
Università degli Studi di Salerno
Dipartimento di Informatica

DOTTORATO DI RICERCA IN INFORMATICA

CICLO XIV - NUOVA SERIE

Tesi di Dottorato in Informatica

New Insights on Cryptographic

Hierarchical Access Control:

Models, Schemes and Analysis

Candidate

Arcangelo Castiglione

Tutor Co-Tutor

Prof. Alfredo De Santis Prof. Barbara Masucci

Coordinator

Prof. Gennaro Costagliola

2014/2015

To my family

Acknowledgements

During my PhD I had the great pleasure to work with wonderful and

professional people and I wish to express my gratitude to everybody

of them, for the fundamental research experience they have granted

me.

First and foremost, I would like to thank Prof. Alfredo De Santis,

my wise tutor, for his help, his many precious suggestions and his

constant encouragement during my PhD. Alfredo has served as a role

model for me and I am sure that he will continue to be a source of

inspiration. I have learnt many things from Alfredo; both technically

and also regarding ones attitude and approach to research. I hope

that I will have many opportunities to continue working with Alfredo

in the future.

I would like also to express my sincere gratitude to my co-tutor, Prof.

Barbara Masucci for her collaboration, her patience and her construc-

tive critical opinions. Again, I would like to thank her for fruitful joint

work and many helpful discussions. It was always a pleasure to work

with Barbara, since her demand for excellence on the one hand and

positive encouragement on the other, served as great motivating fac-

tors throughout the ups and downs of the last years. My work with

Barbara began in the second year of my studies and her contribution

to me on both a personal and research level has been enormous.

I wish also to express my sincere gratitude to Prof. Francesco

Palmieri. He has been a true mentor for me, an essential and constant

point of reference. I have had the pleasure of working with him and

this has been an invaluable experience for me.

Moreover, I would like to thank Prof. Marek R. Ogiela for his hospi-

tality at the Laboratory of Cryptography and Cognitive Informatics,

AGH University of Science and Technology in Krakow, Poland.

My deepest thanks goes to my closest collaborator and good friend

Raffaele Pizzolante for the many discussions that we had, ranging from

“consumer electronics” to technical issues in our research. Further-

more, I would like to thank my long-time friends Ciriaco D’Ambrosio,

Pietro Albano and Andrea Bruno for their unconditional friendship

and their constant support.

Many thanks to my other co-authors: Prof. Bruno Carpentieri, Prof.

Paolo D’Arco, Prof. Xinyi Huang and Prof. Jin Li. I enjoyed working

with them all and learnt much from each of them.

Finally, I would like to thank my family, for the support and constant

presence.

Abstract

Nowadays the current network-centric world has given rise to several

security concerns regarding the access control management, which en-

sures that only authorized users are given access to certain resources

or tasks. In particular, according to their respective roles and respon-

sibilities, users are typically organized into hierarchies composed of

several disjoint classes (security classes). A hierarchy is characterized

by the fact that some users may have more access rights than others,

according to a top-down inclusion paradigm following specific hier-

archical dependencies. A user with access rights for a given class is

granted access to objects stored in that class, as well as to all the de-

scendant ones in the hierarchy. The problem of key management for

such hierarchies consists in assigning a key to each class of the hierar-

chy, so that the keys for descendant classes can be efficiently obtained

from users belonging to classes at a higher level in the hierarchy.

In this thesis we analyze the security of hierarchical key assignment

schemes according to different notions: security with respect to key

indistinguishability and against key recovery [4], as well as the two

recently proposed notions of security with respect to strong key in-

distinguishability and against strong key recovery [42]. More precisely,

we first explore the relations between all security notions and, in par-

ticular, we prove that security with respect to strong key indistin-

guishability is not stronger than the one with respect to key indistin-

guishability. Afterwards, we propose a general construction yielding

a hierarchical key assignment scheme that ensures security against

strong key recovery, given any hierarchical key assignment scheme

which guarantees security against key recovery.

Moreover, we define the concept of hierarchical key assignment

schemes supporting dynamic updates, formalizing the relative secu-

rity model. In particular, we provide the notions of security with

respect to key indistinguishability and key recovery, by taking into ac-

count the dynamic changes to the hierarchy. Furthermore, we show

how to construct a hierarchical key assignment scheme supporting dy-

namic updates, by using as a building block a symmetric encryption

scheme. The proposed construction is provably secure with respect to

key indistinguishability, provides efficient key derivation and updat-

ing procedures, while requiring each user to store only a single private

key.

Finally, we propose a novel model that generalizes the conventional

hierarchical access control paradigm, by extending it to certain addi-

tional sets of qualified users. Afterwards, we propose two construc-

tions for hierarchical key assignment schemes in this new model, which

are provably secure with respect to key indistinguishability. In par-

ticular, the former construction relies on both symmetric encryption

and perfect secret sharing, whereas, the latter is based on public-key

threshold broadcast encryption.

Contents

Contents vi

List of Figures ix

1 Introduction 1

1.1 Introduction . 1

1.2 Cryptographic Hierarchical Access Control and Key Assignment

Schemes . 5

1.3 State of the Art . 7

1.4 Contributions of This Thesis . 11

1.5 Organization of the Thesis . 13

1.6 Notation . 15

2 Key Indistinguishability vs. Strong Key Indistinguishability for

Hierarchical Key Assignment Schemes 16

2.1 Introduction . 16

2.2 Hierarchical Key Assignment Schemes 17

2.3 Notions of Security . 18

2.3.1 Security with respect to Key Indistinguishability 20

2.3.2 Security with respect to Key Recovery 21

2.3.3 Security with respect to Strong Key Indistinguishability . 22

2.3.4 Security against Strong Key Recovery 23

2.4 Implications and Separations . 24

2.5 Towards Security against Strong Key Recovery 32

vi

CONTENTS

3 Cryptographic Hierarchical Access Control For Dynamic Struc-

tures 35

3.1 Introduction . 35

3.2 Hierarchical Key Assignment Schemes with Dynamic Updates . . 37

3.2.1 Types of Updates . 39

3.2.2 Security Issues . 41

3.3 A Construction based on Symmetric Encryption Schemes 46

3.3.1 Symmetric Encryption Schemes 46

3.3.2 The Two-Levels Encryption-Based Construction (TLEBC) 49

3.3.2.1 Analysis of the Scheme 51

4 Hierarchical and Shared Access Control 66

4.1 Introduction . 66

4.2 The Model . 69

4.2.1 A Motivating Example . 71

4.2.2 Hierarchical and Shared Key Assignment Schemes 72

4.2.3 Evaluation Criteria and Notions of Security 74

4.3 Constructions . 76

4.3.1 A Construction based on Symmetric Encryption 76

4.3.1.1 Symmetric Encryption Schemes 77

4.3.1.2 Perfect Secret Sharing Schemes 78

4.3.1.3 The Shared Encryption Based Construction . . . 81

4.3.1.4 Analysis of the Scheme 83

4.3.2 A Construction based on Threshold Broadcast Encryption 90

4.3.2.1 Threshold Broadcast Encryption 90

4.3.2.2 The Threshold Broadcast Encryption Based Con-

struction . 92

4.3.2.3 Analysis of the Scheme 93

4.3.3 Performance Evaluation 98

5 General Conclusions 100

A List of Papers Not Covered in this Thesis 103

A.1 Papers in Journals . 103

vii

CONTENTS

A.2 Papers in International Conferences 104

References 108

viii

List of Figures

2.1 Relations between the security notions for hierarchical key assign-

ment schemes. 25

2.2 The graph G′ = (V ′, E ′), where V = {a, b, c, d} and E =

{(a, b), (a, c), (b, d), (c, d)}. 33

3.1 The graph transformation used in our construction. 50

3.2 Two-levels hierarchy obtained after a list of updates. 57

3.3 Two adjacent experiments. 60

4.1 Example of a directed multigraph characterizing our novel access

control model. 70

4.2 Game played by an adversary Aatk. 95

ix

LIST OF FIGURES

x

Chapter 1

Introduction

“Those who are enamored of practice without

theory are like a pilot who goes into a ship

without rudder or compass and never has any

certainty where he is going. Practice should

always be based upon a sound knowledge of

theory.”

— Leonardo Da Vinci, 1452-1519

1.1 Introduction

Nowadays the current network-centric world has given rise to several security

issues concerning the access control management, which ensures that only au-

thorized users are given access to certain resources or tasks. In particular, the

Internet has been created to design a resource network where users interact seam-

lessly and share information without needing to worry about the location of the

information or the path over which it is sent. Again, user interactivity and

information sharing on the Internet cause issues concerning data privacy and

performance in terms of accessibility. Those issues arise from the fact that it is

difficult to forecast and hard-code solutions to all the possible scenarios that an

application has to face during its execution, therefore, guaranteeing data privacy

under changing conditions is challenging. For example, as organizations increase

their dependence on network-based information systems for daily business, such

1

1. INTRODUCTION

organizations become more and more exposed to security threats, even though

they improve their efficiency and productivity. Although several techniques, such

as encryption and digital signatures have been proposed in the literature to pro-

tect data, a holistic approach for ensuring data security should be taken into

account. Such an approach should enforce access control policies based on data

contents, user qualifications, and other relevant contextual information. Conse-

quently, when dealing with the security of an information system, a large number

of concepts must be taken into account and several questions should be answered:

should I use cryptography? how do I generate keys? how do I change keys if I

think my system has been breached? do I have to re-encrypt all my data every

time I generate a new key for one class of data? do I have to be constantly

monitoring the system and intervening to update keys?

The access control problem deals with the ability to ensure that only autho-

rized users of a system are given access to some sensitive resources or tasks. In

general, users belonging to a given organization are grouped according to their

competencies and responsibilities in a certain number of disjoint classes, referred

to as security classes. The basic assumption is that the keys will be assigned to

groups, so that when the security policy provides a group with the access to some

data, the key can be used for decrypting the data that can be accessed by the

group. Of course, if the security policy changes frequently, group memberships

may change, requiring both new keys and re-encrypting the data accessible by

the group. Therefore, data and resources that can be accessed by a user are

based on its relative membership class. For example, in the healthcare scenario,

doctors can access data concerning their patients, such as diagnosis, medication

prescriptions, and laboratory tests, whereas, researchers can be limited to only

consult anonymous clinical information for studies.

The set of rules which characterizes the information flow between different

security classes in the system defines an access control policy. More precisely,

for any class in the system, the access control policy specifies the set of classes

which can be accessed by that class. Such a set is denoted as the accessible set of

the class. It is important to remark that according to their responsibilities and

rights, users can have overlapping permission accesses; indeed, users belonging to

different classes, might need to access some common data and resources. In detail,

2

1. Introduction

a permission allows a user to perform several well-defined operations. Permissions

are characterized by a hierarchy of access rights, hence, users are assigned roles

that define which permissions they can exercise and in what context. A role is a

set of operations that a user is allowed to perform on data and resources. Notice

that a user can have more than one role. In general, hierarchies can be created

to ensure access control according to the inherent structure of an organization.

It is easy to note that hierarchical access control policies are a natural way of

organizing users to reflect reflect their authority, responsibility and competency.

In fact, there are several scenarios where supervisors have the full privileges to

control the tasks of their subordinates, while the subordinates have no privileges

at all to access the supervisors’ tasks. Similar situations are very common in many

further scenarios, e.g., in the government, military and healthcare. Hierarchical

access control policies find a natural way of application also in the business and

in many other fields, such as the management of databases containing sensitive

information or the protection of industrial secrets.

It is important to point out that sometimes the conventional hierarchical

access control may be a limitation, since it could be necessary to provide some

particular sets of users, having specific access credentials, with access to the key

of a certain security class. This novel access control model finds a natural field

of application even when there is the need to manage unusual, exceptional or

emergency situations, which in general require special permissions. In particular,

consider the case in which the trust is based on a single entity, let it be a person or

an organization. Obviously, this may lead to abuses or violations by such entity,

as in the Snowden event [69], where a great deal of confidential information held

by the U.S. National Security Agency (NSA) was stolen. However, the NSA itself

has defined in the past some strict guidelines for limiting such abuses, namely,

the Orange Book [63] and Two-Person Authorization [17] [39], whose main goal

was to prevent a single user from viewing top-secret documents. The concept

upon which the guidelines are based is that, in general, somebody is less inclined

to do something dishonest if someone else is watching. In addition, the two

guidelines clearly state that the information within a system must be organized

in a “compartmental manner”, providing different levels of access and security

to each compartment. In this case, a simple protection may be the use of two

3

1. INTRODUCTION

or more “locks” to protect a given resource or activity, where each lock needs a

different key, owned by a different person. Thus, two or more people are needed

in order to grant the access to that resource or activity.

The Snowden event highlights the fact that the collaboration among several

users and organizations is preferable for gaining the permission to carry out a

given task or to access sensitive information. Such collaboration is needed so as

to ensure that the requested permission has been granted through the acceptance

and agreement among all the involved entities, thus preventing users from any

kind of abuse. In general, the collaboration characterizes any scenario where

more than one entity is required to achieve a specific authorization. More pre-

cisely, there are many real-world scenarios in which such a collaborative access

is necessary, i.e., where a user might have a sort of “pre-authorization” for the

access, but he may need to get the approval from someone else. For example, con-

sider the healthcare environment, which typically consists of several professional

profiles, such as doctors, nurses, etc.. In this environment, nurses may access

a subset of stored patient’s clinical data, while a doctor can usually access all

the data. However, it is important to emphasize that the doctor and nurse must

have the patient’s consent to access clinical information. In addition, a nurse

should not access all the information concerning a patient, unless she does not

gain the permission from both patient and doctor. Moreover, if a doctor wants

to access some clinical data without the explicit consent of the patient, he should

be granted permission from several entities, e.g., hospital administration, medical

committee, government authority, etc..

Again, the access to the workspace of a specific project branch could be

granted either directly to the project manager or to a set of project team mem-

bers. The same arguments apply to distributed cryptographic file systems [22]. A

further real field of application lies in the collaborative access to logs concerning

accesses and events, where the access can be achieved either by a single entity

(e.g., a communications authority) or by more of them, which cooperate with

each other. For example, the access might be allowed only if the judicial author-

ity cooperates with a given service provider. Another concrete example arises

from the military field, in which a decision can be taken by a single person with

a specific rank, by a certain number of his subordinates or more generally, by a

4

1. Introduction

given number of people with certain credentials, which do not have the authority

to decide on their own. Furthermore, consider a committee board composed of

several members and a general chair. In this context, the chair might be away for

personal reasons or could be in a situation which prevents him from making any

decisions for a given action. Only one member of the board cannot independently

take such a decision on behalf of the chair. However, the board members can col-

lectively take such a decision on behalf of the chair, as long as their number is

greater than or equal to a certain threshold.

Finally, advances in wireless communication and electronics have given rise

to the need of ensuring access control even in contexts characterized by high dy-

namicity. Thus, one of our goals has been to show how access control and cryp-

tographic key assignment can be combined to ensure dynamic and fine-grained

data security.

1.2 Cryptographic Hierarchical Access Control

and Key Assignment Schemes

An access control policy defines the set of rules characterizing the information

flow between different user classes in the system, and it can be represented by

a directed graph G = (V,E), where the vertex set V corresponds to the set of

security classes and there is a directed edge (u, v) ∈ E if and only if class u can

access class v. Again, each class has a self-loop. For each u ∈ V , we define the

accessible set of u as the set of classes that can be accessed by u. We also define

the incoming set of u as the set of classes that can access class u. Based on certain

characteristics, access control policies can be categorized as follows.

• Poset based access control policy. Many organizations are character-

ized by an inherent hierarchical structure and can be represented through

a partially ordered set (poset). More formally, a poset based access control

policy has the three following properties:

– Reflexive: A class u has access to its own data;

5

1. INTRODUCTION

– Antisymmetric: If a class u has access to the data of a class v and the

class v can access the data of u, then u and v are equivalent classes;

– Transitive: If a class u can access the data of a class v and the class v

can access the data of a class z, then the class u is able to access the

data of z.

• Arbitrary access control policy. There are many scenarios which cannot

be characterized by a strict hierarchy, thus requiring more general access

control policies. For example, an access control policy corresponding to

these scenarios may violate the anti-symmetric and transitive properties of

a partially ordered hierarchy. More formally, an arbitrary access control

policy has the two following properties:

– Reflexive: A class u has access to its own data;

– Equivalence: If the sets of classes that u and v can access are the same,

and the classes having access to the data of u are also authorized to

access the data of v and viceversa, then u and v are equivalent classes.

In the field of cryptography, an access control policy can be implemented by

means of a key assignment scheme, which is a method to assign an encryption

key and some private information to each class. The encryption key will be used

by each class to protect its own data, usually through a symmetric cryptosystem,

whereas, the private information will be used by each class to compute the keys

assigned to its accessible set. This assignment is carried out by a trusted authority,

referred to as TA, which is active only during the distribution phase. Specifically,

we consider how encryption keys can be used to reinforce the security of access

control schemes.

A basic and trivial cryptographic key assignment scheme requires each class

to store the encryption keys assigned to all classes in its accessible set. The

main drawback of this solution is that users in high level classes need to handle

more information than users in low level classes. It is easy to observe that low

space requirements and best performances enable a scheme to be used much more

extensively and in wider contexts than costly schemes. Therefore, an important

measure concerning the efficiency of a key assignment scheme is the size of the

6

1. Introduction

private information that each user stores to gain data accesses. Again, since the

derivation of a key could be performed in real-time, by users which may have

constrained hardware and software capabilities, it is important to design schemes

where the number of operations required to compute the key of the classes lower

down in the hierarchy is as small as possible. Obviously, also the operation

complexity should be as efficient as possible.

Furthermore, to improve the deployability of a key assignment scheme, also

access control policies which are more general than the hierarchical one should

be considered. Finally, to increase the effectiveness of a key assignment scheme,

it should be provided with the ability of managing dynamic access control poli-

cies. More precisely, in those schemes the topology of the access control policy

is allowed to change dynamically, i.e., classes and relations may be added to or

deleted from the system. As a consequence of any update, some private informa-

tion associated to particular classes may need to be updated. However, due to

efficiency reasons, it would be preferable that when any change takes place, the

number of classes involved in the update is as small as possible.

1.3 State of the Art

Akl and Taylor [2] first addressed the problem of reducing the inherent complexity

of the basic trivial key assignment scheme. In particular, they proposed an elegant

solution to solve the access control problem in systems organized as a partially

ordered hierarchy (poset). In their scheme, each class is assigned a key that can

be used later on, along with some public parameters generated by the TA, to

compute the key assigned to any class lower down in the hierarchy. Furthermore,

the scheme due to Akl and Taylor is secure against collusion attacks performed

by non-authorized classes. However, as the number of entities in the system

grows, so does the size of the keys held by higher level classes and the number

of computations required to derive lower level keys. In order to overcome the

above defined limitation, Mackinnon et al. [60] proposed an algorithm aimed at

determining an optimal assignment of keys by assigning the smallest primes to

the longest chains in the hierarchy.

Subsequently, many schemes have been proposed, which either have better

7

1. INTRODUCTION

performances or allow inserting and deleting classes in the hierarchy, as for ex-

ample the ones proposed in [27], [46], [61], [49], [58], [57], [59], [60], [64].

For instance, Sandhu [64] considered a significant type of hierarchy, i.e., a

rooted tree hierarchy. In his scheme, the key of a security class is generated

through the class identity and its parents’ secret key, by using a one-way function.

In 1990, Harn and Lin [46] proposed an approach that, instead of using a top-

down strategy as in the Akl-Taylor scheme, it uses a bottom-up key generation

approach. By doing this, the space required to store the public parameters for

security classes is much smaller than that required by the previous schemes.

However, when there are many security classes in the system, a large amount

of storage space is still required to store the public parameters. Subsequently,

Chang et al. [27] proposed a scheme based on Newton’s interpolation method and

using one-way functions. The main drawback is that all of those schemes can be

used to implement only poset-based access control policies.

The problem of designing cryptographic key assignment schemes for access

control policies with transitive and anti-symmetrical exceptions was first con-

sidered by Yeh et al. [72]. However, Hwang [50] showed that their scheme was

insecure against collusion attacks carried out by non-authorized classes.

It is important to point out that the above solutions deal with the access

control problem when the keys are assigned to users for an indefinite period of

time, and it is supposed that the only time in which it is necessary to re-assign

keys is when a user joins or leaves the system. However, in practical scenarios,

it is likely that users may belong to a class for a limited period of time. In

2002, Tzeng [70] proposed the first time-bound key assignment scheme to deal

with this situation. His proposed solution assumes that each class has a different

cryptographic key for each time period. The scheme is efficient in terms of space

requirements, but the computation of a key requires expensive public-key and

Lucas computations [56].

Afterwards, Bertino et al. [14] pointed out how key assignment schemes play

a fundamental role to enforce secure broadcasting of XML documents. In par-

ticular, they showed how to enforce access control on XML documents. This

is a very important feature for services where updates are sent to subscribers

which have access permissions for different portions of the same document. The

8

1. Introduction

hierarchical structure of an XML document allows to encrypt each different por-

tions of a document just once. The idea is to generate a single encrypted copy

of the document, where each different portion is encrypted by using a different

cryptographic key. Bertino et al. [14] used the Tzeng’s scheme to encrypt parts

of an XML document and distribute appropriate decryption keys to authorized

users. However, the Tzeng’s scheme was shown to be insecure against collusion

attacks in [73]. Then, a new time-bound hierarchical key assignment scheme was

proposed by Huang and Chang [48], but Tang and Mitchell [68] analyzed the se-

curity of such a scheme and showed some vulnerabilities, which enable malicious

users to breach the privacy of other users. Subsequently, Chien [28] proposed

a time-bound key assignment scheme based on tamper-resistant devices. Again,

Bertino et al. [66] proposed an efficient hierarchical key generation and key diffu-

sion scheme for sensor networks. Finally, De Santis et al. [35] proposed a new key

assignment scheme for access control in a complete tree hierarchy. However, all

those schemes either require high computational load or lack of a formal security

proof.

According to the security reduction paradigm introduced by Goldwasser and

Micali [44], a scheme is provably-secure under a complexity assumption if the

existence of an adversary A breaking the scheme implies the existence of an

adversary B breaking the computational assumption [44]. Atallah et al. [4] first

addressed the problem of formalizing security requirements for hierarchical key

assignment schemes and proposed two different notions: security against key

recovery and with respect to key indistinguishability. Informally speaking, the

former captures the notion that an adversary should not be able to compute a

key to which it should not have access, while in the latter, the adversary should

not even be able to distinguish between the real key and a random string of

the same length. In particular, the model considered in [4] allows an adversary

attacking a certain class in the hierarchy to gain access to the private information

assigned to all users not allowed to access such a class, as well as all the public

information.

Atallah et al. [4] also proposed two provably-secure constructions for hierar-

chical key assignment schemes: the first one is based on pseudorandom functions

and satisfies security against key recovery, whereas, the second one requires the

9

1. INTRODUCTION

additional use of a symmetric encryption scheme and guarantees security with

respect to key indistinguishability. Different constructions satisfying the above

defined notions of security have been proposed in [8, 32, 6, 29, 30, 33, 38, 7, 41].

In particular, De Santis et al. [32, 33] proposed two different constructions sat-

isfying security with respect to key indistinguishability: the first one, which is

based on symmetric encryption schemes, is simpler than the one proposed in [4],

requires a single computational assumption, and offers more efficient procedures

for key derivation and key updates; the second one, which is based on a public-

key broadcast encryption scheme, allows to obtain a hierarchical key assignment

scheme offering constant private information and public information linear in the

number of classes. D’Arco et al. [29, 30] analyzed the Akl-Taylor scheme ac-

cording to the definitions proposed in [4] and showed how to choose the public

parameters in order to get instances of the scheme which are secure against key

recovery under the RSA assumption. Moreover, they showed how to turn the

Akl-Taylor scheme in a construction offering security with respect to key indis-

tinguishability; however, such a scheme is less efficient than the constructions

proposed in [4, 32, 33]. Then, Freire et al. [41] proposed a construction based

on factoring, satisfying security with respect to key indistinguishability. Again,

Ateniese et al. [8, 7] and De Santis et al. [36] extended the model proposed in [4]

to schemes satisfying additional time-dependent constraints and proposed two

different constructions offering security with respect to key indistinguishability.

Other constructions for time-dependent schemes, offering different trade-offs in

terms of amount of public and private information and complexity of key deriva-

tion, were shown in [37, 6, 38, 15].

Recently, Freire et al. [42] proposed new security definitions for hierarchical

key assignment schemes. Such definitions, called security against strong key re-

covery and security with respect to strong key indistinguishability, provide the

adversary with additional compromise capability, thus representing a strength-

ening of the model provided in [4]. As stated by Freire et al., such a new model

is able to characterize a variety of scenarios which may arise in real-world sit-

uations, since it allows the protection of the key assigned to a certain class u,

even when the keys held by classes which are predecessors of u in the hierarchy

have been leaked, due to their use, loss or theft. More precisely, Freire et al.

10

1. Introduction

considered an adversary which, given a certain class, is allowed to achieve the

private information assigned to all users not allowed to access such class, as well

as all the public information and keys assigned to all the other classes which are

predecessors of the attacked (target) class in the hierarchy. Freire et al. also pro-

posed two hierarchical key assignment schemes which are secure in the sense of

strong key indistinguishability. The former construction is based on pseudoran-

dom functions, whereas, the latter one is based on forward-secure pseudorandom

generators. Finally, they showed that the notions of security against key recovery

and against strong key recovery are separated, i.e., there exist schemes that are

secure against key recovery but which are not secure against strong key recov-

ery. On the other hand, they did not clarify the relations between the notions of

security with respect to key indistinguishability and with respect to strong key

indistinguishability.

1.4 Contributions of This Thesis

In this thesis we provide new insights on cryptographic hierarchical access control

and key assignment, in particular by focusing on models, schemes and security

notions, as well as on their relative analysis. As stated before, cryptographic

hierarchical access control is implemented by means of proper key assignment

schemes, which involve secret and public information generated and distributed

by the TA to the users, in order to set up the scheme. More precisely, in this thesis

we focus on cryptographic hierarchical access control schemes which are based on

dependent key management approaches, besides discussing the challenges involved

for extending them to deal with changing conditions and dynamic environments.

In general, we recall that dependent key management schemes organize users into

groups and assign each group a unique key. Afterwards, such a key can be used

either to decrypt data that the users are authorized to access or to derive the

keys of their accessible set. We remark that assigning groups single keys makes

security management easier for both the users and security administrator, since

it reduces the risks of mismanagement that could lead to security violations. Ob-

viously, it is important to construct schemes whose amount of public and secret

information is as small as possible. The efficiency of a hierarchical key assign-

11

1. INTRODUCTION

ment scheme is evaluated according to different parameters: storage requirements,

which correspond to the amount of secret data that needs to be distributed and

stored by the users and the amount of data that needs to be made public; the

complexity of both key derivation and key update procedures. Indeed, it is prefer-

able that updates to the access hierarchy, performed to reflect changes in access

permissions, require only local changes to the public information and do not need

any private information to be re-distributed; the computational assumption on

which the security of the scheme relies. In fact, it is preferable to rely on standard

assumptions.

