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Abstract

Genetic Algorithms (GAs) are a metaheuristic search technique belonging to the

class of Evolutionary Algorithms (EAs). They have been proven to be effective

in addressing several problems in many fields but also suffer from scalability

issues that may not let them find a valid application for real world problems.

Thus, the aim of providing highly scalable GA-based solutions, together with

the reduced costs of parallel architectures, motivate the research on Parallel

Genetic Algorithms (PGAs).

Cloud computing may be a valid option for parallelisation, since there

is no need of owning the physical hardware, which can be purchased from

cloud providers, for the desired time, quantity and quality. There are different

employable cloud technologies and approaches for this purpose, but they all

introduce communication overhead. Thus, one might wonder if, and possibly

when, specific approaches, environments and models show better performance

than sequential versions in terms of execution time and resource usage.

This thesis investigates if and when GAs can scale in the cloud using

specific approaches. Firstly, Hadoop MapReduce is exploited designing and

developing an open source framework, i.e., elephant56, that reduces the effort in

developing and speed up GAs using three parallel models. The performance of

the framework is then evaluated through an empirical study. Secondly, software

containers and message queues are employed to develop, deploy and execute

PGAs in the cloud and the devised system is evaluated with an empirical

study on a commercial cloud provider. Finally, cloud technologies are also

explored for the parallelisation of other EAs, designing and developing cCube,

a collaborative microservices architecture for machine learning problems.
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Abstract

I Genetic Algorithms (GAs) sono una metaeuristica di ricerca appartenenti

alla classe degli Evolutionary Algorithms (EAs). Si sono dimostrati efficaci nel

risolvere tanti problemi in svariati campi. Tuttavia, le difficoltà nello scalare

spesso evitano che i GAs possano trovare una collocazione efficace per la

risoluzione di problemi del mondo reale. Quindi, l’obiettivo di fornire soluzioni

basate altamente scalabili, assieme alla riduzione dei costi di architetture

parallele, motivano la ricerca sui Parallel Genetic Algorithms (PGAs).

Il cloud computing potrebbe essere una valida opzione per la parallelizza-

zione, dato che non c’è necessità di possedere hardware fisico che può, invece,

essere acquistato dai cloud provider, per il tempo desiderato, quantità e quali-

tà. Esistono differenti tecnologie e approcci cloud impiegabili a tal proposito

ma, tutti, introducono overhead di computazione. Quindi, ci si può chiedere

se, e possibilmente quando, approcci specifici, ambienti e modelli mostrino

migliori performance rispetto alle versioni sequenziali, in termini di tempo di

esecuzione e uso di risorse.

Questa tesi indaga se, e quando, i GAs possono scalare nel cloud utiliz-

zando approcci specifici. Prima di tutto, Hadoop MapReduce è sfruttato per

modellare e sviluppare un framework open source, i.e., elephant56, che riduce

l’effort nello sviluppo e velocizza i GAs usando tre diversi modelli paralleli. Le

performance del framework sono poi valutate attraverso uno studio empirico.

Successivamente, i software container e le message queue sono impiegati per

sviluppare, distribuire e eseguire PGAs e il sistema ideato valutato, attraverso

uno studio empirico, su un cloud provider commerciale. Infine, le tecnologie

cloud sono esplorate per la parallelizzazione di altri EAs, ideando e sviluppan-
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Abstract

do cCube, un’architettura a microservizi collaborativa per risolvere problemi

di machine learning.
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Software Products

The systems proposed in this thesis have been publicly shared, under open

source licences, at the following repositories.

elephant56

https://github.com/pasqualesalza/elephant56

elephant56 is a Genetic Algorithms (GAs) framework for Hadoop MapReduce

with the aim of easing the development of distributed GAs. It provides high

level functionalities which can be reused by developers, who no longer need to

worry about complex internal structures.

elephant56 is able to:

• run sequential GAs;

• run parallel GAs based on the global, grid and island models;

• report the execution time and population evolution;

• provide sample individual and genetic operator implementations, e.g.,

number sequence individuals, roulette wheel selection, single point cros-

sover.

The source code is shared under the terms of the Apache License, version 2.01.

1http://www.apache.org/licenses/LICENSE-2.0.html
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Software Products

AMQPGA

https://github.com/pasqualesalza/amqpga

AMQPGA is an implementation in Go of the master/slave parallelisation model

for Genetic Algorithms based on Docker and message queues.

The source code is shared under the terms of the MIT License2.

2https://opensource.org/licenses/MIT
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cCube

https://github.com/ccube-eml

cCube is a cloud microservices architecture for Evolutionary Machine Learning

(EML) classification.

It is composed of the following microservices:

• orchestrator

https://github.com/ccube-eml/orchestrator

It is a client for cCube that creates and provisions the compute units,

initiating and directing the symphony of microservices.

• scheduler

https://github.com/ccube-eml/scheduler

It accepts jobs scheduling through a REST interface.

• factorizer

https://github.com/ccube-eml/factorizer

It is a REST interface to the storage, currently PostgreSQL.

• worker

https://github.com/ccube-eml/worker

It provides the code for the learner, filter and fuser microservices as a

single container. An EML researcher intended to use cCube has to inject

the worker code into its execution environment.

• gpfunction

https://github.com/ccube-eml/gpfunction

An example of use is also provided: GP Function, a multi-objective Genetic

Programming (GP) strategy based on NSGA-II.

The source code is shared under the terms of the MIT License3.

3https://opensource.org/licenses/MIT
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Chapter 1

Introduction

Contents

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivations

Genetic Algorithms (GAs) are powerful metaheuristics used to find near-

optimal solutions to problems where the search for an optimal solution is

too expensive. GAs and other search-based metaheuristics have been proven

to be effective in addressing several problems in many fields. Nevertheless, it

has been highlighted that attractive solutions in the laboratory may not find

a valid application in practice due to scalability issues [27]. Thus, the aim of

providing highly scalable GA-based solutions together with the reduced costs

of parallel architectures motivate the research on Parallel Genetic Algorithms

(PGAs) [38, 58].

Indeed, GAs can be parallelised in different ways [38]. For instance, their

population-based characteristics allow evaluating in a parallel way the fitness

value of each individual, giving rise to a PGA called ‘global parallelisation

1



Chapter 1. Introduction

model’ or ‘master-slave model’. Parallelism can also be exploited to perform

genetic operators and thus to generate the next set of solutions. This model

is named as ‘island model’, also called ‘distributed model’ or ‘coarse-grained

parallel model’. Furthermore, these two strategies can be combined, giving rise

to a third form of parallelisation called ‘grid model’, also known as ‘cellular

model’ or ‘fine-grained parallel model’.

In the literature, different approaches and technologies have been investig-

ated and employed, ranging from multi-core systems to the many-core systems

on GPUs and cloud technologies [60, 58, 49, 46]. Cloud computing features

are very appealing. There is no need of owning the physical hardware since

it can be purchased as a service from cloud providers, for the desired time,

quantity and quality. In cloud computing, it is required that the distributed

application itself can handle scalability, load balancing and fault tolerance by

implementing the proper architecture and communication protocols. Based

on the fact that PGAs introduce communication overhead, one might wonder

if, and possibly when, specific approaches, environments and models show

better performance than sequential versions in terms of execution time and

resource usage. This thesis investigates if and when GAs can scale in the cloud,

exploring several approaches and technologies, e.g., Hadoop MapReduce and

software containers.

1.2 Objectives

Even though the main aim of Hadoop MapReduce is rapidly processing vast

amounts of data in parallel on large clusters of computing nodes, it represents

one of the most mature and employed technologies for parallel algorithms,

since it provides a ready to use distributed infrastructure that is scalable,

reliable and fault-tolerant. All these factors have made Hadoop very popular

both in industry and academia, also for PGAs. For this reason, in this thesis, it

is first addressed the problem of realising a framework for Hadoop MapReduce,

called ‘elephant56’, with the aim of easing the development of distributed GAs,

2



1.2. Objectives

simplifying the interaction with the Hadoop API and implementing the three

parallelisation models for PGAs. However, communication overhead could

make Hadoop worthless in scaling GAs. Therefore, to understand which model

performs better, an empirical study is conducted analysing the execution time,

speedup and overhead.

The results of the study showed some limitations of Hadoop. In particular,

a critical issue is the imposing presence of overhead due to the communication

with the data store, especially for some PGAs models. Moreover, even if in the

presence of a simplification through the use of a framework, the development

of the GAs is limited to the utilisation of the Java programming language and

also specific skills for setup and maintenance activities are expected. To cope

with these limitations, in this thesis is described the design and implementation

of another solution involving some technologies specially devised for the cloud,

such as software containers and message queues. The message queues, adapted

to the PGAs models, allows managing the communication and the execution of

tasks easily. The software containers, instead, let GAs developers use existing

implementations of genetic operators or external tools, without constraints on

the adopted programming languages. Indeed, the software containers provide

isolated environments where developers can include everything is needed

for computation. This is why, in this thesis, a development, deployment and

execution workflow is illustrated to suggest how to approach to the PGAs

scalability problem, using software containers in the cloud. Moreover, the

software containers can be quickly scheduled and replicated in a cloud cluster

of multiple nodes and, for this reason, the requirements of scalability and

fault-tolerance can be achieved. To understand if, and how much, software

containers and message queues are effective in scaling GAs, an empirical study

is conducted analysing the setup and execution time, speedup, and overhead

when used on cloud clusters of many nodes.

Finally, the approach of software containers and DevOps practices for PGAs

used for PGAs, are explored for the use with other Evolutionary Algorithms

(EAs). In particular, Evolutionary Machine Learning (EML) is investigated,

3



Chapter 1. Introduction

where EAs are employed to build and optimise predictive models. To create

accurate models, it is required that their training phase is based on a large

representative sample of the known data, i.e., the training set, thus method-

ologies that involve the parallelisation of the algorithms for EML are useful.

In this thesis, cCube is presented, an open source architecture that helps its

users to develop an application that deploys EML algorithms to the cloud. A

cCube EML application factors data, handles parameter configuration, tasks

parallel classifier training with different algorithms, and follows training by

filtering and fusing classifier results into a final ensemble model. In cCube

researchers can run different EML algorithms, their own as well as others’,

developed in different programming languages, without inserting any code

into them to accommodate cloud scaling. Instead of being monolithic, cCube

has a microservices architecture [37], i.e., a suite of small services (microservices),

each running its own process and communicating with lightweight protocols,

e.g., HTTP resource API and message queues. A cCube application is developed

and its deployment demonstrated on different clouds, utilising free resources,

describing its employment on two cloud providers, using them both separately

and together.

1.3 Contributions

The contributions of this thesis are mainly devoted to the research in the fields

of EAs, GAs, parallelisation and cloud computing. Interesting issues that affect

specific cloud approaches, i.e., Hadoop MapReduce and software containers,

have been addressed. These contributions can be summarised as follows:

• PGAs Using Hadoop MapReduce

– Design and develop the elephant56 framework, an open source pro-

ject supporting the development and execution of parallel GAs on

Hadoop MapReduce.

– Design the adaptation to MapReduce of the three PGAs models, i.e.,

4



1.4. Thesis Organisation

global, grid and island models.

– Compare the three PGAs and sequential models through an empir-

ical study, involving a cluster of machine on private cloud.

• PGAs Using Software Containers

– Design and realise a system to deploy containers of distributed GA

applications in cloud environments, by implementing the global

parallelisation model and exploiting Advanced Message Queueing

Protocol (AMQP).

– Provide a conceptual workflow which describes all the phases of

development, deployment and execution of distributed GAs.

– Carry out an empirical study to assess the effectiveness of the model

regarding the execution time, speedup, overhead and setup time.

• Exploring Software Containers for Other EAs

– Design, develop and demonstrate cCube, an open source microservices

architecture based on software containers that helps its users develop

an application to deploy EML algorithms to the cloud.

A number of scientific articles have been published during the years in

which this thesis has been developed that support and validate the impact of

these contributions on the scientific community and literature. Furthermore,

the majority of the software developed has been publicly shared in the form of

open source projects with the hope to trigger further research.

1.4 Thesis Organisation

This thesis document is structured in five chapters. The first chapter provides

the common and more general background needed to follow the rest of the

thesis. The parallelisation of GAs with regards to Hadoop MapReduce and

software containers, is addressed in the second and third chapters, respectively.

5



Chapter 1. Introduction

The software containers are explored for EML in the fourth chapter. Finally,

the last chapter recaps the main conclusions drawn throughout the thesis and

propose some future work.

• Chapter 2. Background

It introduces the background needed to follow the rest of the thesis. In

particular, it provides an overview of GAs, the possible ways given from

the literature to parallelise GAs, cloud computing and provision models.

• Chapter 3. PGAs Using Hadoop MapReduce

It addresses the problem of GAs parallelisation using the Hadoop MapRe-

duce platform. First, it described the related work and Hadoop MapRe-

duce platform as background. Then, elephant56 is presented, which is

the framework resulting from the design and implementation of the three

models to parallelise GAs, also providing an example of use for a simple

problem. The empirical study carried out to assess the effectiveness of

the PGAs and comparing the three models concludes the chapter.

• Chapter 4. PGAs Using Software Containers

It addresses the GA parallelisation using software containers and cloud

technologies, i.e., Docker, CoreOS. After a description of relevant re-

lated work, the main features of the employed cloud technologies are

summarised. Then, the proposed system and conceptual workflow for

deployment and execution of GAs in cloud environments are presented.

The empirical study carried out to assess the effectiveness of the proposed

approach concludes the chapter.

• Chapter 5. Exploring Software Containers for Other EAs

It explores software containers and other cloud technologies to address

the parallelisation of other EAs, including GAs, to solve machine learning

problems, i.e., EML. First, it provides a review of motivations and relevant

related. The cCube open source platform, resulting from the implement-

ation of the proposed system, is then described and demonstrated on

multiple cloud providers.

6



1.4. Thesis Organisation

• Chapter 6. Conclusions and Future Work

It contains a global review of the thesis work, revisiting the main con-

clusions drawn. The thesis objectives are then discussed in view of the

results obtained, briefly sketching and discussing possible future lines of

research.

7





Chapter 2

Background

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Parallel Genetic Algorithms . . . . . . . . . . . . . . . . . . . 14

2.4 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Introduction

This chapter contains the common and more general background needed to

follow the rest of the thesis. However, further background sections are also

provided in the other chapters, separating contents that are specific to the

contexts.

An overview of Genetic Algorithms (GAs) is provided in Section 2.2. The

possible ways given from the literature to parallelise GAs are describe in

Section 2.3, and Section 2.4 provides an overview of cloud computing and

provision models.

9



Chapter 2. Background

2.2 Genetic Algorithms

GAs, first introduced by Goldberg [24], are a metaheuristic search technique

belonging to the class of Evolutionary Algorithms (EAs). These, inspired by

natural evolution, create consecutive populations of individuals, considered as

feasible solutions for a given problem, to search for an optimal solution for the

problem under investigation guided by a fitness function. GAs simulate several

aspects of the Darwin’s ‘Theory of Evolution’ such as natural ‘selection’, sexual

‘reproduction’ and ‘mutation’.

A first overview about the ‘Search Algorithms’ typology, where GAs belong

to, is given in Section 2.2.1. Section 2.2.2 illustrates how GAs work.

2.2.1 Search Algorithms

Search Algorithms explore large or infinite spaces in order to look for an ap-

proximatively optimal solution, according to a cost function, i.e., the ‘objective

function’. This function assigns a numerical value to solutions and allow to

compare them . They can be mostly divided in two subcategories, namely Local

Search Algorithms and Global Search Algorithms [45].

By using a very small amount of memory, Local Search Algorithms start

from an initial solution to a better solution, according to the objective function.

If the problem is a problem of maximum, the best solution is the one for which

the value of the objective function is the highest peak; on the other hand, with

a problem of minimum, the best solution is the lowest valley. A possible issue

with local search is that it is possible to get stuck into a local maximum (or

minimum).

A simple algorithm of local search is the ‘Hill Climbing Algorithm’ (see

Algorithm 1), which starts from an initial solution exploring the local space of

the current solution. It chooses the next solution, if it exists, which maximizes

the value of the objective function. The algorithm stops when it reaches a local

maximum or when it exceeds a predetermined number of executions. It is

clear that the choice of the initial solution is determinant and there is no way

10



2.2. Genetic Algorithms

Algorithm 1 Hill Climbing Algorithm.

1: function HillClimbing(problem)
2: current← MakeNode(problem.initialState)
3: loop
4: neighbour← a highest-valued successor of current
5: if neighbour.value ≤ current.value then
6: return current.state
7: current← neighbour

to escape from a local maximum. For this reason, a mechanism to shake things

up is necessary.

If the problem of memory is not so extreme, it is possible to use a parallel

version of Hill Climbing called ‘Local Beam Search’. It begins with k randomly

generated solutions and, at each step, all the successors of all k solutions are

generated and collected in a complete list. Then, the algorithm chooses the

best k solutions from the previous and current generated solutions to continue

the search. At every generation, some useful information is passed among

parallel threads, so that the algorithm abandons unfruitful searches and uses its

resources for better solutions. Although execution time is better used, chances

of bumping into a local optimum are still as high as for Hill Climbing. A

variant called ‘Stochastic Beam Search’ provides the element of randomness

to exit from the possible block in a local optimum. Instead of choosing the

next best k solutions from candidate ones, it chooses them randomly, where

the probability of choosing a giving successor is an increasing function of its

value, with respect to the objective function.

Global Search Algorithms do not require an initial solution and their main

goal is to find the global optimum for the ‘objective function’. While Local

Search Algorithms promote the ‘intensification’ of solutions, Global Search

Algorithms promote mostly the ‘diversification’. The former aims at improving

the quality, in terms of objective function, of the solutions already explored

within the search space. The latter, allows to explore new areas of the solutions

space.

GAs can be considered both local and global, since they balance the tradeoff
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between intensification and diversification. GAs differ from their more tradi-

tional cousins in some points:

• work with a coding of the parameter set, not the parameters themselves;

• search from a population of solutions, not a single point;

• use the objective function information, not auxiliary knowledge;

• use probabilistic transition rules, not deterministic rules.

2.2.2 On the Origin of Genetic Algorithms

The ‘Theory of Evolution’ was developed by Charles Darwin in ‘On the Origin

of Species by Means of Natural Selection’ [10]. The central Darwin’s hypothesis

is that all organisms derive from one type or few types of simple primitive

organisms, having diversified in adapting themselves to different environments.

The ‘adaptation’ and the ‘diversification’ are explained with the combination of

two phenomena: the pressure applied by natural ‘selection’ and the ‘mutation’

in the context of a certain type of organisms. If a certain group of individuals

of the same species change so much the environment in which it lives, it could

accelerate the rate of evolution [6]. This means that the natural selection rewards

the mutation that make the individual more suitable to live in its environment.

All the features above mentioned are implemented in an original way in GAs.

In GAs the solutions are generated by two parents simulating the so-called

‘sexual reproduction’. Figure 2.1 shows a typical GA execution consisting of

the following steps:

a. GA begins with a set of k randomly generated solutions called ‘popula-

tion’. Each solution is called ‘individual’ and is represented as a string

over a finite alphabet. This string is called ‘chromosome’ and each symbol

‘gene’;

b. during the ‘fitness evaluation’, every individual is evaluated according to

the objective function, i.e., the ‘fitness function’ in this context;

12
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Figure 2.1: The execution of a GA.

c. with the ‘selection’, the individuals are put in couples according to some

criteria based on the fitness values;

d. the ‘crossover’ mixes individuals and produces two or more children

inheriting part of the genes from the parents;

e. with the ‘mutation’, when the ‘offspring’ is generated, each gene is

subjected to a random ‘mutation’ with a certain independent probability.

These steps, defined as ‘genetic operators’, are repeated over time for

a certain number of ‘generations’, until some stopping criteria hold. The

individual that gives the best solution in the final population is taken to define

the best approximation to the optimum for the problem under investigation.

The pseudo code of a possible version of GA is showed in Algorithm 2.

Algorithm 2 Genetic Algorithm.

1: function GeneticAlgorithm(problem)
2: population← GenerateInitialPopulation(problem)
3: repeat
4: EvaluateFitness(population)
5: population1 ← SelectParents(population)
6: population1 ← MakeCrossover(population1)
7: population1 ← ApplyMutations(population1)
8: population← population1
9: until TerminationCondition( )

10: return the best solution found

The analysis of this process suggests that the following design choices have

to be made for tailoring a GA to a given optimisation problem:

13
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1. define the chromosome for representing a solution (i.e., the ‘solution

encoding’) and the number of initial solutions (i.e., the ‘population size’);

2. choose the criterion (i.e., the ‘fitness function’) to measure the goodness

of a chromosome;

3. define the combination of genetic operators to explore the search space;

4. define the stopping criteria.

2.3 Parallel Genetic Algorithms

The following models have been proposed in literature [38] for Parallel Genetic

Algorithms (PGAs):

• ‘global model’, also called ‘master-slave model’;

• ‘grid model’, also called ‘cellular model’ or ‘fine-grained parallel model’;

• ‘island model’, also called ‘distributed model’ or ‘coarse-grained parallel

model’.

Figure 2.2: The PGA global model.

In the global model (Figure 2.2), there are two primary roles: a master

and some slaves. The former is responsible for managing the population (i.e.,

applying genetic operators) and assigning the individuals to the slaves. The

slaves are in charge to evaluate the fitness of each individual. This model does

14
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Figure 2.3: The PGA grid model.

not require any changes to the sequential GA since the fitness computation for

each individual is independent and thus can be achieved in parallel.

