
 
 
 
 
 
 
 

Università degli Studi di Salerno 
 
 

Dipartimento di Ingegneria dell’Informazione ed Elettrica e 
Matematica Applicata/DIEM 

 
Dottorato di Ricerca in Informatica e Ingegneria dell’Informazione 

XXIX Ciclo 
 
 

TESI DI DOTTORATO 
 
 

A Data-Flow Middleware 
Platform for Real-Time 

Video Analysis 
 

CANDIDATO: ROSARIO DI LASCIO 
 
 
 
COORDINATORE:     PROF. ALFREDO DE SANTIS 
 
TUTOR:              PROF. MARIO VENTO  
 
 
 

Anno Accademico 2016 -2017 

 





For those who will come





Abstract

In this thesis we introduce a new software platform for the de-
velopment of real-time video analysis applications, that has been
designed to simplify the realization and the deployment of intel-
ligent video-surveillance systems. The platform has been devel-
oped following the Plugin Design Pattern: there is an application-
independent middleware, providing general purpose services, and
a collection of dynamically loaded modules (plugins) carrying out
domain-specific tasks. Each plugin defines a set of node types,
that can be instantiated to form a processing network, accord-
ing to the data-flow paradigm: the control of the execution flow
is not wired in the application-specific code but is demanded to
the middleware, which activates each node as soon as its inputs
are available and a processor is ready. A first benefit of this ar-
chitecture is its impact on the software development process: the
plugins are loosely coupled components that are easier to develop
and test, and easier to reuse in a di↵erent project. A second ben-
efit, due to the shift of the execution control to the middleware, is
the performance improvement, since the middleware can automat-
ically parallelize the processing using the available processors or
cores, as well as using the same information or data for di↵erent
thread of execution. In order to validate the proposed software
architecture, in terms of both performance and services provided
by the middleware, we have undertaken the porting to the new
middleware of two novel intelligent surveillance applications, by
implementing all the nodes required by the algorithms.

The first application is an intelligent video surveillance sys-
tem based on people tracking algorithm. The application uses a
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single, fixed camera; on the video stream produced by the cam-
era, background subtraction is performed (with a dynamically up-
dated background) to detect foreground objects. These objects are
tracked, and their trajectories are used to detect events of interest,
like entering a forbidden area, transiting on a one-way passage in
the wrong direction, abandoning objects and so on. The second
application integrated is a fire detection algorithm, which com-
bines information based on color, shape and movement in order to
detect the flame. Two main novelties have been introduced: first,
complementary information, respectively based on color, shape
variation and motion analysis, are combined by a multi expert
system. The main advantage deriving from this approach lies in
the fact that the overall performance of the system significantly
increases with a relatively small e↵ort made by designer. Second, a
novel descriptor based on a bag-of-words approach has been pro-
posed for representing motion. The proposed method has been
tested on a very large dataset of fire videos acquired both in real
environments and from the web. The obtained results confirm a
consistent reduction in the number of false positives, without pay-
ing in terms of accuracy or renouncing the possibility to run the
system on embedded platforms.
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Chapter 1

Introduction

Real-time video processing and analysis is a requirement in several
application domains, such as environment monitoring, industrial
process control, tra�c monitoring, robotics. Among these do-
mains, intelligent video-surveillance has seen a steadfastly growing
interest in both the research community and the industry. This
is due in part to an increased concern for security problems, but
also to the availability of larger and larger numbers of a↵ordable
surveillance cameras, producing a huge supply of video streams
that would be unpractical and uneconomical to monitor using only
human operators, in order to detect security-relevant events.

While basic applications (such as motion detection) are now
commonplace, being often integrated into the camera firmware,
the detection of more complex events involves the use of techniques
that are often at the frontier of the research on video analysis.
For each phase of the process, there is no single algorithm that
has proved to be the best under any operating condition, so the
set of techniques that have to be put together to build a solution
may vary greatly depending on the specific application context.
Furthermore, these techniques usually have to be finely tuned on
each video stream to achieve a reasonable performance. Another
aspect that cannot be neglected in video-surveillance application
is the computational cost, since it is desirable that each processing
station is able to analyze several video streams in real time; this
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usually entails the need to exploit some form of parallelism (e.g.
in multi-processor systems, or in multi-core processors), which in
turn raises thorny issues such as scheduling or synchronization
that, if not properly dealt with, may easily lead to subtle bugs
and unpredictable anomalies.

Traditionally, these problems have been faced using ad hoc
techniques for both the design and the implementation. Often
these techniques sacrifice on the altar of performance other im-
portant software qualities such as modularity, reusability, flexibil-
ity and extendability; furthermore they usually make the software
tightly tied to a particular architecture, hindering the transition to
a di↵erent hardware platform that may be required for scalability.

This thesis aims to bridge over these considerations: it intro-
duces a new software platform for the development of real-time
video analysis applications, that has been designed, based on the
data-flow paradigm, to simplify the realization and the deployment
of intelligent video-surveillance systems.

1.1 Overview

Dataflow is a computer architecture that directly contrasts the
traditional von Neumann or control flow architecture; this type
of architecture, according to the taxonomy of Flynn, falls within
the family MIMD (Multiple Instruction Multiple Data). Dataflow
architectures do not have a program counter, or (at least con-
ceptually) the executability and execution of instructions is solely
determined based on the availability of input arguments to the
instructions, so that the order of instruction execution is unpre-
dictable: i. e. behavior is indeterministic.

Although no commercially successful general-purpose computer
hardware has used a dataflow architecture, it has been successfully
implemented in specialized hardware such as in digital signal pro-
cessing, network routing, graphics processing, telemetry, and more
recently in data warehousing.

About the world of the software, Dataflow is a software paradigm
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based on the idea of disconnecting computational actors into stages
(pipelines) that can execute concurrently and it finds broad ap-
plication as a conceptual model in the development of database
software architectures and, more generally, for the development
of parallel applications. Dataflow can also be called stream pro-
cessing or reactive programming. The most obvious example of
data-flow programming is the subset known as reactive program-
ming with spreadsheets. As a user enters new values, they are
instantly transmitted to the next logical actor or formula for cal-
culation. It is also very relevant in many software architectures
today including database engine designs and parallel computing
frameworks.

The proposed platform has been developed following the Plu-
gin Design Pattern: there is an application-independent middle-
ware, providing general purpose services, and a collection of dy-
namically loaded modules (plugins) carrying out domain-specific
tasks. Each plugin defines a set of node types, that can be in-
stantiated to form a processing network, according to the data-
flow paradigm: the control of the execution flow is not wired in
the application-specific code but is demanded to the middleware,
which activates each node as soon as its inputs are available and
a processor is ready.

A first benefit of this architecture is its impact on the software
development process: the plugins are loosely coupled components
that are easier to develop and test, and easier to reuse in a di↵erent
project. A second benefit, due to the shift of the execution con-
trol to the middleware, is the performance improvement, since the
middleware can automatically parallelize the processing using the
available processors or cores, as well as using the same information
or data for di↵erent thread of execution.

In order to validate the proposed software architecture, in
terms of both performance and services provided by the middle-
ware, we have undertaken the porting to the new middleware of
two novel intelligent surveillance applications, by implementing all
the nodes required by the algorithms.

The first application is an intelligent video surveillance sys-
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tem based on people tracking [1]. The application uses a sin-
gle, fixed camera; on the video stream produced by the cam-
era, background subtraction is performed (with a dynamically up-
dated background) to detect foreground objects. These objects are
tracked, and their trajectories are used to detect events of interest,
like entering a forbidden area, transiting on a one-way passage in
the wrong direction, abandoning objects and so on.

The second application integrated is a fire detection algorithm
[2], which combines information based on color, shape and move-
ment in order to detect the flame.
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1.2 Organization

This thesis consists of the following chapters:

• Chapter 1 presents an overview of this research, by analyz-
ing the problem and briefly highlighting the novelties of the
proposed approach.

• Chapter 2 provides an overview of the state of the art meth-
ods, by deeply investigating approaches recently proposed
for tracking moving objects in Section 2.1 and fire detection
algorithm in Section 2.2. The chapter is concluded by Sec-
tion 2.3, which analyzes the state of the art of Data-flow
Platform used for video surveillance application.

• Chapter 3 details the proposed tracking algorithm;

• Chapter 4 is devoted to analyze the method proposed for
recognizing fire inside a scene.

• Chapter 5 details the proposed Data-flow architecture and
its modules.

• Chapter 6 analyzes the results obtained by the proposed
video analytics algorithms and by the proposed data-flow
architecture.

• Chapter 7 draws some conclusions.





Chapter 2

State of the Art

The software platform introduced in Chapter 1 and the video
surveillance applications plugin ported inside the middleware to
test the whole system are really challenging: as briefly analyzed,
each part composing the system is characterized by its intrinsic
problems. For the above mentioned reason, in this chapter the
state of the art of each module is separately analyzed, so to better
highlight novelties and advances with respect to the state of the
art introduced in this thesis.

This chapter is organized as follows:

• Section 2.1: state of the art of the people tracking algo-
rithm.

• Section 2.2: state of the art of the fire detection algorithm.

• Section 2.3: state of the art of Data-flow Platform used for
video surveillance application, by analyzing the problem and
briefly highlighting the novelties of the proposed approach.
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2.1 Tracking algorithm

The tracking problem is deceptively simple to formulate: given a
video sequence containing one or more moving objects, the desired
result is the set of trajectories of these objects. This result can be
achieved by finding the best correspondence between the objects
tracked until the previous frames and the ones identified by the
detection phase (from now on the blobs) at the current frame, as
shown in Figure 2.1. The ideal situation is shown in Figure 2.1a,
where each person is associated to a single blob.

FRAME (T-1) FRAME T 

2

1

?
?1

2

(a)

FRAME (T-1) FRAME T 
?

?

1111

(b)

FRAME (T-1) FRAME T 
2

3
?2

3

(c)

Figure 2.1 Each image is composed as follows: on the left the objects
tracked until the previous frame t�1, on the right the blobs identified during
the detection step at the current frame t. The aim of the tracking algorithm
is to perform the best association, identified by the orange arrows: in (a) the
ideal situation is shown, in (b) the detection splits the person in two parts
while in (c) the persons are merged in a single blob because of an occlusion
pattern.

Unfortunately, in real world scenarios, there are several issues
that make this result far from being easy to achieve: the detection
may split a person in several blobs, as shown in Figure 2.1b, or
an occlusion pattern may merge two or more persons in a single
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TRACKING)

OFF,LINE)

ON,LINE)

Detec3on)and)
Tracking)

Detec3on)by)
Tracking)

Figure 2.2 Trajectories extraction: the state of the art methods.

(a) (b)

Figure 2.3 In (a) the tracklets extracted at the time instant t by using o↵-
line tracking algorithms. The entire trajectories will be produced only when
all the tracklets will be available. In (b) trajectories extracted at the same
time instant by on-line algorithms.

blob, as shown in Figure 2.1c. It is evident that in such situations
more complex associations need to be managed.

Because of these di�culties, many tracking algorithms have
been proposed in the last years, but the problem is still considered
open.

Tracking algorithms can be divided into two main categories, as
summarized in Figure 2.2: the former category (o↵-line) contains
the methods [3][4][5] which extract small but reliable pieces of tra-
jectories, namely the tracklets, instead of entire trajectories. Once
all the tracklets are available, the system needs a post-processing
step aimed at linking the ones belonging to the same individual for
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extracting the final trajectories. An example is shown in Figure
2.3a.

The latter category (on-line) contains all those algorithms per-
forming the analysis on-line, so that at each time instant t the
entire trajectory of each object is available until t and ready to
be used, as shown in Figure 2.3b. In this category, two main
strategies have been proposed up to now:

• Detection and tracking: the tracking is performed after an
object detection phase; in particular, objects are detected
in each frame using a priori model of the objects or some
form of change detection: di↵erences from a background
model, di↵erences between adjacent frames, motion detec-
tion through optical flow and so on. Algorithms following
this strategy are usually faster than the ones belonging to
the other strategy, but they have to deal also with the errors
of the detection phase as spurious and missing objects, ob-
jects split into pieces, multiple objects merged into a single
detected blob.

• Detection-by-Tracking: detection and tracking are performed
at once, usually on the basis of an object model that is dy-
namically updated during the tracking.

Some examples of algorithms following the first strategy (de-
tection and tracking) are [6] and [7]: the criterion used to find
a correspondence between the evidence at the current frame and
the objects at the previous one is based on the overlap of the ar-
eas. Overlap-based methods work well with high frame rates and
when objects do not move very fast, but might fail in other con-
ditions. Positional information, obtained by taking advantage of
the Kalman filter, is also used in [8] and [9]. In the former, only
the distance between the detected blob and the predicted position
is considered; on the contrary, in the latter the appearance infor-
mation is taken into account by means of a smoothed 4D color
histogram.

Dai et al. [10] have proposed a method able to track pedes-
trians by using shape and appearance information extracted from
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infra-red images. The method may have some problems when ob-
jects quickly change their appearance or during occlusions.

The method proposed in [11] formulates the tracking prob-
lem as a bipartite graph matching, solving it with the well-known
Hungarian algorithm. It recognizes an occlusion, but is able to
preserve the object identities only if the horizontal projection of
the detected blob shows a separate mode. The Hungarian algo-
rithm is also used in [12] and [13] in order to solve the assignment
problem. In general, its main drawback lies in the polynomial
time needed for the computation, which prevents these tracking
methods from managing crowded scenarios.

The method by Pellegrini et al. [14] tries to predict the trajec-
tories on the scene using a set of behavior models learned using a
training video sequence. The method is very e↵ective for repeti-
tive behaviors, but may have some problems for behaviors that do
not occur frequently.

Several recent methods [15][16][17] use the information from
di↵erent cameras with overlapping fields of view in order to per-
form the occlusion resolution. The data provided by each camera
are usually combined using a probabilistic framework to solve am-
biguities. These methods, although increasing the reliability of
the entire system, are limited to situations where multiple cam-
eras can be installed; furthermore, most of the methods adopting
this approach requires a full calibration of each camera, which
could make the deployment of the system more complicated.

On the other hand, methods belonging to the second strategy
(Detection-by-Tracking) are computationally more expensive, and
often have problems with the initial definition of the object models,
that in some cases have to be provided by hand.

The method by Bhuvaneswari and Abdul Rauf [18] uses edge-
based features called edgelets and a set of classifiers to recognize
partially occluded humans; the tracking is based on the use of
a Kalman filter. The method does not handle total occlusions,
and, because of the Kalman filter, it works better if people are
moving with uniform direction and speed. The method proposed
by Han et al. [19] detects and tracks objects by using a set of
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features, assigned with di↵erent confidence levels. The features are
obtained by combining color histograms and gradient orientation
histograms, which give a representation of both color and contour.
The method is not able to handle large scale changes of target
objects.

A recent, promising trend in tracking algorithms is the use of
machine learning techniques. As an example, the method by Song
et al. [20] improves the ability of tracking objects within an oc-
clusion by training a classifier for each target when the target is
not occluded. These individual object classifiers are a way of in-
corporating the past history of the target in the tracking decision.
However, the method assumes that each object enters the scene
un-occluded; furthermore, it is based on the Particle Filters frame-
work, and so it is computationally expensive. Another example is
the method by Wang et al. [21] that uses manifold learning to
build a model of di↵erent pedestrian postures and orientations;
this model is used in the tracking phase by generating for each
object of the previous frame a set of candidate positions in the
current frame, and choosing the closer candidate according to the
model.

The high computational e↵ort required by Detection-by-Tracking
algorithms is the main limitation for using such strategy in the pro-
posed system. On the other hand, it is needed that at each time
instant the entire trajectory is available in order to properly inter-
pret the event associated to it, so making also unfeasible o↵-line
algorithms. For these reasons, the tracking algorithm proposed
in this thesis is based on the first of the above mentioned strat-
egy (Detection and Tracking): it assumes that an object detection
based on background subtraction generates its input data. How-
ever, one of the main limitations of the existing algorithms using
a Detection and Tracking strategy lies in the fact that they make
their tracking decisions by comparing the evidence at the current
frame with the objects known at the previous one; all the objects
are processed in the same way, ignoring their past history that
can give useful hints on how they should be tracked: for instance,
for objects stable in the scene, information such as their appear-
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ance should be considered more reliable. To exploit this idea, the
proposed algorithm adopts an object model based on a set of sce-
narios, in order to deal di↵erently with objects depending on their
recent history and conditions; scenarios are implemented by means
of a Finite State Automaton, that describes the di↵erent states of
an object and the conditions triggering the transition to a di↵erent
state. The state is used both to influence which processing steps
are performed on each object, and to choose the most appropriate
value for some of the parameters involved in the processing.

It is worth pointing out that another important advantage de-
riving by the use of a strategy based on Detection and Tracking
is that the variables characterizing the tracking process are ex-
plicitly defined and easily understandable, and so can be used in
the definition and in the manipulation of the state; an approach
of the second kind (Detection by Tracking), especially if based on
machine learning, would have hidden at least part of the state,
and thus the history of the objects would not have been explic-
itly manageable through a mechanism such as the Finite State
Automaton.

Furthermore, although a limited a priori knowledge about the
objects of interest is required, in order to di↵erentiate between
single objects and groups, the method can be rapidly adapted to
other application domains by providing a small number of ob-
ject examples of the various classes. Finally, the spatio-temporal
continuity of moving objects is taken into account using a graph-
based approach. Thanks to this novel approach, our system is
able to simultaneously track single objects and groups of objects,
so significantly increasing the overall reliability of the proposed
approach.

More details about the proposed tracking algorithm will be
provided in Chapter 3.
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2.2 Fire detection

In the last years several methods have been proposed, with the aim
to analyze the videos acquired by traditional video-surveillance
cameras and detect fires or smoke, and the current scientific e↵ort
[22][23] focused on improving the robustness and performance of
the proposed approaches, so as to make possible a commercial
exploitation.

Although a strict classification of the methods is not simple,
two main classes can be distinguished, depending on the analyzed
features: color based and motion based. The methods using the
first kind of features are based on the consideration that a flame,
under the assumption that it is generated by common combustibles
as wood, plastic, paper or other, can be reliably characterized by
its color, so that the evaluation of the color components (in RGB,
YUV or any other color space) is adequately robust to identify
the presence of flames. This simple idea inspires several recent
methods: for instance, in [24] and [25] fire pixels are recognized
by an advanced background subtraction technique and a statistical
RGB color model: a set of images have been used and a region
of the color space has been experimentally identified, so that if
a pixel belongs to this particular region, then it can be classified
as fire. The main advantage of such algorithms lies in the low
computational cost allowing the processing of more than 30 frames
per second at QCIF (176x144) image resolution. Di↵erently from
[24] and [25], in [26] the authors experimentally define a set of rules
for filtering fire pixels in the HSI color space. The introduction
of the HSI color space significantly simplifies the definition of the
rules for the designer, being more suitable for providing a people-
oriented way of describing the color. A similar approach has been
used in [27], where a cumulative fire matrix has been defined by
combining RGB color and HSV saturation: in particular, starting
from the assumption that the green component of the fire pixels
has a wide range of changes if compared with red and blue ones,
this method evaluates the spatial color variation in pixel values
in order to distinguish non-fire moving objects from uncontrolled
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fires.

The common limitation of the above mentioned approaches is
that they are particularly sensitive to changes in brightness, so
causing a high number of false positive due to the presence of
shadows or to di↵erent tonalities of the red. This problem can be
mitigated by switching to a YUV color space. In [28], for instance,
a set of rules in the YUV space has been experimentally defined
to separate the luminance from the chrominance more e↵ectively
than in RGB, so reducing the number of false positives detected by
the system. In [29] information coming from YUV color are com-
bined using a fuzzy logic approach in order to take into account
the implicit uncertainties of the rules introduced for thresholding
the image. A probabilistic approach based on YUV has been also
exploited in [30], where the thresholding of potential fire pixels is
not based on a simple heuristic but instead on a support vector
machine, able to provide a good generalization without requiring
problem domain knowledge. Although this algorithm is less sen-
sitive to variations in the luminance of the environment, its main
drawback if compared with other color based approaches lies in
the high computational cost required as soon as the dimensions of
the support vector increase.

