: 
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in which the sign + applies in the interval  0     and the sign − 

applies in the interval  2      . The expression for the UAPO 

internal diffracted field becomes: 
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The expressions (3.132) and (3.133) match with solutions reported in 

[42] for the range 00 2t
L     . 

 

 CASE 2: nS  illuminated ( 0 2t
L    ) 

 

Being 0 2t
L     and 2    it results 0Int 0t

i LN       and 

so 1 1iN N   . Then, the function  N  defined in (3.31) 

becomes: 
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Therefore, the expression of the external UAPO diffracted fields 
becomes: 
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In eq. (3.135) in the first term the sign + applies in the interval 
 0     and the sign − applies in the interval  2      and 

in the second term the sign + applies in the interval  0       

and the sign − applies in the interval  2       . The 

expression for the UAPO internal diffracted field becomes: 
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 (3.136) 

 
The expressions (3.135) and (3.136) are equal to solutions reported in 

[42] for the case of 0 2t
L    . 

 Therefore, the expressions (3.132), (3.133), (3.135) (3.136) are 
identical to those described in [42] and so the available solutions of 
the UAPO diffracted fields for an obtuse-angled dielectric wedge can 
be considered as particular solutions of those relative to an acute-
angled dielectric wedge, reported in Subsec. 3.2.3. 
 In conclusion, basing on how much shown in Subsecs. 3.3.1 and 
3.3.2, it is possible to consider the solutions of the UAPO diffracted 
fields found in Subsec. 3.2.3 as relative to an arbitrary-angled 
dielectric wedge.  



 

 



 

 

 

Chapter 4 
 

Time Domain solutions for diffraction 
by dielectric wedges 
 
TD electromagnetic scattering problems are currently receiving great 
attention from both the research community and industry because of 
the widespread use of ultra-wide band (UWB) communication and 
radar systems. Actually, the large bandwidth of the UWB signals 
makes natural and more convenient to directly study the transient 
electromagnetic wave propagation phenomena rather than processing 
the FD data. In fact, the TD analysis allows one to determine all the 
necessary parameters in an UWB communication system as number of 
multipath, power, time delay, and distortion. Furthermore, the analysis 
of transient scattering phenomena is of importance for predicting the 
effects of electromagnetic pulses on civil and military structures. 
Many analytical TD solutions were proposed for predicting diffraction 
phenomena mainly concerning PEC objects. In this framework, the 
TD versions of GTD and UTD for a straight edge in PEC structures 
were developed by Veruttipong [48]. Rousseau and Pathak [49] 
proposed a TD-UTD solution applicable to the more general problem 
of diffraction by an arbitrarily curved PEC wedge which may contain 
curved faces and/or a curved edge. The TD-UTD formulation 
furnishes a simple physical representation for radiation and scattering 
phenomena since it uses the same rays (incident, reflected, and 
diffracted contributions) as the FD-UTD one. The available solutions 
were derived by means of analytical inversions of the corresponding 
high-frequency asymptotic expressions, so that they are valid for an 
observation time close to the arrival times of the various wave fronts. 
Note that TD-UTD is applicable for short pulse wave excitations.  
 A TD version of the physical theory of diffraction (TD-PTD) was 
derived by Johansen in [50]. He added the field predicted by the TD 
equivalent edge currents to the TD physical optics (TD-PO) field [51] 
in order to correct it. A TD-UTD solution for describing the transient 
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electromagnetic scattering from a smooth convex PEC surface excited 
by a general time impulsive astigmatic ray field was presented in [52]. 
The transient radiation and surface fields of elemental pulsed antennas 
placed on a smooth perfectly conducting, arbitrary convex surface 
were studied in [53]. With reference to the propagation of UWB 
signals, the two-dimensional multiple-diffraction by an arbitrary 
number of obstacles was solved in [54]. The proposed TD solution 
accounts for different types of objects along the propagation path. The 
scattering of an electromagnetic time dependent plane wave by the 
edge of an impedance wedge was considered by Pelosi et al. in [55], 
and suitable expressions for the surface currents induced on the faces 
of the wedge were determined. Gennarelli et al. presented in [56] a 
TD version of the UAPO solution for the field diffracted by the edge 
of a non-penetrable half-plane characterized by an anisotropic 
impedance boundary condition. The diffraction by a junction formed 
by two thin layers consisting of highly conducting non-magnetic 
dielectrics was considered in [57].  
 In this chapter the diffraction phenomenon of plane waves by 
dielectric wedges is studied in TD framework. TD diffraction by 
penetrable wedges is a challenging problem from an analytical point 
of view, and no solutions are available in closed form apart from those 
concerning right- and obtuse-angled lossless wedges [58], [59]. The 
authors transformed the UAPO diffraction coefficients proposed in 
[41], [42] into TD by taking advantage of their UTD-like nature. In 
the same way, in this chapter the diffraction problems related to a 
penetrable acute-angled wedge are tackled and solved in TD by 
exploiting the knowledge of the corresponding FD-UAPO solutions 
found in Sec. 3.2. In particular, closed form TD-UAPO solutions for 
the diffraction coefficients in the dielectric region and the surrounding 
space are derived in the case of impulse function plane wave. Then, 
the diffraction response to an arbitrary incident field is found via a 
convolution technique. The methodology may be successfully 
employed to determine responses to medium/high frequency incident 
fields since the FD-UAPO solution is asymptotic. 
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4.1 Time Domain diffraction by an acute-angled 
dielectric wedge 