The grid model (Figure 2.3) applies the genetic operators only to portions

of the global population (i.e., ‘neighbourhoods’), obtained by assigning each

individual to a single node and by performing evolutionary operations also

involving some neighbours of a solution. The effect is an improvement of the

diversity during the evolutions, further reducing the probability to converge

into a local optimum. The drawback is requiring higher network traffic, due to

the frequent communications among the nodes.

In the island model (Figure 2.4), the initial population is split into several

groups and on each of them, typically referred to as ‘islands’, the GA proceeds

independently and periodically exchanges information between islands by

‘migrating’ some individuals from one island to another. The main advantages

of this model are that different sub-populations can explore different parts

of the search space and migrating individuals among islands enhances the

diversity of the chromosomes, thus reducing the probability to converge into a

local optimum.

These models show that the parallelisation of GAs is straightforward from a

conceptual point of view. However, setting up an actual implementation may be

not so trivial due to some common development difficulties that a programmer

must tackle in a distributed environment. Probably these limitations have
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Figure 2.4: The PGA island model.

slowed down the use of parallel GAs for software related tasks.

2.4 Cloud Computing

Cloud computing is a good alternative in the field of parallelisation. There is no

need of owning the physical hardware since it can be purchased as a service

in the form of virtual instances from cloud providers, for the desired time,

quantity and quality. The cloud capability of allocating on demand resources

meets many of the requirements of an effective distributed application. It offers

the ‘scalability’, i.e., the capability of enlarging the number of the computa-

tional units. It can reduce the execution time by splitting the computational

load between multiple nodes. It improves the reliability of the whole system

with regards to load balancing of both the requests and problem complexity

growth, i.e., load balancing. Furthermore, cloud computing can guarantee fault

tolerance in the case of physical or logical failures.

There are three provision models of cloud computing, as shown in Figure 2.5,
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Figure 2.5: The three cloud provision models.

in which the customers and cloud vendors play a different role and have

different responsibilities in the management of various aspects: Infrastructure as

a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). In

IaaS, the cloud vendor owns the hardware and network and it is responsible

for housing, running, and maintenance aspects. The customers are allowed

to use virtual infrastructures (i.e., cloud instances), which run on physical

resources but that can be created, reconfigured, resized, and removed in a few

moments based on the customers’ or distributed applications’ needs. The cloud

instances consist of virtual machines for which the customer has full control

of the environment. Before deploying a distributed application, the customer

needs to install an operating system and the software stack.

In PaaS, a platform is provided to customers that can run their applications

and business in a distributed environment, without having to deal with lower

level requirements such as configuration, security, and management aspects.

PaaS abstracts away all the aspects related to hardware decisions. Some

examples of PaaS are databases, development tools and web server services.

SaaS is the top layer of cloud computing. The cloud vendor supplies

software to customers in the form of a service such as e-mail clients, virtual
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desktop, and communication services.

Hadoop MapReduce can be run on IaaS if it is installed from scratch.

Indeed, it is possible to install Hadoop on a large variety of operating systems.

However, it is also possible to get Hadoop in the form of PaaS, meaning that

an Hadoop cluster is already installed and provided, and a computation job

can be directly run on it. As for software containers, it can be done a similar

discourse: containers can be run on Linux virtual machines (i.e., IaaS) and,

also, many vendors also provide containers allocation as a service (i.e., PaaS).

The specific uses of the cloud and technologies will be better detailed in the

following chapters of the thesis.
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3.1 Introduction

Hadoop MapReduce represents one of the most mature technologies to develop

parallel algorithms since it provides a ready to use distributed infrastructure

that is scalable, reliable and fault-tolerant [30]. It is able of rapidly processing

vast amounts of data in parallel on large clusters of computing nodes. All these

factors have made Hadoop very popular both in industry and academia. From
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an industry perspective, Hadoop has been widely adopted as an instrument

for big data processing, such as data mining, data analytics and search en-

gine [44]. Furthermore, Hadoop has been positively adopted from the research

community [44, 30].

Motivated by the success of Hadoop MapReduce in many fields, several

researchers have experimented in the last years its use to parallelise Genetic

Algorithms (GAs). Nevertheless, it is well known that parallel solutions in-

troduce communication overhead that could make Hadoop be worthless in

scaling GAs. One might wonder if, and possibly when, Hadoop shows better

performance than sequential versions in terms of execution time. Moreover,

a GA developer is interested in understanding which GA parallel model can

be more effective. Indeed, GAs can be parallelised in different ways [38] (see

Section 2.3). The work described in this chapter aims at analysing and compare

of the three models using Hadoop MapReduce.

First, to implement the three Parallel Genetic Algorithms (PGAs), the ele-

phant56 framework [18, 47] was first developed, which is an open source project

supporting the development and execution of parallel GAs. The source code is

shared at the address https://github.com/pasqualesalza/elephant56, under

the terms of the Apache License, version 2.01. It provides high level function-

alities that can be reused by developers, who no longer need to worry about

complex internal structures. In particular, it offers the possibility of distrib-

uting the GAs computation over a Hadoop MapReduce cluster of multiple

computers.

Then, to compare the three PGAs models using MapReduce, an empirical

study was carried out by applying them to a challenging software engineering

problem that has been already addressed with a sequential GA. In particular,

GAs was used to search for a suitable configuration of Support Vector Machines

(SVMs) for inter-release fault prediction. Indeed, it has been shown that

the estimation accuracy of SVMs, and more in general of machine learning

approaches, heavily depends on the selection of a suitable configuration [21, 51,

1http://www.apache.org/licenses/LICENSE-2.0.html
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13, 50]. However, a complete search of all possible combinations of parameters

values may not be feasible due to the large search space. To this aim, the

use of GAs has already been proposed to configure SVMs for software fault

prediction [13, 28, 48] but the combination of the two techniques may affect the

scalability of the proposed approach when dealing with large software projects.

For this reason, the parallelisation of GAs may be exploited to address these

scalability issues. The choice of this as a benchmark problem was motivated

also by the consideration that it is possible to have different problem instances

by varying the size of the input datasets thus allowing to experiment different

computational loads.

The three PGA solutions and the sequential version (i.e., Sequential Genetic

Algorithm (SGA)) were compared to understand their effectiveness in terms of

execution time and speedup. Then, the behaviour of the three parallel models

in relation to the overhead produced using Hadoop MapReduce were studied.

To give a more machine-independent measure of the algorithms, also the

absolute number of fitness evaluations as a measure of the computational effort

is provided. The empirical study was carried out executing the experiments

simultaneously on a cluster of 150 Hadoop nodes. The experiments were

conducted by varying the size of the problems, which consisted of exploiting

three datasets with different sizes and by varying the cluster sizes. A total of

30 runs were executed for every single experiment of 300 generations each,

with a total running time of about 120 days. Finally, the estimation of costs

for the major commercial cloud provider, when executing the same GAs of

the proposed experiments, is provided. The study allowed to identify the best

model and highlighted some critical aspects.

The chapter is organised as follows. Section 3.2 describes the related work

while Section 3.3 first illustrates Hadoop MapReduce platform as background.

Section 3.4 presents elephant56 and the employed approach to parallelise GAs

by exploiting the Hadoop MapReduce platform. In Section 3.5 is given an

example of use of elephant56 for a simple problem. Sections 3.6 and Section 3.7

report, respectively, the design and the results of the empirical study carried
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out to assess the effectiveness of the PGAs. Finally, Section 3.8 contains some

concluding remarks.

3.2 Related Work

This section reports most relevant work that inspired and guided this study,

highlighting similarity and differences. The main interest was about the solu-

tions involving the MapReduce paradigm but also some important work,

employing different technologies to run PGAs, is reported.

3.2.1 Parallel Genetic Algorithms Based on MapReduce

In Table summarises 3.1 the work related to the use of MapReduce for PGAs.

Jin et al. [32] were the first to use MapReduce to parallelise GAs. They

implemented their specific version of MapReduce on the .Net platform and

realised a parallel model, which can be considered as a sort of the grid model

described in Section 2.3. The mapper nodes compute the fitness function and

the selection operator chooses the best individuals on the same machine. A

single reducer applies the selection on all the best local individuals received

from the parallel nodes. The computation continues on the master node where

crossover and mutation operators are applied to the global population. The

authors highlighted the worrying presence of overhead and the best efficacy in

case of heavy computational fitness work.

The first work exploiting Hadoop as a specific implementation of MapRe-

duce is by Verma et al. [54]. The implemented model is the grid model where

the mappers execute the fitness evaluation and the unpaired reducers the other

genetic operators for the individuals they receive as input randomly. They

studied the scalability factor on a large cluster of Hadoop nodes and they found

a clear decrease in performance only when the number of requested nodes sur-

passed the number of physical CPUs available on the cluster. They confirmed

that GAs can scale on multiple nodes, especially with large population size.
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Table 3.1: Relevant related work about scaling GAs using MapReduce.

Title Year
PGA Model Experimentation

Results
Global Grid Island Hardware Problems

MRPGA: An Extension of MapReduce for
Parallelizing Genetic Algorithms [32]

2008 X Private cluster DLTZ4, DLTZ5 and
the Aerodynamic Air-
foil Design Simula-
tion

MapReduce suits the GAs parallelisation,
demonstrated by experimenting the grid
model, but the paradigm needs to be adap-
ted to PGAs models

Scaling Genetic Algorithms Using MapRe-
duce [54]

2009 X Private cluster OneMax Hadoop MapReduce is able to reduce the
execution time of GAs by using a PGA
based on the global model on multiple
nodes for large populations

Scaling Populations of a Genetic Algorithm
for Job Shop Scheduling Problems Using
MapReduce [31]

2010 X Academic cloud and
Amazon EC2

Job Shop Scheduling Hadoop is effective when applied to prob-
lems with intensive computation work or
with large populations using the PGAs
based on the global model, due to a very
imposing presence of overhead

A Library to Run Evolutionary Algorithms
in the Cloud Using MapReduce [17]

2012 X Amazon EC2 Genetic Program-
ming Regression
problem of dimen-
sionality two

The effort of developing parallel EAs is sim-
plified with the use of libraries/frameworks

A Parallel Genetic Algorithm Based on Ha-
doop MapReduce for the Automatic Gener-
ation of JUnit Test Suites [12]

2012 X Private cluster Automatic JUnit Test
Suites Generation

A hard real-world problem can be solved
by PGAs based on the global model and
HDFS is probably the main culprit of the
overhead

Towards Migrating Genetic Algorithms for
Test Data Generation to the Cloud [14]

2013 X Google App Engine
MapReduce

Automatic Test Data
Generation

The use of the cloud can heavily outper-
form the performances of a local server
when using a PGA based on the global
model against a sequential GA

Adapting MapReduce Framework for Ge-
netic Algorithm with Large Population [34]

2013 X Private cluster Traveling Salesman
Problem

HDFS and Hadoop orchestration opera-
tions are the main reasons for overhead
when executing a PGA based on the global
model

A Parallel Genetic Algorithms Framework
Based on Hadoop MapReduce [18]

2015 X Amazon EC2 Feature Subset Selec-
tion (FSS)

The FSS problem can be effectively solved
by using a framework to define and execute
PGAs based on the island model on Ha-
doop MapReduce23
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Huang and Lin [31] exploited Hadoop MapReduce to implement the global

model of GAs to solve the Job Shop Scheduling problem on a large private grid

of slow machines in order to measure the performance in terms of quality

at varying the number of nodes. They also exploited an Amazon EC2 cluster

of faster machines to analyse the performance in terms of execution time.

They found very imposing the presence of overhead, especially during the

Hadoop job orchestration, and suggested the use of Hadoop MapReduce in GAs

parallelisation in the presence of large populations and intensive computation

work for the fitness evaluation.

As for an example of application of these methodologies to real-world

problems, Di Gironimo et al. [12] were the first to propose a parallel GA

for JUnit test suite generation based on the global parallelisation model. A

preliminary evaluation of the proposed algorithm was carried out aiming at

evaluating the speedup with respect to a sequential GA. The obtained results

highlighted that using the PGA allowed for saving over the 50 % of the time. The

algorithm was developed exploiting Hadoop MapReduce and its performance

were assessed on a standard cluster. In analysing the overhead time, they

considered the Hadoop distributed filesystem (i.e., Hadoop Distributed File

System (HDFS)) as the main cause.

Di Martino et al. [14] also investigated how to migrate GAs to the cloud in

order to speed up the automatic generation of test data for software projects.

They were the first to design the adaptation of three parallelisation models

to MapReduce paradigm for automatic test data generation. However, they

experimented only the solution based on global model taking advantages of

the Google App Engine framework. Preliminary results showed that, unless for

toy examples, the cloud can heavily outperform the performances of a local

server.

Khalid et al. [34] used the island model to solve the Travelling Salesman

Problem on the Hadoop MapReduce platform. They focused their attention on

the scalability factor of the population size. They noticed that the population in

a large solutions space, as the one of their problem, can be scaled to multiple

24



3.2. Related Work

nodes and different sizes. Using a single job for each GA generation and meas-

uring performances, they reckoned the time to orchestrate Hadoop MapReduce

jobs and HDFS operations as the main reasons for overhead.

Fazenda et al. [17] were the first to consider the parallelisation of Evolu-

tionary Algorithms (EAs) on the Hadoop MapReduce platform in the general

purpose form of a library, in order to simplify the developing effort for parallel

EA implementations. The work has been further enhanced by Sherry et al. to

produce FlexGP [49, 53]. It is probably the first large scale Genetic Program-

ming (GP) system that runs on the cloud implemented over Amazon EC2 with

a socket-based client/server architecture.

As can be seen from the Table 3.1, no work realised a comparison of all the

three models using Hadoop MapReduce.

3.2.2 Parallel Genetic Algorithms

In the literature many proposals of PGAs using different approaches, methods

and technologies can be found. It is important to note that not all the reported

work is strictly related to the traditional models compared in this study. How-

ever, the following studies describe approaches and results that influenced this

work.

Zheng et al. [60] addressed a research question similar to the one of this

study, focusing on the global and the island models, using a multi-core (i.e.,

CPUs) and a many-core (i.e., GPUs) systems. Their parallel algorithm did

not use the MapReduce paradigm. However, also in this case, the island

model provided better results with respect to the global in terms of quality and

execution time. Even though they found the system based on GPUs is faster

than the CPUs one, they observed that an architecture with a fixed number

of parallel participants and a strict parallelisation schema, such as GPU cores,

might perform worse in terms of quality of solutions than another with more

parallel nodes and the possibility of communicating (e.g., multi-threading).

They stated that a distributed architecture is worth for GAs parallelisation.

As a first attempt of employing cloud technologies, Merelo Guervós et al.
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devised SofEA [41], a model for Pool-based EAs in the cloud, an evolutionary

algorithm mapped to a central CouchDB object store. SofEA provides an asyn-

chronous and distributed system for individuals evaluations and genetic oper-

ators application. Later, they defined and implemented the EvoSpace Model [23],

consisting of two main components: a repository storing the evolving popula-

tion and some remote workers, which execute the actual evolutionary process.

The study shows how EAs can scale on the cloud and how the cloud can make

EAs effective in a real world environment, speeding up the running time and

lowering the costs.

3.3 Background

In this Section some background about Hadoop MapReduce in the literature to

parallelise GAs is given.

3.3.1 Hadoop MapReduce

MapReduce is a programming paradigm whose origins lie in the old functional

programming. It was adapted by Google [11] as a system for building search

indexes, distributed computing and large scale databases. It was originally

written in C++ language and was made as a framework, in order to simplify the

development of its applications. It is expressed in terms of two distinct func-

tions, namely ‘map’ and ‘reduce’, which are combined in a divide-and-conquer

way where the map function is responsible for handling the parallelisation

while the reduce collects and merges the results. In particular, a master node

splits the initial input into several pieces, each one identified by a unique key

and distributes them via the map function to several slave nodes (i.e., mappers),

which work in parallel and independently from each other performing the

same task on a different piece of input. As soon as each mapper finishes its job

the output is identified and collected via the reducer function. Each mapper

produces a set of intermediate key/value pairs, which are exploited by one or

more reducers to group together all the intermediate values associated with
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the same key and to compute the list of output results.

Hadoop is one of the most famous products of the Apache Software Foundation

family. It was created by Doug Cutting and has its origins in Apache Nuts, an

open source web search engine. In January 2008 Hadoop was made a top-

level project at Apache Software Foundation, attracting to itself a large active

community, including Yahoo!, Facebook and The New York Times. At present,

Hadoop is a solid and valid presence in the world of cloud computing. Hadoop

includes an implementation of the MapReduce paradigm and the HDFSs, which

can be run on large clusters of machines. Currently, Apache introduced a new

version of MapReduce (MapReduce 2.0), moving the Hadoop platform on a

bigger one also known as Yet Another Resource Negotiator (YARN). Not only

is it possible to execute distributed MapReduce applications, but YARN is also

comprehensive of a large family of other Apache distributed products.

Hadoop provides some interesting features: scalability, reliability and fault-

tolerance of computation processes and storage. These characteristics are

indispensable when the aim is to deploy an application to a cloud environment.

Moreover, Hadoop MapReduce is well supported to work not only on private

clusters but also on a cloud platform (e.g., Amazon Elastic Compute Cloud) and

thus is an ideal candidate for high scalable parallelisation of GAs.

Hadoop MapReduce exploits a distributed file system (an open source

implementation of the Google File System), named HDFS, to store data as

well as intermediate results for MapReduce jobs. The Hadoop MapReduce

interpretation of the distributed file system was conceived to increase large-data

availability and fault-tolerance by spreading copies of the data throughout the

cluster nodes, to achieve both lower costs (for hardware and RAID disks) and

lower data transfer latency between the nodes themselves.

A Hadoop cluster is allowed to accept MapReduce executions, i.e., ‘jobs’,

in a batch fashion. Usually, a job is demanded from a master node, which

provides both the data and configuration for the execution on the cluster. A job

is intended to process input data and produce output data exploiting HDFS

and is composed of the following main phases, also described in Figure 3.1:
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Split: the input data (a) is usually in the form of one or more files stored in

the HDFS. The splits of key/value pairs called ‘records’ are distributed to the

mappers available on the cluster (b). The function, where k1 and v1 indicate

data types, is described as:

input→ list (k1, v1)S

Map: this phase is distributed on different nodes (c). For each input split, it

produces a list of records:

(k1, v1)S → list (k2, v2)M

Also, a ‘Combine’ phase (d) can be set before the Partition for local reducing.

Partition: it is in charge of establishing to which reduce node sending the map

output records (e):

k2 → reduceri

Reduce: after a Shuffle phase (f) that sort the records, the Reducer (g) processes

the input for each group of records with the same key and stores the output

into the HDFS (h):

(k2, list (v2))M → list (k3, v3)R

A developer is expected to extend some particular Java classes to define

each job phase.

3.4 System Design

This section describes the design of elephant56 [18, 47], the framework support-

ing the development and execution of parallel GAs using Hadoop MapReduce.

Hadoop distributes software applications (i.e., ‘jobs’) on a cluster of nodes

by using the Java Virtual Machine (JVM) containers for the computation and

the HDFS for the passage of data. A Hadoop cluster is usually composed of
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one master node (i.e., ‘ResourceManager’ for the Hadoop terminology), which

manages the work of the other computation slave nodes (i.e., ‘NodeManagers’).

Hadoop MapReduce is strictly related to the HDFS, which provides scalable and

reliable data storage, by replication of data blocks all over the machines involved

in the cluster. The file system is managed by the ‘NameNode’ component

controlling the slave ‘DataNodes’. elelephant56 is in charge of managing all

the above aspects, hiding them to the end user.

In the following how the sequential version (SGA) was implemented is

first explained and then how MapReduce elements were mapped to the PGAs

parallel models. The main challenge during the design phase was to limit the

communication and synchronisation overhead of parallel tasks. There was the

need of choose where to put the synchronisation barriers, namely the points

in which the algorithm needs to wait for the completion of all parallel tasks

before continuing with the computation. Generally speaking, the ‘Amdhal’s

law’ states that the speedup of a parallel program is limited by the sequential

portion of the program, which means it is important to reduce as well as

possible the overhead to gain execution time by parallelising. The positions of

the synchronisation barriers are deeply bonded to the implemented models and

thus it was needed to take them into consideration case-by-case to realise each

of the three following parallel model adaptations. Moreover, further details of

implementation considered as essential to understand the rest of the work are

provided.

3.4.1 Sequential Genetic Algorithm

There are several possible versions of GA execution flows. The parallel adapt-

ations are built on the base of the following SGA implementation, which is

composed of a sequence of genetic operators repeated generation by generation,

as described in Algorithm 3.

The execution flow starts with an initial population initialised with the

Initialization function (1), which can be either a random function or a spe-

cifically defined one based on other criteria. Then, at the first generation, the
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Algorithm 3 The Sequential Genetic Algorithm (SGA).