In conclusion, it can be observed that the methods using color
information, although being intrinsically simple to configure, can
be successfully used only in sterile areas, where no objects gen-
erally move inside. In fact, their main limitation concerns the
number of false positives when used in normal populated areas:
persons with red clothes or red vehicles might be wrongly detected
as fire only because of their dominant color. In order to face this
issue, in the last years several approaches have been proposed:
they start from the assumption that a flame continuously changes
its shape and the disordered movement of red colored regions can
help in distinguishing it from rigid objects moving in the scene.
For instance, in [31] the physical properties of the fire are used to
build a feature vector based on an enhanced optical flow, able to
analyze in di↵erent ways both the dynamic texture of the fire and
its saturated flame. Dynamic textures have also been used in [32],
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where a two-phase texture detection process has been proposed
in order to speed-up the segmentation step, very useful to extract
a wide set of shape-based features, and making possible the de-
tection of the fire in a reasonable time. In [33] the irregularity of
the fire over time is handled by combining the capabilities of fi-
nite state automata with fuzzy logic: variations in wavelet energy,
motion orientation and intensity are used to generate probability
density functions, which determine the state transitions of a fuzzy
finite automaton.

The Wavelet transform has been also used in [34] in order to
properly detect the temporal behavior of flame boundaries. It is
worth pointing out that the methods based on the wavelet trans-
form, di↵erently from those based on the color, cannot be used on
still images and in general require a frame rate su�ciently high,
higher than 20 fps, to guarantee satisfactory results, so limiting
their applicability.

In [35] frame-to-frame changes are analyzed and the evolution
of a set of features based on color, area size, surface coarseness,
boundary roughness and skewness is evaluated by a Bayesian clas-
sifier. The wide set of considered features allows the system to take
into account several aspects of fire, related to both color and ap-
pearance variation, so increasing the reliability in the detection.
In [36] the thresholding on the color, performed in the RGB space,
is improved by a multi resolution two-dimensional wavelet analy-
sis, which evaluates both the energy and the shape variations in
order to further decrease the number of false positive events. In
particular, the shape variation is computed by evaluating the ra-
tio between the perimeter and the area of the minimum bounding
box enclosing the candidates fire pixels. This last strategy is as
simple and intuitive as promising if the scene is populated by rigid
objects, such as vehicles. On the other side, it is worth pointing
out that the shape associated to non rigid objects, such as peo-
ple, is highly variable in consecutive frames: think, for instance,
to the human arms, that may contribute to significantly modify
the size of the minimum bounding box enclosing the whole person.
This evidence implies that the disordered shape of the person may
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be confused with the disordered shape of the fire, so consistently
increasing the number of false positives detected by the system.

So, in conclusion, the main limitation of motion based ap-
proaches lies in the fact that the performance improvement is of-
ten paid from di↵erent points of view: first, in most of the cases,
several sensitive parameters need to be properly set for the appli-
cation at hand. Second, the motion and the shape of the flame
is somehow dependent on the burning material, as well as on the
weather conditions (think, as an example, of a strong wind moving
the fire).

In [37] a novel descriptor based on spatio-temporal properties
is introduced. First, a set of 3D blocks is built by dividing the im-
age into 16⇥16 squares and considering each square for a number
of frames corresponding to the frame rate. The blocks are quickly
filtered using a simple color model of the flame pixels. Then, on
the remaining blocks a feature vector is computed using the co-
variance matrix of 10 properties related to color and to spatial and
temporal derivatives of the intensity. Finally, an SVM classifier is
applied to these vectors to distinguish fire from non-fire blocks.
The main advantage deriving from this choice is that the method
does not require background subtraction, and thus can be applied
also to moving cameras. However, since the motion information is
only taken into account by considering the temporal derivatives of
pixels, without an estimation of the motion direction, the system,
when working in non sterile areas, may generate false positives
due, for instance, to flashing red lights.

The idea of combining several classifiers to obtain a more re-
liable decision has been generalized and extended in a theoreti-
cally sounder way in the pioneering paper [38]. Fire colored pixels
are identified by using a Hidden Markov Model (HMM); tempo-
ral wavelet analysis is used for detecting the pixel flicker; spatial
wavelet analysis is used for the non-uniform texture of flames; fi-
nally, wavelet analysis of the object contours is used to detect the
irregular shape of the fire. The decisions taken by the above men-
tioned algorithms are linearly combined by a set of weights which
are updated with a least-mean-square (LMS) strategy each time
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a ground-truth value is available. This method has the advan-
tage that during its operation, it can exploit occasional feedback
from the user to improve the weights of the combination function.
However, a drawback is the need to properly choose the learning
rate parameter, in order to ensure that the update of the weights
converges, and that it does so in a reasonable time.
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2.3 Data Flow Architecture

As mentioned in Section 1, in this thesis we present our expe-
rience with a modular, component-based architecture, based on
a middleware that we have specifically designed for the develop-
ment of real-time video-surveillance applications and, more gen-
erally, video analysis systems. The middleware takes care of as-
pects such as the memory management, the scheduling or the syn-
chronization, while the application logic is realized by assembling
loosely-coupled, indepently developed software components that
are plugged in the application at run time.

An early platform showing some common points with our archi-
tecture is MIT’s VuSystem [39]. In this system, a video processing
application is split into modules, each having a set of input and
output ports. Modules are instantiated and interconnected using
a script written in the TCL language. Modules communicate with
each other exchanging payloads, that are objects residing in shared
memory, with a descriptor identifying the type of data contained
in the payload; extending the supported types requires a modi-
fication to the source code of the platform. Input/output ports
are dynamically typed, so the platform cannot ensure the com-
patibility of interconnected modules; each module has to check if
the payloads it receives are of the right type. The whole applica-
tion runs in a single-threaded process, and so cannot benefit from
parallelism available on multiprocessor system. As a consequence,
there are no synchronization issues, and the platform uses a simple
event-driven approach for the scheduling.

François and Medioni [40] proposed the Flow Scheduling Frame-
work (FSF) as a middleware for real-time video processing. In
FSF, computation is modeled using a set of processing elements
called Xcells that interact with data streams in a data-flow ori-
ented architecture. Xcells are activated by a scheduler when they
are ready to be executed, and their execution can be carried out
in parallel. The framework requires that the types of the data
streams are defined in C++, and the Xcell implementations must
be compiled together in order to allow type checking. Also, the in-
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terconnections between the Xcells are defined at compile time, thus
preventing the possibility of altering the processing network as
part of the configuration process. In successive papers [41, 42, 43],
François presents the Software Architecture for Immersipresence
(SAI), which is based on an extension of FSF supporting shared
memory communication in addition to data-flow oriented message
passing, and including a library of cells for common video process-
ing operations.

Granmo [44] presents a parallel, distributed architecture for
Video Content Analysis. The proposed architecture does not ad-
dress in a general way the video processing operations, but is
specifically aimed at the parallelization of Dynamic Bayesian Net-
works (DBN) and Particle Filters (PF), with provision for ex-
changing information about the computed approximate probabil-
ity distributions among the processing nodes.

Another proposal, specifically developed for surveillance and
monitoring applications, is VSIP, the platform presented by Avanzi
et al. [45]. This platform has the main goal of ensuring modularity
and flexibility of the applications. To this aim, the application is
divided in modules, which exchange data through a shared data
manager, that acts conceptually as a blackboard system. Although
the authors suggest that by suitably implementing the data man-
ager an application can be distributed among several processing
nodes, it is not clear whether they have actually realized such a
system, since parallelism was not the main focus of their research.
Also, the set of data types that can be exchanged are wired in
the platform, and so its source needs to be modified to adopt it
for a di↵erent kind of application (e.g. audio-surveillance). A
later paper by Georis et al. [46] extends the VSIP platform by
adding a control and reasoning layer based on a declarative repre-
sentation of knowledge about the system. Among the benefits of
this addition, the platform is able to generate automatically the
C++ glue code for assembling an application that integrates exist-
ing modules, starting from a high-level description of the desired
application in the YAKL knowledge representation language and
from a knowledge base, represented as a set of declarative rules
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about the modules behaviors and requirements.

The paper by Desurmont et al. [47] presents a modular dis-
tributed architecture for video security. The focus is on the dis-
tribution of the application workload over a cluster of comput-
ers connected by a network; thus, the application is divided into
coarse-grained modules running on di↵erent computers, that ex-
change data by means of a lightweight protocol built upon UDP.
The whole video analysis task is incorporated in a single mod-
ule, and it cannot be parallelized; however, the architecture can
exploit the cluster parallelism to process multiple video streams
simultaneously.

In [48] Thoren presents Phission, a framework for develop-
ing vision-based applications for robots. The framework is im-
plemented in C++, and includes support for multithreading and
inter-thread communication. Phission adopts the Pipes and filters
architecture pattern, assuming that the processing can be viewed
as a pipeline in which each processing node has one input and one
output, although multiple pipelines can be created within a same
application. This is less general than a complete dataflow architec-
ture, since it cannot easily accomodate for elaborations involving
some kind of feedback.

Räty [49] proposes in a 2007 paper the Single Location Surveil-
lance Point (SLSP) architecture, which is a distributed architec-
ture for video surveillance with a large number of distributed sen-
sors. In this architecture the main focus is on avoiding the com-
munication bottleneck at the decision making computers, by in-
troducing an intermediate processing level (the so-called Session
Servers) that concentrates and pre-elaborate the data obtained
from the sensors.

In a 2007 paper [50], Amatriain presents a metamodel for a
generic architecture devoted to multimedia processing applica-
tions. The proposed metamodel is based on a dataflow paradigm,
and describes the conceptual structure of the processing nodes
and the semantics of the operations defined on the nodes, but
it does not specify a concrete implementation. In [51], Amatri-
ain et al. discuss CLAM, a C++ library, based on the mentioned
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metamodel, for audio processing. This library provides an im-
plementation in which multithreading is used to separate the core
processing functions, which are executed in a high-priority thread,
from the rest of the application that is executed in a normal thread,
with safe inter-thread communication mechanisms to connect the
two parts.

The paper by Detmold et al. [52], published in 2008, presents
a network based middleware for Video Surveillance. In particular,
the middleware is based on the blackboard metaphor, but it has a
distributed blackboard to avoid a central server bottleneck. The
components of the system communicate using web services, and in
particular the REST (Representational State Transfer) approach.
The use of web services entails a large communication overhead,
and so the components of the system have necessarily to be coarse
grained. Thus, this middleware can support parallelism among
di↵erent video streams, but is limited in the parallelization of the
activities relative to a single stream.

The paper by Saini et al. [53] presents an extensible system
architecture for surveillance applications, which supports the abil-
ity to dynamically configure the processing steps that have to be
applied to each input stream, and the event detectors that have to
be enabled. This architecture is mainly concerned with flexibility
and ease of configuration, and so does not address the distribution
of the workload among di↵erent processors.

A recent paper by Valera et al. [54] presents a reference archi-
tecture for distributed video surveillance which is based on the Real
Time Networks (RTN) and Data-Oriented Requirements Imple-
mentation Scheme (DORIS) design methodologies for concurrent
systems, that are often used in aerospace and defense applications
and in other safety-critical systems. The proposed architecture is
implemented on top of the CORBA middleware, and so uses the
CORBA mechanisms for distributed processing and communica-
tions. The main benefit of the proposed architecture is the fact
that is based on formally defined design principles and patterns,
thus improving the verifiability of the system. On the other hand,
the methodology is quite complex; moreover, the CORBA plat-
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form, on which it is based, is known to be more di�cult to use
and less e�cient than other middlewares, leading in the last years
to a pronounced decline in its adoption.

More recently, instead than focusing on the whole architec-
ture, some authors have focused on the optimization of some spe-
cific components, such as for instance the scheduler. In [55], the
authors evaluate the impact of di↵erent scheduling policies on the
execution of a dynamic dataflow program on a target architecture;
such policies, in turns, depend on some conditions of the specific
application at hand.





Chapter 3

Tracking Algorithm

3.1 Rationale of the method

As introduced in Section 2.1, the trajectories extraction module is
in charge of extracting moving objects trajectories starting from
the analysis of raw videos. A general overview is depicted in Figure
3.1: two main steps are required, namely the detection and the
tracking.

The aim of the detection step is to obtain the list of blobs,
being each blob a connected set of foreground pixels; in order
to achieve this aim, the detection module first finds foreground
pixels by comparing the frame with a background model; then
foreground pixels are filtered to remove noise and other artifacts
(e.g. shadows) and are finally partitioned into connected compo-
nents, namely the blobs.

The tracking algorithm receives as input the set of blobs de-
tected at each frame and produces a set of objects. An object is
any real-world entity the system is interested in tracking. Each
object has an object model, containing such information as

• the object class (eg a person or a vehicle) (Subsection 3.3.2),

• state (Subsection 3.3.1),

• size, position and predicted position, trajectory and appear-
ance (Subsection 3.3.4).
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DETECTION TRACKING 

Frame (t) 

Background (t-1) 

List of Blobs (t) List of Objects (t) 

List of Objects (t-1) 
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35
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Figure 3.1 Architecture of a generic tracking system based on a background
subtraction algorithm: the list of blobs is extracted by the detection module
and is analyzed by the tracking algorithm in order to update the information
associated to the list of objects populating the scene.

A group object corresponds to multiple real-world entities tracked
together; if a group is formed during the tracking (i.e. it does
not enter in the scene as a group), its object model maintains a
reference to the models of the individual objects of the group.

The task of the tracking algorithm is to associate each blob
to the right object, so as to preserve the identity of real-world
objects across the video sequence; the algorithm must also create
new object models or update the existing ones as necessary. As
highlighted in Section 2.1 (see Figure 2.1), this problem is far for
being simple because of occlusions, split or merge patterns that
may happen because of the perspective flattening introduced by
the use of a single camera or by errors of the detection step. The
algorithm used in this thesis is able to e�ciently deal with the
follow mentioned problems.

3.2 Common problem

In this section we examine some typical problems of people de-
tection, in order to see how they can be solved by incorporating
information about the history of objects.
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Figure 3.2 Problems with entering objects. (a) Blobs across three adjacent
frames. (b) The tracking performed without considering the object history; in
this case a tracking algorithm would not be able to distinguish this situation
from two separate objects joining a group, and so attempts to preserve the
separate identities of the two objects 1 and 2.

Figure 3.3 Problems with totally occluded objects. (a) The detection
output across three adjacent frames. (b) The tracking performed without
considering the object history; in this case a tracking algorithm would see the
blob 2 as a new object in the scene, since in the previous frame there was no
corresponding object.

One of the most frequently encountered issue is related to ob-
jects entering the scene, which have a very unpredictable appear-
ance during the first frames of their life. Figure 3.2 shows a typical
example, in which the person is split by the detection phase into
two di↵erent blobs (i.e. legs and arms). The problem here is that
after a few frames the parts appear to merge forming a new group
of objects; since the occlusion resolution requires that object iden-
tities are preserved within a group, the tracking algorithm would
continue to keep track of two separate objects (labeled 1 and 2 in
the figure). To solve this problem, the tracking algorithm has to
use di↵erent rules for dealing with merging objects when they are
just entering or when they are stable within the scene.

Missing blobs are another typical problem a↵ecting the detec-
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Figure 3.4 Occlusion related problems. In (a) the appearance of a group of
people change from being identical to a single person to being clearly a group;
if the classifier uses a classification result obtained in the first frame, it will
continue to track the group considering it as an individual object. In (b) the
system would not be able to correctly track the individual objects during all
their life as a group if it attempts to exploit the uniformity of the motion,
since the group can have strong changes in direction.

tion; they can be caused either by camouflage, occurring when
the foreground object is very similar to the background, or when
occlusions between moving objects arise. The latter case is really
di�cult to deal with as information about the occluded part is to-
tally missing and consequently to be restored by suited reasoning.

Figure 3.3 shows an example of the above mentioned problem:
the person that passes behind the tree is detected in the first
and in the third frames of the sequence, but not in the second
one. Thus, the tracking algorithm would find at the third frame
a blob having no corresponding object in the previous frame, and
would assign it to a newly created object, if it does not keep some
memory about an object even when it is not visible in the scene.
On the other hand, the tracking algorithm should not preserve
information about objects that are truly leaving the scene: doing
so it would risk to reassign the identity of an object that has left
the scene to a di↵erent object that is entering from the same side.

Other issues are related to objects occluding each other, form-
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Figure 3.5 An overview of the proposed tracking system.

ing a group. Figure 3.4a illustrates a problem connected with the
stability of group classification: in the first frame, the two persons
in the group are perfectly aligned, and so a classifier would not be
able to recognize that the object is a group. On the other hand,
in the following frames the object is easier to recognize as such.
Thus, in order to obtain a reliable classification the tracking algo-
rithm has to wait that the classifier output becomes stable, before
using it to take decisions.

Another problem related to groups is the loss of the identities
of the constituent objects. An example is shown in Figure 3.4b,
where objects 1 and 2 first join a group and then are separated
again. When objects become separated, the tracking algorithm
would incorrectly assign them new identities, if the original ones
were not preserved and associated with the group. Note that in
this case it would not have been possible to simply keep tracking
separately the two objects using some kind of motion prediction
until the end of the occlusion, because as a group the objects have
performed a drastic change of trajectory (a 180� turn).

The analysis conducted in this Section about the typical prob-
lems in a real-world setting shows that in a lot of situations a
tracking system cannot be able to correctly follow objects without
additional information about their history.



30 3. Tracking Algorithm

3.3 Proposed Architecture

The main lack of most of existing algorithms lies in the fact that
they make their tracking decisions by comparing the evidence at
the current frame with the objects known at the previous one; all
objects are managed in the same way, ignoring their past history
that can give useful hints on how they should be tracked: for
instance, for objects, stable in the scene, information such as their
appearance should be considered more reliable.

To exploit this idea, the proposed algorithm adopts an object
model based on a set of scenarios in order to deal di↵erently with
objects depending on their recent history and conditions; the sce-
narios are implemented by means of a Finite State Automaton
(FSA), that describes the di↵erent states of an object and the
conditions triggering the transition to a di↵erent state. The state
is used both to influence which processing steps are performed on
each object, and to choose the most appropriate value for some of
the parameters involved in the processing.

Although a limited a priori knowledge about objects of inter-
est is required, in order to di↵erentiate between single objects and
groups, the proposed method can be rapidly adapted to other ap-
plication domains by providing a small number of object examples
of the various classes.

Figure 3.5 gives an overview of the modules composing the
tracking system and their interdependencies:

• the state manager, which maintains and updates an instance
of the FSA for each object;

• the association manager, which establishes a correspondence
between objects and blobs, solving split events and perform-
ing occlusion reasoning;

• the object classifier, which assigns objects to a set of prede-
fined classes; the object class is used both during the update
of the FSA state and during the association between objects
and blobs to solve split/merge cases;



3.3. Proposed Architecture 31

procedure Tracking(obj_models , blobs)

Classify(blobs)

S := ComputeSimilarity(obj_models , blobs)

FindAssociations(obj_models , blobs , S)

UpdateModels(obj_models , blobs)

UpdateState(obj_models)

end procedure

Figure 3.6 The structure of the tracking algorithm.

• the similarity evaluator, which computes a similarity mea-
sure between objects and blobs, considering position, size
and appearance; this similarity is used during the associa-
tion between objects and blobs.

The above modules share a set of objects models, which, as
previously said, contain all the relevant information about each
object.

Figure 3.6 shows an outline of the tracking algorithm. The
algorithm operates at the arrival of each new frame, receiving as
inputs the existing object models and the blobs discovered by the
detection phase for the current frame; for the first frame of the
sequence, the existing object models are initialized as an empty
set. The output of the algorithm is a set of updated object models,
which possibly includes new objects. The steps of the algorithm
are the following:

• first, the classifier is applied to the current blobs, which are
annotated with the information on the assigned class;

• then, the algorithm computes the similarity between each
object and each blob, activating the similarity evaluator; the
similarity information is kept in a similarity matrix S;

• at this point, the algorithm is ready to perform the associ-
ation between objects and blobs, including the split/merge
and occlusion reasoning;
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Figure 3.9 The state diagram of the object state manager.

application; di↵erent problems may require the algorithm to keep
di↵erent information in order to deal appropriately with them, and
so may require an entirely di↵erent FSA.

