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“I am entitled not to recognize the principle of bivalence, and to accept the view
that besides truth and falsehood exist other truth-values, including at least more,
the third truth-value. What is this third-value? I have no suitable name for it.
But after the preceding explanations it should not be difficult to understand what
I have in mind. I maintain that there are propositions which are neither true nor
false but indeterminate. All sentences about future facts which are not yet decided
belong to this category. Such sentences are neither true at present moment, for they
have no real correlate. [...] If third value is introduced into logic we change its very
foundations.”

Jan Łukasiewicz, On determinism 1946
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Overview

This thesis, as the research activity of the author, is devoted to establish new
connections and to strengthen well-established relations between different
branches of mathematics, via logic tools. Two main many valued logics,
logic of balance and Łukasiewicz logic, are considered; their associated alge-
braic structures will be studied with different tools and these techniques
will be applied in social choice theory and artificial neural networks. The
thesis is structured in three parts.

Part I The logic of balance, for shortBal(H), is introduced. It is showed:
the relation with `-Groups, i.e. lattice ordered abelian groups (Chapter 2); a
functional representation (Chapter 3); the algebraic geometry of the variety
of `-Groups with constants (Chapter 4).

Part II A brief historical introduction of Łukasiewicz logic and its exten-
sions is provided. It is showed: a functional representation via generalized
states (Chapter 5); a non-linear model for MV-algebras and a detailed study
of it, culminating in a categorical theorem (Chapter 6).

Part III Applications to social choice theory and artificial neural net-
work are presented. In particular: preferences will be related to vector lat-
tices and their cones, recalling the relation between polynomials and cones
studied in Chapter 4; multilayer perceptrons will be elements of non-linear
models introduced in Chapter 6 and networks will take advantages from
polynomial completeness, which is studied in Chapter 2.

We are going to present: in Sections 1.1 and 1.2 all the considered struc-
tures, our approach to them and their (possible) applications; in Section 1.3
a focus on the representation theory for `-Groups and MV-algebras.

Note that: algebraic geometry for `-Groups provides a modus operandi
which turns out to be useful not only in theoretical field, but also in appli-
cations, opening (we hope) new perspectives and intuitions, as we made in
this first approach to social theory; non-linear models here presented and
their relation to neural networks seem to be very promising, giving both
intuitive and formal approach to many concrete problems, for instance de-
generative diseases or distorted signals. All these interesting topics will be
studied in future works of the author.
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Chapter 1

Introduction

1.1 `-Groups: Algebraic Geometry and Social Choice1

We propose a systematical study of the variety of `-groups via universal alge-2

braic geometry. The `-groups find many applications from theoretical fields,3

e.g. in mathematics for the study of the C∗-algebras and in physics about4

quantum mechanics, to applied fields, e.g. in operational research for the5

multiple-criteria decision analysis and in machine learning and cognitive6

science for the description of artificial neural networks. The study of these7

structures is deep and wide (e.g. see Anderson and Feil, 2012; Glass and8

Holland, 2012), with particular interest on geometric features and on con-9

nection with polyhedral geometry, specially in the case with strong unit (see10

Busaniche, Cabrer, and Mundici, 2012; Cabrer and Mundici, 2011; Cabrer11

and Mundici, 2012; Cabrer, 2015), thanks to the relation with Łukasiewicz12

logic via Mundici functor (for more details see Cignoli, d’Ottaviano, and13

Mundici, 2013; Mundici, 1986).14

We will deal with the variety of `-groups using universal algebraic ge-15

ometry (see Plotkin in Plotkin, 2002), which combines the tools of classical16

algebraic geometry, traditionally based on the concepts of polynomial and17

field, with the tools of universal algebra that apply to algebraic structures18

of any kind (including groups, rings, etc.). The goodness of these tech-19

niques is already shown in a series of works by Sela, Kharlampovich and20

others; these works solve the conjectures of Tarski on finitely generated free21

groups, showing that these groups have the same theory (apart from the22

case of one generator, which gives the integers) and that this theory is de-23

cidable.24

We start from very malleable objects, piecewise linear functions, a well25

established tool for a huge amount of applications, to get to define, in the26

purest way, a logic language which describes our structures. We show how27

to obtain and derive properties in one among algebraic, geometrical, func-28

tional analytic and logic field using information coming from the other29

ones. The underlying theme of this work leads us in a path through dif-30

ferent fields; it connects algebra, geometry, functional analysis and logic31

through the simple ability to define objects using `-equations (which are32

the equations between `-polynomials), i.e. the ability to describe solutions33

of `-equations from the properties of an `-group and viceversa.34

We use different tools and techniques to describe properties of `-groups.35

In Section 4.1 there is a briefly overview of piecewise linear functions (gen-36

eralizing many results of Baker, 1968; Beynon, 1975; Beynon, 1977). In Sec-37

tion 4.3 we study the connections between algebraic and geometrical prop-38

erties of an `-group. In Chapter 2 we extend a logic, proposed in Galli,39
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Lewin, and Sagastume, 2004, with constants which describes our structures40

and we focus on the polynomial completeness. In particular, the main results41

(presented in Di Nola, Lenzi, and Vitale, sub) are:42

• a completeness theorem of our logic (Theorem 2.1.2);43

• a Wójcicki-type theorem (Theorem 2.2.1);44

• the Nullstellensatz for `-groups (Theorem 4.3.1);45

• a characterization of the geometrically stable `-groups (Theorem 4.4.1);46

• a characterization of algebraically closed `-groups (Theorem 4.6.1);47

• a categorical duality between the category of algebraic sets and of co-48

ordinate algebras (Theorem 4.7.1).49

Social Preferences Our choices are strictly related to our ability to com-50

pare alternatives according to different criteria, e.g. price, utility, feelings,51

life goals, social conventions, personal values, etc. This means that in each52

situation we have different best alternatives with respect to many criteria;53

usually, the context gives us the most suitable criteria, but no one says that54

there is a unique criterion. Even when we want to make a decision accord-55

ing to the opinions of the experts in a field we may not have a unique ad-56

vice. To sum up, we have to be able to define our balance between different57

criteria and opinions, to give to each comparison a weight which describes58

the importance, credibility or goodness and then to include all these infor-59

mation in a mixed criteria. As usual, we need a formalization which gives60

us tools to solve these problems; properties of this formalization are well61

summarized by Saaty in Saaty, 1990, according to whom62

[it] must include enough relevant detail to: represent the63

problem as thoroughly as possible, but not so thoroughly as to64

lose sensitivity to change in the elements; consider the environ-65

ment surrounding the problem; identify the issues or attributes66

that contribute to the solution; identify the participants associ-67

ated with the problem.68

Riesz spaces, with their double nature of both weighted and ordered69

spaces, seem to be the natural framework to deal with multi-criteria meth-70

ods; in fact, in real problems we want to obtain an order starting from71

weights and to compute weights having an order.72

We remark that:73

• Riesz spaces are already studied and widely applied in economics,74

mainly supported by works of Aliprantis (see Abramovich, Alipran-75

tis, and Zame, 1995; Aliprantis and Brown, 1983; Aliprantis and Burkin-76

shaw, 2003);77

• contrary to the main lines of research, which prefer to propose ad-hoc78

models for each problems, we want to analyze and propose a general79

framework to work with and to be able, in the future, to provide a80

universal translator of various approaches.81
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We introduce basic definitions and properties of Riesz spaces with a pos-82

sible interpretation of them in the context of pairwise comparison matrices,83

focusing on aggregation procedures. As main results we have:84

• a characterization of collective choice rules satisfying Arrow’s axioms85

(Theorem 7.2.1);86

• established an antitone Galois correspondence between total preorders87

and cones of a Riesz space (Theorem 7.3.1);88

• a categorical duality between categories of preorders and of particular89

cones of a Riesz space (Theorem 7.3.2).90

In Section 7 we recall some basic definitions of Riesz space and of pair-91

wise comparison matrix (PCM). Section 7.1 is devoted to explain, also with92

meaningful examples, the main ideas that led us to propose Riesz spaces as93

suitable framework in the context of decision making; in particular it will94

explained how properties of Riesz spaces can be appropriate to model, and95

to deal with, real problems. In Sections 7.2 and 7.3 we focus on a particular96

method of decision making theory, i.e. PCMs; we pay special attention to:97

• collective choice rules;98

• classical social axioms (Arrow’s axioms);99

• total preorder spaces;100

• duality between total preorders and geometric objects.101

1.2 MV-algebras: Beyond Linearity and ANNs102

Recall that MV-algebras are the structures corresponding to Łukasiewicz103

many valued logic, in the same sense in which Boolean algebras correspond104

to classical logic (see Blok and Pigozzi, 1989). Riesz MV-algebras are MV-105

algebras enriched with an action of the interval [0, 1], which makes them106

appealing for applications in real analysis.107

Usually free MV-algebras and Riesz MV-algebras (in particular the finitely108

generated ones) are represented by piecewise linear functions. But for ap-109

plications it could be interesting to represent (Riesz) MV-algebras with non-110

linear functions. One could relax the linearity requirement and consider111

piecewise polynomial functions, which are important for several reasons,112

for instance they are the subject of the celebrated Pierce-Birkhoff conjecture,113

and include, in one variable, the spline functions, a kind of functions which114

has been deeply studied, see Schoenberg, 1946a and Schoenberg, 1946b.115

Other examples are Lyapunov functions used in the study of dynamical116

systems, see Lyapunov, 1992, and logistic functions. We will show that a117

possible application of non-linear MV-algebras can be found in the domain118

of artificial neural networks.119

We stick to continuous functions, despite that for certain applications it120

could be reasonable to use discontinuous functions, for instance in order121

to model arbitrary signals in signal processing. Continuous functions are122

preferable for technical reasons: for instance, they preserve compact sets,123

and in general, they behave well with respect to topology.124



4 Chapter 1. Introduction

So, our Riesz MV-algebras of interest will be the Riesz MV-algebras of125

all continuous functions from [0, 1]n to [0, 1], which we will denote by Cn.126

An important subalgebra ofCn is given by the Riesz MV-algebra of what127

we call Riesz-McNaughton functions. We call RMn the Riesz MV-algebra of128

Riesz-McNaughton functions from [0, 1]n to [0, 1]. That is, f ∈ RMn if it is129

continuous, and there are affine functions f1, . . . , fm with real coefficients,130

such that for every x ∈ [0, 1]n there is i with f(x) = fi(x).131

In other words, RMn is the set of all piecewise affine functions with real132

coefficients.133

As a particular case, McNaughton functions are those Riesz-McNaughton134

functions where coefficients are integer rather than real. We denote by Mn135

the MV-algebra of McNaughton functions (it is an MV-algebra, not a Riesz136

MV-algebra). RMn is a free Riesz MV-algebra in n generators. Then the free137

Riesz MV-algebras over n generators coincide with the isomorphic copies138

of RMn. We say that a structure A is a copy of a structure B when A is139

isomorphic to B. However, we prefer not to identify isomorphic Riesz MV-140

algebras of functions, because they can consist of functions with very di-141

verse geometric properties, which may be relevant for applications.142

The main results (presented in Di Nola, Lenzi, and Vitale, 2016b) are:143

• an extension of the Marra-Spada duality from MV-algebras to Riesz144

MV-algebras;145

• a characterization of zerosets of Riesz-McNaughton functions by means146

of polyhedra (Theorem 6.1.3);147

• a study of copies of RMn in Cn;148

• a duality between several interesting categories of Riesz MV-subalgebras149

of Cn and closed subsets of [0, 1]n up to R-homeomorphism (Theorem150

6.2.4).151

Artificial Neural Network Many-valued logic has been proposed in Cas-152

tro and Trillas, 1998 to model neural networks: it is shown there that, by153

taking as activation functions ρ the identity truncated to zero and one (i.e.,154

ρ(x) = (1 ∧ (x ∨ 0))), it is possible to represent the corresponding neural155

network as combination of propositions of Łukasiewicz calculus.156

In Di Nola, Gerla, and Leustean, 2013 the authors showed that multi-157

layer perceptrons, whose activation functions are the identity truncated to158

zero and one, can be fully interpreted as logical objects, since they are equiv-159

alent to (equivalence classes of) formulas of an extension of Łukasiewicz160

propositional logic obtained by considering scalar multiplication with real161

numbers (corresponding to Riesz MV-algebras, defined in Di Nola and Leustean,162

2011 and Di Nola and Leuştean, 2014).163

We propose more general multilayer perceptrons which describe not164

necessarily linear events. We show how we can name a neural network165

with a formula and, vice versa, how we can associate a class of neural166

networks to each formula; moreover we introduce the idea of Łukasiewicz167

Equivalent Neural Networks to stress the strong connection between (very168

different) neural networks via Łukasiewicz logical objects. Moreover we169

describe the structure of these multilayer perceptrons and provide the exis-170

tence of finite points (our input) which allow us to recognize goal functions,171
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with the additional property that it is possible to use classical methods of172

learning process. To sum up, main results (partially presented in Di Nola,173

Lenzi, and Vitale, 2016a) are:174

• propose ŁN as a privileged class of multilayer perceptrons;175

• link ŁN with Łukasiewicz logic (one of the most important many-176

valued logics);177

• show that we can use many properties of (Riesz) McNaughton func-178

tions for a larger class of functions;179

• propose an equivalence between particular types of multilayer per-180

ceptrons, defined by Łukasiewicz logic objects;181

• compute many examples of Łukasiewicz equivalent multilayer per-182

ceptrons to show the action of the free variables interpretation;183

• describe our networks;184

• argue on a suitable selection of input.185

We think that using (in various ways) the interpretation layer it is possible186

to encode and describe many phenomena (e.g. degenerative diseases, dis-187

torted signals, etc), always using the descriptive power of the Łukasiewicz188

logic formal language.189

1.3 Representation of `-Groups and MV-algebras190

Representation theorems have played a crucial role in the study of abstract191

structures. Representation theory provides a new and deep understanding192

of the properties in several fields, presents different perspectives and has193

various applications in many areas of mathematics. As showed in the lit-194

erature (e.g. Riesz representation theorem for vector lattices (Rudin, 1987,195

Theorem 2.14), Di Nola representation theorem for MV-algebras (Cignoli,196

d’Ottaviano, and Mundici, 2013, Theorem 9.5.1)), special attention is paid197

to embeddings in functional spaces.198

We focus on the space of particular homomorphisms between an ar-199

chimedean `-group (a semisimple MV-algebra, respectively) and a vector200

lattice (a Riesz MV-algebra, respectively), i.e. the set of the generalized states,201

introducing a quite natural generalization of the well-studied states on `-202

groups and MV-algebras (see also Goodearl, 2010; Mundici, 2011). We pro-203

vide a framework, in which it is possible to encode and decode more infor-204

mation than usual.205

Archimedean `-groups and semisimple MV-algebras are widely and deeply206

studied and different representation theorems are known in the literature207

(see for example Bigard, Keimel, and Wolfenstein, 1977; Boccuto and Sam-208

bucini, 1996; Darnel, 1994; Filter et al., 1994; Glass, 1999; Goodearl, 2010 and209

Cignoli, d’Ottaviano, and Mundici, 2013; Mundici, 1986; Mundici, 2011;210

Pulmannová, 2013, respectively). In particular, for archimedean `-groups211

the Bernau representation theorem (see also Bernau, 1965) provides a func-212

tional description of these kinds of structures. The statement of the theorem213

is the following.214
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Theorem (Glass, 1999, Theorem 5.F) Given an Archimedean `-group G215

there is an `-embedding ι : G ↪→ D(X) of G into the vector lattice of almost216

finite continuous functions on a Stone space X = S(B), where B is the Boolean217

algebra of polars in G.218

Furthermore, Pulmannová presents a representation theorem for semisim-219

ple MV-algebras via states on an effect algebra.220

Theorem (Pulmannová, 2013, Theorem 4.5) Given an Archimedean MV-221

algebra A there is an embedding of A into the MV-algebra of all pairwise commut-222

ing effects on a complex Hilbert space.223

One of the motivations of this work is to give a representation which224

is convenient to work with (we consider simple objects, i.e. affine or con-225

tinuous functions), but, on the other hand, is powerful enough to express226

significant properties of our studied objects (the involved functions act on227

generalized states).228

Generalized states take values in a Dedekind complete vector lattice,229

in which it is possible to give generalizations of Hahn-Banach, extension230

and sandwich-type theorems. Many of these results are presented in the231

literature (see Boccuto and Candeloro, 1994; Bonnice and Silverman, 1967;232

Chojnacki, 1986; Fuchssteiner and Lusky, 1981; Ioffe, 1981; Kusraev and233

Kutateladze, 1984; Kusraev and Kutateladze, 2012; Lipecki, 1979; Lipecki,234

1980; Lipecki, 1982; Lipecki, 1985; Luschgy and Thomsen, 1983). This fact235

has led us to consider and use techniques which will allow to reproduce,236

in the framework of MV-algebras, these results and their implications in237

applications.238

Indeed, these kinds of theorems have many applications (see Aliprantis239

and Burkinshaw, 2003; Aliprantis and Burkinshaw, 2006; Aubert and Ko-240

rnprobst, 2006; Boccuto, Gerace, and Pucci, 2012; Boyd and Vandenberghe,241

2004; Brezis, 2010; Fremlin, 1974; Hildenbrand, 2015; Kusraev and Kutate-242

ladze, 2012; Rockafellar and Wets, 2009), for example convex analysis and243

properties of conjugate convex functions, which are useful to prove duality244

theorems; image restoring problems; subdifferential and variational calcu-245

lus; convex operators; least norm problems; interpolation; statistical op-246

timization; minimization problems; vector programs; economy equilibria.247

We recall that MV-algebras are the algebraic semantic of Łukasiewicz logic248

(ŁL) (see also Cignoli, d’Ottaviano, and Mundici, 2013), one of the first non-249

classical logics, and Riesz MV-algebras (see Di Nola and Leuştean, 2014) of250

an extension of ŁL. This has implications also in the mathematical logic251

field. Moreover, these structures have also several applications (see Amato,252

Di Nola, and Gerla, 2002; Hussein and Barriga, 2009; Hassan and Barriga,253

2006; Kroupa and Majer, 2012), among which artificial neural networks; im-254

age compression; image contrast control; game theory. Our approach could255

give some further developments in applications of both fields, by consid-256

ering more abstract structures which contain more relevant information on257

the treated objects.258

The main results (presented in Di Nola, Boccuto, and Vitale, sub) are:259

• a representation theorem for archimedean `u-groups, using extremal260

states (Theorem 3.2.1);261

• a representation theorem for archimedean `u-groups, simply by means262

of states (Theorem 3.2.2);263
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• a representation theorem for semisimple MV-algebras, via generalized264

states (Theorem 5.0.5).265
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Part I

Logic of Balance
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Preliminaries266

Varieties and Categories A signature τ is a set of function symbols each of267

which has an arity which is a natural number. We admit also symbols with268

arity zero which we will call constants. Now let τ be a signature and X a set269

of variables, then T(X) denotes the set of the terms (or τ -terms) in the sig-270

nature τ on the set X of variables, which are inductively defined (for more271

details see Burris and Sankappanavar, 1981). We call variety of algebras the272

class of all algebraic structures on a specific signature satisfying a given set273

of identities. The variety identities are expressions in the form p(x) = q(x)274

where p(x) and q(x) belong to the set T(X). Note that every variety Θ can be275

regarded as category whose morphisms are the homomorphisms in Θ. For276

more details on categories and functors see Mac Lane, 1978.277

Congruences Let A be an algebra of signature τ and let θ be an equiva-278

lence relation. Then θ is a congruence on A if it satisfies the following com-279

patibility properties: ∀f ∈ τ , and ∀ai, bi ∈ A, i = 1, . . . , n, such that aiθbi,280

we have fA(a1, . . . , an)θfA(b1, . . . , bn). We denote by Con(A) the set of all281

congruences on the algebra A. If θ is a congruence on A, then the quotient282

algebra of A with respect to θ, denoted by A/θ is the algebra whose sup-283

port is the support of A modulo θ and whose operations satisfy the identity284

fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ , where a1, . . . , an ∈ A and f is a285

n-ary functional symbol in τ . Obviously quotient algebras of A have the286

same signature of A.287

Free Algebras Let K be a class of algebras with a signature τ (i.e. a τ -288

algebra), A ∈ K and X be a subset of A. We say that A is free over X if X289

generates A and for every B ∈ K and for every function α : X → B there290

exists a unique homomorphism β : A −→ B which extends α (ie, such that291

β(x) = α(x) for x ∈ X), in this case we say that A has the universal property292

of the applications for K on X. The size of the generating set determines the293

free algebra in the following sense.294

Theorem 1.3.1. (See Burris and Sankappanavar, 1981, Theorem 10.7) LetA1 and295

A2 two algebras in a class K free overX1 andX2 respectively. If |X1| = |X2|, then296

A1
∼= A2.297

Thanks to the previous theorem, for every cardinal λ, the free algebra298

on λ elements is unique up to isomorphism and will be denoted by F (λ).299

We say also that F (λ) is the free algebra of K over λ generators. In each300

variety there is a F (λ) for every cardinal λ.301

Equations Let us fix a variety Θ and a finite set X = {x1, . . . , xn} and302

consider equations of the form w = w′, w,w′ ∈ F (X). Every such equation303

is considered also as a formula in the logic in the variety. In the later case304

we write w ≡ w′. A homomorphism µ : F (X)→ A is a root of the equation305
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w(x1, . . . , xn) = w′(x1, . . . , xn), ifw(µ(x1), . . . , µ(xn)) = w′(µ(x1), . . . , µ(xn)).306

This also means that the pair (w,w′) belong to Kerµ. We will identify the307

pair (w,w′) and the equation w = w′. In order to get a reasonable geometry308

in Θ we have to consider the equations with constants.309

Algebras with a Fixed Algebra of Constants310

Definition 1.3.1. Let Θ be a variety , H be a fixed algebra in Θ. Consider a311

new variety, denoted by ΘH . The language of ΘH is the language of Θ plus a312

constant ch for every h ∈ H . The axioms are the axioms of Θ plus all equations313

cf(h1,...,hn) = f(ch1 , . . . , chN ). ΘH can be also viewed as a category. The objects314

have the form (G, g), where g : H → G is a homomorphism in Θ, not necessarily315

injective. We will say that (G, g) is faithful if g is injective, roughly speaking G is316

a faithful H-algebra if it contains a designated copy of H , which we can identify317

with H . Let us consider g : H → G and g′ : H → G′, then µ : G → G′ is a318

morphisms in ΘH iff µ is a homomorphism of Θ and g′ = µg.319

Let us define the free product A ∗ B, where A and B are objects in a320

variety Θ, as follows:321

1. A ∗B is generated by A ∪B;322

2. let φ : A → C and ψ : B → C be morphisms, then there exists a323

unique morphism α : A ∗ B → C such that this is a commutative324

diagram:325

A
i //

φ ""