1: population← Initialization(populationSize)
2: for i← 1, n do
3: if i = 1 then
4: for individual ∈ population do
5: FitnessEvaluation(individual)
6: elitists← Elitism(population)
7: population← population − elitists
8: selectedCouples← ParentsSelection(population)
9: for (parent1, parent2) ∈ selectedCouples do

10: (child1, child2) ← Crossover(parent1, parent2)
11: offspring← offspring ∪ {child1} ∪ {child2}

12: for individual ∈ offspring do
13: Mutation(individual)
14: for individual ∈ offspring do
15: FitnessEvaluation(individual)
16: population← SurvivalSelection(population, offspring)
17: population← population ∪ elitists

genetic operator applied is the FitnessEvaluation (3–5), which evaluates and

assign a fitness value to each individual, letting them be comparable. The

Elitism operator (5–6) allows to add some individuals directly to the next

generation (17). The ParentsSelection operator (8) selects the couples of

parents for the Crossover phase based on their the fitness values. The mixing

of parent couples produces the offspring population (9–11), which is submitted

to the Mutation phase (12–13) in which the genes may be altered. The Surviv-

alSelection applies a selection between parents and offspring individuals (16)

to select the individuals that will take part of the next generations.

It is worth nothing that in each generation a second FitnessEvaluation

is performed for the offspring individuals (14–15) in order to allow the Sur-

vivalSelection operation. From the second generation on, the individuals in

the population will be already evaluated during the previous generations, thus

requiring only the FitnessEvaluation of the offspring (14–15).

The PGAs described in the following differ from SGA in the way they

parallelise the above operators and by adding another new genetic operator in

the case of the island model (i.e., the ‘migration’).
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3.4.2 Global Model

The implemented PGA for the global model on MapReduce (i.e., PGAglobal) has

the same behaviour of the sequential version, but it resorts to parallelisation

for the fitness evaluation. Figure 3.2 shows the flow of the model. The master

node, also referred as Driver, initialises a random population and writes it

into the HDFS. During each generation, it spreads the individuals to the slave

nodes in the cluster when:

1. the initial population is evaluated for the first time;

2. the generated offspring needs to be evaluated in order to apply the

SurvivalSelection to both parents and children.

Following the definition of the Algorithm 3, during the first generation two jobs

are required for the parents and offspring populations evaluation. From the

second generation on, a job is required for the offspring population only (see

Section 3.4.1 for more details). Thus, the total number of jobs required is equal

to the number of generations plus one. The Driver also executes sequentially

the other genetic operators on the entire population that has been evaluated.

. . .

FITNESS EVALUATION

Generation 1

. . .

Generation 2

. . .

ELITISM
PARENTS SELECTION
CROSSOVER
MUTATION
SURVIVAL SELECTION

Mapper 1

Mapper n

Driver Driver

Figure 3.2: The flow of Hadoop MapReduce implementation for PGAglobal.

More in details, the slave nodes in the cluster perform only the fitness

evaluation operator. For all the three models, the mappers receive the records

in the form: (individual, destination). The ‘destination’ field is used only

by the other models so that it will be mentioned later. The reduce phase
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was deliberately disabled, because there is no need of moving individuals

between nodes. After the map phase, the master reads back the individual and

continues with the other remaining genetic operators, considering the whole

current population.

3.4.3 Grid Model

The implemented PGA for the grid model on MapReduce (i.e., PGAgrid) com-

putes the genetic operators only to portions of the population called ‘neigh-

bourhoods’. In the grid model, these portions are chosen randomly during the

initialisation (Figure 3.3) and the number of jobs is the same as the number

of generations. It is worth noting that the neighbourhoods never share any

information with each other. Therefore, the offspring produced during the

previous generation will stay in the same neighbourhoods also in the next

generation.
. . .

. . .

FITNESS EVALUATION SHUFFLE

Generation 1

. . .

Generation 2

. . . . . .

ELITISM
PARENTS SELECTION
CROSSOVER
MUTATION
SURVIVAL SELECTION

Mapper 1

Mapper n

Reducer 1

Reducer n

Driver

Figure 3.3: The flow of Hadoop MapReduce implementation for PGAgrid.

The Driver has the task of randomly generating a sequence of neigh-

bourhoods destinations for the individuals in the current population. These

destinations are stored into the record as the value fields so the destinations

are known a priori. The parallelisation was exploited in two phases:

1. the mappers initialise a random population during the first generation

and compute the fitness evaluation;

2. the partitioner sends the individuals to the correspondent neighbourhood
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(i.e., the reducer). The reducers compute the other genetic operators and

write the individuals in the HDFS.

In this case, it was decided to fix the number of neighbourhoods to the

number of mappers, and so the number of reducers, to study the behaviour of

the model regarding the parallelisation through our empirical study.

3.4.4 Island Model

The implemented PGA for the island model on MapReduce (i.e., PGAisland)

acts similarly to the one for grid model because it operates on portions of

the global population called ‘islands’. Each island executes whole periods of

generations on its assigned portions, independently from the other islands

until a migration occurs (Figure 3.4). It means there is an established migration

period, which can be defined as the number of consecutive generations before

migration. Since it is possible to run groups of subsequent generations (i.e.,

‘periods’) independently, a MapReduce job for each period was exploited.

. . .

. . .

FITNESS EVALUATION
ELITISM
PARENTS SELECTION
CROSSOVER
MUTATION
SURVIVAL SELECTION MIGRATION

Generations Period 1

. . .

Generations Period 2

. . . . . .

Mapper 1

Mapper n Reducer n

Driver

Reducer 1

Figure 3.4: The flow of Hadoop MapReduce implementation for PGAisland.

In Hadoop, the numbers of mappers and reducers are not strictly correlated,

but they were coupled to represent them as islands. The mappers were used

to execute the generation periods and at the end of the map phase a function

applies the migration criterion with which every individual will have a specific

destination island. That is the time in which the second part of the output

records is employed. Then the partitioner can establish where to send indi-
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viduals and the reducer is used only to write into the HDFS the individuals

received for its correspondent island.

Due to the generations groups, the synchronisation barrier is put after every

migration and a job is needed for each period.

3.4.5 Data Serialisation

Hadoop is able to move data between nodes through sequences of write and

read operations onto HDFS. The raw default serialisation of objects, in our case

the individuals, is inefficient if compared to Avro2, a modern data serialisation

system from the same creator of Hadoop Doug Cutting. In addition to having

a flexible data representation, it is optimised to minimise the disk space and

communication through compression. For this reason, the performance of the

implementations was tuned by using Avro.

In order to analyse the behaviour of the implemented models during our

experiments, a reporter component giving the details of executions was added.

Indeed, the interest was about both genetic trend of population and execution

time described in detail in a fine-grained manner. The reporter component

stores data into the HDFS with a non-invasive and asynchronous working so

that the execution time of experiments is never influenced by extra operations.

3.4.6 elephant56 Architecture

In this section the architecture of elephant56 is described. Conceptually, two

levels of abstraction were devised:

1. the ‘core’ level, which manages the communication with the underlying

Hadoop MapReduce platform;

2. the ‘user’ level, which allows the developer to interface with the frame-

work.
2https://avro.apache.org
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core.common The core.common package contains two classes: the Individu-

alWrapper class, a wrapper class for both individual and fitness value objects

exploited by elephant56 to serialisation purposes; the Properties class, which

allows the distribution of the properties defined by the developer among the

different nodes. The Properties class involves an XML serialisation process for

the distribution and some methods that ease the storage of properties values.

core.input The core.input package contains the implementations for the Ha-

doop input operations. The NodesInputFormat assigns a group of individuals

(i.e., a MapReduce split) to a specific node. As mentioned above, the serial-

isation is made by using Avro, thus each split corresponds to a single binary

file stored into the HDFS. The information about the split are stored using the

PopulationInputSplit class and read with the PopulationRecordReader class

which deserialises the Avro objects into Java objects for the slave nodes.

core.output The core.output allows serialising the Java objects produced

during the generations and storing them into the HDFS. This is done by using

the classes NodesOutputFormat and PopulationRecordWriter.

core.generator The core.generator package (Figure 3.7) is composed of the

GenerationsPeriodExecutor class that implements the SGA. The specialisation

of this class allows the distribution of GAs according to the different parallel

models.

The mapper class of Hadoop is exploited by overriding the following

methods:

1. setup(), which is invoked by Hadoop only at the beginning of the map

phase and reads the configuration for the current generation together

with the provided user properties;

2. map(), which is invoked for each input MapReduce record and stores all

the input individuals into a data structure;
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operators. Some sample default implementations are included into the sample

package, such as: sequences of primitive Java types, number fitness values, the

random initialisation of sequences, a single point crossover, and the roulette

wheel selection.

3.5 Usage

In this section how to use elephant56 through a running example based on the

simple problem of ‘OneMax’ (also know as ‘BitCounting’), which consists in

maximising the number of 1 in a bit string, is explained.

The OneMax problem can be formally described as finding a string ~x =

{x1, x2, . . . , xN}, with xi ∈ {0, 1}, that maximises the following equation:

F (~x) =
N

∑
i=1

xi (3.1)

To solve this problem with GAs, the individuals can be represented as bit

strings and the above equation can be used as fitness function. It is also needed

to define the genetic operators. elephant56 allows the developer to define each

of these elements by extending the classes of the framework. Because there is

an underlying distributed platform (i.e., Hadoop MapReduce), many of the

objects are encapsulated into some wrapper objects which ease the serialisation

process.

In elephant56, an individual can be defined by extending the class Indi-

vidual, which requires at least the implementation of the following serialisation

method:

1 public abstract class Individual implements Cloneable {

2 public abstract Object clone() throws CloneNotSupportedException;

3 public abstract int hashCode();

4 }

For the OneMax example, a bit string chromosome can be defined adapting

a list of boolean elements:
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1 public class BitStringIndividual extends Individual {

2 private List<Boolean> bits;

3

4 public BitStringIndividual(int size) {

5 bits = new ArrayList<>(size);

6 }

7

8 public void set(int index, boolean value) {

9 bits.set(index, value);

10 }

11

12 public boolean get(int index) {

13 return bits.get(index);

14 }

15

16 public int size() {

17 return bits.size();

18 }

19 · · ·

20 }

The second important element to define is the fitness value, namely an

object quantifying the result of the fitness function evaluation. This is possible

by extending the FitnessValue class, which also requires to be comparable:

1 public abstract class FitnessValue implements Comparable<

↪→ FitnessValue>, Cloneable {

2 public abstract int compareTo(FitnessValue other);

3 public abstract Object clone() throws CloneNotSupportedException;

4 public abstract int hashCode();

5 }

For the example, the fitness value is an integer since it is needed to store for

each solution how many bits are set to 1:

1 public class IntegerFitnessValue extends FitnessValue {

2 private int number;

3
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4 public IntegerFitnessValue(int value) {

5 number = value;

6 }

7

8 public int get() {

9 return number;

10 }

11

12 @Override

13 public int compareTo(FitnessValue other) {

14 if (other == null)

15 return 1;

16 Integer otherInteger = ((IntegerFitnessValue) other).get();

17 Integer.compare(number, otherInteger);

18 }

19 · · ·

20 }

Both the Individual and FitnessValue objects are encapsulated into a

wrapper class called IndividualWrapper.

Next, there is the need to implement the fitness function by extending the

FitnessEvaluation class:

1 public class FitnessEvaluation<IndividualType extends Individual,

↪→ FitnessValueType extends FitnessValue> extends GeneticOperator

↪→ <IndividualType, FitnessValueType> {

2 · · ·

3 public FitnessValueType evaluate(IndividualWrapper<IndividualType,

↪→ FitnessValueType> wrapper);

4 }

For OneMax, the fitness function (Equation 3.1) consists of simply counting

the number of bit set to 1 in the bit string:

1 public class OneMaxFitnessEvaluation extends FitnessEvaluation<

↪→ BitStringIndividual, IntegerFitnessValue> {

2 · · ·

3 @Override
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4 public IntegerFitnessValue evaluate(IndividualWrapper<

↪→ BitStringIndividual, IntegerFitnessValue> wrapper) {

5 BitStringIndividual individual = wrapper.getIndividual();

6 int count = 0;

7 for (int i = 0; i < individual.size(); i++)

8 if (individual.get(i))

9 count++;

10 return new IntegerFitnessValue(count);

11 }

12 }

At this point, it is the moment to define the genetic operators (i.e., crossover,

mutation, selection). The procedure is similar to the one used for the fitness

function, thus the code for the superclasses extended are omitted.

Before applying the genetic operators, the first step is to create an initial

population. This can be done by randomly creates the individuals as follows:

1 public class RandomBitStringInitialization extends Initialization<

↪→ BitStringIndividual, IntegerFitnessValue> {

2 · · ·

3 private int individualSize;

4 private Random random;

5

6 public RandomBitStringInitilization(. . ., Properties userProperties,

↪→ . . .) {

7 · · ·

8 individualSize = userProperties.getInt(INDIVIDUAL_SIZE_PROPERTY)

↪→ ;

9 random = new Random();

10 }

11

12 @Override

13 public IndividualWrapper<BitStringIndividual, IntegerFitnessValue>

↪→ generateNextIndividual(int id) {

14 BitStringIndividual individual = new BitStringIndividual(

↪→ individualSize);

15
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16 for (int i = 0; i < individualSize; i++)

17 individual.set(i, random.nextInt(2) == 1);

18

19 return new IndividualWrapper(individual);

20 }

21 }

It is worth noting that some properties can be distributed through the

Properties object, which is filled on the master node and available from the

constructor methods of the genetic operators when executed in parallel. In the

example, it has been used to read the size of the bit strings.

After the fitness evaluation has happened, elitism and parents selection

follow. The choice is to define them by using the BestIndividualsElitism and

RouletteWheelParentsSelection classes, already provided by the framework.

Of course, the developer may choose to define other elitism and/or parent

selection strategies by extending the classes Elitism and ParentsSelection,

respectively.

The crossover operator needs a specific implementation to manage bit string

splits. A single point crossover can be defined as follows:

1 public class BitStringSinglePointCrossover extends Crossover<

↪→ BitStringIndividual, IntegerFitnessValue> {

2 · · ·

3 private Random random;

4

5 public BitStringSinglePointCrossover(. . .) {

6 · · ·

7 random = new Random();

8 }

9

10 @Override

11 public List<IndividualWrapper<BitStringIndividual,

↪→ IntegerFitnessValue>> cross(IndividualWrapper<

↪→ BitStringIndividual, IntegerFitnessValue> wrapper1,

↪→ IndividualWrapper<BitStringIndividual, IntegerFitnessValue>

↪→ wrapper2, . . .) {
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12 BitStringIndividual parent1 = wrapper1.getIndividual();

13 BitStringIndividual parent2 = wrapper2.getIndividual();

14

15 cutPoint = random.nextInt(parent1.size());

16

17 BitStringIndividual child1 = new BitStringIndividual(parent1.

↪→ size());

18 BitStringIndividual child2 = new BitStringIndividual(parent1.

↪→ size());

19

20 for (int i = 0; i < cutPoint; i++) {

21 child1.set(i, parent1.get(i));

22 child2.set(i, parent2.get(i));

23 }

24

25 for (int i = cutPoint; i < parent1.size(); i++) {

26 child1.set(i, parent2.get(i));

27 child2.set(i, parent1.get(i));

28 }

29

30 List<IndividualWrapper<BitStringIndividual, IntegerFitnessValue

↪→ >> children = new ArrayList<>(2);

31

32 children.add(new IndividualWrapper<>(child1));

33 children.add(new IndividualWrapper<>(child2));

34

35 return children;

36 }

37 }

The function cross selects a random cut point and builds two new children

by mixing the chromosomes of the parents.

Thereafter, a random mutation function is implemented:

1 public class BitStringMutation extends Mutation<BitStringIndividual,

↪→ IntegerFitnessValue> {

2 · · ·

3 private Random random;
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4

5 public BitStringMutation(. . .) {

6 · · ·

7 mutationProbability = userProperties.getDouble(

↪→ MUTATION_PROBABILITY_PROPERTY);

8 random = new Random();

9 }

10

11 @Override

12 public IndividualWrapper<BitStringIndividual, IntegerFitnessValue>

↪→ mutate(IndividualWrapper<BitStringIndividual,

↪→ IntegerFitnessValue> wrapper) {

13 BitStringIndividual individual = wrapper.getIndividual();

14

15 for (int i = 0; i < individual.size(); i++)

16 if (random.nextDouble() <= mutationProbability)

17 individual.set(i, !individual.get(i));

18

19 return wrapper;

20 }

21 }

This mutation operator, as defined above, mutates each gene according to a

mutation probability that is distributed as a property value.

The survival selection is the last operator to be applied to produce the

next offspring. In this example, the Roulette Wheel Selection is used, already

implemented by the RouletteWheelSurvivalSelection class provided in the

framework. Of course, the developer may choose to define his/her own survival

selection strategy by extending the class SurvivalSelection.

Finally, it is possible to register all the defined classes in the Driver as

follows:

1 public class App {

2 public static void main(String[] args) {

3 · · ·

4 driver.setIndividualClass(BitStringIndividual.class);
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5 driver.setFitnessValueClass(IntegerFitnessValue.class);

6

7 driver.setInitializationClass(RandomBitStringInitialization.

↪→ class);

8 driver.setInitializationPopulationSize(POPULATION_SIZE);

9 userProperties.setInt(INDIVIDUAL_SIZE_PROPERTY, INDIVIDUAL_SIZE)

↪→ ;

10

11 driver.setElitismClass(BestIndividualsElitism.class);

12 driver.activateElitism(true);

13 userProperties.setInt(NUMBER_OF_ELITISTS_PROPERTY,

↪→ NUMBER_OF_ELITISTS);

14

15 driver.setParentsSelectionClass(RouletteWheelParentsSelection.

↪→ class);

16

17 driver.setCrossoverClass(BitStringSinglePointCrossover.class);

18

19 driver.setSurvivalSelectionClass(RouletteWheelSurvivalSelection.

↪→ class);

20 driver.activateSurvivalSelection(true);

21

22 driver.setUserProperties(userProperties);

23 · · ·

24 driver.run();

25 · · ·

26 }

27 }

The selection between sequential and parallel models is possible by specify-

ing one of the Driver class specialisations.

Assuming that a Hadoop MapReduce cluster is already set up, the code

can be packed in a single JAR file, including the elephant56 dependency, and

executed with the standard Hadoop launch method.
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3.6 Empirical Study Design

The main aim of this work was to understand if PGAs based on Hadoop

MapReduce can be an effective solution to improve the scalability of GAs.

Therefore, it was first needed to verify if, and possibly when, PGAs allow

to get a better execution time compared to the sequential version (i.e., SGA).

Moreover, there was the interest in understanding which PGA model is more

effective among the global, grid and island models. Thus, the following research

question was defined:

RQ Is the use of PGAs based on Hadoop MapReduce worth using against SGA and

which PGA model performs better?

To address the RQ, a software engineering problem of configuring the

SVMs for inter-release fault prediction was considered as a benchmark. The

problem takes as input a dataset composed of software project components

data, including the information about being faulty or not. The output is a

configuration for SVMs optimised for the dataset at hand. The choice of this

problem was motivated by the fact that it allows to assess the PGAs scalability

considering different problem sizes by simply varying the input datasets size.

Furthermore, the problem was already addressed by Di Martino et al. [13, 48]

using a sequential approach. To verify the effectiveness of PGAs against SGA,

the Di Martino et al.’s solution was employed. Even if the main aim was

to exploit GAs for SVMs configuration as a benchmark problem in terms

of execution time, it was also wanted to verify that the resulting predictive

performance of output SVMs was not negatively affected when the produced

by GAs executed in parallel (see Section 3.6.4). Moreover, the costs of the

execution of the experimentation on a potential cloud infrastructure were

estimated, based on the pricing of the major commercial cloud providers.

Details about the problem and GAs configuration are provided in Sec-

tion 3.6.1. The datasets employed for the empirical study are described in

Section 3.6.2. To understand the effectiveness of PGAs and compare the three

parallel models, the applied experimental method described in Section 3.6.3
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together with several evaluation criteria, namely the execution time, speedup,

overhead, computational effort, predictive performance and cloud costs (see

Section 3.6.4). The hardware employed to run the experiments is reported in

Section 3.6.5. Finally, Section 3.6.6 analyses some threats to validity that may

have affected the experimentation.

3.6.1 Using GAs to configure SVMs for Fault Prediction

The use of machine learning techniques to predict software faults has received

increasing attention in the last years [1, 26, 39]. The research is motivated by the

need to improve the efficiency of software testing, allowing project managers

to better decide how to allocate resources to test the system, thus concentrating

their efforts on fault-prone components. Nevertheless, it has been shown that

the predictive performance of these techniques heavily depends on the selection

of a suitable configuration [13, 50].

The use of GAs has been proposed to configure SVMs for software fault

prediction [13, 28, 48, 16, 25]. The idea of exploiting GAs to configure SVMs

for fault prediction is based on the observation that such problem can be

formulated as an optimisation problem: between the possible configurations,

finding the one which leads to the optimal SVMs performance. However,

the combination of the two techniques (i.e., GAs and SVMs) may affect the

scalability of the proposed approach when dealing with large software projects.

This motivated the choice of using this problem as a benchmark for parallelising

GAs.

In the experiments, the technique proposed by Di Martino et al. [13] were

employed, which has been also adopted in other work [48, 28]. The technique

works as follows: a solution to the problem is an SVMs configuration consisting

of n parameters (with n determined by the kernel function). As for the kernel

function, the widely used Radial Basis Functions (RBF) was employed , which

has two parameters: C (the soft margin parameter) and γ (the radius of the

RBF kernel). The GA chromosome is thus composed by two genes, for C and γ,

whose values vary in the ranges 0.000 001 to 0.01 and 8 to 32 000, respectively.
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Because the possible values for C and γ are both doubles, the solutions space

of the possible SVMs configurations is enlarged remarkably.

