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Trefoil Factor 1 (TFF1) is a small secreted protein, belonging to the 

trefoil factor family, characterized by a conserved ―trefoil domain‖ containing 

six cysteine residues that form a three loop disulfide structure. It is expressed 

in the gastrointestinal tract, where plays an essential role in mucosal 

protection through mucous-barrier formation, and also in mucosal repair 

through promotion of restitution after injury. In recent years clinical and 

experimental studies have shown an active function of the trefoil peptides in 

the genesis of neoplastic processes. TFF1 is mainly associated with breast 

cancer and gastric cancer (GC), but have been described changes in its 

expression levels also in pancreatic, lung, prostate and colorectal cancer. 

TFF1 had been described as a tumour suppressor gene in gastric cancer, but 

it is markedly elevated in gastric mucosa with atypical hyperplasia, diffuse-tye 

gastric cancer and with lymph node metastasis. However, the distinct 

signaling pathways have not been fully elucidated, nor have definitive 

functional receptors for trefoil proteins been identified. 

In this PhD project, experiments were performed to understand the 

role of TFF1 in human GC development with particular attention to invasion 

and epithelial-mesenchimal transition (EMT) processes. Previously it has 

been demonstrated that TFF1 selectively  binds copper ions, which influence 

homodimer formation and its biological activity. Here, by using TFF1 

recombinant protein on AGS cell line and a TFF1 over-expressing clone 

(AGS-AC1), we demonstrated that TFF1 stimulated invasion of GC cell lines. 

The pro-invasive activity of TFF1 was strictly regulated by copper and was 

associated with a greater MMP-2 activity. We also reported that TFF1 was 

implicated in the occurrence of EMT, not only in the GC models but also in a 

prostate cancer cell line, in a same manner with a reduction of epithelial 

markers such as E-cadherin and cytokeratins 8 and 18 and an increase of  

mesenchymal ones such as vimentin. Additionally, in hypoxic condition, a 

significant increase of TFF1 expression was associated with hypoxia-related 

mesenchymal/metastatic process.  

Furthermore, TFF1 regulated its own expression, in normoxic as 

hypoxic condition, with an autoinduction mechanism and promoting DNA 

demethylation.  

Finally, we investigated the relationship between TFF1 and the N-

formyl peptide receptors (FPR1, FPR2 and FPR3), involved in innate 

immunity, inflammation and cancer, including GC. We found that recombinant 

TFF1 protein in AGS cells induced FPR expression and FPRs influenced pro-

invasive activity of TFF1. 
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BCS: Bathocuproine sulfate 
Boc: t-Boc-Met-Leu-Phe 
bp: base pair 
CCO: cytochrome c oxidase  

CCS: copper chaperones  

CK: cytokeratin 

CoCl2: cobalt chloride 

COX-2: Cyclooxygenase-2 

Ctr1: copper transporter 1 

Cu: copper 

CuCl2: copper(II) chloride 

Cu,Zn-SOD: Cu,Zn-superoxide dismutase  

DMT1: Divalent Metal Transporter 1  

Dox: doxycycline  

ECM: Extracellular Matrix 

EGF: Epidermal Growth Factor 

EGFR: Epidermal Growth Factor Receptor 

EMT: Epithelial to Mesenchymal Transition  

ERE. Estrogen-responsive Element  

ERK: Extracellular signal-Regulated Protein 

FALS: familial amyotropic lateral sclerosis  

FAK: Focal Adhesion Kinase 

FBS: Fetal Bovine Serum 

FGF: Fibroblast Growth Factor 

fMLP: formylMethionilLeucilPhenylalanine 

FPR: Formyl Peptide Receptor 

GC: gastric cancer 

GI: gastrointestinal  

GKN2: Gastrokine 2  

HIF1α: Hypoxia Induced Factor 1 α 

HSP70: Heat-Shock Protein 70  

HRM: High Resolution Melting  

LOH: loss of heterozygosity  

LOX: Lysyl Oxidase 

MEMO: mediator of ErbB2-driven cell motility 

MMP: Membrane Metallo-Proteases 

NF-kB: Nuclear Factor kappa-light-chain-enhancer of activated B cells 

PBS: Phosphate Buffer Saline 

PC: Prostate cancer  
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PI3K: Phosphoinositide 3-kinase  

Rho: Ras homologue 

ROS: reactive oxygen species  

SD: standard deviation 

SPARC: secreted protein acidic and rich in cysteine  

TGFβ: Trasforming Growth Factor β 

TPA: 12-O-tetradecanoylphorbol 13-acetate  

TRE TPA-response element  

VEFG: Vascular Endothelial Growth Factor 

WT: Wild Type  

ZEB: Zinc finger E-box binding homeobox      
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CHAPTER 1 

 

TREFOIL FACTORS FAMILY 

 

1.1  Introduction 

The Trefoil Factors Family (TFF) is a group of three small human 

proteins: gastric peptide TFF1 (pS2), spasmolytic peptide TFF2 (SP) and 

intestinal trefoil factor TFF3 (ITF). The TFF factors are resistant to the 

proteases abundantly secreted in the gastrointestinal tract and are involved in 

the protection and repair processes of the mucous membranes. They share a 

structural motif, the ―trefoil domain" or P-domain, characterized by a specific 

pattern of disulphide bonds that create the characteristic three-leaved shape, 

giving the name to the group [1]. The standardized nomenclature TFF1-3 was 

introduced at a Conférence Philippe Laudat in 1996 and has replaced their 

former, often functionally misleading names, which referred to the setting 

where they were originally discovered [2]. 

TFF2, formerly known as spasmolytic polypeptide, was the first TFF to 

be isolated in the early 1980s in the porcine pancreas during the purification 

of insulin [3]. Human TFF2 was characterized later [4, 5]. 

In the same years the cloning of an estrogen-regulated gene from the 

MCF-7 human breast cancer cell line brought to the identification of pS2, now 

known as TFF1 [6]. 

TFF3, previously named Iintestinal trefoil factor/ITF, was cloned from 

rat intestinal epithelial cells in 1991 [7] and in 1993 was reported the human 

cDNA sequence [8, 9]. 

The TFFs are evolutionarily highly conserved proteins, showing more 

than 70% amino acid identity among the rodent and human TFFs (fig. 1.1) 

[10, 11]. The sequence identity and the peculiar conserved structure have 

corroborated the hypothesis of a common ancestor gene [9, 10, 12]. 
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Figure 1.1: Sequence alignment of mammalian trefoil factors. Residues completely 

conserved between the orthologues are shown in green and those with substitutions 

are shown in purple. (From Thim L. and May F. E. B., 2005.) 

 

 

1.2 Structural properties: the trefoil domain 

Trefoil peptides share common structural features. They are 

synthesised with a signal secretion sequence of 21-27 amino acid residues 

that is removed by proteolysis during passage through the endoplasmic 

reticulum. 

The characteristic three-leaved structure of the TFF domain was first 

detected by Thim [1] and it consists of a sequence of about 40 amino acids   

within which 6 conserved cysteine residues form disulphide bridges in a 1-5, 

2-4, 3-6 configuration [1, 13, 14]. TFF1 and TFF3 consist respectively of 60 

and 59 residues, and both have a single trefoil domain of 42 amino acid 

residues. Instead, TFF2 consists of 106 amino acid residues and two trefoil 

domains, respectively of 43 and 42 residues joined by a small interface 

(Figure 1.2).  

 

 
 

Figure 1.2: Sequence alignment of human trefoil factors. Residues completely 

conserved between the orthologues are shown in green and those with substitutions 

are shown in purple. (From Thim L. and May F. E. B., 2005.) 
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The secondary and tertiary structures were solved by X-ray 

crystallography and NMR studies confirming the hypothesis, previously 

postulated, of the three-loop structure (Figure 1.3) [1, 15-17].  

 

 
 

Figure 1.3: Secondary structures of human trefoil factors. Cysteine residues are 

shown in red  (From Mathelin C., Tomasetto C., Rio M. C., 2005.) 

 

 

Through these studies it was also highlighted that the domain, in 

addition to the six cysteines, has common structural elements due to the 

presence of other conserved residues: the arginine residue between the first 

two cysteines, the sequence around the second cysteine, N/DCGF/YP-V/IT/S, 

the phenylalanine after the third and fourth cysteines, and the VPWCF-P 

sequence around the sixth cysteine at the C-terminal end of the trefoil domain 

(fig. 1.2). These amino acids probably play a fundamental role in maintaining 

the geometry, the stability and functional properties of all trefoil domains. 

All the trefoil domains present a short α-helix that includes the third 

cysteine residue [16, 18, 19] and an irregular two-stranded antiparallel β-

sheet, the first strand of which is separated from the a-helix by one residue. 

The two strand comprise respectively the CCF motif and the WCF-P motif [16, 

18, 20, 21] (fig. 1.2). 

The three disulphide bonds of the trefoil domain create a stable core 

with the three loops stacked together, the third of which positioned between 

the first and second loops. In this way it forms a compact structure that gives 

to the peptides the resistance to proteases as trypsin and chymotrypsin and 

to acids and thermal degradation [3]. 
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1.3 Intra- and intermolecular bonds formation 

TFF1 and TFF3 contain also a seventh cysteine residue near the 

carboxy-terminus (Cys58 for TFF1 and Cys57 for TFF3), which confers the 

possibility to form dimers (fig. 1.4) [22-25]. TFF2, instead, has two extra-trefoil 

domain cysteine residues, Cys5 and Cys104 that form an intermolecular 

disulphide bond [1], so it is considered a natural dimer (fig. 1.4).  

 

 
Figure 1.4: Structures of human TFF1 dimer, porcine TFF2 and human TFF3 dimer. 

The structures were determined by NMR spectroscopy (TFF1 and 3) or by X-ray 

crystallography (TFF2). (From Kjellev S., 2009) 

 

 

Three different molecular forms of TFF1 were described in normal 

human gastric mucosa: TFF1 monomer (6.5 kDa), TFF1 homodimer and 

TFF1 heterodimer, a 25-kDa complex [26, 27]. The homodimer is composed 

of two monomers linked by a disulphide bond between Cys58. The two 

monomeric units in the human TFF1 dimer are not fixed, but they showed a 

mixture of different conformations [24].  

 Furthermore, in the homodimer there‘s a strongly acidic region at the 

centre of the flexible peptide linker, due to the approaching of two regions 

containing one aspartic acid and four glutamic acid residues at the carboxy-

terminal end of each monomer. It was postulated that this region of localised 

charge contributes to the constraints on the steric properties of the peptide 

near the disulphide junction [14]. Many experiments demonstrated that TFF1 

homodimer has more significant biologic activity than the monomer [26]. 

The TFF1 heterodimer is the major form present in gastric mucosa 

and the TFF1 protein partner has been identified as Gastrokine 2 (GKN2), 

also called trefoil factor interactions(z) 1 (TFIZ1), GDDR or Blottin, a secreted 

protein that contains a brichos domain and homology with pulmonary  

surfactant-associated protein C precursor [28, 29]. The TFF1 heterodimer  
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comprises one molecule each of TFF1 and GKN2, stabilised by a disulphide 

bond between the two proteins [28, 30]. TFF1 compound may have a greater 

biological activity than monomer and dimer [27]. 

Also TFF3 forms homodimers as TFF1 but, although they are very 

similar, exhibit significant differences that contribute to their biological 

activities and specificity [31]. In detail, TFF3 homodimer has a more compact 

structure than TFF1 homodimer.  

 

 

1.4 Distribution and expression of TFFs 

The main site of expression of TFFs is the gastrointestinal (GI) tract, 

where they show a cell-specific pattern of expression in distinct, often 

complementary locations. TFF1 is abundantly expressed in the stomach, in 

the superficial and foveolar epithelium [32-36]. It is also present in upper 

ducts and surface cells of Brunner‘s glands in the duodenum [37]. Generally 

the small intestine does not express TFF1, although some staining has been 

described on the tips of villi in the ileum and jejunum [38]. In the normal large 

intestine, TFF1 expression has been detected in goblet cells, near the surface 

of crypts [39] and in gall bladder has been reported some patchy epithelial 

expression [40]. Furthermore a weak TFF1 expression has been detected in 

salivary glands [33].  