A ∗B
α
��

B
ioo

ψ{{
C

A free algebra F = F (X) in ΘH has the form H ∗F0(X), where F0(X) is326

the free algebra in Θ over X, ∗ is the free product in Θ and the embedding327

iH : H → F (X) = H ∗ F0(X) follows from the definition of free product. A328

H-algebra (G, g) is called a faithful H-algebra if g : H → G is an injection.329

The free algebra (F, iH) is faithful. A H-algebra H with the identicalH → H330

is also faithful and all other H-algebras H are isomorphic to this one. All331

of them are simple, i.e., they do not have faithful subalgebras and congru-332

ences. Let (G, g) be a H-algebra, and µ : G → G′ is a homomorphism in Θ,333

then, by g′ = µg, G′ becomes a H-algebra, and µ is a homomorphism of H-334

algebras. We say that T congruence of G is faithful if the H-algebra G/T is335

faithful. Let us consider (G, g), (G′, g′) and the homomorphism µ : G→ G′;336

if (G′, g′) is a faithful H-algebra, then (G, g) is a faithful H-algebra. More-337

over if T = Kerµ, then T is a faithful congruence and G/T is also faithful.338

The Variety of `-groups An `-group is a structure (G,+,−, 0,≤) such that339

(G,+,−, 0) is an abelian group, (G,≤) is a lattice ordered set and ∀a, b, c ∈340

G we have a ≤ b ⇒ a + c ≤ b + c (compatibility property). G is a totally341

ordered group when (G,≤) is a totally ordered set, i.e. a chain; and we say342

that G is divisible if for every n ∈ N and for every g in G there exists x such343

that nx = g. Equivalently we can consider the structure (G,+,−, 0,∧,∨),344

where x ≤ y ⇔ x ∧ y = x. Note that `-groups form a variety in the sense345
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of universal algebra, in fact it is possible to express them via the following346

axioms:347

1. ∀a, b, c ∈ G a+ (b+ c) = (a+ b) + c ;348

2. ∀a ∈ G a+ 0 = a = 0 + a ;349

3. ∀a ∈ G a+ (−a) = 0 = −a+ a ;350

4. ∀a, b ∈ G a+ b = b+ a ;351

5. ∀a, b ∈ G a ∧ b = b ∧ a ;352

6. ∀a, b ∈ G a ∨ b = b ∨ a ;353

7. ∀a, b, c ∈ G a ∨ (b ∨ c) = (a ∨ b) ∨ c ;354

8. ∀a, b, c ∈ G a ∧ (b ∧ c) = (a ∧ b) ∧ c ;355

9. ∀a, b ∈ G a ∨ (a ∧ b) = a ;356

10. ∀a, b ∈ G a ∧ (a ∨ b) = a ;357

11. ∀a, b, c ∈ G c+ (a ∧ b) = (c+ a) ∧ (c+ b) ;358

12. ∀a, b, c ∈ G c+ (a ∨ b) = (c+ a) ∨ (c+ b) .359

We denote it with `GR (`GRH if we fix an `-group H of constants) and360

FA`0(n) the free `-group over n generators (FA`H(n) if we fix an `-group361

H of constants).362

We assume also the following notation: |a| = a ∨ (−a) (absolute value).363

An `-ideal of an `-group is a subgroup J of G such that if x ∈ J and |y| ≤364

|x| then y ∈ J . We will denote by < a > the `-ideal generated by a. In365

the variety of `-groups congruences are identified with `-ideals. We say u366

strong unit of G `-group if and only if 0 ≤ u ∈ G and ∀x ∈ G there is an367

integer n such that x ≤ nu. We say that uG is an order unit of G iff for every368

x ∈ G there is a positive integer nwith |x| ≤ nuG. We denote by (G, uG) and369

(R, uR) an abelian `-group and a vector lattice (or Riesz space) with order370

units uG and uR, respectively. A partially ordered abelian group G is said371

to be archimedean iff for every x, y ∈ G with nx ≤ y for every n ∈ N we have372

x ≤ 0. A partially ordered abelian groupG is unperforated iff for every n ∈ N373

and x ∈ G with nx ≥ 0 we get x ≥ 0 (see also Goodearl, 2010, Definitions,374

pp. 19-20). A subgroup (resp. subspace) M of G (resp. R) is said to be375

cofinal iff for every x ∈ G (resp. R) there is z ∈M with z ≥ x. If x0 ∈ G \M ,376

then span(M ∪ {x0}) denotes the subgroup of G generated by M and x0,377

namely span(M ∪ {x0}) := {z + nx0 : z ∈ M,n ∈ Z}. Analogously, given378

x0 ∈ R \M , we denote by span(M ∪ {x0}) the subspace of R generated by379

M and x0, that is span(M ∪ {x0}) := {z + αx0 : z ∈M,α ∈ R}.380

If we define the quotient groupG/J , with J `-ideal, the operations a/J ∨381

b/J = (a ∨ b)/J and a/J ∧ b/J = (a ∧ b)/J set a/J = a + J , lateral of a,382

then G/J is an `-group. Moreover, if we consider the canonical projection383

ρJ : G → G/J which associates to each element its lateral, we can see that384

ker(ρJ) = J . An `-ideal J is called prime if and only if J is proper and385

the `-group G/J is totally ordered. Let G and H be `-groups, f : G −→386

H is a homomorphism of `-groups (f ∈ Hom(G,H)) if and only if f is a387
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homomorphism of groups and of lattices. If G and H are `-groups and388

f : G→ H is an homomorphism then ker(f) = f−1(0) is an `-ideal of G and389

G/ker(f) is isomorphic to an `-subgroup of H. A function µ : (G, uG) →390

(R, uR) is an `u-homomorphism iff it is a monotone homomorphism of groups391

such that µ(uG) = uR (here and in the sequel, we refer to the reduct abelian392

lattice group ofR). We denote byHom(G,R) (resp. `uHom(G,R)) the set of393

all monotone group homomorphisms (resp. `u-homomorphisms) between394

G and R, and by S(G, uG) the space of all states between G and R (see also395

Goodearl, 2010). Note that, when R = R, then `uHom(G,R) = S(G, uG). If396

K ⊂ Hom(G,R), then we say that µ ∈ K is extremal iff, whenever µ1, µ2 ∈ K397

and µ = αµ1 + (1−α)µ2 with α ∈ [0, 1], we get µ = µ1 or µ = µ2. The set of398

all extremal elements of K is denoted by Ext(K).399

IfX is a real vector space, then a convex combination of elements x1, . . . , xn400

of X is a linear combination of the form
n∑
i=1

αixi, where
n∑
i=1

αi = 1 and401

αi ≥ 0 for each i = 1, . . . , n. If X1 and X2 are real vector spaces and Ci402

is a convex subset of Xi, i = 1, 2, then a function f : X1 → X2 is said to403

be affine iff f preserves convex combinations. We denote by AffY (X) the404

space of all affine functions from X to Y .405
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Chapter 2406

The Logic Bal(H)407

We start from Bal, defined in Galli, Lewin, and Sagastume, 2004; this logic,408

associated with `-Groups, describes the balance of opposing forces, i.e. the-409

orems could be interpreted as balanced states, and models some features of410

arguments in which conflicting pieces of evidence are confronted, e.g. po-411

lice investigations, political influences, etc. Equilibrium is the only one dis-412

tinguished truth value, which will be interpreted as the zero af an `-group.413

Then we introduce Bal(H), where H is a fixed `-group of constants.414

Let us consider a set of propositional variables and the language LBal(H) =415

{→,+ , {ch}h∈H}. As usual the terms of our logic are defined inductively416

as follows: propositional variables and constants are terms, if φ and ψ are417

terms then φ→ ψ and φ+ are terms. Axioms and rules are the following.418

Axioms419

BAL1 (φ→ ψ)→ ((θ → φ)→ (θ → ψ))420

BAL2 (φ→ (ψ → θ))→ (ψ → (φ→ θ))421

BAL3 ((φ→ ψ)→ ψ)→ φ422

BAL4 φ++ → φ+
423

BAL5 ((φ→ ψ)+ → (ψ → φ)+)→ (ψ → φ)424

C1 ca−b → (cb → ca)425

C2 ca∨b → (cb → ca)
+ ⊕ cb426

where x⊕ y := (x→ (x→ x))→ y.427

Rules
φ, φ→ ψ

ψ
(MP )

φ, ψ

φ→ ψ
(G)

φ

φ+
(PI)

(φ→ ψ)+

(φ+ → ψ+)+
(MI)

Let us consider G ∈ `GRH , if we consider a map v′ from the proposi-428

tional variables of Bal(H) to G, we can consider the H-valuation v recur-429

sively defined as follows:430
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• v(x) = v′(x) for all x variable431

• v(ch) = h for all h ∈ H432

• v(φ→ ψ) = v(ψ)− v(φ)433

• v(φ+) = max{φ, 0}434

We say that v satisfies φ iff v(φ) = 0.435

2.1 Polynomial Completeness and Completeness The-436

orem437

We want to prove the completeness of our new logic (for more details on the438

definition of completeness in logic you can see Burris and Sankappanavar,439

1981). For this reason we investigate the role of the introduced constants in440

the Lindenbaum algebras (which are exactly, up to isomorphism, FA`H(ℵ0))441

and the impact on the logic side.442

Until now, we did not stress the deep difference between `-polynomials443

and the associated functions, some intuitions can came out from many ob-444

servations, but in this section we focus on the formalism behind these ideas445

and we try to express the properties which an `-group G have to have to446

be polynomially complete. An analogous definition is presented in Belluce,447

Di Nola, and Lenzi, 2014 in the field of MV-algebras.448

Definition 2.1.1. An `-group G is polynomially complete w.r.t. H (PC(H)) iff449

for every n, if we consider p(x̄; h̄) ∈ FA`H(n) such that ∀ḡ ∈ Gn p(ḡ; h̄) = 0 then450

p(x̄; h̄) is the zero polynomial, where h̄ = (h1, . . . , hm) represents the constants451

of p in H . We will say that G is polynomially complete (for short PC) iff G is452

PC(H) for every H ≤ G.453

Theorem 2.1.1. The following are equivalent:454

1. G is PC(H);455

2. if p, q ∈ FA`H(n) induce the same function over G then p = q;456

3. if p, q ∈ FA`H(n) induce the same function over G then they induce the457

same function in every extension of G.458

Proof. (1⇔ 2) It follows by the fact that in the variety of `-groups every459

equality p = q can be write p− q = 0.460

(3⇒ 2) We have that FA`H(n) ≤ FA`G(n) and FA`G(n) is an extension461

of G.462

(2⇒ 3) Trivial.463

464

To sum up we have that G is PC(H) when G is big enough to separate465

polynomials in FA`H .466

Proposition 2.1.1. Let us consider {Gi}i∈I finite family of `-groups such that467

they are PC(H). The cartesian product G =
∏
i∈I Gi is PC(H |I|).468
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Proof. Let p be an `-polynomial such that ZG(p) = G. This means that for469

every j ∈ I and g = (g(i))i∈I ∈ G pj(g) = 0Gj , i.e. p(g(j)) = 0Gj ; but for each470

j Gj is PC(H), then p = 0.471

Proposition 2.1.2. If G is PC(H1) then for each G′ ≥ G and H2 ≤ H1 we have472

that G′ is PC(H1) and G is PC(H2).473

Proof. It is straightforward by definition.474

Corollary 2.1.1. G is PC(G) iff G is PC.475

Proposition 2.1.3. Z is not PC, but it is PC({0}).476

Proof. In Section 4.2.3(the case with constants) there are presented non-zero477

`-polynomials sfn which induce the zero function over Z, i.e. Z is not PC.478

On the other hand when we consider FA`0(n) and the direction of the479

closed cones (which are zero sets) generated by Zn are dense in the space of480

the directions in Rn, i.e. the only `-polynomial that induce the zero function481

is the zero polynomial.482

In the next proposition we prove that real numbers are polynomially483

complete, i.e the concepts of `-polynomial with constants in R and of the484

induced function coincide over R. As said already in Section 4.1, we have485

focused on R by the fact that R is more suitable than Z in the study of486

algebraic, geometrical and logical properties, also for non-homogeneous `-487

polynomial, i.e. in a logic with constants.488

Proposition 2.1.4. R is PC.489

Proof. Let us consider an `-polynomial p ≡ p(x̄, c̄) where c̄ ∈ Rm. Let us490

suppose p(x̄, c̄) = 0 for each x̄ ∈ Rn, we want to prove that p is the zero491

polynomial. Let us consider χi = πi ◦ ψ ◦ φ : R→ R∗, where492

• φ : R → FA`R(n) is the natural embedding associating each element493

of R to the constant polynomial;494

• ψ : FA`R(n)→ (R∗)I is the embedding provided in Labuschagne and495

Van Alten, 2007, Lemma 2.4 and R∗ is an ultrapower of R;496

• πi : (R∗)I → R∗ is the canonical projection for each i ∈ I .497

In general χi are not injective. If χi are injective then they are a ele-498

mentary embeddings, by the fact that R and R∗ are divisible totally ordered499

`-groups which are model complete.500

By this we have that for each i ∈ I p(x̄, χi(c̄)) = 0 for every x̄ ∈ (R∗)n,501

then p(x̄, ψ ◦ φ(c̄)) = 0 in ((R∗)I)n. Since FA`R(n) is embedded in ((R∗)I)n502

p(x̄, c̄) is the zero polynomial.503

The other possibility is that for some i ∈ I χi(R) = {0}, but we have the504

following chain of implications:505

p(x̄, c̄) = 0⇒ 1

n
p(x̄, c̄) = 0⇒ p(x̄,

1

n
c̄) = 0.

Considering the limit n → +∞ we have that p(x̄, 0) = 0. So replying the506

construction above we have the result.507

Corollary 2.1.2. Every divisible totally ordered archimedean `-group G is PC.508
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Proof. The proof is analogous to Proposition 2.1.4.509

Proposition 2.1.5. R∗ ultrapower of R is PC.510

Proof. Let R∗ = RI/U be an ultrapower of R, where U is an ultrafilter on511

the set I . Let us consider an `-polynomial p ≡ p(x̄, c̄) where p is a non-zero512

polynomial and c̄ ∈ (R∗)m, i.e. c = (c̄i)i∈I/U.. So there exists R∗ ⊆ G such513

that for some ḡ ∈ gn p(ḡ, c̄) 6= 0.514

Let G∗ = GI/U , and let φ be the canonical embedding of G in G∗. From515

p(ḡ, (c̄i)i∈I) 6= 0, since φ is an elementary embedding we have p(φ(ḡ), (c̄i)i∈I) 6=516

0. By Łoś Theorem we have that p(ḡ, c̄i) 6= 0 for each i in some J where517

J ⊆ I and J ∈ U .518

By Proposition 2.1.4 for every i ∈ J there exists k̄i ∈ Rn such that519

p(k̄i/U, c̄i/U) 6= 0. Now it is enough to note that p((k̄i)i∈J/U, (c̄i)i∈J/U) 6= 0,520

i.e. (k̄i)i∈J/U ∈ R∗ is not a root of the polynomial p, to have the result.521

Corollary 2.1.3. Every ultrapower of PC `-groups is PC.522

Proof. The proof is analogous to Proposition 2.1.5.523

Now we can state the following theorem of completeness.524

Theorem 2.1.2. [Completeness Theorem] If G is PC(H) then525

`Bal(H) φ ⇔ |=G φ.

Proof. Let us consider the non trivial implication ⇐. Let us suppose that526

|=G φ. This means, by definition, that for all g ∈ G v(ϕ)(g) = 0. G is PC(H)527

so v(ϕ) is the zero polynomial, i.e. `Bal(H) φ.528

2.1.1 A Characterization of Totally Ordered PC `-Groups529

In analogy with Belluce, Di Nola, and Lenzi, 2014 it is also possible to char-530

acterize totally ordered PC `-groups as follows.531

Definition 2.1.2. A totally ordered `-group G is quasi-divisible if for every a < b532

and for every positive integer N there is c such that a < Nc < b.533

Proposition 2.1.6. For every totally ordered `-group G the following are equiva-534

lent:535

1. G is polynomially complete;536

2. G is order dense in its divisible hull;537

3. G is quasidivisible.538

Proof. (1⇒ 3) Let us suppose for absurd thatG is PC but not quasidivisible.539

This means that there are a < b ∈ G and N such that for every g ∈ G,540

Ng ≤ a or b ≤ Ng. If we consider the polynomial p(x, (a, b)) := |(Ng− a)∨541

0| ∧ |(b − Ng) ∨ 0|, then it is equal to 0 for every x ∈ G. By the fact that542

G′, the divisible hull of G, is quasidivisible there exists g′ ∈ G′ such that543

p(g′, (a, b)) 6= 0, which is an absurd.544

(2⇒ 1) Let p be in FA`G(n) such that p(ḡ′) 6= 0 for some g′ ∈ G′, divisi-545

ble hull ofG. By the fact thatG′ and R are divisible totally ordered `-groups,546
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they enjoy the same first order properties; so there exist I1, . . . , Ik nontriv-547

ial intervals of G′ such that p((x1, . . . , xk)) 6= 0 for each (x1, . . . , xk) ∈ I =548

I1 × . . . Ik. By order density, I contains a point g ∈ Gk such that p(g) 6= 0.549

In this way we have that if a polynomial p induces zero in G then p in-550

duces zero in G′, but by Corollary 2.1.2 we know that G′ is PC then we can551

conclude that G is PC.552

(2⇔ 3) See Belluce, Di Nola, and Lenzi, 2014, Proposition 6.8.553

Corollary 2.1.4. Every totally ordered `-group can be embedded in a PC totally554

ordered `-group.555

Corollary 2.1.5. Q is PC.556

2.2 A Wójcicki-type Theorem557

In Cignoli, d’Ottaviano, and Mundici, 2013; Marra and Spada, 2012; Mundici,558

2011 some results, known as Wójcicki’s Theorem, play a crucial role in the559

connection between syntax and semantics. Here we propose an analogous560

result in our framework.561

Definition 2.2.1. We say that f `-polynomial is CNB (completely not bounded)562

iff563

∀g ∈ G+ ∃(g1, . . . , gn) : (k1, . . . , kn) > (g1, . . . , gn)→ f(k1, . . . , kn) > g.

Theorem 2.2.1. Let G be an archimedean totally ordered PC(H) `-group, where564

H ≤ G. Let f and g in FA`H(n). If g is a CNB `-polynomial we have that:565

ZG(f) ⊇ ZG(g) ⇔< f >⊆< g > .

Proof. ⇐ Trivial.566

⇒ By Anderson and Feil, 2012, Theorem 2.3 we have that G . R, so567

f and g can be seen as piecewise linear functions from Rn to R; then we568

can consider {Pi}i∈I standard simplicial subdivision of the domain such569

that both f and g are linear on Pi, for every i ∈ I . Let C be the hyper570

cube [−M,M ]n, such that every vertex of {Pi}i∈I is in the interior of C.571

Adapting Cignoli, d’Ottaviano, and Mundici, 2013, Lemma 3.4.8 we have572

that |f | ≤ m|g| on C and, through the fact that g is CNB, we have that573

|f | ≤ m|g| on Gn; but G is PC(H), so |f | ≤ m|g| in FA`H(n).574

Corollary 2.2.1. Let f and g be in FA`0(n). We have that:575

ZZ(f) ⊇ ZZ(g) ⇔< f >⊆< g > .

Corollary 2.2.2. Let f and g be in FA`R(n). We have that:576

ZR(f) ⊇ ZR(g) ⇔< f >⊆< g > .
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2.2.1 Examples577

Let us consider G = H = Z and the functions f = sf0 ∨ (x− 2) ∨ (−x) and578

g = 0 ∨ (x − 1) ∨ (−x), where sf0 is defined in Section 4.2.3. We already579

observed that Z is not PC(Z) (see Proposition 2.1.3). It is easy to see that g is580

CNB, Z is archimedean and ZG(g) ⊆ ZG(f), but there is no natural number581

m such that |f | ≤ m|g|.582

Let us consider G = H = R and the functions f = 0 ∨ (x − 2) and583

g = (x ∨ 0) ∧ 1. In this case R is PC, but g is not CNB so, as before, there is584

no natural number m such that |f | ≤ m|g|.585
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Chapter 3586

Functional Representations of587

`-Groups588

3.1 Preliminary Results589

Given any two subgroups M , Z of G with M ⊂ Z and any monotone ho-590

momorphism µ0 : M → R, set E(µ0, Z) := {ν : Z → R, ν is a monotone591

homomorphism, ν|M = µ0}, and let us denote by Ext(E(µ0, Z)) the set of592

all extremal elements of E(µ0, Z) (see also Lipecki, 1979).593

We now prove the following594

Theorem 3.1.1. The set Ext(`uHom(G,R)) is nonempty.595

In order to demonstrate Theorem 3.1.1, we first prove the following two596

lemmas.597

Lemma 3.1.1. (see also Lipecki, 1979, Lemma 1) LetM be a cofinal subgroup of598

G, µ0 : M → R be a monotone homomorphism and x0 ∈ G\M . ThenExt(E(µ0,599

span(M ∪ {x0}))) 6= ∅.600

Proof. Let Te(x0) :=
∧{ 1

n
µ0(z) : z ∈M,n ∈ N, nx0 ≤ z

}
. For each z ∈ M601

and n ∈ N set ν(z+nx0) := µ0(z)+nTe(x0). In Lipecki, 1985 it is shown that602

ν ∈ E(µ0, span(M ∪ {x0})). Moreover observe that, if λ ∈ E(µ0, span(M ∪603

{x0})), then for every z ∈ M and n ∈ N with nx0 ≤ z we get nλ(x0) =604

λ(nx0) ≤ λ(z) = µ0(z), so that λ(x0) ≤ 1

n
µ0(z). By arbitrariness of z and n,605

we obtain606

λ(x0) ≤ Te(x0). (3.1)

Now suppose that ν = αν ′+(1−α)ν ′′, where ν ′, ν ′′ ∈ E(µ0, span(M ∪{x0})607

and α ∈ [0, 1]. Taking into account (3.1), we get608

ν(x0) = αν ′(x0) + (1− α)ν ′′(x0) ≤ (3.2)
≤ αTe(x0) + (1− α)Te(x0) = Te(x0) = ν(x0),

and thus all inequalities in (3.2) are equalities. Furthermore, taking α = 1609

and α = 0 in (3.2), we get ν ′(x0) = ν(x0) and ν ′′(x0) = ν(x0), respectively610

and hence, by construction, ν ′(t) = ν ′′(t) = ν(t) for each t ∈M ∪ {x0}. This611

concludes the proof.612

Lemma 3.1.2. (see also Lipecki, 1979, Lemma 2) Let µ0 : M → R be a mono-613

tone homomorphism and Z, Z1 be two subgroups of G with M ⊂ Z ⊂ Z1. If614

ν ∈ Ext(E(µ0, Z)) and ν1 ∈ Ext(E(ν, Z1)), then ν1 ∈ Ext(E(µ0, Z1)).615
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Proof. Let ν1 = αν ′+(1−α)ν ′′, with ν ′, ν ′′ ∈ E(µ0, Z1) and α ∈ [0, 1]. We get616

ν ′|Z , ν
′′
|Z ∈ E(µ0, Z), and thus ν ′|Z = ν ′′|Z = ν, since ν ∈ Ext(E(µ0, Z)). So ν ′,617

ν ′′ ∈ E(ν, Z1), and therefore, as ν1 ∈ Ext(E(ν, Z1)), we obtain ν ′ = ν ′′ = ν1.618

This ends the proof.619

Proof of Theorem 3.1.1. Let uG be an order unit of G and M = ZuG := {nuG :620

n ∈ Z}. Set µ0(nuG) = nuR for every n ∈ Z. Let M be the family of all621

pairs (Z, ν), where Z is a subgroup of G, M ⊂ Z and ν ∈ Ext(E(µ0, Z)).622

We say that (Z1, ν1) ≤ (Z2, ν2) if and only if Z1 ⊂ Z2 and ν2 ∈ E(ν1, Z2). By623

construction, (M,≤) is a nonempty partially ordered class. We claim that624

M is inductive. If {(Zι, νι): ι ∈ Λ} is a chain in M, then set Z0 :=
⋃
ι∈Λ

Zι625

and ν0(t) = νι(t) if t ∈ Zι. It is not difficult to check that ν0 is well-defined,626

(Z0, ν0) ∈ M and (Zι, νι) ≤ (Z0, ν0) for every ι ∈ Λ. By virtue of the627

Zorn Lemma, M has a maximal element of the type (Z, ν). We claim that628

Z = G. Indeed, if x0 ∈ G \ Z, then, arguing analogously as in Lemma629

3.1.1, there should be an element ofM defined on span(Z ∪ {x0}), getting630

a contradiction with maximality. This concludes the proof.631

The next result will be useful in the sequel.632

Theorem 3.1.2. (see Fuchssteiner and Lusky, 1981, Theorem 1.3.3) Let G be633

a partially ordered abelian group, R be a Dedekind complete vector lattice, p : G→634

R be a monotone and subadditive function, with p(nx) = np(x) for every x ∈ G635

and n ∈ N ∪ {0}. Set K := {µ : G → R: µ is a monotone homomorphism and636

µ(t) ≤ p(t) for every t ∈ G}. Then for every x ∈ G we get p(x) = max
µ∈K

µ(x).637

3.1.1 Some Properties of Extremal States638

We now prove the following Krein-Mil’man-type theorem, which extends639

Theorem 3.1.2 to extremal vector lattice-valued homomorphisms (see also640

Kusraev and Kutateladze, 1984, Theorem 1.4.3, Kusraev and Kutateladze,641

2012, Theorem 2.2.2, Lipecki, 1982, Theorem 5).642

Theorem 3.1.3. Let G, R, p, K be as in Theorem 3.1.2. Then for each x ∈ G we643

get p(x) = max
µ∈Ext(K)

µ(x).644

Proof. Fix arbitrarily x ∈ G, and let M = Zx := {nx : n ∈ Z}. For every645

n ∈ Z set µ0(nx) := np(x). It is not difficult to see that µ0 is monotone,646

additive and µ0(t) ≤ p(t) for each t ∈M .647

Choose arbitrarily x0 ∈ G \M , and set648

βe(x0) :=
∧{p(z + nx0)− µ0(z)

n
: z ∈M, n ∈ N

}
, (3.3)

βi(x0) :=
∨{µ0(z)− p(z − nx0)

n
: z ∈M, n ∈ N

}
.