To compute the fitness value of a chromosome representing an SVMs

configuration, SVMs was executed with such a configuration thus obtaining

the fault predictions. Such predictions are then evaluated using F-measure [57]

as a performance criterion. The F-measure is defined as:

F-measure = 2
precision ∗ recall

precision + recall
(3.2)

The fitness function operates by applying a 5-fold cross-validation on a

common training set and taking the average F-measure value as the final fitness

value for each individual. The same setting used in previous work [13, 48, 28]

both for the SGA and the PGAs was employed:

1. 200 individuals for the starting population;

2. 300 generations;

3. FitnessEvaluation consisting of a 5-fold cross-validation on a common

training set and taking the average F-measure value;

4. Elitism of 1 individual;

5. ParentsSelection, using Roulette Wheel algorithm;

6. single point Crossover, with probability of 0.5;

7. Mutation, with probability of 0.2;

8. SurvivalSelection, using the Roulette Wheel algorithm.

In the case of the grid model, a number of neighbourhoods equal to the cluster

size was used. As for the island model, there was also the need to identify

the migration period and the number and selection policy of migrants. The

migration period was set to 30 applying a ring topology exchange, whereas the

number of migrants to 5 % of the best individuals per island.
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3.6.2 Input Datasets

The data from the PROMISE repository was exploited, which contains several

datasets for fault prediction, choosing the software projects with more than

two releases. Thus, three datasets were retained for a total of 10 releases: Log4j

(vv. 1.0, 1.1, 1.2), Lucene (vv. 2.0, 2.2, 2.4), POI (vv. 1.5, 2.0, 2.5, 3.0). Each

release contains a set of components (i.e., Java classes) described in terms of

Chidamber and Kemerer (CK) metrics [8], Number of Public Methods (NPM)

and Lines of Code (LOC). More details about those software projects and their

fault data collection can be found in the work by Jureczko et al. [33].

These three datasets were chosen because they represent three different

degrees of computational load for the fitness evaluation when the SVMs are

built and validated through cross-validation. Indeed, a preliminary benchmark

of the execution time of the fitness evaluation on the average of 30 runs and

300 generations, showed that Lucene and POI datasets are 2.7× times and

9.5× times slower than Log4j respectively. Therefore, this allowed to study the

behaviour of PGAs on three problem instances of various size identified as

‘small’ for Log4j, ‘medium’ for Lucene and ‘large’ for POI.

3.6.3 Experimental Method

The RQ was addressed by comparing the performance of the PGAs based on

each of the three parallel models explained in Section 3.4 and the SGA.

To observe the effectiveness of the considered techniques for inter-release

fault prediction, the typical setting where data from the former releases are

exploited to build the model to predict faults for a new release was used [43].

In particular, given a software project having n releases, the data collected

in the first n− 1 releases of the project was used as the training set and the

data collected for the last release as the test set. This allowed to simulate the

situation that typically arises in real software development contexts, where a

project manager can learn some phenomena and/or patterns from previous

releases and exploit this knowledge for a more conscious management of the
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development of a subsequent version. The fault data for the employed training

and test sets are reported in Table 3.2 together with the percentage of faulty

and non faulty components.

Table 3.2: Existence of faulty components in the training and test sets, where
each component is a Java class and a fault corresponds to the presence of at
least one reported bug.

Dataset
Training set classes Test set classes

Faulty Non faulty Faulty Non faulty

Log4j 71 (29 %) 173 (71 %) 189 (92 %) 16 (8 %)
Lucene 235 (53 %) 207 (47 %) 203 (60 %) 137 (40 %)
POI 426 (46 %) 510 (54 %) 281 (64 %) 161 (36 %)

All the parallel models were executed on three different cluster config-

urations (i.e., C2, C4, C8) characterised by a different number of nodes (see

details in Section 3.6.5). For each combination of model, dataset and cluster

configuration, 30 runs were executed. Thus, a total of 900 runs consisting of

3 · 3 · 3 · 30 = 810 runs for PGAs and 3 · 30 = 90 runs for SGA were executed.

3.6.4 Evaluation Criteria

To compare the performance of the employed algorithms, the best practice

in reporting the results with PGAs, identified by Luque and Alba [38], were

followed. Performance was evaluated them both in terms of execution time,

speedup, overhead and computational effort, as detailed in the following.

The predictive performance was also evaluated in terms of precision, recall,

accuracy and F-measure to verify that it was not negatively affected by the

possible improvement of the execution time. Furthermore, the costs of the

same executions on commercial cloud providers infrastructures were estimated.

To cope with the stochastic nature of GAs and hardware executions, some

statistical tests, described in the following, were performed.
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Execution Time

The execution time was measured in milliseconds (ms) using the system clock.

As a performance indicator of the whole execution, the execution time achieved

by executing all the generations of SGA and PGAs were compared. The partial

times were distinguished into computation and overhead times only in a second

step, to quantify the time spent for parallel communication.

Speedup

The speedup is defined as the ratio of the sequential execution time to the

parallel execution time. There are two types of speedup, i.e., the ‘strong’ and

the ‘weak’ [38]. The strong speedup compares the parallel run time against

the best so-far sequential algorithm. It was not possible to apply it since the

intention was to compare the models on the Hadoop MapReduce platform,

rather than comparing against different technologies. Moreover, it was not

possible to find any implementation providing the same algorithms as the ones

proposed.

Instead, the weak speedup compares the parallel algorithm developed by

the researchers against their own sequential version. It was calculated by

dividing the total amount of time that SGA required by the amount of time

required by the PGA. The achieved speedup was compared with respect to

the ideal speedup. It is worth noting that the ideal speedup is equal to the

number of the employed parallel nodes and corresponds to the situation when

the sequential execution time is perfectly split among multiple nodes. The ideal

speedup is rarely achieved in practice due to the presence of overhead, but it is

usually taken into consideration as an upper limit to compare the performance

of parallel algorithms.

According to the best practice by Luque and Alba [38], when using the

weak speedup it is important that the evaluated parallel algorithms should

compute solutions having ‘similar’ accuracy as the sequential ones. For this

reason, in addition to providing the weak speedup, the predictive performance
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of the solutions was computed and reported at the end of the executions.

Overhead

To understand the reasons that prevent the PGAs to have a speedup near to

the ideal one on the Hadoop MapReduce platform, the overhead for each

execution was quantified. The time of each execution was considered and

distinguished between overhead and computation times. In the following, the

adopted method to determine these times is described.

The method allowed us to generalise the times of different multiple nodes

but related to the same phase (e.g., ‘map computation’), with a proper start

and finish time. The aim was to assign to each MapReduce job an initialisation,

computation and finalisation time for both map and reduce phases.

Mapper 1 Reducer 1

Mapper 2 Reducer 2

Map

Initialisation

Map

Computation

Reduce

Computation

Reduce

Finalisation

Map

Finalisation

Reduce

Initialisation

Figure 3.10: The time measurement method for multiple nodes.

Figure 3.10 shows one possible situation of a MapReduce job including a

reduce phase. It is the case of the grid and island model, but not of the global

model that has only a map phase. In those cases, the ‘map finalisation’ time is

measured in the same way as for the ‘reducer finalisation’ time. As can be seen

from the figure, the ‘map initialisation’ time is considered as the required time

to let the first mapper begin its computation. The ‘map computation’ time is

the time between the first mapper start and the last mapper finish time. The

time between the last mapper and the first reducer is referred both as ‘map

finalisation’ and ‘reduce initialisation’ time. Furthermore, the time after the

last ending reducer is referred as the ‘reduce finalisation’ time.
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Computational Effort

While the execution time can be exploited to evaluate the actual speed of the

computation on a specific infrastructure, the computational effort can give a

more machine-independent measure of the algorithms [38]. In the field of

metaheuristics, the computational effort is in general measured by the number

of evaluations corresponding to the number of points of the solution space

visited. To this aim, the absolute number of fitness evaluations was computed

and reported on average of the total number of runs. Because the number of

generations was fixed, this measure depends only on the characteristics of the

used model and cluster size.

Moreover, the eval/s measure for each of the models was also calculated.

Even though this measure is strictly dependent on the specific infrastructure

and dataset involved, it offers a better view of how a certain PGA can act

when solving a problem with a certain computational load, i.e., whose fitness

evaluation function requires a certain execution time, and the same degree of

parallelisation.

Predictive Performance

To evaluate the predictive performance, four widely used measures (i.e., pre-

cision, recall, accuracy and F-measure [57]) were employed. These measures

leverage on the concepts reported in the confusion matrix of Table 3.3 and are

defined as follows.

The precision is the ratio between the number of components classified as

TP and the number of those classified as TP or FP:

precision =
TP

TP + FP
(3.3)

The recall is the ratio between the number of components classified as TP

and the number of those classified as TP or FN:

recall =
TP

TP + FN
(3.4)
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The accuracy is the ratio between the number of components correctly

predicted (i.e., classified as TP and TN) and the total number of components

(i.e., the sum of TP, TN, FP, FN):

accuracy =
TP + TN

TP + TN + FP + FN
(3.5)

The F-measure is a measure that provides an indication of a balance between

correctness and completeness expressed as the harmonic mean of precision

and recall as described above in Equation (3.2).

Table 3.3: The confusion matrix for fault prediction.

Predicted

Faulty Non faulty

Actual
Faulty True Positive (TP) False Negative (FN)
Non faulty False Positive (FP) True Negative (TN)

Cloud Costs Estimation

Even if the experimentation was executed on a private infrastructure, as de-

scribed in Section 3.6.5, it is also possible to run a Hadoop cluster on any

commercial cloud infrastructure. A likely cost for the same execution that was

actually performed was estimated, based on the pricing tables of the most used

cloud providers. The estimation was based on the selection of cloud instances,

i.e., the virtual machines, with a hardware configuration at least equal to the

one employed in the experiments. Table 3.4 reports the configurations and

pricing of the instances selected for the estimation.

Table 3.4: Commercial cloud configurations and pricing used for the costs
estimation.

Provider Instance CPUs RAM (GB) Storage (GB) Price (USD/h)

Amazon EC2 t2.medium 2 4 20 0.11
DigitalOcean 2GB 2 2 40 0.03
Microsoft Azure A2 2 3.5 60 0.07
Google Cloud Platform n1-standard-2 2 7.5 40 0.10
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Statistical Tests

30 runs were executed in order to cope with the inherent randomness of

dynamic execution time and GAs, and the average results reported.

Then, the non-parametric inferential statistical test, i.e., the Wilcoxon Test [9],

was executed as recommended in the literature [3, 29]. The Wilcoxon signed

rank test verifies, as the null hypothesis, if two considered populations have

identical distributions. It is particularly useful when no assumptions about the

normality of the distributions are possible, as for this case. For all the statistical

tests, a probability of 5 % of committing a Type-I-Error was accepted.

Furthermore, the Vargha-Delaney Â12 effect size [52] was used. The Â12

test is an estimation of the probability that the algorithms have against each

other in obtaining better results regarding the execution time and predictive

performance measures. When two algorithms are compared and their results

are equivalent, Â12 = 0.5. Â12 > 0.5 means that, on the average over the 30

runs, the first algorithm obtains better results than the second one with which

is compared.

3.6.5 Hardware

In order to execute the experiment, a private OpenStack cloud platform was

employed, making possible to virtualise the machines needed to compose the

Hadoop clusters.

Table 3.5: Virtual machines configuration.

Type Feature Value

Hardware Architecture 64 bit
CPUs 2
RAM 2 GB
Storage 20 GB

Software Operating System CentOS 6.6
Hadoop Hortonworks 2.2
Weka 3.7.11
LibSVM 1.0.6
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To run a fair experiment, the same configuration was used for each virtual

machine (see Table 3.5). It is worth noting that any hardware component was

simulated, thus the virtualisation of OpenStack was only used as a way of

equally divide the hardware infrastucture. The partial resource (e.g., CPU cores,

RAM) were completely dedicated to the running instances so that they could

have fully used them without overlapping with others.

Table 3.6: Cluster configurations exploited by PGAs, where the master node
drives the GA execution and the slave nodes compute the genetic operators in
parallel.

Name Master nodes Slave nodes Total nodes

C2 1 2 3
C4 1 4 5
C8 1 8 9

In this empirical study, 3 different types of Hadoop clusters were used,

summarised in Table 3.6. SGA was executed on a single node, while the

clusters C2, C4, and C8 for PGAs . The clusters are organised in 1 master node

and a number of slaves equal to the parallelisation degree. There was the need

to separate the master node from the slaves because the implementations have

a sequential part and it was decided to dedicate slave nodes only to parallel

purposes. Moreover, the underneath Hadoop platform requires the execution

of many daemons and the resources of just the slaves would not have been

enough. Hadoop was installed through the Hortonworks distribution, which

eased the orchestration and monitoring of the clusters.

Multiple experiments were run simultaneously on a total of 150 OpenStack

virtual machines. With 30 runs for every single experiment of 300 generations

each, the empirical study took about 120 days for a total of 900 runs.

3.6.6 Threats to Validity

Threats to construct validity concern the relationship between the theory behind

the experiments and the observations. In order to alleviate possible threats

related to measurement, the GAs execution time was quantified using the
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system clock, because it represents the speed of a technique to the end-user.

In addition, the computational effort as machine-independent measure of the

algorithms is also provided.

Threats to internal validity concern any confounding factors that could

influence the results. A possible threat is related to the randomness due to the

use of GAs and variable network/computational load on the nodes at the time

of the experiment. Indeed, GAs are intrinsically random and such a threat was

mitigated by executing all the experiments 30 times and presenting the average

results [3, 29]. Furthermore, both the network and computational nodes may

have been biased by the randomness of events and the multiple runs were

intended to alleviate these issues as well.

Threats to external validity concern the generalisability of the findings out-

side the scope of this study. An external threat is due to the fact that the three

PGAs models were benchmarked for a specific software engineering task, i.e.,

configuring SVMs using GA for fault prediction. Besides being an example

of a real-world application of GAs, this prediction task was chosen because it

exhibits scalability issues when dealing with large training dataset, therefore

constituting a suitable benchmark for the three different parallel architectures.

To this end, three datasets with different sizes and characteristics were investig-

ated. It is worth noting that the configuration chose for the GAs is not exclusive

and other possible parameters sets could have used, aiming at improving the

predictive performance of models. However, since the main interest was in the

comparison of the execution time performance, the most trivial configuration

for all the parallelisation models was selected. Moreover, for the grid model

it was chosen to use a number of neighbourhoods equal to the cluster size.

Although it could have lowered the predictive performance but the execution

time. On the one hand, if a minor number had been used, it would not have

been possible to exploit the full computational capacity of the parallel nodes.

On the other hand, using a major number of neighbourhoods, the population

would have always split among the same number of mappers for the fitness

evaluation. Then, the parallel reducers would have received more than one
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neighbourhood each and processed them sequentially but with less individuals

than the other case.

3.7 Results

In this section, the results of the study are presented. The comparison between

SGA and PGAs with respect to the execution time is reported in Section 3.7.1.

The analyses of the speedup and overhead are reported in Section 3.7.2 and Sec-

tion 3.7.3, respectively. Section 3.7.4 reports the computational effort whereas

the predictive performance is analysed in Section 3.7.5. Section 3.7.6 concludes

with the estimation of cloud costs.

3.7.1 Execution Time

Figure 3.11 shows the boxplots of the achieved execution times over 30 runs,

while Table 3.7 shows the mean, standard deviation and median values of the

same times.

It is possible to observe that the execution for each of the considered clusters

of PGAisland is always faster than each SGA execution for all the considered

datasets. Every parallelisation model performs better than SGA for the POI

dataset, while for the other two datasets PGAglobal and PGAgrid are slower than

SGA, regardless of the parallel nodes used.

The Wilcoxon test results reported in Table 3.8 confirm the above obser-

vations. The execution time of PGAisland (using C2, C4 and C8 clusters) is

significantly lower (p-value < 0.05) than the one of SGA on all the considered

datasets, while the execution time of PGAglobal and PGAgrid is significantly

lower than SGA only on the biggest dataset (i.e., POI) and higher on the other

two.

The Vargha-Delaney test results (see Table 3.8) confirm (Â12 = 0) that

PGAisland achieves better results in terms of execution time than SGA for all

the 30 runs, three cluster configurations and datasets. Furthermore, for the POI

dataset, all the three PGAs performs better than SGA. This can be explained by
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the fact that for small instances of the problem the overhead due to the data

accesses and communication between the nodes is higher than the time needed

to compute the fitness function.

As for the comparison between parallel models, the boxplots of Figure 3.11

and the complete Wilcoxon and Vargha-Delaney tests results, reported in

Tables 3.9, 3.10 and 3.11, show that the PGAgrid model is the slowest model

and significantly different from the other two models.
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Table 3.7: Execution time (hh:mm) achieved by executing 30 times SGA and
PGAs on the considered datasets.

Model

Execution time (hh:mm)

Log4j Lucene POI

Mean SD Median Mean SD Median Mean SD Median

SGA 01:00 00:31 00:47 02:42 00:08 02:40 09:33 00:24 09:23

PGAC2
global 02:42 00:20 02:45 03:32 00:02 03:31 07:22 00:27 07:20

PGAC4
global 02:17 00:09 02:15 02:43 00:05 02:43 04:56 00:18 04:47

PGAC8
global 02:02 00:07 02:01 02:34 00:10 02:31 03:35 00:12 03:32

PGAC2
grid 03:29 00:22 03:36 04:27 00:12 04:27 08:22 00:45 08:24

PGAC4
grid 03:08 00:15 03:04 03:32 00:08 03:31 05:46 00:23 05:42

PGAC8
grid 02:46 00:05 02:46 02:57 00:08 02:59 03:22 00:03 03:22

PGAC2
island 00:34 00:04 00:34 01:38 00:07 01:42 05:09 00:20 05:02

PGAC4
island 00:18 00:00 00:18 00:48 00:01 00:48 02:37 00:04 02:36

PGAC8
island 00:09 00:00 00:09 00:23 00:00 00:23 01:13 00:02 01:13

Table 3.8: Wilcoxon test (p-values) and Vargha-Delaney (Â12) results for the
comparison of the execution time between PGAs and SGA over 30 runs on the
considered datasets.

Model =
Log4j Lucene POI

p-value Â12 p-value Â12 p-value Â12

PGAC2
global SGA <0.001 0.961 <0.001 1.000 <0.001 0.000

PGAC4
global SGA <0.001 0.939 0.465 0.556 <0.001 0.000

PGAC8
global SGA <0.001 0.921 0.008 0.218 <0.001 0.000

PGAC2
grid SGA <0.001 0.992 <0.001 1.000 <0.001 0.083

PGAC4
grid SGA <0.001 0.998 <0.001 1.000 <0.001 0.000

PGAC8
grid SGA <0.001 0.969 <0.001 0.884 <0.001 0.000

PGAC2
island SGA <0.001 0.000 <0.001 0.000 <0.001 0.000

PGAC4
island SGA <0.001 0.000 <0.001 0.000 <0.001 0.000

PGAC8
island SGA <0.001 0.000 <0.001 0.000 <0.001 0.000
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Table 3.9: Wilcoxon test (p-values) and Vargha-Delaney (Â12) results for the comparison of the execution time achieved by SGA
and PGAs over 30 runs on the Log4j dataset.

Model
SGA PGAC2

global PGAC4
global PGAC8

global PGAC2
grid PGAC4

grid PGAC8
grid PGAC2

island PGAC4
island PGAC8

island

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

SGA − 0.500 <0.001 0.039 <0.001 0.061 <0.001 0.079 <0.001 0.008 <0.001 0.002 <0.001 0.031 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC2
global <0.001 0.961 − 0.500 <0.001 0.886 <0.001 0.984 <0.001 0.050 <0.001 0.054 0.124 0.441 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC4
global <0.001 0.939 <0.001 0.114 − 0.500 <0.001 0.927 <0.001 0.000 <0.001 0.000 <0.001 0.022 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC8
global <0.001 0.921 <0.001 0.016 <0.001 0.073 − 0.500 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC2
grid <0.001 0.992 <0.001 0.950 <0.001 1.000 <0.001 1.000 − 0.500 <0.001 0.706 <0.001 0.982 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC4
grid <0.001 0.998 <0.001 0.946 <0.001 1.000 <0.001 1.000 <0.001 0.294 − 0.500 <0.001 0.977 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC8
grid <0.001 0.969 0.124 0.559 <0.001 0.978 <0.001 1.000 <0.001 0.018 <0.001 0.023 − 0.500 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC2
island <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500 <0.001 1.000 <0.001 1.000

PGAC4
island <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500 <0.001 1.000

PGAC8
island <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500
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Table 3.10: Wilcoxon test (p-values) and Vargha-Delaney (Â12) results for the comparison of the execution time achieved by SGA
and PGAs over 30 runs on the Lucene dataset.

Model
SGA PGAC2

global PGAC4
global PGAC8

global PGAC2
grid PGAC4

grid PGAC8
grid PGAC2

island PGAC4
island PGAC8

island

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

SGA − 0.500 <0.001 0.000 0.465 0.444 0.008 0.782 <0.001 0.000 <0.001 0.000 <0.001 0.116 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC2
global <0.001 1.000 − 0.500 <0.001 1.000 <0.001 1.000 <0.001 0.000 0.730 0.517 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC4
global 0.465 0.556 <0.001 0.000 − 0.500 0.001 0.801 <0.001 0.000 <0.001 0.000 <0.001 0.101 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC8
global 0.008 0.218 <0.001 0.000 0.001 0.199 − 0.500 <0.001 0.000 <0.001 0.000 <0.001 0.063 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC2
grid <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000 − 0.500 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC4
grid <0.001 1.000 0.730 0.483 <0.001 1.000 <0.001 1.000 <0.001 0.000 − 0.500 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC8
grid <0.001 0.884 <0.001 0.000 <0.001 0.899 <0.001 0.937 <0.001 0.000 <0.001 0.000 − 0.500 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC2
island <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500 <0.001 1.000 <0.001 1.000

PGAC4
island <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500 <0.001 1.000

PGAC8
island <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500
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Table 3.11: Wilcoxon test (p-values) and Vargha-Delaney (Â12) results for the comparison of the execution time achieved by SGA
and PGAs over 30 runs on the POI dataset.

