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Introduction

The present thesis collects the outcomes of the author’s research carried out in the

research group Probability Theory and Mathematical Statistics at the Department

of Mathematics, University of Salerno, during the doctoral programme “Mathemat-

ics, Physics and Applications”. The results are at the interface between Fractional

Calculus and Probability Theory. While research in probability and applied fields

is now well established and enthusiastically supported, the subject of fractional cal-

culus, i.e. the study of an extension of derivatives and integrals to any arbitrary

real or complex order, has achieved widespread popularity only during the past four

decades or so, because of its applications in several fields of science, engineering

and finance. Indeed, it proves useful in formulating variational problems, mainly

due to its non local characteristic, thus providing a very accurate description of

reality. The application of the fractional paradigm to probability theory has been

carefully but partially explored over the years, especially from the point of view

of distribution theory, anomalous diffusion and, more generally, of stochastic pro-

cesses. In many cases the evolution of the probability distribution of such processes

is described by a suitable fractional partial or ordinary differential equation, where

the space and/or time derivatives are replaced with their fractional counterparts.

The key features that make fractional stochastic processes particularly worthy of

attention are, among the others, long-range memory, persistent correlations, path-

dependence. For instance, as regards the diffusion equation, fractional derivatives

are related to random walks with heavy tails. Fractional derivatives with respect to

space describe a super-diffusive behaviour, related to long power-law particle jumps.

Time-fractional derivatives, instead, describe a sub-diffusive behaviour, related to

long power-law waiting times between particle jumps. However, the investigation of

the intersection between fractional calculus and other fields related to probability

theory is a relatively young topic and many interesting challenges are often posed.

The aim of this dissertation is twofold. On the one hand, we offer a contribution

to the consolidated theory of fractional stochastic processes. On the other hand,

as a novelty, we extend some classical results of integer-order calculus, both from

a probabilistic and a fractional perspective, which, hopefully, will find some new
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applications in the near future. Moreover, we propose a model for competing risks

in survival analysis based on a fractional probability distribution, thus delving into

a more statistically oriented framework.

The dissertation is organized as follows.

In Chapter 1 we give an overview about the main ideas that inspire fractional cal-

culus and about the mathematical techniques for dealing with fractional operators

and the related special functions and probability distributions.

In order to develop certain fractional probabilistic analogues of Taylor’s theorem

and mean value theorem, in Chapter 2 we introduce the nth-order fractional equi-

librium distribution in terms of the Weyl fractional integral and investigate its main

properties. Specifically, we show a characterization result by which the nth-order

fractional equilibrium distribution is identical to the starting distribution if and

only if it is exponential. The nth-order fractional equilibrium density is then used

to prove a fractional probabilistic Taylor’s theorem based on derivatives of Riemann-

Liouville type. A fractional analogue of the probabilistic mean value theorem is thus

developed for pairs of nonnegative random variables ordered according to the sur-

vival bounded stochastic order. We also provide some related results, both involving

the normalized moments and a fractional extension of the variance, and a formula

of interest to actuarial science. In conclusion, we discuss the probabilistic Taylor’s

theorem based on fractional Caputo derivatives.

In Chapter 3 we consider a fractional counting process with jumps of integer ampli-

tude 1, 2, . . . , k, whose probabilities satisfy a suitable system of fractional difference-

differential equations. We obtain the moment generating function and the probabil-

ity law of the resulting process in terms of generalized Mittag-Leffler functions. We

also discuss two equivalent representations both in terms of a compound fractional

Poisson process and of a subordinator governed by a suitable fractional Cauchy prob-

lem. The first occurrence time of a jump of fixed amplitude is proved to have the

same distribution as the waiting time of the first event of a classical fractional Pois-

son process, this extending a well-known property of the Poisson process. When

k = 2 we also express the distribution of the first-passage time of the fractional

counting process in an integral form. We then show that the ratios given by the

powers of the fractional Poisson process and of the counting process over their means

tend to 1 in probability.
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In Chapter 4 we propose a generalization of the alternating Poisson process from the

point of view of fractional calculus. We consider the system of differential equations

governing the state probabilities of the alternating Poisson process and replace the

ordinary derivative with a fractional one (in the Caputo sense). This produces a

fractional 2-state point process, whose probability mass is expressed in terms of the

(two-parameter) Mittag-Leffler function. We then show that it can be recovered also

by means of renewal theory arguments. We study the limit state probability, and

certain proportions involving the fractional moments of the sub-renewal periods of

the process. In order to derive new Mittag-Leffler-like distributions related to the

considered process, we then exploit a transformation acting on pairs of stochasti-

cally ordered random variables, which is an extension of the equilibrium operator

and deserves interest in the analysis of alternating stochastic processes.

In Chapter 5 we analyse a jump-telegraph process by replacing the classical ex-

ponential distribution of the interarrival times which separate consecutive velocity

changes (and jumps) with a generalized Mittag-Leffler distribution. Such interar-

rival times constitute the random times of a fractional alternating Poisson process.

By means of renewal theory-based arguments we obtain the forward and backward

transition densities of the motion in series form, and prove their uniform conver-

gence. Specific attention is then given to the case of jumps with constant size, for

which we also obtain the mean of the process. We conclude the chapter by investi-

gating the first-passage time of the process through a constant positive boundary,

providing its formal distribution and suitable lower bounds.

Chapter 6 is dedicated to a stochastic model for competing risks involving the

Mittag-Leffler distribution, inspired by fractional random growth phenomena. We

prove the independence between the time to failure and the cause of failure, and

investigate some properties of the related hazard rates and ageing notions. We also

face the general problem of identifying the underlying distribution of latent failure

times when their joint distribution is expressed in terms of copulas and the time

transformed exponential model. The special case concerning the Mittag-Leffler dis-

tribution is approached by means of numerical treatment. We finally adapt the

proposed model to the case of a random number of independent competing risks.

This leads to certain mixtures of Mittag-Leffler distributions, whose parameters are

estimated through the method of moments for fractional moments.

