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Abstract

Predicate encryption is an important cryptographic primitive (see [7, 14, 28]) that enables
fine-grained control on the decryption keys. Let Π be a class of binary predicates. Roughly
speaking, in a predicate encryption scheme for Π the owner of the master secret key Msk
can derive secret key SkP , for any predicate P ∈ Π. In encrypting a message M , the
sender can specify an attribute ~x and the resulting ciphertext X̃ can be decrypted only by
using keys Sk~y such that P (~x) = 1. Our main contribution is the first construction of a
predicate encryption scheme that can be proved fully secure against unrestricted queries
by probabilistic polynomial-time adversaries under non-interactive constant sized (that is,
independent of the length ` of the attribute vectors) hardness assumptions on bilinear
groups.

Specifically, we consider Hidden Vector Encryption (HVE for short), a notable case
of predicate encryption introduced by Boneh and Waters [14]. In a HVE scheme, the
ciphertext attributes are vectors ~x = 〈x1, . . . , x`〉 of length ` over alphabet Σ, keys are
associated with vectors ~y = 〈y1, . . . , y`〉 of length ` over alphabet Σ ∪ {?} and we consider
the Match(~x, ~y) predicate which is true if and only if, for all i, yi 6= ? implies xi = yi.
Previous constructions limited the proof of security to restricted adversaries that could
ask only non-matching queries; that is, for challenge attribute vectors ~x0 and ~x1, the
adversary could ask only keys for vectors ~y such that Match(~x0, ~y) = Match(~x1, ~y) = 0.
Generally speaking, restricted adversaries can ask only queries that do not satisfy neither
of the challenge attributes. At time of writing, the construction of schemes secure against
unrestricted adversaries was an open problem, not just for HVE, but for any non-trivial1

predicate encryption system and a candidate solution for HVE is presented in this thesis.
Beyond that, we will also discuss other kinds of predicate encryption systems, their security
notions and applications.

1For some specific cases of Predicate Encryption Systems like Anonymous IBE the adversary can ask
only queries for predicates that do not satisfy neither of the challenges, so that for these systems the security
against ’restricted’ adversaries is the best we can guarantee.
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Chapter 1

Preface

Predicate encryption is a young area of research that generalizes traditional encryption. In
classical encryption the decryption key allows to decrypt any ciphertext, that is, it imple-
ments a all-or-nothing policy. Predicate encryption (henceforth, PE) offers a mechanism
to implement more sophisticated policies. In PE you can decrypt a ciphertext only if you
own a special key which satisfies a relationship with such ciphertext. In PE systems, ci-
phertexts are associated to some attributes x, and the system can generate keys for some
boolean predicates. The owner of a key for predicate P can decrypt a ciphertext associated
with attribute x iff P (x) = 1. Consider the case of Identity-Based Enryption (IBE). In a
IBE system, you can encrypt a message for an user id without knowing his/her public-key,
but simply specifying his/her identity. The user id has a decryption key for identity id by
means of which can decrypt ciphertexts associated with id, but another user with key for
id′ cannot leak any information from any ciphertexts associated with identities different
from id′. This guarantees great flexibility since it avoids to use digital certificates. IBE can
be viewed as a very special case of PE where the class of predicates that of equality. PE
systems can be attribute-hiding or not, meaning that the ciphertexts hides the attributes
or not. A very interesting case of PE system is the so called Hidden Vector Encryption
(HVE for shorthand). It is a PE system for the Match predicate. In HVE, the attribute
~x associated with the ciphertext is a string of length ` over an alphabet Σ and keys are
associated with strings ~y of length ` over the alphabet Σ? = Σ ∪ {?}. The predicate
Match(~x, ~y) = 1 iff for each i ∈ [`] it holds that yi = ? or yi = xi. HVE systems allow to
search over encrypted data. For instance, consider a system where the HVE ciphertexts are
associated with attributes specifyng 4 fields: ’Name’, ’Surname’, ’Position’, ’Department’.
In this scenario the owner of a HVE key for pattern ~y = (?,′ Iovino′, ?,′CS′) would allow
its to decrypt the ciphertexts associated with attribute whose ’Surname’ field is ’Iovino’
and whose ’Department’ field is ’CS’. From this example it is clear that HVE can be use-
fully applied to implement an encrypted database that allows conjunctive queries. We will
show other applications of HVE in this thesis. While other powerful PE systems have been
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14 CHAPTER 1. PREFACE

studied in literature, this thesis will focus mostly on HVE implementations that have been
one of the subjects of study of the author. However, other systems, mainly inner-product
encryption and Anonymous (H)IBE systems will be discussed.

The Contribution of This Thesis. The main result of this thesis will be the imple-
mentation and the security proof (based on simple assumptions) of a HVE cryptosystem
secure against unrestricted adversaries. At time of writing, previous HVE systems as well
as any other non-trivial predicate encryption systems were proven secure nly against a
restricted class of adversaries. Namely, these systems prohibited the attacker to specify
two challenges that both satisfy the predicates for which the adversary has obtained a cor-
responding key. In the present thesis, the author presents the first non-trivial PE system
that overcomes this limitation.

The following works form a basis for this thesis:

• Vincenzo Iovino and Giuseppe Persiano. Hidden-vector encryption with groups of
prime order. In Pairing 2008, [27].

• Angelo De Caro, Vincenzo Iovino and Giuseppe Persiano. Fully secure anonymous
hibe and secret-key anonymous ibe with short ciphertexts. In Pairing 2010, [18].

• Carlo Blundo, Vincenzo Iovino and Giuseppe Persiano. Predicate encryption with
partial public keys. In Cryptology and Network Security (CANS) 2010, [4].

• Carlo Blundo, Vincenzo Iovino, and Giuseppe Persiano. Private-key hidden vector
encryption with key confidentiality. In Cryptology and Network Security (CANS)
2009, [3].

• Angelo De Caro, Vincenzo Iovino and Giuseppe Persiano. Efficient Fully Secure
(Hierarchical) Predicate Encryption for Conjunctions, Disjunctions and k-CNF/DNF
formulae. Technical report avaiable from http://eprint.iacr.org/2010/492 , [2].

• Angelo De Caro, Vincenzo Iovino and Giuseppe Persiano. Hidden Vector Encryption
Fully Secure Against Unrestricted Queries - No Query Left Unanswered. Unpublished
Manuscript.

• Angelo De Caro and Vincenzo Iovino. jpbc: Java pairing based cryptography. To
appear in ISCC 2011, [17].

Some of them are used only partially or like a reference. Some other material exhibitted
in this thesis is taken, with or without modifications, from other works explicitly quoted.

http://eprint.iacr.org/2010/492
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1.1 Organization of The Thesis.

In Chapter 2 we will introduce the concept of Predicate Encryption system and its se-
curity notions. We will also present the very important special cases of Hidden Vector
Encryption (HVE) and of Inner Product Encryption (IPE). In Chapter 3 we will present
applications of Predicate Encryption to the real world and reductions among Predicate
Encryption primitives. In Chapter 4 we will study the relation of the game-based notions
of security given previously and simulation-based notions of security. We will show that
they do not coincide and even the most elementary form of Predicate Encryption system,
namely Identity-based Encryption (IBE), is impossible to achieve in the simulation-based
paradigm. Next, in Chapter 5 we will present the bilinear groups. They will be our main
mathematical building block which our constructions will be based on. In Chapter 6 we
will present our first HVE construction. It is due to the author and Giuseppe Persiano [27].
Its security will be in the selective-id model but it is implemented on prime order bilinear
groups, so it is more efficient than following constructions. We will give pointers to its
implementation in Appendix C. To move to fully secure contructions we will use the Dual
System Encryption methodology that it will be discussed in Chapter 7. In this Chapter we
will also discuss the history and the different techniques encountered in the development
of previous predicate encryption systems like IBE. As an intermediate result between our
selectively secure HVE and our HVE secure against unrestricted adversary, in Chapter 8 we
will present contructions for 0- and 1-secure HVE. The material here is taken from a work
of the author with Angelo De Caro and Giuseppe Persiano [2]. In Chapter 9 we will make
an interlude and will discuss (Anonymous) (Hierarchical) IBE (AHIBE) primitives and will
present their implementation both in the public-key and in the symmetric-key model. This
appeared in a work of the author with Angelo De Caro and Giuseppe Persiano [18]. In
Chapter 11, we will extend the concept of Hierarchical Predicate Encryption presenting
our construction for a Hierarchical Hidden Vector Encryption scheme. This Chapter comes
from [2]. In Chapter 12 we will present our main result: an HVE scheme secure against
unrestricted adversaries. This chapter is a novel work not previously appeared in literature.
Next, in Chapter 13 we will show a construction for Inner Product Encryption that is a
more general form of Predicate Encryption. Finally, we will discuss open problems and
challenges in this area of research. The selection and the order of the presentation is meant
to take in account the research of the author as well as the history of the developement of
this area of research. Indeed, though the main result has as special case both the selectively
secure scheme and the scheme secure against restricted adversaries, to present the general
result directly would overshadow the obstacles and the ideas developed to reach it.
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Chapter 2

Predicate Encryption Systems

In this chapter we give formal definition for Predicate Encryption schemes and its security
properties.

Following standard terminology, we call a function ν(λ) negligible if for all constants
c > 0 and sufficiently large λ, ν(λ) < 1/λc and denote by [n] the set of integers {1, . . . , n}.
Moreover the writing “a← A” for a finite set A denotes that a is randomly and uniformly
selected from A.

2.1 Predicate Encryption Systems

Let Π be a class of binary predicates over a set of strings Σ and letM a space of messages
that do not contain the special symbol ⊥. We will often omit the reference to the message
spaceM. We assume that associated with each predicate P in this class there is an efficient
description < P > of such predicate. With slight abuse of notation we will say that an
algorithm takes as input a predicate P ∈ Π when it is clear that it takes as input its
description < P >. A predicate P ∈ Π maps strings ~x ∈ Σ of (polynomial size in the
description of the predicate) to {0, 1}. Sometimes we also call such strings ~x, vectors or
attribute. We will often omit the reference to the set of definition Σ of Π. If P (~x) = 1 we
also write that P (~x) = TRUE or say that P (~x) is satisfied.

A Predicate Encryption scheme for the class of predicates Π and for message spaceM
is a tuple of four efficient probabilistic algorithms (Setup, Encrypt, KeyGen, Decrypt) with
the following semantics.

Setup(1λ): takes as input a security parameter λ (given in unary), and outputs the
public parameters Pk and the master secret key Msk.

KeyGen(Msk, P ): takes as input the master secret key Msk and a predicate P ∈ Π, and
outputs a secret key Sk~y.

Encrypt(Pk, ~x,M): takes as input the public parameters Pk and a binary string ~x ∈
{0, 1}poly(λ) and a message M ∈M and outputs a ciphertext Ct.

17



18 CHAPTER 2. PREDICATE ENCRYPTION SYSTEMS

Decrypt(Pk,Ct,Sk~y): takes as input the public parameters Pk, a ciphertext Ct encrypt-
ing ~x and M and a secret key Sk~y and outputs a message M ′ ∈M.

For correctness we require that for pairs (Pk,Msk), output by Setup(1λ), it holds that
for all strings ~x{0, 1}poly(λ) and predicates P ∈ Π, we have that

Decrypt(Pk,Encrypt(Pk, ~x,M),KeyGen(Msk, ~y)) = M ′ if P (~x) is satisfied and a special
symbol ⊥ otherwise, except with negligible in λ probability.

2.2 Security definitions for Predicate Encryption

In this section we formalize our security requirement by means of a security game GRealξ
parametrized by a subset ξ of {0, 1}, that is ξ is one between {0}, {1},{0, 1}. Sometimes, if
ξ is, respectively, either {0} or {1} we also omit the brackets and take ξ to be, respectively,
0 or 1. When it is clear from context we also omit the subscript ξ. GRealξ is played
abetween a probabilistic polynomial time adversary A and a challenger C. GRealξ consists
of a Setup phase and of a Query Answering phase. In the Query Answering phase, the
adversary can issue a polynomial number of Key Queries and one Challenge Construction
query for two pairs (~x0,M0) and (~x1,M1) of the same length and at the end of this phase A
outputs a guess. We stress that key queries can be issued by A even after he has received
the challenge from C. In GReal the adversary is restricted to queries for predicates P ∈ Π
such that P (~x0) = P (~x1) ∈ ξ when M0 = M1 and to queries for predicates P ∈ Π such
that P (~x0) = P (~x1) = 0 when M0 6= M1.

More precisely, we define game GRealξ in the following way.

Setup. C runs the Setup algorithm on input the security parameter λ (given in unary)
to generate public parameters Pk and master secret key Msk. C starts the interaction with
A on input Pk.

Key Query Answering 1. Upon receiving a query for predicate P ∈ Π, C returns
KeyGen(Msk, P ).

Challenge Construction. Upon receiving the two pairs attribute/message (~x0,M0)
and (~x1,M1) of the same length, C picks random η ∈ {0, 1} and returns Encrypt(Pk, ~xη,Mη).

Key Query Answering 2. Identical to the first Key Query Answering phase.

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′

and for all predicates P for which A has issued a Key Query, it holds that either M0 = M1

and P (~x0) = P (~x1) ∈ ξ or M0 6= M1 and P (~x0) = P (~x1) = 0.

We define the advantage AdvAΠ,ξ(λ) of A in GRealξ to be the probability of winning
minus 1/2. When ξ = {0, 1} we omit the superscript ξ.

Definition 1. A predicate encryption scheme for the class of predicates Π is ξ-secure if
for all probabilistic polynomial time adversaries A, we have that AdvAΠ,ξ(λ) is a negligible
function of λ.
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It is trivial to observe that no scheme can be secure against an adversary that possesses
a secret key for a predicate P such that P (~x0) 6= P (~x1).

The above ξ-parametrized definition of security has as special case that we take as the
strongest notion of security.

Definition 2. A predicate encryption scheme for the class of predicates Π is secure if it
is {0, 1}-secure

Notice that for 0-security the adversaries are restricted to query for predicates P such
that P (~x0) = P (~x1) = 0 when M0 = M1. We call adversaries with such a restriction
restricted adversaries. If we let ξ = 0 we have the following weaker form of security.

Definition 3. A predicate encryption scheme for the class of predicates Π is secure against
restricted adversaries if it is 0-secure

We also call {0, 1}-security security against unrestricted adversaries due to the fact that
for {0, 1}-secure schemes the adversaries have no such a restriction. In literature 0-security
is also called match revealing and {0, 1}-security match concealing.

2.3 Chosen-Ciphertext Attack.

Our definitions of security assume adversaries capable to perform a Chosen-Plaintext At-
tack (CPA). A more strong notion of security is that of security against Chosen-Ciphertext
Attacks (CCA). In the latter model the adversary has also access to a decryption oracle
for all ciphertexts but the challenge ciphertext. It can be viewed that CCA-secure schemes
cannot be malleable meaning that given an encryption of a message M you cannot produce
an encryption for f(M) for some function M . This is not guaranteed by CPA-security. A
general transformation by Canetti, Halevi and Katz [16] allows to convert a CPA-secure
scheme into a CCA-secure scheme by a slight loss of efficiency. The transformation is
generic, thus we will focus on CPA-security. A more efficient transformation was given by
Boneh and Katz [11].

2.4 The Trivial Construction

Boneh and Waters [14] show a trivial construction of PE for each class of predicates assum-
ing a public-key encryption system. Anyway, this construction is linear in the number of
predicates in the class (and thus, highly inefficient) and just serves as an existential result.
The construction is essentially a brute force system. Assume the existence of a secure
public-key system. The setup generates a pair public-key and secret-key (of the public-key
system) for each predicate in the class. For the predicates that satisfy a given attribute,
the PE encryption algorithm encrypts the message by using the public-key system with
the corresponding public-key and encrypts ⊥ for the predicates that do not satisfy the
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attribute. Thus, the length of the ciphertext is proportional to the number of predicates
in the class. The key associated with a predicate is just the secret key of the public-key
system associated with this predicate. It allows to only decrypt the ciphertexts associated
with attributes that satisfy the predicate. It is obvious that this PE system is correct and a
standard hybrid argument reduces its security to the security of the underlying public-key
system.

2.5 Attribute-hiding vs Payload-hiding

The above definitions are meant to protect both the message M and the attribute ~x of a
ciphertext encrypted for the pair (~x,M). Schemes satisfying such a property of security
are also called attribute-hiding or anonymous. We could relax the definition to hide only
the message M . Such schemes are told to satisfy the payload-hiding property. We derive
this notion of security from the previous restricting the adversary to ask a challenge with
~x0 = ~x1. Notice that in this case, without loss of generality, we can suppose that M0 6= M1

(otherwise the adversary would have no advantage) and thus only the {0, 1}-security has
sense. More precisely, we define the following game GReal (notice that is different from the
previous games but for sake of simplicity we use the same name) .

Setup. C runs the Setup algorithm on input the security parameter λ (given in unary)
to generate public parameters Pk and master secret key Msk. C starts the interaction with
A on input Pk.

Key Query Answering 1. Upon receiving a query for predicate P ∈ Π, C returns
KeyGen(Msk, P ).

Challenge Construction. Upon receiving the two pairs attribute/message (~x,M0)
and (~x,M1) of the same length, C picks random η ∈ {0, 1} and returns Encrypt(Pk, ~x,Mη).

Key Query Answering 2. Identical to the first Key Query Answering phase.

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′

and for all predicates P for which A has issued a Key Query, it holds that P (~x) = 0.

We define the advantage AdvAΠ (λ) of A in GReal to be the probability of winning minus
1/2.

Definition 4. A predicate encryption scheme for the class of predicates Π is payload-
hiding if for all probabilistic polynomial time adversaries A, we have that AdvAΠ (λ) is a
negligible function of λ.

Attribute-based Encryption. In literature, Predicate Encryption schemes that only
guarantee the security of the plaintext, i.e., payload-hiding schemes, are also called

Attributed-Based Encryption (ABE) schemes. Usually, they allow to achieve more ex-
peressive predicates at the cost of losing the security of the attribute.



2.6. SELECTIVE-ID SECURITY 21

2.6 Selective-id Security

Another weaker form of security is the selective-id model, also called selective-attribute
model in the context of PE systems. In it, the adversary commits to the challenge attribute
~x0 and ~x1 before seeing the public-key. It is well-known that there are schemes that are
selective-id secure but not secure. Anyway, proof of security in the selective-id model
are either simpler to obtain or rely on simpler assumptions, so that a lot of schemes in
literature were proved to be selectively-id secure. In Section 6 we present a such scheme.
Henceforth, we will often remove the term ’id’ from ’selective-id’ and we will simply speak
about ’selective’ security. Even for selective security it makes sense to distinguish security
parametrized by 0, 1 or {0, 1}. We now present a formal definition of {0, 1}-selectively
security. by a mean of a game GRealξ in the following way.

Commit. A, given the security parameter λ, gives A two attributes ~x0 and ~x1.

Setup. C runs the Setup algorithm on input the security parameter λ (given in unary)
to generate public parameters Pk and master secret key Msk. C starts the interaction with
A on input Pk.

Key Query Answering 1. Upon receiving a query for predicate P ∈ Π, C returns
KeyGen(Msk, P ).

Challenge Construction. Upon receiving the two messages M0 and M1 of the same
length, C picks random η ∈ {0, 1} and returns Encrypt(Pk, ~xη,Mη).

Key Query Answering 2. Identical to the first Key Query Answering phase.

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′

and for all predicates P for which A has issued a Key Query, it holds that either M0 = M1

and P (~x0) = P (~x1) ∈ ξ or M0 6= M1 and P (~x0) = P (~x1) = 0.

We define the advantage AdvAΠ,ξ(λ) of A in GRealξ to be the probability of winning
minus 1/2. When ξ = {0, 1} we omit the superscript ξ.

Definition 5. A predicate encryption scheme for the class of predicates Π is xi-selectively
secure if for all probabilistic polynomial time adversaries A, we have that AdvAΠ,ξ(λ) is a
negligible function of λ.

It is trivial to observe that no scheme can be secure against an adversary that possesses
a secret key for a predicate P such that P (~x0) 6= P (~x1).

The above ξ-parametrized definition of selective security has as special case that we
take as the strongest notion of security.

Definition 6. A predicate encryption scheme for the class of predicates Π is selectively
secure if it is {0, 1}-selectively secure

Definition 7. A predicate encryption scheme for the class of predicates Π is selectively
secure against restricted adversaries if it is 0-selectively secure

In Section 6.1 we will separate selective security from full security.
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2.7 Full-fledged vs Predicate-only schemes

For some applications, it is useful to consider a variant of the Predicate Encryption schemes,
that we call a predicate-only scheme whereas the previously defined schemes are called full-
fledged. Here, the encryption procedure takes only the attribute ~x and not even the message.
The procedure Decrypt only returns P (~x) when execute with a key for P and a ciphertext
for ~x. In this context, thus, it makes more sense to substitute the Decrypt procedure with
a Test procedure that has the same semantic except that it takes only the attribute (and
no message) and returns a boolean value. The ξ-security notion for predicate-only scheme
is identical to that for full-fledged schemes except that, since such schemes do not involve
messages, the challenge is constituted by two attributes ~x0 and ~x1 and the requirement is
that the adversary cannot issue query for predicates P such that P (~x0) = P (~x1) ∈ ξ.

2.8 Hidden Vector Encryption

In this thesis we will focus on the very special case of Predicate Encryption that is Hidden
Vector Encryption (HVE). HVE was first introduced by Boneh and Waters [14]. We now
present HVE. Let ~x be vector of length ` over the alphabet {0, 1} and ~y vector of the same
length over the alphabet {0, 1, ?}. Define the predicate Match(~x, ~y) = TRUE if and only if
for any i ∈ [`], it holds that xi = yi or yi = ?. That is, the two vectors must match in the
positions j where yj 6= ?.

A Hidden Vector Encryption scheme is a predicate encryption scheme for the predicate
Match (formally, for the class of predicates {Match(·, ~y)}~y∈{0,1,?}poly(λ)). For completeness,
we present of definition of a (predicate-only) Hidden Vector Encryption scheme as a tuple
of four efficient probabilistic algorithms (Setup, Encrypt, KeyGen, Test) with the following
semantics.

Setup(1λ, 1`): takes as input a security parameter λ and a length parameter ` (given in
unary), and outputs the public parameters Pk and the master secret key Msk.

KeyGen(Msk, ~y): takes as input the master secret key Msk and a vector ~y ∈ {0, 1, ?}`,
and outputs a secret key Sk~y.

Encrypt(Pk, ~x): takes as input the public parameters Pk and a vector ~x ∈ {0, 1}` and
outputs a ciphertext Ct.

Test(Pk,Ct,Sk~y): takes as input the public parameters Pk, a ciphertext Ct encrypting
~x and a secret key Sk~y and outputs Match(~x, ~y).

For correctness we require that for pairs (Pk,Msk), output by Setup(1λ, 1`), it holds
that for all vectors ~x ∈ {0, 1}` and ~y ∈ {0, 1, ?}`, we have that

Test(Pk,Encrypt(Pk, ~x),KeyGen(Msk, ~y)) = Match(~x, ~y) except with negligible in λ prob-
ability.
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Remark 8. Notice that the Setup of HVE scheme takes as input also a length parameter
that is not given in the definition of Predicate Encryption scheme. Anyway it is easy to
adapt the definition to take in account such separated parameters.

2.8.1 Security definitions for HVE

For completeness, we present a security definition for HVE just for the case of ξ = {0, 1},
and thus we will also omit the parameter. We stress that we can elaborate such definition
for each ξ ⊂ {0, 1} analogously to what done in Section 2.2. As usual, we formalize our
security requirement by means of a security game GReal between a probabilistic polynomial
time adversary A and a challenger C. GReal consists of a Setup phase and of two Query
Answering phases. In the Query Answering phases, the adversary can issue a polynomial
number of Key Queries and one Challenge Construction query and at the end of this phase
A outputs a guess. We stress that key queries can be issued by A even after he has received
the challenge from C. In GReal the adversary is restricted to queries for vectors ~y such that
Match(~y, x0) = Match(~y, x1).

More precisely, we define game GReal in the following way.

Setup. C runs the Setup algorithm on input the security parameter λ and the length
parameter ` (given in unary) to generate public parameters Pk and master secret key Msk.
C starts the interaction with A on input Pk.

Key Query Answering 1.. Upon receiving a query for vector ~y, C returns

KeyGen(Msk, ~y).

Challenge Construction. Upon receiving the pair (~x0, ~x1), C picks random η ∈ {0, 1}
and returns Encrypt(Pk, ~xη).

Key Query Answering 2. Identical to the first Key Query Answering phase.

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′

and for all ~y for which A has issued a Key Query, it holds Match(~x0, ~y) = Match(~x1, ~y).

We define the advantage AdvAHVE(λ) of A in GReal to be the probability of winning
minus 1/2.

Definition 9. An Hidden Vector Encryption scheme is secure if for all probabilistic poly-
nomial time adversaries A, we have that AdvAHVE(λ) is a negligible function of λ.

It is trivial to observe that no scheme can be secure in the sense of Definition 2 against an
adversary that possesses a secret key for a vector ~y such that Match(~y, ~x0) 6= Match(~y, ~x1).

2.9 (Anonymous) Identity-Based Encryption.

Identity-based Encryption (IBE) is a very important class of predicate encryption schemes
that it was initially proposed to solve the problem of distribution of certificates. IBE
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was first proposed by Shamir [36], and the first concrete scheme was built by Boneh and
Franklin [8]. In a IBE scheme the encryptor can encrypt a message without knowing the
public-key of the receiver but only specifying his/her identity. The receiver, having a special
decryption key associated with his/her identity, can decrypt each ciphertext encrypted with
his/her identity. IBE schemes do not guarantee the security of the identity. Anonymous
IBE (AIBE) schemes also guarantee this level of security. AIBE schemes are also used
to search over encrypted data. In fact, you can see identities as keywords, and having a
decryption key for a keyword k allow you to check whether a given ciphertext was encrypted
for the same keyword without leaking any other information neither on the message nor
on the keyword of the ciphertext. Predicate-only AIBE schemes are also called Public-
key Encryption with Keyword Search (PEKS) schemes or also Searchable Encryption (SE)
schemes. Notice that the class of predicates of AIBE/PEKS schemes is that of the equality
predicate. PEKS schemes allow to perform secure tests of equality on the encrypted data.
PEKS primitive was introduced and built by Boneh, Di Crescenzo, Ostrovsky and Persiano
[7].

2.10 Inner-product encryption.

Another important predicate is the inner-product predicate introduced by Katz, Sahai
and Waters [28]. In it, the set of attributes is Σ = ZnN and the class of predicates is
Π = {P~x | x ∈ ZnN} with P~x(~y) = 1 iff < ~x, ~y >= 0 mod N . Here N is the modulus and
can be a composite number and n is a length parameter. This predicate has as special case
HVE. We show applications of inner-product encryption in Chapter 3.

2.11 Hierarchical PE

Another extension of the concept of PE is that of allowing a mechanism to delegate more
specialized predicates from key for more general predicates. We will offer two examples
of this, in Chapters 9 and 11. The first one regards Hierarchical IBE, a primitive first
proposed by Horwitz and Lynn [26]. The second implements a hierarchy in the context of
HVE. This was first proposed by Shi and Waters [38]. In the case of HVE it is natural to
offer the possibility of delegatin a key for vector ~z from a key for vector ~v if ~z is lower in the
hierarchy of ~v meaning that ~z agrees with to ~v in all positions i where vi 6= ? but, possibly,
~z can be different from ~v in some positions j where ~v = ?. A scheme that implements this
mechanism is called Hierarchical HVE (HHVE for short) and will be discussed in Chapter
11. Other hierarchical systems (not discussed in this thesis) include hierarchical inner-
product encryption introduced by Okamoto and Takashima [33]. In this system, given a
key for some vector (~v, 0n) over the alphabet ZN you may delegate, for example, a vector
~w = (v, a, 0n−1) for some a ∈ ZN .
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2.12 Symmetric-key PE

Previous definitions are formulated in the public-key setting. Notice that in it, it has no
meaning to consider the security of the predicate. That is, we would like that keys would not
leak any information on the associated predicate. In the public-key model this is impossible
to achieve. In fact, an adversary could test whether a given key K is for the predicate P
by simply creating a ciphertext for an attribute x such that P (x) is satisfied. This is
possible since the adversary knows the public-key. Therefore, it is natural to consider a
symmetric-key scenario where the adversary does not know the public-key and to formalize
the notion of key security. Shi, Shen and Waters [37] presented the first symmetric-key
PE for inner product. Following this work, Blundo, Iovino and Persiano [3] considered a
weaker notion for HVE. In their model, the leakage of the positions where the vector key
contains a ? is not considered a breach of security. The key has to hide just the positions
different from ?. This has sense for applications as the search in an encrypted database,
where is not considered dangerous if an attacker can discover which fields of the database
the user is searching on until it is hidden what the user is searching. For example the user
could query the database for tuples satisfying ’Name=Vincenzo’ and ’Surname=Iovino’.
An attacker could identifies that the user is searching in the fields ’Name’ and ’Surname’
rather than ’City’ or ’Job’, but the content of those fields is hidden, that is the attacker
cannot to learn ’Vincenzo’ and ’Iovino’. In Chapter 10 we will also present a symmetric-key
implementation of Anonymous IBE.