Model
SGA PGAC2

global PGAC4
global PGAC8

global PGAC2
grid PGAC4

grid PGAC8
grid PGAC2

island PGAC4
island PGAC8

island

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

SGA − 0.500 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 0.917 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC2
global <0.001 0.000 − 0.500 <0.001 1.000 <0.001 1.000 <0.001 0.130 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC4
global <0.001 0.000 <0.001 0.000 − 0.500 <0.001 1.000 <0.001 0.000 <0.001 0.048 <0.001 1.000 0.043 0.329 <0.001 1.000 <0.001 1.000

PGAC8
global <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500 <0.001 0.000 <0.001 0.000 <0.001 0.826 <0.001 0.000 <0.001 1.000 <0.001 1.000

PGAC2
grid <0.001 0.083 <0.001 0.870 <0.001 1.000 <0.001 1.000 − 0.500 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000 <0.001 1.000

PGAC4
grid <0.001 0.000 <0.001 0.000 <0.001 0.952 <0.001 1.000 <0.001 0.000 − 0.500 <0.001 1.000 <0.001 0.879 <0.001 1.000 <0.001 1.000

PGAC8
grid <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.174 <0.001 0.000 <0.001 0.000 − 0.500 <0.001 0.000 <0.001 1.000 <0.001 1.000

PGAC2
island <0.001 0.000 <0.001 0.000 0.043 0.671 <0.001 1.000 <0.001 0.000 <0.001 0.121 <0.001 1.000 − 0.500 <0.001 1.000 <0.001 1.000

PGAC4
island <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500 <0.001 1.000

PGAC8
island <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 − 0.500
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3.7.3 Overhead

To further investigate the behaviour of the parallel implementations on the

Hadoop MapReduce platform, the execution time of PGAs was analysed with

a more fine-grained scale.

Figure 3.13 shows the computation and overhead times for each PGA and

dataset combination, where the overhead is intended as the additional time

other than the computational, generally due to communication and distribution

platform tasks. The stacked bars represent the mean over 30 runs. It is worth

noting that overhead time in Hadoop MapReduce corresponds to the sum of

the overhead times of multiple jobs. As it possible to notice from the figure,

for the Log4j and Lucene datasets on global and grid models the overhead time

surpasses the computation time. As mentioned above, in the presence of heavy

computational work (i.e., POI dataset), global and grid models are worth using.

The island model is always light in terms of overhead time due to the lower

number of jobs involved: where the global and grid models have one job for

each generation, the island model executes groups of generations (i.e., periods)

in single jobs.

Also, the overhead time per job was analysed. As an example, Figures 3.14,

3.15 and 3.16 report the mean execution time for each job over 30 runs and all

the cluster configurations for the three dataset.

It is possible to observe that the partial overhead times are almost constant

(i.e., the standard deviation is very small) over the different jobs. What makes

the island model win against other models is basically the fact that it has fewer

jobs than others. Moreover, it is worth noting that not all the parallel model

implementations have both map and reduce phases and not all of them behave

in the same way (see Section 3.4 for details). The map initialisation phase is

common to the three parallel models and it takes a similar amount of time: this

is due to the fact that each time a new job is requested, Hadoop MapReduce

spends some time to orchestrate the cluster. However, the resulting execution

time in the case of the reducer communication phases, which is present only

in the grid and island models, is much less than the ones for the map phase.
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execution behaviours collected by several layers of abstraction: Hadoop MapRe-

duce is executed on Java Virtual Machines (JVMs) as a shared process on cloud

virtual machine instances in a shared OpenStack environment. Although there

is not strong statistical evidence, it was observed that, on average, the overhead

times seem to be independent of the dataset and cluster size.

3.7.4 Computational Effort

Table 3.14 reports the number of fitness evaluations achieved on the average of

30 runs of each algorithm and dataset. The number of evaluations between the

same algorithm for different datasets is the same since the stochastic nature of

GA is controlled by using the same random seeds for each dataset.

The number of evaluations for PGAglobal does not differ from SGA since

they perform exact in the same way, regardless of the cluster size. PGAgrid

is subject to a deterioration of the number of evaluations as the cluster size

increases. PGAisland is balanced. In general, it can be affirmed that, except for

PGAgrid, all the models show a number of evaluations similar to the one of

SGA.

The Wilcoxon and Vargha-Delaney tests results, reported in Table 3.13,

confirmed the above results.

Moreover, Table 3.14 shows the number evaluations per second. It may be

used as a predictor for the final execution time of PGAs for problems with

the same computational load of the one required for the three datasets, on the

same hardware.
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Table 3.13: Wilcoxon test (p-values) and Vargha-Delaney (Â12) results for the comparison of the fitness evaluations number
achieved by SGA and PGAs over 30 runs on the three datasets and three clusters.

Model
SGA PGAC2

global PGAC4
global PGAC8

global PGAC2
grid PGAC4

grid PGAC8
grid PGAC2

island PGAC4
island PGAC8

island

p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12 p-value Â12

SGA − 0.500 − 0.500 − 0.500 − 0.500 0.641 0.440 0.010 0.767 <0.001 1.000 0.688 0.531 0.007 0.349 0.113 0.622

PGAC2
global − 0.500 − 0.500 − 0.500 − 0.500 0.641 0.440 0.010 0.767 <0.001 1.000 0.688 0.531 0.007 0.349 0.113 0.622

PGAC4
global − 0.500 − 0.500 − 0.500 − 0.500 0.641 0.440 0.010 0.767 <0.001 1.000 0.688 0.531 0.007 0.349 0.113 0.622

PGAC8
global − 0.500 − 0.500 − 0.500 − 0.500 0.641 0.440 0.010 0.767 <0.001 1.000 0.688 0.531 0.007 0.349 0.113 0.622

PGAC2
grid 0.641 0.560 0.641 0.560 0.641 0.560 0.641 0.560 − 0.500 <0.001 0.684 <0.001 0.881 0.497 0.561 0.902 0.507 0.459 0.566

PGAC4
grid 0.010 0.233 0.010 0.233 0.010 0.233 0.010 0.233 <0.001 0.316 − 0.500 <0.001 0.790 0.011 0.241 0.004 0.222 0.021 0.243

PGAC8
grid <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.000 <0.001 0.119 <0.001 0.210 − 0.500 <0.001 0.000 <0.001 0.000 <0.001 0.000

PGAC2
island 0.688 0.469 0.688 0.469 0.688 0.469 0.688 0.469 0.497 0.439 0.011 0.759 <0.001 1.000 − 0.500 0.016 0.331 0.249 0.589

PGAC4
island 0.007 0.651 0.007 0.651 0.007 0.651 0.007 0.651 0.902 0.493 0.004 0.778 <0.001 1.000 0.016 0.669 − 0.500 <0.001 0.726

PGAC8
island 0.113 0.378 0.113 0.378 0.113 0.378 0.113 0.378 0.459 0.434 0.021 0.757 <0.001 1.000 0.249 0.411 <0.001 0.274 − 0.500
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Table 3.14: Average evaluation number and evaluation per second values
achieved by executing 30 times SGA and PGAs on the three datasets and three
clusters.

Model
Log4j Lucene POI

eval eval/s eval eval/s eval eval/s

SGA 30 214 8.32 30 214 3.10 30 214 0.88

PGAC2
global 30 214 3.09 30 214 2.37 30 214 1.14

PGAC4
global 30 214 3.66 30 214 3.08 30 214 1.70

PGAC8
global 30 214 4.10 30 214 3.26 30 214 2.34

PGAC2
grid 30 500 2.43 30 500 1.90 30 500 1.01

PGAC4
grid 28 840 2.55 28 840 2.26 28 840 1.39

PGAC8
grid 26 260 2.62 26 260 2.47 26 260 2.16

PGAC2
island 30 180 14.74 30 180 5.12 30 180 1.63

PGAC4
island 30 478 27.88 30 478 10.53 30 478 3.23

PGAC8
island 30 083 51.87 30 083 21.60 30 083 6.80

3.7.5 Predictive Performance

As can be observed from Tables 3.15, 3.16, 3.17 reporting the median values

of the four employed evaluation criteria, the predictive performance of the

parallel models is negatively affected only in the case of the Log4j dataset using

the PGAgrid models. Moreover, the results of the Wilcoxon and Vargha-Delaney

tests confirm the above considerations. In Table 3.18 the statistical tests results

about the F-measure are reported.
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Table 3.15: Predictive performance median values achieved by executing 30
times SGA and PGAs on the Log4j dataset.

Model Precision Recall Accuracy F-measure

SGA 0.938 0.259 0.698 0.407

PGAC2
global 0.938 0.259 0.698 0.407

PGAC4
global 0.938 0.259 0.698 0.407

PGAC8
global 0.938 0.259 0.698 0.407

PGAC2
grid 0.889 0.106 0.834 0.190

PGAC4
grid 0.885 0.106 0.834 0.190

PGAC8
grid 0.889 0.106 0.834 0.190

PGAC2
island 0.933 0.251 0.705 0.396

PGAC4
island 0.937 0.291 0.673 0.444

PGAC8
island 0.933 0.259 0.700 0.406

Table 3.16: Predictive performance median values achieved by executing 30
times SGA and PGAs on the Lucene dataset.

Model Precision Recall Accuracy F-measure

SGA 0.617 0.901 0.393 0.733

PGAC2
global 0.617 0.901 0.393 0.733

PGAC4
global 0.617 0.901 0.393 0.733

PGAC8
global 0.617 0.901 0.393 0.733

PGAC2
grid 0.616 0.901 0.394 0.732

PGAC4
grid 0.616 0.901 0.394 0.732

PGAC8
grid 0.616 0.901 0.394 0.732

PGAC2
island 0.616 0.901 0.394 0.732

PGAC4
island 0.616 0.901 0.394 0.732

PGAC8
island 0.616 0.901 0.394 0.732
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Table 3.17: Predictive performance median values achieved by executing 30
times SGA and PGAs on the POI dataset.

Model Precision Recall Accuracy F-measure

SGA 0.689 0.861 0.335 0.766

PGAC2
global 0.689 0.861 0.335 0.766

PGAC4
global 0.689 0.861 0.335 0.766

PGAC8
global 0.689 0.861 0.335 0.766

PGAC2
grid 0.689 0.861 0.335 0.766

PGAC4
grid 0.689 0.861 0.335 0.766

PGAC8
grid 0.689 0.861 0.335 0.766

PGAC2
island 0.689 0.861 0.335 0.766

PGAC4
island 0.689 0.861 0.335 0.766

PGAC8
island 0.689 0.861 0.335 0.766

Table 3.18: Wilcoxon test (p-values) and Vargha-Delaney (Â12) results for the
comparison of the F-measure values between PGAs and SGA over 30 runs on
the considered datasets.

Model =
Log4j Lucene POI

p-value Â12 p-value Â12 p-value Â12

PGAC2
global SGA − 0.500 − 0.500 − 0.500

PGAC4
global SGA − 0.500 − 0.500 − 0.500

PGAC8
global SGA − 0.500 − 0.500 − 0.500

PGAC2
grid SGA <0.001 0.022 0.782 0.466 0.423 0.518

PGAC4
grid SGA <0.001 0.022 0.751 0.479 0.423 0.518

PGAC8
grid SGA <0.001 0.022 0.599 0.482 0.584 0.518

PGAC2
island SGA 0.221 0.448 0.476 0.488 0.361 0.519

PGAC4
island SGA 0.746 0.559 0.574 0.501 0.361 0.519

PGAC8
island SGA 0.459 0.484 0.844 0.488 0.584 0.518
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3.7.6 Cloud Costs Estimation

Figure 3.17 shows the estimation of costs for the most famous cloud provider

for executing the same GAs of the experiments, in relation to the required

execution time. Also, the estimation of SGA on a machine purchased on the

same cloud provider, having the same configuration of the ones used for the

Hadoop cluster, are included. As can be seen from the figure, in the case of

PGAglobal and PGAgrid, they achieves to save time against SGA in the case of

the POI dataset but needing a greater cost because of the multiple machines.

Instead, PGAisland requires almost the same cost of a single machine, since it

is able to conclude its execution before SGA even if with a greater number of

machines. The distance in time is more remarkable for the POI dataset, thus

making the use of cloud worth in case of large computational load.

The complete report of cloud costs estimation for all the selected cloud

providers is presented in Table 3.19.
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Table 3.19: Estimation of cloud costs (USD) on 4 commercial cloud providers of the executions for SGA and PGAs on the three
datasets and three clusters.

Model
Log4j Lucene POI

Amazon DigitalOcean Microsoft Google Amazon DigitalOcean Microsoft Google Amazon DigitalOcean Microsoft Google

SGA 0.111 0.030 0.071 0.101 0.298 0.081 0.190 0.271 1.052 0.287 0.669 0.956

PGAC2
global 0.597 0.163 0.380 0.542 0.778 0.212 0.495 0.707 1.624 0.443 1.034 1.477

PGAC4
global 1.008 0.275 0.641 0.916 1.198 0.327 0.762 1.089 2.176 0.594 1.385 1.979

PGAC8
global 1.801 0.491 1.146 1.637 2.268 0.619 1.444 2.062 3.160 0.862 2.011 2.873

PGAC2
grid 0.766 0.209 0.488 0.697 0.983 0.268 0.625 0.893 1.842 0.502 1.172 1.675

PGAC4
grid 1.381 0.377 0.879 1.255 1.557 0.425 0.991 1.415 2.542 0.693 1.618 2.311

PGAC8
grid 2.447 0.667 1.557 2.225 2.596 0.708 1.652 2.360 2.972 0.810 1.891 2.701

PGAC2
island 0.125 0.034 0.080 0.114 0.360 0.098 0.229 0.327 1.133 0.309 0.721 1.030

PGAC4
island 0.134 0.036 0.085 0.121 0.354 0.097 0.225 0.322 1.153 0.315 0.734 1.048

PGAC8
island 0.142 0.039 0.090 0.129 0.340 0.093 0.217 0.309 1.081 0.295 0.688 0.983
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3.8 Summary

In this chapter, the parallelisation of GAs on the Hadoop MapReduce platform,

based on three models, i.e., the global, grid and island models was addressed .

As a benchmark problem, the use of three different PGAs to solve a software

engineering problem of configuring the SVMs for inter-release fault prediction

was considered. The effectiveness of these models in terms of execution time,

speedup, overhead and computational effort was empirically assessed by using

three publicly available datasets of real software-faults widely used in fault

prediction studies. The three datasets were chosen considering their different

size in order to varying the execution time of the GAs.

It emerged that the use of PGA based on the island model outperforms the

use of sequential GA and the PGAs based on the global and grid models for all

the considered datasets and cluster configurations. The overhead of data store

(i.e., HDFS) accesses, communication and latency may impair parallel solutions

based on the global and grid model when executed on small problem instances.

This is not the case of the island model since it is able to reduce the number of

operations performed on the data store, determining a faster execution of tasks

and an optimised usage of resources. The use of the island model enabled to

speed up the average execution time over the three datasets with respect to

SGA of 7.0×, 3.4× and 1.8× times by exploiting 8, 4 and 2 nodes, respectively.

Moreover, the results of the estimation of the commercial cloud providers costs

revealed that the island model is worth using also in term of costs against the

execution with a single machine.

In general, a critical aspect in the use of Hadoop MapReduce is the presence

of overhead due to the communication with the data store (i.e., HDFS). The

distributed nature of the data store introduces an intrinsic communication

latency that may drastically worsen the performance if multiple and useless

operations are executed. To speed up the execution of tasks, it is useful to

reduce data store operations, as it happens with the island model where data

store access is limited to the migration phase only.
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4.1 Introduction

It is argued that a barrier to the wider application of parallel execution has been

the high cost of parallel architectures and infrastructures and their management.

Genetic Algorithms (GAs) have been effectively parallelised on multi-core (i.e.,

CPUs) and many-core (i.e., GPUs) systems [60, 59]. However, these solutions are

often expensive and may obtain only a certain degree of parallelisation being

strictly related to the number of multiple computational units available on the
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hardware. On the contrary, technologies based on the network communication

may hypothetically be scaled without limits. Cloud computing can represent an

affordable solution to address the above issues because it breaks the barrier

between employed resources and costs: in a short time it is possible to allocate

a cluster of the desired size without investing in expensive local hardware and

its management.

Even though Hadoop MapReduce, presented in Chapter 3, offers some

appealing features, the problem with these solutions is that the data exchange

through a distributed file system may slow down the execution of Parallel

Genetic Algorithms (PGAs). Moreover, it is required to have dedicate skills for

setup and maintenance activities, which often cannot be automatised, to have a

fully operational cluster.

In this chapter, AMQPGA is presented, an approach to distributing GAs,

implementing the global parallelisation model and exploiting technologies

especially devised for the cloud (i.e., Docker, CoreOS and RabbitMQ) to fully

take advantage of the appealing cloud features of fault-tolerance, scalability

and performance optimisation. It also allows GAs developers to use existing im-

plementations of genetic operators or external tools, without constraints on the

adopted programming languages. Indeed, ‘software containers’ (i.e.., Docker

containers) provide isolated environments (i.e., virtual Linux instances) where

developers can include everything is needed for the computation. Moreover,

to exploit the DevOps (‘development’ and ‘operations’) methodology that de-

termines easy cloud development and deployment processes, a conceptual

workflow is proposed to support the development, deployment and execution

of distributed GAs, reducing the human effort. The source code is shared at

the address https://github.com/pasqualesalza/amqpga under the terms of

the MIT License1.

The main contributions of this chapter can be summarised as follows:

• design and realise a system to deploy containers of distributed GA applic-

ations in cloud environments, by implementing the global parallelisation

1https://opensource.org/licenses/MIT
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model and exploiting the Advanced Message Queueing Protocol (AMQP);

• provide a conceptual workflow which describes all the phases of develop-

ment, deployment and execution of distributed GAs;

• carry out an empirical study to assess the effectiveness of the model

regarding the execution time, speedup, overhead and setup time.

The rest of the chapter is organised as follows. Section 4.2 describes some

relevant related work. In Section 4.3 the main features of the employed cloud

technologies are summarised whereas in Section 4.4 the proposed system

and conceptual workflow for deployment and execution of GAs in cloud

environments are presented. Section 4.5 and Section 4.6 report, respectively,

the design and the results of the empirical study carried out to assess the

effectiveness of the proposed approach. Section 4.7 concludes with some final

remarks.

4.2 Related Work

A wide range of work is present in the literature about models and technologies

for GAs parallelisation [38]. However, this work aims to parallelise GAs on a

commercial cloud environment and in a DevOps fashion, so here only the most

relevant related work is reported, involving models, technologies, problems

and conceptual deployment workflows in the GAs field or the more general

Evolutionary Algorithms (EAs) one. This section extends Section 3.2.

Zheng et al. [60] compared the multi-core (i.e., CPUs) and the many-core

(i.e., GPUs) systems for GAs parallelisation. Firstly, they found that the system

based on GPUs is faster than the CPUs one. However, they observed that an

architecture with a fixed number of parallel participants, such as GPU cores,

might perform worse in terms of quality of solutions than another with more

parallel nodes stating that distributed architectures, e.g., the cloud, are worth

for GAs parallelisation.

In addition to the work proposed in Chapter 3, many authors used the
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MapReduce paradigm to implement PGAs [32, 14] and some of them with

Hadoop MapReduce in particular [54, 12]. On the one hand, they claimed that

GAs can efficiently scale on multiple Hadoop nodes. On the other hand, it

has been highlighted that the overhead is a worrying presence, due to the

communication with the data store (i.e., Hadoop Distributed File System

(HDFS)). In general, Hadoop MapReduce represents one of the most mature

and employed technologies to develop parallel algorithms since it provides

a ready to use distributed infrastructure that is scalable, reliable and fault-

tolerant [30]. Nevertheless, it requires high performance from the underlying

hardware. Moreover, even if using a framework such as elephant56, presented

in Section 3.4, Hadoop is not suitable for all since specific skills for setup

and maintenance activities are needed. Instead, other cloud technologies are

affordable, and the scalability and fault-tolerance features can be obtained from

the design of the distributed applications themselves.

Another aspect that is strictly connected to this work is the conservation

of the metaheuristic nature of GAs, thus allowing the system to be adapted

to a wide variety of problems. Even though being related to the EAs in gen-

eral, a first attempt of generalisation was given from Fazenda et al. [17], who

considered the parallelisation of EAs on the Hadoop MapReduce platform

in a general purpose form of a library. The work has been further enhanced

by Veeramachaneni et al. to produce FlexGP [53], which is probably the first

large scale Genetic Programming (GP) system that runs in the cloud, imple-

mented over Amazon EC2 with a socket-based client/server architecture. This

aspect is addressed here by using software containers that allow defining any

environment for GAs execution.

