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Abstract

Spring-block models are the most simple description of a seismic fault reproducing

at qualitative level experimental observations as the Gutenberg-Richter law. In

the cellular automata version, the so-called OFC model, randomness is present

only in the initial condition and avalanche sizes follow a power law distribution

with an exponent depending on the dissipation parameter. The OFC model can be

mapped in the evolution of a driven elastic interface in a disordered medium after

adding randomness in the level of friction instability. In this case the avalanche

size distribution is still a power law but with a stable exponent independent of the

dissipation parameter. In the Thesis we study the mechanism responsible for the

observed differences between the pure and the random OFC model, focusing on

the role of synchronization leading to quasi-periodic behavior. In order to achieve

a better understanding of synchronization and dissipation in the system we also

study simplified models including mean-field models up to two-block systems. The

role of relaxation is also discussed in these simplified systems.
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Introduction

Dynamics of the Earth crust depends on several mutually dependent mechanisms

acting at different spatial and temporal scales. The interplay of these mechanisms

produces instabilities in the stress field, leading to abrupt energy releases, i.e.,

earthquakes. Collective behavior in stress transfer and relaxation within the Earth

crust leads to emergent properties described by stable phenomenological laws for a

population of many earthquakes in size, time and space domains. This observation

has stimulated a statistical mechanics approach to earthquake occurrence, applying

ideas and methods, as scaling laws, universality, fractal dimension, renormalization

group, to characterize the physics of earthquakes.

A classical model for earthquake occurrence is the Burridge Knopoff (BK)

spring-block model [1], where the fault between two tectonic plates is described

as a lattice of rigid blocks elastically connected among them and driven onto a

rough surface. Due to the relative movement of the tectonic plates, the stress

on all the blocks increases until the stress of one block reaches an upper thresh-

old, correspondent to the static friction, and relaxes, causing the slipping of the

block and a rearrangement of the constraints on the neighboring blocks. This can

possibly push other blocks to relax and trigger an avalanche of slippings, i.e., an

earthquake. This model implements a separation of time scales, the one of the

avalanches instantaneous respect to the one of the driving plate and it leads to a

stick-slip dynamics. The model has attracted the interest of the physical commu-

nity because of its ability to generate sequences of events following a power law

in the size distribution. This feature is in agreement with the Gutenberg-Richter

law [3] which describes the distribution of earthquake magnitudes in instrumen-

tal seismic catalogs. More precisely, in instrumental data sets the distribution of

earthquake sizes is a power law with an exponent τ ' 1 + 2/3. More generally,
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the BK model is an interesting example of a self-organized critical system. Self-

organized criticality (SOC) is a collective behavior whose main feature is that the

dynamical system moves towards a critical point with scale invariance, without

any tuning of adjustable external parameters. The most famous example of SOC

is the sandpile model, introduced in 1987 by Bak, Tang and Wiesenfeld (BTW)

[4]. Other examples are variants of this first model, like the forest fire model, a

model for front propagation, evolution models for species, and so on [5]. A variant

of great interest for the seismological community is the Olami Feder Christensen

(OFC) model [2], a cellular automaton version of the BK model. Unlike the orig-

inal BTW model, the OFC model is dissipative, because only a fraction of the

stress released by the unstable site is redistributed to the neighbors. The size

distribution in the OFC model is a power law with an exponent τ depending on

the dissipation parameter α and in particular τ ' 1 + 2/3 in a given range of α

values.

The OFC model is very sensitive to small modifications of the toppling dy-

namics; for example, another implementation of the OFC model (the generalized

BTW model [6]), where the unstable site’s stress does not drop to zero, but drops

of a fixed amount, leads to a stability of the exponent, since only the cut-off of the

distribution depends on the dissipation. The introduction of randomness (OFC*

model [7]) leads to the stability of the exponent as well, but interestingly in this

latter case it is possible to map the model onto another well studied model, the

elastic interface driven in a random media [8], which was initially developed to

describe the evolution of interfaces between magnetic domains. This model de-

scribes the depinning transition, which is a phase transition between a pinned

phase, where the interface is blocked, and a depinned phase, where the interface

moves. In the case of elastic drive, we retrieve the same behavior of the avalanche

statistics as in the OFC* model.

Nevertheless, the exponent τ of the OFC* model is significantly smaller than

τ = 1 + 2/3; moreover it is not possible to retrieve other statistical features,

like the power law decay of the aftershock number, i.e. the Omori law [9]. The

introduction of a relaxation mechanism, in a time scale in between the small one of

the avalanches and the big one of the drive, leads to the presence of the aftershocks

phenomenon. Also this model can be mapped onto a discretized one, the OFCR
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model [7]. Interestingly, the introduction of a relaxation leads to a power law in

the size distribution with a stable exponent τ ' 1 + 2/3 independently of α.

The aim of this thesis is to study the mechanism responsible for the observed

differences between the pure OFC model and the random OFC* model. More pre-

cisely we focus on the synchronization of individual blocks with each other, where

by synchronization here we mean the possibility, for one block j, to partecipate

to the same avalanche started by a block i, because of the stress rearrangement

due to the instabilities. Middleton and Tang [11], indeed, observed that the OFC

model with periodic boundary condition has a continuous set of neutrally stable

periodic states. They found that inhomogeneity destroys these periodic states and

causes synchronization, which is the building block for long range correlations. In

particular, a change to open boundaries results in the invasion of the interior by

a self-organized region, leading to a partially but non totally synchronized state.

This mechanism for the self-organization appears to be related to the synchro-

nization of the individual elements with each other and is proposed to explain the

dependence of τ on the conservation parameter α. We therefore have investigated

how the presence of randomness, as well as, of a relaxation mechanism affects

synchronization in these systems.

In particular, in order to achieve a better understanding of how randomness

affects the behavior of the exponent with dissipation, we decided then to consider

how synchronization changes in the different cases.

We analyze, in mean field, several modifications of the original OFC model

to study the role of randomness in synchronization and criticality of the system,

varying the dissipation. Interestingly we found that in mean-field, unlike the 2-

dim case, the OFC* and the generalized BTW belongs to the same universality

class. Moreover we found that the standard OFC model in mean field displays

an annealing of the synchronization mechanism that leads to criticality. These

results are consistent with the claim, by Middleton and Tang, that the propaga-

tion of inhomogeneities from the boundaries is the main responsible of the partial

synchronization, and then criticality, of the 2-dim original OFC model. Finally

we implemented the viscosity in a simple model of two blocks under the origi-

nal OFC dynamics, to understand how the relaxation mechanism of the OFCR

model influences the synchronization. Since the simplicity of the model, it was
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possible to perform an analytical study, and we found three different regimes of

synchronization varying the relaxation parameter with the dissipation one.

The structure of the Thesis is the following: in Chapter 1 we introduce the

physical observables involved in the earthquakes physics, and the empirical laws

for earthquakes distribution in magnitude (GR law), in time (Omori Law) and in

space, with the purpose to give a physical framework to our study; in Chapter 2 we

introduce the BK model, the OFC model and the connection with self organized

criticality; we also discuss the generalized BTW model; in Chapter 3 we intro-

duce randomness in the models, and the mapping with the problem of the elastic

interface driven in random media; in Chapter 4 we examine how the addition of

viscosity effects changes the behavior of the models discussed. In Chapter 5 and 6

is presented our work: in Chapter 5 we perform a mean field analysis of the OFC

models and its variations, while in Chapter 6 we report our analytical study of the

two-blocks OFC model with relaxation.
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Chapter 1

Statistical features of seismic

events

In this Chapter we give an overview of the seismic context in which the model

we study can be applied. The aim is to present the physical observables and the

empirical statistical feature we will refer to in the rest of the Thesis.

1.1 Physical observables

Earthquake occurrence is the most striking evidence for the earth’s crust not being

a static object, but exposed to permanent deformation.

From a simplified point of view, the lithosphere is subdivided into several plates,

which can move, mainly driven by thermal convection in the earth’s mantle. The

tectonic drift generates huge stresses at the plate boundaries and across the frac-

tured areas in brittle regions of the lithosphere. These fractures, i.e., the faults, are

organized into a complex network of planes without a characteristic size. Friction

locks the free sliding causing the storage of high stresses along the fault plane.

When the accumulated stress locally overcomes friction, both sides of the fault

suddenly slip, generating an earthquake. The slipping of the fault is generally

not homogeneous and not isotropic. Sliding initiates at a point (the earthquake

hypocenter) and a slip front propagates outwards until friction locks again the two

fault sides. This phenomenon is known as faulting. As a consequence, the slip is a
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function of space and time, ~D(r, t), describing the actual sliding on the fault. The

elastic energy stored on the fault is released as heat and seismic waves propagating

in the system over very long distances.

1.1.1 Earthquake size

While early measures of earthquake sizes were based on the damage caused by an

earthquake (Mercalli, 1902) [21], the first quantitative measure of the size of an

earthquake was the magnitude mL, introduced by the seismologist C. F. Richter

(1930) [22] and linked to the logarithm of the seismic wave amplitudes. Richter’s

setup was based on a particular type of seismometer (Wood Anderson), placed at a

distance of 100 km from the earthquake source. So different setups’ measurements

need corrections, depending on the location of the seismometer with respect to the

source, the types of waves considered, and the geological settings.

A new scale was developed in the 1970s by Kanamori [23] to succeed the Richter

magnitude scale (ML), the Moment Magnitude Scale mw:

mw =
2

3
(log10M0 − 9, 1) (1.1)

where M0 is the scalar seismic moment at the hypocenter. Let us for simplicity

assume a planar fault where the locations along the fault plane are characterized

by two-dimensional vectors ~x. Then, a slip vector ~D(~x) can be assigned to each

point of the fault plane, which describes the relative displacement of the material

at both sides of the fault. The set of points where ~D(~x) 6= 0 is called rupture area;

let A denote its size. The seismic moment is defined by:

M0 = µ0

∣∣∣∣ ∫ ~D(~x)dx1dx2

∣∣∣∣.
Here µ0 is the rigidity modulus of the lithosphere. If we introduce the mean

displacement along the fault area:

D =

µ0

∣∣∣∣ ∫ ~D(~x)dx1dx2

∣∣∣∣
A

,
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we can rewrite the definition of the seismic moment as:

M0 = µ0AD. (1.2)

1.1.2 Scaling relationships

Experimental results have shown that the seismic moment scales with the rupture

area as M0 ∝ A
3
2 [24]; assuming that the typical lengths along the direction parallel

and perpendicular to the slip both scale with the same characteristic length L, we

have A = L2, and this leads to:

M0 ∝ L3. (1.3)

On the other hand, if we consider the relationship between the stress drop ∆σ due

to the slip and the average strain D/L:

∆σ ∝ µ0
D

L
(1.4)

we obtain:

M0 ∝ ∆σL3. (1.5)

For Eq.1.5 being consistent with Eq.1.3, the average displacement has to vary

linearly with L, leading to a constant stress drop ∆σ.

Another interesting consequence of the scaling isotropy concerns the energy

released during the earthquake. As a first approximation, the energy of an earth-

quake with average slip D over an area A reads:

E ∼ 1

2
∆σDA, (1.6)

corresponding to the variation of the elastic energy stored in the fault. Confronting

Eq.1.6 with the previous results we obtain:

E ∼ ∆σL3 ∼M0.

One final remark comes from relating the magnitude with these scaling relation-

ships, substituting Eq.1.3 in Eq.1.1; we obtain for the fault characteristic length

15



L:

L ∝ 100.5m. (1.7)

1.2 Distribution in size: Gutenberg-Richter Law

Now that we have defined the size of an earthquake in terms of magnitude, we

introduce a very important scaling law that concerns the statistical properties of

earthquakes, the Gutenberg-Richter law (1944) [25] [3], which relates the magni-

tude of earthquakes to their frequency. The law states that in any region, during

a given period, the number N(m) of earthquakes with magnitude larger then m

is:

log10(N(m)) = a− bm (1.8)

where b is the Gutenberg-Richter (GR) value and a is a constant that depends on

the region and time considered, which indicates the overall degree of seismicity.

When plotting log10(N(M)) = a− bM for actual data, it can be observed that

the constant slope of the relationship generally fails at the largest and smallest

magnitude events considered. At the lower end of the magnitude range it will

be commonly observed to be flatter. This is generally attributed to the detec-

tion threshold of the particular seismic network that is monitoring the region.

Earthquake catalogs are thus generally incomplete at the lowest magnitudes of

sensitivity, resulting in a flattening of the curve. The magnitude of completeness

mc is defined, then, as the lower bound of the validity range of the GR law [26]

(See Fig.1.1). Earthquake catalogs are also generally incomplete for the largest

earthquakes recorded but for a different reason: the recording period is insufficient

or too short to capture the occurrence of the largest earthquakes possible in the

region.

Considering the logarithmic dependence of the magnitude on the seismic mo-

ment, and the linear relationship between the seismic moment and the energy, we

obtain a power law distribution for the energy released:

P (E) ∝ E−β, (1.9)
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Figure 1.1: Earthquake statistics in Southern California for the time period 1954-
1980 (adapted from [27]).

where

β = 1 +
2

3
b

The exponent b, in first approximation, is quite independent on the region or the

time we are considering, and for tectonic earthquakes experimental data suggest

a value b ' 1. Actually more recent studies have shown a dependence of the

exponent on:

• different sub-regions in the same seismic catalogue [28];

• depth of the hypocenter [29];

• focal mechanism, in particular the rake angle λ, which characterizes the di-

rection of slip on the fault plane [30] and can be related to the local level of

differential stress [31] (as a consequence, some studies have suggested that

the b-value can be used as a stress indicator, with lower b-values often asso-

ciated with higher stresses [30]);
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• magnitude range considered [32].

In all these studies fluctuations are about 20% of the b-value, at most, so it makes

sense to consider the GR law with the exponent b ' 1, in first approximation, a

robust feature of the statistical properties of the earthquakes occurrence.