Throughout the whole thesis, we refer to the following papers:
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Chapter 1

Elements of Fractional Calculus

Fractional calculus is the subfield of mathematical analysis that deals with the gener-

alization of the operators of classical integration and differentiation to any arbitrary

real or complex order. The subject is as old as Leibniz–Newton calculus, and dates

back to 1695, when a preeminent mathematician of his time and author of the first

French treatise on infinitesimal calculus, Guillaume François Antoine, Marquis de

l’Hôpital, wrote a letter to Leibniz asking what would happen if the order of differen-

tiation were a real number instead of an integer. Leibniz in a letter dated September

30, 1695 — the exact birthday of fractional calculus — replied: “It will lead to a

paradox, from which one day useful consequences will be drawn.”. However, the

effective development of fractional calculus had to wait until 1832, when Liouville

defined a fractional derivative by means of the Riemann-Liouville fractional inte-

gral. Many great mathematicians contributed to this theory over the years, such as

Leibniz, Liouville, Riemann, Abel, Riesz, Weyl. In the present chapter we provide

a brief introduction to the main fractional operators and their properties, as well

as to some Mittag-Leffler-type functions and related probability distributions that

prove to be useful in rest of the dissertation. For a general background in fractional

calculus we refer to books [133], [124], [45] and [57]. See also [59] for a brief but

comprehensive survey.
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1.1 Basic fractional operators

The starting point for the development of the so-called Riemann–Liouville fractional

calculus is Cauchy’s formula for repeated integration:

Ina+f (x) =

∫ x

a

dx1

∫ x1

a

dx2 · · ·
∫ xn−1

a

f (xn) dxn

=
1

(n− 1)!

∫ x

a

(x− xn)n−1 f (xn) dxn, (1.1)

where −∞ < a ≤ x < +∞ and Ina+, n ∈ N, is the multiple integral operator based

at a. The function f is assumed to be sufficiently “nice”, i.e. locally integrable

in the interval considered. Formula (1.1) makes it possible to write any n−fold

repeated integral by a convolution-type formula and to extend the notion of multiple

integral to that of fractional integral by replacing positive integer values of the index

n with arbitrary positive values α, using the relation (n− 1)! = Γ (n). Γ is the

Eulerian Gamma function, defined for complex numbers with a positive real part

via a convergent improper integral as

Γ(z) =

∫ ∞
0

xz−1e−x dx.

Consequently, the following definition has been proposed.

Definition 1.1.1 (Riemann-Liouville fractional integral). For any sufficiently well-

behaved function f , the fractional integral of order α of f is defined as

Iαa+f (x) :=
1

Γ (α)

∫ x

a

(x− y)α−1 f (y) dy, a < x < b, α > 0. (1.2)

Note that the values of Ina+f (x) with n ∈ N are always finite for a ≤ x < b, but,

while the values Iαa+f (x) for α > 0 are finite for a < x < b, it may happen that the

limit (if it exists) of Iαa+f (x) as x→ a+ is infinite.

For completeness we put I0
a+ := I (Identity operator). The fundamental property of

the fractional integrals is the additive index law (semigroup property), according to

which

Iαa+I
β
a+ = Iα+β

a+ , α, β ≥ 0. (1.3)

Fractional differentiation of any positive real power can be easily defined by com-

bining the standard differential operator with a fractional integral of order between

0 and 1. There are several possibilities and in the following we will describe the

two major approaches which provide the basis for two different definitions of the

fractional derivative.
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Definition 1.1.2 (Riemann-Liouville fractional derivative). If m−1 < α ≤ m, m ∈
N, then the Riemann-Liouville derivative of order α of f is

(Dα
a+f)(x) := DmIm−αa+ f(x), a < x < b, α > 0, (1.4)

where Dm is the common derivative of integer order m. This is equivalent to

(Dα
a+f)(x) =


1

Γ(m− α)

dm

dxm

∫ x

a

(x− t)m−α−1f(t)dt if m− 1 < α < m

dmf

dxm
if α = m

For completeness, we also define D0
a+ := I (Identity Operator).

It can be directly verified that the Riemann-Liouville fractional integration and

fractional differentiation operators (1.2) and (1.4) of the power function f(x) =

(x− a)β−1 yield power functions of the same form.

Example 1.1.1. If α ≥ 0 and β ∈ C, <(β) > 0, then

(Iαa+ (t− a)β−1) (x) =
Γ(β)

Γ(α + β)
(x− a)α+β−1,

(Dα
a+ (t− a)β−1) (x) =

Γ(β)

Γ(β − α)
(x− a)β−α−1, 0 ≤ α < 1.

In particular, if β = 1 and α ≥ 0, α /∈ N, then the Riemann-Liouville fractional

derivative of a constant is, in general, not equal to zero:

(Dα
a+1) (x) =

(x− a)−α

Γ(1− α)
.

As underlined in [57], the fractional derivatives of order α, when α is non-integer,

are non-local operators expressed by integer-order derivatives of convolution-type

integrals with a weakly singular kernel. Furthermore, they do not necessarily satisfy

the analogue of the semigroup property of the fractional integrals, since the base

point a plays a “disturbing” role.

By exchanging the order of the derivative and integral operators in (1.4), a sec-

ond definition of fractional derivative can be proposed.

Definition 1.1.3 (Dzherbashyan–Caputo fractional derivative). If m − 1 < α ≤
m, m ∈ N, then the Dzherbashyan–Caputo derivative of order α of f is

(∗D
α
a+f)(x) = Im−αa+ Dm(x), α > 0, (1.5)
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that is to say

(∗D
α
a+f)(x) =


1

Γ(m− α)

∫ x

a

(x− t)m−α−1 dm

dtm
f(t)dt if m− 1 < α < m

dmf

dxm
if α = m

For completeness, we also define ∗D
0
a+ := I (Identity Operator).

For m − 1 < α < m the definition (1.5) is more restrictive than that of Rie-

mann–Liouville, since the absolute integrability of the derivative of order m is

needed. Whenever the operator ∗D
α
a+ is used, we assume that this condition is met.

Another way of defining the Caputo derivative is given by the following theorem.

Theorem 1.1.1. Let α ∈ R+ \N. For any sufficiently well-behaved function f , the

Riemann–Liouville derivative of order α of f exists almost everywhere and it can be

written in terms of the Caputo derivative as

(Dα
a+f)(x) = (∗D

α
a+f)(x) +

m−1∑
k=0

(x− a)k−α

Γ (k − α + 1)
f (k)

(
a+
)
.

As a consequence of Theorem 1.1.1, the Caputo derivative can be interpreted as

a sort of regularization of the Riemann-Liouville derivative as soon as the values

f (k) (a+) are finite. Moreover, the Caputo derivative of a constant is always zero.

This is one way in which Caputo derivatives are considered to be more well-behaved

than Riemann-Liouville ones. See the following example.

Example 1.1.2. If α > 0, m− 1 < α ≤ m and <(β) > 0, then

(∗D
α
a+ (t− a)β−1) (x) =

Γ(β)

Γ(β − α)
(x− a)β−α−1, <(β) > m.