With cloud computing is possible to satisfy almost any problem need, by

mixing a large variety of technologies. Moreover, cloud-specific development

methodologies (i.e., DevOps) can ease the production of parallel GAs (see

Section 4.4.3). As a first attempt of employing cloud technologies, Merelo

Guervós et al. devised SofEA [41], a model for Pool-based EAs in the cloud,

an evolutionary algorithm mapped to a central CouchDB object store. SofEA
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provides an asynchronous and distributed system for individuals evaluations

and genetic operators application. Later, they defined and implemented the

EvoSpace Model [23], consisting of two main components: a repository storing

the evolving population and some remote workers, which execute the actual

evolutionary process. It is the first work to involve technologies on the Platform-

as-a-Service (PaaS) and Software-as-a-Service (SaaS) level: Heroku as PaaS for

the population store and PiCloud as SaaS for the computing operations. Not

only does the work show how EAs can scale on the cloud, but also how the

cloud can make EAs effective in a real world environment, speeding up the

running time and lowering the costs. The work proposed in this chapter aims

at exploiting both IaaS and PaaS, using software containers.

4.3 Background

In this section, some background about the involved technologies and commu-

nication protocols is provided. The container-based virtualisation and its related

most famous utility, i.e., Docker, are presented, respectively, in Section 4.3.2

and Section 4.3.1. Section 4.3.3 describes CoreOS, the employed technology of

containers distributed orchestration whereas Section 4.3.4 illustrates the Ad-

vanced Message Queueing Protocol used for the system design, for communication

together with its most famous implementation, i.e., RabbitMQ.

4.3.1 Container-Based Virtualisation

The basic idea behind the classic hypervisor-based virtualisation is to emulate

the underlying physical hardware, creating a new virtual one and installing a

fully working operating system on it. It is the typical model adopted by cloud

providers, because of its ability to make hardware shareable and easily main-

tainable. Even though there are many existent techniques to optimise resources

sharing (e.g., the bare metal virtualisation), the hypervisor-based virtualisation

can be considered as limited in terms of performance. It is true especially when

the aim is to execute cloud applications, where several service instances may
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require to be created and destroyed in seconds to guarantee the reliability and

scalability of the entire system.

While with the hypervisor-based virtualisation everything is performed on

the hardware level, the container-based virtualisation operates at the operating

system level. It provides a lightweight virtual environment, i.e., the software

container, that groups and isolates a set of processes and hardware resources

from the host and any other container. The main difference with the hypervisor-

based virtualisation consists in the fact that all containers share the same kernel

of the host system, instead of virtualising it, resulting in a high-performance

resource utilisation. For this reason, containers are also much smaller and light-

weight compared to an entire virtualised operating system. With the isolation,

a process inside the container cannot directly see a process or resource outside

the container itself, and the network is the only vehicle for communication.

Containers and its features are not such a new technology. Indeed, it

was 1979 when, for the first time, it was made possible to create a new root

filesystem inside an existing one, using a feature named ‘chroot’. This isolation

feature was then evolved into the Linux ‘namespaces’ technology that not

only does it offer the isolation of the filesystem, but also of other system

resources such as network interfaces. In this way, processes can run in an

environment where the resources appear to be dedicated to them. The term

‘process container’ was first used around late 2006, then renamed to ‘control

groups’ (abbreviated as ‘cgroups’) in 2007, as a Linux kernel feature available

since v2.6.24. While namespaces isolates processes, cgroups lets the user limit

the hardware resources for them. The combination of namespaces and cgroups

is the basis of the modern Linux Containers (LXC) on which Docker was built

on2 and that Docker simplifies, especially when the aim is to containerise

applications.

2Docker stopped running on top of LXC by default since version 0.9, in favour of ‘libcon-
tainer’, based on namespaces and cgroups as well.
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4.3.2 Docker

Docker is an open source container orchestration engine that separates applica-

tions from the underlying Linux operating system. With Docker it is possible to

manage software containers, which are intended to contain every component of

an application. From the application perspective, there is no difference between

an execution on a dedicated machine and inside the container: the application

is run in a short time in a full isolated Linux environment and can find others

only by using the network. This reduces drastically the activities of installation

and maintenance of applications: configuration management methodologies

can define the environments and the application can be tested during the

process from development to actual production execution, in a DevOps fashion

(see Section 4.4.3). Docker creates containers from the ‘images’, i.e., basically

read-only templates. Docker also provides an on line registry called ‘Docker

Hub’ where it is possible to push/pull images to/from it. Docker images and

registry allow to instantiate containers without repeating installation and build

operations. The images can be created through two different operations: by

executing operations directly on running containers and saving their state; by

executing ‘Dockerfiles’, a set of instructions which can be maintained in the

same way as the source code. Docker is not the only alternative in the field

of containers management (e.g., runC, rkt), but it is currently the most mature

product.

4.3.3 CoreOS

If Docker orchestrates containers in a single hosting machine, CoreOS can do it

on a distributed cluster. CoreOS is an open source lightweight operating system

based on a build of Chrome OS by Google. It allows building large and scalable

deployments on varied infrastructure simple to manage, focusing on security,

consistency and reliability. CoreOS provides only minimal functionalities

required to execute applications inside Docker containers3.

3Currently, CoreOS is developing its own software container technology called ‘rkt’.

87



Chapter 4. PGAs Using Software Containers
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Figure 4.1: CoreOS containers distribution.

Figure 4.1 shows an instance of execution of the proposed system on CoreOS.

To manage the cluster, CoreOS exploits a globally distributed key-value store

called ‘etcd’. Not only does it allow the CoreOS cluster configuration, but also

it can be exploited by users as a central point for automatic applications con-

figuration and discovery of other components in the network. The scheduling

of containers is managed by a tool called ‘fleet’ that serves as a cluster-aware

init system. It extends on a cluster scale systemd, the modern single machine

Linux init system. It accepts the requests of containers allocation and schedules

assignments to machines in the cluster on an optimisation basis, probing both

cluster and applications health.

etcd and fleet were preferred to use over other alternatives (e.g., Kubernetes,

Mesos) because they are, at the same time, lightweight regarding the resource

allocation and complete of everything needed to realise the system. Moreover,

it is also available as a cloud instance image on the majority of public cloud
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providers and thus avoiding the ‘lock in’ to specific services.

4.3.4 AMQP and RabbitMQ

RabbitMQ is an open source ‘message broker’ software that implements AMQP.

It is written in Erlang language and client libraries are available for the majority

of programming languages. It is a component able to accept and forward

messages, which can consist of plain text or blobs of binary data. Message

brokers cover each stage of the exchange setup among participants, namely

the ‘publishers’ and ‘consumers’. The publishers produce messages and the

consumers pick and process them. It is the job of the message broker to

ensure that the messages go from a publisher to the right consumer, based on

a chosen scheduling policy. The primary recipient of messages is the ‘queue’,

a potentially unlimited buffer of data, which lives inside RabbitMQ. If the

publisher and consumers are connected to a queue, they can communicate

with each other without actually knowing each other. It makes RabbitMQ a

powerful tool for scalable distribution of tasks since it is possible to add and

remove participants without breaking the communication.

RabbitMQ has other contestants regarding the AMQP implementation,

but no one has, at the same time, a message broker, High Availability (HA)

capabilities, many client and developer tools available for the majority of

programming languages, besides being easily deployable as Docker containers.

Furthermore, differently from other communication technologies, RabbitMQ

can easily sustain a distributed infrastructure without requiring any other

discovery technology.

4.4 System Design

In this section the design and implementation of the system to parallelise

GAs in the cloud are presented. In Section 4.4.1 the design of the architecture

is described. Section 4.4.2 illustrates how the communication protocol to

parallelise the master/slave model for GAs was managed. Finally, to better
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Figure 4.2: The involved architecture layers.

understand how the system can be actually employed in a real world scenario,

a conceptual workflow is provided in Section 4.4.3, describing all the phases

and participants for development, deployment and final execution of parallel

GAs in the cloud.

4.4.1 Architecture Design

Figure 4.2 shows the ensemble of the involved components. The base layer

is composed by the cloud infrastructure able of allocating virtual instances

of CoreOS, which has been chosen as the cluster manager. With the aim

of providing a system as more general and flexible as possible, it allows to

consider indifferently commercial cloud providers (e.g., DigitalOcean, Amazon

AWS, Windows Azure) and private cloud environments (e.g., OpenStack). It

is possible since the only requirement for clusterisation is the availability of

the CoreOS image, thus breaking the limits in number and resource usage

that single providers may impose to the users. Both the main services of

CoreOS were employed: fleet as the deployment manager and etcd as the

central configuration point for discovery purposes.

As mentioned in Section 4.3.3 and Section 4.3.2, while CoreOS manages the

90



4.4. System Design

machines in the cluster and scheduling aspects, Docker manages the download

of containers and their execution on the machines assigned by CoreOS. The

powerful feature of Docker of executing an entire environment potentially

makes possible the implementation of any genetic operator, in any preferred

programming language or by using any external tool.

The two main application services of this proposal exploit the underlying

interfaces of CoreOS and Docker. The first is a running container of RabbitMQ

whereas the GA cloud implementation, which was named ‘AMQPGA’ in

this work, runs in the form of one master and multiple slave containers,

communicating through the RabbitMQ service. Figure 4.1 depicts the above

situation on the cluster, where CoreOS schedules all the containers in order to

optimise the resources load of the execution.

For the implementation, Go was chosen, an open-source programming

language by Google. In particular, Go simplifies the GA processes and build

small containerised environments. It is worth noting that it would be possible to

switch the Go clients with clients developed with any programming language.

The only requirements consist in being able of communicating with RabbitMQ,

serialising individuals with the same codification algorithm and respecting the

devised communication protocol.

4.4.2 Master/Slave Parallelisation GA with AMQP

The global parallelisation model (also known as the master/slave model) was

implemented, where a master node executes the GA generations on the whole

population except for the fitness evaluation, which is demanded to distributed

slave nodes. This implementation was named ‘AMQPGA’. Once the fitness

values have been computed, the individuals go back to the master node where

the other genetic operators can be applied.

The global model was adapted to the AMQP model, implemented with a

combination of Go workers and a running RabbitMQ service. The resulting

algorithm is an application of the Remote Procedure Call (RPC) pattern, depicted

in Figure 4.3: 1. the master node publishes the messages (i.e., the individuals)
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Figure 4.3: The AMQPGA algorithm.

on the request queue; 2. RabbitMQ dispatches the individuals to the subscribed

slave nodes, in a round-robin fashion (i.e., assignments are made in equal

portions and circular order); 3. the slave nodes process the individuals by

computing the fitness function values and publish them on the response queue;

4. the only consumer of the response queue, i.e., the master node, takes back all

the individuals and continues the computation until the next generation. Using

the message broker as the central point for the computation, it was possible to

add any number of further slave nodes to the GA, even at run time, making

the system scalable.

4.4.3 Development, Deployment and Execution Workflow

A conceptual workflow for a possible real world scenario is described, in which

the development, deployment and execution of distributed GAs are performed

in a DevOps fashion. The participation of two different or correspondent actors

are expected: the developer and the user.

Figure 4.4 depicts the workflow. From the developer point of view:

1. the developer pushes the source code s/he developed to its public or

private Git repository. Together with the source code, there will be a

Dockerfile defining the environment;
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2. with the hook mechanism, the Git repository triggers a continuous integ-

ration service that executes, at the same time, both the integration testing

of source code and Docker image build;

3. if tests and build have succeeded, a report is sent to the developer and

the Docker image pushed in a Docker Registry, i.e., a repository for images

that can be either the public Docker Hub or a private one.

From the user perspective:

1. the user submits a request to a cloud provider and a cluster of the required

number of CoreOS nodes is allocated;

2. the user demands to CoreOS for executing the GA with a certain config-

uration;

3. CoreOS invokes fleet which pulls the Docker image of GA implementation

and any other useful service images (e.g., RabbitMQ in this case) from

the Docker registry, if there is a newer version available;

4. fleet is ready to orchestrate containers and start the execution of the

distributed GA.

4.5 Empirical Study Design

The aim of this work was to understand if the proposed approach can be an

effective solution to improve the scalability of GAs. Therefore, it was first

needed to verify if GAs parallelised using cloud technologies allow to get a

better execution time compared to the sequential version. Moreover, it was also

important to quantify the setup time required to have the infrastructure ready

to execute the GAs. Thus, the following research question was defined:

RQ Is the use of the system based on a combination of software containers, message

queues and cloud orchestration effective for parallel GAs against the sequential

execution?

94



4.5. Empirical Study Design

Considering that the global parallelisation model is parallelised only during

the fitness evaluation, to address the RQ a dummy fitness evaluation function

was considered as a benchmark, which does nothing except receiving indi-

viduals, sleep for a specified time and return a random fitness value to the

master [7]. The choice of this dummy function, together with the variation of

the network load (i.e., the chromosome size), was motivated by the fact that it

allowed to assess the GAs scalability considering different problem sizes by just

varying the sleep time. Moreover, the actual time required to have the cloud

infrastructure ready to execute the parallel GAs was tested. It is worth noting

that in global parallelisation model the populations evolve in the same way as

the sequential version. For this reason, any quality results are mentioned.

Details about the problem and GAs configuration are provided in Sec-

tion 4.5.1. The hardware employed to run the experiments is reported in

Section 4.5.2. To understand the effectiveness of of the system, the experimental

method described in Section 4.5.3 were applied and several evaluation criteria

employed, namely the execution time, speedup, overhead and setup time, de-

scribed in Section 4.5.4. Finally, Section 4.5.5 analyses some threats to validity

that may have affected the experimentation.

4.5.1 Experiment Configuration

To understand how the system behaves, the attention was focused only on the

fitness evaluation time, since it is the only parallelisation part of the execution of

the global parallelisation model [7]. Nevertheless, a full GA was implemented

and executed to reproduce a real scenario in which, besides execution time,

other system resources are consumed, and the GA needs to fit into provided

limits (e.g., the memory). The GA has been configured following other studies

parameters [2, 23]. A population of 10 000 individuals was initialised to let the

problem be large enough and splittable to multiple slaves. The GA was run for

10 generations and varied the chromosome size according to the experimental

method (see Section 4.5.3). As for the other genetic operators, The tournament

selection with size 2 was chosen, together with the two point crossover with a
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rate of 0.85 and a mutation rate of 1
c , where c is the chromosome size.

4.5.2 Hardware

As execution bench for the experiments, several instances from the DigitalOcean

cloud provider were rent . The cloud clusters employing CoreOS was composed

using 1 instance dedicated to the master, 1 instance for RabbitMQ and varying

the size of instances in 1, 2, 4, 8, 16, 32, 64 and 128 for the slaves to test the

scalability of the executions. With the aim of maintaining a low budget, only

small instances of virtual machines were selected, which consisted in 1 core

processor, 512 MB of memory and 20 GB of SSD disk for $0.007 h. An exception

for the RabbitMQ node was made since it requires at least 1 GB of RAM. The

configuration of each cloud instance is summarised in Table 4.1.

Table 4.1: The cloud instances configuration.

Type Feature Value

Hardware Architecture 64 bit
CPUs 1
RAM 512 MB
Storage 20 GB

Software CoreOS 1185.5.0
Docker 1.12.3
RabbitMQ 3.6.6
Go 1.7

4.5.3 Experimental Method

The RQ was addressed by comparing the performance of the parallel and

sequential GAs with different configurations. The sleep time of the employed

dummy fitness function was varied of 0.01 ms, 0.1 ms, 1 ms, 10 ms and 100 ms

in order to benchmark different computational times. The network was stressed

by varying the individual size (i.e., the chromosome size) in 128, 256, 512, 1024,

2048, 4096, 8192, 16 384, 32 768 and 65 536 genes, where each gene is encoded

with 8 bit. It is worth noting that it was not possible to use a larger chromo-
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some size, due to the memory limits of the sequential execution on a single

machine. All the parallel GAs were executed on different cluster configurations

characterised by a different number of nodes (see details in Section 4.5.2). The

master node did not participate in any parallel fitness computation since the

main interest was in observing the behaviour of peer communication with

RabbitMQ. For each combination of sleep time, chromosome size and cluster

configuration, 10 runs were executed.

4.5.4 Evaluation Criteria

To compare the performance of the executed experiments, the best practice

in reporting the results with PGAs, identified by Luque and Alba [38], were

followed. The evaluation criteria, already considered in Section 3.6.4, are briefly

repeated in the following. Moreover, the setup times of the cloud infrastructure

are also evaluated .

Execution Time

The execution time was measured in milliseconds (ms) using the system clock.

As a performance indicator of the whole execution, the execution times achieved

by executing all the fitness evaluation phases of sequential and PGAs were

compared . The partial times were distinguished into computation and over-

head times only in a second step, when the interest was to quantify the time

spent for parallel communication.

Speedup

The speedup is defined as:

S =
TS

TP

where TS is the sequential execution time and TP the parallel execution time.

The achieved speedup was compared with respect to the ideal speedup, which

is equal to the number of the involved parallel nodes and corresponds to the

situation when the sequential execution time is perfectly split among multiple
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nodes. The ideal speedup is rarely achieved in practice due to the presence

of overhead, but it is usually taken into consideration as an upper limit to

compare the performance of parallel algorithms [38].

Overhead

To understand the reasons that prevent the parallel GAs to have a speedup

near to the ideal one, the overhead for each execution was quantified. The

time of each execution was considered and distinguished into overhead and

computation times. The computation time was defined as:

TC =
TS

P

where TS is the sequential time to compute the fitness evaluation function for

the whole population and P the number of parallel slaves. Thus, the overhead

time is:

TO = TP − TC

computable if TP, i.e., the parallel execution time, is given.

Setup Time

One of the points about the proposed system that was taked particularly in

consideration is its feasibility in a real world context. To this aim, the setup

time required to have the cloud infrastructure ready to execute the GAs was

experimented . This automated activity was discriminated into two different

times:

• ‘creation’, i.e., the necessary time to acquire the virtual instances from the

cloud provider (i.e., DigitalOcean) and let all the machines be recognised

as part of the CoreOS cluster;

• ‘deployment’, i.e., the time required to pull the GA and RabbitMQ images

from the Docker Hub repository, schedule and run the containers on all

the participant machines.
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Statistical Tests

10 generations and 10 runs were executed for a total of 100 registered times for

each experiment configuration, in order to cope with the inherent randomness

of dynamic execution time and reported the average results.

To support all the considerations about the obtained results, the non-

parametric inferential statistical test was performed , i.e., the Wilcoxon Test [9],

as recommended in the literature [3, 29, 38]. For all the statistical tests, a

probability of 5 % of committing a Type-I-Error, i.e., the significance level, was

accepted.

Furthermore, the Vargha-Delaney Â12 effect size [52] was used to character-

ise the magnitude of difference. The magnitude values can be summarised by

4 nominal values, namely the ‘negligible’, ‘small’, ‘medium’ and ‘large’.

4.5.5 Threats to Validity

Threats to construct validity concern the relationship between the theory behind

the experiments and the observations. In order to alleviate possible threats

related to measurement, the GAs execution time was quantified using the

system clock, because it represents the speed of a technique to the end-user.

Threats to internal validity concern any confounding factors that could

influence the results. A possible threat is related to the randomness due to the

use of GAs and variable computational/network load on the nodes at the time

of the experiment. Indeed, GAs are intrinsically random, and such a threat was

mitigated by executing all the experiments 10 times, with 10 generations each,

and presenting the average results [3, 29]. Furthermore, the nodes may have

been biased by the randomness of system events, and the multiple runs were

intended to alleviate these issues as well.

Threats to external validity concern the generalisability of the findings outside

the scope of this study. An external threat is due to the fact that the PGAs

was benchmarked on a particular cloud provider (i.e., DigitalOcean) whose

machines performance may differ from other providers. For this reason, the
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times concerning the computation were carefully separated from the setup

ones. Moreover, the results of this study can be considered as an analysis of

the ‘execution trends’ instead of absolute values, obtained by proportionally

varying the configuration parameters of the experiments.

4.6 Results

In this section, the results of this study are presented. The comparison between

sequential and parallel GAs, with regarding the execution time, is reported

in Section 4.6.1. The analyses of the speedup and overhead are reported in

Section 4.6.2 and Section 4.6.3, respectively. The setup time is analysed in

Section 4.6.4.

4.6.1 Execution Time

Figure 4.5 shows the boxplots of the achieved execution times of the fitness

evaluation phase on the whole population, including the time for the com-

munication. Different combinations of the fitness evaluation time for a single

individual (Tf ), i.e., the sleep time of the dummy function, the chromosome (c)

and cluster sizes (P) were experimented. Moreover, each generation employed

a total of 1000 individuals. 10 runs of 10 generations each were performed,

registering a total of 100 observations for each combination.

As expected, when increasing the chromosome size, the execution time

for the same cluster size and individual fitness time increases proportionally.

Focusing on the execution with 1 slave node, for which the communication

is not affected by the message broker scheduling policy, a statistical test was

carried out . The distributions of consecutive chromosome sizes was iteratively

compared looking for the first threshold where the p-value of the two-tailed

Wilcoxon signed-ranks test was less than the level of significance of 0.05 (i.e.,

accepting the alternative hypothesis of equality). To strengthen the differences,

the Vargha-Delaney test was also employed considering as different only the

couples having a magnitude level equal to medium or large. It was possible to
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notice that the execution time starts to be greater than smaller chromosome

sizes only from 2048 genes on, for all the values of the individual fitness times.