1.3 Distribution in time: Omori Law

Figure 1.2: Examples of earthquake sequences: (a) mainshock-aftershock; (b)
foreshock-mainshock-aftershock; (c) swarm (earthquake sequences without a clear
mainshock); (d) successive occurrence of mainshock-aftershock sequences (adapted
from [33]).

Considering now the earthquake distribution over time (in Fig.1.2 we report

some examples), we define as mainshock the largest one in the sequence. Some-

times the mainshock is preceded by quiescence, other times by smaller magnitude

18



earthquake close in time to the mainshock, called foreshocks ; in both cases, though,

the mainshock is followed by smaller earthquakes within certain spatial and tem-

poral windows, called aftershocks. They typically occur on or near the rupture

plane of the mainshock, resulting from changes of stress and frictional properties

of the fault zone caused by the mainshock.

It was first recognized by Omori (1894) [9] that the frequency of aftershocks is

an hyperbolic decaying function of time. Later modified by Utsu (1961) [34], the

Omori’s law states that the aftershocks’ occurrence rate decreases in time as:

n(t) =
K

(c+ t)p
(1.10)

where n(t) is the number of aftershocks at time t since the mainshock, K and c are

empirical constants controlling, respectively, the total number of aftershocks and

the onset of the power law decay. The value of p is typically close to 1 [35]. The

values of these constants are obtained by data fitting for each aftershock sequence.

It has been observed that the largest aftershock is usually about 1 magnitude unit

smaller than the mainshock, independent of the mainshock magnitude. This is

known as Bath’s law [36]. However, because the data selection is retrospective and

subjective, the size of aftershocks can vary substantially for different earthquake

sequences.

The identification of a mainshock and its subsequent aftershocks is not a simple

task for small mainshock sizes, because of the difficulty in separating triggered from

spontaneous background events. In this case it is necessary to apply declustering

methods able to perform such discrimination. Among several attempts based on

spatial and temporal constraints for the aftershock, a simple approach consists

in identifying as mainshocks all events separated in time and space from larger

earthquakes. Aftershocks are all subsequent events occurring within a circular

region of a given radius R centered at the main shock epicenter [47] [37].

The observation of a finite c is usually interpreted as a consequence of catalog

incompleteness at the beginning of the aftershock sequence: immediately after

a large earthquake, many aftershocks are not recorded in the catalog since either

they are hidden in the mainshock coda wave, or they are skipped by the automatic

event identification due to the overload of the apparatus [38] [39]. Analyses of
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experimental sequences show that c depends on the mainshock magnitude mM ;

this can be interpreted within a dynamical scaling framework [40]. Moreover, a

dependence on the fault geometry, similar to the one found for the b value in the

GR law, has been also measured for the c value [41].

1.4 Productivity Law

Another empirical feature of the aftershocks is the so-called productivity law, that

states that the larger the mainshock magnitude, the larger is the total number

of aftershocks belonging to the sequence. In particular the number of aftershocks

nAS belonging to a sequence increases exponentially with the mainshock magnitude

mM :

nAS ∝ 10αmM

The α value obtained from data is about 0.8, slightly changing with the radius

of the declustering procedure (α ∈ [0.72, 0.81] [42]). The result α ' 0.8, also

measured by a different method for aftershock identification based on networks

of correlated events [43], is probably underestimated. Indeed, the evaluation of

the number of aftershocks in sequences triggered by smaller mainshocks has a

larger probability to include also events belonging to background activity and not

triggered by the main event.

Other values for α have been obtained from different declustering methods.

In particular, an estimation by the maximum likelihood of the epidemic type af-

tershock sequence (ETAS) model parameters usually leads to smaller values of α

[44]. As a final remark, the relation between α and the b value in the GR law is

important to discriminate if the triggering process is dominated by the small or

the large events.

1.5 Earthquake spatial distribution

Experimental results [45] indicate that the spatial extent of aftershock activity,

immediately after the mainshock (hours or days), is consistent with the dimension

of the fault area fractured by the mainshock. According to Eq.1.7, therefore, one
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Figure 1.3: The spatial distribution of the aftershocks as a function of the epicen-
tral distance δr, for different mainshock magnitudes mM . The pink dashed line
represents the power law decay ρ(δr) ∼ δr−2 (adapted from [54]).

expects that also the size of the aftershock area exponentially depends on the

mainshock magnitude:

L(m) ∝ 10γm,

with γ ∝ 0.5. This property can be recovered from the behavior of the distri-

bution of distances between the hypocenters of each aftershock and its triggering

mainshock. Usually, since the localization of earthquake depths presents a large

uncertainty (sometimes as large as 1 km), many studies focus on the distribu-

tion ρ(δr) of distances between epicenters. The quantity ρ(δr) corresponds to the

number of the aftershocks occurring at distance δr from the mainshock epicenter,

divided for the total number of aftershocks. In Fig.1.3 we report this distribution

for different values of the mainshock magnitude. The declustering method adopted

to distinguish mainshocks and aftershocks is reported in [46]. As you may see, the

smaller is the mainshock magnitude, the larger is the percentage of aftershocks

happening at small δr.

The asymptotic decay of ρ(δr) is consistent with a power law ρ(δr) ∼ δr−ν . The

determination of the exponent ν can give insights of the mechanism that triggers
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the aftershock [47]. In fact, elastodynamics indicates that the displacement at a

distance δr from a seismic source is composed by two contributions: a static one,

usually defined as near field contribution, that decays as δr−2, and a dynamic one,

the far-field contribution caused by the transient passage of seismic waves, which

exhibits a slower decay in space δr−1. Aftershocks are mainly observed in the near-

field where mainshocks have increased the difference between the shear and the

normal stress, i.e. the static stress. However they also happen in regions of reduced

static stress as well as at distances of several fault lengths from the mainshock [48].

In this case, far-field dynamic stress is the most reasonable cause for this remote

triggering. The exponent ν allows to discriminate between triggering by static or

dynamic stress.
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Chapter 2

Statistical models: from

spring-block model to self

organized criticality

In this Chapter we introduce the spring-block model of the fault and its discrete

version, the OFC model. We also report numerical results for the generalized BTW

model, as a reference for a confrontation of these 2-dim models with our results in

mean field.

2.1 The Burridge-Knopoff Model

In order to understand earthquake dynamics, we must first come back to the basics

of fault mechanics. Burridge and Knopoff (1967) [1] introduced a simplified model

for a single fault, capable of explaining the stick-slip dynamics of the earthquake.

In this spring-block model, the fault is represented by two layers: for simplicity,

one side of the fault is replaced with a rigid plate, the other side with an array

of blocks that sticks to the plate because of static friction. To take into account

a simplified elastic behavior of the rock, blocks are connected by springs among

each other. The permanent driving due to tectonic forces is provided by elastic

coupling of the blocks with the plate, which is assumed to move at a constant

velocity. In figure 2.1 we report a one-dimensional example.
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Figure 2.1: One-dimensional representation of a spring-block model (adapted from
[49])

Indicating with ~hi the position of the i-th block the forces acting on it are:

• the first-neighbor elastic coupling: k1∇2(~hi);

• the driving plate elastic coupling: k0(~hi− ~V0t), where ~V0 is the driving plate

velocity;

• the friction ~Φi.

The equation of the motion for the displacement of the block in one dimension

then reads:

m
d2hi(t)

dt2
= k1(2hi(t)− hi+1(t)− hi−1(t)) + k0(hi(t)− V0t)− Φi(ḣi(t)), (2.1)

where Φi(ḣi(t)), representing the friction, can depend on the block velocity in

several ways. BK proposed a particular form for the friction term, including the

effect of seismic radiation and Newton viscosity and assuming that, in the presence

of viscosity, stresses are proportional to the strain rate.

The appreciation of the BK model by the physical community started after

the statistical study performed by Carlson and Langer [50], who implemented a

simpler velocity-weakening friction force:

Φi(ḣ) =

{
[−∞, µS] for ḣ ≤ 0

µS−δ
1−2αḣ/(1−δ) for ḣ > 0.

The static friction coefficient µS can be normalized to 1, via a change of variables,

leading to only two parameters determining the friction law: δ, the instantaneous
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drop of the friction when the slip starts (useful for numerical purposes), and α,

the rate of weakening of the dynamical friction with the slip velocity.

Even in the case of the simplest friction law, defined by only two coefficients

(static and kinetic) and applied to a single block, we already have an interesting

stick-slip instability. In presence of many blocks, the finite slip of a single one

may pull on neighbor blocks triggering an avalanche of numerous one-block slips,

an event that can be identified with an earthquake. In the quasi-static limit of

zero drive velocity V0 → 0, we can distinguish three separate time scales, one

concerning the drive, the second (instantaneous if confronted with the first one)

concerning the avalanche and the third (instantaneous confronted with the first

and the second) concerning the single-block slip.

The occurrence of earthquakes in such a conceptually simple model triggered

a large activity around the BK model: variations include two-dimensional blocks

assemblies [51], models with long-range elastic interactions between blocks (which

are an effective representation of the interactions via the bulk of the plate) [52], or

driving via the system boundary (train model) [53]. The majority of studies on the

BK model are focused on the magnitude distribution of events and its dependence

on the friction parameters and, interestingly, with an appropriate choice of the

parameters, such models are able to replicate the GR law.

The difficulty of simulating systems with a large number of blocks (due to the

nature of the equations, i.e. coupled continuous ODEs), though, has pushed the

statistical physics community to study simpler models in which general statistical

results can be obtained, such as cellular automata representing sliding blocks.

2.2 Cellular Automata approach: Olami-Feder-

Christensen Model

A cellular automaton model is a discrete model consisting of a regular grid of cells;

every cell can be in one of a finite number of states. In 1989 Bak and Tang [55] have

enlightened the similarity between stick-slip behavior in seismic occurrence and the

evolution of a simple cellular automaton model. Subsequently Olami, Feder and

Christensen (OFC) [2] explicitly show that the BK model, under the assumption
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of a simple Coulomb friction and in the limit of vanishing driving velocity V0 → 0,

can be mapped onto a continuous cellular automaton where the whole evolution

is only controlled by the local force. We show this derivation in one dimension

and we refer to the local force σi acting on the i-block. Equivalently, since we are

working in lattice spacing units, σi can be viewed as the local stress.

Because of the sliding of the surrounding blocks and of the plate, following the

Eq.2.1 the i-th block at time t experiences a force:

σi(t) = k1(2hi(t)− hi+1(t)− hi−1(t)) + k0(hi(t)− V0t). (2.2)

The friction is supposed velocity-independent:

Φi =

{
σi if σi ≤ σth

0 otherwise.

σth is the static friction threshold and the dynamic friction coefficient is set equal

to zero. Furthermore we assume time scale separation.

Within these assumptions, the dynamics is the following: the force on the block

i starts to grow, until it reaches its threshold value σth; at this point the force drops

to zero, instantaneously in the drive timescale, and the new position of the block

h′i satisfies:

σi = k1(2h′i − hi+1 − hi−1) + k0(h′i − V0t) = 0.

As a result, the displacement of the block will be:

δhi = h′i − hi = − σi
2k1 + k0

and the change in stress on the neighbor blocks will be:

δσ = −k1δhi = σi
k1

2k1 + k0

.

This translates into simple rules for the stress σi acting on block i:

1) Assign a random initial value to every block σi ∈ [0, σth);
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2) Increase all the σi uniformly at a constant rate k0V0 until a block has σi = σth;

3) σi drops to zero, while all neighbors receive an additional pulse δσ;

4) If, because of the pulse, any neighbor’s stress is increased over the threshold,

repeat from step 3);

5) Otherwise, repeat from step 2).

The previous numerical implementation can be extended to any dimension d, pro-

viding that the stress increment δσ now reads:

δσ =
k1

nnk1 + k0

σi,

where nn is the coordination number of the d-dimensional lattice. The parameter

α =
k1

nnk1 + k0

, (2.3)

which can vary as α ∈ (0, 1/nn], plays a central role in the model dynamics, being

related to the amount of energy dissipated in each slip. After a given instability,

indeed, only a fraction nnα of the stress drop δσ is redistributed inside the system,

whereas (1 − nnα) is given back to the external drive. The conservative case

corresponds to α = 1/nn.

In order to clarify the relation between the size distribution in the OFC model

and the GR law in seismic occurrence let us consider a 2d fault model. Since the

block displacement D is roughly constant, an earthquake corresponds to a rigid

slip of length D of a region of size A inside the fault. The seismic moment is

defined as

M = k1a
∑
i

δhi,

where a is the lattice spacing, and, since D is constant in the OFC model, one

has M ∝ A ∝ S , where S is the number of sliding blocks. The experimental GR
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relation leading to P (M) ∝M−(1+2/3b) therefore corresponds to a size distribution

P (S) ∝ s−τ where τ = 1 + 2/3b.

Figure 2.2: On the left side: the size distribution in the OFC model for a 2-
dimensional lattice with L = 350 and different values of α ∈ [0.1, 0.25]. The
green dashed line is the expected experimental result P (S) ∼ S−1.7. On the
right side: the size distribution in the OFC model for α = 0.2 and different
sizes L = 32, 48, 64, 80, 96, 128 from left to right. The magenta dashed line is the
expected experimental result P (S) ∼ S−1.7 (adapted from [54]).

In Fig.2.2 we plot the size distribution P (S) of the OFC model in d = 2. The

power-law behavior of P (S) indicates that the OFC model is able to reproduce

the size distribution of seismic data at a qualitative level but not at a quantitative

one, in the conservative case α = 1/4 since the numerical value of τ ' 1.1 is much

smaller than the experimental one, τ ' 1 + 2/3. Interestingly, though, as you may

see in Fig.2.2 (left side), OFC model studies the dependence of the exponent τ on

the dissipation parameter α, finding a α-range in which τ has a good agreement

with experimental data. About the finite size effects, it has to be observed that

the initial power law decay is not involved, being the same for different sizes, as

you can easily check in Fig.2.2 (right side); what actually does change with size

is the cut-off of the distribution for large sizes, which becomes larger as the size

grows; this suggests that, in the limit L → ∞, the power law decay stands at all

sizes.

