Universita degli Studi di Salerno

Dipartimento di Scienze Politiche, Sociali e della Comunicazione

DOTTORATO IN SCIENZE DELLA COMUNICAZIONE, SOCIOLOGIA,
TEORIE E STORIA DELLE ISTITUZIONI, RICERCA EDUCATIVA,
CORPOREITA DIDATTICHE, TECNOLOGIE E INCLUSIONE

XV CicLo

A Hybrid Framework for Text
Analysis

Alessandro MAISTO

Supervisor and Tutor:
Prof. Annibale ELIA

A.A. 2016/2017

The machine is only a tool after all, which can help humanity progress faster by
taking some of the burdens of calculations and interpretations off its back. The
task of the human brain remains what it has always been; that of discovering
new data to be analyzed, and of devising new concepts to be tested.

1. Asimov

Contents

Introduction 1
Related Works 5
21 NLP Tools 6
2.2 Tokenization 11
2.3 PosTag and Lemmatization 12
2.4 Statistic analysis of Texts 17
2.5 Distributional Semantics 23
2.6 Syntactic Dependency Parsing 26
2.7 Lexicon-Grammar Framework 28
The project 33
3.1 Technical Background 36
3.2 The LG-Starship Project 41
3.2.1 The Preprocessing Module 42
3.2.2 Mr. Ling Module 45
3.2.3 Statistic Module 0oL 51
3.2.4 Semantic Module 55
3.2.5 Syntactic Module L. 58
3.3 LG-Starship Interface, 73
Experiments 89
4.1 Rapscape, the construction of a tool for the analysis of the
Italian Rap Phenomenon 91
4.1.1 Initial guidelines 91
4.1.2 Methodology 92
4.1.3 Building the resource 94
4.1.4 Text Analysis L. 95
4.1.5 Data Visualization 98
4.2 A rule-based method for product features Opinion Mining and
Sentiment Analysis 106
4.2.1 Initial guidelines 000 106
4.2.2 The Product Feature Extraction 108
4.2.3 Automatic Feature-based Opinion Mining 109
4.2.4 Automatic Classification of Features and Reviews . . . 114
4.2.5 Experimental Results 115

Conclusion and Future Work 125

iv Contents

Bibliography 131

2.1
2.2
2.3
2.4

2.5
2.6

2.7
2.8
2.9

2.10

3.1
3.2
3.3
3.4
3.5

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

List of Tables

Example of Part-Of-Speech Tag 13
Example of Lemmatization 16
Types and Occurrences 18
Types and Occurrences extracted from Lord of Rings, The fel-

lowship of the ring, Chapter 9 18
Types and Occurrences extracted from The Hobbit, Chapter 1 19

Types and frequencies extracted from Lord of Rings, The two

towers, Chapter 7 20
Proportional difference between occurrence and frequency . . . 20
Tt-1df best ranked words for The Hobbit, Chapter 1 21
Example Matrix for “The Horse Raced Past the Barn Fell” com-

puted for windows width of 5 words 24
Example of a Lexicon-Grammar Binary Matrix 31
Set of Features Used for Mr Tag PosTagger 46
Comparison of POS Tagging task 20
Comparison of Lemmatization task 50
Examples from the Psych Predicates dictionary 64
Tag Set for Concrete and Human Nouns 66

Examples of words that produce errors in Pos Tagging and

Lemmatization 96
Top 10 most rap words. 97
POS distribution. oL 98
Composition of Sentlta 110
Negation rules. 0oL 113
Example of similarity between extracted features. 114
Similarity Graph in table format. 117
Extracted categories and relative features. 117
Precision measure in document-level classification 122
Recall in both the sentence-level and the document level clas-

sificationso 122

2.1
2.2

3.1
3.2
3.3
3.4
3.5

3.6

3.8
3.7
3.9
3.10
3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

4.1
4.2
4.3

4.4
4.5
4.6

List of Figures

Tt-1df distribution of 4 words through the book 22
Example of dependency structure of a simple sentence 26
Workflow of the LG-Starship Framework. 35
Syntactic Trees of the sentences 5and 6 60
Syntactic Trees of the sentences (5b) and (6b) 61
Graphical representation of the Json Hierarchy of Verbs 63
Depenency Structure of the sentence (9) and (10) performed by

Stanford Parser 72
Depenency Structure of the sentence (11) and (12) performed

by LinguA 73
Pos Tag & Lemmatization tab of LG-S Interface 75
Original Text tab of LG-S Interface 76
An example of results of Calculate button 7
An example of results of Lemmatization button 78
The two auto-compiled tables on the right of the Pos Tag &

Lemmatization panel after the Lemmatization process ends . . 79
The Frequencies panel after process the Term Frequency, the

TF/IDF and clicking the Calculate Charts button. 80
The Semantics panel after clicking the Show Semantic Space

button. 81
Example of network generated by Gephi Toolkit. 83
The Syntactics panel. 84
The generated dependency graph of the sentence Mario ¢

desideroso di una pizza.o 85
The generated dependency graph of the sentence Mario ha il

desiderio di una pizza.o 86
The generated dependency graph of the sentence la pizza é

desiderata da Maz. 86
Overall word’s frequencies 100
Changes of word’s rank for author in relation with the year . . 101
Detail of the Graph Author-Word in which each author was

connected with the words with higher tf-idf value 102
The Authors Collaboration Network 103
A detail from the Cosine Similarity Network of Authors 104

A detail of Hal Network 105

viii List of Figures

4.7 Resulting Similarity Graph 118

4.8 Visualization of the dependency graph of the sentence “la co-
lazione era davvero buona” o000 119

4.9 Extract of the word semantic Graph of Hotel Reviews 120

4.10 Network communities calculated by the Modularity Class Al-
gorithm on the Similarity Matrix 121

CHAPTER 1

Introduction

2 Chapter 1. Introduction

In Computational Linguistics there is an essential dichotomy between Lin-
guists and Computer Scientists. The first ones, with a strong knowledge of
language structures, have not engineering skills. The second ones, contrari-
wise, expert in computer and mathematics skills, do not assign values to basic
mechanisms and structures of language. Moreover, this discrepancy, espe-
cially in the last decades, has increased due to the growth of computational
resources and to the gradual computerization of the world; the use of Ma-
chine Learning technologies in Artificial Intelligence problems solving, which
allows for example the machines to “learn”; starting from manually generated
examples, has been more and more often used in Computational Linguistics
in order to overcome the obstacle represented by language structures and its
formal representation.

The dichotomy has resulted in the birth of two main approaches to Compu-
tational Linguistics that respectively prefers:

e rule-based methods, that try to imitate the way in which man uses and
understands the language, reproducing syntactic structures on which
the understanding process is based on, building lexical resources as elec-
tronic dictionaries, taxonomies or ontologies;

e statistic-based methods that, conversely, treat language as a group of
elements, quantifying words in a mathematical way and trying to ex-
tract information without identifying syntactic structures or, in some
algorithms, trying to confer to the machine the ability to learn these
structures.

One of the main problems is the lack of communication between these two
different approaches, due to substantial differences characterizing them:
on the one hand there is a strong focus on how language works and on
language characteristics, there is a tendency to analytical and manual work.
From other hand, engineering perspective finds in language an obstacle, and
recognizes in the algorithms the fastest way to overcome this problem.
However, the lack of communication is not an incompatibility: as it did at
the beginning, i.e. with Harris, the best way to treat natural language, could
result from the union between the two approaches.

At the moment, there is a large number of open-source tools that perform
text analysis and Natural Language Processing. A great part of these tools are
based on statistical model and consist on separated modules which could be
combined in order to create a pipeline for the processing of the text. Many of
these resources consist in code packages which have not a GUI (Graphical User
Interface) and they result impossible to use for users without programming

skills. Furthermore, the vast majority of these open-source tools support only
English language and, when Italian language is included, the performances
of the tools decrease significantly. On the other hand, open source tools for
Italian language are very few.

In this work we want to fill this gap by present a new hybrid framework
for the analysis of Italian texts. It must not be intended as a commercial tool,
but the purpose for which it was built is to help linguists and other scholars to
perform rapid text analysis and to produce linguistic data. The framework,
that performs both statistical and rule-based analysis, is called LG-Starshp.
The framework has been built in modules and, each module performs a specific
task of Natural Language Processing or text analysis. In addition, a graphical
interface will include, in a first time, a tab for each module. The included
modules are the followings:

e a module for charging text, which performs some basic text analysis such
as tokens and letters counts and offers some preprocessing operation as
text cleaning and normalization or StopWords removal.

e a module for POS Tag and Lemmatization, which includes the counts
of lemmas and grammatical categories.

e a module for statistical analysis, with the computation of Term Fre-
quency and Tf-idf by texts units, that presents line charts for selected
words.

e a Semantic module that calculates semantic similarity for text units or
disambiguates ambiguous words.

e a Syntactic module that analyzes syntax structures of sentences tagging
verbs and its arguments with semantic labels.

The framework can be considered “hybrid” in a double sense: as explained
in the previous lines, it uses both statistical and rule/based methods, by
relying on standard statistical algorithms or techniques, and, at the same
time, on Lexicon-Grammar syntactic theory. In addition, it has been written
in both Java and Python programming languages. LG-Starship Framework
has a simple Graphic User Interface but will be also released as separated
modules which may be included in any NLP pipelines independently.

There are many resources of this kind, but the large majority works for
English. There are very few free resources for Italian language and this
work tries to cover this need by proposing a tool which can be used both
by linguists or other scientist interested in language and text analysis who
have no idea about programming languages, as by computer scientists, who

4 Chapter 1. Introduction

can use free modules in their own code or in combination with different NLP
algorithms.

In our opinion, the name of the framework could effectively represent some

of the main features of the project: in the Starship metaphor, suggested by
the name of one of the standard algorithms we used in the project, the Hyper-
space Analogue to Language distributional semantics algorithm, textual data
can be considered as a huge galaxy or universe which is constantly growing.
Moving through this universe is not possible with standard tools as existing
text editors or search engines, but requires a special machine which takes into
account the nature of the environment and can proceed through misleading
elements and dangerous interpretation as a starship moving through an aster-
oid field. In addition, the continuous growth of this universe, makes necessary
some tools which allow to jump from a specified point to any other point of
the text universe as a spaceship that performs an hyperspace jump to reach
remote stars.
As happens in science-fiction novels, there are many different kind of starships,
each one using a different kind of technology; in LG-Starship, the technology
on which the engine is based is the Lexicon-Grammar Theory (LG) which will
be discussed in next chapters.

CHAPTER 2

Related Works

6 Chapter 2. Related Works

2.1 NLP Tools

There is a large number of open-source tools for Natural Language Processing.
Some of these tools consist of a mere computational structure that must be
enriched with any kind of linguistic resource such as dictionaries, grammars or
algorithms. Other tools present an applicable pipeline of statistical, syntactic
and semantic algorithms that allow different text analysis approaches. In
this session some of most used free tools for Natural Language Processing are
presented.

One of the most important NLP tool is Nooj [Silberztein, 2005, 2014].

Nooj is an empty linguistic framework based on the Lexicon-Grammar The-
ory developed by Maurice Gross in the ‘70 and make a great use of Finite-
State Automata. Nooj is the evolution of an obsolete tool called INTEX
[Silberztein, 1998] with which it shares many components. Nooj allows user
to process large sets of texts in short time. Its architecture is based on .NET
technology.
As we said, Nooj framework is not provided with linguistic resources by de-
fault, but there is a large international community of Nooj users that de-
veloped in last years dictionaries and grammars for more than 20 languages
including French, English, Italian, Chinese, Arabic, Spanish etc.. Nooj in-
cludes three main components:

e a lexical component that allows the creation of dictionaries and inflexion
grammars;

e a morphology component that allows the development of derivational
and morphological grammars;

e a syntactic component for the construction of syntactic grammars for
parsing or automatic tag of texts

In addition, Nooj can perform some kind of statistical analysis as frequency
calculation, tf/idf, and similarity between terms. For what concerns the Ital-
ian module for Nooj, it was realized by [Vietri, 2014] of the University of
Salerno. The free Ttalian module includes:

e a dictionary of simple words (more then 129.000 entries);

a dictionary of compound nouns (about 127.000 entries);

a dictionary of first and last names (about 2500 entries);

a dictionary of toponyms that includes city and country names;

inflexional grammars associated with dictionaries entries;

2.1. NLP Tools 7

e morphological grammars for derived forms of proper nouns, pronominal
forms recognition and derivation recognition;

e a syntactic grammar for the extraction of date/time patterns

Nooj application and resources are free available at www.
nooj-association.org. Nooj is a user-friendly linguistic application
that offers excellent computational performances and very good results. The
Nooj language is easy to learn; dictionaries could be easily created, expanded
or modified and grammars could be generated graphically or by rule editor.
By contrast, Nooj presents two major drawbacks:

1. Is not possible to include Nooj into another code because there are
not APIs and it is not possible to apply Nooj to dynamic corpora. A
command-line application exists but it works only if Nooj main appli-
cation is running into the PC.

2. Nooj POS tagging follows a precise philosophy and does not disam-
biguate ambiguous terms: i.e. the italian determiner la is recognized
as a Determiner, but also as a Noun because in the dictionary [a also
exists as a musical note. In this way, syntactic grammars easily reaches
a recall of 100%, but the precision must be refined with the addiction
of linguistic constrains that could cause slower performances.

Another framework for NLP is GATE, General Architecture for Text En-

gineering [Cunningham, 2002, Cunningham et al., 2002]. GATE constitutes
an infrastructural system for research and development of language processing
softwares and has been implemented at the University of Sheffield. The tool
provides only an infrastructure for linguistic studies.
GATE provides a Collection of REusable Object for Language Engineering
(CREOLE) that could be used together with a document manager through a
graphical interface. By selecting a number of CREOLE objects it is possible to
define a pipeline module for text analysis and produce output as annotations
or structured texts. The main components of CREOLE are:

e tokenizer, that splits text into simple tokens, by differentiating between
words, numbers, punctuation or symbols;

e sentence splitter, that uses finite state transducers to segment the
text into sentences;

e tagger is a modified version of Brill tagger and produces Part Of Speech
tag on each token;

www.nooj-association.org
www.nooj-association.org

8 Chapter 2. Related Works

e gazetteer, that consists of a list of cities, organizations and other kind
of proper nouns;

e semantic tagger, that consists of rules written in Java Annotation
Pattern Engine language;

e orthomatcher is an optional module that have as primary objective
to perform co-reference between entities and to assign annotations to
unclassified names.

e coreferencer, that finds identity relations between entities in the text.

Once a module has been create and run, it is possible to show the produced
data by selecting an available result viewer. Default viewer displays annota-
tions on a typical tabular form, but it’s possible to select different viewers
as a tree viewer. It is also possible to compare sets of annotations using the
Compare Annotation Tool (CAT).

The Natural Language Toolkit, better known as NLTK |Bird, 2006] is a
suite of program modules, data sets and tutorials that supports research in
computational linguistics and NLP. Written in Python, NLTK includes the
vast majority of NLP algorithms, providing implementation for tokenizers,
stemmers, taggers, chunkers, parsers, clusterers and classifiers. It also includes
Corpus samples as Brown Corpus or CoNLL-2000 Chunking Corpus.

NLTK is very useful for English language and achieves good performances
on English texts analysis, but it is almost impossible to apply it to other
languages as Italian. Moreover, the installation of modules is not easy and
the use of Corpus collections that is not included into the standard packages
is a hard task.

Based on NLTK there are many python libraries. One of the most used
open-source libraries is TextBlob |Loria, 2014], that provides API for common
NLP tasks. Main features of TextBlob are:

Noun phrase extraction

Part-of-speech tagging

Sentiment analysis

Classification based on Naive Bayes classifiers or Decision Trees

Language translation and detection using Google Translate APIs

Tokenization

2.1. NLP Tools 9

Word and phrase frequencies

Parsing
e N-grams

Word inflection and lemmatization

Spelling correction
e WordNet integration

In order to analyze a text with a TextBlob module it is needed to convert
the text format into a TextBlob String, a proper format for texts. Once re-
alized the conversion of one or more texts, it is possible to apply the other
modules. For what concerns modules that could be considered Language-
dependents, the package presents resources only for English Language, but
in many cases, with correct lexical resources, modules include training func-
tions that could be used in order to extend the usage of the module to other
languages. Furthermore, “statistical” modules are not dependent on language
and can be applied on multilingual corpora.

As the authors declare, and on how it is based on NLTK, TextBlob uses
Pattern repositories. As NLTK, Pattern [Smedt and Daelemans, 2012] is a
package for Python, and includes functionalities for web mining, NLP, machine
learning and network analysis. Pattern is thought as a tool for both scientific
and non-scientific audience. It is organized in separate modules:

e pattern.web that includes tools for web mining;

e pattern.en that includes regular expression-based parser for English that
uses a finite-state POS tagger, a tokenizer, a lemmatizer and a chuncker,
and is bundled with WordNet

e pattern.search is a N-gram pattern matching algorithm that uses an
approach similar to regular expressions. Can be used to search a mixture
of words, phrases, POS tags, control characters or taxonomy terms.

e pattern.vector that represents Documents or Corpus as lemmatized bag-
of-words in order to calculate TF/IDF values, distance metrics or dimen-

sion reduction. The module includes clustering algorithms, Naive Bayes
and SVM classifier.

e pattern.it includes the same features of the pattern.en module, but im-
plement new functions as Gender prediction, Article specification, Verbs
conjugation. In Ttalian module is not included the Sentiment Function.

10 Chapter 2. Related Works

Since NLTK and Pattern were written in Python, there is another fam-
ily of libraries, developed in Java, used to perform NLP tasks. One of these
libraries is OpenNLP |[OpenNLP, Wilcock, 2009|. OpenNLP library is a ma-
chine learning based toolkit for natural language processing that supports
some of most common NLP tasks as tokenization, sentence segmentation,
POS tagging, named entity extraction, chuncking and parsing. A large man-
ual and a complete documentation can be found on the library web page!.
OpenNLP includes three kind of tokenizer, classified on the base of their com-
plexity. A whitespace tokenizer that splits sequences by white spaces, a simple
tokenizer that detects tokens by character class and learnable tokenizer that
uses a maximum entropy probability model to calculate tokens. Named entity
extraction also works in two different ways: the package includes a statistical
Name Finder, but also offers a dictionary-based name finder implementation.
OpenNLP module for POS Tagging is an implementation of Perceptron Tag-
ger for English language, but the package includes a training module that can
be used in order to apply the algorithm to other languages. Parsing is offered
in two different implementations: a chunking parser and a treeinsert parser
(not recommended by authors). The chuncking one is a statistical parser
and must be trained with a training dataset that respects the Penn Treebank
format [Marcus et al., 1994].

Stanford CoreNLP |Manning et al., 2014] is a set of Natural Language
analysis tools designed to be flexible and extensible. It presents a set of mod-
ules that can be included in a text analysis pipeline. The modules includes:

e a POS tagger module that is an implementation of log-linear POS tagger
[Toutanova and Manning, 2000];

e a Named entity recognizer (NER), that includes, in particular, three
classes of nouns (Persons, Organizations and Locations) and is based on
CRFClassifier [Finkel et al., 2005];

e a probabilistic parser.

e a sentiment analysis algorithm based on Recursive Neural Network built
on grammatical structures. The module is also based on a Sentiment
Treebank, a database of over 215.000 phrases automatically annotated.

Stanford CoreNLP is developed for English, Chinese, French, German and
Spanish.

For Italian Language [Pianta et al., 2008] proposes a suite of tools for NLP
called TextPro. The single tools that compose TextPro are offered as stand-
alone programs, but they can be used in an integrated environment, providing

'http://opennlp.apache.org/

http://opennlp.apache.org/

2.2. Tokenization 11

an extensible framework to create and add new components. The main char-
acteristics of TextPro are simplicity (easy to install and configure), modularity
and portability. TextPro consists of nine main components each one repre-
sents a classic task of NLP such as text cleaning, tokenization, morphological
analysis, POS tagging, chunking, Named Entity Recognition, lemmatization
and Multiword recognition.

2.2 Tokenization

Digital Texts consists in a continuous string of machine-readable codified
symbols. In this continuous characters, numbers, graphical symbols, punc-
tuation and whitespace are all represented by codes. Normally, machines do
not have the ability to distinguish between them and can not isolate words,
numbers, etc.

Tokenization is the task that consists in isolate word-like units from
texts detecting white spaces or differences between character types. These
word-like units, called “tokens”, represent the full inflected or derived form of
the word and can be also called “wordforms” [Martin and Jurafsky, 2000].

Tokenization is not a trivial task |Grefenstette and Tapanainen, 1994|:
to note that tokenization is more than a simple split by white spaces, we
need to think to the same concept of “word”. In Graffi and Scalise [2002],
the notion of word is analyzed in depth. They notice that what is word in a
language, could not be a word in other languages; it is necessary to distinguish
phonological words from morphological and syntactical words. A word could
be a string of characters included between two white spaces, but if we take
into account a sequence as the sentence in example 1 we can object to this
simplistic definition.

(1) This is a doctoral thesis, not a paper.

e if we consider the first word, “This”, it is included between the start of
the sentence and a white space. Nevertheless it must be considered a
word.

e if we respect the definition of word given above, “thesis,” must be consid-
ered a word, but the symbol “,” is a punctuation and must be considered
as a different “token”. In Italian language, in the majority of cases, it’s
possible to previously add a whitespace between a word and a punctu-
ation symbol, but in words like “po’ ”, a contraction of “poco”, a bit, or

12 Chapter 2. Related Works

“dell’ 7, a form for the prepositional article “dello/a”; of the, the apostro-
phe should remain attached to the word because it contributes to the
sense of the word.

e the word “doctoral thesis” could be considered a single unit because the
sense of the single words is different from the sense of their sum. In fact,
“doctoral thesis” is considered a compound word and must be recognized
as a single token.

Traditionally, tokenization task uses hand-crafted rules with regular ex-

pressions or finite state automata |[Frunza, 2008] as in Bird [2006], Di Cristo
[1996], Pianta et al. [2008]. As in Grefenstette and Tapanainen [1994], regular
expressions are necessary in order to recognize some special structures: am-
biguous separators in numbers, for example, can be recognized by a regular
expression that includes dots and commas for numbers as 12.000 or 0,234,
slash and backslash for dates or other symbols (percent symbol or monetary
symbols). For what concern abbreviation, it is necessary to consult a lexi-
con. In the same way, in Maisto and Pelosi |[2014¢| an electronic dictionary
of Compound words has been used to recognize multiword expressions in a
corpus of reviews.
A second kind of approaches for tokenization is based on sequence labeling
algorithms such as Hidden Markov Models. Grana et al. [2002] presents a
POS tag algorithm that includes tokenization in order to decide if one or
more words form or not the same term, and assigns the appropriate number
of tags. The model uses the Viterbi algorithm [Forney, 1973| in order to eval-
uate streams of tokens of different lengths over the same structure. In Frunza
[2008], tokenization is performed without any human expertise or dictionar-
ies, but the only source of information is a pre-tokenized corpus on which the
algorithm learns the rules for the correct tokenization.

2.3 PosTag and Lemmatization

Part-of-speech (POS) tagging is one of the most important and used pre-
processing step in Natural Language Processing task, it is considered the
necessary baseline for every further linguistic analysis. It consists in attribut-
ing to each wordform its grammatical category and disambiguates that terms
which could be considered ambiguous in the selected language. In Italian, a
Part-of-Speech tag of the sentence 2 is shown in table 2.1:

(2) la porta ¢ aperta.
the door is open.

2.3. PosTag and Lemmatization 13

Words | Tags

la DET
porta N
é \Y%
aperta A

Table 2.1: Example of Part-Of-Speech Tag

A POS tagger algorithm must be able to tag correctly each word and to
decide what is the correct tag in case of ambiguity. In the example above,
the word porta is used with the meaning of “door”, but in Italian it could
corresponds to the present second person of the verb portare, “to bring”. Fur-
thermore it is necessary to establish a set of tags, of varying complexity, that
must be coherent with the selected idiom. In the example the tags only ex-
press the grammatical category of terms, but it is possible to set deeper tags
that can express, for example the if the determiner is defined or undefined,
etc.

Although there are several available resources for English language, the
number of tools currently available for the Italian language is drastically re-
duced. The situation is even more reduced when we consider only tools freely
available and open source: only TreeTagger, Pattern and OpenNLP are free.
Since ‘70s automatic tag of Part-Of-Speech was considered an important ap-
plication for every future researches in computational linguistics.

Greene and Rubin [1971] propose a rule-based approach in the TAGGIT pro-
gram and reach the 77% of precision in disambiguated the Brown Corpus
|Francis and Kucera, 1982].

Church [1988] presents a program that uses a linear time dynamic pro-
gramming algorithm to find an assignment of POS to words based on lexi-
cal and contextual probability with an estimated precision of 95-99%. The
stochastic method proposed, first calculate the Lexical Probability by dividing
the frequency of a word for the frequency of the same word with a specific
POS tag. The stochastic method proposed in the paper makes use of lexical
disambiguation rules. Then, the contextual probability is calculated as

The probability of observing part of speech X given the following
two parts of speech Y and Z, is estimated by dividing the trigram
frequency XYZ by the bigram frequency YZ.

the probability of observe a Verb before an article and a noun is estimated
by the frequency of the sequence Verb, Adjective and Noun divided by the
frequency of the sequence Adjective, Noun).

14 Chapter 2. Related Works

In 1992, Cutting et al. [1992| present a POS tagger based on Hidden
Markov Model (HMM). He define 5 feature that a Part-Of-Speech tagger
must has. A POS Tagger must be:

e Robust because it must work with text corpora that contains ungram-
matical constructions, isolated phrases, unknown words or non-linguistic
data.

e Efficient because it must tag the largest number of words in the shortest
possible time.

e Accurate because it should assign the correct POS tag to every word
encountered.

e Tunable as meaning that it should take advantage of linguistic insights.

e Reusable as the effort required to retarget the tagger to new corpora,
tagsets or languages should be minimal.

Authors use HMM because this kind of models permits a complete flex-
ibility in the choice of training corpora, tagsets or languages, reducing time
and complexity. This model reach the 96% of precision on Brown Corpus.

An example of Rule-based POS tagger was presented by Brill [1992]. In
this method, the algorithm automatically acquires the rules and reach an
accuracy comparable to stochastic taggers. Once the algorithm assigns to
each word the most likely tag, estimated by examining a large tagged corpus
without regards to context, it improves its performances using two procedures:

a. unknown words capitalized are considered as Proper Nouns;

b. a procedure attempts to assign the tag most common for words ending
in the same three letters.

In a second step, the tagger acquires patches to improve performances.
Patch templates are based on context, on lexical properties and on distribution
region.

The importance of context in POS tagging is also underlined by Ratna-
parkhi et al. [1996], that use in parallel, a probability and some contextual
features. For what concern non-rare words (a word which occurs more than 5
times in the corpus), they are tagged by using the simple probability model.
Rare and unknown words, on the contrary, are tagged as words with similar
prefixes or suffixes. Tested on the Wall St. Journal corpus, the model obtains
a total accuracy of about 95%.

Other statistical model could be found in Brants [2000], Toutanova and

2.3. PosTag and Lemmatization 15

Manning [2000], Giménez and Marquez [2004], Denis et al. [2009].

Currently, Pos Tagging is essentially considered a “solved task”, with state-

of-the-art taggers achieving precision of 97%-98%|Toutanova et al., 2003, Shen
et al., 2007].
Best algorithms are considered the Stanford Tagger (version 2.0), that use the
maximum entropy cyclic dependency network [Manning, 2011]; BI-LSTM-
CRF [Huang et al., 2015], and NLP4J [Choi, 2016] that use Dynamic Feature
Induction. In Collins [2002] was presented a new perceptron algorithm for
training tagging models as an alternative to maximum entropy models. The
Averaged Perceptron Tagger uses a discriminative, feature-rich model. Fea-
tures are modeled using feature functions: ¢(h;,t;) when h; represents the
history and ¢; the tag. History h; is a complex object modeling different as-
pects of the sequence being tagged. It contains previously assigned tags and
other contextual features such as the form of current word.

For a sequence of words w of length n in a model with d feature functions,
the scoring function is defined as:

score(w,t) = ", Zle asds(hi, t;)

with ay as feature weights paired with a feature function ¢,. The Viterbi
algorithm is used to compute the highest scoring sequence of tags.

Votrubec [2006] proposes a new implementation of Averaged Perceptron
Tagger highlighting some behaviors as the aversion of the algorithm to
the excess of information or to complex features, and establishing that the
maximum accuracy usually came between the 4th and the 8th interaction.
In this implementation, a set of morphological features are added to the
standard perceptron tagger implementation in order to reflect the complexity
of Czech and, in general, Slavic languages. Based on Votrubec [2006], Haji¢
et al. [2009] propose a different set of features for English and Czech language
due to the typological difference between the two idioms.

For what concern Lemmatization task, it consists in take a token and
convert it into its common base form: the lemma. In English, base form for
a noun is the singular (e.g. mouse rather than mice) and the noninflected
form of the verb. In Ttalian language, singular is used as canonical form of
nouns, adjectives (masculine if the name is masculine or masculine/feminine,
and feminine for feminine nouns), pronouns and determiner, and infinitive for
verbs. With respect to the sentence 1, the lemmatization results are shown in
table 2.2:

In some cases Lemmatization is replaced with another language modeling
technique called Stemming. Stemming is a procedure to reduce all words with

16 Chapter 2. Related Works

Words | Tags | Lemmas
la DET il/lo

porta N porta
e \Y% essere
aperta A aperto

Table 2.2: Example of Lemmatization

the same stem to a common form. An analysis of the precision of a search
algorithm launched on English texts processed with the two algorithm [Bal-
akrishnan and Lloyd-Yemoh, 2014], shows that, though the Lemmatization
obtains best values of precision, the difference between these two techniques
is insignificant.

In Porter [1980] a stemming algorithm was presented. The algorithm re-
moves suffixes from a word form until the “stem” was found. The use of a
stemmer instead of a lemmatizer is desirable because it reduce the size and the
complexity of the data in the text. Actually, both approaches can be combined
as Ingason et al. [2008] do for Islandic language, applying the lemmatization
first and, subsequently, using a stemming algorithm on lemmatized text.