Also TFF2 is mainly expressed in the stomach, in particular in mucous 

glands of body and antrum [32, 36, 41]. In duodenum, TFF2 is present in 

Brunner‘s glands acini and distal ducts [38].  

The major site of expression for TFF3 is the intestine, in particular in 

goblet cells throughout the intestine and in gland acini and distal ducts of 

Brunner‘s glands [42, 43].  

 

 
 

Figure 1.5: Table with the main sites of expression of human trefoil factors in normal 

physiological conditions. (Wong W. M., Poulsom R. and Wright N. A., 1999) 
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TFFs are essentially found in tissues containing mucus-secreting cells; 

they are co-packaged in the Golgi apparatus into mucus granules and 

secreted with mucins into the protective layer covering the mucosa, 

suggesting that their functions may be related to that of mucins. Mucins are a 

family of high molecular weight, heavily glycosylated proteins produced by 

epithelial tissues. TFFs expression is closely associated with gastrointestinal 

mucins: TFF1 is co-localised with MUC5AC, TFF2 is associated with MUC6 

and TFF3 is co-expressed with MUC2 [44]. 

Given their nature of secreted proteins, TFFs have been detected in 

several biological fluids such as gastric juice [45, 46], intestinal contents [47], 

saliva [48] and also blood and urine [49, 50]. 

Outside the GI tract, TFFs expression have been described in 

respiratory and ocular tissues [51-55], prostate [52] and female reproductive 

organs as well as in milk [52, 56, 57], lymphoid tissues [58] and brain [58, 59]. 

 

 

1.5 TFFs functions 

1.5.1 Mucosal defense 

The gastrointestinal tract is constantly threatened by potentially 

harmful agents as acid, bacteria, toxins. The gastrointestinal epithelium forms 

a physical barrier against these agents and it is essential to ensure the 

continuity of the epithelial layer. Gastric mucosal barrier is a multilayer 

system, which include a preepithelial mucus-bicarbonate barrier, an epithelial 

barrier (surface epithelial cells connected by tight junctions), and a 

subepithelial component including blood flow and nerves [60, 61]. The mucus-

bicarbonate barrier is the first line of mucosal defense, composed of mucus 

gel, bicarbonate and surfactant phospholipids [62, 63].  

The gastric mucus is a viscous gel that coats the entire gastric 

mucosa, produced by and secreted from the surface epithelial cells and 

formed by 95% water and 5% mucins. Various studies suggest that TFFs 

influence mucus gel properties. Trefoil peptides are an integral part of the 

intracellular mucus secretory vesicles; they are coexpressed and strongly 

interact with mucins, enhancing the protective properties of the mucosal 

barrier (fig. 1.6) [64, 65]. It is supposed that TFFs may cross-link with mucins 

[66]. Furthermore, they may affect the intracellular assembly and/or 

packaging of mucins, regulating their secretion and function [67]. 
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Figure 1.6: The gastric barrier. A multi-tiered gastric barrier combines pre-epithelial, 

epithelial and post epithelial elements. (From Doron Boltin and Yaron Niv, 2014) 

 

1.5.2 Healing of mucosal damage 

Trefoil proteins appear to be a central player in maintaining mucosal 

integrity of the GI tract also through regulation of two important phases of the 

process of epithelium repair: restitution and regeneration [67]. Restitution is 

the process of re-epithelialization of superficial wounds after injury, as a result 

of cell migration of epithelial cells from within the gastric crypts to damaged 

areas. This process is rapid and, in vivo, can be accomplished within 15-60 

min. Regeneration, instead, involves proliferation and differentiation of 

epithelial cells, responsible for self-renewal within days to months. In case of 

more extensive lesions, restitution is supplemented by proliferation because 

additional cells are needed to span the larger damage area, and both 

epithelial and nonepithelial cells are involved in the tissue remodeling. 

After mucosal injury, there is a marked increase of TFFs expression in 

the region adiacent to the lesion. The induction of expression occurs as early 

as 30 minutes and persist for as long as 10 days after damage [67-69]. During 

restitution, trefoil factors act as motogens, stimulating cell migration by 

disruption of cell-cell and cell-substrate adhesion. How this is achieved is not 

clearly understood and much remains unknown on the underlying mechanism 

of TFF-driven restitution.  
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1.5.2.1 Cell migration 

 

Cell migration involves co-ordinated and dynamic changes in the actin 

cytoskeleton and cell adhesion, with a continuous assembly and disassembly 

of cell–ECM or cell–cell contacts and constant remodelling of the associated 

actin cytoskeleton. Adherens junctions initiate and maintain cell-cell contacts, 

composed of the transmembrane protein E-cadherin and intracellular 

components, p120-catenin, β-catenin and α-catenin. Disruption of adherens 

junctions requires loss of E-cadherin/β-catenin complex with β-catenin 

tyrosine phosphorylation. TFFs appear to induce β-catenin phosphorylation, 

with consequent dowregulation of adhesion molecules as E-cadherin [67, 70-

72]. The cell migration requires also the dissociation of cell-substrate 

contacts. Focal adhesions are sites where integrin and proteoglycan mediated 

adhesion links to the actin cytoskeleton. TFFs are capable of induce 

dissociation of the focal adhesion complex by phosphorylation of focal 

adhesion kinase (FAK), resulting in the disruption of focal adhesions between 

a cell and its substratum [67].   

Furthermore, TFFs work synergistically with other growth factors and 

epithelial cytokines implicated in signalling pathways that promote mucosal 

healing. In particular, also transforming growth factor-β (TGF-β) is a potent 

activator of chemotaxis and the EGF receptor (EGF-R) is associated with E-

cadherin/β-catenin complex: TFFs seem to work independently from TFG-β 

and in synergy with EGF on cell migration [73, 74].  

Rho-family GTPases regulate cytoskeletal changes and are 

considered to be initiating signals for cell migration. The GTP-binding proteins 

Rho, Rac and Cdc42 are known to regulate actin organization [75]. Several 

studies have shown that trefoil peptides may activate Rho-family members 

(fig. 1.7) [76]. 

 

 

1.5.2.2 Cell survival signaling 

 

In the process of epithelial restitution, the epithelial cells, having to 

migrate to cover the denuded damaged area, are vulnerable to apoptosis or 

anoikis, which is the form of apoptosis that is induced by anchorage-

dependent cells detaching from the surrounding extracellular matrix. 

Therefore, anti-apoptotic properties are very important to inhibit anoikis and 

promote cell survival. Trefoil factors have been found to have anti-apoptotic 

effects in several cell lines. In particular, TFF1 was found to protect cells from 

three different types of induced apoptosis by partially or completely blocking 
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caspase-3, -6, -8 and -9 activities [77]. TFFs also regulate cell survival via 

ERK/MAPK, PI3K/Akt, phospholipase C (PLC)/PKC, β-catenin, and EGF 

signaling pathways (fig. 1.7) [78-82]. It has been shown that TFF3 has 

antianoikic effects on intestinal epithelial cells via activation of NF-kB [83] and 

TFF3-deficient mice have increased numbers of apoptotic cells in the colonic 

crypts [84].  

 

 
Figure 1.7: Candidate TFF pathways in epithelial repair. TFF peptides facilitate GI 

epithelial restitution by stimulating cell migration and inhibiting apoptosis of 

the migrating cells. (From Aihara E., Engevik K. A., and 

Montrose M. H., 2016) 

 

 

1.5.2.3 Pro-angiogenic activity 

 

Repair of mucosal injury also requires angiogenesis, the formation of 

new microvessels, when deeper lesions in the GI tract occur. 

Angiogenesis facilitates nutrient and oxygen delivery to the injured 

area, thus allowing fibroblasts proliferation. Vascular endothelial growth factor 

(VEGF) and fibroblast growth factor (FGF) are both strong angiogenic factors 

for vascular endothelial cells. In vivo and in vitro experiments demonstrated 
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that TFFs have proangiogenic properties and induce responses comparable 

to those observed with the classical angiogenic factors [85]. Angiogenesis 

induced by TFF1 was demonstrated to be dependent on both 

cyclooxygenase-2 (COX-2) and EGF-R signaling [85]. 

 

 

1.5.2.4 Immune modulation 

  

Epithelial damage with disruption of the mucosal barrier also creates 

an inflammatory status. Thus, efficient repair is important in re-establishing 

homeostasis and suppressing mucosal inflammation. The inflammatory 

response is associated with an early recruitment of neutrophils that secrete 

antimicrobial agents such as proteases, chemokines, and cytokines, which 

also control the subsequent recruitment of monocytes that differentiate into 

macrophages in the wound bed. Endogenous proresolving proteins/peptides 

and lipid mediators released by a number of cell types orchestrate the 

resolution of inflammation and wound repair.  

Many studies showed that TFFs may have direct effects on the inflammatory 

response [86]. TFFs are regulated by both pro-inflammatory [87] and anti-

inflammatory cytokine expression [88–90], and have been postulated to 

participate in the mucosal immune response by stimulating immunocyte 

migration [91]. 
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CHAPTER 2 

 

TFF1 AND CANCER  

 

2.1 Introduction 

In recent years clinical and experimental studies showed that TFFs, in 

addition to the protective function in the gastrointestinal tract, have also 

crucial roles in cancer development and progression. Aberrant expression of 

TFFs genes and proteins in humans have been reported for a wide range of 

solid tumours. TFF1 is mainly associated with gastric cancer and breast 

cancer, but changes in its expression levels have also been described in 

pancreatic, lung, prostate and colorectal cancer. However, the role of trefoil 

proteins in cancer has not been fully understood.  

Reading the current literature, a dual role arises for TFFs, presented 

as tumor suppressor genes and tumor progression factors. This apparent 

contradiction in their mode of action in the tumor environment comes from 

different evidence according also to the type of cancer considered. Regarding 

TFF1, in some malignant processes a downregulation of its expression is 

described because of deletions, mutations or methylation of its gene. In 

others, an induction of TFF1 expression is described, with subsequent 

stimulation of cell survival, migration and invasion processes, promoting 

tumor dissemination. 

 

 

2.2 TFF1 in gastric cancer 

2.2.1 Gastric cancer 

Gastric cancer (GC) is the third most common cause of cancer-related 

death in the world [92]. Genetic basis, environmental and nutritional factors 

have been implicated in the development of the disease: diet, tobacco and 

also Helicobacter pylori infection have been associated with increased risk of 

developing gastric cancer. 

Gastric adenocarcinomas are classified according to prognosis into 

two main groups: early and advanced. Histologically the most frequently used 

system is the Lauren classification, which recognizes two main histologic 

subtypes: intestinal type and diffuse type (fig. 1.8) [93]. The intestinal subtype 

is the most frequently diagnosed in older individuals, males more than 
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females, strongly associated with H. pylori infection and is characterized by 

malignant epithelial cells that show cohesiveness and glandular differentiation 

infiltrating the stroma [94]. The diffuse subtype is more aggressive, generally 

diagnosed in younger patients and is more frequently associated with loss of 

E-cadherin expression [94, 95]. This tumor is composed of cells with little 

cohesiveness that tend to invade the gastric wall and adjacent structures. A 

variant of the diffuse type is the signet ring cell adenocarcinoma, 

predominantly composed (>50%) of signet ring cells characterized by 

abundant cytoplasmic mucin that displaces the nucleus to the periphery [96]. 

 

 
Figure 1.8: Hystologically classification of gastric cancer. A, Intestinal type 

carcinoma. B, diffuse-type carcinoma composed of signet-ring cells showing foamy 

cytoplasm and an eccentrically located nucleus.  