Even if the passage through a message queues communication system, i.e., the

RabbitMQ message broker, adds a certain amount of latency in communication,

the chromosome size variation effect is imperceptible if considering that the

time is reported in the order of seconds. It can be due to the fact that the

network of the employed provider is capable of offering a network speed much

higher than what is needed.

Table 4.2: The intervals for which the execution time decreases when increasing
the number of parallel nodes.

c
Tf = 1 Tf = 10 Tf = 100

Pmin Pmax Pmin Pmax Pmin Pmax

128 2 8 2 32 2 128
256 4 8 2 32 2 128
512 4 8 2 32 2 128

1024 4 8 2 32 2 128
2048 4 8 2 32 2 128
4096 4 8 2 32 2 128
8192 4 8 2 32 2 64

16 384 4 8 2 16 2 64
32 768 4 8 2 16 2 64
65 536 − − 2 16 2 64

As for the scalability on the number of nodes, as easily visible from Fig-

ure 4.5, the system begins to scale from Tf = 1 on. It is clear that there are

some minimum and maximum thresholds of the cluster sizes within the system

scales. To support this assumption, a statistical test was performed, whose

results are showed in Table 4.2. For each chromosome size and individual

fitness time combination, the first cluster size observations group (Pmin) was

considered, whose distribution was significantly greater than the sequential

execution one. It was obtained by performing a single-tailed Wilcoxon signed-

ranks test setting the level of significance to 0.05. Then, if a minimum threshold

was found, the next couples of consecutive cluster size distributions was iterat-

ively compared until the alternative hypothesis by means of the Wilcoxon test
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was rejected, meaning that the execution time is not significantly decreasing

anymore. Thus, that point was marked as the maximum threshold (Pmax). As

showed in Table 4.2, the system succeeds in scaling for few nodes for Tf = 1. It

is possible to notice that increasing the Tf helps the system to scale, whereas

the chromosome size does not. On the one hand, because of the communication

protocol, the parallel nodes must alternate the phase of receiving, computing

of fitness evaluation function and sending of individuals. For this reason, the

increment of the chromosome size increases the communication time, even

forcing the slaves to be idle for a certain time until the next individuals have

been made available from the master. On the other hand, the increment of the

individual fitness time makes the communication time irrelevant against the

computation one thus splitting more linearly the execution times between par-

allel nodes. Except for the cluster with one node (i.e., cluster size of 1), where

the resulting execution time is obviously greater, the clusters with multiple

nodes outperform the sequential execution (i.e., cluster size of 0). It means that

the execution time is directly proportioned to the individual fitness evaluation

time and, as hoped, inversely proportioned to the number of cluster nodes.

4.6.2 Speedup

The speedup characterises the scalability factor when the number of slave

nodes is increasing against the sequential execution. The values are shown

in Figure 4.6, distinguishing the individual fitness time and the chromosome

size. Table 4.3 reports values on average of the 100 observations for the most

positive case of Tf = 10 and Tf = 100 from the above analysis.

As mentioned in Section 4.5, the GAs begins to scale effectively from Tf = 1

on. For Tf = 10 and Tf = 100, the speedup values tend to the linear speedup

according to the thresholds observed in Section 4.6.1. The observed values

suggest that an employment of a Tf having at least a certain complexity, in

terms of execution time, is the only requirement that makes the GA based on

the master/slave model effectively scalable on multiple nodes, tending to linear

scalability.
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Table 4.3: The speedup values for Tf = 10, Tf = 100 and each chromosome size combination.

c
Tf = 10 Tf = 100

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

128 0.877 1.779 3.455 6.957 13.138 16.038 14.058 9.969 0.988 1.975 3.946 7.891 15.628 30.486 56.681 74.939
256 0.877 1.775 3.465 6.958 13.140 16.504 13.831 9.678 0.989 1.975 3.951 7.895 15.585 30.749 52.914 78.033
512 0.879 1.774 3.451 6.967 13.047 15.854 13.215 9.227 0.988 1.977 3.949 7.886 15.616 30.815 57.994 80.539

1024 0.877 1.770 3.463 6.934 13.146 14.994 12.931 9.210 0.988 1.976 3.949 7.885 15.614 30.645 57.135 69.973
2048 0.875 1.765 3.434 6.941 13.118 13.807 12.509 8.741 0.989 1.978 3.951 7.888 15.589 30.321 50.488 67.842
4096 0.861 1.731 3.398 6.777 12.882 13.096 12.135 7.943 0.988 1.973 3.945 7.881 15.553 30.636 55.738 68.073
8192 0.853 1.709 3.335 6.689 12.528 12.467 11.463 7.642 0.986 1.972 3.943 7.868 15.500 30.403 58.775 60.880

16 384 0.849 1.694 3.295 6.642 12.171 11.476 10.468 6.957 0.985 1.973 3.940 7.868 15.453 30.121 47.978 44.765
32 768 0.832 1.653 3.216 6.501 10.296 9.058 8.170 5.720 0.983 1.971 3.927 7.812 15.382 30.212 49.961 41.780
65 536 0.814 1.628 3.136 6.251 6.484 5.666 5.325 4.158 0.979 1.966 3.919 7.825 15.349 29.406 31.672 29.192
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4.6.3 Overhead

To further investigate the behaviour of the parallel executions, the execution

time was analysed with a more fine-grained scale.

Figure 4.7 shows the computation and overhead based on the individual

fitness time and chromosome size combinations, where the overhead is intended

as the additional time other than the computational one, generally due to

communication and message broker (i.e., RabbitMQ) tasks. The stacked bars

represent the mean over 100 observations. As it can be seen from the figure,

consistently with the other evaluation criteria, from Tf = 10 on the computation

time starts to cover the majority of the execution time. Here, it is more evident

that the chromosome size only influences the execution time from a certain

number of nodes on, a threshold that is shifted accordingly to the individual

fitness evaluation time growth.
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4.7 Summary

In this chapter, GAs were distributed based on the master/slave model with

technologies specifically devised for the cloud, i.e., the software containers,

cloud orchestration and message queues. A novel implementation that exploits

message queues to schedule parallel GAs tasks was presented. Also the devised

system was put in a conceptual workflow for development, deployment and

execution activities of distributed GAs. Then, the effectiveness of the system

was empirically assessed in terms of execution time, speedup, overhead, using

a dummy fitness function as a benchmark problem.

The acceleration of the execution time of the GA application up to a total

number of 128 slave nodes was successful. From the results, it emerged that

there is a connection between computation load and communication cost.

It was also observed that the execution time is directly proportioned to the

individual fitness evaluation time and inversely proportioned to the number of

cluster nodes. There is an inferior limit for the evaluation time for the fitness

function that makes the parallelisation effective. Also, there is also a superior

limit regarding the chromosome size that, together with the population size,

determines the network load and thus influences the final execution time.

Moreover, it was observed that the setup time can be quantified to few minutes

even if the request is of many nodes (e.g., 128). It is worth noting that this

time is related to a completely automatised activity, which does not require the

human presence as in the case of other methodologies, as observed for Hadoop

in Chapter 3. The performance and setup times place positively the cloud

between other employed technologies for GAs parallelisation, e.g., multi-core

systems, GPUs [59, 60] and Hadoop MapReduce.
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5.1 Introduction

Evolutionary Algorithms (EAs) are metaheuristics for optimisation problems,

i.e., high-level problem-independent algorithmic frameworks, based on the

concept of populations. They use mechanisms of biological evolution, such

as reproduction, mutation, recombination and crossover of individuals. The

repetition of these mechanisms creates the concept of ‘evolution’ to improve

the fitness of individuals.

There are many EAs in the literature, some of these are:

• Genetic Algorithms (GAs), the most popular of EAs, stressing in particular
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the coding of attributes into a set of genes;

• Genetic Programming (GP), consisting in solutions in the form of com-

puter programs, where the aim is that of optimising the ability to solve

computational problems;

• Evolution Strategy (ES), mainly focused on the resolution of continuous

parameter optimisation problems;

• Differential Evolution (DE), stressing the mutation operator based on

vector differences to improve the population.

Moreover, there are some techniques related to EAs:

• Ant Colony Optimisation (ACO), inspired by the behaviour of real ants,

solves problems reducing them to finding good paths through graphs;

• Particle Swarm Optimisation (PSO), based on the ideas of animal flocking

behaviour.

EAs can be also be specialised to solve specific problems such as ‘machine learn-

ing’ problems, giving birth to a specific class of techniques called Evolutionary

Machine Learning (EML).

In the previous chapters, GAs were parallelised adapting specific models,

i.e., the global, grid, and island ones. To do the same with other EAs using Ha-

doop MapReduce or software containers, one approach consists in identifying

possibly specific parallelisation models, if hopefully already existent in literat-

ure, then adapting them to the parallelisation technologies. This was the case of

GAs addressed in the previous chapters. Otherwise, it is possible to treat EAs

as black boxes, independently executed in parallel nodes, then exchanging data

through communication protocols. In this chapter, the parallelisation of EML

is investigated using this second way. In particular, the approach of software

containers and DevOps practices for Parallel Genetic Algorithms (PGAs), used

in Chapter 4, are explored to understand if they are effective for the use with

EML.
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EML techniques are widely employed to build and optimise predictive

models. To create accurate models, it is required that their training phase is

based on a representative sample of the known data, i.e., the training set. In

most of the real world cases, the data volume is considerable as ‘big data’,

meaning it is so large that cannot be treated with traditional data management

approaches, and using a single computational unit.

For this reason, methodologies that involve the parallelisation of the al-

gorithms for EML, thus reducing the computational load, are useful. The

synergistic collaboration of multiple machines, with the aim of producing a

final predictive model, first requires creating portions of the original data in

a size that is possible to process. With ‘factorization’ of data is possible to

split the training data into a certain number of samples, appropriately bal-

anced so that each sample is a reduced version but representative of the whole

data. Then, on the basis of these samples, multiple learners can be executed

in parallel. They can be completely different EML techniques, implemented

in different programming languages. Once the models have been optimised

through the use of EAs, it is possible to ‘filter’ them and reject those that

do not meet established requirements, based on data withheld from training.

At that point, the selected model set is ‘fused’ to produce a final ensemble

model, e.g., using the majority voting. The combination of the three operations,

i.e., the factorization, filtering and fusion, makes the problem of building a

predictive model for a large data implicitly ‘parallelisable’, even combining

different learning techniques.

These concepts are part of FCUBE1 [4], an existing solution that takes

advantage of cloud computing toward making disciplined and scalable EML

comparison and collaboration more effortless. It introduced the model of ‘Bring

Your Own Learner’ to allow active collaboration of different EML developers

to the same system, with a plug-and-play style interface. The model was

devised to face the problem of the research in the field of EML, where new

algorithms are always being designed and existent are continuously improved.

1https://flexgp.github.io/FCUBE
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The potential learner developers are only required to respect the specifications

of the input/output interface, providing the two functions of model building

and evaluation. The authors demonstrated FCUBE on a Amazon EC2 cluster

of 100 instances, using the Higgs dataset with 11 000 000 exemplars, running 5

different learning algorithms. Despite being noteworthy, FCUBE nonetheless is

‘locked’ into one cloud provider, i.e., Amazon AWS, and lacks both automation

and robust fault tolerance.

In this chapter, cCube (compare, compete, collaborate) is presented, an open

source architecture that helps its user develop an application that deploys

EML algorithms to the cloud. The source code is shared at the address https:

//github.com/ccube-eml, under the terms of the MIT License2.

As with FCUBE, cCube supports competition and collaboration with filter,

factor and fusing. A cCube EML application factors data, handles parameter

configuration, tasks parallel classifier training with different algorithms, and

follows training by filtering and fusing classifier results into a final ensemble

model. As such, cCube serves 3 types of user: EML algorithm designer, multi-

algorithm EML application manager and non-EML literate, i.e., ‘black box

end users’. cCube also supports crowdfunding, i.e., the sharing of costs by a

collaborative group that wishes to execute a large multi-learner, factor, filter,

and fuse application.

In cCube researchers can run different EML algorithms, their own as well

as others’, developed in different programming languages, without inserting

any code into them to accommodate cloud scaling. Instead of being monolithic,

cCube has a microservices architecture [37], i.e., a suite of small services (mi-

croservices), each running its own process and communicating with lightweight

protocols, e.g., HTTP resource API and message queues. It has one service for

each of factorization, scheduling, learning, filtering, and fusion. Each service is

independently deployable in a fully automated way making applications easier

to scale and more fault tolerant. Collectively cCube’s services are minimally

centralised and managed by an orchestrator. For all of its microservices, cCube

2https://opensource.org/licenses/MIT

114



5.2. Related Work

uses lightweight runtime environments in the form of ‘software containers’

(see Section 4.3.1). Moreover, they are designed to make application packaging

and execute microservices easily [15]. cCube containers can be automatically

deployed using Docker.

A cCube application was developed and its deployment demonstrated on

different clouds, utilising free resources, describing its employment on two

cloud providers, using them both separately and together.

The chapter is organised as follows. First, a review of the motivations for

factoring, filtering and fusion classification and for cloud-scaling and illustrat-

ing the relevant related work in Section 5.2. The cCube platform is described

in Section 5.3. Demonstration is in Section 5.4. Finally, the summary is in

Section 5.5.

5.2 Related Work

In the following th most relevant related work concerned with collaborative

EML and cloud applications architectures are reviewed.

5.2.1 Collaborative EML

Only one prior project, FCUBE, has addressed the challenge of the EML com-

munity collaboratively developing a compendium solution to a noteworthy ‘big

data’ classification problem. The project assumes individuals contribute their

algorithms, called ‘learners’, each independently written to solve the problem

using a smaller sample of the dataset. The software applies a particular general

decomposition called ‘factor’, ‘filter’, and ‘fuse’: once contributed learners

are collected, it executes them independently and in parallel by factoring the

entire data and creating splits of the original data into feasible sizes. During

training, the classifiers, i.e., models, resulting from all the learners are collected.

Then FCUBE executes a step of classifiers filtering and fusion that reduces the

collection before creating an ensemble-based solution. This ensemble classifier

is the community’s solution to the ‘big data’ problem [4].
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FCUBE learners can be completely different EML techniques, implemented

in different programming languages. Its ‘Bring Your Own Learner’ paradigm

has a plug-and-play style interface that reduces programming burden on the

participants. Algorithm developers are required to respect the specifications of

the input/output interface, providing the two functions of classifier training

(i.e., model building) and evaluation. cCube supports the same Bring Your Own

Learner paradigm as FCUBE.

5.2.2 Cloud Applications Architectures

Cloud computing exploits a distributed memory resource model. Instead,

using a shared memory model, such as GPUs or multi-threaded CPU, requires

specific inter-process communication protocols to be embedded within EML

software and that force the algorithms to be refactored. Cloud computing

removes the inefficiency of owning physical hardware that has be provisioned

for infrequent, high workloads and instead offers elastic computation as a

service in the form of virtual instances, for whatever time, quantity and quality

is required by a specific application.

Significant evolutionary computation work exploits cloud computing while

not necessarily solving the explicit collaborative classification challenge. Confin-

ing the discussion to those most relevant to cCube, besides the aforementioned

FCUBE, is one system that uses a synchronous storage service as pool for ex-

change information among population of solutions [42]. Another, SPACE allows

the computational resources necessary for running large scale evolutionary

experiments to be made available to amateur and professional researchers alike,

in a scalable and cost-effective manner, directly from their web browsers [36].

cCube integrates user code into an application that runs on the cloud, in

that aspect it is similar to FCUBE. FCUBE runs as a platform on the Amazon

Web Services (AWS) cloud platform, using the Amazon Elastic Compute Cloud

(EC2) service, or can equivalently be described as an architecture that creates

an application to run on AWS. It has been impressively demonstrated on an

EC2 cluster of 100 instances, using the Higgs dataset with 11 000 000 exemplars,
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running 5 different learning algorithms [4].

However, FCUBE has a number of limitations. For example, FCUBE suffers

from a strict dependence on a specific cloud provider, i.e., AWS EC2. Every

FCUBE startup process interacts with the Amazon API and its virtual instances

are realised and replicated using a technology specifically devised by Amazon,

i.e., Amazon Machine Image (AMI). A goal of cCube is to provide software

independent cloud vendors, e.g., users can take advantage of market prices.

There are also some shortcomings in FCUBE’s Bring Your Own Learner

implementation:

• FCUBE requires manual intervention whenever a new learner is contrib-

uted and each new learner triggers a re-build of the FCUBE AMI, since

the EML algorithms needs to be explicitly declared;

• should a new EML algorithm execute in a currently unsupported pro-

gramming language, that learner’s execution environment on the virtual

instance has to be manually configured. FCUBE’s maintenance and

extension process is fragile, inflexible and labour intensive;

• FCUBE requires manual intervention in the fusion step when outputs of

models are collected;

• the current design does not guarantee broad scalability and true fault-

tolerance for every component, since the functionalities are not clearly

distinguished. The communication protocols are not reliable, e.g., FCUBE

uses Amazon S3 as a file-based interchange point and relies upon SSH

commands.

How cCube’s microservices design addresses the shortcomings of FCUBE are

elaborated in later sections. In general cCube offers enhanced automation,

robustness, support for integrated development practices and is independent

of a cloud provider.

Cloud computing offers a broad spectrum of technologies from which to

compose an evolutionary algorithm or system. Merelo Guervós et al. devised
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SofEA, a model for pool-based evolutionary algorithms in the cloud, an evol-

utionary algorithm mapped to a central CouchDB object store [41]. SofEA

provides an asynchronous and distributed system for individuals’ evaluations

and genetic operators application. Later, they defined and implemented the

EvoSpace Model [23], consisting of two main components: a repository storing

the evolving population and some remote workers, which execute the actual

evolutionary process. It is the first work to involve technologies on the Platform-

as-a-Service (PaaS) and Software-as-a-Service (SaaS) level: Heroku as PaaS for the

population store and PiCloud as SaaS for the computing operations. cCube takes

advantage of Docker, PostgreSQL, RabbitMQ, and MongoDB.

Next, in Section 5.3 cCube is described and its design choices motivated,

which yield cloud and development practices that are principled, systematic

and robust.

5.3 System Design

The aim of cCube is to facilitate EML comparison, competition and collaboration.

A use case that cCube handles is factoring, filtering and fusing. There are three

possible users of cCube:

1. EML researcher, using best practices for software methodology;

2. end user, comparing EML algorithms to gain insight, selecting competing

EML algorithms for best performance and collaborating with other end

users as a community;

3. cCube engineer, that administers, maintains and intervenes manually for

the platform.

To build a cCube application, the EML developers copy a template from

cCube’s repository and customize configuration, e.g., EML algorithm invoca-

tion. The developers then become end users and start the cCube client on their

machine, provide keys for authorization, thus keeping their sensitive informa-

tion local and secure. The client, through Docker, starts the application after
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provisioning resources, running resource discovery and set up. The engineer

of cCube itself expands and maintains the open source code.

EML Researcher EML developers often use a personal computer to construct

an EML algorithm that is accurate and fast enough on a subsample of the

available data set. cCube is designed to help them integrate best practices into

their software development processes. It employs the conceptual work flow

shown in Section 4.4.3, that is adapted in Figure 5.1.push trigger pushGit repository Continuous Integration Docker Registrytest and build reportsDeveloper cCubeinject latest version cCube public repository
Figure 5.1: cCube is consistent with software development best practices, e.g.,
Continuous Integration.

By practicing Continuous Integration [20], the learner developers can main-

tain their source code in a single repository, and access to automated testing,

building and deployment processes. Then, after creating cCube as an extension,

the developer can execute the learner in the cloud. Using Docker, the develop-

ment capability was extended to allow the developer to include source code

and/or to define the algorithm’s execution environment, i.e., every component

required for learner execution in any programming language or technology,

without requiring a manual development intervention. The interaction inter-

face is kept flexible by defining a wrapping interface. Therefore, the only

information required is the path and instruction on how to execute the two

phases of EML computation, 1. learning and prediction 2. filtering and fusing
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the trained models output path . The developer does not need to make the

source code aware of cCube’s functionality or parallel computation. Therefore,

any algorithm can be executed in cCube. Once the container is defined, the

developer only needs to build and distribute it on a Docker Registry repository,

to be downloaded, executed and replicated on demand.

cCube End User The end user is interested in executing large-scale EML

algorithms, and therefore treats cCube as a black box. cCube does provisioning

and distribution of computational units using cloud accounts. The end user

view of cCube is shown in Figure 5.2. As it is possible to observe:

• the end user provides configurations for cCube tasks, EML algorithms,

data set and compute duration;

• the cCube client submits requests to cloud providers and a cluster of the

required number of nodes is allocated;

• cCube is ready to orchestrate containers and start the EML algorithms for

factoring, fusion and filtering;

• when a job is submitted a cCube cluster pulls the Docker images for the

services from the Docker registry and enqueues the tasks for the services.

In another scenario, cCube supports end users who collaborate by each

contributing some machines they have commissioned from their own account

on their cloud provider, in a sort of crowdfunding model. In this case, cCube

allows each user to keep their cloud credentials private, since the invocation of

cloud instances happens local to each of them, i.e., on their own computer. This

enables cCube to execute securely. The user can leave the cluster at any time.

cCube Engineer The role of the cCube engineer is to extend the capabilities

for comparison, competition and collaboration provided by cCube as well as

maintain and administer the architecture. Publicly available source code and

licensing are essential for these responsibilities as are minimal manual or labor

intensive steps when handling administration and security tasks. A cCube
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• runability, run anywhere without recompilation as in plug-and-play inser-

tion;

• support best practices in development, maintenance and performance.