Observe that in this model we considered open boundary conditions; it was

proven [11] that the power law behavior of this model stands also with free bound-

28



ary conditions, but not with periodic boundary conditions.

As a final remark, notice that the OFC prediction M ∝ A is in disagreement

with experimental data M ∝ A3/2 [24]. This discrepancy comes from the fact that,

while in the OFC the average slip D is intrinsically constant, in the real systems

it varies with the size of the event.

2.3 Self Organized Criticality

Introduced by Per Bak and his colleagues [4], Self Organized Criticality (SOC)

has played a significant role in the development of complexity science. Complexity

arises in the sense that no single characteristic event size exists, i.e. no scale

present to guide the system’s evolution.

In their seminal work Bak et al. provided one of the first principles unifying

the origins of the power law behavior observed in many natural systems. The

core hypothesis was that systems consisting of many interacting components will,

under certain conditions, spontaneously organize into a state with properties akin

to the ones observed in a equilibrium thermodynamic system near a second-order

phase transition. As this complex behavior arises spontaneously without the need

for external tuning this phenomena was named Self-Organized Criticality.

The highly appealing feature of the SOC theory is its relation to the well

established field of the phase transitions and the notion of universality. The uni-

versality hypothesis groups critical phenomena, as observed for many different

physical phase transitions, into a small number of universality classes. Systems

belonging to the same universality class share the values of critical exponents and

follow equivalent scaling functions. This universal behavior near a critical point

is caused by a diverging correlation length. The correlation length becomes much

larger than the range of the microscopic interactions, thus the collective behavior

of the system and its components becomes independent of its microscopic details.

This also implies that even the simplest model captures all the aspects of critical

behavior of the corresponding universality class.

Physical systems which are believed to exhibit SOC behavior are usually char-

acterized by a constant flux of matter and energy from and to the environment.

Thus, they are intrinsically non-equilibrium systems. The concept of universality
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is still applicable to non-equilibrium phase transitions. However, an universal clas-

sification scheme is still missing for non-equilibrium phase transitions and the full

spectrum of universality classes is unknown. The properties of non-equilibrium

transitions depend not only on the interactions but also on the dynamics. In

contrast, detailed balance, a necessary precondition for an equilibrium state, con-

strains the dynamics in equilibrium phase transitions.

Phenomena of strikingly different backgrounds were claimed to exhibit SOC

behavior: sandpiles, earthquakes, forest fires, rivers, mountains, cities, literary

texts, electric breakdown, motion of magnetic flux lines in superconductors, water

droplets on surfaces, dynamics of magnetic domains, growing surfaces, human

brains, etc (for further references [54]). Neglecting the specific details of each

model, here we summarize their common features:

• Lattice models: usually all these systems are represented on a discrete lattice;

• Threshold mechanism: local instability happens as soon as a threshold value

of some variable is reached; as a consequence, by means of local interactions,

all the system is globally rearranged (avalanche);

• Time scales separation: the external drive is much slower than the typical

time scale of the local instability and of the avalanche propagation, which in

these models is usually considered instantaneous;

• Dissipation: a form of dissipation is always present, often by means of open-

boundary conditions;

• Power laws: the scale-free avalanche size distribution is the distinct feature

of SOC systems.

In the following section we will explain in detail the sandpile model, the original

model studied by Per Bak et al, in order to enlighten the main mechanisms leading

to SOC behavior.
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2.3.1 Sandpile model

Sandpile model (or Bak-Tang-Wiesenfeld model), as we mentioned, was the first

of a series of very simple models which evolve towards a critical state without

external tuning [4]. Quite interestingly, in its first version (Bak et al, 1987) it was

derived for the dynamics of an array of coupled oscillators, in order to find the

origin of pink noise. We stressed this aspect because, in this thesis work, we are

going to focus on the role of synchronization in the avalanche dynamics, and it is

useful from this point of view keeping in mind that these simple stick-slip models

can describe systems of global and local coupled oscillators.

The BTW model is defined on a quadratic 2-dimensional lattice; the state

of each site (i, j) is characterized by an integer non-negative variable ui,j. In

analogy with a sandpile, we can think to the integer number ui,j as the number

of grains stacked on top of each other at the site (i, j). In every discrete time

step, a site is randomly chosen and the correspondent variable is incremented by

one: ui,j → ui,j + 1, which corresponds to adding a grain to the grain pile in the

site; if the condition ui,j < 4 is verified, another time step is made, otherwise

the stack of grains in (i, j) is no longer stable and the four grains are uniformly

redistributed among the four nearest neighbors; this reads as all four neighbors of

the unstable site incremented of one, while the unstable site decremented of four;

the neighbors, as a consequence, can be unstable as well. Once the instability

propagation (avalanche) is over, the system goes on with the next time step. This

translates into a simple implementation for ui,j evolution:

1) Assign a random initial value to every site ui,j ∈ [0, 1, 2, 3];

2) Choose randomly one site (i, j) and increment its u-value of one: uij →
ui,j + 1;

3) If ui,j < 4, repeat from 2);

4) Otherwise, ui,j → ui,j − 4, while all its neighbors are incremented by one:
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ui,j±1 → ui,j±1 + 1 and ui±1,j → ui±1,j + 1;

5) If this instability has generated new instabilities, repeat from 4);

6) Otherwise, repeat from 2).

In Fig.2.3 we reported an example of an avalanche in such a system. Observe

that the toppling rule 4) is conservative, in the sense that the total number of

grains remains constant during an avalanche. This corresponds to the OFC model

without dissipation (α = 1/nn). As soon we implement some dissipation the

situation changes, as it happened with the implementation of the model by Feder

and Feder [56], where the toppling rule for the unstable site was: ui,j → 0, instead

of ui,j → ui,j − 4. This version of the model differs from the original one only if

ui,j > 4 temporarily. The third stage in Fig.2.3 shows that this case may occur

during an avalanche.

Actually, while the distribution of the grains on the neighbors is indeed conser-

vative, the fact that at each time step we introduce a new grain in the system could

lead to an infinite avalanche situation; in order to prevent that, it is important to

introduce in the model open boundary conditions. In this situation the avalanche

size, which corresponds to the number of sites involved in an avalanche, follows a

power law distribution, with an exponent τ ' 1.1, as we mentioned before.

As a final remark, notice that the BKW model is an abelian model, which

means that the final result of the avalanche does not depend on the order of the

topplings performed.

2.3.2 The generalized BTW model

The generalized BTW is a model in between the original BTW model and the OFC

model [6]. On one hand we have continuous site variables and an uniform drive

as in the OFC model, on the other the dissipation is implemented in an updating

rule very similar to the original one in the BTW model, where the variable site is

decreased of a fixed amount as the site becomes unstable.
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Figure 2.3: Evolution of an avalanche in the sandpile model; here every square
represents a site, while dots represents the grains stacked in the site; activated
sites are marked in grey (adapted from [49]).

Recovering the terminology we used in the explanation of the OFC model, the

dynamics is the following:

1) Assign a random initial value to every block σi ∈ [0, σth);
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2) Increase all the σi uniformly at a constant rate k0V0 until a block has σi = σth;

3) σi drops to (σi− σth), while all the nn neighbors receive an additional pulse:

δσ = ασth =
k1

nnk1 + k0

σth;

4) If, because of the pulse, any neighbor’s stress is increased over the threshold,

repeat from step 3);

5) Otherwise, repeat from step 2).

The constant α determines the conservation level. When α < 1/nn, where nn is

the coordination number of the lattice, an amount equal to (1−αnn)σth is lost as

a consequence of the update.

Numerical simulations performed on a 2-dim lattice show that, for α = 1/nn

(conservative limit), the avalanche size distribution is a power law with an exponent

τ ' 1.05, and a cut-off that diverges with the size of the system.

As long as we introduce some dissipation, the distribution starts to present

smaller cut-off as α is decreased, and it is well fitted by the function:

P (s) ∝ s−1 exp
(
− s

smax

)1.3

The cut-off smax dependence from the dissipation α follows:

smax ∼
( 1

nn
− α

)−1

Moreover, if we look at the avalanches in time, we notice a periodic behavior that

tends to disappear in the limit α → 1/nn. In Fig.2.4 we report numerical results

for several value of the dissipation α.
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Figure 2.4: Numerical evaluation of the avalanche size distribution for a 2-
dimensional lattice with Lx = Ly = 200, for decreasing values of the parameter α
(α = 0.25 is the conservative limit). The critical behavior is indicated by the blue
dashed line s−τ , where τ = 1.
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Chapter 3

The role of randomness in the

SOC behavior of the models

In this Chapter we introduce the problem of the elastic interfaces driven in a

random media. Interestingly, this model can be mapped into a cellular automata

one, the OFC* model, which implements annealed disorder in the OFC model

previously discussed. We report the results of 2-dim simulations of this model and

of a slightly different version, where more disorder is added.

3.1 Elastic interfaces driven in a random medium:

the depinning transition

The problem of driven elastic interfaces is a phenomenon deeply investigated in

condensed matter physics since it is encountered in a large variety of situations

starting from the simple evolution of interfaces between magnetic domains up

to the dynamics of dislocation assemblies such as vortices in superconductors or

charge density wave materials [57]. The common features of all these systems are

the short-range nature of the interactions and the dominant role of viscous forces

over inertial terms. This connection between apparently distant problems allows

to implement methods and procedures developed within one context to get further

insights in the other problem. The relation between the SOC and the interfaces

problem has emerged after the seminal paper by Hwa and Kardar (HK) [58]. HK
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describe the height profile of a sandpile by means of a Langevin equation including

an additive thermal-like noise. This description allows to obtain some insights in

the mechanisms responsible for criticality but does not apply immediately to SOC

like models presenting the features listed in the previous chapter; in particular,

the threshold mechanism is not considered in the Langevin equation approach. In

the following we will present the model in the more general way and in the next

section we will see how it is related with SOC systems.

Let us consider the interface as a line of defects aligned, for instance, along the x

direction and indicate with h(x, t) the displacement at time t in the perpendicular

direction z. Assuming nearest-neighbor elastic interactions and neglecting inertial

effects the velocity along the perpendicular direction is given by:

η
∂h(x, t)

∂t
= ∇2h(x, t) + FD, (3.1)

where η is the viscosity coefficient, the term ∇2h(x, t) comes from a gradient

expansion of the short-range Hamiltonian (the elastic approximation) and FD is

a driving force. In the case of interfaces between magnetic domains, for instance,

the driving force is an external magnetic field and the elastic term describes the

ferromagnetic interaction. Very interesting patterns are observed in presence of

local impurities, such as a random field acting on the system that can be modeled

as an extra random force Φ in Eq.3.1:

η
∂h(x, t)

∂t
= ∇2h(x, t) + FD + Φ(h(x, t)). (3.2)

By noticing that for a discretized system ∇2h(x, t) ∝ 2hi(t)− hi−1(t)− hi+1(t) it

is evident the analogy between the above equation for the interface displacement

h, usually known as the quenched Edward-Wilkinson equation [59], and Eq.2.1

controlling the evolution of the block position in the BK model. Indeed, adding

a viscous term in Eq.2.1 and assuming that inertial effects can be neglected, as

in the OFC model, one obtains an equation which is formally identical to Eq.3.2,

where FD and Φ are the drive and the friction force, respectively. The only qualita-

tive difference is that in the BK model h(x, t) corresponds to displacements in the

plane direction whereas, for an interface, displacements are perpendicular to the
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defect line. This formal analogy reflects in a similar behavior observed, in partic-

ular, when the driving force FD approaches a critical value. The interface motion

just below the threshold, consists of abrupt jumps, as large segments of the inter-

face depin from strong pinning centers (impurities), followed by periods without

significant displacements. These jumps, conceptually equivalent to earthquakes

in the BK model, provide an explanation for the so-called Barkhausen noise [60]

measured in ferromagnetic materials, i.e. the experimental observation of abrupt

jumps in the magnetization due to flipping of magnetic domains via avalanches,

whose sizes follow a power-law distribution. It is possible to simplify the analy-

sis of the dynamics arising from Eq.3.2 if we use for the disorder landscape the

Narrow Well Approximation [61] [62]: the idea is that pinning centers are very

localized in space. If a block reaches one of these positions it falls inside the well

and it is completely locked unless the total force reaches a threshold Fth(h(x, t))

which allows to overcome the depth of the well. The block, then, moves over a

distance δh until it finds another well. The other hypothesis is that the force-drop,

corresponding to this displacement, is much smaller than the well depth. Under

this assumption the block abruptly jumps from one well to the subsequent one.

3.1.1 The depinning transition with constant driving force

Eq.3.2 is usually studied assuming a constant FD. We will see what happens to

the dynamics in different driving-force FD regimes.

Pinned phase If we start from a very small force, the interface will easily

be pinned. As we increase the force, at some point the interface can escape

from the impurity. This may cause the neighboring impurities to also detach

right after the next one, and then their own neighbors, and so on, almost

instantaneously (on a time scale η−1). This chain reaction or avalanche stops

when the interface is finally pinned down and the local velocity is zero ev-

erywhere. If we again increase the force by an infinitesimal amount δF , a

new avalanche may be triggered. Keeping the perturbation δF constant, for

larger forces FD, the interface will need to find stronger impurities in order

to stop, something that will become more rare: the avalanches will get bigger

with increasing FD (and constant δF ).
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Depinned phase Above a certain force, the occurrence of impurities strong

enough to pin the entire line will switch from rare to non-existent, so that

the center of mass will never rest: we say that the interface is depinned, and

we have:

v(t) > 0 ∀t, where

v(t) = 〈∂th〉 =
1

Ld

∫
∂th(x, t)ddx

Figure 3.1: Adapted from [8]: Depinning transition at zero temperature.

So for small FD the system is in the pinned state whereas for large FD is in the

slipping state. There exists a specific value FD = Fc where a transition between the

two dynamical states is found. This transition exhibits very striking similarities

with standard phase transitions at the critical point. Indeed, one can consider the

interface velocity v as the order parameter which close to Fc exhibits the following

behavior: {
v = 0 if FD < Fc

v ∝ (FD − Fc)β if FD & Fc

In Fig.3.1 we report a qualitative representation of the transition.