 

 

2.2.2 TFF1 as tumor suppressor in GC 

The first evidence of a role of TFF1 in the neoplastic processes came 

from the engineering of the TFF1-/- mouse, which showed marked hyperplasia 

and dysplasia, antral/pylorus-specific adenoma and, in 30% of cases, 

multifocal intraepithelial or intramucosal carcinoma [97]. Furthermore, despite 

the high sequence homology and structural similarity, the TFF2 and TFF3 

knock-out mice don‘t develop cancer, indicating that these peptides do not 

have the characteristics of tumor suppressors [98, 99]. These data have 

demonstrated the importance of TFF1 for normal differentiation of 

antral/pylorus gastric mucosa and its role as tumor-soppressor in the gastric 

tissue.  

During the years, numerous studies have reported that reduced TFF1 

expression levels are associated with most gastric cancers (about 50%) when 

compared with the surrounding normal mucosa [34, 100-103]. Loss of TFF1 
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expression has been associated with the intestinal and atypical histological 

sub-types and with loss of differentiation [34-36, 41, 100, 104-106]. The low 

expression or absence of TFF1 in GC is due to genetic alterations as gene 

mutations and loss of heterozygosity (LOH). In 16% of gastric cancers from 

Korean population were found somatic missense mutations in exons 1 and 2 

of TFF1 [107], but no mutations of TFF1 have been identified in a study on 90 

European patients with GC [108]. Carvalho et al [108] described loss of 

heterozygosity and promoter methylation, but not mutations of TFF1.  

Epigenetic changes are another important mechanism of regulation of 

TFF1 expression in human gastric cells. In N-methyl-N-nitrosourea-induced 

gastric carcinogenesis mouse model TFF1 silencing is achieved by histone 

modifications, as H3K9 methylation and H3 deacetylation at its promoter 

[109]. The hypermethylation status of the promoter CpGs, down-regulates 

TFF1 levels and appeared to be correlated with tumor formation at early 

stages of gastric carcinogenesis [102, 108, 110]. Feng and coworkers found 

methylated sites among three CmCGG (cytosine-methylcytosine-guanine-

guanine) sequences: −354, −84 and −2 nt, particularly in −354 [111]. 

 

 

2.2.3 TFF1 as oncogenic factor in GC 

In the same way, several studies highlight cancer-promoting actions of 

TFF1. Immunohistochemically TFF1 is detected in 66.7% of gastric carcinoma 

cases and a significant association between immunohistochemical TFF1 

expression and diffuse-type GC has been revealed [36]. TFF1 mRNA has 

been detected in hyperplastic polyps, in 50% of human gastric cancers and in 

three of seven commonly studied gastric cancer cell lines [103]. TFF1 protein 

is highly expressed in gastric mucosa with atypical hyperplasia, while it is not 

observed in poorly differentiated or intestinal type GC [112, 113]. 

Furthermore, the protein is preferentially expressed in early-onset gastric 

carcinoma as opposed to conventional gastric carcinoma [113, 114]. In 

addition, TFF1 protein expression is increased in gastric carcinoma with nodal 

metastases compared with carcinomas lacking such metastases [103].  

TFF1 was also one of two genes used in a PCR assay to predict 

lymph node micrometastasis in gastric cancer [115]. TFF1 mRNA alone was 

found to be a useful marker for detection of lymph node micrometastasis 

[115]. It has been also reported that TFF1 mRNA is significantly increased in 

scirrhous gastric cancer cells with greater metastatic potential compared with 

their less metastatic counterpart [116]. Increased levels of TFF1 protein seem 
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to independently predict worse outcome, both overall and in resectable gastric 

cancer [117]. 

 

2.3 TFF1 in breast cancer 

Breast cancer is the most common female cancer. Two of the trefoil 

proteins, TFF1 and TFF3, are frequently expressed at high levels in breast 

cancer [104, 118-120]. TFF1 was originally discovered as an oestrogen-

inducible gene in a hormone-dependent breast cancer cell line, MCF-7 [6]. 

The peptide was found overexpressed in approximately 50% of primary 

breast carcinomas [119, 121], mainly in those positive for estrogen receptor 

alpha (ERα+). TFF1 expression is regulated by oestrogen, epidermal growth 

factor (EGF), tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) 

and the proto-oncogenes c-Ha-ras and c-jun.23, through the activation of the 

gene promoter containing an estrogen-response element (ERE) and a TPA-

response element (TRE) [122]. Also TPA and EGF significantly upregulate 

TFF1 gene expression in MCF-7 cells and act in synergy with oestrogen 

[123]. 

Numerous studies evaluated the potential clinical significance of TFF1 

in breast cancer. Considering that only low levels of the peptide have been 

found in normal breast tissue [119], it has been proposed that its 

overexpression in breast cancer contribute to tumor aggressiveness. TFF1 

appears to work as oncogene, stimulating cell proliferation [17], migration, 

anchorage-independent growth, invasion and/or angiogenesis processes of 

breast cancer cells [124-126]. Furthermore, TFF1 is also an informative 

marker for the detection of micrometastases [127], being expressed in 

metastases derived from TFF1-positive primary tumors [128] and strongly 

correlated with breast cancer bone metastases [129].  

Despite numerous studies, TFF1 physiopathological functions remain 

controversial. Numerous data have also suggested a beneficial role of TFF1 

expression in human breast cancers. Transgenic mice expressing TFF1 in 

their mammary glands do not show increased cell proliferation or tumor 

formation [130]. Moreover, it is considered a potent marker of hormone-

dependent breast tumors and of hormone-therapy responsiveness [131-135].  
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2.4 TFF1 in prostate cancer 

Prostate cancer (PC) is a major cause of cancer morbidity and 

mortality in the western world. TFF1 mRNA and protein are differentially 

expressed between human benign and malignant tissues, with 92% of 

prostate cancers positive for TFF1 [136, 137]. Bonkhoff and coworkers [136] 

showed that TFF1, in prostate cancer, is closely associated with premalignant 

changes and neuroendocrine differentiation. Additionally, plasma levels of 

TFF1 are increased in patients with advanced prostate cancer and the highest 

concentrations are found in patients with bone metastases [138]. It has been 

found that promoter hypomethylation of TFF1 is closely associated with 

increased expression of the gene [139]. Furthermore, forced expression of 

TFF1 in prostate cancer cells revealed the capability of this protein to promote 

migration and invasion in vitro and a mesenchymal phenotype through down-

regulation and cellular re-distribution of the epithelial marker E-Cadherin 

[140]. 

 

 

2.5 TFF1 in colon cancer 

TFF1 is absent in normal colon mucosa but is induced at high levels in 

Crohn disease and colorectal cancers [80]. 

TFF1 protein has found to be expressed in 89% of colorectal 

carcinomas [141] and in 60% of primary colorectal carcinomas [142]. Another 

study reported that TFF1 protein expression in colorectal carcinoma is 

correlated with heat-shock protein 70 (HSP70) expression and also with 

incomplete surgical resection of the tumour, suggesting that it may be related 

to invasive tumor behavior and may also play a role in tumor recurrence [143]. 

Rodrigues and collaborators have also demonstrated that TFF1 stimulated 

colorectal adenocarcinoma progression in vitro and in vivo by promotion of 

cell survival, anchorage independent growth and conferment of an invasive 

phenotype [144]. It was shown that TFF1 may be involved in the neoplastic 

progression of colon epithelial cells at two levels, namely the adenoma-

carcinoma transitions and in established adenocarcinoma cells [144]. 

  

 

2.6 TFF1 in other cancers 

The expression of the trefoil factors has been described in a variety of 

solid tumors.  
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TFF1 is widely expressed in cancerous but not in normal pancreatic 

cells [145-147]. It is expressed early in preneoplastic cells and also in 

advanced cancer cells and increases pancreatic cancer cell invasion, but not 

proliferation, promoting the aggressiveness of cancer [148].  

It has also been reported that TFF proteins are related to lung cancers 

[149-151]. TFF1 levels are increased in serum of patients with lung cancer 

and reduced after tumour resection [152], and positive expression of TFF1 

indicates worse prognosis of lung cancer [153].  

TFF1 is aberrantly expressed also in biliary and hepatocellular 

carcinomas [154-156]. In mucinous ovarian cancer development, TFF1 plays 

an oncogenic role, and its high expression predicts a poor clinical outcome 

[157]. In addition, TFF1 was the only TFFs peptide expressed at detectable 

levels in immunoblots of retinoblastoma cells [159].  
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CHAPTER 3 

 

TFF1 AND COPPER 

 

3.1 Copper: biological role and homeostasis 

Copper (Cu) is a transition metal and a micronutrient essential for life. 

In cells, it is present in two redox states, oxidized Cu(II) and reduced Cu(I). It 

is important for many cellular processes such as respiration, iron transport, 

oxidative stress protection, peptide hormone production, pigmentation, blood 

clotting and normal cell growth and development. Copper is able to work as a 

catalytic cofactor of a variety of proteins and ligands involved in electron 

transfer reactions and in redox reactions: Cu-containing biological molecules 

react directly with molecular oxygen, to produce free radicals, which can 

cause catastrophic damage to lipids, proteins and DNA [160, 161]. It is 

essential to guarantee copper homeostasis to avoid its unwanted and 

uncontrolled reactions that can cause damages. 

Cells have developed dedicated components and sophisticated 

homeostatic mechanisms to acquire and maintain adequate intracellular Cu 

concentrations. A network of evolutionary conserved Cu transporters and 

metallo-chaperones bind and shuttle the metal to ensure proper delivery in 

various cellular organelles and compartments [161, 162]. 

Humans uptake copper primarily from the consumption of food and drinking 

water. About 50% of the average daily dietary copper of around 25 μmol (1.5 

mg) is absorbed from the stomach and the small intestine, transported to the 

liver in portal blood and transferred to peripheral tissues mainly bound to 

ceruloplasmin and, to a lesser extent, albumin. Bile is the major pathway for 

the excretion of copper and the faecal copper output results from biliary 

excretion. 

Cu homeostasis is regulated by alterations in both the absorptive 

efficiency and biliary excretion in the gut. At low and high intakes, the 

efficiency of absorption is regulated up and down, respectively, but is 

predominantly controlled via endogenous excretion. 

Intestinal copper uptake is performed by Ctr1. It is a high affinity 

copper transporter Ctr1, first identified in yeast [163], which is expressed in all 

cell types and catalyzes the transport of Cu(I) across the cell membrane 

[164]. The divalent metal transporter 1 (DMT1) is important for iron 

homeostasis but it seems to mediate the transport of several metal ions, 

including copper [165, 166]. Upon entry into the cell, copper binds to cytosolic 
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copper chaperones (CCS) and Atox1, which then deliver it to intracellular 

proteins and compartments. CCS incorporates copper into the cytosolic 

protein Cu,Zn-SOD (Cu,Zn-superoxide dismutase), Atox1 delivers copper to 

the Cu-transporting ATPases, ATP7A and ATP7B. ATP7A is expressed in 

many tissues except the liver, instead ATP7B is mainly present in the liver 

and in neuronal tissues. Normally, these proteins transport copper into the 

lumen of the Golgi, where the metal can be incorporated into copper-

dependent proteins, but when intracellular copper concentration is elevated 

ATP7A moves to the plasma membrane promoting copper efflux while ATP7B 

mobilizes excess Cu into the bile.  

Copper must also be targeted to mitochondria, where cytochrome c 

oxidase (CCO) uses copper for oxidativephosphorylation. In mitochondria 

Cox17, Cox11, Sco1 and Sco2 are the proteins involved in copper insertion 

into CCO.  

 

 
Figure 1.9: Schematic copper distribution pathways in mammalian cell.  

(From Lutsenko S., 2010) 
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3.2 Copper and human diseases 

 

Copper imbalance in humans lead to serious damages and diseases. 

Excessive levels of copper can result in liver and kidney damage, 

anemia, immunotoxicity, and developmental toxicity [167]. An excess of Cu 

could result in oxidative-stress-related health disorders, given the capacity of 

copper to produce large amounts of reactive oxygen species (ROS) that can 

create oxidative damage to membranes or macromolecules.  