In particular,

(∗D
α
a+1) (x) = 0.

In Fig. 1.1 the Caputo fractional derivatives of the linear function f(x) = x have

been plotted for various choices of α, giving evidence to the fact that fractional

derivatives interpolate between successive integer-order derivatives when applied to

many kinds of functions.

A key tool for our next investigations is the Laplace transform of the fractional

derivatives introduced. Therefore, we highlight the following relations, assuming

without loss of generality, that the function f is identically vanishing for x < 0.

For the Riemann-Liouville fractional derivative the Laplace transform, if it exists,
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Figure 1.1: Caputo fractional derivatives of the linear function f(x) = x for various
choices of α.

requires the knowledge of the (bounded) initial values of the fractional integral Im−α

and of its integer derivatives of order k = 1, 2, . . .m− 1:

L{(Dαf)(x); s} = sαL{f(x); s} −
m−1∑
k=0

sm−1−kDkIm−αf
(
0+
)
,

For the Caputo fractional derivative we need to know the (bounded) initial values

of the function and of its integer derivatives of order k = 1, 2, . . .m− 1:

L{∗(Dαf)(x); s} = sαL{f(x); s} −
m−1∑
k=0

sα−1−kf (k)
(
0+
)
. (1.6)

Several authors have pointed out the more useful character of the Caputo fractional

derivative in the treatment of fractional differential equations in physical applica-

tions. In fact, in physical problems, the initial conditions are usually expressed in

terms of a given number of bounded values assumed by the field variable and its

integer-order derivatives, in spite of the fact that the governing evolution equation

may be a generic integro-differential equation.

As underlined in [49], the question of the geometrical or physical interpretation of

fractional calculus has been object of investigation for more than 300 years without

coming to a conclusion. While classical integral and derivatives can be easily inter-

preted in terms of areas, tangent lines and planes from a geometric point of view, and
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in terms of speed and acceleration from a physical point of view, the interpretation

of fractional integrals and derivatives was acknowledged as one of the unresolved

problems at the First International Conference on Fractional Calculus held in 1974

in New Haven, Connecticut. However, several attempts have been made to provide

an interpretation. Among the most interesting ones, we recall Kolokoltsov’s analy-

ses of fractional derivatives from a probabilistic point of view [75]. Specifically, the

basic Caputo and Riemann-Liouville derivatives of order α ∈ (0, 2) can be viewed as

(regularized) generators of stable Lévy motions interrupted on crossing a boundary.

Although the problem is still unanswered, some main features and advantages of

fractional operators have been extensively highlighted, such as the properties of non

locality and the representation of long memory processes.

A fractional integral over an unbounded interval can also be defined. Specifically,

if the function f(x) is locally integrable in −∞ ≤ a < x < +∞, and behaves well

enough for x→ +∞, the Weyl fractional integral of order α of f is defined as

Iα−f(x) :=
1

Γ (α)

∫ +∞

x

(t− x)α−1 f (t) dt, a < x < +∞, α > 0. (1.7)

Also for the Weyl fractional integral the corresponding semigroup property holds:

Iα−I
β
− = Iα+β

− , α, β ≥ 0, (1.8)

where, again for completeness, I0
− := I.

1.2 Mittag-Leffler-type functions

The Mittag-Leffler function is so named after the Swedish mathematician who in-

troduced it at the beginning of the last century to answer a classical question of

complex analysis, namely to describe the procedure of the analytic continuation of

power series outside the radius of their convergence. It was subsequently investi-

gated by Wiman, Pollard, Humbert, Aggarwal and Feller, among the others. The

Mittag-Leffler function was re-discovered when its connection to fractional calculus

was definitely clear and the community of researchers became aware of its consider-

able potential in applied sciences and engineering. Indeed, it is possible to naturally

express the solution of fractional order differential and integral equations in terms of

Mittag-Leffler-type functions. For example, Mittag-Leffler-type functions are related

to the solutions of a variety of fractional evolution processes, i.e. phenomena gov-

erned by an integro-differential equation containing integrals and/or derivatives of
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fractional order in time. Moreover, the importance of Mittag-Leffler-type functions

in fields of research such as stochastic systems theory, dynamical systems theory,

statistical distribution theory, just to name a few, is now widely recognised. In this

section we shall consider some Mittag-Leffler-type functions which are relevant for

proving the results in the dissertation. For recent advances in Mittag-Leffler-type

functions see Lavault [85] and references therein.

The one-parameter Mittag-Leffler function Eα(z) is defined by the following series

representation, valid in the whole complex plane

Eα(z) :=
∞∑
n=0

zn

Γ (αn+ 1)
, <(α) > 0, z ∈ C. (1.9)

If <(α) < 0 the series diverges everywhere on C \ {0} and, for <(α) = 0, its

radius of convergence is R = eπ/2|=(z)|. The Mittag-Leffler function provides a simple

generalization of the exponential function because of the substitution of n! = Γ(n+1)

with (αn)! = Γ(αn+ 1). In particular, when α = 1 and α = 2, we have

E1(z) = ez, E2(z) = cosh(
√
z).

Many properties of the Mittag-Leffler function can be derived from its integral rep-

resentation

Eα(z) =
1

2πi

∫
C

tα−1et

tα − z
dt,

where the path of integration C is a loop which starts and ends at −∞ and encircles

the circular disc |t| ≤ z1/α.

A straightforward generalization of Eα(z) is the two-parameter Mittag-Leffler func-

tion, obtained by replacing the additive constant 1 in the argument of the Gamma

function in (1.9) by an arbitrary complex parameter β:

Eα,β(z) :=
∞∑
n=0

zn

Γ (αn+ β)
, <(α) > 0, <(β) > 0, z ∈ C. (1.10)

If both α and β are positive real numbers, the series is convergent for any z ∈ C;

if α, β ∈ C, the conditions of convergence follow the ones for the one-parametric

Mittag-Leffler function (1.9). When β = 1, Eα,β(z) coincides with the Mittag-Leffler

function (1.9):

Eα,1(z) = Eα(z), <(α) > 0, z ∈ C.
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We also recall two other particular cases of (1.10):

E1,2(z) =
ez − 1

z
, E2,2(z) =

sinh(
√
z)√

z
.

Eα(z) and Eα,β(z) are entire function of z ∈ C with order 1/<(α) and type 1.