2.13 PE with Partial Public-keys

We would like to stress though that ’Key Security’ is not achievable in a pure public-key
scenario: as told previously, given key for P for an unknown predicate P an adversary could
check if P (x) holds by creating a ciphertext C for attribute vector x using the public-key,
and then testing P against C. In the rest of this discussion we focus on HVE. We thus
can consider a partial public-key model in which the key owner can decide on a policy that
describes which subset of the ciphertexts can be generated. More specifically, a policy
Pol = 〈Pol1, . . . ,Pol`〉 is simply a vector of length ` of subsets of Σ with the following
intended meaning: the public key associated with policy Pol allows to create ciphertexts
with attribute vector ~x = 〈x1, . . . , x`〉 iff and only for i ∈ [`] we have that xi ∈ Poli.
The private key scenario corresponds to a policy Pol with Poli = ∅ for all i’s; whereas a
public key scenario corresponds to a policy with Poli = Σ for all i’s. For example, for
` = 2,Σ = {0, 1}, and policy Pol = 〈{1}, {0, 1}〉, then public key PPKPol associated with
Pol allows to create ciphertexts with attribute vector ~x = 〈1, 0〉 but not ~x = 〈0, 1〉. In
the formal definition of Token Security we thus require that an adversary is not able to
distinguish between tokens with pattern ~y0 or ~y1 with respect to a policy Pol provided that
the two patterns have the same value of the predicate Match for all attributes ~x that can be
encrypted under policy Pol. Notice that this shares the same limitation of the previously
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quoted system of [3] in that the keys leak information on the ?’s positions. This model
has been proposed by the author and Carlo Blundo and Giuseppe Persiano. Details can
be found in [4].



Chapter 3

Applications

PE schemes have a lot of applications. We present a bunch of them. Then, we focus on
the HVE predicate and show that other important applications can be recast as instance
of it.

3.1 Outsourcing of encrypted data.

Searching over encrypted data. PE allow to search over encrypted data in an obliv-
ious and secure way. Alice encrypts an attribute string x. By a key for a predicate
y, Bob can test if the encrypted ciphertext is associated with an attribute x such that
P (x, y) = TRUE. Such a functionality can be exploited to construct secure anti-spam
check over encrypted data. In the case of HVE schemes we can search if an encrypted
document satisfies a given pattern, for example if the document begins with the word
”SECRET”.

Outsourcing of encrypted data. Another important application raises in the context
of secure databases. The owner of the database outsources his encrypted data to a remote
storage. Then, he wants to retrieve from the database only the tuples satisfying a given
search pattern. This is accomplished by using a symmetric-key PE scheme along with a tra-
ditional symmetric-key encryption scheme. For each pair (value, attribute) the DB owner
computes c, the encryption of attribute given by the PE scheme, and C, the encryption of
value for the symmetric-key scheme. It sends to the remote storage the pair (c.C). When
it wants to search the presence in the DB of a tuple satisfying the pattern y, it computes
the PE key for y and sends it to the remote storage. The latter uses the Test functions of
the PE scheme to find tuples that satisfy the pattern, and for each of them it returns the
corresponding encrypted value c, that the user decrypts by using the simmetric-key. In
this scenario it makes sense to extend the security also to hide information on the query.
That is, it would be useful to guarantee the privacy of what the user searches.

27
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3.2 Certificate-less Public-key Infrastructures

Identity-Based Encryption (IBE) was proposed by Shamir [36] as a mechanism to avoid
certificates in public-key infrastructures. To secretely send a message to a person, you
may use an IBE system by specifying his/her email as recipient without the need to know
his/her public-key. If the IBE is Anonymous, the transmitted encrypted message would
not even leak the recipient of the message.

3.3 Applications of HVE: Comparison, range and subset
queries

From the predicate HVE it is possible to derive other useful predicates. We present some
of them.

Conjunctive comparison queries.

Suppose Σ = {1, . . . , n}w for some n,w. Let Φn,w be the set of nw predicates

Pa1,...,aw(x1, . . . , xw) =

{
1 if xj ≥ aj for all j = 1, . . . , w,

0 otherwise

for all ~a = (a1, . . . , aw) ∈ {1, . . . , n}w. Then |Φn,w| = nw.

Let SetupH ,EncryptH ,KeyGenH ,DecryptH) be a secure HVE over {0, 1}nw, that is for
` = nw. We construct a Φn,w-searchable system as follows:

• Setup(1λ) is the same as SetupH(1λ).

• Encrypt(PK, x,M) where x = (x1, . . . , xw) ∈ {1, . . . , n}w, builds a vector σ(x) =
(σi,j) ∈ {0, 1}nw as follows:

σij =

{
1 if j ≥ xi,
0 otherwise

Then, it outputs EncryptH(PK, σ(x),M).

• KeyGen(Msk, P~a) where ~a = (a1, . . . , aw) ∈ {1, . . . , n}w, constructs σ?(~a) = (σij) ∈
{0, 1, ?}nw as follow:

σij =

{
1 if xi = j,

? otherwise

Finally it outputs KeyGenH(Msk, σ?(~a)).

• Decrypt(K~a,Ct) simply outputs DecryptH(K~a,Ct).
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Notice that the system has ciphertext of size O(nw) and keys of size O(w). Observe that
for a predicate P~a ∈ Φn,w and an attribute x ∈ {1, . . . , n}w we have that: P~a(x) = 1 iff
Match(σ(x), σ?(~a)) = 1. Therefore, correctness and security follow from the properties of
the HVE.

Range queries. Comparison queries can also be extended to support range queries. To
search whether x ∈ [a, b], the encryptor encrypts a pair (x, x) and the system can generate
a key for predicate that tests whether x ≥ a ∧ x ≤ b or not.

Subset queries.

Let T be a set of size n. We associate with a subset A ⊂ T a predicate

PA(x) =

{
1 if x ∈ A
0 otherwise

Let Φ be the set of all predicates Pσ for σ ∈ 2T . Given an HVE scheme
SetupH ,EncryptH ,KeyGenH ,DecryptH we build a Φ-searchable system as follows:

• Setup(1λ) is the same as SetupH(1λ).

• Encrypt(PK, x,M) where x ∈ T , builds a vector σ(x) = (σj) ∈ {0, 1}n as follows:

σj =

{
1 if x = j,

0 otherwise

Then, it outputs EncryptH(PK, σ(x),M).

• KeyGen(Msk, P~a) where ~a ∈ 2T , constructs σ?(~a) = (σj) ∈ {0, 1, ?}n as follow:

σj =

{
0 if j /∈ A,
? otherwise

Finally it outputs KeyGenH(Msk, σ?(~a)).

• Decrypt(K~a,Ct) simply outputs DecryptH(K~a,Ct).

Notice that the system has ciphertext of size O(n) and keys of size O(n). Observe that for a
predicate P~a ∈ Φ and an attribute x ∈ T we have that: P~a(x) = 1 iff Match(σ(x), σ?(~a)) =
1. Therefore, correctness and security follow from the properties of the HVE. It is easy to
extend the above construction to conjunctive subset queries.

In next section we show how to construct an encryption scheme for the class of Boolean
predicates that can be expressed as a k-CNF or k-DNF formula and disjunctions from an
HVE scheme.

We first start by giving formal definitions for the Boolean Satisfaction Problem and its
security properties.
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3.4 Boolean Satisfaction Encryption.

Let B = {Bn}n>0 be a class of Boolean predicates indexed by the number n of variables.
We define the Satisfy predicate as Satisfy(Φ, ~z) = Φ(~z) for ~z ∈ {0, 1}n.

An Encryption scheme for class B is a tuple of four efficient probabilistic algorithms
(Setup, Encrypt, KeyGen, Test) with the following semantics.

Setup(1λ, 1n): takes as input a security parameter λ and the number n of variables, and
outputs the public parameters Pk and the master secret key Msk.

KeyGen(Msk,Φ): takes as input the master secret key Msk and a formula Φ ∈ Bn and
outputs a secret key SkΦ.

Encrypt(Pk, ~z): takes as input the public parameters Pk and a truth assignment ~z for n
variables and outputs a ciphertext Ct.

Test(Pk,Ct,SkΦ): takes as input the public parameters Pk, a ciphertext Ct and a secret
key SkΦ and outputs TRUE iff and only if the ciphertext is an encryption of a truth
assignment ~z that satisfies Φ.

Correctness of Boolean Satisfaction Encryption. We require that for all pairs (Pk,Msk)←
Setup(1λ, 1n), it holds that for any truth assignment ~z for n variables, for any formula
Φ ∈ Bn over n variables we have that the probability that

Test(Pk,Encrypt(Pk, ~z),KeyGen(Msk,Φ)) 6= Satisfy(Φ, ~z) is negligible in λ.

3.4.1 Security Definitions for Boolean Satisfaction Encryption.

For Boolean Satisfaction encryption, we have a game similar to that of HVE. GReal can be
described in the following way.

Setup. C runs the Setup algorithm, (Pk,Msk)← Setup(1λ, 1n). Then C starts the interac-
tion with A on input Pk.

Key Query Answering. For Φ ∈ Bn, C returns KeyGen(Msk,Φ).

Challenge Construction. Upon receiving the pair (~z0, ~z1) of truth assignments over n
variables, C picks random η ∈ {0, 1} and returns Encrypt(Pk, ~zη).

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′ and,
for all Φ for which A has issued a Key Query, it holds that Satisfy(Φ, z0) = Satisfy(Φ, z1).

We define the advantage AdvAB (λ) of A in GReal to be the probability of winning minus
1/2.

Definition 10. An Encryption scheme for class B is secure if for all PPT adversaries A,
we have that AdvAB (λ) is a negligible function of λ.
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3.4.2 Reducing k-CNF to HVE

We consider formulae Φ in k-CNF, for constant k, over n variables in which each clause
C ∈ Φ contains exactly k distinct variables. We call such a clause admissible and denote
by Cn the set of all admissible clauses over the n variables x1, . . . , xn and set Mn = |C|.
Notice that Mn = Θ(nk). We also fix a canonical ordering C1, . . . , CMn of the clauses in
Cn.

Let H = (SetupH,KeyGenH,EncryptH,TestH) be an HVE scheme and construct a k-
CNF scheme kCNF = (SetupkCNF, KeyGenkCNF,EncryptkCNF,TestkCNF) as follows:

SetupkCNF(1λ, 1n): The algorithm returns the output of SetupH(1λ, 1Mn).

KeyGenkCNF(Msk,Φ): For a k-CNF formula Φ, the key generation algorithm constructs
vector ~y ∈ {0, 1, ?}Mn by setting, for each i ∈ {1, . . . ,Mn}, yi = 1 if Ci ∈ Φ;
yi = ? otherwise. We denote this transformation by y = FEncode(Φ). Then the key
generation algorithm returns SkΦ = KeyGenH(Msk, ~y).

EncryptkCNF(Pk, ~z): The algorithm constructs vector ~x ∈ {0, 1}Mn in the following way:
For each i ∈ {1, . . . ,Mn} the algorithms sets xi = 1 if Ci is satisfied by ~z; xi = 0 if
Ci is not satisfied by ~z. We denote this transformation by ~x = AEncode(~z). Then
the encryption algorithm returns Ct = EncryptH(Pk, ~x).

TestkCNF(SkΦ,Ct): The algorithm returns the output of TestH(SkΦ,Ct).

Correctness. Correctness follows from the observation that for formula Φ and assignment
~z, we have that Match(AEncode(~z),FEncode(Φ)) = 1 if and only if Satisfy(Φ, ~z) = 1.

Security. Let A be an adversary for kCNF that tries to break the scheme for n variables
and consider the following adversary B for H that uses A as a subroutine and tries to break
a H with ` = Mn by interacting with challenger C. B receives a Pk for H and passes it to
A . Whenever A asks for the key for formula Φ, B constructs ~y = FEncode(Φ) and asks C
for a key Sk~y for ~y and returns it to A. When A asks for a challenge by providing truth
assignments ~z0 and ~z1, B simply computes ~x0 = AEncode(~z0) and ~x1 = AEncode(~z1) and
gives the pair (~x0, ~x1) to C. B then returns the challenge ciphertext obtained from C to A.
Finally, B outputs A’s guess.

First, B’s simulation is perfect. Indeed, we have that if for all A’s queries Φ we have
that Satisfy(Φ, ~z0) = Satisfy(Φ, ~z1), then all B’s queries ~y to C also have the property
Match(~y, ~x0) = Match(~y, ~x1). Thus B’s advantage is the same as A’s. By combining the
above reduction with our constructions for HVE, we have the following theorems.

Theorem 11. For any constant k > 0, if Assumption 1 and 2 hold for generator G then
there exists a secure encryption scheme for the class of predicates that can be represented
by k-CNF formulae.
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3.4.3 Reducing Disjunctions to HVE

In this section we consider the class of Boolean predicates that can be expressed as a single
disjunction. We assume without loss of generality that a disjunction does not contain a
variable and its negated.

Let H = (SetupH,KeyGenH,EncryptH,TestH) be an HVE scheme and construct the
predicate-only scheme ∨ = (Setup∨, KeyGen∨,Encrypt∨,Test∨) for disjunctions in the fol-
lowing way:

Setup∨(1λ, 1n): the algorithm returns the output of SetupH(1λ, 1n).

KeyGen∨(Msk, C): For a clause C, the key generation algorithm constructs vector ~y ∈
{0, 1, ?}n in the following way. Let ~w be a truth assignment to the n variables that
does not satisfy clause C. For each i ∈ {1, . . . , n}, the algorithms sets yi = wi if
the i-th variable appears in C; yi = ? otherwise. We denote this transformation by
~y = CEncode(C). The output is SkC = KeyGenH(Msk, ~y).

Encrypt∨(Pk, ~z): The encryption algorithm returns Ct = EncryptH(Pk, ~z).

Test∨(SkC ,Ct): The algorithm returns 1− TestH(SkC ,Ct).

Correctness. It follows from the observation that for a clause C and assignment ~z,
Satisfy(C, ~z) = 1 if and only if Match(CEncode(C), ~z) = 0.

Security. It is easy to see that if H is secure then ∨ is secure. In particular, notice that
if for A’s query C we have that Satisfy(C, ~z0) = Satisfy(C, ~z1) = ξ ∈ {0, 1}, then for B’s
query ~y = CEncode(C) to C we have that Match(~y, ~z0) = Match(~y, ~z1) = 1− ξ.

Theorem 12. If Assumption 1 and 2 hold for generator G then there exists a secure
encryption scheme for the class of predicates that can be represented by a disjunction.

3.4.4 Reducing k-DNF to k-CNF

We observe that if Φ is a predicate represented by a k-DNF formula then its negation Φ̄
can be represented by a k-CNF formula. Therefore let

kCNF = (SetupkCNF,KeyGenkCNF,EncryptkCNF,TestkCNF) and consider the following
scheme kDNF = (SetupkDNF,KeyGenkDNF,EncryptkDNF,TestkDNF). The setup algorithm

SetupkDNF is the same as SetupkCNF. The key generation algorithm SetupkDNF for predicate
Φ represented by a k-DNF simply invokes the key generation algorithm SetupkCNF for Φ̄
that can be represented by a k-CNF formula. The encryption algorithm EncryptkDNF is
the same as EncryptkCNF. The test algorithm TestkDNF on input ciphertext Ct and key
for k-DNF formula Φ (that is actually a for k-CNF formula Φ̄) thus TestkCNF on Ct and
the key and complements the result. Correctness and security can be easily argued as for
Disjunctions.

By combining the above reduction with the construction given by Theorem 11.



3.5. APPLICATIONS OF INNER-PRODUCT ENCRYPTION 33

Theorem 13. If Assumption 1 and 2 hold for generator G then there exists a secure
encryption scheme for the class of predicates represented by k-DNF formulae.

3.5 Applications of Inner-product Encryption

From the predicate inner-product it is possible to derive other useful predicates. The first
one is HVE and its dual.

3.5.1 HVE and Dual HVE.

We first show how to obtain an HVE scheme (SetupH ,KeyGenH ,EncryptH ,DecryptH) for al-
phabet Σ = ZN from any inner-product encryption scheme (Setup,KeyGen,Encrypt,Decrypt)
of dimension 2`.

• SetupH is the same of Setup.

• To generate a secret key corresponding to the vector ~a = (a1, . . . , a`), first construct
~A = (A1, . . . , A2`) as follows:{

A2i−1 = 1, A2i = ai if ai 6= ?,

A2i−1 = 0, A2i = 0 if ai = ?.

Then output the key for A obtained by running KeyGenH .

• To encrypt a message M for the attribute ~x = (x1, . . . , x`), choose random ~r =
(r1, . . . , r`) ∈ Z`N and construct a vector ~X~r = (X1, X2`) as follows:

X2i−1 = −ri · xi, X2i = ri

(where the operations are done modulo N). Then output the ciphertext for M and
~X~r computed by EncryptH .

To see that correctness holds, let ~a, ~A, ~x,~r, ~X~r be as above. Then:

Match(~x,~a) = 1→ ∀~r :< ~A, ~X~r >= 0.

Furthermore, assuming gcd(ai − xi, N) = 1 for all i:

Match(~x,~a) = 0→ Prob[< ~A, ~X~r >= 0] = 1/N,

which is negligible in the security parameter. Analogously, one can prove security of the
construction as well.

A straightforward modification of the above gives a scheme that is the dual of HVE,
in the sense that the ?’s are in the ciphertexts. Yet, another generalization could be of
allowing ?’s both in ciphertexts and keys. This can be implemented by using inner-product
encryption in a similar way as above.
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3.5.2 Polynomial evaluation encryption

We can also construct predicate encryption schemes for predicates corresponding to poly-
nomial evaluation. Let Φpoly

≤d = {fp|p ∈ ZN [x], deg(p) ≤ d}, where

Φp(x) =

{
1, if p(x) = 0

0otherwise

for x ∈ ZN . Given an inner-product encryption scheme (SetupI ,KeyGenI ,EncryptI ,DecryptI)

of dimension d+ 1, we can construct a predicate encryption scheme for Φpoly
≤d as follows:

• The setup algorithm is unchanged.

• To generate a secret key corresponding to the polynomial p(x) = adx
d+. . .+a1x+a0,

set ~p = (ad, . . . , a0) and output a key for ~p obtained by KeyGenI .

• To encrypt a message M for the attribute w ∈ ZN , set ~w = (wd mod ZN , . . . , w
mod N, 1) and output the ciphertext for M and ~w computed by EncryptI .

Since p(w) = 0 iff < ~p, ~w >= 0, correctness and security follow. The above shows that we
can construct construct PE schemes for predicates corresponding to univariate polynomials
whose degree d is polynomial in the security parameter. This can be generalized to the
case of polynomials in t varibles, and degree at most d in each variable, as lons as dt is
polynomial in the security parameter. We can also construct schemes that are the dual
of the above, in which attributes correspond to polynomials and predicates involve the
evaluation of the input polynomial at some fixed point.

3.5.3 CNF and DNF encryption from inner-product encryption

We now present a way of obtaining CNF/DNF encryption from inner-product encryp-
tion. The general construction is exponential in the size of the formulae but some it can
be useful for some applications where the kind of allowed formulae is limited. We start
by constructing disjunctions of equality tests. For example, the predicate ORI1,I2 where
ORI1,I2(x) = 1 iff either x = I1 or x = I2 can be encoded as the univariate polynomial
p(x) = (x− I1)(x− I2), which evaluates to 0 iff the relevant predicate evaluates is satisfied.
Similarly, the predicate ORI1,I2 where ORI1,I2(x1, x2) = 1 iff either x1 = I1 or x2 = I2 can
be encoded as the bivariate polynomial p′(x1, x2) = (x1 − I1)(x2 − I2). We now show how
to handle conjunctions. Consider, the predicate ANDI1,I2 where ANDI1,I2(x1, x2) = 1 iff
both x1 = I1 and x2 = I2. Here, we build the secret key by choosing random r ∈ ZN and
letting such a secret key correspond to the polynomial p′′(x1, x2) = r · (x1− I1) + (x2− I2).
If ANDI1,I2(x1, x2) is satisfied then p′′(x1, x2) = 0, whereas if it is not satisfied then with
very high probability over choice of r, the polynomial will not evalute to 0. We notice
that the resulting scheme can only be proven selective-id secure even if the underlying
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polynomial equation encryption scheme is fully secure. The reason is that the secret key
may leak the value r in which case the adversary will be able to find x1 and x2 such that
ANDI1,I2(x1, x2) 6= 1 yet p′′(x1, x2) = 0. This is not a problem in the selective-id setting
where the adversary must commit to x1 and x2 to the outset of the experiment. The above
ideas can be extended to handle arbitrary CNF and DNF formulae but as pointed out in
the previous section the complexity of the resulting scheme is exponential in the number
of variables.

3.5.4 Exact Threshold Encryption

We consider the setting of fuzzy IBE [35], which can be mapped to the predicate encryption
framework as follows: fix a set A = {1, ..., l} and let the set of attributes be all subsets
of A. Predicates take the form Φ = {ΦS |S ⊂ A} where ΦS(S) = 1 iff the intersection
of S and S′ has size at least t. Sahai and Waters [35] show a construction of a payload-
hiding predicate encryption scheme for this class of predicates. By using inner-product
encryption, we can construct a scheme where the attribute space is the same as before, but
the class of predicates corresponding to overlap in exactly t positions. (the scheme will also
be attribute hiding.) Namely, set Φ = {ΦS |S ⊂ A} with ΦS(S) = 1 iff the intersection of
S and S has size exactly t. Then, given any inner product encryption scheme of dimension
l + 1:

• The setup algorithm is unchanged.

• To generate a secret key for the predicate ΦS , first define a vector ~v ∈ Zl+1
N as follows:

for 1 ≤ i ≤ l : vi = 1 iff i ∈ S and vl+1 = 1. Then output the key for the vector ~v
computed by using the inner-product scheme.

• To encrypt a message M for the attribute S ⊂ A, define a vector ~v as follows: for
1 ≤ i ≤ l : vi = 1 iff i ∈ S and vl+1 = t mod N . Then output the ciphertext for M
and ~v computed by using the inner-product scheme. Since the intersection of S and
S has size t exactly when < v, v >= 0, correctness and security follow.
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Chapter 4

The limitations of game-based
security

In this chapter we initiate a study of alternative security notions for predicate encryption
systems. In particular we show that for these primitives the notions of simulation-based
security and game-based security do not coincide. Following recent line of research, we also
extend the concept of PE to Functional Encryption (FE) schemes that, roughly speaking,
are like PE except that the predicates are not necessarily binary but can be an arbitrary
efficently computable function. The stuff of this chapter is based (with few modifications)
on the work of [13]. We first present a formal definition of FE schemes.

4.1 Functional Encryption Schemes

A functionality F is defined as follows.

Definition 14. A functionality F defined over (K,X) is an efficiently computable function
F : K×X → {0, 1}?. The set K is called the key space and the set X is called the plaintext
space. We require that the key space contain a special key ε called the empty key.

A functional encryption scheme for the functionality F enalbes one to evalutate F (k, x)
given the encryption of x and a key skk for k. The algorithm that, given encryption of x
and sky returns F (y, x) is called decryption.

Definition 15. A functional encryption scheme for the functionality F is a tuple of PPT
algorithms (Setup,Encrypt,KeyGen,Decrypt) such that for all x ∈ X and k ∈ K it holds
that:

For all pairs (Pk,Msk), output by Setup(1λ), we have that
Decrypt(Pk,Encrypt(Pk, x),KeyGen(Msk, k)) = F (x, k)
except with negligible in λ probability.
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Relation to PE and other primitives. It is easily seen that PE systems are special
case of FE. The definition given above only captures the sintax of FE, and, thus, it also
includes primitives payload-hiding secure like IBE and Attribute-based Encryption in which
the security of the plaintetex x ∈ X is not a concern.

The role of the empty key. The empty key ε is useful to capture the information that
eventually a ciphertext may leak. An example of such leakage could be that of the length
of the plaintext that, as we know, it is impossible to hide. Another example could be in
the context of IBE or ABE schemes that do not hide the attributes; in this case the empty
key can be used to obtain such information.

4.2 Game-based security for Functional Encryption

In this section we present a game-based definition of security for FE. It is essentially similar
to that for PE. We formalize our security requirement by means of a security game GReal
between a probabilistic polynomial time adversary A and a challenger C. GReal consists
of a Setup phase and of a Query Answering phase. In the Query Answering phase, the
adversary can issue a polynomial number of Key Queries and one Challenge Construction
query and at the end of this phase A outputs a guess. We stress that key queries can be
issued by A even after he has received the challenge (x0, x1) ∈ X2 from C. In GReal the
adversary is restricted to queries for ∈ K such that F (k, x0) = F (k, x1). Indeed if such
condition it is not satisfied it is obvious that no FE scheme can be secure according to such
definition.

More precisely, we define game GReal in the following way.

Setup. C runs the Setup algorithm on input the security parameter λ (given in unary)
to generate public parameters Pk and master secret key Msk. C starts the interaction with
A on input Pk.

Key Query Answering. Upon receiving a query for k ∈ K, C returns KeyGen(Msk, k).

Challenge Construction. Upon receiving the pair (x0, x1) ∈ X2, C picks random
η ∈ {0, 1} and returns Encrypt(Pk, xη).

Winning Condition. Let η′ be A’s output. We say that A wins the game if η = η′

and for all k for which A has issued a Key Query, it holds F (k, x0) = F (k, x1).

We define the advantage AdvAFE(λ) of A in GReal to be the probability of winning minus
1/2.

4.3 Insufficiency of the game-based notion of security.

The previous game-based notion of security is a natural generalization of analogous def-
inition for standard public-key encryption. Unfortunately, this definition is insufficient
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for some functionalities. We present an example due to [13]. Let π is a fixed one-way
permutation and consider the functionality F that admits only the empty key defined as
F (ε, x) = π(x). It is easy to observe that a FE scheme that encrypts x by outputting π(x) is
secure both according to the game-based and simulation-based notion of security. Anyway
we can consider an incorrect implementation of this functionalities. This can be given by a
FE scheme that encrypts x by simply outputting x. Clearly, this system should be consider
not secure because it leaks all the information about the plaintext. Anyway, it satisfies the
game-based definition of security because the constraint impose that F (ε, x0) = F (ε, x1),
that is true iff x0 = x1. Furthermore it does not satisfy the simulation-based security given
in next section. Intuitively this is true because if x is randomly chosen the real adversary
would be able to recover x always whereas for the simulator to recover x it would have to
break the one-wayness of π.

4.4 Simulation-based security for Functional Encryption.

We present a simulation-based notion of security that captures the natural intuition that a
secret key for k should only reveal F (k, x) when given an encryption of x. In what follows,
we indicate by AB(·)[[x]] that algorithm A can issue a query q to its oracle B, at which point
B(q, x) will be executed and output a pair (y, x′). The value y is returned to A as result of
its query and the value x is updated to x′ and is fed to B next time the oracle is queried.

Definition 16. A FE scheme is simulation-secure if there exist an (oralce) PPT algorithm
Sim = (Sim1, SimO, Sim2) such that for any (oracle) PPT algorithms Message and Adv
the following two distributions are computationally indinstinguishable (over λ):

Real Distribution
(PK,MSK)← Setup(1λ)
(x, τ)←MessageKeyGen(MSK,·)(PK)
c← Encrypt(PK, x)
α← AdvKeyGen(MSK,·)(PK, c, τ)
Let y1, . . . , yn be the queries to KeyGen issued by Message and Adv in the previous steps.
Output (PK, x, τ, α, y1, . . . , yn).

Ideal Distribution
(PK, σ)← S1(1λ)
(x, τ)←MessageSimO(·)[[σ]](PK)

α← Sim
F (·,x),AdvO(PK,·,τ)
2 (σ, F (ε, x))

Let y1, . . . , yn be the queries to F issued by Sim in the previous steps.
Output (PK, x, τ, α, y1, . . . , yn).
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We also consider a weakening of this definition.

Definition 17. A FE scheme is weakly simulation-secure if for any (oracle) PPT algo-
rithms Message and Adv there exists an (oracle) PPT algorithm Sim the following two
distributions are computationally indinstinguishable (over λ):

Real Distribution
(PK,MSK)← Setup(1λ)
(x, τ)←Message(1λ)
c← Encrypt(PK, x)
α← AdvKeyGen(MSK,·)(PK, c, τ)
Let y1, . . . , yn be the queries to KeyGen issued by Message and Adv in the previous steps.
ehe random plaintext is independent from the view of Sim so that every simulated transcript
is distinguishable from the transcript output by the adversary. Output (x, τ, α, y1, . . . , yn).
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Ideal Distribution
(x, τ)←Message(1λ)
α← SimF (·,x)(1λ, τ, F (ε, x))
Let y1, . . . , yn be the queries to F issued by Sim in the previous steps
Output (x, τ, α, y1, . . . , yn).