Cu deficiency also affects, directly or indirectly, the components of the 

oxidant defense system. 

Menkes syndrome and Wilson disease are genetic disorders, resulting 

from the absence or dysfunction of copper-transporting ATPases and 

characterized by the inability to appropriately distribute copper to all cells and 

tissues. Menkes disease is an X-linked recessive disease, charactherized by 

a profound systemic copper deficiency because of defects in the gene that 

encodes the copper-transporting ATPase ATP7A. Most affected individuals 

die before the age of 10 years [168]. Wilson disease is an autosomal 

(chromosome 13) recessive inherited disorder of copper transport, induced by 

genetic defect in ATP7B gene. The pathology is characterized by excessive 

copper accumulation, predominantly in liver and brain and, to a lesser extent, 

in eyes, kidneys, and other organs, because of impaired biliary copper 

excretion. Wilson disease onset from 3 to 50 years and the clinical outcomes 

vary widely [169]. 

Additionally, copper has been strongly implicated in 

neurodegenerative diseases such as familial amyotropic lateral sclerosis 

(FALS), Alzheimer's disease, and prion diseases of neuronal spongiform 

encephalopathy [170]. 

 

 

3.2.1 Copper and cancer 

 
Copper has been shown to play a significant role in cancer. Several 

studies have shown significantly elevated copper levels in both serum and 

tumor tissue of cancer patients. Copper is implicated in several important 

processes for tumoral development and growth. In particular, copper 

promotes angiogenesis, regulating directly or indirectly numerous 

angiogenesis-related factors e.g. VEGF, basic fibroblast growth factor 

(bFGF), tumour necrosis factor alpha (TNF-α) and interleukin (IL) 1 [171, 

172]. In this way, it stimulates endothelial cells proliferation and migration. 
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Copper has also a central role in oxidative stress and resulting 

genome instability or DNA damages. Furthermore, copper ions regulate 

factors involved in tumor cell motility and invasiveness. Several Cu- 

dependent proteins have been reported to promote tumor cell migration and 

invasiveness. The copper-dependent amine oxidase lysyl oxidase (LOX) 

stimulates cell invasion, migration and tumor progression in many 

malignancies [173, 174]. Lysyl oxidase-like 2 (LOXL2), a member of the LOX 

protein family, is overexpressed in gastric cancer and is involved in gastric 

cancer invasion [175]. Parr-Sturgess and coworkers demonstrated that 

copper modulates zinc metalloproteinase-dependent ectodomain shedding of 

the Notch ligand Jagged1 and the adhesion molecule E-cadherin and 

promotes the invasion of prostate cancer epithelial cells [176]. Recently it has 

been reported that also the copper chaperone Atox1 plays a role in breast 

cancer cell migration [177]. 

Copper chelation is a new useful strategy for treating cancer. Copper-

specific chelators have been developed as therapeutic agents to inhibit 

neoplastic processes. Copper chelators such as D-penicillamine [178], 

tetrathiomolybdate [179], clioquinol [180], and trientine [181] have been 

shown to inhibit angiogenesis both in vitro and in vivo. Penicillamine and 

tetrathiomolybdate are being described in the literature as having also anti-

fibrotic and anti-inflammatory actions [182].  

It has been shown that Cu depletion results in suppression of many 

cell signaling pathways including Hypoxia-inducible factor-HIF-1α, NF-κB, 

ERK, p38, and JNK, among others, leading to inhibition of tumor growth and 

reduced metastasis [183-185]. 

In recent years there has been a rapid expansion in research and 

development of novel metal-based anticancer drugs, including copper 

coordination complexes. These compounds may be more potent than 

conventional platinum-based drugs, with reduced toxicity toward normal cells 

and they may potentially circumvent the chemoresistance associated with 

recurrent platinum treatment [186].  
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Figure 1.9: Mechanism of action of the main copper chelators and coumpounds, 

affecting tumor growth, angiogenesis and metastasis.  

(From Denoyer D., Masaldan S., La Fontaine S., Cater M. A.,  2015) 

 

 

3.3 TFF1-Cu complex 

 

Recently it has been highlighted an interesting structural and 

functional correlation between TFF1 and copper, following the observation of 

an increased expression of the peptide in copper deficient rats [187, 188]. 

Then it has been demonstrated that the monomeric form of TFF1 is able to 

selectively bind copper ions [187] through its highly acidic carboxy-terminus, 

with a 1:1 stoichiometry of complexation [188]. The Cys58 residue and the 

four glutamic acid residues around it are essential for the interaction. 

Furthermore, copper induces conformational changes in the tertiary structure 

of the protein, resulting in a greater stability and higher proteases resistance. 

In addition, it promotes homodimer formation and increases its motogenic 

activity [187, 189]. The homodimeric form of TFF1 is also capable to bind Cu. 

Among the other TFFs, TFF3 has a greater structural similarity with TFF1 and 

it has been shown that similarly forms a Cu-complex with a 1:1 stoichiometry 

and no interaction with other divalent cations was detected [190]. 
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 Copper also effects transcriptional regulation of TFF1, through the 

modulated binding of the copper-sensing transcription factor Sp1 onto the 

responsive elements present in the regulatory region of the gene. In 

particular, it has been detected a putative Sp1 binding site 559 bp upstream 

the transcription start site, beyond the already reported Sp1 binding site in 

position −420 bp [191] and it has been demonstrated the direct involvement of 

Sp1 in copper mediated regulation of TFF1gene [190]. 

In addition, Cu levels can influence TFF1 secretion: high copper levels 

reduce protein secretion and also induce an accumulation of TFF1 in the 

Trans-Golgi Network. Moreover, also TFF1 appears to have a role in the 

regulation of copper homeostasis. The peptide can influence copper excretion 

and its induced toxicity, modulating the copper trafficking mechanisms in the 

gastrointestinal tissues [190]. 
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Aim of the work   

 

Trefoil factors play an essential role in the gastric epithelial restitution, 

but in recent years clinical and experimental studies have shown an active 

function of TFFs in the genesis of neoplastic processes.  

TFF1 is associated with a variety of solid tumors, mainly with gastric 

cancer. However, the relationship between TFF1 and gastric cancer is not 

well defined and often contradictory in literature. In addition, the distinct 

signaling pathways that mediate the effects of TFF1 have not been fully 

elucidated, and its functional receptors have not yet been identified.  

Therefore, this work presents as principal aim the investigation of 

TFF1 role in tumor progression. In particular, by using in vitro models, this 

study has the purpose to elucidate the functional roles of TFF1 in human 

gastric cancer, focusing the attention on several aspects of tumor 

development, such as invasion and EMT. 

The project is, moreover, aimed to investigate the influence of copper 

ions on TFF1 functions and to define the signaling pathways of the peptide 

with the identification of possible receptors through which TFF1 exerts its 

action. 
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CHAPTER 4   

 

MATERIALS AND METHODS 

 

4.1 Cell Cultures 

The human gastric cancer cell line AGS and KATO-III were purchased 

from the American Type Culture Collection (CRL-1739; Rockville, MD, USA), 

AGS, a human gastric adenocarcinoma cell line, was cultured in HAM‘S F12 

medium (Euroclone) containing L-Glutamine 2 mM and 10% heat-inactivated 

fetal bovine serum (FBS; Euroclone).  

AGS-AC1 cell line is an AGS cell clone, stably transfected with a 

pUHD-hTFF1 plasmid overexpressing TFF1 in an inducible manner with 

doxycycline. It was kindly provided by Dr. M.C. Rio (IGBMC - Institute de 

Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France). AGS-

AC1 cells were maintained in DMEM (Dulbecco's Modified Eagle Medium, 

Euroclone) supplemented with 10% FBS and 600 μg/mL Neomycin (G418, 

Sigma). The expression of TFF1 in this cell line was promoted by adding 

doxycycline (1 μg/mL) to the culture medium.  

KATO-III, a human gastric carcinoma cell line derived from metastatic 

site, was cultured in RPMI 1640 (Euroclone) with 10% heat-inactivated FBS  

(Euroclone).  

ARCaP E cell line is an Androgen Repressed Metastatic Human 

Prostate Cancer Cell Line, purchased from Novicure Biotechnology. This cell 

line was cultured in MCaP medium (Novicure Biotechnology) with 5% FBS. 

All the media were supplemented with antibiotics (10000 U/mL 

penicillin and 10 mg/mL streptomycin; Euroclone). Cell lines were grown at 

37°C in 5% CO2 and 95% air humidified atmosphere. 

 

4.2 Hypoxic culture condition 

Hypoxic culture condition was obtained by incubating cells in tissue 

culture dishes in a modular incubator chamber (Billups-Rothenberg Inc.) 

flushed with a gas mixture containing 5% CO2 and 95% N2 at 37°C.  

In some cases, the hypoxic condition was created by treating cells with 

the chemical inducer of hypoxia, cobalt chloride (CoCl2, 200 μM; Sigma 

Aldrich). 
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Cells were then harvested at different times (from 24 up to 72 hours) 

of treatment and analyzed as described below. 

 

4.3 Western blotting analysis  

Expression of TFF1 was examined by SDS-PAGE. Total intracellular 

proteins were extracted from the cells by freeze/thawing in lysis buffer (Tris 

HCl 20 mM, pH 7,4; sucrose 250 mM; DTT 1 mM; protease inhibitors, EDTA 1 

mM in water). Protein content was estimated according to Biorad protein 

assay (BIO-RAD). Samples (20 µg protein) were loaded onto 10% 

denaturing-polyacrylamide gel and separated by SDS-PAGE. The separated 

proteins were then transferred electrophoretically to nitrocellulose membranes 

(Immobilon-NC, Millipore). Membranes were blocked with 5% non-fat dry milk 

(BioRad) in TBS-Tween (NaCl 150 mM; KCl 3 mM; Tris-HCl 25 mM pH 8, 

0,1% Tween 20) and then incubated overnight at 4°C with the primary 

antibodies. Proteins were visualized using the enhanced chemioluminescence 

detection system (Amersham Pharmacia Biotech) after incubation overnight 

at 4°C with primary antibodies against TFF1 (rabbit polyclonal; 1:500; 

GenScripts Corp), E-cadherin (mouse monoclonal; clone 36/E-Cadherin; 

1:10000; BD Transduction Laboratories), vimentin (mouse monoclonal; clone 

E-5; 1:1000; Santa Cruz Biotechnologies), HIF1-α (rabbit polyclonal; clone 

A300-286A; 1:5000; Bethyl Laboratories), CK8 (mouse monoclonal, clone 

M20; 1:1000; Santa Cruz Biotechnologies), CK18 (mouse monoclonal, clone 

C-04; 1:1000; Santa Cruz Biotechnologies), β-actin (mouse monoclonal; 

clone C-4, 1:1000; Santa Cruz Biotechnologies), GAPDH (mouse monoclonal; 

1:1000; Santa Cruz Biotechnologies) and then at room temperature with an 

appropriate secondary rabbit or mouse antibody (1:5000; Sigma-Aldrich). 

Immunoreactive protein bands were detected by chemioluminescence using 

enhanced chemioluminescence reagents (ECL; Amersham). The blots were 

exposed to Las4000 (GE Healthcare Life Sciences) and the relative band 

intensities were determined using ImageQuant software (GE Healthcare Life 

Sciences). 