We claim that βi(x0) ≤ βe(x0). Indeed, since µ0 ≤ p on M and thanks to649

subadditivity of p, for every n, n′ ∈ N and z, z′ ∈ Z we get650

µ0(z)
n + µ0(z′)

n′ = nµ0(z′)+n′µ0(z)
nn′ = µ0(nz′+n′z)

nn′ ≤

≤ p(nz′+n′z)
nn′ = p(nz′+nn′x0+n′z−nn′x0)

nn′ ≤

≤ n′p(z+nx0)+np(z′−n′x0)
nn′ = p(z+nx0)

n + p(z′−n′x0)
n′ ,
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and hence651

µ0(z′)− p(z′ − n′x0)

n′
≤ p(z + nx0)− µ0(z)

n
. (3.4)

Taking in (3.4) the infimum with respect to z and n and the supremum with652

respect to z′ and n′, we get βi(x0) ≤ βe(x0), that is the claim.653

Let now a ∈ R with βi(x0) ≤ a ≤ βe(x0), and for every z ∈ M and
n ∈ N put ν(z+nx0) := µ0(z) +na. Observe that ν is well-defined. indeed,
if z1 + n1x0 = z2 + n2x0, then z1 − z2 = (n2 − n1)x0, and this it possible
if and only if z1 = z2 and n1 = n2. It is easy to check that ν is additive.
We now prove that µ0(z) + na ≥ 0 (resp. ≤ 0) whenever z ∈ M , n ∈ Z
and z + nx0 ≥ 0 (resp. ≤ 0). If n = 0, this is an immediate consequence of
positivity of µ0. Now consider the case n > 0. If z + nx0 ≥ 0, then, as p is

monotone, we get
−p(−z − nx0)

n
≥ 0, and hence

a ≥ βi(x0) ≥ µ0(−z)− p(−z − nx0)

n
≥ µ0(−z)

n
=
−µ0(z)

n
,

from which we obtain µ0(z) + na ≥ 0. If z + nx0 ≤ 0, then p(z + nx0) ≤ 0,
and so

a ≤ βe(x0) ≤ p(z + nx0)− µ0(z)

n
≤ −µ0(z)

n
.

Thus we get µ0(z) + na ≤ 0. If n < 0, then z + nx0 ≥ 0 if and only if
−z − nx0 ≤ 0 and thus, taking into account the previous step we get

0 ≥ µ0(−z)− na = −µ0(z)− na,

namely µ0(z) + na ≥ 0. Analogously it is possible to check that, if n < 0654

and z + nx0 ≤ 0, then µ0(z) + na ≤ 0. Thus, ν is positive.655

Now observe that, if λ ∈ E(µ0, span(M ∪ {x0})) and λ(t) ≤ p(t) for
every t ∈ span(M ∪ {x0}), then for each z ∈M and n ∈ N we get

µ0(z) + nλ(x0) = λ(z + nx0) ≤ p(z + nx0),

whence λ(x0) ≤ p(z + nx0)− µ0(z)

n
. Taking the infimum with respect to z

and n, we get λ(x0) ≤ βe(x0). Moreover, for every z ∈ M and n ∈ N we
have

−µ0(z) + nλ(x0) = −λ(z − nx0) ≥ −p(z − nx0),

and thus λ(x0) ≤ µ0(z)− p(z − nx0)

n
. Passing to the supremum, we obtain656

λ(x0) ≥ βi(x0) (see also Boccuto and Candeloro, 1994).657

Now, proceeding analogously as in Lemmas 3.1.1, 3.1.2 and Theorem
3.1.1, set

E′(ν, Z) := {ν ∈ RZ , ν is a monotone homomorphism, ν|M = µ0, ν ≤ p on G},

let Ext(E′(ν, Z)) be the set of all extremal elements of E′(ν, Z), and take658

βe(x0) instead of Te(x0). Taking into account that λ(x0) ≤ βe(x0), let us659

consider the classM′ of all pairs of the type (Z, ν), where Z is a subgroup660

of G, M ⊂ Z and ν ∈ Ext(E′(µ0, Z)). Arguing analogously as in the proof661

of Theorem 3.1.1, it is possible to check that M′ is inductive, and so, by662
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virtue of the Zorn Lemma,M′ admits a maximal element, in which Z = G.663

Indeed, if x0 ∈ G \ Z, proceeding similarly as in Lemma 3.1.1, it would be664

possible to construct an element ofM′ defined on span(Z ∪ {x0}), getting665

a contradiction with maximality. So, for every x ∈ G, Kx has at least an666

extremal element, where Kx is the set of all monotone homomorphisms667

µ : G → R with µ(t) ≤ p(t) for each t ∈ G and µ(x) = p(x). From this we668

obtain the assertion.669

We now recall the following670

Proposition 3.1.1. (see Mundici, 2011, Proposition 10.3) Let A := Γ(G, uG)671

be an MV-algebra with its associated unital `-group (G, uG). Then for every state672

s of (G, uG) the restriction s|A of s to A is a state of A. The map s 7→ s|A is an673

affine isomorphism of S((G, uG)) ⊂ RG onto S(A) ⊂ [0, 1]A. Thus, the extremal674

states of (G, uG) are in one-one correspondence with the extremal states of A.675

3.2 Vector Lattice-Valued States and `-Groups676

Here we prove our main theorems, extending Goodearl, 2010, Theorem 7.7677

to the vector lattice setting. To this aim, we first give the following678

Lemma 3.2.1. Let G be an archimedean `-group, R be a Dedekind complete vector679

lattice, with order units uG and uR, respectively. If x ∈ G has the property that680

µ(x) = 0 for each µ ∈ Ext(`uHom(G,R)), then x = 0.681

Proof. For each x ∈ G, set p(x) =
∧{k

l
uR : k ∈ Z, l ∈ N, lx ≤ kuG

}
. It is682

not difficult to check that p(0) = 0, p(uG) = uR and p(−uG) = −uR. More-683

over, for each x ∈ G and n ∈ N we have684

p(nx) =
∧{nk

nl
uR : k ∈ Z, l ∈ N, nlx ≤ kuG

}
=

=
∧{nk

h
uR : k ∈ Z, h ∈ N, hx ≤ kuG

}
= n ·

∧{k
h
uR : k ∈ Z, h ∈ N, hx ≤ kuG

}
= n p(x).

Furthermore, for every x1, x2 ∈ G with x1 ≤ x2 we get685

p(x1) ≤
∧{k

l
uR : k ∈ Z, l ∈ N, lx1 ≤ kuG

}
≤

≤
∧{k

l
uR : k ∈ Z, l ∈ N, lx2 ≤ kuG

}
= p(x2),

and hence p is monotone. Now we claim that p is subadditive. Fix arbitrar-
ily k1, k2 ∈ Z, l1, l2 ∈ N, with ljxj ≤ kjuG, j = 1, 2. We have

k1l2 + k2l1
l1l2

uR =
k1

l1
uR +

k2

l2
uR,

l1l2(x1 + x2) = l1l2x1 + l1l2x2 ≤ (k1l2 + k2l1)uG.
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Thus, we obtain686

p(x1 + x2) =
∧{k∗

l∗
uR : k∗ ∈ Z, l∗ ∈ N, l∗(x1 + x2) ≤ k∗uG

}
≤

≤ k1l2 + k2l1
l1l2

uR =
k1

l1
uR +

k2

l2
uR.

From this, by arbitrariness of kj , lj , j = 1, 2, it follows that p(x1 + x2) ≤687

p(x1) + p(x2). Thus p satisfies the hypotheses of Theorem 3.1.2. Let K be as688

in Theorem 3.1.2, then for each x ∈ G we get689

p(x) = max
µ∈Ext(K)

µ(x),

p(−x) = max
µ∈Ext(K)

−µ(x),

p(x) ∨ p(−x) = max
µ∈Ext(K)

|µ(x)|, (3.5)

p(x) ∨ p(−x) = |p(x)| ∨ |p(−x)|.

Furthermore observe that, by construction, p(x) = Te(x) for all x ∈ G,690

where Te(x) is as in the proof of Lemma 3.1.1.691

Put

r(x) = −p(−x) =
∨{h

q
uR : h ∈ Z, q ∈ N, huG ≤ qx

}
and v(x) = |p(x)|∨ |r(x)| for every x ∈ G. First of all note that, if µ(t) ≤ p(t)692

for each t ∈ G, then in particular µ(uG) ≤ p(uG) = uR, µ(−uG) ≤ p(−uG) =693

−uR, and hence −µ(uG) = µ(−uG) ≤ uR. Thus, µ(uG) = uR.694

Conversely, if µ : G → R is a monotone homomorphism with µ(uG) =695

uR, then µ is an extension of the function µ0 defined as in the proof of The-696

orem 3.1.1, and hence, proceeding analogously as in the proof of Theorem697

3.1.3, it is possible to check that µ(t) ≤ Te(t) = p(t) for every t ∈ G. Thus698

we get699

0 = max{|µ(x)| : µ ∈ Ext(`uHom(G,R))} =

= max{|µ(x)| : µ ∈ Ext(K)} = v(x) ≥ 0.

From this it follows that v(x) = 0, and hence p(x) = r(x) = 0. Set now

w(x) =
∧{ j

n
uR : j, n ∈ N,−juG ≤ nx ≤ juG

}
.

Fix arbitrarily ε > 0. Then, by proceeding analogously as in Goodearl, 2010,
Proposition 7.12, we find h, k ∈ Z, l, q ∈ N with huG ≤ qx, lx ≤ kuG,

−εuR = r(x)− εuR ≤
h

q
≤ r(x) = 0,

0 = p(x) ≤ k

l
≤ p(x) + εuR = εuR.

Set j := |h|l ∨ |k|q. We get

0 ≤ w(x) ≤ j

lq
=
|h|
q
∨ |k|

l
≤ εuR,
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−juG ≤ hluG ≤ lqx ≤ kquG ≤ juG.

From this and arbitrariness of ε it follows that w(x) = 0. Finally, we prove700

that x = 0. To this aim, we first claim that the set O1 is infinite, where701

Oj = {n ∈ N : n|x| ≤ juG} for every j ∈ N. Otherwise, let n0 = maxO1. It702

is easy to check that, if j ∈ N and q ∈ O1, then jq ∈ Oj . We now prove the703

converse implication. Pick j, q ∈ N with jq ∈ Oj . Then qj|x| ≤ juG, namely704

j(uG − q|x|) ≥ 0. Since G is an abelian `-group, G is unperforated (see also705

Goodearl, 2010, Proposition 1.22), and hence uG − q|x| ≥ 0, that is q ∈ O1.706

Thus, maxOj = n0j, and then707

w(x) =
∧{ j

n
uR : j, n ∈ N, n|x| ≤ juG

}
=

=
∧{ j

n
uR : j ∈ N, n ∈ Oj

}
=

1

n0
uR 6= 0,

getting a contradiction. Thus O1 is infinite, namely there exist infinitely708

many positive integers t with nt ∈ O1. We claim that O1 = N. Indeed, for709

each n ∈ N there is t0 ∈ N with n ≤ nt0 , and hence n|x| ≤ nt0 |x| ≤ uG. From710

this, since G is archimedean, by Goodearl, 2010, Proposition 1.23 it follows711

that |x| = 0, that is x = 0. This ends the proof.712

Now let R be a Dedekind complete vector lattice with order unit uR,713

and set714

‖x‖uR := min{α ∈ R+ : |x| ≤ αuR}. (3.6)

It is not difficult to see that the map ‖ · ‖uR in (3.6) is well-defined and is a715

norm. In particular, note that the implication [ ‖x‖uR = 0 =⇒ x = 0] can be716

proved by arguing analogously as in the proof of the implication [w(x) = 0717

=⇒ x = 0] in Lemma 3.2.1.718

We consider the family

B := {B(ε, J) : ε > 0, J is a finite subset of G},

where
B(ε, J) = B(ε, {x1, x2, . . . , xn}) =

= {f ∈ RG : ‖f(xi)‖uR ≤ ε, xi ∈ J, i = 1, 2, . . . , n} =

= {f ∈ RG : |f(xi)| ≤ εuR, xi ∈ J, i = 1, 2, . . . , n}

for each ε and J . It is not difficult to see that B is a base of neighborhoods of719

0. We equip RG with the product topology, namely the topology τ generated720

by B, and we endow `uHom(G,R) with the topology induced by τ .721

Let G be as in Lemma 3.2.1. The evaluation map is the application ψ722

which to every point x ∈ G associates the function ψ(x) : `uHom(G,R) →723

R, defined by724

ψ(x)(µ) = µ(x), µ ∈ `uHom(G,R). (3.7)

It is not difficult to check that ψ is affine and continuous on `uHom(G,R).725

Thus, the evaluation map ψ in (3.7) can be viewed as a function ψ : G →726

AffR(`uHom(G,R)).727
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For each x ∈ Gwe consider the restriction ofψ(x) to CR(Ext(`uHom(G,R))),728

where the sets R and Ext(`uHom(G,R)) are endowed with the topology729

generated by the norm ‖ · ‖uR and with the topology induced by τ , respec-730

tively. Hence, a function φ : G → CR(Ext(`uHom(G,R))) is defined, by731

setting732

φ(x)(µ) = µ(x), µ ∈ Ext(`uHom(G,R)), (3.8)

which we call again evaluation map.733

Note that ψ and φ are positive homomorphisms, and that ψ(uG) (φ(uG),734

respectively) is the constant function, which associates to every µ ∈ `uHom(G,R)735

(Ext(`uHom(G,R)), respectively) the value uR (see also Goodearl, 2010).736

Our main results here proved are the injectivity of the evaluation maps737

ψ and φ. We give the following738

Theorem 3.2.1. Let G and R be as in Lemma 3.2.1. Then the map

φ : G→ CR(Ext(`uHom(G,R))),

defined as in (3.8), is an injective `u-homomorphism, i.e. a faithful representation.739

Proof. It is a direct consequence of Lemma 3.2.1.740

Theorem 3.2.2. Let G and R be as in Lemma 3.2.1. Then the map

ψ : G→ AffR(`uHom(G,R)),

defined by setting ψ(x)(µ) = µ(x), x ∈ G, µ ∈ `uHom(G,R), is an injective741

`u-homomorphism, that is a faithful representation.742

Proof. By construction, ψ(x) : `uHom(G,R)→ R defines an affine function743

on the space of `uHom(G,R), and ψ ∈ `uHom(G,AffR(`uHom(G,R))).744

Using the same notations as in Lemma 3.2.1, to prove the theorem it is745

enough to considerK and `uHom(G,R) instead ofExt(K) andExt(`uHom(G,R)),746

respectively, and proceeding analogously as in (3.5), it is sufficient to deal747

with max
µ∈K

µ(x) instead of max
µ∈Ext(K)

µ(x), getting the injectivity of ψ.748

In general, the condition of archimedeanness of the involved `-group749

G cannot be dropped. Indeed, we get the following two results (see also750

Goodearl, 2010, Theorem 7.7).751

Proposition 3.2.1. Let G and R be as in Theorem 3.2.1, and φ be as in (3.8).752

If φ is an injective `u-homomorphism, then G is archimedean.753

Proof. Note thatR is Dedekind complete, and thenR is archimedean. Thus,754

CR(Ext(`uHom(G,R))) is archimedean too. Since there is an `u-isomor-755

phism between G and a substructure of CR(Ext(`uHom(G,R))), then we756

get the result.757

Proposition 3.2.2. Let G and R be as in Theorem 3.2.1, and ψ be as in (3.7).758

If ψ is an injective `u-homomorphism, then G is archimedean.759

Proof. It is enough to observe that R is archimedean, since R is Dedekind760

complete, and thenAffR(`uHom(G,R)) is archimedean. There is an `u-iso-761

morphism between G and a substructure of AffR(`uHom(G,R)), and thus762

the assertion follows.763
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Remarks 3.2.1. (a) In general the condition of Dedekind completeness of764

the involved vector lattice R cannot be dropped. Indeed, Dedekind com-765

pleteness is a necessary and sufficient condition for R in order that the766

Hahn-Banach, extension and sandwich-type theorems hold (see also Boc-767

cuto and Candeloro, 1994; Bonnice and Silverman, 1967; Ioffe, 1981; To,768

1971).769

(b) In general, if µ is a monotone homomorphism defined in a cofinal770

subgroup of an `-group and with values in another `-group, then µ does771

not satisfy extension-type theorems. Indeed, let us define µ on the group772

of all even integers endowed with order unit 2, with values in Z equipped773

with order unit 1, by setting µ(2n) = n, n ∈ Z. Then, µ does not admit any774

additive monotone extension defined on the whole of Z (see also Lipecki,775

1980). Moreover, in Boccuto, 1995, Theorem 5.3 it is shown that, if G is a776

rational vector lattice, R is a Dedekind complete abelian `-group and p :777

G → R is a function with p(nx) = np(x) for every x ∈ G and n ∈ N ∪ {0},778

then R contains necessarily a Dedekind complete vector lattice, containing779

the range of p. So, it is natural to assume that our involved functionals take780

values in a (Dedekind complete) vector lattice rather than in an `-group.781
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Chapter 4782

Algebraic Geometry over783

`-Groups784

4.1 Piecewise Linear Functions785

In this section we generalize some well-know results presented in Baker,786

1968; Beynon, 1975; Beynon, 1977. Usually `-groups are studied consider-787

ing the set Z of the integers, but Z can be seen as a subset of R. In Section788

2.1 we will study the polynomial completeness property which induces the au-789

thors to choose the `-group of real numbers (equipped with the usual order)790

instead of the integers, moreover in this way all the propositions can be im-791

mediately extended to vector lattices.792

For these reasons in this section we consider all `-polynomials as piece-793

wise linear functions from Rn to R where each variable has integer coeffi-794

cient, and we will characterize the zero sets of these functions.795

We show that in general the zero set of a set of functions is:796

• a closed cone of Rn, if we consider polynomial functions without con-797

stants; and in particular if we consider a finite set of functions the798

associated zero set is a closed integral polyhedral cone in Rn (defined799

below);800

• a closed set in the topology of Rn, if we consider polynomial functions801

with constants; and in particular if we consider a finite set of functions802

the associated zero set is a rational polyhedron in Rn.803

Let n be a positive integer. Consider the additive group of continuous804

functions from Rn to R with the pointwise ordering, and let πi : Rn −→ R,805

1 ≤ i ≤ n, be the projection functions: πi(x1, . . . , xn) = xi.806

We can also consider FA`0(n) the lattice-ordered sublattice subgroup807

generated by these n projections, which precisely consists of all continu-808

ous real-valued piecewise linear homogeneous functions over Rn, where809

each piece has integer coefficients. Let hlinZ(Rn,R) be the set of all ho-810

mogeneous linear polynomials with integer coefficients, and every g ∈811

hlinZ(Rn,R) is equal to
∑n

i ziπi, where zi ∈ Z. It results that FA`0(n)812

can be defined as follows: FA`0(n) = {f =
∧
i

∨
j fij : Rn → R | fij ∈813

hlinZ(Rn,R)}. On the other hand we can, as in Plotkin, 2002, consider814

polynomial functions with constants. In particular, let us consider FA`Z(n)815

defined as follows:816

FA`Z(n) = {f =
∧
i

∨
j

(fij + hi,j) | fij ∈ hlinZ(Rn,R) hi,j ∈ Z}.
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Definition 4.1.1. A cone in Rn is a subset K of Rn which is invariant under817

multiplication by positive scalars. K is a closed cone if K is also closed in the818

topology of Rn. We can define the cone generated by a subset X of Rn as follows:819

Cone(X) = {x ∈ Rn | ∃α ∈ R≥0 ∃x̃ ∈ X : x = αx̃}.820

Definition 4.1.2. A subspace
∑n

i=1mixi = 0 (mi ∈ Z) is an integral hyper-821

space, the corresponding n-dimensional subsets
∑n

i=1mixi ≥ 0 are called closed822

integral half-spaces. An integral polyhedral cone is convex if it is obtained by finite823

intersections from integral half-spaces. A closed integral polyhedral cone is a cone824

obtainable by finite unions of intersections from closed integral half-spaces.825

Definition 4.1.3. For f ∈ FA`0(n), let Z0(f) be the zero set of f, i.e.826

Z0(f) = {x ∈ Rn : f(x) = 0}.

Let S(f) be the support of f, i.e. S(f) = {x ∈ Rn : f(x) 6= 0}. If K is a subset827

of Rn, let SK(f) be the support of f in K, i.e.828

SK(f) = S(f) ∩K.