In this thesis we analyze the security of hierarchical key assignment schemes

according to different notions, that is, security with respect to key indistinguisha-

bility and against key recovery, as well as the two recently proposed notions of

security with respect to strong key indistinguishability and against strong key

recovery. We first explore the relations between all security notions and, in par-

ticular, we prove that security with respect to strong key indistinguishability

is not stronger than the one with respect to key indistinguishability, thus an-

swering an important open question in the field of hierarchical key assignment

schemes. Afterwards, we propose a general construction yielding a hierarchical

key assignment scheme which ensures security against strong key recovery, given

any hierarchical key assignment scheme which guarantees security against key

recovery.

Moreover, we define the concept of hierarchical key assignment schemes sup-

porting dynamic updates, besides formalizing the relative security model. In par-

ticular, we provide the notions of security with respect to key indistinguishability

and key recovery, by taking into account the dynamic changes to the hierarchy.

Moreover, we show how to construct a hierarchical key assignment scheme sup-

porting dynamic updates, by using as a building block a symmetric encryption

scheme. The proposed construction is provably secure with respect to key indis-

tinguishability, provides efficient key derivation and updating procedures, while

requiring each user to store only a single private key.

Finally, we propose a novel model that generalizes the conventional hierarchi-

cal access control paradigm, by extending it to certain additional sets of quali-

fied users. Then, we propose two constructions for hierarchical key assignment

12

1. Introduction

schemes in this new model, which are provably secure with respect to key indis-

tinguishability. In particular, the former construction relies on both symmetric

encryption and perfect secret sharing, whereas, the latter is based on public-key

threshold broadcast encryption. We remark that in this thesis the security of

all the proposed hierarchical key assignment schemes rely on the computational

infeasibility of breaking it (computational security).

The motivations underlying this thesis are mainly based on two observations.

The first observation is that even though the simplicity of using password-based

authentication schemes has made them the “de facto” standard to enforce access

control, their vulnerability to even more sophisticated attacks has made cryp-

tographic alternatives or support for authentication schemes attractive. Unlike

authentication schemes relying on system-specific security policies, Cryptographic

access control (CAC) schemes have the advantage that their security is not based

on the physical security of the system on which the data is stored. Further-

more, since CAC schemes typically use data encryption to enforce access control,

unauthorized access is more difficult to gain, because the data remains encrypted

regardless of its location, and only a valid key can be used to decrypt it. The

second observation is that access control models are prone to failures (security vi-

olation or the inability to meet their goals), which arise from the fact that security

designers are likely to assume that if security schemes are correctly defined, fail-

ure is unlikely. As a consequence, cryptographic hierarchical access control has

gained popularity as a solution to design multilevel security models which are

more general and able to provide security in different contexts, without requiring

significant changes to the fundamental architecture.

1.5 Organization of the Thesis

In this introduction we have provided an overview concerning the scenarios, mo-

tivations, state of the art and new insights on cryptographic hierarchical access

control and key assignment schemes. In the following chapters we develop the

formal frameworks and present our results.

The results presented in this thesis are based on joint works with Alfredo

De Santis, Barbara Masucci, Francesco Palmieri, Xinyi Huang and Jin Li. The

13

1. INTRODUCTION

organization of the rest of this thesis is as follows.

• Chapter 2: In this chapter we analyze and clarify all the relations exist-

ing between the security notions for Hierarchical Key Assignment Schemes

(HKASs). More precisely, the most important contribution presented in

this chapter is the proof of the equivalence between the notions of key-

indistinguishability [4] and strong key indistinguishability [42], which an-

swers an important open question in the field of hierarchical key assignment

schemes. The results presented in this chapter can be found in [24].

• Chapter 3: In this chapter we formally extend the notions of security

proposed by Atallah et al. [4] to address the further changes introduced

by dynamic and adaptive updates to the access control hierarchy. More

precisely, in this chapter we introduce novel security definitions which are

able to model the behavior of an adversary that, besides being able to

corrupt a certain set of users, it is also able to modify dynamically the access

structure it intends to attack, according to the specific scenario. Again, we

propose a HKAS, based on symmetric encryption schemes, which is secure

with respect to our novel proposed model. The results presented in this

chapter can be found in [25].

• Chapter 4: In this chapter we extend the classical hierarchical access

control model to deal with scenarios which require the shared reconstruction

of the secret key. Moreover, we propose two HKASs, which are secure with

respect to the new model. More precisely, the former is based on symmetric

encryption schemes and perfect secret sharing schemes, whereas, the latter

is based on threshold broadcast encryption schemes. The results presented

in this chapter can be found in [23] [26].

• Chapter 5: Finally, in this chapter we conclude the thesis, by providing

discussions and some final remarks.

14

1. Introduction

1.6 Notation

In this thesis we use the standard notation to describe probabilistic algorithm

and experiments following [45]. If A(·, ·, . . .) is any probabilistic algorithm then

a ← A(x, y, . . .) denotes the experiment of running A on inputs x, y, . . . and

letting a be the outcome, the probability being over the coins of A. Similarly, if

X is a set, then x← X denotes the experiment of selecting an element uniformly

from X and assigning x this value. If w is neither an algorithm nor a set, then

x ← w is a simple assignment statement. A function ε : N → R is negligible if

for every constant c > 0 there exists an integer nc such that ε(n) < n−c for all

n ≥ nc.

15

Chapter 2

Key Indistinguishability vs.

Strong Key Indistinguishability

for Hierarchical Key Assignment

Schemes

“A proof is whatever convinces me.”

— Shimon Even, 1935-2004

2.1 Introduction

In this chapter we explore the relations between all security notions for hierar-

chical key assignment schemes, by clarifying implications and separations occur-

ring between such notions. In particular, we show that security with respect to

strong key indistinguishability is not stronger than the one with respect to key

indistinguishability, thus establishing the equivalence between such two security

notions. A similar result has been recently shown in the unconditionally secure

setting [20]. Furthermore, we also show how to construct a hierarchical key as-

signment scheme which is secure against strong key recovery, starting from any

scheme which guarantees security against key recovery.

This chapter is organized as follows: in Section 2.2 we review the definition

16

2. Hierarchical Key Assignment Schemes

of hierarchical key assignment schemes; in Section 2.3 we describe all security

definitions for hierarchical key assignment schemes; in Section 2.4 we analyze the

relations among these definitions and in particular we show that security with

respect to strong key indistinguishability is not stronger than the one with respect

to key indistinguishability; finally in Section 2.5, we show how to construct a

hierarchical key assignment scheme secure against strong key recovery, starting

from any hierarchical key assignment scheme which is secure against key recovery.

2.2 Hierarchical Key Assignment Schemes

Consider a set of users divided into a number of disjoint classes, called security

classes. A security class can represent a person, a department or a user group

in an organization. A binary relation � that partially orders the set of classes

V is defined in accordance with authority, position or power of each class in V .

The poset (V,�) is called a partially ordered hierarchy. For any two classes u

and v, the notation u � v is used to indicate that the users in v can access u’s

data. Clearly, since v can access its own data, it holds that v � v, for any v ∈ V .

We denote the accessible set of a class v by Av, which corresponds to the set

{u ∈ V : u � v}, for any v ∈ V . The partially ordered hierarchy (V,�) can be

represented by the directed graph G∗ = (V,E∗), where each class corresponds to

a vertex in the graph and there is an edge from class v to class u if and only if

u � v. We denote by G = (V,E) the minimal representation of the graph G∗,

namely, the directed acyclic graph corresponding to the transitive and reflexive

reduction of the graph G∗ = (V,E∗). The graph G has the same transitive and

reflexive closure of G∗, i.e., there is a path (of length greater than or equal to zero)

from v to u in G if and only if there is the edge (v, u) in E∗. Aho et al. [1] showed

that every directed graph has a transitive reduction, which can be computed in

polynomial time and is unique for directed acyclic graphs. In the following, we

denote by Γ a family of graphs corresponding to partially ordered hierarchies.

For example, Γ could be the family of the rooted trees [64], the family of the

d-dimensional hierarchies [5], etc..

A hierarchical key assignment scheme for a family Γ of graphs, corresponding to

partially ordered hierarchies, is defined as follows in [8, 32, 37, 38, 29, 30, 33, 7].

17

2. NOTIONS OF SECURITY

Definition 2.2.1. A hierarchical key assignment scheme for Γ is a pair

(Gen,Der) of algorithms satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time.

It takes as inputs the security parameter 1τ and a graph G = (V,E) in Γ,

and produces as outputs

(a) a private information su, for any class u ∈ V ;

(b) a key ku ∈ {0, 1}τ , for any class u ∈ V ;

(c) a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ and

G, where s and k denote the sequences of private information and keys,

respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes

as inputs the security parameter 1τ , a graph G = (V,E) in Γ, two classes

u, v in V , the private information su assigned to class u and the public

information pub, and produces as output the key kv ∈ {0, 1}τ assigned to

class v if v ∈ Au, or a special rejection symbol ⊥ otherwise.

We require that for each class u ∈ V , each class v ∈ Au, each private

information su, each key kv ∈ {0, 1}τ , each public information pub which

can be computed by Gen on inputs 1τ and G, it holds that

Der(1τ , G, u, v, su, pub) = kv.

2.3 Notions of Security

A hierarchical key assignment scheme must be resistant to collusive attacks. More

precisely, for each class u ∈ V , the key ku should be protected against a coalition

of all users in the set Fu = {v ∈ V : u 6∈ Av}, corresponding to the ones which

are not allowed to compute the key ku.

Atallah et al. [4] first introduced two different security goals for hierarchi-

cal key assignment schemes: security with respect to key-indistinguishability and

18

2. Notions of Security

security against key recovery. The former formalizes the requirement that the

adversary is not able to learn any information (even a single bit) about a key ku

which it should not have access to, i.e., it is not able to distinguish it from a ran-

dom string having the same length. On the other hand, the latter corresponds to

the weaker requirement that an adversary is not able to compute a key ku which

it should not have access to. The notion of key indistinguishability offers security

guarantees that cannot be achieved by schemes whose security relies only upon

key recovery. These stronger security guarantees could be necessary. For exam-

ple, as pointed out in [33], it is straightforward that the key indistinguishability

notion is needed when the data associated to a class are protected by means of

a symmetric encryption scheme, whose implementation details make the confi-

dentiality of the ciphertext (or of part of it) depending on the secrecy of only a

portion of the encryption key.

Recently, Freire et al. [42] proposed a new security definition for hierarchical

key assignment schemes. Such a definition, called security with respect to strong

key-indistinguishability, formalizes the requirement that the adversary is not able

to learn any information about a key ku which it should not have access to, even

if it has the additional capability of gaining access to the keys associated to all

other classes which are predecessors of the target class in the hierarchy. Notice

that these encryption keys might leak through usage and their compromise could

not directly lead to a compromise of the private information su or the encryption

key ku of the target class u. Freire et al. also introduced the definition of security

against strong key recovery. Such a definition formalizes the requirement that

the adversary is not able to compute a key ku which it should not have access

to, even if it has the additional capability of gaining access to encryption keys

assigned to all the other classes which are predecessors of the target class in the

hierarchy.

In the following, we consider a static adversary which, given a class u, is

allowed to gain the private information assigned to all users not allowed to access

such class, as well as all the relative public information. For the case of strong

key indistinguishability and strong key recovery, such an adversary is also able

to access keys assigned to all other classes which are predecessors of the target

class in the hierarchy. A different kind of adversary, the adaptive one, could

19

2. NOTIONS OF SECURITY

be also considered. In detail, such an adversary is first allowed to access all

public information as well as all private information of a number of classes of

its choice; afterwards, it chooses the class u it wants to attack. In [8, 7] it has

been proven that security with respect to adaptive adversaries is (polynomially)

equivalent to the one against static ones. In particular, the scenario considered

in [8, 7, 9] is more general, since the lifetime of each key is limited to a given

period of time. In such a setting, each class is assigned to a different key for

each different period of time. These schemes are called Time-Bound Hierarchical

Key Assignment Schemes. However, the equivalence between adaptive and static

adversaries shown in [8, 7] also applies to hierarchical key assignment schemes,

since they can be seen as time-bound hierarchical key assignment schemes with

a single period of time. Therefore, in this thesis we will only consider static

adversaries.

2.3.1 Security with respect to Key Indistinguishability

Consider a static adversary STATu that wants to attack a class u ∈ V and which

is able to corrupt all users in Fu. We define an algorithm Corruptu, which on

input the private information s generated by the algorithm Gen, extracts the

secret values sv associated to all classes v ∈ Fu. We denote by corru the sequence

output by Corruptu(s). Two experiments are considered. In the first one, the

adversary is given the key ku, whereas, in the second one, it is given a random

string ρ having the same length as ku. It is the adversary’s job to determine

whether the received challenge corresponds to ku or to a random string. We

require that the adversary will succeed with probability only negligibly different

from 1/2.

Definition 2.3.1. [IND-ST] Let Γ be a family of graphs corresponding to par-

tially ordered hierarchies, let G = (V,E) be a graph in Γ, let (Gen,Der) be a

hierarchical key assignment scheme for Γ and let STATu be a static adversary

which attacks a class u. Consider the following two experiments:

20

2. Notions of Security

Experiment ExpIND−1
STATu

(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

d← STATu(1
τ , G, pub, corru, ku)

return d

Experiment ExpIND−0
STATu

(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

ρ← {0, 1}τ
d← STATu(1

τ , G, pub, corru, ρ)

return d

The advantage of STATu is defined as

AdvIND
STATu

(1τ , G) = |Pr[ExpIND−1
STATu

(1τ , G) = 1]

− Pr[ExpIND−0
STATu

(1τ , G) = 1]|.

The scheme is said to be secure in the sense of IND-ST if, for each graph G =

(V,E) in Γ and each u ∈ V , the function AdvIND
STATu

(1τ , G) is negligible, for each

static adversary STATu whose time complexity is polynomial in τ .

2.3.2 Security with respect to Key Recovery

Now consider the case where there is a static adversary STATu which wants to

compute the key assigned to a class u ∈ V . As done before, we denote by corru

the sequence output by the algorithm Corruptu, on input the private information

s generated by the algorithm Gen. The adversary, on input all public information

generated by the algorithm Gen, as well as the private information corru, outputs

a string k′u and succeeds if k′u = ku. We require that the adversary will succeed

with probability only negligibly different from 1/2τ .

Definition 2.3.2. [REC-ST] Let Γ be a family of graphs corresponding to par-

tially ordered hierarchies, let G = (V,E) be a graph in Γ, let (Gen,Der) be a

hierarchical key assignment scheme for Γ and let STATu be a static adversary

which attacks a class u. Consider the following experiment:

21

2. NOTIONS OF SECURITY

Experiment ExpREC
STATu(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

k′u ← STATu(1τ , G, pub, corru)

return k′u

The advantage of STATu is defined as

AdvREC
STATu

(1τ , G) = Pr[ExpREC
STATu

(1τ , G) = ku].

The scheme is said to be secure in the sense of REC-ST if, for each graph G =

(V,E) in Γ and each class u ∈ V , the function AdvREC
STATu

(1τ , G) is negligible, for

each static adversary STATu whose time complexity is polynomial in τ .

2.3.3 Security with respect to Strong Key Indistinguisha-

bility

Consider a static adversary STATu that wants to attack a class u ∈ V . Such

adversary is able to corrupt all users in Fu and to gain access to the keys associated

to all classes in the set Pu = {v ∈ V \ {u} : u ∈ Av} of the predecessors of class

u. As done before, we denote by corru the sequence output by the algorithm

Corruptu, on input the private information s generated by the algorithm Gen.

Moreover, we define an algorithm Keysu, which on input the encryption keys k

generated by the algorithm Gen, extracts keys kv associated to all classes v ∈ Pu.
We denote by keysu the sequence output by Keysu(k). Two experiments are

considered. In the first one, the adversary is given the key ku, whereas, in the

second one, it is given a random string ρ having the same length as ku. It is the

adversary’s job to determine whether the received challenge corresponds to ku or

to a random string. We require that the adversary will succeed with probability

only negligibly different from 1/2.

Definition 2.3.3. [STRONG-IND-ST] Let Γ be a family of graphs corresponding

to partially ordered hierarchies, let G = (V,E) be a graph in Γ, let (Gen,Der) be

a hierarchical key assignment scheme for Γ and let STATu be a static adversary

which attacks a class u. Consider the following two experiments:

22

2. Notions of Security

Experiment ExpSTRONG−IND−1
STATu

(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysu ← Keysu(k)

d← STATu(1
τ , G, pub, corru, keysu, ku)

return d

Experiment ExpSTRONG−IND−0
STATu

(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysu ← Keysu(k)

ρ← {0, 1}τ
d← STATu(1

τ , G, pub, corru, keysu, ρ)

return d

The advantage of STATu is defined as

AdvSTRONG−IND
STATu

(1τ , G) = |Pr[ExpSTRONG−IND−1
STATu

(1τ , G) = 1]

− Pr[ExpSTRONG−IND−0
STATu

(1τ , G) = 1]|.

The scheme is said to be secure in the sense of STRONG-IND-ST if, for each graph

G = (V,E) in Γ and each u ∈ V , the function AdvSTRONG−IND
STATu

(1τ , G) is negligible,

for each static adversary STATu whose time complexity is polynomial in τ .

2.3.4 Security against Strong Key Recovery

Finally, consider the case where there is a static adversary STATu that wants to

compute the key assigned to a class u ∈ V . Such adversary is able to corrupt

all users in Fu and gain access to the keys associated to all classes in the set

Pu of the predecessors of u. As done before, we denote by corru the sequence

output by the algorithm Corruptu, on input the private information s generated

by the algorithm Gen. Moreover, we denote by keysu the sequence output by

Keysu(k). The adversary, on input all public information generated by the

algorithm Gen, as well as the private information corru and the sequence keysu,

23

2. IMPLICATIONS AND SEPARATIONS

outputs a string k′u and succeeds if k′u = ku. We require that the adversary will

succeed with probability only negligibly different from 1/2τ .

Definition 2.3.4. [STRONG-REC-ST] Let Γ be a family of graphs corresponding

to partially ordered hierarchies, let G = (V,E) be a graph in Γ, let (Gen,Der) be

a hierarchical key assignment scheme for Γ and let STATu be a static adversary

which attacks a class u. Consider the following experiment:

Experiment ExpSTRONG−REC
STATu

(1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysu ← Keysu(k)

k′u ← STATu(1τ , G, pub, corru, keysu)

return k′u

The advantage of STATu is defined as

AdvSTRONG−REC
STATu

(1τ , G) = Pr[ExpSTRONG−REC
STATu

(1τ , G) = ku].

The scheme is said to be secure in the sense of STRONG-REC-ST if, for each

graph G = (V,E) in Γ and each class u ∈ V , the function AdvSTRONG−REC
STATu

(1τ , G)

is negligible, for each static adversary STATu whose time complexity is polynomial

in τ .

2.4 Implications and Separations

In this section, we analyze the relations between the security definitions described

in Section 2.3. In particular, we show implications and separations occurring

between such notions. Figure 2.1 summarizes our results.

It is easy to see that any adversary which breaks the security of the key as-

signment scheme in the sense of STRONG-REC-ST can be easily turned into another

adversary which breaks the security of the key assignment scheme in the sense of

STRONG-IND-ST. Hence, the next result holds.

24

2. Implications and Separations

STRONG− IND− ST IND− ST

STRONG− REC− ST

REC− ST

Thm. 2.4.5 and Thm. 2.4.6

Thm
. 2.4.2

Thm
. 2.4.1

T
hm

. 2.4.11

T
hm

. 2.4.12

Thm. 2.4.3 Thm. 2.4.4

Th
m
. 2
.4
.8

Th
m
. 2
.4
.7

T
hm

. 2
.4
.9

T
hm

. 2
.4
.1
0

Figure 2.1: Relations between the security notions for hierarchical key assignment
schemes.

Theorem 2.4.1. [STRONG-IND-ST⇒STRONG-REC-ST] Let Γ be a family of graphs

corresponding to partially ordered hierarchies. If a hierarchical key assignment

scheme for Γ is secure in the sense of STRONG-IND-ST, then it is also secure in

the sense of STRONG-REC-ST.

In the following, we show that security against strong key recovery does not

necessarily imply security with respect to strong key indistinguishability. Let

(Gen,Der) be a hierarchical key assignment scheme which is secure in the sense

of STRONG-REC-ST. We construct another scheme (Gen′, Der′) and we show that

it is secure in the sense of STRONG-REC-ST but is not secure in the sense of

STRONG-IND-ST. Let u ∈ V be a class and let ku be the key assigned by Gen to

u. Algorithm Gen′ computes the key assigned to class u as k′u = 1||ku, where the

symbol || denotes string concatenation. All other values computed by Gen′ are

exactly the same as the ones computed by Gen. Algorithm Der′ first computes

ku by using Der, then obtains k′u = 1||ku. Let STATu be a static adversary that

simply checks whether the first bit x0 of the challenge x, corresponding either to

the key k′u or to a random string having the same length as k′u, is equal to 0. If this

happens, then STATu can easily conclude that the challenge x does not correspond

to the key k′u, but is a random string. Since the advantage AdvSTRONG−IND
STATu

is non-

negligible, it follows that (Gen′, Der′) is not secure in the sense of STRONG-IND-ST.

25

2. IMPLICATIONS AND SEPARATIONS

On the other hand, (Gen′, Der′) is secure in the sense of STRONG-REC-ST. Assume

by contradiction that (Gen′, Der′) is not secure in the sense of STRONG-REC-ST.

It follows that also (Gen,Der) is not secure in the sense of STRONG-REC-ST, thus

leading to a contradiction. For this reason, the next result holds.

Theorem 2.4.2. [STRONG-REC-ST6⇒STRONG-IND-ST] Let Γ be a family of graphs

corresponding to partially ordered hierarchies. If there exists a hierarchical key

assignment scheme for Γ which is secure in the sense of STRONG-REC-ST, then

there exists a hierarchical key assignment scheme for Γ that is secure in the sense

of STRONG-REC-ST but which is not secure in the sense of STRONG-IND-ST.

The relations between the definitions of security against strong key recovery

and security against key recovery have been established by Freire et al. [42]. In

particular, they showed that the two notions of security against key recovery

and against strong key recovery are separated, i.e., there exist hierarchical key

assignment schemes that are secure against key recovery but which are not secure

against strong key recovery. An example of such schemes is the one based on

pseudorandom functions, proposed by Atallah et al. [4]. Thus, the following

theorems hold.

Theorem 2.4.3. [STRONG-REC-ST⇒REC-ST] Let Γ be a family of graphs corre-

sponding to partially ordered hierarchies. If a hierarchical key assignment scheme

for Γ is secure in the sense of STRONG-REC-ST, then it is also secure in the sense

of REC-ST.

Theorem 2.4.4. [REC-ST6⇒STRONG-REC-ST] Let Γ be a family of graphs corre-

sponding to partially ordered hierarchies. If there exists a hierarchical key assign-

ment scheme for Γ which is secure in the sense of REC-ST, then there exists a

hierarchical key assignment scheme for Γ that is secure in the sense of REC-ST

but which is not secure in the sense of STRONG-REC-ST.

In detail, the above implication can be inferred from the main idea underly-

ing the separating example proposed in [42]. On the other hand, the relations

between the notions of security with respect to key indistinguishability and with

respect to strong key indistinguishability are not completely clear. As stated by

26

2. Implications and Separations

the next theorem, it is easy to see that security with respect to strong key indis-

tinguishability implies security with respect to key indistinguishability. However,

nothing is known about the other direction.

Theorem 2.4.5. [STRONG-IND-ST⇒IND-ST] Let Γ be a family of graphs corre-

sponding to partially ordered hierarchies. If a hierarchical key assignment scheme

for Γ is secure in the sense of STRONG-IND-ST, then it is also secure in the sense

of IND-ST.

In the following, we show that security with respect to strong key indistin-

guishability is not stronger than the one with respect to key indistinguishability,

that is to say, STRONG-IND-ST and IND-ST are equivalent.

Theorem 2.4.6. [IND-ST⇒STRONG-IND-ST] Let Γ be a family of graphs corre-

sponding to partially ordered hierarchies. If a hierarchical key assignment scheme

for Γ is secure in the sense of IND-ST, then it is also secure in the sense of

STRONG-IND-ST.

Proof. Assume by contradiction that there exists a hierarchical key assignment

scheme Σ for a graph G = (V,E) in Γ, which is secure in the sense of IND-ST

but that is not secure in the sense of STRONG-IND-ST. Therefore, there exists a

class u ∈ V and a static adversary STATu which is able to distinguish between

experiments ExpSTRONG−IND−0
STATu

and ExpSTRONG−IND−1
STATu

with non-negligible advantage.

Recall that the only difference between ExpSTRONG−IND−0
STATu

and ExpSTRONG−IND−1
STATu

is

the last input of STATu, which corresponds to a random value chosen in {0, 1}τ
in the first experiment and to the real key ku in the second one.

Let Pu = {v ∈ V \ {u} : u ∈ Av} be the set of predecessors of class u and let

Gu = (Pu, Eu) be the subgraph of G induced by Pu. Without loss of generality,

let (u1, . . . , um) be any topological ordering of the vertices in Pu, i.e., any linear

ordering of elements in Pu such that for each edge (ui, uj) ∈ Eu, ui precedes uj in

the ordering. It is well know that any directed acyclic graph (DAG) has at least

one topological ordering. More precisely, a directed graph G has a topological

ordering if and only if G is a DAG [54]. Notice that the sequence keysu, which is

an input of STATu in both the experiments ExpSTRONG−IND−0
STATu

and ExpSTRONG−IND−1
STATu

,

contains exactly the keys ku1 , . . . , kum . First of all, it is easy to observe that if

27

2. IMPLICATIONS AND SEPARATIONS

m = 0 the sequence keysu is empty, thus the experiments ExpSTRONG−IND−0
STATu

and

ExpSTRONG−IND−1
STATu

correspond to ExpIND−0
STATu

and ExpIND−1
STATu

, respectively. In this case,

since STATu is able to distinguish between such experiments with non-negligible

advantage, it follows that the scheme Σ is not secure in the sense of IND-ST,

which is a contradiction.

In addition, consider the case in which m > 0. We will show how to turn the

adversary STATu into another polynomial-time adversary STAT′uh , where uh ∈ Pu,
which breaks the scheme Σ in the sense of IND-ST, thus leading to a contradiction.

We construct two sequences Exp1,1
u , . . . ,Exp1,m+1

u and Exp2,1
u , . . . ,Exp2,m+1

u of

m+1 experiments each, all defined over the same probability space, where the first

experiment of the former sequence, that is Exp1,1
u , is equal to ExpSTRONG−IND−0

STATu
,

whereas, the last experiment of the latter sequence, that is Exp2,m+1
u , is equal to

ExpSTRONG−IND−1
STATu

.