 

 

4.4 Confocal Microscopy 

After the specific time of incubation, AGS and AGS-AC1 cells were 

fixed in p-formaldehyde (4% v/v in PBS) for 5 minutes. The cells were 

permeabilized in Triton X-100 (0.5% v/v in PBS) for 5 minutes, and then  
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incubated in goat serum (20% v/v PBS; Lonza) for 30 minutes, and with rabbit 

anti-TFF1 antibody (1:500; Life Span Biosciences), mouse anti-E-cadherin 

(1:1000; BD Transduction Laboratories), mouse anti-vimentin (1:500; Santa 

Cruz Biotechnologies), mouse anti-CK8 and anti-CK18 (1:1000; Santa Cruz 

Biotechnologies) overnight at 4°C. After two washing steps with PBS, cells 

were incubated with anti-rabbit and/or anti-mouse AlexaFluor (488 and/or 

555; 1:1000; Molecular Probes) for 2 hours at RT. The coverslips were 

mounted in Mowiol (Mowiol 4-88, Sigma-Aldrich). A Zeiss LSM 710 Laser 

Scanning Microscope (Carl Zeiss MicroImaging GmbH) was used for data 

acquisition. To detect nucleus, samples were excited with a 458 nm Ar laser. 

A 488 nm Ar or a 555 nm He-Ne laser was used to detect emission signals 

from target stains. Samples were vertically scanned from the bottom of the 

coverslip with a total depth of 5 μm and a 63X (1.40 NA) Plan-Apochromat oil-

immersion objective. Images and scale bars were generated with Zeiss ZEN 

Confocal Software (Carl Zeiss MicroImaging GmbH) and presented as single 

stack. Images were processed using ImageJ software (NIH), Adobe 

Photoshop CS version 5.0, and figures assembled using Microsoft 

PowerPoint (Microsoft Corporation). 

 

 

4.5 RNA isolation and quantitative RT-PCR assay 

 

mRNA levels were analysed by Real- time PCR using the Light Cycler 

480 II instrument (Roche). Total RNA was extracted from cultured cells using 

Tripure Isolation Reagent® (Sigma), quantized with the instrument NanoDrop 

1000 (Thermo Scientific) and its integrity was checked by electrophoresis on 

1.3% agarose gel. 1µg of total RNA was reverse transcribed into cDNA with 

M-MLV Reverse Transcriptase kit (Sigma). 5 µl of 1:10 diluted cDNA were 

used in a 20 µl reaction using StoS Quantitative Master Mix 2X SYBR Green 

(GeneSpin) Cycling conditions for amplification were 95°C for 1 min; 35 

cycles at 95°C for 45 s, annealing temperature (varing from 58°C to 60°C) for 

30 s, and 72°C for 30 s; finally, 72°C for 5 min. Quantitative measurements 

were determined using the comparative ΔΔCt method. 

Primer sequences used in this study are indicated below. 

 

Oligo name Forward (5‘-3‘) Reverse (5‘-3‘) T °C 
VIMENTIN CTCCGGGAGAAATTGCAGGA TTCAAGGTCAAGACGTGCCA 60 

N-CADHERIN TGTTTGACTATGAAGGCAGTGG TCAGTCATCACCTCCACCAT 60 

E-CADHERIN TTCCCAACTCCTCTCCTG AAACCTTGCCTTCTTTGTC 58 
CK18 AATGGGAGGCATCCAGAACGAGAA TTCTTCTCCAAGTGCTCCCGGATT 60 

TWIST GCCAGGTACATCGACTTCCTCT TCCATCCTCCAGACCGAGAAGG 56 
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SNAIL TGCCCTCAAGATGCACATCCGA GGGACAGGAGAAGGGCTTCTC 60 

NANOG CAGTCTGGACACTGGCTGAA CTCGCTGATTAGGCTCCAAC 60 

ZEB1 GCCAATAAGCAAACGATTCTG TTTGGCTGGATCACTTTCAAG 60 

FPR1 CTGAGTCACTCTCCCCAGGA CCAGGAAGAGATAGCCAGCA 58 

FPR2 CTGGCTACACTGTTCTGCGG GAGGTTGATGTCCACCACGA 60 

FPR3 GCCGTCCCTTACGTGTCTTC ATTGGGTTGAGGCAGCTGTT 60 

HPRT1  GACCAGTCAACAGGGACAT CCTGACCAAGGAAAGCAAAG 60 

 

Table 4.1: Primer sequences used for RT-PCR. 

 

  

4.6 Matrigel Invasion Assay 

AGS and AGS-AC1 invasiveness was studied using the Trans-well 

Cell Culture (12 mm diameter, 8.0-μm pore size) purchased form Corning 

Incorporated (USA). The chambers were coated with Matrigel (Becton 

Dickinson Labware) that was diluted with 3 volumes of serum-free medium 

and stored at 37°C until its gelation. Cells were plated in 350 μl of serum-free 

medium at a number of 9 x 104/insert in the upper chamber of the trans-well. 

1,4 ml of medium with FBS were put in the lower chamber and the trans-well 

was left for 24 hours at 37°C in 5% CO2 - 95% air humidified atmosphere. 

After that, the medium was discarded, the filters were washed twice with PBS 

and fixed with 4% p-formaldehyde for 10 minutes, then with 100% methanol 

for 20 minutes. So fixed filters, were stained with 0.5% crystal violet prepared 

from stock crystal violet (powder, Merck Chemicals) by distilled water and 

20% methanol for 15 minutes. After that, the filters were washed again in PBS 

and cleaned with a cotton bud. The number of cells that had migrated to the 

lower surface was counted in twelve random fields using EVOS light 

microscope (10X) (Life technologies Corporation). 

Treatments with chemical compounds and conditioned media were 

done in the lower chamber.  

 

 

4.7 Gelatin zymography  

 

AGS-AC1 cells were grown to approx 80% confluence in complete 

growth media, then washed with sterile PBS and incubated with serum-free 

media at 37°C for 24-48-72 hours. After that, the conditioned media were 

collected, centrifuged (400g, 5 min at 4°C), to remove cells and debris, and 

concentrated 10 times using Amicon centricon-10 concentrators (Amicon) 

Then samples were resolved on a 10% nondenaturing polyacrylamide gel 

containing 1 mg/mL gelatin (Sigma-Aldrich) at 125 V for 1 hour.  
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The resolved gels were soaked in 2.5% v/v Triton X-100 in distilled 

H2O for 30 minutes, rinsed with distilled H2O and then developed at 37°C 

overnight in 500 mM Tris-HCl, pH 7.8; 2 M NaCl and 50 mM CaCl2. Gels were 

stained with Coomassie Blue R 250 (Bio-Rad; 0.5% Coomassie blue R-250 in 

5% methanol, and 10% acetic acid in dH2O) for 1 h and destained with 10% 

methanol, 5% acetic acid in distilled H2O until areas of gelatinolytic activity 

appeared as clear sharp bands over the blue background. Gels were 

photographed using Las4000 (GE Healthcare Life Sciences) and the relative 

band intensities were determined using ImageQuant software (GE Healthcare 

Life Sciences). 

 

 

4.8 Luciferase assays 

 

AGS and AGS-AC1 cells were seeded in a 24-well plate at a number 

of 8 x 104/well and after 24h were transfected using Lipofectamine 2000 

reagent (Invitrogen) according to the manufacturer‘s protocol. The cells in 

each well were transfected with 0.2 μg of pGL3 commercial plasmid 

(Promega) containing different fragments of TFF1 promoter sequence 

upstream of a Luciferase reporter gene. The pGL3 constructs were 

assembled by Sandro Montefusco during his PhD project. Briefly, a region of 

of about 1 kb (1036bp) upstream of TFF1 gene was amplified by PCR on 

genomic DNA extracted from breast cancer cells (MCF-7). The fragment 

obtained was cloned into the pGL3 vector obtaining the pGL3(-1036)Luc. 

Later, sequential deletions by Bal31 exonuclease digestions were performed 

obtaining the subsequent plasmids: pGL3(-830)Luc, pGL3(-583)Luc and 

pGL3(-212)Luc. 

A β-galactosidase control vector (Promega) (0.1 μg/well) was also 

transfected for standardization. Six hours after transfection, the medium was 

replaced and AGS-AC1 cells were induced with doxycycline. 48h after 

transfection, AGS-AC1 cells were incubated in presence or absence of 200 

μM CoCl2 (Sigma Aldrich) and AGS cells with 0-4 μg/mL of TFF1 recombinant 

protein (hrTFF1, Raybiotech). Twenty-four hours after the addition of the test 

agents, cells were lysed and reporter gene assay was performed. The 

luciferase activity was measured using the Luciferase/beta-Galactosidase 

Luciferase Assay Kit, Dual-Light (Applied Biosystems), according to the 

manufacturer‘s instructions. The analysis was performed in quadruplicate and 

the results are reported as the ratio of firefly luciferase activity and beta-

galactosidase (transcriptional activity relative). The light emission was 

measured with EnSpire Multimode Plate Reader (PerkinElmer).  
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4.9 High Resolution Melting (HRM) analysis 

 

Genomic DNA was purified from cells with NucleoSpin® Tissue kit 

(Macherey Nagel) and quantized with NanoDrop 1000 (Thermo Scientific). 

DNA (0.5 μg) was bisulfite modified with EZ DNA Methylation™ kit (Zymo 

Research, Irvine, CA, USA). Sequence-specific primers to amplify the CpG-

rich regions of interest were designed using a computer program and 

analyzed with OligoAnalyzer 3.1 (https://eu.idtdna.com/calc/analyzer). The 

primers used for amplification were as follows: 

 

 TFF1 forward, 5‘-GATTTTTTAGTTAAGATGATTTTATTATATG-3‘  

 TFF1 reverse, 5‘-ATTTTATAAAACAAACTCTATTTACTTAAAA-3′   

The bisulfite-treated DNA was amplified using primers, which 

specifically amplify the methylated or unmethylated sequence of TFF1 

promoter, respectively. Primers have been designed in a region of 

approximately 1kb (from 303 to 703) around the transcription start site on the 

promoter of TFF1 and the amplicon contained 3 CpG in a region of about 200 

bp.The reactions were prepared with LightCycler® 480 High Resolution 

Melting Master kit (Roche) by mixing: Master Mix 1x-2 mM MgCl2 (containing 

FastStart Taq DNA polymerase, reaction buffer, dNTP, High Resolution 

Melting Dye), 400 nM of each primer, 1 μl of modified DNA with bisulfite 

(theorical concentration 25 ng/μl). The amplification and melting analyzes 

were performed with the Light tool Cycler 480 II. PCR comprises a step of 10 

min at 95°C, followed by 45 cycles of 10 sec at 95°C, 10 sec at the annealing 

temperature of 52°C and 15 sec at 72°C. The analysis of high resolution 

melting were performed at increasing temperatures from 65 to 95°C with an 

increase of 0.02°C/s. The melting curves were normalized with LightCycler® 

480 Gene Scanning Software. HRM methylation profiles were compared to 

that of DNA samples with known percentage of methylation (0, 25, 50, 75, 90, 

100), obtained by suitably mixing DNA from MCF-7 as 0% and CpG 

Genome™ Universal Methylated DNA (Millipore) as 100% after being 

modified with bisulfite. 

 

 

4.10 Statistical analysis 

 

All results are the mean ± SD of at least 3 experiments performed in 

triplicate. The optical density of the protein bands detected by Western 

https://eu.idtdna.com/calc/analyzer
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blotting was normalized against GAPDH or β-actin levels. Statistical 

comparisons between groups were made using unpaired, two-tailed t-test 

comparing two variables. Differences were considered significant if p<0.05 

and p<0.01. 
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CHAPTER 5 
 
RESULTS  
 
5.1 TFF1 expression in GC cell lines  

A variety of gastric carcinoma cell lines have been used as in vitro 

systems. In this study, we used three GC cell lines: a metastatic gastric cell 

line KATO-III, a non metastatic gastric cell line AGS and a stable AGS cell 

clone transfected with pUHD-hTFF1 vector, AGS-AC1. 

These cell lines are different each other for origin, phenotype and 

genotype and also for TFF1 expression. KATO-III cells show a gastric 

phenotype and express high levels of TFF1, instead AGS cells have an 

intestinal phenotype with constitutively low levels of TFF1, undetectable by 

Western blotting under the experimental conditions used.  