 

This section concerns the computation of the TD-UAPO field 
diffracted by a lossless dielectric wedge with an acute apex angle 
when it is excited by an impulse function plane wave. This last 
impinges at normal incidence with respect to the edge, which is 
assumed coincident with the z-axis of the coordinate system (see Fig. 
4.1). Both cases of E- and H-polarization for the incident plane wave 
are considered. The key point is the analytical evaluation of the TD-
UAPO diffraction coefficients related to the dielectric region and the 
surrounding space. They are determined here according to [48] via an 
inverse Laplace transform of the corresponding FD counterparts 
reported in Sec. 3.2, where the expressions of the FD-UAPO 
diffraction coefficients have been obtained in terms of the Fresnel 
reflection and/or transmission coefficients of the structure and the 
UTD transition function [2].  
 
4.1.1 Formulation of the problem for 0 < ϕ′ < π/2 
 
The considered canonical structure is a wedge having acute apex angle 
  and consisting of a lossless non-magnetic ( 1r  ) dielectric with 

relative permittivity r , which is assumed independent on the 

frequency. The wedge-shaped region is bounded by the surfaces 0S  

and nS , and surrounded by the free-space. The angle '  fixes the 

incidence direction in a polar coordinate system perpendicular to the 
edge (see Fig. 4.1), and its values are assumed to range from 0 to 2  

as in Subsec. 3.2.1 so that only 0S  is illuminated by the incident plane 

wave and two series of internal and external rays arise: a first one 
propagating towards the apex and another one which goes far from the 
apex after the inversion (see Fig. 3.2). Therefore, by defining the 

incidence angle ' 2i    , the wave penetrates into the wedge 

according to the transmission angle  1
0 sin sint i

r   . The ray 
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transmitted through 0S  travels toward the apex undergoing 

0Int t
i LN       reflections/transmissions before moving away 

from it. This series of iN  internal incidence/reflection angles can be 

evaluated as 0
i r t
n n L n       for 1,2,..., in N . The corresponding 

transmitted waves through 0S  and nS  exist until the total reflection 

occurs inside the wedge, i.e., when  1sin 1i
n c r    , and 

define the shadow boundaries fixed by the angles 

 1sin sint i
n r n    in the space surrounding the wedge. As 

already illustrated in 3.2.1, at the (N+1)-th interaction point the 
inversion happens and so the rays travel far from the apex and another 
series of points of internal reflection/external transmission occurs (see 

Fig. 3.4). The value 0 0( 1)t t
R LN     is the angle of the first ray 

reflected from 0S  after the inversion. By this way, M interaction 

points of the rays propagating far from the apex exist, with M defined 
in (3.29). The internal incidence/reflection angles after the inversion 

are: 0
i r t
m m R m       for 1,2,...,m M .  

 

 
Figure 4.1 Geometry of the diffraction problem. 