Close to FD ' Fc the typical patterns observed at the critical point, such as

the diverging susceptibility, as well as the power law in the size distribution, can

be all related to the divergence of the correlation length ξ, i.e. the typical distance

l over which h(x) and h(x+ l) are correlated. The above observations imply that
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even if depinning, under a constant external force, is a transition between non-

equilibrium dynamical states, it can be interpreted in the general framework of

classical critical phenomena.

Up to now we have not yet discussed in detail the statistical properties of the

avalanches which are also expected to display critical behavior at the transition.

Above the threshold (depinned regime), the dynamics consists essentially in nu-

merous almost independent avalanches. However when a point is almost stopped

(just before the end of an avalanche) it may keep on moving by participating in

a new one: because the motion truly consists in a single very large, never-ending

avalanche, these are not really independent. This makes it difficult to properly

define finite avalanche events, above the threshold. Below the threshold (pinned

regime, F < Fc), an infinitesimal increase δF of the force may trigger avalanches.

By taking δF small enough, as we mentioned before, one may hope to ensure that

exactly zero or one avalanche will be triggered. In this way, one can a priori trig-

ger a large number of avalanches at fixed F , given that δF � |Fc − F |. However

numerically it may prove difficult to keep F constant while increasing it by δF

several times. For these reasons in the next section we will introduce another way

to drive the system, which is more relevant for frictional or seismical applications

and allows for unlimited avalanche statistics while staying below the critical force

Fc.

3.1.2 The depinning transition with elastic driving force

Instead of driving the system with a constant force FD equal in all points of the

interface and independent of its progression, we can pull it elastically via springs

(one per site) attached to a common surface (set in the plane z = w) with an

externally imposed velocity V0 (i.e. w = V0t), as we did in the BK model. The

equation now reads:

η
∂h(x, t)

∂t
= k1∇2h(x, t) + k0(V0t− h(x, t)) + Φ(h(x, t)). (3.3)

The dynamics that arises from such a system is very similar to the previous case

but, since the driving force is no longer constant, it cannot be the control parameter
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any more. What we can control is the driving velocity V0 (and the stiffness k0). In

order to get a stationary driving term k0(V0t−h), to a macroscopic increase of the

drive ∆F = k0V0∆t must correspond an interface displacement ∆h ∼ V0t. In this

case the averaged (in space and in time) interface velocity will be: 〈v〉 = V0. For

an infinite system there will always be a point of the interface moving (i.e. some

avalanche occurring) and the time average on v does not need to be taken over a

long interval ∆t, i.e. we have an instantaneous space-averaged velocity v(t) = V0.

The stress or force σ(x, t) = k0(w − h) is now a response function, and we

find that the time and space averaged quantity σ(V0) follows the same behavior

of F (v) in the constant driving force case. Indeed, the situation V0 = 0+ corre-

sponds to the limit v ∼ |Fc − F |β ∼ 0+. Thus, the elastic driving method (in its

stationary regime) does not allow to explore the whole region F < Fc of the phase

diagram. Instead, it automatically drives us to the critical point, which is much

more interesting. The situation, varying V0, is the following:

• At V0 = 0, after a possible short transient, nothing happens and we have

σ − k0h < Fc everywhere: we are below criticality.

• At V0 = 0+ i.e. in the quasi-static regime, the system evolves via discrete

and well-defined avalanches. At the end of each avalanche, the system is sta-

ble and σ − k0h < Fc everywhere, but this never lasts: the system oscillates

around the critical point.

• At any finite velocity V0 > 0, the infinite system is always in motion and we

are above the critical point.

The critical velocity is V c
0 = 0+.

The restoring force −k0h(x, t) decreases the driving force when an avalanche

unfolds, allowing to automatically set ourselves at the depinning transition critical

point; we do not need to tune any parameter to go there, we may recognize this

as an example of Self-Organized Criticality (SOC).

Since we are automatically driven towards the critical point, we expect that

all quantities of interest, in particular the correlation length ξ will diverge to
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infinity. However, during an avalanche the term −k0h actually takes us a bit

below criticality. We now need to characterize quantitatively how far we typically

are from criticality, depending on k0 (keeping V0 = 0+).

The key observation is that the correlation length ξ corresponds to the typical

length scale where the contribution of the energy input from outside:

Edrive ∝ K0(V0t− h)2

is balanced by the elastic energy

Eelastic ∝ (∇h(x, t))2.

More precisely

Edrive(ξ) =
1

2

∫
ξd
ddxk0(V0t− h(x, t))2 ∼ Eelastic(ξ) =

1

2

∫
ξd
ddxk1(∇h(x, t))2.

From a simple dimensional analysis Edrive(ξ) ∼ k0ξ
dh2 whereas Eelastic(ξ) ∼

k1ξ
d−2h2 leading to:

ξ ∼
(k0

k1

)− 1
2

(3.4)

This result, rigorously derived from field theory [63], shows that a critical state

ξ →∞ can be only achieved if k0/k1 → 0.

The presence of a finite (k0/k1), conversely, introduces deviations from criti-

cality that appear as an upper cut-off Sm in the size distribution:

P (S) = S−τf(S/Sm) (3.5)

where f(s) is a scaling function which decays very fast when the argument is

greater than 1. Sm, indeed, is directly related to ξ:

Sm ∼ ξdf , (3.6)

where df is the fractal dimension of the volume spanned by a two-dimensional

interface.
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It is possible [66] to relate τ to df , making the following considerations. Since

each avalanche S is the response ∆h to an infinitesimal increase δF = ∆F/N , the

average response to an increase of the force ∆F will be the sum of the avalanche

sizes for the infinitesimal increases. Now using an argument similar to the one we

used to obtain v = V0, we obtain:

〈S〉 ∼ ∆h

∆F
∼ 1

k0

.

On the other hand, we can calculate 〈S〉 by means of its probability distribution:

〈S〉 =

∫
SP (S)dS ∼ S2−τ

m = (ξdf )2−τ . (3.7)

Remembering the scaling of ξ with k0, by identification we obtain:

τ = 2− d

df
.

3.2 Mapping the elastic interfaces model on a

cellular automaton one: the OFC* model

A cellular automaton version for the interface evolution can be obtained by mean

of a discretized description of the elastic interface as blocks interconnected by

springs. As we mentioned at the beginning of the chapter, a crucial point to map

the elastic interface in a random medium onto a discrete model is the narrow well

approximation [61] for the friction landscape, which now we discuss in detail.

In Fig.3.2 we report a schematic representation of this kind of system in one

dimension. Physically, the disorder energy landscape is seen as a collection of

narrow wells representing impurities. Along the h direction, the narrow wells

are separated by random intervals z drawn by a random distribution g(z). A

natural choice for g(z) is the exponential law, which corresponds to the case where

impurities are uncorrelated in space and therefore obey a Poisson distribution.

The value of the disorder force in a well depends on its shape, essentially

defined by the width along the h direction and the depth. We will assume that
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h

Figure 3.2: Mechanical sketch of the one-dimensional elastic interfaces model with
elastic drive (adapted from [61]): the interface (black bold line) is made of blocks
(empty squares), in discrete positions along the x-axes, connected to each other by
springs (k1). The blocks are connected to the driving surface w by other springs
(k0); they also experience the disorder force representing the friction: the disorder
force fdisi , that acts on the i-th block, comes from a disordered energy potential
Edis
i , which is simplified as a series of narrow wells separated by random spacings.
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the width is much smaller than the depth; furthermore, we will consider the wells

narrow, i.e. their widths are negligible compared to z, so that the displacement of

a point trapped in a well is negligible compared to the jumps between wells. As a

consequence any time a site escapes from a well, it will directly jump to the next

one, never staying in between two wells; to exit from a well, a block will need to

be pulled by a force larger than some threshold σthi related to the well’s depth. A

given random distribution of depths correspond to a random distribution for the

threshold forces f thi .

If now we consider the interface as a collection of blocks in discrete positions

along the x axes, under these assumptions, the continuous dynamics of the blocks

becomes fully discrete. As long as each site fulfills the stability condition:

k0(V t− hi(t)) + k1∇2
ih(t) < f thi , ∀i ∈ Ld, (3.8)

(where ∇ih is the discrete laplacian of the block displacement hi), the interface

does not move at all. When the increase of the force is enough to violate Eq.3.8 in

one point i, the interface locally jumps forward to the next well, i.e. hi increases

by z (drawn from g(z)), and a new threshold force f thi is drawn at random. The

new value of hi changes the laplacian term in Eq.3.8 and it can trigger further

instabilities in the connected sites. This process is iterated until Eq.3.8 is valide

for all the sites in the system.

This leads to a numerical protocol very similar to the OFC one, outlined in the

previous chapter. The interface evolution can be then described by the same set

of rules used for the OFC dynamics. The only differences are:

• After an instability, the force drop δσi is equal to (k0 + nnk1)δhi, where

nn is the number of first neighbors of the site i and δhi = z; this force

drop is independent of the value of σi, whereas in the OFC model δσi is

proportional to σi. The above stress drop produces a force increment k1δhi

in the surrounding blocks. Therefore, as in the OFC model, the quantity α

defined in Eq.2.3, is still related to the amount of energy dissipation in each

local displacement;

• The force thresholds are random, and they change after every instability.
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Figure 3.3: Probability distribution P (S) of avalanches in the OFC* model for
different values of the ratio k0/k1 = 0.03, 0.01, 0.003, 0.001 from left to right. The
dashed line indicates the best fit power-law decay P (S) ∼ S−1.265. (From [61]).

Since the only differences with the OFC model is the randomness in the friction

thresholds and force drop, this model is sometimes defined as the OFC* model

[65]. In Fig.3.3 we present results of numerical simulation of a two-dimensional

(nn = 4) OFC* for the distribution of the avalanche size S, corresponding to the

area explored by the interface during a jump. The distribution is consistent with

the scaling law we discussed in the previous section, with τ ' 1.265.

Numerical results, supported by analytical arguments, indicate that in the

OFC* model a “critical” state can be obtained only in the limit k0/k1 → 0 ac-

cording to Eq.3.4. Under the assumption that the same arguments also hold for

the OFC model one would expect that a critical state can be only observed in

the limit α → 1/nn (Eq.2.3) corresponding to absence of dissipation in the OFC

model. Nevertheless, we wish to observe that the size distribution behaves in a

very different way in the OFC and in the OFC* model as the parameter α is

changed. Indeed, as shown in Fig.2.2 and Fig.3.3, in the OFC* model α affects

only the upper cut-off Sm whereas the exponent τ is left unchanged. Conversely,

in the OFC model, the exponent τ appears to depend on α whereas Sm is mostly
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influenced by the system size.

3.2.1 The modified OFC* model

We performed numerical simulations for a modified version of the OFC* protocol,

where the thresholds have a fixed value:

σthi =, 1 ∀i

while the jump z is drawn from a random distribution every time a site topples.

The aim is to understand if the introduction of quenched disorder in just one pa-

rameter of the dynamics is a sufficient condition for the stability of the critical

behavior with dissipation. Indeed, as you may check in Fig.3.4, where we report a

comparison of the two models in the subcritical region, the avalanche size distribu-

tion is pretty much the same, with the same exponent of the power law behavior.

What does slightly change between the two models is the cut-off of the distribu-

tion, but the critical behavior is the same. We deduce that the stability of the

exponent is independent on how much disorder we introduce in the model.
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Figure 3.4: A comparison of two versions of the OFC* model, with fixed or random
thresholds, for different values of k0 (k0 → 0+ from left to right). The system has
size L = 512. The dashed blue line s−1.3 is reported as a guide to the eye for the
power law behavior.
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Chapter 4

The role of visco-elasticity in the

SOC behavior of the models

In this Chapter we discuss the introduction of viscosity in the models previously

presented.

4.1 Viscous coupling

The idea that viscosity could be a possible key to model aftershock occurrence in

spring-block models was first introduced by Burridge and Knopoff. In the early

1990s Nakanishi [73] presents a one dimensional spring-block model coupled vis-

coelastically to the driver plate, in order to represent the viscous coupling with

the asthenosphere. The system is mechanically homogeneous and disorder is im-

plemented only through initial stress conditions. This model reproduces the GR

law only for a specific value of the stiffness but, most importantly, aftershocks are

generated with a rate decaying according to the Omori law with an exponent p

dependent on model parameters. A more complete model has been proposed by

Hainzl et al. [74], where a one-dimensional chain of elastically coupled blocks is

bound by springs to an intermediate set of blocks. This intermediate set, in turn,

is coupled via dashpots to the drive, modeling the viscous asthenosphere and mod-

ifying equilibrium position after the slip of each block on the fault. For particular

parameter values, the model is able to provide not only a size distribution con-
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sistent with the GR law, but also a realistic number of aftershocks following the

Omori law. Unfortunately, the behavior clearly depends on the initial random

distribution of stress on the blocks.

A further study by Pellettier [75] has shown that the combination of viscous

coupling and heterogeneous friction is able to produce, in spring-block models,

temporal seismic clustering before and after large events: aftershocks are observed

to decay according to the Omori law with an exponent p ' 1 that appears to

be quite independent of seismic coupling. Moreover, the model presents seismic

activity consistent with the GR law for small events whereas the large magnitude

behavior changes from characteristic earthquake behavior, for large seismic cou-

plings, to a GR distribution with a magnitude cutoff, for low seismic couplings. An

inverse Omori law is also found for foreshocks. In particular, the ratio of foreshocks

to aftershocks decreases with decreasing seismic couplings, from a value near one

for a system exhibiting characteristic earthquake behavior to a value much smaller

than one in absence of characteristic events. Thus, the model suggests that the

relative number of foreshocks to aftershocks is related to whether the fault displays

or not characteristic earthquake behavior.