Although we present only a single formulation of the FSA, the
methodology remains general and easily extendable to other cases,
since the knowledge about the states and the transitions between
them is declaratively specified in the automaton definition, and
not hidden within procedural code.

In order to deal with the issues discussed in Section 3.1.2.1, we
propose a state manager based on the Finite State Automaton A
depicted in Figure 3.9. It can be formally defined as:

A = hS, ⌃, �, s0, F i (3.1)

where S = {s0, . . . , sm} is the set of the states; ⌃ = {a0, . . . , am}
is the set of the transition conditions, i.e. the conditions that may
determine a state change; � : S ⇥ ⌃ ! S is the state-transition

Figure 3.7 The state diagram of the object state manager.

• on the basis of the associations found, the algorithm updates
the models for each object; if new objects are detected, their
models are created at this step;

• finally, the state manager updates the FSA states, using the
previous state and the information gathered by the previous
steps and stored in the object models.

In the following sections, more details are provided for each
module of the system.
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3.3.1 Object state management

The state manager has the task of maintaining and updating the
FSA state of each object; the FSA state embodies the relevant
information about the past history of the object, which can be
used by the other parts of the tracking system. What pieces of
information are actually relevant depends somewhat on the specific
application; di↵erent problems may require the algorithm to keep
di↵erent information in order to deal appropriately with them, and
so may require an entirely di↵erent FSA.

Although we present only a single formulation of the FSA, the
methodology remains general and easily extendable to other cases,
since the knowledge about the states and the transitions between
them is declaratively specified in the automaton definition, and
not hidden within procedural code.

In order to deal with the issues discussed in Section 3.2, we
propose a state manager based on the Finite State Automaton A
depicted in Figure 3.7. It can be formally defined as:

A = hS, ⌃, �, s0, F i (3.1)

where S = {s0, . . . , sm} is the set of the states; ⌃ = {a0, . . . , am}
is the set of the transition conditions, i.e. the conditions that may
determine a state change; � : S ⇥ ⌃ ! S is the state-transition
function; s0 2 S is the initial state and F ⇢ S is is the set of final
states.

The proposed Finite State Automaton states and transitions
are shown in Table 3.8. In particular, the set of states S is shown in
Table 3.8.a; we choose s0 as initial state, since each object enters
the scene by appearing either at the edge or at a known entry
region (e.g . a doorway). Furthermore we choose s5 as final state,
since each object necessarily has to leave the scene. The set ⌃ of
transition conditions and the state-transition function � are shown
respectively in Table 3.8b and 3.8c.

It is worth noting that each state has been introduced in order
to correctly solve one of the issues described earlier, as we will
detail below. So it is possible to extend the FSA with the addition
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Id Description

s0 new
s1 to be classified
s2 classified
s3 frozen
s4 in group
s5 exiting
s6 deleted

(a)

Id Description

a0 obj is completely within the scene
a1 obj disappears from the scene
a2 obj does not reappear in the scene for a time Td

a3 obj classification is the same for two frames
a4 obj classification changes
a5 obj leaves the group
a6 obj occludes with one or more objects
a7 obj reappears inside the scene
a8 obj is not completely within the scene

(b)

a0 a1 a2 a3 a4 a5 a6 a7 a8

s0 s1 s6 - - - - - - -
s1 - s3 - s2 - - s4 - s5
s2 - s3 - - s1 - s4 - s5
s3 - - s6 - - - - s1 -
s4 - - - - - s1 - - s5
s5 - s6 - - - - - - -

(c)
Figure 3.8 The Finite State Automaton. (a) The set S of the states. (b)
The set ⌃ of the transition conditions. (c) The state-transition function �; for
entries shown as ‘-’, the automaton remains in the current state.

of other states and transitions, in order to deal with some other
problems that should arise in a specific application context.

The meaning of the states and the conditions triggering the
transitions are detailed below:

• new (s0): the object has been just created and is located at
the borders of the frame; if it enters completely, and so does
not touch the frame borders (a0), it becomes to be classified;
otherwise, if it leaves the scene (a1), it immediately becomes
deleted.

The introduction of new state solves the problem related to
the instability of the entering objects, since it makes the
system aware of such scenario and then capable to react in
the best possible way, as shown in Figure 3.9a. Moreover,
this state allows the algorithm to quickly discard spurious
objects due to detection artifacts, since they usually do not
persist long enough to become to be classified.
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Figure 3.9 Output of the tracking algorithm based on the proposed FSA,
when applied to the problems discussed in Section 3.2. (a) The entering ob-
ject is correctly recognized as a single object, and not a group. (b) The object
identity is preserved when the person passes behind the tree. (c) A group
initially classified as a single person is correctly handled when classification
becomes stable. (d) The group object maintains the constituent object iden-
tities.

• to be classified (s1): the object is completely within the scene,
but its class is not yet considered reliable; if the classifier as-
sign the same class for at least two frames (a3), it becomes
classified; if the association manager detects that the object
has joined a group (a6), it becomes in group; if the object
disappears (a1), it becomes frozen; if the object is leaving
the scene, i.e. it is not completely within it (a8), it becomes
exiting.

The to be classified state solves the issues of the objects en-
tering the scene as group, discussed in Figure 3.4a. Thanks
to this state, the class of the object is only validated when
the system is sure about them. An example is shown in Fig-
ure 3.9c. Note that objects class is very important, since
it makes the association manager able to take the correct
decisions about the resolution of split and merge patterns.

• classified (s2): the object is stable and reliably classified; if
the classifier assigns a di↵erent class (a4), it becomes to be
classified; if the association manager detects that the object



36 3. Tracking Algorithm

has joined a group (a6), it becomes in group; if the object
disappears (a1), it becomes frozen; if the object is leaving
the scene, then it is not completely within it (a8), it becomes
exiting.

The distinction between classified and to be classified objects
is used by the association manager when reasoning about
split objects and group formation.

• frozen (s3): the object is not visible, either because it is
completely occluded by a background element, or because
it has left the scene; if the object gets visible again (a7),
it becomes to be classified; if the object remains suspended
for more than a time threshold Td (a2), it becomes deleted;
currently we use Td = 1 sec.

The frozen state avoids that an object is forgotten too soon
when it momentarily disappears, as it happens in Figure 3.3.

• in group (s4): the object is part of a group, and is no more
tracked individually; its object model is preserved to be used
when the object will leave the group; if the association man-
ager detects that the object has left the group (a5), it be-
comes to be classified; if the object is located at the borders
of the frame (a8), it becomes exiting.

The in group state has the purpose of keeping the object
model even when the object cannot be tracked individually,
as long as the algorithm knows it is included in a group.
Thanks to this state, the proposed method is able to cor-
rectly solve the situation shown in Figure 3.4b, related to
group objects.

• exiting (s5): the object is located at the borders of the frame;
if it disappears from the scene (a1), it becomes deleted.

The exiting objects di↵er from the frozen ones because of
the system have not to preserve their identity, since their
are leaving the scene;
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(a) (b) (c)

Figure 3.12 Examples of di↵erent entities by HOG descriptors: (a) a single
person, (b) a small group of persons and (c) a backpack.

• deleted (s6): the object is not being tracked anymore; its
object model can be discarded.

Figures 3.10 and 3.11 show a detailed example of how the
object state management works.

3.3.2 Object classification

The tracking system needs an object classifier to determine if a
blob corresponds to a group, an individual object, or an object
part. In particular, two classes of individual objects have been con-
sidered in this thesis: person and baggage. We adopt a multi-class
Support Vector Machine (SVM) classifier using the Histogram of
Oriented Gradients (HOG) [56] as descriptor. HOG descriptor,
which has already proved to be very e↵ective for pedestrian de-
tection, allows to describe the patterns by using the distribution
of local intensity gradients or edge directions: the image is parti-
tioned into cells and a local 1-D histogram of gradient directions
or edge orientations over the pixels of each cell is computed. The
accuracy of the descriptor is improved by contrast-normalizing the
local histograms: a measure of the intensity across a larger region
of the image, a block, is computed and it is used to normalize all
the cells within the block. Such normalization makes the descrip-
tor invariant in changes in illumination and shadowing. In Figure
3.12 we show the description of di↵erent entities using HOG.
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1. The object 37 enters the scene as a new object while the object 28 is a
classified object.

2. The object 37 becomes a to be classified object since it completely enters
the scene.

3. The classification as a person of the object 37 becomes reliable, then it
becomes classified.

Figure 3.10 Evolution of the states of the FSA of each object along a short
frame sequence (part 1). The second part is in Figure 3.11.
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4. After a few frames, the association manager shows an occlusion between
objects 37 and 28. Both these objects become in group and a new group
object is created.

5. The objects 37 and 28 do not leave the group, then they do not change
their states.

6. Finally, the group object splits and both the objects 37 and 28 become
to be classified.

Figure 3.11 Evolution of the states of the FSA of each object along a short
frame sequence (part 2). The first part is in Figure 3.10.
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Figure 3.13 Multi class SVM: the i -th classifier is labeled considered as
positive samples the ones belonging to the i -th class, while as negative samples
the ones belonging to the other classes.

Once extracted the features vector, a multi-class SVM has been
applied. Being our problem multi-class, a N one-against-rest strat-
egy has been considered (see Figure 3.13);

in particular N di↵erent classifiers, one for each class, are con-
structed. The i -th classifier is trained on the whole training data
set in order to classify the members of i -th class against the rest.
It means that the training set is relabeled: the samples belonging
to the i -th class are labeled as positive examples, while samples
belonging to other classes are labeled as negative ones. During
the operating phase, a new object is assigned to the class with the
maximum distance from the margin.

At this point one can note that object evolution is not depen-
dent on its class (e.g . group or individual object), but only on its
actual state. As a matter of fact, only object information is related
to object class, while object state only determines the reliability of
such information. In particular, for individual object we have in-
formation about appearance and shape: we consider the area and
the perimeter of an object, its color histograms and its real dimen-
sions, namely width and height, both obtained using an Inverse
Perspective Mapping. Moreover we have information about the
observed and predicted position of the object centroid. The pre-
dicted position is obtained using an extended 2D Position-Velocity
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(PV) Kalman Filter, whose state vector is:

⇠ =
⇥

xc, yc, w, h, ẋc, ẏc, ẇ, ḣ,
⇤

(3.2)

where (xc, yc) is the centroid of the object, w and h are the width
and the height of the object minimum bounding box in pixels,
(ẋc, ẏc) and (ẇ, ḣ) are respectively the velocity of the object cen-
troid and the derivative of the minimum bounding box size. It
is worth noting that such a PV Kalman Filter is very e↵ective
when the object motion is linear and the noise has a Gaussian
distribution.

Group objects contain also information about occluded objects.
In this way the system can continue to track the in group objects
when they leave the group.

3.3.3 Association management

The aim of this module is to determine the correspondence be-
tween the set of blobs B = {b1, ..., bn} and the set of objects
O = {o1, ..., om}, and properly update the information about the
annotated objects: the current position is added to the trajectory,
the appearance model updated and the state properly recomputed;
this is made also in presence of detection errors: objects split into
more parts, objects merged together or objects hidden by fore-
ground elements.

To this aim, the system uses a graph based approach by taking
into account the spatio-temporal information of each object and at
the same time reduces the computational cost needed to perform
all the possible association: this is done by taking into account
spatio-temporal information of each object.

The associations between blobs and objects is represented by
a matrix T = {tij}, where:

tij =

8

<

:

0 if object oi is not associated to blob bj

1 if oi is associated to bj

�1 if the pair oi, bj hasn’t been evaluated
(3.3)
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It can be obtained by evaluating the similarity matrix S =
{sij}, being sij the index of similarity between the blob bi and the
object oj. More details about the computation of this matrix will
be provided in Section 3.3.4.

In simple situations, there is a one-to-one correspondence: the
single blob bi is associated to the single object oi, as shown in Fig-
ure 3.18a. However, in presence of split or merge, the association
manager needs to take into account more complex associations
(one-to-many, many-to-one, and even many-to-many).

To this purpose, we evaluate the similarity matrix over an aug-
mented set of blobs BI and objects OI in order to take into account
all those above mentioned situations:

BI = B [ Bd; OI = O [ Od. (3.4)

Bd and Od are respectively the set of derived blobs and derived
objects, virtually created at the current frame; their introduction
allows the system to simulate all the possible splits and occlusions
occurring in real scenarios, so as to take the best possible decision
in terms of association between one or more blobs and one or more
objects.

In order to clarify this, consider two objects o1 and o2 meeting
in the scene: at the frame t�1 the algorithm correctly tracks these
objects one by one. At the frame t, a merge occurs and the detec-
tion phase detects a single blob bA (instead of two). The similarity
sA1 between the blob bA and the object o1 and the similarity sA2

between the blob bA and the object o2 are very low, and then a
simple association manager could fail. Thanks to the introduction
of the derived object o1[2, composed by the union of the objects o1

and o2, a merge situation is simulated. In this way, the similarity
between the blob bA and the derived object o1[2 is very high, and
then the association can be correctly performed. The states of o1

and o2 are updated to in group and their information are stored
inside the group object o1[2, whose state is initialized to classified.
In this way, the system is able to correctly track the two objects
as a single group object.
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Derived Blobs and Objects Creator This modules generates
the sets Bd and Od of derived blobs and objects. The most sim-
ple, but also the most ine�cient way, to perform this task is to
evaluate all the possible combinations of k blobs (objects), with
k = 1...n(m).

Bd = {b1b2, ..., b1bn, ..., b1b2bn, ...}; (3.5)

Od = {o1o2, ..., o1om, ..., o1o2om, ...}. (3.6)

The inclusion of all the combinations determines a very high
computational cost and an explosion of the size of the similarity
matrix; note that the number of possible combinations C for n
blobs and m objects is:

C =
n

X

i=1

✓

n
i

◆

·
m
X

j=1

✓

m
j

◆

. (3.7)

Consider that if the scene is populated by only 10 objects and
the detection phase finds 10 blobs, we need to verify more than
1000 possible associations (1274). In order to decrease the number
of associations to be evaluated, we propose to exploit the spatio-
temporal continuity of the tracked objects so as to select only the
subset of feasible combinations.

In particular, the following heuristics have been considered to
obtain the sets Bd and Od:

• The distance between the centroids of the blobs (objects
respectively) composing a derived blob (object) has to be less
than an adaptive threshold ⌧ . ⌧ is dynamically chosen and
depends on the maximum velocity of objects representing the
maximum displacement (in pixels) of an object between two
frames. This value is strongly related to the position of the
object inside a scene: once fixed the maximum real velocity
of an object inside the scene, the maximum distance dmax

in pixel can be computed by means of the IPM algorithm:
⌧ = ↵ · dmax, being ↵ a weight set in our experiments to
2, which determines the area where find out possible split
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Figure 3.14 Heuristic for pruning the derived blobs.

and merge of blobs. An example is depicted in Figure 3.15:
the only derived objects that the system can evaluate are
o1o2 and o2o3, so discarding the pair o1o3, whose distance
between the centroids is over the thresholds ⌧1 and ⌧3.

• The reciprocal position of the blobs (objects) is taken into
account. For instance, starting from the situation depicted
in Figure 3.15a, only the combination b1b2b3 (Figure 3.15b),
b1b2 (Figure 3.15c) and b2b3 (Figure 3.15d) can be accepted,
while the association b1b3 (Figure 3.15e) doesn’t make sense,
since it is an impossible merge, implicitly including b2. Note
that in this very simple situation, often recurring also in real
scenarios, we are able to obtain a 25% decrease in the number
of association to deal with; furthermore, it does not a↵ect
the reliability of the system, since it only discards unfeasible
associations.

The main steps of the algorithm for obtaining the set of derived
blobs Bd are shown in Figure 3.16. A similar algorithm applies for
derived objects Od.

The algorithm starts by computing the distance between the
boxes belonging to B, whose relative centroids distance is less than
⌧ , so obtaining the weighted undirected graph G = {V, E, w}; the
vertices V = {V1, V2, ..., Vn} are associated to blobs, while the
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B1 B2 B3 

B1 B2 B3 

B1 B2 B3 
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(b) (c) 

(e) 

Figure 3.15 Examples of feasible (b,c,d) and unfeasible (e) merge of the
boxes in (a) for the composition of derived boxes.

edges E = {E1, E2, ..., Ek} to the distances between the blobs.
Each edge is associated to a weight ei,j corresponding to the dis-
tance between the blob bi and the blob bj. Note that if the distance
between two blobs is under ⌧ , then the corresponding edge does
not belong to E.

For each blob bi, the shortest path to reach all the other blobs
belonging to B and not yet explored is computed by using the Di-
jkstra’s algorithm; it is implemented by a min priority queue with
a Fibonacci heap [57], so that the global computational complexity
of the algorithm is O(|E| + |V | · log |V |).

For each found shortest path, a new derived blob bd is created,
composed by the blobs corresponding to the vertices crossed dur-
ing the path. An example is shown in Figure 3.17: in this case,
the method reduces by 40% the number of derived objects (the
combinations b2b3, b2b4, b1b4 and b2b3b4 are not generated).

The algorithm The algorithm operates in two distinct phases,
as shown in Figure 3.19: in the first one, it finds the correspon-
dence for stable objects (i.e. objects in the to be classified, classified
or frozen state); in the second phase it tries to assign the remain-
ing blobs to objects in the new state, possibly creating such ob-
jects if necessary. The motivation for this distinction is that the
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procedure Bd = FindDerivedFeasibleBlobs(Blobs B)

Bd={ }

d := ComputeDistancesBetweenCentroids(B)

graph := ComputeGraph(B,d)

foreach bi in B

foreach bj in B, j > i

path := ComputeShortestPath(graph, bi, bj )

bd := CreateBlob(graph, path)

Bd:= AddBlob(graph,bd)

end procedure

Figure 3.16 The algorithm for finding out the derived feasible blobs (ob-
jects).
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Figure 3.17 An example of the algorithm in charge of creating derived
blobs (objects) for a split pattern: starting from the detected blobs in (a), the
algorithm creates the graph in (b) and finds the shortest paths in (c). The
output of the algorithm is in (d).
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management of split-merge and occlusions can be performed only
for stable objects, since for new ones the system would not have
enough information to do it in a reliable way.

During the first phase, the algorithm starts by choosing the
maximum element s⇤ij of the matrix, corresponding to the blob bi

and to the object oj and records the corresponding associations in
T . At each step, the algorithm selects the pair bi�oj such that sij

is the maximum value corresponding to tij = �1 and records the
obtained associations.