The stable clone AGS-AC1 was obtained by transfection of AGS cells 

with an expression vector for TFF1 equipped with a doxycycline inducible 

promoter. 

Western blotting analysis in figure 5.1 showed TFF1 expression in all 

cell lines. KATO-III cells and AGS-AC1 cells induced with doxycycline express 

high levels of TFF1 intracellular and secreted in the supernatants. 

 

 
 

Figure 5.1: TFF1 expression in KATO-III, AGS and AGS-AC1 cells by Western blot 

with anti-TFF1 antibody. TFF1 expression in AGS-AC1 cells was induced with 

doxycycline 1 μg/mL. Protein normalization was performed on GAPDH level. 
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5.2 TFF1 promotes invasive activity of AGS-AC1 cells 

The trefoil factors exhibit a motogenic acitivity and there is a general 

consensus regarding their role in cell migration. Previous studies 

demonstrated, by means of wound healing assays, that increased TFF1 

expression, induced by doxycycline in AGS-AC1 cells, produces an 

appreciable increase in cell migration. This increased migration confirmed the 

cell motogenic activity of TFF1 [189]. 

The acquired capability of tumor cells to migrate and invade 

neighboring tissues is associated with high metastatic potential and advanced 

stage of cancer. To investigate the role of TFF1 in the invasion process, we 

performed matrigel invasion assays on AGS-AC1 cells induced or not with 

doxycycline. The assays were performed at 48h from the induction and 

observed for 24h. Figure 5.2 shows invasion data of AGS-AC1 cells 

expressing or not TFF1, setting 100% the mean values of not induced cells. 

AGS-AC1 induced cells showed significantly increased capacity to invade the 

Matrigel coating, compared with not induced cells. 

 

 
Figure 5.2: Invasion of AGS-AC1 gastric cancer cell lines through Matrigel. 

Upper panel, bottom surface of filters stained with crystal violet. Lower panel, 

quantification of invasive cells. Statistically significant differences at p<0.001 from the 

controls are indicated (***). 
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5.3 Copper deprivation abolishes TFF1 invasive activity 

As stated in the introductive chapter, TFF1 selectively binds copper 

ions [187] through its carboxy-terminal tail and copper levels can modulate its 

biological activity influencing the TFF1 monomer/homodimer ratio [188]. 

Moreover copper is able to enhance the TFF1 induced migration in the AGS 

hyper-expressing clone, probably favouring its homodimerization [188]. 

To further investigate the copper influence on TFF1 functionality, we 

analysed the effect of the metal on TFF1 invasive activity. Therefore, we 

performed invasion assays on the AGS-AC1 clone in presence of copper (10 

μM CuCl2) and/or of the chelating agent bathocuproine (BCS), a non-cell-

permeable chelator of Cu(I).  

The induction of TFF1 expression with doxycycline, as expected, 

increased the cell invasiveness in untreated cells, while in presence of copper 

we had a little increase in the invasion rate in both conditions (induced and 

not). The incubation with the copper specific chelating agent abolished the 

gain of invasion rate. Cells not expressing TFF1 did not show any rate change 

when exposed to BCS. 

The deprivation of copper, obtained by the BCS treatment, reduced 

the increase of invasion of the induced clone (BCS, + dox) to levels 

comparable to the control cultures (not treated, - dox). This result suggests 

that the presence of copper ions can be critical in the performance of TFF1 

invasive function. 

To clarify if it was the reduction in the homodimeric form of the protein 

or the non-formation of the cupro-complex to abolish the invasive activity of 

TFF1, the clone was first grown in the presence of 10 μM CuCl2, so as to 

promote homodimer formation and then, at the time of seeding on matrigel, 

the BCS was added. 

The addition of the chelating agent, to a medium containing the 

dimeric protein, also abolished the increase of invasion, suggesting the 

importance of the TFF1-copper complex formation in the pro-invasive function 

performance (Figure 5.3). 
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Figure 5.3: Invasion of AGS-AC1 gastric cancer cell lines through Matrigel. Induction 

with 1 μg/mL doxycycline, treatment with 500 μM BCS and CuCl2 10 μM. 

 A, bottom surface of filters stained with crystal violet. B, quantification of invasive 

cells. * p<0.05 and *** p<0.001 vs untreated control, $ p<0.05 and $$$ p<0.001 vs 

AGS-AC1 induced cells.  
 

 

5.4 TFF1 hyper-expression stimulates MMP-2 activity   

Cellular invasion process requires proteolytic activity to degrade 

components of the extracellular matrix (ECM). The main group of proteases 

directly associated with metastasis is that of metalloproteases (MMPs), a 

family of endopeptidases capable of cutting various ECM components. In 

particular, the gelatinase MMP-2 (gelatinase A, EC 3.4.24.24) [192] and 

MMP-9 (gelatinase B, EC 3.4.24.35) [193] are two members of the MMP 

family whose expression and activity increase in several tumors and correlate 

with tumor progression [194, 195].  

The gelatin zymography allows to observe the gelatinolytic activity of 

biological samples. It is an electrophoretic technique that includes a substrate 

(gelatin in the case of gelatinase) copolymerized into a polyacrylamide gel for 

the enzymatic activity detection [196, 197].  

To check whether the invasion increase observed following TFF1 

induction was linked to an increase of the metalloprotease activity, we 

performed a zymographic analysis on serum-free medium obtained from the 

AGS-AC1 clone induced or not with doxycycline for 24-48-72 hours. The 

results obtained from the analysis performed by densitometric ImageJ 

software showed an increased gelatinolytic activity of MMP-2 in the AGS-AC1 

clone after 48 hours of induction compared to the control (fig. 5.4). 
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Figure 5.4: A. Gelatin zymography on serum-free media of AGS-AC1 cells, induced 

or not with doxycycline (1 μg/mL) for 24-48-72 hours. B. Densitometric analysis of 

MMP-2 activity, obtained with software ImageJ. 

 

 

5.5 TFF1 secreted in KATO-III supernatant stimulates AGS cell invasion 

The previous invasion assays were performed on the TFF1-inducible 

clone AGS-AC1, obtained from AGS cell line that does not express 

appreciable amounts of the peptide. KATO III cell line, instead, expresses 

high levels of TFF1, detectable by Western Blotting also in the supernatant of 

these cells. In order to evaluate the effects of the secreted TFF1 on a line that 

generally does not express it, and to release ourselves from the unevoidable 

restrictions of a clonal population, we performed further experiments adding 

KATO-III supernatant to AGS cells. As shown in figure 5.5, KATO-III 

supernatant, containing the secreted protein, significantly increased AGS cells 

invasion rate.  

AGS cells were also treated with BCS and the presence of copper 

chelator significantly reversed the increase in the invasion rate of AGS with 

conditioned medium.  
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Figure 5.5: Invasiveness rate of AGS treated with KATO-III supernatant and/or 500 

μM BCS; * p value < 0,01 vs untreated control and $$ p<0.001 vs KATO-III 

supernatant. Invasiveness rates were measured as described in Materials and 

Methods section. Left panel, bottom surface of filters stained with crystal violet.  

Right panel, quantification of invasive cells.  

 

The effect of BCS suggested us that the increase in the invasive 

activity of AGS treated with KATO-III conditioned medium is essentially due to 

secreted TFF1, indicating that TFF1 is able to perform its pro-invasive activity 

in both autocrine and paracrine manner, and that the presence of copper is 

essential for this function. 

 

5.6 Recombinant TFF1 shows pro-invasive activity on AGS cells  

To unequivocably assess the direct effect of extracellular TFF1 on 

cellular invasion, we performed invasion assays on AGS cells using the 

human TFF1 recombinant dimeric protein (hrTFF1). We used three different 

concentrations of hrTFF1 protein and demonstrated its ability to increase in a 

significant and dose-dependent manner AGS basal cell invasion (fig. 5.6).  
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Figure 5.6: Invasiveness rate of AGS treated or not with hrTFF1 protein; * p<0.01 

and ** p<0.001 vs untreated control. Invasiveness rates were measured as described 

in Materials and Methods section. Upper panel, bottom surface of filters stained with 

crystal violet. Lower panel, quantification of invasive cells. 

 

5.7 TFF1 modulates the expression of genes involved in the epithelial- 

mesenchymal transition (EMT) 

Cellular invasion and migration are hallmarks of more aggressive 

tumor cells. EMT is considered as a crucial event in developing invasive 

potential [198]. During EMT, epithelial cells undergo dramatic changes, lose 

their epithelial cell-specific phenotype and develop features of mesenchymal 

cells. 

Through Western blotting, Real Time-PCR and immunofluorescence 

experiments, we wanted to explore whether TFF1 induction in AGS-AC1 cells 

might influence the expression profile of some EMT markers and then to 

determine whether the trefoil factor was able to promote a phenotypic change 

in the cell, directing it toward EMT. 

Data in Figure 5.7 showed that the TFF1 induction was not able to   
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cause a marked phenotypic change in the cells, but certainly prompted them 

towards a phenotypic switching program as evidenced by a slight but 

significant decrease of E-cadherin, key event associated with the destruction 

of the cell-cell junctions and by a cytoskeletal reorganization of vimentin. 

 

 
 

Figure 5.7: A, RT-PCR for Twist, ZEB1, E-cadherin and  N-cadherin mRNA 

expression in AGS-AC1 cells, normalized on HPRT mRNA levels. Statistically 

significant differences at p<0.01 from the non induced cells are indicated (**).  

B, Immunofluorescence analysis of TFF1, E-cadherin, vimentin on AGS-AC1 cells +/- 

doxycycline. Immunofluorescence images refer to 48 hours after induction. Nuclei 

were stained with DAPI. Magnification 63x. Bar = 10 μm. C, Western blot using 

antibodies against TFF1 and vimentin on protein extracts from AGS-AC1 cells. 

Protein normalization was performed on GAPDH levels.  

 

 

To further investigate the role of TFF1 in EMT, we treated AGS cells 

with the TFF1 recombinant protein for 72h, and then the expression of EMT 

markers was evaluated by RT-PCR and immunofluorescence analyses. As 

shown in figure 5.8, hrTFF1 treatment caused a deregulation of a variety of 

proteins and inducers involved in the regulation of EMT. In particular, we had 

a downregulation of epithelial markers, as E-cadherin and Cytokeratin-8 and -

18, and an upregulation of the mesenchymal one, vimentin. In addition to 

these, we also determined the expression levels of transcription factors that 

control the expression of these markers. In particular, TFF1 treatment induced  
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expression of Snail and ZEB1, which are well known repressors of E-cadherin 

expression. Additionally, we registered an upregulation of Nanog, a stemness 

marker.  

 

 

Figure 5.8: Left panel, RT-PCR for TFF1, NANOG, E-cadherin, Snail, vimentin and 

ZEB1 mRNA expression in AGS cells treated or not with hrTFF1 (4 μg/mL) for72h, 

measured on mRNA levels of HPRT in the same experimental models. * p<0.05 and 

** p<0.01 vs untreated control. Right panel, Immunofluorescence analysis to detect 

TFF1, vimentin, Cytokeratin-8 and-18 on AGS cells treated or not with hrTFF1. 

Immunofluorescence images refer to 72 hours after treatment. Nuclei were stained 

with DAPI. Magnification 63x. Bar = 10 μm.  

 

5.8 TFF1 expression and EMT process in hypoxic condition 

Hypoxia, through activation of the transcription factor hypoxia-

inducible factors-1 (HIF-1) is an important stimulus of EMT. 

Interestingly, Hernández and coworkers demonstrated that hypoxia 

inducible factor-1 mediates the induction of TFF gene expression by hypoxia 

in gastric epithelial cells [199]. 