 

The integer  *
0Int /t

c RM M       
 fixes the total number of 

transmission contributions.  
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 The propagation mechanisms are the same of the FD case, then the 
statements of Subsec. 3.2.1 about GO field contributions are still 

valid. According to Subsec. 3.2.3, the FD-UAPO diffracted field dE  
to be considered together with the FD-GO field at P can be expressed 
as: 
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wherein 0D  and nD  denote the 2 2  diagonal matrices of the FD-

UAPO diffraction coefficients related to 0S  and nS , respectively, k is 

the propagation constant in the observation region, and iE , indicating 
the incident field at the diffraction point Q is defined in eq. (3.2). The 
analytical expressions of 0D  and nD  elements for both series of rays 

have been derived in Subsec. 3.2.3 by considering two separate 
scattering problems relevant to the wedge region and the surrounding 
space. The corresponding radiation integrals have been formulated in 
terms of electric and magnetic equivalent PO surface currents lying on 
the internal and external faces of the wedge. For each observation 
domain, analytical manipulations and calculations completed by 
uniform asymptotic evaluations of the resulting integrals have been 
performed for obtaining closed form expressions. Note that the FD-
UAPO diffraction coefficients found in in Subsec. 3.2.3 do not take 

into account surface waves. The TD counterpart of dE  can be 
calculated by using the following convolution integral: 
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in which ie  is the incident field (forcing function) turned on at 0t t  

and c is the speed of light in the considered observation region. The 
entries of the TD-UAPO diffraction matrix d  are determined 

according to [48] by performing the inverse Laplace transform of the 
corresponding elements of D , and their expressions are reported in 

the next Section accounting for observation region and wedge surface 
contributions. 
 
4.1.2 Time Domain UAPO diffraction coefficients 
 
In this section the nonzero entries of the TD-UAPO diffraction matrix 
d  are made explicit according to [48] by performing the inverse 

Laplace transform of the corresponding elements of D  found in 

Subsec. 3.2.3. According to approach of Sec. 3.2, two separate 
scattering problems relevant to the wedge (internal region) and the 
surrounding space (external region) are addressed, and for each 
problem the two series of rays (pre- and post- inversion) are evaluated 
distinctly.  
 
 External problem  
 
 Pre-inversion contributions 
 
The total diffracted field in the region external to the wedge is given 
by the superposition of the contributions related to 0S  and nS  which 

are expressed by (3.55) and (3.60) in the FD. By performing the 
inverse Laplace transform to them it results in the TD: 
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n
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where: 
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In eq. (4.4) the sign + applies in the interval  0     and the sign − 

applies in the interval  2     . In eq. (4.5) the sign + applies 

in the interval  2         and the sign − applies in the 

interval  0      . The function .( )g  used in the above 

expressions is so defined: 
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 Post-inversion contributions 
 
 The total diffracted field in the region external to the wedge after 
the inversion is given by the superposition of the contributions related 
to 0S  and nS  which are expressed by (3.64) and (3.69) in the FD. As 

a consequence, in the TD it results: 
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where the function .( )g  is defined in eq. (4.6). In eq. (4.12) the sign + 

applies in the interval  0     and the sign − applies in the interval 

 2     . In eq. (4.13) the sign − applies in the interval 

 2         and the sign + applies in the interval 

 0      . 
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 Then, the total diffracted field in the region external to the wedge 
is given by the superposition of the pre- inversion contributions (eq. 
(4.3)) with the post-inversion ones (eq. (4.7)) 
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 Internal problem 
 
 Pre-inversion contributions 
 
The total diffracted field in the region internal to the wedge is given 
by the superposition of the contributions related to 0S  and nS which 

are reported in FD eqns. (3.80) and (3.84). Then, applying the inverse 
Laplace transform to them it results in TD: 
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and 
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where the function .( )g  is defined in eq. (4.6). 
 
 Post-inversion contributions 
 
The total diffracted field in the region internal to the wedge in the FD 
is given by the superposition of the contributions (3.92) and (3.96). 
Therefore, in the TD it results: 
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 Then, the total diffracted field into the wedge is given by the 
superposition of the pre- inversion contributions (eq. (4.11)) with the 
post-inversion ones (eqns. (4.14)) 
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 According to the property of eq. (3.126) found in Subsec. 3.2.6 
(and to [41]-[43]), in the hypothesis of an H-polarized plane wave 
impinging on a dielectric wedge, it result 
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where   ,
'

in ext
d  is the TD diffraction coefficient for the H-

polarization case. As for the FD, eq. (4.18) is valid only if the Fresnel 
reflection and transmission coefficients used in it are those related to 
parallel polarization. 
 