For any q = 2, . . . ,m + 1, experiment Exp1,q
u in the first sequence is defined

as follows:

Experiment Exp1,q
u (1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysqu ← Keysqu(k)

d← STATu(1τ , G, pub, corru, keys
q
u, ρ)

return d

The output of the algorithm Keysqu is the sequence keysqu where the first q − 1

values are independently chosen at random in {0, 1}τ and, if q ≤ m, the other

m− q + 1 values correspond to the keys assigned to the classes uq, . . . , um.

On the other hand, for any q = 1, . . . ,m, experiment Exp2,q
u in the second

sequence is defined as follows:

Experiment Exp2,q
u (1τ , G)

(s, k, pub)← Gen(1τ , G)

corru ← Corruptu(s)

keysm−q+2
u ← Keysm−q+2

u (k)

d← STATu(1τ , G, pub, corru, keys
m−q+2
u , ku)

return d

28

2. Implications and Separations

where keysm−q+2
u denotes the sequence where the first m − q + 1 values are in-

dependently chosen at random in {0, 1}τ and, if q ≥ 2, the other q − 1 values

correspond to the keys assigned to the classes um−q+2, . . . , um.

Since Exp1,1
u , which corresponds to ExpSTRONG−IND−0

STATu
, and Exp2,m+1

u , which cor-

responds to ExpSTRONG−IND−1
STATu

, can be distinguished by STATu with non-negligible

advantage, then there exists at least a pair of consecutive experiments, in the se-

quence of 2m+ 2 experiments obtained by composition of the two above defined

sequences, which are distinguishable by STATu with non-negligible advantage.

We first show that such a pair cannot consist of the two extremal experi-

ments, namely, the last experiment of the first sequence, that is Exp1,m+1
u , and

the first experiment of the second sequence, that is Exp2,1
u . Assume by con-

tradiction that STATu is able to distinguish between Exp1,m+1
u and Exp2,1

u with

non-negligible advantage. Notice that the only difference between such two ex-

periments is the last input of STATu, which corresponds to a random value chosen

in {0, 1}τ in experiment Exp1,m+1
u , and to the real key ku in experiment Exp2,1

u .

We show how to construct another adversary STAT′u which breaks the security

of the scheme Σ in the sense of IND-ST, by using the adversary STATu. The ad-

versary STAT′u, on inputs 1τ , G, the sequence of private information corru and

a final value α, corresponding either to the key ku or to a random value chosen

in {0, 1}τ , constructs the sequence keysm+1
u needed for STATu choosing indepen-

dently at random m elements in {0, 1}τ . Then, STAT′u outputs the same output

as STATu(1
τ , G, pub, corru, keys

m+1
u , α). Clearly, since STATu is able to distinguish

between Exp1,m+1
u and Exp2,1

u with non-negligible advantage, then STAT′u is able

to distinguish between ExpIND−0
STAT′u and ExpIND−1

STAT′u with non-negligible advantage,

thus breaking the security of the scheme Σ in the sense of IND-ST. Contradiction.

Thus, the pair of consecutive experiments which can be distinguished by STATu,

belongs either to the first sequence or to the second one.

Assume that the pair of distinguishable consecutive experiments belongs to the

first sequence and it is composed by Exp1,h
u and Exp1,h+1

u , for some h = 1, . . . ,m.

Notice that the views of STATu in such two consecutive experiments differ only for

a single value, which corresponds to the key kuh in Exp1,h
u and to a random value

chosen in {0, 1}τ in Exp1,h+1
u . We show how to construct an adversary STAT′′uh

which breaks the security of the scheme Σ in the sense of IND-ST, by using

29

2. IMPLICATIONS AND SEPARATIONS

the adversary STATu. In particular, we show that STAT′′uh is able to distinguish

between experiments ExpIND−0
STAT′′uh

and ExpIND−1
STAT′′uh

with non-negligible advantage.

The adversary STAT′′uh , on inputs 1τ , G, the sequence of private information

corruh and a final value α, corresponding either to the key kuh or to a random

value chosen in {0, 1}τ , constructs the inputs for STATu as follows:

• First, STAT′′uh extracts from corruh the sequence corru. This can be done

since uh ∈ Pu, i.e., uh is a predecessor of u, hence classes which are corrupted

for u are also corrupted for uh and their private information is in corruh .

• Then, STAT′′uh uses corruh and α to construct a sequence keysαu , which

corresponds either to keyshu or to keysh+1
u . In particular, the first h − 1

elements of keysαu are independently chosen at random in {0, 1}τ , the h-

th element is set equal to α, whereas, the remaining m − h ones, which

correspond to the keys of the classes uh+1, . . . , um, are computed by using

the private information of such classes, which are contained in corruh .

• Moreover, the last input for STATu is set equal to a random value ρ chosen

in {0, 1}τ .

Finally, STAT′′uh outputs the same output as STATu(1
τ , G, pub, corru, keys

α
u , ρ).

Clearly, since STATu is able to distinguish between Exp1,h
u and Exp1,h+1

u with

non-negligible advantage, then STAT′′uh is able to distinguish between ExpIND−0
STAT′′uh

and ExpIND−1
STAT′′uh

with non-negligible advantage, thus breaking the security of the

scheme Σ in the sense of IND-ST. Contradiction.

Notice that if the pair of distinguishable consecutive experiments belongs

to the second sequence, i.e., is composed by Exp2,h
u and Exp2,h+1

u , for some

h = 1, . . . ,m, the proof is similar to the previous case.

From Theorems 2.4.5, 2.4.6, 2.4.1 and 2.4.2 we obtain the following results.

Theorem 2.4.7. [IND-ST⇒STRONG-REC-ST] Let Γ be a family of graphs corre-

sponding to partially ordered hierarchies. If a hierarchical key assignment scheme

for Γ is secure in the sense of IND-ST, then it is also secure in the sense of

STRONG-REC-ST.

30

2. Implications and Separations

Theorem 2.4.8. [STRONG-REC-ST6⇒IND-ST] Let Γ be a family of graphs corre-

sponding to partially ordered hierarchies. If there exists a hierarchical key assign-

ment scheme for Γ which is secure in the sense of STRONG-REC-ST, then there

exists a hierarchical key assignment scheme for Γ that is secure in the sense of

STRONG-REC-ST but which is not secure in the sense of IND-ST.

The next result, which has already been proven in [7], follows from Theorems

2.4.6, 2.4.1, and 2.4.3.

Theorem 2.4.9. [IND-ST⇒REC-ST] Let Γ be a family of graphs corresponding

to partially ordered hierarchies. If a hierarchical key assignment scheme for Γ is

secure in the sense of IND-ST, then it is also secure in the sense of REC-ST.

On the other hand, the next result holds [7].

Theorem 2.4.10. [REC-ST6⇒IND-ST] Let Γ be a family of graphs correspond-

ing to partially ordered hierarchies. If there exists a hierarchical key assignment

scheme for Γ which is secure in the sense of REC-ST, then there exists a hierarchi-

cal key assignment scheme for Γ that is secure in the sense of REC-ST but which

is not secure in the sense of IND-ST.

From Theorems 2.4.5, 2.4.6, and 2.4.9, we obtain the next result.

Theorem 2.4.11. [STRONG-IND-ST⇒REC-ST] Let Γ be a family of graphs corre-

sponding to partially ordered hierarchies. If a hierarchical key assignment scheme

for Γ is secure in the sense of STRONG-IND-ST, then it is also secure in the sense

of REC-ST.

Finally, from Theorems 2.4.5, 2.4.6, and 2.4.10, the next result holds.

Theorem 2.4.12. [REC-ST6⇒STRONG-IND-ST] Let Γ be a family of graphs cor-

responding to partially ordered hierarchies. If there exists a hierarchical key as-

signment scheme for Γ which is secure in the sense of REC-ST, then there exists

a hierarchical key assignment scheme for Γ that is secure in the sense of REC-ST

but which is not secure in the sense of STRONG-IND-ST.

31

2. TOWARDS SECURITY AGAINST STRONG KEY RECOVERY

2.5 Towards Security against Strong Key Re-

covery

As said in the previous section, the two notions of security against key recovery

and against strong key recovery are separated, i.e., there exist hierarchical key

assignment schemes that are secure against key recovery but which are not secure

against strong key recovery. In this section, we investigate the possibility of

obtaining a scheme which is secure with respect to the stronger notion, starting

from any scheme which is secure with respect to the weaker one.

The idea behind our construction is the following. Given a graph G = (V,E)

representing a partially ordered hierarchy, we construct another graph G′ which

represents the same hierarchy, but that has |V | additional classes. Then, we use a

hierarchical key assignment scheme to assign private information and encryption

keys to the classes of G′. This assignment can be easily turned into an assignment

for the original graph G. Indeed, the private information for each class in G is set

equal to that assigned to the same class in G′, whereas, the encryption keys for

classes in G are those assigned to the additional classes in G′. We will show how

the resulting hierarchical key assignment scheme for G satisfies security against

strong key recovery, provided that the underlying scheme for G′ satisfies security

against key recovery.

Formally, let Γ be a family of graphs corresponding to partially ordered hier-

archies. For each graph G = (V,E) in Γ we define a graph transformation, whose

output, denoted by G′ = (V ′, E ′), is called the extended graph for G. We denote

by Γ′ the family of extended graphs for elements in Γ. The transformation works

as follows:

• For each u ∈ V , we place two classes u and u0 in V ′;

• For each class u ∈ V , we place the edge (u, u0) in E ′;

• For each (u, v) ∈ E, we place the edge (u, v) in E ′.

Figure 2.2 shows an example of the extended graph for G = (V,E), where

V = {a, b, c, d} and E = {(a, b), (a, c), (b, d), (c, d)}.

32

2. Towards Security against Strong Key Recovery
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, OCTOBER 2014 8

Finally, from Theorems 4.5, 4.6, and 4.10, the next result
holds.

Theorem 4.12. [REC-ST6⇒STRONG-IND-ST] Let Γ be a
family of graphs corresponding to partially ordered hi-
erarchies. If there exists a hierarchical key assignment
scheme for Γ which is secure in the sense of REC-ST,
then there exists a hierarchical key assignment scheme
for Γ that is secure in the sense of REC-ST but which is
not secure in the sense of STRONG-IND-ST.

5 TOWARDS SECURITY AGAINST
STRONG KEY RECOVERY

As said in the previous section, the two notions of security
against key recovery and against strong key recovery are sep-
arated, i.e., there exist hierarchical key assignment schemes
that are secure against key recovery but which are not secure
against strong key recovery. In this section, we investigate
the possibility of obtaining a scheme which is secure with
respect to the stronger notion, starting from any scheme
which is secure with respect to the weaker one.

The idea behind our construction is the following. Given
a graph G = (V,E) representing a partially ordered hier-
archy, we construct another graph G′ which represents the
same hierarchy, but that has |V | additional classes. Then, we
use a hierarchical key assignment scheme to assign private
information and encryption keys to the classes of G′. This
assignment can be easily turned into an assignment for the
original graph G. Indeed, the private information for each
class in G is set equal to that assigned to the same class
in G′, whereas, the encryption keys for classes in G are
those assigned to the additional classes in G′. We will show
how the resulting hierarchical key assignment scheme for G
satisfies security against strong key recovery, provided that
the underlying scheme for G′ satisfies security against key
recovery.

Formally, let Γ be a family of graphs corresponding to
partially ordered hierarchies. For each graph G = (V,E) in
Γ we define a graph transformation, whose output, denoted
by G′ = (V ′, E′), is called the extended graph for G. We
denote by Γ′ the family of extended graphs for elements
in Γ. The transformation works as follows:

• For each u ∈ V , we place two classes u and u0 in V ′;
• For each class u ∈ V , we place the edge (u, u0) in E′;
• For each (u, v) ∈ E, we place the edge (u, v) in E′.

Figure 2 shows an example of the extended graph
for G = (V,E), where V = {a, b, c, d} and E =
{(a, b), (a, c), (b, d), (c, d)}.

Let Γ′ be the family of extended graphs for elements
in Γ and let (Gen′, Der′) be a hierarchical key assignment
scheme for Γ′. The proposed key assignment scheme for Γ
works as follows.

Algorithm Gen(1τ , G)

1) Construct the extended graph G′ = (V ′, E′) for G =
(V,E);

2) Let (s′, k′, pub′) be the output of Gen′ on inputs
(1τ , G′);

a a0

b b0

c c0

d d0

Figure 2: The graph G′ = (V ′, E′), where V = {a, b, c, d}
and E = {(a, b), (a, c), (b, d), (c, d)}.

3) For each class u ∈ V , let su = s′u;
4) For each class u ∈ V , let ku = k′

u0
;

5) Let s and k be the sequences of private information and
keys, respectively, computed in the previous steps;

6) Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

1) Let k′
v0 be the output of Der′ on inputs

(1τ , G′, u, v0, s
′
u, pub

′);
2) Output kv = k′

v0 .

The next theorem states that if (Gen′, Der′) is secure
against key recovery, then (Gen,Der) is secure against
strong key recovery.

Theorem 5.1. If (Gen′, Der′) is secure in the sense of
REC-ST, then (Gen,Der) is secure in the sense of
STRONG-REC-ST.

Proof: Assume by contradiction that the scheme
(Gen,Der) is not secure in the sense of STRONG-REC-ST.
Therefore, there exists a graph G = (V,E) in Γ and a
class u ∈ V for which there exists a polynomial time
adversary STATu whose advantage AdvSTRONG−REC

STATu
(1τ , G) is

non-negligible. We show how to construct a polynomial-
time adversary which, by using STATu, is able to break
the security of the scheme (Gen′, Der′) in the sense of
REC-ST. Such an adversary, which we denote by STAT′u0 ,
on inputs 1τ , an extended graph G′, the public information
pub′, and the sequence corr′u0

of private information held by
corrupted users, constructs the inputs for STATu as follows:

• First, STAT′u0 constructs the graph G from G′, so
that G′ is the extended graph for G. This operation
simply involves the cancellation of all the classes
v0 ∈ V ′.

• Then, the adversary sets the public information pub
to be equal to pub′.

• Afterwards, the adversary extracts the sequence
corru from corr′u0

. Indeed, corr′u0
contains the pri-

vate information s′v for each class v ∈ Fu.

Figure 2.2: The graph G′ = (V ′, E ′), where V = {a, b, c, d} and E =
{(a, b), (a, c), (b, d), (c, d)}.

Let Γ′ be the family of extended graphs for elements in Γ and let (Gen′, Der′)

be a hierarchical key assignment scheme for Γ′. The proposed key assignment

scheme for Γ works as follows.

Algorithm Gen(1τ , G)

1. Construct the extended graph G′ = (V ′, E′) for G = (V,E);

2. Let (s′, k′, pub′) be the output of Gen′ on inputs (1τ , G′);

3. For each class u ∈ V , let su = s′u;

4. For each class u ∈ V , let ku = k′u0 ;

5. Let s and k be the sequences of private information and keys, respectively, com-

puted in the previous steps;

6. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

1. Let k′v0 be the output of Der′ on inputs (1τ , G′, u, v0, s
′
u, pub

′);

2. Output kv = k′v0 .

The next theorem states that if (Gen′, Der′) is secure against key recovery,

then (Gen,Der) is secure against strong key recovery.

33

2. TOWARDS SECURITY AGAINST STRONG KEY RECOVERY

Theorem 2.5.1. If (Gen′, Der′) is secure in the sense of REC-ST, then

(Gen,Der) is secure in the sense of STRONG-REC-ST.

Proof. Assume by contradiction that the scheme (Gen,Der) is not secure in the

sense of STRONG-REC-ST. Therefore, there exists a graph G = (V,E) in Γ and

a class u ∈ V for which there exists a polynomial time adversary STATu whose

advantage AdvSTRONG−REC
STATu

(1τ , G) is non-negligible. We show how to construct a

polynomial-time adversary which, by using STATu, is able to break the security

of the scheme (Gen′, Der′) in the sense of REC-ST. Such an adversary, which we

denote by STAT′u0 , on inputs 1τ , an extended graph G′, the public information

pub′, and the sequence corr′u0 of private information held by corrupted users,

constructs the inputs for STATu as follows:

• First, STAT′u0 constructs the graph G from G′, so that G′ is the extended

graph for G. This operation simply involves the cancellation of all the

classes v0 ∈ V ′.

• Then, the adversary sets the public information pub to be equal to pub′.

• Afterwards, the adversary extracts the sequence corru from corr′u0 . Indeed,

corr′u0 contains the private information s′v for each class v ∈ Fu.

• Moreover, the adversary constructs the sequence keysu as follows: first,

it extracts from the sequence corr′u0 the private information s′v0 for each

v 6= u. Such values are then used to compute the sequence of keys k′v0 for

each v 6= u. These values are exactly the elements of the sequence keysu.

Finally, STAT′u0 returns the same output as STATu(1
τ , G, pub, corru, keysu).

Therefore, it is easy to see that

AdvREC
STAT′u0

(1τ , G′) = AdvSTRONG−REC
STATu

(1τ , G).

Since AdvSTRONG−REC
STATu

(1τ , G) is non-negligible, it follows that the adversary STAT′u0

is able to break the security of the scheme (Gen′, Der′) in the sense of REC-ST.

Contradiction.

34

Chapter 3

Cryptographic Hierarchical

Access Control For Dynamic

Structures

“Each problem that I solved became a rule,

which served afterwards to solve other

problems.”

— Rene Descartes, 1596-1650

3.1 Introduction

Sometimes, it is necessary to make some dynamic updates to the hierarchy, in or-

der to implement an access control policy which evolves over time. For example,

within a hospital system, whenever a new doctor is hired, it is necessary to assign

him to a certain security class. Similarly, whenever a doctor retires, we need to

remove him from the corresponding security class. The above situations, con-

cerning single individuals, may be extended to the case where an entire security

class needs to be inserted or deleted in the hierarchy. Moreover, also the rela-

tionships between the classes could change over time. For example, in a complex

enterprise security system, an entire class of users with a different security profile

may be added as a consequence of the acquisition of a new company or branch,

or similarly, the role and mission of an entire company sector may change after a

35

3. INTRODUCTION

fusion between enterprises, resulting in the need of redefining the structure of the

access control hierarchy through the modification of several dependencies among

the existing classes.

However, all security models proposed so far consider an operational scenario

which is fixed and immutable. More precisely, the adversary is not allowed to

make any changes to the hierarchy, which is fixed and chosen at the time of the

attack. We remark that this fact represents an important limitation, since the

existing models are not able to characterize the different networking scenarios

which may arise in many operating environments.

For example, advances in wireless communication and electronics have enabled

the development of User-Centric Networks (UCNs), which can be considered as

an abstraction of the so called infrastructureless networks (e.g., AdHoc Networks,

Sensor Networks, etc.). UCNs have a lot of applications and an even wider spec-

trum of future applications is likely to follow [3]. The topology of such networks

changes very frequently, due to failures or mobility [71]. In this context, each

node represents a potential point of attack, thus making impractical to monitor

and protect each individual node from either physical or logical attacks [40]. In

particular, nodes may be susceptible to several attacks, such as capture and phys-

ical tampering. Once a node has been compromised, the adversary can physically

access to this node and extract its sensitive information. Again, a node may also

be altered or replaced, resulting in a compromised node under the control of the

adversary. Furthermore, a node may also be permanently destroyed or turned

off, so the losses are irreversible. Notice that data loss or damage can even occur

due to harsh communication environments. Finally, also the communication links

may become lost or unavailable.

As it can be easily noticed from above considerations, it is necessary to extend

and improve the existing security models, by providing the adversary with further

attack capabilities. That is, the adversary should be given the possibility of

performing a polynomial number of arbitrary changes to the hierarchy. Such

changes should emulate as closely as possible all the attacks that can be performed

in the real world, e.g., addition, deletion and modification of classes (nodes) and

relations (edges), as well as the revocation of users.

In this chapter we consider hierarchical key assignment schemes supporting

36

3. HKASs with Dynamic Updates

dynamic updates. We first propose a new security model which extends those

that have been defined in the literature. In particular, we extend the notions of

security against key recovery and with respect to key indistinguishability provided

by Atallah et al., to address the further challenges introduced by the updates to

the hierarchy. In this way, we provide the adversary with the ability to emulate

all operations that can be performed in a real networking context. Moreover,

we provide the first formal definition of hierarchical key assignment schemes sup-

porting dynamic updates. Finally, we show how to construct a hierarchical key

assignment scheme supporting dynamic updates, by using as a building block a

symmetric encryption scheme. The proposed construction is provably secure with

respect to key indistinguishability, provides efficient key derivation and updating

procedures, while requiring each user to store only a single private key.

The Chapter is organized as follows. In Section 3.2 we formalize the concept of

hierarchical key assignment scheme supporting dynamic updates, in particular by

focusing on the types of updates as well as on the security notions. In Section 3.3

we show how to construct a hierarchical key assignment scheme which supports

dynamic updates, by using as a building block a symmetric encryption scheme.

3.2 Hierarchical Key Assignment Schemes with

Dynamic Updates

A hierarchical key assignment scheme for a family Γ of graphs, corresponding to

partially ordered hierarchies, supporting dynamic updates is defined as follows.

Definition 3.2.1. A hierarchical key assignment scheme for Γ supporting dy-

namic updates is a triple (Gen,Der, Upd) of algorithms satisfying the following

conditions:

1. The information generation algorithm Gen, executed by the TA, is proba-

bilistic polynomial-time. It takes as inputs the security parameter 1τ and a

graph G = (V,E) in Γ, and produces as outputs

(a) a private information su, for any class u ∈ V ;

(b) a key ku ∈ {0, 1}τ , for any class u ∈ V ;

37

3. HKASS WITH DYNAMIC UPDATES

(c) a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ and

G, where s and k denote the sequences of private information and of keys,

respectively.

2. The key derivation algorithm Der, executed by some authorized user, is

deterministic polynomial-time. It takes as inputs the security parameter

1τ , a graph G = (V,E) in Γ, two classes u ∈ V and v ∈ AGu , the private

information su assigned to class u and the public information pub, and

produces as output the key kv ∈ {0, 1}τ assigned to class v.

We require that for each class u ∈ V , each class v ∈ AGu , each private

information su, each key kv ∈ {0, 1}τ , each public information pub which

can be computed by Gen on inputs 1τ and G, it holds that

Der(1τ , G, u, v, su, pub) = kv.

3. The update algorithm Upd, executed by the TA, is probabilistic polynomial-

time. It takes as inputs the security parameter 1τ , a graph G = (V,E)

in Γ, the tuple (s, k, pub) (generated either by Gen or by Upd itself), an

update type up, a sequence of additional parameters params, and produces

as outputs

(a) a updated graph G′ = (V ′, E ′) in Γ;

(b) a private information s′u, for any class u ∈ V ′;

(c) a key k′u ∈ {0, 1}τ , for any class u ∈ V ′;

(d) a public information pub′.

The sequence params, if not empty, is used to generate new keys and se-

cret information as a consequence of the update type up. We denote by

(s′, k′, pub′) the sequences of private information, keys, and public informa-

tion output by Upd(1τ , G, s, k, pub, up, params).

38

3. HKASs with Dynamic Updates

In the above definition, it is required that the updated graph G′ still belongs

to the family Γ of partially ordered hierarchies, i.e., only updates which preserve

the partial order relation between the classes in the hierarchy are allowed.

3.2.1 Types of Updates

In this section we consider different types of updates which can be performed

by using the algorithm Upd and we discuss how such updates modify the access

rights of the classes in the hierarchy obtained after the update. The update types

we consider are the following: insertion of an edge, insertion of a class, deletion

of an edge, deletion of a class, key replacement, and revocation of a user from a

class. Notice that some types of updates can be seen as a sequence of other types

of updates. For example, the deletion of a class u can be performed by executing

a sequence of edge deletions, one for each edge ingoing u and outgoing from u.

On the other hand, the deletion of the edge (u, v) requires a key replacement

operation for the class v. Finally, the revocation of a user from a class u requires

a sequence of key replacement operations. In the following we describe each type

of update.

• Insertion of an edge. Let u and v be two classes in V such that (u, v) 6∈ E.

The insertion of the edge (u, v) in the graph G′ = (V ′, E ′) requires to update

the accessible set of any class which was able to access u in G, in order to

include the new access rights. In particular, for any class w such that

u ∈ AGw , the updated accessible set AG
′

w is defined to be AG
′

w = AGw ∪ AGv .

Moreover, the insertion of the edge (u, v) in G′ also requires to update the

forbidden set of any class which was accessed by v in G, in order to remove

all classes which are able to access u. In particular, for any class z such that

z ∈ AGv , the updated forbidden set FG′
z is defined to be FG′

z = FG
z \ {w :

u ∈ AGw}.

• Insertion of a class. Let u 6∈ V be a class to be inserted in the graph

G′, along with new incoming and outgoing edges. Such an update can be

seen as a composition of edge insertions, considering each edge ingoing u

and outgoing from u as a separate update. Consequently, the accessible

39

3. HKASS WITH DYNAMIC UPDATES

and forbidden sets of classes in G′ can be determined as explained for the

case of edge insertions.

• Deletion of an edge. Let u and v be two classes in V such that (u, v) ∈ E.

The deletion of the edge (u, v) from the graph G requires to check if any

class z which was able to access class u in G is still able to access class v in

the updated graph G′. More precisely, we have to investigate if there exists

another path from z to v avoiding the deleted edge (u, v). If such a path

exists, then the accessible set AG
′

z is set to be equal to AGz . On the other

hand, if such a path does not exist, then class v needs to be deleted from

AGz , and we continue to check whether there exists a path from z and each

class w which can be accessed by v, in order to decide whether w has to

be deleted from AGz [55, 51]. Moreover, the forbidden set of each class w

which can be accessed by class v, needs to be updated in order to include all

classes whose unique path to w has been broken by the deleted edge (u, v).

• Deletion of a class. Let u ∈ V be a class to be deleted in the graph

G, along with its incoming and outgoing edges, thus yielding to the graph

G′. This update requires to follow the above described procedure for edge

deletion. Moreover, in order to preserve the partial order relation between

the classes, such an update also requires to insert a new edge between each

predecessor and each successor of the deleted class u.

• Key replacement. Let u be a class in G whose key ku needs to be replaced,

due either to a problem of loss, misuse or after an edge or class deletion

in the hierarchy. Such an update does not change the structure of the

hierarchy, consequently no accessible or forbidden set needs to be modified.

• User revocation. Let u be a class in G, containing a certain number of

users which share the same access rights. Whenever a user in u needs to

be revoked, we need to choose a new secret information s′u, which is then

distributed to each non-revoked user in class u. This update does not alter

the composition of the accessible set AG
′

u , which is set equal to AGu . However,

in order to avoid the so called ex-member problem, a key replacement update

for each class v ∈ AG′u is needed.

40

3. HKASs with Dynamic Updates

Notice that the first four update types result in a structural modification of

the hierarchy, whereas, the last two do not affect its structure. In particular, the

last type of update represents a modification of the access control policy.