Prabhakar [128] introduced the function Eγ
α,β(z) of the form

Eγ
α,β(z) :=

∞∑
r=0

(γ)r z
r

r! Γ(αr + β)
, z ∈ C, γ ∈ C, <(α) > 0, <(β) > 0, (1.11)

where (γ)k is the rising factorial (or Pochhammer symbol), defined as:

(γ)k := γ(γ + 1) . . . (γ + k − 1) if k ∈ N, (γ)0 = 1 (γ 6= 0).

It is an entire function of z of order 1/<(α) and type 1. When γ = 1 we recover the

Mittag-Leffler function (1.10) and for γ = β = 1 we recover the classical Mittag-

Leffler function (1.9).

The following formula holds for the Laplace transform of the Mittag-Leffler-type

function (1.11)

L
{
tβ−1Eγ

α,β(λtα); s
}

=
sαγ−β

(sα − λ)γ
, (1.12)

where <(s) > 0, <(β) > 0, λ ∈ C, and |λs−α| < 1.

Recently Mittag-Leffler functions and distributions have received the attention of

mathematicians, statisticians and scientists in physical and chemical sciences. Pil-

lai [122] introduced the Mittag-Leffler distribution in terms of the Mittag-Leffler

function (1.9). Indeed, he proved that

Fα(x) = 1− Eα(−xα), 0 < α ≤ 1,

are distribution functions with positive support and with Laplace transform

ψ(s) = (1 + sα)−1, s ≥ 0, (1.13)

which is completely monotone for 0 < α ≤ 1. However, in the 60s of the past century,

Gnedenko and Kovalenko [77], in their analysis of thinning (or rarefaction) of a

renewal process, found, under certain power-law assumptions, the Laplace transform

(1 + sα)−1 for the waiting-time density in the infinite thinning limit, but did not

identify it as a Mittag-Leffler type function. Moreover, in Balakrishnan [8] the
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waiting time density with Laplace transform (1.13) plays a distinct role in the context

of continuous time random walks, but, again, was not recognized as a Mittag-Leffler-

type function. The probability density function corresponding to (1.13) is

fα(x) = xα−1Eα,α(−xα), x ≥ 0.

A distribution F different from Fα in scale parameter has Laplace transform ψ(s) =

(1 +λsα)−1 for some constant λ > 0, and is also called a Mittag-Leffler distribution.

The Mittag-Leffler distribution is a generalization of the exponential distribution,

which is recovered for α = 1. In the same paper Pillai proved that the Mittag-Leffler

distribution is infinitely divisible and geometrically infinitely divisible, and that it

is attracted to the stable distribution with exponent α, 0 < α < 1. Particularly

important is the power law asymptotics for x→ +∞:

Eα(−xα) ∼ x−α

Γ(1− α)
, fα(x) ∼ Γ(α + 1) sin(απ)

π
x−α−1,

in contrast to the exponential decay of E1(x) = e−x. Gorenflo [58] proved the

asymptotic long-time equivalence of a generic power law waiting time distribution

to the Mittag-Leffler distribution, the waiting time distribution characteristic for

a time-fractional continuous time random walk. This asymptotic equivalence is

effected by “rescaling” time and “respeeding” the relevant renewal process; then

passing to a limit. A suitable relation between the parameters of rescaling and

respeeding is needed.

Jose et al. [67] introduced the class of generalized Mittag-Leffler distributions, which

involve the generalized Mittag-Leffler function (1.11), denoted by GMLD (α, β). A

random variable X with support over (0,∞) is said to follow the generalized Mittag-

Leffler distribution with parameters α and β if its Laplace transform is

ψ(s) = (1 + sα)−β, 0 < α ≤ 1, β > 0.

The corresponding cumulative distribution function is given by

Fα,β(x) = P(X ≤ x) =
+∞∑
j=0

(−1)j Γ(β + j)xα(β+j)

j! Γ(β) Γ(1 + αβ + αj)
= xαβEβ

α, αβ+1(−xα).

We observe that when β = 1 we get Pillai’s Mittag-Leffler distribution [122], when

α = 1 we get the gamma distribution, when α = 1 and β = 1 we get the exponential

distribution. We now list some properties of generalized Mittag-Leffler distributions:

• If Uα follows the positive stable distribution with Laplace transform ψ(s) =
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Figure 1.2: Plot of probability density functions of the Mittag–Leffler distribution
for various choices of α.

e−s
α
, s > 0, 0 < α ≤ 1, and if Vβ is a random variable, independent of Uα, and

following a gamma distribution with Laplace transform φ(s) =
(

1
1+s

)β
, β > 0,

then Xα,β = UαV
1/α
β follows the generalized Mittag-Leffler distribution GMLD

(α, β);

• the probability density function of Xα,β is a mixture of gamma densities;

• Lin [88] has shown that Fα,β(x) is slowly varying at infinity, for α ∈ (0, 1] and

β > 0;

• the fractional moments of Xα,β, for 0 < α ≤ 1 and β > 0, are (cf. [88])

E[Xr
α,β] =


Γ(1− r/α)Γ(β + r/α)

Γ(1− r)Γ(β)
if − αβ < r < α

∞ if r ≤ −αβ or r ≥ α.
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Chapter 2

On the fractional probabilistic

Taylor’s and mean value theorems

Taylor’s theorem is the most important result in differential calculus since it gives

a sequence of approximations of a differentiable function in the neighborhood of a

given point by polynomials with coefficients depending only on the derivatives of

the function at that point. Therefore, given the derivatives of a function at a single

point, it is possible to describe the behavior of the function at nearby points. Moti-

vated by the large numbers of its applications, researchers have shown a heightened

interest in the extensions of this theorem. For instance, Massey and Whitt [98]

derived probabilistic generalizations of the fundamental theorem of calculus and

Taylor’s theorem by making the argument interval random and expressing the re-

mainder terms by means of iterates of the equilibrium residual-lifetime distribution

from the theory of stochastic point processes. Lin [87] modified Massey and Whitt’s

probabilistic generalization of Taylor’s theorem and gave a natural proof by using an

explicit form for the density function of the high-order equilibrium distribution. In

a similar spirit to these probabilistic extensions of Taylor’s theorem, Di Crescenzo

[32] gave a probabilistic analogue of the mean value theorem. The previous results

have direct applications to queueing and reliability theory. However, probabilistic

generalizations are not the only ones. Indeed, fractional Taylor series have been in-

troduced with the idea of approximating non-integer power law functions. Here we

recall the most interesting ones. Trujillo et al. [145] established a Riemann-Liouville

generalized Taylor’s formula, in which the coefficients are expressed in terms of the

Riemann-Liouville fractional derivative. On the other hand, Odibat et al. [105]

expressed the coefficients of a generalized Taylor’s formula in terms of the Caputo

fractional derivative. In the aforementioned papers an application of the generalized

Taylor’s formula to the resolution of fractional differential equations is also shown.