The following situations can occur:

one-to-one correspondence : bi 2 B, oj 2 O (see Figure
3.18a). The associations corresponding to the blob bi and to the
object oj need to be updated, together with all the derived blobs
and objects containing bi and oj; in particular:

ti,j = 1;

tz,j = 0 8 bz 2 BI , bz 6= bi;

tz,k = 0 8 bz � bi, 8 ok 2 OI ;

ti,k = 0 8 ok 2 OI , ok 6= oj;

tz,k = 0 8 ok � oi, 8 bz 2 BI ;

(3.8)

one-to-many correspondence : bi 2 B, oj 2 Od (see Figure
3.18b). In this case the occlusion pattern has to be solved. The
associations corresponding to the blob bi and to the object oj need
to be updated, together with all the associations of the objects
composing the derived object oj:

ti,j = 1;

tz,j = 0 8 bz 2 BI , bz 6= bi;

tz,k = 0 8 bz � bi, 8 ok 2 OI ;

ti,k = 0 8 ok 2 OI , ok 6= oj;

tz,k = 0 8 ok ⇢ oj, 8 bz 2 BI ;

(3.9)

Furthermore, the state of oj is initialized to classified while the
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Figure 3.18 Di↵erent kinds of associations: one-to-one association (a), one-
to-many association (b), many-to-one associations (c,d), many-to-many asso-
ciations (e,f).
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state of the objects composing oj is updated to in group; finally,
an instance of each object is stored inside the derived object, which
is classified as a group object. Starting from this frame, the object
oj will be tracked as a group until it will split in the next frames.

many-to-one correspondence : bi 2 Bd, oj 2 O. In this
case a split problem has to be solved. Two di↵erent situations
have to be taken into account; if oj is classified as a person (see
Figure 3.18c), then the associations corresponding to the blob bi

and to the object oj need to be updated, together with all the
associations of the blobs composing the derived blob bi:

ti,j = 1;

tz,j = 0 8 bz 2 BI , bz 6= bi;

tz,k = 0 8 bz ⇢ bi, 8 ok 2 OI ;

ti,k = 0 8 ok 2 OI , ok 6= oj;

tz,k = 0 8 ok � oi, 8 bz 2 BI ;

(3.10)

A di↵erent situation occurs when the object oj is classified as
a group (see Figure 3.18d), since the split refers to the end of an
occlusion pattern. The system, by exploiting the set of occluded
objects (1 and 2 in Figure 3.18d) and their history, does not solve
the split but it is able to correctly associate each blob to the most
similar object. A similarity matrix based approach is exploited in
this case in order to find the best association between occluded
objects and blobs.

many-to-many correspondence : bi 2 Bd, oj 2 Od (see
Figure 3.18e). This situation arises when a merge and a split
contemporaneously happen. In this case we decide to create a
group object, so to avoid any kind of decision which could be
reveal too risky. In this scenario, the associations corresponding
to the blob bi and to the object oj need to be updated, together
with all the associations of the blobs composing the derived blob
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bi and the objects composing the derived object oj:

ti,j = 1;

tz,j = 0 8 bz 2 BI , bz 6= bi;

tz,k = 0 8 bz ⇢ bi, 8 ok 2 OI ;

ti,k = 0 8 ok 2 OI , ok 6= oj;

tz,k = 0 8 ok ⇢ oi, 8 bz 2 BI ;

(3.11)

Furthermore, as in the one-to-many correspondence, the state of oj

is initialized to classified while the state of the objects composing
oj is updated to in group and their information are stored inside
the derived object, which is classified as a group object.

A many-to-many correspondence can also arise when two or
more objects are very near each other: as a matter of fact, the
similarity between the derived object and the derived blob can be
only slightly higher than the similarity between the single objects
and the single blobs (see Figure 3.18f). If it happens, each object
is associated to the blob with the higher similarity.

During the second phase, only the one-to-one association is per-
formed. For this reason, the algorithm follows a similar scheme,
except that it considers only the objects in the new state, and
does not create derived blobs and derived objects. Moreover, the
similarity matrix is built using less features than in the first phase
since we have experimentally verified that only the position in-
formation is su�ciently reliable for such objects. At the end of
this phase, any remaining unassigned blobs are used to create new
annotated object, initialized to the new state.

3.3.4 Similarity evaluation

As already mentioned, the similarity matrix is used to match one
or more blobs with one or more objects.

In order to measure the similarity between an object oi and a
blob bj, the tracking system uses an index based on three kinds of
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procedure TrackingAlgorithm (annotated_objs , blobs)

AssocStableObjs (annotated_objs , blobs)

pending_blobs := SearchPendingBlobs(blobs)

unassoc_objs := SearchUnassocObjs(annotated_objs)

AssocInstableObjs (unassoc_objs , pending_blobs)

unassoc_blobs := SearchPendingBlobs(pending_blobs)

CreateObjFromPendingBoxes (annotated_objs ,unassoc_blobs)

UpdateObjectsState(annotated_objs)

end procedure

procedure AssocInstableObjs (annotated_objs , blobs)

sim_mat := ObjInstableSimMatrix (annotated_objs , blobs)

foreach obj in annotated_objs:

(best_boxes , best_objs) := BestAssoc(sim_mat)

end

end procedure

procedure AssocStableObjs (annotated_objs , blobs)

derived_objs := CreateDerivedFeasibleObjs(annotated_objs)

derived_blobs := CreateDerivedFeasibleBlobs(blobs)

all_objs := JoinObjs(annotated_objs , derived_objs)

all_blobs := JoinBlobs(blobs , derived_blobs)

sim_mat := ObjStableSimMatrix (all_objs , all_blobs)

foreach obj in all_objs:

(best_boxes , best_objs) := BestAssoc(sim_mat)

end

end procedure

Figure 3.19 Structure of the algorithm for stable and unstable objects as-
sociations.

information: the position, the shape and the appearance:

sij =

s

↵p · (sp
ij)

2 + ↵s · (ss
ij)

2 + ↵a · (sa
ij)

2

↵p + ↵s + ↵a

(3.12)

As described below, sij values identify similarity metrics and
↵ values are weights chosen according to the state of the object
and the association management phase. In particular:

• sp
ij is the position similarity index, computed as the distance

between the estimated centroid of an object oi and the cen-
troid of a blob bj;

• ss
ij is the shape similarity index between an object oi and a
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blob bj;

• sa
ij is the appearance similarity index between an object oi

and a blob bj, based on color histograms;

• ↵p, ↵s and ↵a are the weights of position, shape and appear-
ance similarity index respectively;

All ↵ values have been chosen by experimentation over a train-
ing set. Namely, in the first phase, selected values for objects in
the to be classified and classified state are ↵p = ↵s = ↵a = 1
while for objects in the in group state selected values are ↵s =
↵a = 1; ↵p = 0 since in this context shape and appearance sim-
ilarity perform better than position one. Finally, in the second
phase that evaluates new objects, we choose to consider the only
reliable feature, namely the position. Thus selected ↵ values are
↵s = ↵a = 0; ↵p = 1.

For the position, as already seen, the system uses a Kalman
filter, based on a uniform velocity model, to predict the coordi-
nates of the object centroid at the current frame. The predicted
coordinates are compared with the blob centroid, using Euclidean
distance, in order to obtain for each object oi and each blob bj the
distance dij. The position similarity index is then computed as:

sp
ij = 1 � dij/dmax (3.13)

where dmax is a normalization factor depending on the maximum
velocity of objects representing the maximum displacement of an
object between two frames.

For characterizing the shape similarity, the system uses the
real height and the area of the blob and of the object model;
in particular if we denote as �hij the relative height di↵erence
between oi and bj, and as �Aij the relative area di↵erence, the
considered shape similarity index is:

ss
ij = 1 �

r

|�Aij| + (�hij)2

2
(3.14)
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Finally, as a representation of the appearance we have used the
color histograms computed separately for the upper half and for
the lower half of the object or blob (Image Partitioning). We have
experimented with several criteria for comparing the histograms,
and we have found that the most e↵ective value is the �2 distance:

qij =
1

M

X

k

�

ho
i (k) � hb

j(k)
�2

ho
i (k) + hb

j(k)
(3.15)

where index k iterates over the bins of the histogram, ho
i is the

histogram of object oi, hb
j is the histogram of blob bj, and M is

the number of bins. The appearance similarity index is:

sa
ij = 1 �

s

�

qup
ij

�2
+
�

qlow
ij

�2

2
. (3.16)

where qup
ij is the value of qij computed using only the upper half

of the object/blob, and qlow
ij is the value computed using only the

lower half.
In Section 6.1 we will show the results obtained by the proposed

people tracking algorithms.





Chapter 4

Fire Detection Algorithm

4.1 Rationale of the method

Up to now the e↵orts of the research community have been mainly
devoted to the definition of a representation of both color and
movement, so as to discriminate fire from non fire objects; this
inevitably leads to high dimensional feature vectors.

How to manage high dimensional feature vectors is a well-
known problem in the communities of machine learning and pat-
tern recognition: in fact, as shown in [58], employing a high di-
mensional feature vector would imply a significant increase in the
amount of data required to train any classifier in order to avoid
overspecialization and to achieve good results.

Furthermore, independently of the particular features extracted,
in most of the above mentioned methods the high variability of
fires, as well as the large amount of noise in data acquired in
fire environments, prevent the systems from the achievement of a
high recognition rate. More generally, it has been shown [59] that
increasing the performance of a system based on the traditional
combination feature vector – classifier is often a very expensive
operation: in fact, it may require to design a new set of features
to represent the objects, to train again the classifier, or to select a
di↵erent classifier if the performance are not su�ciently satisfac-
tory. Furthermore, this e↵ort could be payed back by only a slight
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improvement in the overall accuracy, so this approach may prove
not very convenient.

In order to overcome the above mentioned limitations, one of
the solutions coming from the literature [59] is to split the feature
vector and consequently to adopt a set of classifiers, each tailored
on a feature set and then trained to be an expert in a part of the
feature space. The main idea of this kind of paradigm, usually re-
ferred to as Multi Expert System (MES), is to make the decision
by combining the opinions of the di↵erent individual classifiers
(hereinafter experts), so as to consistently outperform the single
best classifier [60]. This latter paper explains on the basis of a
theoretical framework why a MES can be expected to outperform
a single, monolithic classifier. In fact, most classifiers, given an
unlimited amount of training data, converge to an optimal classi-
fication decision (in a probabilistic sense); but on a finite training
set, their output is a↵ected by an error (additional with respect
to the inherent error due to ambiguities in the input data), which
is either due to overspecialization or to the choice of reducing the
classifier complexity in order to avoid the loss of generalization
ability. The author of [60] shows that, under some assumptions
satisfied very often in practical cases, a suitably chosen benevolent
combining function can make the overall output of the MES less
sensitive to the errors of the individual classifiers.

MESs have been successfully applied in several application do-
mains, ranging from biomedical images analysis [61][62] and face
detection [63] to movie segmentation [64] and handwriting recog-
nition [59]. In this algorithm we propose the employing of a MES
for detecting the fire in both indoor and outdoor environments:
three di↵erent experts, complementary in their nature and regard-
ing their errors, are combined with relatively little e↵ort so as to
make possible the improvement of the overall performance. It
is evident that the successful implementation of a MES requires
both the adoption of complementary sets of features feeding the
di↵erent experts and the choice of a reliable combination rule.

Regarding the first aspect, we considered three di↵erent ex-
perts able to analyze the same problem from di↵erent points of
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view, based on color, on movement and on shape variation respec-
tively. The main advantage deriving from this choice lies in the
fact that the experts are very simple to configure, so making the
proposed system particularly suited for deployment in real envi-
ronments.

As for the experts based on color and shape variation, two algo-
rithms widely adopted by the scientific community and providing
very promising results have been considered; they are based on a
thresholding in the YUV space and on the variation of the shape
in terms of minimum bounding box enclosing the detected moving
object, respectively. In particular, the expert based on color aims
to discriminate red from non red objects and is particularly suited
for sterile environments, while the one based on shape variation
is very e↵ective for distinguishing fire, usually having a strongly
variable shape, from rigid objects moving in the scene, such as
vehicles.

Finally, the expert based on movement evaluation is based on
the assumption that fire has a disordered movement, much more
disordered if compared with any other object usually populating
the scene. In order to exploit this property, a novel descriptor
for representing the movement is proposed for this algorithm: the
main idea is to adopt a bag of words approach for evaluating the
direction of some salient points detected in the moving objects.
The main advantage deriving from this choice is that the repre-
sentation is very robust with respect to the noise introduced both
during the extraction of the salient points and the evaluation of
the direction of their motion.

Once obtained the decisions from the three di↵erent experts,
the system needs to properly combine them: the idea is that each
classifier should have di↵erent voting priorities, depending on its
own learning space. For this reason, the combination rule adopted
is based on weighted voting, where the weights depend on the
prediction confidence of each class the system has to recognize
[60].

The main original contributions are: 1) the proposition of a
novel system for characterizing the movement of the flame; 2) the
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use of a multi expert approach based on three complementary
experts; 3) a wide characterization of performance on a standard
dataset of videos, made available at http://mivia.unisa.it.

4.2 Proposed Architecture

An overview of the proposed approach is presented in Figure 4.1.
Objects moving in the scene are first detected by using the algo-
rithm we recently proposed in [65], which proved to be very e↵ec-
tive both from a qualitative and a computational point of view:
a model of the background (which represents the scene without
any object moving inside) is maintained and properly updated
(Background updating) so as to deal with the changes of the envi-
ronments during the day; then, a background subtraction strategy
is applied in order to obtain the foreground mask, encoding the ob-
jects moving in the scene (Foreground mask extraction). Finally,
the blobs, each one being associated to an object, are obtained by a
connected component labeling analysis [66] (Connected component
labeling).

Three di↵erent experts have been introduced for evaluating
the blobs: the first is based on color (Color evaluation, hereinafter
CE ); the second analyzes the shape of the blobs detected in the
current frame with respect to the ones detected in previous frame
(Shape variation, hereinafter SV ); the third evaluates the move-
ment of the blobs in two consecutive frames (Movement evaluation,
hereinafter ME ). The decisions taken by the experts are combined
by a MES classifier based on a weighted voting rule, which finally
assigns a class to each blob.

4.2.1 Multi expert evaluation

As mentioned before, one of the main choices determining the
performance of a MES is the combination rule. Although sev-
eral strategies have been proposed in the last years [67], it has
been proved that one of the most robust to errors of the combined
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Figure 4.1 Overview of the proposed approach: the blobs are detected
by a background subtraction algorithm; the decision is taken by combining
information coming from three di↵erent experts, respectively based on color,
shape variation and motion which analyze every input blob. Note that the
last two experts need to be supplied with the blobs detected at the current
frame and at the previous frame.

classifiers (both when combining classifiers based on the same fea-
tures and when using di↵erent feature subsets in each classifier)
is the weighted voting rule [60]. The main idea is that each ex-
pert can express its vote, which is weighted proportionally to the
recognition rate it achieved for each class on the training set. For
instance, let suppose that both CE and the ME classify the blob
b as fire and that the percentage of fires correctly detected on the
training set is 0.8 and 0.7 for the two experts respectively. Then,
the two experts’ votes for the class fire will be weighted 0.8 and
0.7.

In a more formal way, the generic k-th expert, being k 2
{CE, SV, ME}, assigns to the input blob the class ck(b) chosen
between the labels (F for fire, F for non fire); this can be formu-
lated as a vote to the generic class i as follows:

�ik(b) =

(

1 if ck(b) gives the class i

0 otherwise
(4.1)

In other words, if the output corresponds to the class, then the
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vote will be 1, otherwise it will be 0.
As suggested in [59], the weights wk(i) are dynamically evalu-

ated by a Bayesian formulation in order to lead to the MES highest
recognition rate. In particular, this formulation takes into account
the performance of each expert on the training set of each class.
More formally, given the classification matrix C(k) computed by
the k-th expert on the training step, wk(i) can be determined by
evaluating the probability that the blob b under test, belonging to
the class i, is assigned to the right class ck by the k-th expert:

wk(i) = P (b 2 i|ck(b) = i) =
C(k)

ii
PM

i=1 C(k)
ij

, (4.2)

being M the number of classes and C(ij) the value of the classifi-
cation matrix in the position (i, j).

The final decision is taken by maximizing the reliability of the
whole MES in recognizing that particular class.

In particular, the reliability  (i) that the blob b belongs to the
class i is computed by a weighted sum of the votes:

 (i) =

P

k2{CE,SV,ME} �ik(b) · wk(i)
P

k2{CE,SV,ME} wk(i)
. (4.3)

The decision for the class c is finally taken by maximizing the
reliability over the di↵erent classes:

c = arg max
i
 (i). (4.4)

4.2.2 CE: the expert based on color evaluation

This expert evaluates the color by analyzing its properties in the
YUV color space; as already mentioned, YUV has been widely
adopted in the literature since it separates the luminance from
the chrominance and so is less sensitive to changes in brightness.
In particular, as proposed on [28], this expert is based on the com-
bination of six di↵erent rules, denoted as rc

1 . . . rc
6, able to model
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the color of the flames.

In more details, as for rc
1 and rc

2, the idea is related to the
experimental evidence that in most of flames the pixels exhibit a
Red channel value greater than Green, as well as a Green greater
than Blue [68]:

R(x, y) > G(x, y) > B(x, y). (4.5)

Such conditions can be equivalently expressed in the YUV plane,
by adopting the well known conversion rules [69], so that we obtain
for the generic pixel (x,y) of the image:

rc
1 : Y (x, y) > U(x, y); (4.6)

rc
2 : V (x, y) > U(x, y) (4.7)

On the other side, rc
3 and rc

4 are based on the assumption that
the Red component of fire pixels is higher than the mean Red
component in the frame. Expressed in the YUV space, it implies
that a fire pixel has the Y and V components higher than the mean
Y and V value in the frame respectively, while the U component
lower than the mean U value in the frame:

rc
3 : Y (x, y) >

1

N
·

N
X

k=1

Y (xk, yk) (4.8)

rc
4 : U(x, y) <

1

N
·

N
X

k=1

U(xk, yk), (4.9)

rc
5 : V (x, y) >

1

N
·

N
X

k=1

V (xk, yk), (4.10)

being N the total number of pixels in the image.

Finally, in [28] it has been experimentally evaluated that fire
pixels are characterized by a considerable di↵erence between U
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and V components. Thus, the last rule can be defined as:

rc
6 : |V (x, y) � U(x, y)| � ⌧c. (4.11)

In our experiments, ⌧c has been set to 40, as suggested in [28].
The classifier decision cCE is finally taken by evaluating the

above mentioned rules. In particular, if all the conditions are
verified, then the blob is assigned to the fire class:

cCE =

(

F if rc
1 ^ rc

2 ^ rc
3 ^ rc

4 ^ rc
5 ^ rc

6

F otherwise
(4.12)

IEEE Trans. on CSVT covers all 

aspects … relating to video …  image/

video processing, image/video 

analysis, … 0 
1 
2 
3 
4 

vi
de

o 
as

pe
ct

s 
im

ag
e 

pr
oc

es
si

ng
 

an
al

ys
is

 
sc

an
ni

ng
 

…
 

IEEE Trans. on IP focuses on signal-

processing aspects of image 

processing, … image scanning, ... 

DICTIONARY 

video 

aspects  

image 

processing 

analysis 

scanning 

… 0 

1 

2 

3 
vi

de
o 

as
pe

ct
s 

im
ag

e 
pr

oc
es

si
ng

 
an

al
ys

is
 

sc
an

ni
ng

 
…

 

T1 

T2 

H1 

H2 

Figure 4.2 The rationale of the Bag of words approach applied to text classi-
fication: the occurrences, in a document, of a predefined set of words included
into a dictionary are used for building up an histogram of occurrences. See
the histograms H1 and H2 associated to texts T1 and T2 respectively.

4.2.3 SV: the expert based on shape variation

This expert (hereinafter referred as SV ) analyzes the variation of
the blob shape across two consecutive frames in order to exploit
the observation that the shape of flames changes very quickly.
In particular, as in [36], the algorithm computes, for each blob,
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the perimeter Pt and the area At of the minimum bounding box
enclosed it. Such values are then used to compute the perimeter-
area ratio rt, which is an indicator of shape complexity:

rt =
Pt

At

. (4.13)

The shape variation st
v is then evaluated by comparing the

shape measure computed at the frame t with the one obtained by
the nearest blob detected at the previous frame (t � 1):

st
v =

�

�

�

�

rt � rt�1

rt

�

�

�

�

. (4.14)

The score st
v is finally analyzed; if it is higher than a given

threshold, then the class fire is assigned to the input blob:

cSV =

(

F if st
v > ⌧v

F otherwise
(4.15)

4.2.4 ME: the expert based on movement eval-
uation

ME is based on a novel descriptor which adopts a bag-of-words
approach [70], introduced in order to characterize the cluttered
movement of fire. The rationale of this expert is based on the
empirical observation that the parts of a flame appear to move at
the same time in several di↵erent directions in a rather chaotic and
unpredictable way; by contrast the parts of a rigid or articulated
object show at each instant a quite limited set of motion directions.
For translating this observation into an e↵ective description and
classification system, we have chosen a bag-of-words approach.