4.1.3 Numerical examples 
 
Previous formulas have been implemented in a computer code to 
evaluate the TD field evolution at a fixed observation point. The first 
three sets of examples are relevant to a z-polarized incident electric 
field turned on at 0 0t  . The first set of figures is useful to show the 

typical behavior of the TD-UAPO diffracted field in correspondence 
of a shadow boundary; it refers to a wedge characterized by 30    
and 3r   when excited by a given function plane wave (the main 

waveform in Figs. 4.2-4.5) impacting at ' 135   . The sequence from 
Fig. 4.2 to Fig. 4.5 displays the waveform contributions arriving at 

( , )P    when it moves on a circular path ( 30 ,44 ,46 ,60      ) 
having radius 2 m   and crossing the boundary for the specular 
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reflection (SR) from 0S  located at 
0

45RB   . It is possible to 

recognize the incident and SR waveforms (solid line) and the 
diffraction one (dashed line). The arrival time of the diffracted field at 
P does not change of course, but the waveform magnitude varies 
depending on the angular distance from the SR boundary as expected. 
Figure 4.2 makes evident that no liaison exists between the SR 
waveform and the diffraction one if the position of P ( 30   ) is far 

from 
0

45RB   . On the contrary, a strong relationship is manifest in 

Fig. 4.3, where SR and diffraction waveforms arrive practically 
together at P ( 44   ) since this last is very close to SR boundary. 
 

 
Figure 4.2 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 30   , 3r  , ' 135    and 2 m  , 30   . 

 
Figs. 4.4 and 4.5 show the inversion of the diffraction waveform when 
P is beyond SR boundary and the reduction of its contribution when 
the angular distance from SR boundary increases. 
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Figure 4.3 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 30   , 3r  , ' 135    and 2 m  , 44   . 

 

 
Figure 4.4 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 30   , 3r  , ' 135    and 2 m  , 46   . 

 
Obviously, the SR waveform vanishes when P is beyond the SR 
boundary and the incident waveform moves on the left of the box 
when growing  . The incident field is not displayed in Fig. 4.5 since 
it arrives at P before reaching Q. 
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Figure 4.5 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 30   , 3r  , ' 135    and 2 m  , 60   . 

 
 The second set of numerical results deals with a wedge described 
by 15    and 2r   when excited by a function plane wave with 

incidence direction fixed by ' 110   . According to the chosen 
values, 5M   and two further GO contributions ( * 2M  ) must be 
considered in the space surrounding the wedge, i.e., the transmission- 
transmission (TT) outgoing waveform from nS  and the transmission-

reflection-transmission (TRT) outgoing waveform from 0S . The field 

contributions resulting by setting 10    are shown in Fig. 4.6, where 
it is possible to identify the incident, SR and TRT waveforms in order 
of arrival. The TRT contribution arrives together the diffraction one as 
expected since the position of P is very close to the TRT shadow 
boundary. Analogously, the TT and diffraction waveforms reach P 
jointly if 300    (see Fig. 4.7). Figure 4.8 is relevant to 350   : 
six contributions exist at P, but only the transmission and 
transmission-reflection waveforms are easy to detect. The other ones 
resulting from multiple internal reflections appear too close together 
to be completely identified. 
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Figure 4.6 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 15   , 2r  , ' 110    and 2 m  , 10   . 

 

 
Figure 4.7 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 15   , 2r  , ' 110    and 2 m  , 300   . 
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Figure 4.8 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 15   , 2r  , ' 110    and 2 m  , 350   . 

 
The third set of figures is relevant to an acute-angled wedge 
characterized by 3r   and 20    when the electric field arrives at 

' 35   . Being 0 ' 2    two series of internal reflections/external 
transmission are present into the wedge and the surrounding space. 
Fig. 4.9 shows the evolution of the electric field at  3m,144P  . In 

order of arrival, it is possible to identify the GO contributions (solid 
line) and the diffraction one (dashed line). This last arrives at the same 
time of the SR waveform since P is very close to the corresponding 
shadow boundary. SR, TRT and diffraction waveforms at  3m,69P   

are reported in Fig. 4.10. Note that P is very close to the TRT 
boundary and the incident field is not displayed since it arrives at P 
before reaching Q ( 0t  ). Fig. 4.11 shows the observed waveforms at 

316   : TT, transmission-reflection-reflection-transmission (TRRT) 
and diffraction ones. As expected, TRRT waveform is lower than TT 
one and diffraction contribution arrives at the same time of TRRT. 
Figure 4.12 is relevant to 350   . Being 1 5N M   , five GO 
contributions exist at P: the first is related to the transmission 
waveform and the next are related to the transmission-multiple 
reflections waveforms.  
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Figure 4.9 GO (solid line) and UAPO diffraction (dashed line) 

contributions. 
Test case data: 20   , 3r  , ' 35    and 3 m  , 144   . 