In Plisson et al. [2004], two word lemmatization algorithms were compared:

the first one is based on if-them rules, the second one is based on ripple down
rules induction algorithms. Ripple Down Rules [Srinivasan et al., 1991] have
been developed for knowledge acquisition and maintenance of rule-based sys-
tems. The algorithm create exception to existing rules when a rule produce
incorrect conclusions. Most algorithms use external lexical information, as
Morfette [Chrupata et al., 2008], or SEM [Constant et al., 2011] for French
texts.
In particular, Morfette uses a probabilistic system in order to joint morpho-
logical tagging and lemmatization from morphologically annotated corpora.
Morfette system is composed by two learning modules, one of that for lemma-
tization. A decoding module searches for the best sequence of pairs of mor-
phological tags and lemmas for an input sequence of wordforms. The class
assigned to a wordform - lemma pair is the corresponding shortest edit script
(SES) between the two reversed strings. SES represents the shortest sequence
of instructions which transforms a string w into a string w’. The precision of
Morfette on the lemmatization task is the 93% for Romanian, 96% for Spanish
and 88% on Polish language.

Kanis and Miiller [2005] use a training Dictionary in order to search
the longest common substring of the full form and the lemma. Using the

2.4. Statistic analysis of Texts 17

dictionary, the system generates lemmatization rules deriving the derivation
rules that lead to the formation of flexed forms.

For what concern Italian resources, we can cite an Italian version of Tree-
Tagger [Schmid, 1995|, an Ttalian model for OpenNLP [Morton et al., 2005],
TagPro [Pianta and Zanoli, 2007], CORISTagger [Favretti et al., 2002], Tanl
POS tagger [Attardi et al., 2009], ensemble-based taggers [Dell?Orletta, 2009]
and Pattern tagger |[Smedt and Daelemans, 2012].

2.4 Statistic analysis of Texts

Statistical text analysis is based on counting words and extract information
from text by analyzing the results of the counting process.
Consider the following example:

(3) il cane mangia il gatto che mangio il topo.
the dog eat the cat that ate the rat

How many words compose the sentence 37 As we saw in 2.2, in the sentence
3 we can count 9 wordforms or tokens. We saw that exist some basic operation
we can do with a list of tokens like the one presented above, as the tag of Part-
Of-Speech elements or the reduction to the citation forms (Lemmatization).
But if we need to know how many different words compose the sentence,
we must count the “types”. Pierce (1931-58, vol. 4, p. 423) introduces the
distinction between tokens and types by specifying that in a sentence as the
one above, there is only one word type ‘the” but there are three tokens of it in
the sentence. The relation between the Type and its tokens is an instatiation
and can be quantified in terms of token occurrence.

The first and simplest operation we can perform on a text is the extraction
of types and the calculation of the number of instances that appear in a text.
For example:

18

Chapter 2. Related Works

Type

Occurrences

il
cane
mangia
gatto
che
mangio

topo

O CH S CH U G G

Table 2.3: Types and Occurrences

in table 2.3 the first column represents the types encountered in the sentence
and, the second column represents the number of tokens for each type. Obvi-
ously, articles and preposition, always will stay on the top of occurrence ranks.
For this reason, in some cases the text is pre-processed in order to delete this
kind of elements, also known as “stop-words” |[Tokunaga and Makoto, 1994].

Simple occurrence ranks can be useful for analysis of larger texts. In the
next table we present the most frequent words of the chapter 9 of the first
book of the Lord of Rings saga [Tolkien, 1991|, and the first chapter of The
hobbit [Tolkien, 2012]. Stop-words has been removed from the list.

Type | Occurrences
said 51
frodo 42
night 34
aragorn 31
river 29
boats 28
out 26
great 25
dark 25
Sam 24

Table 2.4: Types and Occurrences extracted from Lord of Rings, The fellow-

ship of the ring, Chapter 9

2.4. Statistic analysis of Texts 19

Type | Occurrences
said 76
bilbo 37
like 37
out 35
thorin 34
gandalf 33
dwarves 29
door 27
baggins 25
little 24

Table 2.5: Types and Occurrences extracted from The Hobbit, Chapter 1

Reading the lists in table 2.4 and in table 2.5 we can learn that the first
text speaks about “Frodo”, it could be set on “night”, near a “river” with
“boats”. In the same way, the second text has as its characters “Bilbo”,
“Gandalf”, “Thorin” and speaks about “dwarves” and a “door”. However, the
second text (the one extracted from “The hobbit”) is larger and counts 9828
tokens, while the first one count only 8243 tokens. This difference, reflected
on occurrence ranking, could not reflect the real impact of a wordform on
a text. In this case, the two texts have similar dimensions and then the
occurrences of a type in both texts is often similar. But if we try to compare
texts of different dimensions, the occurrence ranking may misled.

In order to show this difference, we need to take into account a new text,
the Chapter 7 of the second book of the Lord of Rings saga. The chapter
contains 4946 tokens (about half of the previous two) and the occurrence
ranking is shown in table 2.6.

The table 2.6 shows that in the selected text, the wordform “frodo” appear
30 times, less then the same wordform in the first text as reported by tab.
2.4. It is clear that we need to take into account the proportion between the
two texts and calculate a “weight” for each word in each text.

Term Frequency is the simplest measure to weight each term in a text. A
term has an importance proportional to the number of times it occurs in a
text [Luhn, 1957]:

20 Chapter 2. Related Works

Type | Frequency
said 34
frodo 30
gollum 28
up 28
down 21
sam 20
now 19
must 18
out 18
under 17

Table 2.6: Types and frequencies extracted from Lord of Rings, The two
towers, Chapter 7

N
TF = ﬁ [Baeza-Yates et al., 1999
J

Applying this formula it is possible to compare text with different dimen-
sions. Considering as “text 1”7 the Chapter 9 of “The fellowship of the ring”,
“text 2”7 the chapter 7 of “The two towers”, table 2.7 compares word occur-

rences and frequencies of three different types:

Type Text 1 Text 2 Text 1 Text 2
occurrences | occurrences || frequency | frequency
said o1 34 0,006187 | 0,006874
frodo 42 30 0,005095 | 0,006066
night 28 11 0,004125 | 0,002224

Table 2.7: Proportional difference between occurrence and frequency

As we can see in the table 2.7, while “said” in Text 1 occurs 17 times more

that in text 2, the frequency is very similar. For what concern the wordform
“frodo”, it occurs 12 times more in first text but its weight is significantly
lower.

However, in many cases, word frequency may be insufficient to a deep analysis
or a comparison between more texts.

2.4. Statistic analysis of Texts 21

Using “The Hobbit” as text, we can perform other kind of analysis. In a
book like “The Hobbit”, a novel, often the name of the main character recurs
and has high frequency in every chapter. If we need to classify each chapter
of the book by the words which appear in it, considering the Term Frequency,
the word “bilbo” will always be selected in this list of words. In this case, its
weight do not correspond with the amount of information the word may give
us.

In order to resolve problems like this, we must introduce the Term Fre-
quency - Inverse Document Frequency Weight (TF-IDF) [Salton and McGill,
1986]. In TF-IDF the Term Frequency value is calculated for each word, then,
each value is multiplied by the number of document that contains that term
in order to create a term-by-document matrix [Blei et al., 2003]. TF-IDF de-
termines how relevant a given word is in a given document. Given a document
collection D, a word w, and an individual document d € D:

wa = fuw.a*log(|D|/ fup)

where f, 4 equals the number of times w appears in d, |D| is the size of the
corpus, and f,, p equals the number of documents in which w appears in D
[Salton and Buckley, 1988|.

Using this formula it is possible to select high weighted words for each text

and classify a text by its characterizing elements, those words that differentiate
it from the other texts.
For example, the first chapter of “The Hobbit”, in which the main character,
Bilbo receives the visit of Gandalf and the dwarves and must prepare them
the dinner, and in which the group speaks about the map and the planned
adventure, has the tf-idf ranking shown in table 2.8:

Type Tf-idf value
plates 0.0598
gandalf 0.0591
map 0.0534
belladonna 0.0478
dungeons 0.0445

Table 2.8: Tf-Idf best ranked words for The Hobbit, Chapter 1

If this ranking is compared with the frequency rank for the same chapter, it
is possible to notice that they contain different words (except “gandalf”) and,
while all the words with the higher frequency value can be founded throughout

22 Chapter 2. Related Works

the book, the words in table 2.8 return a good representation of the theme of
the chapter.

It is also possible to follow the distribution of a group of words through
the book, as, for example, the distribution of the words “hobbit” “dragon”,
“elves” and “battle”. In figure 2.1, a graph of the tf-idf distribution for these
4 words are presented. Is easy to notice that some words as “dragon” or
“battle” increase their weight in the chapter in which the battle take places or
the dragon appears. Contrariwise, the word “hobbit” which has higher values
than the other words in the first 9 chapters, here has lower values.

Chapters Words
0025 M battle
dragon
0,020 W clves
hobbit
15
s
=
05
1 2 4 7 1 11 1 1 14 1

Figure 2.1: Tf-Idf distribution of 4 words through the book

Figure 2.1 represents words frequencies with different line widths in order
to show how the tf-idf points out main words in a different way. The curve
of “battle” (blue line), for example, emerge in tf-idf graph, in the chapter 11
and 13 where its width is smaller than the width of the red line, “elves”.

Another kind of brute text analysis which could be performed over an
non-lemmatized, unstructured text is the extraction of N-grams. N-grams are
sequences of N consecutive words that appear in texts one or more times.
For example, in “The Hobbit” we can extract bi-grams as “said bilbo” or
“your magnificence” or “worked metals”, that represent more complex recursive
structures of the text. We can also extract tri-grams as “under the mountain”
or “said the wizard” or “the great goblin”. Also N-grams could be accompanied
by frequency values and could be used in order to find multiword expressions
or elementary patterns.

2.5. Distributional Semantics 23

2.5 Distributional Semantics

Distributional hypothesis started in the second half of ‘50 with Zellig Harris
[Harris, 1954]. Harris states that the distribution of an element could be
defined as the sum of all the contests of that element:

“An environment of an element A is an existing array of its
co-occurrents, i.e. the other elements, each in a particular posi-
tion, with which A occurs to yield an utterance. A’s co-occurrents
in a particular position are called its selection for that position.”

When someone speaks, he have to chose the next word from a member
of those classes of words that normally occur together. Each element in a
language can be grouped into classes and while the relative occurrence of a
class can be stated exactly, the occurrence of a particular member of one class
relative to a particular member of another class must be calculated in terms
of probability. In other words, if we discover that two linguistic units w; and
wy has similar distributional properties, i.e. they occur with the same other
entity ws, then we can assume that w; and ws belong to the same linguistic
class.

This distributional structure that underlies the language is not a mathe-

matical creation, but exist in reality. It exist in the speakers in the sense of
reflecting their speaking habits. Details of distributional perception differs on
different speakers, but the structure exists for everyone.
The distributional hypothesis was then picked up by many other authors;
Schiitze and Pedersen [1995] affirm that “words with similar meanings will
occur with similar neighbors if enough text material is available” in a work
that presents an algorithm for word sense disambiguation based on a vector
representation of word similarity derived from lexical co-occurrence.

Landauer and Dumais [1997] present a model for the simulation of knowl-
edge learning phenomena based on local co-occurrence data in large repre-
sentative corpus, called Latent Semantic Analysis (LSA). An unsupervised
methodology for propagating lexical co-occurrence vector into ontology was
presented by Pantel [2005] that based the algorithm on principle of distribu-
tional similarity which states that “words that occur in the same contexts tend
to have similar meanings”.

Sahlgren [2008] points the focus on what kind of distributional properties
should be token into account. Concerning this question, he discerns between
two distinct approaches: the first one, that build distributional profiles for
word based on which other words surround them; the second one that build
distributional profiles based on which text regions words occur. However the

24 Chapter 2. Related Works

two approaches are based on different types of distributional raw materials,
they could be considered as functionally equivalent when it represents
meaning similarities.

The first approach, called Hyperspace Analogue to Language (HAL) was
presented by Lund and Burgess [1996]. In the paper, the semantic similarity
between two words are calculated by comparing co-occurrence vectors of the
two words with an Euclidean measure of distance. The co-occurrence matrix
of words per words is generated analyzing a n-words windows through a large
corpus of heterogeneous texts as showed in the table 2.9.

barn | fell | horse | past | raced | the
<PERIOD> 4 5 0 2 1 3
barn 0 0 2 4 3 6
fell 5 0 1 3 2 4
horse 0 0 0 0 0 5
past 0 0 4 0 5 3
raced 0 0 bt 0 0 4
the 0 0 3 5 4 2

Table 2.9: Example Matrix for “The Horse Raced Past the Barn Fell” com-
puted for windows width of 5 words

In Burgess [1998] a HAL vocabulary of 70.000 most frequently used sym-
bols is used to generate a matrix with a dimension of 70.000 X 70.000 and,
word vectors have been processed with a multidimensional scaling algorithm
to transform it into a two-dimensional pictorial representation of each word.
This procedure generate semantic knowledge by grouping semantic neighbors
and grammatical knowledge. The corpus used to generate the matrix is 300
million words of English text from Usenet newsgroups.

This model could be used in order to representing semantic meaning of
words and allows the characterization of a variety of aspects of lexical ambi-
guity |Burgess, 2001|. HAL was also used to examine word category features
as in Audet et al. [1999] that extract cognitively-relevant differences between
the representations for abstract and concrete words, in particular, how they
differ in the availability of associated contextual information stored in mem-
ory.

In order to realize an informational inference mechanism, Song and Bruza
[2001] use HAL to build a high dimensional conceptual space that offers

2.5. Distributional Semantics 25

a cognitively motivated theory (expressed in terms of vectors) on which
to found inference at a symbolic level. The matrix was generated on the
Reuters-21578 collection with a vocabulary of 5403 words (stop words has
been removed) and a windows size set to be 6. Azzopardi et al. [2005] propose
a probabilistic Hyperspace Analogue to Language (pHAL): the probabilistic
term co-occurrence matrix has been defined by normalizing the count of
terms. The corpus used was a collection of 40.000 documents from the Wall
Street Journal using a windows size of 5. This probabilistic model produces
better average precision from query expansion derived from the Conceptual
Spaces.

The second model, called Latent Semantic Analysis (LSA), was presented
in Landauer and Dumais [1997]. Words are also represented as vectors derived
from co-occurrence in text. In LSA vectors the semantic space is selected first
as a set of contexts. The first 2000 characters in each of 30.473 articles in
the Grolier’s Academic American Encyclopedia was considered a space: each
article is assigned to a column in the matrix and the 60.000 words are assigned
to rows. Fach time a word appear in an article the cross value is increased.
Finally, matrix entries are logarithmically transformed and subjected to a
singular value decomposition (SVD). The result is the extraction of about
300-400 important dimensions and each word’s values on the dimensions.

LSA could be considered as a possible theory about all human knowledge
acquisition, as a homologue of an important underlying mechanism of human
cognition in general [Landauer and Dumais, 1997].

LSA could be used to address some questions into the challenge of under-
standing the meaning of the words. For Hofmann [1999] polysems, words which
have multiple senses in different context, and synonymys , i.e. words that have
a similar meaning, are partially addressed by standard LSA algorithm, due to
its unsatisfactory theoretical foundation. For this reason Hoffmann propose a
Probabilistic Latent Semantic Analysis that achieves best results on two tasks
as the perplexity minimization and automated indexing of documents.

LSA was also used for word clustering |Bellegarda et al., 1996, Dumais
et al., 1988], producing a semantic cluster of domain for generic vocabulary
words or for automatic indexing and retrieval [Deerwester et al., 1990], by
exploding latent semantic relations between words. Foltz et al. [1998] use
Latent Semantic Analysis as a technique for measuring the coherence of texts.

Other approaches to distributional properties of texts could be founded in
Senaldi et al. that use co-recurrence statistics of full content semantic words
(nouns, verbs, adjectives and adverbs) in order to construct a semantic space
that exploit relation between words of the COLFIS Corpus |Bertinetto et al.,
2005], or Pointwise Mutual Information (PMI) [Baldwin, 2008| that represents

26 Chapter 2. Related Works

one of the association measures available in the state of arts and calculate the
force of the relation between two words in terms of probability that the word
b occurs if a word @ occurs.

2.6 Syntactic Dependency Parsing

Syntactic Parsing is one of the main open issue of Natural Language
Processing and understanding. Martin and Jurafsky |2000| define parsing
as “a combination of recognizing an input string and assigning a syntactic
structure to it”. Generally, parsing could be used in a great number of NLP
algorithms as information extraction, opinion mining, machine translation or
question answering.

Usually, parsers are classified in two main approaches, with at one side the
constituency parsers, based on the idea that groups of words within utterances
can be shown to act as single units, and, at the other side, the dependency
parsers, which consider parse as a tree where nodes stand for words in utter-
ance and links between nodes represent dependency relation within pairs of
words [Lucien, 1959].

In Dependency Parsing, as nodes represents words, it is important to
select a set of label for relations which may be of two main types: Argument
dependencies, which are the most important kind, labeled as, for example,
subject (subj), direct object (0bj), indirect object (iobj); Modifier dependen-
cies, labeled as determiner (det), modifier (mod), etc.

root

m obj
VAR Vg GV

ROOT A boy paints the wall

Figure 2.2: Example of dependency structure of a simple sentence

In fig. 2.2 is shown an example of dependency structure of the sentence
“A boy paints the wall”: the “root” of the sentence is shown as an external
element connected with the main element of the sentence, the verb “paints”,
which is the head of the sentence. Two edges indicate the dependency of

2.6. Syntactic Dependency Parsing 27

the arguments, subject and object, from the verb, and two edges labeled det
indicates the dependency of the determiners from the respective name.

Deterministic dependency parsers derive a single analysis for each input
string with no redundancy or backtracking, in a monotonic fashion [Nivre
et al.]. Parser configuration are represented by triples <S,I,A>, where S
is the stak, I is a list or remaining input tokens and A is the current arc
relation for the dependency graph: an input string W initialize the parser
with a <null, W,0> state. The parser terminate when reaches a <5, null,A >
configuration, in other words when all tokens of the input string have been
converted into nodes and arcs of a dependency graph. The way in which
the parser determine the dependency structure includes a mix of bottom-up
and top-down processing, constructing left-dependencies bottom-up and right
dependencies top-down.

Obrebski presents a similar but non-deterministic algorithm. Non-
deterministic parser may use a gutde that can inform the parser at non-
deterministic choice [Boullier, 2003]. Nivre et al. use a treebank to train a
classifier that can predict the next transition given the current configuration
of the parser.

Ensemble models for dependency parsing have been proposed by Nivre and
McDonald [2008], that integrate Graph-Based and Transition-Based Depen-
dency Parser, and by Attardi and Dell’Orletta [2009] that combine determinis-
tic transition-based linear deterministic dependency parser with a Left-Right
parser and a stacked right-to-left or Reverse Revision parser, both in learning
time. The models proposed by Hall et al. [2010] and Sagae and Lavie [2006]
combine independently-trained models at parsing time. In Surdeanu and Man-
ning [2010] is demonstrated that ensemble models that combine parsers at
runtime reach better results than models that combines two parsing at learn-
ing time.

Nivre and Nilsson [2004] study the influence of Multiword Units on
deterministic parsing accuracy. In the model, Multiwords units have been
manually annotated in the training corpus and then the parser has been
tested in both, a lexicalized and a non-lexicalized version. The results shown
that parsing accuracy increases not only for Multiword Units themselves, but
also with respect to surrounding syntactic structures.

Collins [1997] presents a statistical parser which uses a lexicalized grammar
for English language. For each non-terminals X (z), X is the non-terminal
label and z is a pair of <w,t> where w is the associated head-word and ¢ is
the POS tag. Rules calculate the Parents of each head-child by considering
left and right context, and head-child inherits head-word from it. Each rule
has an associated probability defined as a product of term probabilities.

28 Chapter 2. Related Works

While much of researches on statistical parsing were focused on English,
other languages pose new problems for statistical methods: Collins et al.
[1999] propose a new method for Czech, a highly inflected language with
relatively free word order. The first problem leads to a very large num-
ber of possible word forms and pose the question on how to parametrize a
statistical parsing model in order to make good use of inflectional information.

Dependency parsing tools available are, for example, the Stanford Parser?
which is a Probabilistic Natural Language Parser for English [Chen and Man-
ning, 2014, Manning et al., 2014| then adapted mainly for Chinese, German,
Arabic, but also Italian; MST Parser® which is a two-stage multilingual depen-
dency that works on 13 different languages [McDonald et al., 2006], Bohnet’s
Parser [Bohnet, 2010] which is a graph-based parser included into the Mate
Tool*. For Italian Language we cite LinguA®, a Linguistic Annotation pipeline
which combines rule-based and machine learning algorithms and includes a
dependency parsing [Attardi and Dell’Orletta, 2009].

2.7 Lexicon-Grammar Framework

With Lezicon-Grammar (LG) we mean the method and the practice of for-
mal description of the natural language, introduced by Maurice Gross in the
second half of the 1960s, who, during the verification of some procedures from
the transformational-generative grammar (TGG) |Chomsky, 1965] laid the
foundations for a brand new theoretical framework.

During the description of French complement clause verbs, through a
transformational-generative approach, Gross [1975] realized that the English
descriptive model of Rosenbaum [1967] was not enough to take into account
the huge number of irregularities he found in the French language.

LG introduced important changes in the way in which the relationship
between lexicon and syntax was conceived [Gross, 1971, 1975]. Tt has been
underlined, for the first time, the necessity to provide linguistic descrip-
tions grounded on the systematic testing of syntactic and semantic rules
along the whole lexicon, and not only on a limited set of speculative examples.

The huge linguistic datasets, produced over the years by the international

’http://nlp.stanford.edu:8080/parser/
3http://www.seas.upenn.edu/

4available at http://code.google.com/p/mate-tools/
Shttp://www.italianlp.it/demo/linguistic-annotation-tool/

http://nlp.stanford.edu:8080/parser/
http://www.seas.upenn.edu/
http://code.google.com/p/mate-tools/
http://www.italianlp.it/demo/linguistic-annotation-tool/

2.7. Lexicon-Grammar Framework 29

LG community, provide fine-grained semantic and syntactic descriptions of
thousands of lexical entries, also referred as “lexically exhaustive grammars”
[D’Agostino, 2005, D’Agostino et al., 2007|, available for reutilization in any
kind of NLP task®.

The LG classification and description of the Ttalian verbs” |Elia et al.,
1981, Elia, 1984, D’Agostino, 1992| is grounded on the differentiation of three
different macro-classes: transitive verbs; intransitive verbs and complement
clause verbs. Every LG class has its own definitional structure, that corre-
sponds with the syntactic structure of the nuclear sentence selected by a given
number of verbs (e.g. V for piovere “to rain" and all the verbs of the class 1;
NO V for bruciare “to burn" and the other verbs of the class 3; NO V da N1
for provenire “to come from" and the verbs belonging to the class 6; etc...). All
the lexical entries are, then, differentiated one another in each class, by taking
into account all the transformational, distributional and structural properties
accepted or rejected by every item.

The Lexicon-Grammar theory lays its foundations on the Operator-
argument grammar of Zellig S. Harris, the combinatorial system that supports
the generation of utterances into the natural language.

Saying that the operators store inside information regarding the sentence
structures means to assume the nuclear sentence to be the minimum discourse
unit endowed with meaning [Gross, 1992].

This premise is shared with the LG theory, together with the centrality of the
distributional analysis, a method from the structural linguistics that has been
formulated for the first time by Bloomfield [1933] and then has been perfected
by Harris [1970].

The insight that some categories of words can somehow control the function-
ing of a number of actants through a dependency relationship called valency,
instead, comes from Lucien [1959].

The distribution of an element A is defined by [Harris, 1970] as the sum of
the contexts of A. Where the context of A is the actual disposition of its co-
occurring elements. It consists in the systematic substitution of lexical items
with the aim of verifying the semantic or the transformational reactions of the
sentences.

All of this is governed by verisimilitude rules that involve a graduation in
the acceptability of the item combination.

Although the native speakers of a language generally think that the sen-
tence elements can be combined arbitrarily, they actually choose a set of items

6Ttalian LG descriptions are available for 4,000+ nouns that enter into verb support
constructions; 7,000+ verbs; 3,000+ multiword adverbs and almost 1,000 phrasal verbs
[Elia, 2014].

Tavailable at http://dsc.unisa.it/composti/tavole/combo/tavole.asp.

http://dsc.unisa.it/composti/tavole/combo/tavole.asp

30 Chapter 2. Related Works

along the classes that regularly appear together.

The selection depends on the likelihood that an element co-occurs with
elements of one class rather than another®.

When two sequences can appear in the same context they have an equivalent
distribution. When they do not share any context they have a complementary
distribution.

Obviously, the possibility to combine sentence elements is related to many
different levels of acceptability. Basically, the utterances produced by the
words co-occurrence can vary in terms of plausibility.

In the operator-argument grammar of Harris, the verisimilitude of occurrence
of a word under an operator (or an argument) is an approximation of the
likelihood or of the frequency of this word with respect to a fixed number of
occurrence of the operator (or argument) [Harris, 1988|.

Concerning transformations [Harris, 1964|, we refer to the phenomenon in
which the sentences A and B, despite a different combination of words, are
equivalent to a semantic point of view. (e.g. Floria ha letto quel romanzo
= quel romanzo & stato letto da Floria “Floria read that novel = that novel
has been read by Floria” [D’Agostino, 1992]). Therefore, a transformation is
defined as a function T that ties a set of variables representing the sentences
that are in paraphrastic equivalence (A and B are partial or full synonym)
and that follow the morphemic invariance (A and B possess the same lexical
morphemes).

Transformational relations must not be mixed up with any derivation
process of the sentence B from A and wice versa. A and B are just two
correlated variants in which equivalent grammatical relations are realized
[D’Agostino, 1992].

Because the presentation of the information must be as transparent, rig-
orous and formalized as possible, LG represents its classes through binary
matrices like the one exemplified in Table 2.10.

They are called “binary” because of the mathematical symbols “+” and “-

respectively used to indicate the acceptance or the refuse of the properties P
by each lexical entry L.
The symbol X unequivocally denotes an LG class and is always associated to
a class definitional property, simultaneously accepted by all the items of the
class (in the example of Table 2.10 P;). Subclasses of X can be easily built
by choosing another P as definitional property (e.g. Lo, L3 and L, under the
definitional substructure P).

8 Among the traits that mark the co-occurrences classes; we mention, by way of example,
human and not human nouns, abstract nouns, verbs with concrete or abstract usages, etc.
[Elia et al., 1981]

2.7. Lexicon-Grammar Framework 31

X |P|P|P| PP,
Ly |+ | - | - |+
Lo | + |+ | = | — | -
Ly |+ |+ |+ |+]|+
Ly |+ |+ |+ |+]|+
L, | + - |- |+

Table 2.10: Example of a Lexicon-Grammar Binary Matrix

The sequences of “4” and “~” attributed to each entry constitute the “lexico-
syntactic profiles” of the lexical items [Elia, 2014].

The properties, on which the classification is arranged, can regard the follow-
ing aspects |Elia et al., 1981]:

distributional properties, by which all the co-occurrences of the lexical items
L with distributional classes and subclasses are tested, inside acceptable
elementary sentence structures;

structural and transformational properties, through which all the combinato-
rial transformational possibilities, inside elementary sentence structures,
are explored.

It is possible for a lexical entry to appear in more than one LG matrix.
In this case we are not referring to a single verb that accepts divergent syn-
tactic and semantic properties, but, instead, to two different verb usages at-
tributable to the same morpho-phonological entry [Elia et al., 1981, Vietri,
2004, D’Agostino, 1992]. Verb usages possess the same syntactic and semantic
autonomy of two verbs that do not present any morpho-phonological relation.

CHAPTER 3

The project

34 Chapter 3. The project

Since there is a lack of open-source resources of this kind for Italian lan-
guage, and none of these are based on the Lexicon-Grammar Theory, the
present work aims to fill this gap by illustrating a project of a new hybrid
Linguistic software for the automatic treatment of text, called LG-Starship
Framework, which supply both current main families of approaches of text
analysis, statistics and Rule-based algorithms.

The idea is to built a modular software that includes, in the beginning, the
basic algorithms to perform different kind of analysis. Modules will perform
the following tasks:

e Preprocessing Module: a module with which it is possible to charge a
text, normalize it or delete stop-words. As output, the module presents
the list of tokens and letters which compose the texts with respective
occurrences count and the processed text.

e Mr. Ling Module: a module with which POS tagging and Lemmati-
zation are performed. The module also returns the table of lemmas
with the count of occurrences and the table with the quantification of
grammatical tags.

e Statistic Module: with which it is possible to calculate Term Frequency
and tf-idf of tokens or lemmas, extract bi-grams and tri-grams units and
export results as tables.

e Semantic Module: which use The Hyperspace Analogue to Language
algorithm to calculate semantic similarity between words. The module
returns similarity matrices of words per word which can be exported
and analyzed.

e Syntactic Module: which analyze syntax structures of a selected sentence
and tag the verbs and its arguments with semantic labels.

The objective of the Framework is to build an “all-in-one” platform for NLP
which allows any kind of users to perform basic and advanced text analysis.
With the purpose of make the Framework accessible to users who have not
specific computer science and programming language skills, the modules have
been provided with an intuitive GUIL.

The Framework takes the start from a text or corpus written directly by
the user or charged from an external resource. The LG-Starship Framework
workflow is described in the flowchart shown in fig. 3.1.

As we can see, the pipeline shows that the Pre-Processing Module is ap-
plied on original imported or generated text in order to produce a clean and

35

HuELLRS ! ToH sndioD EsiEd m
H 1

inding
TRSHEIS

BINPOW JRSHElS

{uogEAEwWeT

anpoyy Bury

1%8) passasosdald

[sunpelunds
_

“<—

101 prodors |

EEE veorst
REA E3

ainpoyy Bussasoid-aid i

Figure 3.1: Workflow of the LG-Starship Framework.

36 Chapter 3. The project

normalized preprocessed text. On this text can be applied the Statistic Mod-
ule or the Mr. Ling Module. The first one produces as output a database of
lexical and numerical data which can be used to produce charts or perform
more complex analysis; the second one produces a new lemmatized version
of original text with information about POS tags and syntactic and semantic
properties by using an adaptation of the Averaged Perceptron Tagger, in order
to POS Tag the text and a series of electronic dictionaries to lemmatize it.
This lemmatized text, which can be processed with the statistic module
with the purpose to produce quantitative data, is the input for two deeper
level of text analysis carried out by both the Syntactic Module and the
Semantic Module.
The first one lays on the Lexicon Grammar Theory and use a database
of Predicates in development at the Department of Political, Social and
Communication Science. Its objective is to produce a Dependency Graph of
the sentences that compose the text.
The Semantic Module uses the Hyperspace Analogue to Language distri-
butional semantics algorithm trained on the “Paisa Corpus” to produce a
semantic network of the words of the text.

The project is developed in Java and Python and uses Jython, a Python
interpreter for Java. While python is particularly suitable for NLP, Java offers
a vast set of external packages, including packages for GUI, distributional
semantics or data-visualization, and permits to interface the code with a large
number of external resources through API.