4.2 Viscous coupling in the OFC model: the OFCR

model

In this section we study the influence fo viscosity on the dynamics of the cellular

automata version of spring-block models. The so-called OFCR model, proposed

by Jagla [7], introduces in the OFC* model a relaxation mechanism that acts on

a time scale τR in between the instantaneous one of the avalanches (τ0) and the

slow one of the drive (τD):

τ0 � τR � τD.

This mechanism leads to a smoothing of the stress field of the OFC* model over

time, which is reasonable if we consider relaxation as a way to model the effect of

the microscopical processes related to viscosity. Remembering, as we mentioned in

the dimensional analysis in sec. 2.2, that we are working in lattice spacing units,
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the evolution of the stress for the inter-avalanche time in the OFCR model reads:

dσi
dt

= k0V0 +R∇2σi; (4.1)

the first term is the usual drive whereas the second one corresponds to the re-

laxation. These two terms introduce two different timescales: τ0 ∼ V −1
0 and

τR ∼ R−1. Thus, the relevant parameter of the dynamics of the system will be the

ratio R/V0, that measures the competing effect between relaxation and the global

driving.

All the σi evolve according to Eq.4.1 until the first block becomes unstable.

This can happen because of the drive or because of the relaxation. When a site

topples the stress is redistributed as in the OFC* model.

This model and a few variants of the relaxation mechanism in Eq.4.1 were

studied in great detail in [7] [65], via numerical simulations. Interestingly, several

features observed are in good agreement with the earthquake phenomenology.

Figure 4.1: The magnitude distribution of the OFCR model for a system of size
L = 1000. The dashed orange line is the GR law N(m) ' 10−bm (From [54]).

For R/V0 sufficiently large, the avalanche size distribution displays a stable

power law behavior with an exponent τ ' 1.7, the same value of the empirical GR
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law case. In Fig.4.1 we reported an example. The exponent is independent from

the dissipation parameter α, that is related only to the cut-off of the distribution.

Another interesting consequence of the relaxation mechanism is the presence

of aftershocks as side-effects of main shocks, as they continue to occur after a

main shock, even when driving is stopped. In Fig.4.2 we report an example in one

dimension in order to understand how this happens.

σ

σ

i + 1

i − 1

i

σth
i−1

σth
i+1

σth
i

Figure 4.2: A picture of the stress of three sites, the site i and its neighbors i− 1
and i + 1, in a one-dimensional OFCR model. This is the situation after a main
shock. In red we indicate the site thresholds. The blue dashed line represents the
average stress σ of the three sites, while the blue arrows represent the effect of the
relaxation on the system. As you may see, in this case the relaxation will bring
the site i above threshold, so the site i will be the epicenter of the first aftershock.

This is a picture of the situation after a main shock, so all the blocks’ stress

is under threshold. Remember we are implementing this mechanism on the OFC*

model, so every site of the example has its own threshold. With the blue arrows

we represent the effect of the relaxation: as we said before, it tends to smoothen
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the stress field, and it is possible that in the process it brings a new site above

threshold. In the example the site i will be then the epicenter of a new event, the

aftershock, generated without the drive but only through this mechanism.

Figure 4.3: The temporal decay of the number of aftershocks after a mainshock
with magnitude mM = 6.7 in the OFCR model for a system of size L = 1000. Data
exhibit different characteristic time scales c(indicated by colored vertical arrows)
for the onset of the power law decay for different values of the initial shear stress
(decreasing from left to right). The cyan dashed line indicates the Omori power
law decay with an exponent p = 1.1 (From [54]).

In Fig.4.3 we plot the aftershock number as function of time from the main

shock for the OFCR model, assuming different stress perturbations corresponding

to different levels of stress in the system. We notice that all curves are in agreement

with the experimental Omori law with an exponent p ' 1.1 and a characteristic

time c that depends on the stress level. Interestingly, data indicate that c is a

decreasing function of the stress level in agreement with experimental observations

[76].
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4.3 Viscous coupling in elastic interfaces model

A simple way to introduce relaxation in the OFC* model is represented by the

model sketched in Fig.4.4. Due to its simplicity, the model allows for analytic

treatment in mean field, and for extensive numerical simulations in finite dimen-

sions [10].

h

z

Figure 4.4: Mechanical sketch of the one-dimensional viscoelastic model. The
interface (bold black line) consists in blocks located at discrete sites i, i + 1, ...
(empty squares with location hi, hi+1, ...) along the x-axis and are connected via
a combination of springs (k1, k2) and a dashpot (ηu). The additional (internal)
degree of freedom φi is represented by a full square (blue). The driving is performed
via springs k0 linked to a common position w (thin purple lines). The disorder force
fdis (red) for the site i derives from a disordered energy potential Edis, which is
here simplified as a series of narrow wells separated by random spacings z (Adapted
from [61]).

The interface is decomposed in blocks of mass m, labelled i and moving along

the h-axes. As you may see, the original neighbor elastic interaction k1 is a replaced
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by a combination of springs (k1, k2) and a dashpot (ηu). φ is the position of the

dashpot, which it is assumed with no mass. The action of the dashpot is to resist

the change in (φi − hi) via viscous friction, with a resulting force on hi given by:

ηu∂t(φi − hi)

The blocks move in a medium with some effective viscosity η and we are interested

in the overdamped regime, m∂2
t hi � η∂thi. As each block is described by two

degrees of freedom hi and φi, the time evolution is governed by two equations.

Using the narrows wells representation for the disorder (see sec. 3.2), the equations

read:

η∂thi = k0(w − hi) + f thi + k1∇2hi + k2(∇2hi − ui) (4.2)

ηu∂tui = k2(∇2hi − ui), (4.3)

where the auxiliary variables ui depend on the elongation of the neighboring dash-

pots: in one dimension this variable reads ui = (φi − hi) + (hi−1 − φi−1). The

threshold force f thi has some random distribution (e.g. a Gaussian) and the narrow

wells are separated by spacings z with some distribution g(z) with finite average z.

The relaxation constant ηu sets a new time scale: τu = ηu/k2, which is character-

istic of the relaxation of the dashpots (it corresponds to τR of the OFCR model).

It can be compared with two other time scales: τD = z/V0, which accounts for

the slow increase of the external drive w = V0t, and τ0, the response time of the

position h of the blocks, i. e. the avalanche time scale. Assuming τ0 � τu � τD,

the dynamics is the following:

• Drive all the blocks’ stress is increased uniformly until a block becomes un-

stable and an avalanche starts;

• Avalanche the avalanche develops at a time scale τ0 � τu, so in this stage

the ui are constants in time and the dynamics is exactly the same as in the

depinning model with elastic constant k1 + k2;
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• Relaxation the avalanche ends when no other site is unstable, so the hi are

all pinned; at the time scale τu > τ0 the variable ui starts to relax, according

to:

ui(t) = ∇2hi + (ui(t0)−∇2hi) exp(−(t− t0)
k2

ηu
),

where t0 is the time at which the last avalanche occurred. The effect of

relaxation is to reduce the term k2(∇2hi−ui) in Eq.4.2, until it is suppressed;

during this process, or at the end of it some blocks may become unstable.

This triggers secondary avalanches in the system, identified with aftershocks

in the seismic context.

Figure 4.5: Schematic description of the evolution of the local stress σi over time
for three sites (From [61]).

In Fig.4.5 we report a schematic illustration in one dimension of the effect of the

relaxation on the system, in terms of the viscoelastic parameters.

- Left panel: the site i is at threshold: its stress will drop to zero, giving to

the neighbors a pulse which depends on k1 (elastic coupling), k2 (the elas-

tic parameter linked to the viscoelastic interaction) and on the value of the

stress before the toppling (in this case σthi );

- Central panel: the situation after the toppling of the site i: a new thresh-

old is drawn and the part of the stress drop due to the viscoelastic coupling
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is remarked in blue;

- Right panel during the relaxation the part of the stress drop that depends

on k2 starts to diminish, and this mechanism eventually leads to an after-

shock, even before that the relaxation is completed, as it happens in our

example.

Numerical results [10] show that the avalanche size distribution, in the two-dimensional

case, follows a power law with an exponent τ ∼ 1.7, the same exponent of the

empirical GR law, as it happens in the OFCR model. In Fig.4.6 we report an

example.

Figure 4.6: Number N(S) of avalanches of size S for the 2-dimensional viscoelastic
interface model, on a lattice of 5000x5000 sites. The dashed lines indicate the pure
power-law with exponent 1.75. The cut-off vanishes in the limit k0 → 0. (From
[61])

The aftershocks distribution in time does not display, unlike the OFCR case, a

power law behavior. It is possible to retrieve a power law behavior with a different
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implementation of the relaxation mechanism, the Laplacian relaxation:

ηu∂tui = k2(∇2hi −∇2ui),

but the exponent is still not the same as in the Omori law (τ ∼ 2).

Another interesting outcome of this model is the periodic or quasi-periodic

behavior. In mean field, the relaxation of the viscoelastic elements generates a

dynamical instability, responsible for the occurrence of periodic system-size events

and macroscopic oscillations of the stress. The time scale of these oscillations is

distinct from the microscopic time scale associated to the relaxation. Instead, the

oscillations are characterized by a new, emerging time scale. The emergence of this

cycle results from the competition between the slow viscoelastic relaxation and the

fast avalanche dynamics: the slow dynamics drives the system towards a critical

point unstable with respect to the fast avalanche dynamics. In two dimensions the

global oscillations found in mean field disappear, but there are coherent oscillations

of the local stress on finite regions of large sizes.
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Chapter 5

Mean Field analysis of the OFC

and OFC* model

In this Chapter we report our mean field analysis of the OFC model and some

variations of its dynamics.

As we observed at the end of Chapter 3, the avalanche size distribution presents

different features in the OFC and OFC* models; while in the first case we have a

power law distribution with an exponent that changes with the dissipation param-

eter α, in the second one the power law exponent is stable, only the cut-off depends

on α. In order to address these differences, we decided to perform a mean field

analysis of the two models, with or without annealed disorder, and to focus our

attention on the synchronization of the systems. By synchronization here we mean

the possibility, for a group of blocks, to stay locked in the same avalanche under

the dynamic evolution of the stress distribution. This mechanism was studied in

systems consisting of globally coupled integrate-and-fire oscillators networks [69]

[70], models very similar to our own. Moreover, Middleton and Tang [11] ascribed

criticality of the OFC model to a mechanism of partial synchronization, induced

by inhomogeneities from the boundaries. We want to check in mean field, where

there is no underlying structure of the system, if this partial synchronization arise

too and for which parameters values.
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5.1 Fully connected model

In the following we generalize the OFC dynamics, introduced in the previous chap-

ters, in a way that allows us to consider the OFC* and other variations, as a par-

ticular case of the general scheme. The fault is stylized as a system of N oscillators

associated with a real state variable σi, representing the local stress. The total

applied stress is given by:

Σ =
1

N

N∑
i=1

σi.

The system is stable when all local stresses are below a pre-assigned threshold

stress value, σthi .

In the quasi-static approximation, dynamics consists of two well separated

regimes: the drive and the avalanche.

• Drive: in the beginning all the state variables are below their thresholds:

σi(t) < σthi ; they grow linearly in t until one of them reaches σthi . Namely,

σi → σi + δmin, ∀i = 1, · · · , N.

where

δmin = min
i∈[1,N ]

(σthi − σi)

• Avalanche: the value σi of the oscillator at or above threshold drops of a

certain amount, giving to every oscillator, including itself, a pulse, according

to the rules:

σi → σi − (k̃1 + k0)z (5.1)

σj → σj + k̃1z/N ∀j = 1, · · · , N. (5.2)

where z > 0 is a real number representing the displacement or jump of the

oscillator’s position, and k0 and k̃1 are positive constants, representing the

coupling of the oscillator, respectively, with the drive and with the other

oscillators (for a 1-dim example see figure 2.1). We utilize the variable k̃1 =

Nk1 to keep the pulse intensive in N . The total applied stress drops of an
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amount k0z, hence k0z controls the amount of dissipation. The pulse given

by the oscillator can destabilize other oscillators that are close enough to

their own threshold. These oscillators can be also activated if σi ≥ σthi . The

avalanche ends when no other pulse is sufficient to bring any other oscillator

above threshold. At this point the drive-process starts again.

It is possible to define the size of an avalanche either as the total number of sites

who has been activated or as the total displacement
∑
zi. In the following we will

consider the first definition.

In the quasi-static regime avalanches are assumed to be instantaneous com-

pared to the drive. In the following we will discuss four different cases:

- the Uniform threshold and Jump to Zero case: we assume

σthj = 1, ∀j

and

z =
σi

k̃1 + k0

, ∀j,

where σi is the value of stress immediately before destabilization.

This means that the local stress of the unstable sites jumps to zero because

of the slip. This case corresponds to the standard OFC model.

- the Uniform Threshold and Fixed Jump case: we assume

σthj = 1, ∀j

and

z =
1

k̃1 + k0

, ∀j.

This means that all unstable sites slip of the same amount and their stress

drops from σi to σi − 1. This case in two dimensions corresponds to the

generalized BTW model we discussed in sec. 2.3.2.

63



- the Uniform Threshold and Random Jump case: we assume

σthj = 1, ∀j

and z is drawn from a random distribution g(z), and updated each time an

oscillator topples. We use the exponential distribution since, as we mentioned

before, it implies a more realistic pattern of irregularities in the system. This

case corresponds to a variant of the OFC* model [65].

- the Random Threshold and Random Jump case: we implement disor-

der also in the thresholds, and we update the threshold value σthi after every

instability. This model corresponds to the OFC* model [65].

5.1.1 Synchronization mechanism

We better clarify our definition of synchronization. Two oscillators σi and σj

are synchronized if, when σi is unstable, the pulse q transferred to the others

brings σj above threshold as well. This way the two oscillators are locked in the

same avalanche. In the study of synchronization we adopt the following notation:

given a certain avalanche, the site index i(n) indicates the index of the site that

performs the n-th toppling during the avalanche. For example, if the site i = 4 is

the epicenter of a new event, we have σi(1) = σ4.