 

 
Figure 4.10 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 20   , 3r  , ' 35    and 3 m  , 69   . 
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Figure 4.11 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 20   , 3r  , ' 35    and 3 m  , 316   . 

 

 
Figure 4.12 GO (solid line) and UAPO diffraction (dashed line) 

contributions.  
Test case data: 20   , 3r  , ' 35    and 3 m  , 350   . 

 
 The TD-UAPO formulation has the same advantages and 
limitations of the TD-UTD one. In addition, it retains the FD-UAPO 
limitations arising from the use of a PO approximation in the 
evaluation of the electric and magnetic equivalent surface currents 
located on the internal and external faces of the wedge-shaped 
dielectric region. Anyway, at the present time, the TD-UAPO 
formulation is the only one able to provide analytical wave solutions 
to TD scattering problems involving penetrable wedges. Obviously, it 
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is necessary to know the corresponding FD-UAPO diffraction 
coefficients to achieve the goal. 



 

 



 

 

 

Chapter 5 
 

Conclusions and future works 
 

 
5.1 Summary 
 
Approximate but quite accurate UAPO solutions for several 
diffraction problems involving dielectric wedges have been developed 
in this dissertation. 
 A solution to the problem of plane wave diffraction by the edge of 
an acute-angled dielectric wedge has been presented in Chapter 3 for 
both the polarization (perpendicular and parallel). As a first step, the 
GO response of the structure has been obtained. For the first range of 
values of the incidence angle two series of rays (pre- and post-
inversion) are present and have been evaluated via GO investigations. 
Then, this last has been used to determine the equivalent electric and 
magnetic PO currents in the radiation integral. The considered 
scattering problem has been solved by considering two sub-problems, 
respectively external and internal to the wedge region. Then, uniform 
asymptotic evaluations of the radiation integrals have allowed 
obtaining a closed form expressions for the diffracted field. They are 
given in terms of the standard UTD transition function and the GO 
response of the wedge. The derived solution removes the GO field 
discontinuities and its accuracy is confirmed by the excellent 
agreement with numerical results in both the internal and external 
region. For the second range of values of the incidence angle just one 
series of rays is present. It is practically identical to the post-inversion 
series of the previous case, so it can be considered as its particular 
case.  
 In Sec. 3.7 the UAPO solutions found for the diffracted field by an 
acute-angled dielectric wedge have been matched with those well-
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known for a right- and an obtuse-angled wedge. By using values of 
the internal angle of the wedge equal to 2  and greater than 2  the 
UAPO solution become identical to those reported in literature. 
Therefore, it has been proved that they are valid for an arbitrary-
angled dielectric wedge. 
 In Chapter 4 the problem of diffraction of plane wave by a 
penetrable arbitrary-angled dielectric wedge has been addressed in the 
TD framework. The TD-UAPO diffraction coefficients have been 
determined in closed form, starting from the knowledge of the FD-
UAPO counterparts, found in Cap.3. In particular, the inverse Laplace 
transform has been applied to the UAPO diffraction coefficients valid 
for the internal region of the wedge and the surrounding space. The 
transient diffracted field originated by an arbitrary function plane 
wave has been evaluated via a convolution integral. Diffraction by 
penetrable wedges in the TD framework is a challenging problem 
from the analytical point of view, and no other expressions are 
available in closed form for the diffraction coefficients associated with 
the considered problem. 
 Although approximate, the developed UAPO solutions are very 
appealing from the engineering point of view, since they provide 
reliable and accurate results, are computationally efficient and easy to 
handle. Accordingly, they can be surely useful in all the applications 
wherein truncation effects are not negligible. 