In this chapter the modules which compose the Framework will be pre-
sented. In the first part we illustrate the technical foundation of the project.
In the second part the modules and the algorithm which compose them will
be described and analyzed. At the end we present the GUI with illustration
and examples of use.

3.1 Technical Background

All project modules are written in Java Programming Language and includes
some basic Java algorithms for different purposes. However, Pos Tag
algorithm is built as a Python module integrated in the Java code by using
a Python interpreter for Java called Jython. In this section we will briefly
present the basic of the two programming languages and the external modules
we implement, and we will define a meta-language in which we illustrate
modules algorithms and functions.

3.1. Technical Background 37

Java is one of the most popular programming languages, with more than
9 million of developers, and it is present in the 97% of desktop computers in
United States'. Java is a computer programming language that is:

e General-purpose: a general-purpose programming language is designed
to be used for writing software in many application domains.

e Concurrent: Java uses a form of computing defined Concurrent Com-
puting in which several computations are executed during overlapping
time periods, and is opposite to sequentially [Herlihy and Shavit, 2006].

e Class-based: a style of object-oriented programming in which inheri-
tance is achieved by defining classes of objects as opposed to the objects
themselves. Objects are entities that combine states (i.e. data), behavior
(i.e. methods) and identity. Classes define the structure and behavior of
an object by representing the definition of all objects of a specific type
[Wegner, 1990].

e Object-Oriented: a programming paradigm based on the concept of
“objects” which may contain data, or code in the form of procedures,
also knowns as Methods. Object’s procedures can access and modify
the data fields of the object with which they are associated [Lewis and
Loftus, 2008].

Java is designed to have as few implementation dependencies as possible
and a compiled Java Code can run on all platforms that support Java without
the need of recompilation.

Java is particularly used for client-server web application, and derive its
syntax from C and C++ programming languages.

Java implementation is packaged into two distributions: the Java Run-
time Environment (JRE), which contains the parts of the Java SE platform
required to run Java programs and is intended for end users, and the Java
Development Kit (JDK) which is intended for software developers and
includes development tools as Java compiler, Javadoc, Jar and debugger. In
this work we used the Eclipse Compiler for Java, an open source incremental
compiler used by the Eclipse Project. An example of Java code is the following:

class HelloWorldApp {
public static void main(String[] args) {

'https://wuw. java.com/it/about/

https://www.java.com/it/about/

38 Chapter 3. The project

System.out.println(’Hello World!’); // Prints the string code
to the console.

In the example, we first declare a class named “HelloWorldApp”. Blue
code represents Java reserved words and code in green represents comments.
Purple code represents strings. Source file must be named as the public class
they contain, for example Hello WorldApp.java. This file must be compiled
into bytecode producing a file named HelloWorldApp.class which can be
executed. Each java source file may only contain one public class, but it can
contain multiple classes with no public access or public inner classes. The
code in blue represents keyword and “public” denotes that a method can
be called from code in other classes. This access level can be modified as
“private” or “protected”.

Keyword “static” indicates a static method which is associated only with
the class. Static methods can be invoked without a reference to an object.
Keyword “void” indicates that the main method does not return any value to
the caller.

The “main” is the name of the method which the java launcher calls to pass
control to the program. The main method must accept an array of String
objects.

Printing is part of the Java standard library: the System class defines a
public static field called out which is an instance of PrintStream class and
provides a method for printing data to standard out, such as printin(String)
which appends a new line to the passed string.

Python [Van Rossum, 1993| is a widely used programming language which
has the following features:

e High-level: Python is a programming language with a strong abstraction
from the details of the computer. High-level programming languages
may use natural language elements and may automate significant ar-
eas of computing systems, making the process of developing a program
simpler and understandable.

e General-purpose.

e Dynamic: a class of high-level programming language which, at runtime,
execute many common programming behaviors that static programming
languages perform during compilation.

Python design philosophy emphasizes code readability and its syntax

3.1. Technical Background 39

allows programmers to express concepts in fewer lines of code than possible in
Java or C++. Python supports multiple programming paradigms including
object-oriented or functional programming. It features automatic memory
management and has a large standard library.

Python uses whitespace indentation to delimit blocks rather then braces
or keywords, and its statements includes “=" in a different way from other
programming languages: x = 2 do not give to a variable z a value of 2, but
may be translated to “a generic name x receives a reference to a separate,
dynamically allocated object of numeric (int) type of value 2”. Other Python
statement includes if, for, print, etc.

An example of Python code is the following:

This program prints Hello World!
print ’Hello World!’

Instead of using five line, Python code hide structures and allows to
reduce the code to one line of code. A more complex example my be the
following;:

This program prints Hello World! in a different more complex way
’Hello’
’World’

P)

0O T P =
1]

d=a+’’+b

print d+c

In this example we start by assigning to each generic value a String
specific value. The variable d is defined as a concatenation of the content of
variable a, a whitespace and the content of b. The entire string sequence is
obtained by printing the value of d concatenated to the value of c.

In the following example is shown how Python uses indentation rather then
braces:

This program checks if a number is positive, negative or zero
num = float(input("Enter a number: "))
if num > O:
print ("Positive number")
elif num ==

40 Chapter 3. The project

print ("Zero")
else:
print ("Negative number")

Taking a number as an input from the user, the program checks if a
number is positive, negative or zero using an if...elif...else statement. the
symbol “:” introduces the result to give if the condition is verified and expects
an indentation in next line.

In order to present the work as simply and clearly as possible, we
must define the characteristics of a pseudocode in which algorithms will be
presented from now on. The following examples of pseudocode represents the
“positive-zero-negative” script shown above as example for the Python code:

Algorithm 1 Algorithm for checking if a number is Positive, Negative or Zero
Input: a number n from a User
1: if n > 0 then

2: print n is a positive number
3: else if n < 0 then

4: print n is a negative number
5: else

6: print n is a zero

With this kind of pseudocode we are able to illustrate in a schematic way
the algorithms that compose programs and cite specific lines of code in order
to describe specific steps or details. In 1 we start specifying the Input data
of the algorithm before, and then, with a simple “if-else statement” we define
condition and outputs for each possible input. Each algorithm presented in
pseudocode may include:

e Input: the data the algorithm expect to receive before start. When
a specific algorithm was called, the INPUT must be written between
round brackets after the name of the called class.

e If-Else statements: which are used to control if a given condition is
fulfilled.

e For loop: a cycle statement that, for example, walks through all element
of a list and performs some given instructions.

e Logical connectives: which include conjunction and, disjunction or,
negation not.

3.2. The LG-Starship Project 41

e Return: which specifies the results that the algorithm produces.
e Boolean conditions: True or False control conditions.
e Print: which specifies the printed output of the algorithm.

The project makes use of some particular types of variables. In our pseu-
docode, we try to simplify the description of the methods by unify some
similar variable types which difference counts, specially, in terms of coding.
In pseudocode, we use only the following types:

e String: a string of alphanumeric and symbolic characters.
e Integer or int: an integer number.

e Double: a floating-point number. This types includes Java and Python
types float and double.

e List: a list of elements of a specific type or different types. Each list will
declare what kind of element it accepts by specifying the type within
angular brackets (i.e. List<String> or List<String,int>). It is possible
to find Lists of lists. Lists includes Arrays, Arraylists, or Vectors in java
or python programming languages.

e Set: a Set is a list in which each element appears only once.

e Map: a Map is a list in which we have a first element that may be
treat as a “key” and a second element, connected to the key, which
may contains any types of elements. They works as Java Maps or ad
Dictionary in python.

In next section we will present all the algorithms that compose the modules
of the project.

3.2 The LG-Starship Project

In this section, we will present the modules that compose the Framework.
Each module is composed by a collection of multiples algorithms which will
be described in detail.

42 Chapter 3. The project

3.2.1 The Preprocessing Module

The standard operations which are normally performed between text selection
and text analysis, are carried out in the preprocessing module, which includes:

e Text Selection: a simple routine that allows users to charge new texts
from files into the module;

e Text Cleaning: an optional method that prepares texts to future analysis
by deleting punctuation, normalizing capital letters, etc.

e StopWords removing: an optional method which removes stop-words
from a previously provided list.

e Alphabetical Letters count: a method that divides text into list of letters
and count occurrences.

e Tokenization: a method that divides texts into list of words and count
their occurrences.

For what concern the first operation, the text selection, the algorithm
accepts a path of text files written in a specific encoding: in fact, machines
treat texts as a sequence of encoded information and for they, there are not
differences between an alphanumeric characters and whitespace or other kinds
of symbols. For English Language the standard ASCII encoding, acronyms
of American Standard Code for Information Interchange, which is a 7-8 bit
character encoding based on English alphabet, may be accepted, though is
considered obsolete since the W3C adopt other encoding as the “UTF-8”. For
what concern Italian Language, the preferred encoding is the UTF-8, which
is able to represent all Italian character as accented characters. The Text
Selection module accept all encoding, but only texts encoded in UTF-8 can
be read without a loss of information.

In order to select a text, the Text Selection method accept a file-path as
Input information and convert it into a String. In alternative, it is always
possible to give the String directly to the program, or to use other external
methods to charge texts.

Once the text is selected, the module provides some cleaning methods
that could be applied or not, depending on the type of analysis that will be
performed.

Normally, normalization steps can be considered as baseline, such as the
coding of accents and other diacritic signs, separation into articles, paragraphs

3.2. The LG-Starship Project 43

and sentences, preprocessing of digits, units, the correction of typical format-
ing and punctuation errors. Many of these steps, in this project are not
considered as part of normalization process, but are included into other mod-
ules as essential operations of text analysis [Adda et al., 1997|. In the present
project we consider the Normalization method as a preprocessing method that
allows users to delete punctuation and to reduce text in lowercase.

In some cases it may be useful to delete punctuation or to reduce the entire
text to lowercase. This is the case of the statistical analysis, in which the
analysis on a normalized text could return better results: the count of occur-
rences, frequencies or tf-idf, as written in section 2.4, is more precise when we
can combine the word “Hobbit” with “hobbit”. However, also in a statistical
analysis, could be useful to preserve punctuation, i.e. in analysis of text style,
or capital letters, i.e. in the case of Named Entity Recognition.

The method use a provided list of punctuation symbols as input:

Algorithm 2 Text Cleaning method
Input: a String text
Input: A List<String> punct
1: text = text.toLowerCase()
2: for (String element in punct) do
3: text = text.replace(element, ')
Output: text

As input the algorithm needs a text, given by the user or transmitted
by the Text Selection method, and a list of punctuation symbols (already
included into the package). In line 1, the text is rewritten in lowercase by
using the String standard embedded method toLoweCase() which does not
require arguments (as empty round brackets indicate). In the line 2 a For
Cycle is open: for each element of the list punct, takes this element and
replace it with nothing. In the For Cycle we declare a String variable element
that contains, alternately, each element presents in the given list. In order to
replace elements we used the replace method, that requires two arguments, a
String variable that must be replaced and a String for replacing it.

The same goes for StopWords Removing method: Stop-words can affect
the retrieval effectiveness because they have a very high frequency and tend to
diminish the impact of frequency differences among less common words. But
the removal of Stop-Words also changes the document length and subsequently
affects the weighting process [Korfhage, 2008].

In some cases, such as in statistical analysis, removing Stop-Words may be
useful to increase the efficiency of a information retrieval process [El-Khair,

44 Chapter 3. The project

2006], but in a rule-based analysis, Stop words are required in order to detect
syntactic structures and determine, for example, the complement type.

As for punctuation, in order to detect stop-words the module relies on a list
of common Ttalian stop-words and replace it with an empty string into texts.
Stop-words List includes all determiners and preposition, pronoun particles,
possessive adjectives, conjunctions, auxiliary verbs essere, “to be” and avere,
“to have”.

Another method present in the module performs the count of letters
included into the text. This operation, that could be useful in an extremely
general analysis, simply takes the text as input and splits it in characters.
Once creates a Set<String> which contains each letter, number and symbol
in text, perform the count of occurrence of them. This method provides
a distant view of the composition of text that can help user in detecting
encoding errors or, for example, recognition of language.

The core of the module is represented by the Tokenization method. This
method perform various essential tasks that could be considered the base for
any subsequent kind of text analysis.

In first instance, the method corrects some errors as the excess of whitespaces
and separates the punctuation symbols from words. This task is not trivial
as it seems because it depends on language. In fact, in Italian, we can find
word forms that include some symbols or need some symbols to return their
full meaning. In particular, the Italian language is rich of words that use
apostrophes to bind to the first vowel of the following word or simply to
represent forgotten letters. For example, determiners lo, la, una, or preposition
as di, may appear in a contract form when appear before a word that starts
with vowel or “h™: un’amica, “a friend (female)’, ’hotel’, “the hotel”, I’inverno,
“the winter” or la macchina d’Antonio, “the car of Antonio”.

In order to avoid this problem it was necessary to separate normal punctuation
from apostrophes or hyphen. The resulting algorithm is the following (texts
in braces are comments):

In the first part of the algorithm the text has been treated in order to
separate punctuation symbols from words. The sequence /= in line 2 means
“not equal”.

In line 4, each punctuation symbol that is not apostrophe, must be written
between two whitespace in order to separate both symbols before and after
words (i.e. in the case of quotation marks). After the cycle, in many cases,
the algorithm produces double whitespace and in line 5 they are replaced with
single whitespace. Then tokenization starts.

The first operation (line 7) is to create a list of strings that contains each word
of the text. This list is a token list. It contains the elements in the exact order

3.2. The LG-Starship Project 45

Algorithm 3 Tokenization method
Input: a String text
Input: A List<String> punct {preparing text}
: for (String element in punct) do

if element != ” then

text = text.replace(element, * "+element—+*)

text = text.replace(‘ ¢, *)
{tokenization start}
List<String> tokens = text.split(‘ ¢)
Set< String> types = tokens.toSet()
Map<String,Integer> tokenized Text= new Map<String, Integer>
for (String element in types) do

int i — count of element in tokens
11: tokenizedText.put(element, i)
Output: tokenizedText, tokens

—_

_.
=4

we can found them into the text and in the same quantity. In line 8 a Set of
string called types is defined. The list of token is converted into a Set an put
in types. In line 9 a Map of strings and integers is defined as a new, empty
map. Then, for each element of types, the algorithm count how much times
it appears in the tokens list and set an integer ¢ with the resulting number.
The couple of type and integer is then put into the map. When the for cycle
terminates, the Map is returned as output.

The output of this module could be used for analysis purposes or as input
of other modules of the project: tokens, that is the tokenized representation
of the text, will be used for the POS Tagging phase. tokenizedText, that
contains tokens and its occurrences, will serve to future statistic analysis.

3.2.2 Mr. Ling Module

As we said in 2.3, Part-of-Speech Tagging and Lemmatization represent two
essential steps of text analysis. In this section, we will present the Mr. Ling
Module, which is the result of the union of two independent modules called
Mr. Tag and Mr. Lemmi.

The Pos Tagger module, called Mr Tag, is based on an implementation of
an Averaged Perceptron Tagger? for the English language, part of “TextBlob”
module. The original Tagger, written in Python 2.7, tries to predict the tag
of a word computing a weight.

Starting from a training set, built on a tagger corpus, the tagger assigns each

https://github.com /sloria/textblob-aptagger

46 Chapter 3. The project

known word the tag it has in the training set. If a word is unknown, or has
more than one tag, the tagger tries to assign to it a random tag and, based
on a given feature set, computes the weight of the tag for that word. After
a given number of iteration, in each one of them the tagger tries a different
tag for the word, the tag with the greatest weight wins and is assigned to the
word.

We start the expansion of the set of features used by the original model,
to make them more suitable for the Italian language. Then, we perform a
semi-supervised training phase on a 1 million-word tagged corpus extracted
from the “Paisa Corpus” [Lyding et al., 2014|. The new introduced features
are focused on morphosyntactical differences between English and Italian.
Our Feature Set is shown in table 3.1.

Type Features

Morphology | first charachter of present word

last 4 characters of present word

Syntax previous word tag

second previous word tag
two previous word tags

next word tag

second next word tag

two next word tags

previous and next word tags

two previous and two next word tags

Context present word

next word

previous word

two previous words
two next words

next and previous word
suffix of previous word
prefix of previous word
second previous word

second next word

Table 3.1: Set of Features Used for Mr Tag PosTagger

Since perceptron-based taggers are mainly based on a set of language-
dependent features, we started looking for the features that are effective

3.2. The LG-Starship Project 47

for the Italian language. To select representative features we performed a
morphological analysis and notice that, on average, Italian words are longer
than English ones |[Graffi and Scalise, 2002]. So we choose to take into
account the last 4 characters of each words (i.e. Italian adverbs, normally
end with the suffix mente and in verbs declinations we could have suffix as
asse or ebbe in construction like mangi-a-sse or dorm-i-rebbe) instead of 3,
and one character in the case of prefixation phenomena.

Syntactical and contextual features, instead, have been expanded by taking
into account a bigger context for each word, including one or two words
before and after the target word, this is due to the large use of determiners
and distant dependencies that characterize the Italian language.

Mr. Tag module, enriched with this set of features, has been trained
on the “Paisd Corpus”,a large Italian Corpus (250 millions tokens) of text
extracted from web pages and annotated in CoNLL3. However, we decided to
use the “DELA” Tag Set [Elia, 1995, Elia et al., 2010] that includes:

e Names: N

e Verbs: V

e Adjectives: A

e Adverbs: AVV

e Determiners: DET

e Prepositions: PREP
e Pronouns: PRON

e Conjunctions: CONG
e Numerics: NUM

e Interjections: INTER
e Others: X

A tag for punctuation (PUNCT) has been added to the tagset because in the
DELA italian Tagset it was not present.

The training phase produces as output a “.pickle” file that contains tag
information about known words. The tagging algorithm is presented in 4.

Mr. Tag proceeds by creating contextual variables that are used in order to
calculate the weights each feature give to the perceptron prediction algorithm.

3CONLL

48 Chapter 3. The project

Algorithm 4 Mr. Tag method
Input: a List<String> tokenizedText
Input: a PICKLE file
1: List<String,String> tagged = new List<String,String>
2: for (String word in tokenizedText) do
3: prev, prev2 = word-1, word-2 {previous two words of the selected word
are stored into variables}
4: next, next2 = word+1, word+2 {next two words of the selected word
are stored into variables}
5. tag = tagdict.get(word) {tagdict is retrieved from the PICKLE file}
6: if not tag then
7: features = word.getFeatures(prev, prevl, next, nextl)
8
9

tag — Peceptron.predict(features)
tagged.append(word,tag)
Output: tagged

After trying to assign the tag directly from PICKLE file, if the tag do not
exists, an external method getFeatures uses the two previous words and the
two next words to generate, for each present word a list of features for each
possible tag. Then, Mr. Tag employ the Perceptron Tagger method called
predict which uses features to assign a weight score to each tag for the present
word, and, after 10 iteration, select the tag with the maximum value.

Mr. Tag Python code was subsequently added to a Java module using
Jython*, a Python Interpreter for Java that allows to insert python Code into
Java code and vice versa. Since the Python module could be used by call the
tag method with the text as argument directly after import the module, Java
version uses a Postagger method which take as argument a list of tokens. A
method getTagList() take the list of Strings produced by the Postagger and
returns an array of arrays of Strings (String//[/) which contains tokens and
tags.

The Lemmatization module, called Mr. Lemmi, is based on a set of dictio-
naries annotated in "DELA", in particular on DELAF, the Italian Electronic
Dictionary of Flexed Forms. DELAF includes over 1 million of flexed Ttalian
forms and it has been divided into 6 sub-dictionaries in order to improve per-
formance of the algorithm.Mr. Lemmi uses a different dictionary for each part
of speech (with the exception of Adverbs) in combination with a set of rules
for decomposition of compound prepositions (i.e. della, that is decomposed
as di, PREP+la,DET). As a first step, the Lemmatization module charges the

‘http://www.jython.org/

http://www.jython.org/

3.2. The LG-Starship Project 49

three main dictionaries, Nouns, Verbs and Adjectives, converting them into
variables. For each dictionary file, the method creates one variable for each
alphabet letter and puts in all the dictionary entries that start with the same
letter. Other dictionaries, such as the ones containing prepositions, conjunc-
tions or pronouns, have been manually introduced into variables and inserted
into the code.

Dictionary entries are composed of four parts: the token, the lemma, the
POS or grammatical category and a list of syntactic and semantic properties
separated by the “+” symbol. An example of dictionary entry is the following:

(4) case,casa,N+f+p

As the information after the Part-of-Speech are not classified as in a
database, but for each word we can find a different number of disparate
information, we had to consider all these information as one String and put
them into a residual part of the dictionary entries variables.

Once the dictionaries are stored into variables, the second steps was to
separates and lemmatizes Compound Prepositions; then it labels each word
the corresponding Tag obtained after the POSTagging phase. After that,
invariable parts of speech, like Adverbs or Conjunctions were directly added
to the a list of lemmas belonging to text and lemmas retrieved from a
sub-dictionary of DELAF are added to every words. In order to avoid
Lemmatization errors and to correct Pos Tagging errors, if a word is not
present on a variable of its specific tag, a new iteration search the word in
all variables relative to other tags. In this way, if the word perché, “why”,
was wrongly tagged as noun, and the first iteration is unable to find it in the
Noun variable, the second iteration search it in all other tag variables and
can find it in Conjunction variable and then, correct the tag. If a word is not
present in any other variable, then the algorithm assign it the original Tag
from the Postagger and uses the token as Lemma. For example, if the word
was hobbit, which is not present in the DELAF dictionary, after the second
iteration the resulting Lemma will be hobbit.

The method Lemmat that has not arguments, is based on a Lemmatize
algorithm, that uses the list of tokens and tags resulting from the Pos
Tagging phase and the dictionary variables and calculates, for each token,
the respective Lemma.

Both POS Tagger and the Lemmatizator have been tested on a corpus of
250.000 tokens extracted by a different portion of the “Paisd Corpus”. Since
“Paisa Corpus” was a recollection of over 380.000 different documents belong-
ing to over 1.000 different web pages, the corpus resulted heterogeneous and

50 Chapter 3. The project

each section presented completely different properties, so it was suitable for
an efficient test phase.

To evaluate Mr Tag and Mr.Lemmi, we decided to compare their
performances with other two free tools for Italian Language: Pattern and
Tree-Tagger. Pattern [Smedt and Daelemans, 2012] is a Web Mining module
written in Python that includes POS Tagging for English, Spanish, French,
German, Duch, and Italian. Tree-Tagger [Schmid, 1995| is the most known
tool for annotating text with part-of-speech and lemma information, it is
available for several languages.

We compared the tools evaluating the results obtained from the analysis on
the same data portion. An overview of the comparison is presented in table
3.2 and 3.3.

POS Tagging Task
Algorithms Precision Time
Mr.Tag 0,931 0,213 sec.
Pattern.it 0,752 1,094 sec.
Tree-Tagger 0,858 3,409 sec.

Table 3.2: Comparison of POS Tagging task

Lemmatization Task
Algorithms Precision Time
Mr. Lemma 0,969 1,638 sec.
Pattern.it - -
Tree-Tagger 0,927 3,409 sec.

Table 3.3: Comparison of Lemmatization task

As showed by tables 3.2 and 3.3, our modules reach very good results in
terms of precision for both tasks, overcoming both Pattern and Tree-Tagger.
Differently from what concerns the time, we reach a good result with the POS
Tagger module, but the Lemmatizator still requires many adjustments. In
fact, Tree-Tagger performs both tasks concurrently, so the time expressed by
the tables must be considered as an unique time. Otherwise, our modules
perform the two tasks subsequently, therefore the two values must be added
to each other. In addition, Mr. Lemmi needs a time of approximatively 75
second to charge dictionary and start the algorithm, however that time is only
needed when the algorithm was initialized.

3.2. The LG-Starship Project 51

At the end, we analyze in a qualitative way the results of the Lemma-
tization phase. The vast majority of errors derives from an incorrect
part-of-speech tagging in ambiguity cases (i.e. condotta,V, lemmatized as
Condurre, “to lead”, instead of condotta,N that could be lemmatized as
condotta,N, “conduct”).

3.2.3 Statistic Module

While previous sections refers to modules that prepare texts to any kind of
analysis, from tokenization to POS tag and Lemmatization, producing lists
of tokens, tags and lemmas, this module and the followings performs the real

analysis, that, as we said in 1, works in two main directions: Statistical and
Rule-Based.

The Statistic Module allows us to perform a kind of text analysis which is
not Language-Dependent or Topic-Dependent: with this module, it is possible
to analyze text in any language (without the previous application of the POS
Tagger), and for every topic, without the need to know syntactic mechanisms
or to construct model of the language, without the need of a linguistic back-
ground and in a short time. The statistic module does not allow to answer
specific questions about elements of the text and could not give a structure
to unstructured texts, but it permits to perform rapid lexical analysis which
generate a generic but useful knowledge about a text or a set of texts, a
Corpus.

We presented a good example of basic statistic analysis of a text in 2.4,
in which we analyze a novel, “the Hobbit”, and present some basic results.
In this section we present the module that allows us to perform that kind of
analysis. However, the module only provides instruments that could be used
in combination with other algorithms or models for more complex analysis.
The module is composed by three methods:

e Frequency computing
e Term Frequency / Inverse Document Frequency calculation

e Bigrams and Trigrams extraction

First of all, the user can select how to split the text in macro sequences
and then, select the algorithm he want to apply. The user has three options
to split the text:

a. divide the text in equal parts by selecting the exact number of parts the
text must be divided.

52 Chapter 3. The project

b. divide the text by a symbol or a sequence of characters.

c. divide the text in paragraphs, creating a text sequence for each line
present in text.

With the first option, regardless of how long is the text, the user creates
equilibrate subsections by computing the total number of words in the text
and dividing this number for the specified number of sequences. In this way
the user does not care about editing text, but simply splits the text in equal
parts.

With the second option, the user selects a pattern, a character o a sequence
of character that, as they are encountered in text, cause the algorithm splits
the text and create a new sequence with the text before the patter. With this
option the user could decide what element cause the splitting, but it has less
control over the number of resulting sequences.

The last option simply divides the text for lines. If the users needs to analyze
an ad-hoc corpus in which each line corresponds to an element, this could
be the best and faster choice. If the user needs to analyze an unstructured
text in which a line could be of different lengths, depending of the analysis
he must perform, this option could not be the best choice and it may be need
to perform some pre-modelling operations as putting text blocks in the same
line, or unify chapter lines, etc.

There is a method for splitting the text connected to each one of these
options: for the first one there is a splitEqually method that requires as
arguments a int value that represents the parts in which the text should be
split, and a String value that represents the text to split. Odd values are
rounded down.

The second option is performed by the splitByPatter method which requires
two Strings as arguments, one for the pattern and one for the text. The third
option is provided by the split method that has no arguments.

In order to calculate word frequencies, the module uses a method called tf
(Term Frequency) which tokenize each sequence and calculate the frequency
of each word in a sequence by dividing the occurrences of that word by the
total number of words present in the sequence. The algorithm is the following:

The algorithm, takes a splitted text as input and calculates frequencies
for each word in each sequence. In first part of the algorithm, lines 1-5, some
necessary variables are initialized.

e In line 1, a Map<Integer,Map<String,Double» sequenceFrequency is ini-
tialized. The Map will contains Integer values that represent the se-
quences, and another Map in which the algorithm insert the word as a
String and the calculated value of Term Frequency as a Double.

3.2. The LG-Starship Project 53

Algorithm 5 tf method
Input: a List<String> splittedText
1: Map<Integer,Map<String,Double» sequenceFrequencies = new
Map<Integer,Map<String,Double»
Map<String,Double> frequencies = new Map<String,Double >
inti=20
for (String sequence in splittedText) do
Map<String,Integer > tokenizedSequence— tokenize(sequence)
int sequenceLength = tokenizedSequence.length
for (String key in tokenizedSequence) do
Double freq = tokenizedSequence.get(key) / sequenceLength
frequencies.put(key,freq)
i=i+1
11: sequenceFrequencies.put(i, frequencies)
Output: sequencelrequencies

_.
=4

e In line 2, a Map<String,Double> frequency is initialized. It is the Map
which will contains terms

In line 3 a int with value O is initialized in order to enumerate the sequences
in which the text is divided. Two cycles (For) start from the line 4. The
outer For Cycle iterate through the list of sequences that compose the text
and splits it in tokens by using the tokenize method we present in 3. The
method creates a Map of String and Integer in which it puts the words that
compose the sequence and their occurrence values. The length of this Map is
assigned to the int variable.

A second For Cycle starts now and for each word in the newly created Map
calculates the Double value of frequency by dividing each occurrence value
for the length of the sequence. Then, the algorithm insert the word and the
frequency in the variable frequencies.

Before closing the outer For Cycle, the value of i, incremented by one for
each sequence, and is inserted into the sequenceFrequencies Map together
with variable frequency.

The tf-idf is computed for each word in a sequence by the algorithm ¢fIdf
after the applying the ¢f method. The tfIfd method takes into account the
term frequencies and the sequence. The method, first calculates the Inverse
Document Frequency value (idf), then calculates the tf-idf value by multiply-
ing the tf value of each word for the logarithm of the idf for the given word.
The algorithm is shown in 4.3.

In the First part of the algorithm 4.3 some variables have been initialized.

54 Chapter 3. The project

Algorithm 6 tfIdf method
Input: a Map<Integer,Map<String,Double» sequenceFrequencies
Input: a List<String> splitted Text
Input: a Map<String,int> tokenized Text

1: Map<int,Map<String,Double» sequenceTfIdf = new
Map<int,Map<String,Double»
Map<String,Double> tfIdf = new Map<String,Double>
Map<String,int> idf — new Map<String,int>
{Here starts the computing of IDF value}
Set<String> types = new Set<String>
for (String key in tokenizedText) do

types.put(key)
int value = 0
for (String word in types) do

for (String sequence in splittedText) do

if sequence.contains(word) then
value = value + 1

idf.put(word,value)

: {Here starts the computing of TF/IDF value}

— e e e
el A vl

15: for (String map in sequenceFrequency) do
16: for (String key in map) do
17: Double value = map.get(key) * Logl0(idf.get(key))

18: tfIdf.put(key,value)
19: sequenceTfIdf.put(sequenceFrequency.get(map), tfIdf))
Output: sequenceTfldf

e In line 1, a Map<Integer,Map<String,Double» sequenceTfIdf is initial-
ized. The Map will contains Integer values that represent the sequences,
and another Map in which the algorithm insert the word as a String and
the calculated value of tf-idf as a Double.

e In line 2, a Map<String,Double> tfldf is initialized. It is the Map which
will contains terms and relative tf-idf values of a single sequence.

e In line 3, a new Map<String,Double> idf is created in order to store
idf values for each word of the whole text.