From Baker, 1968 we have the following proposition and its corollary.829

Proposition 4.1.1. Let f, g ∈ FA`0(n) and let K be a closed integral polyhedral830

cone in Rn. Suppose that SK(f) ⊆ SK(g). Then there is a natural number m such831

that |f | ≤ m|g| on K.832

Corollary 4.1.1. Let J be an `-ideal of FA`0(n). Suppose that g ∈ J and S(f) ⊆833

S(g). Then f ∈ J .834

This is not true in FA`Z(n). In fact, let us consider f = (x−1)∨0 and g =835

(x ∨ 0) ∧ 1, where f and g are in FA`Z(1). We have that SR≥0(f) ⊆ SR≥0(g),836

but there is no natural number m such that |f | ≤ m|g| on R≥0. Recall the837

notion of CNB `-polynomial from definition 2.2.1.838

Theorem 4.1.1. Let f and g be an `-polynomial and a CNB `-polynomial re-839

spectively and K a closed integral polyhedral cone in Rn. Suppose that SK(f) ⊆840

SK(g). Then there is a natural number m such that |f | ≤ m|g| on K.841

Corollary 4.1.2. Let J be an `-ideal of FA`R(n). Suppose that g ∈ J , g is CNB842

and S(f) ⊆ S(g). Then f ∈ J .843

Corollary 4.1.3. Let f and g be an `-polynomial and a CNB `-polynomial respec-844

tively. We have that:845

Z(f) ⊇ Z(g) ⇔< f >⊆< g >

where < f > and < g > are the `-ideals generated by f and g.846

Note that the definition of zero set can be generalized as follows.847

Definition 4.1.4. Let us consider {fi}i∈I set of continuous functions from Rn to848

R, then we have Z({fi}i∈I) = {x ∈ Rn : ∀i fi(x) = 0}.849

In the rest of the paper we will write Z0 and ZH when we want to stress850

that we are considering homogeneous piecewise linear and affine functions.851
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4.2 Characterization of Zero Sets852

4.2.1 The Case Without Constants853

In this section we prove a generalization of the following proposition, pre-854

sented in Baker, 1968.855

Proposition 4.2.1. Baker, 1968, Lemma 3.2 The zero sets Z(f), f ∈ FA`0(n),856

are precisely the closed integral polyhedral cones in Rn.857

We now reproduce Proposition 4.2.1 considering not only finitely gen-858

erated `-ideals but a generic one.859

Remarks 4.2.1. Z has the following properties:860

1. A finite union of zero sets is a zero set, it is trivial to see that861

Z({fi}i∈I) ∪ Z({fj}j∈J) = Z({|fi| ∧ |fj |}(i,j)∈I×J)

for every set I and J ;862

2. an infinite intersection of zero sets is a zero set, i.e.863

⋂
i∈α

Z(fi) = Z({fi}i∈α)

for every index set α (note that we can suppose α countable because FA`(n)864

is countable for every n ∈ N);865

3. If we consider U ⊆ FA`(n) then Z(U) = Z(id(U)), where id(U) is the866

`-ideal generated by U;867

4. if U = {f1, ..., fm} then Z(U) = Z({f1, ..., fm}) = Z(f), where f =868

|f1| ∨ ... ∨ |fm|;869

5. in particular we have Z(g) = Z(|g|) ∀g ∈ FA`(n).870

By remarks we will say that there exists a non negative polynomial f871

(which is computable as in remark 4) for every finitely-generated ideal J ,872

such that Z(J) = Z(f).873

Proposition 4.2.2. The zero sets Z({fi}), {fi} ⊆ FA`0(n), are precisely the874

closed cones in Rn.875

Proof. Since every element of FA`0(n) is a continuous function the zero set876

of every its element is closed, then
⋂
i Z(fi) is again closed. Moreover if877

f(y) = 0 then ∀α ∈ R≥0 f(αy) = 0, so Z(f) is a closed cone for every f,878

hence
⋂
i Z(fi) is always a closed cone.879

880

Vice versa, let us consider a closed cone C 6= {0̄} (if C = {0̄} then we881

have C = Z(|x1|+ ...+ |xn|)), the cubeK = [−1, 1]n, and the cube boundary882

∂K. C ∩ ∂K is a closed subset of Rn, so we can write883

C ∩ ∂K =
⋂
i∈α

⋃
j∈Ji

ri,j
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where: α is an index set; Ji is a finite set ∀i ∈ α; ri,j is a hypercube of884

the form ri,j =
⋂
l∈L(si,j,l) ∩ ∂K; L is a finite set; si,j,l is a closed half-space885

of the form {xm ≤ ql} or {xm ≥ ql}, ql ∈ Q. Let us focus on si,j,l in the form886

xm ≤ ql, we note that ∀i, j, l ∃h : |xh| = 1 and ql = al
bl

, where al ∈ Z and887

bl ∈ N, so we have:888

• if xh = 1 then xm ≤ ql = qlxh = alxh
bl

. i.e. si,j,l = Z(blxm − alxh ∨ 0);889

• if xh = −1 then xm ≤ ql = ql(−xh) = −alxh
bl

. i.e. si,j,l = Z(blxm +890

alxh ∨ 0).891

Similarly if si,j,l is in the form xm ≥ ql. Summing up there exists fi,j,l ∈892

FA`0(n) for all i, j and l such that si,j,l = Z(fi,j,l), so we have ri,j =
⋂
l∈L(Z(fi,j,l))∩893

∂K, and by remark (2) we can say ri,j = Z({fi,j,l}l∈L) ∩ ∂K.894

Then895

C∩∂K =
⋂
i∈α

⋃
j∈J

ri,j =
⋂
i∈α

⋃
j∈J

(Z({fi,j,l}l∈L)∩∂K) = (
⋂
i∈α

⋃
j∈J

Z({fi,j,l}l∈L))∩∂K,

but we have
⋂
i∈α

⋃
j∈J Z({fi,j,l}l∈L) = Z({fν}), where each fν can be896

written as in the previous remarks. For the chain of equations we can say897

that the cones generated by C∩∂K and Z({fν})∩∂K are equal. It is enough898

to remember that C and Z({fν}) are closed cones and by this we have the899

following chain of equalities:900

C = Cone(C ∩ ∂K) = Cone(Z({fν}) ∩ ∂K) = Z({fν}).

901

So we are considering subsets of FA`0(n) and by Z we can generate (all)902

the closed cone of Rn.903

4.2.2 The Case With Constants904

Proposition 4.2.3. The zero setsZ({fi}), {fi} ⊆ FA`(n), are precisely the closed905

set in Rn.906

Proof. We can always consider the (rational) rectangle which is zero set of907

some particular `-polynomial with constants; the topology generated by908

(rational) rectangles is equal to the Euclidean topology. We have trivially909

that Z({fi}) is a closed set of Rn in the standard topology; conversely if we910

consider C a closed set of Rn we can always approximate with a family of911

(rational) rectangles (definable as zero sets of particular `-polynomials).912

Proposition 4.2.4. The operator ZI is exactly the standard closure in Euclidean913

spaces.914

Remark 4.2.1. If we consider the `-groups Z and Q we have the following facts:915

• ZZ
0 I

Z
0 (C) = Cone(C) ∩ Z916

• ZZIZ(C) = C̄ ∩ Z917

• ZQ
0 I

Q
0 (C) = Cone(C) ∩Q918
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• ZQIQ(C) = C̄ ∩Q919

where the superscript indicates the `-group in which the operator acts and the920

set C is considered.921

4.2.3 Examples922

The One-Dimensional Case Without Constants923

We know that for every set F of functions in FA`0(n) the set Z0(F) is a924

closed cone of Rn with the vertex in the origin (Proposition 4.2.2). In one-925

dimensional case there are only the following closed cones:926

• {0};927

• [0,+∞[;928

• ]−∞, 0];929

• R.930

So we can say that if we consider a subset C of R the corresponding931

subset Z0I0(C) can be one of the cones presented before. To be more precise932

we have the following characterization.933

Proposition 4.2.5. For all C subset of R we have:934

Z0I0(C) =


{0} if C = {0}
[0,+∞[ if C∩]0,+∞[6= ∅ and C∩]−∞, 0[= ∅
]−∞, 0] if C∩]0,+∞[= ∅ and C∩]−∞, 0[6= ∅
R if C∩]0,+∞[6= ∅ and C∩]−∞, 0[6= ∅

The proof is quite trivial and it descends from Proposition 4.2.2 below.935

The One-Dimensional Case With Constants936

We can consider the more complex case of the operator ZI . In this case937

we can start to study C when it is a point, an (open, closed or half-closed)938

interval and a (open or closed) ray.939

To describe all these situations we prefer use some useful functions in940

the form941

pm
n

(x) := |(nx−m)|

and942

r+
m
n

(x) := |(nx−m) ∧ 0|

r−m
n

(x) := |(−nx+m) ∧ 0|

where m ∈ Z and n ∈ N, the first gives us a rational point as zero set943

and the second ones a rational closed ray. We will use also the notation pq,944

r−q and r+
q where q = m

n . Why do we choose these functions? Because with945

these functions we can determinate, in a standard way, the action of ZI on946
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subsets of R, and they give us a presentation of the generators of the ideal947

I(C).948

By this we can say that if C is a finite set of rational points and rational949

closed rays or intervals we have an explicit description of the ideal I(C),950

which is finitely generated by a combination of these particular functions.951

Let us consider x̄ a non-rational point in R. We cannot use pm
n

because x̄952

is not in Q so we can think to approximate x̄ from both sides with two series953

of rational rays in the following way. We know that there are an increasing954

series {qli} and a decreasing series {qrj} in Q converging to x̄ from left and955

from right. Now if we consider I({x̄}) which contains all the `-polynomials956

such that f(x̄) = 0, we have that r+
qli

and r−qrj are in I(x̄). In this case we have957

that the ideal I(x̄) can not be finitely generated, in fact if I(x̄) is finitely958

generated for the structure of our space there exists px̄(x) = |(nx − m)|,959

with m,n ∈ Z \ {0}, such that px̄(x̄) = 0, but it is impossible because in this960

way we have that x̄ = m
n and x̄ ∈ R \Q.961

The same construction is possible with closed, open and half-closed in-962

tervals (finite or infinite).963

Let us consider C = Z as exemplar of infinite discrete set of points and964

the `-polynomial functions (separation functions)965

sfn(x) = ((x− n) ∧ (−x+ n+ 1)) ∨ 0

for each n ∈ Z, where trivially sfn ∈ I(Z) ∀n ∈ Z so we have Z ⊆ ZI(Z) ⊆966

Z({sfn}n∈Z) = Z. More easily we can consider the function defined by the967

following series968

FZ(x) =
∑
n∈Z

sfn(x),

and observe that Z({sfn}n∈N) = Z(FZ); we have to note that FZ is not a969

polynomial because we have an infinite sum, and so I(Z) is not finitely970

generated.971

Note that all these considerations and constructions can be easily ex-972

tended in the multidimensional case, and they give us a useful tool to clas-973

sify and recognize finitely generated ideals.974

4.3 The `-Operators Z and I975

Definition 4.3.1. We considerFA`0(X) the free abelian `-group onX = {x1, ..., xn}976

finite set of generators; we will also use FA`0(n), where |X| = n. An important977

result (seeBigard, Keimel, and Wolfenstein, 1977) tells us that every free `-group978

is a subdirect product of groups isomorphic to Z, moreover we can express it in the979

following way:980

FA`0(n) = {f =
∧
i

∨
j

fij | fij ∈ hlinZ}

where f ∈ hlinZ iff f =
∑n

i=1 zixi, with zi ∈ Z.981

In particular, by universal properties of free algebras, it follows that every `-group982

is homomorphic image of a subdirect product of groups isomorphic to Z, since each983

`-group is homomorphic image of the free `-group.984
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We can fix an `-group H and consider the variety `GRH . In `GRH we985

have the free algebra FA`H(n) as follows986

FA`H(n) = {f =
∧
i

∨
j

(fij + hi,j) | fij ∈ hlinZ hi,j ∈ H}.

We will write FA`(n) to indicate FA`0(n) and FA`H(n) when the context987

is clear or when the results work for both.988

Definition 4.3.2. Let G an `-group, let A ⊆ Hom(FA`(n), G), whose elements989

are seen as points of Gn, and let U ⊆ FA`(n) a set of polynomials in FA`(n),990

then we can define the following operators991

ZG : P(FA`(n)) −→ P(Hom(FA`(n), G))

where ZG(U) := {µ : FA`(n)→ G | U ⊆ Kerµ}, and992

IG : P(Hom(FA`(n), G)) −→ P(FA`(n))

where IG(A) :=
⋂
µ∈AKerµ.993

We say that ZG(U) is the `-algebraic set (or `-zero set) determined by994

U and IG(A) is the `-ideal determinated by A (we can say it also G-closed995

`-ideal). As in classical algebraic geometry and in Plotkin, 2002 we will996

identify Hom(FA`(X), G) with the Cartesian product Gn, and we have:997

IG(A) = {p ∈ FA`(n) | ∀ā ∈ Ap(ā) = 0} =
⋂
ā∈A

IG(ā),

where A ⊆ Gn.998

Remark 4.3.1. Note that ifG = R then the definitions, given in the Section 4.1, of999

zerosets and ideals coincide with those of ZR and IR. Moreover the five properties1000

of Z0 in Remarks 4.2.1 hold also for ZG in a generic `-group G.1001

We can also consider the operators IGZG and ZGIG as follows:1002

IGZG(U) = IG(ZG(U)) = {p ∈ FA`(n) | ∀ā ∈ ZG(U) p(ā) = 0}

ZGIG(A) = ZG(IG(A)) = {x ∈ Gn | f(x) = 0 ∀f ∈ IG(A)}

Some properties of IG and ZG are independent from the `-group G, in1003

those cases we will write I and Z.1004

Definition 4.3.3. Let (A,≤) and (B,≤) be two partially ordered sets. A Galois1005

correspondence consists of two monotone functions: F : A→ B and G : B → A,1006

such that for all a in A and b in B, we have F (a) ≤ b ⇔ a ≤ G(b).1007

Operators IG andZG form a Galois correspondence between (P(Hom(FA`(X), G)),⊆1008

) and (P(FA`(X)),⊆). In the variety of `-groups the operator Z has a1009

more general meaning. In fact each equation of `-polynomials of the form1010

w = w′ can be put in the form z = 0 where z = w − w′. We can consider1011

w,w′ ∈ FA`(n) and then we can ask if (and when) w ≡ w′. Let us fix an1012

`-group G and define V alG(w ≡ w′) as follows:1013

V alG(w ≡ w′) = {µ : FA`(n)→ G | wµ = w′µ},
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and in the variety of `-groups, we have that ZG({w − w′}) = V alG(w ≡1014

w′).1015

4.3.1 The Nullstellensatz for `-groups1016

The Hilbert’s Nullstellensatz is a theorem in algebraic geometry that relates1017

varieties and ideals in polynomial rings over algebraically closed fields. Let1018

K be an algebraically closed field (such as the field of complex numbers)1019

and let consider the polynomial ring K[x1, x2, ..., xn] and let I be an ideal1020

in this ring. The affine variety V (I) defined by this ideal consists of all1021

n-tuples k̄ = (k1, ..., kn) in Kn such that f(k̄) = 0 for all f in I. The theo-1022

rem of zeros Hilbert states that if p is some polynomial in K[x1, x2, ..., xn]1023

such that p(k̄) = 0 for all k̄ in V (I), then there exists a natural number r1024

such that pr is in the I. With the usual notation in algebraic geometry, the1025

Nullstellensatz can also be formulated as I(Z(J)) =
√
J for every ideal J,1026

where
√
I = {x ∈ A|∃n ∈ N : xn ∈ I}. In this section we propose a vari-1027

ation of Hilbert’s Nullstellensatz. Instead of an algebraically closed field K1028

and the polynomial ring over it we will consider a generic `-group G and1029

`-polynomials. Note that every `-polynomial is equal to zero in the zero of1030

every `-group, property equivalent to the algebraic closure requested to the1031

fields. We will define an `-radical `
√
I such that we have, in the Theorem1032

4.3.1, I(Z(J)) =`

√
J .1033

Definition 4.3.4. Let J be an `-ideal of FA`(n). We can define the `-radical `
√
J1034

as follows1035

`

√
J =

⋂
J⊆I(ā)

I(ā)

Note that every `-radical is the intersection of ideals and therefore it is1036

itself an ideal.1037

Lemma 4.3.1. Let be J an `-ideal of FA`(n). I(Z(J)) =`

√
J1038

Proof. By Lemma 4.3.2 I(Z(J)) =
⋂
ȳ∈Z(J) I(ȳ), but we have also that1039

⋂
ȳ∈Z(J)

I(ȳ) =
⋂
{I(ȳ) | ∀f ∈ J f(ȳ) = 0} =

⋂
{I(ȳ) | J ⊆ I(ȳ)}.

1040

Lemma 4.3.2. Let U be a subset of FA`(n), so I(Z(U)) =
⋂
ȳ∈Z(U) I(ȳ)1041

Proof. Let f be in I(Z(U)), this means that f(ȳ) = 0 ∀ȳ ∈ Z(U) or equiva-1042

lently f ∈ I(ȳ) ∀ȳ ∈ Z(U) but f ∈ I(ȳ) ∀ȳ ∈ Z(U) ⇔ f ∈
⋂
ȳ∈Z(U) I(ȳ)1043

By previous lemmas we have the following theorem.1044

Theorem 4.3.1. (Nullstellensatz for `-groups)1045

I(Z(J)) = `

√
J , moreover the ideals J such that I(Z(J)) = J are exactly the1046

`-radical ideals.1047
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4.3.2 Closure Operators1048

Definition 4.3.5. A closure operator is a map Γ from a powerset P(S) of a set S1049

to P(S) such that X ⊆ P(X), X ⊆ Y implies Γ(X) ⊆ Γ(Y ), and Γ(Γ(X)) =1050

Γ(X).1051

Proposition 4.3.1. ZI and IZ are closure operators.1052

Proof. We have X ⊆ ZI(X) by Galois connection properties. Let consider1053

X,Y ⊆ Gn, we have that X ⊆ Y ⇒ I(X) ⊇ I(Y ) ⇒ ZI(X) ⊆ ZI(Y ).1054

Let us consider ā in ZI(ZI(X)), by definition it exists an f in I(ZI(X)) such1055

that f(ā) = 0; but we have I(ZI(X)) = IZ(I(X)) = I(X). So we have f in1056

I(X) such that f(ā) = 0, i.e. ā ∈ ZI(X).1057

Analogously can be proved that IZ is a closure operator.1058

4.4 Geometrically Stable `-groups1059

Let us consider the sets K(G) and C(G) of the zero sets and of the `-ideals.1060

In general we know that the intersection of zero sets is a zero set, and the1061

intersection of `-ideals is an `-ideal; but the union of zero sets (or `-ideals)1062

is not necessary a zero set (or `-ideal), then (K(G),∪,∩) and (C(G),∪,∩) are1063

not structured as lattices. Let us define the operation ∪ as follows:1064

Z(X)∪Z(Y ) = ZI(Z(X) ∪ Z(Y )),

I(X)∪I(Y ) = IZ(I(X) ∪ I(Y )).

So we can consider the complete lattices (K(G),∪,∩) and (C(G),∪,∩).1065

Proposition 4.4.1. The lattices (K(G),∪,∩) and (C(G),∪,∩) are dual.1066

Proof. It follows from the Proposition 4.3.1.1067

Definition 4.4.1. Let G be an `-group. G is geometrically stable if for all ZG(X),1068

ZG(Y ) we have ZG(X)∪ZG(Y ) = ZG(X) ∪ ZG(Y ).1069

Recall that in Zariski topology on Gn closed sets are finite unions and1070

arbitrary intersections of zero sets and it is the minimal topology in the1071

space such that all zero sets are closed. Note that ifG is geometrically stable1072

then closed sets are all zero sets.1073

Definition 4.4.2. A closure operator Γ on a powerset is called topological when it1074

commutes with finite unions and Γ(∅) = ∅. The fixpoints of a topological closure1075

operator are closed under finite unions and arbitrary intersections, so they are the1076

closed sets of a topology.1077

Theorem 4.4.1. Let G be an `-group. The following are equivalent:1078

1. G is geometrically stable;1079

2. G is totally ordered;1080

3. ZGI is a topological operator;1081

4. IZG is a topological operator.1082

The proof of the theorem naturally follows from the following lemmas.1083
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Lemma 4.4.1. If G is not totally ordered then ZGI is not a topological operator in1084

n dimensions for all n ≥ 2.1085

Proof. G is not totally ordered so there are w, z ∈ G\{0} such that w∧z = 0.1086

In fact if we have c, d ∈ G that are non comparable we can consider w =1087

c−(c∧d) and z = d−(c∧d). Let us consider the projections x1, x2 ∈ FA`(n),1088

with n ≥ 2, and ā = (a1, a2, ..., an) ∈ Gn such that a1 = w, a2 = z and ai = 01089

for all i = 3, ..., n. We can define Z1 = ZG(x1) and Z2 = ZG(x2). Now1090

it is sufficient to prove that ā ∈ ZGI(Z1 ∪ Z2) \ (ZGI(Z1) ∪ ZGI(Z2)); but1091

ā /∈ Zi because a1 and a2 are not equal to zero and by remark ZGI(Zi) = Zi.1092

By the theorem of Hahn we know that G ⊆
⊕

i∈I Ri, where I is the set of1093

all prime ideals of G. Let Iw = {i ∈ I |wi = 0} and Iz = {i ∈ I | zi =1094

0}, by w ∧ z = 0 we have I = Iw ∪ Iz . Now let consider f ∈ I(Z1 ∪1095

Z2) = I(Z1) ∩ I(Z2), in particular f ∈ I(Z2) i.e. f(w, 0, ..., 0) = 0 then1096

fi(w, z, 0, ..., 0) = f(wi, zi, ..., 0) = 0 ∀i ∈ Iz ; in a similar way we have fi = 01097

∀i ∈ Iw by f(0, z, ..., 0) = 0. So fi = 0 for all i in I i.e. f(w, z, 0, ..., 0) = 0,1098

then ā ∈ ZGI(Z1 ∪ Z2).1099

1100

Lemma 4.4.2. For all X,Y ⊆ Gn we have I(X ∪ Y ) = I(X) ∩ I(Y ).1101

Proof. We have I(X ∪ Y ) ⊇ I(X) ∩ I(Y ) by definition. Let us consider1102

p /∈ I(X) ∩ I(Y ), so ∃ā ∈ X such that p(ā) 6= 0 or ∃b̄ ∈ Y such that p(b̄) 6= 0,1103

then we can say that ∃c̄ ∈ X ∪ Y such that p(c̄) 6= 0, i.e. p /∈ I(X ∪ Y )1104

For all I , J `-ideals of FA`(n) and for all G `-group we have Z(I ∩ J) ⊇1105

Z(I) ∪ Z(J) by definition.1106

Lemma 4.4.3. For all I , J `-ideals of FA`(n) and for all G totally ordered `-group,1107

we have ZG(I ∩ J) = ZG(I) ∪ ZG(J).1108

Proof. Let us consider ā ∈ ZG(I ∩ J), this means that ∀p ∈ I ∩ J |p(ā) = 0.1109

Suppose that ā /∈ Z(I), i.e. ∃qI ∈ I such that |qI(ā)| 6= 0. Now let qJ ∈ J , so1110

|qI(ā)| ∧ |qJ(ā)| = 0, because |qI | ∧ |qJ | ∈ I ∩ J . Now we use our hypothesis1111

of total ordering of G and we can say |qJ(ā)| = 0, and by the arbitrariness1112

of qJ we have ā ∈ Z(J).1113

If we consider the case in which G = R, by the total order of R, we have1114

that ZRI and IZR are topological operators, i.e. R is geometrically stable.1115

4.5 Geometrically Noetherian `-Groups1116

Definition 4.5.1. Let G and H be `-groups. G is called geometrically Noetherian1117

w.r.t. H iff for every n ∈ N and for every system of equations T in FA`H(n) there1118

exists T0 finite subset of T such that Z(T ) = Z(T0).1119

Remarks 4.5.1. Trivial, but useful, remarks are the following ones:1120

• if H1 ≤ H2 and G is geometrically Noetherian w.r.t. H2 then G is geometri-1121

cally Noetherian w.r.t. H1, in particular if G is not geometrically Noetherian1122

w.r.t. {0} then G is not geometrically Noetherian w.r.t. any H ;1123

• if G1 ≤ G2 and G2 is geometrically Noetherian w.r.t. H then G1 is geomet-1124

rically Noetherian w.r.t. H ;1125
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• if G1
∼= G2 and G2 is geometrically Noetherian w.r.t. H then G1 is geomet-1126

rically Noetherian w.r.t. H .1127

Lemma 4.5.1. Z is not geometrically Noetherian w.r.t. {0}.1128

Proof. Let us consider n = 2 and the closed cone C = {(x, y) | 0 ≤ y ≤1129 √
2x, x ≥ 0}. By the characterization of zero sets there exists {fi}i∈I , an1130

infinite set of polynomials, such that C = Z({fi}i∈I). If Z were geometri-1131

cally Noetherian w.r.t. {0} then there exists I ′ finite subset of I such that1132

Z({fj}j∈I′) = Z({fi}i∈I) = C, i.e. we have that
√

2 is a rational, but it is an1133

absurdum.1134

Proposition 4.5.1. An `-group G is geometrically Noetherian w.r.t. H iff G =1135

{0}.1136

Proof. It is trivial that G = {0} is geometrically Noetherian w.r.t. H, for all1137