We verified if TFF1 induction is a crucial event that, combined with the 

hypoxic stress condition, can guide cells toward EMT. Hence, we evaluated 

possible alterations of TFF1 expression in AGS cell line exposed to hypoxia 
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for 24 hours. The activation of hypoxia-related pathway was confirmed 

through the detection of a significant increase of HIF1-α induction. We 

observed, furthermore, E-cadherin down-regulation, vimentin up-regulation at 

24 hours of hypoxic treatment as well the TFF1 induction (fig. 5.9). Thus, 

TFF1 upregulation and EMT are concomitant events during the hypoxic 

condition. 

 

 
 

Figure 5.9: A, Western blot using antibodies against HIF-1α, TFF1 and vimentin on 
protein extracts from AGS cells exposed to hypoxia. Protein normalization was 

performed on GAPDH levels. B, Immunofluorescence analysis to detect TFF1 and 
vimentin on AGS cells. Immunofluorescence images refer to 24 hours after hypoxic 

treatment. Nuclei were stained with DAPI. Magnification 63x. Bar = 10 μm.  
C, RT-PCR for TFF1, vimentin and E-cadherin mRNA expression in AGS cells in 

hypoxic condition for 24 h, normalized on HPRT mRNA levels. * p<0.05 and ** p<0.01 
vs normoxic control. 

 

5.9 TFF1 shows an auto-regulation mechanism 

We performed the hypoxic treatment also on AGS-AC1 cells, in order 

to investigate the rate of TFF1 induction at different times from the hypoxic 

stimulus. The Real Time-PCR analysis of TFF1 expression showed, at 48 and 

72 hours of hypoxia in the TFF1-induced cells, particularly eleveted TFF1 

mRNA levels (fig. 5.10). Since the fold induction of AGS-AC1+dox following 
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hypoxia seems not be simply the sum of AGS-AC1+dox in normoxic 

conditions and AGS-AC1–dox following hypoxia, we hypothesized that the 

presence of the protein was an important element to have further induction of 

expression not only by HIF-1α activation but also by TFF1 itself. 

 

 
 

Figure 5.10: A, RT-PCR for TFF1 mRNA expression in AGS-AC1 cells after 24-48-

72h of hypoxia, measured on mRNA levels of HPRT in the same experimental 

models. * p<0.05, **p<0.01 and *** p<0.001 vs AGS-AC1cells in normoxia, $ p<0.05 

and $$ p<0.01 vs AGS-AC1 induced cells in normoxia. B, Western blot using 

antibody against TFF1 protein extracts from AGS-AC1 cells exposed to hypoxia for 

24-48-72h. Protein normalization was performed on GAPDH levels.  

 

 

To investigate the TFF1 autoinduction mechanism we performed a 

Luciferase reporter assay on AGS-AC1. Therefore, the cells were co-

transfected with a pGL3 commercial plasmid (Promega) containing TFF1 

promoter wild type fragments of different lengths upstream of a Luciferase 

reporter gene and with a plasmid containing the β-galactosidase gene, whose 

expression was used as a normalization parameter of transfection efficiency. 

The pGL3 constructs were obtained as described in Materials and Methods 

section and they contained respectively fragments corresponding to -1036 bp, 

-830 bp, -586 bp and -212 bp of the TFF1 promoter (fig. 5.11). 

The luciferase activity of AGS-AC1 cells induced or not with 

doxycycline and transfected with the various constructs is reported in figure 

5.11. Data are expressed as fold increment of pGL3(-212)Luc, considered as 

a basal level and set to 1.  
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Figure 5.11: A, Schematic representation of luciferase reporter constructs containing 

fragments of varying lengths from −1036 to −212 of the TFF1 promoter upstream of a 

Luciferase reporter gene; B. Luciferase reporter assays in AGS-AC1 cells. TFF1 

induction of cells was performed with doxycycline (1 μg/mL).  

All data are representative of experiments carried out in quadruplicate and are 

depicted as mean ± SD. * p < 0.05, ** p < 0.01 compared with non induced cells 

expressing pGL3(−212)Luc.  

 

 

We observed that luciferase activities of AGS-AC1 induced cells were 

higher than that of the non induced ones. From data in fig. 5.11 we can 

conclude that an element responsive to TFF1 protein is present between -583 

and -212 bp. Moreover we can also hypothesize that an element able to 

suppress this activity is located between -830 and -583 bp. 

This region of about 0.6 kb contains, as described in the literature, two 

HIF-1α binding sites [199], so this sequence is also responsible of hypoxia 

up-regulation of TFF1 (fig. 5.12). 
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Figure 5.12: Representation of -583 to -17 bp region of the promoter of TFF1;  

the transcriptional start site and the main regulatory factors are indicated. 

 

 

To verify that this region was responsible for the induction of TFF1 not 

only by HIF1-α, but also by TFF1 itself in hypoxic environment and that this 

two mechanisms contribute to TFF1 regulation, we performed a Luciferase 

reporter assay on AGS-AC1 with pGL3(−583)Luc construct in hypoxic 

condition. 

For experimental reasons, we mimicked the hypoxic condition by using 

the chemical hypoxia-inducer cobalt chloride (CoCl2) and verified that it gave 

the same TFF1 induction of the hypoxic-chamber. 48 hours after transfection, 

cells were incubated in the presence or absence of CoCl2 (200 μM), and the 

assays were carried out after 8, 16, 24 hours from the treatment.  

In figure 5.13 data relative to luciferase activity of the transfected cells 

are reported.  
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Figure 5.13: A, Western blot using antibody against TFF1 on protein extracts from 

AGS-AC1 cells  +/- doxyxycline 1 μg/mL after 72h of treatment with 200 μM CoCl2. 

Protein normalization was performed on GAPDH levels. B, Schematic representation 

of luciferase reporter construct of pGL3(-583)Luc, containing wild type promoter 

sequences from − 583 to − 17 of the TFF1 promoter upstream of a Luciferase 

reporter gene; C. Luciferase reporter assays with pGL3(-583)Luc and CoCl2 (200 μM) 

exposure for 8, 16, 24 hours in AGS-AC1 cells. TFF1 induction of cells was 

performed with doxycycline (1 μg/mL). All data are representative of experiments 

carried out in quadruplicate and are reported as mean ± SD. *p ≤ 0.05, **p ≤ 0.01 vs 

non induced cells, $$$ p ≤ 0.001 vs induced cells. 

 

 

In AGS-AC1 TFF1 overexpressing cells we had, as expected, a 

significant increase in luciferase activity respect to non-induced cells. The 

CoCl2 treatment induced luciferase activity in non induced AGS-AC1 cells, but 

at higher levels in the induced ones (fig. 5.13).  

These results suggest, the involvement of this region of TFF1 

promoter in a self-induction mechanism that works also during hypoxia and 

synergistically with HIF1-α induction. 
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In order to definitively assess the effect of TFF1 on its own promoter, 

we added different concentrations of TFF1 recombinant dimeric protein to 

AGS cells transiently transfected with TFF1 promoter-luciferase reporter 

construct. We observed a significantly higher luciferase activity of cells treated 

with hrTFF1 than that of the untreated ones and this effect was dose-

dependent (fig. 5.14).  

 

 
Figure 5.14: Luciferase reporter assay with pGL3(583)Luc in AGS cells. At 48h post-

transfection, cells were stimulated with different concentrations of hrTFF1 (0-4 μg/mL) 

for 24h.  All data are representative of experiments carried out in quadruplicate and 

are depicted as mean ± SD. *p<0.05, **p<0.01 vs control cells (0 μg/mL). 

 

 

5.10 TFF1 regulates the methylation status of its DNA 

 

Epigenetic factors such as DNA methylation play an important role in 

regulating gene expression. Aberrant DNA methylation is a feature of a 

number of important human diseases, including cancer.  

Several works show the dependence of TFF1 expression from the 

methylation status of its promoter. Bisulfite sequencing was performed to 

explore DNA methylation of TFF1 in AGS-AC1 clone to investigate its 

changes after induction of TFF1 expression and in hypoxic condition. The 

bisulfite converts the unmethylated cytosines into uracil, leaving unmodified 

the methylated cytosines, so the unmethylated DNA will have a lower melting 

temperature compared to methylated one, since the A-T base pairing requires 

less energy to be denatured compared to the C-G base pairing. An HRM 

analysis, based on these differences, was performed on TFF1 promoter in 
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AGS-AC1 after 72h from induction with doxycyline and/or treatment with 

CoCl2. 

 The difference plots in figure 5.15 showed the different curves of DNA 

methylation. Following TFF1 induction, AGS-AC1 cells showed a reduction of 

the percentage of methylation compared to the uninduced clone. Also the 

treatment with the hypoxia-inducer CoCl2 was able to reduce the methylation 

status of both the control and the induced cells but in the induced ones the 

reduction of methylation was greater. Therefore the trefoil peptide can 

autoactivate, at least partly, its own expression regulating the density of 

methylated CpGs. Hypoxia, through HIF1-α activation, creates a loop with 

more TFF1 induction and conseguent lesser DNA methylation. 

 

 

 
 

Figure 5.15: Difference plots of DNA methylation pattern of TFF1 in AGS-AC1 cells 

after 72h of induction with doxycycline (1 μg/mL) and/or with CoCl2 200 μM. 
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Upper, difference plot of standard DNA samples. Lower, difference plot of HRM on 

AGS-AC1 cells.  

 

 

5.11 TFF receptor: a possible role for FPR? 

 

Currently direct receptors of TFFs are not yet identified. Trefoil factors 

are expressed at high levels on the apical surface of the gastrointestinal tract, 

suggesting that their association with high-affinity receptors could be critical. 

Dubeykovskaya and coworkers [200] have identified for the first time CXCR4 

as a possible TFF2 receptor in epithelial tumor cells and lymphocytes.  

We decided to investigate a possible role for N-formyl peptide 

receptors (FPR1, FPR2 and FPR3). The Formyl Peptide Receptors (FPR) is a 

class of trans-membrane seven domains receptors, coupled to G protein 

(GPCR), involved in the innate immunity, inflammation and cancer. Several 

studies suggest a role of FPR in the progression of various cancers, including 

gastric cancer, for which has been described a positive correlation with a 

specific polymorphism of FPR1 [201]. It was also demonstrated that FPR are 

expressed in gastric epithelium and are necessary for the repair and 

restitution of the barrier integrity [202]. Hence, the idea of investigating a 

possible relationship between FPR and TFF1. 

We first evaluated the basal expression of FPR in the AGS-AC1 clone 

by Real Time PCR (RT-PCR) (fig. 5.16). Following TFF1 induction we had not 

found any change of the expression levels of FPR1 and 3, but a significant, 

although slight, increase in the expression of FPR2.  
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Figure 5.16: RT-PCR for TFF1 and FPR mRNA expression in AGS-AC1cells, 

induced or not with doxycycline (1 μg/mL) for 48 hours. Bars represent the mean ± 

SD of mRNA relative to HPRT mRNA levels. *p<0.05 and ***p <0.001 vs AGS-AC1 

non induced cells. 

 

 

To evaluate whether they could play a role in cell invasion processes 

and be the likely receptors through which TFF1 exerts its action, we 

performed the invasion assays using FPR pharmacological antagonist Boc-2 

(Boc-FLFLF, 50 μM) (fig. 5.17). Following treatment with the antagonist we 

didn‘t find any change in the rate of invasion in the control cells, while, in 

induced cells, the antagonist reverts the increase caused by TFF1 hyper-

expression (fig. 5.17). 
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Figure 5.17: Invasion of AGS-AC1 gastric cancer cell lines through Matrigel. 

Induction with doxycycline (1 μg/mL), treatment with 50 μM Boc-2. 

Upper panel, bottom surface of filters stained with crystal violet. Lower panel, 

quantification of invasive cells. *** p<0.001 vs untreated control and $ p<0.001 vs 

AGS-AC1 induced cells.  
 

 

This suggests that the FPR receptors could have a role in the pro-

invasive activity of TFF1.  