The locking condition then reads:

σi(n) − σi(n+1) ≤ q(n), (5.3)

where we considered the fact that the pulse q(n) can depend on σi(n), i.e. the value

of the first oscillator before the toppling. This condition can be generalized to the

situation where two oscillators don’t topple one after another, but still in the same

avalanche; in this case the site i(m) receive (m− n) pulses from all the oscillators

that toppled before it (n < m), leading to the locking condition:

σi(n) − σi(m) ≤
m−1∑
k=n

q(k). (5.4)
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In order to study how this mechanism affects our systems’ criticality, we will check

how the stress differences between oscillators evolve during the dynamics.

5.2 Fixed Threshold and Jump to Zero

5.2.1 Synchronization

This is the case of the standard OFC model. The locking condition between two

oscillators that topples one after another here reads:

σi(n) − σi(n+1) ≤ k̃1
z

N
=

k̃1

(k̃1 + k0)N
σi(n),

where σi(n) is the stress of the oscillator that performs the n-toppling, just before

he topples. In order to enlighten the σi(n)-dependence, we rewrite the locking

condition as:

σi(n) − σi(n+1) ≤ qσi(n),

with

q =
k̃1

(k̃1 + k0)N
.

Notice that, if we do the substitution (k̃1 → k1N), we retrieve q = α. The generic

locking condition between two oscillators then is:

σi(n) − σi(m) ≤ q
m−1∑
k=n

σi(k)

Therefore the avalanche dynamics evolves according to the rules:

σi → qσi

σj → σj + qσi ∀j 6= i,

remembering that the oscillator that topples gives a pulse also to itself.

Aiming to check the effect of the dynamics on the gap, we consider as an
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example three oscillators locked in the first avalanche:

σi(1) = 1, σi(2) = 1− q + ε1 > σi(3) = 1− q + ε2

In Table 5.1 we reported the evolution of their stress under the OFC dynamical

rules.

Drive First T. Second T. Third T.
σi(1) → 1 q q + q(1 + ε1) q + q(1 + ε1) + q(1 + ε2 + q(1 + ε1))
σi(2) → 1− q + ε1 1 + ε1 q(1 + ε1) q(1 + ε1) + q(1 + ε2 + q(1 + ε1))
σi(3) → 1− q + ε2 1 + ε2 1 + ε2 + q(1 + ε1) q(1 + ε2 + q(1 + ε1))

Table 5.1: Evolution of the stress during an avalanche (jump to zero rule).

The avalanche does change the gap between oscillators, making it dependent

on the stress value of the oscillator just before the toppling:

σAi(n) − σAi(n+1) = qσ′i(n),

where with σAi we indicate the value of the oscillator’s stress after the avalanche,

and with σ′i the value just before the toppling.

In our example the gaps are changed in the following way (σBi corresponds to

the value before the avalanche):

σBi(1) − σBi(2) = q − ε1 σAi(1) − σAi(2) = q

σBi(1) − σBi(3) = q − ε2 σAi(1) − σAi(3) = q + q(1 + ε1)

It is then evident that, in a new avalanche, after the toppling of i(2), the gap

σi(1) − σi(3) does not satisfy the locking condition anymore:

σAi(1) − σAi(3) = 2q + qε1 > 2q

and therefore this kind of dynamics decouples oscillators’ locking. In fact the

presence of upper-critical sites enlarges the gaps, the synchronization is annealed

and, after a transient (due to the initial condition), a regime of avalanches of size

1 or 2 is reached.
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5.3 Uniform Threshold and Fixed Jump

5.3.1 Synchronization

In the case of fixed jump, since z = 1

k̃1+k0
, we have:

σi(n) − σi(n+1) ≤ q(n) = q,

where:

q =
k̃1

(k̃1 + k0)N
.

As you may see, the pulse in this case is independent of the stress value σi(n) and

it is a constant. The oscillator i above threshold, hence, topples and gives a pulse

to any other oscillator, including itself, according to the rule:

σi → σi − 1 + q (5.5)

σj → σj + q ∀j 6= i (5.6)

We identify again as σBi and σAi , respectively, the value of the stress of the

i-th oscillator immediately before and after an avalanche. It is easy to see that,

applying the Eq.5.5 and Eq.5.6 to the first member of the locking condition, we

obtain:

σAi(n) − σAi(n+1) = σBi(n) − σBi(n+1).

As an example, let us consider the evolution of three oscillators (i = 1, 2, 3)

involved in the same avalanche. The evolution under this dynamics is reported in

Table 5.2.

Drive First Toppling Second Toppling Third Toppling
σi(1) → σi(1) + ∆ σi(1) + ∆− 1 + q σi(1) + ∆− 1 + 2q σi(1) + ∆− 1 + 3q
σi(2) → σi(2) + ∆ σi(2) + ∆ + q σi(2) + ∆ + q − 1 + q σi(2) + ∆ + q − 1 + 2q
σi(3) → σi(3) + ∆ σi(3) + ∆ + q σi(3) + ∆ + 2q σi(3) + ∆ + 2q − 1 + q

Table 5.2: Evolution of the stress during an avalanche (fixed jump rule).

Hence, the oscillators locked in an avalanche will remain locked also in the next

one. This means that the avalanche does not influence the locking, and the order
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Figure 5.1: This is a sequence of avalanches in time (s represents the size of the
avalanche, t the time in drive units) in case of fixed threshold and fixed jump,
for a system of N = 104 oscillators with random initial conditions and for the
parameters: k̃1 = 0.01N and k0 = 1. This sequence repeats itself after a period of
99 time steps.

of topplings will remain unchanged. We can conclude that, in the case of the fixed

jump scenario, once the oscillators are locked in an avalanche they will stay locked

in the following ones. As a consequence the dynamics here, after a transient, is

periodic (see an example in figure 5.1), with the period given by the time after

which all the oscillators are activated at least one time.

The explanation of the initial transient regime is reported in Fig.5.2. Violet

circles are the sites involved in the first avalanche, green circles the sites involved in

the second one while red circles are the group closest to zero, because of the random

initial condition. After the violet group performs the first avalanche (0 < t < T ),

they will be the new group closest to zero and it is possible that their stress gap

with the first one of the red group fits the locking condition; after the second

avalanche, performed by the green circles, it is possible that this happens again
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because the fact that they did not fulfill the locking condition with the violet group

does not imply that they can not be locked to the red group; when this red group

finally arrives at the threshold (t = T ), it will bring with him in the same avalanche

also these new oscillators. This effect will end when a cycle is finished, i.e. when

all the oscillators toppled at least one time. After that, as we previously pointed

out, the dynamics does not change the gap arrangement between the oscillators,

implying that we will see always the same avalanches (periodicity).

Figure 5.2: An example of a possible initial condition leading to a rearrangement
of the oscillators’ locking after a first cycle; as you may see, the oscillators that
belong to three different avalanches for t = 0, are the same that, after the first
cycle, belong to a single avalanche.
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5.3.2 Size distribution and percolative analysis of the dis-

tribution of the gaps

We performed numerical simulations of a system of N = 104 sites, keeping k0 = 1

and varying k̃1. For the avalanche size distribution we obtained three regimes, as

you may see in Fig.5.3:

• Subcritical q < 0.99/N : the avalanches size never reach the system size,

but it has a short cut-off sm;

• Critical q ' 0.99/N : the distribution reach the size of the system and is a

power law with an exponent τ ' 1.5;

• Upper critical q > 0.99/N : it appears a bump in the distribution at the sys-

tem size, indicating a tendence to the system to develop an infinite avalanche.
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Figure 5.3: Avalanche size distribution (crosses) and gap cluster size distribution
(circles) for three different values of the elastic coupling. The dashed blue line is
the power law s−τ . In both cases we considered a system N = 104 oscillators. We
observe a critical behavior (dashed blue line) with the same exponent τ = 1.5 for
the value q = 0.99/N .
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The behavior of the cut-off sm with the distance from the conservative limit qc =

1/N is reported in Fig.5.4. The cut-off follows a power law behavior with an

exponent a ∼ 2 for q values far enough from qc. As q approaches qc the behavior

is lost because of finite size effects.
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Figure 5.4: The cut-off of the avalanche size distribution as a function of the
distance from the critical point; the green dashed line represents the power law
behavior of sm with an exponent 2.

Since in this system, after a first cycle of avalanches, the gaps between oscilla-

tors’ stress are unaltered by the dynamics, the avalanche size distribution can be

directly extracted from the organization of the gaps.

We start from random initial conditions with the stress values of the N oscil-

lators drawn from an uniform distribution between 0 and 1 (our threshold). As a

result, the probability distribution of the gaps (∆σi = σi−1− σi) is an exponential

distribution, namely:

p(∆σ) = Ne−N∆σ.

Note that here we are considering the oscillators ordered by decreasing stress value

(σ1 > σ2 > · · · > σN).

We want to evaluate the probability to have an avalanche of size k. In order
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to do that we introduce the variable:

Sn = ∆σ1 + · · ·+ ∆σn = σ1 − σn

Since all the members of this sum are independent random variables identically

distributed, with an exponential distribution, Sn is an Erlang variable [72], and its

probability density and cumulative distribution therefore are:

p(Sn) = N
(NSn)n−1

(n− 1)!
e−NSn

P (Sn ≤ x) = 1− e−Nx
(

1 +
Nx

1!
+ · · ·+ (Nx)(n−1)

(n− 1)!

)
.

Starting from σ1 = σth, the probability to have an avalanche of size k will be

given by the product of the probability that the first k oscillators are locked in the

avalanche, and the probability that the (k + 1)-th is not. Then:

Pcluster(k) =
k∏
i=1

P (Si ≤ iq) · P (Sk+1 > (k + 1)q)

=
k∏
i=1

[
1− e−Niq

(
1 +

i−1∑
j=1

(Niq)j

j!

)]
· e−N(k+1)q

(
1 +

k∑
j=1

[N(k + 1)q]j

j!

)

This quantity is difficult to compute analytically, so in Fig.5.3 we report a

numerical evaluation of the distribution of the gaps cluster size, for different values

of k̃1 (or q). From the comparison in Fig.5.3 it is clear that the behavior is the

same, both distributed on a power law with the same exponent τ = 1.5, once the

parameter k̃1 has reached the value k̃1 = 0.01N .

5.3.3 Map to the Problem of First-Crossing

We said that an avalanche of size s corresponds to the first time the relation:

Sk−1 ≤ qs < Sk
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is fulfilled. Because of the fact that the variables ∆σi are independent variables

identically distributed, with exponential distribution, it is possible to identify the

sequence ∆σ1, . . . ,∆σn as a random walk, with diffusion constant: D = 1/N and

drift d = 1/N . When it crosses the line of slope q, the avalanche is over. In Fig.5.5

we report a sketch representing the situation. The statistics for the avalanche size

Figure 5.5: A schematic representation of the locking condition: in black the
brownian motion corresponding to the path Sn, i.e. the sum of all the gaps between
the oscillators; in blue the killing wall Sn = qs. The first value s for which the
BM crosses the killing wall corresponds to the size of the avalanche.

thus is the same as for a problem of first zero crossing of a random walk with

diffusion constant D = 1/N and drift d = q − 1/N . For a positive drift, there is

a finite probability that this random walk never crosses zero, which corresponds

to an infinite avalanche. For a negative drift, the time of zero crossing is always

finite, and has been computed for the Brownian motion in [68]. The distribution

of the avalanche sizes thus reads:

N(s) ∼ s−3/2e−s/2sm (5.7)

73



with

sm =
D

d2
∝
(k0 + k̃1

k0

)2

.

These results are consistent with our result, as:

sm ∝ (qc − q)−2 =
( 1

N
− 1

N

k̃1

k̃1 + k0

)−2

=
( 1

N

k0

k̃1 + k0

)−2

.

5.4 Fixed Threshold and Random Jump

5.4.1 Synchronization

This case corresponds to the modified OFC* model that we discussed at the end

of Chapter 3. The locking condition of Eq.5.4 reads:

σi(n) − σi(m) ≤
k̃1

N

m−1∑
j=n

zj,

where the position jumps zj are drawn each time from a random distribution

g(z). In the following we will consider the exponential distribution, for the reasons

already illustrated in the description of the original OFC* model.

Unlike the previous cases, here it is no longer possible to follow the stress

gaps during an hypothetical avalanche, since the jump, and as a consequence the

pulse, is totally random. If we look at a sequence of avalanches over time, though,

we immediately see that there is no longer a periodic structure. Moreover, it it

possible to refer to an averaged locking condition, as we will see shortly.

5.4.2 Size distribution

In Fig.5.6 we report the numerical results for the avalanche size distribution. Again

we have three regimes: a subcritical one, with an exponential cut-off that depends

on the distance to criticality; a critical one, with a power law behavior for the

critical value k̃1 = 10−2N (which corresponds to one of the previous case q =

0.99/N); an Upper critical critical one with the occurrence of a bump on the system

size which is a finite size effect. Interestingly, we retrieve the same critical exponent
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Figure 5.6: Avalanche size distribution for a system of N = 104 oscillators. The
dashed blue line represents the power law s−τ , with τ ' 1.5.

τ ' 1.5 as before. In Fig.5.7 there is a comparison of the two distributions for

the three regimes we considered. The behavior is exactly the same, with a slightly
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Figure 5.7: A comparison of the avalanche size distribution for the two models we
discussed, fixed jump (circles) and random jump (squares) for the three regimes
we found.

different cut off in the subcritical regime. Despite that, sm is again a quadratic
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function of the distance from the conservative point, as the reader may check in

Fig.5.8, where we plotted the cut-off as a function of the quantity

qc − q =
k0

N(k̃1 + k0)

(we considered the q of the fixed jump case).
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Figure 5.8: The cut-off of the avalanche size distribution as a function of the
distance from the critical point; the green dashed line represents the power law

behavior of sm with an exponent 2. Here q = k̃1
(k̃1+k0)N

.