Bag-of-words has been successfully applied in several applica-
tion domains, ranging from text classification to audio event de-
tection and action recognition. The underlying idea is that the
pattern to be classified is represented by the occurrences of low-
level features (words) belonging to a dictionary and such occur-
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Figure 4.3 Low level representation (a,b) and high level representation (c,d)
of a fire (a,c) and a non fire (b,d) blob. Red and blue circles in (a) and (b)
represent the salient points extracted at the frame t and t � 1 respectively.
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rences are used to build a high-level vector; the generic component
is associated to a word and its value is given counting to the oc-
currences of that word in the input pattern (see Figure 4.2 for an
example).

In order to apply the bag of words strategy to our problem,
the following main steps need to be dealt with: the extraction of
the low-level representation, the definition of the dictionary that
determines the construction of the high-level representation, and
the paradigm adopted for the classification. An overview of the
proposed approach is shown in Figure 4.4, while a more detailed
explanation of the above mentioned phases will be provided in the
following.

Low-level representation In order to capture the motion of
the di↵erent parts of a foreground blob, salient points are extracted
and matched across consecutive video frames.

The set of salient points is extracted by using the Scale Invari-
ant Feature Transform (SIFT) [71] descriptors. At a given time
instant t, the high-speed corner detection algorithm proposed in
[72] is used to extract the set Ct of |Ct| corners:

Ct = {c1
t , ..., c

|Ct|
t }. (4.16)

Each corner is then represented by measuring the local image
gradients in the region around it, so obtaining the set of corre-
sponding SIFT descriptors:

Vt = {v1
t , ..., v

|Vt|
t }, (4.17)

being |Vt| = |Ct|.
Given the corner points extracted in two consecutive frames (t

and t � 1) and the corresponding set of descriptors (Vt and Vt�1),
the algorithm computes a set of matchings by pairing each point
at time t with the one at time t � 1 that is closest according to
the Euclidean distance between SIFT descriptors:

M = {m1 . . . m|M |} (4.18)
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where:
mj = (va

t , v
b
t�1) (4.19)

such that:

b = arg min
i

kva
t � vi

t�1k and kva
t � vb

t�1k < ⌧M (4.20)

For each matching mj we consider the vector connecting the two
corresponding corner points ca

t and cb
t�1, and extract the angle �j

of this vector with respect to the x axis.

Figure 4.4 clarifies this concept: the corner points ct�1 and ct,
represented as red and blue circles respectively, are associated to
their descriptors vt�1 and vt. The matching mj is represented by
the green line connecting such points, while �j is the angle that
mj build with the x axis (black line).
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H 

Figure 4.4 Given the corner points ct�1 and ct (red and blue circles respec-
tively), the matching mj is obtained by minimizing the euclidean distance
between the corresponding descriptors vt�1 and vt. The direction of the mo-
tion, encoded by the angle �j , is evaluated according the dictionary D and
the histogram of occurrences H is then built.

Dictionary According to the proposed low-level representa-
tion, the space of the possible words is the round angle (0 ��360 �).
In order to obtain a adequately small finite set of words, we decide
to uniformly partition the space into |D| sectors d, so obtaining
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the dictionary D as follows:

D =
n

dk

�

�

�

k = 1, ..., |D|; dk =
i

k
2⇡

|D| , (k + 1)
2⇡

|D|

io

. (4.21)

|D| has been experimentally set for this algorithm to 6: it implies
that the resolution of the direction is 60 �, which represents a good
tradeo↵ between a suitable representation of the movement and
the immunity to the noise.

High-level representation Given the dictionary D, for each
blob the algorithm finds the words of D that occur in the blob,
i.e. the intervals dk that correspond to the motion direction of the
salient points; then the blob can be represented by the histogram
H of the occurrences of such words. An example is reported in
Figure 4.3, where the low level representation (a,b) and the corre-
sponding high level representation (c,d) for a fire (a,c) and a non
fire object (b,d) is shown.

In a more formal way, the generic angle �j is associated to the
index sj, depending on the word dk it belongs to:

sj = |k : �j 2 dk, k 2 {1, ..., |D|}|. (4.22)

The set S = {s1, ..., s|M |} associated to a generic blob b is
then evaluated obtaining the histogram H = {h1, ..., h|D|}, whose
generic element hi can be computed as follows:

hi =
|M |
X

l=1

�(sl, i), i = 1, ..., |D|, (4.23)

being �(·) the Kronecker delta.
Classification The main assumption used for designing the

classifier is the evidence that the obtained feature vector is di↵er-
ent for the two classes; in presence of fire the movement is disor-
dered, determining occurrences of the words rather homogeneously
distributed. Vice versa, when a rigid or articulated object moves
in the scene, we mainly obtain values concentrated on a single or
a few bins. See Figure 4.3 for an example.
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For this reason, we introduce a measure of the homogeneity
hm of the histogram:

hm = 1 � max(H)
P|H|

k=1 hk

(4.24)

and consequently if it is higher than a given threshold, then the
input is classified as fire, otherwise as not fire:

cME =

(

F if hm > ⌧m
F otherwise

(4.25)

In Section 6.2 we will show the results obtained by the proposed
video analitics algorithms.



Chapter 5

Data Flow Architecture for
video surveillance platform

As introduced in Section 1.1, in this thesis we propose a novel and
e�cient architecture based on a data-flow paradigm, where the
interfaces of the connected nodes are specified using a Node Defi-
nition Language (NDL), thus enabling the easy definition of new
data types. The types of node inputs and outputs are statically
defined, enabling compile-time checking within the implementa-
tion of each node, thus freeing the programmer from the burden
of manual type checks. However, metadata about these types are
retained in the nodes, allowing the platform to automatically en-
sure at run-time that only compatible nodes are connected to each
other. The nodes are implemented as dynamic loading libraries,
making it possible to extend the set of supported operations with-
out recompiling the platform. The instantiation of the nodes and
their interconnection are defined at initialization time by means
of a configuration file; so it is easy to alter the processing network
without recompiling the code. The execution of the nodes is di-
rected by a scheduler that can allocate the work on the available
processors or cores, exploiting parallelism even for a single data
stream. Synchronization issues are dealt with by the middleware,
which ensures proper locking of the involved data bu↵ers before a
node execution, and proper unlocking after its termination; locks
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are used according to the single writer/multiple readers pattern.
Communication between nodes is based on shared memory, thus
entailing a low overhead for medium-granularity nodes.

This architecture has been expressly designed to simplify some
of the common issues we have encountered when designing video
analytics/surveillance applications:

• the applications are highly customizable at configuration
time; an installer can add or remove processing steps, or
replace an implementation of a processing operation, with
no need to access the application source code; this is impor-
tant since even at a single deployment site, di↵erent cameras
often need slightly di↵erent processing chains (e.g. not all
the cameras may require shadow removal);

• the applications should use all the available processing power,
by parallelizing as much as possible the work using all the
available CPU cores; this is not trivial considering the previ-
ous point: during development it is not know exactly which
processing steps will be enabled when the application will
be deployed, since they can be easily changed by the in-
staller; our platform provides an automatic distribution of
the workload on the CPU cores, and also handles all the
synchronization issues, thus avoiding a category of di�cult
to detect software bugs that could reduce the robustness of
the application;

• memory leaks are a serious issue for video surveillance appli-
cations that need to run 24 hours a day, 7 days a week; while
the use of a language with garbage collection (like Java)
would solve this issue, video analytics still requires the per-
formance of languages like C or C++ that lack this feature;
our platform provides a memory management scheme which
is less general than garbage collection, but this loss of gener-
ality is compensated by a much more e�cient implementa-
tion, compatible with the performance requirements of video
analytics;
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• several video analytic functions could be applied over a single
video stream (for instance in cases in which we could be
interested in detecting fires, smokes and intrusions in sterile
zones by using a single camera). Our platform gives the
possibility to define nodes which are in common between
the di↵erent video analytic algorithms and to execute them
just a single time instead than one time for each algorithm;

• other features of the platform are aimed at solving general
problems that are anyway commonly encountered in surveil-
lance applications: for instance, the version management
helps to check that there is no mismatch in the installed
dynamic libraries (which could result in bugs di�cult to be
fixed by an installer), and the license management helps to
ensure that the application is only used according to the
conditions of the license (e.g. the number of video streams
is restricted to the one specified by the license).

As the previous discussion of the literature has pointed out,
each one of the features present in our platform has already been
o↵ered by some other architecture. However, to our knowledge,
this is the first time that all these features are available in an in-
tegrated way in a single platform. The integration of all these
features can determine some di�culties in their implementation,
if one considers their mutual interactions: for instance, memory
management would have been significantly simpler if it did not
have to coexist with multi-threading, and the automatic paral-
lelization of the workload could have been easier if the information
on the processing steps that are to be performed would have been
statically defined, and not decided when the application is started.
However, the availability of all of them in a single platform can
greatly simplify the task of a surveillance application developer,
which require a unique combination of flexibility, e�ciency and
robustness.

In the following, we will first present, in Section 5.1, an overview
of our architecture. Then we will discuss in Section 5.2 the devel-
opment of an application using our platform, and in Section 5.3
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the implementation of a single component. Section 5.4 will be
dedicated to a detailed description of the services provided by the
platform. Finally, in Section 6.3 we will describe our experience
with the porting of some existing video-surveillance applications
to our new platform, as a validation of its e↵ectiveness.
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5.1 The platform architecture

Fig. 5.1 shows an overview of the architecture of the proposed
platform from the point of view of the code. As it can be seen, the
platform is composed of a fixed middleware, and a set of plugins,
that are isolated from each other, and only communicate through
the middleware.

plugin 1

code

metadata

plugin n

code

metadata
…

middleware

common	
service	1

common	
service	k…

Figure 5.1 The code architecture of the proposed system. The application-
specific code is distributed among dynamically loaded plugins, which also
contain metadata about the implemented functionalities. The middleware
uses these metadata to connect the plugins to each other. The middleware
also provides common services that are independent of the application domain.

Plugins are dynamic-loading libraries that contain the imple-
mentation of one of more nodes, where a node corresponds to a
processing activity needed by the application, and metadata de-
scribing these nodes. Typically, a node corresponds to a processing
step clearly identifiable and with a well defined interface, that has
a granularity su�cient to make it worth executing in parallel with
other activities, and that is likely to be reused in a di↵erent ap-
plication. For instance, the acquisition of a frame from a camera
is an activity implemented as a node.

The middleware provides common services that are indepen-
dent of the actual nature of the application:
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Figure 5.2 The execution architecture of the proposed system. Execution
is based on the data-flow paradigm: a node is activated only when a datum is
available in its input bu↵ers, and a free space is available in its output bu↵ers.

• memory management : the middleware takes care of alloca-
tion and deallocation of memory blocks for the input/output
bu↵ers of the nodes; it also provides functions for tracking
the memory usage of each node;

• scheduling/thread management : a scheduler allocates the ex-
ecution of each node on possibly several threads;

• synchronization: proper locking/unlocking is ensured for bu↵ers
shared between nodes;

• configuration: each node can have a set of configuration pa-
rameters; the middleware reads the parameter values from a
common configuration file;

• logging : functions are provided to write messages on a log
shared by all the nodes; messages can have di↵erent priority
levels, and the log can be configured to write to file and/or
display on the console a message on the basis of its level;
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• version management : the middleware is able to keep di↵er-
ent versions of the same plugin and to activate the appro-
priate one on the basis of the plugin metadata;

• profiling : the middleware can record the time spent in the
execution of each node;

• testing : the middleware includes a utility to automate the
unit testing of a node, providing the node with test inputs
read from a file and checking the validity of the outputs
either by comparing them with the expected outputs read
from a file or by means of a user-defined validation function;

• data file management : a plugin can access any auxiliary data
files it needs without the need to know where on the file
system the application is currently installed;

• license management : the middleware includes components
to generate and to verify software license keys, based on
cryptography algorithms, to limit the use of an application
to a specified machine and to a specified period of time.

These services will be described with more detail in Section 5.4.
The proposed architecture simplifies the development process

of an application by promoting modularity, separation of concerns
and reusability. In fact, the developer of a plugin is relieved both
from the common tasks which the middleware provides for, and
from the need of understanding the other part of the application,
since a plugin only interacts with the middleware. Thus the devel-
oper can concentrate on the implementation issues of the specific
task performed by the plugin. Furthermore, if an application is
properly factored into plugins, it is very likely that some of the
plugins can be reused for other applications (for instance, a cam-
era acquisition plugin can be used for both a video-surveillance
application and for a tra�c monitoring system).

Besides the advantages during the development cycle, this ar-
chitecture provides important benefits during the deployment and
configuration of the application. Namely, since the plugins are
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dynamically loaded and their activation and configuration is con-
trolled by means of a configuration file, it is easy to change on the
fly an application setup, adding or removing processing steps, or
replacing an implementation of a processing step with a di↵erent
one, to adapt the application to the special requirements of a par-
ticular installation. Furthermore, the ability of the middleware to
keep di↵erent versions of the same plugin eases the migration to
a new release of the application.

5.2 Definition of an application using
the platform

From the application designer point of view, a running instance of
an application based on the proposed platform can be considered
as a data-flow network, as illustrated in Fig. 5.2. The processing
is performed by nodes, each taking possibly some data items as in-
puts, and producing possibly other data items as outputs. A node
is executed as soon as its inputs are ready, and there is available
bu↵er space for its outputs. Node inputs and outputs are stati-
cally typed, and the type information is contained in the meta-
data of the plugins that implement the nodes. The middleware
uses this information to allocate and manage the bu↵ers through
which nodes exchange data items, and to check the compatibil-
ity between nodes connected to a same bu↵ers. Each bu↵er can
have only one producer, that is, a node that writes to the bu↵er;
however, several consumers (i.e. nodes that read from the bu↵er)
can be connected to it; the middleware takes care of ensuring the
proper synchronization between the producer and the consumers.

The application designer specifies which nodes constitute the
processing network and how they are to be connected by means of
a Network Configuration File (NCF), that is a text file based on
an ad-hoc description language. In particular, the NCF allows the
designer to describe in a declarative way which plugins have to be
used (including constraints on the plugin versions), which nodes
have to be instantiated, how they have to be configured (by means
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Figure 5.3 The compilation process for plugin implementing primitive nodes.
Stating from a definition of the node interfaces in the Node Description Lan-
guage (NDL), a NDL compiler produces a skeleton with the code for con-
necting to the middleware, that has to be linked together with the code im-
plementing the node functionalities in order to obtain a dynamically loaded
plugin.

of node-specific configuration parameters) and how they have to
be interconnected. If needed, the design can provide additional
information such as the size of each single bu↵er, to fine tune the
operation of the application.

If new nodes are to be developed (which might not be the
case, if the current application can be completely defined reusing
plugins already available from previous applications), the designer
can specify the interface of each node using a Node Description
Language (NDL). The NDL files are then passed to the plugin
developers in order to obtain an implementation for the nodes.
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5.3 Node development

The development of a node implementation (a plugin) starts with
a description of the node interface through the Node Description
Language (NDL). A NDL file specify for each of the nodes im-
plemented by a plugin which are the inputs, the outputs and the
configurable properties. For these attributes of a node, the NDL
assigns a name and a type; this latter can be either a built-in type
or a user defined type. Fig. 5.4 shows an example NDL file for a
face detection plugin.

Once the node interface is defined, the developer can choose the
implementation technology to be used for the plugin. The current
release of the middleware supports two kinds of implementation:

• primitive nodes, which are implemented by means of C/C++
functions compiled into a dynamic loading library;

• composite nodes, which are implemented by aggregating other
nodes from existing plugins, specifying how they have to be
assembled by means of a NCF file; once a composite node
is defined, it can be used exactly as if it were a primitive
one, thus allowing to raise the abstraction level of the plug-
ins by introducing higher and higher level nodes built upon
the foundations of the lower levels.

In future releases of the platform, other implementation tech-
nologies are expected to be introduced (for instance, implementa-
tions based on scripting languages); the middleware architecture
is flexible enough to accomodate quite easily such extensions.

As regards the implementation of primitive nodes, Fig. 5.3
shows the steps and the intermediate files needed for building
a primitive plugin. A NDL compiler is used to obtain both a
C-language skeleton (containing metadata and automatically gen-
erated functions for interfacing the plugin with the middleware)
and a header file, with the declaration of the data types and func-
tion prototypes to be used by the user-supplied implementation
functions. The skeleton is compiled and linked together with the
user-supplied implementation files, to generate a dynamic loading
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library face_detection version 1.0.0

# User-defined types

type size=struct

width, height: int32

end

rect=struct

left, top, right, bottom: int32

end

# Node interface for the node type "detect"

node detect

inputs

frame : image

outputs

faces : array of rect

# Configurable parameters of the node

properties

min_size, max_size: size

scale_factor: float64

do_canny_pruning: bool

end

end

Figure 5.4 An example NDL file defining the interface of a face detection
plugin.

library. A make-file for compiling and linking the plugin can be
automatically generated using a script provided with the platform.

5.3.1 The node library for video analytics

In the course of the adoption of the proposed platform for our video
surveillance applications, we have developed a library of reusable
nodes that implement common tasks found in this kind of systems.
In Table 5.5, we highlight some of the nodes available. Notice
that for some tasks there are several dedicated nodes, providing
the same interface but di↵ering in the implementation. Thus it is
possible to change the algorithm used for some processing step by
simply modifying the application NCF file.



80 5. Data Flow Architecture for video surveillance platform

frame_acquisition Acquires the frames from a camera or a
video file, using the functions provided by
OpenCV.

background_subtraction Given a frame and a reference background,
compares the two using a dynamic thresh-
old and produces a foreground mask.

background_update Updates a background model represented
by the mean color value for each back-
ground pixel.

mog_background_update Updates a background model where each
pixel is represented by a Mixture-of-
Gaussians (MoG); has the same interface
as background_update.

connected_components Detects the connected components in the
foreground mask.

small_blobs_filter Removes from the foreground the “blobs”
smaller than a threshold.

shadow_removal Removes shadow pixels from the fore-
ground.

reflection_removal Given a set of detected foreground objects,
removes reflection pixels (due to a reflec-
tive floor) from the bottom of each object.

inverse_perspective_mapping Given a set of detected foreground objects,
computes their position in 3D space by in-
verting the perspective transform.

overlap_tracking Gives an identifier to detected objects try-
ing to preserve the object identities across
the video sequence; uses the measure of the
overlap of foreground regions across adja-
cent frames to establish a correspondence.

bgm_tracking Gives an identifier to detected objects try-
ing to preserve the object identities across
the video sequence; uses Bipartite Graph
Matching, and a similarity measure that
takes into account the position, the size
and the color of the objects. Has the same
interface as overlap_tracking.

log_event_sink Registers detected events on a text-based
log file.

mysql_event_sink Registers detected events on a relational
database using the MySQL DBMS. Has
the same interface as log_event_sink.

gui_event_sink Shows detected events to the user on
a window. Has the same interface as
log_event_sink.

Figure 5.5 A subset of the node library.
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5.4 Common services provided by the
platform

This section describes the services provided by the middleware
that are independent of the exact nature of the application being
developed. Some of these services are available by means of APIs
to the node developers, while others are activated automatically at
runtime, without requiring modifications of the node source code.

5.4.1 Memory management

Dynamically allocated data structures are the source of many sub-
tle programming errors in languages like C and C++ that lack
garbage collection. Often these errors, even when discovered, are
di�cult to debug because it is not easy to spot the portion of
the code that was responsible for the error; this problem gets even
more acute in programs based on a plugin architecture, where soft-
ware components independently developed are dynamically added
at run time.

Our middleware addresses this problem in two ways:

• by reducing the need to resort to dynamic memory alloca-
tion, taking complete responsibility for the allocation and
deallocation of data structures used by the nodes to com-
municate with each other;

• by providing a set of allocation and deallocation functions
that enable the middleware to track the memory operations
and to check for common errors.