Among others, they have been used to study a fractional conservation of mass ([150]
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and [106]), a fractional order model for HIV infection [123] and a fractional order

model for MINMOD Millennium in order to estimate insraulin sensitivity in glu-

cose–insulin dynamics [25]. Great emphasis has been placed on fractional Lagrange

and Cauchy type mean value theorems too (cf. [61], [105], [120], [145], for example).

Inspired by such improvements, in the present chapter we propose to unify these two

approaches by presenting a fractional probabilistic Taylor’s theorem and a fractional

probabilistic mean value theorem.

We start by briefly recalling some notions on a generalized Taylor’s formula that

are pertinent to the next developments. Then, in Section 2.2, after quickly review-

ing the notion of equilibrium distribution, we define a fractional extension of the

high-order equilibrium distribution. We also give an equivalent version by exploit-

ing the semigroup property of the Weyl fractional integral and derive the explicit

expression of the related density function. By means of the Mellin transform we

underline the role played by the fractional equilibrium density in characterizing the

exponential distribution. In Section 2.3 we prove a fractional probabilistic Taylor’s

theorem by using the expression of the nth-order fractional equilibrium density. Sec-

tion 2.4 is devoted to the analysis of a fractional analogue of the probabilistic mean

value theorem. We first consider pairs of nonnegative random variables ordered in

a suitable way so as to construct a new random variable, say Zα, which extends the

fractional equilibrium operator. The fractional probabilistic mean value theorem

indeed is given in terms of Zα. We also discuss some related results, including a for-

mula of interest to actuarial science. We stress the fact that all the aforementioned

results involve derivatives of Riemann-Liouville type. However, in some cases they

can be restated also under a different setting. Indeed, in Section 2.5 we conclude the

chapter by showing a fractional probabilistic Taylor’s theorem in the Caputo sense.

2.1 Background on a generalized Taylor’s formula

Let Ω be a real interval and α ∈ [0, 1). Let F (Ω) denote the space of Lebesgue

measurable functions with domain in Ω and suppose that x0 ∈ Ω. Then a function

f is called α-continuous in x0 if there exists λ ∈ [0, 1− α) for which the function h

given by

h (x) = |x− x0|λ f (x)

is continuous in x0. Moreover, f is called 1-continuous in x0 if it is continuous in x0,

and α-continuous on Ω if it is α-continuous in x for every x ∈ Ω. We denote, for con-

venience, the class of α-continuous functions on Ω by Cα (Ω), so that C1 (Ω) = C (Ω).
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For a ∈ Ω, a function f is called a-singular of order α if

lim
x→a

f(x)

|x− a|α−1 = k <∞ and k 6= 0.

Let α ∈ R+, a ∈ Ω and let F (Ω) denote the space of Lebesgue measurable functions

with domain in Ω. In addition, let E be an interval, E ⊂ Ω, such that a ≤ x for

every x ∈ E. With regard to the Riemann-Liouville fractional integral (1.2) and to

the Riemann-Liouville fractional derivative (1.4) we write

aIα (E) =
{
f ∈ F (Ω) : Iαa+f (x) exists and it is finite ∀x ∈ E

}
.

Furthermore, we denote the sequential fractional derivative by

Dnα
a+ = Dα

a+ . . . D
α
a+︸ ︷︷ ︸

n times

.

Recently, Trujillo et al. (cf. Theorem 4.1 of [145]) proved the following result, on

which we base our generalization of Taylor’s theorem in Section 2.3.

Theorem 2.1.1. Set α ∈ [0, 1] and n ∈ N. Let g be a continuous function in (a, b]

satisfying the following conditions:

(i) ∀ j = 1, . . . , n,Djα
a+g ∈ C ((a, b]) and Djα

a+g ∈ aIα ([a, b]);

(ii) D
(n+1)α
a+ g is continuous on [a, b];

(iii) If α < 1/2 then, for each j ∈ N, 1 ≤ j ≤ n, such that (j+1)α < 1, D
(j+1)α
a+ g (x)

is γ-continuous in x = a for some γ, 1 − (j + 1)α ≤ γ ≤ 1, or a-singular of

order α.

Then, ∀x ∈ (a, b],

g(x) =
n∑
j=0

cj(x− a)(j+1)α−1

Γ((j + 1)α)
+Rn(x, a),

with

Rn(x, a) =
D

(n+1)α
a+ g (ξ)

Γ ((n+ 1)α + 1)
(x− a)(n+1)α , a ≤ ξ ≤ x,

and

cj = Γ (α)
[
(x− a)1−αDjα

a+g(x)
] (
a+
)

= I1−α
a+ Djα

a+g
(
a+
)

for each j ∈ N, 0 ≤ j ≤ n.
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2.2 Fractional equilibrium distribution

Let X be a nonnegative random variable with cumulative distribution function

F (x) = P (X ≤ x) for x ≥ 0 and with nonvanishing mean E [X] < +∞. Define

a nonnegative random variable Xe with distribution

F1 (x) = P (Xe ≤ x) =
1

E [X]

∫ x

0

F (y) dy, x ≥ 0,

or, equivalently, with complementary cumulative distribution function

F 1 (x) = P (Xe > x) =
1

E [X]

∫ +∞

x

F (y) dy, x ≥ 0,

where F = 1−F . The distribution F1 is called equilibrium distribution with respect

to F. Indeed, if F is the cumulative distribution function of a random interval

between renewal epochs of a renewal process, then F1 is the cumulative distribution

function of the random interval to the next renewal epoch from an arbitrary time

in equilibrium. Further, suppose E [X2] < +∞. Then the equilibrium distribution

with respect to F1 is well-defined and it reads

F2 (x) = P
(
X(2)
e ≤ x

)
=

1

E [Xe]

∫ x

0

F 1 (y) dy, x ≥ 0.

F2 is known as the second order equilibrium distribution with respect to F . Contin-

uing n−2 more iterates of this transformation, it is possible to obtain the nth-order

equilibrium distribution with respect to F , denoted by Fn, provided the required

moments of X are finite.