From line 5 to line 7 the text is tokenized and the types are extracted.
Subsequently (lines 8-13), we calculated the idf values: for each type a int
value counts the number of sequences in which the type appears and put the
type and the value in the idf variable.

At the line 15, the calculation of the tf-idf starts: iterating through Term

3.2. The LG-Starship Project 55

Frequency Map, for each sentence the method calculates the tf-idf by multi-
plying the term frequency of the word by the logarithm in base 10 of its idf.
The Logarithm has been calculate by an external method belonging to the
standard Java package Math, called Log10.

The word and the resulting tf-idf value are inserted into the tfIdf variable
and then, each tfldf variable is inserted into the variable sequenceTfldf and
returned as result.

In addiction to these standard measures, the Statistic Module provides
a method to extract N-grams and calculate its occurrences. N-grams are
sequence of N number of consecutive words that are repeating into texts. N-
grams could help in detect recursive structures which can be useful for text
categorization or topic detection. The algorithm is the following:

In the first part (lines 1-8) each N-gram is extracted and inserted in two
Lists, one for bi-grams and one for tri-grams. Iterating the list of tokens, the
algorithm extract the current tokens and the following (or the following two
in the tri-grams).

Once filled the lists, both for bi-grams as for trigrams, the algorithm create a
set of n-grams deleting repeated elements and uses this set in order to calculate
the occurrences of each bi-gram and tri-gram respectively.

3.2.4 Semantic Module

In Natural Language Processing Semantic technologies have increased its pop-
ularity in last years. With the birth of the semantic web and the growth of
popularity of this kind of technologies (semantic networks, ontologies, etc.)
Semantics become one of most studied branches of Linguistics and text anal-
ysis. But, as we saw in 2.5, studying the relation between signifier and its
meaning necessarily implies studying a theory about the human knowledge
process: in order to understand how meaning is related with symbols we need
to understand how human mental mechanisms process new information and
create a link between the real sphere and the conceptual or symbolic sphere.
In our work we try to offer to users an instrument to perform a first,
simple and automatic study of Semantics in texts. To do this we rely on
the Hyperspace Analogue to Language algorithm, which theorizes that the
meaning of a word is given by a list of other words which occurs in similar
context than it. In order to find these words, the algorithm processes a large
corpus of texts and create a co-occurrence matrix by assigning to each word
a score by distance from the original word.
Applying mathematical algorithms to word’s vectors it is possible to calculate
semantic distance between words or construct a Cartesian plane of the words.

56 Chapter 3. The project

Algorithm 7 ngrams method
Input: a String text

1: Map<String,int> bigrams— new Map<String,int>
Map<String,int > trigrams= new Map<String,int >
List<String> biG = new Set<String>
List<String> triG = new Set<String>
List<String> tokenized Text = tokenize(text)
for (String token in tokenizedText) do

biG.put(token + token-+1)

triG.put(token -+ token+1 + token-+2)
{Here starts the calculation of bigrams}
Set<String> bigramSet = biG.toSet()
. int value = 0
. for (String bigram in bigramSet) do

for (String bi in biG) do

if bigram.equals(bi) then
value = value + 1

bigrams.put(bigram,value)
{Here starts the calculation of trigrams}
: Set<String> trigramSet = triG.toSet()
. int value = 0
: for (String trigram in trigramSet) do
for (String tri in triG) do

if trigram.equals(tri) then

value = value + 1

24: trigrams.put(trigram,value)
Output: bigrams
Output: trigrams

© P NPT

NN N N e e e e e e e e e e
A e e B S AN ol e

The Semantic Module is based on a large co-occurrence matrix that has
been previously calculated on a large corpus. In order to calculate the Matrix
we used the S-Space Package, a collection of algorithms for building Semantic
Spaces written in Java, which has been developed by the Natural Language
Processing Group at UCLAS.

The corpus on which we launch the algorithm was a lemmatized version of
about 45 million of words of the “Paisa Italian Corpus”. As required by the
algorithm we needed to set some options:

e the word window has been set on 10 context words;

the entire project can be downloaded at https://github.com/fozziethebeat/
S-Space

https://github.com/fozziethebeat/S-Space
https://github.com/fozziethebeat/S-Space

3.2. The LG-Starship Project 57

e as weighting function we selected the Linear Weighting Function which
assigns 10 points to the next word, 9 to the following etc.;

e the maximum value for column was set on 200 elements in order to limit
the memory used by the algorithm during the generation of the matrix.

The resulting file was a 128 MB .sspace file which contains the matrix.
The Semantic Module uses this file to extract from it the word’s vectors
and find similarity between words.

In our module there are three main components:

e Extraction of word’s vectors and reduction of vectors in coordinates.
e Extraction of similarity between two words.

e Extraction of most similar word of a given word.

The first component extracts a vector for each selected word and converts

the vector into a two dimensions Scaled Double Vector. Dimensions can be
considered as coordinates of a point in a Cartesian Space. In this way each
word is represented by a point and it is possible to graphically represent the
word or to launch clustering algorithms.
In order to generate the points the getPoints method must be called with
a String word as argument. The method returns a List of coordinates. By
launching iteratively the method it is possible to create a set of points and
put them into a bidimensional space.

The other two components use a pre-compiled algorithm, provided by the
S-Space Package called Semantic Space Explorer, which is included into the
executable jar file sse.jar. This algorithm permits many operation on the
semantic space. Available commands are the following:

e load a file.sspace
e unload a file.sspace

e get neighbors of a given word (specifying the number of neighbors and
the similarity measure)

e get similarity between two words using a specified similarity measure
e compare the vector of the same word in different semantic spaces

e get words or word’s vector

58 Chapter 3. The project

e describe semantic space in terms of column and row dimensions

The Semantic Module only uses the load function, the get-neighbors func-
tion and the get-similarity function. For both functions we used the Euclidean
distance instead of the standard Cosine Similarity. The number of neighbors
the algorithm extract can be specified each time the method is called.

In order to extract the neighbors of a given word, the method getNeighbors
requires two arguments, the word and the number of neighbors to calculate.
The results is a List of Strings and Double which represents the neighbor word
and the similarity value.

The method getSimilarity requires two Strings as arguments (i.e. the two
words) and returns a Double value that represents the similarity between the
two words.

3.2.5 Syntactic Module

The Syntactic Module belongs to a bigger project of description of the lan-
guage based on the Lexicon-Grammar Theory described in 2.7. A large num-
ber of resources has been created in last years according to the LG theory
and, many of these resources are not ready for an automatic usage. While
dictionaries were easily converted into a machine-readable resources and they
were used for the construction of the Lemmatizer and the Postagger (3.2.2),
syntactic resources must be converted. The most important resource for the
construction of a syntactic parser based on the Lexicon-Grammar Theory was
the LG Tables of Predicates in which are described the structures of the main
verbs of Italian Language.

The idea of this module is to use LG-Tables as baseline for the construc-
tion of a Lexicon-Grammar Dependency Parser able to automatically detect
the structure of elementary sentences.

A dependecy parser based on Lexicon-Grammar as the one we aspire to
built implies some difference compared to a dependency parser based on the
Generative Grammar. In LG Theory, as in the Operator Grammar, differently
from the generative grammar, sentences are not supposed to have a bipartite
structure.

S—-NP + VP

VP —V + NPS

6Sentence = Noun Phrase + Verb Phrase; Verb Phrase = Verb + Noun Phrase.

3.2. The LG-Starship Project 59

but are represented as predicative functions in which a central element, the
operator, influences the organization of its variables, the arguments. The role
of operator must not be represented necessarily by verbs, but also by other
lexical items that possess a predicative function, such as nous or adjectives.

(5) Maria odia il fumo
“Maria hates the smoke”

(6) Il fumo tormenta Maria
“The smoke harasses Maria”

If we observe the sentences 5 and 6, the semantic role of subject or experi-

encer is played by the noun Maria, while the semantic role of cause or stimulus
is played by il fumo, “the smoke”. It is intuitive that, from a syntactic point
of view, these semantic roles are differently distributed into the direct (the
experiencer is the subject, such as in 5 and the reverse (the experiencer is the
object, as in 6) sentence structures.
With a bipartite structure represents the experiencer “Maria” inside 6 and
outside 6 the verb phrase, and unreasonably brings it closer or further from
the predicate, to which it should be attached just in the same way (Figure
3.2).

Moreover, it does not explain how the verbs of 5 and 6 can exercise distri-
butional constraints on the noun phrase indicating the experiecer (that must
be human, or at least animated) both in the case in which it is under the de-
pendence of the same verb phrase (experiencer object, see 6a) and also when
it is not (experiencer subject, see Ha):

Maria

(5a) [sentiment[Eaperiencer | Il mio gatto |]odialstimutusil fumo]]
x][televisore

“(Maria + My cat 4+ *The television) hates the smoke”
Maria

(6&) [Sentiment [Stimulusllfumo]tOTmenta[Emperiencer Il mio gatto H
xI1[televisore

“The smoke harasses (Maria + My cat + *The television)”

According with [Gross, 1979, p. 872] the problem is that

“rewriting rules (e.g. S — NP VP, VP — V NP) describe
only LOCAL dependencies. |...] But there are numerous syntactic
situations that involve non-local constraints”.

While the Lexicon-Grammar and the operator grammar representations
do not change, the representations of the paraphrases of (5, 6) with support

60 Chapter 3. The project

AN

NP
N A NP
/\

D N

|

Maria odia il fumao

3

/\

NP WP
/NN
D M \ MNP

|

M

|
il fuma tormenta Maria

Figure 3.2: Syntactic Trees of the sentences 5 and 6

verbs (5b,6b) further complicate the generative grammar solution, that still
does not correctly represent the relationships among the operators and the
arguments (see Figure 3.2). It fails to determine the correct number of
arguments (that are still two and not three) and does not recognize the
predicative function, which is played by the nouns odio “hate” and tormento
“harassment” and not by the verbs provare “to feel” and dare “to give”.

(5b) [Sentence [EacperiencerMaria]prova odio per[Stimulusil fumo]]
“Maria feels hate for the smoke”

(6b) [Sentence[Stimulus[l fumo] da il tormento a[EmpeMencerMa’m;a]]
“The smoke gives harassment to Maria”

As we reject the bipartite sentence structure proposed by (Generative
Grammar, the dependency parser must consider as anchor for determining
the graph sentence structure the predicate which is not only identifies with
the verb, but with all possible sentence paraphrases as support verbs sen-
tences, passive sentences, etc.

To do this, a powerful resource as the LG Tables of predicates, which contains

3.2. The LG-Starship Project 61

S
/\
NP VP
/\
M \ MNP PP
RN
M P D i
|
Maria prova odio per il fuma
S
/\
NP WP
/N T T~
D M v NP PP
N /N
D M P M
|]
il fumo da il tormento & Maria

Figure 3.3: Syntactic Trees of the sentences (5b) and (6b)

all accepted structures of Italian verbs, its nominalization, adjectivalization
and distributional properties, is needed.

At the moment, a machine-readable version of the tables, gener-
ically known as Lexicon-Grammar Verbs Resource, is currently in
development at the Department of Political, Social and Communica-
tion Science of the University of Salerno. The objective is to make
a powerful theoretical resource as LG-Tables, now available at the url
http://dsc.unisa.it/composti/tavole/combo/tavole.asp, compatible
with popular programming languages as Java and Python in order to make
possible their use in NLP automatic application as Parsers.

In the new version of LG-Tables the tabular format is replaced by a hier-
archically structured format built in Json” format. Json (JavaScript Object
Notation) is a lightweight data-interchange format. The syntax of Json file is
easy to read and write for human and allows machines to easily work with it.
Json files are built on two structures: a collection of name/values pairs and

"http://www.json.org/

http://dsc.unisa.it/composti/tavole/combo/tavole.asp
http://www.json.org/

62 Chapter 3. The project

a ordered list of values. These universal data structures, which, one, can be
associated with objects, dictionaries, maps, and the other with arrays, vectors
or lists, can be supported by all modern programming languages and make it
possible to interchange data with the majority of programming languages.
In Json format, an object is an unordered set of name/values pairs which be-
gins with a { (left brace) and ends with a } (right brace). Names are followed
by a : and pairs are separated by , (commas). In addition, a name can be
associated with a list of pairs, embedding substructures in a single pair. An
example of Json file relative to the Lexicon-Grammar Verbs Resource under
construction is shown in 8.

Algorithm 8 Verb Hierarchy example
“Class 17 {
“@id” 1,
“description™”...”
“marcato”: “truelfalse”,

“pron”: true,

11 M.

aux”: “avere”,

“verbi”:{
“@id™: “rompere”,
“struttura base” “NO V N17,
“struttura2”: “N1 si V7,
“struttura3d”: “NO V N1 Prep N27,
“strutturad”: “NO Vsup V-n Prep N17,
“NO”: “Num”,
“N17: “Npc”,

“V-n”: “rottura”,

The structure first defines the class of verbs it describes, showing the nu-
merical ID, a short description (i.e. semantic description as Psychological
Verbs) and some features as auxiliary verbs or the pronominal form, then lists
all the verbs belonging to the class: each verb is described with an ID which
corresponds to the lemma, the base structure and all accepted structures, the
semantic restriction of the Nominal groups.

Structures could be described as a list of elements: nominal groups are
listed as N followed by a number starting from 0; the verb is identified by
the V; Prep identify the preposition. Other structures can includes the
impersonal sentence (i.e. the impersonal verb form is represented by the

3.2. The LG-Starship Project 63

label si V), the presence of a non-essential complement (Prep N2), the
support verb construction, which includes a support verb Vsup followed by
a nominalization (i.e. V-n that in the example represents the noun rottura,
“breaking”, derived from the verb rompere, “to break”.

In some cases, the structure can specify a semantic feature for each N, as for
example Num, which indicate a Human noun or Npc which indicate a body
part.

For the complete list of features and labels see Elia et al. [1981], Elia [1984],
the list of noun tagset is shown in table 3.5.

Verbs structures also includes the definition of the V-n or the V-a.

In fig 3.4 is shown the graphical representation of the structure hierarchy of
the Json. In the figure is represented the structure of the same verb of the
example in 8, rompere.

struttura base: standard
struttural: NOV N1
struttura2: N1 siV

aux: no
struttura3: NOV N1 Prep N2
strutturad: NO Vsup V-n Prep N1
NO: Num

N1: Npc

esempi

Figure 3.4: Graphical representation of the Json Hierarchy of Verbs

With the database of verbs in phase of development, the module only
works with the verbs already inside the resource. At the moment, the verbs
included into the Lexicon-Grammar Verbs Resource belong to the class of
Psychological Predicates which includes Sentiment Verbs among the classes
41, 42, 43 and 43B |Elia, 2014, 2013| as shown in table 3.4.

The verbs from LG class 41 have as definitional structure NO V N1, in
which:

e NO is generally an infinitive or completive clause (direct or introduced

64 Chapter 3. The project

Psych Verb | Translation | LG Class
angosciare “to anguish" 41
piacere “to like" 42
amare “to love" 43
biasimare “to blame" 43B

Table 3.4: Examples from the Psych Predicates dictionary

by the phrase il fatto (Ch F + di) “the fact (that S + of)”; but, with
few exceptions, it can be also a human, a concrete or an abstract noun;

e N1 is a human noun (Num).

The verbs from the class 42 enter into an intransitive reverse psych-verb
structure and are defined by the LG formula NO V Prep N1, where:

e NO is generally an infinitive or completive clause (direct or introduced
by the phrase il fatto (Ch F + di) “the fact (that S + of)”) but in few
cases can be also a human (Num) or a non restricted noun (Nnr);

e N1 is a human noun (Num), but can be also a body part or an abstract

noun of the kind discorso “discourse”, mente “mind”, memoria “memory”
[Elia, 1984].

The sentence structure that defines the class 43 and 43B is NO V N1
e NO, in both the classes 43 and 43B, is generally a human noun (Num)

e N1 is an infinitive clause or a completive one, which is direct for the 43
and introduced by il fatto (Ch F + di) “the fact (that S + of)”) for the
43B.

The algorithm of the method which perform the syntactic analysis takes
as input the database of verbs and the Lemmatized text. The required format
of the text is a double list of strings with the following format:

Algorithm 9 Format of String||[] dictionary of the sentence la casa é bella,
“the house is nice”

1: String[]|] dictionary = new String {

2 {1a”, 4", “DET”, “f+57},

“Case”, “Casa”, “N??, “f‘FS”},
{“é”, “essere777 “V777 Céaux+3+S+PR77}7
{“be]_la”, Cébello777 “A”? Cﬁf+s7)}

}

3.2. The LG-Starship Project 65

In this String[[[], each element of the list is a list in which:
e the element 0 represents the Token;
e the element 1 represents the Lemma;

e the element 2 represents the POS in a format corresponding to the tagset
presented in 3.2.2;

e and the element 3 contains a series of syntactic and semantic information
about word.

The element 3 contains information about the genre and the number of
the token (f for female, m for male, s for singular, p for plural, etc.) and
information about the verbe tense: a number from 1 to 3 which indicate the
person of the verb, and a symbol for the tense as indicate in the following list:

e Infinitive = INF

e Gerund = G

e Present Participle = PPR
e Past Participle = PP

e Present Simple = PR

e Imperfect = IM

e Past = PA

e Future = F

e Imperative = IMP

e Present Subjunctive = S
e Past Subjunctive = IS

e Conditional = C

In addition, the last part can contain other syntactical information such
as auz for the auxiliary verbs essere “to be” or avere “to have”, or semantic
information as Astr for abstract nouns or Conc for concrete nouns. Concrete
nouns are semantically sub-classified as showed in table 3.5.

66 Chapter 3. The project
Tag Set Description Examples
Npc body parts harm, hand, leg
Npcorg organism parts lung, neuron, cell, heart, liver
Ntesti texts book, but also softwares,
declarations or oral texts, paintings etc.
Nindu clothes jacket, jeans, pants, trousers, shirt
Ncos cosmetics fard, eyeliner
Ncibo food bread, meat, chicken, ham
Nliq liquids gasoline, diesel, alcohol
NligBev | drinkable liquids | water, cocacola, juice
Nmon money cents, Euro, Dollar
Nedi building house, building, palace, street,
avenue, column, window, door
Nloc location mountain, street, place, square,
region, county, country
Nmat materials water, wood, iron, wool, silk,
proton, electron, quark, snow
Nbot botanics tree, leaf, plant, sequoia, willow
Nfarm pharmacy aspirin, ibuprofen
Ndrugs drugs cigarettes, cocaine, heroine
Nchim chemistry oxygen, hydrogen, carbon, citric acid
Ndisp electronic devices | cellular phone, pc, computer, tablet,
television, vacuum cleaner, washing machine
Nstrum instruments fork, spoon, knife, guitar, stick, brush
Nvei vehicles car, camion, train, airplane,
and parts of vehicles as motor, silencer, wheel, cloche
Narr furnishings wardrobe, drawers, table, chair
Anl animals lion, cat, dog
Um human policeman, engineer, lawyer, medic
UmColl | human collective | school, industry, institute
ConcColl | concrete collective | peach orchard, orangery, myriad

Table 3.5: Tag Set for Concrete and Human Nouns

3.2. The LG-Starship Project 67

The tagset of Concrete nouns can interact with the information about
arguments of predicates included into the LG Verbs Resource. As shown in
8, line 13 and 14, is specified that the arguments N0 and NI can belong to
the class Num Human nouns and Npc Body Parts nouns of the Concrete
Nouns. Other tags, for example, can restrict the field of the object of the
verb mangiare, “to eat” at the class of concrete nouns of foot. In this way,
inside the predicate structure which specify the dependency structure of the
parser, this restriction about the semantic class of complements allows to
distinguish arguments from unnecessary complements (i.e. mangiare una
pizza “to eat a pizza”, and mangiare al ristorante to eat at the restaurant”)
or from complements which depend from the noun (i.e. mangiare una pizza
coi funghi “to eat a pizza with mushrooms”).

As we already said, actually the Syntactic Module works only with the

predicates which belong to the class of Psychological Verbs. In the first stage,
the parser found a verb of this class, listed into a Map<String,String> in
which the key is the verb’s lemma and the object is a Strings that contain all
the information derived from the Json separated by a ; (semicolon).
A Java method called shareVerbStructures(Map<String,String> verb) takes
the information collected into the Map and convert it into instructions about
how to create the structure. For each feature of the verb, the method define
how to extract from the text and tag the syntactic dependencies.

If, for example, the parser found the verb desiderare, “to desire”, the
method share VerbStructures(Map<String,String > verb) convert the String in
which are listed the features of the verb into a list. For the verb desiderare,
belonging to the class 43, as described in Elia [1984], the list is the following:

e NO =: Num (NO must be a Human Noun)
(Maria + il ragazzo) desidera una pizza
“(Maria + the boy) desires a pizza”

e N1 —: VO Q (NI could be an infinitive with its complements)
Maria desidera mangiare una pizza
“Maria desires to eat a pizza”

e N1 =: Che Fcong (N1 could be a completive with subjunctive verb
introduced by che, “that”)
Maria desidera che tu mangi una pizza
“Maria desires that you eat a pizza”

e N1 =: Fecong (N1 could be a completive with subjunctive verb)
Maria desidera tu mangi una pizza
“Maria desires you eat a pizza”

68 Chapter 3. The project

e ci0 (N1 could be a Pronoun)
Maria desidera cio
“Maria desires this”

e Ppv=: lo (NI could be a preverbal particle)
Maria lo desidera
“Maria desires it”

e N1 =: Num (N1 could be a Human Noun)
Maria desidera Antonio
“Maria desires Antonio”

e N1 =: N-um (N1 couldn’t be a Human Noun)
Maria desidera una macchina
“Maria desires a car”

e N1 di Num (structure accept a human N2 introduced by a Prep di,
LLby7)
Maria desidera di Antonio che abbia un buon comportamento
“Maria desires by Antonio that he behaves well”

e N1 da N2 (structure accept a generic N2 introduced by a Prep da,
Céby”)
Maria desidera da Antonio che si comporti bene
“Maria desires by Antonio to behave well”

e Passiva (the passive structure is accepted)
questa soluzione é desiderata da tutti
“this solution is desired by all”

In addition to the features listed in the LG table, the Json also includes
the following informations which complete the description of the verb:

® aux—: avere
e Vsup=: avere V-n

e Vsup=: essere V-a

e V-n—: desiderio
e V-a—: desideroso
e Strl=: NO V N1

3.2. The LG-Starship Project 69

Once the features have been listed into the method, the algorithm proceeds
in this way:

Algorithm 10 shareVerbStructures

Input: Map<String,String> verb

Input: String[|[] dictionary
1: Map<String,String[|> sentenceStructures = new Map<String,String[]|>()
2: String|| structure = new String]]|

3: String[] features = verb.split(;”)
4: for (String element in features) do

5. if (element.equals(*“NO=:Num”) then

6: for (int i from 0 to dictionary.length()) do

7: if (dictionaryl[i][0].equals(verb)) then

8: if (dictionaryli-1][2].equals(“N”)) then

9: if dictionaryli-1]|3].contains(“Num”) then
10: NO = dictionary[i-1][0]

11: if (dictionaryli-1||2].equals(“DET”)) then
12: DETO0 = dictionary[i-1]|0]

13:

14: structure = DETO,NO,V,DET1,N1,...
15: sentenceStructures.put(original Text, structure)
Output: sentenceStructures

The algorithm iterate over the feature list (line 4): if an element corre-
sponds to some pre-defined feature of the algorithm (line 5), the construction
of that structure begins.

The algorithm starts from the anchor word (in this case the verb desiderare)
and proceeds to the right or to the left depending which element we are found
for. In the current example we are searching for NO, which normally is on the
left.

If the verb is at element 7 of the dictionary, the element which proceeds the
verb is the element i-1.

If this element is a Noun and contains the Num Tag (lines 8 and 9), then the
algorithm write it into the NO String variable (line 10).

The algorithm continue with the same procedure with the next element which
may be a DET (lines 11-12).

When all features have been processed and the entire structure is supposed
to be defined, the algorithm put all elements into a List of Strings (line 14)
and then into a Map together with the original text of the sentence (line 15).
This Map with the original texts of the sentences as keys and their structure
as a List of Strings is the output of the algorithm.

70 Chapter 3. The project

The output 1is processed by other method called eztractDepen-
dency(Map<String,String[[>) which rewrite the sentences in the following
format:

(7) Maria desidera una pizza
“Maria desires a pizza”

Listing 3.1: Structure of the sentence “Maria desidera una pizza”

(F
(PRED
(desidera)
(ARG
(NO
(Maria)))
(ARG
(N1
(pizza)
(DET
(una))l)));

In this way the Syntactic Module construct a dependency structure based
only on the arguments of the predicate, on its essential structure of comple-
ments, but which not includes other not-necessary complements:

(8) Maria desidera una pizza coi funghi
“Maria desires a pizza with mushrooms”

Listing 3.2: Structure of the sentence “Maria desidera una pizza coi funghi”
(F
(PRED
(desidera)
(ARG
(NO
(Maria)))
(ARG
(N1
(pizza)
(comp
(N2
(funghi)
(DET
(1))

3.2. The LG-Starship Project 71

(PREP
(con)))
(DET
(una))))));

In 8 the predicate is desidera, “desires”, with two arguments, the sub-
ject, identified as NO, and the object identified as N1. In the predicate
structures there is no mention of other complements because they are not
part of the essential sentence structure selected by the verb. The comple-
ment con 1 funghi “with mushrooms”, which consist on a preposition and
N2 is not included into the arguments of the verb, but it neither is a not
essential complement of the verb, because it depends directly by the N1, pizza.

Distinguish between verb complements and noun complements is not a
trivial task. If we take as exemple the following sentence:

(9) Maria eats a pizza with Max
(10) Maria eats a pizza with mushrooms

“with Max” and “with mushrooms” are both introduced by the same
preposition and the only distinction between the two name is that “Max” is a
Human Noun and “mushrooms” is a Foot Noun. The Syntactic Module will
not be able to distinguish between the complement that depends by the verb
(9) and the complement that depends by the noun (10) and will tag both as
unnecessary verb complements.

Many free on-line parser for ITtalian or English languages, fail on the
task of distinguish between verb’s complements and noun complements. We
decided to parse these two sentences using the popular on-line Stanford
Parser®.

As shown in the fig. 3.5, in which are presented the results of the ap-
plication of the Stanford Parser on the sentences (9) and (10), sentence (9)
dependency structure treat the NP “with Max”, as it depends directly on the
NP “a pizza”. While the same structure is correct for the sentence (10) in
which the NP “mushrooms” depends on “a pizza” because it represents a spec-
ification of what is on the pizza, in (9) “Max” is not an ingredient, but depends
on the verb “eat”.

The Italian parser LingA® make the opposite error on the following Italian
sentences:

8http://nlp.stanford.edu:8080/parser/index.jsp
http://linguistic-annotation-tool.italianlp.it/

http://nlp.stanford.edu:8080/parser/index.jsp
http://linguistic-annotation-tool.italianlp.it/

72 Chapter 3. The project
Parse
(ROOT
(s
(NP (MNP Maria))
(VP (VBZ eats)
(NP
(NP (DT a) (NN pizza))
(PP (IN with)
(NP (NMNP Max))))))
Parse
{ROOT
(s
(NP (MNP Maria))
(VP (VBL eats)
(NP
(MNP (DT a) {(NM pizza))

(PP

{IN with)

(MNP (NNS mushrooms))i))))
Figure 3.5: Depenency Structure of the sentence (9) and (10) performed by
Stanford Parser

(11) Maria mangia un gelato al bar
“Maria eats an ice cream at the bar”

(12) Maria mangia un gelato al limone
“Maria eats a lemon ice cream”

LinguA parser, as shown in fig 3.6, correctly analyze the sentence (11),
in which the complement al bar, “at the bar” is a Locative Complement and
depends on the verb mangia, “eats”, but fails the parsing of the sentence (12)
in which the complement al limone, literally “with lemon taste”, depends on
the noun gelato because specify the taste of the ice cream. The same error is
done by LinguA also on the italian translation of sentence (10), but only if
the preposition is written as a prepositional article co: “with the” and not in
the reverse case.

In order to avoid this problem we have to add to the features of the pred-
icate some additional features about not-essential complements: returning to
the example (7), it is easy to imagine that in Italian, a complement introduced
by the preposition “con” is not accepted by the verb desidera as complement
if the noun is a Num:

(13) *Maria desidera una pizza con Antonio
“Maria desires a pizza with Antonio”

3.3. LG-Starship Interface 73

Figure 3.6: Depenency Structure of the sentence (11) and (12) performed by
LinguA

in 13 the complement con Antonio is not accepted as in sentence (14):

(14) Maria desidera mangiare una pizza con Antonio
“Maria desires to eat a pizza with Antonio”

Obviously, the error is always lurking, and it is possible that a verb
accept complements introduced by a preposition which also introduce a noun
complement as happens with 11 and 12. The solution could be an hybrid
model which take into account statistical distribution of words sharing the
probability that a complement depends from the Noun or from the Verb
directly from a repository of annotated sentences as the “Paisa Corpus”.

3.3 LG-Starship Interface

In this section we present a version of the modules presented in the previ-
ous section provided with a graphical interfaces, which permits to user not
familiarized with programming languages to operate with the methods of the
LG-Starship Framework.

The interface has been built following the guidelines in Shneiderman [2010].
In particular, in the book, eight golden rules of interface design, derived from
experience and refined over two decades are presented:

74

Chapter 3. The project

. Strive of consistency: Consistent sequences of actions should be required

in similar situation, identical terminology should be used in prompts,
menus, and help screens, and consistent color, layout, fonts should be
employed through-out.

. Cater to universal usability: recognize the needs of diverse users and

design for plasticity, facilitating transformation of content. Adding fea-
tures for novices, such as explanations, and features for experts, such as
shortcuts and faster pacing, can enrich the interface design and improve
perceived system quality.

. Offer informative feedback: For every user action, there should be sys-

tem feedback.

. Design dialogs to yield closure: sequences of actions should be organized

into groups with a beginning, middle and and.

. Prevent errors: As much as possible, design the system such that users

cannot make serious errors. If an user make an error, the interface should
detect the error and offer simple, and specific instructions for recovery.

. Permit easy reversal of actions: as much as possible, actions should be

reversible.

. Support internal locus of control: Experienced operators strongly desire

the sense that they are in charge of the interface and that the interface
responds to their actions.

. Reduce short-term memory load: the limitations of human information

processing in short-term memory requires that displays be kept simple,
multiple-page displays be consolidated, window-motion frequency be re-
duced and sufficient training time be allotted for codes, mnemonics and
sequences of actions.