The efficiency of a hierarchical key assignment scheme supporting dynamic

updates is evaluated mainly according to the complexity of the updates due to

dynamic changes to the hierarchy. In particular, we would like to support dynamic

changes by means of only local updates to the public information, without re-

distributing private information to the classes affected by such changes. It is

important to note that such a re-distribution cannot be avoided in the case of

user revocation from a class, which necessarily requires to re-distribute the secret

values to the non-revoked users in that class. However, it is desirable that no

other private information must be updated.

3.2.2 Security Issues

In the following we discuss the security issues for hierarchical key assignment

schemes supporting dynamic updates. According to the security reduction

paradigm introduced by Goldwasser and Micali [44], a scheme is provably-secure

under a complexity assumption if the existence of an adversary A breaking the

scheme is equivalent to the existence of an adversary B breaking the computa-

tional assumption [44]. The security notions proposed by Atallah et al. [4] and

further extended by Ateniese et al. [7] have been designed to deal with static

hierarchies.

The above definitions need to be extended in order to address the additional

security challenges introduced by the algorithm Upd used for handling dynamic

updates to the hierarchy. In order to evaluate the security of a hierarchical key

assignment scheme supporting dynamic updates, we consider a dynamic adaptive

adversary ADAPT attacking the scheme. Such an adversary can make three dif-

ferent types of operations: performing a dynamic update, corrupting a class, and

attacking a class.

Performing a Dynamic Update. The first type of operation comprises all kinds

of updates described in Section 3.2.1, i.e., insertions and deletions of classes

or edges, key replacements and user revocations. We assume the existence of

41

3. HKASS WITH DYNAMIC UPDATES

an updating oracle U, modeling the behavior of the TA, which performs the

required updates on the hierarchy. At the beginning, the state of the updat-

ing oracle is represented by the tuple (G0, s0, k0, pub0), where (s0, k0, pub0) is

the output of algorithm Gen on inputs 1τ and the initial graph G0. For any

i ≥ 0, the (i + 1)-th adversary’s query to the updating oracle consists of a pair

(upi+1, paramsi+1), where upi+1 is an update operation on the graph Gi and

paramsi+1 is the sequence of parameters associated to the update, which the ora-

cle answers with the updated graph Gi+1, the public information pubi+1 associated

to Gi+1, and with a sequence of keys, denoted by old ki, which have been modified

as a consequence of the update, according to the specification of the algorithm

Upd. More precisely, the updating oracle U(1τ ,Gi,si,ki,pubi)(·, ·), given the query

(upi+1, paramsi+1), runs algorithm Upd(1τ , Gi, si, ki, pubi, upi+1, paramsi+1) and

returns Gi+1, pubi+1, and old ki to the adversary, where old ki is a subsequence

of ki. Thus, U(1τ ,Gi,si,ki,pubi)(up
i+1, paramsi+1) behaves as Upd(1τ , Gi, si, ki, pubi,

upi+1, paramsi+1). Moreover, in order to be ready to reply to the next update

query, the oracle updates its state to be (Gi+1, si+1, ki+1, pubi+1). In the follow-

ing, for the sake of simplicity, we denote by Ui(·, ·) the oracle U(1τ ,Gi,si,ki,pubi)(·, ·).
Due to its adaptive nature, the adversary may require a polynomial number

m = poly(|V |, 1τ) of dynamic updates, where each update is decided on the basis

of the answers obtained from the updating oracle at the previous steps.

Corrupting a Class. The second type of operation is the class corruption, which can

be performed again in an adaptive order and for a polynomial number of classes.

For any i ≥ 0, we assume the existence of a corrupting oracle Ci, which provides

the adversary with the private information held by the corrupted classes in the

graph Gi. In particular, an adversary’s query to the corrupting oracle Ci consists

of a class v in the graph Gi, which the oracle answers with the private information

held by class v in all graphs G0, G1, . . . , Gi (if v belongs to them). More precisely,

on input a class v in Gi, the corrupting oracle Ci(s0,s1,...,si)(·) returns the private

information sjv, for any j = 0, . . . , i such that v is in the hierarchy Gj. In the

following, for the sake of simplicity, we denote by Ci(·) the oracle Ci(s0,s1,...,si)(·).
Attacking a Class. The third type of operation is the class attack, where the

adversary chooses an update index t and a class u in the hierarchy Gt and is

challenged either in computing the key ktu or in distinguishing ktu from a random

42

3. HKASs with Dynamic Updates

string in {0, 1}τ , depending on the security requirement.

In particular, we consider an adversary ADAPT = (ADAPT1, ADAPT2) running

in two stages. In advance of the adversary’s execution, the algorithm Gen is

run on inputs 1τ and G and outputs the tuple (s, k, pub), which is kept hidden

from the adversary, with the exception of the public information pub. During the

first stage, the adversary ADAPT1 is given access to both updating and corrupting

oracles for a polynomial number m of times. The responses obtained by the

oracles are saved in some state information denoted as history. In particular,

history contains the following information: 1) all graphs G0, G1, . . . , Gm; 2) the

sequence of updating operations up1, . . . , upm queried to the updating oracle; 3)

the corresponding sequences of public information pub0, pub1, . . . , pubm; 4) the

corresponding sequences of keys old k0, . . . , old km−1, which have been modified

according to each update; 5) the private information held by all corrupted classes.

After interacting with the updating and corrupting oracles, the adversary chooses

an update index t and a class u in Gt, among all the classes in Gt which cannot be

accessed by the corrupted classes. In particular, the chosen class u is such that,

for any class v already queried to the corrupting oracle Ci(·) and any i = 0, . . . ,m,

v cannot access u in the hierarchy Gi. In the second stage, the adversary ADAPT2

is given again access to the corrupting oracle and is then challenged either in

computing the key ktu assigned to u or in distinguishing ktu from a random string

ρ ∈ {0, 1}τ . Clearly, it is required that the key ktu on which the adversary will

be challenged is not included in the sequence old kt−1 of keys which have been

updated in the graph Gt.

Security with respect to Key Indistinguishability. The next definition formalizes

the key indistinguishability requirement for hierarchical key assignment schemes

supporting dynamic updates.

Definition 3.2.2. [IND-DYN-AD] Let Γ be a family of graphs corresponding

to partially ordered hierarchies, let G = (V,E) ∈ Γ be a graph, and let

(Gen,Der, Upd) be a hierarchical key assignment scheme for Γ supporting dy-

namic updates. Let m = poly(|V |, 1τ) and let ADAPT = (ADAPT1, ADAPT2) be a dy-

namic adaptive adversary that during the first stage of the attack is given access

both to the updating oracle Ui(·, ·) and the corrupting oracle Ci(·), for i = 1, . . . ,m,

43

3. HKASS WITH DYNAMIC UPDATES

and during the second stage of the attack is given access only to the corrupting

oracle. Consider the following two experiments:

Experiment ExpIND−DYN−1
ADAPT (1τ , G)

(s, k, pub)← Gen(1τ , G)

(t, u, history)← ADAPT
Ui(·,·),Ci(·)

1 (1τ , G, pub)

d← ADAPT
Ci(·)
2 (1τ , t, u, history, ktu)

return d

Experiment ExpIND−DYN−0
ADAPT (1τ , G)

(s, k, pub)← Gen(1τ , G)

(t, u, history)← ADAPT
Ui(·,·),Ci(·)

1 (1τ , G, pub)

ρ← {0, 1}τ

d← ADAPT
Ci(·)
2 (1τ , t, u, history, ρ)

return d

It is required that the class u output by ADAPT1 is such that v cannot access u

in the graph Gi, for any class v already queried to the corrupting oracle Ci(·).

Moreover, it is also required that ADAPT2 never queries the corrupting oracle Ci(·)
on a class v such that v can access u in the graph Gt. The advantage of ADAPT is

defined as

AdvIND−DYN
ADAPT (1τ , G) = |Pr[ExpIND−DYN−1

ADAPT (1τ , G) = 1]

− Pr[ExpIND−DYN−0
ADAPT (1τ , G) = 1]|

The scheme is said to be secure in the sense of IND-DYN-AD if for each graph

G = (V,E) in Γ, the function AdvIND−DYN
ADAPT (1τ , G) is negligible, for each adaptive

adversary ADAPT whose time complexity is polynomial in τ .

Notice that if the adversary ADAPT1 never queries the updating oracle during

the first stage of the attack, the above definition reduces to that of security with

respect to key indistinguishability against adaptive adversaries for hierarchical

key assignment schemes with static hierarchies, referred to as IND-AD in [7]. For

44

3. HKASs with Dynamic Updates

such kind of schemes, it has been proven that adaptive adversaries are polynomialy

equivalent to static adversaries, i.e., such that the class to be attacked is chosen

in advance to the execution of the scheme.

Security against Key Recovery. Now, we consider the weaker requirement of security

against key recovery. As done before, we assume the existence of the oracles Ui

and Ci. We require that the adversary will guess the key ktu with probability only

negligibly different from 1/2τ .

Definition 3.2.3. [REC-DYN-AD] Let Γ be a family of graphs corresponding

to partially ordered hierarchies, let G = (V,E) ∈ Γ be a graph and let

(Gen,Der, Upd) be a hierarchical key assignment scheme for Γ supporting dy-

namic updates. Let m = poly(|V |, 1τ) and let ADAPT = (ADAPT1, ADAPT2) be a dy-

namic adaptive adversary that during the first stage of the attack is given access

both to the updating oracle Ui(·, ·) and the corrupting oracle Ci(·), for i = 1, . . . ,m,

and during the second stage of the attack is given access only to the corrupting

oracle. Consider the following experiment:

Experiment ExpREC−DYN
ADAPT (1τ , G)

(s, k, pub)← Gen(1τ , G)

(t, u, history)← ADAPT
Ui(·,·),Ci(·)

1 (1τ , G, pub)

kt,∗u ← ADAPT
Ci(·)
2 (1τ , t, u, history)

return kt,∗u

It is required that the class u output by ADAPT1 is such that v cannot access u

in the graph Gi, for any class v already queried to the corrupting oracle Ci(·).

Moreover, it is also required that ADAPT2 never queries the corrupting oracle Ci(·)
on a class v such that v can access u in the graph Gt. The advantage of ADAPT is

defined as

AdvREC−DYN
ADAPT (1τ , G) = Pr[kt,∗u = ktu].

The scheme is said to be secure in the sense of REC-DYN-AD if, for each graph

G = (V,E) in Γ, the function AdvREC−DYN
ADAPT (1τ , G) is negligible, for each adaptive

adversary ADAPT whose time complexity is polynomial in τ .

45

3. ENCRYPTION-BASED CONSTRUCTION

If the adversary ADAPT1 never queries the updating oracle during the first stage

of the attack, the above definition reduces to that of security against key recovery

in presence of adaptive adversaries for hierarchical key assignment schemes with

static hierarchies, referred to as REC-AD in [7].

3.3 A Construction based on Symmetric En-

cryption Schemes

In this section we consider the problem of constructing a hierarchical key assign-

ment scheme supporting dynamic updates using as a building block a symmetric

encryption scheme. In particular, we consider the Two-Level Encryption-Based

Construction (TLEBC) proposed in [7]. Such a construction belongs to the class

of time-bound hierarchical key assignment schemes, since the key derivation de-

pends not only on the relations between the classes, but also on time constraints.

However, since in this thesis we are not interested in time-bound schemes, we

describe a simplified version of the scheme, without time constraints. Later on,

we prove that the security property of the TLEBC depends on the security prop-

erty of the underlying encryption scheme. We need to recall the definition of a

symmetric encryption scheme and its notions of security.

3.3.1 Symmetric Encryption Schemes

We first recall the definition of a symmetric encryption scheme.

Definition 3.3.1. A symmetric encryption scheme is a triple Π = (K,E,D) of

algorithms satisfying the following conditions:

1. The key-generation algorithm K is probabilistic polynomial-time. It takes

as input the security parameter 1τ and produces as output a string key.

2. The encryption algorithm E is probabilistic polynomial-time. It takes as

inputs 1τ , a string key produced by K(1τ), and a message m ∈ {0, 1}∗, and

produces as output the ciphertext y.

46

3. Encryption-based Construction

3. The decryption algorithm D is deterministic polynomial-time. It takes as

inputs 1τ , a string key produced by K(1τ), and a ciphertext y, and produces

as output a message m.

We require that for any string key which can be output by K(1τ), for any message

m ∈ {0, 1}∗, and for all y that can be output by E(1τ , key,m), we have that

D(1τ , key, y) = m.

Now, we define what we mean by a secure symmetric encryption scheme. We

consider security with respect to plaintext indistinguishability, which is an adap-

tion of the notion of polynomial security as given in [44]. We imagine an adversary

A = (A1, A2) running in two stages. In advance of the adversary’s execution, a

random key key is chosen and kept hidden from the adversary. During the first

stage, the adversary A1 outputs a triple (x0, x1, state), where x0 and x1 are two

messages of the same length, and state is some state information which could

be useful later. One message between x0 and x1 is chosen at random and en-

crypted to give the challenge ciphertext y. In the second stage, the adversary A2

is given y and state and has to determine whether y is the encryption of x0 or

x1. Informally speaking, the encryption scheme is said to be secure with respect

to a non-adaptive chosen plaintext attack, denoted by IND-P1-C0 in [53], if ev-

ery polynomial-time adversary A, which has access to the encryption oracle only

during the first stage of the attack and never has access to the decryption oracle,

succeeds in determining whether y is the encryption of x0 or x1 with probability

only negligibly different from 1/2.

Definition 3.3.2. [IND-P1-C0] Let Π = (K,E,D) be a symmetric encryption

scheme and let τ be a security parameter. Let A = (A1, A2) be an adversary that

has access to the encryption oracle only during the first stage of the attack and

never has access to the decryption oracle. Consider the following two experiments:

Experiment ExpIND−P1−C0−1
Π,A (1τ) Experiment ExpIND−P1−C0−0

Π,A (1τ)

key ← K(1τ) key ← K(1τ)

(x0, x1, state)←A
Ekey(·)
1 (1τ) (x0, x1, state)←A

Ekey(·)
1 (1τ)

y←Ekey(x1) y←Ekey(x0)

d← A2(1τ , y, state) d← A2(1τ , y, state)

return d return d

47

3. ENCRYPTION-BASED CONSTRUCTION

The advantage of A is defined as

AdvIND−P1−C0
Π,A (1τ) = |Pr[ExpIND−P1−C0−1

Π,A (1τ) = 1]

− Pr[ExpIND−P1−C0−0
Π,A (1τ) = 1]|

The scheme is said to be secure in the sense of IND-P1-C0 if the advantage func-

tion AdvIND−P1−C0
Π,A (1τ) is negligible, for any adversary A whose time complexity is

polynomial in τ .

The XOR Construction for Symmetric Encryption Schemes. In order to

construct an encryption scheme secure in the sense of IND-P1-C0 we could use a

pseudorandom function family, an important cryptographic primitive originally

defined by Goldreich, Goldwasser, and Micali [43]. Loosely speaking, a distri-

bution of functions is pseudorandom if it satisfies the following requirements: 1)

It is easy to sample a function according to the distribution and to evaluate it

at a given point; 2) It is hard to tell apart a function sampled according to the

distribution from a uniformly distributed function, given access to the function as

a block-box. A first construction, based on pseudorandom generators, was pro-

posed in [43]. It is well known that pseudorandom generators can be constructed

from one-way functions [18] [47]. The two most efficient constructions were pro-

posed by Naor and Reingold [62]. In particular, they showed a first construction,

based on the hardness of factoring Blum integers, and a second one, based on the

decisional version of the Diffie-Hellman assumption. In their constructions, the

cost of evaluating such functions is comparable to two modular exponentiations.

Consider the following construction, called the XOR construction [11], of a

symmetric encryption scheme ΠXOR,F = (KXOR,EXOR,DXOR) which is based on

a pseudorandom function family F : {0, 1}τ × {0, 1}τ → {0, 1}τ :

• The key generation algorithm KXOR outputs a random τ -bit key ρ for the

pseudorandom function family F, thus specifying a function Fρ of the family.

• The encryption algorithm EXOR considers the message x to be encrypted

as a sequence of τ -bits blocks x = x1 · · ·xn (padding is done on the last

block, if necessary), chooses a random string r of τ bits and computes, for

48

3. Encryption-based Construction

i = 1, . . . , n the value yi = Fρ(r + i) ⊕ xi. The ciphertext is r||y1 · · · yn,

where || denotes string concatenation.

• The decryption algorithm DXOR, on input a ciphertext z, parses it as

r||y1 · · · yn and computes, for i = 1, . . . , n the value xi = Fρ(r + i) ⊕ yi.

The corresponding plaintext is x = x1 · · ·xn.

The encryption scheme ΠXOR,F has been shown to be secure in the sense of

IND-P1-C0 (see [11, 53]), assuming that F is a pseudorandom function family. An

efficient implementation of such a scheme could be obtained by using the HMAC

[10] to realize the pseudorandom function family F.

3.3.2 The Two-Levels Encryption-Based Construction

(TLEBC)

The construction we are going to describe uses a graph transformation, starting

from the graph G = (V,E). The output of such a transformation is a two-levels

graph GTL = (VTL, ETL), where VTL = V ` ∪ V r and V ` ∩ V r = ∅, constructed as

follows:

• for each class u ∈ V , we place two classes u` and ur in VTL, where u` ∈ V `

and ur ∈ V r;

• for each class u ∈ V , we place the edge (u`, ur) in ETL;

• for each pair of classes u and v connected by a path in G, we place the edge

(u`, vr) in ETL.

Thus, we consider a two-level partially ordered hierarchy, where each level

contains the same number of classes and there are no edges between classes at

the same level. We remark that this is not a restriction, since any directed graph

representing an access control policy can be transformed into a two-level partially

ordered hierarchy having the above features, using a technique proposed in [34].

Figure 3.1 shows an example of the graph transformation described above.

Let Γ be a family of graphs corresponding to partially ordered hierarchies, let

G = (V,E) ∈ Γ, and let Π = (K,E,D) be a symmetric encryption scheme. The

49

3. ENCRYPTION-BASED CONSTRUCTION

aℓ bℓ cℓ

ar br cr

a

b c

Figure 3.1: The graph transformation used in our construction.

Two-Levels Encryption-Based Construction (TLEBC) works as explained in the

following.

Algorithm 1

1: procedure Gen(1τ , G)
2: Transform the graph G into the two-levels graph GTL = (VTL, ETL)
3: for all classes u` ∈ V ` do
4: su ← K(1τ)
5: end for
6: for all classes ur ∈ V r do
7: ku ← {0, 1}τ
8: end for

. Let s and k be the sequences of private information and keys computed
above

9: for any pair of classes u` ∈ V ` and vr ∈ V r such that (u`, vr) ∈ ETL do
10: p(u,v) ← Esu(kv)
11: end for

. Let pub be the sequence of public information computed above
12: return (s, k, pub)
13: end procedure

Before describing the algorithm Upd we recall that the update types we con-

sider are the following: key replacement, insertion of an edge, deletion of an edge,

insertion of a class, deletion of a class, and revocation of a user from a class.

Each update type requires a different procedure. Notice that some updates do

not require the sequence of additional parameters params, whereas, for other

updates, such a sequence might be not empty. In particular, the insertion of an

edge and the deletion of a class do not require additional parameters, since they

50

3. Encryption-based Construction

Algorithm 2

1: procedure Der(1τ , G, u, v, su, pub)
2: Extract the public value p(u,v) from pub
3: kv ← Dsu(p(u,v))
4: return kv
5: end procedure

do not involve the choice of fresh private information or keys.

As we will see, no update, with the exception of user revocation, requires re-

distribution of the secret information to classes. Thus, in the TLEBC, dynamic

changes to the hierarchy can be accomplished by means of only local updates to

the public information only.

Algorithm 3

1: procedure Upd(1τ , G, s, k, pub, up, params)
2: Transform G in the two-levels graph GTL = (VTL, ETL)
3: if up == Replace(kv) then
4: replace key(1τ , G, s, k, pub, kv, params)
5: else if up == Insert edge((u, v)) then
6: insert edge(1τ , G, s, k, pub, (u, v))
7: else if up == Delete edge((u, v)) then
8: delete edge(1τ , G, s, k, pub, (u, v), params)
9: else if up == Insert class(v) then

10: insert class(1τ , G, s, k, pub, v, params)
11: else if up == Delete class(v) then
12: delete class(1τ , G, s, k, pub, v)
13: else if up == Revoke(v, λ) then
14: revoke user(1τ , G, s, k, pub, v, λ, params)
15: end if
16: return (G′, s′, k′, pub′)
17: end procedure

3.3.2.1 Analysis of the Scheme

In the following we show that the security property of the TLEBC depends on

the security property of the underlying encryption scheme. We prove that if the

encryption scheme Π = (K,D,E) is secure in the sense of IND-P1-C0, then the

51

3. ENCRYPTION-BASED CONSTRUCTION

Algorithm 4

1: procedure replace key(1τ , G, s, k, pub, kv, params)
2: if params is not empty then
3: Parse params as kparamsv

4: k′v ← kparamsv

5: else
6: k′v ← {0, 1}τ
7: end if
8: s′ ← s
9: k′ ← k, with k′v instead of kv

10: for all classes u` ∈ V ` such that (u`, vr) ∈ ETL do
11: Compute p′(u,v) ← Es′u(k′v) and replace it in pub, obtaining pub′

12: end for
13: end procedure

Algorithm 5

1: procedure insert edge(1τ , G, s, k, pub, (u, v))
2: k′ ← k
3: s′ ← s;
4: Compute p′(u,v) ← Es′u(k′v) and add it to pub, obtaining pub′

5: end procedure

Algorithm 6

1: procedure delete edge(1τ , G, s, k, pub, (u, v), params)
2: replace key(1τ , G, s, k, pub, kv, params)
3: Remove the public value p′(u,v) from pub′

4: end procedure

52

3. Encryption-based Construction

Algorithm 7

1: procedure insert class(1τ , G, s, k, pub, v, params)
2: if params is not empty then
3: Parse params as sparamsv and kparamsv

4: s′v ← sparamsv

5: k′v ← kparamsv

6: else
7: s′v ← K(1τ)
8: k′v ← {0, 1}τ
9: end if

10: Add above values into s and k, obtaining s′ and k′

11: Compute p′(v,v) ← Es′v(k
′
v)

12: Use aforementioned procedure for adding incoming and outgoing edges
from v

13: Add all the public values to pub, obtaining pub′

14: end procedure

Algorithm 8

1: procedure delete class(1τ , G, s, k, pub, v)
2: Use aforementioned procedure for deleting incoming and outgoing edges

from v
3: Remove sv and kv from s and k, obtaining s′ and k′

4: end procedure

Algorithm 9

1: procedure revoke user(1τ , G, s, k, pub, v, λ, params)
2: if params is not empty then
3: parse params as sparamsv

4: s′v ← sparamsv

5: else
6: s′v ← K(1τ)
7: end if
8: Distribute s′v to each non-revoked user in the class v
9: s′ ← s, with s′v instead of sv

10: for all classes ur ∈ V r such that (v`, ur) ∈ ETL do
11: replace key(1τ , G, s, k, pub, ku, NULL)
12: end for
13: end procedure

53

3. ENCRYPTION-BASED CONSTRUCTION

TLEBC is secure in the sense of IND-DYN-AD, respectively.

We first give an informal description of the ideas on which the proof is based.

The proof uses two well known techniques: black-box reductions [44] and hybrid

arguments [18]. In general, a black-box reduction is used to show that, given a

protocol constructed from a cryptographic primitive, if the protocol can be broken

somehow, then also the underlying primitive can be broken. On the other hand,

the hybrid argument technique is used to argue that two probability ensembles,

i.e., two sequences of probability distributions defined over the same probability

space, are computationally indistinguishable. In this type of proof, one defines a

sequence, constituted by a polynomial number (in the security parameter) of prob-

ability ensembles, also called the hybrids, where the extreme hybrids correspond

to the two ensembles to be shown indistinguishable. Since the total number of hy-

brids is polynomial, a non-negligible gap between the extreme hybrids translates

into a non-negligible gap between a pair of adjacent hybrids.

In our security proof, the probability ensembles are given by the view of a

dynamic adaptive adversary ADAPT which, after making a polynomial number of

updating and corrupting queries, attacks a class vr in the two-levels hierarchy

obtained after the t-th update on the initial graph G = (V,E). In particular,

such a view contains the public information pubi associated to the graph Gi, for

i = 1, . . . , t, the private information held by the corrupted classes, along with a

final value, which corresponds to the key kh assigned to the chosen class vr after

the t-th update. The two extreme hybrids we consider are characterized in one

case by the adversary’s view when the public values are generated according to

the TLEBC, thus containing encryptions of the key kh, while in the other case by

the adversary’s view when part of the public values is generated by encrypting a

randomly chosen value ρ having the same length as kh. More precisely, the public

values which are modified in the last hybrid correspond to those associated to

the edges, say (v`1, v
r), (v`2, v

r), . . . , (v`m, v
r), entering class vr in the two-levels

hierarchy obtained after the t-th update. Thus, in the last hybrid, the public

information is completely independent on the last input of the adversary, i.e.,

kh, since the values associated to all edges entering class vr are computed as

encryptions of a randomly chosen value ρ. We define a sequence of m+1 hybrids,

where each pair of adjacent ones, say the j-th and the (j+1)-th hybrid, differ only

54

3. Encryption-based Construction

in the public value associated to a certain edge entering vr, say (v`j+1, v
r), which

is equal to the encryption of the key kh in the latter one and to the encryption

of a random value ρ, having the same length as kh, in the former one. For

each pair of adjacent hybrids we show, by means of a black-box reduction, that

the corresponding views are computationally indistinguishable by the adversary

ADAPT, otherwise we could construct an adversary A = (A1, A2) which breaks

the security of the symmetric encryption scheme Π = (K,D,E) in the sense of

IND-P1-C0.

The algorithm A1, on input 1τ , makes queries to its encryption oracle Ekey(·)
and outputs a triple (x0, x1, state), where x0, x1 ∈ {0, 1}τ and state is some state

information. One message between x0 and x1 is chosen at random and encrypted

to give the challenge ciphertext y. Then, algorithm A2 is given y and state and

has to determine whether y is the encryption of x0 or x1. More precisely, the

algorithm A, in order to exploit ADAPT’s ability in distinguishing between the

j-th and the (j + 1)-th hybrid, has first to prepare the inputs for it. Such an

information, with the exception of the value associated to the (j + 1)-th edge

entering class vr, can be easily constructed by A1 following the same lines as the

Gen and Upd algorithms in the TLEBC, with an important difference: whenever

A1 has to construct the public information associated to the first j edges entering

class vr, it computes the encryptions, with the appropriate private keys, of the

random value x0. On the other hand, the (j + 1)-th edge entering class vr will

be assigned the value of the challenge ciphertext y, whereas, all subsequent edges

entering class vr will be encryptions of the value x1, which plays the role of the

key kh assigned to vr.