For the first point, all the data exchanged between nodes is
constrained to pass through bu↵ers, as illustrated in Section 5.2;
the memory used for the bu↵ers is completely taken care of by the
middleware. Thus the node developer is not concerned with the
deallocation of the input data received by the node, nor with the
allocation of the output data produced by the node. Notice that
the data structures may not have fixed length. This is obviously
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the case of images, which may have di↵erent dimensions; but the
platform also supports variable-length arrays of other data types
(including array of images, or arrays of arrays). In these cases, the
node has to specify with an API call the desired dimension for the
output data structures, in terms of their data type: for instance,
for images the width and height are specified, not the number of
bytes. Fixed-length data structures are allocated once at program
startup; for variable-length data structures the platform attempts
to avoid allocating memory at each processing cycle, in order to
reduce the computational cost, by maintaining a cache of allocated
memory areas.

Regarding the second point, the platform includes memory al-
location functions, specialized for the di↵erent supported datatypes,
that assist the developer in debugging memory errors. More specif-
ically, in normal mode of operation, these functions work as their
equivalent standard counterparts (except that they always check
for memory exhaustion), and only a negligible runtime overhead is
incurred. However the application can also be started in a memory
debugging mode; in this case for each allocated memory block the
platform keeps additional information, that is used to check if the
block is correctly deallocated (signaling if a block is never deal-
located or is deallocated twice) and to report the node that has
performed the allocation/deallocation of the block. Furthermore,
the platform can be instructed to periodically report in the log
(described in Section 5.4.5) the total memory allocated by each
node, so as to detect memory leaks in node implementations.

Notice that the memory management support provided by the
platform is less extensive and general than a Garbage Collection
mechanism, such as the ones included in several programming lan-
guages (e.g. Java). This fact does not limit significantly the use-
fulness of memory management for the video surveillance appli-
cations, and has made possible an e↵ective implementation that
has a far lighter impact on the processing speed than a full-fledged
garbage collector would have had.
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buffer	states

Scheduler
thread

worker
thread 1

worker
thread 2

worker
thread n
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results tasks

immediate	tasks
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Figure 5.6 The multi-threaded scheduler. The main scheduler thread de-
termines, on the basis of the bu↵er states, which nodes can be activated, and
for them creates task objects in the task queue (immediate tasks, for trivial
operations, are executed immediately by the scheduler thread without being
put in the task queue). The worker threads in the thread pool pick tasks from
the task queue and execute the code of the corresponding nodes, putting a re-
sult object in the result queue. Finally, the scheduler thread reads the result
objects and updates the corresponding bu↵er states, possibly making more
nodes ready to be activated.
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5.4.2 The scheduler

The scheduler is the component of the middleware that manages
the execution of the individual nodes of the application. Notice
that the adopted scheduling algorithm is not an original contri-
bution of this architecture; here we provided a detailed descrip-
tion of the scheduler only with the aim of making more clear
how this component of the platform interacts with the rest of the
proposed architecture. The current version of the platform actu-
ally includes two di↵erent scheduler implementations: the single-
threaded scheduler and the multi-threaded scheduler.

As its name implies, the single-threaded scheduler uses a single
thread to perform the execution of all the nodes. This scheduler
is not able to activate more nodes in parallel, and so it is not
recommended on multi-processor or multi-core systems. However,
since it does not have to care for synchronization issues, its inter-
nal structure is simpler, and it has a lower computational over-
head. Essentially this scheduler manages a queue of tasks to be
performed, using auxiliary data structures to check when a task
is ready to be fired. For primitive nodes, there is a one-to-one
correspondence between a node and a task; on the other hand,
composite nodes are usually associated to more tasks.

The multi-threaded scheduler divides the execution of the nodes
among multiple threads, as shown in Fig. 5.6. On multi-processor
or multi-core machines this implies that multiple nodes can be
run in parallel; even on low-end single-core machines, technologies
like hyper-threading allow the application to achieve a speedup
(although not as conspicuous as on multi-core machines) with re-
spect to the single-threaded scheduler. The multi-threaded sched-
uler uses data structures that are similar to the ones of the single-
threaded scheduler, only they use the proper locking discipline
when accessing shared data. To avoid the large overhead incurred
by thread creation, the scheduler uses a thread pool: a fixed num-
ber of worker threads is created at startup, and they cyclically pick
a task from the ready queue, execute it, and notify the scheduler
of its completion. So a thread services numerous tasks, possibly
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related to di↵erent nodes, during its lifetime. This pooling dis-
cipline, which is widely adopted also in other domains (e.g. web
servers) is essential for video analytics applications whose work-
load is characterized by very short tasks that must be repeated
for each frame of each camera.

In order to avoid the synchronization overhead for trivial tasks,
nodes can be flagged as immediate in their plugin. Tasks corre-
sponding to immediate nodes are executed directly by the sched-
uler thread, and not passed to worker threads.

Notice that the choice of the scheduler to be used is not wired in
the application, but is made at startup time, thus giving the user
the possibility to decide for each single computer whether to use
or not multi-threading, and how many threads must be created.
This can be very important for cases where the video analytics
application must coexist on the same computer with other pro-
grams; a common occurrence is when, on sites with a very small
number of cameras, the same server must be shared by the video
management software and the video analytics software.

5.4.3 Synchronization

When the multi-threaded scheduler is used, the platform must
properly synchronize the access to shared data by di↵erent threads.
Traditionally, the application developer is in charge to ensure
proper synchronization in the code he/she writes. In the context
of a traditional video surveillance application, two approaches are
commonly used: the first is to avoid the problem by avoiding run-
ning in parallel two processing steps for the same video stream; in
this way, the only parallelism is between di↵erent video streams,
which could not allow to exploit all the available computational
power. The other approach is that the developer must remember
to use the appropriate synchronization mechanism each and every
time the code makes use of a potentially shared data structure.

Since synchronization is error prone, and synchronization bugs
are usually very hard to solve, because they manifest themselves
in a non deterministic way, it is important to relieve the node de-
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velopers from this task. Thus the platform ensures automatically
the synchronization for all the data structures that are accessed by
a node, making the resulting application inherently more robust.

Each node is allowed to access only two kinds of memory areas:
the input and output bu↵ers to which it is connected, and its
internal node state, that is allocated at node initialization time.
Since the node states are not shared, they pose no synchronization
problems; the access to the input and output bu↵ers, instead,
needs to be performed by one thread at a time. This is ensured by
the platform, which activates a node only when it is safe to do so,
that is when its input data are ready and there is space available in
its input bu↵ers. For the outputs of a node, the platform ensures
that other nodes waiting for these outputs are not activated until
the producing node has terminated its processing. For the inputs
of a node, the platform ensures that the producer of the datum
cannot access the same memory bu↵er until the first node has
terminated; however other consumer nodes can access the same
memory areas.

The synchronization is realized using thread-safe queues as the
basic mechanism: the scheduler uses such a queue to pass to the
worker threads the tasks to be performed and the references to the
bu↵ers to be used, while the worker threads use another queue
to pass back to the scheduler information on the completion of
the task. The platform includes two di↵erent implementations of
thread-safe queues: the first one is based on Pthreads synchroniza-
tion primitives (locks and condition variables), while the second
one is based on FastFlow [73], a low-level programming framework
for implementing lock-free queues. This latter has the advantage
that a thread accessing a queue does not incur in the (small) over-
head associated with the operation of a lock; however each thread
remains in the running state even when it has to wait for the queue
(busy wait), and so it may leave less CPU time available to other
applications on the same computer.
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a_color = [0xFF 0x80 0x20] # a shade of orange

list_of_rectangles = [ {x=10 y=7 width=100 height=80}

{x=40 y=128 width=38 height=122} ]

background_image = image "background.jpg"

a_solid_blue_image = image 800*600 of [0 0 255]

Figure 5.7 An excerpt from a configuration file, showing some examples of
the supported syntax.

5.4.4 Configuration

Node implementations may need a set of parameters to tune their
algorithms. It would be ine�cient to let each module to define
its own format for the configuration file: first, there would be a
duplication of code for parsing the configuration files; second, and
most important, the system integrator deploying an application
would have to struggle with several configuration files written us-
ing di↵erent syntaxes.

The platform provides a common configuration framework, in
which the configuration for each node instance can be either cen-
tralized in the NCF file or moved to a di↵erent file included by the
NCF. The common syntax for the configuration parameters does
not only make provisions for the built-in basic data types, but also
allows user-defined structured data types. Among the supported
types for a parameter there is the image type; a value for an image
parameter can be constructed either by specifying the numerical
values of the pixels in text format, or by using an image file in one
of the most commonly used formats. Fig. 5.7 presents an excerpt
from a configuration file, showing some examples of the supported
syntax.

5.4.5 Logging

The ability to write log messages can be useful for at least two
purposes: saving information that can may help debugging the
application, or collecting statistics that can be used for perfor-
mance tuning. In the traditional approach, since the application
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is divided into modules that are independently developed, either
each module developer would devise an ad hoc, possibly di↵erent,
solution for logging, or would use some system-wide logging tool
such as syslog.

The platform provides logging functions that ensure that all
the node implementations use a common log format, thus easing
log post processing; also the log functions make the access to the
log file properly synchronized in case a multi-threaded scheduler is
used by the application. Furthermore, since logging can be both
a time and space consuming activity (if detailed information is
written on the log), the platform allows the user to specify at run
time the desired level of logging detail: each logging call specifies
a priority level, and the user can choose a range of levels that are
to be saved on the log file and the range of levels that are to be
directly written on the system console.

An important advantage of the integration of logging in the
platform is that the logging subsystem is aware of the runtime
architecture of the processing network, and inserts in the log in-
formation on which node instance has generated each message; this
would have been very di�cult for the developer to do with a non-
integrated logging facility, since during the development it is not
known where and how many times each node will be instantiated
in an application.

5.4.6 Version management

In a software architecture based on dynamic linking a very com-
mon problem is the mismatch between the versions of di↵erent
modules that have to work together. This often leads to the so-
called DLL hell on the Windows platform, where updating a com-
ponent of the system may cause other, apparently unrelated com-
ponents to stop working. To avoid this problem, our platform
supports a versioning of the modules. Each module has a version
number, and each time a node is instantiated (explicitly or implic-
itly, as it happens when the node is part of the implementation
of a composite node), it is possible to specify a constraint on the
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required version. An important feature of the implemented ver-
sion management is that di↵erent versions of the same module can
coexist (as long as the have di↵erent version numbers); thus if a
module is updated, the new version can be introduced gradually
in the applications based on the platform.

This feature is extremely useful in an application domain like
surveillance systems, where often the applications have a large de-
gree of customization, and must be upgraded without loosing the
previous configuration and customization work, and thus without
cleaning out the modules of the previous releases.

5.4.7 Profiling

In a real-time video analysis application, performance is often a
critical aspect. In order to optimize such an application, it is nec-
essary to be able to spot the bottlenecks that limit the overall
throughput. In order to help the developers obtaining this infor-
mation, our platform supports an execution mode, selectable at
startup time, in which the scheduler collects statistics about the
execution times and the number of activations of each node. These
statistics are periodically saved on a text file.

Performance optimization of a parallel application gets more
complicated because of the need to avoid conditions that limit
the parallelism, thus attaining a speed-up that is not proportional
to the number of available processors. The profiling subsystem
of our platform specifically addresses this aspect, being able to
analyze the dependency graph of the application and to highlight,
whenever the number of active nodes if less than the number of
worker threads, which part of the network is not balanced.

For video analytics applications, the availability of this infor-
mation impacts both developer, that can use it to optimize the
code, and installers or system integrators, that can exploit it to
fine tune the performance of the system.
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5.4.8 Testing

In recent years, automated unit testing has emerged as a practice
recommended by several software engineering methodologies to
improve the quality and the reliability of software systems. A unit
test verifies the behavior of a software component in isolation; the
automation of such tests ensures that they can be easily executed
whenever the software is modified, so as to immediately discover
if a bug has been introduced.

The architecture of our platform, in which an application is
composed by loosely coupled nodes that interact only through
their inputs and outputs, makes easy to test each node in iso-
lation. Furthermore, the platform includes a tool that, using the
information contained in the NDL files, automatically generates a
C++ file with a main function that loads the plugin, instantiates
the node to be tested, and feeds it with input values from a test
configuration file; the developer can add to this file a function to
verify the correctness of the node outputs, or can provide in the
test configuration file the desired output values. Thus, it is possi-
ble to create with little e↵ort a suite of tests for each plugin; these
tests can be executed automatically by means of a script.

The support for automated unit testing helps improving the
correctness and the robustness, which are important qualities for
security-related applications such as video surveillance.

5.4.9 Data file management

A plugin implementation may need to access some data files con-
taining information needed for its operation. For example, we have
a face detection node that is a wrapper around the Viola-Jones ob-
ject detector included in OpenCV [74]. This detector requires an
external file containing the cascade classifier parameters in order
to perform its operation.

While a standard application can access an external file using a
fixed path, a plugin is not allowed to impose any constraint on the
position of its files in the file system, since this would complicate
the deployment of the final application, which includes several
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independently developed plugins. Thus the platform includes an
API by which a plugin can access its data files using a search path
that can be defined at run time in a way that is transparent to
the plugin developer; this mechanism also allows the installer to
provide alternate versions for some of the files that override the
ones bundled with the plugin, without altering the plugin directory
structure, by simply redirecting some of the access requests.

5.4.10 License management

A commercial video analysis application often needs a mechanism
for enforcing the licensing conditions, thus preventing an unau-
thorized use of the software. Usually the license constrains the
number of computers on which the program can be used and the
number of video streams that can be processed on each computer.

Our platform include a license management service, which re-
quires the generation of a software key, protected by means of a
cryptographic algorithm, for each machine on which the software
is installed. The key contains information identifying the machine,
so that it cannot be reused on a di↵erent computer, information
about the expiration of the license, the number of authorized video
streams and the possibility to include other application specific
fields. By centralizing the license management within the middle-
ware, two benefits are obtained: first, the application developers
are relieved from the task of devising a license verification mecha-
nism and of checking the license within the code of the application
specific modules; second, the license checking can be integrated
with the scheduler, thus ensuring that it will be performed for
each activated node.





Chapter 6

Experimental Results

6.1 Tracking Algorithm Results

In this section we will show the results of the tracking method,
detailed in Chapter 3. In particular, in Subsection 6.1.1 we in-
troduce the standard datasets used for the experimentation. In
Subsection 6.1.2 the parameters selected for the experimentation
are justified, while in Subsections 6.1.3 and 6.1.4 a quantitative
and qualitative evaluation is respectively provided.

View Camera Model Resolution Frame Rate
1 Axis 223M 768x576 7
3 Axis 233D 768x576 7
4 Axis 233D 768x576 7
5 Axis 223M 720x576 7
6 Axis 223M 720x576 7
7 Canon MV1 720x576 7
8 Canon MV1 720x576 7

Figure 6.1 PETS Dataset: Camera Specification [75].
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.2 Camera views used in the PETS2010 database. We can note
that each view emphasizes one or more problem. For example, the first one
(a) causes occlusions between persons and the pole while the second one (b)
is characterized by several occlusions between persons and the tree. In (h)
the position of the cameras on the plane is shown.

6.1.1 Datasets

In order to assess the performance of the method with respect to
the state of the art, we have used the publicly available PETS
2010 dataset [75], currently used by many research papers.

PETS 2010 Dataset: it has been recorded at Whiteknights
Campus, University of Reading, UK in 2009. It is composed by
three datasets: S1 concerns person count and density estimation,
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S2 addresses people tracking and S3 involves flow analysis and
event recognition. In this thesis we focus on the dataset S2 (here-
inafter PETS 2010 Dataset), made of seven videos, containing
several occlusions between a person and an object, two persons or
among several persons. Figure 6.2 shows an example for each con-
sidered view of the PETS 2010 database, while more information
are provided in Table 6.1.

6.1.2 Parameters setup

In the proposed tracking method the only parameter that needs to
be properly set up is the dmax parameter of equation 3.13. In order
to evaluate it, we have computed in each view the maximum speed
of the objects, from which we have derived the following values:
dmax = 100 for views 1, 3 and 4 and dmax = 150 for view 5, 6, 7
and 8 of the PETS dataset.

6.1.3 Quantitative Evaluation

In this section a quantitative evaluation of the proposed method
over both the datasets is performed.

Experimentation 1

The first quantitative evaluation of the method has been carried
out using the performance indexing proposed in [76]. In particu-
lar, we have used the following indices, especially suited for track-
ing algorithms: the Average Tracking Accuracy (ATA), the Mul-
tiple Object Tracking Accuracy (MOTA) and the Multiple Object
Tracking Precision (MOTP). In the following we introduce some
notations useful to formally define them.

Let Gi and Di be the ith ground truth object and the ith de-
tected one at the sequence level, respectively; G(t)

i and D(t)
i denote

the ith ground truth object and the detected one in frame t; N (t)
G

and N (t)
D denote the number of ground truth objects and detected
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ones in frame t, respectively, while NG and ND denote the num-
ber of ground truth objects and unique detected ones in the given
sequences. Nframes is the number of frames in the sequences. Fi-
nally, Nmapped refers to the mapped system output objects over an
entire reference track, taking into account splits and merges and
N (t)

mapped refers to the number of mapped objects in the frame t.
ATA is a spatiotemporal measure that penalizes fragmenta-

tions in spatiotemporal dimensions while accounting for the num-
ber of objects detected and tracked, missed objects, and false pos-
itives. ATA is defined in terms of Sequence Track Detection Ac-
curacy (STDA):

STDA =

Nmapped
X

i=1

PNframes

t=1
|G(t)

i \D
(t)
i |

|G(t)
i [D

(t)
i |

NGi[Di 6=0
. (6.1)

The latter measures the overlap in the spatiotemporal dimen-
sions of the detected object over the ground truth, taking a max-
imum value of NG. The ATA is defined as the STDA per object:

ATA =
STDA
⇥

NG+ND
2

⇤ . (6.2)

As already mentioned, the MOTA is an accuracy score that com-
putes the number of missed detections, false positives and switches
in the system output track for a given reference ground truth track.
It is defined as:

MOTA = 1 �
PNframes

t=1

�

cm · mt + cf · fpt + cs(ist)
�

PNframes

t=1 N (t)
G

, (6.3)

where mt is the number of misses, fpt is the number of false pos-
itives, and ist is the number of ID mismatches in frame t consid-
ering the mapping in frame (t � 1); c values are weights chosen as
follows:

cm = cf = 1; cs = log10(·).

Finally, the MOTP is a precision score that calculates the spa-
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tiotemporal overlap between the reference tracks and the system
output tracks:

MOTP =

PNmapped

i=1

PN
(t)
frames

t=1
|G(t)

i \D
(t)
i |

|G(t)
i [D

(t)
i |

PNframes

t=1 N (t)
mapped

. (6.4)
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Figure 5.4 Performance of the proposed method for the considered views
of the PETS 2010 (a) and of the ISSIA Soccer (b) datasets. The numbers on
the bars correspond to the views number.

views. Note that the performance are even better at the light
of the fact that this dataset contains some very complex occlu-
sion patterns, involving a variable number of players, ranging from
two to eight, that strongly influence the performance of the entire
system. Although a direct comparison with the state-of-the-art
methods is not possible as the results reported over this dataset
are usually provided in a qualitative form, the high values obtained
by our method both in terms of accuracy and precision confirm the
validity of the proposed approach in the sport applicative domain.

Figure 5.4b shows the results of the proposed method over the
PETS 2010 dataset, related to the individual sequences. We can
note that the performance is strongly influenced by the complexity

Figure 6.3 Performance of the proposed method for the considered views
of the PETS 2010 dataset. The numbers on the bars correspond to the views
number.

The obtained results are shown in Figure 6.3 that shows the re-
sults of the proposed method over the PETS 2010 dataset, related
to the individual sequences. We can note that the performance is
strongly influenced by the complexity of the single sequence. This
complexity is not determined only by the typology of the single
view (i.e., the presence of the pole in the first view or the pres-
ence of the tree in the third one, which covers one-third of the
scene taken by the camera), but also by the interactions among
the tracked objects.