H `-group of constants.1138

Let us consider G 6= {0}, then we have that there exists G′ `-subgroup1139

of G such that G′ ∼= Z.1140

By lemma and a previous remark we have that G′ is not geometrically1141

Noetherian w.r.t. {0} so G is not geometrically Noetherian w.r.t. {0}; and1142

by the first remark G is not geometrically Noetherian w.r.t. any H .1143

4.6 Algebraically Closed `-Groups1144

We would like to study the notion of algebraically closed `-group by fol-1145

lowing Plotkin, 2002. However if we follow Plotkin literally we end up1146

of a definition of H-algebraically closed `-group (Definition 4.6.1) which1147

is trivial except for H = {0}. For completeness we give the general def-1148

inition. Moreover we give a weaker definition which we call weakly H-1149

algebraically closed, which is not trivial also for H 6= {0} in general.1150

Definition 4.6.1. LetG be an `-group and letH ≤ G. G isH-algebraically closed1151

iff for every J `-ideal such that J ⊂ FA`H(n) we have ZG(J) 6= ∅.1152

Proposition 4.6.1. f is a strong unit of RRn equipped with the pointwise order iff1153

f is CNB and Z(f) = ∅.1154

Proposition 4.6.2. Let J be an `-ideal J ⊆ FA`H(n). J = FA`H(n) iff there1155

exists u strong unit such that u ∈ J .1156

Proposition 4.6.3. Let G be an `-group, then G is not H-algebraically closed for1157

each H 6= {0}.1158

Proof. LetG be an `-group and let us consider J =< h >, where h ∈ H\{0}.1159

By Proposition 4.6.2 J 6= FA`H(n), but ZG(J) = ∅.1160

By Proposition 4.6.3, Definition 4.6.1 is trivial in our context. Less trivial1161

definitions are the following.1162

Definition 4.6.2. Let G be an `-group. G is algebraically closed iff for every J1163

`-ideal such that J ⊂ FA`0(n) we have Z̄G(J) 6= ∅, where Z̄G(J) is the set1164

ZG(J) \ {0}.1165
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Definition 4.6.3. Let G be an `-group. Let H be an `-group such that H ≤ G. G1166

is weakly H-algebraically closed if for every polynomial f ∈ FA`H(n) such that1167

< f > is proper we have ZG(f) 6= ∅.1168

Proposition 4.6.4. Q is not algebraically closed.1169

Proof. Let us consider J = {f ∈ FA`0(2) | f(1,
√

2) = 0}. J is a proper1170

`-ideal, but Z̄Q(J) = ∅.1171

Proposition 4.6.5. Z is weakly {0}-algebraically closed.1172

Proof. Let f ∈ FA`H(n) such that < f >= J ⊂ FA`H(n). By Proposition1173

4.6.2 and by the nature of our objects we have ZZ(f) 6= ∅, i.e. ZZ(J) 6= ∅.1174

Corollary 4.6.1. Every G `-group is weakly {0}-algebraically closed.1175

Definition 4.6.4. Let X be a set with A = {Ai}i∈I a family of subsets of X . A1176

has the finite intersection property (FIP) if for any finite subcollection K ⊆ I the1177

intersection
⋂
i∈K Ai is not empty.1178

Proposition 4.6.6. Let J be an `-ideal of FA`0(n). J is proper iff {Z̄G(fi)}fi∈J1179

has the FIP.1180

Proof. ⇒ Let us consider J `-ideal such that {Z̄G(fi)}fi∈J has not the FIP.1181

This means that there exists f1, . . . , fm with Z̄G(f1, . . . , fm) = ∅; by this we1182

have f =
∨m
i=1 |fi| ∈ J , but by easy observation f is a strong unit of FA`0(n)1183

and then J is not proper.1184

⇐ Let us consider J non-proper `-ideal. By Proposition 4.6.2 there exists1185

u strong unit of FA`0(n) such that u ∈ J ; so Z̄G(u) = ∅, i.e. {Z̄G(fi)}fi∈J1186

has not the FIP.1187

Theorem 4.6.1. Let G be an `-group. We have the following equivalence:1188

1. G is algebraically closed;1189

2. the Zariski topology on (G \ {0})n is compact.1190

Proof. 1⇒ 2 Let us considerG algebraically closed `-group and {Z̄G(fi)}i∈I1191

a family of closed sets indexed by I which has the FIP. By Proposition 4.6.61192

the set {fi}i∈I is included in some J proper `-ideal. By the fact that G is1193

algebraically closed we have1194 ⋂
i∈I

Z̄G(fi) ⊇ Z̄G(J) 6= ∅,

and by a characterization of compact topology we have that the Zariski1195

topology on (G \ {0})n is compact.1196

2 ⇒ 1 Let J be a proper `-ideal. Let us consider {fi}i=1,...,m, a fi-1197

nite subset of J . By Proposition 4.6.2 and Corollary 4.6.1 we have that1198

Z̄G({fi}i=1,...,m) 6= ∅, but the Zariski topology on (G \ {0})n is compact1199

so we can say that Z̄G(J) 6= ∅.1200

Corollary 4.6.2. The `-group R is algebraically closed.1201
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4.7 Categorical Duality1202

In this section we propose a categorical duality between the categories of1203

zero sets (or equivalently algebraic sets) and of the coordinate algebras.1204

We define now the categoriesK`−Gr (of the algebraic sets) andC`−Gr (of1205

coordinate algebras). The K`−Gr objects are (X,A,H), where A is an alge-1206

braic set inHom(FA`H(X), H); while theC`−Gr objects are (FA`H(X)/I,H)1207

where I is an H-closed `-ideal in FA`H(X). Let define the morphisms1208

(X,A,H1) → (Y,B,H2). We consider the homomorphisms δ : H1 → H2,1209

s : FA`H2(Y ) → FA`H1(X), ν : FA`H1(X) → H1 and the commutative1210

diagram:1211

FA`H2(Y )
s //

ν′

��

FA`H1(X)

ν

��
H2 H1

δ
oo

For every homomorphism ν : FA`H1(X) → H1 we consider the ho-1212

momorphism ν ′ = δνs that we can express also through the application1213

(s, δ) : Hom(FA`H1(X), H1) → Hom(FA`H2(Y ), H2) such that (s, δ)(ν) =1214

ν ′. The couple (s, δ) is admissible with respect to A and B if ν ′ ∈ B for1215

all ν ∈ A. Let (s, δ) be an admissible couple with respect to A and B,1216

we fix δ and we consider the map [s]δ : A → B, obtained by restricting1217

(s, δ). The couple ([s]δ, δ) will be the morphism (X,A,H1) → (Y,B,H2)1218

and we define the composition of two morphism in the following way1219

([s′]δ′ , δ
′)([s]δ, δ) = ([ss′]δ′δ, δ

′δ) : (X,A,H1) → (Z,C,H3) where ([s′]δ′ , δ
′) :1220

(Y,B,H2)→ (Z,C,H3) and ([s]δ, δ) : (X,A,H1)→ (Y,B,H2).1221

We can state the following duality theorem.1222

Theorem 4.7.1. The category of algebraic sets and of coordinate algebras are dually1223

isomorphic.1224

The proof of the theorem follows from the lemmas below.1225

This duality allows us to reconstruct, as particular cases, key results pre-1226

sented in Baker, 1968; Beynon, 1975; Beynon, 1977; Cabrer and Mundici,1227

2011; Cabrer, 2015 and Belluce, Di Nola, and Lenzi, 2014; Cabrer and Mundici,1228

2009; Marra and Spada, 2012, in the fields of `-groups and MV-algebras. In1229

fact, recall that the Mundici functor Γ associates to an `-group G with a1230

strong unit u the MV-algebra interval [0, u]; the introduction of constants1231

makes it possible to consider [0, u] as an algebraic set.1232

Lemma 4.7.1. The map F : K`−Gr → C`−Gr from the category of algebraic sets1233

to the category of coordinate algebras defined as follows:1234

(i) F ((X,A,H)) = (FA`H(X)/A′, H);1235

(ii) F (([s]δ, δ)) = (σs, δ);1236

is a contravariant functor.1237

Proof. Let I1 be an `-ideal of FA`H1(X) and let I2 be an `-ideal of FA`H2(Y ).1238

Suppose s : FA`H2(Y )→ FA`H1(X) is an admissible homomorphism with1239

respect to I1 and I2. Define σs : FA`H2(Y )/I2 → FA`H1(X)/I1 as the1240

homomorphism such that σs ◦ ρ2 = ρ1 ◦ s where ρ1 and ρ2 are the canonical1241
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epimorphisms by the `-ideals I1 and I2 respectively; or equivalently σs can1242

be defined by the commutativity of the following diagram:1243

FA`H2(Y )
s //

ρ2
��

FA`H1(X)

ρ1
��

FA`H2(Y )/I2
σs // FA`H1(X)/I1

σs is also well defined, in fact, if we consider p(y) + I2 = q(y) + I2 ∈1244

FA`H2(Y )/I2,1245

ρ2(p(y)) = ρ2(q(y)) (∗)

or equivalently1246

p(y)− q(y) ∈ I2 (∗∗)

then we can see, by definition, the following chain of equalities: σs(ρ2(p(y))) =1247

ρ1(s(p(y))) = s(p(y))+I1 and similarly for q(y) σs(ρ2(q(y))) = ρ1(s(q(y))) =1248

s(q(y))+I1; but by (**) and the admissibility of s we have s(p(y))−s(q(y)) ∈1249

I1 and then s(p(y)) + I1 = s(q(y)) + I1.1250

Likewise, suppose σ is a morphism of the categoryC`−Gr fromFA`H2(Y )/I21251

toFA`H1(X)/I1. We can define the admissible homomorphism sσ : FA`H2(Y )→1252

FA`H1(X) such that σ◦ρ2 = ρ1◦sσ where again ρ1, ρ2 are the canonical pro-1253

jections; sσ can be expressed also by the following commutative diagram:1254

FA`H2(Y )
sσ //

ρ2
��

FA`H1(X)

ρ1
��

FA`H2(Y )/I2
σ // FA`H1(X)/I1

from which we can derive the morphism [sσ] of category K`−Gr.1255

Lemma 4.7.2. The map G : C`−Gr → K`−Gr from the category of coordinate1256

algebras to the category of algebraic sets defined as follows1257

(i) G((FA`H1(X)/I,H)) = (X, I ′, H);1258

(ii) G((σ, δ)) = ([sσ], δ);1259

is a contravariant functor.1260

Lemma 4.7.3. The composed functor GF : K`−Gr → K`−Gr is the identity1261

functor of the category K`−Gr.1262

Proof. Let us consider an object (X,A,H) and a morphism [s] of the cate-1263

gory K`−Gr. We have1264

GF (X,A,H) = F (G(X,A,H)) = F ((FA`H1(X)/A′, H)) = (X,A′′, H) = (X,A,H).

Moreover, if we consider a morphism [s] : (X,A1, H1) → (Y,A2, H2),1265

we have that the domain and codomain coincide with those of GF ([s]) and1266

GF ([s]) = F (G([s])) = F (σs) = [sσs ], but by definition ρ1 ◦ sσs = σs ◦1267

ρ2 = ρ1 ◦ s. Now take any p(y) ∈ FA`H2(Y ). We derive sσs(p(y)) + A′1 =1268
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s(p(y)) + A′1. From this we get that sσs(p(y)) − s(p(y)) ∈ A′1 and then1269

for the definition of the closure operator this is equivalent to saying that1270

0 = µ(sσs(p(y)) − s(p(y))) = µ(sσs(p(y))) − µ(s(p(y)) ∀µ ∈ A1. Then we1271

get that µ(sσs(p(y))) = µ(s(p(y)) and since p(y) ∈ FA`H2(Y ) is arbitrary1272

we get s = sσs .1273

In a similar way we obtain the following result.1274

Lemma 4.7.4. The composed functor FG : C`−Gr → C`−Gr is the identity func-1275

tor of the category C`−Gr.1276
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Łukasiewicz Logic and its
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Preliminaries1277

Łukasiewicz Logic and MV-Algebras. The system of axioms for propo-1278

sitional Łukasiewicz logic uses implication and negation as the primitive1279

connectives:1280

(A→ B)→ ((B → C)→ (A→ C))1281

((A→ B)→ B)→ ((B → A)→ A)1282

(¬B → ¬A)→ (A→ B).1283

MV-algebras are the algebraic structures associated to Łukasiewicz logic,1284

in the same sense in which Boolean algebras correspond to classical logic.1285

An MV-algebra is a structure (A,⊕,¬, 0) where (A,⊕, 0) is a commutative1286

monoid and:1287

• ¬¬x = x;1288

• x⊕ ¬0 = ¬0;1289

• ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x (Mangani’s axiom).1290

Other useful notations are:1291

• 1 = ¬0;1292

• n.x = x⊕ x . . .⊕ x (we iterate the sum n times);1293

• x� y = ¬(¬x⊕ ¬y);1294

• x ∨ y = ¬(¬x⊕ y)⊕ y;1295

• x ∧ y = ¬(¬x ∨ ¬y).1296

In every MV-algebra we have a partial order x ≤ y which holds if and1297

only if there is z such that y = x ⊕ z. This order is always a lattice order,1298

where the supremum of two elements is x ∨ y and the infimum is x ∧ y.1299

An ideal of an MV-algebra A is a subset of A which is closed under sum1300

and is closed downwards in the order of A. If X ⊆ A, we denote by id(X)1301

the ideal generated byX . An ideal J is called principal if there is an element1302

f ∈ A which generates J . In this case we write J = id(f).1303

We denote by A/J the quotient MV-algebra given by an MV-algebra A1304

modulo an ideal J of A.1305

Recall that an MV algebra is called semisimple if the intersection of its1306

maximal ideals is zero. Examples of semisimple MV algebras are Cn and its1307

subalgebras, including Mn and RMn.1308

Given a subset S of Cn, and a subset C ⊆ [0, 1]n, we denote by S|C the1309

set of all restrictions of functions in S to C.1310

Let C ⊆ [0, 1]m and D ⊆ [0, 1]n. We call Z-map from C to D any n-1311

tuple of McNaughton functions in Mm which sends C to D. We call Z-1312

homeomorphism between C and D an invertible Z-map from C to D whose1313

inverse is a Z-map from D to C.1314
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Recall that a convex polyhedron is the convex hull of a tuple of real points,1315

and that a polyhedron is the union of finitely many convex rational polyhe-1316

dra. A simplex of dimension k is the convex hull of k + 1 points which is1317

not contained in affine subspaces of dimension less than k. Recall also that1318

a rational convex polyhedron is the convex hull of a tuple of rational points,1319

and that a rational polyhedron is the union of finitely many convex rational1320

polyhedra.1321

Rational Łukasiewicz Logic and divisible MV-Algebras. Here we recall1322

the definition of rational Łukasiewicz logic, an extension of Łukasiewicz logic,1323

introduced in Gerla, 2001. Formulas are built via the binary connective1324

⊕ and the unary ones ¬ and δn in the standard way. An assignment is a1325

function v : Form→ [0, 1] such that:1326

• v(¬ϕ))1− v(ϕ)1327

• v(ϕ⊕ ψ) = min{1, ϕ+ ψ}1328

• v(δnϕ) = v(ϕ)
n1329

For each formula ϕ(X1, . . . , Xn) it is possible to associate the truth func-1330

tion TF (ϕ, ι) : [0, 1]n → [0, 1], where:1331

• ι = (ι1, . . . , ιn) : [0, 1]n → [0, 1]n1332

• TF (Xi, ι) = ιi1333

• TF (¬ϕ, ι) = 1− TF (ϕ, ι)1334

• TF (δnϕ, ι) = TF (ϕ,ι)
n1335

Note that in most of the literature there is no distinction between a Mc-1336

Naughton function and a MV-formula, but it results that, with a different1337

interpretation of the free variables, we can give meaning to MV-formulas1338

by means of other, possibly non-linear, functions (e.g. we consider genera-1339

tors different from the canonical projections π1, . . . , πn, such as polynomial1340

functions, Lyapunov functions, logistic functions, sigmoidal functions and1341

so on).1342

Real Łukasiewicz Logic and Riesz MV-Algebras. We follow Di Nola and1343

Leuştean, 2014. A Riesz MV-algebra is a structure (R, ·,⊕,¬, 0) where (R,⊕,¬, 0)1344

is an MV-algebra and the operation · : [0, 1]×R→ R satisfies the following1345

identities, where x, y ∈ R and q, r ∈ [0, 1]:1346

• r(x� ¬y) = (rx)� ¬(ry);1347

• (r � ¬q)x = ¬(rx)� qx);1348

• r(qx) = (rq)x;1349

• 1x = x.1350

A Riesz MV polynomial is an expression built from variables and 0 by1351

applying the operations ·,⊕,¬ and multiplication by any number c ∈ [0, 1].1352

Note that a free Riesz MV algebra on n generators is given by the set of all1353

Riesz MV polynomials in n variables, modulo the ideal of all polynomials1354

which are zero in every Riesz MV algebra. A free Riesz MV-algebra on n1355

generators is concretely described by Riesz-McNaughton functions.1356
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Possible Generalizations We can say that Riesz MV-algebras are MV-1357

algebras equipped with a sort of module structure on [0, 1], thought of as1358

a multiplicative monoid. The situation can be generalized in many ways.1359

For instance, [0, 1] can be replaced with a product MV-algebra, so that Riesz1360

MV-algebras generalize to MV-modules on a product MV-algebra.1361

Product MV-algebras arose in the attempt of understanding the inter-1362

play between the MV-algebra structure and the multiplicative structure of1363

[0, 1]. They are axiomatized, for instance, in Dvurečenskij and Riečan, 1999.1364

Examples of product MV-algebras are the sets of continuous functions from1365

any fixed topological space to [0, 1]. The Mundici equivalence between MV-1366

algebras and `u-groups extends to one between product MV-algebras and1367

`u-rings. Actually, as explained in Di Nola and Leuştean, 2014, Riesz MV-1368

algebras were born as a weakening of product MV-algebras.1369

On the Definition of Constituent of a Function In the definition of Mc-1370

Naughton function, it is required that the function has a finite tuple of affine1371

constituents. The notion of constituent can be vastly generalized to nonlin-1372

ear situations as those considered.1373

Definition 4.7.1. Let f be a function from a set X to a set Y . A tuple of functions1374

(f1, . . . , fm) is called a constituent tuple of f if the domain of each fi is a subset1375

of X and for every x ∈ X there is i such that f(x) = fi(x).1376

Definition 4.7.2. Let A be a set of functions. f is called piecewise-A if it admits1377

a tuple of constituents in A.1378

Definition 4.7.3. Let f be a function from a set X to a set Y . Let A be a set of1379

functions. Let K be a set of subsets of X . We will say that f is piecewise-(A,K)1380

if there are finitely many pairs (f1,K1), . . . , (fm,Km) such that each fi is in A,1381

fi is defined (at least) everywhere in Ki, and for every x ∈ X there is i such that1382

x ∈ Ki and f(x) = fi(x).1383

Note that by definition, every McNaughton function is piecewise-A,1384

where A is the set of all affine functions with integer coefficients from sub-1385

sets of [0, 1]n to [0, 1]. More precisely:1386

Theorem 4.7.2. (see Cignoli, d’Ottaviano, and Mundici, 2013) In the terminology1387

above, every McNaughton function is piecewise-(A,K), where K is the set of all1388

rational polyhedra included in [0, 1]n (as noted by a referee, every piecewise (A,K)-1389

function is continuous, so it is a McNaughton function).1390

In other words, the theorem says that the domains of the affine con-1391

stituents of a McNaughton function can always be taken to be rational poly-1392

hedra.1393

We will see that Theorem 4.7.2 extends to Riesz McNaughton functions,1394

see Theorem 6.1.2.1395

The Marra-Spada Duality In Marra and Spada, 2012 we find a careful1396

proof of several facts on MV-algebras which were previously considered as1397

folklore. In particular we have:1398

Theorem 4.7.3. (see Marra and Spada, 2012) There is a duality between the cate-1399

gory of finitely generated, semisimple MV-algebras and the category of closed sub-1400

sets of [0, 1]n with Z-maps as morphisms.1401
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Actually Marra and Spada, 2012 describes a more general adjunction for1402

arbitrary MV-algebras, including infinitely generated and non-semisimple1403

MV-algebras, but here we stick to the semisimple, finitely generated case1404

for simplicity.1405

Ideals and homomorphisms Ideals of MV-algebras correspond to con-1406

gruences of MV-algebras. Moreover, as a consequence of Di Nola and Leuştean,1407

2014, Remark 3, every MV-algebraic congruence in a Riesz MV-algebra is1408

also a Riesz MV-algebraic congruence. In this sense, the “ideals” of an Riesz1409

MV-algebra can be identified with the ideals of its MV-algebraic reduct, and1410

the same holds for maximal ideals. We denote by R/J the quotient Riesz1411

MV algebra given by R modulo its ideal J .1412

A further consequence of the above considerations on congruences is1413

the following:1414

Lemma 4.7.5. Every homomorphism between the MV-algebra reducts of two Riesz1415

MV-algebras A and B is also a homomorphism between A and B.1416

Proof. A map f : A → B is a homomorphism if and only if ker(f) =1417

{(x, y)|f(x) = f(y)} is an congruence.1418

Now recall the Di Nola embedding theorem:1419

Theorem 4.7.4. (see Di Nola, 1991, Di Nola, 1993) Ever MV-algebra embeds in1420

a power of an ultrapower of [0, 1].1421

By the previous lemma and theorem, in the Riesz context we have:1422

Corollary 4.7.1. Every Riesz MV-algebra embeds in a power of an ultrapower of1423

[0, 1].1424

The I-V connection It is useful to adopt the following notations:1425

• I(C) = {f ∈ RMn : f(c) = 0 for every c ∈ C} is the annihilator ideal1426

of C ⊆ [0, 1]n;1427

• V (X) = {x ∈ [0, 1]n : f(x) = 0 for every f ∈ X} is the vanishing1428

locus of the set X ⊆ RMn.1429

Note that there is an isomorphism between RMn|C and RMn/I(C).1430

Lemma 4.7.6. Let C,D be two closed subsets of [0, 1]n such that C is not included1431

in D. Then there is a function f ∈ Mn which is identically zero on D but not1432

identically zero on C.1433

Proposition 4.7.1. For every set X ⊆ RMn, V (X) is closed. Moreover for every1434

closed set C ⊆ [0, 1]n we have C = V (I(C)).1435

Proof. The first point holds because Riesz-McNaughton functions are con-1436

tinuous.1437

For the second point, C ⊆ V (I(C)) follows by definition of I and V .1438

Conversely, suppose x /∈ C. By Lemma 4.7.6 there is f ∈ Mn such that1439

f = 0 in C and f(x) 6= 0. Since Mn ⊆ RMn, we conclude x /∈ V (I(C)).1440
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We can say that a Riesz MV-algebra is semisimple if its MV algebra reduct1441

is semisimple. Examples of semisimple Riesz MV-algebras are Cn and its1442

Riesz MV-subalgebras, including RMn.1443

We have the following criterion for semisimplicity:1444

Lemma 4.7.7. A finitely generated Riesz MV-algebra R = RMn/J is semisimple1445

if and only if J is an intersection of maximal ideals of RMn.1446

Proof. Suppose R = RMn/J is semisimple. Let π : RMn → RMn/J the1447

quotient map. The maximal ideals of R are the ideals M/J where M ∈1448

Max(RMn) and M ⊇ J . Since R is semisimple we have1449 ⋂
M∈Max(RMn),M⊇J

M/J = 0,

and by applying the inverse mapping π−1 we infer1450 ⋂
M∈Max(RMn),M⊇J

M = J,

so J is an intersection of maximal ideals.1451

The converse is analogous.1452

1453

Maximal ideals of free Riesz MV-algebras are characterized as follows:1454

Lemma 4.7.8. A subset J of RMn is a maximal ideal if and only if J = I(c) for1455

some c ∈ [0, 1]n. Moreover the map sending c ∈ [0, 1]n to I(c) ∈ Max(RMn) is1456

a homeomorphism.1457

Proof. Each I(c) is a maximal ideal because the quotient RMn/I(c) is iso-1458

morphic to [0, 1] via evaluation of functions in c, and [0, 1] is a simple Riesz1459

MV-algebra (the unique one, see Di Nola and Leuştean, 2014, Corollary 1).1460

Conversely, let M be a maximal ideal. If M 6= I(c) for every c, then for
every c there is fc ∈M with fc(c) 6= 0, and by continuity, fc 6= 0 in an open
neighborhood Uc of c. By compactness there are c1, . . . , ck such that

Uc1 ∪ . . . ∪ Uck = [0, 1]n.