Hereafter we introduce a fractional version of the nth-order equilibrium distribu-

tion. Let α ∈ R+ and let X be a nonnegative random variable with distribution

F (t) = P (X ≤ t) for t ≥ 0 and with moment E [Xα] ∈ (0,+∞). Then we define a

random variable X
(1)
α whose complementary distribution function is

F
α

1 (t) := P
(
X(1)
α > t

)
=

Γ (α + 1)

E [Xα]
Iα−F (t) , t ≥ 0, (2.1)

where Iα− is the Weyl fractional integral (1.7) and F = 1−F . We call the distribution

of X
(1)
α fractional equilibrium distribution with respect to F . See also Pakes and

Navarro [118] and references therein. In Remark 2.2.2 we prove that (2.1) is a

legitimate complementary cumulative distribution function.

Remark 2.2.1. Recalling (1.7), from (2.1) we obtain the following suitable proba-
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bilistic interpretation of the distribution function of X
(1)
α in terms of X. In fact,

P
(
X(1)
α ≤ t

)
=

α

E [Xα]

∫ +∞

0

yα−1P (y < X ≤ y + t) dy.

Further, suppose E [X2α] < +∞. Then the second-order fractional equilibrium dis-

tribution with respect to F is well-defined and its complementary distribution func-

tion reads

F
α

2 (t) = P
(
X(2)
α > t

)
=

Γ (2α + 1)

Γ (α + 1)

E [Xα]

E [X2α]
Iα−F

α

1 (t) , t ≥ 0.

Generally, we can recursively define the nth-order fractional complementary equilib-

rium distribution with respect to F by

F
α

n (t) = P
(
X (n)

α > t
)

=
Γ (nα + 1)

Γ ((n− 1)α + 1)

E
[
X(n−1)α

]
E [Xnα]

Iα−F
α

n−1 (t) , t ≥ 0,

provided that all the moments E [Xnα], for n ∈ N, are finite.

Interestingly enough, F
α

n can be alternatively expressed in terms of F . Indeed,

the following proposition holds.

Proposition 2.2.1. Let α ∈ R+ and let X be a nonnegative random variable with

distribution F (t) for t ≥ 0. Moreover, suppose that E [Xnα] ∈ (0,+∞), with n ∈ N.

Then the nth-order fractional complementary equilibrium distribution with respect

to F reads

F
α

n (t) =
Γ (nα + 1)

E [Xnα]
Inα− F (t) , t ≥ 0. (2.2)

Proof. The proof is by induction on n. In fact, when n = 1 formula (2.2) is true

due to Definition (2.1). Now let us assume that Eq. (2.2) holds for some n; then,

for t ≥ 0,

F
α

n+1 (t) =
Γ ((n+ 1)α + 1)

Γ (nα + 1)

E [Xnα]

E [X(n+1)α]
Iα−F

α

n (t)

=
Γ ((n+ 1)α + 1)

Γ (nα + 1)

E [Xnα]

E [X(n+1)α]
Iα−

Γ (nα + 1)

E [Xnα]
Inα− F (t)

=
Γ ((n+ 1)α + 1)

E [X(n+1)α]
I

(n+1)α
− F (t) .

The last equality is valid due to the linearity of the integral and to the semigroup

property (1.8). So the validity of Eq. (2.2) for n implies its validity for n + 1.

Therefore it is true for all n ∈ N.
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In order to obtain the explicit expression of the density function of the nth-order

fractional equilibrium distribution, we use the following lemma, which is a general-

ization of Proposition 4 of [24].

Lemma 2.2.1. Let X be a nonnegative random variable whose moment of order nα

is finite for α ∈ R+ and n ∈ N. Then

lim
x→+∞

(x− t)nα F (x) = 0, ∀t ≥ 0.

Proof. Because the moment of order nα of X is finite, we have

lim
x→+∞

∫ +∞

x

ynαdF (y) = 0. (2.3)

Hence, if 0 ≤ t ≤ x,

lim
x→+∞

(x− t)nα F (x) ≤ lim
x→+∞

xnαF (x) ≤ lim
x→+∞

∫ +∞

x

ynαdF (y) = 0.

The last inequality follows from a generalized Markov inequality:

P (|X| ≥ a) ≤ E (ϕ (|X|))
ϕ(a)

,

where ϕ is a monotonically increasing function for the nonnegative reals, X is a

random variable, a ≥ 0 and ϕ(a) > 0.

Here and throughout the chapter, we denote, for convenience, (x)α−1
+ = (x)α−1

1{x>0}.

The following result concerns the probability density function associated with F α
n (t) :=

1− F α

n (t).

Proposition 2.2.2. Let X be a nonnegative random variable with distribution func-

tion F and let E [Xnα] < +∞ for some integer n ≥ 1 and α ∈ R+. Then the density

function of X
(n)
α is

fαn (t) =
nαE

[
(X − t)nα−1

+

]
E [Xnα]

, t ≥ 0. (2.4)

Proof. By virtue of (2.2) and (1.7) we have:

F
α

n (t) =
Γ (nα + 1)

E [Xnα]
Inα− F (t)

=
nα Γ (nα)

E [Xnα]

1

Γ (nα)

∫ +∞

t

(x− t)nα−1 F (x) dx.
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Due to integration by parts and making use of Lemma 2.2.1, we have:

F
α

n (t) = − 1

E [Xnα]

∫ +∞

t

(x− t)nα dF (x)

=
1

E [Xnα]

∫ +∞

t

(x− t)nα dF (x)

=

(
E
[
(X − t)nα+

]
E [Xnα]

)
(2.5)

=
nα

E [Xnα]

∫ +∞

t

dF (x)

∫ x

t

(x− y)nα−1 dy

=
nα

E [Xnα]

∫ +∞

t

dy

∫ +∞

y

(x− y)nα−1 dF (x)

=
nα

E [Xnα]

∫ +∞

t

E
[
(X − y)nα−1

+

]
dy,

this giving the density function (2.4).

We observe that in Proposition 2.2.2 the random variable X is not necessarily ab-

solutely continuous, unlike X
(n)
α .

Remark 2.2.2. Formula (2.5) is useful in showing that F
α

n (t) is a proper comple-

mentary distribution function for all n ∈ N. Indeed,

(i) F
α

n (0) =
E[(X−t)nα+ ]

E[Xnα]

∣∣∣∣
t=0

= 1;

(ii) F
α

n (t) is decreasing and continuous in t ≥ 0;

(iii) F
α

n (t)→ 0, when t→ +∞. In fact, due to (2.3), we have

lim
t→+∞

∫ +∞

t

(x− t)nα dF (x) ≤ lim
t→+∞

∫ +∞

t

xnαdF (x) = 0.