These underlying principles provide a good starting point for desktop de-

signers and are focused on increasing the productivity of users by providing
simplified data-entry procedures. In our project, we try to present the com-

mands in a simple and linear way, with a clear pipeline of instruction, deter-
mined, in part, by the sequence of the modules that compose the interface.

Currently, the LG-Starship Framework Interface is built in a modular

way and includes six tabs, each one with a set of specific commands and

information panels.

3.3. LG-Starship Interface 75

The start tab is showed in fig. 3.7. With this panel the user can write
a text or charge an external one. The “calculate” button perform a simple
tokenization and the computing of the types and letters presents into the
text.

Two radio-buttons allow the user to select how to split the original text
in text units and other two radio-buttons permit to select cleaning options as
the simple cleaning of punctuation or the removal of stopwords. A text-panel
on the right presents some basic information about the length of the text, its
composition and its path; under this panel there are two tables in which the
statistic about types and letters are presented when the calculate button is
clicked.

The second tab contains the Mr.Ling module allows users to perform POS

Tag and Lemmatization of the text treated in the first tab. The Pos Tag
Button and the two radio button connected with the Pos Tag task are activated
only once from the File Menu the user charge the dictionary resources by
clicking the Carica Dizionar: button.
In the fig. 3.8 is showed a detail of the tab 2 in which is present the Pos Tag
Button on the left, followed by two radio button by which the user can select
how to see the results of the Pos Tag task (as a concatenation of <Token, Tag>
or as a simple concatenation of Tags separated by whitespace). Below there is
the Lemmatization Button followed by three radio button corresponding with
the three visualization option. The Lemmatization Button will be blocked
until the Pos Tag has not been launched and has terminated the process. On
the right, the Ezport Text Button permits to export the result of the Pos Tag
or the Lemmatization showed in a text panel above, as a .txt file in order to
use it with other external resources.

Pos Tag <Token, Tag> Tag Export Text

Lemmatizat... <Token, Tag, Lemma> <l emma, Tag> Lemma

Figure 3.8: Pos Tag & Lemmatization tab of LG-S Interface

On the right of the Pos Tag and Lemmatization tab there are two tables in
which, once the Pos Tag process and the Lemmatization process has finished
their execution, statistics about Lemmas occurrences or Tags occurrences are
presented and could be exported as .csv files for external analysis.

As an example of use of this two starting panels, we charge into the Original
Text tab the electronic Ttalian version of the book “The Hobbit”, from J.R.R.

Chapter 3. The project

76

sanep

Suaqol

Sanen UaQelED

ueay

| | eenoes

131 [euibu(INOge UODBULIOJUT

splofndols @3=ea O

8l ueald)

I

u fyienba wds)

~aped fqmds O

AL

Figure 3.7: Original Text tab of LG-S Interface

3.3. LG-Starship Interface 77

Tolkien, modified so that each chapter represents one line of text.

The first operation is to select the Split option: a user can select a pattern
writing it into the text panel at the side of the two appropriate buttons, or
to split the text in an exact number of text units by writing this number into
the same text panel.

In the text box on the right, after clicking on Calculate, the software displays
the number of tokens found, the number of lines and the total number of
characters. Below, the two tables of number of occurrences of characters and
tokens are compiled as shown in fig. 3.9.

Information about Original Text | calculate | | clean

Titolo del Testo: Testo Generato dall'Utente;
Numero di Tokens: 92868;

Numero Linee: 19;

Numero Caratteri: 556227,

Caratteri Values v Tokens Values «

92649~ Suoi 120) =~

El 49562 parte 17|=

e 48290| i 116

0 44100~ essere 116

i 43231 li 115

n 31453 | po’ 114

r 30523 perché 113

| 26556 dopo 113

It 25802 mentre 110

5 24137 | 106

c 18707 hobbit 104

d 15245 sempre 104

u 14195 ad 103

18] 11634 stato 101

m 9890 [fatto 100
9825 poi 98

g 8005 c'era 93
6592 fare 98

o 5526 mi a7
5089/ |né 97|

Figure 3.9: An example of results of Calculate button

Once calculated the statistics of text in terms of occurrences, performed
pre-processing phase by cleaning punctuation or stop-words, we activated the
Pos Tag & Lemmatization tab by charging lexical resources.

When the Pos Tag Button has been clicked, the software processes the
text and, when terminates, the Pos Tagged text appears in the text panel
below in the fashion the user have selected before start the Pos Tagging. On
the text panel on the right, the software illustrates the time the PosTagger
employs to perform the task.

At the same time, on the right of the second panel, the first of two tables,

78 Chapter 3. The project

which reports two columns, one for the tags and one for the values, is
automatically compiled with each tag present in the text and its value of
occurrence.

Subsequently, the Lemmatization Button become active. The same procedure
give the software to show the lemmatized text and a message regarding the
time it spends for the process. In fig. 3.10 the results of the Lemmatization
task is showed.

m () <Token, Tag> O Tag Export Text POSTAG TIME: 36,8100 sec.
Lemmatization TIME: 14257500 sec.
W () <Token, Tag, Lemma> () <Lemma, Tag> & Lemma

[riZiare alle dieci in punto - Ormal ESSEre qUasi ora di pranzo , & Il Mmaggior Pane delle C0Sa ESSErE Ol ESSEre VENdEre , Per prezzo Che andare da quas! Niente a .
icchio canzone (cosa non diil del tutto insolite in quello tipo di asta) . | cugine di Bilbo , il Sackville-Baggins , per esempio , stare gia misurare il stanza per vedere| |
e i1 loro mobile potere starci . In breve , Bilbo essere "Presunto Morta” , € non futto , tra quello che I avere dichiarare tale . essere dispiacere quand si rendere co
o di essersi sbagliare . Il ritorno di il del signor Bilbo Bagains creare un certo scompiglio , sia sotto il Collina essere sopra il Collina, e anche dila dall’ Acqua ; es
re molto pid di un fuoco di paglia . Di fare |, il grana legale sitrascinare per anno . Passbd molto tempo prima che al signor Baggins essere concedere di essere di
uovo vivo . La gente che avere fare bueno affare in quell’ asta ci mettere un bello po’ a convincersene ; e allafine , per non perders altro tempo , Bilbo dovere comp
re molto suo mobile . Gran parte dei suo cucchiaino d” argento essere misteriosamente scomparso , e non si uscire a saperne nulla. Personalmente , Bilbo sos
are dei Sackville-Bagagins . Per contro, lui non riconoscere mai I' autenticita di il del Baggins tornare |, e non intrattenere mai buono rapporto con Bilbo . La verita

e rire ~ha Al @ackuilln Bannine neearn niaenrn maka visaen nal con aeTines boea habhit A cante fattn Dilhe ceancien di cune nacdare nic dai coechininn - auaen

Figure 3.10: An example of results of Lemmatization button

As happens with the Pos Tag Button, when the Lemmatization stops its
process, the second table on the right of the panel is automatically compiled
with each lemma and its value of occurrence as shown in fig. 3.11.

The Frequencies tab is internally divided in two parts: on the left of the
tab there are a selection menu and two tables, each one connected with a
process button:

e the Term frequency button, for the computing of the Term frequency
e the TF/IDF button, for the TF/IDF calculation.

A selection menu, on the top, can be used in order to select the starting

data for statistics: the user can calculate the Frequency and tf-idf starting
from tokens occurrence or from lemmas occurrences.
Each one of the two tables is connected with a small text panel in which it
is possible to insert the number of the text unit of which the user want to
circumscribe the information of the table. For example, the user can write
the number of the text unit he want and click the show button of the relative
table. The table selects the text unit and show only the information about
this unit on the table. This option could facilitate the analysis of the data by
restricting the table view to a single portion of text.

On the right of the tab there are two panels. They generate two graphs
about word distribution in text which permit to compare frequency values

3.3. LG-Starship Interface 79

\ Exportas CSV | | Export as CSV
Tags Values Lemmas Values =
AV G718 Maon 152|~
A 7284 ci 181[=]
DET 9223 su 179 |
PRON 5948 hobbit 178
PRED 215 tempo 177
INTER. 25 dovere 170
v 18006 parte 168
MNUM 342 Il 167
FREF 14235 all’ 167
CONG 6517 sapere 162
M 27495 po’ 159
PUNT 13382 mai 157
dal 156
lungo 156
degli 156
sul 156
E 155
grande 155
trovare 154
ne 149
li 148
Montagna 148
sotto 146
drago 146
mio 145
valere 144
dove 144
cominciare 141
senza 138
Verso 138
ed 136

cui 135

Figure 3.11: The two auto-compiled tables on the right of the Pos Tag &
Lemmatization panel after the Lemmatization process ends

and tf-idf values. Above this two spaces the users can add up to ten words of
which he want to show the distribution. The Calculate Charts button creates
the two visualization3.13: the first one shows the distribution of the selected
terms Frequency (above); the second one shows a chart with the distribution
of the tf-idf of the same terms.

The charts are provided by a free Java library called JFreeChart!®. The
JFreeChart library provides a complete set of charts completely navigable,
with a useful menu which permits to zoom in and zoom out the panel, save
as PNG or change colors and visual options.

The N-grams tab only contains two tables in which, clicking on corre-
sponding buttons, the bi-grams and tri-grams encountered into text and its
statistics are showed.

0available at the http://www.jfree.org/jfreechart/

http://www.jfree.org/jfreechart/

80 Chapter 3. The project

‘B\\hn ‘ |hnmm ‘ ‘baﬂagl\a | ‘ ‘ ‘ ‘

fesoro | prete | [orage | il |

schizae foooo294 | | | 1 2 3 4 5 6 7 8 9 w1 12 13 14 15 18 17 18 19
VVVVV Ga__[0,00020. Text Units

o
= [Eibo # tescro + hobbit + anelo = battagla ¥+ draga]
TFIDF Sh..
Frase o Words

b=t
0D

ek

e ———— = r
1 2 E 4 5 6 7 8 9 10 1 2 13 14 15 16 17 18 19
Text Units

= [Bibo - tesora 4 hobbit + anslo = battagla -+ drago]

Figure 3.12: The Frequencies panel after process the Term Frequency, the
TF/IDF and clicking the Calculate Charts button.

The Semantics tab can be used to show the results of the application of
the Semantic Module.
There are two main buttons above on the panel, the Generate Sentence
Network button and the Show Semantic Space, both producing a different
graph on the panel. The first button is connected to a filter panel, in which a
user can introduce a Double value under which similarity values are excluded
by the chart; both buttons are also connected with two text panel which allow
to filter the text units the user want to select and with a select menu with 4
options (0, 5, 10 and 20) which permits to select the number of similar word
that the Semantic Module can extract from the Semantic Space for each word.

While the Show Semantic Space button generates a Cartesian Space in
which each word is represented as a coordinate, which are graphically repre-
sented into a Cartesian space, as shown in the fig. 3.13, the Generate Sentence
Network uses another external technology to represent the semantic network
of similarity of two text units.

We decided to use a powerful application for graph generation and data
management and visualization called Gephi. Gephi is an open graph viz plat-
form that provides a Java toolkit for integrate static graphs into user software.
Gephi is released under the dual license CDDL 1.0 and GNU General Public
License v3.

Gephil! is a leader technology in visualization and exploration of graphs and

Havailable at https://gephi.org

https://gephi.org

3.3. LG-Starship Interface 81

filtra valori minori 0.5 Frasi: [1 2 Select N of text wor[5 |+ |
Words

vvvvvvv

[T RN IR
4 8 B 8 5 8 K8 4
d4 2 B 2 4 28 B 2

aaaaaaaaa

qqqqqq
aaaaaaa

vvvvvv

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 37 33 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 55 56 57 58

Figure 3.13: The Semantics panel after clicking the Show Semantic Space
button.

networks and provides a clear and ergonomic interface for exploratory data
analysis, link analysis, social network analysis etc. Gephi reaches high perfor-
mance and it’s completely customizable by offering a great number of plugins
for layout, metrics, data sources, manipulation etc.

In addition, Gephi offers a complete set of API, integrated in its toolkit,
completely written in Java. The toolkit is contained into a single JAR file
that could be reused in any kind of Java application and achieves tasks that
can be done in Gephi automatically.

In order to include Gephi Toolkit in the LG-Starship Framework, it was
necessary to import the toolkit Jar into the project Built Path. Subsequently,
we created a class Graph in which Gephi Project, Appearance, Import and
Preview Controller have been initialized as Java objects. In order to create
a new graph, we initialize a workspace and import the external .dot graph
which has been create by the HAL algorithm embedded in the software and
launched by clicking the Generate Sentence Network button. The file, which
is automatically exported for external use, contains the generated graph in
the following format:

Into the .dot file the Graph is declared as a list of nodes, followed by a

list of edges and its related weights. The nodes are the words of the selected
sentence or text unit and, eventually, the similar words extracted by the
Hyperspace Analogue To Language Matrix.
Weights are the similarity values calculated as Euclidean Distances between
the vectors of the two words. Values of 0 have been deleted from the graph
because they generate entropy by forming visible connection with weight 0
between words.

82 Chapter 3. The project

Algorithm 11 The .dot Graph File generated by the HAL method
Graph G {

word1;

word2;

word3;

wordl — word2 |[weight = “0.87;

word2 — word3 [weight = “0.667;

wordl — word3 [weight = “0.47;

}

Once the graph has been imported, the software generate an Undirected
Graph. The choice of this kind of graphs was an obligatory choice because
each value of similarity is a bidirectional value and a similarity a — b has
the same value of a similarity a < b. After import the graph, a Modularity
Algorithm, embedded into the Gephi Toolkit, has been applied.

Modularity |Blondel et al., 2008 is a simple method to extract commu-
nity structures from large networks. It is an heuristic method that is based
on modularity optimization [Clauset et al., 2004|, that consist in recurrently
merging communities that optimize the production of modularity. Modularity
of a partition is a scalar value between -1 and 1 that measures the density of
links inside communities as compared to links between communities |Girvan
and Newman, 2002, Newman, 2006b]. Encountered communities are shown
into the graph with different random colors.

At the last, we apply another layout algorithm called “ForceAtlas2” which
is a force vector algorithm [Mathieu and Tommaso, 2011]. It simulates
a physical system in which nodes repulse each other like magnets while
edges attract the nodes they connect. These forces create a movement that
converges to a balanced state. The final state helps to interpret the data.
The resulting network is similar to the one presented in fig. 3.14.

The last tab is the Syntactics tab in which the Syntactic Module of the
Framework take a visual form. The tab, in fact, permits to launch the Syntac-
tic Parser on the text and visualize the results for each verb encountered and
analyzed. Actually, as we said in the previous section, the list of verbs and
structure on which it is possible to launch the parser is short and incomplete.
In the next mouths, this list will be enriched and completed in order to offer
a real and complete syntactic parser to the user of the Framework.

The panel has two main sectors: the left sector contains the Start Syntactic
Parsing button, which starts the analysis, and the Download Tagged Text
button, that produces a .txt file in which the semantically tagged text is

3.3. LG-Starship Interface 83

Figure 3.14: Example of network generated by Gephi Toolkit.

included. Below to these buttons, there is a large Table in which, once the
analysis is completed, each sentence contained into the text will be enumerated
and showed.

On the right side, there are two panels surrounded by two buttons and
two text panels: writing the number of the sentences as indicated by the
table and clicking on the button wisualize, the window below will shows the
graphic representation of the dependences of the selected sentence.

The project

Chapter 3.

84

3= _Jmnv_ un

_ olj=1el _Jmnv_ I _

ESEJ B 8IELIO} EUE[] BUD 2IEIBPISaP ¥E

ezz1d BUN BIEJ3PISAD OLE)|

NEEETEEVMEEVET TR

alelBUBL ale1apISap BSIT

a1elBUEL Ip 0UBPISEP |1 BY eEIod B

Q12 BIEJSPISA0 OLE

EZZ|d ELN 8JEICUELL IP OUBPISAP || EU XEL)

E7Z1d EUN Ip 0UAPISaP || BY EULY|

ELIE|Y EP 01EQ UN 3JE18PISap 0IUOIUY

3IEIEpISap || BEUB|T

EEEEEGEEEE

S8oUsUas

Jaquinpy

aziensip

Z| =umPnns oMUk 39UBIUSS PINIBRS MOUS

1 pabbe] peojumoq

~1s1ed 230EAS LElS

Figure 3.15: The Syntactics panel.

3.3. LG-Starship Interface 85

In the fig. 3.15 the Syntactics tab is shown. Into the table on the left
there are the sentences that the Syntactic Module extract from the text
which, in this case, is a list of sentences which contains the Psychological
Predicate desiderare and some other sentences. On the right, two selected
sentences are shown in a graph format.

In the above panel the selected sentence was Antonio desidera una bacio
da Maria, “Antonio desires a kiss from Maria”. The module recognize the
predicate desiderare, shown as a red ellipse, and connect it to the root (F).

From the Predicate node two arrows point the two arguments of the verb:
NO, the subject, is the Noun “Antonio”, N1 is bacio, “kiss” from which depends
the determiner un, “a”. The other complement couldn’t be an argument be-
cause is not provided by the verb description. The algorithm classifies da
Maria, “from Maria” as a simple complement in which “Maria” is the N2 ele-
ment and da, “from” is the preposition.

In the below panel, the sentence represented is 1l fratello aveva desiderato
un gelato, “The brother had desired an ice cream”. In this case, the verb is in
a compound form. The predicate is connected by an arc labeled Aux with
the auxiliary verb avere, “to have”. The arguments are two: NO represents
the noun fratello, “brother”, and N1 contains the noun gelato, “ice cream”.

In order to show how the parser treat other kind of sentence structures,
different kind of structures of desiderare have been inserted into the text.

3 ESSEre

(PR
Il

=
o
=
=
=
T,
Tl
kil
o
1]

Figure 3.16: The generated dependency graph of the sentence Mario é
desideroso di una pizza.

In fig 3.16, Mario ¢ desideroso di una pizza, “Mario is desirous of a pizza”,
the predicate is not expressed directly by the verb desiderare, but by the
support verb essere, “to be” and the deverbal adjective desideroso, “desirous”.
In the visualized structure the red eclipse which represent the predicate

86 Chapter 3. The project

contains the adjective desideroso and is connected with its support verb by
an arc labeled “Vsup”. The rest of the structure is represented exactly as it
would be represented the sentence Mario desidera una pizza, “Mario desires
a pizza’.

D

1]

Figure 3.17: The generated dependency graph of the sentence Mario ha il
desiderio di una pizza.

In fig. 3.17, the graph contains the structure of a support verb sentence
with avere, “to have”, and the deverbal noun desiderio, “desire”. The sentence
is Mario ha il desiderio di una pizza, “Mario has desire for a pizza” and, in
this case, the predicate is the noun desiderio.

3 ESSEre

Figure 3.18: The generated dependency graph of the sentence la pizza é
desiderata da Maz.

In the example in fig. 3.18, is shown a sentence in passive form: la pizza
¢ desiderata da Maz, “the pizza is desired by Max”. The Syntactic Module
process the sentence and represent it exactly as it was in active form: the

3.3. LG-Starship Interface 87

red eclipse in which is represented the predicate contains the verb desiderare,
and is connected with the auxiliary verb essere, “to be” by the “Aux” arc. As
the algorithm found the form N V desiderato da N, it immediately assign the
value of the first N to the variable N1, and conversely, the value of the second
N to the variable NO, preserving the same graph structure of the active form
of the same sentence.

In order to show how the LG-Starship Framework could be useful for
different kind of text analysis, in the next chapter we present two experiment
in which the Framework took an important role and many of its modules have
been involved into the experiments.

CHAPTER 4

Experiments

90 Chapter 4. Experiments

In this chapter we try to illustrate how the framework has been utilized
in two different practical projects which have been developed and published
during the creation steps of the LLG-Starship Framework and represented an
inspiration for the design of the same framework.

For the two experiments we select two different kind of Corpora, belonging to
the same macro-area of the User Generated Content:

e The first experiment represent a statistical study of the language of Rap
Music in Italy through the analysis of a great corpus of Rap Song lyrics
downloaded from on line databases of user generated lyrics.

e The second experiment is a Feature-Based Sentiment Analysis project
performed on user product reviews. For this project we integrated a
large domain database of linguistic resources for Sentiment Analysis,
developed in the past years by the Department of Political, Social and
Communication Science of the University of Salerno, which consists of
polarized dictionaries of Verbs, Adjectives, Adverbs and Nouns.

In next sections we present this two works in detail, by illustrating motiva-
tion of corpus selection, state of the art of similar works, adopted methodology
and external resources we have used in order to complete the projects.

4.1. Rapscape, the construction of a tool for the analysis of the
Italian Rap Phenomenon 91

4.1 Rapscape, the construction of a tool for the
analysis of the Italian Rap Phenomenon

This section describes the steps which led to the realization of the first domain
lexicon of Italian Rap Music. We applied a hybrid approach that benefits
of the large amount of web available data to create a multi-level resource,
combining linguistic, statistics and semantic information. We combined
user generated contents, web mining and text analysis techniques, Natural
Language Processing and data visualization tools to develop an interactive
tool to describe, explore and query the semantic universe of Rap in Italian.
The tool overcomes the lack of domain resources and provides a “distant
reading” of one of the most significant cultural and linguistic phenomenon
in recent years, taking advantage of Information Design techniques to make
accessible and understandable a large amount of extremely sparse data.

The project make use of some of the LG-Starship Framework Modules in
order to perform a rapid and precise analysis of the textual Rap sphere,
integrating other powerful resources as Gephi and Tableau softwares for data
visualization, Open Refine for data management and processing.

4.1.1 Initial guidelines

The rapid growth of the Web has led to increased availability of a huge amount
of linguistic data. Linguistic resources are the baseline to build high-level ap-
plications and perform tasks in Natural Language Processing (NLP). The
vast majority of NLP tasks, ranging from POS Tagging and Named Entity
Recognition [Bunescu and Pasca, 2006] to Question Answering [Harabagiu
et al., 2000], Text Classification [Nastase and Strube, 2008] and Summariza-
tion [Gabrilovich and Markovitch, 2006] are heavily dependent on rich and
well built linguistic resources.

In this project we dealt with the musical domain, a field not really ex-
plored in the literature. In particular, we focus on creating a domain resource
concerning the language of Italian Rap music. As emerged from recent stud-
ies [Perna et al., 2016, music genres can provide a representative overview of
many social and linguistic phenomena.

Rap music, in particular offer many interesting cues for a textual analysis
[Cutler, 2007, Terkourafi, 2010, Attolino, 2012|, since it is one of the most
vital phenomena and with greater socio-cultural impact in the music scene
and in youth subcultures of the last years [Lena, 2006, Toop, 1984, Forman
and Neal, 2004].

Furthermore, Rap music has become a global phenomenon extended well be-

92 Chapter 4. Experiments

yond the original North American borders [Androutsopoulos and Scholz, 2003,
Osumare, 2007, Alim et al., 2008] and it presents a rich textual production
and a high rate of innovation and experimentation of linguistic forms [Cutler,
2007, Bradley, 2009, Terkourafi, 2010).

The idea behind this project is to obtain a “mapping” of Italian Rap
language, which allows to observe and analyze an extremely popular field
of the contemporary cultural production in Italy [Pacoda, 1996, Filippone
and Papini, 2002, Attolino, 2003, Scholz, 2005|. We focus mainly on textual
aspects of lyrics, rather than musical ones. Although, Rap is characterized by
a very close between word and rhythm [Bradley, 2009], the textual component
occupies the central role [Attolino, 2012].

4.1.2 Methodology

Instead of dwell on a thorough analysis of a small number of texts, we decided
to adopt a multidisciplinary approach - in which converge web data mining,
linguistics and information design - aiming to build a very large text database
to be analyzed using text-mining and computational linguistics tools and make
browsable through a series of interactive views designed ad-hoc. The proposed
method is composed by 4 steps:

e Rapscape: Building the resource extracting information from web
repositories using web mining techniques;

e cleaning and enrichment: normalization, data cleaning and enrich-
ment of Rapscape mixing different web resources;

e text analysis: linguistic and statistical analysis using LG-Starship
Framework;

e data visualization: creation of an interactive tool to visualize, explore
and query the data;

In the first phase we identified web repositories containing rap lyrics in
Italian language. Official sources (official artist and record label websites)
appear extremely poor in content or archived in difficulty usable formats.
We chose to use user generated contents, exploiting text-sharing fan sites
where users voluntarily provide their personal transcriptions or rap lyrics.
This choice proved to be effective on both sides. From one side it allows to
operate on a more representative dataset of the analyzed musical genre, since
lyrics published in independent record labels - not only the official ones - are
included. So features not otherwise identified can be seen; such as expressive

4.1. Rapscape, the construction of a tool for the analysis of the
Italian Rap Phenomenon 93

forms not conventionally accepted by the majors and bad language. On the
other side using user generated contents can give a sociolinguistics perspective,
highlighting changes of linguistic forms of expression of artists when moving
from an official context to an underground one.

In the second phase these mined data were cleaned, then crossed and en-
riched with other resources available online. In particular APIs providing
highly accurate “technical” information about authors and lyrics have been
used, since information provided by user generated contents are often inaccu-
rate in some ways.

The third phase consists of “classical” Natural Language Processing
analysis that make use of some of the modules of LG-Starship Framework
presented in the previous chapter: data were tokenized (Preprocessing
Module), pos-tagged and lemmatized (Mr.Ling Module).

At this stage we have taken account of previous studies conducted in the
field of Music Information Retrieval (MIR), in particular those aimed to au-
tomatic analysis of lyrics [Mahedero et al., 2005, Kleedorfer et al., 2008, Hu
et al., 2009] and rap texts [Hirjee and Brown, 2009, 2010, Malmi et al., 2015].

Using the Statistic Module, a series of statistical textual analysis were
carried out, in order to obtain absolute term frequencies, author relative fre-
quencies, collocations, bigrams, trigrams and words association strength. In
addition, the distinctiveness of words has been calculated. This value is ex-
pressed using the Tf-idf measure.

After that, we started building the network, the proper semantic space of
Rap language.Using the Semantic Module we created a semantic network of
each author and allow their classification using machine learning algorithms
(cluttering, topic modeling).

The fourth step concerns the visualization of collected data. In particular
we develop an interactive tool able to explore and query the rap corpus. The
tool allows to benefit from a “distant reading” of the large collection of data
and at the same time to explore data in detail using a set of filter and zoom
functions. In addition to classic Information Visualization approaches, the
tool design takes account of the approach developed by Communication Design
in the field of Digital Humanities [Uboldi and Caviglia, 2015], in particular
regarding the definition of the user experience. The Visualization tool is
composed by a set of tabs with different views focusing on different aspects
and providing different possibility of interaction.

94 Chapter 4. Experiments

4.1.3 Building the resource

We start creating the Rapscape corpus, a POS-tagged and lemmatized lexical
resource containing 16,000 Italian Rap songs grouped by artist. This corpus
is composed by user generated contents, extracted mining different fansite
websites using a web-scaping algorithm.

For this approach has been necessary to overcome the lack of official re-
sources about Italian rap music. Although Rapscape is the only resource
providing information about rap lyrics in Italian, it shows some problems. As
a weakly-supervised resource based only on user generated contents its data
can be wrong or inaccurate (e.g. typos in song titles or songs attributed to the
erroneous author), furthermore although Rapscape contains a set of core lin-
guistic information about each song and author, such as title, text, featuring,
the information provided is too poor to allow for deeper analysis (e.g. statis-
tic, semantic). Therefore, the first step in our work was to extend Rapscape
giving it more robustness. To perform this task, we adopted a well-known
semi-supervised approach in the literature [Navigli and Ponzetto, 2012, Bond
and Foster, 2013], based on merging together data from different kinds of re-
sources. So we took advantage of the huge amount of data available on the
web to progressively enrich the core resource in semi-automatic way.

Before adding new information it was necessary to clean up original data.
As mentioned above, Rapscape is built automatically, so its data need a clean
up. Therefore the first problem we decided to deal with was to achieve cleaned
data which could be processed effectively to obtain normalized texts. This
normalization step covered the following aspects:

e stopwords: we detected and eliminated URLs and domain-specific stop
words (e.g. strofa, ritornello, rit etc.);

e featuring rap music is characterized by several author featuring, which
creates a problem in handling multiple authors. We have chosen to
keep the names of other singers in the text (not credited as authors or
collaborators) as these are considered “citations”. These “citations” can
be relevant in a future development of a citations network among the
various authors;

e punctuation in this step punctuation has been left.

At the end of this preprocessing step a textual resource that counts more
than 2,000 texts grouped by author was obtained. After that, we started
the extension of the resource, taking into account different information from
different sources on the web. The combination of various resources allows us
to characterize artists and songs to perform further analysis and to compare

4.1. Rapscape, the construction of a tool for the analysis of the
Italian Rap Phenomenon 95

the data and correct any errors. To increase the effectiveness of song data
we need first to add some technical information, so we select a small set of
features mined from two of the largest commercial resources freely available:

e Discogs API': the largest on-line crowd-sourced database of music re-
leases. For each song in our dataset we searched for its artist in Discogs
API. Using artist name, we enriched our data with the following features:
alias (alias of the artist) and ID (Discogs ID of the artist). We sub-
sequently used the id to extract some information about songs: master
(album), year (year of the release) and labels (release label).

e Spotify API?: the official Spotify API provides for each artist a com-
plete list of its tracks, and for each track information about specific as-
pects of a songs (e.g. duration_ms or track_number). We used artist
name value to retrieve the following features in the API: URL (the URL
to artist’s image), popularity (a value between 0 and 100) and Spotify
ID for the artist; We then used artist id to retrieve: album (personal,
compilations, featuring).

For each artist we looked for titles of its songs, and merged together this
information in a JSON object.?

Currently our resource contains 2,465 rap songs grouped by 290 artists.
Both artists and songs are accompanied with features about labels, year of
publication, title, co-authorship and ID.

4.1.4 Text Analysis

After building up the resource, we started to carry out some basic analysis of
basic statistics by using the LG-Starship modules.

At first glance, we note that Rap language presents some some distinctive
features that may adversely affect the analysis:

e the large number of neologisms and colloquial terms;

e the extreme fragmentation of texts: usually a line is syntactically dis-
connected by the next one.

e the large number of dialect words.

'https://wuw.discogs.com/developers/
’https://developer.spotify.com/web-api/
3To query APIs we used python clients:
discogs_client (https://github.com/discogs/discogs_client) and spotipy (https:
//github.com/plamere/spotipy).

https://www.discogs.com/developers/
https://developer.spotify.com/web-api/
https://github.com/discogs/discogs_client
https://github.com/plamere/spotipy
https://github.com/plamere/spotipy

96 Chapter 4. Experiments

Since these features makes a syntactic analysis impossible, we decided
to perform some classical statistical NLP analysis on the data: after a Pos
tagging and a Lemmatization phase, we calculate Term Frequency, Tf-idf and
perform N-grams extraction.