So, the function
f = fc1 ⊕ . . .⊕ fck

belongs to M , is nonzero everywhere in [0, 1]n, and by compactness, f1461

has a real minimum m > 0. Taking an integer N > 1/m, we have N.f = 1,1462

so 1 ∈M , contrary to the fact that M is a proper ideal.1463

We omit the proof that the map is a homeomorphism.1464

More generally we have:1465

Corollary 4.7.2. Let C ⊆ [0, 1]n be closed. There is a homeomorphism between
the topological spaces C and Max(RMn|C). The homeomorphism sends c ∈ C to

{f ∈ RMn|C : f(c) = 0}.

Putting together Lemmas 4.7.7 and 4.7.8 we have:1466
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Corollary 4.7.3. A finitely generated Riesz MV-algebraR = RMn/J is semisim-1467

ple if and only if J = I(V (J)).1468

The following is a kind of analogue of Hilbert’s Nullstellensatz on ze-1469

rosets of polynomials in algebraically closed fields, see Hilbert and Sturm-1470

fels, 1993:1471

Corollary 4.7.4. For every set J ⊆ RMn, I(V (J)) is the intersection of all max-1472

imal ideals containing J .1473



53

Chapter 51474

Functional Representations and1475

Generalized States1476

If G is an `u-group, then the states of G and the `u-homomorphisms from G1477

to R coincide. So, when we consider `u-homomorphisms fromG to a vector1478

lattice R, actually we deal with generalized states on an `u-group.1479

On the other hand, a state of an MV-algebra is a convex combination1480

of MV-homomorphisms. In this case, we consider convex combinations of1481

these MV-homomorphisms.1482

For this reason we need to give a more general definition of state of an1483

MV-algebra, as proposed below.1484

Definition 5.0.4. Let A be an MV-algebra and S be a Riesz MV-algebra. We1485

say that s : A → S is a generalized state iff s(1A) = 1S and s(x) ⊕R s(y) =1486

s(x ⊕A y) ⊕R s(x � y) for every x, y ∈ A. We denote by ST (A,S) the set of all1487

generalized states from A to S.1488

Analogously as in the context of the states (see also Mundici, 2011, Propo-1489

sition 10.2) we have the following propositions.1490

Proposition 5.0.2. Every generalized state s of an MV-algebra sarisfies the fol-1491

lowing properties.1492

(a) If x ≤ y then s(x) ≤ s(y);1493

(b) s(0A) = 0S ;1494

(c) s(x⊕A y) = s(x)⊕S s(y) whenever x, y ∈ A and x�A y = 0A.1495

Proposition 5.0.3. LetA = Γ(G, uG) be an MV-algebra with its associated unital1496

`-group (G, uG). Let S = Γ(R, uR) be a Riesz MV-algebra with its associated1497

unital vector lattice (R, uR). Then for every s ∈ `uHom(G,R) the restriction of1498

s to A is an element of ST (A,S). The map γ : s 7→ s|A is an affine isomorphism.1499

Definition 5.0.5. Let X be a set of functions from A to S, where A is any ab-1500

stract non-empty set and (S,⊕S , 0S , ·S ,¬S) is a Riesz MV-algebra. We denote by1501

(Aff∗S(X),⊕, 0, ·,¬) the set of functions from A to S such that 1 ∈ Aff∗S(X),1502

where 1(a) = 1S = ¬S0S for all a ∈ A and the other functions are recursively1503

defined as follows.1504

(i) x ∈ Aff∗S(X) for all x ∈ X ;1505

(ii) if α ∈ [0, 1] and v ∈ Aff∗S(X), then α · v ∈ Aff∗S(X), where α · v(a) =1506

α ·S v(a) for every a ∈ A;1507

(iii) if v ∈ Aff∗S(X), then ¬v ∈ Aff∗S(X), where (¬v)(a) = ¬Sv(a);1508
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(iv) if v, w ∈ Aff∗S(X), then v ⊕ w ∈ Aff∗S(X), where (v ⊕ w)(a) = v(a) ⊕S1509

w(a).1510

We now give the following results, in the (Riesz) MV-algebra context.1511

Proposition 5.0.4. LetX be a set of functions fromA to S, whereA is any abstract1512

non-empty set and S is a Riesz MV-algebra. ThenAff∗S(X) is a Riesz MV-algebra1513

of functions from A to S.1514

Proposition 5.0.5. Aff∗Γ(R)(X) = Γ(AffR(X)).1515

Theorem 5.0.5. Let A be an MV-algebra, S = Γ(R, uR) be a Riesz MV-algebra,1516

where R is a Dedekind complete vector lattice with order unit uR. Then the follow-1517

ing are equivalent:1518

(1) A is semisimple;1519

(2) the map φΓ : A ↪→ Aff∗S(ST (A,S)) defined by φΓ(a) = â, where â(ν) =1520

ν(a), a ∈ A and ν ∈ ST (A,S), is an injective MV-homomorphism;1521

(3) the map ψΓ : A ↪→ CR(Ext(ST (A,S))), defined by ψΓ(a) = â, where â(ν) =1522

ν(a), a ∈ A and ν ∈ Ext(ST (A,S)), is an injective MV-homomorphism.1523

We know that S(A) = Conv(HomMV (A, [0, 1])). Define Aff∗(X) =1524

Aff∗[0,1](X), where [0, 1] is the standard Riesz MV-algebra. In Aff∗(X), for1525

all y ∈ Y we get 1(y) = 1, ⊕ is the sum truncated to 0 and 1, · is the scalar1526

multiplication and ¬v = 1 − v. So we have the following corollary, which1527

provides a representation in the space of affine functions on the set of states1528

of A.1529

Corollary 5.0.5. Let A be a semisimple MV-algebra. Then the application φ∗ :1530

A ↪→ Aff∗(S(A)) defined by φ(a) = â where â(h) = h(a), a ∈ A, is an injective1531

MV-homomorphism.1532
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Chapter 61533

Non-Linear Functional1534

Representation and1535

Interpretation1536

6.1 A Marra-Spada Duality for Semisimple Riesz MV-1537

algebras1538

We wish to define a Marra-Spada-like duality between the category of finitely1539

generated, semisimple Riesz MV-algebras and the category of closed sub-1540

sets of [0, 1]n with suitable morphisms. In order to define these morphisms,1541

we have to replace Z-maps with R-maps, which are tuples of Riesz-McNaughton1542

functions, rather than tuples of McNaughton functions. Likewise, Z-homeomorphisms1543

must be replaced by R-homeomorphisms, which are invertible R-maps.1544

In analogy with Theorem 4.7.3 we have:1545

Theorem 6.1.1. There is a duality RMS (for Riesz-Marra-Spada) between the1546

category of finitely generated, semisimple Riesz MV-algebras and the category of1547

closed subsets of [0, 1]n with R-maps.1548

This duality is a pair of functors, but we feel free to callRMS both func-1549

tors. Rather than giving a full proof of Theorem 6.1.1, we limit ourselves to1550

defining RMS on objects and morphisms, and we observe that the proof of1551

Marra and Spada, 2012 for the MV algebra case goes through. On objects,1552

the duality is as follows.1553

Given a semisimple Riesz MV-algebra R with n generators, we have1554

R = RMn/J where J is an ideal of RMn, and we associate to R the vanish-1555

ing set V (J), which is a closed subset of [0, 1]n.1556

Conversely, given a closed set C ⊆ [0, 1]n, it is natural to associate to1557

C the Riesz MV-algebra of Riesz-McNaughton functions restricted to C,1558

which we denote by RMn|C . Note that the latter MV-algebra is semisimple.1559

On morphisms, we extend the duality as follows.1560

Consider an MV algebra morphism h from a Riesz MV-algebra A =1561

RMn/J to a Riesz MV-algebra B = RMm/K. Choose fi ∈ h(πi/J), for1562

i = 1, . . . , n. Then RMS(h) sends c ∈ V (K) to the tuple (f1(c), . . . , fn(c)).1563

It results that RMS(h) is a well defined R-map from V (K) to V (J).1564

Conversely, given an R- map g from a closed set C ⊆ [0, 1]n to a closed1565

set D ⊆ [0, 1]m, we define RMS(g) as the function from RMn|D to RMn|C1566

given by composition with g.1567

Lemma 6.1.1. Let H be a m-tuple of functions in Cn. The Riesz MV- subalgebra1568

generated by H is isomorphic to RMm|Range(H).1569
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Proof. The map φ sending f ∈ RMm to f ◦ H is a surjective homomor-1570

phism fromRMm to the Riesz MV-subalgebra generated byH , and we have1571

φ(f) = φ(g) if and only if f = g on the range of H . So, φ induces a bijection1572

between the subalgebra generated byH and the Riesz MV-algebra of Riesz-1573

McNaughton functions in m variables restricted to the range of H .1574

From the lemma and the Marra-Spada duality other similar results can1575

be derived, for instance:1576

Lemma 6.1.2. Let H be an m-tuple in Cn and let K be an m′-tuple in Cn′ . The1577

Riesz MV-subalgebras generated by H and K are isomorphic if and only if their1578

ranges are R-homeomorphic.1579

Lemma 6.1.3. Let C ⊆ [0, 1]m, D ⊆ [0, 1]n be two closed sets. Then RMm|C1580

embeds in RMn|D if and only if there is a surjective R-map from D to C.1581

In the next lemma, we say that an R-map f : C → D is left invertible if1582

there is an R map g : D → C such that x = g(f(x)) for every x ∈ C.1583

Lemma 6.1.4. Let A = RMn/J , B = RMm/K be two finitely generated,1584

semisimple Riesz algebras. Then there is a surjection from A to B if and only1585

if there is a left invertible R-map from V (K) to V (J).1586

We find it interesting to notice:1587

Proposition 6.1.1. Given a semisimple MV-algebra A = Mn/J, let R(A) =1588

RMn|V (J).1589

Then R(A) is a semisimple Riesz MV-algebra, and Max(A) and Max(R(A))1590

are canonically homeomorphic (hence, by Corollary 4.7.2, they are canonically1591

homeomorphic to V (J) with its usual Euclidean topology inherited from [0, 1]n).1592

The definition of R(A) above gives also another simple construction of1593

the Riesz hull of a semisimple MV-algebra A defined and constructed in1594

Diaconescu and Leuştean, 2015.1595

In fact, first A is isomorphic to Mn|V (J). Moreover, by definition, the1596

Riesz hull of an MV-algebra A is a Riesz MV-algebra where A embeds1597

and which is generated by A as a Riesz MV-algebra. Now, A embeds into1598

R(A) because every McNaughton function is a Riesz-McNaughton func-1599

tion. Moreover, the n projections generate R(A) as a Riesz MV-algebra, and1600

the projections belong to A, hence A generates R(A) as a Riesz MV-algebra.1601

In the Riesz setting, Theorem 4.7.2 becomes:1602

Theorem 6.1.2. Every Riesz-McNaughton function is piecewise-(A,K), whereA1603

is the set of affine functions with real coefficients, and K is the set of all polyhedra1604

included in [0, 1]n.1605

In other words, the theorem says that the domains of the affine con-1606

stituents of a McNaughton function can always be taken to be polyhedra.1607

Proof. Let f ∈ RMn. The proof goes by induction on the shortest Riesz MV1608

polynomial p which defines f .1609

If p is a projection xi then p is affine on the whole cube.1610

If p = ¬q or p = cq with c ∈ [0, 1] the statement follows from the induc-1611

tive hypothesis.1612
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Consider p = q ⊕ r. Then q and r are piecewise (A,K). So there is a
finite set of polyhedra {γi}i∈I which cover the cube, where both q and r are
affine. So, q + r is also affine in γi; hence, both

δi = {x ∈ γi : q + r ≤ 1}

and
ηi = {x ∈ γi : q + r ≥ 1}

are polyhedra. Moreover q ⊕ r = q + r in δi and q ⊕ r = 1 in ηi. So,1613

p = q ⊕ r is affine in δi and ηi, and p is affine on the finite set of polyhedra1614

{δi}i∈I ∪ {ηi}i∈I .1615

Corollary 6.1.1. Every zeroset of a Riesz-McNaughton function is a polyhedron.1616

Proof. Let f be a Riesz-McNaughton function. By the previous theorem,1617

there are polyhedra P1, . . . , Pk which cover the cube and where f is affine.1618

But the zeroset of an affine function on each Pi is a polyhedron, and taking1619

the union for i = 1, . . . , k, we conclude that the zero set of f is a polyhedron.1620

1621

We have also the converse:1622

Lemma 6.1.5. Every polyhedron included in [0, 1]n is the zeroset of a Riesz-1623

McNaughton function.1624

Proof. Let P ⊆ [0, 1]n be a polyhedron. We can suppose that P is a simplex1625

of dimension n. Let us take a finite set F of simplexes of dimension at most1626

n, such that:1627

• P is an element of F ,1628

• every face of an element of F is in F ,1629

• the union of F is [0, 1]n, and1630

• the intersection of any two elements of F either is empty or is a face1631

of both.1632

For every σ ∈ F , let σ0 be the set of all vertices of σ which belong to
P , and σ1 be the other vertices of σ. There is a unique affine function fσ
from σ to [0, 1] which sends σ0 to 0 and σ1 to 1. In fact, let σ0 = {v0, . . . , vm}
and σ1 = {vm+1, . . . , vs}. Let fσ(vi) = 0 for i = 0, . . . ,m and fσ(vi) = 1 for
i = m+ 1, . . . , s. Now extend fσ to σ as follows: if

x = λ0v0 + . . .+ λsvs,

where 0 ≤ λi ≤ 1 and Σiλi = 1, then we let

fσ(x) = λ0fσ(v0) + . . .+ λsfσ(vs).

Moreover for every σ, τ ∈ F , we have fσ(x) = fτ (x) for every x ∈ σ ∩ τ .1633

So the partial functions fσ extend to a unique, continuous, piecewise affine1634

function f : [0, 1]n → [0, 1] which is zero on P and nonzero on [0, 1]n\P .1635

Summing up we have:1636

Theorem 6.1.3. The zerosets of Riesz-McNaughton functions coincide with the1637

polyhedra included in [0, 1]n.1638
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6.1.1 Finitely Presented Case1639

Recall that a finitely presented Riesz MV-algebra is one of the form RMn/J ,1640

where J is a finitely generated ideal (recall that in MV algebras, finitely1641

generated ideals are principal).1642

First of all we give the Riesz MV-algebra analogous of Wojcicki Theorem1643

(for the latter see Marra and Spada, 2012):1644

Lemma 6.1.6. Every principal ideal of RMn is an intersection of maximal ideals.1645

Proof. Let f ∈ RMn. It is enough to show id(f) = I(V (f)).1646

Clearly f ∈ I(V (f)) so id(f) ⊆ I(V (f)).1647

Conversely, let g ∈ I(V (f)). By definition of I and V , every zero of f is1648

also a zero of g. Now, by Theorem 6.1.2, f and g are piecewise affine, and1649

the pieces are polyhedra. Consider a triangulation T of [0, 1]n into finitely1650

many polyhedra such that in every element of T , both f and g are affine.1651

Let V be the set of all vertices of the elements of T . Note that V is finite.1652

Let N be an integer sufficiently large to ensure g(v)/f(v) ≤ N for every1653

v ∈ V such that f(v) 6= 0. Then g(v) ≤ Nf(v) for every v ∈ V . So, for every1654

polyhedron P ∈ T , we have g(v) ≤ Nf(v) for every vertex v of P , and since1655

f, g are affine in P , we conclude g ≤ Nf in P , and taking the union over1656

P ∈ T , we have g ≤ Nf on the whole [0, 1]n. So, g ≤ N.f and g ∈ id(f).1657

Now, in analogy with Marra and Spada, 2012 we observe:1658

Corollary 6.1.2. Every finitely presented Riesz MV-algebra is semisimple.1659

Proof. This follows from Lemma 4.7.7 and the previous lemma.1660

The previous results allow us to specialize the duality as follows:1661

Theorem 6.1.4. The duality RMS specializes to a duality between polyhedra in-1662

cluded in [0, 1]n and finitely presented Riesz MV-algebras.1663

Proof. If C ⊆ [0, 1]n is a polyhedron, then by Theorem 6.1.3 we have C =1664

V (f) for some f ∈ Mn, hence C = V (J) where J is the ideal generated by1665

f . Then RMS(C) = RMn|C is finitely presented because it is isomorphic to1666

RMn/J and J is principal.1667

Conversely, if A = RMn/J is finitely presented, and J is an ideal gen-1668

erated by a function f ∈ RMn, then V (J) = V (f) is a polyhedron again by1669

Theorem 6.1.3.1670

Likewise, in the MV-algebra case, the duality of Theorem 4.7.3 special-1671

izes to a duality between rational polyhedra and finitely presented MV-1672

algebras, see Marra and Spada, 2012.1673

6.1.2 Examples of Riesz MV-algebras1674

Before going into further technicalities, let us consider some examples.1675

Consider the function h(x) = x2 seen as a function from [0, 1] to [0, 1].1676

Clearly, h(x) is not an element of RM1, because, for instance, its second1677

derivative is nonzero everywhere. So, h(x) does not generate RM1 as a1678

Riesz MV subalgebra of C1. However, since h(x) is a homeomorphism of1679

[0, 1], h(x) generates a copy of RM1 in C1. This copy consists exactly of all1680
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continuous piecewiseAffh- functions, whereAffh is the set of all composi-1681

tions l◦hwhere l is an affine function with real coefficients. Since h(x) = x2
1682

is a quadratic polynomial, the MV algebra generated by h consists of piece-1683

wise quadratic functions.1684

Likewise, a continuum of examples can be obtained by taking h(x) =1685

xα, where α is any positive real number. So we obtain:1686

Theorem 6.1.5. C1 contains a continuum of copies of RM1.1687

When α is an integer, h(x) generates an MV-algebra of piecewise poly-1688

nomial functions (isomorphic to RM1).1689

Other examples are the spline functions. Usually spline functions are1690

piecewise polynomial functions where a certain degree of regularity. If we1691

limit ourselves to require continuity, then we have sets of continuous, piece-1692

wise polynomial functions of any fixed degree which have the structure of1693

a Riesz MV-algebra.1694

By contrast, note that regular splines do not form a Riesz MV-algebra1695

(neither an MV-algebra). For instance, the functions x2 and (1 − x)2 are1696

regular (i.e. C∞) splines, but x2 ∧ (1− x)2 has a singularity in x = 1/2.1697

Another example is the logistic function. Usually a logistic function1698

has the form f(x) = L/1 + e−k(x−x0) and has the real line as a domain.1699

If we insist that the function (restricted to [0, 1]) must belong to C1, then1700

suitable values of L, k, x0 must be chosen. If f ∈ C1, then Range(f) will be1701

a subsegment of [0, 1], which is (in our terminology) R-homeomorphic to1702

[0, 1], so f generates a copy of RM1.1703

Pulmannova Pulmannová, 2013 shows that every semisimple MV-algebra1704

embeds into the MV-algebra of multiplication operators between 0 and 1 on1705

the space of L2 functions on a compact set. We note that multiplication op-1706

erators are closed under multiplication by any real c ∈ [0, 1], so they form1707

a Riesz MV-algebra. Since every MV-algebra morphism between two Riesz1708

MV-algebras is a Riesz MV-algebra morphism, every semisimple Riesz MV-1709

algebra embeds into a Riesz MV-algebra of multiplication operators of an1710

L2 space.1711

In Di Nola, Gerla, and Leustean, 2013, Riesz MV-algebras are applied1712

to neural networks; in fact, multilayer perceptrons can be modeled with1713

certain functions of Cn; and conversely, every Riesz-McNaughton function1714

can be associated to a neural network.1715

6.2 Riesz MV-subalgebras1716

In the examples we have seen that C1 contains continuum many copies of1717

RM1. More generally:1718

Proposition 6.2.1. Let h ∈ C1 be any nonconstant map. Then h generates a copy1719

of RM1.1720

Proof. This follows from Lemma 6.1.1 by taking n = 1 and H = h since1721

Range(h) is a segment of [0, 1] which is R-homeomorphic to [0, 1].1722

Of course, every constant function generates a Riesz MV-algebra iso-1723

morphic to [0, 1] which cannot contain any copy of RM1 (e.g. because [0, 1]1724

is totally ordered, whereas RM1 is not totally ordered).1725
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We have seen that C1 contains continuously many copies of RM1. In1726

fact it is enough to consider the Riesz MV-algebras generated by xα with1727

α ∈ [0, 1]. Likewise in n dimensions we can consider the Riesz MV-algebras1728

generated by the n-tuples (xα1 , . . . , x
α
n) and we obtain:1729

Corollary 6.2.1. Cn contains continuously many copies of RMn.1730

Definition 6.2.1. Let C be a closed subset of [0, 1]m.1731

We say that C is Rn-fat if there is a R-map F such that F (C) is included in1732

[0, 1]n and contains a nonempty open subset of [0, 1]n.1733

We say that C is Rn-slim if C is not Rn-fat.1734

Lemma 6.2.1. A closed subset C of [0, 1]m is Rn-fat if and only if there is a sur-1735

jective R-map from C to [0, 1]n.1736

Proof. If the R-map from C to [0, 1]n exists, then clearly, C is Rn-fat. Con-1737

versely, suppose F is an R-map and F (C) has nonempty interior. in [0, 1]n.1738

Then F (C) contains a product of n rational intervals [a1, b1]× . . .× [an, bn].1739

Let gi be a McNaughton function such that gi(ai) = 0 and gi(bi) = 1. Let1740

G = (g1, . . . , gn). Then (G ◦ F )|C is a surjective R-map from C to [0, 1]n.1741

Lemma 6.2.2.1742

• The union of two Rn-slim closed subsets of [0, 1]m is Rn-slim;1743

• the image of an Rn-slim closed subset of [0, 1]m under a R-map is Rn-slim;1744

• if m < n, then [0, 1]m is Rn-slim.1745

Proof. For the first point, let C,D be two Rn-slim closed subsets. Suppose1746

by contradictionC∪D isRn-fat. Then there is a R-map F such that F (C∪D)1747

contains an open subset O of [0, 1]n. Note F (C ∪D) = F (C)∪F (D). Hence1748

we haveO ⊆ F (C)∪F (D). Since F (C) is closed,O\F (C) is an open subset1749

of [0, 1]n, and it is nonempty, otherwise O would be included in F (D) and1750

D would be Rn-fat; so C is Rn-fat, contrary to the Rn-slimness of C. So1751

C ∪D is Rn-slim.1752

For the second point, let C be closed in [0, 1]m and Rn-slim. Let F be a1753

R-map. Let D = F (C). Suppose for an absurdity that D is Rn-fat. Then1754

there is a R-map F ′ such that F ′(D) contains an open in [0, 1]n. So, the1755

image of C under the R-map F ′ ◦ F contains an open in [0, 1]n, contrary to1756

the slimness of C. So, D is also Rn-slim.1757

For the third point, suppose for an absurdity that [0, 1]m is Rn-fat. Then1758

there is a R-map F such that F ([0, 1]m) has nonempty interior in [0, 1]n. Tak-1759

ing affine constituents of F , we have a tuple G of affine functions such that1760

G([0, 1]m) has nonempty interior in [0, 1]n. Since m < n, this is impossible1761

by elementary linear algebra considerations.1762

For MV-algebras we have the following:1763

Theorem 6.2.1. An n-tuple of functions of Cn, say H = (h1, . . . , hn), generates1764

a copy of Mn if and only if the function H from [0, 1]n to itself is surjective.1765

By Proposition 6.2.1, the analogous of this theorem for Riesz MV alge-1766

bras is false.1767

However, the implication from right to left still holds:1768
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Proposition 6.2.2. LetH = (h1, . . . , hn) be a n-tuple of elements ofCn that gives1769

a surjective map from [0, 1]n to [0, 1]n. Then H generates a copy of RMn.1770

Proof. SupposeH is surjective. ThenRange(H) = [0, 1]n = Range(π1, . . . , πn),1771

where πi are the projections from [0, 1]n to [0, 1]. By Lemma 6.1.2,RMn|Range(H)1772

is isomorphic to RMn, so the Riesz MV-algebra generated by H is isomor-1773

phic to RMn.1774

On the other hand, consider n = 1 and the function h(x) = 1/2x from1775

[0, 1] to [0, 1]. The range of h is [0, 1/2] which is R-homeomorphic to [0, 1]1776

(via the pair of R-maps (1/2x, 2.x)). Hence, by Lemma 6.1.2, RM1|Range(h)1777

is isomorphic to RM1, despite h : [0, 1]→ [0, 1] is not surjective.1778

The same argument gives an interesting structural difference between1779

RMn and Mn which we describe now.1780

Recall that an algebraic structure is called Hopfian if every surjective en-1781

domorphism is an automorphism. Hopfianity is an interesting algebraic1782

generalization of finiteness. There is a celebrated theorem by Malcev to the1783

effect that every residually finite, finitely generated algebra in any variety1784

is Hopfian, see Evans, 1969.1785

Now we continue with the following lemma of universal algebra, for1786

which we acknowledge professor B. Steinberg:1787

Lemma 6.2.3. Let V be a variety with finitary operations generated by finite alge-1788

bras. Let F a free finitely generated object of V . Then F is Hopfian. Moreover, let1789

X be a minimal cardinality generating set of F . Then X is a free basis of F .1790

Proof. Since V is generated by finite algebras, the relatively free algebras in1791

V are residually finite (the homomorphisms into the finite algebras gener-1792

ating V separate points). Any finitely generated, residually finite universal1793

algebra (with finitary operations) is Hopfian by a theorem of Malcev (see1794

Evans, 1969). So F is Hopfian.1795

Now suppose X is a minimal cardinality finite generating set for F .1796

Let Y be a free basis. It must have at least as many elements as X so we1797

can choose an onto map from Y to X . This must extend to a surjective1798

endomorphism from F to F , which must be an automorphism since F is1799

Hopfian. But then our onto map from Y to X is 1 to 1, so X is a free basis.1800

1801

Note that the variety of MV-algebras is generated by finite algebras, so1802

the proof of the previous lemma implies the following theorem.1803

Theorem 6.2.2. Mn is Hopfian for every integer n.1804

However we prove:1805

Theorem 6.2.3. RMn is not Hopfian.1806

Proof. Consider for simplicity n = 1. Since [0, 1/2] is R-homeomorphic to
[0, 1], we have that RM1|[0,1/2] is isomorphic to RM1. The former Riesz MV
algebra is isomorphic to RM1/I([0, 1/2]), so there is an isomorphism

ι : RM1/I([0, 1/2])→ RM1.