We now prove a characterization result concerning the fractional equilibrium density

(2.4). In fact, ifX is a nonnegative random variable with probability density function

f , the nth-order fractional equilibrium density associated with f coincides with f

if and only if X is exponentially distributed. This extends the well-known result

concerning case α = 1.

Theorem 2.2.1. Let X be a nonnegative random variable with probability density

function f . Then, for every n ∈ N and α ∈ R+

fαn (t) = f(t), t ≥ 0, ⇔ X ∼ E(λ),
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where fαn (t) is the nth-order fractional equilibrium density (2.4) and E(λ) is the

exponential distribution with parameter λ ∈ R+.

Proof. First, let us assume that X is exponentially distributed with parameter λ.

Since

E [Xnα] =
Γ(nα + 1)

λnα
and E

[
(X − t)nα−1

+

]
= λ1−nαe−tλΓ(nα), t ≥ 0,

by virtue of (2.4) the assertion “if” is trivially proved. Conversely, suppose that

the density and the nth-order fractional equilibrium density of X coincide for every

n ∈ N and α ∈ R+, that is

fαn (t) = f(t), t ≥ 0.

Due to (2.4), the last equality can be rewritten as

nα

∫ +∞

t

(x− t)nα−1 f (x) dx = f (t)

∫ +∞

0

xnαf (x) dx,

and, on account of (1.7), as

Γ(nα + 1)Inα− f(t) = f (t)

∫ +∞

0

xnαf (x) dx.

Taking the Mellin transform of both sides of this equation yields the functional

equation
f ∗ (s+ nα)

Γ (s+ nα)
=
f ∗ (nα + 1)

Γ (nα + 1)

f ∗ (s)

Γ (s)
, <(s) > 0, (2.6)

where

f ∗(s) =

∫ ∞
0

xs−1f(x)dx,

is the Mellin transform of a function f(x) (cf. (C.3.21) and (C.3.22) of [57]). By

reducing Eq. (2.6) to a well-known Cauchy equation, we observe that its nontrivial

measurable solution (cf. [63] for instance) is

f ∗(s) = ac(s−1)Γ(s), a > 0, c ∈ R.

By performing the Mellin inversion, we have

f(t) = a−ce−a
−ct, t ≥ 0.

As a consequence, X ∼ E(λ), having set λ = a−c, and then the “only if” part of the

theorem is proved.
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In the next proposition we give the expression of the moments of a random variable

following the nth-order fractional equilibrium distribution (2.4).

Proposition 2.2.3. For α ∈ R+ and n ∈ N, if E [Xnα] <∞, then

E
[(
X (n)

α

)r]
=
nαB(nα, r + 1)

E [Xnα]
E
[
Xnα+r

]
, r ∈ R+, (2.7)

where B(x, y) is the Beta function.

Proof. Recalling (2.4), it holds

E
[(
X (n)

α

)r]
=

∫ +∞

0

trfαn (t) dt

=
nα

E [Xnα]

∫ +∞

0

tr
(∫ +∞

t

(x− t)nα−1 dF (x)

)
dt

=
nα

E [Xnα]

∫ +∞

0

dF (x)

(∫ x

0

tr (x− t)nα−1 dt

)
.

By applying formula 3.191-4 of [60], i.e.∫ u

0

xν−1 (u− x)µ−1 dx = uµ+ν−1B(µ, ν), <(µ) > 0, <(ν) > 0,

we obtain

E
[(
X (n)

α

)r]
=
nαB(nα, r + 1)

E [Xnα]

∫ +∞

0

xr+nαdF (x)

=
nαB(nα, r + 1)

E [Xnα]
E
[
Xnα+r

]
.

Clearly, when α = 1 the moments (2.7) identify with the expression for the iterated

stationary-excess variables given in the Lemma of Massey and Whitt [98] and in

Theorem 2.3 of Harkness and Shantaram [62].

2.3 Fractional probabilistic Taylor’s theorem

We now derive a probabilistic extension of the Riemann-Liouville generalized Tay-

lor’s formula shown in Theorem 2.1.1. For convenience, let us denote

IF =
∞⋃
n=2

[
0, F−1

(
1− 1

n

)]
, (2.8)
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the smallest interval containing both 0 and the support of the distribution F . Addi-

tionally, without loss of generality, we consider the expansion of a function g about

t = 0.

Theorem 2.3.1. Let 0 < α ≤ 1 and let X be a nonnegative random variable

with cumulative distribution function F , with moment E
[
X(n+1)α

]
< +∞ for some

integer n ≥ 0 and moments E
[
X(j+1)α−1

]
< +∞ for all j ∈ N, 0 ≤ j ≤ n. Suppose

that g is a function defined on IF and satisfying the hypoteses (i),(ii) and (iii)

of Theorem 2.1.1 in IF . Assume further E
[∣∣∣D(n+1)α

0 g
(
X

(n+1)
α

)∣∣∣] < +∞. Then

E [g (X)] < +∞ and

E [g (X)] =
n∑
j=0

cj
Γ ((j + 1)α)

E
[
X(j+1)α−1

]
+

E
[
X(n+1)α

]
Γ ((n+ 1)α + 1)

E
[
D

(n+1)α
0 g

(
X(n+1)

α

)]
, (2.9)

with cj = Γ(α)[x1−αDjα
0 g(x)](0+) for each j ∈ N, 0 ≤ j ≤ n, where X

(n+1)
α has

density (2.4).

Proof. To begin with, we recall a Riemann-Liouville generalized Taylor’s formula

with integral remainder term (cf. formula (4.1) of [145]), that is, for x ∈ IF ,

g(x) =
n∑
j=0

cjx
(j+1)α−1

Γ((j + 1)α)
+Rn(x), (2.10)

where

Rn(x) = I
(n+1)α
0 D

(n+1)α
0 g (x)

=
1

Γ ((n+ 1)α)

∫ x

0

(x− t)(n+1)α−1D
(n+1)α
0 g (t) dt. (2.11)

Since Rn(x) is continuous, and hence measurable, on IF , Rn(X) is a true random

variable. Therefore, from (2.10) we have

E [g (X)] =
n∑
j=0

cj
Γ ((j + 1)α)

E
[
X(j+1)α−1

]
+ E [Rn (X)] , (2.12)

where, from (2.11),

E [Rn (X)] =
1

Γ((n+ 1)α)

∫ +∞

0

dF (x)