It is important to notice that, due to the dynamic behavior of ADAPT, adversary

A has no control on the sequence of updating queries asked by ADAPT, thus,

it cannot decide in advance to which class its encryption oracle Ekey(·) will be

associated. Therefore, A makes its guess at the beginning, by randomly choosing

a class whose private information will be implicitly set equal to the unknown key,

but it might fail. Indeed, if the chosen class does not correspond to the (j+ 1)-th

one having an edge entering class vr, then A cannot continue its simulation and

needs to restart itself. On the other hand, if the simulation goes well, A outputs

the same output as ADAPT: if ADAPT states that its view corresponds to that in

55

3. ENCRYPTION-BASED CONSTRUCTION

the j-th experiment, then the adversary A can be sure that the received challenge

y comes from the encryption of the message x1, otherwise by the encryption of

the message x0. Clearly, the success probability of A1 is equal to 1/q, where q

denotes the number of choices which can be made by A1, meaning that, in the

worst case, A1 will need to restart itself q times. Thus, the next result holds.

Theorem 3.3.1. If the encryption scheme Π = (K,D,E) is secure in the sense

of IND-P1-C0, then the TLEBC is secure in the sense of IND-DYN-AD.

Proof. Let Γ be a family of graphs corresponding to partially ordered hierar-

chies. Assume by contradiction that the TLEBC is not secure in the sense of

IND-DYN-AD. Thus, there exists a graph G = (V,E) in Γ and a dynamic adaptive

adversary ADAPT = (ADAPT1, ADAPT2) which is able to distinguish between exper-

iments ExpIND−DYN−1
ADAPT (1τ , G) and ExpIND−DYN−0

ADAPT (1τ , G) with non-negligibile advan-

tage. Recall that the only difference between ExpIND−DYN−1
ADAPT and ExpIND−DYN−0

ADAPT is

the last input of ADAPT, which corresponds to a real key assigned by the TLEBC

in the former experiment and to a random value chosen in {0, 1}τ in the latter.

Thus, while in ExpIND−DYN−1
ADAPT the public information is related to the last input of

ADAPT, in ExpIND−DYN−0
ADAPT it is completely independent on such a value.

Without loss of generality, let V = {v1, . . . , vn} and let k1, . . . , kn be the keys

assigned to the classes in V r by algorithm Gen of the TLEBC. For any i ≥ 1,

denote by kn+i the i-th key which either has been created using the insert class

procedure (see Algorithm 7) or has been modified using the replace key proce-

dure (see Algorithm 4). We restrict our interest to the two above procedures,

since those corresponding to the other types of updates either do not require to

choose new keys (see Algorithm 5 and Algorithm 8) or invoke the replace key

procedure (see Algorithm 6 and Algorithm 9). Moreover, let s1, . . . , sn be

the private information assigned to the classes in V ` by algorithm Gen of the

TLEBC and, for any i ≥ 1, denote by sn+i the i-th private information which

either has been created using the insert class procedure (see Algorithm 7) or

has been modified using the revoke user procedure (see Algorithm 9). We re-

strict our interest to the two above procedures, since those corresponding to the

other types of updates do not require to choose new private information. For

example, consider the following sequence of updates on the two-levels graph in

56

3. Encryption-based Construction

Figure 3.1, yielding to the graph depicted in Figure 3.2: insert class d and edge

(d, c), replace key kc, insert class e and edge (e, c), replace key k′c. According to

the above defined enumeration, the corresponding sequence of keys is k1 = ka,

k2 = kb, k3 = kc, k4 = kd, k5 = k′c, k6 = ke, and k7 = k′′c . On the other hand,

the corresponding sequence of private information is s1 = sa, s2 = sb, s3 = sc,

s4 = sd, and s5 = se.

aℓ bℓ cℓ dℓ eℓ

ar br cr dr er

Figure 3.2: Two-levels hierarchy obtained after a list of updates.

Let q(n, 1τ) be the running-time of ADAPT, where q is a bivariate polynomial.

For any i = 1, . . . , q(n, 1τ), let Si be an adversary which behaves as ADAPT1 until

the choice of the key to be attacked. If the chosen key is equal to ki, then Si

continues to follow ADAPT2, otherwise it outputs 0. The advantage of ADAPT can

be written as

57

3. ENCRYPTION-BASED CONSTRUCTION

AdvIND−DYN
ADAPT (1τ , G)

= |Pr[ExpIND−DYN−1
ADAPT (1τ , G) = 1]

−Pr[ExpIND−DYN−0
ADAPT (1τ , G) = 1]|

≤
q(n,1τ)∑
i=1

| Pr[ADAPT1 chooses ki]

·Pr[ExpIND−DYN−1
ADAPT (1τ , G) = 1|ADAPT1 chooses ki]

−Pr[ADAPT1 chooses ki]

·Pr[ExpIND−DYN−0
ADAPT (1τ , G) = 1|ADAPT1 chooses ki] |

=

q(n,1τ)∑
i=1

Pr[ADAPT1 chooses ki]

· | Pr[ExpIND−DYN−1
Si

(1τ , G) = 1]

−Pr[ExpIND−DYN−0
Si

(1τ , G) = 1] |

=

q(n,1τ)∑
i=1

Pr[ADAPT1 chooses ki] ·AdvIND−DYN
Si

(1τ , G).

Since AdvIND−DYN
ADAPT (1τ , G) is non-negligible, then there exists at least an index

h, where 1 ≤ h ≤ q(n, 1τ), such that AdvIND−DYN
Sh

(1τ , G) is non-negligible. Thus,

there exists an adversary Sh which distinguishes between ExpIND−DYN−1
Sh

(1τ , G) and

ExpIND−DYN−0
Sh

(1τ , G) with non-negligible advantage. We distinguish the following

two cases:

• Case 1: h ≥ n + 1. This case corresponds to the scenario where the key

kh chosen by the adversary either has been created using the insert class

procedure (see Algorithm 7) or has been modified using the replace key

procedure (see Algorithm 4).

• Case 2: 1 ≤ h ≤ n. This case corresponds to the scenario where the key

kh chosen by the adversary has been assigned to some class in the initial

graph G.

Analysis of Case 1. Assume that the key kh chosen by the adversary either has been

58

3. Encryption-based Construction

created or has been modified by the t-th update operation, which has assigned

such a key to a certain class v in the graph Gt. Thus, attacking the key kh,

corresponds to attack the class vr in the two-levels hierarchy GTL = (VTL, ETL)

obtained after the t-th update. Assume that there are m classes which are able

to access class vr in GTL, without loss of generality, let v`1, . . . , v
`
m be such classes.

We construct a sequence of m+ 1 experiments

Exph,0,Exph,1, . . . ,Exph,m,

all defined over the same probability space. In each experiment we modify

the way the view of adversary Sh is computed, while maintaining the view’s

distributions indistinguishable among any two consecutive experiments. For any

j = 1, . . . ,m, experiment Exph,j is defined as follows:

Experiment Exph,j(1
τ , G)

(s, k, pub)← Gen(1τ , G)

(t, v, history)← S
Ui,j(·,·),Ci(·)
h (1τ , G, pub)

d← S
Ci(·)
h (1τ , t, v, history, kh)

return d

In experiment Exph,j we first use the algorithm Gen of the TLEBC to assign

private information and keys to the classes, as well as public information to

the edges of the two-levels hierarchy. Then, in the first stage of the attack,

the updating oracle queried by adversary Sh uses an algorithm Updj, which is

a modification of the algorithm Upd used in the TLEBC. We remark that for

this reason the updating oracle is denoted by Ui,j(·, ·) in the experiment. The

algorithm Updj differs from Upd for the way it computes the public information

associated to the first j edges, say (v`1, v
r), (v`2, v

r), . . . , (v`j, v
r), entering class vr in

the two-levels hierarchy. In particular, the public values associated to such edges

are computed as encryptions of a value ρ randomly chosen in {0, 1}τ , instead of

the encryption of the key kh assigned to vr, whereas, the public values associated

to subsquent edges entering vr are not modified. Notice that experiment Exph,0

is the same as ExpIND−DYN−1
Sh

. Indeed, the public information is related to the

last input of Sh, since the values associated to all edges entering class vr are

computed as encryptions of kh. On the other hand, experiment Exph,m is the

59

3. ENCRYPTION-BASED CONSTRUCTION

s1 s3 s4 s5

cr

aℓ cℓ dℓ eℓ

Es1(ρ) Es3(ρ) Es4(k7) Es5(k7)

k7

(a) Exp7,2

s1 s3 s4 s5

cr

aℓ cℓ dℓ eℓ

Es1(ρ) Es3(ρ) Es5(k7)

k7

Es4(ρ)

(b) Exp7,3

Figure 3.3: Two adjacent experiments.

same as ExpIND−DYN−0
Sh

. In fact, the public information is completely independent

on the last input of Sh, since the values associated to all edges entering class

vr are computed as encryptions of a random value ρ chosen in {0, 1}τ . Figure

3.3 shows two adjacent experiments in the sequence Exp7,0,Exp7,1, . . . ,Exp7,4

of five experiments obtained when attacking the key k7 in Figure 3.2.

Indistinguishability of any pair of adjacent experiments. In the following we show

that, for any j = 0, . . . ,m − 1, experiments Exph,j and Exph,j+1 cannot be

distinguished with non-negligible advantage.

Assume by contradiction that there exists a polynomial-time distinguisher

Bj which is able to distinguish between the adversary Sh’s views in experiments

Exph,j and Exph,j+1 with non-negligible advantage. Notice that the views of the

distinguisher Bj in such two experiments differ only for the public value associated

to the edge (v`j+1, v
r), which is equal to the encryption of the real key kh in the

latter experiment and to the encryption of a random value having the same length

as the real key in the former experiment. We show how to construct a polynomial-

time adversary A = (A1, A2), using adversary Bj, which breaks the security of the

encryption scheme Π = (K,E,D) in the sense of IND-P1-C0.

Description of Algorithm A
Ekey(·)
1 (1τ).

1. First, A1 randomly chooses an index 1 ≤ γ ≤ q(n, 1τ), such that the pri-

vate information sγ will be implicitly set equal to the unknown key for its

encryption oracle Ekey(·).

2. Afterwards, A1 simulates algorithm Gen(1τ , G) as follows:

60

3. Encryption-based Construction

(a) If 1 ≤ γ ≤ n, it constructs the private information sβ for all β ∈
{1, . . . , n}\{γ}, as well as all encryption keys k1, . . . , kn. On the other

hand, if γ ≥ n + 1, it constructs all private information s1, . . . , sn as

well as all encryption keys k1, . . . , kn.

(b) Then, it constructs the sequence pub of public values associated to all

edges in the two-levels hierarchy obtained from G. In particular, if

1 ≤ γ ≤ n, A1 makes use of its encryption oracle Ekey(·) for all edges

outgoing class v`γ.

3. Moreover, A1 chooses at random two messages x0, x1 ∈ {0, 1}τ : in particular,

x1 will play the role of the key kh, assigned to class vr, in the next steps.

4. Then, A1 calls adversary Bj on inputs 1τ , G and pub. In the first stage of

the attack, adversary Bj can make a polynomial number of updating and

corrupting queries. In particular, the t-th updating query of Bj consists of

a pair (upt+1, paramst+1), where upt+1 is an update operation on the graph

Gt and paramst+1 is a sequence of parameters associated to the update.

On the other hand, the t-th corrupting query consists of a class c in the

graph Gt.

(a) Each updating query can be answered by adversary A1 by means of

a simulation of a modified version of the algorithm Upd, which corre-

sponds either to Updj or to Updj+1. We recall that the algorithm Updj

differs from Upd only for the way it computes the public information

associated to the first j edges entering class vr in the two-levels hier-

archy. More precisely, the algorithm used by A1 to answer updating

queries, and in particular, to compute the public information associ-

ated to each edge (v`i , v
r), works as follows:

i. For each i = 1, . . . , j, A1 computes p′(vi,v) as the encryption, with

the current private information assigned to class v`i , of the random

value x0.

ii. If v`j+1 does not correspond to the γ-th class whose private infor-

mation has been either inserted or modified, where γ is the index

chosen at step 1, then A1 restarts from the beginning; otherwise,

61

3. ENCRYPTION-BASED CONSTRUCTION

it leaves to A2 the task of associating the challenge y to the edge

(v`j+1, v
r).

iii. For each i = j + 2, . . . ,m, A2 computes p′(vi,v) as the encryption,

with the current private information assigned to class v`i , of the

value x1.

On the other hand, the public information associated to each other

edge is computed as follows:

i. For each edge (v`j+1, z
r), where z 6= v, if v`j+1 does not correspond

to the γ-th class whose private information has been either inserted

or modified, where γ is the index chosen at step 1, then A1 restarts

from the beginning; otherwise, it uses its encryption oracle Ekey(·)
to compute p′(vj+1,z)

as the encryption, with the unknown key, of

the current key assigned to class zr.

ii. For each edge (w`, zr), where w` 6= v`j+1 and z 6= v, A1 computes

the public value p′(w,z) as the encryption, with the current private

information assigned to class w`, of the current key assigned to

class zr.

(b) The t-th corrupting query, corresponding to a class c in Gt can be

answered by adversary A1 with the sequence of private information held

by the corrupted class c in all graphs up to Gt, if c belongs to them.

We remark that A1 is able to respond to such a query since in step

1. it has generated the sequence of all private information s1, . . . , sn,

with the exception of sγ, corresponding to the unknown key, if 1 ≤
γ ≤ n; moreover, all subsequent private information sn+1, . . . , sq(1τ ,n)

has been generated by A1 when answering updating queries involving

class insertions or user revocations.

(c) Upon finishing its updating and corrupting queries, adversary Bj out-

puts the triple (vr, t, history−), where history− contains the following

information:

• The initial graph G along with all updated graphs G1, . . . , Gt.

• The sequence of updating operations up1, . . . , upt queried by Bj.

62

3. Encryption-based Construction

• The corresponding sequences of public information obtained by

the interaction with A1 as a response for the updating queries, with

the exception of the public value associated to the edge (v`j+1, v
r).

• The corresponding sequences of keys old k0, . . . , old kt−1, which

have been modified according to each update. Notice that such se-

quences have also been obtained by the interaction with A1, which

has generated k1, . . . , kn in step 2.(a), and all subsequent keys in

response to insert class and replace key queries.

• The private information held by all corrupted classes, obtained by

the interaction with A1 as a response for the corrupting queries.

5. Finally, A1 outputs the triple (x0, x1, state), where state contains the triple

(vr, t, history−) output by Bj.

Notice that, in step 4.(a), algorithm A1 needs to restart itself from the be-

ginning in case j + 1 6= γ, where γ is the index chosen at step 1. This happens

because A1 has no control on the sequence of updating queries asked by adversary

Bj, that is, it cannot decide in advance to which class the encryption oracle Ekey(·)
will be associated. Therefore, A1 makes its guess at the beginning, by randomly

choosing an index γ ∈ {1, . . . , q(1τ , n)}, but it might fail. Clearly, the success

probability of A1 is equal to 1/q(1τ , n), meaning that, in the worst case, A1 will

need to restart itself q(1τ , n) times.

Description of Algorithm A2(1τ , y, state).

1. First, A2 parses state in order to obtain the sequence history−.

2. Then, A2 adds the missing value y in the sequence history−, associating

it to the edge (v`j+1, v
r). The updated sequence of public information is

denoted by history.

3. Afterwards, A2 calls adversary Bj on inputs 1τ , t, vr, history, and x1.

4. Finally, A2 outputs the same output as Bj.

Notice that, if y corresponds to the encryption of x1, then the random variable

associated with the adversary’s view is exactly the same as the one associated

63

3. ENCRYPTION-BASED CONSTRUCTION

with the adversary view in experiment Exph,j+1, whereas, if y corresponds to

the encryption of x0, it has the same distribution as the one associated with the

adversary’s view in experiment Exph,j. Thus, if adversary Bj is able to distinguish

between such two views with non-negligible advantage, it follows that adversary

A is able to break the security of the encryption scheme Π = (K,E,D) in the

sense of IND-P1-C0. Contradiction.

Hence, for any j = 0, . . . ,m − 1, experiments Exph,j and Exph,j+1 can-

not be distinguished with non-negligible advantage. It follows that experiments

Exph,0 and Exph,m cannot be distinguished with non-negligible advantage, for

any h = n+1, . . . , q(n, 1τ). Therefore, no adversary Sh, for h = n+1, . . . , q(n, 1τ),

distinguishes between ExpIND−DYN−1
Sh

(1τ , G) and ExpIND−DYN−0
Sh

(1τ , G) with non-

negligible advantage.

Analysis of Case 2. As done for Case 1, we can show that no adversary Sh, where

1 ≤ h ≤ n, distinguishes between ExpIND−DYN−1
Sh

(1τ , G) and ExpIND−DYN−0
Sh

(1τ , G)

with non-negligible advantage. The proof is similar to that for Case 1 and uses

a sequence of m+ 1 slightly different experiments

Êxph,0, Êxph,1, . . . , Êxph,m,

where m denotes the number of edges entering class vr. More precisely, let µ <

m be the number of edges entering class vr before the first updating operation;

for each j = 1, . . . , µ, experiment Êxph,j uses an algorithm Genj, which is a

modified version of the algorithm Gen used in the TLEBC. Such an algorithm

differs from Gen for the way it computes the public information associated to

the first j edges entering class vr in the two-levels hierarchy. On the other hand,

for each µ + 1 ≤ j ≤ m, experiment Êxph,j first uses the algorithm Genµ to

compute the public information associated to the first µ edges entering vr, then

uses the algorithm Updj, described when analyzing Case 1, in order to compute

the public information associated to edges from µ + 1 to j. As done before,

we can show that experiments Êxph,0 and Êxph,m cannot be distinguished with

non-negligible advantage, for any h = 1, . . . , n. Therefore, no adversary Sh, for

h = 1, . . . , n, distinguishes between ExpIND−DYN−1
Sh

(1τ , G) and ExpIND−DYN−0
Sh

(1τ , G)

with non-negligible advantage.

64

3. Encryption-based Construction

To conclude, we have proven that no adversary Sh, for h = 1, . . . , q(n, 1τ),

distinguishes between ExpIND−DYN−1
Sh

(1τ , G) and ExpIND−DYN−0
Sh

(1τ , G) with non-

negligible advantage. Therefore, no dynamic adaptive adversary ADAPT has non-

negligible advantage in distinguishing between experiments ExpIND−DYN−1
ADAPT (1τ , G)

and ExpIND−DYN−0
ADAPT (1τ , G). Thus, the TLEBC is secure in the sense of

IND-DYN-AD.

65

Chapter 4

Hierarchical and Shared Access

Control

“Indistinguishable things are identical (or

should be considered as identical).”

— G. W. Leibniz, 1646-1714

4.1 Introduction

Besides the conventional hierarchical access, sometimes it is necessary to provide

some particular sets of users, having specific access credentials, with access to the

key of a certain security class. This novel access control model finds a natural

field of application even when there is the need to manage unusual, exceptional or

emergency situations, which in general require special permissions. In particular,

consider the case in which the trust is based on a single entity, let it be a person or

an organization. Obviously, this may lead to abuses or violations by such entity,

as in the Snowden event [69], where a great deal of confidential information held

by the U.S. National Security Agency (NSA) was stolen. However, the NSA itself

has defined in the past some strict guidelines for limiting such abuses, namely,

the Orange Book [63] and Two-Person Authorization [17] [39], whose main goal

was to prevent a single user from viewing top-secret documents. The concept

upon which the guidelines are based is that, in general, somebody is less inclined

66

4. Introduction

to do something dishonest if someone else is watching. In addition, the two

guidelines clearly state that the information within a system must be organized

in a “compartmental manner”, providing different levels of access and security to

each compartment. In this case, a simple protection may be to use two or more

“locks” to protect a given resource or activity, where each lock needs a different

key, owned by a different person. Thus, two or more people are needed in order

to grant the access to that resource or activity.

The Snowden event highlights the fact that the collaboration among several

users and organizations is preferable for gaining the permission to carry out a

given task or to access sensitive information. Such collaboration is needed so as

to ensure that the requested permission has been granted through the acceptance

and agreement among all the involved entities, thus preventing users from any

kind of abuse. In general, the collaboration characterizes scenarios where more

than one entity is required to achieve a specific authorization. More precisely,

there are many real-world scenarios in which such a collaborative access is nec-

essary, i.e., where a user might have a sort of “pre-authorization” for the access,

but he may need to get the approval from someone else. For example, consider

the healthcare environment, which typically consists of several professional pro-

files, such as doctors, nurses, etc.. In this environment, nurses may access a

subset of stored patient’s clinical data, while a doctor can usually access all the

data. However, it is important to emphasize that the doctor and nurse must

have the patient’s consent to access clinical information. In addition, a nurse

should not access all the information concerning a patient, unless she does not

gain the permission from both patient and doctor. Moreover, if a doctor wants

to access some clinical data without the explicit consent of the patient, he should

be granted permission from several entities, e.g., hospital administration, medical

committee, government authority, etc..

Again, the access to the workspace of a specific project branch could be

granted either directly to the project manager or to a set of project team mem-

bers. The same arguments apply to distributed cryptographic file systems [22]. A

further real field of application lies in the collaborative access to logs concerning

accesses and events, where the access can be achieved either by a single entity

(e.g., a communications authority) or by more of them, which cooperate with

67

4. INTRODUCTION

each other. For example, the access might be allowed only if the judicial author-

ity cooperates with a given service provider. Another concrete example arises

from the military field, in which a decision can be taken by a single person with

a specific rank, by a certain number of his subordinates or more generally, by a

given number of people with certain credentials, which do not have the authority

to decide on their own. Furthermore, consider a committee board composed of

several members and a general chair. In this context, the chair might be away for

personal reasons or could be in a situation which prevents him from making any

decisions for a given action. Only one member of the board cannot independently

take such a decision on behalf of the chair. However, the board members can col-

lectively take such a decision on behalf of the chair, as long as their number is

greater than or equal to a certain threshold.

All the aforementioned considerations and examples bring to light the fact

that hierarchical and shared key assignment schemes are required in many cases.

A hierarchical and shared key assignment scheme (HSKAS) should assign an

encryption key and some private information to each class in the system in such

a way that the private information of a group of qualified users is jointly required

in order to compute the key assigned to a class lower down in the hierarchy.

In this chapter we first propose and formalize a novel access control model

which prevents the abuse of permissions, defines alternative methods for gaining

such permissions and allows the separation of duties. The model also enables col-

laboration among a set of users to gain specific permissions, defining the way in

which such collaboration takes place. Furthermore, we formalize the notion of key

indistinguishability regarding a new access model. Again, we propose two con-

structions which implement such a novel access control model. In particular, our

first proposal, denoted as the Shared Encryption Based Construction (SEBC),

uses as its basic building blocks a symmetric encryption scheme and a perfect

secret sharing scheme, and offers security with respect to key indistinguishabil-

ity. Our second proposal, denoted as the Threshold Broadcast Encryption Based

Construction (TBEBC), is based on a public-key threshold broadcast encryption

scheme and provides security against key indistinguishability.

This chapter is organized as follows. In Section 4.2 we formally define the

model we propose, by focusing on its specific security properties. In Section 4.3

68

4. The Model

we provide our constructions for hierarchical and shared key assignment, along

with the relative security proofs.

4.2 The Model

There are several practical situations in which collaboration from users belonging

to different security classes is needed, in order to access sensitive data belonging

to a certain class lower down in the hierarchy. For example, a user could be part

of multiple groups at the same time, and each of them could be associated to

different access permissions. On the other hand, even the resource being accessed

may require different access policies, according to those who access it. This

problem can be solved by using a hierarchical and shared access control, where

collaboration between classes is required to make sure that the access right to

the private data held by a class v has been granted with the agreement of some

particular users.

All of these situations and usage scenarios can be modeled by means of a

directed multigraph, namely, a directed graph that can have more than one edge

between the same pair of vertices. The presence of an edge e connecting a class

u to a class v means that class u is involved in a shared access control for class

v’s data. Moreover, since each class can obviously access the resources held by

itself, the multigraph also contains “self-loops”. However, from now on, for the

sake of simplicity, we will not mention of such type of loops. Formally, a directed

multigraph is a triple G = (V,E, φ), where V is a set of vertices, E is a set of

edges, and φ is a function which associates each edge in E to its endpoints, that is:

φ : E → V × V. The edges e1 and e2 are said to be multiple or parallel if it holds

that φ(e1) = φ(e2). For example, consider the directed multigraph G = (V,E, φ)

depicted in Figure 4.1, where V = {a, b, c, d, e, f, g, h, i, l}, E = {e1, e2, · · · , e18}
and φ is the function defined in Table 4.1. Multiple edges are represented by

dashed lines. In general, a subgraph H = (V ′, E ′, φ′) of a multigraph G =

(V,E, φ) is a multigraph whose underlying graph is a subgraph of that of G and

its function φ′ is dominated by φ, that is, the multiplicity of an edge in H does

not exceed its multiplicity in G.

Why do we need multiple edges to model hierarchical and shared access con-

69

4. THE MODEL

a b c d e

f g h

i l

e1

e2

e3

e4
e5

e6
e7

e8

e9e10
e11 e12

e13

e14

e15

e16e17

e18

Figure 4.1: Example of a directed multigraph characterizing our novel access
control model.

trol? The reason is that, in our new model, each class might be associated to

different access structures, corresponding to different access rights/permissions.

Given a directed multigraph G = (V,E, φ), for each class v ∈ V , let Iv ⊂ E be the

set of edges ending in v. In this chapter we consider the general situation where

more than one access structure can be associated to each class in the multigraph.

More precisely, for any v ∈ V , let mv ≥ 1 be an integer, let P1
v, . . . ,P

mv
v be mv

subsets of Iv, and let A1
v, . . . ,A

mv
v be mv access structures for class v on the sets

P1
v, . . . ,P

mv
v , respectively. For each v ∈ V , let Av = {A1

v, . . . ,A
mv
v } be the family

Table 4.1: Function φ of the directed multigraph shown in Figure 4.1

e e1 e2 e3 e4 e5 e6 e7 e8 e9

φ(e) (a, f) (b, f) (c, f) (b, g) (d, g) (g, h) (e, g) (e, h) (h, l)
e e10 e11 e12 e13 e14 e15 e16 e17 e18

φ(e) (f, i) (g, i) (g, l) (a, f) (e, f) (c, f) (d, f) (b, h) (e, h)

70

4. The Model

of all access structures associated to class v and let A
G

= {Av}v∈V . Notice that,

if a hierarchical, but not shared, access control for a class v is required, we can

simply associate to the class v a single access structure containing all the edges

in Iv, thus requiring no collaboration among classes in order to access v’s data.

In this case, two parallel edges make no difference, since they represent the same

access right.

The proposed access model finds natural application especially in the so-called

“multi-domain environments”, namely, in all those environments in which there

are different cooperating entities, each of them with different interests, respon-

sibilities and tasks to perform. It is important to emphasize that a particular

entity, depending on the context and the role which it assumes, may have differ-

ent roles towards another given entity to which it intends to be granted access.

Informally speaking, an entity can take on several tasks, and according to the

assumed role it may have different access rights. On the other hand, a certain

security class can provide the same entity with different access rights, according

to the tasks performed by the latter in that particular context at that particular

time. Clearly, at a given time an entity may need to take simultaneously all of its

different tasks. In detail, an entity may assume one or more roles, each belonging

to the characterization of a specific access structure, for a certain security class.