Let
π : RM1 → RM1/I([0, 1/2])
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be the quotient map. Consider

σ = ι ◦ π : RM1 → RM1.

Then σ a surjective endomorphism σ of RM1 whose kernel is I([0, 1/2]),1807

which is not the zero ideal (for instance, it contains the function x� x). So,1808

σ is not an automorphism.1809

We have the following category theoretic theorem.1810

Theorem 6.2.4. Consider the map ρ sending the Riesz MV-algebra generated by1811

an m-tuple H of functions in Cn to the range of H .1812

Then ρ is well defined up to R-homeomorphism.1813

Moreover, ρ can be extended to a duality between the following subcategories of1814

finitely generated Riesz MV- subalgebras of Cn (with Riesz MV-algebra homomor-1815

phisms as morphisms) and closed subsets of [0, 1]n up to R-homeomorphism (with1816

R-maps as morphisms), respectively:1817

1. the copies of RMk and the sets R-homeomorphic to [0, 1]k;1818

2. the Riesz MV-algebras containing a copy of RMk and the Rk-fat sets;1819

3. the Riesz MV-algebras embeddable in RMk and the sets S such that there is1820

a surjective R-map from [0, 1]k to S;1821

4. the homomorphic images of RMk and the sets S such that there is a left1822

invertible R-map from S to [0, 1]k.1823

Here, m,n, k are arbitrary positive integers.1824

Proof. The Riesz MV-algebra generated byH is isomorphic toRMm|Range(H).1825

Hence, ifH andK generate the same algebra, thenRMm|Range(H) is isomor-1826

phic to RMm|Range(K), and by Lemma 6.1.2, Range(H) and Range(K) are1827

R-homeomorphic. This proves that ρ is well defined up to R-homeomorphism.1828

Since the maximal space ofRMm|Range(H) isRange(H) and the maximal1829

space of RMk is [0, 1]k, the first point follows from Lemma 6.1.2.1830

By Lemma 6.1.3, RMk embeds in RMm|Range(H) if and only if there is a1831

surjective R-map fromRange(H) to [0, 1]k, that is, Range(H) isRk-fat. This1832

proves the second point.1833

The third point again follows from Lemma 6.1.3, and similarly, the fourth1834

point follows from Lemma 6.1.4.1835

Proposition 6.2.3. If m < n, then no m-tuple of functions of Cn can generate a1836

Riesz MV-algebra containing a copy of RMn.1837

Proof. Let A be a Riesz MV-algebra generated by m functions f1, . . . , fm.1838

Then the range of (f1, . . . , fm) is Rn-slim, and also the range of any tuple of1839

elements ofA isRn-slim by Lemma 6.2.2. Suppose there is an isomorphism1840

φ from RMn to a Riesz MV-subalgebra of A. Let li = φ(πi). Then the range1841

of (l1, . . . , ln) is Rn-slim whereas the range of (π1, . . . , πn) is Rn-fat. So the1842

range of (π1, . . . , πn) is not contained in the range of (l1, . . . , ln). By Lemma1843

4.7.6 there is a function f ∈ RMn such that f ◦ (l1, . . . , ln) is identically zero1844

but f ◦ (π1, . . . , πn) is not identically zero. So φ cannot exist.1845



6.3. A Categorial Theorem 63

Corollary 6.2.2. For every m < n, RMm does not contain any isomorphic copy1846

of RMn.1847

Proof. This is because for m < n, every n-tuple in RMm has an Rn-slim1848

image.1849

On the other hand:1850

Proposition 6.2.4. Cn contains a copy of RMm for every m,n.1851

Proof. We know that Cn contains copies of Mm. Now the Riesz MV-algebra1852

generated by a copy of Mm in the Riesz MV-algebra Cn is a Riesz MV-1853

algebra isomorphic to RMm.1854

The construction above provides a canonical copy ofRMm inCn for every1855

m,n. For instance, consider m = 2 and n = 1. Let S be the continuous1856

surjective function from [0, 1] to [0, 1]2 given in . Write S = (S1, S2). Then1857

S1 and S2 generate a copy of RM2 in C1.1858

6.3 A Categorial Theorem1859

Lemma 6.3.1. (see Mundici, 2011) The image of a rational polyhedron P under a1860

definable map F is a rational polyhedron.1861

Lemma 6.3.2. Let C ⊆ [0, 1]m, D ⊆ [0, 1]n be two closed sets. Then Mm|C1862

embeds in Mn|D if and only if there is a surjective definable map from D to C.1863

Proof. Let F be a definable map from D onto C. Then the function from f1864

to f ◦ F is an injective homomorphism from Mm|C to Mn|D.1865

Conversely, suppose thatMm|C embeds inMn|D. Call j the embedding.1866

Let us consider the definable map g from D to C given simply by the1867

counterimage map j−1 between the maximal spaces of the two MV-algebras.1868

This map is surjective. In fact, let I be a maximal ideal of Mm|C . Since j is1869

injective, j(I) is a proper ideal of Mn|D. By Zorn Lemma there is a maximal1870

ideal M in Mn|D such that j(I) ⊆ M . Then I ⊆ j−1(M) and, since I is1871

maximal, I = j−1(M). So, g is a surjective definable map from D to C.1872

Lemma 6.3.3. Let A,B be two finitely generated, semisimple MV-algebras. Then1873

there is a surjection from A to B if and only if there is a definable homeomorphism1874

from Max(B) to a subset of Max(A).1875

Proof. Suppose that A and B are semisimple, A is generated by n elements1876

and B is generated by m elements. Then A is isomorphic to Mn|Max(A) and1877

B is isomorphic to Mm|Max(B).1878

Suppose there is a surjection from A to B. Then by Mundici, 2011,1879

Lemma 3.12 there is a definable homeomorphism from Max(B) to a subset1880

of Max(A).1881

Conversely, suppose that j is a definable homeomorphism fromMax(B)1882

to a subset of Max(A). Then B is isomorphic to Mn|j(Max(B)). Consider the1883

map s sending f ∈ Mn|Max(A) to f |j(Max(B)) ∈ Mn|j(Max(B)). Every func-1884

tion g ∈Mn|j(Max(B)) is a definable map, so it can be extended to a definable1885

map on Max(A). This means that the map s is surjective. So there is a sur-1886

jection from A to B.1887
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Lemma 6.3.4. (see Marra and Spada, 2012) Let C be a closed subset of [0, 1]m and1888

let D be a closed subset of [0, 1]m
′ . Mm|C is isomorphic to Mm′ |D if and only if C1889

and D are definably homeomorphic.1890

Lemma 6.3.5. Let H be an m-tuple in Cn and let K be an m′-tuple in Cn′ . The1891

subalgebras generated by H̃ and K̃ are isomorphic if and only if their ranges are1892

definably homeomorphic.1893

Proof. Let C be a closed subset of [0, 1]m and let K be a closed subset of1894

[0, 1]m
′
. By Lemma 6.3.4, Mm|C is isomorphic to Mm′ |D if and only if C and1895

D are definably homeomorphic.1896

Then Mm|Range(H) is isomorphic to Mm′ |Range(K) if and only if the two1897

ranges are definably homeomorphic. So the algebras generated byH andK1898

are isomorphic if and only if the ranges are definably homeomorphic.1899

In particular, if H,K are two m-tuples in Cn with the same range, then1900

the subalgebras generated by H̃ and K̃ are isomorphic, so these subalge-1901

bras share every property invariant under MV-algebra isomorphism. Note1902

however that H and K could have very different geometric properties, de-1903

spite having the same range. For instance, H could be differentiable and K1904

could not.1905

Theorem 6.3.1. Consider the map ρ sending the MV-algebra generated by an1906

m-tuple H of functions in Cn to the range of H . Then ρ is well defined up to1907

definable homeomorphism. Moreover, ρ can be extended to a functorial duality1908

between the following subcategories of finitely generated MV-subalgebras of Cn1909

(with MV-algebra homomorphisms as morphisms) and closed subsets of [0, 1]n up1910

to definable homeomorphism (with definable maps as morphisms), respectively:1911

1. the copies of Mk and the sets definably homeomorphic to [0, 1]k;1912

2. the MV-algebras containing a copy of Mk and the k-fat sets;1913

3. the MV-algebras embeddable in Mk and the sets S such that there is a sur-1914

jective definable map from [0, 1]k to S;1915

4. the homomorphic images of Mk and the sets S such that there is an injective1916

definable map from S to [0, 1]k;1917

5. the finitely presented MV-algebras and the rational polyhedra;1918

6. the projective MV-algebras and the Z-retracts of [0, 1]h for some h (for the1919

definition of Z-retract see Mundici, 2011).1920

Proof. Since the maximal space of Mm|Range(H) is Range(H) and the maxi-1921

mal space of Mk is [0, 1]k, the first point follows from Lemma 6.3.5.1922

By Lemma 6.3.2, Mk embeds in Mm|Range(H) if and only if there is a1923

surjective definable map from Range(H) to [0, 1]k, that is, Range(H) is k-1924

fat. This proves the second point.1925

The third point again follows from Lemma 6.3.2, and similarly, the fourth1926

point follows from Lemma 6.3.3.1927

For the fifth point, if H generates a finitely presented subalgebra A of1928

Cn then, by Mundici, 2011, A is isomorphic to the restriction of Mm to a1929

rational polyhedron P . But A is also isomorphic to the restriction of Mm to1930
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the range of H . The range of H is definably homeomorphic to P , and by1931

Lemma 6.3.1, the range of H is itself a rational polyhedron. The converse is1932

analogous.1933

For the last point, if H generates a projective subalgebra A of Cn, by1934

Cabrer and Mundici, 2009, A is isomorphic to the restriction of Mm to a Z-1935

retract P of [0, 1]k for some k. But A is also isomorphic to the restriction of1936

Mm to the range of H . The range of H is definably homeomorphic to P , so1937

the range of H is itself a Z-retract of [0, 1]k. The converse is analogous.1938
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Chapter 71939

Social Preferences1940

Preliminaries1941

We will use N, Z and R to indicate, respectively, the set of natural, integer1942

and real numbers. We will indicate with < and ≤ the usual (strict and non-1943

strict) orders and �will be the order of the considering example and it will1944

be defined in each context.1945

7.0.1 Riesz Spaces1946

Definition 7.0.1. A structure R = (R,+, ·, 0̄,�) is a Riesz space (or a vector1947

lattice) if and only if:1948

• R = (R,+, ·, 0̄) is a vector space over the field R;1949

• (R,�) is a lattice;1950

• ∀a, b, c ∈ R if a � b then a+ c � b+ c;1951

• ∀λ ∈ R+ if a � b then λ · a � λ · b.1952

A Riesz space (R,+, ·, 0̄,�) is said to be archimedean iff for every x, y ∈ R1953

with n · x � y for every n ∈ N we have x � 0̄. A Riesz space (R,+, ·, 0̄,�)1954

is said to be linearly ordered iff (R,�) is totally ordered. We will denote by1955

R+ the subset of positive elements of R Riesz space (the positive cone), i.e.1956

R+ = {a ∈ R | 0̄ � a}. We say that u is a strong unit of R iff for every a ∈ R1957

there is a positive integer n with |a| ≤ n · u, where |a| = (a) ∨ (−a).1958

Examples:1959

1. An example of non-linearly ordered Riesz space is the vector space1960

Rn equipped with the order � such that (a1, . . . , an) � (b1, . . . , bn) if1961

and only if ai ≤ bi for all i = 1, . . . , n; it is also possible to consider1962

(1, . . . , 1) as strong unit.1963

2. A non-archimedean example is R ×LEX R with the lexicographical1964

order, i.e. (a1, a2) � (b1, b2) if and only if a1 < b1 or (a1 = b1 and1965

a2 ≤ b2); in this case (1, 0) is a strong unit.1966

3. (R,+, ·, 0,≤), which is the only (up to isomorphism) archimedean lin-1967

early ordered Riesz space, as showed in Labuschagne and Van Alten,1968

2007; obviously 1 can be seen as the standard strong unit.1969

4. (RC ,+, ·, 0,�) the space of (not necessarily continuous) functions from1970

C compact subset of R, e.g. the closed interval [0, 1], to R, such that1971
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for every f, g ∈ RC and α ∈ R we have (f + g)(x) = f(x) + g(x),1972

(α · f)(x) = αf(x), f � g ⇔ f(x) ≤ g(x) ∀x ∈ C and 0 is the1973

zero-constant function; if we consider continuous functions the one-1974

constant function 1 is a strong unit.1975

5. (Mn(R),+, ·, 0n×n,�) the space of n × n matrices over R Riesz space1976

with component-wise operations and order as in example (1).1977

Definition 7.0.2. A cone in Rn is a subset K of Rn which is invariant under1978

multiplication by positive scalars. A polyhedral cone is convex if it is obtained by1979

finite intersections of half-spaces.1980

Cones play a crucial role in Riesz spaces theory, as showed in Aliprantis1981

and Tourky, 2007 with also some applications (e.g. to linear programming1982

Aliprantis and Tourky, 2007, Corollary 3.43). Another remarkable example1983

of this fruitful tool is the well-known Baker-Beynon duality (see Beynon,1984

1975), which shows that the category of finitely presented Riesz spaces is1985

dually equivalent to the category of (polyhedral) cones in some Euclidean1986

space. Analogously to Euclidean spaces, in Rn (with R generic Riesz space)1987

we can consider orthants, i.e. a subset of Rn defined by constraining each1988

Cartesian coordinate to be xi � 0̄ or xi � 0̄. Here we introduce the defini-1989

tion of TP-cones, which will be useful in the sequel.1990

Definition 7.0.3. Let us consider L cone. We say that L is a TP-cone if it is the1991

empty-set, or an orthant or an intersection of them.1992

7.0.2 Pairwise Comparison Matrices1993

Let N = {1, 2, ..., n} be a set of alternatives. Pairwise comparison matrices1994

(PCMs) are one of the way in which we can express preferences. A PCM1995

has the form:1996

X =


x11 x12 . . . x1n

x21 x22 x2n

:
. . . :

xn1 . . . . . . xnn

 . (7.1)

The generic element xij express a vis-à-vis comparison, the intensity of1997

the preference of the element i compared with j. The request is that from1998

these matrices we can deduce a vector which represents preferences; more1999

in general we want to provide an order .X . In literature there are many2000

formalizations and definitions of PCMs, e.g. preference ratios, additive and2001

fuzzy approaches. In Cavallo and D’Apuzzo, 2009 authors introduce PCMs2002

over abelian linearly ordered group, showing that all these approaches use2003

the same algebraic structure. A forthcoming paper provides a more general2004

framework, archimedean linearly ordered Riesz spaces to deal with aggre-2005

gation of PCMs. We want to go beyond the archimedean property and the2006

linear order. Using different Riesz spaces with various characteristics it is2007

possible to describe and solve a plethora of concrete issues.2008

PCMs are used in the Analytic Hierarchy Process (AHP) introduced by2009

Saaty in Saaty, 1977; it is successfully applied to many Multi-Criteria De-2010

cision Making (MCDM) problems, such as facility location planning, mar-2011

keting, energetic and environmental requalification and many others (see2012
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Badri, 1999; Hua Lu et al., 1994; Racioppi, Marcarelli, and Squillante, 2015;2013

Vaidya and Kumar, 2006).2014

As interpretation in the context of PCMs we will say that alternative i is2015

preferred to j if and only if 0̄ � xij .2016

7.1 Preferences via Riesz Spaces2017

Why should we use an element of a Riesz space to express the intensity of a pref-2018

erence? As showed in Cavallo and D’Apuzzo, 2009; Cavallo, Vitale, and2019

D’Apuzzo, 2009, Riesz spaces provide a general framework to present at-2020

once all approaches and to describe properties in the context of PCMs. Pref-2021

erences via Riesz spaces are universal, in the sense that (I) they can express2022

a ratio or a difference or a fuzzy relation, (II) the obtained results are true2023

in every formalization and (III) Riesz spaces are a common language which2024

can be used as a bridge between different points of view.2025

What does it mean non-linear intensity? In multi-criteria methods deci-2026

sion makers deals with many (maybe conflicting) objectives and intensity2027

of preferences is expressed by a (real) number in each criteria. In AHP we2028

have different PCMs, which describe different criteria; if we consider Rn2029

[see example (2) above] we are just writing all these matrices as a unique2030

matrix with vectors as elements. Actually, we can consider each compo-2031

nent of a vector as the standard way to represent the intensity preference2032

and the vector itself as the natural representation of multidimensional (i.e.2033

multi-criteria) comparison. This construction has its highest expression in2034

the subfield of MCDM called Multi-Attribute Decision Making, which has2035

several models and applications in military system efficiency, facility loca-2036

tion, investment decision making and many others (e.g. see Belton, 1986;2037

Torrance et al., 1996; Xu, 2015; Zanakis et al., 1998)2038

Does it make sense to consider non-archimedean Riesz space in this context?2039

Let us consider the following example. A worker with economic problems2040

has to buy a car. We can consider the following hierarchy:2041

New Car

Essential Requirements

Prize Safety Fuel Economy

Comforts

Size Optionals

Aesthetics

Color Design
2042

It is clear that Essential Requirements (ER), Comforts (C) and Aesthetics2043

(A) cannot be just weighted and combined as usual. In fact, we may have2044

the following two cases:2045

• we put probability different to zero on (C) and (A) and in the process2046

can happen that the selected car is not the most economically conve-2047

nient or even too expensive for him (remember that the worker has a2048

low budget and he has to buy a car), and this is an undesired result.2049

• conversely, to skip the case above, we can just consider (ER) as unique2050

criterion and neglect (C) and (A). Also in this case we have a non-2051

realistic model, indeed our hierarchy does not take into account that2052
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if two cars have the same rank in (ER) then the worker will choose the2053

car with more optionals or with a comfortable size for his purposes.2054

In a such situation it seems to be natural to consider a lexicographic or-2055

der [see example (2) above] such as (R×LEX R)×LEX R, where each com-2056

ponent of a vector (x, y, z) ∈ (R×LEXR)×LEXR is a preference intensity in2057

(RE), (C) and (A) respectively (we may shortly indicate the hierarchy with2058

(RE) ×LEX (C) ×LEX (A)). We remark that lexicographic preferences cannot2059

be represented by any continuous utility function (see Debreu, 1954).2060

Which kinds of intensity can we express with functions? This approach is2061

one of the most popular and widely studied one, under the definition of2062

utility functions. These functions provide a cardinal presentation of pref-2063

erences, which allows to work with choices using a plethora of different2064

tools, related to the model (e.g. see Harsanyi, 1953; Houthakker, 1950; Levy2065

and Markowitz, 1979). We want to stress that in example (4) we consider2066

functions from a compact to R, without giving a meaning of the domain,2067

which can be seen as a time interval, i.e. in this framework it is also pos-2068

sible to deal with Discounted Utility Model and intertemporal choices (e.g.2069

see Frederick, Loewenstein, and O’donoghue, 2002). Manipulation of a par-2070

ticular class of these functions (i.e. piecewise-linear functions defined over2071

[0, 1]n) in the context of Riesz MV-algebras is presented in Di Nola, Lenzi,2072

and Vitale, 2016b. Furthermore, it is possible to consider more complex ex-2073

amples, for instance we can consider the space RF of functionals, where2074

F is a general archimedean Riesz space with strong unit (e.g. see Cerreia-2075

Vioglio et al., 2015).2076

7.2 On Collective Choice Rules for PCMs and Arrow’s2077

Axioms2078

In this section we want to formalize and characterize Collective Choice2079

Rules f in the context of generalized PCMs, i.e. PCMs with elements in a2080

Riesz space, which satisfy classical conditions in social choice theory.2081

Let R be a Riesz space. Let us consider m experts/decision makers and2082

n alternatives. A collective choice rule f is a function2083

f : GMm
n → GMn

such that2084

f(X(1), . . . , X(m)) = X

where X is a social matrix, GMn is the set of all matrices (PCMs) over R
with n alternatives such that for every i ∈ {1, . . . , n} xii = 0̄. f can be seen
also as follows:

f = (f̃ij)1≤i,j≤n,

where2085

f̃ij : GMm
n → R.
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Note that GMn is a subspace of Mn(R) (see example (5)), i.e. it is a2086

Riesz space. Let us introduce properties related with axioms of democratic2087

legitimacy and informational efficiency required in Arrow’s theorem.2088

∀i, j (∃fij : Rm → R : f̃ij(X
(1), . . . , X(m)) = fij(x

(1)
ij , . . . , x

(m)
ij )) (Property I∗)

∀i, j (fij((R
m)+) ⊆ R+) (Property P ∗)

6 ∃i ∈ {1, . . . ,m} : ∀X(j), with j 6= i (f(X(1), . . . , X(i), . . . , X(m)) = X) (Property D∗)

2089

Theorem 7.2.1. LetR be a Riesz space and let f be a function f : (Rn
2
)m → Rn

2 .2090

f is a collective choice rule satisfying Axioms of Arrow’s theorem if and only if f2091

has properties I∗, P ∗ and D∗.2092

Proof. Unrestricted Domain (Axiom U). The first axiom asserts that f has to2093

be defined on all the space GMm
n , i.e. decision makers (DMs) can provide2094

every possible matrix as input. This is equivalent to say that f is defined on2095

(Rn
2
)m.2096

Independence from irrelevant alternatives (Axiom I). The second axiom says2097

that the relation between two alternatives is influenced only by these alter-2098

natives and not by other ones, i.e. it is necessary and sufficient to know how2099

DMs compare just these two alternative. This is equivalent to property I∗.2100

Pareto principle (Axiom P). The third axiom states that f has to compute2101

a preference if it is expressed unanimously by DMs. This is equivalent to2102

property P ∗.2103

Non-dictatorship (Axiom D). The last axiom requires democracy, that is2104

no one has the right to impose his preferences to the entire society. This is2105

equivalent to property D∗.2106

In Theorem 7.2.1 it is presented a characterization of collective social2107

rules which respect Arrow’s axioms; however it does not guarantee that the2108

social matrix produce a consistent preference, in fact not all PCMs provide2109

an order on the set of alternatives. We will study this feature in Section 7.3.2110

7.3 On Social Welfare Function Features2111

Social welfare functions (SWFs) are all the collective choice rules which pro-2112

vide a total preorder on the set of alternatives. We can decompose a SWF g2113

as follows:2114

g = ω ◦ f,

where f is a collective choice rule having properties I∗, P ∗ and D∗, and2115

ω is a function such that2116

ω : GMn → TP,

where TP is the set of total preorders on the set of alternatives. Let us2117

consider a social matrix X = f(X(1), . . . , X(m)). We want to characterize2118

property of ω such that g is a social welfare function.2119

Let us recall the definition of transitive PCM.2120
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Definition 7.3.1. Cavallo and D’Apuzzo, 2015, Definition 3.1 A pairwise com-2121

parison matrix X is transitive if and only if (0̄ � xij and 0̄ � xjk)⇒ 0̄ � xik2122

It is trivial to check that if X is transitive, then it is possible to directly2123

compute an order which expresses the preferences over alternatives. In fact,2124

let X be a GMn, it has two properties:2125

(ρ) xii = 0̄, (Reflexivity)
(γ) ∀i, j ∈ {1, . . . , n} xij ∈ R. (Completeness)

2126

If we have also that2127

(τ ) (0̄ � xij and 0̄ � xjk)⇒ 0̄ � xik (Transitivity)2128

We say that an order .X is compatible with X if and only if we have that:2129

0̄ � xij ⇔ j .X i.