5.4.3 Map to the problem of first crossing

In the previous section we have seen that an avalanche of size s corresponds to the

first time the condition

Sk−1 ≤ qs < Sk

verifies. There

q =
k̃1

N
z

was a constant, being the jump z = 1/(k̃1 + k0).
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Figure 5.9: A schematic representation of the locking condition: in black the
brownian motion corresponding to the path Sn, i.e. the sum of all the gaps between
the oscillators; in red the Brownian Motion that represents the new killing wall,
oscillating around the average Sn = qs. The first value s for which the BM crosses
the killing wall corresponds to the size of the avalanche.

In this case the jump is random, but we can look at the fixed value of the

previous case as the average value z of a random distribution g(z) = δ(z − z).

Then in case of the random jump, an avalanche of size s corresponds to the first

time it is verified:

Sk−1 ≤ qs < Sk,

where now q = k̃1z/N corresponds to the average of a broader distribution. Follow-

ing the reasoning of Sec.4.3.3., this problem can be mapped onto the first passage

of a Brownian motion [61]. The only difference is that now the killing wall is no

longer a straight line qs, but a brownian motion itself with finite average qs.
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Then the Eq.5.7 holds also in this case, where:

sm =
D

d2
∝ (1− zk̃1)−2

5.5 Random Threshold and Random Jump

Finally, we analyzed the case that in 2 dimensions corresponds to the original

OFC* model. As in the previous case, it is not possible to follow the evolution of

the stress gaps during an avalanche. Moreover, since the quenched randomness is

extended also to the thresholds, there are difficulties in the very same definition

of the locking condition.
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Figure 5.10: Avalanche size distributions in the case of random jump and: 1) fixed
thresholds (plus) 2) random thresholds (circle), for the three different regimes. We
simulated a system of N = 104 sites and the random distribution we utilized are
the exponential one for the jumps, and the gaussian with mean 1 and deviation
0.8 for the thresholds. The blue dashed line indicate the power law behavior s−τ ,
with τ ' 1.5.

We performed numerical simulations for different implementation of the dis-
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order in the thresholds (exponential distribution and gaussian distribution) and

in Fig.5.10 we report a comparison among the avalanche size distributions we ob-

tained in this case and those obtained in the case of fixed threshold and random

jump. There is a perfect correspondence between the two cases in all the regimes;

even in the subcritical region the cut-off are exactly the same, despite the fact that

in two dimensions they have different values (cfr Fig.3.4).

5.6 Mean field approach to the elastic interfaces

problem

As a reference, we report analytical results for the elastic interface model in a

disordered medium in the mean field approximation. We will consider a fully

connected model where every point of the interface interact with all the others.

With infinite range, the elastic interaction for i reads:

Fel,i =
k̃1

N

∑
j 6=i

(hj − hi),

where we must divide by the total number of sites N to keep the system’s energy

extensive in N . The sum can be rewritten as:∑
j 6=i

(hj − hi) =
∑
j

hj −
∑
j

hi = N(h− hi).

As a consequence, the equation for hi motion will be:

η∂thi = k0(w − hi) + k̃1(h− hi)− fdisi . (5.8)

Summing Eq.5.8 over i and dividing it for the number of sites N we obtain the

equation of motion for average displacement, equivalent of the center of mass of

the interface:

η∂th = k0(w − h)− 1

N

∑
i

fdisi , (5.9)
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where the elastic terms cancelled each other. Since fdisi are independent random

variables, for the central limit theorem the dynamics of the center of mass in

the fully connected model can be mapped to the study of a single particle in an

effective disordered potential [66]:

η∂th = k0(w − h)− 1√
N
ζ(h(t)); (5.10)

here ζ(t) is a Brownian Motion process with finite variance, linked to the distribu-

tion of fdisi . The problem of a single particle driven in a Brownian force landscape

[60] can be reformulated in terms of first crossing of a random walk with a line.

In the quasi-static limit (w = 0+) the Eq.5.10 can be seen in the following way:

• if
√
Nk0(w − h) < ζ(h) the particle does not move;

• as soon as the equality is fulfilled, under the increasing of w, the particle

starts moving of a distance s,

• it will keep moving as long as
√
Nk0(w − h− s) > ζ(h+ s);

• the avalanche stops as soon as the equality is again verified.

Under an appropriate change of variables and a translation, the avalanche stopping

condition reduces to:

ζ(s) = −k0s,

meaning that the avalanche size s is distributed as the time of first crossing of a

Brownian motion with the line of slope −k0.

In the limit k0 → 0, the problem reduces to that of the return at the origin for

a Brownian walker starting in zero. This distribution decays as:

P (s) ∝ s−
3
2 ,

so that the average size diverges. For finite k0, the distribution has a cut-off at

large length scales, which can be qualitative evaluated confronting the extension of
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the killing wall −k0s, and the length of the free brownian motion ∼ s
1
2 . The typical

size at which these two intersect is sm ∼ k−2
0 . So the probability distribution at

finite k0 reads:

P (s) ∼ s−
3
2 exp

(
− s

4sm

)
, where (5.11)

〈s〉 ∼ s
1
2
m. (5.12)

For an exact computation the reader may check [67].

Considering that the mean field dimension corresponds to the upper critical

one, which is duc = 4 [64], it is sufficient to inject d = 4 in the previous results in

Eq.3.4, Eq.3.6 and Eq.3.7 to find:

τ = 2− 2/d = 3/2, sm ∼ ξ4 ∼ (k
−1/2
0 )4, 〈s〉 ∼ 1/k0,

proving the consistency of the finite dimension model with the fully connected one.
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Chapter 6

Relaxation and the two blocks

model: an analytical study

In this Chapter we report our analytical study of the effect of viscosity on the OFC

dynamics, focusing on synchronization.

The emergence of a collective periodic behavior is a widespread phenomenon

occurring in different fields, like in physics and engineering (arrays of lasers [12],

charged density waves [13] [14], superconducting Josephson junctions [15]) or in

biology (synchronously flashing fireflies [16], crickets that chirp in unison [17], cells

of the heart pacemaker [18], circadian neural networks [19], metabolic synchrony

in yeast cell suspensions [20]). The usual way to model these systems is by a set

of oscillators that get locked in phase to each other because of global couplings. In

particular, when the components of the system interact through the sudden firing

of a pulse (e.g. fireflies communicating through light flashes, crickets exchanging

chirps, neurons receiving and sending synaptic pulses) we can represent them as a

system of integrate-and-fire oscillators which are described by a real state variable

monotonically increasing up to a threshold. When this threshold is reached the

oscillator comes back to the basic level (toppling) of the variable by firing a pulse

to the other oscillators, eventually leading to an avalanche of topplings. Once all

the oscillators topple another period begins. It was shown that such a system,

in case of identical oscillators, can display global synchronization in a finite time.

Our OFC model corresponds to this dynamics, with the only difference being the
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nearest neighbor coupling instead of the global one. As we will see in detail later,

Middleton and Tang [11] suggested that the introduction of inhomogeneities in the

OFC dynamics, can induce synchronization and then criticality.

In order to address the role of the new mechanism of relaxation in the synchro-

nization of the system, we will study the implementation of this mechanism in a

simple OFC model made of two oscillators.

6.1 The model

We consider two oscillators associated with a real state variable σi, representing

the local stress. The applied stress on the two oscillators system is given by:

Σ(t) = σ1(t) + σ2(t).

The system is stable when all local stress are below a threshold value, σth = 1. In

the quasi-static approximation, the OFC dynamics consists of two well separated

regimes: the drive and the avalanche.

• Drive: σ1(t) and σ2(t) grow linearly in t until one of them reaches σth.

Namely,

σi → σi + δmin, where

δmin = min (1− σ1, 1− σ2)

• Avalanche: the value σi of the oscillator above threshold drops of an amount

(k1/2 + k0)z and gives to the oscillator a pulse k1z/2, according to the rules:

σi → σi − (k1 + k0)z (6.1)

σj 6=i → σj + k1z (6.2)

where k0 and k1 are positive constants. Two particular cases can be dis-

cussed:

– The jump to zero case corresponds to the case: σi → 0. In this model
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the dissipation is given by 1 − α = k0/(k1 + k0) and the randomness

is provided by the initial condition only. This case corresponds to the

standard OFC model.

– The random exponential jump where z is drawn from a distribution

g(z), and g(z) = exp(−z). This case corresponds to the OFC* model.

The solution of the two oscillator system is provided by the Poincaré map. We

introduce the variable n as the index of the toppling of the oscillator 2. σ1(n) is

therefore the local stress of the first oscillator right after the nth toppling of the

second oscillator. The Poincaré map evaluates the value σ1(n+ 1) as a function of

σ1(n).

6.2 Jump to zero case: the periodic attractor

We assume that σ1(t = 0) ≥ 0, σ2(t = 0) = 0. This implies that σ1(n) ≥ α. The

Poincaré map writes:

σ1(n+ 1) =


σ1(n) α < σ1(n) < 1

−ασ1(n) + (1 + α) 1 ≤ σ1(n) ≤ 1
α

α2σ1(n) σ1(n) > 1
α
.

(6.3)

We see (Fig.6.1) that there is a line of marginally stable fixed points σ∗1 ∈ [α, 1),

set by the intersection of the map with the bisector. We reported an example of

a possible evolution starting from a random value (the blue point) σ1(n) > 1.

Through the map we may see that after the (n+ 1)th toppling of 2 σ1(n+ 1) < 1

(the red point). Once it is in this region it will have always the same stress value

after every toppling of 2. These fixed points are periodic states with period 1− α
and σ1 e σ2 take turns to topple and the toppling of one site will not trigger the

toppling of another (σ∗1 < 1). The only point of interest would be σ∗1 = 1, but it is

not an attractor of the dynamics.
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Figure 6.1: Poincaré map in the fixed jump model, for α = 0.7 (in blue we report
the bisector as a reference for the fixed points). We can see marginal stability for
σi ∈ [α, 1). In this interval the solution is periodic but there is no synchronization.
Each avalanche has size 1. We reported an example of the evolution of σ1 from a
random initial value (the blue point).

6.3 Tang and Middleton: inhomogeneities and

synchronization

Tang and Middleton [11] suggested that the introduction of some inhomogeneities

in this simple model can induce a phase-locked or synchronized state, where the

second oscillator toppling is triggered by the first one’s.

For example, if we drive the first oscillator with drive rate 1, and the second

one with a sightly slower drive rate (1 + ε)−1, we obtain the following Poincaré
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Figure 6.2: Poincaré map in the perturbed fixed jump model, for α = 0.7 and
ε = 0.2. Here we find a single fixed point σ∗1 > 1. When we arrive here, the system
is synchronized: the slow oscillator σ2 triggers an avalanche of size 2.

map:

σ1(n+ 1) =


σ1(n) + ε(1− α) α ≤ σ1(n) < 1

1 + α + ε− α(1 + ε)σ1(n) 1 ≤ σ1(n) < 1
α

α2σ1(n) σ1(n) ≥ 1
α
.

(6.4)

As it is shown in Fig.6.2, this map has only one fixed point:

σ∗1 = 1 + ε
1− α
1 + α

,

which corresponds to the synchronized state: the toppling of σ2 will cause the

toppling of σ1 (σ∗1 > 1). Note that this map is only ε away from the unperturbed

one, meaning that the locking is quite weak.

This argument was introduced by Middleton and Tang. Their claim was that

the inhomogeneities introduced by open boundary conditions of the system can be

responsible for the partial synchronization of the system.
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Figure 6.3: Poincaré map in the perturbed fixed jump model: behavior of the
attractor

6.4 Relaxation and partial synchronization

Now we introduce a third step in the dynamics of the two oscillator system, the

relaxation. This acts on a timescale in between of the two previous regimes, and

changes the dynamics in the following way:

• Drive:

σi → σi + δmin, where

δmin = min (1− σ1, 1− σ2)

• Avalanche: the value σi of the oscillator above threshold drops of an amount

(k2 +k1 +k0)z this time, giving to the oscillator a pulse (k1 +k2)z, according

to the rules:

σi → σi − (k2 + k1 + k0)z (6.5)

σj 6=i → σj + (k1 + k2)z (6.6)

where k2, k0 and k1 are positive constants.
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• Relaxation: After the avalanche is over, the system relaxes:

σi → σi + k2z (6.7)

σj 6=i → σj − k2z (6.8)

In the following we will discuss the jump to zero case, which corresponds to z = σi,

(k1 + k0 + k2)z = σi + ε and k1 = α < 1, where ε = k2z is our new perturbation.

The randomness is provided by the initial condition only.

The dynamics rules, in term of the parameters α and ε, are:

• Drive:

σi → σi + δmin, where

δmin = min (1− σ1, 1− σ2)

• Avalanche:

σi → −ε
σj 6=i → σj + ασi + ε

• Relaxation:

σi → σi + ε

σj 6=i → σj − ε

We calculated the Poincaré map of such a system for the fixed jump case, obtaining:

σ1(n+ 1) =



−ασ1(n) + α(1 + α + 2ε) α ≤ σ1(n) ≤ α + 2ε

σ1(n) α + 2ε < σ1(n) < 1

−ασ1(n) + (1 + α + 2ε) 1 ≤ σ1(n) ≤ 1
α

α2σ1(n) σ1(n) > 1
α
.

(6.9)

In Fig.6.4 we can see a realization of it for a particular choice of the parameters.
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α α + 2 ϵ 1 1/ α
σ1 ( n )

σ1 ( n +1 )

Figure 6.4: Poincaré map in the relaxed fixed jump model, for α = 0.7 and ε = 0.1
(in blue we report the bisector as a reference for the fixed points).

This map presents a segment of marginally stable fixed point for α + 2ε <

σ1(n) < 1, which is only present when:

ε <
1− α

2
= f(α);

and two non-trivial fixed points:σ∗1 = α + 2αε
α+1

α ≤ σ1(n) ≤ α + 2ε

σ∗1 = 1 + 2ε
α+1

1 ≤ σ1(n) ≤ 1
α

(6.10)

The second point is valid only for

ε <
1− α2

2α
= g(α),

but since f(α) < g(α) ∀α, the first condition is sufficient for its existence. This

is the one of interest since it is σ∗1 > 1.