Instead of being monolithic, cCube architecture is based on microservices.

For each functional component of cCube, a single microservice was identified

and implemented. These components could be individually developed, using

different programming languages (though they were entirely written in Python)

and technologies, and the interaction between them occurs through simple

communication protocols, i.e., REST API with HTTP and message queues. This

allowed cCube to have separate provisioning, distribution, communication and

EML system execution. An overview of cCube is given in Figure 5.3.

For the EML development, microservices and the software containers ap-

proach, the Bring Your Own Learner model of FCUBE [4] was enhanced. Instead

of inserting the learner within the source code and environment of cCube, cCube

was injected inside the container of the EML algorithm, running it as daemon

instructed to manage the communication with the other microservices of the

system.

5.3.2 cCube Implementation

Also, the open source properties of cCube were stressed in order to make

the microservices fully accessible to the community, e.g., others could learn

and extend cCube’s code to develop other EML architectures. To facilitate the

deployment, as well as development, the traditional use of the hypervisor-

based virtualization was abandoned in favor of the container-based one using

Docker (see Section 4.3.2 for further details). Thanks to the Docker API, it was

relatively easy to develop containers that themselves were easy to build, share

and quickly execute in a cloud environment. Moreover, once an image of the

container is ready, thus completed the build process, it can be stored into a

convenient public registry that Docker provides, i.e., Docker Hub.

cCube achieves independence from cloud providers by employing Docker
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Swarm. In this work, Docker Swarm was employed instead of CoreOS (see

Section 4.3.3) since Swarm was made publicly available at the time of the

demonstration. This is a native technology that composes a cluster of Docker

platforms between machines running the Docker engine. In addition, by

using Docker, cCube was implicitly made flexible against the limitations of the

quantity of machines the providers usually impose upon their users, through an

infrastructure definable as ‘multi-cloud’, i.e., based on the allocation of instances

by different cloud providers but participating in the same system [19].

Microservices

An Orchestrator creates and provisions the compute units, initiating and

directing the symphony of microservices. It uses a bridge pattern [55] to

interface with different cloud providers, e.g., OpenStack and Amazon EC2.

The Learner, Filter and Fuser microservices were designed as part of

one single container, i.e., the Worker, thus stored by the developer as a single

image on a Docker registry. The EML developer needs to inject the cCube

Worker component into the target EML algorithm execution environment, i.e.,

a Docker container. This component will act as daemon inside the container

and be in charge of communication with the cCube cluster. Thus, it will execute

the EML algorithm for learning or prediction, using environment variables

defined by the EML developer. By the means of a parameter given during the

orchestration, the container is able to detect which ‘role’ to play.

The following microservices, whose overview is shown in Figure 5.3, were

designed and implemented:

Factorizer: uses the bridge pattern [55] to interface with the storage. The

storage is currently PostgreSQL3, but it is possible to add other technologies

by means of the definition of other driver classes. The Factorizer exposes

its services through a REST interface thus the communication happens using

HTTP. This allows the data set upload via a POST /dataset request and then

the data set can be split into separate parts on demand and following the

3https://www.postgresql.org
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components needs, e.g., to use for training, fusion, and testing.

Scheduler: it accepts jobs through a REST interface. A job is considered as

a chain of processes executed on a cCube cluster, involving all the components,

i.e., microservices. Once a new job is requested, the Scheduler creates the tasks

for the Learners, Filter and Fuser and publish them on different message

queues in JSON format. First of all, a task represents a placeholder to let

other microservices carry out their duties by consuming them. Exploiting

a convenient feature of Advanced Message Queueing Protocol (AMQP), in

case of a microservice failed, e.g., cloud provider hardware fault, the task

would be put again into the queue and that computation run again by another

container. If the EML algorithm concludes the computation, then the task is

acknowledged, i.e., definitively removed from the queue. However, in the case

the fault is due to an EML algorithm failure, cCube avoids the repetition of

the same task since, with the same configuration, it would fail again. Thus,

the daemon recognises it, acknowledges the task in the queue and sends just

a failure placeholder message to the Filter. Moreover, the tasks contain all

the relevant information needed for running an activity, e.g., the target dataset

name, the parameters of separation for training, fusion and testing, features

to include/exclude, duration. In the case of the Learners, the tasks would be

in the number equal to the degree of parallelization expected by the user. A

producer/consumer pattern is controlled by a ‘queue manager’, implemented

by using the RabbitMQ (see Section 4.3.4) message broker service. It is worth

noting that multiple EML algorithms can participate in the same job and, also,

multiple jobs can run on the same cluster.

Learner: each of the multiple learners consumes a task, training data sample

and parameters, which are possibly generated at random when the task is

generated by the Scheduler, allowing also a parameters factorization. First,

a data sample for training is given by the Factorizer, using the GET /data-

set/<name>/training/sample request. Once received the data, the Learner

executes the EML algorithm according to a given duration, i.e., one of the

parameters included in the task. Then, the computed model is compressed and
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stored in a message and sent to a queue for outputs. Moreover, a copy of each

produced model is stored into a MongoDB 4 database.

Filter: EML algorithm output is filtered according to some ‘filter policy’.

When the Filter task has been consumed, it knows exactly the number of

expected outputs. Therefore, it consumes outputs until the last expected

message arrives. Then, the models are executed on a split of the data that

has been set aside, as a result of the GET /dataset/<name>/fusion request,

according to a filter policy. It is worth noting that the split is named ‘fusion’

since it is also used during the the fusion phase to produce the ensemble. In the

demonstration, the EML algorithm predictive performance is compared to a

majority class classifier and if it is above some threshold the model is accepted.

After the set of filtered models is done, it is published as a single message to

another queue for fusing. The result of the filtering phase is also stored into a

MongoDB database.

Fuser: filtered models are eventually fused together to collaborate in an

ensemble model. A fusion task is consumed and the message provides the

needed information. Data for fusion comes from the Factorizer through a

GET /dataset/<name>/fusion request, i.e., the same split used during the filter

phase. Then, another data split, as a result of the GET /dataset/<name>/test

request, is used to test the ensemble and computing some predictive perform-

ance metrics. The ‘fusion policy’ may require the models to be executed both

for the fusion and testing phases. In the demonstration, an ensemble based

on majority of votes was composed, thus the models were executed only for

the test phase. Finally, the ensemble, computed metrics and all the models are

stored using the MongoDB service.

cCube Injection

As mentioned above, the EML researchers were allowed to inject the cCube code

in their containers. This piece of code is maintained by the cCube engineers

and publicly distributed in the form of a executable script, that could be

4https://www.mongodb.com

126



5.4. Demonstration

for instance make downloadable from a commodity URL (i.e., https://raw.

githubusercontent.com/ccube-eml/worker/master/install.sh).

The EML developer is asked to use a cCube configuration file that, in the

current version, corresponds to a Dockerfile, i.e., a Docker container envir-

onment definition file. The user is allowed to define the environment using

all the features given by Docker, e.g., the inheritance from other public con-

tainer images already providing the set of tools required for the execution.

The only requirement for the connection with cCube is the definition of some

predefined environment variables, e.g., $CCUBE_LEARN_COMMAND, $CCUBE_PRE-

DICT_COMMAND, and the inclusion of few download and execution lines, e.g.,

ENTRYPOINT ["/ccube"].

In the following demonstration, the GP Function EML algorithm execut-

able [4] was encapsulated into a container without changing the source code.

The environment variables define how the cCube daemon can interact with the

EML algorithm and its outcome for both the learning and prediction phases.

5.4 Demonstration

In this section how to use cCube to run the GP Function EML algorithm is

demonstrated with a split of the Higgs dataset [5]. A private OpenStack cloud

was used and then a commercial provider, i.e., Amazon EC2. It is worth noting

that only instances eligible for the Amazon AWS Free Tier were used , thus all

the computation was free.

5.4.1 Environment Preparation

Firs, the current implementation of GP Function needed to be wrapped in

a Dockerfile showed in Listing 5.1. Even though not being the original

developers, it was enough to know only a few input parameters for GP Function

to run it in cCube:

• where to find the data used for learning;
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• where to find the algorithm output, i.e., the models;

• how to execute the model to predict data;

• where to collect the ensemble model.

Listing 5.1: The .ccube file for the GP Function algorithm.
1 FROM openjdk

2 LABEL maintainer "John Doe john.doe@ccube -eml"

3

4 # cCube injection.

5 RUN curl −sSL https://raw.githubusercontent.com/ccube−eml/worker/
↪→ master/install.sh | sh

6 WORKDIR /ccube

7 ENTRYPOINT ["python3", "-m", "worker"]

8

9 # Environment preparation.

10 COPY gpfunction.jar /gpfunction/gpfunction.jar

11

12 # cCube configuration.

13 ENV CCUBE_LEARN_COMMAND "java -jar /gpfunction/gpfunction.jar -train

↪→ \${CCUBE_LEARN_DATASET_FILE} -minutes \${

↪→ CCUBE_LEARN_DURATION_MINUTES} -properties \${

↪→ CCUBE_LEARN_PARAMETERS_PROPERTIES_FILE}"

14 ENV CCUBE_LEARN_WORKING_DIRECTORY "/gpfunction"

15 ENV CCUBE_LEARN_OUTPUT_FILES "\${CCUBE_LEARN_WORKING_DIRECTORY}/

↪→ mostAccurate.txt"

16 ENV CCUBE_PREDICT_COMMAND "java -jar /gpfunction/gpfunction.jar -

↪→ predict \${CCUBE_PREDICT_DATASET_FILE} -model \${

↪→ CCUBE_PREDICT_INPUT_FILES}/mostAccurate.txt -o predictions.csv

↪→ "

17 ENV CCUBE_PREDICT_WORKING_DIRECTORY "/gpfunction"

18 ENV CCUBE_PREDICT_PREDICTIONS_FILE "\${

↪→ CCUBE_PREDICT_WORKING_DIRECTORY}/predictions.csv"

The first section in Listing 5.1 is used to prepare and set up the environment

for the execution. With help of the inheritance capacity of Docker, it was

possible to start with an environment that had Java already installed. This was

made on line (1) by picking the openjdk container that is publicly available

on Docker Hub, i.e., the official and public Docker registry. Lines (5–7) were

used to download the cCube code (5), install the dependencies, and define the

starting point for the container (6–7), i.e., the cCube daemon. With line (10) we

copied the GP Function JAR executable into the environment. The interface

between the EML developer and the cCube system are on lines (13–18). The
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Only small and cheap instance types were launched:

1. Amazon EC2, ‘t2.micro’ with 1 CPU and 1 GB RAM;

2. OpenStack private cloud, instances with 1 CPU and 1 GB RAM.

To do this, the cCube Orchestrator was extended to interface with both

the cloud providers. The cCube Orchestrator runs a number of threads equal

to the cluster size, in order to ask for new allocations in parallel. To avoid

stressing the API interface of the providers the start of the threads was delayed

of 1 s each.

Two different times to measure were identified:

• ‘creation’, i.e., the necessary time to acquire the virtual machine and be

able to communicate with it through an SSH connection;

• ‘provisioning’, i.e., the time required to install Docker on the machine

and add it to the Docker Swarm.

Figure 5.4 shows the commands that were executed in the terminal to run

the Orchestrator. Most of the output is intentionally hidden, since it was

mostly debugging logs. It is worth noting that, even if the cloud providers

are different, the commands are quite similar. Given the cloud provider and a

configuration file containing the account credentials, the cCube Orchestrator

is able to:

1. create the 64 nodes on the provider, and provision them with the latest

version of Docker (node create);

2. initialise the cluster, i.e., the Docker Swarm, by electing one of the nodes

(e.g., ccube-jah7d6sa-00) as a manager (cluster init);

3. let all other nodes join the cluster as workers, by using the secret token

given by the previous command and the name of the manager (cluster

join) .

From this point, the infrastructure is ready to run any Docker service, as

cCube in our case. The setup time was measured, by running each of command
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ised, avoiding the ‘lock’ in from specific cloud providers and possibly

runnable on multi-cloud;

• allow users collaboration, in the form of crowdfunding.

Currently, the proposed architecture allows to fuse models resulting from

different learners only if the EML algorithms are available on the same container.

For instance, the GP Function in Java can fuse with another Genetic Program-

ming learner written in Python. Therefore, the use of specific algorithms is

possible by specifying it using a task parameter. It is in the future agenda to

enhance the architecture to better support multiple EML algorithms running

and their models fusion, adding a prior ‘executor’ microservice whose purpose

is to free the Fuser from the strict bond with the execution environments.

Also, future work will involve extending cCube further for comparison and

competition, as well as testing its usability, testing the large scale capacity over

more cloud providers and more nodes on big data challenges.

Considering the current implementation, the approach of software contain-

ers to run parallel EA as black boxes demonstrated to be already effective.
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6.1 Thesis Summary

This thesis studied the problem of parallelising Genetic Algorithms (GAs) in

cloud environments, using different approaches.

Hadoop MapReduce has been demonstrated to be effectively employable as

a parallelisation platform for GAs, especially when the problem fitness function

requires high computational load. From the results of the study emerged that

the island model, in particular, gives the best performance in the majority of

the cases. Thanks to the use of the elephant56 framework, which is described in

this thesis, it is also possible to reduce the effort in developing Parallel Genetic

Algorithms (PGAs), letting the end user focus only on the genetic operators

implementation.

Nevertheless, Hadoop MapReduce results to be particularly suitable when

a cluster of machines is already available. Indeed, even if using commercial
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cloud machines is possible, it requires specific skills for setup and maintenance

activities. Instead, using specific cloud technologies, as the ones employed in

the second work of this thesis, may simplify the setup of the parallel workers,

the deployment and execution of PGAs. From the results emerged that software

containers and message queues can be employed effectively also for a model,

i.e., the global model, where Hadoop MapReduce showed low performance.

The software containers, together with the other technologies and ap-

proaches employed for GAs parallelisation, demonstrated to be suitable also

when used for other Evolutionary Algorithms (EAs). In particular, they allowed

to design and implement cCube, an open source architecture that helps its users

to develop an application that deploys Evolutionary Machine Learning (EML)

algorithms to the cloud.

In this chapter final detailed remarks and future work are provided for

every aspect addressed in the thesis.

6.2 PGAs Using Hadoop MapReduce

In Chapter 3, the parallelisation of GAs was addressed using the Hadoop

MapReduce platform, based on three models, i.e., the global, grid and island

models. As a benchmark problem, a software engineering problem of config-

uring the Support Vector Machines (SVMs) for inter-release fault prediction

was considered. The effectiveness of these models in terms of execution time,

speedup, overhead and computational effort was empirically assessed by using

three publicly available datasets, which were chosen considering their different

size in order to varying the execution time of the GAs. It emerged that the use

of PGA based on the island model outperforms the use of sequential GA and

the PGAs based on the global and grid models for all the considered datasets

and cluster configurations since it is able to reduce the number of operations

performed on the data store, determining a faster execution of tasks and an

optimised usage of resources. Moreover, the results of the estimation of the

commercial cloud providers costs revealed that the island model is worth using
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also in term of costs against the execution with a single machine.

In general, a critical aspect in the use of Hadoop MapReduce is the presence

of overhead due to the communication with the data store (i.e., Hadoop Distrib-

uted File System (HDFS)). The distributed nature of the data store introduces an

intrinsic communication latency that may drastically worsen the performance

if multiple and useless operations are executed. To speed up the execution

of tasks, it is useful to reduce data store operations, as it happens with the

island model where data store access is limited to the migration phase only.

One avenue for future work is to evaluate the improvements in performance

when tuning the island model specific configuration parameters, such as the

migration intervals [40], using Hadoop MapReduce. Also, aiming at comparing

the achieved results with the theoretical models for GAs parallelisation pro-

posed by the literature [7, 35], adapting them to consider the effects of Hadoop

MapReduce.

Regarding the global model, one way to improve the execution time could

be the reduction of the data transmitted during the distribution of computa-

tional load. For instance, by providing the driver of an individuals registration

capability, once the fitness evaluation had completed, the output could be

reduced to the fitness values only instead of transferring the complete chromo-

somes. Unfortunately, the serial nature of Hadoop MapReduce requires the use

of syncronisation barrier, i.e., waiting for other parallel work completion, thus

not allowing the global model to take full advantage of Hadoop MapReduce

except for the case of intensive fitness evaluation work. As for the grid model,

a syncronisation barrier was placed in the driver, as suggested by Di Martino

et al. [14]. A substantial simplification of the communication could be applied

by making the execution of neighbourhoods evolution entirely independent

throughout all the generations. This option was not exploited because the

main interest was in providing a flexible solution, allowing to define and use

different strategies for the resolution of GAs in the form of a framework. It is

on the future agenda to implement and study these improvements, also for the

global and grid models.
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6.3 PGAs Using Software Containers

In Chapter 4, GAs were distributed based on the master/slave model with

technologies specifically devised for the cloud, i.e., the software containers,

cloud orchestration and message queues. Also the devised system was put in a

conceptual workflow for development, deployment and execution activities of

distributed GAs. The effectiveness of the system was empirically assessed in

terms of execution time, speedup, overhead, using a dummy fitness function

as a benchmark problem.

The execution time of the GA application was accelerated up to a total

number of 128 slave nodes. It emerged that there is a connection between

computation load and communication cost and that the execution time is

directly proportioned to the individual fitness evaluation time and inversely

proportioned to the number of cluster nodes. Moreover, it was observed that

the setup time can be quantified to few minutes even if the request is of many

nodes (e.g., 128). The performance and setup times place positively the cloud

between other employed technologies for GAs parallelisation, e.g., multi-core

systems, GPUs [59, 60] and Hadoop MapReduce, especially considering that

these times are related to a completely automatised activity, which does not

require the human presence as in the case of other methodologies.

One avenue for future work is to evaluate other parallel models fo GAs

such as the cellular and island model [38]. The empirical study should be

replicated with other fitness functions, and it is planned to put into operation

the structure by solving real world optimisation problems, such as Test Suite

generation [12, 14]. Furthermore, to make the system more flexible and easy to

use, it is also planned to abstract the concepts further and propose it in the form

of a framework, similarly to the work proposed in Chapter 5. In this way, the

developer would have to deal exclusively with the activity of genetic operators

programming. Also, it is in future plan to study the effects of the population

size parameter tuning in presence of heterogeneous environments [2, 22], e.g.,

the cloud, and using other parallelisation models, e.g., Pool-based EAs [23], to
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reduce the need of syncronisation but hopefully improve the performance.

6.4 Towards the Parallelisation of other EAs in the

Cloud

The main aim of Chapter 5 was to explore the approaches of software containers,

described in Chapter 4, for the use with other EAs than GAs, such as Genetic

Programming (GP), Evolution Strategy (ES), Differential Evolution (DE) and

some related techniques, e.g., Ant Colony Optimisation (ACO), Particle Swarm

Optimisation (PSO). The are mainly two ways to parallelise EAs:

1. identify specific parallelisation models and adapt them to target technolo-

gies;

2. using EAs as black boxes, independently executed in parallel, exchanging

results through communication protocols.

The former is the approach addressed for GAs in Chapter 3 and Chapter 4.

In this case, the parallel models are considered as distinct EAs themselves since

they alter the normal execution given by the sequential version, e.g., the grid

and island models. Therefore, the first challenge is to identify a possible parallel

model for the target EA and devise it if not already present in the literature.

Then, it is required to adapt the identified model to specific technologies, e.g.,

the MapReduce paradigm. For instance, even if not strictly related to the

field of EAs, the parallelisation of Tabu Search (TS) was addressed during

the period of work on this thesis. TS is a search algorithm (see Section 2.2.1)

that enhances the performance of local search prohibiting, for this reason the

term ‘tabu’, the search to previously visited solutions. Software containers

were used to implement a novel parallel version of TS. Parallel nodes run

different TS algorithms, exchanging information through a central database

service, avoiding to re-calculate fitness, i.e., one of the most time consuming

operators [38], and undertake areas of previously explored solutions space.
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The second possible approach treats EAs as programs that runs in parallel.

The main effort consists in ding a way to coordinate the exchange of and treat

the outcomes. Chapter 5 explored this approach for a class of EAs, solving

machine learning classification problems in particular, i.e., EML. cCube was

presented as an open source architecture for the comparison, competition and

multi-party collaboration of EML algorithms and users. The goal of cCube is to

provide an instrument for EML developers to run their algorithms on a large

scale using parallel cloud machines without changing code. By using the ‘Bring

Your Own Learner’ model, the collaboration of different EML algorithms was

made possible, to learn on the same dataset and combing the results into an

ensemble after filtering and fusion. A microservices architecture, implemented

in the form of software containers using Docker, simplified the development

and the maintenance processes, and facilitates extension from the open source

community. Moreover, the cCube was demonstrated on different clouds.

The positive results from these preliminary explorations allowed planning

the adaptation of cloud technologies for other EAs, using both the possible

approaches, i.e., devise and adapt specific parallel models and black boxes.

Moreover, distributed and sequential EAs will be compared in terms of quality

and execution time, and possibly mixed as an ensemble of algorithms working

together to solve the same problem, in the same way of cCube.
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Acronyms

AMQP Advanced Message Queueing Protocol.

EA Evolutionary Algorithm.

EML Evolutionary Machine Learning.

GA Genetic Algorithm.

GP Genetic Programming.

HDFS Hadoop Distributed File System.

JVM Java Virtual Machine.

PGA Parallel Genetic Algorithm.

SGA Sequential Genetic Algorithm.

SVM Support Vector Machine.

YARN Yet Another Resource Negotiator.
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