We are now ready to state a theorem due to [13].

Theorem 18 ([13]). Then F be the IBE functionality. Then, there does not exist any
weakly simulation-secure FE scheme for F in the non-programmable random oracle model.

Proof. We present a sketch of this proof. Let H represent the random oracle. Consider
the following concrete adversary algorithms: Message(1λ) works as follows: Let lensk
be the maximum bit length produced by the keygen algorithm for the key 0 for security
parameter λ. Then the vector x (that is, the concatenation of the message and the identity)
consists of the following elements: for i = 1, ..., lensk + λ, the element (ri, 0) where ri is
a randomly and independently chosen bit for each i. The value τ is empty. That is the
messagge is the random vector ~r and the identity is 0. AdvKeyGen(MSK,)(PK, c, τ) works
as follows: call the random oracle H on the input (pp, c) to obtain a string w of length λ.
Now request the secret key for the identity (w) first, and then for the identity 0. Use the
key for identity 0 to decrypt the entire ciphertext. Output a full transcript of the entire
computation done by Adv, including all calls to the random oracle and the interaction
with the KeyGen oracle. Now consider what Sim must do in order to output a distribution
indistinguishable from the real interaction. Because Adv only makes a single key query of
the form (w), it is the case that Sim must make exactly one query its first query to F
of this form as well. Furthermore, the distinguisher can check if this w is the output of H
applied to some string of the form (PK, c). Thus, the simulator must perform this query
to H before making any queries to F . The simulator at this point has no information
whatsoever about the plaintexts ri (which is only revealed when the simulator queries F
for identity 0 afterwards). Thus, this fixed string z = (pp, c) has the (impossible) property
that after receiving only lensk bits of information, it can deterministically decode z to be
a an arbitrary string of length lensk + λ. 2

The same work also shows that in the programmable random oracle model, simulation-
secure IBE schemes do exist.



42 CHAPTER 4. THE LIMITATIONS OF GAME-BASED SECURITY



Chapter 5

Bilinear groups

In this chapter we present the fundamental building block for our constructions. In the
selectively secure construction of Chapter 6 we will use bilinear groups of prime order. In
other constructions, we will need bilinear groups of composite order. An excellent survey
of the mathematics of bilinear maps can be found in the thesis of Ben Lynn [32]. Another
useful reference is a survey by Galbraith, Paterson and Smart [21].

5.1 Symmetric bilinear groups of prime order

We use multiplicative groups G and GT of prime order p and a non-degenerate pairing
function e : G×G→ GT . That is, for all g ∈ G, g 6= 1, e(g, g) 6= 1 and e(ga, gb) = e(g, g)ab.
We denote by g and e(g, g) generators of G and GT . We call a symmetric bilinear instance
a tuple I = [p,G,GT , g, e] and assume that there exists an efficient generation procedure
that, on input security parameter 1k, outputs an instance with |p| = Θ(k).

5.2 Bilinear groups of composite order

Composite order bilinear groups were first used in Cryptography by [10] (see also [5]). Some
of its properties are very similar to that for the prime order groups, but we remark them
for completeness. We suppose the existence of an efficient group generator algorithm G
which takes as input the security parameter λ and outputs a description I = (N,G,GT , e)
of a bilinear setting, where G and GT are cyclic groups of order N , and e : G2 → GT is a
map with the following properties:

1. (Bilinearity) ∀ g, h ∈ G and a, b ∈ ZN it holds that e(ga, hb) = e(g, h)ab.

2. (Non-degeneracy) ∃ g ∈ G such that e(g, g) has order N in GT .

We assume that the group descriptions of G and GT include generators of the respective
cyclic groups. We require that the group operations in G and GT as well as the bilinear
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map e are computable in deterministic polynomial time in λ. In some of our constructions
we will make hardness assumptions for bilinear settings whose order N is product of more
than two distinct primes each of length Θ(λ). For an integer m dividing N , we let Gm

denote the subgroup of G of order m. From the fact that the group is cyclic, it is easy to
verify that if g and h are group elements of co-prime orders then e(g, h) = 1. This is called
the orthogonality property and is a crucial tool in our constructions.



Chapter 6

Selective secure HVE

In this chapter we present an implementation of an HVE scheme proved secure in the selec-
tive model against restricted adversaries. The proof offers an example of the partitioning
paradigm (we will disccus it in Chapter 7). First, we will show the weakness of selective
security.

6.1 Weakness of Selective Security

Selective security is weaker than full security. Assuming the existence of a selectively
secure scheme, it is easy to construct a related selectively secure scheme that is not
fully secure. We sketch a proof. Consider the case of IBE. Assume the existence of a
selectively secure IBE (Setup,KeyGen,Encrypt,Decrypt). We construct a related system
(Setup′,KeyGen′,Encrypt′,Decrypt′) as follows. The Setup′ of the news ystem selects a ran-
dom identity id that records in the Pk. The rest of the procedure is unchanged. The
Encrypt′ algorithm works as usual for each identity different from id but for id it returns
the plaintext in clear. The KeyGen′ and the decryption procedures are unchanged. It is
trivial to analyze the selective security of the new system. Indeed, with very high probabil-
ity the view of any adversary attacking the new system is identical to the view of the same
adversary attacking the old system. Anyway, the system is not full secure because if the
adversary sees the public-key, it can choose as its challenge identity id so that it receives
the challenge message in clear.

6.2 Complexity Assumptions for the selectively secure HVE

In our construction we make the following hardness assumptions.

Decision BDH. Given a tuple [g, gz1 , gz2 , gz3 , Z] for random exponents z1, z2, z3 ∈ Zp it
is hard to distinguish between Z = e(g, g)z1z2z3 and a random Z from GT . More specifically,
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for an algorithm A we define experiment DBDHExpA as follows.

DBDHExpA(1k)
01. Choose instance I = [p,G,GT , g, e] with security parameter 1k;
02. Choose a, b, c ∈ Zp at random;
03. Choose η ∈ {0, 1} at random;
04. if η = 1 then choose z ∈ Zp at random
05. else set z = abc;
06. set A = ga, B = gb, C = gc and Z = e(g, g)z;
07. let η′ = A(I, A,B,C, Z);
08. if η = η′ then return 0 else return 1;

Assunption Bilinear Decisional Diffie-Hellman For all probabilistic polynomial-
time algorithms A, ∣∣∣Prob[DBDHExpA(1k) = 1]− 1/2|

∣∣∣ = ν(k)

for some negligible function ν.

Decision Linear. Given a tuple [g, gz1 , gz2 , gz1z3 , gs, Z] for random exponents z1, z2, z3, s ∈
Zp it is hard to distinguish between Z = gz2(s−z3) and a random Z from G. More specifi-
cally, for an algorithm A we define experiment DLExpA as follows.

DLExpA(1k)
01. Choose instance I = [p,G, g] with security parameter 1k;
02. Choose z1, z2, z3, s ∈ Zp at random;
03. Choose η ∈ {0, 1} at random;
04. if η = 1 then choose z ∈ Zp at random
05. else set z = z2(s− z3);
06. set Z1 = gz1 , Z2 = gz2 , Z13 = gz1z3 , S = gs, and Z = gz;
07. let η′ = A(I, Z1, Z2, Z13, S, Z);
08. if η = η′ then return 0 else return 1;

Assumption Decision Linear For all probabilistic polynomial-time algorithms A,∣∣∣Prob[DLExpA(1k) = 1]− 1/2|
∣∣∣ = ν(k)

for some negligible function ν.
Note that Symmetric Decision Linear implies Symmetric Decision BDH and the Sym-

mentric Decision Linear assumption has been used in [15].



6.3. OUR CONSTRUCTION 47

6.3 Our construction

In this section we describe our construction for a selectively secure HVE scheme against
restricted adversaries. It was presented in a work of the author with Giuseppe Persiano
[27].

Setup. Procedure Setup, on input security parameter 1k and attribute length n = poly(k),
computes the public key Pk and the master secret key Msk in the following way.

Choose a random instance I = [p,G,GT , g, e].

Choose y at random in Zp and set Y = e(g, g)y.

For 1 ≤ i ≤ n, choose ti, vi, ri,mi at random in Zp and set Ti = gti , Vi = gvi and
Ri = gri ,Mi = gmi .

Then, Setup(1k, n) returns [Pk,Msk] where

Pk = [I, Y, (Ti, Vi, Ri,Mi)
n
i=1] and Msk = [y, (ti, vi, ri,mi)

n
i=1].

Encryption. Procedure Encrypt takes as input cleartext M ∈ GT , attribute string ~x and
public key Pk and computes ciphertext as follows.

Choose s at random in Zp, and for 1 ≤ i ≤ n, choose si at random in Zp and compute
ciphertext

Encrypt(Pk, ~x,M) = [Ω, C0, (Xi,Wi)
n
i=1],

where Ω = M · Y s, C0 = gs and

Xi =

{
T s−sii , if xi = 1;

Rs−sii , if xi = 0.
and Wi =

{
V si
i , if xi = 1;

M si
i , if xi = 0.

Private-key generation. Procedure KeyGen on input Msk and ~y ∈ {0, 1, ?}n derives
private key K~y relative to attribute string ~y in the following way.

If ~y = (?, ?, . . . , ?) then K~y = gy. Else, for 1 ≤ i ≤ n, choose ai at random in Zp
under the constraint that

∑i=n
i=1 ai = y and let K~y = (Yi, Li)

n
i=1, where

Yi =


g
ai
ti , if yi = 1;

g
ai
ri , if yi = 0;

∅, if yi = ?.

and Li =


g
ai
vi , if yi = 1;

g
ai
mi , if yi = 0;

∅, if yi = ?.

Decryption. Procedure Decrypt decrypts cyphertext Ct~x using secret key K~y such that
Match(~x, ~y) = 1.

Decrypt(Pk,Ct~x,K~y) = Ω−1 ·
∏
i∈S~y

e(Xi, Yi)e(Wi, Li)
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where S~y is the set of indices i such that yi 6= ?. If S~y = ∅ then K~y = gy and

Decrypt(Pk,Ct~x,K~y) = Ω−1 · e(C0,K~y).

This ends the description of our construction. We next prove that the quadruple is indeed
an HVE.

Theorem 19. The quadruple of algorithms (Setup,Encrypt,KeyGen,Decrypt) specified above
is an HVE.

Proof. We verify that this procedure computes M correctly when Match(~x, ~y) = 1. The
case in which ~y = (?, ?, · · · , ?) is obvious.

Denote with S1
~y (resp. S0

~y) the (possibly empty) set of indices i such that yi = 1 (resp
yi = 0). Then we have

Decrypt(Pk,Ct~x,K~y) = Ω−1
∏
i∈S~y

e(Xi, Yi)e(Wi, Li)

= Me(g, g)−ys ·
∏
i∈S1

~y

e(gti(s−si), g
ai
ti )e(gwisi , g

ai
wi )

·
∏
i∈S0

~y

e(gri(s−si), g
ai
ri )e(gmisi , g

ai
mi )

= Me(g, g)−ys
∏
i∈S1

~y

e(g, g)(s−si)aie(g, g)siai

·
∏
i∈S0

~y

e(g, g)(s−si)aie(g, g)siai

= Me(g, g)−ys
∏
i∈S~y

e(g, g)(s−si)aie(g, g)siai

= Me(grg)−ys
∏
i∈S~y

e(g, g)sai

= Me(g, g)−yse(g, g)ys = M.

We omit the proof of correctness in the case that the predicate it is not satisfied but in
Section 8.3 we will present a proof for another very similar scheme that will also imply a
proof for this scheme.
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6.4 Proofs

The security proof of our selectively secure scheme offers a concrete example of the par-
titioning paradigm. The simulator will know the challenge attribute vector so that it can
partition the space of the keys in a such way that it can create each key but keys that
correspond to predicates that satisfy the challenge attribute vector. Precisely, the proof
is a sequence of games one for each position in the challenge ciphertext. For each one
of them, the simulator embeds the challenge coming from the assumption in that specific
position of the challenge ciphertext. Then, it has to guarantee that it can create keys for
all vectors that do not match the challenge vector. When it receives a query for a vector, it
finds a position where the challenge vector and this vector differ, and it uses this position
to embed other values of the assumption to correctly simulate the key. The reader could
have noticed that, following these lines, the simulator cannot create keys for vectors that
match two different challenges. Indeed, we state and proof the security against restricted
adversaries. Details will follow in the proof of attribute-hiding security. We start by giving
a proof of payload-hiding security. We could to give a direct proof of attribute-hiding that
would also imply a proof of payload-hiding. Anyway, the payload-hiding security would
follow from a stronger assumption (Decision Linear instead than BDDH). Furthermore it
is instructive to show this proof separately.

Theorem 20 (Proof of Payload-Hiding). Assume BDDH holds. Then HVE scheme
(Setup,Encrypt,KeyGen,Decrypt) described above is payload-hiding.

Proof. Suppose that there exists PPT adversary A which has success in experiment
SemanticExp with probability non-negligibly larger than 1/2. We then construct an ad-
versary B for the experiment DBDHExp. B takes in input [I, A = ga, B = gb, C = gc, Z],
where Z is e(g, g)abc or a random element of GT .

Init. B receives from A the attribute string ~x it wishes to be challenged upon.

Setup. Set Y = e(A,B). For every 1 ≤ i ≤ n, B chooses t′i, v
′
i, r
′
i,m

′
i ∈ Zp at random and

set

Ti =

{
gt
′
i , if xi = 1;

Bt′i , if xi = 0;
and Vi =

{
gv
′
i , if xi = 1;

Bv′i , if xi = 0;

Ri =

{
Br′i , if xi = 1;

gr
′
i , if xi = 0;

and Mi =

{
Bm′i , if xi = 1;

gm
′
i , if xi = 0;

B runs A on input Pk = [I, Y, (Ti, Vi, Ri,Mi)
n
i=1].

Notice that Pk has the same distribution of a public key received by A in the Setup
phase of SemanticExp with y = a · b, and with ti = t′i, vi = v′i, ri = br′i, and mi = bm′i
for i with xi = 1, and ti = bt′i, vi = bv′i, ri = r′i, and mi = m′i for i with xi = 0.
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Query Phase I. B answers A’s queries for ~y such that Match(~x, ~y) = 0 as follows.

Let j be an index where xj 6= yj and yj 6= ? (there must exist at least one such
index). For every i 6= j such yi 6= ?, choose a′i at random in Zp and let a′ =

∑
a′i.

Set Yj and Lj as

Yj =

{
A1/t′jg−a

′/t′j , if yj = 1;

A1/r′jg−a
′/r′j , if yj = 0.

and Lj =

{
A1/v′jg−a

′/v′j , if yj = 1;

A1/m′jg−a
′/m′j , if yj = 0.

and, for i 6= j, set Yi, Li as follows

Yi =



Ba′i/t
′
i ; if xi = yi = 1;

Ba′i/r
′
i ; if xi = yi = 0;

ga
′
i/r
′
i ; if xi = 1 ∧ yi = 0;

ga
′
i/t
′
i ; if xi = 0 ∧ yi = 1;

∅; if yi = ?.

and Li =



Ba′i/v
′
i ; if xi = yi = 1;

Ba′i/m
′
i ; if xi = yi = 0;

ga
′
i/m

′
i ; if xi = 1 ∧ yi = 0;

ga
′
i/v
′
i ; if xi = 0 ∧ yi = 1;

∅; if yi = ?.

Notice that K~y has the same distribution of the key returned by the KeyGen proce-

dure. In fact, for all i such that yi = 1, we have that Yi = g
ai
ti and Li = g

ai
vi and,

for all i such that yi = 0, we have that Yi = g
ai
ri and Li = g

ai
mi with ai = ba′i, for all

i 6= j, and aj = b(a− a′). Moreover, notice that
∑

i ai = y.

Challenge. A returns two messages M0,M1 ∈ GT .

B chooses η ∈ {0, 1} at random and, for i = 1, · · · , n, si ∈ Zp and constructs
Ct~x = (Ω, C, (Xi,Wi)

n
i=1), where Ω = MηZ, C0 = C and

Xi =

{
Ct
′
ig−t

′
isi ; if xi = 1;

Cr
′
ig−r

′
isi ; if xi = 0.

and Wi =

{
g−v

′
isi ; if xi = 1;

g−m
′
isi ; if xi = 0.

Observe that if Z = e(g, g)abc then Ct~x is an encryption of Mη with s = c. If instead
Z is random in GT then Ct~x is independent from η.

Query Phase II. Identical to Query Phase I.

Output. A outputs η′. B returns 0 iff η′ = η.

To conclude the proof observe that, if Z = e(g, g)abc then, since A is a successful
adversary for payload-hiding security, the probability that B returns 0 is at least 1/2 +
1/poly(k). On the other hand if Z is random in GT the probability that B returns 0 is at
most 1/2. This contradicts the BDDH assumption. 2
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To prove anonymity of the scheme we consider a sequence of distributions, where the
first distribution is the distribution of a randomly computed ciphertext for a fixed message
M and attribute string ~x and the last distribution is the random distribution on GT×G2n+1.

More specifically, for j = 0, 1, . . . , n, let pAj (~x) = Prob[ExpAj (~x) = 0], where ExpAj is the
following experiment.

ExpAj (~x)

1. Choose I = [p,G, g] with security parameter 1k;

2. [Msk,Pk]← Setup(1k, n);

3. Run A on input Pk and answer secret key queries for ~y such that Match(~x, ~y) = 0 by
running KeyGen on input Msk and ~y.

4. Pick R0 ← GT , s← Zp and set C0 = gs.

5. For i = 1 to j

(a) choose Xi,Wi ← Zp;

6. For i = j + 1 to n

(a) pick si ← Zp and set

Xi =

{
T s−sii , if xi = 1;

Rs−sii , if xi = 0.
and Wi =

{
V si
i , if xi = 1;

M si
i , if xi = 0.

7. return: A(R0, C0, (Xi,Wi)
n
i=1);

We stress that in the previous experiment A is a restricted adversary. From the proof
of payload-hiding security it follows, that under the BDDH, for all probabilistic poly-time
adversaries A, and for all message M the quantity

|pA0 (~x)− pA(M,~x)|

is negligible where pA(M,~x) is the output of the experiment that is similar to ExpA0 (~x)
with the only exception that Ω is set equal to Y ·M . Next we will show that, under the DL
assumption, for any probabilistic poly-time adversary A and for ` = 1, · · · , n, the quantity

|pA` (~x)− pA`−1(~x)|
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is negligible. This implies that

|pA0 (~x)− pAn (~x)|

is negligible.

Theorem 21 (Proof of Attribute-Hiding against Restricted Adversaries). Under the DL
assumption, for ` = 1, 2, . . . , n and for any ~x ∈ {0, 1}n, we have that

|pA` (~x)− pA`−1(~x)| < ν(n)

Proof. Suppose that there exists PPT adversary A which distinguishes the tuple of
the experiment of Exp`−1 from the tuple of the experiment Exp` with probability 1/2 +
1/poly(k). We then construct an adversary B for the experiment DLExp. B takes in input
[I, Z1 = gz1 , Z2 = gz2 , Z13 = gz1z3 , U = gu, Z], where Z is gz2(u−z3) or a random element
of G.

Init. B receives from A the attribute string ~x it wishes to be challenged upon.

Setup. B sets Y = e(Z1, Z2). For every 1 ≤ i ≤ n, B chooses t′i, v
′
i, r
′
i,m

′
i ∈ Zp at random

and sets

T` =

{
Z
t′`
2 , if x` = 1;

Z
t′`
1 , if x` = 0;

and Vk =

{
Z
v′`
1 , if x` = 1;

Z
v′`
1 , if x` = 0;

R` =

{
Z
r′`
1 , if x` = 1;

Z
r′`
2 , if x` = 0;

and M` =

{
Z
m′`
1 , if x` = 1;

Z
m′`
1 , if x` = 0;

And for i 6= `, B sets

Ti =

{
gt
′
i , if xi = 1;

Z
t′i
1 , if xi = 0;

and Vi =

{
gv
′
i , if xi = 1;

Z
v′i
1 , if xi = 0;

Ri =

{
Z
r′i
1 , if xi = 1;

gr
′
i , if xi = 0;

and Mi =

{
Z
m′i
1 , if xi = 1;

gm
′
i , if xi = 0;

Give Pk = [I, Y, (Ti, Vi, Ri,Mi)
n
i=1] to A. Notice that Pk has the same distribution

of a public key received by A at step 3 of ExpA` and ExpA`−1 with y = z1 · z2, and with
ti = t′i, vi = v′i, ri = z1r

′
i,mi = z1m

′
i for i 6= ` with xi = 1, and ti = z1t

′
i, vi = z1v

′
i, ri =

r′i,mi = m′i for i 6= with xi = 0, and t` = z2t
′
`, v` = z1v

′
`, r` = z1r

′
`,m` = z1m

′
` for `

with x` = 1, and tk = z1t
′
`, v` = z1v

′
`, r` = z2r

′
`,m` = z1m

′
` for ` with x` = 0.
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Query Phase I. B answers A’s queries for ~y such that Match(~x, ~y) = 0. We distinguish
two cases.

Case 1: x` = y`. In this case there exists index j such that yj 6= xj and yj 6= ?.

Then, for i 6= j choose at random a′i ∈ Zp and denote by a′ the sum a′ =
∑

i 6=j,` a
′
i.

For i 6= j, ` B sets

Yi =



Z
a′i/t

′
i

1 , if xi = yi = 1;

Z
a′i/r

′
i

1 , if xi = yi = 0;

ga
′
i/r
′
i , if xi = 1, yi = 0;

ga
′
i/t
′
i , if xi = 0, yi = 1;

∅, if yi = ?.

and Li =



Z
a′i/v

′
i

1 , if xi = yi = 1;

Z
a′i/m

′
i

1 , if xi = yi = 0;

ga
′
i/m

′
i , if xi = 1, yi = 0;

ga
′
i/v
′
i , if xi = 0, yi = 1;

∅, if yi = ?.

B sets

Y` =


Z
a′`/t

′
`

1 , if y` = 1;

Z
a′`/r

′
`

1 , if y` = 0;

∅, if y` = ?.

and L` =


Z
a′`/v

′
`

2 , if y` = 1;

Z
a′`/m

′
`

2 , if y` = 0;

∅, if y` = ?.

Finally B sets

Yj =

Z
(1−a′`)/t

′
j

2 g−a
′/t′j , if yj = 1;

Z
(1−a′`)/r

′
j

2 g−a
′/r′j , if yj = 0.

and Lj =

Z
(1−a′`)/v

′
j

2 g−a
′/v′j , if yj = 1;

Z
(1−a′`)/m

′
j

2 g−a
′/m′j , if yj = 0.

By the settings above we have that, for i 6= j, ` ai = z1a
′
i, a` = z1z2a

′
` and aj =

z1z2 − z1z2a
′
` − z1a

′. Therefore, the ai’s are independently and randomly chosen in
Zp under the costraint that

∑
i ai = z1z2 = y.

Case 2: x` 6= y`.

Let a′ =
∑

i 6=` a
′
i and set

Y` =

{
Z

1/r′`
2 g−a

′/r′` , if x` = 1;

Z
1/t′`
2 g−a

′/t′` , if x` = 0;
and L` =

{
Z

1/m′`
2 g−a

′/m′` , if x` = 1;

Z
1/v′`
2 g−a

′/v′` , if x` = 0;

For i 6= ` set Yi, Li exactly like in the previous case.

By the settings above we have that ai = z1a
′
i, a` = z1z2−z1a

′. Therefore, the ai’s are
independently and randomly chosen in Zp under the costraint that

∑
i ai = z1z2 = y.

Challenge. B chooses R0 ∈ GT at random and for 1 ≤ i ≤ n choose s′i ∈ Zp, Ri ∈ GT at
random and construct the tuple
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D∗ = (R0, C0 = U, (Xi,Wi)
n
i=1)

where Xi,Wi are

Xi =


Ri, if i ≤ `;
U t
′
ig−t

′
is
′
i , if i > `, xi = 1;

U r
′
ig−r

′
is
′
i , if i > `, xi = 0;

Z, if i = `;

and Wi =



gv
′
is
′
i , if i ≤ `, xi = 1;

gm
′
is
′
i , if i ≤ `, xi = 0;

g−v
′
is
′
i , if i > `, xi = 1;

g−m
′
is
′
i , if i > `, xi = 0;

Z13, if i = `;

If in the experiment of Decision-Linear Z = gz2(u−z3) the tuple D∗ has the same
distribution as the tuple of the experiment ExpA`−1, whereas if Z is random it has

the same distribution as the tuple of the experiment ExpA` . In fact this is seen for
s = u, s` = z3, si = s′i, i 6= `.

Query Phase II. Identical to Query Phase I.

Output. A outputs v which represents a guess for the tuple in input (v = 0 for D`−1 and
v = 1 for D`). B forwards the same bit as its guess for the tuple of the experiment
DLExp.

By the settings above this concludes the proof.

2

Theorem 22. The scheme of Section 6.3 is selectively secure against restricted adversaries.

Proof. It follows by theorems 20 and 21. 2



Chapter 7

Dual System Encryption
Methodology

In this chapter we present a fundamental tool to prove the security of our schemes, the
Dual System Encryption technique introduced by [40]. First Predicate Encryption Systems
for HVE and inner-product [14, 28] were proved secure in the selective-id model where the
attacker must declare the challenge attributes before seeing the public-key. This model
of security was proposed by Canetti, Halevi and Katz [16] that motivated it by showing
that selective-id secure IBE schemes imply CCA secure public-key encryption. Usually, in
the selective-id model the proofs of security are simpler because the simulator can build
the PK basing on the id selected by the adversary. Anyway, it is a well known fact that
selective-id security is a weaker notion than full security. Building fully secure schemes in
the standard model can also be a complicated task for IBE.

First implementations of fully secure IBE in the standard model were given by Boneh
and Boyen [6] and Waters [39]. The latter was efficient and proved secure by the well
established assumption Decisional Bilinear Diffie-Hellman. These systems as well previous
selective-id implementations of IBE use a partitioning techniquey to prove the security.
The partitioning technique, roughly, proceeds by dividing the space of the identities in two
classes: identities for which the simulator can answer key queries; and identities that it can
use to answer the challenge query. In the standard model,y the simulator programs the
public-key so that the assumption (that we reduce the security of the scheme to) can be
embedded favorably to perform the simulation. In the random oracle model the partitinong
is programmed in the random oracle.

The drawback of this strategy is that it does not seem useful in proving the security
of more advanced primitives like ABE, HVE, or also HIBE. Indeed the ABE and HVE
systems that use the partitioning technique were only proved secure in the selective-id
model. The implementation of HIBE systems which use the partitioning strategy suffer
from an exponential degradation in the hierarchy. Furthermore also the efficient IBE
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systems that fall in this category had large public-key parameters. Gentry [22] proposed
a new approach achieving an Anonymous IBE system with short public-key that had a
security proof that departed from the partitioning technique. Gentry’s proof uses a q-
based assumption, that is an assumption whose size depends from the number of queries
requested from the adversary. It makes this by embedding a degree q polynomial F in the
reduction and by attaching a tag F (I) to the query for identity I.

In this reduction, the simulator can create both queries and challenge for each identity.
This seems a paradox because the simulator could break the assumption by decrypting a
challenge ciphertext with the corresponding key. The simulation overcomes this problem
by constructing the challenge ciphertext in a way such that it always decrypts when the
decryption key is for the same identity of the challenge ciphertext. Gentry and Halevi [23]
showed how to extend these ideas to obtain the first HIBE systems whose security does
not degrade exponentially with the number of levels. The system of Gentry and Halevi
still relies on q-based complexity assumptions and the proofs are quite complex. Katz and
Wang and subsequently Goh, Jarecki, Katz and Wang [24] presented a different approach
to prove the full security of IBE systems that do not fall in the partitioning strategy. Their
technique uses a two-key approach but it is based on the random oracle. The advantage
of this technique is that it achieves tight security reductions whereas prior works as well
as any other IBE implmentation in the standard model has a loose reduction from some
computational assumption (for example, the losing factor of the reduction is the number
of queries issued by the adversary).