All these considerations have led us to consider three different regimes for ε:

• ε < (1− α)/2;

• (1− α)/2 < ε < (1− α2)/2α;
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• ε > (1− α2)/2α

In Fig.6.5 we can see how the map changes in these three cases, and in the following

we will study, for all the cases, the fixed points and the dynamics they suggest

more in detail.

Σ1 HnL

Σ1 Hn+1L

Σ1 HnL

Σ1 Hn+1L

Σ1 HnL

Σ1 Hn+1L

1 - Α

2

1 - Α2

2 Α

Ε

Figure 6.5: Poincaré map in the relaxed fixed jump model, for α = 0.7, for the
three different regimes. We report, as a reference, the bisector (blue line) and
σ1(n) = 1 (black dashed line).

6.4.1 Partial Synchronization: ε < (1− α)/2

Under this condition, the map is exactly the one we just described in Eq.6.9.

As it is suggested by Fig.6.4, this map, unlike the previous case, has an hybrid

behaviour:

• In the intervals:

α < σ1(n) < α + 2ε and
1

α
< σ1(n) <

1

α
+

2ε

α2

σ1(n + 1) tends to be attracted by the first fixed point, even for σ1(n) > 1,

leading the system to a situation in which the first oscillator will never follow

the second one during an avalanche (see Fig.6.6);
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α α + 2 ϵ 1 1/ α
σ1 ( n )

σ1 ( n +1 )

Figure 6.6: Poincaré map in the relaxed fixed jump model, for α = 0.7 and ε = 0.1:
in yellow we can see the σ1(n) values for which the first oscillator tends to go
towards the first fixed point. Since this point is σ∗1 < 1, the avalanche here has
size 1.

• in the intervals:

α + 2ε < σ1(n) < 1, 1 +
2ε

α
< σ1(n) <

1

α
and

1

α
+

2ε

α2
< σ1(n) <

1

α2

the system tends to go in the marginally stable points and then it is stuck

there in a periodic state (see Fig.6.7);
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α α + 2 ϵ 1 1/ α
σ1 ( n )

σ1 ( n +1 )

Figure 6.7: Poincaré map in the relaxed fixed jump model, for α = 0.7 and ε = 0.1:
in pink we can see the σ1(n) values for which the first oscillator goes into the set
of periodic states σ1(n + 1) = σ1(n) < 1, in which it remains. Again, we have
avalanches of size 1.

• in the intervals

1 < σ1(n) < 1 +
2ε

α
and

1

α2
< σ1(n) <

1

α2
+

2ε

α3

the system is attracted now by a single fixed point (see Fig.6.8):

σ∗1 = 1 +
2ε

α + 1
> 1;

here the system is synchronized, meaning that a toppling of the second os-

cillator will always trigger a toppling of the first one.
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α α + 2 ϵ 1 1/ α
σ1 ( n )

σ1 ( n +1 )

.

Figure 6.8: Poincaré map in the relaxed fixed jump model, for α = 0.7 and ε = 0.1:
in blue we can see the σ1(n) values for which the first oscillator is attracted by the
fixed point σ∗1 > 1. Here we have avalanches of size 2, triggered by σ2

6.4.2 Synchronization: (1− α)/2 < ε < (1− α2)/2α

The segment of marginally stable points disappears and the only fixed points of

the system are the two attractors found before. The map reads:

σ1(n+ 1) =


−ασ1(n) + α(1 + α + 2ε) α ≤ σ1(n) ≤ 1

−ασ1(n) + (1 + α + 2ε) 1 ≤ σ1(n) ≤ 1
α

α2σ1(n) σ1(n) > 1
α
.

(6.11)

. We still have to distinguish the σ1(n) values for which the system is attracted

by the two fixed points (see Fig.6.9):

• α < σ1(n) < 1 and 1/α < σ1(n) < 1/α2:

with the starting point belonging to these intervals, the system is attracted

by the fixed point σ∗1 < 1, leading to avalanches of size 1;

• 1 < σ1(n) < 1/α and σ1(n) > 1/α2:

with the starting point belonging to these intervals, the system is attracted
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by the fixed point σ∗1 > 1, leading to synchronized avalanches of size 2;

1 1�Α 1�Α2

Σ1 HnL

Σ1 Hn+1L

Figure 6.9: Poincaré map in the relaxed fixed jump model , for α = 0.7 and
ε = 0.25: 1) in blue we marked the σ1(n) values for which the first oscillator is
attracted by the fixed point σ∗1 > 1. Here we have avalanches of size 2, triggered
by σ2; 2) in yellow we marked the σ1(n) values for which the first oscillator is
attracted by the fixed point σ∗1 < 1. Here we have avalanches of size 1.

6.4.3 Periodicity: ε > (1− α2)/2α

In this case the map is the same of the previous case, but we don’t have anymore

fixed points. The behavior, though, seems to be periodic in visiting the three

different domains of the map. In Fig.6.10 we report an example of such a trajectory.

If we start with σ1(n) < 1, we have:

• 1 < σ1(n+ 1) < 1/α

• σ1(n+ 2) > 1/α

• σ1(n+ 3) < 1

After that, this cycle repeat itself, visiting again the three domains in the same

order. After a transient, the system goes into the limit cycle (see Fig.6.10), where

it stays, and here we have:

σ1(n+ 3) = σ1(n).
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1 1�Α 1�Α2

Σ1 HnL

Σ1 Hn+1L

Figure 6.10: Poincare map in the relaxed fixed jump model, for α = 0.7, ε = 0.45.
The red dashed line represents a typical evolution of the system in this case; despite
the fact that there is not a fixed point, the system is attracted by the limit cycle
marked in black. The avalanches here have size 3.

In order to find the points among which the system oscillates, once it arrives

in the limit cycle, we calculated the following map :

σ1(n+ 3) =


α4σ1(n) + α2(1− α2)(1 + α + 2ε) α ≤ σ1(n) ≤ 1

α4σ1(n) + α(1− α2)(1 + α + 2ε) 1 ≤ σ1(n) ≤ 1
α

α4σ1(n) + (1− α2)(1 + α + 2ε) σ1(n) > 1
α
.

(6.12)

. In Fig.6.11 we report an example of this map.
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1 1�Α 1�Α2

Σ1 HnL

Σ1 Hn+3L

Figure 6.11: A realization of the map σ1(n + 3) = f(σ1(n)), for for α = 0.7,
ε = 0.45.

The three fixed points of this map, which corresponds to the vertexes of the

limit cycle, are:

σ∗1(n) =



α2 1+α+2ε
1+α2 α ≤ σ1(n) ≤ 1

α 1+α+2ε
1+α2 1 ≤ σ1(n) ≤ 1

α

1+α+2ε
1+α2 σ1(n) > 1

α
.

(6.13)

.
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Conclusions

Spring-block models are the most simple description of a seismic fault reproducing

at qualitative level experimental observations as the Gutenberg-Richter law [3].

In the Burridge-Knopoff model [1] the fault is represented as an array of blocks

on a rough surface, elastically coupled with a driving plate and with each other.

The blocks are uniformly driven by the plate until the stress exercised on one

of them overcomes the static friction. The block slides and its stress topples

to zero, being redistributed to the neighbors through the elastic coupling. The

redistribution may induce some other block to slide, and so on, leading to an

avalanche of topplings that ends when all the blocks’ stress is again under the

threshold set by the static friction. This model induces two time scales in the

dynamics, the first one of the driving τD and the second one of the avalanches τ0,

instantaneous if compared to the drive.

In the cellular automata version, the so-called OFC model [2], randomness

is present only in the initial condition and avalanche sizes follow a power law

distribution. OFC is one of a class of systems that displays self-organized criticality

(SOC) [55]. In these systems we find a critical behavior without any tuning of

external parameters. Most of these systems, though, presents critical behavior

only when there is no dissipation in the redistribution process to the neighbors.

On the other hand, the OFC model presents a power law behavior also in the non

conservative case, with an exponent depending on the dissipation parameter α.

The OFC model can be mapped in the evolution of a driven elastic interface

in a disordered medium (OFC* model) after adding annealed randomness in the

level of friction instability. In this case the avalanche size distribution is still a

power law but with a stable exponent independent of the dissipation parameter,

which influences only the cut-off of the distribution.
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In this Thesis we studied the mechanism responsible for the observed differences

between the pure and the random OFC model, focusing on the role of synchro-

nization leading to quasi-periodic behavior.

We studied a fully connected model of four different variants of the OFC dy-

namics:

1) the stress σi of the unstable site drops to zero, giving a pulse ασi to all the

sites (OFC mean field);

2) the stress σi of the unstable site drops of a fixed amount k, giving a pulse

αk to all the sites (generalized BTW mean field);

3) the stress σi of the unstable site drops of a random amount x, giving a pulse

αx to all the sites (OFC* mean field);

4) the stress σi of the unstable site drops of a random amount x, giving a pulse

αx to all the sites; moreover we introduced also annealed disorder in the

thresholds (modified OFC* mean field).

In the last three cases we verify a critical behavior in the limit α→ αc.

For the first two cases we were able to follow the evolution of the stress gaps, in

order to address the role of synchronization in the critical behavior of the system.

In the case of the OFC model the dynamics destroys the correlations among sites

leading, after a transient, to a regime of avalanches of size 1, while in 2-dim a partial

synchronization exists, due to inhomogeneities propagating from the boundaries.

In the second model, conversely, the system converges to a regime of periodic

avalanches, since the dynamics does not affect the stress gaps. Actually, it is

possible to retrieve the avalanche size distribution from a static evaluation of the

stress gaps, and the results are the same as the ones obtained from the dynamics.

We obtained for the size distribution a power law behavior with an exponent

τ ' 1.5 and with an exponential cut-off sm ∝ (αc − α)−2, where αc = 1/N is the

conservative limit. The last two cases gave identical outcomes, indicating that the
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addition of more randomness in the system does not influence the dynamics. They

both present a non periodic behavior and the same avalanche size distribution,

even the cut-off are the same, unlike the 2-dim case where the randomness in

thresholds changes their numerical value. The avalanche size distribution is the

same as in the generalized BTW MF, with τ ' 1.5 as well, while in 2-dim the

exponent of the distribution of the generalized BTW and the one of the OFC*

have different values. The cut-off of this distribution, in the respect of model 2),

are slightly different, but their dependence on the distance to the conservative

limit is the same. In Table 6.1 we report a summary of the results of the models

we studied in 2-dim and in mean field to facilitate a confrontation.

2 dim OFC (g) BTW OFC* (m) OFC*
P (s) s−τ s−τ exp(−(s/sm)1.3) s−τ exp(−s/sm) s−τ exp(−s/sm)
τ τ(α) τ ' 1 τ ' 1.3 τ ' 1.3
sm sm(N) (αc − α)−1 (αc − α)−1.4 (αc − α)−1.4

M. F. OFC (g) BTW OFC* (m) OFC*
P (s) δ(s− 1) s−τ exp(−(s/sm)) s−τ exp(−s/sm) s−τ exp(−s/sm)
τ τ ' 1.5 τ ' 1.5 τ ' 1.5
sm (αc − α)−2 (αc − α)−2 (αc − α)−2

Table 6.1: Numerical results of the avalanche size distribution in 2 dim and in
Mean Field for the four models we considered

It is possible to understand the consistency in mean field of model 2) and 3)

mapping them onto the problem of the first passage of a random walk. In Fig.5.5

and Fig.5.9 we reported a schematic example of the two cases. While in the first

case the randomness it is just in the initial condition of the stress (and then in the

variable Sn = σ1 − σn), in the second one there is also randomness in the killing

wall, since the killing wall represents the locking condition, that depends on the

pulse q that a site gives when it becomes unstable. In both cases though we have

the same synchronization mechanism.

In finite dimension, as we mentioned before, we observe a different exponent

for the two models but in both cases it is stable with dissipation. Since the

introduction of randomness does not change the statistics in mean field, we observe

that the synchronization mechanism is a possible good candidate to justify the

stability of the exponent τ with dissipation, while randomness is related to the
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presence of a not periodic behavior.

The similarity of the mean field behavior of model 2), 3) and 4) suggests

that their finite dimension behavior can be obtained via a perturbative expan-

sion around mean-field theory. The situation is totally different for model 1), i.e.

the standard OFC model, which presents an annealing of synchronization in mean

field.

An interesting variation of the OFC* model is the so-called OFCR model [7].

In order to consider the viscosity effect, a relaxation mechanism is introduced, on

a time scale τR that is in the middle between the time scales of the drive and

the avalanche: τ0 � τR � τD. The effect of this mechanism is to smoothen the

stress field. The two main consequences of the relaxation are: 1) the presence of

the aftershocks, that corresponds to the events triggered by the relaxation; 2) an

exponent τ ' 1.7 for the avalanche size distribution, in very good agreement with

the Gutenberg Richter law.

In order to study the effect of the relaxation on the synchronization of the

system, we analytically investigated a simple 2-blocks model with fixed thresholds.

We evaluated the Poincaré map of the process and we discovered three regimes of

synchronization, as the relaxation parameter ε grows with the dissipation α:

• Partial Synchronization (ε < (1−α)/2): we have 2 fixed points σ1∗ < 1 and

σ1∗ > 1 and a segment of metastable points on the bisector all less than 1;

• Synchronization ((1 − α)/2 < ε < (1 − α)2/2α): we have 2 fixed points

σ1∗ < 1 and σ1∗ > 1;

• Periodicity (ε > (1 − α)2/2α): there are not fixed points but the system is

attracted to a limit cycle that corresponds to a periodic state.

The results are reported in Fig.6.5.

Future developments of this work can be related to the study of the transition

of these models from mean field to finite connectivity in term of synchronization.

This would give us a better understanding of the relationships of our results with

the 2-dim models. Another progress would be to find a way to study the effect of

relaxation on synchronization in the case of a random jump, which would corre-

sponds to the proper OFCR model.
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