4.2.1 A Motivating Example

One of the most popular examples of multi-domain environments is obviously

the one concerning healthcare. In particular, consider the multigraph shown in

Figure 4.1, let f be the security class characterizing all the data related to a

specific patient. It is easy to note that the set If is composed of seven elements,

namely, If = {e1, e2, e3, e13, e14, e15, e16}. Without loss of generality, one of the

possible characterizations for such set may be the following:

• Entityaf (Health director) = {e1, e13}, where Rolee1f = {Scientific Manager}
and Rolee13f ={Administrative Manager};

• Entitybf = {e2}, where Rolee2f = {Insurance Company};

71

4. THE MODEL

• Entitycf (Doctor) = {e3, e15}, where Rolee3f = {Specialist} and Rolee15f =

{Common Practitioner};

• Entitydf = {e16}, where Rolee16f = {Patient’s Family};

• Entityef = {e14}, where Rolee14f = {Administrative Office}.

Therefore, starting from the If set, the following three access structures for

the class f , that is to say, A1
f={{e1, e2, e3}, {e13, e14},{e15, e16}}, A2

f={{e13,

e16}, {e2, e14}, {e1, e3, e15}} and A3
f={{e2, e13}, {e15, e16}, {e1, e3, e14}}, might

be characterized. For example, the first access structure, denoted as A1
f , could

model the scenario in which the patient belonging to the class f is involved in

a legal dispute for insurance issues. Instead, the access structure denoted as A2
f

can model the situation in which the patient intends to participate in the ex-

perimentation of a particular drug, therefore he needs to be subjected to some

specific investigations and clinical evaluations. Finally, the access structure de-

noted as A3
f can model the case in which the patient finds out to have a specific

congenital disease, and for this reason needs to take out a new insurance policy

on his health, consequently canceling the old one. Obviously, the three examples

of access structure we provide for the class f , along with their relative characteri-

zations, although concrete are extremely trivial. However, as it is easy to observe,

the proposed model, because of its generality, is virtually able to represent any

set of scenarios which may potentially occur in real life.

4.2.2 Hierarchical and Shared Key Assignment Schemes

Let G = (V,E, φ) be a directed multigraph and let A
G

= {Av}v∈V be the family of

all access structures associated to the classes in V . For any X ⊆ V , we are going

to define the set of classes A
X

which can be accessed when classes in X collaborate

together. Such a set will be constructed by using a Breadth-First-Search (BFS)

on G, starting from the set X.

More precisely, starting from X, we will explore the multigraph G outgoing

from X in all possible directions, adding classes one layer at a time, according

to the access structures associated to the classes. First, notice that X ∈ A
X

,

since each class in X is authorized to access itself, with no need of cooperation.

72

4. The Model

In particular, we denote by A0
X

= X the set of classes added at this step, also

called zero level of cooperation. Then, we start from X and include all the classes

u ∈ V for which there exists a subset Y ⊆ X such that the set E
Y

of edges whose

source classes are in Y belongs to at least one of the access structures associated

to u. This is the first layer of cooperation, and the corresponding set of classes is

denoted by A1
X

. We then include all the additional classes u ∈ V for which there

exists a subset Y ⊆ A1
X

such that the set E
Y

of edges whose source classes are in Y

belongs to at least one of the access structures associated to u. This is the second

layer of cooperation, and the corresponding set of classes is denoted by A2
X

. We

continue in this way until there are no more layers to be explored, i.e., until the set

Adiam(G)
X

has been constructed, where diam(G) denotes the diameter of G. The

set of classes A
X

which can be accessed when classes in X collaborate together is

naturally defined to be the union of the sets constructed in the different layers.

Formally, for each set of classes X ⊆ V and for each level j = 0, . . . , diam(G),

we define the set Aj
X

corresponding to the set of classes which can be accessed by

X at the j-th level of cooperation, as follows:

• A0
X

= X;

• Aj
X

= {v ∈ V : ∃Y ⊆ Aj−1
X

s. t. EY ∈ Ai
v, for some i ∈ {1, . . . ,mv}}.

The set of classes A
X

which can be accessed when classes in X collaborate together

is defined to be

A
X

= ∪diam(G)
j=0 Aj

X
.

Consider the multigraph depicted in Figure 4.1 and let A1
f={{e1, e2, e3}, {e13,

e14},{e15, e16}}, A2
f={{e13, e16}, {e2, e14}, {e1, e3, e15}} and A3

f={{e2, e13}, {e15,

e16}, {e1, e3, e14}} be three access structures associated to class f . Moreover,

let Ag = {{e4, e5, e7}}, Ah = {{e6, e7}, {e17, e18}}, Ai = {{e10, e11}}, and Al =

{{e9, e12}} be the access structures associated to classes g, h, i, and l, respectively.

Let X = {b, c, d, e}. It is easy to see that A
X

= {b, c, d, e, f, g, h, i, l}. Indeed,

A0
X

= {b, c, d, e}, A1
X

= {f, g, h}, and A2
X

= {i, l}.
We are now ready to give a formal definition for hierarchical and shared key

assignment schemes.

73

4. THE MODEL

Definition 4.2.1. A hierarchical and shared key assignment scheme for (G,A
G

)

is a pair (Gen,Der) of algorithms satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time.

It takes as inputs the security parameter 1τ , a directed multigraph G =

(V,E, φ) and the corresponding set of families of access structures A
G

, and

produces as outputs:

(a) a private information su, for any class u ∈ V ;

(b) a key ku ∈ {0, 1}τ , for any class u ∈ V ;

(c) a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ , G

and A
G

, where s and k denote the sequences of private information and of

keys, respectively. Moreover, for any X ⊆ V , we denote by s
X

the sequence

of private information associated to the classes in X.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes

as inputs the security parameter 1τ , a directed multigraph G = (V,E, φ) and

the corresponding set of families of access structures A
G

, a set of classes

X ⊆ V , the private information s
X

held by classes in X, a class u ∈ A
X

,

and the public information pub, and produces as output the key ku assigned

to a class u.

We require that for each class u ∈ V , each set of classes X ⊆ V , each

sequence of private information s
X

associated to classes in X, each class

u ∈ A
X

, each key ku, each public information pub which can be computed by

Gen on inputs 1τ , G and A
G

, it holds that Der(1τ , G,A
G
, X, s

X
, u, pub) = ku.

4.2.3 Evaluation Criteria and Notions of Security

The efficiency of a hierarchical and shared key assignment scheme is evaluated

according to several parameters, such as the amount of secret data that needs to

be distributed to and stored by users, the amount of public data, the complexity

of key derivation, and the resistance to collusive attacks. More precisely, for each

74

4. The Model

class u ∈ V , the key ku should be protected against any coalition of users which

are not allowed to access such class, even when pooling together their private

information.

We consider a static adversary STATu,X that wants to attack a class u ∈ V and

which is able to corrupt a set of classes X such that u 6∈ A
X

. We define an algo-

rithm Corruptu(s,X) which, starting from the private information s generated

by the algorithm Gen, and a coalition of classes X such that u 6∈ A
X

, extracts the

sequence of private information s
X

associated to the classes in X. Two experi-

ments are considered. In the first one, the adversary is given the key ku, whereas,

in the second one, it is given a random string ρ having the same length as ku.

It is the adversary’s job to determine whether the received challenge corresponds

to ku or to a random string. We require that the adversary will succeed with

probability only negligibly different from 1/2.

Definition 4.2.2. [IND-ST] Let G = (V,E, φ) be a directed multigraph and

let A
G

be the corresponding set of families of access structures, let (Gen,Der)

be a hierarchical and shared key assignment scheme, and let STATu,X be a static

adversary which attacks a class u ∈ V and corrupts a set of classes X such that

u 6∈ A
X

. Consider the following two experiments:

Experiment ExpIND−1
STATu,X

(1τ , G,AG)

(s, k, pub)← Gen(1τ , G,AG)

sX ← Corruptu(s,X)

d← STATu,X (1τ , G,AG , pub, sX , ku)

return d

Experiment ExpIND−0
STATu,X

(1τ , G,AG)

(s, k, pub)← Gen(1τ , G,AG)

sX ← Corruptu(s,X)

ρ← {0, 1}τ
d← STATu,X (1τ , G,AG , pub, sX , ρ)

return d

The advantage of STATu,X is defined as

AdvIND
STATu,X

(1τ , G,A
G

) = |Pr[ExpIND−1
STATu,X

(1τ , G,A
G

) = 1]

− Pr[ExpIND−0
STATu,X

(1τ , G,A
G

) = 1]|

75

4. CONSTRUCTIONS

The scheme is said to be secure in the sense of IND-ST if, for each directed

multigraph G = (V,E, φ), each family of access structures A
G

, each class u ∈ V
and each set of classes X such that u 6∈ A

X
, the function AdvIND

STATu,X
(1τ , G,A

G
) is

negligible, for each static adversary STATu,X whose time complexity is polynomial

in τ .

In Definition 4.2.2 we have considered a static adversary attacking a class. A

different kind of adversary, the adaptive one, could also be considered. Such an

adversary is first allowed to access all public information as well as all private

information of a number of classes of its choice; afterwards, it chooses the class it

wants to attack. However, following the lines of [7], it can be shown that security

against adaptive adversaries is (polynomially) equivalent to security against static

adversaries. Hence, in this chapter we will only consider static adversaries.

4.3 Constructions

In this section we propose two different constructions for hierarchical and shared

key assignment schemes. The former, denoted as the Shared Encryption Based

Construction (SEBC), is based on symmetric encryption and perfect secret shar-

ing schemes, whereas, the latter, denoted as the Threshold Broadcast Encryp-

tion Based Construction (TBEBC), is based on threshold broadcast encryption

schemes. Both the proposed constructions are provably secure with respect to

key indistinguishability.

4.3.1 A Construction based on Symmetric Encryption

In the following we consider the problem of constructing a hierarchical and shared

key assignment scheme by using as its basic building blocks a symmetric encryp-

tion scheme and a perfect secret sharing scheme. Before describing our construc-

tion, we first recall the definition of perfect secret sharing schemes. Instead, for

what concerns the definition of symmetric encryption schemes, the reader can

refer to the Section 3.3.1.

76

4. Constructions

4.3.1.1 Symmetric Encryption Schemes

A symmetric encryption scheme is a triple Π = (K,E,D) of algorithms satisfying

the following conditions:

1. The key-generation algorithm K is probabilistic polynomial-time. It takes

as input the security parameter 1τ and produces as output a string key.

2. The encryption algorithm E is probabilistic polynomial-time. It takes as

inputs 1τ , a string key produced by K(1τ), and a message m ∈ {0, 1}∗, and

produces as output the ciphertext y.

3. The decryption algorithm D is deterministic polynomial-time. It takes as

inputs 1τ , a string key produced by K(1τ), and a ciphertext y, and produces

as output a message m. We require that for any string key which can be

output by K(1τ), for any message m ∈ {0, 1}∗, and for all y that can be

output by E(1τ , key,m), we have that D(1τ , key, y) = m.

In the following we define what we mean by a secure symmetric encryption

scheme. We formalize security with respect to plaintext indistinguishability, which

is an adaption of the notion of polynomial security as given in [44]. We consider

an adversary A = (A1, A2) running in two stages. In advance of the adversary’s

execution, a random key (key) is chosen and kept hidden from the adversary.

During the first stage, the adversary A1 outputs a triple (x0, x1, state), where x0

and x1 are two messages of the same length, and state is some state information

which could be useful later. One message between x0 and x1 is chosen at random

and encrypted to give the challenge ciphertext y. In the second stage, the adver-

sary A2 is given y and state and has to determine whether y is the encryption

of x0 or x1. Informally, the encryption scheme is said to be secure with respect

to a non-adaptive chosen plaintext attack, denoted by IND-P1-C0 in [53], if ev-

ery polynomial-time adversary A, which has access to the encryption oracle only

during the first stage of the attack and has never access to the decryption oracle,

succeeds in determining whether y is the encryption of x0 or x1 with probability

only negligibly different from 1/2 (random guess).

In an adaptive chosen plaintext attack the adversary is also allowed to access

the encryption oracle during the second stage of the attack. Notice that security

77

4. CONSTRUCTIONS

with respect to such attack has been shown to be equivalent to the one with

respect to a non-adaptive chosen plaintext attack in [53], thus in this chapter we

will only consider security with respect to IND-P1-C0.

Definition 4.3.1. [IND-P1-C0] Let Π = (K,E,D) be a symmetric encryption

scheme and let τ be a security parameter. Let A = (A1, A2) be an adversary which

has access to the encryption oracle only during the first stage of the attack and has

never access to the decryption oracle. Consider the following two experiments:

Experiment ExpIND−P1−C0−1
Π,A (1τ) Experiment ExpIND−P1−C0−0

Π,A (1τ)

key ← K(1τ) key ← K(1τ)

(x0, x1, state)←AEkey(·)
1 (1τ) (x0, x1, state)←AEkey(·)

1 (1τ)

y←Ekey(x1) y←Ekey(x0)

d← A2(1τ , y, state) d← A2(1τ , y, state)

return d return d

The advantage of A is defined as

AdvIND−P1−C0
Π,A (1τ) = |Pr[ExpIND−P1−C0−1

Π,A (1τ) = 1]

− Pr[ExpIND−P1−C0−0
Π,A (1τ) = 1]|.

The scheme is said to be secure in the sense of IND-P1-C0 if the advantage func-

tion AdvIND−P1−C0
Π,A (1τ) is negligible, for any adversary A whose time complexity

is polynomial in τ .

4.3.1.2 Perfect Secret Sharing Schemes

A secret sharing scheme Σ = (Share,Recover) is a pair of algorithms run by

a dealer and a set P of n participants. The Share algorithm is executed by

the dealer who, given a secret s, computes some shares s1, . . . , sn of such secret

and gives each participant one share. The shares are computed in such a way

that only qualified subsets of participants can reconstruct the value of s, by

using the Recover algorithm on input their shares, whereas, any other subset

of participants, non-qualified to know s, cannot determine anything about the

78

4. Constructions

value of the secret. Secret sharing schemes were introduced by Shamir [65] and

Blakley [16] and have found applications in several areas of data security. Shamir

and Blakley analyzed the case in which only subsets of participants of cardinality

at least h, for a fixed integer h ≤ n, can reconstruct the secret. These schemes

are called (h, n)-threshold schemes. Subsequently, Ito et al. [52] and Benaloh and

Leichter [13] described a more general method of secret sharing. They showed

how to realize a secret sharing scheme for any access structure, where the access

structure is the family of all the subsets of participants that are able to reconstruct

the secret. The survey by Stinson [67] contains a unified description of results in

the area of secret sharing schemes.

In this chapter with a boldface capital letter, say Y, we denote a random

variable taking values on a set, denoted by the corresponding capital letter Y ,

according to some probability distribution {Pr
Y

(y)}y∈Y . The values such a ran-

dom variable can take are denoted by the corresponding lower case letter. Let

S be the set of secrets, {Pr
S
(s)}s∈S be a probability distribution on S and let a

secret sharing scheme for secrets in S be fixed. Assume for the rest of the chapter

that Pr(S = s) > 0 for all s ∈ S. Let P be the set of participants, and for any

P ∈ P, let us denote by Sh(P) the set of all possible shares given to participant

P . Given a set of participants X = {Pi1 , . . . , Pir}, where i1 < i2 < · · · < ir, let

Sh(X) = Sh(Pi1) × · · · × Sh(Pir). Any secret sharing scheme for secrets in S

and a probability distribution {Pr
S
(s)}s∈S naturally induce a probability distri-

bution on Sh(X), for any X ⊆ P. We denote such probability distribution by

{Pr
X

(x)}x∈Sh(X).

In terms of the probability distribution on the secret and on shares given to

participants, we say that a secret sharing scheme Σ = (Share,Recover) for the

access structure A is perfect if the following two conditions hold:

1. Any subset X ⊆ P of participants enabled to recover the secret can compute

the secret. Formally, ifX ∈ A, then, for all x ∈ Sh(X) with Pr(X = x) > 0,

a unique secret s ∈ S exists such that Pr(S = s|X = x) = 1.

2. Any subset X ⊆ P of participants not enabled to recover the secret has no

information about the secret. Formally, if X 6∈ A, then, for all s ∈ S and

for all x ∈ Sh(X) with Pr(X = x) > 0, it holds that Pr(S = s|X = x) =

79

4. CONSTRUCTIONS

Pr(S = s).

In detail, condition 1 means that the value of the shares held by participants

in the qualified set X completely determines the secret s ∈ S. Instead, condition

2 means that the probability that the secret is equal to s given that the shares

held by participants in the non-qualified set X correspond to the sequence x, is

equal to the a priori probability that the secret is s. Therefore, no amount of

knowledge of shares of participants not qualified to reconstruct the secret enables

a Bayesian opponent to modify an a priori guess regarding which the secret is.

It is well known that, in any perfect secret sharing scheme, the size of the share

given to any participant is at least the size of the secret [21]. The sample space

of shares given to any group of participants in a perfect secret sharing scheme,

as a function of the size of the set of secrets has also been considered [19]. In

particular, the authors of [19] proved the following result, which will be useful

later.

Remark 4.3.1. Let A be an access structure on the set of participants P. In any

perfect secret sharing scheme for A for any X 6∈ A, it holds that Pr(X = x) =

1/|S|, for any x ∈ Sh(X).

Shamir’s Threshold Schemes. In the following we recall the (h, n)-threshold

scheme proposed by Shamir [65]. Let q > n be a prime number, let s ∈ Zq be the

secret to be shared among the n participants and let h ≤ n be a fixed threshold.

Let x1, . . . , xn be n distinct non-zero elements in Zq known to all the parties

(since q is a prime, then we can take xj = j). To set up the scheme, the dealer

constructs a random polynomial a(x) of degree at most h− 1, having coefficients

in Zq, in which the constant term is the secret s. The share for participant Pi is

the point (xi, yi) of the polynomial a(x).

The correctness and privacy of Shamir’s scheme derive from the Lagrange’s

interpolation theorem, which states that for any h distinct values xi1 , . . . , xih and

any h values yi1 , . . . , yih , there exists a unique polynomial a′(x) of degree at most

h − 1 over Zq such that a′(xij) = yij , for j = 1, . . . , h. To see that Shamir’s

scheme is correct, notice that every set of participants {Pi1 , . . . , Pih} holds h

points si1 , . . . , sih of the polynomial a(x), hence each set can reconstruct it using

80

4. Constructions

Lagrange’s interpolation and compute s = a(0). The set of participants computes

a′(x) =
h∑
`=1

si`
∏

1≤j≤h,j 6=`

xij − x
xij − xi`

.

Notice that a′(xi`) = si` = a(xi`), for ` = 1, . . . , h. That is to say, a′(x) and

a(x) are polynomial of degree at most h − 1 which agree on h points, thus, by

the uniqueness in the interpolation theorem, they are equal, and, in particular,

a′(0) = a(0) = s.

In fact, they know that yij = a(xij), for 1 ≤ j ≤ h. Since a(x) has degree

at most h − 1, a(x) can be written as a(x) = a0 + a1x + · · · + ah−1x
h−1, where

a0, . . . , ah−1 are unknown elements in Zq and a0 = s is the secret. Thus, the

participants obtain a system of h linear equations in the h unknowns a0 . . . , ah−1.

Such a system can be represented in matrix form as Aa = y, where the coefficient

matrix A is a Vandermonde matrix, whose determinant can be computed as

det(A) =
∏

1≤j<t≤h(xih−xij) mod q. Since the xi’s are all distinct, then det(A) 6=
0 and it follows that the system has a unique solution over the field Zq. Therefore,

the h participants can reconstruct the whole polynomial a(x) and compute the

secret s = a(0).

On the other hand, any h − 1 participants have no information about the

secret s. Proceeding as above, the group of participants obtain a system of h− 1

equations in h unknowns. Suppose they hypothesize a value s′ for the secret.

Since the secret is a(0) = a0, this will yield a further equation, and the coefficient

matrix of the resulting system of h equations in h unknowns will again be a

Vandermonde matrix. As before, there will be a unique solution. Hence, for

every hypothesized value s′ of the secret, there is a unique polynomial a′(x) such

that yij = a′(xij) for any j = 1, . . . , h − 1 and such that s′ = a′(0). Hence, no

value of the secret can be ruled out, and thus a group of h−1 participants obtain

no information about the secret.

4.3.1.3 The Shared Encryption Based Construction

In the following we consider the problem of constructing a hierarchical and shared

key assignment scheme by using as building blocks a symmetric encryption

81

4. CONSTRUCTIONS

scheme and a perfect secret sharing scheme.

Rationale behind the construction. The idea behind our construction is

similar to the one used in the EBC (Encrypted Based Construction) [33]. In the

proposed construction, each class v ∈ V is assigned a private information sv, an

encryption key kv, and a public information πv, which is the encryption of kv

using the private information sv as a key. Moreover, for each class v ∈ V and

for each edge e ∈ Iv, there is a public value pe. If no shared access control for

class v’s data is needed (recall that in this case we can consider the trivial access

structure Av = Iv), the value pe is computed as the encryption of the secret sv,

using the private information su as a key, where u and v are the endpoints of the

edge e, i.e., φ(e) = (u, v). On the other hand, if a shared access control on class

v’s data is needed, we have to consider the mv access structures A1
v, . . . ,A

mv
v

associated to class v. The idea is to use a perfect secret sharing scheme for

each j = 1, . . . ,mv, in order to compute the shares of the private information

sv according to the access structure Aj
v on the set of edges Pjv. More precisely,

let e ∈ Pjv such that φ(e) = (u, v), and let sj,uv be the share for the secret sv

associated to the edge e, according to the access structure Aj
v. Such a share is

encrypted with the private information su as a key and corresponds to the public

value pe associated to the edge e.

Given a class v ∈ V , any set of classes X such that v ∈ A
X

can obtain a set of

shares for the secret sv, decrypting some public values. Such shares allow for the

computation of the secret sv, which can then be used to decrypt the public value

πv, in order to get the key kv. We will show that a static adversary attacking

a class u and corrupting a set of classes X such that u 6∈ A
X

, is not able to

distinguish the key ku from a random string of the same length unless it is able

to break the underlying encryption scheme.

Let G = (V,E, φ) be a directed multigraph and let AG be a family of

access structures associated to classes in V . Let Π = (K,E,D) be a sym-

metric encryption scheme, and, for any v ∈ V and any j = 1, . . . ,mv, let

Σj
v = (Sharejv, Recover

j
v) be a perfect secret sharing scheme for the access struc-

ture Aj
v. The information generation algorithm Gen of the SEBC is shown in

Algorithm 10, whereas, the relative key derivation algorithm Der is shown in

82

4. Constructions

Algorithm 11.

Algorithm 10 Gen algorithm of the Shared Encryption Based Construction.
1: procedure Gen(1τ , G,AG)
. Generation of sequences s and k

2: for each class u ∈ V do
3: su ← K(1τ), ku ← {0, 1}τ
4: end for

. Generation of sequence pub
5: for each class u ∈ V do
6: if v requires access control according to A1

v, . . . ,A
mv
v

then
7: for any j = 1, . . . ,mv do
8: Use the Sharejv algorithm to generate the shares for the secret sv, according to

A
j
v

9: for each edge e ∈ P
j
v s.t. φ(e) = (u, v) do

. Let sj,uv be the corresponding share
10: Compute the public value pe ← Esu(sj,uv)
11: end for
12: end for
13: else
14: for each edge e ∈ Iv, where φ(e) = (u, v) do
15: Compute the public value pe ← Esu(sv)
16: end for
17: end if
18: Compute the public value πv ← Esv(kv)
19: end for

20: end procedure

The SEBC associates a public value pe to each edge e ∈ E, as well as a public

value πu to each class u ∈ V .

4.3.1.4 Analysis of the Scheme

In this section we show that the security property of the SEBC depends on the

security properties of the underlying encryption scheme and of the perfect secret

sharing scheme.

In particular, we show that if there exists an adversary able to break the

security of the SECB in the sense of IND-ST, that is to say, which it is able to

distinguish a value assigned by the SEBC from a randomly chosen one, then such

83

4. CONSTRUCTIONS

Algorithm 11 Der algorithm of the Shared Encryption Based Construction.
1: procedure Der(1τ , G,AG, X, sX , u, pub)
2: if u ∈ X then
3: Extract su from sX and the public value πu from pub
4: ku ← Dsu(πu)
5: else

. Let 1 ≤ i ≤ diam(G) be an index s.t. u ∈ Ai
X

6: for each ` = 1, . . . , i do
7: for each class v ∈ A`

X
do

. Let Yv ⊆ A`−1
X

be s.t. EYv ∈ A
j
v and 1 ≤ j ≤ mv

8: for each class w ∈ Yv do
9: Extract the public value pe from pub

. Let φ(e) = (w, v)
10: Compute the share sj,wv ← Dsw(pe)
11: end for

.On input the shares associated to edges in EYv
12: Use Recoverjv algorithm to compute sv
13: end for
14: end for
15: end if
16: Extract the public value πu from pub and compute ku ← Dsu(πu)

17: end procedure

84

4. Constructions

an adversary can be used as a “black-box” to construct an adversary which breaks

the underlying symmetric encryption scheme with respect of IND-P1-C0.

Our proof is essentially based on two well known concepts, referred to as

black-box reductions [44] and hybrid arguments [18].

Theorem 4.3.1. If the encryption scheme Π = (K,D,E) is secure in the sense

of IND-P1-C0 and Σ is a perfect secret sharing scheme, then the SEBC is secure

in the sense of IND-ST.

Proof. Let G = (V,E, φ) be a directed multigraph, let u ∈ V and let STATu,X

be a static adversary which attacks class u and corrupts a set of classes X ⊂ V

such that u 6∈ A
X

. Let Gu = (Vu, Eu, φu) be the subgraph of G induced by

the set of vertices Vu = {v ∈ V : there is a path from v to u in G} and let

Gu,X = (Vu,X , Eu,X , φu,X) be the subgraph of Gu induced by the set of vertices

Vu,X = Vu \ X, containing the classes in Vu which have not been corrupted by

STATu,X . Without loss of generality, let (u1, . . . , um), where um ≡ u, be any

topological ordering of the vertices in Vu,X and let (e1, . . . , eh−1) be the sequence

of edges in Eu,X such that φu,X (ei) = (ua, ub) precedes φu,X (ej) = (uc, ud) if and

only if either a < c or a = c and b < d. Moreover, let φu,X (eh) = (u, u′).

In order to prove the theorem, we need to show that the adversary’s views in

experiments ExpIND−1
STATu,X

and ExpIND−0
STATu,X

are indistinguishable. Notice that the only

difference between ExpIND−1
STATu,X

and ExpIND−0
STATu,X

is the last input of STATu,X , which

corresponds to the real key ku in the former experiment and to a random value

chosen in {0, 1}τ in the latter. Thus, while in ExpIND−1
STATu,X

the public information

is related to the last input of STATu,X , in ExpIND−0
STATu,X

it is completely independent

on such a value. For ease of exposition, we define the following experiment:

Experiment Expu,X (1τ , G,AG)

(s, k, pub)← Gen(1τ , G,AG)

sX ← Corruptu(s,X)

d← STATu,X (1τ , G,AG, pub, sX , αu)

return d

which corresponds either to ExpIND−1
STATu,X

, if αu is the real key ku, or to ExpIND−0
STATu,X

,

if αu is a random value in {0, 1}τ .