Concerning POS tagging and Lemmatization, we use the Mr.Ling Mod-
ule. The module produces a lemmatized and pos-tagged text (960.349 tokens,
60.000 types) as output.

As we said, the great influence of colloquial language and neologisms,

including the large use of bad words and dialect words, and the presence of
typing errors, make the Pos Tag and the Lemmatization more difficult.
The calculated precision of the module for these two task with a regular text,
decreases drastically with the actual corpus: while the Pos Tagger, which is
based on a probabilistic algorithm, can overcome these class of errors, though
the fragmentation of a text characterized by short sentences results in a
decrease of the precision due to the lack of context, the Lemmatization task
suffers these problems in a more pronounced way: in tab. 4.1.4 an example
of error for each of the cited phenomena are showed.

phenomenon example POS Tag Lemmatization
Colloquial language | smamma “shove off” N smamma
Neologisms reppo “to rap” N rappo

Bad words troia “bitch” N troio
Dialect words uocchie “eyes” A-N-V oucchie
Foreign words that N that
Typing errors accezzione “meaning” N accezzione
Abbreviations bro “brother” N bro
Distortions zzz1000 “uncle” N 2771000

Table 4.1: Examples of words that produce errors in Pos Tagging and Lemma-
tization

We uses the resulting annotated text to perform some statistical analy-
sis using some classical data mining measures: word absolute and relative
frequency, Tf-idf, Bigrams and Trigrams frequency. The results of this step,
performed by the Statistic Module of the LG-Starship Framework, is a large
Tf-idf matrix Author per Terms, an Author-word frequency matrix and two
Author-Ngrams matrices. In order to limit the dimension of the Tf-Idf matrix,
that originally includes 290 rows (one for each singer) and a number of words
ranged between 300 and 1000, we select the 30 words with highest value of Tf-
Idf per author. The same operation has was carried out with Term Frequency

4.1. Rapscape, the construction of a tool for the analysis of the
Italian Rap Phenomenon 97

values and N-grams Values.

In addition to basic statistics analysis, we focused on identifying the most
interesting words of Italian rap language. A useful approach might be to
compare how the relative frequency of words in rap songs differs from Italian
language in general. To make this analysis we compared our corpus with
ItWaC* [Baroni et al., 2009] , a huge word corpus constructed from the Web
and using words from La Repubblica Corpus [Baroni et al., 2004]. To make
the comparison we defined an arbitrary index that measures the “Rapness”,
R, for each word w:

__ T (4.1)

where R is the frequency of occurrences of word type w in our corpus of rap
lyrics and is the frequency of occurrences of word type w in the It WaC' corpus.
The Rapness has been calculated both on the total corpus and for individual
artists. We considered only words with a full semantic value, filtering by part
of speech only nouns, verbs and adjectives. To prevent rare words, we took
only the top 3000 most frequent words in the corpus and the most frequent
50 for each part of speech for authors. The top 10 rap words are shown in the
following table.

word rapness POS
sveglia 5.07 N
sguardo 4.32 N
maria 3.57 N
felicita 2.96 N
fake 2.94 N
rapper 2.91 N
avvelenato 2.61 A
maledire 2.54 \Y
rappare 2.24 V
volere 1.43 \Y

Table 4.2: Top 10 most rap words.

Notice that this is a slightly unbalanced comparison, because we compare
domain texts with general ones. A better measure of what constitutes Rapness
should provide a comparison with lyrics of other genres, but currently this
kind of resource for the Italian language does not exist. Another method to

*http://wacky.sslmit.unibo.it/doku.php?id=corpora

http://wacky.sslmit.unibo.it/doku.php?id=corpora

98 Chapter 4. Experiments

measure linguistic difference between rap language and the Italian language
in general is measuring how the distribution of parts of speech vary between
them. Table 4.1.4 shows the comparison between rap parts of speech with
ItWaC' ones.

POS ItWaC Rap
N 941.990 (40,4%) 1.823.423 (54,5%)
ADJ | 706.330 (30,3%) 383.369 (11,4%)
\Y% 679.758 (29.2%) 1.141.949 (34%)

Table 4.3: POS distribution.

Although the corpora differ much in size and are not directly comparable,
the percentage of distributions gives us an interesting overview of the
linguistic characterization of rap songs. We can see that Rap lyrics focus
much more on nouns and verbs, whereas adjectives seem to be much less
relevant than.

As mention above, it is highly difficult to carry out a syntactic analysis
due the features of texts. In order to analyze the Rapscape corpus from a
semantic point of view, we decided to perform two different types of semantic
analysis that don’t need syntactic parsing.

First, we chose to calculate the similarity between authors using a state of

the art semantic measure as the Cosine Similarity [Huang, 2008]. To calculate
similarity between authors, we apply the Cosine Similarity to a matrix of
Authors per Tf-idf.
After that, we apply the Semantic Module of L.G-Starship Framework. We
extend the semantic space of each author with other similar words that could
not appear in the corpus and calculate the semantic space of the Corpus.
The results of this approach is a table in which each row represent a term, a
distance value and a second term.

4.1.5 Data Visualization

The goal of the Visualization step is the development of an interactive web-
based (html, css, js) tool which make the dataset browsable and queryable.
In order to build the tool we examine the specific problems posed by the
visualization of large text corpora [Wise et al., 1995, Fortuna et al., 2005,
Alencar et al., 2012, Sinclair et al., 2015, Kucher and Kerren, 2014, Brath and
Banissi, 2015] and consider some suggestions proposed by previous works on
lyrics databases [Labrecque, 2009, Baur et al., 2010, Oh, 2010, Sasaki et al.,
2014].

4.1. Rapscape, the construction of a tool for the analysis of the
Italian Rap Phenomenon 99

To achieve this goal we chose to use some techniques grounded in Informa-
tion Design and Data Visualization field. In recent years several theoretical
approaches, methodologies and tools for the interactive exploration of large
collection of data have been developed, with particular focus to web-oriented
technologies. In Information Design field, the textual dataset visualization
deals several issues, ranging from words readability to spatial distribution of
large collection of texts. To overcome these known issues we have chosen to
adopt an “explorative” approach, following the well known paradigm in the
literature [Shneiderman, 1996] based on overview first, zoom and filter, then
details-on-demand.

This approach allows us to efficiently map data using visual dimensions in
order to create an interactive graphic representation, allowing to overview the
whole corpus and several filtered restricted views. For the first development
of the prototype we used Tableau Public®, Gephi and Sigma.js®, tools freely
available on the web.

The visualization tool is composed by a set of “views” and navigation fil-
ters that allow to observe data from multiple angles through different levels
of detail following canonical Information Design pattern. A series of visual-
ization layers is combined together in some views providing an overall look
about various aspects of the dataset: basic statistics such as frequencies and
terms distribution, range of vocabulary, word rankings, bipartite networks be-
tween authors and terms; networks between words and its most representative
semantic cluster.

Filters and secondary views are designed instead to move quickly between
different levels and perspectives on the dataset and go into the details to
analyze data relating to the individual author (most frequent terms, dominant
topics, etc) or individual lyric. It is also possible to draw comparisons between
the authors (or groups of authors), or between lyrics (or groups of lyrics).
Therefore the visualization is designed primarily as an exploratory tool that
makes possible the analysis of Italian Rap textual universe at different levels
of depth and granularity. Following figures present some relevant views and
filters of the tool.

The first visualization shows in figure 4.1 shows the overall word frequen-
cies in the corpus calculated by the application of the Preprocessing Module
and Mr.Ling Module. The visualization technique adopted is the Circle Pack-
ing: each word is a labeled circle. Dimension and color of the circles are
related to the number of simple word occurrences in the dataset.

Swww.tableau.com/
bsigmajs.org/

www.tableau.com/
sigmajs.org/

100 Chapter 4. Experiments

This first kind of visualization provides an overall view of the entire dataset
(Overview first). The right bar shows lemmas, part-of-speech and absolute
frequency grouped by author. It is possible to explore data, filtering by au-
thor, frequency, year or part of speech (Zoom and filter) using the left bar. In
addition, clicking on a single circle a set of specific information about lemma
can be obtained (Details on demand). Circles’ sizes depend to tf-idf value.

Frequenza lemmi

socio

Sheet 1 Sheet3 Sheet4 Sheet5 Sheet6 Sheet7 Sheet8 Sheet9 &5 Dashboard 1 £ 2 9 Dashboard 3 Sheet 10 Sheet 13 Sheet 15 Sheet 16 « 7

Figure 4.1: Overall word’s frequencies

In the example, we choose not to filter the dataset. As we expected,
bigger circles represent determiners, preposition or verbs. It is interesting to
note that, before the circle essere, “to be”, and avere, “to have”, the bhigger
verb circle is sonare, a dialectal term for suonare, “to play”. This highlight
the importance of dialect languages into the Italian Rap Language.

The data derived by the application of the Statistic Module is shown in
various new tabs: the second visualization (figure 4.2) shows the changes in
tf-idf rank for each word on a time scale. Using the left bar data can be
filtered by Part-Of-Speech, tf-idf value or year.

In the example presented in the Fig. 4.2, we set the “artist” on Fabri
Fibra and reduce the dataset to words with high tf-idf value (greater than
0.1610). Time line only shows years in which the selected artist published an

4.1. Rapscape, the construction of a tool for the analysis of the
Italian Rap Phenomenon 101

Artista

=
=]
&
=

=]

201 2015

Pos Meglio

thidf: 0,1610

NN eE D .

IR0 Y)) [
HETNRT 000 [I I (D (D) (N ()
1L
11

0 Y Y O |
10000 6 0 5 - - N N S S

Figure 4.2: Changes of word’s rank for author in relation with the year

album.

The Figure 4.3 shows a detail of the tf-idf bipartite network, representing
co-citation between authors. In the left bar it is possible to filter nodes by
year or by value. Bigger nodes represent authors, on the contrary, smaller
represent, terms.

This kind of visualization is useful to show the evolution of impact of
single words over time. The original dataset contains the first 30 words with
the higher tf-idf value for author. Different authors nodes could connect with
the same term and, in case of co-citation, we can find a direct connection
between two authors nodes. In the example we decided to show values
after year 2002: the author “Shade”, for example, is connected to word like
batman,feeling, status, pop or hashtag, but also with the author node “Fred
De Palma”.

As mentioned above, co-authorship (featuring) is a common phenomenon
in Rap music: the vast majority of lyrics have two or more authors. In order
to extract information about co-authorship, we collect every author’s names
(and their aliases) and perform a pattern matching to find them in lyrics
(usually the author’s names is in brackets, but there may be many several

102

Chapter 4. Experiments

ranits

. fisicamenté™ une
Modularity class dirmitagliley steve 1 i .
irmitagligieri ie omologazione
night i scratches
= socio 9 niggas
pressingirl i
4nno korven fred G para tomorrof” who-
" wi
e madama bolt campione %
<
garze / samuel rayden . uo.
Filtra per edge-weight regalarvi brasa baciaculistico
difficolf#Vay purifica
0,000 1960 poaByair - 4..che
red de palma o o
9 Lt fade onemiccos'® SBRESS L | iamo italianima
7 lyricalz
daiii ~ cielofan fiziano chop connnuia\r’r?clcma principi au tossico. .il
c°"s°"§parim o f siii jobs flaeggerﬁbm‘é”_cﬁgreatch s
cosparge erealnyingoia stanotte jarro. enzino
uoho 1 g
A videogioco volevey SCriveviy o mic torino vergogng
i i cean: e
fap @usain innamoro ledger one scassarci h %%Hage;me(
vincitore y N
soo Paima facevi status _— invecchiare
foelin lalalalalalalalgfalglanagn
& legendary one mic %Fﬂﬁ
. ph
butti ¥ Eencle! un’alternativa
preoccupo commessi Sitay . Zero-uno-uno o
presentarmi shade ponchia,g;
de Eo n " po-gBBDo-pooo apracadabra Kici
attendi ammazzarli
Spo . verrd borchia
buttavo go8 X
mwm!givem fuji - eldoraaind
hashtag bastianich . tenerezza
regalarti italian
basterebbe monolocale
esprl datemi
muoro fight
tornerei addetti
ep mortali
esplodere
spicca shurdrovero L]
ulisse raige Kono) i
nessun'aftidetora~ki

Figure 4.3: Detail of the Graph Author-Word in which each author was con-
nected with the words with higher tf-idf value

4.1. Rapscape, the construction of a tool for the analysis of the
Italian Rap Phenomenon 103

other possibilities). The results are shown in 4.4, a co-author network in
which nodes are authors and weighted arcs represent the number of shared
songs.

Modularity class
(0]
Filtra per edge-weight

0,000

Figure 4.4: The Authors Collaboration Network

Co-authorship network, also called Collaboration Network, as shown in
fig. 4.4, has been calculated applying a built-in Gephi algorithm called “Mod-
ularity Class” that measure the strength of division of a network into groups
or communities [Newman, 2006a]. This graph shows how mainstream authors
are strongly interlinked, but there are many small groups of underground
authors or local communities.

The 4.5 shows the Cosine Similarity Network, in which we represent sim-

ilarity between authors using Cosine Similarity algorithm applied to the Au-
thor’s vector of tf-idf.
Resulting clusters are coherent with real relations between authors. In fig.
4.5 is shown a blue cluster that represent the Naples Area, a series of author
belonging to the geographical, cultural and linguistic area of Naples. In the
same way, the brown group in the top right represent a community of authors
that worked together in the past.

The figure 4.6 represents the Semantic Network of words, in which the

104 Chapter 4. Experiments

Modularity class C sacre scuole
bassi maestro
Lol : ® jake la furia
Anno .achllle lauro
cor veleno . club dogo

<> kaos @ gué pequeno

Filtra per edge-weight
angue misto
primo. []

turi

fritz da cat) piotta gemitaiz o
dj lugi >
colle der fomento

francesco paura danno noyz narcos

dj gruff luché
fuossera

rocco hunt
13 bastardi
co'sang
clementino, 99 posse

ntd

la famiglia

Figure 4.5: A detail from the Cosine Similarity Network of Authors

distance between words are extracted from the HAL matrix generated by the
Semantic Module; some semantic clusters are visible.

In the example, we focused on a single cluster that includes geograph-
ical words such as roma, milano, bologna, but also napoletano,siciliano,
ovest ghetto or penisola, and proper names as stefano, pasquale, alitalia
or commercialista. 'This is an example of how the Semantic Module can
produce knowledge about a text or a corpus: downloading the vector of the
words with an high weight value, it is possible to find different clusters of
terms and identify thematic areas included into the analyzed text. It could
be possible to select different groups of authors and compare the emerged
semantic network in order to compare how change the semantics of each group.

This project underlines how a linguistic tool as the LG-Starship Frame-
work is able to rapidly construct different kind of linguistic databases about
large and disparate corpora of texts: in fact, a linguistic study of a musical
phenomenon as Rap or other kind of cultural textual phenomenon (i.e. film
scripts, novels, etc.) could be carried out by users who are not familiar with
linguistics theories or techniques. Thanks to the LG-Starship Framework,
this kind of analysis, including a comparative study on different cultural

4.1.

Italian Rap Phenomenon

Rapscape, the construction of a tool for the analysis of the

105

°

Modularity class
@
Filtra per edge-weight
0000 1,960
L.
L]
L d - .
e ° ®
. °
o .« ® .
. PRI)
- °
» .
@ O
®
@
@ ®
@
14 @
@
& e °
L 4 ®
®
@ oo °
inc@lpie
ra o
-®

@ ® O
° Y O O
) .
® ® e N
. o i i@ ®
y @ >
@ ® o @ ® Sy ° o
son@suo paiple (an
e ? ® e @ 0
® ® .
@ Y @ © @ O -
@ ~ sefajo naielano [
@ ® @ g &%
- o ®
® g @))
® ® g@a@ i o C
4 3 A - L4
e i & r@n i
e @ g s . g .
@ @’\ V‘@'e
s . - ®_ 8 Ve _ .
- @ _ ’@Bg‘ " @e comi@eisia @
P estro folut conffigynno
e . S o e .
_ e o @ ® .
0 @ @ ®
. o X “ @ @
® @ @ =
® @ . °
. 7 @ .
: e @ ® g @ ‘
@ -
@
@ @ ® & <
@ O o ©
@
N . ® ®
- ®
.

Figure 4.6: A detail of Hal Network

areas will be developed in short time and in a simple and direct way.

106 Chapter 4. Experiments

4.2 A rule-based method for product features
Opinion Mining and Sentiment Analysis

In this section we present an experiment of feature-based Opinion Mining
and Sentiment Analysis of hotel, smartphones and videogames users review.
The experiment, which involves many of the modules presented in the
previous chapter (3.3), includes the following steps:

Collection of a user-generated review Corpus;

Postagging and Lemmatization of the Corpus grounded on the Mr.Ling
Module;

Feature-Based Opinion Mining based on the Syntactic Module;

Semantic Expansion based on the Semantic Module applied to the ex-
tracted opinions.

As shown in the previous list, the core of this project lays entirely on three
modules of the LG-Starship Framework: it uses the dependency parser con-
tained into the Syntactic Module in order to extract sentences which contains
psychological verbs and, in addition, we implement a new series of grammars
which found support verb construction with evaluative adjectives or verbles
sentences with evaluative adjectives. New grammars are based on the Sentlta
dictionaries which is a database of electronic dictionaries of sentiment nouns,
adjectives, adverbs and verbs accompanied by polarity values.

The entire project will be presented in the following sections.

4.2.1 Initial guidelines

Consumers, as Internet users, can freely share their thoughts with huge and
geographically dispersed groups of people, competing, this way, with the
traditional power of marketing and advertising channels.

The expansion of the e-commerce, and the growth of the user generated
contents, that can constitute large scale databases for the machine learning
algorithms training, facilitated the growth of interest around the automatic
treatment of opinion and emotions.

The same preconditions caused a parallel raising of attention also in economics
and marketing literature studies. Basically, through user generated contents,
consumers share positive or negative information that can influence, in many
different ways, the purchase decisions and can model the buyer expectations,

4.2. A rule-based method for product features Opinion Mining
and Sentiment Analysis 107

above all with regard to ezperience goods |[Nakayama et al., 2010]; such
as hotels [Ye et al., 2011, Nelson, 1970], restaurants [Zhang et al., 2010],
movies [Duan et al., 2008, Reinstein and Snyder, 2005], books [Chevalier and
Mayzlin, 2006] or videogames [Zhu and Zhang, 2006, Bounie et al., 2005].

The rapid growth of the Internet drew the managers and business aca-
demics attention to the possible influences that this medium can exert on cus-
tomers information search behaviors and acquisition processes. In summary,
the growth of the user generated contents and the eWOM (electronic Word of
Mouth) can truly reduce the information search costs. On the other hand, the
distance increased by e-commerce, the content explosion and the information
overload typical of the BigData age, can seriously hinder the achievement of a
symmetrical distribution of the information, affecting not only the market of
experience goods, but also that of search goods. An appropriate management
of online corporate reputation requires a careful monitoring of the new digital
environments that strengthen the stakeholders’ influence and independence
and give support during the decision making process.

It would be difficult, for example, for humans to read and summarize the
huge volume of data about costumer opinions. However, in other respects, to
introduce machines to the semantic dimension of human language remains an
ongoing challenge.

In this context, business and intelligence applications, would play a crucial role
in the ability to automatically analyze and summarize, not only databases,
but also raw data in real time.

The largest amount of on-line data is semistructured or unstructured and,
as a result, its monitoring requires sophisticated Natural Language Processing
(NLP) tools, that must be able to pre-process them from their linguistic point
of view and, then, automatically access their semantic content.

In any case, it is of crucial importance for both customers and companies
to dispose of automatically extracted, analyzed and summarized data, which
do not include only factual information, but also opinions regarding any kind
of good they offer.

Companies could take advantage of concise and comprehensive customer

opinion overviews that automatically summarize the strengths and the
weaknesses of their products and services, with evident benefits in term of
reputation management and customer relationship management.
Customer information search costs could be decreased trough the same
overviews, which offer the opportunity to evaluate and compare the positive
and negative experiences of other consumers who have already tested the
same products and services.

108 Chapter 4. Experiments

4.2.2 The Product Feature Extraction

Differently from what happens with objectivity language it is impossible to
directly observe or verify subjective language. Opinions are defined as positive
or negative views, attitudes, emotions or appraisals about a topic, expressed
by an opinion holder in a given time. They are represented by Liu [2010] as
the following quintuple:

0j, [iks 00iikl, hi, 1

Where o, represents the object of the opinion; fj; its features;oo;;u, the
positive or negative opinion semantic orientation; h; the opinion holder and
t; the time in which the opinion is expressed.

Because the time can almost alway be deducted from structured data, we
focused our work on the automatic detection and annotation of the other el-
ements of the quintuple.

The Semantic Orientation (SO) gives a measure to opinions, by weighing their
polarity (positive/negative/neutral) and strength (intense/weak) [Taboada
et al., 2011, Liu, 2010]. The polarity can be assigned to words and phrases
inside or outside of a sentence or discourse context. In the first case it is
called prior polarity [Osgood, 1952]; in the second case contextual or posterior
polarity |Gatti and Guerini, 2012].

We can refer to both opinion objects and features with the term target |Liu,
2010], represented by the following function:

r=0(f)

Where the object can take the shape of products, services, individuals,
organizations, events, topics, etc., and the features are components or
attributes of the object.

Each object O, represented as a “special feature”, which is defined by a subset
of features, is formalized in the following way:

F=Af1 f2, ..., fn}

Targets can be automatically discovered in texts through both synonym
words and phrases W; or indicators I; [Liu, 2010]:

Wi = {wll, wi2, c ,wim}
I = {i1,4;2, ... iiq}

4.2. A rule-based method for product features Opinion Mining
and Sentiment Analysis 109

In order to provide a formal definition of sentiments, we refer to the func-
tion of [Gross, 1995]:

P(sent,h) Caus(s, sent, h)

In the first one, the experiencer of the emotion (h) is function of a senti-
ment (Sent), through a predicative relationship; the latter expresses a senti-
ment that is caused by a stimulus (s) on a person (h).

Pioneer works on feature-based opinion summarization are Hu and Liu

|2004, 2006], Carenini et al. [2005], Riloff et al. [2006] and Popescu and
Etzioni [2007]. Both Popescu and Etzioni [2007] and Hu and Liu [2004]
firstly identified the product features on the base of their frequency and,
then, calculated the Semantic Orientation of the opinions expressed on these
features. Recent works are Khan et al., Wei et al. [2010] and Zhang and Liu
[2011] who selected candidate product features by employing noun phrases
that appear in texts close to subjective adjectives, Gutiérrez et al. [2011]
exploited Relevant Semantic Trees (RST).
Wei et al. [2010] proposed a semantic-based method that made uses of a
list of positive and negative adjectives defined in the General Inquirer to
recognize opinion words and, then, extracted the related product features in
consumer reviews.

4.2.3 Automatic Feature-based Opinion Mining

The first step of the Project consisted in the Corpus Collection: the corpus
dataset has been built using Italian opinionated texts in the form of users’
reviews and comment found on e-commerce and opinion websites. It contains
600 text units (50 positive and 50 negative for each product class) and refers
to three different domains, hotels, cellulars and videogames, for all of which
different websites have been exploited. The Internet portals used are: ciao.it,
amazon.it and tripadvisor.it and booking.it for hotel reviews. Each single
review has been stored with a tag structured as follow:

C#H#P7#

C' indicates the category: H for hotels, V for videogames, C for cellulars;
the category is followed by a numerical identity ranging from 00 to 50. The
polarity of the opinion is expressed by a P for positive and N for nega-
tive followed by a number indicating the value of the opinion given by the user.

110 Chapter 4. Experiments

Category Entries | Example Translation
Adjectives 5,381 allegro cheerful
Adverbs 3,693 tristemente sadly
Compound Adv | 774 a gonfie vele full steam ahead
Idioms 577 essere in difetto | to be in fault
Nouns 3,215 eccellenza excellence
Psych Verbs 604 amare to love

LG Verbs 651 prendersela to feel offended
Bad words 182 leccaculo arse licker

Tot 15,077 | - -

Table 4.4: Composition of Sentlta

As second step, the corpus collected has been processed with the LG-
Starship Framework: after a first pre-processing phase which has been carreid
out by the Preprocessing Module, the corpus has been divided in 18 text
units and Postagged and lemmatized with the Mr. Ling module.

The third step regards the opinion extraction. Our contribution to the
resolution of the opinion feature extraction and selection tasks, goes through
the exploitation of the Sentlta database [Pelosi, 2015] that consists of a set of
dictionaries that describe their lemmas with appropriate semantic properties;
they have been used to define and summarize the features on which the opinion
holder expressed his opinions.

Sentlta contains the dictionaries shown in table 4.4. Great part of these
dictionaries have been manually tagged, but some of their (adverbs and de-
rived nouns) have been automatically built Pelosi [2015], Maisto and Pelosi
[2014a,b]. In Sentlta each lemma is tagged with polarity values (POS for
positive values and NEG for negative values) and/or strength values (FORTE
when the value increase and DEB when the value decrease).

Other Electronic dictionaries included into the project are the Concrete
Noun dictionary that has been manually built and checked by seven linguists.
It counts almost 22,000 nouns described from a semantic point of view by the
property Hyper that specify every lemma’s hyperonym. The tags it includes
have been described in the tab. 3.5 of the section 3.2.5.

In the Feature Extraction phase the sentences or the noun phrases ex-
pressing the opinions on specific features are found in free texts. Annotations
regarding their polarity (BENEFIT/, DRAWBACK) and their intensity
(SCORE=[-3;+3]) are attributed to each sentence on the base of the opinion

4.2. A rule-based method for product features Opinion Mining
and Sentiment Analysis 111

words on which they are anchored.

In order to complete the analysis, the Syntactic Module has been enriched
with the Sentlta resources: in fact, the original module only extract sentences
in which appear Psychological Predicates, but ignore verbles sentences and
sopport verb sentences in which the adjective which follow the support verb
is not included into the databases of deverbal adjectives connected to the
Psychological Predicates. Furthermore, the module share from Sentlta the
polarity values of each lexical entry.

We added to the original module a dictionary of evaluative adjectives that
go to represent the alternative anchors for the parser.

The sentiment expressions in which we inserted the adjectives from
Sentlta are of the kind NO essere Agg val. Where Agg val represents an
adjective that expresses an evaluation |Elia et al., 1981] and the support verb
for these predicates is essere “to be”.

This verb gives its support also to the expression N0 essere un N1-class (e.g.
Questo film é una porcheria “This movie is a mess”), that without it, together
with the adjectives, would not posses any mark of tense |Elia et al., 1981].

A great part of the compound adverbs possess also an adjectival function
(e.g. a fin di bene “for good”, tutto rose e fiori “all peace and light”, so they
have been included in this support verb construction as well.

The support verbs’ equivalents included in this case are the following
[Gross, 1996].

e aspectual equivalents: stare “to stay”, diventare “to become”, rimanere,
restare “to remain”;

e causative equivalents: rendere “to make”;

e stylistic equivalents: sembrare “to seem”, apparire “to appear”, risultare
“to result”, rivelarsi “to reveal to be”, dimostrarsi, mostrarsi “to show
oneself to be”.

Among the Italian LG structures that include adjectives” we selected the
following, in which polar and intensive adjectives can occur with the support

verb essere [Vietri, 2004, Meunier, 1984]:

e Sentences with polar adjectives:

"For the LG study of adjectives in French see Picabia [1978], Meunier [1999, 1984].

112 Chapter 4. Experiments

— NO Vsup Agg Val

L’idea iniziale era accettabile[+1]

“The initial idea was acceptable”
— V-inf Vsup Agg Val

Vedere questo film & demoralizzante[/-2/

“Watching this movie is demoralizing”

NO Vsup Agg Val di V-Inf

La polizia sembra incapace[-2] di fare indagini

“The police seems unable to do investigate”
— NO Vsup Agg Val a N1

La giocabilita é inferiore[-2] alla serie precedente

“The playability is worse than the preceding series”
— NO Vsup Agg Val Per N1

Per me questo film ¢é stato noioso[-2]

“In my opinion this movie was boring”
e Sentences with adjectives as nouns intensifiers and downtoners:

— NO Vsup Agg Int di N1

Una trama pienaf+] di falsita/-2/
“A plot filled with mendacity”

Predicativity is not a property necessarily possessed by a particular class of
morpho-syntagmatic structures (e.g. verbs, that carry information concerning
person, tense, mood, aspect); instead, it is determined by the connection
between elements [Giordano and Voghera, 2008, De Mauro and Thornton,
1985].

Also on the base of their frequency in written and spoken corpora and
in informal and formal speech, together with [Giordano and Voghera, 2008,
we consider verbless expressions syntactically and semantically autonomous
sentences, which can be coordinated, juxtaposed and that can introduce
subordinate clauses, just like verbal sentences.

4.2. A rule-based method for product features Opinion Mining

and Sentiment Analysis 113
Negation | Sentiment | Word Shifted
Operator Word Polarity | Polarity
fantastico +3 -1
bello +2 -2
non carino +1 -2
scialbo -1 +1
brutto -2 +1
orribile -3 -1

Table 4.5: Negation rules.

Among the verbless sentences available in the Italian language, we are
interested here on those involving adjectives indicating appreciation (Agg
val), e.g. Bella questa! “Good one!” [Meillet, 1906, De Mauro and Thornton,
1985].

Below we report a selection of customer reviews that can give an idea of the
diffusion of the verbless constructions in user generated contents.

e Hotel Reviews: |Posizione fantastica| si raggiungono a piedi molti luoghi
strategici di Londra, [molto curato nel servizio e nel soddisfare le nostre
richieste].....[oltimo servizio in camera).’

e Videogame Reviews: |Provato una volta| e |subito scartato|, |odioso il
modo in cui viene recensito|.?

e Smartphone Reviews: |Utilissimo il sistema di spegnimento e riaccen-
sione ad orari programmati|. | Telefonia e sensibilita OK].'°

In addition to these structures, a system able to recognize the negation has
been introduced into the parser: negation indicators do not always change a
sentence polarity in its positive or negative counterparts; they often have the
effect of increasing or decreasing the sentence score. That is why we prefer to
talk about valence “shifting" rather than “switching”.

The general rules, concerning negation operators are summarized in the
Tables 4.5.