To overcome these difficulties Waters [40] introduced the Dual System Encryption
(DSE) methodology. The DSE consists in proving the indistinguishability of a series of
games. In each game both keys and challenge ciphertext can take one of the forms: normal
form and semi-functional form. A semi-functional key can decrypt a normal cipherthext
and a semi-functional ciphertex can decrypt a normal key but a semi-functional key cannot
decrypt a semi-functional ciphertext. In the first game, that is be the real security game,
the challenge ciphertext and all keys are normal. Next, the challenge ciphertext is changed
to a semi-functional one. No adversary can distinguish this game (under some complexity
assumption) since the keys are normal. Then, in the next series of games, the keys are
changed one game at a time from normal to semi-functional, again arguing indistinguisha-
bility. Here, it is used the fact that the challenge key is for an identity different from the
identity used to encrypt the challenge ciphertext (or more generally, for PE systems the
key is a for a predicate that does not satisfy the challenge attribute). Hence, the adversary
cannot distinguish the normal key for identity different from the challenge identity from
a semi-functional key for the same identity. Finally, when the all keys and the challenge
ciphertext are semi-functional, proving security is straightforward since no key is useful to
decrypt.

Notice that the indistinguishability of normal keys from semi-functional keys gives rise
to an issue. The reduction algorithm could break the computational assumption used to
prove the security in this way. It creates a semi-functional ciphertext for identity I and
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test if challenge query for the same identity I is normal or semi-functional by decrypting
with it. Indeed, if it is semi-functional the decryption should not work whereas if it
is normal the decryption works. This paradoxical situation can be avoided in different
ways. Waters overcomes these difficulties by embedding tags in both ciphertexts and keys.
The decryption works if and only if the tags of the key is different from the tag of the
ciphertext. By setting the tag to be a function of the identity the potential paradox is
avoided. Lewko and Waters [31] use a different solution. In their implementation of DSE
keys and ciphertexts can also be nominally semi-functional. A nominally semi-functional
ciphertext for identity I can decrypt a nominally semi-functional key for the same identity
I. Therefore, if the reduction algorithm tries to create a semi-functional ciphertext for
the challenge identity it can only generate one that is nominally semi-functional when
used along with the challenge key. Thus, it is unable to detect the form of the key because
decryption works in both the cases. In our implementation of fully secure HVE, we use a all-
but-one approach guaranteeing that the simulator misses some group elements that it would
need to create a challenge ciphertext for the same attribute of the challenge key. In fact,
by adding this missing element to the assumption (that we reduce the indistinguishability
to) the assumption would turn to be false. Our approach can be viewed as a mix of DSE
and a partitioning paradigm. This is possible due to the way how DSE achieves security.
Indeed, the powerful of DSE relies on the fact that, by changing the keys one at time, we
only need the relationship between the challenge ciphertext and a single key at a time, so
that the partitioning space is small.

To prove the security against unrestricted adversary (see Chapter 12) we also need
to worry about the fact that keys whose predicate satisfies both the challenge attributes
cannot be simulated with a semi-functional form since the adversary could discover the
nature of the challenge key by trying to decrypt it. We solve the problem by identifying a
property that this kind of keys enjoys and so simulating this matching keys with a normal
form. This is achieved by using ` · q games instead of simply q games. Indeed, for each of
the ` games on the positions we make q games on the keys. In each of this q game for a
fixed position we consider to be normal the key that have ? in that position. In the last
of this q games all keys are semi-functional but the matching keys but this is sufficient to
change the distribution (information-theoretically in our implementation) of the challenge
ciphertext. Then we turn all keys to normal and continue the process for the next position.
Details are given in Chapter 12.
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Chapter 8

Constructing 0 and 1-secure HVE

In this chapter we will describe our constructions for a 0-secure and 1-secure HVE schemes.
Though the construction of Chapter 12 is secure against unrestricted adversaries, the con-
structions of this Chapter can be instructive to understand the difficulties and the chal-
lenges found to reach the main result. Furthermore the proof of security for this scheme is
more tight than that for the scheme secure against restricted adversaries. We first present
the assumptions used in the proofs of security.

8.1 Complexity Assumptions for the 0-secure and 1-secure
constructions

We now present the complexity assumption used to prove the 0-security of our construction.

The first assumption is a subgroup-decision type assumption for bilinear settings.
Specifically, Assumption 1 posits the difficulty of deciding whether an element belongs
to one of two specified subgroups, even when generators of some of the subgroups of the
bilinear group are given. More formally, we have the following definition.

First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) ← G(1λ) and then
pick A3 ← Gp3 , A13 ← Gp1p3 , A12 ← Gp1p2 , A4 ←∈ Gp4 , T1 ← Gp1p3 , T2 ← Gp2p3 ,
and set D = (I, A3, A4, A13, A12). We define the advantage of an algorithm A in breaking
Assumption 1 to be

AdvA1 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 1. We say that Assumption 1 holds for generator G if for all probabilistic
polynomial-time algorithms A, AdvA1 (λ) is a negligible function of λ.

Our second assumption can be seen as the Decision Diffie-Hellman Assumption for
composite order groups. Specifically, Assumption 2 posits the difficult of deciding if a
triple of elements constitute a Diffie-Hellman triplet with respect to one of the factors of
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the order of the group, even when given, for each prime divisor p of the group order, a
generator of the subgroup of order p. Notice that for bilinear groups of prime order the
Diffie-Hellman assumption does not hold. More formally, we have the following definition.

First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) ← G(1λ) and then
pick A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4 ← Gp4 , α, β ← Zp1 , T2 ← Gp1p4 , and

set T1 = Aαβ1 ·D4 and D = (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4). We define the advantage of

an algorithm A in breaking Assumption 2 to be

AdvA2 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 2. We say that Assumption 2 holds for generator G if for all probabilistic
polynomial-time algorithms A, AdvA2 (λ) is a negligible function of λ.

Our final assumption is again a subgroup-decision type of assumption. It will be used
in the proofs of our 1-secure HVE scheme. It is defined as follows. First pick a random
bilinear setting I = (N,G,GT , e)← G(1λ) and then pick A2 ← Gp2 , A3 ← Gp3 , A4, B4,←
Gp4 , A14, B14 ← Gp1p4 and set T1 = B14, T2 = B4 and D = (I, A2, A3, A4, A14). We define
the advantage of an algorithm A in breaking Assumption 4 to be

AdvA4 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 4 We say that Assumption 4 holds for generator G if for all probabilistic
polynomial-time algorithms A, AdvA4 (λ) is a negligible function of λ.

In Appendix B, we prove that Assumption 1 and 2 hold in the generic group model.

8.2 0-Secure HVE

We start by presenting our 0-secure scheme. We stress that in Chapter 12 this scheme will
also be proved secure against unrestricted adversaries.

To make our descriptions and proofs simpler, we add to all vectors ~x and ~y two dummy
components and set both of them equal to 0. We can thus assume that all vectors have at
least two non-star positions.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N =
p1p2p3p4, G,GT , e) with known factorization by running a generator algorithm G on input
1λ. The setup algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for

i ∈ [`] and b ∈ {0, 1}, random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g
ti,b
1 ·Ri,b.

The public parameters are Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and the master secret key is
Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}], where g12 = g1 · g2.

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. The key generation
algorithm chooses random ai ∈ ZN for i ∈ S~y under the constraint that

∑
i∈S~y ai = 0. For
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i ∈ S~y, the algorithm chooses random Wi ∈ Gp4 and sets

Yi = g
ai/ti,yi
12 ·Wi.

The algorithm returns the tuple (Yi)i∈S~y . Here we use the fact that S~y has size at least 2.

Encrypt(Pk, ~x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the
algorithm chooses random Zi ∈ Gp3 and sets

Xi = T si,xi · Zi,

and returns the tuple (Xi)i∈[`].

Test(Ct,Sk~y): The test algorithm computes T =
∏
i∈S~y e(Xi, Yi). It returns TRUE if

T = 1, FALSE otherwise.

Correctness

8.3 Correctness of our HVE scheme

Lemma 23. The HVE scheme presented in Sections 12.3 and 8.2 is correct.

Proof. Suppose that Ct = (Xi)i∈[`] is a ciphertext for attribute vector ~x and that
Sk~y = (Yi)i∈S~y is a key for vector ~y such that Match(~x, ~y) = 1. We show that Test(Ct, Sk~y)
returns TRUE. By definition we have that Test(Ct,Sk~y) computes the following product∏

i∈S~y

e(Xi, Yi) =
∏
i∈S~y

e(T si,xi · Zi, g
ai/ti,yi
12 ·Wi) (8.1)

=
∏
i∈S~y

e(g
ti,xis

1 , g
ai/ti,yi
1 ) (8.2)

=
∏
i∈S~y

e(g
ti,xis

1 , g
ai/ti,xi
1 ) (8.3)

=
∏
i∈S~y

e(g1, g1)ais (8.4)

= e(g1, g1)
s
∑
i∈S~y

ai
(8.5)

= 1. (8.6)

Equation 8.1 follows by definition of the Xi’s and Yi’s. Equation 8.2 follows from Equa-
tion 8.1 by definition of the Ti,xi and by the ortogonality property of bilinear groups of
composite order discussed in Section 5.2. Equation 8.3 follows from Equation 8.2 since, if
Match(~x, ~y) = 1, then, for each i ∈ S~y, xi = yi. Equation 8.4 follows from Equation 8.3
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by the bilinear property of e. Equation 8.5 follows from Equation 8.4 by simple algebraic
manipulations. Equation 8.6 follows from Equation 8.5 since by construction we have∑

i∈S~y ai = 0. Finally, notice that if the value obtained by this computation is 1 (the iden-

tity of the target group) then, by definition, the Test procedure returns TRUE as expected.
Suppose now that Match(~x, ~y) = 0. Let A be the set of positions i such that xi = yi and
B = S~y \A. By definition we have that Test(Ct, Sk~y) computes the following product∏

i∈S~y

e(Xi, Yi) = e(g1, g1)s
∑
i∈A ai · e(g1, g1)s

∑
i∈B aiwi (8.7)

Equation 8.7 follows by some of the facts already observed in the discussion of Equa-
tions 8.1-8.5, by definition of A and B, and by setting wi

def
= ti,xi/ti,yi . Since that with very

high probability s 6= 0 mod ZN then, by the fact that e is non-degenerate, such a product
equals 1 (the unity of the target group) if and only if∑

i∈A
ai +

∑
i∈B

aiwi = 0. (8.8)

By recalling that
∑

i∈S~y ai = 0 and by the fact that A and B are a partition of S~y, from
Equation 8.8 follows that∑

i∈S~y

ai +
∑
i∈B

ai(wi − 1) =
∑
i∈B

ai(wi − 1). (8.9)

If i ∈ B, then xi 6= yi, yi 6= ?, and thus, without loss of generality, wi = ti,0/ti,1 is distributed
randomly in ZN with very high probability since that ti,0 and ti,1 are chosen randomly and
independently from ZN . Hence, since that the set B is of cardinality exponentially smaller
than N , with very high probability for each i ∈ B, wi− 1 is distributed independently and
randomly in ZN . From the fact that Match(~x, ~y) = 0 it follows that the set B is non-empty
and so, from the fact that the wi− 1’s are distributed randomly and independently in ZN ,
it follows that Equation 8.9 is different from 0 mod N with very high probability. Thus,
with very high probability, the product computed by the Test procedure is different from
the identity of the target group and so with the same probability it returns FALSE as
expected. 2

We stress that this proof also implies an analogous proof of correctness for the scheme
of Section 6.3.

8.4 0-Security of our HVE scheme

In this section we prove that our HVE scheme is 0-secure. To prove security we rely on
Assumptions 1 and 2. For a probabilistic polynomial-time 0-adversary A which makes q
queries for KeyGen, our proof of security will be structured as a sequence of q + 2 games
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between A and a challenger C. The first game, GReal, is the real HVE security game
described in the previous section. The remaining games, called G0, . . . ,Gq, are described
(and shown indistinguishable) in the following sections. In the rest of this section, when we
refer to adversaries we mean 0-adversaries and when we refer to GReal we mean GReal(0).

Description of G0. G0 is like GReal, except that C uses g2 instead of g1 to construct the
public parameters Pk given to A. Specifically,

Setup. C chooses a description of a bilinear group I = (N = p1p2p3p4, G,GT , e) ← G(1λ)
with known factorization and random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets
g12 = g1 · g2. For each i ∈ [`] and b ∈ {0, 1}, C chooses random ti,b ∈ ZN and Ri,b ∈ Gp3

and sets Ti,b = g
ti,b
2 · Ri,b and T ′i,b = g

ti,b
1 · Ri,b. Then C sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}],

Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}], and Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}]. Finally, C interacts with

A on input Pk.

Key Query Answering. On vector ~y, C returns the output of KeyGen(Msk, ~y).

Challenge Construction. C picks one of the two challenge vectors provided by A and
encrypts it with respect to public parameters Pk′.

Proof of indistinguishability of GReal and G0

Lemma 24. Suppose there exists a PPT algorithm A such that AdvAGReal − AdvAG0
= ε.

Then, there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. We show a PPT algorithm B which receives (I, A3, A4, A13, A12) and T and,
depending on the nature of T , simulates GReal or G0 with A. This suffices to prove the
Lemma.

Setup. B starts by constructing Pk and Pk′ as follow. B sets g3 = A3, g12 = A12, g4 = A4

and, for each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN and sets Ti,b = T ti,b and

T ′i,b = A
ti,b
13 . Then B sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}], and

Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] and starts the interaction with A on input Pk.

Key Query Answering. Whenever A asks to see the secret key Sk~y associated with vector
~y, B runs algorithm KeyGen on input Msk and ~y.

Challenge Construction. The challenge is created by B by picking one of the two vectors
provided by A, let us call it ~x, and by encrypting it by running the Encrypt algorithm on
input ~x and Pk′.

This concludes the description of algorithm B.

Now suppose T ∈ Gp1p3 , and thus it can be written as T = h1 · h3 for h1 ∈ Gp1 and
h3 ∈ Gp3 . This implies that Pk received in input by A in the interaction with B has the
same distribution as in GReal. Furthermore, it’s easy to see that the answers to key queries
and the challenge ciphertext given by B to A have the same distribution as the answers
and the challenge ciphertext received by A in GReal. We can thus conclude that C has
simulated GReal with A.
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Instead, when T ∈ Gp2p3 , Pk provided by B has the same distribution as that produced
by C in G0. Therefore, C is simulating G0 for A. 2

Description of Gk, for 1 ≤ k ≤ q. Each of these games is like G0, except that the
first k key queries issued by A are answered with keys whose Gp1 parts are random. The
remaining key queries (that is, from the (k + 1)-st to the q-th) are answered like in the
previous game. The Gp2 parts of all the answers to key queries are like in G0. More
precisely, in Gk, the Setup phase and the Challenge Construction are like in G0 and the
Key Query phase is the following.

Key Query Answering. C answers the first k key queries in the following way. On input
vector ~y, for i ∈ S~y, C chooses random ai, ci ∈ ZN under the constraint that

∑
i∈S~y ai = 0

and random Wi ∈ Gp4 . C sets, for i ∈ S~y, Yi = gci1 ·g
ai/ti,yi
2 ·Wi. The remaining q−k queries

are answered like in G0.

Proof of indistinguishability of Gk−1 and Gk

Lemma 25. Suppose there exists a PPT algorithm A such that AdvAGk−1
−AdvAGk = ε. Then,

there exists a PPT algorithm B with advantage at least ε/(2`) in breaking Assumption 2.

Proof. B receives (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4) and T and, depending on the nature

of T , simulates Gk−1 or Gk with A.
B starts by guessing the index j such that the j-th bit y(k)

j of the k-th query ~y(k) is
different from ? and different from the j-th bit xj of the challenge vectors provided by
A that C uses to construct the challenge ciphertext. Notice that the probability that B
correctly guesses j and y(k)

j is at least 1/(2`), independently from the view of A. Notice
that, if during the simulation this is not the case, then B aborts the simulation and fails.
We next describe and prove the correctness of the simulation under the assumption that
B’s initial guess is correct. Notice that if the initial guess is correct xj and y(k)

j are uniquely

determined and it holds that xj = 1− y(k)

j .

Setup. B sets g1 = A1, g2 = A2, g3 = A3, g4 = A4 and g12 = A1 ·A2. For each i ∈ [`] \ {j}
and b ∈ {0, 1}, B chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 , and sets Ti,b = g

ti,b
2 · Ri,b.

Moreover, B chooses random tj,xj ∈ ZN , Rj,xj ∈ Gp3 , r
j,y

(k)
j

∈ ZN and R
j,y

(k)
j

∈ Gp3 and

sets

Tj,xj = g
tj,xj
2 ·Rj,xj T

j,y
(k)
j

= g
r
j,y

(k)
j

2 ·R
j,y

(k)
j

.

Notice that by assumption xj 6= y(k)

j . B then sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}]. In addition,

for each i ∈ [`]\{j} and b ∈ {0, 1} and B chooses random R′i,b ∈ Gp3 and sets T ′i,b = g
ti,b
1 ·R′i,b.

Moreover B chooses random Rj,xj and sets T ′j,xj = g
tx,xj
1 · R′j,xj . The value of T ′

j,y
(k)
j

remains unspecified. As we shall see below, in answering key queries, B will implicitly set
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T ′
j,y

(k)
j

= g
1/β
1 ·R′

j,y
(k)
j

for a random R′
j,y

(k)
j

∈ Gp3 . B starts the interaction with A on input

Pk. Notice that Pk has the same distribution as that seen by A in Gk−1 and Gk.

Key Query Answering. For the first k−1 queries B proceeds as follows. Let ~y be the input
vector. For i ∈ S~y, B chooses random ai such that

∑
i∈S~y ai = 0, random zi ∈ ZN , and

random Wi ∈ Gp4 . Then, for i ∈ S~y, B computes

Yi =


gzi1 · g

ai/ti,yi
2 ·Wi, if i 6= j;

g
zj
1 · g

aj/tj,yj
2 ·Wj , if i = j and yj = xj ;

g
zj
1 · g

aj/rj,yj
2 ·Wj , if i = j and yj 6= ?.

Also notice that the first k − 1 answers produced by B have the same distribution as the
first k − 1 answers seen by A in Gk−1 and Gk.

Let us now describe how B answers the k-th query the vector ~y(k) . Let h be an index
such that h 6= j and y(k)

h 6= ?; such an index always exists by our assumption that all keys
are for vectors with at least two entries different from ?. Also we remind the reader that
y(k)

j = 1− xj .
Let S = S~y\{j, h}. For each i ∈ S, B chooses random ai ∈ ZN and Wi ∈ Gp4 . Moreover

B chooses random a′j ∈ ZN and Wj ,Wh ∈ Gp4 and sets

Yi = g
ai/t

i,y
(k)
i

12 ·Wi, Yj = T · g
a′j/rj,y(k)

j

2 ·Wj ,

Yh = (Aα1B4)
−1/t

h,y
(k)
h · g

−s/t
h,y

(k)
h

1 · g
−(s+aj)/t

h,y
(k)
h

2 ·Wh,

where s =
∑

i∈S ai. This terminates the description of how B handles the k-th key query.

Let us now verify that when T = Aαβ1 ·D4 then B’s answer to the k-th key query is like in

Gk−1. By our settings, we have that Yj = g

α/t′
j,y

(k)
j

1 · g
a′j/rj,y(k)

j

2 ·D4 ·Wj with t′
j,y

(k)
j

= 1/β.

By the Chinese Remainder Theorem, we can conclude that the answer to the k-th query
of A is distributed as in Gk−1. Instead, if T is random in Gp1p4 then the Gp1 parts of the
Yi’s are random and thus the answer to the k-th query of A is distributed as in Gk.

For the l-th key queries for l = k + 1, . . . , q, notice that if the j-th bit of the l-th
query vector is equal to xj then B has all the ti,yi ’s needed for running algorithm KeyGen.
If this is not the case then, by the previous settings, tj,yj ≡ 1/β mod p1 and B can use

Aβ1 · C4 = g
1/tj,yj
1 · C4 (see Assumption 2). So, the answers to the last q − k queries have

the same distribution as in Gk and Gk−1.

Challenge Construction. The challenge is created by running algorithm Encrypt on input
the randomly chosen challenge vector ~x and Pk′. Under the assumption that B has correctly
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guessed xj and thus xj = 1− y(k)

j , Pk′ contains all the values to compute an encryption of
~x. Then the challenge ciphertext is distributed exactly like in Gk−1 and Gk. 2

Gq gives no advantage. We observe that in Gq the Gp1 part of the challenge ciphertext
is the only one depending on η and the Pk and the answer to the key queries give no help
to A. Therefore we can conclude that for all adversaries A, AdvAGq = 0. We have thus
proved.

Theorem 26. If Assumptions 1 and 2 hold for generator G, then the HVE scheme pre-
sented is 0-secure.

8.5 Constructing 1-secure HVE

In this section we describe our construction for a 1-secure HVE scheme.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N =
p1p2p3p4, G,GT , e) ← G(1λ) with known factorization and chooses random g1 ∈ Gp1 ,
g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 . For i ∈ [`] and b ∈ {0, 1}, the algorithm chooses random

ti,b ∈ ZN , random vi ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g
ti,b
1 · gvi4 · Ri,b. The

public parameters are Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and the master secret key is Msk =
[g12 = g1 · g2, g4, (ti,b)i∈[`],b∈{0,1}, (vi)i∈[`]].

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. For i ∈ S~y, the key
generation algorithm chooses random ai ∈ ZN such that

∑
i∈S~y ai = 0. For i ∈ S~y, the

algorithm sets Yi = g
ai/ti,yi
12 g

ai/vi
4 . The algorithm returns the tuple (Yi)i∈S~y . Notice that

here we used the fact that S~y has size at least 2.

Encrypt(Pk, ~x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the
algorithm chooses random Zi ∈ Gp3 , sets Xi = T si,xiZi, and returns (Xi)i∈[`].

Test(Ct, Sk~y): The test algorithm returns TRUE if
∏
i∈S~y e(Xi, Yi) = 1.

Correctness. It is easy to verify the correctness of the scheme.

8.6 1-Security of our HVE scheme

To prove that our HVE scheme is 1-secure, we rely on static Assumptions 1 and 4. For a
probabilistic polynomial-time 1-adversary A our proof of security will be structured as a
sequence of 2 games between A and a challenger C. The first game, GReal(1), is the real
HVE security game described in the previous section. The remaining games, called G0,G1,
are described (and shown indistinguishable) in the following sections.

In the rest of this section, when we refer to adversaries we mean 1-adversaries and when
we refer to GReal we mean GReal(1).
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Description of G0. G0 is like GReal, except that C uses g2 instead of g1 to construct the
public parameters Pk given to A. Specifically,

Setup. C chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 . For i ∈ [`] and b ∈ {0, 1},
C chooses random ti,b ∈ ZN , random vi ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b =

g
ti,b
2 · gvi4 · Ri,b and T ′i,b = g

ti,b
1 · gvi4 · Ri,b. Then C sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and

Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}]. C starts the interaction with A on input Pk.

Key Query Answering. On a query for vector ~y, C returns the output of KeyGen on input
~y and Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}, (vi)i∈[`]], where g12 = g1 · g2.

Challenge Construction. C picks one of the two challenge vectors provided by A and
encrypts it with respect to public parameters Pk′.

Proof of indistinguishability of GReal and G0 for 1-security.

Lemma 27. Suppose there exists a PPT algorithm A such that AdvAGReal − AdvAG0
= ε.

Then, there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

The proof follows the line of that of Lemma 24 and therefore we omit the details.

Description of G1. This game is like G0, except that in the answers provided by C the
key queries. Specifically the queries are answered without the Gp1 part. The Gp2 part of
all answers is like in G0. Specifically, we have.

Query answering. C answers the queries in the following way. On input vector ~y, for i ∈ S~y,
C chooses random ai, bi ∈ ZN under the constraint that

∑
i∈S~y ai =

∑
i∈S~y bi = 0. C sets,

for i ∈ S~y, Yi = g
ai/ti,yi
2 · gbi/vi4 ·Wi.

Proof of indistinguishability of G0 and G1.

Lemma 28. Suppose there exists a PPT algorithm A such that AdvAG0
−AdvAG1

= ε. Then,
there exists a PPT algorithm B with advantage at least ε in breaking Assumption 4.

Proof. B receives (I, A2, A3, A4, A14) and T and, depending on the nature of T , simulates
G0 or G1 with A.

Setup. B sets g2 = A2, g3 = A3, g4 = A4. For i ∈ [`] and b ∈ {0, 1}, B chooses random

ti,b, vi ∈ ZN and Ri,b ∈ Gp3 , and sets Ti,b = g
ti,b
2 · gvi4 · Ri,b. These settings determine

Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}]. used by B to interact with A. Notice that Pk has the same
distribution as that seen by A in G0 and G1.

Key Query Answering. B computes the answer to query for vector ~y as follows. For i ∈ S~y,
B chooses random ai ∈ ZN subject to

∑
i∈S~y ai = 0 and sets Yi = g

ai/ti,yi
2 · T ai/vi . Now

suppose T = B14 and write T = g1g
c
4 for some g1 ∈ Gp1 and c ∈ Zp4 . By our setting we

have Yi = g
ai/vi
1 · gai/ti,yi2 · gcai/vi4 which implicitly sets ti,yi ≡ vi mod p1. It is easy to see

that the answer to the query is distributed as in G0. Instead, if T = B4 then the key does
not contain the Gp1 part and thus the answer to the query is distributed as in G1.
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Notice that, since A is a 1-adversary, then for every query vector ~y that A can submit,
it holds that for each i ∈ [`], yi = ? or yi = x0,i = x1,i. Therefore, or each i ∈ [`], B needs
only to determine ti,x0,i = ti,x1,i and it does so by setting it congruent to vi mod p1.

Challenge Construction. For i ∈ [`], B chooses random Zi ∈ Gp3 and sets, for i ∈ [`],
Xi = Avi14 · Zi. Finally notice that by writing A14 = (g1 · gc4)s, the challenge ciphertext is
distributed exactly like in G0 and G1. 2

G1 gives no advantage. We observe that the Gp1 part of the challenge ciphertext is the
only one depending on η and the Pk and the answer to the key queries give no help to A.
Therefore we can conclude that for all adversaries A, AdvAG1

= 0. We have thus proved.

Theorem 29. If Assumptions 1 and 4 hold for generator G, then the HVE scheme pre-
sented is 1-secure.



Chapter 9

(Anonymous) Hierarchical IBE

1 In this Chapter we present a class of predicate encryption schemes with a powerful
capability: delegation. Delegation is the possibility of deriving from a key for a predicate
P a key for a less ’general’ predicate P ′, that is, a predicate such that if P ′(x) = 1
then P (x) = 1 (but the viceversa can not hold). Specifically, we consider the primitive
Hierarchical IBE (HIBE). In HIBE the user encrypts a message with a vector of identities
(id1, . . . , idm) of length ≤ m. The keys are also associated with vectors of identities ~id of
length ≤ m. A key for vector ~id can decrypt a ciphertext for vector ~id′ iff ~id is a prefix of
~id′. We formalize this in next section.

9.1 Public-Key Anonymous HIBE

9.1.1 Hierarchical Identity Based Encryption

A Hierarchical Identity Based Encryption scheme (henceforth abbreviated in HIBE) over
an alphabet Σ is a tuple of five efficient and probabilistic algorithms: (Setup, Encrypt,
KeyGen, Decrypt, Delegate).

Setup(1λ, 1`): takes as input security parameter λ and maximum depth of an identity
vector ` and outputs public parameters Pk and master secret key Msk.

KeyGen(Msk, Id = (Id1, . . . , Idj)): takes as input master secret key Msk, identity vector
ID ∈ Σj with j ≤ ` and outputs a private key SkId.

Delegate(Pk, Id,SkId, Idj+1): takes as input public parameters Pk, secret key for identity
vector Id = (Id1, . . . , Idj) of depth j < `, Idj+1 ∈ Σ and outputs a secret key for the
depth j + 1 identity vector (Id1, . . . , Idj , Idj+1).

1The material in this Chapter is a polite version of a work of the author with Angelo De Caro and
Giuseppe Persiano [18]
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Encrypt(Pk,M, Id): takes as input public parameters Pk, message M and identity vector
Id and outputs a ciphertext Ct.

Decrypt(Pk,Ct,Sk): takes as input public parameters Pk, ciphertext Ct and secret key
Sk and outputs the message M . We make the following obvious consistency require-
ment. Suppose ciphertext Ct is obtained by running the Encrypt algorithm on public
parameters Pk, message M and identity Id and that Sk is a secret key for identity Id
obtained through a sequence of KeyGen and Delegate calls using the same public pa-
rameters Pk. Then Decrypt, on input Pk,Ct and Sk, returns M except with negligible
probability.

9.1.2 Security definition

We give complete form of the security definition following [38]. Our security definition cap-
tures semantic security and ciphertext anonymity by means of the following game between
an adversary A and a challenger C.

Setup. The challenger C runs the Setup algorithm to generate public parameters Pk
which it gives to the adversary A. We let S denote the set of private keys that the
challenger has created but not yet given to the adversary. At this point, S = ∅.