85

4. CONSTRUCTIONS

We will show that the adversary’s view in the experiment Expu,X is indistin-

guishable from the adversary’s view in an experiment Exp∗u,X , where the public

information, at the same time, does not carry any information about the key ku

and is independent on the last input of STATu,X . More formally, the experiment

Exp∗u,X is defined as follows:

Experiment Exp∗u,X (1τ , G,AG)

(s, k, pub∗)← Gen∗(1τ , G,AG)

sX ← Corruptu(s,X)

d← STATu,X (1τ , G,AG, pub
∗, sX , αu)

return d

In the algorithm Gen∗ the public value πu associated to class u is computed as

the encryption Esu(ρ) of a random value ρ ∈ {0, 1}τ , rather than the encryption

of the key ku. Moreover, the public value associated to each edge ei, where

φu,X (ei) = (ua, ub) ∈ Eu,X is computed as the encryption Esua (ri) of a random

value ri ∈ {0, 1}τ , rather than the encryption Esua (suaub) of the share suaub for the

private information sub . Therefore, in such an experiment, all public information

is independent on the value of the key ku. Moreover, the distributions of the

experiment Exp∗u,X when STATu,X is given as last input either the real key ku or

a random value in {0, 1}τ are the same. In such an experiment, the key ku is

just a random value independent on the public and private information in the

adversary’s view.

Now, in order to show that ExpIND−1
STATu,X

and ExpIND−0
STATu,X

are indistinguishable,

we only need to show that the adversary’s views in experiments Expu,X and

Exp∗u,X are indistinguishable. This implies that ExpIND−1
STATu,X

and ExpIND−0
STATu,X

are

both indistinguishable from the same experiment Exp∗u,X , which also means that

they are indistinguishable from each other.

We construct a sequence of h+1 experiments Exp1
u,X
, . . . ,Exph+1

u,X
, all defined

over the same probability space, where the first and the last experiments of the

sequence correspond to Expu,X and Exp∗u,X . In each experiment, we modify

the way in which the view of STATu,X is computed, while maintaining the view’s

distributions indistinguishable among any two consecutive experiments. For any

q = 2, . . . , h, experiment Expqu,X is defined as follows:

86

4. Constructions

Experiment Expqu,X (1τ , G,AG)

(s, k, pubq)← Genq(1τ , G,AG)

sX ← Corruptu(s,X)

d← STATu,X (1τ , G,AG, pub
q, sX , αu)

return d

The algorithm Genq used in Expqu,X differs from Gen by the way in which part

of the public information pubq is computed. For any i = 1, . . . , q − 1, the public

values associated to the edge ei such that φu,X (ei) = (ua, ub) ∈ Eu,X is computed

as the encryption Esua (ri) of a random value ri ∈ {0, 1}τ , instead of the encryption

Esua (suaub) of the share suaub .

In the following we show that, for any q = 1, . . . , h, the adversary’s view in the

q-th experiment is indistinguishable from the adversary’s view in the (q + 1)-th

one.

Assume by contradiction that there exists a polynomial-time distinguisher Bq,

which is able to distinguish between the adversary STATu,X ’s views in experiments

Expqu,X and Expq+1
u,X

with non-negligible advantage. Notice that such views differ

only for the way the public information associated to the edge eq, such that

φu,X (eq) = (a, b), is computed. We show how to construct a polynomial-time

adversary A = (A1, A2) that uses Bq to break the security of the encryption

scheme Π = (K,E,D) in the sense of IND-P1-C0.

In particular, algorithm A1, on input 1τ , randomly chooses the key kv for any

class v ∈ V , as well as the private information for any class v ∈ V \ {a}.
If Ia 6= ∅, for any class v ∈ Ia, A1 considers the ma access structures

A1
a, · · · ,Ama

a associated to the secret sa and, for each of them, the set of edges

characterizing that access structure. Then, A1 computes the public value associ-

ated to each edge e such that φu,X (e) = (v, a) as the encryption of a random value

chosen in {0, 1}τ , using the private information sv as a secret key. Afterwards,

for any class v ∈ V \ {a} such that Iv 6= ∅, A1 considers the mv access structures

A1
v, · · · ,Amv

v associated to the secret sv and, for each of them, it considers the set

of edges characterizing such access structure. Subsequently, A1 uses the algorithm

Share, on input the secret information sv, to compute the sequence of shares ac-

cording to each access structure defined for the node v, which is characterized by

the relative set of edges. Such shares will be used to compute part of the public

87

4. CONSTRUCTIONS

information. More precisely, A1 computes the public values associated to each

edge er such that φu,X (er) = (v, z) 6∈ {e1, . . . , eq} as the encryption of a random

share relative to the secret information sz by using sv as a secret key. Notice that,

in order to compute all public values associated to the outgoing edges of class

a, except for the edge eq such that φu,X (eq) = (a, b), A1 can make queries to the

encryption oracle Esa(·). Afterwards, A1 computes the public values associated

to each edge ek such that φu,X (ek) = (v, z) ∈ {e1, . . . , eq−1} as the encryption of

a random value chosen in {0, 1}τ , using as a secret key the private information

sv. Again, A1 computes the public values associated to all edges ev such that

φu,X (ev) = (v, v′), where ev 6= eq, as the encryption of the key kv with the private

information sv. Finally, A1 sets x1 to be equal either to the key ku, if eq = eu,

where φu,X (eu) = (u, u′), or to a random share relative to the secret sb, otherwise.

Notice that, since Σ is a perfect secret sharing scheme, by Remark 4.3.1, such

a share has the same distribution of a random value in {0, 1}τ . The sequences

s′, k and pub′ of all private information, keys, and public values constructed by

A1, along with the values x0 and x1, are saved in the state information state.

Recall that the sequence s′ contains the private information sv assigned to all

classes v ∈ V \ {a}. Similarly, the sequence pub′ contains the public information

associated to all edges in E \{eq}. Formally, the algorithm A1 is defined as shown

in Algorithm 12.

Let y be the challenge for the algorithm A, corresponding to the encryption

of either x0 or x1 with the unknown key sa. The algorithm A2, on input 1τ , y,

and state, constructs the view for the distinguisher Bq as follows: it first extracts

from s′ the private information s
X

held by corrupted users, through the algorithm

Corruptu(s
′, X). Then, it computes the public value associated to the edge eq,

not included in pub′, in order to obtain the sequence pub. In particular, such a

public value is set equal to the challenge y. Finally, A2 outputs the same output

as Bq(1
τ , G,A

G
, pub, s

X
, x1). More formally, A2 works as shown in Algorithm 13.

Notice that if y corresponds to the encryption of x1, then the random variable

associated to the adversary’s view is exactly the same as the one associated to the

adversary view in experiment Expqu,X , whereas, if y corresponds to the encryption

of x0, it has the same distribution as the one associated to the adversary’s view in

experiment Expq+1
u,X

. Therefore, if the algorithm Bq is able to distinguish between

88

4. Constructions

Algorithm 12 First stage of the adversary A attacking the SEBC.

1: procedure A
Esa (·)
1 (1τ)

2: x0, ka ← {0, 1}τ
3: for each v ∈ V \ {a} do
4: sv, kv ← {0, 1}τ
5: end for
6: if Ia 6= ∅ then
7: for each v ∈ Ia do

. Consider the ma access structures A1
a, · · · ,Ama

a for sa
8: for i = 1 to ma do
9: for each e ∈ P ia do

. Let φ(e) = (v, a)
10: ra ← {0, 1}τ
11: p(v,a) ← Esv (ra)
12: end for
13: end for
14: end for
15: end if
16: for each v ∈ V \ {a} s.t. Iv 6= ∅ do

. Consider the mv access structures A1
v, · · · ,Amv

v for sv
17: for j = 1 to mv do
18: sv,Aj

v
← Sharejv(sv)

19: for each e ∈ P jv s. t. e /∈ {e1, . . . , eq} do
. Let φ(e) = (z, v)

20: p(z, v)← Esz (sj,zv)
21: end for
22: if q > 1 then
23: for each e ∈ P jv s. t. e ∈ {e1, . . . , eq−1} do

. Let φ(e) = (z, v)
24: rz ← {0, 1}τ
25: p(z,v) ← Esz (rz)
26: end for
27: end if
28: end for
29: end for
30: for each (v, v

′
) ∈ E do

31: πv ← Esv (kv)
32: end for
33: pub′ ← public values constructed above
34: if (a, b) = (u, u′) then
35: x1 ← ku
36: else

. Consider the mb access structures A1
b , · · · ,Amb

b for sb
37: for ` = 1 to mb do
38: for each e ∈ P `b do
39: if φ(e) = (a, b) then

40: x1 ← s`,ab
41: end if
42: end for
43: end for
44: end if
45: state← (s′, k, pub′, x0, x1)
46: return (x0, x1, state)

47: end procedure
89

4. CONSTRUCTIONS

Algorithm 13 Second stage of the adversary A attacking the SEBC.
1: procedure A2(1τ , y, state)
2: state = (s′, k, pub′, x0, x1)
3: sX ← Corruptu(s′, X)

. Construction of the missing public values
4: if (a, b) = (u, u′) then
5: πu ← y
6: else
7: p(a,b) ← y
8: end if
9: d← Bq(1

τ , G,AG , pub, sX , x1)
10: return d

11: end procedure

such views with non negligible advantage, it follows that algorithm A is able

to break the security of the encryption scheme Π = (K,E,D) in the sense of

IND-P1-C0. Contradiction.

Hence, for any q = 1, . . . , h, the adversary’s view in the q-th experiment is

indistinguishable from the adversary’s view in the (q + 1)-th one. Therefore, the

adversary’s views in experiments Expu,X and Exp∗u,X are indistinguishable. This

concludes the proof.

4.3.2 A Construction based on Threshold Broadcast En-

cryption

In this section we propose a construction for hierarchical and shared key as-

signment which uses as building block a threshold broadcast encryption scheme.

We denote such a construction as the Threshold Broadcast Encryption Based

Construction (TBEBC). The TBEBC can be instantiated using the construc-

tion proposed by Daza et al. [31], which is secure under the Decisional Bilinear

Diffie-Hellman (DBDH) assumption.

4.3.2.1 Threshold Broadcast Encryption

A broadcast encryption scheme allows a sender to broadcast an encrypted mes-

sage to a set of users in such a way that only legitimate users can decrypt it.

90

4. Constructions

Broadcast encryption schemes can be either public-key or symmetric-key based.

In the symmetric-key setting, only a trusted authority can broadcast data to

the receivers. Conversely, in the public-key setting, a public key published by a

trusted authority allows anybody to broadcast a message.

In a threshold public key broadcast encryption scheme (TBE) a message is

encrypted and sent to a group of receivers, in such a way that the cooperation of

at least t of them (where t is the threshold) is necessary in order to recover the

original message. Such schemes have many applications in situations where one

wants to avoid that a single party has all the power/responsibility to protect or

obtain some critical information. In those schemes, the sender of the message who

wants to protect some information may want to decide who will be the designated

receivers in an ad-hoc way, just before encrypting the message, and also decide the

threshold of receivers which will be necessary to recover the information. More

precisely, a TBE scheme has the following properties:

• There is no setup phase or predefined groups. Each potential receiver has

his own pair of secret/public keys.

• The sender chooses the set of receivers P and the threshold t for the de-

cryption. Then he encrypts the message by using the public keys of all the

receivers in P.

• A ciphertext corresponding to the pair (P, t) can be decrypted only if at

least t members of P cooperate by using their secret keys. Otherwise, it is

computationally infeasible to obtain any information about the plaintext.

The next definition was proposed in [31].

Definition 4.3.2. A threshold broadcast encryption (TBE) scheme consists of

five algorithms:

1. The randomized setup algorithm TBE.Setup takes as input a security pa-

rameter 1τ and outputs some public parameters params, which will be com-

mon to all the users of the system. We write params← TBE.Setup(1τ).

91

4. CONSTRUCTIONS

2. The randomized key generation algorithm TBE.KG is run by each user

i. It takes as input some public parameters params and returns a pair

(PKi,SKi) consisting of a public key and a matching secret key. We write

(PKi, SKi)← TBE.KG(params).

3. The randomized encryption algorithm TBE.Enc takes as input a set of

public keys {PKi}i∈P corresponding to a set P of receivers, a threshold t

satisfying 1 ≤ i ≤ n, and a message m. The output is a ciphertext C. We

write C ← TBE.Enc(1τ , {PKi}i∈P, t,m).

4. The (possibly randomized) partial decryption algorithm TBE.PartDec takes

as input a ciphertext C for the pair (P,t) and a secret key SKi of a receiver

i ∈ P. The output is a partial decryption value ki or a special symbol ⊥.

We write ki ← TBE.PartDec(C, SKi).

5. The deterministic final decryption algorithm TBE.Dec takes as input a ci-

phertext C for the pair (P,t) and t partial decryptions {ki}i∈A, corresponding

to receivers in some subset A ⊂ P. The output is a message m or a special

symbol ⊥. We write m̃← TBE.Dec(C, {ki}i∈A, A).

4.3.2.2 The Threshold Broadcast Encryption Based Construction

In the following we consider the problem of constructing a hierarchical and

shared key assignment scheme by using as the building block a threshold

broadcast encryption scheme.

Rationale behind the construction. The idea behind our construction, referred

to in the following as the Threshold Broadcast Encryption Based Construction

(TBEBC), is to compute the private and public information by using the

threshold broadcast encryption scheme. More precisely, the public information

associated to each security class v will contain a public key generated by a

TBE, let PKv be such a key. Given a class v with its relative access structures

A1
v, . . . ,A

mv
v and a qualified set X ∈ Aj

v, for some j ∈ {1 . . .mv}, we denote with

Qv
X the set of classes having an outgoing edge in X. Furthermore, the public

information will contain for each set Qv
X a value given by the encryption of the

92

4. Constructions

secret key kv, through the public keys of all the classes in Qv
X . Subsequently, the

public value relative to the set Qv
X can be decrypted through the collaboration

among all the classes that constitute this set; that is to say, through their private

keys, the classes belonging to Qv
X are allowed to compute the key kv.

In detail, the generation algorithm of our TBEBC takes as inputs a security

parameter 1τ , a multigraph G, and the corresponding set of families of access

structures AG. This algorithm generates a pair of public/private keys (PKv,

SKv), for each class v ∈ V . Subsequently, for each class v, we assign secret

information sv, corresponding to the private key SKv. Moreover, for each class

v, the public key PKv corresponds to the public information pubv. In addition,

for each class v, a secret key kv is generated. Again, for each class v and for each

set Qv
X , kv is encrypted through the public keys of the classes belonging to such a

set. Finally, this encryption is assigned to the public information associated with

the class v.

On the other hand, derivation algorithm of the TBEBC takes as inputs a

security parameter 1τ , a multigraph G, the corresponding set of families of access

structures AG, the class u to be accessed, a set Qu
X , the private information suX

associated to classes in Qu
X and finally, all public information pub. This algorithm

first extracts from pub the value Cu
X , relative to Qu

X . Subsequently, it extracts

from suX the secret values associated to each class belonging to Qu
X . Finally,

through these values, the partial decryptions related to Cu
X are computed, for

being used later to obtain the secret key ku.

Formally, let G = (V,E, φ) be a directed multigraph and let AG be a fam-

ily of access structures associated to classes in V . Let TBE = (TBE.Setup,

TBE.KG, TBE.Enc, TBE.PartDec, TBE.Dec) a threshold broadcast encryp-

tion scheme. The information generation algorithm Gen of the TBEBC is shown

in Algorithm 14, whereas, the relative key derivation algorithm Der is shown in

Algorithm 15.

4.3.2.3 Analysis of the Scheme

In the following we show that the security property of the TBEBC depends on

the security property of the underlying threshold broadcast encryption scheme.

93

4. CONSTRUCTIONS

Algorithm 14 Gen algorithm of the Threshold Broadcast Encryption Based
Construction.

1: procedure Gen(1τ , G,AG)
2: params← TBE.Setup(1τ)
3: for each class v ∈ V do
4: (PKv, SKv)← TBE.KG(params)
5: kv ← {0, 1}τ , sv ← SKv, pubv ← PKv

. Let mv ≥ 1 be an integer

. Let P 1
v , · · · , Pmvv be mv subsets of Iv

. Let A1
i , · · · ,Amv

v be the mv access structures for class v on the sets P 1
v , · · · , Pmvv

6: for j = 1 to mv do
. Let Qv,j1 , · · · , Qv,jz be the collection of qualified sets characterizing the access

structure A
j
v

7: for k = 1 to z do
. Let cardv,jk be the cardinality of the set Qv,jk

8: Cv,jk ← TBE.Enc(Qv,jk , {PK`}`∈Qv,jk , cardv,jk , kv)

9: pubv ← Cv,jk
10: end for
11: end for
12: end for

13: end procedure

Algorithm 15 Der algorithm of the Threshold Broadcast Encryption Based
Construction.

1: procedure Der(1τ , G,AG, Q
u
X , s

u
X
, u, pub)

2: Extract from pub the value CuX associated to the class u
3: for each ` ∈ QuX do
4: Extract from su

X
the secret value s` associated to the class `

5: Share` ← TBE.PartDec(CuX , s`)
6: end for
7: ku ← TBE.Dec(CuX , {Share`}`∈QuX , Q

u
X)

8: end procedure

94

4. Constructions

Before analyzing the security of the TBEBC, we first need to define what we mean

by a secure public-key threshold broadcast encryption scheme. In general, in such

schemes an adversary can corrupt different users in two possible ways: registering

new public keys for such users, or obtaining the secret key matching with the

public key of some previously honest users. The final goal of the adversary is to

obtain some information about a message which has been encrypted for a pair

(P∗, t∗), such that the number of corrupted players in P∗ is less than t∗. For the

ease of exposition, we consider the second kind of user corruption. More precisely,

indistinguishability for TBE schemes is defined by considering the game shown

in Figure 4.2, played by an adversary Aatk against a challenger [12].

U = ∅
params← TBE.Setup(1τ)

Each time Aatk requires the creation of a new user Ri
(PKi, SKi) ← TBE.KG(params)

U← U ∪Ri
(St, P∗, t∗, m0, m1) ← ACorr,O1

atk (·)(find, params, {PKi}i∈U)

β
r←− {0, 1}

C∗ ← TBE.Enc(P∗,{pki}i∈P∗ ,t∗,mβ)

β
′ ← ACorr,O2

atk (·)(guess,C∗,St)

Figure 4.2: Game played by an adversary Aatk.

In both phases of the attack, Aatk can access a corruption oracle Corr. In

particular, Aatk submits to the oracle a user i ∈ U and receives as answer the

relative secret key SKi. Let U
′ ⊂ U be the subset of users that Aatk has corrupted

during the attack. Notice that |P∗∩U′ | < t∗ must hold, otherwise, Aatk knows the

secret key of at least t∗ players in P ∗ and can decrypt C∗ autonomously, obtaining

mβ. In detail, depending on the considered type of attack, Aatk can also access a

decryption oracle for ciphertexts of his choice. As an answer, Aatk receives all the

information that would be broadcasted in a complete decryption process, that

is, all the partial decryption values and the resulting plaintext. More precisely,

if atk is a Chosen Plaintext Attack (CPA), then the adversary cannot access the

decryption oracle at all, i.e., O1 = O2 = ε. If atk is a partial Chosen Ciphertext

Attack (CCA1), then O1 = TBE.PartDec(·) ∪ TBE.Dec(·) and O2 = ε. Finally,

if atk is a full Chosen Ciphertext Attack (CCA2), then O1 = O2=TBE.PartDec(·)

95

4. CONSTRUCTIONS

∪ TBE.Dec(·). Obviously, in the last case, ACCA2 is not allowed to query the

oracle O2 with the challenge ciphertext C∗.

The advantage of Aatk is defined as:

Adv(Aatk) = Pr[β
′
= β] − 1

2
.

A threshold broadcast encryption scheme is said to be ε-indistinguishable

under atk attacks if Adv(Aatk) < ε for any adversary Aatk running in polynomial

time. Daza et al. [31] proposed a construction for threshold broadcast encryption

schemes and showed it to be ε-indistinguishable under different kinds of attacks.

Now we are ready to prove the next theorem.

Theorem 4.3.2. If the public-key threshold broadcast encryption scheme

TBE = (TBE.Setup, TBE.KG, TBE.Enc, TBE.PartDec, TBE.Dec) is ε-

indistinguishable under atk attacks, then the TBEBC is secure in the sense of

IND-ST.

Proof. Assume by contradiction that the TBEBC is not secure in the sense

of IND-ST. Thus, there exists a multigraph G = (V,E, φ) in Γ and a class

u ∈ V for which there exists a polynomial-time adversary STATu,X , whose ad-

vantage AdvIND
STATu,X

(1τ , G,A
G

) is non-negligible. We show how to construct a

polynomial-time adversary Aatk that, by using STATu,X , is able to break the ε-

indistinguishability of the TBE scheme used as a building block in the TBEBC.

In particular, let a be the target class, let Qa be a qualified set for a and

finally, let carda = |Qa|. The first operation performed by the challenger is the

generation of some parameters which will be used later on. The adversary Aatk

chooses two messages, m0 and m1, both having the same length. For each node

v ∈ V , Aatk asks the challenger for the creation of a new user v, along with the

relative pair of public/private keys, denoted by PKv and SKv, respectively. It is

important to remark that only public keys will be in the adversary’s view. For

each class v ∈ V , Aatk assigns the public key PKv to the public information pubv,

besides assigning a secret key kv to such a class. Again, the secret key ka regarding

the target class a is made to correspond to the message m1. Subsequently, Aatk

through its corruption oracle, corrupts a set X of users, such that a is not in

96

4. Constructions

AX . Let sX be the output of such a corruption, constituted by private keys

associated to users in X. This output is then stored in the state variable St.

After those steps, Aatk outputs some information through which it intends to

be challenged. Later, the challenger computes an encryption C∗ of a message

chosen at random between m0 and m1, relative to the qualified set Qa; let mβ be

such a message. The encryption C∗, which represents the challenge for Aatk, is

assigned to the public information for the node a, denoted by puba. By means

of the aforementioned steps, Aatk simulated the full view for the distinguisher

Ba, which is able to attack the security of TBEBC in the sense of IND-ST with

non-negligible advantage. More precisely, Ba is able to distinguish between the

encryption of ka from that of a random value. Finally, Aatk returns the same

output as Ba, denoted by d. Formally, the adversary Aatk is defined as shown in

Algorithm 16.

Algorithm 16 Functioning of the adversary ACorr,O1,O2

atk attacking the TBEBC.

1: procedure ACorr,O1,O2

atk (1τ)
2: params← TBE.Setup(1τ)
3: m0,m1 ← {0, 1}τ
4: for each node v ∈ V do

. Aatk asks the challenger for the creation of a new user v
5: (PKv, SKv)← TBE.KG(params)
6: pubv ← PKv, kv ← {0, 1}τ , ka ← m1

7: end for
. Corruption of a set X of users s.t. a is not in AX . Let sX be the output of

such a corruption
8: St← sX
9: (St,Qa,carda,m0,m1)←ACorr,O1(·)

atk (find, params, {PKv}v∈V)
. The challenger chooses at random a message between m0 and m1 and provides

the adversary with the encryption C∗ of such a message

10: β
r←− {0, 1}

11: C∗ ← TBE.Enc(Qa, {PKj}j∈Qa , carda,mβ)
12: puba ← C∗

. Construction of the missing public values
13: d← Ba(1

τ , G,AG, pub, sX ,m1)

A
Corr,O2(·)
atk (guess, C∗, St) returns the same d as Ba

14: end procedure

Note that if the last input for STATu,X is equal to the key hidden into the

97

4. CONSTRUCTIONS

public value C∗, then the random variable associated to STATu,X ’s view is ex-

actly the same as in experiment ExpIND−1
STATu,X

, whereas, if it is a random string,

such a variable has the same distribution as the one associated to STATu,X ’s

view in experiment ExpIND−0
STATu,X

. Finally, Aatk outputs the same output as

STATu,X (1τ , G,AG, pub, sX , αu). Therefore, it holds that

Adv(Aatk) = AdvIND
STATu,X

(1τ , G,A
G

).

Since AdvIND
STATu,X

(1τ , G,A
G

) is non-negligible, it follows that the adversary Aatk

is able to break the ε-indistinguishability of the threshold broadcast encryption

scheme. Contradiction.

4.3.3 Performance Evaluation

The SEBC provides constant private information and public information linear

in the number of the edges in the multigraph G. More precisely, the public

information can be at most (|E|+ |V |)ck, where k corresponds to the size of the

secret key in this construction and c is a constant depending on the underlying

symmetric encryption scheme. For instance, c is equal to 2 for the so called XOR

construction in [11].

On the other hand, in the SEBC, for any X ⊆ V , the complexity of key

derivation depends on the set A
X

of classes that can be accessed when classes in

X collaborate together. Such a set is constructed by using a Breadth-First-Search

(BFS) on G, starting from the set X. In detail, starting from X, we visit the

multigraph G outgoing from X in all possible directions, adding classes one layer

at a time, according to the access structures associated to the classes. Thus,

besides the computational effort required by the BFS visit, the key derivation

complexity in the SEBC is characterized by a number of decryptions which is

equal to the number of classes corresponding to each layer of cooperation neces-

sary to obtain the encryption key. Finally, in addition to the above number of

decryptions, it is also necessary to employ the Recover algorithm of the perfect

secret sharing scheme for reconstructing the secret key sv.

Regarding the TBEBC, the number of public information associated to a

security class v is given by 1 + z, where z is the number of qualified sets that can

98

4. Constructions

access the class v. On the other hand, the only secret information assigned to

each class v is given by the private key generated by the TBE scheme. Instead,

concerning the complexity of key derivation, in the case of TBEBC the number

of decryptions is equal to the number of classes belonging to a given qualified set

for a class v.

99

Chapter 5

General Conclusions

“There are in fact two things, science and

opinion; the former begets knowledge, the latter

ignorance.”

— Hippocrates of Kos, 460 BC - 370 BC

Nowadays the current network-centric world has given rise to several security

concerns regarding access control management, which ensures that only autho-

rized users are given access to certain resources or tasks. In particular, according

to their respective roles and responsibilities, users are typically organized into

hierarchies composed of several disjoint classes (security classes). A hierarchy

is characterized by the fact that some users may have more access rights than

others, according to a top-down inclusion paradigm following specific hierarchi-

cal dependencies. A user with access rights for a given class is granted access

to objects stored in that class, as well as to all the descendant ones in the hi-

erarchy. The problem of key management for such hierarchies is referred to as

hierarchical key assignment and consists in assigning a key to each class of the

hierarchy, so that the keys for descendant classes can be efficiently obtained from

users belonging to classes at a higher level in the hierarchy.