8http://www.tripadvisor.it/ShowUserReviews-g186338-d651511-1r120264867-Haymarket _
Hotel-London_England.html

Yhttp://www.amazon.it/review/RK6CGSTACILXT

Ohttp://www.amazon.it/Alcatel-Touch-Smartphone-Dual-Italia/
product-reviews/BO0F621PPG?pageNumber=3

http://www.tripadvisor.it/ShowUserReviews-g186338-d651511-r120264867-Haymarket_Hotel-London_England.html
http://www.tripadvisor.it/ShowUserReviews-g186338-d651511-r120264867-Haymarket_Hotel-London_England.html
http://www.amazon.it/review/RK6CGST4C9LXI
http://www.amazon.it/Alcatel-Touch-Smartphone-Dual-Italia/product-reviews/B00F621PPG?pageNumber=3
http://www.amazon.it/Alcatel-Touch-Smartphone-Dual-Italia/product-reviews/B00F621PPG?pageNumber=3

114 Chapter 4. Experiments

Feature 1 | Feature 2 Similarity
colazione ristorante 0.907
“breakfast” | “restaurant”

colazione arredamento | 0.828
“breakfast” | “forniture”

colazione vista 0.751
“breakfast” | “view”

Table 4.6: Example of similarity between extracted features.

Once the dependency parser has been enriched with the described struc-
tures, the Syntactic Module process the corpus and tag evaluative adjectives
(A-val) and Nouns (NO) respectively as “predicates” and “feature”. Polarity
values shared from Sentlta by the module, are computed for each review
taking into account the negation rules. The output of the parser is a list of
this kind:

La colazione era fantastical!
“the breakfast was fantastic!”
[Review:H03P4,Sentiment:“fantastica”, Feature:“colazione”, Aux:essere,Polarity:“+3”]

4.2.4 Automatic Classification of Features and Reviews

Once the opinions have been extracted, the framework creates a database of
evaluative adjectives and related features in which each NO and A-val has been
stored with the opinion from which has been extracted. This database has
been used as input for the next step of the project which concerns the semantic
expansion of the concordance. In this phase, two operation are carried out:
feature categorization and review classification.

In the first step, the module calculate the semantic similarity between all
features extracted from the entire corpus.

In table 4.6 is shown the value of similarity between the feature colazione,
“feature” and other features. As shown, the similarity value is higher with the
feature “restaurant” (0.9). The idea is to extract the feature with a higher
value of similarity for each feature and create a graph: in this graph, each
feature represent a node and is connected by a weighted arc to its most similar
feature. So, a node could has several in-arcs but only one out-arc. In addition
to the extracted features, the similarity is calculated also with six Original
Features, which have been inspired by the features that booking.it propose in
its reviews pages. These features are:

e pulizia, “cleaning”;

4.2. A rule-based method for product features Opinion Mining
and Sentiment Analysis 115

e comodita, “confort”;
e ambiente, “location”;
e stanza, “room”;
13 7.
e personale, “employees”,
[44 3 7.
e prezzo, “price”;

If the value of each in-arc is higher than the value of out-arc, then this
feature is considered as a category and features pointing on it belonging to
this category. When an in-arc and an out-arc have the same values, if one
of the two nodes is an original feature or has a direct connection with an
original feature, then it is considered the category. For example, if the feature
pranzo, “lunch” has a out-arc with a value of 0.94 with the word ristorante
and an in-arc coming the same word ristorante with the same value, but also
is connected to the original feature comodita with value of 0.8, also if the
value is smaller than its in-arc, comodita will be considered the feature and
the two nodes are considered classes of that category.

In the second operation we perform a review classification based on the

expanded semantic network of each sentence. The first step is to collect fea-
tures (NO) and sentiments (Pred) and expand the sentence semantic networks
by extracting their 50 more similar words. The algorithm create a matrix of
similarity values in which each row represent a sentence and each column a
word.
The matrix is used in order to calculate semantic similarity between sentences.
Two algorithms have been tested with this purpose: we applied a Cosine Simi-
larity to matrix’s vectors and generate a graph in which each node corresponds
to a sentence and each arc corresponds to the calculated similarity. Then, a
Modularity Class algorithm has been applied to the graph in order to highlight
any groups of sentences.

4.2.5 Experimental Results

As we said in section 4.2.3, the Corpus is composed by user generated reviews
of hotels, videogames and smartphones and has been manually collected from
the portals ciao.it, amazon.it, tripadvisor.it and booking.it that provide a
user punctuation which could be adopted as control value in a evaluation
task. An extract of the corpus is reported below:

Review:

116 Chapter 4. Experiments

Sono stato in questo albergo quasi per caso, dopo aver subito
un incidente e devo ammettere che se non fosse stato per la
disponibilita, la cortesia e la professionalita del personale non
avrei potuto risolvere una serie di cose. L’hotel é fantastico: la
colazione ottima ed il responsabile della sala colazione gentilis-
stmo. La pulizia é impeccabile. La vista sulla citta era incredibile
ma la notte c’era un silenzio di tomba. Per quanto riguarda le
stanze, il letto era comodissimo e la doccia fantastical!

“I happened to be in this hotel by accident and I must admit
that if it hadn’t been for the willingness, the kindness and the
competence of the employees I couldn’t have solved a number of
things. The hotel is fantastic: great the breakfast and very kind
the manager of the breakfast room. Cleaning was impeccable.
The city view was incredible but there was a deadly silence. For
what concern the rooms, the bed was very comfortable and the
shower fantastic!”.

After the application of the parser, the extracted features has been
processed by the Semantic Module in order to find the feature categories.
The Semantic Module calculate the feature similarity crossing each extracted
feature and then, by selecting the high value for each feature, define a
network. An example of table of similarity is shown in table 4.7.

As shown in figure 4.7 and in the relative table 4.7, the features hotel, letto,
“bed” and wista, “view” are nodes which don’t have any leaf and the algorithm
can’t consider there as categories. For what concern intermediate nodes as
silenzio, “silence”, pulizia, “cleaning” or cortesia, “kindness”, the algorithm
starts an evaluation phase as described in section4.2.4: pulizia, belonging to
the original six features, has to be consider a feature. The feature silenzio,
“silence”, has two out-arcs, one with weight 0.970 with the node ambiente and
the other with weight 0.954 with the node personale which are two original
features. Ignoring the in-arc which have a lower value, its category has to be
considered ambiente.
The words doccia, “shower” and colazione has a mutual connection with weight
0.939. Both has a connection with an original features, but the stronger
connection is the one between colazione and comodita, so, doccia like colazione
belong to the category comodita.
The final classification of the features is shown in table 4.8.

These results are far from being acceptable. While the majority of the

4.2. A rule-based method for product features Opinion Mining
and Sentiment Analysis

117

Source Target Weight
disponibilita responsabile 0.936
hotel silenzio 0.899
pulizia cortesia 0.939
cortesia personale 0.942
professionalita | personale 0.972
personale professionalita | 0.972
colazione doccia 0.939
doccia colazione 0.939
vista pulizia 0.894
silenzio personale 0.954
letto silenzio 0.916
responsabile disponibilita 0.936
pulizia pulizia 1.0
silenzio ambiente 0.970
vista pulizia 0.894
personale personale 1.0
doccia personale 0.907
letto personale 0.905
disponibilita prezzo 0.959

Table 4.7: Similarity Graph in table format.

Category | Features

comodita

cortesia
doccia
colazione

personale
professionalita

personale

ambiente | hotel
silenzio

letto
responsabile
disponibilita

prezzo

pulizia pulizia

vista

Table 4.8: Extracted categories and relative features.

118 Chapter 4. Experiments

profe s&ibnalita

amhignte
872
1) hape -8 e f&. ale 0:907 dﬁ'a
.i:rulm 0.905 QFE
039
Iétio
0839
responsabile
-) “oa12 ita—0823 —coié}one
Bzzo
0536
dispdnibilita vista

Figure 4.7: Resulting Similarity Graph

features have been correctly classified, the feature letto, “bed”, responsabile
“manager”, disponibilita, “willingness” and wista, “view” have been wrongly
classified. For what concern the feature responsabile, the problem could be
caused by the ambiguity of the word. In the other cases find the cause of the
problem is more complex.

The overall precision of this classification method reach a precision of
60% and has been calculated on a sample of 60 reviews equally distributed
between videogames, hotels and smartphones reviews and positive and
negative reviews.

For what concern the precision of the simple feature extraction, we obtain a
precision on the entire corpus of about 90% with a recall of 72% manually
calculated on a sample of 100 document.

Once the features have been classified, the parser proceeds to the tag
of semantic roles, automatically producing an annotated text as the following:

Annotation:

Sono stato in questo albergo quasi per caso, dopo aver subito un incidente e devo ammettere che

4.2. A rule-based method for product features Opinion Mining
and Sentiment Analysis 119

se non fosse stato per <BENEFIT TYPE="PREZZ0Q" SCORE="2"> la disponibilité </BENEFIT>, <BENEFIT
TYPE="COMODITA" SCORE="2"> la cortesia </BENEFIT> e <BENEFIT TYPE="PERSONALE" SCORE="2"> la pro-
fessionalita </BENEFIT> del <BENEFIT TYPE="PERSONALE"> personale </BENEFIT> non avrei potuto risolvere
una serie di cose. <BENEFIT TYPE="AMBIENTE" SCORE="3"> L’hotel é fantastico </BENEFIT>: <BENEFIT
TYPE="COMODITA" SCORE="3"> La colazione ottima </BENEFIT> ed <BENEFIT TYPE="PREZZ0" SCORE="3">
il responsabile della sala colazione gentilissimo </BENEFIT>. <BENEFIT SCORE="3" TYPE="PULIZIA"> La
pulizia é impeccabile </BENEFIT>.<BENEFIT SCORE="3" TYPE="PULIZIA"> La wvista sulla citta era incredibile
</BENEFIT> ma <BENEFIT SCORE="2" TYPE="AMBIENTE"> la notte c¢’era un silenzio di tomba </BENEFIT>.
Per quanto riguarda le stanze, <BENEFIT SCORE="3" TYPE="AMBIENTE"> ¢l [etto era comodissimo </BENEFIT>

e <BENEFIT SCORE="3" TYPE="COMODITA"> la doccia fantastica! </BENEFIT>

The dependency parser included into the LG-Starship Framework also
includes a visualization tool which show the graph structure of the analyzed
sentence in a fashion similar to the one presented in the figure 4.8.

|

PRED MDD

L essllsu'n cavvero

Arg

colazione

Figure 4.8: Visualization of the dependency graph of the sentence “la colazione
era davvero buona”

Differently from what happens with the standard parser, in the example
is shown a dependency graph that represent a support verb sentence which
anchor is the evaluative adjective. In the sentence 15

(15) La colazione era davvero buona.
“the breakfast was very good”

the predicative element was the adjective buono. The verb essere, “to be”, is
tagged as support verb (V-sup) and the adverb davvero, “very” is considered
a modifier of the predicate. The argument of the predicate (NO) is colazione,

120 Chapter 4. Experiments

“breakfast”, and is considered a feature.

Once the parser tag the text and the framework create a database of
features, we perform a semantic expansion of each review in order to create a
semantic network. This semantic network has two main objectives: the first
output of this semantic expansion is a big word semantic graph which contains
the terms related with a specific text. The graph, which is shown in the figure
4.9, emphasizes nodes with a high weighted degree which, in the majority of
cases represent adjectives.

credibite

| Ednceliegens
fune | wi&m:
o glhio

Adigolo y

inmer&f}nahﬂe

It

totaklients

iﬁmﬂe Lo
tra n%lnlia“ rnuiu-rf" iy

-'b ole

Figure 4.9: Extract of the word semantic Graph of Hotel Reviews

The graph shown in the fig. 4.9 has been calculated expanded the features
extracted by five hotel review and five videogames review, with their 50 more
similar words.

In a second time, the same semantic expansion algorithm has been applied
to a bigger corpus of 150 reviews of hotels, videogames and smartphones
divided into 15 groups: for each feature of each group we extracted the more
similar 50 words and we created a large similarity matrix in which rows
represent groups and columns represent the extracted words.

From the Similarity Matrix, applying a Cosine Similarity Algorithm, we
calculate a distance between group vectors. A graph has been generated using
Gephi and processed with the Modularity Class algorithm which partitioned

4.2. A rule-based method for product features Opinion Mining
and Sentiment Analysis 121

the graph in base of similarity weights and found internal communities. Nodes
are labeled with the number of the file the initial of the product (“H” for hotels,
“V” for videogames and “C” for cellulars or smartphones), and the initial of the
general polarity (“N” for negative and “P” for positive). The result is shown
in the figure 4.10.

Figure 4.10: Network communities calculated by the Modularity Class Algo-
rithm on the Similarity Matrix

Looking at the figure, there was a big community colored in red, and a
second community in green. For what concern the green community, it all
texts that contain hotel reviews. On the other hand, the red community
includes all smartphone and videogames texts.

Considering that videogames and smartphones belonging to similar
domains, both related with technology or computer science, the results, in
particular with hotel texts were encouraging.

In table 4.9) the evaluation of the results of the Sentiment analysis at a
Document-level is shown. We calculated the precision twice by considering in
a first case as true positive the reviews correctly classified by the Semantic
Module on the base of their polarity and in a second case by considering as

122 Chapter 4. Experiments

true positive the documents that received by the Framework exactly the same
stars specified by the Opinion Holder.

In detail, in the Polarity only row the True Positives are the documents that
have been correctly classified by the Module, with a polarity attribution that
corresponds to the one specified by the Opinion Holder.

In the Intensity also row the True Positives are the document that received
by the module exactly the same stars specified by the Opinion Holder.

Precision
Smartphones
Hotels
Videogames
Average

Polarity only | 72.0 | 63.0 | 72.0 | 74.0
Intensity also | 45.0 | 25.0 | 34.0 | 36.3

Table 4.9: Precision measure in document-level classification

As we can see, the latter seem to have a very low precision, but upon a
deeper analysis we discovered that is really common for the Opinion Holders
to write in their reviews texts that do not perfectly correspond to the stars
they specified. That increases the importance of a this kind of analysis, that
does not stop on the structured data, but enters the semantic dimension of
texts written in natural language.

Recall
Smartphones
Hotels
Videogames
Average

©
I
o

98.9 | 91.2 | 97.5

Table 4.10: Recall in both the sentence-level and the document level classi-
fications

The document-level Recall has been automatically checked with the LG-
Framework, by considering as true positive all the opinionated documents

4.2. A rule-based method for product features Opinion Mining
and Sentiment Analysis 123

which contained at least one appropriate sentiment indicator. So, the docu-
ments in which the parser did not annotate any pattern were considered false
negatives. Because we assumed that all the texts of our corpus were opinion-
ated, we considered as false negatives also the cases in which the value of the
document was 0.

Taking the F-measure into account, the best results were achieved with
the smartphone’s domain (77.0%) in the sentence-level task and with the
hotel’s dataset (94.8%) into the document-level performance.

As future work, the idea is to improve the feature classification precision
by applying parallel alternative strategies in order to correct the errors of
the experimental method based on semantic similarity. In addition, since
Sentiment Analysis is strongly domain-dependent, in future will be possible
to includes in the project new domains such as politics, cars, books or movies.
Once the method will reach a satisfactory precision level, it will be possible
to add a new Panel to the interface of the LG-Starship Framework which will
be entirely dedicated to the Sentiment Analysis.

CHAPTER 5

Conclusion and Future Work

126 Chapter 5. Conclusion and Future Work

In this thesis we presented a project of an hybrid linguistic framework

called LG-Starship Framework which is based on the idea that hybrid models
could offer better performances and more variated results than statistical or
rule-based model. The Framework comes from the lack of this kind of free re-
sources for the Italian language since, presently, the vast majority of linguistic
softwares are optimized for English language or they are not free.
The LG-Starship Framework is also designed to take advantage from the large
amount of electronic linguistic resources developed at the Department of Po-
litical, Social and Communication Science of the University of Salerno in the
last years. Resources that consist on several electronic dictionaries, verb ta-
bles, finite state grammars. A unique set of resources that could has a strong
impact on the linguistic community because of its completeness and depth.
This set of resources contains:

e a vast dictionary (over 1 million lemmas) of simple flexed words, tagged
with syntactic and semantic informations of disparate kinds.

e a complete dictionary of Compound Nouns of Italian, classified both in
semantic domains and syntactic structure.

e Predicate Tables (over 4000 italian verbs) classified and complete of
selected structures.

e several sub-dictionaries (Proper Nouns, Concrete Nouns, etc.)

e a list of Finite State Automata for recognition of temporal expressions,
proper nouns, movement verbs etc.

e morphological dictionaries of medical-domain confixes correlated with
combinatorial rules for recognition and classification of medical terms.

At the moment not all these resources have encountered a use on the
presented Framework, but we made a large use of electronic dictionaries and
predicate tables.

As theoretical background, the project is founded on the Lexicon-Grammar
Theory, presented by Mourice Gross in the ‘70. The theory which take
distance from the Chomsky’s Trasformational-Generative Grammar (TGG),
is largely based upon the work of Zellig Harris inheriting the idea that the
focus of a sentence is the predicate, intended as a verb or a sequence of word
which have the same function.

Gross starts a vast work of compilation of linguistic data for French language
which has been extended for Italian Language by the group leaded by Elia at
the University of Salerno. The results are the resources mentioned above from

127

which, they have a particular importance the LG Tables, a set of Predicate
Tables which includes over 4000 Italian Verbal Uses. LG-Tables could be
considered a powerful tool, specially because of their tabular format and of
their content: in fact, they contain a list of feature and properties for each
predicate which define exactly every structure it could select. The tables
have a binary format and each verb, classified with a criteria of syntactic
similarity, is included into a class of verbs that share some properties.

The LG-Starship Framework take advantage from these tables which can
be automatically converted into a database of verbs, in order to construct
a rule-based dependency parser which can represent a sentence as a graph
structured as the LG theory illustrate.

The Framework contains the following modules:

A Preprocessing Module that perform preprocessing task as text nor-
malization, cleaning and stop-words remove.

e the Mr. Ling Module which is based on the electronic dictionaries de-
veloped at the University of Salerno and perform the Part-Of-Speech
tagging and Lemmatization tasks.

e The Statistic Module which perform basic and advanced statistic mea-
sures on the text as Term Frequency, TF/IDF or N-grams extraction.

e The Semantic Module that is based on a distributional semantics al-
gorithm called Hyperspace Analogue to Language, permits to extract
similar words, calculate similarity between two words and generate se-
mantic networks.

e The Syntactic Module which contains a dependency parser entirely
based on the LG-Tables.

The Framework can be considered hybrid also for other reasons. Its modules
will be released as a Java .jar package which can be used in external and
more complex projects, but also it will be distributed as an Interface software
which can be useful for those users who have not programming skills but are
interested to Natural Language Processing or Text Analysis. The Interface
version will includes all the modules and some visualization tools in order to
give to the users the opportunity to generate charts or simply produce data
for external uses.

For what concern the obtained results, the Framework, which is only at a
Beta Version, obtain discrete results:

128 Chapter 5. Conclusion and Future Work

e The Preprocessing Module obtains good results in terms of time of pro-
cessing and precision, in particular with short and medium texts. The
time of processing, which exponentially grows with the grow of the texts,
can be improved, but is not so different from other tools.

e The Mr. Ling Module reaches good results in terms of precision (about
92% for the POS Tagging and Lemmatization) and time, although it
employs more time that TreeTagger which obtains similar values of ac-
curacy.

e The Statistic Module calculate Term Frequency and TF/IDF in a very
short time (less than 1 second for a 10.000 tokens’ text), but the results
of the N-Grams extractor may be improved.

e The Semantic Module precision is closely linked to the Matrix on which
is based. Due to hardware limitations, the used Matrix has been gen-
erated from a text of 45 millions of tokens and reduced to the first 200
columns.

e The Syntactic Module received a partial evaluation because it is incom-
plete at the moment. The completion of the module is subject to the
completion of the LG Verb Resource, a machine-readable version of LG-
Tables which is under construction at the University of Salerno. The
results obtained so far are goods in terms of time and precision, but
at the moment the parser suffer the same problems than other existing
resources.

In the chapter 15 we presented two projects in which the Framework has
been largely tested: in the first experiment has been performed a statistical
study of the language of Rap Music in Italy through the analysis of a
great corpus of Rap Song lyrics downloaded from on line databases of user
generated lyrics. The project make a large use of Preprocessing Module,
Mr.Ling Module, Statistic Module and Semantic Module. Tt demonstrated
how the framework treat a large corpus producing data resources which can
be exported and adapted to additional external analysis. In fact, the data
produced by the framework has been processed and combined in order to
create a web resources which permits to make a “distant reading” of the
Italian Rap Music by exploiting different visualization techniques and tools.
The second experiment is a Feature-Based Sentiment Analysis and Opinion
Mining project of user reviews. The integration of a large domain database
of linguistic resources in Italian of Sentiment Analysis developed in the past
years by the Department of Politic, Social and Communication Science of
the University of Salerno, which consists of polarized dictionaries of Verbs,

129

Adjectives, Adverbs and Nouns, demonstrates how the Framework can be
integrated with external resources in order to broaden its field of action. In
this project, except for the Statistic Module, every module of the Framework
was involved.

Even though the results are encouraging, the Framework is far from being
considered complete and for a “1.0” version a hard work is expected. While
the Preprocessing Module and the Mr.Ling Module could be released in the
present state, other modules need improvements: the N-grams extraction
of Statistic Module must be improved and tested and more functions as
the implementation of a Pointwise Mutual Information algorithm can be
added; the Semantic Module needs a reorganization of its methods with the
implementation of more complex forms of querying, but, primarily, it needs
a more complete matrix, built on a larger and more heterogeneous corpus.

For what concern the Syntactic Module, the parser is actually waiting for

the completion of the LG-Tables conversion, but it needs the implementation
of more complex strategies in order to avoid errors on noun or verb comple-
ments recognition. The idea is, once the LG Verb Resource is complete, to
implement an hybrid system which start with the essential sentence structure
given by the predicates as the LG theory indicate, and continue the analysis
by exploiting a State Of the Art statistic or probabilistic method.
In conclusion, the Graphical interface of the program will be improved and
made more attractive and modern so that it can be released as a free soft-
ware. In addition, some of the modules can be inserted in a web-interface and
published for free on-line utilization.

Bibliography

G. Adda, M. Adda-Decker, J.-L. Gauvain, and L. Lamel. Text normalization
and speech recognition in french. training, 3:4-0, 1997. (Cited on page 43.)

A. B. Alencar, M. C. F. de Oliveira, and F. V. Paulovich. Seeing beyond read-
ing: a survey on visual text analytics. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2(6):476-492, 2012. (Cited on page 98.)

H. S. Alim, A. Ibrahim, and A. Pennycook. Global linguistic flows: Hip hop
cultures, youth identities, and the politics of language. Routledge, 2008.
(Cited on page 92.)

J. Androutsopoulos and A. Scholz. Spaghetti funk: appropriations of hip-hop
culture and rap music in europe. Popular Music and Society, 26(4):463-479,
2003. (Cited on page 92.)

G. Attardi and F. Dell’Orletta. Reverse revision and linear tree combination
for dependency parsing. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, Companion Volume: Short Papers,
pages 261-264. Association for Computational Linguistics, 2009. (Cited on
pages 27 and 28.)

G. Attardi, A. Fuschetto, F. Tamberi, M. Simi, and E. M. Vecchi. Experiments
in tagger combination: arbitrating, guessing, correcting, suggesting. In
Proc. of Workshop Fuvalita, page 10, 2009. (Cited on page 17.)

P. Attolino. Stile ostile. rap e politica, 2003. (Cited on page 92.)

P. Attolino. Iconicity in rap music the challenge of an anti-language. 2012.
(Cited on pages 91 and 92.)

C. Audet, C. Burgess, et al. Using a high-dimensional memory model to
evaluate the properties of abstract and concrete words. In Proceedings of the
cognitive science society, pages 37-42. Citeseer, 1999. (Cited on page 24.)

L. Azzopardi, M. Girolami, and M. Crowe. Probabilistic hyperspace analogue
to language. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
575-576. ACM, 2005. (Cited on page 25.)

132 Bibliography

R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume
463. ACM press New York, 1999. (Cited on page 20.)

V. Balakrishnan and E. Lloyd-Yemoh. Stemming and lemmatization: a com-
parison of retrieval performances. Lecture Notes on Software Engineering,
2(3):262, 2014. (Cited on page 16.)

T. Baldwin. A resource for evaluating the deep lexical acquisition of english
verb-particle constructions. In Proceedings of the LREC Workshop Towards
a Shared Task for Multiword Ezpressions (MWE 2008), pages 1-2, 2008.
(Cited on page 25.)

M. Baroni, S. Bernardini, F. Comastri, L. Piccioni, A. Volpi, G. Aston, and
M. Mazzoleni. Introducing the la repubblica corpus: A large, annotated, tei
(xml)-compliant corpus of newspaper italian. issues, 2:5-163, 2004. (Cited
on page 97.)

M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta. The wacky wide
web: a collection of very large linguistically processed web-crawled corpora.
Language resources and evaluation, 43(3):209-226, 2009. (Cited on page 97.)

D. Baur, B. Steinmayr, and A. Butz. Songwords: Exploring music collections
through lyrics. In ISMIR, pages 531-536, 2010. (Cited on page 98.)

J. R. Bellegarda, J. W. Butzberger, Y.-L. Chow, N. B. Coccaro, and D. Naik.
A novel word clustering algorithm based on latent semantic analysis. In
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference
Proceedings., 1996 IEEFE International Conference on, volume 1, pages 172
175. IEEE, 1996. (Cited on page 25.)

P. M. Bertinetto, C. Burani, A. Laudanna, L. Marconi, D. Ratti, C. Rolando,
and A. M. Thornton. Corpus e lessico di frequenza dell’italiano scritto
(colfis). Scuola Normale Superiore di Pisa, 2005. (Cited on page 25.)

S. Bird. Nltk: the natural language toolkit. In Proceedings of the COL-
ING/ACL on Interactive presentalion sessions, pages 69-72. Association
for Computational Linguistics, 2006. (Cited on pages 8 and 12.)

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993-1022, 2003. (Cited on page 21.)

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008, 2008. (Cited on page 82.)

Bibliography 133

L. Bloomfield. Language, holt, new york. In FEdizione italiana (1974) Il
linguaggio, Il Saggiatore, Milano. 1933. (Cited on page 29.)

B. Bohnet. Very high accuracy and fast dependency parsing is not a contradic-
tion. In Proceedings of the 23rd international conference on computational
linguistics, pages 89-97. Association for Computational Linguistics, 2010.
(Cited on page 28.)

F. Bond and R. Foster. Linking and extending an open multilingual wordnet.
In ACL (1), pages 1352-1362, 2013. (Cited on page 94.)

P. Boullier. Guided earley parsing. In Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT’03), pages 43-54, 2003. (Cited
on page 27.)

D. Bounie, M. Bourreau, M. Gensollen, and P. Waelbroeck. The effect of
online customer reviews on purchasing decisions: The case of video games.
In Retrieved July, volume 8, page 2009. Citeseer, 2005. (Cited on page 107.)

A. Bradley. Book of rhymes: The poetics of hip hop. Basic Books, 2009. (Cited
on page 92.)

T. Brants. Tnt: a statistical part-of-speech tagger. In Proceedings of the sizth
conference on Applied natural language processing, pages 224-231. Associ-
ation for Computational Linguistics, 2000. (Cited on page 14.)

R. Brath and E. Banissi. Using text in visualizations for micro/macro readings.
In IUI Workshop on Visual Text Analytics, 2015. (Cited on page 98.)

E. Brill. A simple rule-based part of speech tagger. In Proceedings of the
workshop on Speech and Natural Language, pages 112-116. Association for
Computational Linguistics, 1992. (Cited on page 14.)

R. C. Bunescu and M. Pasca. Using encyclopedic knowledge for named entity
disambiguation. In EACL, volume 6, pages 9-16, 2006. (Cited on page 91.)

C. Burgess. From simple associations to the building blocks of language: Mod-
eling meaning in memory with the hal model. Behavior Research Methods,
Instruments, € Computers, 30(2):188-198, 1998. (Cited on page 24.)

C. Burgess. Representing and resolving semantic ambiguity: A contribution
from high-dimensional memory modeling. 2001. (Cited on page 24.)

G. Carenini, R. T. Ng, and E. Zwart. Extracting knowledge from evalua-
tive text. In Proceedings of the 3rd international conference on Knowledge
capture, pages 11-18. ACM, 2005. (Cited on page 109.)

134 Bibliography

D. Chen and C. D. Manning. A fast and accurate dependency parser using
neural networks. In EMNLP, pages 740-750, 2014. (Cited on page 28.)

J. A. Chevalier and D. Mayzlin. The effect of word of mouth on sales: Online
book reviews. In Journal of marketing research, volume 43, pages 345-354.
American Marketing Association, 2006. (Cited on page 107.)

J. D. Choi. Dynamic feature induction: The last gist to the state-of-the-art.
In Proceedings of NAACL-HLT, pages 271-281, 2016. (Cited on page 15.)

N. Chomsky. Aspects of the Theory of Syntax. Number 11. MIT press, 1965.
(Cited on page 28.)

G. Chrupata, G. Dinu, and J. Van Genabith. Learning morphology with
morfette. 2008. (Cited on page 16.)

K. W. Church. A stochastic parts program and noun phrase parser for un-
restricted text. In Proceedings of the second conference on Applied natural
language processing, pages 136-143. Association for Computational Linguis-
tics, 1988. (Cited on page 13.)

A. Clauset, M. E. Newman, and C. Moore. Finding community structure
in very large networks. Physical review FE, 70(6):066111, 2004. (Cited on
page 82.)

M. Collins. Three generative, lexicalised models for statistical parsing. In
Proceedings of the eighth conference on European chapter of the Association
for Computational Linguistics, pages 16-23. Association for Computational
Linguistics, 1997. (Cited on page 27.)

M. Collins. Discriminative training methods for hidden markov models: The-
ory and experiments with perceptron algorithms. In Proceedings of the
ACL-02 conference on Empirical methods in natural language processing-
Volume 10, pages 1-8. Association for Computational Linguistics, 2002.
(Cited on page 15.)

M. Collins, .. Ramshaw, J. Haji¢, and C. Tillmann. A statistical parser for
czech. In Proceedings of the 37th annual meeting of the Association for
Computational Linguistics on Computational Linguistics, pages 505-512.
Association for Computational Linguistics, 1999. (Cited on page 28.)

M. Constant, I. Tellier, D. Duchier, Y. Dupont, A. Sigogne, and S. Bil-
lot. Intégrer des connaissances linguistiques dans un crf: application a
Iapprentissage d’un segmenteur-étiqueteur du frangais. In TALN, volume 1,
page 321, 2011. (Cited on page 16.)

Bibliography 135

H. Cunningham. Gate, a general architecture for text engineering. Computers
and the Humanities, 36(2):223-254, 2002. (Cited on page 7.)