Phase 1. A makes Create, Delegate, and Reveal key queries. To make a Create query, A
specifies an identity vector Id of depth j. In response, C creates a key for this vector
by calling the key generation algorithm, and places this key in the set S. C only gives
A a reference to this key, not the key itself. To make a Delegate query, A specifies a
key SkId in the set S and Idj+1 ∈ Σ. In response, C appends Idj+1 to Id and makes a
key for this new identity by running the delegation algorithm on Id,SkId and Idj+1. C
adds this key to the set S and again gives A only a reference to it, not the actual key.
To make a Reveal query, A specifies an element of the set S. C gives this key to A
and removes it from the set S. We note that A needs no longer make any delegation
queries for this key because it can run delegation algorithm on the revealed key for
itself.

Challenge. A gives two pairs of message and identity (M0, Id
?
0) and (M1, Id

?
1) to C. We

require that no revealed identity in Phase 1 is a prefix of either Id?0 or Id?1. C chooses
random β ∈ {0, 1}, encrypts Mβ under Id?β and sends the resulting ciphertext to A.

Phase 2. This is the same as Phase 1 with the added restriction that any revealed identity
vector must not be a prefix of either Id?0 or Id?1.

Guess. A must output a guess β′ for β. The advantage of A is defined to be Prob[β′ =
β]− 1

2 .
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Definition 30. An Anonymous Hierarchical Identity Based Encryption scheme is secure if
all polynomial time adversaries achieve at most a negligible (in λ) advantage in the previous
security game.

Remark 31. Our constructions will guarantee the anonimity of the identity vector but
decryption will only work if the identity vector associated with the ciphertex is given. That
is, the ciphertexts do not leak information on the identity vector but in order to decrypt, you
have to know this identity vector. This can be a severe limitation for some applications but
it can be acceptable for others. Notice that when the system is instanced as an Anonymous
IBE (not hierarchical) where the identity is single, this is not a limitation because the
decryption identity is contained in the key.

9.2 Complexity Assumptions for our AHIBE scheme

In this section we give our complexity assumptions that will be used to prove the security of
our AHIBE scheme and of its secret-key AIBE variant. They are formulated in composite
order bilinear groups.

9.2.1 Assumption I1

For a generator G returning bilinear settings of orderN product of four primes, we define the
following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e)
by running G(1λ) and then pick

g1, A1 ← Gp1 , A2, B2 ← Gp2 , g3, B3 ← Gp3 , g4 ← Gp4 , T1 ← Gp1p2p3 , T2 ← Gp1p3

and set D = (I, g1, g3, g4, A1A2, B2B3). We define the advantage of an algorithm A in
breaking Assumption I1 to be:

AdvAI1 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|.

Assumption 3. We say that Assumption I1 holds for generator G if for all probabilistic
polynomial-time algorithms A AdvAI1 (λ) is a negligible function of λ.

9.2.2 Assumption I2

For a generator G returning bilinear settings of orderN product of four primes, we define the
following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e)
by running G(1λ) and then pick

α, s, r ← ZN , g1 ← Gp1 , g2, A2, B2 ← Gp2 , g3 ← Gp3 , g4 ← Gp4 , T2 ← GT

and set T1 = e(g1, g1)αs and D = (I, g1, g2, g3, g4, g
α
1A2, g

s
1B2, g

r
2, A

r
2). We define the ad-

vantage of an algorithm A in breaking Assumption I2 to be:

AdvAI2 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|.
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Assumption 4. We say that Assumption I2 holds for generator G if for all probabilistic
polynomial time algorithm A AdvAI2 (λ) is a negligible function of λ.

9.2.3 Assumption I3

For a generator G returning bilinear settings of orderN product of four primes, we define the
following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e)
by running G(1λ) and then pick

r̂, s← ZN , g1, U,A1 ← Gp1 , g2, A2, B2, D2, F2 ← Gp2 , g3 ← Gp3 ,

g4, A4, B4, D4 ← Gp4 , A24, B24, D24 ← Gp2p4 , T2 ← Gp1p2p4

and set T1 = As1D24 and D = (I, g1, g2, g3, g4, U, U
sA24, U

r̂, A1A4, A
r̂
1A2, g

r̂
1B2, g

s
1B24). We

define the advantage of an algorithm A in breaking Assumption I3 to be:

AdvAI3 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|.

Assumption 5. We say that Assumption I3 holds for generator G if for all probabilistic
polynomial time algorithm A AdvAI3 (λ) is a negligible function of λ.

9.2.4 Our construction

In this section we describe our construction for an Anonymous HIBE scheme.

Setup(1λ, 1`): The setup algorithm chooses random description I = (N = p1p2p3p4,G,GT , e)
and random Y1, X1, u1, . . . , u` ∈ Gp1 , Y3 ∈ Gp3 , X4, Y4 ∈ Gp4 and α ∈ ZN . The public
parameters are published as:

Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u`,Ω = e(Y1, Y1)α).

The master secret key is Msk = (X1, α).

KeyGen(Msk, Id = (Id1, . . . , Idj)): The key generation algorithm chooses random r1, r2 ∈
ZN and, for i ∈ {1, 2}, random Ri,1, Ri,2, Ri,j+1, . . . , Ri,` ∈ Gp3 . The secret key
SkId = (Ki,1,Ki,2, Ei,j+1, . . . , Ei,`) is computed as

K1,1 = Y r1
1 R1,1, K1,2 = Y α

1

(
uId1

1 · · ·u
Idj
j X1

)r1
R1,2

E1,j+1 = ur1j+1R1,j+1, . . . , E1,` = ur1` R1,`,

K2,1 = Y r2
1 R2,1, K2,2 =

(
uId1

1 · · ·u
Idj
j X1

)r2
R2,2

E2,j+1 = ur2j+1R2,j+1, . . . , E1,` = ur2` R2,`.
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Notice that, SkId is composed by two sub-keys. The first sub-key, (K1,1,K1,2, E1,j+1,
. . . , E1,`), is used by the decryption algorithm to compute the blinding factor, the
second, (K2,1,K2,2, E2,j+1, . . . , E2,`), is used by the delegation algorithm and can be
used also to verify that the identity vector of a given ciphertext matches the identity
vector of the key.

Delegate(Pk, Id,SkId, Idj+1): Given a key SkId = (K ′i,1,K
′
i,2, E

′
i,j+1, . . . , E

′
i,`) for

Id = (Id1, . . . , Idj), the delegation algorithm creates a key for (Id1, . . . , Idj , Idj+1) as
follows. It chooses random r̃1, r̃2 ∈ ZN and, for i ∈ {1, 2}, random

Ri,1, Ri,2, Ri,j+2, . . . , Ri,` ∈ Gp3 . The secret key (Ki,1,Ki,2, Ei,j+2, . . . , Ei,`) is com-
puted as

K1,1 = K ′1,1(K ′2,1)r̃1R1,1,K1,2 = K ′1,2(K ′2,2)r̃1(E′1,j+1)
Idj+1

(E′2,j+1)
r̃1Idj+1

R1,2,

E1,j+2 = E′1,j+2 · (E′2,j+2)r̃1R1,j+2, . . . , E1,` = E′1,` · (E′2,`)r̃1R1,`.

and

K2,1 = (K ′2,1)r̃2R2,1, K2,2 = (K ′2,2)r̃2 · (E′2,j+1)r̃2Idj+1R2,2,

E2,j+2 = (E′2,j+2)r̃2R2,j+2, . . . , E2,` = (E′2,`)
r̃2R2,`.

We observe that the new key has the same distributions as the key computed by
the KeyGen algorithm on (Id1, . . . , Idj , Idj+1) with randomness r1 = r′1 + (r′2 · r̃1) and
r2 = r′2 · r̃2.

Encrypt(Pk,M, Id = (Id1, . . . , Idj)): The encryption algorithm chooses random s ∈ ZN
and random Z,Z ′ ∈ Gp4 . The ciphertext (C0, C1, C2) for the message M ∈ GT is
computed as

C0 = M · e(Y1, Y1)αs, C1 =
(
uId1

1 · · ·u
Idj
j t
)s
Z, C2 = Y s

1 Z
′.

Decrypt(Pk,Ct, Sk): The decryption algorithm assumes that the key and ciphertext both
correspond to the same identity (Id1, . . . , Idj). If the key identity is a prefix of this
instead, then the decryption algorithm starts by running the key delegation algorithm
to create a key with identity matching the ciphertext identity exactly. The decryption
algorithm then computes the blinding factor as:

e(K1,2, C2)

e(K1,1, C1)
=

e(Y1, Y1)αse
(
uId1

1 · · ·u
Idj
j X1, Y1

)r1s
e
(
Y1, u

Id1
1 · · ·u

Idj
j X1

)r1s = e(Y1, Y1)αs.
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By comparing our construction with the one of [31], we notice that component t of the
public key and components C1 and C2 of the ciphertext have a Gp4 part. This addition
makes the system anonymous. Indeed, if we remove from our construction the Gp4 parts of
t and C1 and C2 (and thus obtain the scheme of [31]) then it is possible to test if ciphertext
(C0, C1, C2) is relative to identity (Id1, . . . , Idj) for public key (N,Y1, Y3, Y4, t, u1, . . . , u`,Ω)

by testing e(C2, t · (uId1
1 · · ·u

Id`
` )) and e(C1, Y1) for equality.

9.2.5 Security

Following Lewko and Waters [31], we define two additional structures: semi-functional
ciphertexts and semi-functional keys. These will not be used in the real scheme, but we
need them in our proofs.

Semi-functional Ciphertext. We let g2 denote a generator of Gp2 . A semi-functional
ciphertext is created as follows: first, we use the encryption algorithm to form a normal
ciphertext (C ′0, C

′
1, C

′
2). We choose random exponents x, zc ∈ ZN . We set:

C0 = C ′0, C1 = C ′1g
xzc
2 , C2 = C ′2g

x
2 .

Semi-functional Keys. To create a semi-functional key, we first create a normal key
(K ′i,1, K

′
i,2, E

′
i,j+1, . . . , E

′
i,`) using the key generation algorithm. We choose random ex-

ponents z, γ, zk ∈ ZN and, for i ∈ {1, 2}, random exponents zi,j+1, . . . , zi,` ∈ ZN . We
set:

K1,1 = K ′1,1 · g
γ
2 ,K1,2 = K ′1,2 · g

γzk
2 , (E1,i = E′1,i · g

γz1,i
2 )`i=j+1,

and

K2,1 = K ′2,1 · g
zγ
2 ,K2,2 = K ′2,2 · g

zγzk
2 , (E2,i = E′2,i · g

zγz2,i
2 )`i=j+1.

We note that when the first sub-key of a semi-functional key is used to decrypt a semi-
functional ciphertext, the decryption algorithm will compute the blinding factor multiplied
by the additional term e(g2, g2)xγ(zk−zc). If zc = zk, decryption will still work. In this case,
we say that the key is nominally semi-functional. If the second sub-key is used to test the
identity vector of the ciphertext, then the decryption algorithm computes e(g2, g2)xzγ(zk−zc)

and if zc = zk, the test will still work.

To prove security of our Anonymous HIBE scheme, we rely on the static Assumptions
I1, I2 and 3. For a probabilistic polynomial-time adversary A which makes q key queries,
our proof of security will consist of the following sequence of q + 5 games between A and
a challenger C.

GReal: is the real Anonymous HIBE security game.
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GReal′ : is the same as the real game except that all key queries will be answered by fresh
calls to the key generation algorithm, (C will not be asked to delegate keys in a
particular way).

GRestricted: is the same as GReal′ except that A cannot ask for keys for identities which are
prefixes of one of the challenge identities modulo p2. We will retain this restriction
in all subsequent games.

Gk: for k from 0 to q, we define Gk like GRestricted except that the ciphertext given to A
is semi-functional and the first k keys are semi-functional. The rest of the keys are
normal.

GFinal0 : is the same as Gq, except that the challenge ciphertext is a semi-functional encryp-
tion with C0 random in GT (thus the ciphertext is independent from the messages
provided by A).

GFinal1 : is the same as GFinal0 , except that the challenge ciphertext is a semi-functional
encryption with C1 random in Gp1p2p4 (thus the ciphertext is independent from the
identity vectors provided by A). It is clear that in this last game, no adversary can
have advantage greater than 0.

We will show these games are indistinguishable in the following lemmata.

Indistinguishability of GReal and GReal′

Lemma 32. For any algorithm A, AdvAGReal = AdvAGReal′
.

Proof. We note that the keys are identically distributed whether they are produced by
the key delegation algorithm from a previous key or from a fresh call to the key generation
algorithm. Thus, in the attacker’s view, there is no difference between these games. 2

Indistinguishability of GReal′ and GRestricted

Lemma 33. Suppose that there exists a PPT algorithm A such that AdvAGReal′
−AdvAGRestricted

=
ε. Then there exists a PPT algorithm B with advantage ≥ ε

3 in breaking Assumption I1.

Proof. Suppose thatA has probability ε of producing an identity vector Id = (Id1, . . . , Idk),
that is a prefix of one of the challenge identities Id? = (Id?1, . . . , Id

?
j ) modulo p2. That is,

there exists i and j ∈ {0, 1} such that that Idi 6= Id?j,i modulo N and that p2 divides
Idi − Id?j,i and thus a = gcd(Idi − Id?j,i, N) is a nontrivial factor of N . We notice that p2

divides a and set b = N
a . The following three cases are exhaustive and at least one occurs

with probability at least ε/3.

1. ord(Y1) | b.
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2. ord(Y1) - b and ord(Y4) | b.

3. ord(Y1) - b, ord(Y4) - b and ord(Y3) | b.

Suppose case 1 has probability at least ε/3. We describe algorithm B that breaks Assump-
tion I1. B receives (I, g1, g3, g4, A1A2, B2B3) and T and constructs Pk by running the Setup
algorithm with the only exception that B sets Y1 = g1, Y3 = g3, and Y4 = g4. Notice that
B has the master secret key Msk associated with Pk. Then B runs A on input Pk and uses
knowledge of Msk to answer A’s queries. At the end of the game, for all Ids for which A
has asked for the key and for Id? ∈ {Id?0, Id?1}, B computes a = gcd(Idi − Id?i , N). Then, if
e ((A1A2)a, B2B3) is the identity element of GT then B tests if e(T b, A1A2) is the identity
element of GT . If this second test is successful, then B declares T ∈ Gp1p3 . If it is not, B
declares T ∈ Gp1p2p3 . It is easy to see that if p2 divides a and p1 = ord(Y1) divides b, then
B’s output is correct.

The other two cases are similar. Specifically, in case 2, B breaks Assumption I1 in the
same way except that Pk is constructed by setting Y1 = g4, Y3 = g3, and Y4 = g1 (this
has the effect of exchanging the roles of p1 and p4). Instead in case 3, B constructs Pk by
setting Y1 = g3, Y3 = g1, and Y4 = g4 (this has the effect of exchanging the roles of p1 and
p3). 2

Indistinguishability of GRestricted and G0

Lemma 34. Suppose that there exists a PPT algorithm A such that AdvAGRestricted
−AdvAG0

= ε.
Then there exists a PPT algorithm B with advantage ε in breaking Assumption I1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates GRestricted or G0 with
A depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .

B sets the public parameters as follows. B chooses random exponents α, a1, . . . , a`, b, c ∈
ZN and sets Y1 = g1, Y3 = g4, Y4 = g3, X4 = Y c

4 , X1 = Y b
1 and ui = Y ai

1 for i ∈ [`]. B sends
Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u`,Ω = e(Y1, Y1)α) to A. Notice that B knows the
master secret key Msk = (X1, α) associated with Pk and thus can answer all A’s queries.

At some point, A sends B two pairs, (M0, Id
?
0 = (Id?0,1, . . . , Id

?
0,j)) and (M1, Id

?
1 =

(Id?1,1, . . . , Id
?
1,j)). B chooses random β ∈ {0, 1} and computes the challenge ciphertext

as follows:

C0 = Mβ · e(T, Y1)α, C1 = T a1Id?β,1+···+aj Id?β,j+b, C2 = T.

We complete the proof with the following two observations. If T ∈ Gp1p3 , then T can
be written as Y s1

1 Y s3
4 . In this case (C0, C1, C2) is a normal ciphertext with randomness

s = s1, Z = Y
s3a1Id?β,1+···+aj Id?β,j+b

4 and Z ′ = Y s3
4 . If T ∈ Gp1p2p3 , then T can be written

as Y s1
1 gs22 Y

s3
4 and this case (C0, C1, C2) is a semi-functional ciphertext with randomness

s = s1, Z = Y
s3a1Id?β,1+···+aj Id?β,j+b

4 , Z ′ = Y s3
4 , γ = s2 and zc = a1Id

?
β,1 + · · ·+ aj Id

?
β,j + b. 2
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Indistinguishability of Gk−1 and Gk

Lemma 35. Suppose there exists a PPT algorithm A such that AdvAGk−1
− AdvAGk = ε.

Then, there exists a PPT algorithm B with advantage ε in breaking Assumption I1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates Gk−1 or Gk with A
depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .
B sets the public parameters by choosing random exponents α, a1, . . . , a`, b, c ∈ ZN and

setting Y1 = g1, Y3 = g3, Y4 = g4, X4 = Y c
4 , X1 = Y b

1 and ui = Y ai
1 for i ∈ [`]. B sends the

public parameters Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u`, Ω = e(Y1, Y1)α) to A. Notice
that B knows the master secret key Msk = (X1, α) associated with Pk. Let us now explain
how B answers the i-th key query for identity (Idi,1, . . . , Idi,j).

For i < k, B creates a semi-functional key by choosing random exponents r1, r2, f, z, w ∈
ZN and, for i ∈ {1, 2}, random wi,2, wi,j+1, . . . , wi,` ∈ ZN and setting:

K1,1 = Y r1
1 · (B2B3)f , K1,2 = Y α

1 · (B2B3)w
(
u

Idi,1
1 · · ·uIdi,j

j X1

)r1
Y
w1,2

3 ,

E1,j+1 = ur1j+1 · (B2B3)w1,j+1 , . . . , E1,` = ur1` · (B2B3)w1,` .

and
K2,1 = Y r2

1 · (B2B3)zf , K2,2 = (B2B3)zw
(
u

Idi,1
1 · · ·uIdi,j

j X1

)r2
Y
w2,2

3 ,

E2,j+1 = ur2j+1 · (B2B3)w2,j+1 , . . . , E2,` = ur2` · (B2B3)w2,` .

By writing B2 as gφ2 , we have that this is a properly distributed semi-functional key with
γ = φ · f and γ · zk = φ · w.

For i > k, B runs the KeyGen algorithm using the master secret key Msk = (X1, α).
To answer the k-th key query for Idk = (Idk,1, . . . , Idk,j), B sets zk = a1Idk,1 + · · · +

aj Idk,j + b, chooses random exponents r′2 ∈ ZN and, for i ∈ {1, 2}, random
wi,2, wi,j+1, . . . , wi,` ∈ ZN , and sets:

K1,1 = T, K1,2 = Y α
1 · T zkY

w1,2

3 , (E1,m = T amY
w1,m

3 )`m=j+1.

and
K2,1 = T r

′
2 , K2,2 = T r

′
2·zkY

w2,2

3 , (E2,m = T r
′
2·amY

w2,m

3 )`m=j+1.

We have the following two observations. If T ∈ Gp1p3 , then T can be written as Y
r′1

1 Y r3
3

and (Ki,1,Ki,2, Ei,j+1, . . . , Ei,`) is a normal key with randomness r1 = r′1, r2 = r′1 · r′2 . If

T ∈ Gp1p2p3 , then T can be written as Y
r′1

1 gs22 Y
r3

3 . In this case the key is a semi-functional
key with randomness r1 = r′1, r2 = r′1 · r′2, γ = s2 and z = r′2.

At some point, A sends B two pairs, (M0, Id
?
0 = (Id?0,1, . . . , Id

?
0,j)) and (M1, Id

?
1 =

(Id?1,1, . . . , Id
?
1,j)). B chooses random β ∈ {0, 1} and random z, z′ ∈ ZN and computes

the challenge ciphertext as follows:

C0 = Mβ · e(A1A2, Y1)α, C1 = (A1A2)a1Id?β,1+···+aj Id?β,j+bY z
4 , C2 = A1A2Y

z′
4 .
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This implicitly sets Y s
1 = A1 and zc = a1Id

?
β,1 + · · ·+aj Id

?
β,j +b (mod p2). Since Idk is not a

prefix of Id?β modulo p2, we have that zk and zc are independent and randomly distributed.
We observe that, if B attempts to test whether the k-th key is semi-functional by using
the above procedure to create a semi-functional ciphertext for Idk, then we will have that
zk = zc and thus decryption always works (independently of T ).

We can thus conclude that, if T ∈ Gp1p3 then B has properly simulated Gk−1. If
T ∈ Gp1p2p3 , then B has properly simulated Gk. 2

Indistinguishability of Gq and GFinal0

Lemma 36. Suppose that there exists a PPT algorithm A such that AdvAGq −AdvAGFinal0
= ε.

Then there exists a PPT algorithm B with advantage ε in breaking Assumption I2.

Proof. B receives (I, g1, g2, g3, g4, g
α
1A2, g

s
1B2, g

r
2, A

r
2) and T and simulates Gq or GFinal0

with A depending on whether T = e(g1, g1)αs or T is a random element of GT .
B sets the public parameters as follows. B chooses random exponents a1, . . . , a`, b, c ∈

ZN and sets Y1 = g1, Y3 = g3, Y4 = g4, X4 = Y c
4 , X1 = Y b

1 , and ui = Y ai
1 for i ∈ [`]. B

computes Ω = e(gα1A2, Y1) = e(Y α
1 , Y1) and send public parameters Pk = (N,Y1, Y2, Y3, t =

X1X4, u1, . . . , u`,Ω) to A.
Each time B is asked to provide a key for an identity (Id1, . . . , Idj), B creates a semi-

functional key choosing random exponents r1, r2, z, z
′ ∈ ZN and, for i ∈ {1, 2}, random

zi,j+1, . . . , zi,`, wi,1, wi,2, wi,j+1, . . . , wi,` ∈ ZN and setting:

K1,1 = Y r1
1 · g

z
2 · Y

w1,1

3 , K1,2 = (gα1A2) · gz′2 ·
(
uId1

1 · · ·u
Idj
j X1

)r1
· Y w1,2

3 ,

E1,j+1 = ur1j+1 · g
z1,j+1

2 · Y w1,j+1

3 , . . . , E1,` = ur1` · g
z1,`
2 · Y w1,`

3 .

and
K2,1 = Y r2

1 · (g
r
2)z · Y w2,1

3 , K2,2 = Ar2 · (gr2)z
′ ·
(
uId1

1 · · ·u
Idj
j X1

)r2
· Y w2,2

3 ,

E2,j+1 = ur2j+1 · g
z2,j+1

2 · Y w2,j+1

3 , . . . , E2,` = ur2` · g
z2,`
2 · Y w2,`

3 .

At some point, A sends B two pairs, (M0, Id
?
0 = (Id?0,1, . . . , Id

?
0,j)) and (M1, Id

?
1 =

(Id?1,1, . . . , Id
?
1,j)). B chooses random β ∈ {0, 1} and random z, z′ ∈ ZN and computes

the challenge ciphertext as follows:

C0 = Mβ · T, C1 = (gs1B2)a1Id?β,1+···+aj Id?β,j+b · Y z
4 , C2 = gs1B2 · Y z′

4 .

This implicitly sets zc = (a1Id
?
β,1 + · · ·+ aj Id

?
β,j + b) mod p2. We note that ui = Y ai mod p1

1

and X1 = Y b mod p1
1 are elements of Gp1 , so when a1, · · · , a` and b are randomly chosen

from ZN , their value modulo p1 and modulo p2 are random and independent.
We finish by observing that, if T = e(g, g)αs, then the ciphertext constructed is a

properly distributed semi-functional ciphertext with message Mβ. If T instead is a random
element of GT , then the ciphertext is a semi-functional ciphertext with a random message.
2
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Indistinguishability of GFinal0 and GFinal1

Lemma 37. Suppose that there exists a PPT algorithm A such that AdvAGFinal0
−AdvAGFinal1

=

ε. Then there exists a PPT algorithm B with advantage ε in breaking Assumption I3.

Proof. First, notice that if exists an adversary A′ which distinguishes an encryption
for an identity vector Id?0 from an encryption for an identity vector Id?1, where Id?0 and Id?1
are chosen by A′, then there exists an adversary A which distinguishes an encryption for
an identity Id? chosen by A from an encryption for a random identity vector. Hence, we
suppose that we are simulating the games for a such adversary.

B receives (I, g1, g2, g3, g4, U, U
sA24, U

r̂, A1A4, A
r̂
1A2, g

r̂
1B2, g

s
1B24) and T and simulates

GFinal0 or GFinal1 with A depending on whether T = As1D24 or T is random in Gp1p2p4 .

B sets the public parameters as follows. B chooses random exponents α, a1, . . . , a` ∈ ZN
and sets Y1 = g1, Y3 = g3, Y4 = g4, t = A1A4, ui = Uai for i ∈ [`], and Ω = e(Y1, Y1)α. B
sends the public parameters Pk = (N,Y1, Y2, Y3, t, u1, . . . , u`,Ω) to A.

Each time B is asked to provide a key for an identity (Id1, . . . , Idj), B creates a semi-
functional key choosing random exponents r′1, r

′
2 ∈ ZN and, for ∈ {1, 2}, random

zi,j+1, . . . , zi,`, wi,1, wi,2, wi,j+1, . . . , wi,` ∈ ZN and setting:

K1,1 = (gr̂1B2)r
′
1Y

w1,1

3 , K1,2 = Y α
1

((
U r̂
)a1Id1+···+aj Idj

(Ar̂1A2)

)r′1
Y
w1,2

3 ,

E1,j+1 =
(
U r̂
)r′1aj+1

Y
z1,j+1

2 Y
w1,j+1

3 , . . . , E1,` =
(
U r̂
)r′1a`

Y
z1,`

2 Y
w1,`

3 .

and

K2,1 = (gr̂1B2)r
′
2Y

w2,1

3 , K2,2 =

((
U r̂
)a1Id1+···+aj Idj

(Ar̂1A2)

)r′2
Y
w2,2

3 ,

E2,j+1 =
(
U r̂
)r′2aj+1

Y
z2,j+1

2 Y
w2,j+1

3 , . . . , E2,` =
(
U r̂
)r′2a`

Y
z2,`

2 Y
w2,`

3 .

This implicitly sets the randomness r1 = r̂r′1 and r2 = r̂r′2. At some point, A sends
B two pairs, (M0, Id

? = (Id?1, . . . , Id
?
j )) and (M1, Id

? = (Id?1, . . . , Id
?
j )). B chooses random

C0 ∈ GT and computes the challenge ciphertext as follows:

C0, C1 = T (U sA24)a1Id?1+···+aj Id?j , C2 = gs1B24.

This implicitly sets x and zc to random values.

If T = As1D24, then this is properly distributed semi-functional ciphertext with C0

random and for identity vector Id?. If T is a random element of Gp1p2p4 , then this is a
semi-functional ciphertext with C0 random in GT and C1 and C2 random in Gp1p2p4 .

Hence, B can use the output of A to distinguish between these possibilities for T . 2
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GFinal1 gives no advantage

Theorem 38. If Assumptions I1, I2 and I3 hold then our Anonymous HIBE scheme is
secure.

Proof. If the assumptions hold then we have proved by the previous lemmata that the
real security game is indistinguishable from GFinal1 , in which the value of β is information-
theoretically hidden from the attacker. Hence the attacker can obtain no advantage in
breaking the Anonymous HIBE scheme. 2



Chapter 10

Secret-Key Anonymous IBE

In the previous chapters we focused on definitions and constructions for public-key primi-
tives. It is natural to extend this model to the secret-key model. In it, both ciphertexts and
keys are obtained by the master secret-key (MSK) and the ciphertext-security of security
is changed such that the adversary is given access to an oracle for encryptions but we also
require the security of the keys. In fact, observe that in the public-key model the security
of the keys is impossible to achieve because the adversary, having the Pk can encrypt any
messages and test it against a key to obtain informations on the latter. Instead, in the
secret-key model, it makes sense to consider the privacy of the key. This is modelled in
a game where the adversary has access to encryption and key oracle under the restriction
that it cannot issue ciphertext query for vectors that allow it to distinguish the challenges.
In next section we present our definitions for symmetric-key (A)IBE.

10.1 Secret Key Identity Based Encryption

A Secret-Key Identity Based Encryption scheme (IBE) is a tuple of four efficient and
probabilistic algorithms: (Setup, Encrypt, KeyGen, Decrypt).

Setup(1λ): takes as input a security parameter λ and outputs the public parameters Pk
and a master secret key Msk.

KeyGen(Msk, Id): takes as input of the master secret key Msk, and an identity Id, and
outputs a private key SkId.

Encrypt(Msk,M, Id): takes as input the master secret key Msk, a message M , and an
identity Id and outputs a ciphertext Ct.