In Chapter 2 we have explored the relations between all security notions for hi-

erarchical key assignment schemes and, in particular, we have shown that security

with respect to strong key indistinguishability is not stronger than the one with

respect to key indistinguishability. We have also proposed a general construction

yielding a hierarchical key assignment scheme offering security against strong key

100

recovery, given any hierarchical key assignment scheme which guarantees security

against key recovery.

In Chapter 3 we have considered hierarchical key assignment schemes sup-

porting dynamic updates, such as insertions and deletions of classes and relations

between classes, as well as key replacements and user revocations. We have ex-

tended existing security notions for hierarchical key assignment schemes, namely,

security with respect to key indistinguishability and against key recovery, by pro-

viding the adversary with further attack abilities. Then, we have shown how

to construct a novel hierarchical key assignment scheme supporting dynamic up-

dates by using as a building block a symmetric encryption scheme. It is important

to emphasize that this is the first available scheme crafted for non-static environ-

ments, where the adversary is allowed to dynamically update the hierarchy. The

proposed construction is provably secure with respect to key indistinguishability

and requires a single computational assumption. Moreover, it provides efficient

key derivation and updating procedures, while requiring each user to store only

a single private key. For its simplicity, effectiveness and robustness the proposed

scheme may result in a fundamental practice for hierarchical access control ap-

plications in dynamic scenarios.

In Chapter 4 we have proposed an access control model with some innovative

features. In particular, starting from the consideration that in some cases, besides

the conventional hierarchical access, access should be granted to some qualified

sets of users, the above model provides the user with the ability to prevent abuse

of permissions, to define alternative access methods and to allow the separation

of duties. Such a novel access model finds a natural field of application in several

contexts. In general, our model characterizes any scenario where more than one

entity is required to gain a specific authorization. In addition, such a model is

useful in environments where it is necessary to address situations requiring special

permissions. Moreover, in this chapter we provided the first formal definition of

hierarchical and shared key assignment schemes. Again, we proposed an efficient

construction for those schemes, denoted as Shared Encryption Based Construction

(SEBC), which assigns to each class a single private information, whereas, the

public information depends on the number of classes, as well as on the number of

edges in the hierarchy. The security of the proposed construction relies on the ones

101

5. GENERAL CONCLUSIONS

of the underlying encryption and secret sharing schemes. Finally, we proposed

a construction based on public-key threshold broadcast encryption, denoted as

Threshold Broadcast Encryption Based Construction (TBEBC), which assigns to

each class a single private information, whereas, the public information depends

on the number of qualified sets which can access such a class. The security of

the proposed construction relies on the one of the underlying threshold broadcast

encryption scheme.

102

Appendix A

List of Papers Not Covered in

this Thesis

A.1 Papers in Journals

1. Arcangelo Castiglione, Raffaele Pizzolante, Francesco Palmieri, Barbara

Masucci, Bruno Carpentieri, Alfredo De Santis and Aniello Castiglione:

“On-board Format-independent Security of functional Magnetic Resonance

Images”. Accepted for pubblication in ACM Transactions on Embedded

Computing Systems.

2. Arcangelo Castiglione, Paolo DArco, Alfredo De Santis, Rosario Russo:

“Secure group communication schemes for dynamic heterogeneous dis-

tributed computing”. Future Generation Computer Systems. DOI:

10.1016/j.future.2015.11.026

3. Arcangelo Castiglione, Raffaele Pizzolante, Francesco Palmieri, Alfredo

De Santis, Bruno Carpentieri, Aniello Castiglione: “Secure and reliable

data communication in developing regions and rural areas”, Pervasive

and Mobile Computing, Volume 24, December 2015, Pages 117-128, DOI:

10.1016/j.pmcj.2015.04.001

103

A. LIST OF PAPERS NOT COVERED IN THIS THESIS

4. Arcangelo Castiglione, Francesco Palmieri, Ugo Fiore, Aniello Cas-

tiglione, Alfredo De Santis: “Modeling energy-efficient secure communi-

cations in multi-mode wireless mobile devices”. Journal of Computer

and System Sciences, Vol. 81, Issue 8, pp. 1464-1478, 2015, DOI:

10.1016/j.jcss.2014.12.022

5. Pietro Albano, Andrea Bruno, Bruno Carpentieri, Aniello Castiglione, Ar-

cangelo Castiglione, Francesco Palmieri, Raffaele Pizzolante, Kangbin Yim,

Ilsun You: “Secure and Distrbuted Video Surveillance via Portable Device”,

Journal of Ambient Intelligence Humanized Computing, Vol. 5, No. 2, pp.

205-213, 2013, DOI: 10.1007/s12652-013-0181-z

6. Arcangelo Castiglione, Raffaele Pizzolante, Alfredo De Santis, Bruno Car-

pentieri, Aniello Castiglione, Francesco Palmieri: “Cloud-based adaptive

compression and secure management services for 3D healthcare data”, Fu-

ture Generation Computer Systems, Vol. 5, No. 1, pp. 120-134, 2015, DOI:

10.1016/j.future.2014.07.001

A.2 Papers in International Conferences

1. Arcangelo Castiglione, Alfredo De Santis, Barbara Masucci, Francesco

Palmieri, Aniello Castiglione: “On the Relations Between Security No-

tions in Hierarchical Key Assignment Schemes for Dynamic Structures”,

21-st Australasian Conference on Information Security and Privacy (ACISP

2016). Springer.

2. Arcangelo Castiglione, Aniello Castiglione, Alfredo De Santis, Barbara Ma-

succi, Francesco Palmieri, Raffaele Pizzolante (2015, October): “Novel

Insider Threat Techniques: Automation and Generation of Ad Hoc Dig-

ital Evidence”. In Proceedings of the 7-th ACM CCS International

Workshop on Managing Insider Security Threats (pp. 29-39). DOI:

10.1145/2808783.2808789. ACM.

3. Raffaele Pizzolante, Arcangelo Castiglione, Alfredo De Santis, Bruno Car-

104

pentieri, Francesco Palmieri, Aniello Castiglione: “Format-independent

Protection of DNA Microarray Images”, 10-th International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2015, DOI:

10.1109/3PGCIC.2015.138. IEEE.

4. Raffaele Pizzolante, Arcangelo Castiglione, Alfredo De Santis, Bruno Car-

pentieri, Aniello Castiglione: “Reversible Copyright Protection for DNA

Microarray Images”, Security and Privacy in Systems and Communication

Networks (SecureSysComm 2015) workshop, 10-th International Conference

on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2015, DOI:

10.1109/3PGCIC.2015.139. IEEE.

5. Arcangelo Castiglione, Alfredo De Santis, Raffaele Pizzolante, Aniello Cas-

tiglione, Vincenzo Loia, Francesco Palmieri: “On the Protection of fMRI

Images in Multi-domain Environments”. AINA 2015: 476-481, DOI:

10.1109/AINA.2015.224. IEEE.

6. Arcangelo Castiglione, Alfredo De Santis, Aniello Castiglione, Francesco

Palmieri: “An Efficient and Transparent One-Time Authentication Protocol

with Non-interactive Key Scheduling and Update”. AINA 2014: 351-358.

DOI: 10.1109/AINA.2014.45. IEEE.

7. Giovanni Acampora, Arcangelo Castiglione, Autilia Vitiello: “A fuzzy logic

based reputation system for E-markets”. FUZZ-IEEE 2014: 865-872. DOI:

10.1109/FUZZ-IEEE.2014.6891810. IEEE.

8. Raffaele Pizzolante, Arcangelo Castiglione, Bruno Carpentieri, Alfredo De

Santis, Aniello Castiglione: “Protection of Microscopy Images through Dig-

ital Watermarking Techniques”, The 6-th International Conference on In-

telligent Networking and Collaborative Systems, Salerno, Italia, 2014, pp.

65-72, DOI: 10.1109/INCoS.2014.116. IEEE.

9. Arcangelo Castiglione, Raffaele Pizzolante, Alfredo De Santis, Ciriaco

DAmbrosio: “A Collaborative Decision-Support System for Secure Anal-

ysis of Cranial Disorders”, The 6-th International Conference on Intelligent

105

A. LIST OF PAPERS NOT COVERED IN THIS THESIS

Networking and Collaborative Systems, Salerno, Italia, 2014, pp. 65-72,

DOI: 10.1109/INCoS.2014.115. IEEE.

10. Raffaele Pizzolante, Arcangelo Castiglione, Bruno Carpentieri, Alfredo De

Santis: “Parallel Low-Complexity Lossless Coding of Three-Dimensional

Medical Images”, The 17-th International Conference on Network-

Based Information Systems, Salerno, Italia, 2014, pp. 91-98, DOI:

10.1109/NBiS.2014.107. IEEE.

11. Arcangelo Castiglione, Raffaele Pizzolante, Bruno Carpentieri, Alfredo De

Santis: “An Efficient Protocol for Reliable Data Communication on Data-

less Devices”, The 8-th International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing, Birmingham, Inghilterra, 2014,

pp. 517-522, DOI: 10.1109/IMIS.2014.75. IEEE.

12. Arcangelo Castiglione, Ciriaco D’Ambrosio, Alfredo De Santis, Francesco

Palmieri: “Fully Distributed Secure Video Surveillance Via Portable De-

vice with User Awareness”. CD-ARES Workshops 2013: 414-429. DOI:

10.1007/978-3-642-40588-4 29. Springer.

13. Arcangelo Castiglione, Ciriaco D’Ambrosio, Alfredo De Santis, Aniello Cas-

tiglione, Francesco Palmieri: “On Secure Data Management in Health-Care

Environment”. IMIS 2013: 666-671. DOI: 10.1109/IMIS.2013.120. IEEE.

14. Arcangelo Castiglione, Alfredo De Santis, Aniello Castiglione, Francesco

Palmieri, Ugo Fiore: “An Energy-Aware Framework for Reliable and Secure

End-to-End Ubiquitous Data Communications”. INCoS 2013: 157-165.

DOI: 10.1109/INCoS.2013.32. IEEE.

15. Raffaele Pizzolante, Bruno Carpentieri, Arcangelo Castiglione: “A Secure

Low Complexity Approach for Compression and Transmission of 3-D Medi-

cal Images”, The 8-th International Conference On Broadband and Wireless

Computing, Communication and Applications, Compiegne, Francia, 2013,

pp. 387-392, DOI: 10.1109/BWCCA.2013.68. IEEE.

16. Raffaele Pizzolante, Bruno Carpentieri, Aniello Castiglione, Arcangelo Cas-

tiglione, Francesco Palmieri: “Text Compression and Encryption through

106

Smart Devices for Mobile Communication”, The 7-th International Confer-

ence on Innovative Mobile and Internet Services in Ubiquitous Computing,

Taichung, Taiwan, 2013, pp. 672-677, DOI: 10.1109/IMIS.2013.121. IEEE.

17. Pietro Albano, Andrea Bruno, Bruno Carpentieri, Aniello Castiglione, Ar-

cangelo Castiglione, Francesco Palmieri, Raffaele Pizzolante, Ilsun You: “A

Secure Distributed Video Surveillance System Based on Portable Devices”,

The International Cross Domain Conference and Workshop (CD-ARES

2012), Praga, Repubblica Ceca, 2012, pp. 403-415, DOI: 10.1007/978-3-

642-32498-7 30. Springer.

107

References

[1] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The Transitive Reduc-

tion of a Directed Graph. SIAM J. Comput., 1(2):131–137, 1972.

[2] Selim G. Akl and Peter D. Taylor. Cryptographic Solution to a Problem of

Access Control in a Hierarchy. ACM Trans. Comput. Syst., 1(3):239–248,

1983.

[3] Alessandro Aldini and Alessandro Bogliolo. User-Centric Networking.

Springer, 2014.

[4] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken. Dynamic and

efficient key management for access hierarchies. ACM Trans. on Inf. and

System Security, 12(3), 2009.

[5] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. Key Management

for Non-Tree Access Hierarchies. In David F. Ferraiolo and Indrakshi Ray,

editors, SACMAT 2006,11th ACM Symposium on Access Control Models and

Technologies, Lake Tahoe, California, USA, June 7-9, 2006, Proceedings,

pages 11–18. ACM, 2006.

[6] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. Incorporating

Temporal Capabilities in Existing Key Management Schemes. In Joachim

Biskup and Javier Lopez, editors, Computer Security - ESORICS 2007, 12th

European Symposium On Research In Computer Security, Dresden, Ger-

many, September 24-26, 2007, Proceedings, volume 4734 of Lecture Notes in

Computer Science, pages 515–530. Springer, 2007.

108

REFERENCES

[7] G. Ateniese, A. De Santis, A. L. Ferrara, and B. Masucci. Provably-secure

time-bound hierarchical key assignment schemes. J. of Cryptology, 25(2):1–

15, 2012.

[8] Giuseppe Ateniese, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Ma-

succi. Provably-Secure Time-Bound Hierarchical Key Assignment Schemes.

In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, ed-

itors, Proceedings of the 13th ACM Conference on Computer and Communi-

cations Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November

3, 2006, pages 288–297. ACM, 2006.

[9] Giuseppe Ateniese, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Ma-

succi. A Note on Time-Bound Hierarchical Key Assignment Schemes. Inf.

Process. Lett., 113(5-6):151–155, 2013.

[10] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message

authentication. In CRYPTO 1996, LNCS, volume 1109, pages 1–15, 1996.

[11] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-

ment of symmetric encryption. In The 38th IEEE Symp. on Foundations of

Comp. Sci., pages 394–403, 1997.

[12] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption

in a multi-user setting: Security proofs and improvements. In Advances in

Cryptology-EUROCRYPT 2000, pages 259–274. Springer, 2000.

[13] J.C. Benaloh and J. Leichter. Generalized secret sharing and monotone

functions. In CRYPTO 1988, LNCS, volume 403, pages 27–35, 1990.

[14] Elisa Bertino, Barbara Carminati, and Elena Ferrari. A temporal key man-

agement scheme for secure broadcasting of XML documents. In Vijayalak-

shmi Atluri, editor, Proceedings of the 9th ACM Conference on Computer

and Communications Security, CCS 2002, Washington, DC, USA, Novem-

ber 18-22, 2002, pages 31–40. ACM, 2002.

109

REFERENCES

[15] Elisa Bertino, Ning Shang, and Samuel S. Wagstaff Jr. An Efficient Time-

Bound Hierarchical Key Management Scheme for Secure Broadcasting. IEEE

Trans. Dependable Sec. Comput., 5(2):65–70, 2008.

[16] G. R. Blakley. Safeguarding cryptographic keys. In AFIPS Nat. Comp.

Conference, pages 313–317, 1979.

[17] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. Keynote: Trust

management for public-key infrastructures (position paper). In Bruce Chris-

tianson, Bruno Crispo, William S. Harbison, and Michael Roe, editors, Se-

curity Protocols, 6th International Workshop, Cambridge, UK, April 15-17,

1998, Proceedings, volume 1550 of Lecture Notes in Computer Science, pages

59–63. Springer, 1998.

[18] M. Blum and S. Micali. How to generate cryptographically strong sequences

of pseudorandom bits. SIAM J. on Computing, 13:850–864, 1984.

[19] Blundo. C., A. De Santis, and A. Giorgio Gaggia. Probability of shares in

secret sharing schemes. Inf. Proc. Letters, 72:169–175, 1999.

[20] M. Cafaro, R. Civino, and B. Masucci. On the Equivalence of Two Secu-

rity Notions for Hierarchical Key Assignment Schemes in the Unconditional

Setting. IEEE Trans. Dependable Sec. Comput., 2014.

[21] R. M. Capocelli, A. De Santis, L. Gargano, and Vaccaro U. On the size of

shares for secret sharing schemes. J.of Cryptology, 6:157–167, 1993.

[22] Aniello Castiglione, Luigi Catuogno, Aniello Del Sorbo, Ugo Fiore, and

Francesco Palmieri. A secure file sharing service for distributed computing

environments. The Journal of Supercomputing, 67(3):691–710, 2014.

[23] Arcangelo Castiglione, Alfredo De Santis, and Barbara Masucci. Hierarchical

and Shared Key Assignment. In 17th International Conference on Network-

Based Information Systems, NBIS 2014, IEEE, pages 263–270, 2014.

[24] Arcangelo Castiglione, Alfredo De Santis, and Barbara Masucci. Key In-

distinguishability vs. Strong Key Indistinguishability for Hierarchical Key

Assignment Schemes. IEEE Trans. Dependable Sec. Comput., 2015.

110

REFERENCES

[25] Arcangelo Castiglione, Alfredo De Santis, Barbara Masucci, Francesco

Palmieri, Aniello Castiglione, and Xinyi Huang. Cryptographic Hierarchical

Access Control For Dynamic Structures. Manuscript accepted for publication

in IEEE Transactions of Information Forensics and Security, 2016.

[26] Arcangelo Castiglione, Alfredo De Santis, Barbara Masucci, Francesco

Palmieri, Aniello Castiglione, Jin Li, and Xinyi Huang. Hierarchical and

Shared Access Control. IEEE Transactions on Information Forensics and

Security, 11(4):850–865, 2016.

[27] Chin-Chen Chang, Ren-Junn Hwang, and Tzong-Chen Wu. Crypographic

key assignment scheme for access control in a hierarchy. Inf. Syst., 17(3):243–

247, 1992.

[28] Hung-Yu Chien. Efficient Time-Bound Hierarchical Key Assignment Scheme.

IEEE Trans. Knowl. Data Eng., 16(10):1301–1304, 2004.

[29] Paolo D’Arco, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Ma-

succi. Security and Tradeoffs of the Akl-Taylor Scheme and Its Variants.

In Rastislav Královic and Damian Niwinski, editors, Mathematical Foun-

dations of Computer Science 2009, 34th International Symposium, MFCS

2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceed-

ings, volume 5734 of Lecture Notes in Computer Science, pages 247–257.

Springer, 2009.

[30] Paolo D’Arco, Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci.

Variations on a theme by Akl and Taylor: Security and Tradeoffs. Theor.

Comput. Sci., 411(1):213–227, 2010.

[31] Vanesa Daza, Javier Herranz, Paz Morillo, and Carla Ràfols. CCA2-Secure

Threshold Broadcast Encryption with Shorter Ciphertexts. In Willy Susilo,

Joseph K. Liu, and Yi Mu, editors, Provable Security, First International

Conference, ProvSec 2007, Wollongong, Australia, November 1-2, 2007, Pro-

ceedings, volume 4784 of Lecture Notes in Computer Science, pages 35–50.

Springer, 2007.

111

REFERENCES

[32] A. De Santis, A. L. Ferrara, and B. Masucci. Efficient provably-secure hier-

archical key assignment schemes. In MFCS 2007, LNCS, volume 4708, pages

371–382, 2007.

[33] A. De Santis, A. L. Ferrara, and B. Masucci. Efficient provably-secure hierar-

chical key assignment schemes. Theoretical Comp. Sci., 412(41):5684–5699,

2011.

[34] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Cryptographic

Key Assignment Schemes for any Access Control Policy. Information Pro-

cessing Letters, 92(4):199–205, 2004.

[35] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. A new key

assignment scheme for access control in a complete tree hierarchy. In Øyvind

Ytrehus, editor, Coding and Cryptography, International Workshop, WCC

2005, Bergen, Norway, March 14-18, 2005. Revised Selected Papers, volume

3969 of Lecture Notes in Computer Science, pages 202–217. Springer, 2005.

[36] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Enforcing the

Security of a Time-Bound Hierarchical Key Assignment Scheme. Inf. Sci.,

176(12):1684–1694, 2006.

[37] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. New Con-

structions for Provably-Secure Time-Bound Hierarchical Key Assignment

Schemes. In Volkmar Lotz and Bhavani M. Thuraisingham, editors, SAC-

MAT 2007, 12th ACM Symposium on Access Control Models and Technolo-

gies, Sophia Antipolis, France, June 20-22, 2007, Proceedings, pages 133–

138. ACM, 2007.

[38] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. New Con-

structions for Provably-Secure Time-Bound Hierarchical Key Assignment

Schemes. Theor. Comput. Sci., 407(1-3):213–230, 2008.

[39] D. E Denning and M. Smid. Key escrowing today. Comm. Magazine, IEEE,

32(9):58–68, 1994.

112

REFERENCES

[40] Pantelis Frangoudis and George Polyzos. Security and performance chal-

lenges for user-centric wireless networking. Communications Magazine,

IEEE, 52(12):48–55, 2014.

[41] Eduarda S. V. Freire and Kenneth G. Paterson. Provably Secure Key As-

signment Schemes from Factoring. In Udaya Parampalli and Philip Hawkes,

editors, Information Security and Privacy - 16th Australasian Conference,

ACISP 2011, Melbourne, Australia, July 11-13, 2011. Proceedings, volume

6812 of Lecture Notes in Computer Science, pages 292–309. Springer, 2011.

[42] Eduarda S. V. Freire, Kenneth G. Paterson, and Bertram Poettering. Sim-

ple, Efficient and Strongly KI-Secure Hierarchical Key Assignment Schemes.

In Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013 - The Cryp-

tographers’ Track at the RSA Conference 2013, San Francisco,CA, USA,

February 25-March 1, 2013. Proceedings, volume 7779 of Lecture Notes in

Computer Science, pages 101–114. Springer, 2013.

[43] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-

tions. J. of the ACM, 33(4):792–807, 1986.

[44] S. Goldwasser and S. Micali. Probabilistic encryption. J. of Comp. and

System Sci., 28:279–299, 1984.

[45] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature

Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Com-

put., 17(2):281–308, 1988.

[46] Lein Harn and Hung-Yu Lin. A Cryptographic Key Generation Scheme for

Multilevel Data Security. Computers & Security, 9(6):539–546, 1990.

[47] J. Hastad, R. Impagliazzo, and L. A. Levin. A Pseudorandom Generator

from any One-Way Function. SIAM J. on Computing, 28(4):1364–1396,

1999.

[48] Hui-Feng Huang and Chin-Chen Chang. A New Cryptographic Key Assign-

ment Scheme with Time-Constraint Access Control in a Hierarchy. Computer

Standards & Interfaces, 26(3):159–166, 2004.

113

REFERENCES

[49] Min-Shiang Hwang. An improvement of a dynamic cryptographic key as-

signment scheme in a tree hierarchy. Computers & Mathematics with Appli-

cations, 37(3):19–22, 1999.

[50] Min-Shiang Hwang. Cryptanalysis of ycn key assignment scheme in a hier-

archy. Information Processing Letters, 73(3):97–101, 2000.

[51] Giuseppe F Italiano. Finding Paths and Deleting Edges in Directed Acyclic

Graphs. Information Processing Letters, 28(1):5–11, 1988.

[52] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general ac-

cess structure. In Proc. of IEEE Global Telecommunication Conf. Globecom

87, pages 99–102, 1987.

[53] J. Katz and M. Yung. Characterization of Security Notions for Probabilistic

Private-Key Encryption. J. of Cryptology, 19:67–95, 2006.

[54] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2005.

[55] Johannes A La Poutré and Jan van Leeuwen. Maintenance of Transitive

Closures and Transitive Reductions of Graphs. In Graph-theoretic concepts

in computer science, pages 106–120. Springer, 1988.

[56] Derrick H Lehmer. An extended theory of lucas’ functions. Annals of Math-

ematics, pages 419–448, 1930.

[57] Horng-Twu Liaw and Chin-Laung Lei. An optimal algorithm to assign cryp-

tographic keys in a tree structure for access control. BIT Numerical Mathe-

matics, 33(1):46–56, 1993.

[58] H.T. Liaw, S.J. Wang, and C.L. Lei. A Dynamic Cryptographic Key Assign-

ment Scheme in a Tree Structure. Computers & Mathematics with Applica-

tions, 25(6):109 – 114, 1993.

[59] Iuon-Chang Lin, Min-Shiang Hwang, and Chin-Chen Chang. A New Key

Assignment Scheme for Enforcing Complicated Access Control Policies in

Hierarchy. Future Generation Computer Systems, 19(4):457 – 462, 2003.

114

REFERENCES

Selected papers from the IEEE/ACM International Symposium on Cluster

Computing and the Grid, Berlin-Brandenburg Academy of Sciences and Hu-

manities, Berlin, Germany, 21-24 May 2002.

[60] Stephen J. MacKinnon, Peter D. Taylor, Henk Meijer, and Selim G. Akl. An

Optimal Algorithm for Assigning Cryptographic Keys to Control Access in

a Hierarchy. IEEE Trans. Computers, 34(9):797–802, 1985.

[61] Hwang Min-Shiang. A Cryptographic Key Assignment Scheme in a Hierarchy

for Access Control. Math. Comput. Model., 26(2):27–31, July 1997.

[62] M. Naor and O. Reingold. Number-theoretic constructions of efficient

pseudo-random functions. J. of the ACM, 51(2):231–262, 2004.

[63] L. Qiu, Y. Zhang, F. Wang, M. Kyung, and H. R. Mahajan. Trusted com-

puter system evaluation criteria. In National Computer Security Center.

Citeseer, 1985.

[64] Ravi S. Sandhu. Cryptographic Implementation of a Tree Hierarchy for

Access Control. Inf. Process. Lett., 27(2):95–98, 1988.

[65] A. Shamir. How to share a secret. C. ACM, 22(11):612–613, 1979.

[66] Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. Efficient hierarchical

key generation and key diffusion for sensor networks. In Proceedings of the

Second Annual IEEE Communications Society Conference on Sensor, Mesh

and Ad Hoc Communications and Networks, SECON 2005, September 26-29,

2005, Santa Clara, CA, USA, pages 76–84. IEEE, 2005.

[67] D. R. Stinson. An explication of secret sharing schemes. Design, Codes and

Cryptography, 2:357–390, 1992.

[68] Qiang Tang and Chris J. Mitchell. Comments On a Cryptographic Key

Assignment Scheme. Computer Standards & Interfaces, 27(3):323–326, 2005.

[69] B. Toxen. The NSA and Snowden: securing the all-seeing eye. Comm. of

the ACM, 57(5):44–51, 2014.

115

REFERENCES

[70] Wen-Guey Tzeng. A Time-Bound Cryptographic Key Assignment Scheme

for Access Control in a Hierarchy. IEEE Trans. Knowl. Data Eng., 14(1):182–

188, 2002.

[71] Xiaoshuang Xing, Tao Jing, Wei Zhou, Xiuzhen Cheng, Yan Huo, and Hang

Liu. Routing in User-Centric Networks. Communications Magazine, IEEE,

52(9):44–51, 2014.

[72] J. Yeh, R. Chow, and R. Newman. A Key Assignment for Enforcing Ac-

cess Control Policy Exceptions. In Proc. of the International Symposium on

Internet Technology, pages 54–59, 1998.

[73] Xun Yi and Yiming Ye. Security of Tzeng’s Time-Bound Key Assignment

Scheme for Access Control in a Hierarchy. IEEE Trans. Knowl. Data Eng.,

15(4):1054–1055, 2003.

116