 
5.2 Future studies 
 
In many modern EM applications such as the design of antennas, 
UWB communication and radar systems, a correct characterization of 
the diffraction contributions due to the finite dimensions of the 
structures is essential. Although numerical techniques could be 
employed to solve problems having dimensions moderately large in 
terms of wavelength, they are not efficient and poorly convergent at 
high frequencies. As a consequence, the availability of simple, closed 
form and quite accurate diffraction coefficients is desirable. To this 
end, the developed UAPO solutions can be surely useful to describe 
the scattering phenomena for many canonical configurations under 
plane wave illumination. Areas of further investigations include: 
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 Generalization of the UAPO solutions to cylindrical and 
spherical wave illumination and other types of sources (electric 
dipole, etc.). 

 Generalization of the UAPO solution for the arbitrary-angled 
dielectric wedge to the case of skew incidence.  

 Evaluation of the field diffracted by composite structures 
(adjacent metallic and dielectric wedges) using the UAPO 
approach. 

 



 

 

 
 
 



 

 

 

Appendix A 

Acute angled wedge: equivalent surface 
currents 
 

In this Appendix the equivalent surface currents in the radiation 
integrals (3.43), (3.44) are determined by means of a PO 
approximation, in both cases of E- and H-polarization. 
 

E-polarization 
 
 Pre-inversion GO magnetic fields 
 
To calculate the equivalent currents it has been necessary to determine 
preliminarily the GO magnetic fields corresponding to electric fields 
found in Subsec. 3.2.1. The magnetic fields for the first series of rays 
propagating towards the apex can be simply obtained by applying the 
property of plane wave: 
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wherein d  is the wedge impedance,  0̂ cos ', sin ', 0rs    is the 

unit vector along the ray reflected from the external face of 0S , 

 0 0 , 0 ,ˆ sin cos 0L
t t t

L Ls      is the unit vector along the ray 

transmitted through 0S ,  ˆ sin , cos , 0n
r i i

n ns      for n even is the 

unit vector along the rays reflected from the internal face of 0S , 
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 1 1ˆ sin , cos , 0n
r i i

n ns      for n odd is the unit vector along the rays 

reflected from the internal face of nS ,  , ,ˆ sin cos 0n
t t t

n ns     for n 

even is the unit vector along the ray transmitted through 0S , and 

ˆ sin( ), cos( ), 0n
t t t

n ns            for n odd is the unit vector along 

the ray transmitted through nS . 

 Now, the equivalent currents in the radiation integrals (3.43), 
(3.44) are determined by means of a PO approximation. 
 
 External problem 
 
By using eqns. (A.1), (A.2), (A.6) and (3.23) it results on 0S : 
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Moreover, by using eqns. (A.7) and (3.23), the currents on nS  are 

given by: 
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 Internal problem 
 
By using eqns. (A.3), (A.4) and (3.22) it results on 0S : 
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The currents on nS  can be determined by means of eqns. (A.5) and 

(3.22): 
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 Post-inversion GO magnetic fields 
 
The magnetic fields for the second series of rays propagating far from 
the apex can be simply obtained by applying the property of plane 
wave: 
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wherein d  is the wedge impedance,  0
0 , 0 ,ˆ sin cos 0R

t t t
R Rs     is 

the unit vector along the first ray reflected from the internal face of 0S  

after the inversion,  ˆ sin , cos , 0m
R
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m ms     for m even is the unit 

vector along the rays reflected from the internal face of 0S , 
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m ms     for m odd is the unit vector along the 

rays reflected from the internal face of nS ,  , ,ˆ sin cos 0m
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for m even is the unit vector along the ray transmitted through 0S , and 



 

 

 129 

ˆ sin( ), cos( ), 0m
R
t t t

n ms           for m odd is the unit vector 

along the ray transmitted through nS . 

 Now, the equivalent currents in the radiation integrals (3.43), 
(3.44) are determined by means of a PO approximation. 
 
 External problem 
 
By using (A.19) and (3.33) it results on 0S : 
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Moreover, by using eqns. (A.20) and (3.33), the currents on nS  are 

given by: 
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 Internal problem 
 
By using eqns. (A.16), (A.17) and (3.32) it results on 0S : 
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The currents on nS  can be determined by means of eqns. (A.18) and 

(3.32): 
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H-polarization 
 
Starting from the expressions for GO electric fields shown in Subsec. 
3.2.6, the equivalent currents in the radiation integrals (3.43), (3.44) 
are determined by means of a PO approximation. 
 
 External problem 
 
By using (3.112) it results on 0S : 
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Moreover, the currents on nS  are given by: 
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 Internal problem 
 
By using eq. (3.113) it results on 0S : 
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The currents on Sn are 
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