Decrypt(Ct,Sk): takes as input a ciphertext Ct and a secret key Sk and outputs the
message M , if the ciphertext was an encryption to an identity Id and the secret key
is for the same identity.

81
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10.2 Security definitions

We present the security of an Anonymous IBE scheme in secret key model. In this model,
we have two definition of security: ciphertext security and key security.

10.3 Ciphertext Security definition

Security is defined through the following game, played by a challenger C and an adversary
A.

Setup. C runs the Setup algorithm to generate master secret key Msk which is kept secret.

Phase 1. A can make queries to the oracle Encrypt. To make a such query, A specifies
a pair (M, Id) and receives an encryption of this pair computed using the Encrypt
algorithm with Msk. A can make queries to the oracle KeyGen. To make a such
query, A specifies an identity Id and receives a key of this identity computed using
the KeyGen algorithm with Msk.

Challenge. A gives to C two pair message-identity (M0, Id0) and (M1, Id1). The identities
must satisfy the property that no revealed identity in Phase 1 was either Id0 or Id1.
C sets β ∈ {0, 1} randomly and encrypts Mβ under Idβ. C sends the ciphertext to the
adversary.

Phase 2. This is the same as Phase 1 with the added restriction that any revealed identity
must not be either Id0 or Id1.

Guess. A must output a guess β′ for β. The advantage of A is defined to be Prob[β′ =
β]− 1

2 .

Definition 39. An Anonymous Identity Based Encryption scheme is ciphertext-secure if
all polynomial time adversaries achieve at most a negligible (in λ) advantage in the previous
security game.

10.3.1 Key Security definition

Security is defined through the following game, played by a challenger C and an attacker
A.

Setup. C runs the Setup algorithm to generate master secret key Msk which is kept secret.

Phase 1. A can make queries to the oracle Encrypt. To make a such query, A specifies
a pair (M, Id) and receives an encryption of this pair computed using the Encrypt
algorithm with the master secret key Msk. A can make queries to the oracle KeyGen.
To make a such query, A specifies an identity Id and receives a key of this identity
computed using the KeyGen algorithm with the master secret key Msk.
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Challenge. A gives to C two identities Id0 and Id1. If in Phase 1 A did make a query
(M, Id) to the oracle Encrypt such that Id was either Id0 or Id1, then the experiment
fails. C sets β ∈ {0, 1} randomly and compute the secret key for Idβ. C sends the
secret key to the adversary.

Phase 2. This is the same as Phase 1 with the added restriction that if A did make
a query (M, Id) to the oracle Encrypt such that Id was either Id0 or Id1, then the
experiment fails.

Guess. Amust output a guess β′ for β. The advantageA is defined to be Prob[β′ = β]− 1
2 .

Definition 40. A Secret-Key Anonymous Identity Based Encryption scheme is key-secure
if all polynomial time adversaries achieve at most a negligible (in λ) advantage in the
previous security game.

Notice that no scheme with a deterministic KeyGen procedure can be key-secure.

10.4 Our construction for Secret-Key IBE

In this section we describe our construction for a Secret-key Anonymous IBE scheme which
is similar to its public key version from the previous sections.

Setup(1λ, 1`): The setup algorithm chooses random description I = (N = p1p2p3p4,G,GT , e)
and random Y1, X1, u ∈ Gp1 , Y3 ∈ Gp3 , X4, Y4 ∈ Gp4 and α ∈ ZN . The fictitious pub-
lic parameters are:

Pk = (N,Y1, Y3, Y4, t = X1X4, u,Ω = e(Y1, Y1)α).

The master secret key is Msk = (Pk, X1, α).

KeyGen(Msk, Id): The key generation algorithm chooses random r ∈ ZN and also random
elements R1, R2 ∈ Gp3 The secret key SkId = (K1,K2) is computed as

K1 = Y r
1 R1, K2 = Y α

1 (uIdX1)rR2.

Encrypt(Msk,M, Id): The encryption algorithm chooses random s ∈ ZN and random
Z,Z ′ ∈ Gp4 The ciphertext (C0, C1, C2) for the message M ∈ GT is computed as

C0 = M · e(Y1, Y1)αs, C1 =
(
uIdt

)s
Z, C2 = Y s

1 Z
′.

Decrypt(Msk,Ct,Sk): The decryption algorithm assumes that the key and ciphertext both
correspond to the same identity Id. The decryption algorithm then computes the
blinding factor similarly to the decryption procedure of the public-key version. Specif-
ically,

e(K2, C2)

e(K1, C1)
=

e(Y1, Y1)αse
(
uIdX1, Y1

)rs
e (Y1, uIdX1)

rs = e(Y1, Y1)αs.
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10.5 Ciphertext Security

To prove ciphertext security of the Anonymous IBE scheme, we rely on the Assumptions
I1, I2 and I3 used in the proof of the public-key scheme.

We make the following considerations. If we instantiate the previous scheme as a public-
key scheme by using the fictitious public-key parameter, it is identical to our public-key
Anonymous IBE scheme (i.e., it is used in the non-hierarchical version) of the Chapter 9.1.
Thus, it is immediate to verify that from Assumptions I1, I2 and I3 the ciphertext security
proof follows nearly identically from that in Section 9.2.5. Generally, if a public-key IBE
encryption scheme is semantically secure, its secret-key version is also semantically secure
because we can simulate the encryption oracle by using the public-key. Therefore, we have
the following theorem.

Theorem 41. If Assumptions I1, I2 and I3 hold, then our Secret-Key Anonymous IBE
scheme is ciphertext-secure.

10.6 Key Security

We will use semi-functional ciphertexts and semi-functional keys like defined previously.
These will not be used in the real scheme, but we need them in our proofs. We include
them for completeness.

Semi-functional Ciphertext. We let g2 denote a generator of Gp2 . A semi-functional
ciphertext is created as follows: first, we use the encryption algorithm to form a normal
ciphertext (C ′0, C

′
1, C

′
2). We choose random exponents x, zc ∈ ZN . We set:

C0 = C ′0, C1 = C ′1g
xzc
2 , C2 = C ′2g

x
2 .

Semi-functional Keys. To create a semi-functional key, we first create a normal key
(K ′1,K

′
2) using the key generation algorithm. We choose random exponents γ, zk ∈ ZN .

We set:

K1 = K ′1g
γ
2 , K2 = K ′2g

γzk
2 .

We note that when a semi-functional key is used to decrypt a semi-functional ciphertext,
the decryption algorithm will compute the blinding factor multiplied by the additional term
e(g2, g2)xγ(zk−zc). If zc = zk, decryption will still work. In this case, we say that the key is
nominally semi-functional.

To prove the security of our scheme we rely on static Assumptions I1, I2 and I3. For
a PPT adversary A which makes q ciphertext queries, our proof of security will consist of
the following q + 3 games between A and a challenger C.

GReal: is the real key security game.
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GRestricted: is the same as GReal except that A cannot ask for keys for identities which are
equal to one of the challenge identities modulo p2. We will retain this restriction in
all subsequent games.

Gk: for k from 0 to q, Gk is like GRestricted, except that the key given to A is semi-functional
and the first k ciphertexts are semi-functional. The rest of the ciphertexts are normal.

GFinal: is the same as Gq, except that the challenge key is semi-functional with K2 random
in Gp1p2p4 (thus the key is independent from the identities provided by A). It is clear
that in this last game, no adversary can have advantage greater than 0.

We will show these games are indistinguishable in the following lemmata.

10.6.1 Indistinguishability of GReal and GRestricted

Lemma 42. Suppose that there exists a PPT algorithm A such that AdvAGReal
−AdvAGRestricted

=
ε. Then there exists a PPT algorithm B with advantage ≥ ε

3 in breaking Assumption I1.

Proof. The proof is identical to that given in lemma 33. 2

10.6.2 Indistinguishability of GRestricted and G0

Lemma 43. Suppose that there exists a PPT algorithm A such that AdvAGRestricted
−AdvAG0

= ε.
Then there exists a PPT algorithm B with advantage ε in breaking Assumption I1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates GRestricted or G0 with
A depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .

B sets the fictitious public parameters as follows. B chooses random exponents α, a, b, c ∈
ZN and sets Y1 = g1, Y3 = g3, Y4 = g4 X4 = Y c

4 , X1 = Y b
1 and u = Y a

1 . B uses
Pk = (N,Y1, Y3, Y4, t = X1X4, u,Ω = e(Y1, Y1)α) to respond to the ciphertext queries
issued by A. Notice that B knows also the master secret key Msk = (Pk, X1, α) and thus
can simulate all A’s key queries.

At some point, A sends B two identities, Id?0 and Id?1. B chooses random β ∈ {0, 1} and
computes the challenge key as follows:

K1 = T, K2 = Y α
1 T

aId?β+b.

We complete the proof with the following two observations. If T ∈ Gp1p3 , then T can be
written as Y s1

1 Y s3
3 . In this case (K1,K2) is a normal key with randomness r = s1, R1 =

Y s3
3 , R2 = (Y s3

3 )aId?β+b. If T ∈ Gp1p2p3 , then T can be written as Y s1
1 gs22 Y

s3
3 and this case

(K1,K2) is a semi-functional key with randomness r = s1, R1 = Y s3
3 , R2 = (Y s3

3 )aId?β+b,
γ = s2 and zc = aId?β + b. Thus, in the former case we have properly simulated GRestricted,
and in the latter case we have simulated G0. 2
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10.6.3 Indistinguishability of Gk−1 and Gk

Lemma 44. Suppose there exists a PPT algorithm A such that AdvAGk−1
− AdvAGk = ε.

Then, there exists a PPT algorithm B with advantage ε in breaking Assumption I1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates Gk−1 or Gk with A
depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .

B sets the fictitious public parameters by choosing random exponents α, a, b, c ∈ ZN and
setting Y1 = g1, Y3 = g4, Y4 = g3, X4 = Y c

4 , X1 = Y b
1 and u = Y a

1 . Notice that B knows the
master secret key Msk = (Pk, X1, α) with Pk = (N,Y1, Y3, Y4, t = X1X4, u,Ω = e(Y1, Y1)α)
and thus can respond to all A’s key queries. Let us now explain how B answers the i-th
ciphertext query for pair (M, Id).

For i < k, B creates a semi-functional ciphertext by choosing random exponents
s, w1, w2 ∈ ZN and setting:

C0 = Me(Y1, Y1)αs, C1 = (uIdX1)s(B2B3)w1 , C2 = Y s
1 Y

w2
4

By writing B2 as gφ2 , we have that this is a properly distributed semi-functional ciphertext
with x = φ and zc = w1.

For i > k, B runs the Encrypt algorithm using the master secret key Msk = (Pk, X1, α).

To answer the k-th ciphertext query for (Mk, Idk), B sets zc = aIdk + b, chooses random
exponent w1, w2 ∈ ZN , and sets:

C0 = Mke(T, Y1)α, C1 = T zcY w1
4 , C2 = TY w2

4

We have the following two observations. If T ∈ Gp1p3 , then T can be written as Y r1
1 Y r4

4 In
this case this is a properly distributed normal ciphertext with s = r1. If T ∈ Gp1p2p3 , then
T can be written as Y r1

1 gr22 Y
r4

4 and in this case it is a properly distributed semi-functional
ciphertext with x = r2.

At some point, A sends B two identities, Id?0 and Id?1. B chooses random β ∈ {0, 1} and
random z, z′ ∈ ZN and computes the challenge key as follows:

K1 = (A1A2)Y z
3 , K2 = Y α

1 (A1A2)aId?β+bY z′
3

This implicitly sets Y r
1 = A1 and zk = aId?β + b mod p2. Since Idk is not equal to Id?β

modulo p2, we have that zk and zc are independent and randomly distributed.

We can thus conclude that, if T ∈ Gp1p3 then B has properly simulated Gk−1. If
T ∈ Gp1p2p3 , then B has properly simulated Gk. 2

10.6.4 Indistinguishability of Gq and GFinal

Lemma 45. Suppose that there exists a PPT algorithm A such that AdvAGq −AdvAGFinal
= ε.

Then there exists a PPT algorithm B with advantage ε in breaking Assumption I3.
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Proof. First, notice that if exists an adversary A′ which distinguishes an encryption
for an identity Id?0 from an encryption for an identity Id?1, where Id?0 and Id?1 are chosen by
A′, then there exists an adversary A which distinguishes an encryption for an identity Id?

chosen by A from an encryption for a random identity. Hence, we suppose that we are
simulating the games for a such adversary.
B receives (I, g1, g2, g3, g4, U, U

sA24, U
r̂, A1A4, A

r̂
1A2, g

r̂
1B2, g

s
1B24) and T and simulates

Gq or GFinal with A depending on whether T = As1D24 or T is random in Gp1p2p4 .
B chooses random exponents α ∈ ZN and sets Y1 = g1, Y3 = g4, Y4 = g3.
Each time B is asked to provide a ciphertext for an identity Id, B creates a semi-

functional ciphertext choosing random exponents r, w1, w2 ∈ ZN and sets

C0 = M · e(gr̂1B2, Y1)αs, C1 = (Ar̂1A2)rId(U r̂)rY w1
4 , C2 = (gr̂1B2)rY w2

4

This implicitly sets the randomness of the ciphertext to r̂r, u = A1 and X1 = U .
Each time B is asked to provide a key for an identity Id, B creates a semi-functional

key choosing random exponents r, w1, w2 ∈ ZN and setting:

K1 = (gr̂1B2)rY w1
3 , K2 = Y α

1 (Ar̂1A2)rId(U r̂)rY w2
3 .

This implicitly sets the randomness of the secret key to r̂r.
At some point, A sends B two identities, Id?0 and Id?1. B chooses random w1, w2 ∈ ZN

and computes the challenge secret key as follows:

K1 = (gs1B24)Y w1
3 , K2 = Y α

1 T
Id?β (U sA24)Y w2

3 .

This implicitly sets γ and zk to random values.
If T = As1D24, then this is properly distributed semi-functional key for identity Id?β. If

T is a random element of Gp1p2p4 , then this is a semi-functional key with K2 random in
Gp1p2p4 .

Hence, B can use the output of A to distinguish between these possibilities for T . 2

10.6.5 GFinal gives no advantage

Theorem 46. If Assumptions I1, I2 and I3 hold then our Anonymous IBE scheme is both
ciphertext and key secure.

Proof. If the assumptions hold then we have proved by the previous lemmata that the
real security game is indistinguishable from GFinal, in which the value of β is information-
theoretically hidden from the attacker. Hence the attacker can obtain no non-negligible
advantage in breaking the key security of the Secret-key Anonymous IBE scheme. We have
showed previously that it is also ciphertext-secure. 2
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Chapter 11

Hierarchical HVE

In this chapter, we present a more sophisticated example of Hierarchical PE scheme. Specif-
ically, we consider the case of Hierarchical HVE. We start by giving our definition of Hi-
erarchical HVE (see also [38],[33]). Given ~y, ~w ∈ {0, 1, ?}`, we say that ~w is a delegation
of ~y, in symbols ~w ≺ ~y, iff for each i ∈ [`] we have yi = ? or yi = wi. For example
〈1, 0, 1, ?〉 ≺ 〈1, 0, ?, ?〉. Notice that ≺ imposes a partial order on {0, 1, ?}`. A Hierarchical
HVE scheme (HHVE) consists of five efficient algorithms (Setup, Encrypt, KeyGen, Test,
Delegate). The semantics of Setup, Encrypt, KeyGen and Test are identical to those given
for HVE. The delegation algorithm has the following semantics.

Delegate(Pk, Sk~y, ~y, ~w): takes as input ~y, ~w ∈ {0, 1, ?}` such that ~w ≺ ~y and secret key Sk~y
for ~y and outputs secret key Sk~w for ~w.

Correctness of HHVE. We require that for pairs (Pk,Msk) ← Setup(1λ, 1`), for all
y ∈ {0, 1, ?}`, keys Sk~y ← KeyGen(Msk, ~y), for all ~w ≺ ~y and all delegation paths ~w =
~wn ≺ . . . ≺ ~w0 = ~y of length n ≥ 0 with Sk~wi = Delegate(Pk,Sk~wi−1

, ~wi−1, ~wi) for i ∈ [n],
and all ~x ∈ {0, 1}` we have Test(Pk, Encrypt(Pk, ~x),Sk~w) 6= Match(~x, ~w) with probability
negligible in λ.

Extensions of HHVE. The definition of HHVE given by Shi and Waters [38] is more
general. In their model, beyond the special symbol ′?′ the alphabet associated with the
key vectors also includes another special symbol ′?′. Both of them allow to ’match’ any
symbol but only one of them is delegatable. That is, you may have a ’don’t care’ symbol
which is not delegatable. It would be possible to extend our scheme to capture this model
but we will not present the details.

Security of HHVE. The definition follows [38] and requires that no PPT adversary A has
non-negligible advantage over 1/2 in game GReal against a challenger C. More precisely,
we have the following game.

Setup. C runs (Pk,Msk)← Setup(1λ, 1`) and starts the interaction with A on input Pk.
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Key Query Answering. Key queries can be of three different types. C answers these queries
in the following way. C starts by initializing the set S of private keys that have been created
but not yet given to A equal to ∅.

Create. A specifies a vector ~y ∈ {0, 1, ?}`. In response, C creates Sk~y = KeyGen(Msk, ~y).
C adds Sk~y to the set S and gives A only a reference to it.

Delegate. A specifies a reference to a key Sk~y in the set S and a vector ~w ∈ {0, 1, ?}`
such that ~w ≺ ~y. In response, C creates Sk~w = Delegate(Pk,Sk~y, ~y, ~w). C adds Sk~w to S
and gives A only a reference to it.

Reveal. A specifies an element of the set S. C gives the corresponding key to A and
removes it from the set S. Then A needs no longer make any delegation queries for this
key because it can run the Delegate algorithm by itself.

Challenge Construction. A specifies a pair ~x0, ~x1 ∈ {0, 1}`. C answers by picking random
η ∈ {0, 1} and returning Encrypt(Pk, ~xη).

At the end of the game, A outputs a guess η′ for η. We say that A wins if η = η′ and
for all ~y for which A has seen a secret key, it holds that Match(~x0, ~y) = Match(~x1, ~y) = 0.
The advantage AdvAHHVE(λ) of A is defined to be the probability that A wins the game
minus 1/2.

Definition 47. A Hierarchical Hidden Vector Encryption scheme is secure if for all prob-
abilistic polynomial time adversaries A, we have that AdvAHHVE(λ) is a negligible function
of λ.

Our construction for HHVE. As in HVE, we assume that the vectors ~y of the keys
have at least two indices i, j such that yi, yj 6= ?.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N =
p1p2p3p4, G,GT , e) with known factorization and random g1 ∈ Gp1 , g2 ∈ Gp2 , g3, R ∈ Gp3 ,
g4 ∈ Gp4 and sets g12 = g1 · g2. Then, for each i ∈ [`] and b ∈ {0, 1}, the setup chooses

random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets Ti,b = g
ti,b
1 ·Ri,b. The public parameters are Pk =[

N, g3, g4, g1 ·R, (Ti,b)b∈{0,1},i∈[`]

]
and the master secret key is Msk =

[
g12, (ti,b)b∈{0,1},i∈[`]

]
.

KeyGen(Msk, ~y): For each i ∈ [`], the key generation algorithm chooses random ai ∈ ZN
such that

∑
i∈[`] ai = 0 and random Ri ∈ Gp4 . For i /∈ S~y and b ∈ {0, 1}, the algorithm

chooses random Ri,b ∈ Gp4 . Then for each i ∈ [`], the key generation algorithm sets

Yi =

{
g
ai/ti,yi
12 ·Ri, for i ∈ S~y;
gai12 ·Ri, for i /∈ S~y;

and, for each i 6∈ S~y and b ∈ {0, 1}, Di,b = g
ai/ti,b
12 ·Ri,b. Finally the key generation algorithm

returns the key Sk~y =
[
(Yi)i∈[`], (Di,b)i/∈S~y ,b∈{0,1}

]
.

Encrypt(Pk, ~x): The encryption algorithm chooses random s ∈ ZN and Z ∈ Gp3 and,
for each i ∈ [`], random Zi ∈ Gp3 . The algorithm sets X0 = (g1R)s ·Z and, for each i ∈ [`],
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Xi = (Ti,xi)
sZi. The algorithm returns the ciphertext Ct =

[
X0, (Xi)i∈[`]

]
. We stress that,

unlike the HVE, a ciphertext for HHVE contains element X0.

Test(Ct,Sk~y): Returns TRUE if T = e(X0,
∏
i/∈S~y Yi) ·

∏
i∈S~y e(Xi, Yi) = 1.

Delegate(Pk, Sk~y, ~y, ~w): On input a secret key Sk~y =
[
(Y ′i )i∈[`], (D

′
i,b)i/∈S~y ,b∈{0,1}

]
for

vector ~y, the delegation algorithm chooses random z ∈ ZN . For i ∈ S~w, the algorithm
chooses random Ri ∈ Gp4 and, for i /∈ S~w and b ∈ {0, 1}, random Ri,b ∈ Gp4 . The
delegation algorithm for i ∈ S~w computes Yi as

Yi =

{
Y ′zi Ri, if yi 6= ?;

D′zi,wiRi, if yi = ?.

Finally, for i /∈ S~w and b ∈ {0, 1}, the delegation algorithm sets Di,b = D′zi,bRi,b, and returns

the key Sk~w =
[
(Yi)i∈[`], (Di,b)i/∈S~w,b∈{0,1}

]
.

Notice that, for vectors ~y and ~w such that ~w ≺ ~y, the distribution of the key Sk~w for
~w output by KeyGen on input Msk and ~w, and the distribution of the key for ~w output
by Delegate on input Pk, a key Sk~y, ~y and ~w coincide. Therefore, the correctness of
the scheme for keys generated by KeyGen is sufficient for proving correctness for every key.
Furthermore, any delegation path starts from a secret key for a vector ~y created by running
KeyGen. For any such a ~y and for any delegation path from ~y to ~w, the distribution of the
keys for ~w, obtained by following the delegation path, is identical to the distribution of
the keys for the same vector obtained by delegation directly from ~y. Notice also that the
distributions of (Sk~y,Sk~w) when Sk~w is generated by KeyGen or by Delegate do differ. This
makes the security proof more involved.

Correctness It is easy to verify the correctness of the scheme.

11.1 Complexity Assumptions for HHVE

To prove the security of our HHVE construction we rely on Assumptions 1 and 2 defined
in Section 8.1. Furthermore we need the following Assumption 3.

Assumption 3 is a generalization of Assumption 2 (see Section 8.1) in the sense it posits
the difficult of deciding if two triplets sharing an element are both Diffie-Hellman and it
is defined as follows. First pick a random bilinear setting I = (N,G,GT , e) ← G(1λ) and
then pick A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4, E4, F4, G4 ← Gp4 , α, β, γ ←
Zp1 , T2 ← Gp1p4 and set T1 = Aαβ1 · G4 and D = (I, A1, A2, A3, A4, A

α
1 · B4, A

β
1 · C4, A

γ
1 ·

D4, A
αγ
1 ·E4, A

αβγ
1 ·F4). We define the advantage of an algorithm A in breaking Assumption

3 to be

AdvA3 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|
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Assumption 3 We say that Assumption 3 holds for generator G if for all probabilistic
polynomial-time algorithms A, AdvA3 (λ) is a negligible function of λ.

It is easy to see that Assumption 3 implies Assumption 2.

11.2 Security of our HHVE scheme

For a PPT adversary A which makes q Reveal key queries, our proof of security consists
of q + 2 games between A and C. The first game, GReal, is the real HHVE security game
described before. The description of the remaining games follows the same line of that
defined to prove the security of our HVE scheme for ξ = 0.

Description of G0. G0 is like GReal, except that C uses g2 instead of g1 to construct the
public parameters Pk given to A.

Proof of indistinguishability of GReal and G0.

Lemma 48. Suppose there exists a PPT algorithm A such that AdvAGReal − AdvAG0
= ε.

Then, there exists a PPT algorithm B with advantage ε in breaking Assumption 1.

The proof follows the same line of that of Lemma 24 and we omit the details.

Description of Gk for 1 ≤ k ≤ q. The Setup Phase and the Challenge Construction
query of each of these games are like in G0. The Key Queries are handled by C in the
following way. C starts by initializing the set S to the empty set and the query counter v
and the reveal query counter Rv equal to 0.

• Create(~y): C increments v and, for each i ∈ [`], chooses random av,i ∈ ZN such that∑`
i=1 av,i = 0 and adds the tuple (v, ~y, (av,1, . . . , av,`)) to the set S. C returns v to A.

• Delegate(v′, ~w): For Delegate key query on vector ~w, C increments v and adds the
tuple (v, ~w, v′) to the set S. C returns v to A.

• Reveal(v′): Suppose entry v′ in S refers to key Sk~w which is the the result of a
delegation path ~w = ~w0 ≺ . . . ≺ ~wn = ~y of length n ≥ 0 starting from key Sk~y
created as result of the v′′-th Create key query. C chooses random z ∈ ZN and, for
each i ∈ [`], random ci ∈ ZN and Ri ∈ Gp4 . Moreover for each i /∈ S~w and b ∈ {0, 1},
C chooses random Ri,b ∈ Gp4 . C increments Rv. If Rv ≤ k, then for each i ∈ [`], C
sets

Yi =

{
gci1 · g

zav′′,i/ti,wi
2 ·Ri, if i ∈ S~w;

gci1 · g
zav′′,i
2 ·Ri, if i /∈ S~w;

and, for each i /∈ S~w and for each b ∈ {0, 1}, C sets Di,b = gci1 · g
zav′′,i/ti,b
2 ·Ri,b.
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If instead Rv > k, then for each i ∈ [`], C sets

Yi =

{
g
zav′′,i/ti,wi
12 ·Ri, if i ∈ S~w;

g
zav′′,i
12 ·Ri, if i /∈ S~w;

and, for each i /∈ S~w and for each b ∈ {0, 1}, C sets Di,b = g
zav′′,i/ti,b
12 ·Ri,b. Finally, C

returns the key Sk~w consisting of the Yi’s and the Di,b’s.

Proof of indistinguishability of Gk−1 and Gk.

Lemma 49. Suppose there exists a PPT algorithm A such that AdvAGk−1
−AdvAGk = ε. Then,

there exists a PPT algorithm B with advantage at least ε/(2`) in breaking Assumption 3.

Proof Sketch. B receives D = (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 ·C4, A

γ
1 ·D4, A

αγ
1 ·E4, A

αβγ
1 ·

F4) and T and simulates Gk−1 or Gk with A depending on T .
B starts by making the same guess as in the Lemma 25. Then:

Setup. As in that Lemma 25, by using D and by choosing appropriates randomness, B can
prepare Pk = [N, g3, g4, g1R, (Ti,b)i∈[`],b∈{0,1}] where Ti,b = g

ti,b
2 ·Ri,b.

Key Query Answering. B handles the Create and Delegate queries as prescribed in Gk−1

and Gk. For the Reveal queries B proceeds as follow. We fix notation by denoting with
~w the vector for which A asks to reveal the key and we suppose that the key is part of a
delegation path that starts from the key created by the v-th Create key query.

For the first k−1 Reveal key queries as follow. By using the randomness chosen during
the creation of the v-th Create key query, B has all the necessary elements to computes a
key with a random Gp1 part and a well formed Gp2 part as prescribed in both Gk−1 and
Gk

For the k-th Reveal key query, B handles it as follows. Again, as in Lemma 25, B can
embed the challenge of the assumption in the guessed index j and then constructs the rest
of the key accordingly in such a way if T = Aαβ1 ·G4 then the answer to the k-th query of
A is distributed as in Gk−1. Instead, if T is random in Gp1p4 then the answer to the k-th
Reveal query is distributed as in Gk.
B handles the remaining (q − k) Reveal queries as follows. We distinguish two cases

depending on whether the key of the k-th Reveal key query is derived from the same Create
key query and start from the the case in which it is not. In this case, it is easy for B to
construct the secret key following the line of Lemma 25.

In the case in which the Reveal key query for ~w is for a key whose starting point in the
delegation path corresponds to the v-th Create key query and it is the same as the one of
the k-th Reveal key query, the key generation is more involved. In fact, during the creation
of k-th Reveal key query, if T is equal to Aαβ1 · G4 then the key contains the randomness
α and we must reuse this randomness together with β. But B can generates correctly the
key by using Aγ1 ·D4, A

αγ
1 · E4, A

αβγ
1 · F4 from D.
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Challenge construction. As in Lemma 25 under a correct guess, Pk′ contains all the values
to compute an encryption of one randomly chosen challenge vector. Thus the challenge
ciphertext is distributed as in Gk−1 and Gk. 2

Gq gives no advantage. We observe that in Gq the Gp1 part of the challenge ciphertext
is the only one depending on η and the Pk and the answer to the key queries give no help
to A. Therefore we can conclude that for all adversaries A, AdvAGq = 0. We have thus
proved.