At this point we can examine in detail the considered views,
analyzing their performance in relation to the complexity of the
scene. First view presents interactions among two or three ob-
jects; the only di�culty is due to the presence of the pole and
of the sign hanged on it, which causes a lot of splits. Note that
the proposed method proves to be particularly robust with respect
to the split situations on this view. Views 3 and 4 are the most
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complex, as shown by the results displayed in Figure 6.3. Indeed,
as already mentioned, view 3 is characterized by the presence of a
large tree (about one-third of the scene), occluding a lot of indi-
vidual or group objects. The situation is further complicated by
the complexity of interactions among the objects, which involves
in the average 2 � 5 objects for view 3 and 2 � 6 for view 4. An-
other problem in view 4 is the presence of a white-orange ribbon,
continuously moving because of the wind. Such situation causes
a lot of problems also in the detection phase. The problem of the
moving ribbon is also present in views 5, 6, 7 and 8, even if it is
less visible. We can note that the performance obtained in views
6 and 7 is generally lower than that obtained on other sequences;
this is related to more complex interactions between the tracked
objects, having a very high number of occlusions associated to ob-
jects that are entering the scene (unstable objects). It is worth
noting that the method, during an occlusion, does not attempt to
find the exact position of an object inside a group; it continues to
track the group as a whole, using the Kalman filter for obtaining a
prevision of the position of each object inside the group itself; this
choice obviously causes a degradation of the performance if it is
measured using indices defined assuming that objects are always
tracked individually.

Comparison: PETS Contest (Performance Evaluation of Track-
ing and Surveillance) is a competition organized by the University
of Reading, which allows to compare all the state of the art track-
ing algorithms: each participant has to submit the output of the
proposed method over a standard dataset; the output is processed
by the organizers and the results are finally disclosed during the
contest session.

The proposed algorithm participated to the last PETS 2013
contest [77][78] and, as highlighted by the organizers, it ranked
first in terms of MOTA and in the first positions in terms of ATA
and MOTP. Although the results have not been made available,
in Figure 6.4 we report the ones computed over View 1, declared
during the final contest session. Our method strongly outperforms
all the other ones working in real time and based on a single cam-
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Figure 5.5 Comparison of the proposed method with the participant to the
last PETS 2014 competition, in terms of MOTA (a), MOTP (c) and ATA (d).
In (b) the associations between methods and abbreviations is summarized.
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of Reading, which allows to compare all the state of the art track-
ing algorithms: each participant has to submit the output of the
proposed method over a standard dataset; the output is processed
by the organizers and the results are finally disclosed during the
contest session.

The proposed algorithm participated to the last PETS 2013
contest [105][128] and, as highlighted by the organizers, it ranked
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Figure 6.4 Comparison of the proposed method with the participant to the
last PETS 2014 competition, in terms of MOTA (a), MOTP (c) and ATA (d).
In (b) the associations between methods and abbreviations is summarized.

era view: in fact, it is worth to point out that Breitenstein et al.
(Br) [79] and Xu et al. (Xu) [13] use a multi-camera approach,
while Badie et al. (Ba) [4] and Ho↵man et al. (Ho) [5] consider
a post-processing of the trajectories in order to link all the ex-
tracted tracklets. It should be clear that our method extracts
the objects’ positions at each frame, without applying any kind of
post-processing aimed at linking the tracklets. It is a very impor-
tant and not negligible feature in the field of behavioral analysis,
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Figure 5.6 Performance of the proposed method compared with the PETS
2010 contest participants on MOTP index (a), on Views 1, 5, 6 and 8 (b) and
on all the views (e). In (c) the associations between methods and abbrevia-
tions is summarized.
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and MOTP. Although the results have not been made available,

(a)

134 5. Experimental Results

PM# PM#
PM# PM#

PM# PM#

Ar#
Ar#

Ar#

Ar#
Ar#

Ar#
BP#

BP#
BP#

BP#

BP#
BP#

Co#
Co#

Co#

Co#

Co# Co#

Ge#

Ge#

Ge#
Ag# Ag# Ag#Al# Al# Al#

0"

0,2"

0,4"

0,6"

0,8"

1"

MOTP"VIEW3" MOTP"VIEW4" MOTP"VIEW5" MOTP"VIEW6" MOTP"VIEW7" MOTP"VIEW8"

MOTP"4"PETS"2010"Dataset"

(a)

PM#

PM#
PM#

Ag#

Ag# Ag#

Al#

Al# Al#

0"

0,2"

0,4"

0,6"

0,8"

1"

ATA" MOTP" MOTA"

Average"on"Views"1,5,6,8"

(b)

Method Abbrev.

Proposed Method PM

Breitenstein Br

Leykin Le

Sharma Sh

Yang Ya

Berclazdp BD

Berclazlp BL

Arsic Winter AW

Conte Co

Ge Ge

Alahi Ogreedy Ag

Alahi Olasso Al

Arsic Ar

(c)

PM#

PM#
PM#

BL#

BL#

BL#

Ar#

Ar#

Ar#

Co#

Co# Co#

0"

0,2"

0,4"

0,6"

0,8"

1"

ATA" MOTP" MOTA"

Average"on"all"the"views"

(d)

Figure 5.6 Performance of the proposed method compared with the PETS
2010 contest participants on MOTP index (a), on Views 1, 5, 6 and 8 (b) and
on all the views (e). In (c) the associations between methods and abbrevia-
tions is summarized.

first in terms of MOTA and in the first positions in terms of ATA
and MOTP. Although the results have not been made available,

(b)

Method Abbrev.

Proposed Method PM

Breitenstein Br

Leykin Le

Sharma Sh

Yang Ya

Berclazdp BD

Berclazlp BL

Arsic Winter AW

Conte Co

Ge Ge

Alahi Ogreedy Ag

Alahi Olasso Al

Arsic Ar

(c)

134 5. Experimental Results

PM# PM#
PM# PM#

PM# PM#

Ar#
Ar#

Ar#

Ar#
Ar#

Ar#
BP#

BP#
BP#

BP#

BP#
BP#

Co#
Co#

Co#

Co#

Co# Co#

Ge#

Ge#

Ge#
Ag# Ag# Ag#Al# Al# Al#

0"

0,2"

0,4"

0,6"

0,8"

1"

MOTP"VIEW3" MOTP"VIEW4" MOTP"VIEW5" MOTP"VIEW6" MOTP"VIEW7" MOTP"VIEW8"

MOTP"4"PETS"2010"Dataset"

(a)

PM#

PM#
PM#

Ag#

Ag# Ag#

Al#

Al# Al#

0"

0,2"

0,4"

0,6"

0,8"

1"

ATA" MOTP" MOTA"

Average"on"Views"1,5,6,8"

(b)

Method Abbrev.

Proposed Method PM

Breitenstein Br

Leykin Le

Sharma Sh

Yang Ya

Berclazdp BD

Berclazlp BL

Arsic Winter AW

Conte Co

Ge Ge

Alahi Ogreedy Ag

Alahi Olasso Al

Arsic Ar

(c)

PM#

PM#
PM#

BL#

BL#

BL#

Ar#

Ar#

Ar#

Co#

Co# Co#

0"

0,2"

0,4"

0,6"

0,8"

1"

ATA" MOTP" MOTA"

Average"on"all"the"views"

(d)

Figure 5.6 Performance of the proposed method compared with the PETS
2010 contest participants on MOTP index (a), on Views 1, 5, 6 and 8 (b) and
on all the views (e). In (c) the associations between methods and abbrevia-
tions is summarized.
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and MOTP. Although the results have not been made available,
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Figure 6.5 Performance of the proposed method compared with the PETS
2010 contest participants on MOTP index (a), on Views 1, 5, 6 and 8 (b) and
on all the views (e). In (c) the associations between methods and abbrevia-
tions is summarized.

since we are interested in detecting abnormal behaviors in real
time, when the objects are still inside the scene.

Furthermore, a deeper comparison has been performed with
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the methods participating to the previous PETS 2010 contest,
whose results are available in [80]. Figure 6.5 summarizes the
obtained results. In particular, Figure 6.5a gives an overview of
the precision index (MOTP) over all the views. It is evident that
the proposed method outperforms all the other methods on six
out of seven considered views in terms of precision. Figure 6.5b
provides the average performance, in terms of ATA, MOTA and
MOTP obtained on Views 1, 5, 6 and 8, the only ones taken into
account by Alahi et al. [81].

Finally, Figure 6.5d shows the average results over all the
views: our method is the most precise over the entire dataset
and it is outperformed, in terms of accuracy, only by the method
proposed by Berclaz et al . [16], which takes advantage of the use
of a multi-camera approach and thus it is not directly comparable
with our approach.

It is worth highlighting that ATA, MOTA and MOTP do not
perfectly fit, for their nature, the proposed method. It is due to
the fact that our approach, during an occlusion, does not attempt
to find the exact position of an object inside a group; it continues
to track the group as a whole, using the Kalman filter for obtaining
a prevision of the position of each object inside the group itself;
this choice obviously causes a degradation of the performance if
measured using indices assuming that objects are always tracked
individually.

In general, our method confirms a very high accuracy and pre-
cision; this result is mainly a direct consequence of the fact that it
solves many of the errors usually occurring in tracking algorithms
that do not distinguish between single and multiple objects.

Experimentation 2

In this section the performance of the proposed method in terms of
resolution percentage of split and occlusion patterns is analyzed.
The results are summarized in Table 6.6, where a comparison with
our previous method [1] is performed over the PETS dataset. Note
that [1] is more robust with respect to the occlusion occurrences,
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View
Split Occlusion

Resolution Percentage Resolution Percentage
[1] Proposed [1] Proposed

1 45% 73% 75% 95%
3 36% 51% 61% 76%
4 35% 74% 45% 74%
5 15% 51% 56% 67%
6 12% 56% 51% 62%
7 16% 61% 52% 63%
8 20% 51% 42% 59%

Figure 6.6 Comparison between the proposed method and [1] in terms of
split and occlusion patterns resolution over the PETS dataset.

rather than to the split ones. It is mainly due to the association
manager module, which uses a greedy strategy to solve split and
occlusion patterns. The main novelty of the proposed approach
lies in the introduction of a graph based approach, which proves
to significantly improve the performance with respect to [1], both
in terms of split and occlusion patterns.

Experimentation 3

A further experimentation, shown in Table 6.7, presents some more
general evaluation criteria, which reflect the possibility to correctly
follow a trajectory, assigning it one or more id [82]. In particular:

• TP (True Positive) refers to the number of trajectories fol-
lowed for more than the 75% of their life, also with di↵erent
identifiers. An example of TP is shown in Figure 6.8a;

• PTP (Perfect True Positive) refers to the number of tra-
jectories followed for the 100% of their life with the same
identifier. An example of PTP is shown in Figure 6.8b;

• FN (False Negative) refers to the number of trajectories fol-
lowed for less than the 75% of their life;
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PETS Dataset

V GT TP PTP FP FN IDS Av Min Max AvI

1 21 21 4 2 0 43 232,6 86 575 2
3 21 15 0 7 6 82 306,4 72 792 3
4 23 18 0 19 (13) 5 89 264,5 23 792 3
5 28 28 1 4 0 81 97,3 22 293 2
6 33 32 1 28(20) 1 142 95,3 7 320 4
7 31 28 0 17 3 123 148,1 32 320 3
8 30 25 1 6 5 95 143,8 13 417 3

Figure 6.7 Tracking results on PETS Dataset. (V: View; GT: Ground Truth
trajectories; TP: True Positives, at least 75% of the track without id-switches;
PTP: Perfect True Positives, 100% of the track without id-switches; FN: False
Negatives; FP: False Positives; IDS: Id Switches; Av: Average trajectory
length; Min: Minimum trajectory length; Max: Maximum trajectory length;
AvI: Average number of id-switches).

• FP (False Positive) refers to the number of spurious trajec-
tories followed for more than two seconds;

• IDS (ID-Switch) refers to the number of times an object
changes its identifier.

• Av refers to the average trajectories length;

• Min refers to the minimum trajectories length;

• Max refers to the maximum trajectories length;

• AvI refers to the average number of id-switches for each
trajectory;

It is worth noting that the high number of false positive trajec-
tories, especially in Views 4 and 6 of the PETS dataset, is caused
by very frequent detection errors: in particular, as already men-
tioned, in View 4 it is caused by the presence of the white-orange
moving wire, while in View 6 it is related both to the presence
of the wire and to the white car, wrongly identified as an object
by the detection phase during all the sequence. All these kinds of
detection errors, identified in Table 6.7 by the numbers in brack-
ets, could be reduced in a very simple way, by applying a filter to
the detection phase, taking into account the particular shape and



104 6. Experimental Results5.1. Tracking Algorithm 139

(a) (b)

Figure 5.9 Examples of true positive trajectory (a) and perfect true positive
trajectory(b).

occlusion patterns among three and two persons; as it can be seen,
the system preserves the object identities across the occlusions.

Finally, we show in Figure 5.13 the trajectories obtained by
applying the proposed algorithm over the PETS 2010 Dataset.
Despite the complexity of each view, the trajectories are generally
stable and reliable, so confirming the goodness of the proposed
approach.

5.1.5 Computational cost

In order to evaluate the performance of the proposed method in
terms of computational cost, we have computed the time needed
to process a single frame (both detection and tracking steps) by
considering di↵erent images resolutions and di↵erent number of
video streams.

The middleware platform detailed in [133], installed on an Intel
Xeon processor running at 3.0GHz, has been used for the experi-
mentation.

The obtained results are summarize in Figure 5.14: we can note
that the time required to process a single frame linearly increases
by increasing the number of streams (1, 2, 4, 6, 8, 10, 12, 14, 16)
as well as the image resolution (1/8, 1/4, 1/2, 1).

Furthermore, it is important to highlight that in the best case,
arising when a single stream is processed, the entire process, from
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Figure 5.9 Examples of true positive trajectory (a) and perfect true positive
trajectory(b).

occlusion patterns among three and two persons; as it can be seen,
the system preserves the object identities across the occlusions.

Finally, we show in Figure 5.13 the trajectories obtained by
applying the proposed algorithm over the PETS 2010 Dataset.
Despite the complexity of each view, the trajectories are generally
stable and reliable, so confirming the goodness of the proposed
approach.

5.1.5 Computational cost

In order to evaluate the performance of the proposed method in
terms of computational cost, we have computed the time needed
to process a single frame (both detection and tracking steps) by
considering di↵erent images resolutions and di↵erent number of
video streams.

The middleware platform detailed in [133], installed on an Intel
Xeon processor running at 3.0GHz, has been used for the experi-
mentation.

The obtained results are summarize in Figure 5.14: we can note
that the time required to process a single frame linearly increases
by increasing the number of streams (1, 2, 4, 6, 8, 10, 12, 14, 16)
as well as the image resolution (1/8, 1/4, 1/2, 1).

Furthermore, it is important to highlight that in the best case,
arising when a single stream is processed, the entire process, from

(b)

Figure 6.8 Examples of true positive trajectory (a) and perfect true positive
trajectory(b).

appearance of the spurious objects. Since we are only interested
in the proposed tracking method, we do not investigate into the
performing of the detection phase.

6.1.4 Qualitative Evaluation

A qualitative evaluation has been finally performed in order to
confirm the e�ciency of the proposed approach. In particular, we
show how the proposed algorithm deals with splits and occlusions
respectively in Figure 6.9 and 6.10: in particular, Figure 6.9 re-
ports an example of split caused by an error during the detection
phase and properly adjusted. On the other hand, Figures 6.10
shows some excerpts of the video sequences, with two complex oc-
clusion patterns among three and two persons; as it can be seen,
the system preserves the object identities across the occlusions.

Finally, we show in Figure 6.11 the trajectories obtained by
applying the proposed algorithm over the PETS 2010 Dataset.
Despite the complexity of each view, the trajectories are generally
stable and reliable, so confirming the goodness of the proposed
approach.
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(i)

(ii)

Figure 5.11 The output of the proposed method on two sequences from the
PETS (i) and the ISSIA Soccer (ii) datasets, both containing a split; the first
and the second row respectively represent the input and the output of the
method.

detection to tracking, runs approximatively at 35 fps on 4CIF
images, confirming its usability in real time applications.

The promising results obtained by the proposed method over
two very di↵erent application fields, a video-surveillance domain
(PETS dataset) and a sports one (ISSIA Soccer Dataset), confirm
the robustness of the approach and its applicability to any real-
time context. Almost all the problems arising during the detection
step, ranging from split blobs to undetected objects, are easily
managed by the di↵erent states and complex occlusions correctly

Figure 6.9 The output of the people tracking method containing a split; the
first and the second row respectively represent the input and the output of
the method.

142 5. Experimental Results

(i)

(ii)

Figure 5.12 The output of the proposed method over two sequences of the
PETS 2010 dataset (i) and of the ISSIA Soccer Dataset (ii) containing an
occlusion. Note how the object 9 in (i) is correctly tracked inside the di↵erent
groups although it quickly changes its direction in the frame (c).

solved thanks to the introduction of the group objects.

5.2 Visual Behavior Analysis

In this section we will detail the results obtained by the method
for visual behavior understanding detailed in Section 3.2. Fur-
thermore, the two typologies of interactions based on the above
mentioned method, namely anomaly detection (Subsection 3.4.1)
and queries by sketch (Subsection 3.4.2) will be tested and the
results will be analyzed. In particular, a description of the con-
sidered datasets and a discussion on the setup of the parameters

Figure 6.10 The output of the people tracking method containing an oc-
clusion. Note how the object 9 is correctly tracked inside the di↵erent groups
although it quickly changes its direction in the frame (c).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.11 Output of the proposed algorithm for Views 1 (a), 3 (b), 5 (c),
6 (d), 7 (e) and 8 (f) of the PETS dataset.
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6.2 Fire Detection Results

In this section we will show the results of the fire detection method,
detailed in Chapter 4. In particular, in Subsection 6.2.1 we intro-
duce the standard datasets used for the experimentation. In Sub-
section 6.2.2 and 6.2.3 a quantitative and a computational cost
evaluation is respectively provided.

6.2.1 Datasets

Most of the the methods in the literature (especially the ones
based on the color evaluation) are tested using still images instead
of videos. Furthermore, no standard datasets for benchmarking
purposes have been made available up to now. One of the biggest
collection of videos for fire and smoke detection has been made
available by the research group of Cetin [83][34]. Starting from this
collection, composed by approximatively 31.308 frames, we added
several long videos acquired in both indoor and outdoor situations
so resulting in a new dataset composed by 62.748 frames and more
than one hour of recording.

More information about the di↵erent videos are reported in
Table 6.12, while some visual examples are shown in Figure 6.131.

Note that the dataset can be seen as composed by two main
parts: the first 14 videos characterized by the presence of fire and
the last 17 videos which do not contain fires; in particular, this
second part is characterized by objects or situations which can be
wrongly classified as containing fire: a scene containing red objects
may be misclassified by color based approaches, while a mountain
with smoke, fog or clouds may be misclassified by motion based
approaches.

Such composition allows us to stress the system and to test it
in several conditions which may happen in real environments.

The dataset has been partitioned into two parts: 80% has been

1The whole dataset can be downloaded from our website:
http://mivia.unisa.it/datasets/video-analysis-datasets/fire-detection-

dataset/.
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Video Resolution Frame Rate Frames Fire Notes

Fire1 320x240 15 705 yes A fire generated into a bucket and a person walking
near it. Vidmakeo downloaded from [83].

Fire2 320x240 29 116 yes A fire very far from the camera generated into a bucket.
The video has been downloaded from [83].

Fire3 400x256 15 255 yes A big fire in a forest. The video has been acquired by
[84] and downloaded from [83].

Fire4 400x256 15 240 yes See the notes of the video Fire3.
Fire5 400x256 15 195 yes See the notes of the video Fire3.
Fire6 320x240 10 1200 yes A fire generated in a red ground. Video downloaded

from [83].
Fire7 400x256 15 195 yes See the notes of the video Fire3.
Fire8 400x256 15 240 yes See the notes of the video Fire3.
Fire9 400x256 15 240 yes See the notes of the video Fire3.
Fire10 400x256 15 210 yes See the notes of the video Fire3.
Fire11 400x256 15 210 yes See the notes of the video Fire3.
Fire12 400x256 15 210 yes See the notes of the video Fire3.
Fire13 320x240 25 1650 yes A fire in a bucket in indoor environment. Video down-

loaded from [83].
Fire14 320x240 15 5535 yes Fire generated by a paper box. The video has been

acquired by the authors near a street.
Fire15 320x240 15 240 no Some smoke seen from a closed window. A red reflection

of the sun appears on the glass. Video downloaded from
[83].