An analogous definition is proposed in Trockel, 1998 in the context of2130

utility functions.2131

Proposition 7.3.1. LetX be a transitiveGMn (TGMn) then there exists a unique2132

total preorder .X compatible with X . Or equivalently, the correspondence2133

θ : TGMn → TP

which associates to each X ∈ TGMn a preorder .X compatible with X itself2134

is a surjective function. Moreover .X ≡.α·X for every α ∈ R+, and .X ≡&α·X2135

for every α ∈ R−.2136

Let C(R) = {A ⊆ R |A is a cone} be the set of all closed cones ofR Riesz2137

space. By Proposition 7.3.1 we can consider the function Φ2138

Φ : TP → C(TGMn)

such that2139

Φ(.) = {X ∈ TGMn | . is compatible with X}

Proposition 7.3.2. The function Φ is injective.2140

We can define an order relation� over TP as follows:2141

.1�.2 ⇔ i .2 j → i .1 j .

It is also possible to denote with . = .1 ∨ .2 as the total preorder such
that

i . j ⇔ i .1 j and i .2 j.

Remark 7.3.1. By easy considerations, we have that Φ(.1) ∩ Φ(.2) = Φ(.12142

∨ .2). Moreover, note that TP is closed with respect to ∨, i.e. (TP,∨) is a2143

join-semilattice.2144
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Examples Let us consider n alternatives. The spaces of total preorder with2145

n = 2 and n = 3 have the following configurations:2146

a1 = a2 = 0

a1 = a2

a1 ≤ a2 a1 ≥ a22147

Note that in each space we have exactly one atom which expresses indif-2148

ference. We call basic total preorder an element which is minimal in (TP,�).2149

Remark 7.3.2. In order to deal with aggregation of many TGMn we added a root2150

(>), which can be interpreted as impossibility to make a social decision (related to2151

Condorcet’s paradox and Arrow’s impossibility theorem in the context of PCMs).2152

We put2153

Φ(>) = ∅.

Proposition 7.3.3. Every . total preorder different from > can be written as2154 ∨
i .i, where .i are basic total preorders.2155

Proof. If . has no identities then it is a basic total preorders. For each iden-2156

tity ai = aj in . we can consider .h ∨ .k, with .h and .k basic total2157

preorders such that ai .h aj , aj .k ai and preserve all the other relations of2158

..2159

Proposition 7.3.4. Let . be a basic total preorder over n elements. We have that2160

Φ(.) is an orthant in TGMn.2161

Proof. By the fact that . is a basic total preorder we have that ai . aj or2162

aj . ai for each alternatives ai and aj , i.e. xij � 0̄ or xij � 0̄.2163
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Analogously to θ we can define Θ in this way:2164

Θ : C(TGMn) → TP

where Θ(∅) = > and2165

Θ(K) = Φ−1

 ⋂
C∈Φ(TP)
C∩K 6=∅

C

 .

By Remark 7.3.1 we have that the function is well-defined.2166

Definition 7.3.2. Let (A,≤A) and (B,≤B) be two partially ordered sets. An2167

antitone Galois correspondence consists of two monotone functions: F : A → B2168

and G : B → A, such that for all a in A and b in B, we have F (a) ≤B b ⇔2169

a ≥A G(b).2170

Now we can state the following result.2171

Theorem 7.3.1. The couple (Θ,Φ) is an antitone Galois correspondence between2172

(C(TGMn),⊆) and (TP,�).2173

Proof. Let K be an element of C(TGMn) and . an element of TP. Let .K2174

be Θ(K).The proof follows by this chain of equivalence:2175

Θ(K)�. ⇔ (i . j → i .k j) ⇔ (X ∈ Φ(.) → X ∈ K) ⇔ K ⊇ Φ(.).

2176

We denote by Kn the subset of C(TGMn) of all the cones L such that2177

L ∈ Φ(TP).2178

Proposition 7.3.5. Let L be a cone of TGMn. We have that2179

L ∈ Φ(TP) ⇔ L is a TP − cone.

Proof. (⇒) Let L be in Φ(TP), this means that L = ∅ or L = Φ(.) for some2180

. total preorder. Using Proposition 7.3.3 and Remark 7.3.1 we have:2181

L = Φ(.) = Φ(
∨
i

.i) =
⋂
i

Φ(.i),

where .i are basic total preorders. By Proposition 7.3.4 and Definition2182

7.0.3 we have that L is a TP-cone.2183

(⇐) Let L be a TP-cone. We have that:2184

• if L = ∅ then L ∈ Φ(TP);2185

• if L is an orthant then for each i and j xij � 0̄ or xij � 0̄, which is2186

equivalent to say that there exists . (basic) total preorder such that2187

ai . aj or aj . ai, i.e. L ∈ Φ(TP);2188

• if L is an intersection of Oi orthants then2189

L =
⋂
i

Oi =
⋂
i

Φ(.i) = Φ(
∨
i

.i),
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for some .i basic total preorders, i.e. L ∈ Φ(TP).2190

2191

7.3.1 Categorical Duality2192

In this subsection we provide a categorical duality between the categories2193

of total preorders and of TP-cones (for basic definition on categories see2194

Mac Lane, 1978).2195

Let us define the categories TPn (of total preorders) and Kn (of TP-cones2196

in TGMn). In TPn the objects are total preorder on n elements and arrows2197

are defined by order�, i.e.2198

.1→.2 ⇔ .1�.2 .

In a similar way we define Kn whose objects are TP-cones in the space2199

TGMn and arrows are defined by inclusion.2200

Theorem 7.3.2. Categories of preorders and of TP-cones are dually isomorphic.2201

Proof of Theorem 7.3.2 descends from lemmas below.2202

Lemma 7.3.1. The maps Θ : Kn → TPn and Φ : TPn → Kn defined as2203

follows2204

• Θ(C) = Θ(C)2205

• Θ(→) =←2206

• Φ(.) = Φ(.)2207

• Φ(→) =←2208

are contravariant functors.2209

Proof. Let us consider C and D TP-cones, such that C → D. We have that:2210

C → D ⇔ C ⊆ D ⇔ Θ(C)� Θ(C) ⇔ Θ(C)← Θ(D).

Analogously, if we consider .1 and .2 total preorders over n elements,2211

such that .1→.2, then:2212

.1→.2 ⇔ .1�.2 ⇔ Φ(.1) ⊇ Φ(.2) ⇔ Φ(.1)← Φ(.2).

2213

Lemma 7.3.2. The composed functors ΦΘ : Kn → Kn and ΘΦ : TPn → TPn are2214

the identity functors of the categories Kn and TPn respectively.2215

Proof. Let us consider K TP-cone, we have that2216

ΦΘ(K) = Φ(Θ(K)) = Φ

Φ−1

 ⋂
C∈Φ(TP)
C∩K 6=∅

C


 =

⋂
C∈Φ(TP)
C∩K 6=∅

C,
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but K is a TP-cone, i.e. K ∈ Φ(TP), hence2217 ⋂
C∈Φ(TP)
C∩K 6=∅

C = K.

Vice versa, let . be a total preorder, then2218

ΘΦ(.) = Θ(Φ(.)) = Θ({X ∈ TGMn | . is compatible with X}).

Let us denote by K. = {X ∈ TGMn | . is compatible with X},2219

therefore we have:2220

Θ(K.) = Φ−1

 ⋂
C∈Φ(TP)
C∩K 6=∅

C

 = Φ−1(K.) =. .

In both cases arrows are preserved by Lemma 7.3.1.2221
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Chapter 82222

Artificial Neural Networks2223

8.1 Multilayer Perceptrons2224

Artificial neural networks are inspired by the nervous system to process2225

information. There exist many typologies of neural networks used in spe-2226

cific fields. We will focus on feedforward neural networks, in particular2227

multilayer perceptrons, which have applications in different fields, such as2228

speech or image recognition. This class of networks consists of multiple2229

layers of neurons, where each neuron in one layer has directed connec-2230

tions to the neurons of the subsequent layer. If we consider a multilayer2231

perceptron with n inputs, l hidden layers, ωhij as weight (from the j-th neu-2232

ron of the hidden layer h to the i-th neuron of the hidden layer h + 1), bi2233

real number and ρ an activation function (a monotone-nondecreasing con-2234

tinuous function), then each of these networks can be seen as a function2235

F : [0, 1]n → [0, 1] such that2236

F (x1, . . . , xn) = ρ(

n(l)∑
k=1

ωl0,kρ(. . . (

n∑
i=1

ω1
l,ixi + bi) . . .))).

The following theorem explicits the relation between rational Łukasiewicz2237

logic and multilayer perceptrons.2238

Theorem 8.1.1. (See Amato, Di Nola, and Gerla, 2002, Theorem III.6) Let the2239

function ρ be the identity truncated to zero and one.2240

• For every l, n, n(2), . . ., n(l) ∈ N, and ωhi,j , bi ∈ Q, the function F :
[0, 1]n → [0, 1] defined as

F (x1, . . . , nn) = ρ(
n(l)∑
k=1

ωl0,kρ(. . . (
n∑
i=1

ω1
l,ixi + bi) . . .)))

is a truth function of an MV-formula with the standard interpretation of the2241

free variables;2242

• for any f truth function of an MV-formula with the standard interpretation
of the free variables, there exist l, n, n(2), . . ., n(l) ∈ N, and ωhi,j , bi ∈ Q such
that

f(x1, . . . , nn) = ρ(
n(l)∑
k=1

ωl0,kρ(. . . (
n∑
i=1

ω1
l,ixi + bi) . . .))).
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8.2 Łukasiewicz Equivalent Neural Networks2243

In this section we present a logical equivalence between different neural2244

networks, proposed in Di Nola, Lenzi, and Vitale, 2016a.2245

When we consider a surjective function from [0, 1]n to [0, 1]n we can still2246

describe non-linear phenomena with an MV-formula, which corresponds to2247

a function which can be decomposed into “regular pieces”, not necessarily2248

linear (e.g. a piecewise sigmoidal function) (for more details see Di Nola,2249

Lenzi, and Vitale, 2016b).2250

The idea is to apply, with a suitable choice of generators, all the well2251

established methods of MV-algebras to piecewise non-linear functions.2252

Definition 8.2.1. We call ŁN the class of the multilayer perceptrons such that:2253

• the activation functions of all neurons from the second hidden layer on is2254

ρ(x) = (1 ∧ (x ∨ 0)), i.e. the identity truncated to zero and one;2255

• the activation functions of neurons of the first hidden layer have the form2256

ιi ◦ ρ(x) where ιi is a continuous function from [0, 1] to [0, 1].2257

8.2.1 Examples of Łukasiewicz Equivalent Neural Networks2258

Let us see now some examples of Łukasiewicz equivalent neural networks2259

(seen as the functions ψ(ϕ(x̄))). In every example we will consider a Riesz2260

MV-formula ψ(x̄) with many different ϕ interpretations of the free variables2261

x̄, i.e. the activation functions of the interpretation layers.2262

Example 12263

A simple one-variable example of Riesz MV-formula could be ψ = x̄�x̄. Let2264

us plot the functions associated with this formula when the activation func-2265

tions of the interpretation layer is respectively the identity truncate function2266

to 0 and 1 and the LogSigm.2267

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ϕ(x̄) := id(x) ϕ(x̄) := LogSigm(x)

FIGURE 8.1: ψ(x̄) = x̄� x̄

In all the following examples we will have (a), (b) and (c) figures, which2268

indicate respectively these variables interpretations:2269

(a) x and y as the canonical projections π1 and π2;2270

(b) both x and y as LogSigm functions, applied only on the first and the2271

second coordinate respectively, i.e. LogSigm ◦ ρ(π1) and LogSigm ◦2272

ρ(π2) (as in the example 1);2273
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(c) x as LogSigm function, applied only on the first coordinate, and y as2274

the cubic function π3
2 .2275

We show how, by changing projections with arbitrary functions ϕ, we2276

obtain functions (b) and (c) “similar” to the standard case (a), which, how-2277

ever, are no more “linear”. The “shape” of the function is preserved, but2278

distortions are introduced.2279

Example 2: The � Operation2280

We can also consider, in a similar way, the two-variables formula ψ(x̄, ȳ) =2281

x̄� ȳ (figure 8.2).2282

(a) (b) (c)

FIGURE 8.2: ψ(x̄, ȳ) = x̄� ȳ

Example 3: The Łukasiewicz Implication2283

As in classical logic, also in Łukasiewicz logic we have implication (→), a2284

propositional connective which is defined as follows: x̄→ ȳ = x̄∗⊕ȳ (figure2285

8.3).

(a) (b) (c)

FIGURE 8.3: ψ(x̄, ȳ) = x̄→ ȳ

2286
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Example 4: The Chang Distance2287

An important MV-formula is (x̄�ȳ∗)⊕(x̄∗�ȳ), called Chang Distance, which2288

is the absolute value of the difference between x and y in the usual sense2289

(figure 8.4).2290

(a) (b) (c)

FIGURE 8.4: ψ(x̄, ȳ) = (x̄� ȳ∗)⊕ (x̄∗ � ȳ)

8.3 Function Approximation Problems2291

8.3.1 Input Selection and Polynomial Completeness2292

The connection between MV-formulas and truth functions (evaluated over2293

particular algebras) is analyzed in Belluce, Di Nola, and Lenzi, 2014, via2294

polynomial completeness. It is showed that in general two MV-formulas may2295

not coincide also if their truth functions are equal. This strange situation2296

happens when the truth functions are evaluated over a “not suitable” alge-2297

bra, as explained hereinafter.2298

Definition 8.3.1. An MV-algebra A is polynomially complete if for every n, the2299

only MV-formula inducing the zero function on A is the zero.2300

Proposition 8.3.1. Belluce, Di Nola, and Lenzi, 2014, Proposition 6.2 Let A be2301

any MV-algebra. The following are equivalent:2302

• A is polynomially complete;2303

• if two MV-formulas ϕ and ψ induce the same function on A, then ϕ = ψ ;2304

• if two MV-formulas ϕ and ψ induce the same function on A, then they in-2305

duce the same function in every extension of A;2306

Proposition 8.3.2. Belluce, Di Nola, and Lenzi, 2014, Corollary 6.14 If A is a2307

discrete MV-chain, then A is not polynomially complete.2308

Roughly speaking an MV-algebraA is polynomially complete if it is able2309

to distinguish two different MV-formulas. This is strictly linked with back-2310

propagation and in particular with the input we choose; in fact Proposition2311

8.3.2 implies that an homogeneous subdivision of the domain is not a suit-2312

able choice to compare two piecewise linear functions (remember that Sn,2313

the MV-chain with n elements, has the form Sn = { i
n−1 | i = 0, . . . , n− 1}).2314

So we have to deal with finite input, trying to escape the worst case2315

in which the functions coincide only over the considered points. The next2316

results guarantee the existence of finitely many input such that the local2317

equality between the piecewise linear function and the truth function of an2318

MV-formula is an identity.2319
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Proposition 8.3.3. Let f : [0, 1] → [0, 1] be a rational piecewise linear function.2320

There exists a set of points {x1, . . . , xm} ⊂ [0, 1], with f derivable in each xi, such2321

that if f(xi) = TF (ϕ, (π1))(xi) for each i and TF (ϕ, (π1)) has the minimum2322

number of linear pieces then f = TF (ϕ, (π1)).2323

Proof. Let f be a rational piecewise linear function and I1, . . . , Im be the2324

standard subdivision of [0, 1] such that fj := f |Ij is linear for each j =2325

1, . . . ,m. Let us consider x1, . . . , xm irrational numbers such that xj ∈ Ij ∀j.2326

It is a trivial observation that f is derivable in each xi and that {fj}j=1,...,m2327

are linear components of TF (ϕ, (π1)) if f(xi) = TF (ϕ, (π1))(xi); by our2328

choice to consider the minimum number of linear pieces and by the fact2329

that f = TF (ψ, (π1)), for some ψ, we have that f = TF (ϕ, (π1)).2330

Now we give a definition which will be useful in the sequel.2331

Definition 8.3.2. Let x1, . . . , xk be real numbers and z0, z1, . . . , zk be integers.2332

We say that x1, . . . , xk are integral affine independent iff z0+z1x1+. . .+zkxk = 02333

imply that zi = 0 for each i = 0, . . . , k.2334

Note that there exists integral affine independent numbers. For example2335

log2(p1), log2(p2), . . . , log2(pn), where p1, . . . , pn are distinct prime number,2336

are integral affine independent; it follows by elementary property of loga-2337

rithmic function and by the fundamental theorem of arithmetic.2338

Lemma 8.3.1. Let f and g affine functions from Rn to R with rational coefficients.2339

We have that f = g iff f(x̄) = g(x̄), where x̄ = (x1, . . . , xn) and x1, . . . , xn are2340

integral affine independent.2341

Proof. It follows by Definition 8.3.2.2342

Integral affine independence of coordinates of a point is, in some sense,2343

a weaker counterpart of polynomial completeness. In fact it does not guar-2344

antee identity of two formulas, but just a local equality of their components.2345

Theorem 8.3.1. Let f : [0, 1]n → [0, 1] be a rational piecewise linear func-2346

tion (QMn). There exists a set of points {x̄1, . . . , x̄m} ⊂ [0, 1]n, with f dif-2347

ferentiable in each x̄i, such that if f(x̄i) = TF (ϕ, (π1, . . . , πn))(x̄i) for each2348

i and TF (ϕ, (π1, . . . , πn)) has the minimum number of linear pieces then f =2349

TF (ϕ, (π1, . . . , πn)).2350

Proof. It follows by Lemma 8.3.1 and the proof is analogous to Proposition2351

8.3.3.2352

By the fact that the function is differenziable in each x̄i, it is possible to2353

use gradient methods for the back-propagation.2354

As shown in Di Nola, Lenzi, and Vitale, 2016b and in Section 8.2 it is2355

possible to consider more general functions than piecewise linear ones as2356

interpretation of variables in MV-formulas. Let us denote by M (h1,...,hn)
n the2357

following MV-algebra2358

M (h1,...,hn)
n = {f ◦ (h1, . . . , hn) | f ∈Mn and hi : [0, 1]→ [0, 1] ∀i = 1, . . . , n}.

Likewise in the case of piecewise linear functions we say that g ∈M (h1,...,hn)
n2359

is (h1, . . . , hn)-piecewise function, g1, . . . , gm are the (h1, . . . , hn)-components2360
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of g and I1, . . . , Ik, connected sets which form a subdivision of [0, 1]n, are2361

(h1, . . . , hn)-pieces of g, i.e. g|Ii = gj for some j = 1, . . . ,m.2362

Now we give a generalization of Definition 8.3.2 and an analogous of2363

Theorem 8.3.1.2364

Definition 8.3.3. Let x1, . . . , xk be real numbers, z0, z1, . . . , zk integers and h1, . . . , hk2365

functions from [0, 1] to itself. We say that x1, . . . , xk are integral affine (h1, . . . , hk)-2366

independent iff z0 + z1h1(x1) + . . . + zkhk(xk) = 0 imply that zi = 0 for each2367

i = 0, . . . , k.2368

For instance let us consider the two-variable case (h1, h2) = (x2, y2); we2369

trivially have that
√

log2(p1),
√

log2(p2) are integral affine (x2, y2)-independent.2370

Theorem 8.3.2. Let (h1, . . . , hn) : [0, 1]n → [0, 1]n be a function such that hi :2371

[0, 1] → [0, 1] is injective and continuous for each i. Let g : [0, 1]n → [0, 1] be2372

an element of M (h1,...,hn)
n . There exists a set of points {x̄1, . . . , x̄m} ⊂ [0, 1]n such2373

that if g(x̄i) = TF (ϕ, (h1, . . . , hn))(x̄i) for each i and TF (ϕ, (h1, . . . , hn)) has2374

the minimum number of (h1, . . . , hn)-pieces then g = TF (ϕ, (h1, . . . , hn)).2375

Proof. It is sufficient to note that injectivity allows us to consider the func-2376

tions h−1
i , in fact if h1, . . . , hn are injective functions then there exist integral2377

affine (h1, . . . , hn)-independent numbers and this bring us back to Theorem2378

8.3.1.2379

8.3.2 On the Number of Hidden Layers2380

One of the important features of a multilayer perceptron is the number of2381

hidden layers. In this section we show that, in our framework, three hidden2382

layers are able to compute the function approximation.2383

We refer to Di Nola and Lettieri, 2004 for definition of simple McNaughton2384

functions. As natural extention we have the following one.2385

Definition 8.3.4. We say that f ∈ QMn is simple iff there is a real polynomial2386

g(x) = ax+ b, with rational coefficients such that f(x) = (g(x)∧1)∨0, for every2387

x ∈ [0, 1]n.2388

Proposition 8.3.4. Let us consider f ∈ QMn and x̄ = (x1, . . . , xn) a point of2389

[0, 1]n such that x1, . . . , xn are integral affine independent. If f(x̄) 6∈ {0, 1} then2390

there exists a unique simple rational McNaughton function g such that f(x̄) =2391

g(x̄).2392

Proof. It is straightforword by definition.2393

Via Proposition 8.3.4, it is possible to consider the following perceptron.2394

x1

x2

...
xn

Σ ϕ(x̄)
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Every rational McNaughton function can be written in the following2395

way:2396

f(x̄) =
∧
i

∨
j

ϕij(x̄)

where ϕij are simple QMn. By this well-known representation it is suit-2397

able to consider the following multilayer perceptron:2398

...
...

ϕ1(x̄1)

ϕ2(x̄2)

ϕ3(x̄3)

ϕk(x̄k)

f

Input
layer

Max-Out
layer

Min-Out
layer

where ϕi are the linear components of f and x̄i are points as described2399

before. Note that these networks are universal approximators (see Kreinovich,2400

Nguyen, and Sriboonchitta, 2016).2401
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