Theorem 50. If Assumptions 1 and 3 hold, then our HHVE scheme is secure.



Chapter 12

HVE secure against Unrestricted
Adversaries

In this Chapter we present the main result of this thesis: a Predicate Encryption scheme
for the predicate HVE that is secure against unrestricted adversaries.

12.1 Proof technique

Our result is based on the dual system encryption methodology introduced by Waters [40]
and gives extra evidence of the power of this proof technique. However, to overcome the
difficulty of having to deal also with matching queries, we have to carefully look at the
space of matching queries and at how they relate to the challenge vectors. This enables
us to craft a new security game in which the challenge ciphertext is constructed in a
way that guarantees that keys obtained by the adversary give the expected result when
tested against the challenge ciphertext and, at the same time, the challenge ciphertext is
independent from the challenge vector used to construct it. Then we show, by means of
a sequence of intermediate security games, that the real security game is computationally
indistinguishable from this new game. It is not immediate to obtain a similar relation
between matching queries and challenge vectors for other predicates (e.g., inner product)
that would make our approach viable.

12.2 Complexity Assumptions for the Unrestricted construc-
tion

The complexity assumptions used to prove the security against unrestricted adversaries of
our construction are Assumption 1 and Assumption 2 defined in Section 8.1.

95
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12.3 Constructing HVE

Our HVE scheme that will be proved secure against unrestricted adversaries is the same
scheme presented in Section 8.2.

Regarding this scheme, we make the following remark.

Remark 51. Let Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and Msk = [g1 · g2, g4, (ti,b)i∈[`],b∈{0,1}] be a
pair of public parameter and master secret key output by the Setup algorithm and consider
Pk′ = [N, g3, (T

′
i,b)i∈[`],b∈{0,1}] and Msk′ = [ĝ1 · g2, g4, (ti,b)i∈[`],b∈{0,1}] with T ′i,b = ĝ

ti,b
1 · R′i,b

for some ĝ1 ∈ Gp1 and R′i,b ∈ Gp3. We make the following easy observations.

1. For every ~y ∈ {0, 1, ?}`, the distributions KeyGen(Msk, ~y) and KeyGen(Msk′, ~y) are
identical.

2. Similarly, for every ~x ∈ {0, 1}`, the distributions Encrypt(Pk, ~x) and Encrypt(Pk′, ~x)
are identical.

12.4 Security of our HVE scheme

We start by giving an informal description of the idea behind our proof of security and
show how we overcome the main technical difficulty of having to deal with matching keys.

The first step in our proof strategy consists in projecting the public key (and thus the
ciphertexts the adversary constructs by himself) to a different subgroup from the one of
the challenge ciphertext. Specifically, we defined a new security game GPK in which the
public key is constructed so that all relevant information (that is, the ti,b’s) is encoded
in the Gp2 parts of the public key. The challenge ciphertext and the answers to the key
queries are instead constructed as in the real security game GReal. Thus, ciphertexts
constructed by the adversary are completely independent from the challenge ciphertext (as
they encode information in two different subgroups). The view of an adversary in GPK is
still indistinguishable from the the view of the real security game GReal. We observe that
since keys are constructed as in the real security game, they carry information about ~y both
in the Gp1 and Gp2 parts. Thus when the adversary tests a ciphertext he has constructed
by using the public key against a key obtained by means of a query, he obtains the expected
result because of the information encoded in the Gp2 part of the key and of the ciphertext.
The same holds for the challenge ciphertext but now thanks to the Gp1 part of the keys.
The only difference is in the public keys but, under Assumption 1 (a natural subgroup
decision hardness assumption), we can prove that the view remains indistinguishable.

The second step proves that the keys obtained from queries do not help the adversary.
Since the challenge ciphertext carries information about the randomly selected challenge
vector ~xη in its Gp1 part, in this informal discussion when we refer to key we mean its Gp1

part. The Gp2 parts of the keys are always correctly computed.

In our construction, testing a ciphertext against a non-matching key gives a random
value (from the target group) whereas testing it against a matching key returns a specified
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value (the identity of the target group). One possible avenue for proving security against
an adversary that asks only non-matching queries is to show that replying key queries by
returning random elements from the appropriate subgroups instead of well-formed keys,
gives a new game which is indistinguishable from the real security game and in which it is
easy to prove that the adversary can win with probability essentially 1/2. This approach
fails for matching queries as a random reply to a matching query is unlikely to return
the correct answer when tested against the challenge ciphertext. Instead we modify the
construction of the challenge ciphertext in the following way: the challenge ciphertext is
well-formed in all the positions where the two challenge vectors are equal and random in all
the other positions. We observe that testing such a challenge ciphertext against matching
and non-matching keys always gives the correct answer and that no adversary (even an all
powerful one) can guess which of the two challenge vectors has been used to construct the
challenge ciphertext.

We thus prove security of our construction by proving that the above game (that is
called GBadCh(` + 1)) is indistinguishable from GPK. We achieve this by means of ` + 1
intermediate games: GBadCh(1) = GPK, . . . ,GBadCh(`+ 1) where in each game we switch
to random one more component of the challenge ciphertext which corresponds to position in
which the challenge vectors differ. Now let us consider two consecutive games GBadCh(f)
and GBadCh(f + 1). It is easy to see that if the challenge vectors coincide in the f -th
component the two games are exactly the same. Let us now discuss the case in which
the two games differ in the f -th component. To do so, we consider intermediate games in
which we modify the answer to the queries but, for the reasons discussed above, we cannot
naively reply randomly to the queries. Rather, for adversaries that ask q key queries, we
consider q+1 intermediate games GBadQ(f, 0) = GBadCh(f), . . . ,GBadQ(f, q). In the k-th
intermediate game we alter the distribution of the reply to the first k key queries based on
the the following observation that relates matching queries to the challenge vectors: if the
challenge vectors differ in the f -th component, a query is matching only if it has a ? in
position f . Thus, if the key has a ? in position f , then its f -th component is empty and
this is easy to simulate. If instead a query has a non-? in the position f , then it must be a
non matching query and thus it safe to randomize the reply. Using Assumption 2, we prove
that this modification in the answers to the key queries still guarantees indistinguishability.

At this point, we would like to prove that GBadQ(f, q) is indistinguishable from

GBadQ(f + 1, 0) (which is equal to GBadCh(f + 1)). Unfortunately, this is not the case
and we need to resort to extra security games GBadQ2(f, q), . . . ,GBadQ2(f, 0) to complete
the proof.

12.4.1 The first step of the proof

We start by defining GPK(λ, `) that differs from GReal(λ, `) as in the Setup phase, C
prepares two sets of public parameters, Pk and Pk′, and one master secret key Msk. Pk is
given as input to A, Msk is used to answer A’s key queries and Pk′ is used to construct the
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challenge ciphertext. Specifically,

Setup. C chooses a description of a bilinear group I = (N = p1p2p3p4, G,GT , e) with
known factorization by running a generator algorithm G on input 1λ. C chooses random
g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1 · g2. For each i ∈ [`] and

b ∈ {0, 1}, C chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets T ′i,b = g
ti,b
1 · Ri,b and

Ti,b = g
ti,b
2 · Ri,b. Then C sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], Pk

′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}],

and Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}]. Finally, C starts the interaction with A on input Pk.

Key Query Answering(~y). C returns the output of KeyGen(Msk, ~y).

Challenge Query Answering(~x0, ~x1). Upon receiving the pair (~x0, ~x1) of challenge
vectors, C picks random η ∈ {0, 1} and returns the output of Encrypt(Pk′, ~xη).

Winning Condition. Like in GReal(λ, `).

The next lemma shows that, the advantages of an adversary in GReal(λ, `) and GPK(λ, `)
are the same, up to a negligible factor.

Lemma 52. If Assumption 1 holds, then for any PPT adversary A,∣∣AdvA[GReal(λ, `)]− AdvA[GPK(λ, `)]
∣∣ is negligible.

Proof. We show a PPT algorithm B which receives (I, A3, A4, A13, A12) and T and,
depending on the nature of T , simulates GReal(λ, `) or GPK(λ, `) with A. This suffices to
prove the Lemma.

Setup. B starts by constructing public parameters Pk and Pk′ in the following way.
B sets g12 = A12, g3 = A3, g4 = A4 and, for each i ∈ [`] and b ∈ {0, 1}, B chooses random

ti,b ∈ ZN and sets Ti,b = T ti,b and T ′i,b = A
ti,b
13 . Then B sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}],

Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}], and Pk′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] and starts the interaction

with A on input Pk.

Key Query Answering(~y). B runs algorithm KeyGen on input Msk and ~y.

Challenge Query Answering(~x0, ~x1). The challenge is created by B by picking
random η ∈ {0, 1} and running the Encrypt algorithm on input ~xη and Pk′.

This concludes the description of algorithm B.

Now suppose T ∈ Gp1p3 , and thus it can be written as T = h1 · h3 for h1 ∈ Gp1 and
h3 ∈ Gp3 . This implies that Pk received in input by A in the interaction with B has the

same distribution as in GReal. Moreover, by writing A13 as A13 = ĥ1 · ĥ3 for ĥ1 ∈ Gp1

and ĥ3 ∈ Gp3 which is possible since by assumption A13 ∈ Gp1p3 , we notice that that Pk

and Pk′ are as in the hypothesis of Remark 51 (with g1 = h1 and ĝ1 = ĥ1). Therefore
the answers to key queries and the challenge ciphertext given by B to A have the same
distribution as the answers and the challenge ciphertext received by A in GReal(λ, `). We
can thus conclude that, when T ∈ Gp1p3 , C has simulates GReal(λ, `) with A.
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Let us discuss now the case T ∈ Gp2p3 . In this case, Pk provided by B has the same dis-
tribution as the public parameters produced by C in GPK(λ, `). Therefore, C is simulating
GPK(λ, `) for A.

This concludes the proof of the lemma. 2

12.4.2 The second step of the proof

We start the second step of the proof by describing GBadQ(f, k), for 1 ≤ f ≤ ` + 1 and
0 ≤ k ≤ q. Not to overburden the notation, we omit λ and ` from the name of the games.
GBadQ(f, k) differs from GPK both in the way in which key queries are answered and in the
way in which the challenge ciphertext is constructed. More precisely, in GBadQ(f, k) the
first k key queries are answered by C by distinguishing two cases. Queries for ~y such that
yf = ? are answered by running KeyGen(Msk, ~y). Instead queries for ~y such that yf 6= ? are
answered by returning keys whose Gp1 part is random for all components which correspond
to non-? entries. Moreover, in GBadQ(f, k), the first f − 1 components of the challenge
ciphertext corresponding to positions in which the two challenges differ are random in
Gp1p3 . Let us now formally describe GBadQ(f, k).

Setup. Like in GPK.

Key Query Answering(~y). C answers the first k queries in the following way. If
yf 6= ?, C chooses, for each i ∈ Sy random Wi ∈ Gp4 , random Ci ∈ Gp1 and random

ai ∈ ZN under the constraint that
∑

i∈Sy ai = 0 and sets Yi = Ci · g
ai/ti,yi
2 ·Wi. If yf = ?

then C returns the output of KeyGen(~y,Msk). The remaining q − k queries are answered
by running KeyGen(~y,Msk).

Challenge Query Answering(~x0, ~x1). C chooses random s ∈ ZN and η ∈ {0, 1} and
sets ~x = ~xη. For each i ∈ [f −1] such that ~x0,i 6= ~x1,i, C chooses random Xi ∈ Gp1p3 . Then,
for each remaining i, C chooses random Zi ∈ Gp3 and sets Xi = T si,xi · Zi. C returns the
tuple (Xi)i∈[`].

Winning Condition. Like in GReal.

In the proofs, we will use the shorthand GBadCh(f) for GBadQ(f, 0). Moreover, we define
GBadQ2(f, k), for 1 ≤ f ≤ ` and 0 ≤ k ≤ q, as a game in which the setup phase is like in
GBadQ(f, k), key queries are answered like in GBadQ(f, k) and the challenge ciphertext is
constructed like in GBadQ(f + 1, k).

Some simple observations about GBadQ and GBadQ2

Observation 53. GPK = GBadQ(1, 0).
Straightforward from the definitions of the games.

Observation 54. GBadQ(f, q) = GBadQ2(f, q) for f = 1, . . . , `.
From the definitions of the two games, it is clear that all key queries are answered in the
same way in both the games and all components Xi for i 6= f of the challenge ciphertext are
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computed in the same way. Let us now look at Xf and more precisely to its Gp1 part. In
GBadQ(f, q), the Gp1 part of Xf is computed as T sf,xf which is exactly how it is computed

in GBadQ2(f, q) when x0,f = x1,f . On the other hand, when x0,f 6= x1,f , the Gp1 part of
Xf is chosen at random. However, observe that exponents tf,0 mod p1 and tf,1 mod p1

have not appeared in the answers to key queries since every query has either a ? in position
f (in which case position f of the answer is empty) or a non-? value in position f (in which
case the Gp1 part of the position f of the answer is random since k = q). Therefore, we
can conclude that the Gp1 part of the component Xf of the answer to the challenge query
is also random in Gp1 .

Observation 55. GBadQ2(f, 0) = GBadQ(f + 1, 0) for f = 1, . . . , `− 1.
Indeed, in both games all key queries are answered correctly, and the challenge query in
GBadQ2(f, 0) is by definition answered in the same way as in GBadQ(f + 1, 0).

Observation 56. All adversaries have no advantage in GBadCh(`+ 1) = GBadQ(`+ 1, 0).
This follows from the fact that, for positions i such that x0,i 6= x1,i, the Gp1 part of Xi is
random. Thus, the challenge ciphertext of GBadCh(`+ 1) is independent from η.

Description of simulator S

In this section, we describe a PPT simulator S that interacts with an adversary A and will
be used in our proof.
Input. Integers 1 ≤ f ≤ ` + 1 and 0 ≤ k ≤ q, and a randomly chosen instance (D,T ) of

Assumption 2; recall that D = (I, A1, A2, A3, A4, A
α
1 ·B4, A

β
1 · C4) and T = T1 = Aαβ1 ·D4

or T = T2 random in Gp1p4 .
Setup. To simulate the Setup phase S executes the following steps.

1. S sets g1 = A1, g2 = A2, g3 = A3, g4 = A4 and g12 = A1 ·A2.
2. For each i ∈ [`] and b ∈ {0, 1},
S chooses random vi,b ∈ ZN and Ri,b ∈ Gp3 , and sets Ti,b = g

vi,b
2 ·Ri,b.

3. S sets Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}].

4. S picks random ̂ ∈ [`] and b̂ ∈ {0, 1} and sets ĉ = 1− b̂.
5. For each i ∈ [`] \ {̂} and b ∈ {0, 1},
S chooses random ri,b ∈ ZN and set T ′i,b = gri,b1 .

6. S chooses random r̂,ĉ ∈ ZN and set T ′
ĵ,ĉ

= g
rĵ,ĉ
1 .

The value of r̂,b̂ remains unspecified. As we shall see below, in answering key queries,

S will implicitly set r̂,b̂ = 1/β. We stress that β is the same exponent appearing

in Aβ1 · C4 from the istance of Assumption 2 and that S does not have access to the
actual value of β.

S starts the interaction with A on input Pk.
Key Query Answering(~y). To describe how S answers the first k− 1 queries, we distin-
guish the following two mutually exclusive cases.
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Case A.1: yf 6= ?. In this case, S outputs a key whose Gp1 part is random. More
precisely, S executes the following steps. For each i ∈ S~y, S chooses random a′′i such that∑

i∈S~y a
′′
i = 0, random Ci ∈ Gp1 , and random Wi ∈ Gp4 . Then, for each i ∈ S~y, S sets

Yi = Ci · g
a′′i /vi,yi
2 ·Wi.

Case A.2: yf = ?. In this case, S tries to output a key that has the same distribution
induced by algorithm KeyGen on input ~y. We observe that if ŷ = ĉ then S knows all the

ri,yi ’s and vi,yi ’s needed. If instead ŷ = b̂, then S is missing r̂,b̂. In this case S computes

Ŷ by using Aβ1 · C4 from the challenge of Assumption 2 received in input.
More precisely, for each i ∈ S~y, S picks random Wi ∈ Gp4 and random a′i, a

′′
i ∈ ZN

under the constraint that
∑

i∈S~y a
′
i =

∑
i∈S~y a

′′
i = 0. Then for each i 6= ̂, S sets

Yi = g
a′i/ri,yi
1 · ga

′′
i /vi,yi

2 ·Wi.

Moreover, if ŷ = ĉ, S sets

Ŷ = g
a′̂/r̂,ĉ
1 · g

a′′̂ /v̂,ĉ

2 ·Ŵ

otherwise, if ŷ = b̂, S sets

Ŷ = (Aβ1 · C4)a
′
̂ · g

a′′̂ /v̂,b̂

2 ·Ŵ = g
a′̂β

1 · g
a′′̂ /v̂,b̂

2 · (C
a′̂
4 ·Ŵ).

Notice that this setting implicitly defines r̂,b̂ = 1/β which remains unknown to S.

Let us now describe how S answers the k-th query for vector ~y(k) = (y(k)

1 , . . . , y(k)

` ). We
have three cases and we let GuessA1,S(f, k) denote the event that S, on input f and k and
interacting with A, does not abort in computing the answer to the k-th query.

Case B.1: y(k)

f = ?. S performs the same steps of Case A.2.

Case B.2: y(k)

f 6= ? and y(k)

̂ 6= b̂. S outputs ⊥ and aborts.

Case B.3: y(k)

f 6= ? and y(k)

̂ = b̂. Let S = S~y \ {̂, h}, where h is an index such that

y(k)

h 6= ?. Such an index h always exists since we assumed that each query contains at
least two non-? entries. Then, for each i ∈ S, S chooses random Wi ∈ Gp4 and random
a′i, a

′′
i ∈ ZN and sets

Yi = g
a′i/ri,y(k)

i
1 · g

a′′i /vi,y(k)
i

2 ·Wi.

S then chooses random a′′̂ ∈ ZN and Ŵ,Wh ∈ Gp4 and sets

Ŷ = T · g
a′′̂ /v̂,b̂

2 ·Ŵ and Yh = (Aα1B4)
−1/r

h,y
(k)
h · g

−s′/r
h,y

(k)
h

1 · g
−(s′′+a′′̂ )/v

h,y
(k)
h

2 ·Wh,

where s′ =
∑

i∈S a
′
i and s′′ =

∑
i∈S a

′′
i .

This terminates the description of how S handles the k-th key query.



102 CHAPTER 12. HVE SECURE AGAINST UNRESTRICTED ADVERSARIES

S handles the remaining q − k queries as in Case A.2, independently from whether
yf = ? or yf 6= ?. More precisely, if ŷ = ĉ then S has all the ri,yi ’s and vi,yi ’s needed. On

the other hand, if this is not the case then S can use Aβ1 · C4 from D.
Challenge Query Answering(~x0, ~x1). If ~x0 and ~x1 coincide on the f -th component or
y(k)

̂ = xη,̂, S aborts. We let GuessA2,S(f, k) denote the event that y(k)

̂ 6= xη,̂ while S is

interacting with A on input f and k. We observe that if GuessA2,S(f, k) occurs, xη,̂ = ĉ =

1− b̂.
If S has not aborted, S picks random η ∈ {0, 1}, sets ~x = ~xη and creates the challenge

by running algorithm Encrypt on input the challenge vector ~x, public parameters Pk′ and
randomizing the Gp1 part of all Xi for i < f such that x0,i 6= x1,i. More precisely, the
challenge ciphertext is created as follows. S chooses random s ∈ ZN . For each i ∈ [f − 1]
such that x0,i 6= x1,i, S sets ri equal to a random element in ZN . S sets ri = 1 for all
remaining i’s. For each i ∈ [`], S picks random Zi ∈ Gp3 and sets Xi = T ′srii,xi

· Zi, and
returns the tuple (Xi)i∈[`].

Two remarks are in order. First, if S has not aborted, Pk′ contains all the values Ti,xi
needed for computing an encryption of ~x. Second, as a sanity check, we verify that S
cannot test the nature of T and thus break Assumption 2. Indeed to do so, S should use T
to generate a key for ~y and ciphertext for ~x such that Match(~x, ~y) = 1. Then, if T = T1 the
Test procedure will have success; otherwise, it will fail. In constructing the key, S would
use T to construct the ̂-th component (which forces ŷ = b̂) and then it would need r̂,b̂ to
construct the matching ciphertext. However, S does not have access to this value.

The simulator S described will be used to prove properties of games GBadQ. We can
modify the simulator S so that, on input f and k, the challenge cihpertext is constructed
by randomizing the Gp1 part also of the f -th component. The so modified simulator, that
we call S2, closely simulates the work of games GBadQ2 and will be used to prove properties
of these games.

Properties of simulator S

We now state and prove some properties of S that will be used in our security proof. We
start by defining event EAf,G as the event that in game G the adversary A declares two
challenge vectors that differ in the f -th component. When the adversary A is clear from
the context we will simply write Ef,G. We use notation Ef to denote Ef,G for G = GPK.

We extend the definition of Ef,G to include the game played by A against the simulator
S. Thus we denote by EAf,S(f ′, k) the event that in the interaction between A and S on
input f ′ and k, A declares two challenge vectors that differ in the f -th component. If A, f ′
and k are clear from the context, we will simply write Ef,S . With this notation in place,
the event “S does not abort while interacting with A on input f and k” is equal to the
event

GuessA1,S(f, k) ∧ GuessA2,S(f, k) ∧ EAf,S(f, k). (12.1)
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In addition, we observe that event EAf,S(f, k) implies event GuessA1,S(f, k) and similarly does

event GuessA2,S(f, k). We modify the challenger C so that at the beginning of the interaction

with A, C picks ̂ and b̂ just like S does. This modification makes the definitions of events
GuessA1,G and GuessA2,G meaningful. Notice that, unlike the simulator S, the challenger
never aborts its interaction with A and that this modification does not affect A’s view.
This implies, for example, that the fact that event EAf,G has occurred during a game G does

not necessarily imply that event GuessA1,G also occurs. We write GuessA2 as a shorthand for

GuessA2,G with G = GPK.

Lemma 57. For all f, k and A, Prob[GuessA1,S(f, k)] ≥ 1
` .

Proof. It is easy to see that the probability of GuessA1,S(f, k) is at least the probability

that y(k)

̂ = b̂. Moreover, the view of A up to the k-th key query is independent from b̂ and
̂. Now observe that ~y(k) has at least two non-star entry and, provided that if ̂ is one of
these (which happens with probability 2/`), the probability that y(k)

̂ = b̂ is 1/2. 2

Lemma 58. For all f, k and A, Prob[GuessA2,G(f, k)] ≥ 1
2` where G = GBadQ(f, k).

Proof. GuessA2,G(f, k) is the event that y(k)

̂ 6= xη,̂ in the game G played by the challenger

C with A. It is easy to see that the probability that C correctly guesses ̂ and b̂ such that
xη,̂ = ĉ = 1− b̂ is at least 1/(2`), independently from the view of A. 2

Lemma 59. Suppose T = T1. If S does not abort in the computation of the answer to the
k-th query, then A’s view up to the Challenge Query in the interaction with S is the same
as in GBadQ(f, k − 1). Moreover, if S completes its execution without aborting, then A’s
total view is the same as in GBadQ(f, k − 1).

Suppose instead that T = T2. If S does not abort in the computation of the answer to
the k-th query, then A’s view up to the Challenge Query in the interaction with S is the
same as in GBadQ(f, k). Moreover, if S completes its execution without aborting, then A’s
total view is the same as in GBadQ(f, k).

Proof. For the proof of this lemma it is convenient to refer to the alternative and
equivalent description of our HVE found in Section A. We notice that Pk has the same
distribution as the public parameters seen by A in both games. The same holds for the
answers to the first (k − 1) Key Queries and to the last (q − k) Key Queries. Let us now
focus on the answer to the k-th Key Query. We have two cases:

Case 1: y(k)

f = ?. Then the view of A in the interaction with S is independent from
T (see Case B.1) and, on the other hand, by definition, the two games coincide. Therefore
the lemma holds in this case.

Case 2: y(k)

f 6= ?. Suppose T = T1 = Aαβ1 · D4 and that GuessA1,S(f, k) occurs.

Therefore, y(k)

̂ = b̂ and S’s answer to the k-th key query has the same distributions as in
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GBadQ(f, k − 1). Indeed, we have that

Ŷ = g
a′̂/r̂,b̂
1 · g

a′′̂ /v̂,b̂

2 ·D4 ·Ŵ

with a′̂ = α and r̂,b̂ = 1/β and

Yh = g
−(a′̂+s

′)/r
h,y

(k)
h

1 · g
−(a′′̂ +s′′)/v

h,y
(k)
h

2 ·

(
B
−1/r

h,y
(k)
h

4 ·Wh

)
and thus the a′is and a′′i s are random and sum up to 0.

On the other hand if T is random in Gp1p4 and S does not abort, the Gp1 parts of the
Yi’s are random and thus the answer to the k-th query of A is distributed as in GBadQ(f, k).

Finally, we observe that, if S does not abort then the challenge ciphertext is constructed
as in GBadQ(f, k − 1) and GBadQ(f, k). 2

Proof.

Lemma 60. If Assumption 2 holds, then for k = 1, . . . , q and f = 1, . . . , `+ 1, and for all

PPT adversaries A,
∣∣∣Prob[EAf,G] − Prob[EAf,H ]

∣∣∣ and
∣∣∣Prob[GuessA2,G] − Prob[GuessA2,H ]

∣∣∣
are negligible functions of λ, for games G = GBadQ(f, k − 1) and H = GBadQ(f, k) or
G = GBadQ2(f, k − 1) and H = GBadQ2(f, k).

Proof. Let us prove first the case when G = GBadQ(f, k−1) and H = GBadQ(f, k). For
sake of contradiction, suppose that Prob[EAf,G] ≥ Prob[EAf,H ] + ε for some non-negligible

ε. A similar reasoning holds GuessA2,G and GuessA2,H . Then we can modify simulator S
into algorithm B with a non-negligible advantage in breaking Assumption 2. Algorithm B
simply execute S’s code. By Lemma 57 event Guess1,S occurs with probability at least 1/`
and in this case B can continue the execution of S’s code and receive the challenge vectors
from A. At this point, B checks whether they differ in the f -th component. If they do, B
outputs 1; else B outputs 0. It is easy to see that, by Lemma 59, the above algorithm has
a non-negligible advantage in breaking Assumption 2.

We apply the the same reasoning to the case when G = GBadQ2(f, k − 1) and H =
GBadQ2(f, k), considering algorithm B that uses the code of simulator S2 rather than that
of S. 2

The proof of the following corollary is straightforward from Lemma 60 and Observa-
tions 53-55.

Corollary 61. For all f = 1, . . . , ` + 1 and k = 0, . . . , q, and all PPT adversaries A, we
have that, for H = GBadQ(f, k) or H = GBadQ2(f, k),∣∣∣Prob[EAf,H ]− Prob[EAf ]

∣∣∣ and
∣∣∣Prob[GuessA2,H ]− Prob[GuessA2 ]

∣∣∣ are negligible.

We are now ready to prove the following crucial technical lemma.
2
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Lemma 62. Suppose there exists an adversary A and integers 1 ≤ f ≤ `+1 and 1 ≤ k ≤ q
such that

∣∣AdvA [G]− AdvA [H]
∣∣ ≥ ε, where G = GBadQ(f, k − 1), H = GBadQ(f, k) and

ε > 0. Then, there exists a PPT algorithm B with AdvB2 ≥ Prob[Ef ] · ε/(2 · `2)− ν(λ), for
a negligible function ν.

The proof of the advantage in breaking Assumption 2 is found in Appendix ??.

The following Lemma can be proved by referring to simulator S2. We omit further
details since the proof is essentially the same as the one of Lemma 62.

Lemma 63. Suppose there exists an adversary A and integers 1 ≤ f ≤ `+1 and 1 ≤ k ≤ q
such that

∣∣AdvA [G]− AdvA [H]
∣∣ ≥ ε, where G = GBadQ2(f, k−1), H = GBadQ2(f, k) and

ε > 0. Then, there exists a PPT algorithm B with AdvB2 ≥ Prob[Ef ] · ε/(2 · `2)− ν(λ), for
a negligible function ν.

The advantage of A in GPK

In this section we prove that, under Assumption 2, every PPT adversary A has a negligible
advantage in GPK = GBadCh(1) by proving that it is computationally indistinguishable
from GBadCh(`+ 1) that, by Observation 56, gives no advantage to any adversary.
Proof. Let EAf,f ′ denote the event that during the execution of GBadCh(f ′) adversary
A outputs two challenge vectors that differ in the f -th component. For an event E,
we define the advantage AdvA[G|E] of A in G conditioned on event E as AdvA[G|E] =
Prob[A wins in game G|E]− 1

2 .