Fire16 320x240 10 900 no Some smoke pot near a red dust bin. Video downloaded
from [83].

Fire17 320x240 25 1725 no Some smoke on the ground near a moving vehicle and
moving trees. Video downloaded from [83].

Fire18 352x288 10 600 no Some far smoke on a hill. Video downloaded from [83].
Fire19 320x240 10 630 no Some smoke on a red ground. Video downloaded from

[83].
Fire20 320x240 9 5958 no Some smoke on a hill with red buildings. Video down-

loaded from [83].
Fire21 720x480 10 80 no Some smoke far from the camera behind some moving

trees. Video downloaded from [83].
Fire22 480x272 25 22500 no Some smoke behind a mountain in front of the Univer-

sity of Salerno. The video has been acquired by the
authors.

Fire23 720x576 7 6097 no Some smoke above a mountain. The video has been
downloaded from [83].

Fire24 720x576 10 400 no Some smoke on a mountain. Video downloaded from
[83].

Fire25 352x288 10 140 no Some smoke far from the camera in a city. Video down-
loaded from [83].

Fire26 720x576 7 847 no See the notes of the video Fire24.
Fire27 320x240 10 1400 no See the notes of the video Fire19.
Fire28 352x288 25 6025 no See the notes of the video Fire18.
Fire29 720x576 10 600 no Some smoke in a city covering red buildings. Video

downloaded from [83].
Fire30 800x600 15 1920 no A person moving in a lab holding a red ball. The video

has been acquired by the authors.
Fire31 800x600 15 1485 no A person moving in a labwith a red notebook. The

video has been acquired by the authors.

Figure 6.12 The dataset used for the experimentation.

used to test the proposed approach while 20% for training the
system by determining the weights of the MES.

In order to further confirm the e↵ectiveness of the proposed
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.13 Examples of images extracted from the videos used for testing
the method: (a) fire1, (b) fire2, (c) fire4, (d) fire6, (e) fire13, (f) fire14, (g)
fire15, (h) fire16, (i) fire19, (j) fire20, (k) fire22, (l) fire31.

approach, especially with respect to the false positive rate, we
also evaluated it over a second freely available dataset (hereinafter
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(a) (b)

(c) (d)

Figure 6.14 Some examples of the Dataset D2, showing red houses in the
wide valley, the mountain at sunset and some lens flares.

D2)2. It is composed by 149 videos, each lasting approximatively
15 minutes, so resulting in more than 35 hours of recording; D2
contains very challenging situations, often recovered as fire by tra-
ditional color based approaches: red houses in a wide valley (see
Figures 6.14a and 6.14d), a mountain at sunset (see Figure 6.14b)
and lens flares (bright spots due to reflections of the sunlight on
lens surfaces, see Figures 6.14a and 6.14c).

6.2.2 Quantitative Evaluation

In this section a quantitative evaluation of the proposed method
over both the datasets is performed.

2The whole dataset can be downloaded from our website:
http://mivia.unisa.it/datasets/video-analysis-datasets/smoke-detection-

dataset/.
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An overview of the performance achieved on the test set, both
in terms of accuracy and false positives, is summarized in Table
6.18.

Among the three experts considered is Section 4.1 (CE, ME
and SV), the best one is the CE, which achieves on the considered
dataset a very promising performance (accuracy = 83.87% and
false positives = 29.41%). Note that such performance is compa-
rable with the one reached by the authors in [28], where over a
di↵erent dataset the number of false positives is about 31%.

On the other hand, we can also note that the expert ME, in-
troduced for the first time in Section 4.2.4 for identifying the dis-
ordered movement of fire, reveals to be very e↵ective. In fact, we
obtain a 71.43% accuracy and 53.33% false positives. It is worth
pointing out that the considered dataset is very challenging for
this expert: in fact, the disordered movement of smoke as well
as of trees moving in the forests can be easily confused with the
disordered movement of the fire. This consideration explains the
high number of false positives introduced by using only ME.

As expected, the best results are achieved by the proposed
MES, which outperforms all the other methods, both in terms of
accuracy (93.55%) and false positives (11.76%). The very low false
positive rate, if compared with state of the art methods, is mainly
due to the fact that ME and SV act, in a sense, as a filter with
respect to CE. In other words, ME and SV are able to reduce
the number of false positives introduced by CE without paying in
terms of accuracy: this consideration is confirmed by the results
shown in Figure 6.16, where the percentage of the number of ex-
perts which simultaneously take the correct decision is reported.
In particular, Figure 6.16a details the percentage of the number of
experts correctly assigning the class fire: we can note that all the
experts correctly recognize the fire in most of the situations (69%),
while two experts assign the class fire in the remaining 31%.

The advantage in using a MES is much more evident in Figure
6.16b, which refers to non fire videos. In this case, only 17% of
videos are correctly classified by all the experts. On the other
hand, most of the videos (61%) are assigned to the correct class
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by two experts, so confirming the successful combination obtained
thanks to the proposed approach.

In order to better appreciate the behavior described above, a
few examples are shown in Figure 6.15; in Figure 6.15a the fire is
correctly recognized by all the experts: the color respects all the
rules, the shape variation in consecutive frames is consistent and
the movement of the corner points detected is very disordered. A
di↵erent situation happens in Figure 6.15b, where the only classi-
fier detecting the fire is the one based on the color: in this case,
the uniform movement of the salient points associated to the ball
as well as its constant shape allow the MES to avoid a false posi-
tive introduced by the use of a single expert. In Figures 6.15c and
6.15d other two examples are shown: in particular, in the former
a small fire with a variable shape has both a uniform color and a
uniform movement of the salient points. The combination of color
and shape variation experts helps the proposed system to correctly
detect the fire. The last example shows a very big but settled fire,
whose shape is stable and so is not useful to correctly assign the
class fire. In this situation, the combination between the experts
based on color and motion respectively allows the MES to take
the correct decision about the presence of fire.

Although the situations are very challenging, no false positives
are detected by our MES. The result is very encouraging, especially
if compared with CE, achieving on the same dataset 12% of false
positives. It is worth pointing out that such errors are localized
in approximatively 7 hours, mainly at sunset, and are due to lens
flares. Such typology of errors is completely solved by the proposed
approach, able to take advantage of the disordered movement of
the flames.

6.2.3 Computational cost

Finally, we have also evaluated the computational cost of the pro-
posed approach over two very di↵erent platforms: the former is
a traditional low-cost computer, equipped with an Intel dual core
T7300 processor and with a RAM of 4GB. The latter is a Rasp-
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CE,SV,ME 

(a)

CE 

(b)

CE,SV 

(c)

CE,ME 

(d)

Figure 6.15 The three experts in action; the red box indicates the position
of the fire, while the letter on it refers to the expert recognizing the presence
of the fire.
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Figure 6.16 Number of experts simultaneously taking the correct decision
in fire (a) and non fire (b) videos. For instance, 31% of situations are correctly
assigned to the class fire by two experts over three while in the remaining 69%
all the three experts correctly recognize the fire.

berry B, a Broadcom BCM2835 System-on-a-chip (SoC), equipped
with an ARM processor running at 700 MHz and with a RAM of
512 Mb. The main advantage in using such device lies in its af-
fordable cost, around 35 dollars.

The proposed method is able to work, considering 1CIF videos,
with an average frame rate of 60 fps and 3 fps respectively over
the above mentioned platforms. Note that 60 fps is significantly
higher than the traditional 25 - 30 fps that a traditional camera
can reach during the acquisition. It implies that the proposed
approach can be easily and very e↵ectively used on existing in-
telligent video surveillance systems without requiring additional
costs for the hardware needed for the images processing.

In order to better characterize the performance of the pro-
posed approach, we also evaluated the time required by the dif-
ferent modules, namely the three experts (CE, ME and SV) and
the module in charge of updating the background, extracting the
foreground mask and labeling the connected components (FM).
The contribution of each module is highlighted in Figure 6.17: the
average time required to process the single frame has been com-
puted and the percentage of each module with respect to the total
time is reported. We can note that SV only marginally impacts
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on the execution time; this is due to the fact that the search of the
minimum bounding boxes enclosing the blobs and of its proper-
ties (in terms of perimeter and area) is a very low-cost operation.
Although the introduction of SV only slightly increases the perfor-
mance of the MES (from 92.86% to 93.55% in terms of accuracy),
the small additional e↵ort strongly justifies its introduction in the
proposed MES.

On the other side, the higher impacts are due to ME and CE:
as for the former (85%), it is evident that the computation of
the salient points, as well as their matching, is a very onerous
operation. As for the latter, it may appear surprising the big e↵ort
required by the CE with respect to FM (CE: 11%, FM: 2%). It
is worth pointing out that FM’s operations (such as background
updating and connected component labeling) are very common
in computer vision, and thus very optimized versions have been
proposed in standard libraries such as OpenCV.

Finally, it is worth pointing out that the computation time
is strongly dependent on the particular image the algorithm is
processing. In fact, it is evident that pixel-based modules (such
as FM and CE) need to process the whole image independently of
the objects moving inside. On the other hand, it is evident that
the more are the objects moving inside the scene, the higher is
the e↵ort required by FM for detecting and analyzing the salient
points. It implies that the variance with respect to the overall
time required for the computation is about 51% of the overall
time. Note that the final combination of the decisions taken by
the three experts has not been considered, since the time required
is very small with respect to the other modules.

In conclusion, the obtained results, both from a quantitative
and a computational point of views, are very encouraging since
they allow the proposed approach to be profitably used in real
environments.
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2%#
11%#

2%#

85%#

FM#

CE#

SV#
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Figure 6.17 The average time needed to execute the proposed algorithm,
expressed in terms of percentage of the di↵erent modules with respect to the
total time.

Typology Method Accuracy False Positive

Single Expert

CE [28] 83.87 % 29.41 %
ME Proposed 71.43 % 53.33 %
SV 53.57 % 66.67 %

MES

CE + SV 88.29 % 13.33 %
CE + ME [2] 92.86 % 13.33 %

CE + ME + SV Proposed 93.55 % 11.76 %

Figure 6.18 Comparison of the fire detection algorithm approach with
state of the art methodologies in terms of Accuracy and False Positive.
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6.3 DataFlow Results

In order to validate the proposed software architecture, in terms
of both performance and services provided by the middleware, we
have undertaken the porting to the new middleware of the two
algorithms explained in the previous chapters, by implementing
all the nodes required.

The first application we have ported is the people tracking
algorithm [1] explained in Chapter 3. The trajectories extracted
by the tracked objects are used to detect events of interest, like
entering a forbidden area, transiting on a one-way passage in the
wrong direction, abandoning objects and so on.

Fig. 6.19a shows how the application has been decomposed
into nodes. Notice that there is a feedback loop needed for the
background update; the platform can support cyclic networks like
this through the specification (in the NCF file) of one or more
initial values to be inserted in the feedback loop.

The second application we have integrated in our platform is
a fire detection algorithm [2] shown in Chapter 4. Considering
that this algorithm is based on the same background subtraction
and updating algorithm of the tracking module, we reuse the same
nodes implemented in the previously described tracking algorithm.
Fig. 6.19b shows how this algorithm has been decomposed into
nodes, while the common nodes shared between tracking and fire
detection algorithms have been highlighted in Fig. 6.19c.

We can also note that the parallelism can be achieved even
in a single algorithm and this is a single chain (see Fig. 6.19b),
as in cases of color, shape and movement analysis that can be
parallelized.

Fig. 6.20 shows the NCF file that assembles the blocks into an
application for the people tracking algorithm.

Notice that the acquisition block is instantiated using a node
that reads frames from a video file, in order to make repeatable
experiments; however, by just changing a single line of the NCF,
a di↵erent source (e.g. a USB camera, or a video stream coming
from a network connection) can be used.
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Figure 6.19 Structure of the video-surveillance application used to test the
proposed platform. (a) for Tracking Algorithm, (b) for Fire Detection Algo-
rithm and (c) an example of both Fire and Tracking Algorithm on the same
NCF file. Notice the is a feedback loop between the blocks background sub-

traction and background update; our platform does not require the networks
to be acyclic.
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# Define short names for node types

alias frame_acquisition = acquisition.from_video_file version 1.0.0

bg_update = background_update.update version 1.0.0

bg_subtraction = background_subtraction.subtract version 1.0.0

obj_detection = object_detection.detect version 1.0.0

obj_tracking = object_tracking.track version 1.0.0

evt_detection = event_detection.detect version 1.0.0

# Create and configure node instances

node fr_acq : frame_acquisition

end

node bg_update : bg_update

alpha=0.01 # Blending coefficient

end

node bg_subtraction : bg_subtraction

threshold = 40 # difference threshold

end

node obj_detection : obj_detection

end

node obj_tracking : obj_tracking

end

node evt_detection: evt_detection

end

# Connect node instances

connect fr_acq.frame to

bg_update.frame, bg_subtraction.frame

connect bg_subtraction.foreground_mask to

obj_detection.foreground_mask

connect obj_detection.objects to

bg_update.objects, obj_tracking.objects

connect obj_tracking.trajectories to

evt_detection.trajectories

# To handle the feedback loop, the following connection specifies

# an initial value (a black image) to be put in the buffer before

# the execution starts

connect bg_update.background to bg_subtraction.background

values image of [0 0 0] end

Figure 6.20 The NCF file for the video-surveillance application.
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(a) (b) (c)

Figure 6.21 Examples of images extracted from the videos in PETS 2010
Dataset (a), (b) and MiviaFire Dataset (c), used to test the system.

6.3.1 Datasets

In order to evaluate the porting of the algorithms in the proposed
architecture, the creation of the nodes and of the applications via
NFC, the outputs of the algorithms with and without the new
platform were compared over two standard datasets, the PETS
2010 dataset [75] described in Section 6.1.1 for the tracking al-
gorithm (Fig. 6.21a and 6.21b) and the Mivia Fire dataset [2] for
the fire detection algorithm (Fig. 6.21c) described in Section 6.2.1.
This analysis confirms that the output of the original algorithms
and of the ones ported in the middleware are exactly the same.

6.3.2 Experiments

Once the application has been completed, it has been tested to
assess the speedup due to the parallelization, the overhead intro-
duced by the platform and the processing time. Testing has been
performed on a system with 4 Xeon cores (and 8 threads) with a
2.13 GHz clock, running a 64 bit Linux kernel. The experimenta-
tion has been conducted by varying:

• the number of threads in the set {1, 2, 4, 8, 12, 16};

• the number of video streams in the set {1, 2, 4, 8, 12, 16};

• the image resolution with a full resolution (4CIF), 1/2, 1/4
and 1/8 of the full resolution.
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In order to confirm the e↵ectiveness of the proposed architec-
ture, four experiments showing the relationship between the above
parameters have been carried out. All the values reported in the
following have been obtained by computing the average times over
all the frames of the considered datasets.

Relationship between threads and streams

The relationship between the number of streams and the number
of threads is reported in Fig. 6.22; in general, increasing the num-
ber of streams, independently on the number of threads, implies
as expected an increasing in the processing time required by the
platform. However, it is interesting to note that when the num-
ber of threads set in the Thread Management module is equal to
the number of threads of the hardware (8 in our experiments),
the proposed architecture is able to achieve the best possible per-
formance, since each thread of the architecture is allocated on a
single thread of the operating system.
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Figure 6.22 Relationship between the number of streams and the number of
threads by varying the number of threads in the range 1-16 and the number
of video streams in the range 1-16 for fixed video resolution (4CIF).
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Processing time with di↵erent frame resolutions

We have computed the time needed to process a single frame by
considering di↵erent images resolutions and di↵erent number of
video streams. The obtained results are summarized in Fig. 6.23a
for a single thread configured and Fig. 6.23b for two threads: we
can note that the time required to process on average a single
frame linearly increases by increasing the number of streams (1, 2,
4, 6, 8, 10, 12, 14, 16) as well as by increasing the image resolution
(1/8, 1/4, 1/2, 1).

Overhead

We evaluate the computational overhead introduced by the mid-
dleware, as the di↵erence between the total usage time of a node
and the processing time used by each node just to process its in-
puts and generate outputs. The results, in terms of time required
for elaborating a single frame, are shown in Fig. 6.24: for each
image, the number of threads has been fixed in the Thread Man-
agement module, while we varied the number of streams. For in-
stance, Fig. 6.24a shows how the time for processing in the average
a frame, by using a single thread, linearly increases with respect
to the number of streams. In red, the overhead time introduced by
the platform is reported. We can note that it is just a very small
percentage of the execution time of the algorithms itself, ranging
from about 1% for a single thread up to just 5% for 16 threads. It
is also interesting to note the results reported in Fig. 6.25, where
the absolute overhead introduced by the platform is reported by
varying the number of thread from 1 up to 32. As we can see from
the figure, this time is not constant but instead it grows due to
the presence of the Scheduler Module, which has a growing e↵ort
by increasing the number of threads to be managed. However,
this time is always below 4 ms per frame even in presence of 32
threads.
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Figure 6.23 Processing time by varying the resolution and the number of
video streams for (a) 1 thread and for (b) 2 threads.
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Figure 6.24 System overhead time and nodes cost time to vary the number
of streams for (a) 1 thread, (b) 2 threads, (c) 4 threads, (d) 8 threads, (e)
12 threads, (f) 16 threads, used by the Middleware configured in Thread
Management module.
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Figure 6.25 Computational overhead measured for a fixed threads number,
averaged over all frames calculated from 1 to 16 streams in parallel.
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Figure 6.26 Speedup introduced by the architecture.
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Speedup

The speedup introduced by the proposed architecture with respect
to the time required for the elaboration of the same number of
streams by only using the multi-threading approach of the oper-
ating system has been reported in Fig. 6.26. Let’s focus on the
results up to 8 threads, which is the number of threads managed
by the used machine. As expected, the speedup linearly incresing
with the number of threads, with a maximum incresing exactly
with 8 threads. Indeed, using 8 threads, independently on the
number of streams, would allow to speedup the proposed architec-
ture of more than 5 times. Furthermore, from the same figure we
can also note that the improvement slightly decreases by further
increasing the number of threads. However, this improvement is
higher than 4 times, thus confirming the e↵ectiveness of the pro-
posed architecture.



Chapter 7

Conclusion

In this thesis we have presented a middleware platform for the de-
velopment of real-time video-processing applications, and we have
described its experimental verification using two di↵erent and in-
novative surveillance applications as a test bed: a people tracking
algorithm and a fire detection algorithm.

The novel tracking algorithm used in this thesis is able to over-
come many of the problems induced by the object detection phase,
as well as to deal with total or partial occlusions. In order to con-
firm these characteristics, the algorithm has been tested over a
standard dataset. The obtained results confirm the e↵ectiveness
of the proposed approach in very di↵erent environments. Further-
more its low computational cost makes this algorithm well suited
for real-time applications for behavior analysis.

The fire detection algorithm we propose in this thesis uses
an ensemble of experts based on information about color, shape
and flame movements. The approach has been tested on a wide
database with the aim of assessing its performance both in terms
of sensitivity and specificity. Experimentation confirmed the ef-
fectiveness of the approach, which achieves better performance in
terms of true positive rate with respect to any of its composing
experts. Particularly significant by the applicative point of view
is its drastic reduction of false positives, from 29.41% to 11.76%.
Even though the system is made of three experts working simul-
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taneously, its overall computational load is compatible with real
time video surveillance application.

Once the application porting has been completed, it has been
tested to assess the speedup due to the parallelization, the over-
head introduced by the platform and the processing time.

To confirm the e↵ectiveness of the proposed data-flow architec-
ture, four experiments showing the relationship between the above
parameters have been carried out. The results underline that the
middleware is flexible and e↵ective, improving both the develop-
ment process and the performance of the resulting application.
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