In addition, by RT-PCR, we observed an up-regulation of all FPRs in 

AGS when treated with the recombinant protein TFF1 for 72h (fig. 5.18). 
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Figure 5.18: RT-PCR for FPR1, 2, 3 mRNA expression in AGS cells, after treatment 

with hrTFF1 (4 μg/mL) for 72 hours. Bars represent the mean ± SD of mRNA relative 

to HPRT mRNA levels. *p< 0.05 and **p<0.01 vs untreated control. 

 

 

These findings are in agreement with a possible linking between TFF1 

and FPR, but further studies are necessary to demonstrate a direct interaction 

between these two proteins.  

 

 

5.12 TFF1 induces EMT process in prostate cancer cell model 

 

As previously described, TFF1 is reported to have a role in the 

development of a variety of solid tumors, including prostate cancer. To 

investigale the role of the peptide in the tumor development outside the 

gastric context, we used a particular model of human prostate cancer, ARCaP 

E cell line. This cell line is a subline of ARCaP cells, an androgen-repressed 

human prostate cancer cell line derived from ascites fluid of a pazient with 

metastatic disease, and represents an advanced and highly metastatic form 

of prostate cancer [203]; ARCaP E cells express a host of human prostate 

cancer biomarkers  and undergo EMT on exposure to soluble factors or host 

bone microenvironment. Thus, it is an ideal model for studying abnormal EMT 

or EMT-like changes during prostate progression and metastasis. 

We treated ARCaP E with TFF1 recombinant protein for 72 hours and 

then evaluated the expression of the main EMT marker. By western blotting, 

we confirmed that TFF1 was able to induce EMT also in this cellular model. In 

fact, we observed a phenotypic change of the cells following TFF1 

administration (fig 5.19, upper panel), corroborated by E-cadherin down-

regulation, vimentin up-regulation and a significant reduction of the two 

epithelial cytokeratins CK8 and CK18 (fig 5.19, lower panel). 
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Figure 5.19: Upper panel, images in clear field at microscope of ARCaP E at 72h of 

treatment with hrTFF1 (4-8  μg/mL). Lower panel, Western blot using antibody against 

E-cadherin, vimentin, CK-8, CK-18 on protein extracts from ARCaP E at 72h of 

treatment with hrTFF1. Protein normalization was performed on GAPDH levels. 

 Densitometric analysis was performed with ImageJ software and relative E-cadherin, 

vimentin, CK-8, CK-18 band intensity normalized to GAPDH and quantified with 

respect to controls (untreated) set to 1.0. Bars represent the mean ± SD. Statistically 

significant differences at p<0.05 from the untreated cells are indicated (*). 
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CHAPTER 6 
 
DISCUSSION  
 

The human trefoil peptide, TFF1, is normally highly expressed in the 

gastrointestinal tract to ensure mucosal defence and epithelial integrity. 

However, it has been reported its aberrant expression in several epithelial 

neoplasias. In this context, TFF1 performs multiple functions in tumor 

development and/or progression and it appears to behave either as a tumour 

suppressor or an oncogenic gene. However, more studies are required to 

investigate the role of TFF1 in cancer progression since its mechanism of 

action has not yet been completely clarified. 

This study was undertaken to bring additional insights in TFF1 role in 

gastric cancer. Gastric cancer is one of the most common malignancies in the 

world and has a high rate of metastasis. Gastric cancer cells can metastasize 

to nearby organs such as pancreas, liver and transverse colon as well as to 

distant lymph nodes and bone tissue.  

In gastric cancer, TFF1 is largely considered a tumor suppressor, 

whose expression is remarkably down-regulated due to loss of heterozygosity 

and promoter methylation. Conversely, the peptide is reported to be 

expressed in 50% of gastric cancer, up-regulated in metastatic gastric cancer 

compared with the primary cancer and in gastric cancer associated with 

lymph node metastasis. Im and coworkers reported a much higher frequency 

of TFF1 expression in undifferentiated and diffuse types of gastric cancer 

compared with differentiated and intestinal types of gastric cancer [204]. In 

addition, Suarez and coworkers reported that high intratumoral TFF1 levels 

were significantly associated with unfavourable outcome in patients with 

primary gastric adenocarcinomas [117]. Outside the gastrointestinal tract, 

TFF1 is associated with a more invasive, metastatic and aggressive 

phenotype in colon, prostate and pancreatic cancer.  

 We started from the hypothesis that gastric tumors where TFF1 is not 

down-regulated may be able to benefit from the presence of the trefoil protein 

taking advantage of its migratory, invasive and antiapoptotic functions.  

In this work we demonstrated that TFF1 stimulates invasiveness and 

metastatic behaviour of gastric cancer cells. In particular, TFF1 promotes 

invasion of AGS cells and of an inducible TFF1-hyperexpressing cell clone, 

AGS-AC1, both in autocrine and paracrine manner. Moreover, the pro-

invasive activity of TFF1 is associated with a greater MMP-2 activity. 
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Overexpression of MMP-2 and -9 as well as activation of proMMP-2 to 

active MMP-2 is one of the major features of the malignant phenotype in both 

colorectal and gastric cancer. Different studies showed that TFF3 increases 

the expression of MMPs to promote cell migration [205, 206]. Here, we 

observed that TFF1 may work in a similar manner, regulating activation of 

MMP-2 for invasion and subsequently for metastasis. At the base of the cell 

invasion process there is the loss of cell-cell adhesion capacity. Tumor 

invasion and metastasis frequently coincide with the loss of E-cadherin-

mediated cell-cell adhesion. E-cadherin is the main adhesion molecule in 

adherens junctions of epithelia and is often down-regulated in cancers. This 

event, along with other cytoskeletal modifications, drives to the EMT process, 

with the loss of epithelial characteristics and gain of a migratory and invasive 

mesenchymal phenotype.  

We demonstrated that TFF1 is implicated in the occurrence of EMT in 

our cell model, with loss of epithelial characteristics and gain of a 

mesenchymal morphological phenotype. After treatment of AGS cells with 

TFF1, we observed the reduction of E-cadherin and of other epithelial 

markers such as cytokeratins 8 and 18, proteins of intermediate filaments 

forming the skeleton of epithelial cells, providing support to maintain cell 

integrity and the structure of epithelial tissues. In parallel, we found an 

increase of the mesenchymal markers such as vimentin and an upregulation 

of significant transcription factors of EMT, as Snail, ZEB1, and Nanog. These 

factors act as molecular switches, respond to the known signaling pathways 

and regulate the EMT program. All these molecular and structural changes 

correlate with tumour progression and poor outcome. In high-risk GC patients, 

loss of E-cadherin expression and aberrant expression of Snail and vimentin 

are significantly associated with aggressive clinicopathologic features, 

vascular invasion and lymph node metastasis. 

 TFF1 is able to induce EMT not only in the GC models but also in a 

prostate cancer cell line, suggesting that its presence, both in the 

gastrointestinal tract and in other organs, may be associated with a more 

aggressive tumoral phenotype.  

TFF1 is able to form homodimers, which are biologically more active 

than monomers, moreover it binds copper ions through its C-terminal tail and 

this interaction influences homodimer formation and its motogenic activity. 

Here, we demonstrated that copper is also essential for the invasive activity of 

TFF1. Interestingly, the chelation of copper is able to inhibit its invasive 

activity preventing the formation of the TFF1-copper complex, even in the 

presence of homodimers. This is a new step in the comprehension of TFF1 

mechanisms of action. Copper is a key component of many essential proteins 
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and there is growing evidence that Cu directly influences the ability of 

cancerous cells to invade and metastasize. In particular, it was reported the 

implication of the Cu-dependent proteins LOX (Lysyl oxidase), SPARC 

(secreted protein acidic and rich in cysteine), and MEMO (mediator of ErbB2-

driven cell motility) in cancer metastasis [174, 207, 208]. Blockhuys and 

coworkers demonstrated that also the Cu chaperone Atox1 plays an essential 

role in breast cancer cell migration [177]. Furthermore, serum and tumor 

copper levels are significantly elevated in a variety of cancers, including 

gastric cancer and copper depletion is a validated and useful strategy to 

target cancer. Understanding the importance and the biological relevance of 

TFF1-copper interaction in tumor development and progression may be of 

great utility for anti-tumor therapeutic approaches. 

Hypoxia is a characteristic feature of locally advanced solid tumors 

and, through activation of hypoxia-related pathways, cancer cells adapt to 

these condition acquiring a more aggressive tumor phenotype, resistance to 

chemotherapy, and poor clinical outcomes. Moreover, TFF1, TFF2 and TFF3 

gene expression has been demonstrated to be up-regulated in a HIF-1α-

dependent manner during hypoxia [199]. 

Here we reported that, in hypoxic condition, a significant increase of 

TFF1 expression is associated with hypoxia-related mesenchymal-metastatic 

process. TFF1 may act as a key signalling factor in modulating cell 

characteristics and behaviour in response to hypoxia. 

Furthermore, TFF1 is able to regulate its own expression, in normoxic 

as hypoxic condition, with an auto-induction mechanism also promoting a 

reduction of its promoter methylation. In gastric cell lines, the trefoil factors 

respond to auto- and cross-induction through cis-acting regulatory regions. It 

has been identified a TFF2/SP response element within the 823 bp upstream 

of TFF2 transcriptional start site [209]. Moreover, recently Sun and coworkers 

have identified the −1450 bp to −1400 bp fragment of the TFF3 promoter as 

functional region for its self-induction [210]. In a similar manner, we 

demonstrated that also TFF1 exhibits an auto-induction mechanism and we 

identified the element responsive to the auto-stimulation.  It is located within 

the 0.6kb (-583bp to -17bp) 5‘-flanking region of its promoter and is 

responsive to the presence of the protein and able to positively regulate the 

expression of TFF1 also during hypoxia and synergistically with HIF1-α 

induction. Additionally, we observed that TFF1 can regulate the methylation 

status of its promoter. We hypothesized that it can auto-activate its own 

expression regulating the density of methylated CpGs.  

The auto-induction mechanism can be a critical component for tumor 

progression, since it may result in elevated levels of TFF1 in the tumor 
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microenvironment through a positive feedback loop. In this way, it creates a 

―vicious cycle‖ in which the presence of TFF1 in the tumor will lead to an 

accumulation of protein making the tumor more aggressive. 

Finally, we investigated the relationship between TFF1 and the N-

formyl peptide receptors (FPR), in an attempt to identify the potential 

receptors of TFF1. FPRs are G-protein-coupled receptors that have a role in 

innate immunity and inflammation. Besides their involvement in inflammatory 

disorders, FPRs have been implicated in the regulation of tissue repair and 

angiogenesis. Recently it has been reported the involvement of FPRs in 

cancer. In particular, a positive association between a specific FPR1 

polymorphism and gastric cancer has recently been described [201]. 

Furthermore, Prevete N. and coworkers demonstrated that FPRs activation 

induces EMT, cell proliferation, survival and invasiveness of gastric cancer 

cells [202]. 

For the first time we reported a functional relationship between TFF1 

and FPRs. We found that exogenous TFF1 in AGS cells induces FPR 

expression and FPRs influence the pro-invasive activity of TFF1. This 

evidence supports our hypothesis of a ligand-receptor interaction between 

TFF1 and FPRs but further studies are needed to demonstrate the direct 

binding of these two proteins and the downstream molecular mechanisms. 

In conclusion, we have shown that TFF1 may be involved in the tumor 

progression of gastric cancer cells, stimulating invasion and EMT and 

modulating cell characteristics and behaviour in response to hypoxia. Our 

observations add a significant new understanding to the multifaceted role of 

TFF1 in gastric cancer, suggesting a possible oncogenic function of the 

peptide. Our data are in line with the clinical evidence of the association of 

TFF1 with advanced and metastatic GC, noting that the presence of the trefoil 

peptide promotes the invasion and EMT processes. Thus, gastric cancers in 

which TFF1 is not down-regulated can exploit the migratory and invasive 

functions of TFF1 for their progression. 

Moreover, copper influence on TFF1 action is a new finding in the 

intricate comprehension of functions attributed to this family of peptides. 
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