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: an archi-
tecture for development of robust hlt applications. In Proceedings of the 40th
annual meeting on association for computational linguistics, pages 168-175.
Association for Computational Linguistics, 2002. (Cited on page 7.)

C. Cutler. Hip-hop language in sociolinguistics and beyond. Language and
linguistics compass, 1(5):519-538, 2007. (Cited on pages 91 and 92.)

D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-speech
tagger. In Proceedings of the third conference on Applied natural language
processing, pages 133-140. Association for Computational Linguistics, 1992.
(Cited on page 14.)

E. D’Agostino. Analisi del discorso: metodi descrittivi dell’italiano d’uso.
Loffredo, 1992. (Cited on pages 29, 30 and 31.)

E. D’Agostino. Grammatiche lessicalmente esaustive delle passioni il caso
dell’io collerico. le forme nominali. In Quaderns d’Italia, pages 149-169,
2005. (Cited on page 29.)

E. D’Agostino, G. De Bueriis, A. Cicalese, M. Monteleone, D. Vellutino,
S. Messina, A. Langella, S. Santonicola, F. Longobardi, and D. Guglielmo.
Lexicon-grammar classifications. or better: to get rid of anguish. In 26th
International Conference on Lexis and Grammar (LGC’07), 2007. (Cited
on page 29.)

T. De Mauro and A. M. Thornton. La predicazione: teoria e applicazione
all’italiano. In Sintasst e morfologia della lingua italiana d’uso: teorie ed
applicazioni descrittive, pages 487-519. 1985. (Cited on pages 112 and 113.)

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man. Indexing by latent semantic analysis. Journal of the American society
for information science, 41(6):391, 1990. (Cited on page 25.)

F. Dell?Orletta. Ensemble system for part-of-speech tagging. Proceedings of
EVALITA, 9:1-8, 2009. (Cited on page 17.)

P. Denis, B. Sagot, et al. Coupling an annotated corpus and a morphosyntactic
lexicon for state-of-the-art pos tagging with less human effort. In PACLIC,
pages 110-119, 2009. (Cited on page 15.)

136 Bibliography

P. Di Cristo. Mtseg: The multext multilingual segmenter tools, multext deliv-
erable msg 1, version 1.3. 1, cnrs, aix-en-provence, 1996. (Cited on page 12.)

W. Duan, B. Gu, and A. B. Whinston. The dynamics of online word-of-
mouth and product sales—an empirical investigation of the movie industry.
In Journal of retailing, volume 84, pages 233-242. Elsevier, 2008. (Cited on
page 107.)

S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harsh-
man. Using latent semantic analysis to improve access to textual infor-
mation. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 281-285. ACM, 1988. (Cited on page 25.)

I. A. El-Khair. Effects of stop words elimination for arabic information re-
trieval: a comparative study. International Journal of Computing & Infor-
mation Sciences, 4(3):119-133, 2006. (Cited on page 43.)

A. Elia. Le verbe italien. Les complétives dans les phrases a un complément.
Fasano di Puglia: Schena-Nizet, 1984. (Cited on pages 29, 63, 64 and 67.)

A. Elia. Dizionari elettronici e applicazioni informatiche. In JADT, 1995.
(Cited on page 47.)

A. Elia. On lexical, semantic and syntactic granularity of italian verbs. In
Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion,
Paris, pages 277-286. 2013. (Cited on page 63.)

A. Elia. Lessico e sintassi tra tempo e massa parlante. In Marchese M.P.,
Nocentini A., 1l lessico nella teoria e nella storia linguistica, pages 15-47.
Edizioni il Calamo, 2014. (Cited on pages 29, 31 and 63.)

A. Elia, M. Martinelli, and E. D’Agostino. Lessico e Strutture sintattiche.
Introduzione alla sintassi del verbo italiano. Napoli: Liguori, 1981. (Cited
on pages 29, 30, 31, 63 and 111.)

A. Elia, F. Marano, M. Monteleone, S. Sabatino, and D. Vellutino. Strutture
lessicali delle informazioni comunitarie all’interno di domini specialistici. In
Statistical Analysis of Textual Data, Proceedings of 10th International Con-
ferences” Journées D’Analyse Statistique des Données Textuelles” Roma,
Universita" La Sapienza, pages 9-11, 2010. (Cited on page 47.)

R. R. Favretti, F. Tamburini, and C. De Santis. Coris/codis: A corpus
of written italian based on a defined and a dynamic model. A Rainbow
of Corpora: Corpus Linguistics and the Languages of the World. Munich:
Lincom-FEuropa, 2002. (Cited on page 17.)

Bibliography 137

A. Filippone and L. Papini. La parola e il suo potere: Il linguaggio del rap
italiano. Rassegna italiana di linguistica applicata, 33(3):71-86, 2002. (Cited
on page 92.)

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local informa-
tion into information extraction systems by gibbs sampling. In Proceedings
of the 43rd Annual Meeting on Association for Computational Linguistics,
pages 363-370. Association for Computational Linguistics, 2005. (Cited on
page 10.)

P. W. Foltz, W. Kintsch, and T. K. Landauer. The measurement of textual
coherence with latent semantic analysis. Discourse processes, 25(2-3):285—
307, 1998. (Cited on page 25.)

M. Forman and M. A. Neal. That’s the joint!: the hip-hop studies reader.
Psychology Press, 2004. (Cited on page 91.)

G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268-278,
1973. (Cited on page 12.)

B. Fortuna, M. Grobelnik, and D. Mladenic. Visualization of text document
corpus. Informatica, 29(4), 2005. (Cited on page 98.)

W. Francis and H. Kucera. Frequency analysis of english usage. 1982. (Cited
on page 13.)

O. Frunza. A trainable tokenizer, solution for multilingual texts and com-
pound expression tokenization. In LREC, 2008. (Cited on page 12.)

E. Gabrilovich and S. Markovitch. Overcoming the brittleness bottleneck using
wikipedia: Enhancing text categorization with encyclopedic knowledge. In
AAAT volume 6, pages 1301-1306, 2006. (Cited on page 91.)

L. Gatti and M. Guerini. Assessing sentiment strength in words prior polari-
ties. In arXiv preprint arXiv:1212.4315. 2012. (Cited on page 108.)

J. Giménez and L. Marquez. Svintool: A general pos tagger generator based
on support vector machines. In In Proceedings of the 4th International
Conference on Language Resources and Evaluation. Citeseer, 2004. (Cited
on page 15.)

R. Giordano and M. Voghera. Frasi senza verbo: il contributo della prosodia.
In Sintassi storica e sincronica dell’italiano, Atti del Conv. Intern. SILFI,
Basilea. 2008. (Cited on page 112.)

138 Bibliography

M. Girvan and M. E. Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821—
7826, 2002. (Cited on page 82.)

G. Graffi and S. Scalise. Le lingue e il linguaggio. Il Mulino, Bologna, 2002.
(Cited on pages 11 and 47.)

J. Grana, M. A. Alonso, and M. Vilares. A common solution for tokenization
and part-of-speech tagging. In International Conference on Text, Speech
and Dialogue, pages 3—10. Springer, 2002. (Cited on page 12.)

B. B. Greene and G. M. Rubin. Automatic grammatical tagging of English.
Department of Linguistics, Brown University, 1971. (Cited on page 13.)

G. Grefenstette and P. Tapanainen. What is a word, what is a sentence?:
problems of tokenisation. 1994. (Cited on pages 11 and 12.)

M. Gross. Transformational Analysis of French Verbal Constructions. Uni-
versity of Pennsylvania, 1971. (Cited on page 28.)

M. Gross. Méthodes en syntaze. Hermann, 1975. (Cited on page 28.)

M. Gross. On the failure of generative grammar. In Language, pages 859-885.
JSTOR, 1979. (Cited on page 59.)

M. Gross. The argument structure of elementary sentences. In Language
Research, volume 28, pages 699-716. 1992. (Cited on page 29.)

M. Gross. Une grammaire locale de ’expression des sentiments. In Langue
francaise, pages 70-87. JSTOR, 1995. (Cited on page 109.)

M. Gross. Les verbes supports d’adjectifs et le passif. In Langages, volume 30,
pages 8-18. Armand Colin, 1996. (Cited on page 111.)

Y. Gutiérrez, S. Vazquez, and A. Montoyo. Sentiment classification using se-
mantic features extracted from WordNet-based resources. In Proceedings of
the 2nd Workshop on Computational Approaches to Subjectivity and Senti-
ment Analysis, pages 139-145. Association for Computational Linguistics,
2011. (Cited on page 109.)

J. Haji¢, J. Raab, M. Spousta, et al. Semi-supervised training for the av-
eraged perceptron pos tagger. In Proceedings of the 12th Conference of
the European Chapter of the Association for Computational Linguistics,
pages 763-771. Association for Computational Linguistics, 2009. (Cited on
page 15.)

Bibliography 139

J. Hall, J. Nilsson, and J. Nivre. Single malt or blended? a study in multi-
lingual parser optimization. In Trends in Parsing Technology, pages 19-33.
Springer, 2010. (Cited on page 27.)

S. M. Harabagiu, M. A. Pasca, and S. J. Maiorano. Experiments with open-
domain textual question answering. In Proceedings of the 18th conference on
Computational linguistics-Volume 1, pages 292-298. Association for Com-
putational Linguistics, 2000. (Cited on page 91.)

Z. Harris. Language and information. Columbia University Press, 1988. (Cited
on page 30.)

Z. S. Harris. Distributional structure. Word, 10(2-3):146-162, 1954. (Cited
on page 23.)

Z. S. Harris. Transformations in linguistic structure. In Proceedings of the
American Philosophical Society, pages 418-422, 1964. (Cited on page 30.)

Z. S. Harris. Discourse analysis. In Papers in structural and transformational
linguistics, pages 313-347. 1970. (Cited on page 29.)

M. Herlihy and N. Shavit. The art of multiprocessor programming. In PODC|
volume 6, pages 1-2, 2006. (Cited on page 37.)

H. Hirjee and D. G. Brown. Automatic detection of internal and imperfect
rhymes in rap lyrics. In ISMIR, pages 711-716, 2009. (Cited on page 93.)

H. Hirjee and D. G. Brown. Rhyme analyzer: An analysis tool for rap lyrics.
In Proceedings of the 11th International Society for Music Information Re-
trieval Conference. Citeseer, 2010. (Cited on page 93.)

T. Hofmann. Probabilistic latent semantic analysis. In Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence, pages 289-296.
Morgan Kaufmann Publishers Inc., 1999. (Cited on page 25.)

M. Hu and B. Liu. Mining opinion features in customer reviews. In AAAL
volume 4, pages 755-760, 2004. (Cited on page 109.)

M. Hu and B. Liu. Opinion feature extraction using class sequential rules.
In AAAI Spring Symposium: Computational Approaches to Analyzing We-
blogs, pages 61-66, 2006. (Cited on page 109.)

X. Hu, J. S. Downie, and A. F. Ehmann. Lyric text mining in music mood
classification. American music, 183(5,049):2-209, 2009. (Cited on page 93.)

140 Bibliography

A. Huang. Similarity measures for text document clustering. In Proceed-
wngs of the sizth new zealand computer science research student conference
(NZCSRSC2008), Christchurch, New Zealand, pages 49-56, 2008. (Cited
on page 98.)

Z. Huang, W. Xu, and K. Yu. Bidirectional Istm-crf models for sequence
tagging. arXiv preprint arXiv:1508.01991, 2015. (Cited on page 15.)

A. K. Ingason, S. Helgadottir, H. Loftsson, and E. Rognvaldsson. A mixed
method lemmatization algorithm using a hierarchy of linguistic identi-
ties (holi). In Advances in Natural Language Processing, pages 205-216.
Springer, 2008. (Cited on page 16.)

J. Kanis and L. Miiller. Automatic lemmatizer construction with focus on
oov words lemmatization. In International Conference on Text, Speech and
Dialogue, pages 132-139. Springer, 2005. (Cited on page 16.)

K. Khan, B. Baharudin, and A. Khan. Identifying product features from
customer reviews using hybrid dependency patterns. Citeseer. (Cited on
page 109.)

F. Kleedorfer, P. Knees, and T. Pohle. Oh oh oh whoah! towards automatic
topic detection in song lyrics. In ISMIR, pages 287-292, 2008. (Cited on
page 93.)

R. R. Korfhage. Information storage and retrieval. 2008. (Cited on page 43.)

K. Kucher and A. Kerren. Text visualization browser: A visual survey of text
visualization techniques. Poster Abstracts of IEEE VIS, 2014, 2014. (Cited
on page 98.)

A. Labrecque. Computer Visualization of Song Lyrics. PhD thesis, WORCES-
TER POLYTECHNIC INSTITUTE, 2009. (Cited on page 98.)

T. K. Landauer and S. T. Dumais. A solution to plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of
knowledge. Psychological review, 104(2):211, 1997. (Cited on pages 23
and 25.)

J. C. Lena. Social context and musical content of rap music, 1979-1995. Social
Forces, 85(1):479-495, 2006. (Cited on page 91.)

J. Lewis and W. Loftus. Java software solutions foundations of programming
design. Pearson Education Inc, 2008. (Cited on page 37.)

Bibliography 141

B. Liu. Sentiment analysis and subjectivity. In Handbook of natural language
processing, volume 2, pages 627-666. Chapman & Hall Goshen, CT, 2010.
(Cited on page 108.)

S. Loria. Textblob: simplified text processing. Secondary TextBlob: Simplified
Text Processing, 2014. (Cited on page 8.)

T. Lucien. Eléments de syntaxe structurale. In Kliencksieck, Paris. 1959.
(Cited on pages 26 and 29.)

H. P. Luhn. A statistical approach to mechanized encoding and searching
of literary information. IBM Journal of research and development, 1(4):
309-317, 1957. (Cited on page 19.)

K. Lund and C. Burgess. Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior Research Methods, Instruments, & Com-
puters, 28(2):203-208, 1996. (Cited on page 24.)

V. Lyding, E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli,
F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli. The paisa cor-

pus of italian web texts. In Proceedings of the 9th Web as Corpus Workshop
(WaC-9), pages 36-43, 2014. (Cited on page 46.)

J. P. Mahedero, A. Martinez, P. Cano, M. Koppenberger, and F. Gouyor.
Natural language processing of lyrics. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages 475-478. ACM, 2005.
(Cited on page 93.)

A. Maisto and S. Pelosi. Feature-based customer review summarization. In
On the Move to Meaningful Internet Systems: OTM 2014 Workshops, pages
299-308. Springer, 2014a. (Cited on page 110.)

A. Maisto and S. Pelosi. A lexicon-based approach to sentiment analysis. the
italian module for nooj. In Proceedings of the International Nooj 2014 Con-
ference, University of Sassari, Italy. Cambridge Scholar Publishing, 2014b.
(Cited on page 110.)

A. Maisto and S. Pelosi. A lexicon-based approach to sentiment analysis.
the italian module for nooj. In Proceedings of the International Nooj 2014
Conference, University of Sassari, Italy, 2014c. (Cited on page 12.)

E. Malmi, P. Takala, H. Toivonen, T. Raiko, and A. Gionis. Dopelearn-
ing: A computational approach to rap lyrics generation. arXiv preprint
arXiv:1505.04771, 2015. (Cited on page 93.)

142 Bibliography

C. D. Manning. Part-of-speech tagging from 97% to 100%: is it time for
some linguistics? In International Conference on Intelligent Text Processing
and Computational Linguistics, pages 171-189. Springer, 2011. (Cited on
page 15.)

C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. Mc-
Closky. The stanford corenlp natural language processing toolkit. In ACL
(System Demonstrations), pages 55-60, 2014. (Cited on pages 10 and 28.)

M. Marcus, G. Kim, M. A. Marcinkiewicz, R. Maclntyre, A. Bies, M. Fergu-
son, K. Katz, and B. Schasberger. The penn treebank: annotating predi-
cate argument structure. In Proceedings of the workshop on Human Lan-

guage Technology, pages 114-119. Association for Computational Linguis-
tics, 1994. (Cited on page 10.)

J. H. Martin and D. Jurafsky. Speech and language processing. International
Edition, 710, 2000. (Cited on pages 11 and 26.)

J. Mathieu and V. Tommaso. Forceatlas2, a graph layout algorithm for handy
network visualization. Webatlas. fr, 29, 2011. (Cited on page 82.)

R. McDonald, K. Lerman, and F. Pereira. Multilingual dependency anal-
ysis with a two-stage discriminative parser. In Proceedings of the Tenth
Conference on Computational Natural Language Learning, pages 216-220.
Association for Computational Linguistics, 2006. (Cited on page 28.)

A. Meillet. La Phrase nominale en indoeuropéen. Société de linguistique,
1906. (Cited on page 113.)

A. Meunier. La sémantique locative de certaines structures: NO étre adj. In
Revue québécoise de linguistique, volume 13, pages 95-121. Université du
Québec & Montréal, 1984. (Cited on page 111.)

A. Meunier. Une construction complexe NOhum étre Adj de VO-inf W car-
acteéristique de certains adjectifs 4 sujet humain. In Langages, pages 12—44.
JSTOR, 1999. (Cited on page 111.)

T. Morton, J. Kottmann, J. Baldridge, and G. Bierner. Opennlp: A java-based
nlp toolkit, 2005. (Cited on page 17.)

M. Nakayama, N. Sutcliffe, and Y. Wan. Has the web transformed experience
goods into search goods? In Electronic Markets, volume 20, pages 251-262.
Springer, 2010. (Cited on page 107.)

Bibliography 143

V. Nastase and M. Strube. Decoding wikipedia categories for knowledge ac-
quisition. In AAAT volume 8, pages 1219-1224, 2008. (Cited on page 91.)

R. Navigli and S. P. Ponzetto. Babelnet: The automatic construction, eval-
uation and application of a wide-coverage multilingual semantic network.
Artificial Intelligence, 193:217-250, 2012. (Cited on page 94.)

P. Nelson. Information and consumer behavior. In The Journal of Political
FEconomy, pages 311-329. JSTOR, 1970. (Cited on page 107.)

M. E. Newman. Modularity and community structure in networks. Proceedings
of the national academy of sciences, 103(23):8577-8582, 2006a. (Cited on
page 103.)

M. E. Newman. Modularity and community structure in networks. Proceedings
of the national academy of sciences, 103(23):8577-8582, 2006b. (Cited on
page 82.)

J. Nivre and R. T. McDonald. Integrating graph-based and transition-based
dependency parsers. In ACL, pages 950958, 2008. (Cited on page 27.)

J. Nivre and J. Nilsson. Multiword units in syntactic parsing. Proceedings
of Methodologies and Fuvaluation of Multiword Units in Real-World Appli-
cations (MEMURA), 2004. (Cited on page 27.)

J. Nivre, J. Hall, and J. Nilsson. Memory-based dependency parsing. (Cited
on page 27.)

T. Obrebski. Dependency parsing using dependency graph. In Proceedings of
the 8th International Workshop on Parsing Technologies (IWPT 03).(2003)
217-218. (Cited on page 27.)

J. Oh. Text visualization of song lyrics. Center for Computer Research in
Music and Acoustics, Stanford University, 2010. (Cited on page 98.)

A. OpenNLP. a machine learning based toolkit for the processing of natural
language text. URL http://opennlp. apache. org (Last accessed: 2013-06-
18). (Cited on page 10.)

C. E. Osgood. The nature and measurement of meaning. In Psychological
bulletin, volume 49, page 197. American Psychological Association, 1952.
(Cited on page 108.)

H. Osumare. The Africanist aesthetic in global hip-hop: Power mowves. Pal-
grave Macmillan New York, 2007. (Cited on page 92.)

144 Bibliography

P. Pacoda. Potere alla parola: Antologia del rap italiano, volume 1397. Fel-
trinelli, 1996. (Cited on page 92.)

P. Pantel. Inducing ontological co-occurrence vectors. In Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics,
pages 125-132. Association for Computational Linguistics, 2005. (Cited
on page 23.)

S. Pelosi. Sentita and doxa: Italian databases and tools for sentiment analysis
purposes. In Proceedings of the Second Italian Conference on Computational
Linguistics CLiC-it 2015, pages 226-231. Accademia University Press, 2015.
(Cited on page 110.)

S. Perna, A. Maisto, P. Vitale, and R. Guarasci. Il linguaggio del rap. pos-
sibilitad di unanalisi multidisciplinare. In Aidainformazioni, volume 1-2,
pages 209-218, 2016. (Cited on page 91.)

E. Pianta and R. Zanoli. Tagpro: A system for italian pos tagging based on
svm. Intelligenza Artificiale, 4(2):8-9, 2007. (Cited on page 17.)

E. Pianta, C. Girardi, and R. Zanoli. The textpro tool suite. In LREC.
Citeseer, 2008. (Cited on pages 10 and 12.)

L. Picabia. Les constructions adjectivales en francais: systématique transfor-
mationnelle, volume 11. Librairie Droz, 1978. (Cited on page 111.)

J. Plisson, N. Lavrac, D. Mladenic, et al. A rule based approach to word
lemmatization. In Proceedings C of the 7th International Multi-Conference
Information Society IS 2004, volume 1, pages 83-86. Citeseer, 2004. (Cited
on page 16.)

A.-M. Popescu and O. Etzioni. Extracting product features and opinions
from reviews. In Natural language processing and text mining, pages 9-28.
Springer, 2007. (Cited on page 109.)

M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, 1980.
(Cited on page 16.)

A. Ratnaparkhi et al. A maximum entropy model for part-of-speech tagging.
In Proceedings of the conference on empirical methods in natural language
processing, volume 1, pages 133-142. Philadelphia, USA, 1996. (Cited on
page 14.)

Bibliography 145

D. A. Reinstein and C. M. Snyder. The influence of expert reviews on con-
sumer demand for experience goods: A case study of movie critics*. In
The journal of industrial economics, volume 53, pages 27-51. Wiley Online
Library, 2005. (Cited on page 107.)

E. Riloff, S. Patwardhan, and J. Wiebe. Feature subsumption for opinion anal-
ysis. In Proceedings of the 2006 Conference on Empirical Methods in Nat-
ural Language Processing, pages 440-448. Association for Computational
Linguistics, 2006. (Cited on page 109.)

P. S. Rosenbaum. The grammar of English predicate complement construc-
tions. Research monograph 47. Cambridge, MA: MIT Press, 1967. (Cited
on page 28.)

K. Sagae and A. Lavie. Parser combination by reparsing. In Proceedings
of the Human Language Technology Conference of the NAACL, Compan-
ion Volume: Short Papers, pages 129-132. Association for Computational
Linguistics, 2006. (Cited on page 27.)

M. Sahlgren. The distributional hypothesis. Italian Journal of Linguistics, 20
(1):33-54, 2008. (Cited on page 23.)

G. Salton and C. Buckley. Term-weighting approaches in automatic text re-
trieval. Information processing & management, 24(5):513-523, 1988. (Cited
on page 21.)

G. Salton and M. J. McGill. Introduction to modern information retrieval.
1986. (Cited on page 21.)

S. Sasaki, K. Yoshii, T. Nakano, M. Goto, and S. Morishima. Lyricsradar:
A lyrics retrieval system based on latent topics of lyrics. In ISMIR, pages
585-590, 2014. (Cited on page 98.)

H. Schmid. Treetagger| a language independent part-of-speech tagger. Insti-
tut fiir Maschinelle Sprachverarbeitung, Universitit Stuttgart, 43:28, 1995.
(Cited on pages 17 and 50.)

A. Scholz. Subcultura e lingua giovanile in italia: hip-hop e dintorni. Aracne,
2005. (Cited on page 92.)

H. Schiitze and J. O. Pedersen. Information retrieval based on word senses.
1995. (Cited on page 23.)

M. S. Senaldi, G. E. Lebani, L. Passaro, and A. Lenci. Semant-it. (Cited on
page 25.)

146 Bibliography

L. Shen, G. Satta, and A. Joshi. Guided learning for bidirectional sequence
classification. In ACL, volume 7, pages 760-767. Citeseer, 2007. (Cited on
page 15.)

B. Shneiderman. The eyes have it: A task by data type taxonomy for in-
formation visualizations. In Visual Languages, 1996. Proceedings., IEEE
Symposium on, pages 336-343. IEEE, 1996. (Cited on page 99.)

B. Shneiderman. Designing the user interface: strategies for effective human-
computer interaction. Pearson Education India, 2010. (Cited on page 73.)

M. Silberztein. Intex: a finite state transducer toolbox. Theoretical Computer
Science, 231(1), 1998. (Cited on page 6.)

M. Silberztein. Nooj: a linguistic annotation system for corpus processing. In
Proceedings of HLT/EMNLP on Interactive Demonstrations, pages 10-11.
Association for Computational Linguistics, 2005. (Cited on page 6.)

M. Silberztein. Nooj manual [electronic resource|. mode of access (2014), 2014.
(Cited on page 6.)

S. Sinclair, S. Ruecker, and M. Radzikowska. Information visualization for
humanities scholars. MLA Commons https://dlsanthology. commons. mla.
org/information-visualization-forhumanities-scholars/. accessed July, 2015.
(Cited on page 98.)

T. D. Smedt and W. Daelemans. Pattern for python. Journal of Machine
Learning Research, 13(Jun):2063-2067, 2012. (Cited on pages 9, 17 and 50.)

D. Song and P. Bruza. Discovering information flow suing high dimensional
conceptual space. In Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 327-333. ACM, 2001. (Cited on page 24.)

A. Srinivasan, P. Compton, R. Malor, G. Edwards, and L. Lazarus. Knowledge
acquisition in context for a complex domain. Pre-print of Proceedings of
the Fifth EKAW91, 1991. (Cited on page 16.)

M. Surdeanu and C. D. Manning. Ensemble models for dependency parsing:
cheap and good? In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Compu-
tational Linguistics, pages 649-652. Association for Computational Linguis-
tics, 2010. (Cited on page 27.)

Bibliography 147

M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede. Lexicon-based
methods for sentiment analysis. In Computational linguistics, volume 37,
pages 267-307. MIT Press, 2011. (Cited on page 108.)

M. Terkourafi. The languages of global hip hop. A&C Black, 2010. (Cited on
pages 91 and 92.)

T. Tokunaga and I. Makoto. Text categorization based on weighted inverse

document frequency. In Special Interest Groups and Information Process
Society of Japan (SIG-IPSJ. Citeseer, 1994. (Cited on page 18.)

J. R. R. Tolkien. The lord ofthe rings. London: Grafton, 1991. (Cited on
page 18.)

J. R. R. Tolkien. The hobbit. Houghton Mifflin Harcourt, 2012. (Cited on
page 18.)

D. Toop. The rap attack: African jive to New York hip hop. South End Press,
1984. (Cited on page 91.)

K. Toutanova and C. D. Manning. Enriching the knowledge sources used
in a maximum entropy part-of-speech tagger. In Proceedings of the 2000
Joint SIGDAT conference on Empirical methods in natural language pro-
cessing and very large corpora: held in conjunction with the 38th Annual
Meeting of the Association for Computational Linguistics- Volume 13, pages
63-70. Association for Computational Linguistics, 2000. (Cited on pages 10
and 14.)

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-
speech tagging with a cyclic dependency network. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Compu-
tational Linguistics on Human Language Technology- Volume 1, pages 173—
180. Association for Computational Linguistics, 2003. (Cited on page 15.)

G. Uboldi and G. Caviglia. Information visualizations and interfaces in the
humanities. In New Challenges for Data Design, pages 207-218. Springer,
2015. (Cited on page 93.)

G. Van Rossum. An introduction to python for unix/c¢ programmers. Proc.
of the NLUUG najaarsconferentie. Dutch UNIX users group, 1993. (Cited
on page 38.)

S. Vietri. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni.
UTET Universita, 2004. (Cited on pages 31 and 111.)

148 Bibliography

S. Vietri. The italian module for nooj. In In Proceedings of the First Italian
Conference on Computational Linguistics, CLiC-it 2014, 2014. (Cited on

page 6.)

J. Votrubec. Morphological tagging based on averaged perceptron. WDS’06
proceedings of contributed papers, pages 191-195, 2006. (Cited on page 15.)

P. Wegner. Concepts and paradigms of object-oriented programming. ACM
SIGPLAN OOPS Messenger, 1(1):7-87, 1990. (Cited on page 37.)

C.-P. Wei, Y.-M. Chen, C.-S. Yang, and C. C. Yang. Understanding what con-
cerns consumers: a semantic approach to product feature extraction from
consumer reviews. In Information Systems and E-Business Management,
volume 8, pages 149-167. Springer, 2010. (Cited on page 109.)

G. Wilcock. Text annotation with opennlp and uima. 2009. (Cited on page 10.)

J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur,
and V. Crow. Visualizing the non-visual: spatial analysis and interaction

with information from text documents. In Information Visualization, 1995.
Proceedings., pages 51-58. IEEE, 1995. (Cited on page 98.)

Q. Ye, R. Law, B. Gu, and W. Chen. The influence of user-generated content
on traveler behavior: An empirical investigation on the effects of e-word-
of-mouth to hotel online bookings. In Computers in Human Behavior, vol-
ume 27, pages 634-639. Elsevier, 2011. (Cited on page 107.)

L. Zhang and B. Liu. Identifying noun product features that imply opinions.
In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies: short papers-Volume 2,
pages 575-580. Association for Computational Linguistics, 2011. (Cited on
page 109.)

L. Zhang, B. Liu, S. H. Lim, and E. O’Brien-Strain. Extracting and ranking
product features in opinion documents. In Proceedings of the 23rd interna-
tional conference on computational linguistics: Posters, pages 1462-1470.
Association for Computational Linguistics, 2010. (Cited on page 107.)

F. Zhu and X. Zhang. The influence of online consumer reviews on the demand
for experience goods: The case of video games. In ICIS 2006 Proceedings,
page 25. 2006. (Cited on page 107.)

	Introduction
	Related Works
	NLP Tools
	Tokenization
	PosTag and Lemmatization
	Statistic analysis of Texts
	Distributional Semantics
	Syntactic Dependency Parsing
	Lexicon-Grammar Framework

	The project
	Technical Background
	The LG-Starship Project
	The Preprocessing Module
	Mr. Ling Module
	Statistic Module
	Semantic Module
	Syntactic Module

	LG-Starship Interface

	Experiments
	Rapscape, the construction of a tool for the analysis of the Italian Rap Phenomenon
	Initial guidelines
	Methodology
	Building the resource
	Text Analysis
	Data Visualization

	A rule-based method for product features Opinion Mining and Sentiment Analysis
	Initial guidelines
	The Product Feature Extraction
	Automatic Feature-based Opinion Mining
	Automatic Classification of Features and Reviews
	Experimental Results

	Conclusion and Future Work
	Bibliography