Observation 64. For all PPT adversaries A and all 1 ≤ f ≤ `, we have that

AdvA[GBadCh(f)|¬Ef,f ] = AdvA[GBadCh(f + 1)|¬Ef,f+1].

Proof. By definition of GBadCh, if the two challenge vectors coincide in the f -th
component, then the views of A in GBadCh(f) and GBadCh(f + 1) are the same. 2

Observation 65. For all PPT adversaries A and all 1 ≤ f ≤ `, we have that

Prob[EAf,f ] = Prob[EAf,f+1].

Proof. The view of A in GBadCh(f) up to the Challenge Query is independent from f .
2

Therefore we can set Prob[EAf,f ] = Prob[EAf,1] = Prob[EAf ].
2

Lemma 66. If Assumption 2 holds, then, for any PPT adversary A, AdvA[GPK] is neg-
ligible. Specifically, if there is an adversary A with AdvA[GPK] = ε then there exists an

adversary B against Assumption 2 such that AdvB2 ≥ ε2

2q`4
− ν(λ), for some negligible func-

tion ν.
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Proof. Let A be a PPT adversary such that AdvA[GPK] ≥ ε. Since GPK = GBadCh(1)
and AdvA[GBadCh(`+ 1)] = 0 there must exist f ∈ [`] such that∣∣AdvA[GBadCh(f)]− AdvA[GBadCh(f + 1)]

∣∣ ≥ ε′ = ε/`. (12.2)

Now recall that GBadCh(f) = GBadQ(f, 0) and GBadCh(f + 1) = GBadQ2(f, 0). Thus,
there exists k, 1 ≤ k ≤ q such that∣∣AdvA[G]− AdvA[H]

∣∣ ≥ ε′/(2q)
where G = GBadQ(f, k) and H = GBadQ(f, k − 1) or where G = GBadQ2(f, k) and
H = GBadQ2(f, k − 1). Then by Lemma 62, in the former case, and by Lemma 63 in the
latter, we can construct an adversary B against Assumption 2, such that

AdvB2 ≥
ε

4q`3
· Prob[Ef ]− ν(λ)

Now it remains to estimate Prob[Ef ]. Notice that we can write

AdvA[GBadCh(f)] = Prob[Ef,f ] · AdvA[GBadCh(f)|Ef,f ]+

Prob[¬Ef,f ] · AdvA[GBadCh(f)|¬Ef,f ].

and
AdvA[GBadCh(f + 1)] = Prob[Ef,f+1] · AdvA[GBadCh(f + 1)|Ef,f+1]+

Prob[¬Ef,f+1] · AdvA[GBadCh(f + 1)]|¬Ef,f+1].

and, by combining Equation 12.2 and Observations 64 and 65, we obtain

Prob[Ef ] ·
∣∣AdvA[GBadCh(f)|Ef,f ]− AdvA[GBadCh(f + 1)|Ef,f+1]

∣∣ ≥ ε′.
Since no advantage is greater than 1/2, we can conclude that Prob[Ef ] ≥ 2 · ε′ and thus B
as advantage

AdvB2 ≥
ε2

2q`4
− ν(λ)

2

12.4.3 Wrapping up

In this section we state our main result.

Theorem 67. If Assumption 1 and 2 hold, then the HVE scheme described in Section 12.3
is secure (in the sense of Definition 2).

Proof. Use Lemma 52 and Lemma 66. 2



Chapter 13

Inner-product Encryption
Construction

In this chapter, we present the Inner Product Encryption scheme of Katz, Sahai and Waters
[28]. It was the first IPE scheme introduced in the literature, and its security was proved
in the selective-id model. It is based on bilinear groups of order product of three primes.
We choose to present the predicate-only implementation.

Intuition. In the construction, each ciphertext has associated with it a (secret) vector
~x, and each secret key corresponds to a vector ~v. The decryption procedure must check
whether < x, v >= 0, and reveal nothing about ~x but whether this is true. To do this, we
will make use of a bilinear group G whose order N is the product of three primes p1, p2, p3.
Let Gp1 ,Gp2 , and Gp3 denote the subgroups of G having order p1, p2, and p3, respectively.
It is assumed that a random element in any of these subgroups is indistinguishable from
a random element of G. Thus, we can use random elements from one subgroup to mask
elements from another subgroup. At a high level, we will use these subgroups as follows.
Gp2 will be used to encode the vectors ~x and ~v in the ciphertext and secret keys, respec-
tively. Computation of the inner product v, x will be done in Gp2 (in the exponent), using
the bilinear map. Gp1 will be used to encode an equation (again in the exponent) that
evaluates to zero when decryption is done properly. This subgroup is used to prevent an
adversary from improperly manipulating the computation (by, e.g., changing the ordering
of components of the ciphertext or secret key, raising these components to some power,
etc.). On an intuitive level, if the adversary tries to manipulate the computation in any
way, then the computation occurring in the Gp1 subgroup will no longer yield the identity
(i.e., will no longer yield 0 in the exponent), but will instead have the effect of masking
the correct answer with a random element of Gp1 (which will invalidate the entire com-
putation). Elements in Gp3 are used for general masking of terms in other subgroups;
i.e., random elements of Gp3 will be multiplied with various components of the ciphertext
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(and secret key) in order to hide information that might be present in the Gp1 and Gp2

subgroups. We now present the formal description of the scheme.

Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N =
p1p2p3, G,GT , e) with known factorization by running a generator algorithm G on input
1λ. The setup algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , random R0 ∈ Gp3

and, for i ∈ [`] random R1,i, R2,i ∈ Gp3 . and sets Q = g2 ·R0, and, for i ∈ [`], b ∈ {1, 2}

Hb,i = hb,i ·Rb,i.

The public parameters are

Pk = [N, g1, g3, (Hb,i)i∈[`],b∈{1,2}]

and the master secret key is

Msk = [p1, p2, p3, g2, (hb,i)i∈[`],b∈{1,2}].

KeyGen(Msk, ~v): Let ~v = (v1, . . . , v`) with vi ∈ ZN . The key generation algorithm
chooses random rb,i ∈ Zp1 for i ∈ [`], b ∈ {1, 2} , random R5 ∈ Gp3 , random f1, f2 ∈ Zq and
random Q6 ∈ Gp2 . For i ∈ [`], b ∈ {1, 2}, it sets

Kb,i = g
rb,i
1 · gfbvi2 .

Furthermore, it sets

K = R5 ·Q6 ·
∏̀
i=1

h
−r1,i
1,i · h−r2,i2,i

and returns the tuple
Sk~v = (K, (Kb,i)i∈[`],b∈{1,2}).

Encrypt(Pk, ~x): Let ~x = (x1, . . . , x`) with xi ∈ ZN . The encryption algorithm chooses
random s, α, β,∈ ZN and R3,i, R4,i ∈ Gp3 for i = 1, . . . , `. It can make this because it has
a generator g3 of Gp3 . For i ∈ [`] and b ∈ {1, 2}, the algorithm sets

Cb,i = Hs
1,i ·Qα·xi ·R3,i.

Furthermore, it sets C0 = gs1, and returns the tuple

Ct = (C0, (Xb,i)i∈[`],b∈{1,2}).

Test(Ct, Sk~v): Let Ct = (C0, (Xb,i)i∈[`],b∈{1,2}) and Sk~v = (K, (Kb,i)i∈[`],b∈{1,2}) com-
puted above. The test algorithm computes

T = e(C0,K0)
∏̀
i=1

e(C1,i,K1,i) · e(C2,i,K2,i).

It returns TRUE if T = 1, FALSE otherwise.



109

Correctness. See [28]

Security. For the security proof and the assumptions which it is based on, see [28].

Other IPE schemes. Following the work of Katz, Sahai and Waters, other implemen-
tations of IPE have been presented in the literature. Lewko, Okamoto, Sahai, Takashima
and Waters [30] present the first implementation of a fully secure IPE scheme. The security
of the latter scheme relies on a non-standard assumption of non-constant size. The IPE
scheme of [30] is based on Dual Pairing Vector Spaces (DPVS) introduced by Okamoto and
Takashima [33]. The latter work also introduces the concept of Hierarchical Inner Product
Encryption (HIPE). In HIPE, from a key for vector ~v, you may delegate a key for vector
(~v, 0) which contains a new dimension. HIPE does not seem to have as special case HHVE.
Following these works, Okamoto and Takashima [34] presented an implementation of IPE
and HIPE which is proved fully secure from the Decision Linear assumption.
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Chapter 14

Open Problems

Predicate encryption is a young area of research and a lot of study will have to be done
to better understand this primitive. We point out some of possible directions for future
research as well as challenges and open problems.

• One relevant direction of research is to construct PE schemes for new classes of
predicates of interest in applications. The ultimate goal would be to construct a PE
scheme for any poly-size circuit. It would allow to exucte any boolean program with
input encrypted data without the program learning anything else than the result
of the computation. For example you could want enable your email provider to
execute an antivirus check on your encrypted email. To such aim, you could give
your provider a key for the antivirus program which would enable it to check the
presence of viruses without learning anything else than the presence or absence of
viruses. Since that this problem is very ambitious, we could expect both positive and
negative solutions to it. PE for any poly-size circuit remains an open problem even
for its non attribute-hiding form, i.e. ABE. In fact, the current state of the art for
ABE offers ABE for non-monotone access structures.

• Another direction of research of both pratical and theoretical interest is to focus on
the efficiency of the PE schemes. For example an interesting problem could be to
build an inner-product encryption scheme that achieves constant size ciphertexts or
keys, or a non-trivial PE scheme with a decryption algorithm that uses a constant
number of pairing operations.

• An interesting line of research is to build interesting PE schemes from primitives
different than bilinear maps. For example, can we obtain an PE scheme for an
interesting class of predicates from lattices or quadratic residuosity assumptions?
IBE implementations based on Quadratic Residues were presented by Cocks [20] and
by Boneh, Gentry and Hamburg [9]. Beyond these schemes, (H)IBE systems based
on lattices were introduced in literature, see for example [19]. While solutions not
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based on the bilinear maps have been given for (H)IBE, it is yet an open problem to
build HVE or more general primitives from alternative tools.

• Another problem is to study the relations between existing primitives. For example,
can we build an HVE scheme from IBE in a black-box manner? Reductions or
black-box separations have to be found. In this direction, Boneh, Papakonstantinou,
Rackoff, Vahlis and Waters [12] showed a black-box separation of IBE from trapdoor
permutions. Following this work, Katz and Yerukhimovich [29] extended these ideas
showing both negative and positive results for PE systems.

• Also relevant to previous problems is the study of the limitations of the bilinear maps.
Which class of PE schemes can be built from bilinear maps? It could be the case
that the bilinearity of the bilinear maps fundamentally limits the class of possible
efficient schemes constructible from them.

• The construction of multilinear maps would be a breakthrough and could help us
to obtain new and more general PE schemes as well as many other cryptographic
primitives.

• Existing proofs of security have the disavantage that they result in a non tight reduc-
tion. In fact, by using Dual System Encryption, you loose a factor q in the reduction
from the adversary breaking the scheme to the computational assumption, where q is
the number of queries issued by the adversary. To prove the security (in the standard
model) with a tight reduction is an interesting open problem even for IBE. IBE with
tight reductions in the random oracle model was proposed by Goh, Jarecki, Katz
and Wang [24] (precisely they focus on digital signatures but give an intuition of
how to adapt their ideas to IBE). Solutions in the standard model could request the
developement of new techniques.
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Appendix A

An alternative description of our
main HVE scheme

In this section we give an alternative albeit equivalent description of the HVE algorithms
of Sections 12.3 and 8.2 that will make our proof of security simpler.

We start from the simple observation that the exponent arithmentic is performed mod-
ulo the order of the base. For sake of concreteness, let us look at the KeyGen algorithm
that sets Yi equal to

Yi = (g1 · g2)ai/ti,yi ·Wi,

for ai, ti,yi ∈ ZN . This is equivalent to computing Yi as

Yi = g
a′i/ri,yi
1 · ga

′′
i /vi,yi

2 ·Wi

for a′i, a
′′
i , ri,yi , vi,yi ∈ ZN satisfying the following system of modular equations

a′i ≡ ai (mod p1) ri,yi ≡ ti,yi (mod p1)

a′′i ≡ ai (mod p2) vi,yi ≡ ti,yi (mod p2)

Conversely, computing Yi = g
a′i/ri,b
1 ·ga

′′
i /vi,b

2 for a′i, a
′′
i , ri,b, vi,b ∈ ZN is equivalent to comput-

ing g
ai/ti,b
1 ·gai/ti,b2 for ai, ti,b ∈ ZN satisfying the above system of modular equations (in the

unknowns ai and ti,b). By the Chinese remainder theorem the above systems have solutions
in ZN provided that N is a multiple of p1 · p2. Moreover, for all values of ri,b and vi,b, and
of a′i and a′′i the systems above have the same number of solutions. Therefore, the distri-

butions of Yi = g
ai/ti,b
12 for random ai, ti,b ∈ ZN and the distribution of Yi = g

a′i/ri,b
1 · ga

′′
i /vi,b

2

for random a′i, a
′′
i , ri,b, vi,b ∈ ZN coincide.

In view of the above observation, we can describe the Setup and KeyGen algorithms in
the following way.
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Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear group I = (N =
p1p2p3p4, G,GT , e) with known factorization by running a generator algorithm G on input
1λ. The setup algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for
i ∈ [`] and b ∈ {0, 1}, random ri,b, vi,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ri,b
1 ·Ri,b.

The public parameters are Pk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and the master secret key is
Msk = [g12, g4, (ri,b, vi,b)i∈[`],b∈{0,1}], where g12 = g1 · g2.

KeyGen(Msk, ~y): Let S~y be the set of indices i such that yi 6= ?. The key generation
algorithm chooses random a′i ∈ ZN for i ∈ S~y and random a′′i ∈ ZN for i ∈ S~y under
the constraint that

∑
i∈S~y a

′
i =

∑
i∈S~y a

′′
i = 0. For i ∈ S~y, the algorithm chooses random

Wi ∈ Gp4 and sets

Yi = g
a′i/ri,yi
1 · ga

′′
i /vi,yi

2 ·Wi.

The algorithm returns the tuple (Yi)i∈S~y .



Appendix B

Generic security of our
Complexity Assumptions

The complexity assumption BDDH and Decision Linear were already known in literature
so we omit their discussion. Instead, we motivate the use of other novel complexity as-
sumptions used in some of our constructions. We now prove that, if factoring is hard, the
complexity assumptions of Section 12.2 and 11.1 hold in the generic group model. We adopt
the framework of [28] to reason about assumptions in bilinear groups G,GT of composite
order N = p1p2p3p4. We fix generators gp1 , gp2 , gp3 , gp4 of the subgroups Gp1 ,Gp2 ,Gp3 ,Gp4

and thus each element of x ∈ G can be expressed as x = ga1
p1
ga2
p2
ga3
p3
ga4
p4

, for ai ∈ Zpi . For
sake of ease of notation, we denote element x ∈ G by the tuple (a1, a2, a3, a4). We do
the same with elements in GT (with the respect to generator e(gpi , gpi)) and will denote
elements in that group as bracketed tuples [a1, a2, a3, a4]. We use capital letters to denote
random variables and reuse random variables to denote relationships between elements.
For example, X = (A1, B1, C1, D1) is a random element of G, and Y = (A2, B1, C2, D2) is
another random element that shares the same Gp2 part.

We say that a random variable X is dependent from the random variables {Ai} if there
exists λi ∈ ZN such that X =

∑
i λiAi as formal random variables. Otherwise, we say that

X is independent of {Ai}. We state the following theorems from [28].

Theorem 68 (Theorem A.1 of [28]). Let N =
∏m
i=1 pi be a product of distinct primes,

each greater than 2λ. Let {Xi} be random variables over G and {Yi}, T1 and T2 be random
variables over GT . Denote by t the maximum degree of a random variable and consider the
following experiment in the generic group model:

Algorithm A is given N, {Xi}, {Yi} and Tb for random b ∈ {0, 1} and outputs b′ ∈ {0, 1}.
A’s advantage is the absolute value of the difference between the probability that b = b′ and
1/2.

Suppose that T1 and T2 are independent of {Yi} ∪ {e(Xi, Xj)}. Then if A performs at
most q group operations and has advantage δ, then there exists an algorithm that outputs a
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nontrivial factor of N in time polynomial in λ and the running time of A with probability
at least δ −O(q2t/2λ).

Theorem 69 (Theorem A.2 of [28]). Let N =
∏m
i=1 pi be a product of distinct primes,

each greater than 2λ. Let {Xi}, T1, T2 be random variables over G and let {Yi} be random
variables over GT , where all random variables have degree at most t.

Let N =
∏m
i=1 pi be a product of distinct primes, each greater than 2λ. Let {Xi}, T1 and

T2 be random variables over G and let {Yi} be random variables over GT . Denote by t the
maximum degree of a random variable and consider the same experiment as the previous
theorem in the generic group model.

Let S := {i | e(T1, Xi) 6= e(T2, Xi)} (where inequality refers to inequality as formal
polynomials). Suppose each of T1 and T2 is independent of {Xi} and furthermore that for
all k ∈ S it holds that e(T1, Xk) is independent of {Bi} ∪ {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k and
e(T2, Xk) is independent of {Bi} ∪ {e(Xi, Xj)} ∪ {e(T2, Xi)}i 6=k. Then if there exists an
algorithm A issuing at most q instructions and having advantage δ, then there exists an
algorithm that outputs a nontrivial factor of N in time polynomial in λ and the running
time of A with probability at least δ −O(q2t/2λ).

We apply Theorem 69 to prove the security of our assumptions in the generic group
model.

Assumption 1. We can express this assumption as:

X1 = (0, 0, 1, 0), X2 = (A1, 0, A3, 0), X3 = (B1, 0, B3, 0), X4 = (0, 0, 0, 1)

and

T1 = (Z1, 0, Z3, 0), T2 = (0, Z2, Z3, 0).

It is easy to see that T1 and T2 are both independent of {Xi} because, for example, Z3

does not appear in the Xi’s. Next, we note that for this assumption we have S = {2, 3},
and thus, considering T1 first, we obtain the following tuples:

C1,2 = e(T1, X2) = [Z1A1, 0, Z3A3, 0], C1,3 = e(T1, X3) = [Z1B1, 0, Z3B3, 0].

It is easy to see that C1,k with k ∈ {2, 3} is independent of {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k.
An analogous arguments apply for the case of T2. Thus the independence requirements of
Theorem 69 are satisfied and Assumption 1 is generically secure, assuming it is hard to
find a nontrivial factor of N .

Assumption 2. We can express this assumption as:

X1 = (1, 0, 0, 0), X2 = (0, 1, 0, 0), X3 = (0, 0, 1, 0),
X4 = (0, 0, 0, 1), X5 = (A, 0, 0, B4), X6 = (B, 0, 0, C4)
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and
T1 = [AB, 0, 0, D4], T2 = [Z1, 0, 0, Z4].

We note that D4 and Z1 do not appear in {Xi} and thus T1 and T2 are both independent
from them. Next, we note that for this assumption we have S = {1, 4, 5, 6}, and thus,
considering T1 first, we obtain the following tuples:

C1,1 = e(T1, X1) = [AB, 0, 0, 0], C1,4 = e(T1, X4) = [0, 0, 0, D4]
C1,5 = e(T1, X5) = [A2B, 0, 0, D4B4], C1,6 = e(T1, X6) = [AB2, 0, 0, D4C4]

It is easy to see that C1,k with k ∈ {4, 5, 6} is independent of {e(Xi, Xj)}∪{e(T1, Xi)}i 6=k.
For C1,1, we observe that the only way to obtain an element whose first component contains
AB is by computing e(X5, X6) = [AB, 0, 0, B4C4] but then there is no way to generate an
element whose fourth component is B4C4 and hence no way to cancel that term.

Analogous arguments apply for the case of T2.
Thus the independence requirement of Theorem 69 is satisfied and Assumption 2 is

generically secure, assuming it is hard to find a nontrivial factor of N .

Assumption 3. We can express this assumption as:

X1 = (1, 0, 0, 0), X2 = (0, 1, 0, 0), X3 = (0, 0, 1, 0), X4 = (0, 0, 0, 1),
X5 = (A, 0, 0, B4), X6 = (B, 0, 0, C4), X7 = (C, 0, 0, D4), X8 = (AC, 0, 0, E4),
X9 = (ABC, 0, 0, F4)

and
T1 = [AB, 0, 0, G4], T2 = [Z1, 0, 0, Z4].

We note that G4 and Z1 do not appear in {Xi} and thus T1 and T2 are both independent
from them. Next, we note that for this assumption we have S = {1, 4, 5, 6, 7, 8, 9}, and
thus, considering T1 first, we obtain the following tuples:

C1,1 = e(T1, X1) = [AB, 0, 0, 0], C1,4 = e(T1, X4) = [0, 0, 0, G4]
C1,5 = e(T1, X5) = [A2B, 0, 0, G4B4], C1,6 = e(T1, X6) = [AB2, 0, 0, G4C4]
C1,7 = e(T1, X7) = [ABC, 0, 0, G4D4] C1,8 = e(T1, X8) = [A2BC, 0, 0, G4E4]
C1,9 = e(T1, X9) = [A2B2C, 0, 0, G4F4].

We start by observing that, for k = 9, 10, 11, C1,k is independent from {e(Ai, Aj)} ∪
{e(T1, Ai)}i 6=k, since it is the only to contain Z2X2 for k = 9, Z2Y2 for k = 10, and Z2D2

for k = 11. Similarly, C1,k for k = 6, 8 is independent since it contains Z4W4, for k = 6,
and Z4X4, for k = 8.

It is easy to see that C1,k with k ∈ {4, 5, 9} is independent of {e(Xi, Xj)}∪{e(T1, Xi)}i 6=k.
For C1,1, we observe that the only way to obtain an element whose first component

contains AB is by computing e(A5, A6) = [AB, 0, 0, B4C4] but then there is no way to
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generate an element whose fourth component is B4C4 and hence no way to cancel that
term. Similarly for C1,8, to obtain an element whose first component contains A2BC the
only way is by computing e(A5, A8) = [A2BC, 0, 0, B4F4] but there is no way to cancel the
fourth component B4F4.

For C1,7, we notice that the only way to obtain an element whose first component
contains ABC is by computing e(A1, A9) = [ABC, 0, 0, 0] but then there is no way to
generate an element whose fourth component is G4D4 and hence no way to cancel that
term from C1,7.

Analogous arguments apply for the case of T2.
Thus the independence requirement of Theorem 69 is satisfied and Assumption 3 is

generically secure, assuming it is hard to find a nontrivial factor of N .

Assumption 4. We can express this assumption as:

X1 = (0, 1, 0, 0), X2 = (0, 0, 1, 0), X3 = (0, 0, 0, 1), X4 = (A1, 0, 0, A4)

and
T1 = (Z1, 0, 0, Z4), T2 = (0, 0, 0, Z4).

It is easy to see that T1 and T2 are both independent of {Xi} because, for example, Z4

does not appear in the Xi’s. Next, we note that for this assumption we have S = {4}, and
thus, considering T1 first, we obtain the following tuples:

C1,4 = e(T1, X4) = [Z1A1, 0, 0, Z4A4].

It is easy to see that C1,4 is independent of {e(Xi, Xj)} ∪ {e(T1, Xi)}i 6=k. An analogous
arguments apply for the case of T2. Thus the independence requirements of Theorem 69
are satisfied and Assumption 4 is generically secure, assuming it is hard to find a nontrivial
factor of N .

Assumption I1. We can express this assumption as:

A1 = (1, 0, 0, 0), A2 = (0, 0, 1, 0), A3 = (0, 0, 0, 1)

A4 = (X1, X2, 0, 0), A5 = (0, Y2, Y3, 0),

and
T1 = (Z1, Z2, Z3, 0), T2 = (Z1, 0, Z3, 0).

It is easy to see that T1 and T2 are both independent of {Ai} because, for example, Z1

does not appear in the Ai’s. Next, we note that for this assumption we have S = {4, 5},
and thus, considering T1 first, we obtain the following tuples:

C1,4 = e(T1, A4) = [Z1X1, Z2X2, 0, 0], C1,5 = e(T1, A5) = [0, Z2Y2, Z3Y3, 0].
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It is easy to see that C1,k with k ∈ {4, 5} is independent of {e(Ai, Aj)} ∪ {e(T1, Ai)}i 6=k.
An analogous arguments apply for the case of T2. Thus the independence requirements of
Theorem 69 are satisfied and Assumption I1 is generically secure, assuming it is hard to
find a nontrivial factor of N .

Assumption I2. We can express this assumption as:

A1 = (1, 0, 0, 0), A2 = (0, 1, 0, 0), A3 = (0, 0, 1, 0),
A4 = (0, 0, 0, 1), A5 = (A,X2, 0, 0), A6 = (S, Y2, 0, 0)
A7 = (0, X2R, 0, 0), A8 = (0, R, 0, 0),

and

T1 = [AS, 0, 0, 0], T2 = [Z1, Z2, Z3, Z4].

We note that Z1 does not appear in {Ai} and thus T2 is independent from them. On
the other hand, for T1, the only way to obtain an element of GT whose first component
is AS is by computing e(A5, A6) = [AS,X2Y2, 0, 0] but there is no way to generate an
element whose second component is X2Y2 and hence no way to cancel that term. Thus
the independence requirement of Theorem 68 is satisfied and Assumption I2 is generically
secure, assuming it is hard to find a nontrivial factor of N .

Assumption I3. We can express this assumption as:

A1 = (1, 0, 0, 0), A2 = (0, 1, 0, 0), A3 = (0, 0, 1, 0), A4 = (0, 0, 0, 1)
A5 = (U, 0, 0, 0), A6 = (US,W2, 0,W4), A7 = (UR, 0, 0, 0), A8 = (X1, 0, 0, X4)
A9 = (X1R,X2, 0, 0), A10 = (R, Y2, 0, 0), A11 = (S,D2, 0, Y4),

and

T1 = (X1S,Z2, 0, Z4), T2 = (Z1, Z2, 0, Z4).

It is easy to see that T1 and T2 are both independent of {Ai} because, for example, Z2

does not appear in the Ai’s. Next we note that S = {1, 5, 6, 7, 8, 9, 10, 11}. Considering T1

first, we obtain the following tuples:

C1,1 = e(T1, A1) = [X1S, 0, 0, 0], C1,5 = e(T1, A5) = [X1SU, 0, 0, 0],
C1,6 = e(T1, A6) = [X1S

2U,Z2W2, 0, Z4W4], C1,7 = e(T1, A7) = [X1SUR, 0, 0, 0],
C1,8 = e(T1, A8) = [X2

1S, 0, 0, Z4X4], C1,9 = e(T1, A9) = [X2
1SR,Z2X2, 0, 0],

C1,10 = e(T1, A10) = [X1SR,Z2Y2, 0, 0], C1,11 = e(T1, A11) = [X1S
2, Z2D2, 0, Z4Y4].

We start by observing that, for k = 9, 10, 11, C1,k is independent from {e(Ai, Aj)} ∪{e(T1, Ai)}i 6=k,
since it is the only to contain Z2X2 for k = 9, Z2Y2 for k = 10, and Z2D2 for k = 11.
Similarly, C1,k for k = 6, 8 is independent since it contains Z4W4, for k = 6, and Z4X4, for
k = 8. Furthermore, for C1,1, we observe that the only way to obtain an element whose first
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component contains X1S is by computing e(A8, A11) = [X1S, 0, 0, X4Y4] but then there is
no way to generate an element whose fourth component is X4Y4 and hence no way to cancel
that term. Similarly for C1,5 and C1,7. To obtain an element whose first component con-
tains X1SU (resp. X1SUR) the only way is by computing e(A8, A6) = [X1US, 0, 0, X4W4]
(rasp. e(A6, A9) = [USX1R,X2W2, 0, 0]) but there is no way to cancel the fourth (resp.
second) component X4W4 (resp. X2W2).

Analogous arguments apply for the case of T2.
Thus the independence requirement of Theorem 69 is satisfied and Assumption I3 is

generically secure, assuming it is hard to find a nontrivial factor of N .



Appendix C

Java Implementation of HVE

In this Chapter we will mention an opensource implementation of the HVE scheme of
Chapter 6. It is based on the java Pairing-Based Cryptography (jPBC) library by Angelo
De Caro. The library is freely avaiable from the following site:

http://sourceforge.net/projects/jpbc/

See also:
http://gas.dia.unisa.it/projects/jpbc/

jPBC is a java porting of the PBC library developed by Ben Lynn (see http://crypto.
stanford.edu/~blynn/). Further details on jPBC can be found in the paper [17] by Angelo
De Caro and Vincenzo Iovino. The HVE implementation is contained in the module
jPBC-crypto of jPBC. The implementation is set up in the context of the Bouncy Castle
framework (see http://www.bouncycastle.org/).
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