∫ x

0

D
(n+1)α
0 g (t) (x− t)(n+1)α−1 dt.
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By making use of Fubini’s theorem, the equality above becomes

E [Rn (X)] =
1

Γ((n+ 1)α)

∫
IF

D
(n+1)α
0 g (t)E [X − t](n+1)α−1

+ dt,

and in turn, due to (2.4),

E [Rn (X)] =
E
[
X(n+1)α

]
(n+ 1)αΓ ((n+ 1)α)

∫
IF

D
(n+1)α
0 g (t) fαn+1 (t) dt

=
E
[
X(n+1)α

]
Γ ((n+ 1)α + 1)

E
[
D

(n+1)α
0 g

(
X(n+1)

α

)]
. (2.13)

Finally, observing that the condition E
[∣∣∣D(n+1)α

0 g
(
X

(n+1)
α

)∣∣∣] < +∞ is equivalent

to

∫
IF

|D(n+1)α
0 g (t) |E [X − t](n+1)α−1

+ dt < +∞, and making use of (2.12) and (2.13),

the proof of (2.9) is thus completed.

Equation (2.9) can be seen as a fractional version of the probabilistic generalization

of Taylor’s theorem studied in [87] and in [98].

Remark 2.3.1. We observe that for n = 0 formula (2.9) becomes

E [g (X)] =
c0

Γ (α)
E
[
Xα−1

]
+

E [Xα]

Γ (α + 1)
E
[
Dα

0 g
(
X(1)
α

)]
, (2.14)

with c0 = Γ (α) [x1−αg(x)] (0+), this being useful to prove Theorem 2.4.1 below.

In recent years much attention has been paid to the study of the fractional moments

of distributions. See, for instance, [101] and references therein. Motivated by this,

in the next corollary we consider the case g(x) = xβ, β ∈ R. From Theorem 2.3.1

we have the following result.

Corollary 2.3.1. Let 0 < α ≤ 1, β ≥ α and n ≤ β−α
α
, n ∈ N. Moreover, let X be a

nonnegative random variable with cumulative distribution function F , with moment

E
[
X(n+1)α

]
< +∞ and moments E

[
X(j+1)α−1

]
< +∞ for all j ∈ N, 0 ≤ j ≤ n.

Assume further E
[∣∣∣∣D(n+1)α

0

(
X

(n+1)
α

)β∣∣∣∣] < +∞. Then E
[
Xβ
]
< +∞ and

E
[
Xβ
]

=
E
[
X(n+1)α

]
Γ ((n+ 1)α + 1)

Γ(1 + β)

Γ(1− (n+ 1)α + β)
E
[
(X(n+1)

α )β−(n+1)α
]
,

where X
(n+1)
α has density (2.4).

Proof. Since, in general, for k ∈ N

Dkα
0 xβ =

Γ(1 + β)

Γ(1− kα + β)
xβ−kα,
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we have

cj = Γ(α)

[
Γ(1 + β)

Γ(1− jα + β)
x1−(j+1)α+β

]
(0+) = 0, 0 ≤ j ≤ n.

Furthermore, assumption E
[∣∣∣∣D(n+1)α

0

(
X

(n+1)
α

)β∣∣∣∣] < +∞ ensures the finiteness of

E
[
(X

(n+1)
α )β−(n+1)α

]
. Therefore, formula (2.9) reduces to the sole remainder term,

and hence the thesis.

2.4 Fractional probabilistic mean value theorem

In this section we develop the probabilistic analogue of a fractional mean value

theorem. To this purpose we first recall some stochastic orders and introduce a

relevant random variable, Zα.

Let X be a random variable with cumulative distribution function FX and let a =

inf {x|FX (x) > 0} and b = sup {x|FX (x) < 1}. We set for every real α > 0

F
(α)
X (t) =


E
[
(t−X)α−1

+

]
Γ (α)

if t > a

0 if t ≤ a

and

F
(α)

X (t) =


E
[
(X − t)α−1

+

]
Γ (α)

if t < b

0 if t ≥ b.

Ortobelli et al. [115] define a stochastic order as follows:

Definition 2.4.1. Let X and Y be two random variables. For every α > 0, X

dominates Y with respect to the α-bounded stochastic dominance order (X
b

≥
α
Y ) if

and only if F
(α)
X (t) ≤ F

(α)
Y (t) for every t belonging to supp{X, Y } ≡ [a, b], where

a, b ∈ R and a = inf {x|FX(x) + FY (x) > 0}, b = sup {x|FX(x) + FY (x) < 2}.

Similarly, Ortobelli et al. [115] define a survival bounded order as follows:

Definition 2.4.2. For every α > 0, we write X
a

≥
sur α

Y if and only if F
(α)

X (t) ≤

F
(α)

Y (t) for every t belonging to supp{X, Y }.

We remark that certain random variables cannot be compared with respect to these

orders. For example, Ortobelli et al. [115] proved that for any pair of bounded

(from above or/and from below) random variables X and Y that are continuous on

the extremes of their support, there is no α ∈ (0, 1) such that F
(α)
X (t) ≤ F

(α)
Y (t)
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for all t ∈ supp{X, Y }. However, although α-bounded orders with α ∈ (0, 1) are

not applicable in many cases, they could be useful to rank truncated variables and

financial losses, thus resulting of interest from a financial point of view.

We outline that for α > 1 the survival bounded order given in Definition 2.4.2

is equivalent to the extension to all real α > 0 of the order ≤αc defined in 1.7.1 of

[141]. Moreover, when α = 2, it is equivalent to the increasing convex order ≤icx
(cf. Section 4.A of Shaked and Shantikumar [139]).

The following result comes straightforwardly.

Proposition 2.4.1. Let X and Y be nonnegative random variables such that E [Xα] <

E [Y α] < +∞ for some α > 0. Then

fZα (t) = α
E
[
(Y − t)α−1

+

]
− E

[
(X − t)α−1

+

]
E [Y α]− E [Xα]

, t ≥ 0, (2.15)

is the probability density function of an absolutely continuous nonnegative random

variable, say Zα, if and only if X
0

≥
sur α

Y .

We remark that condition X
0

≥
sur α

Y ensures that E [Xα] ≤ E [Y α] for α > 0.

Moreover, it is interesting to note that Zα is necessarily absolutely continuous, in

contrast with X and Y .

Example 2.4.1. Let X and Y be exponential random variables having means µX

and µY , µY > µX > 0, and let α ≥ 1. From (2.15) we obtain the following expression

for the density of Zα:

fZα (t) =
µα−1
Y e

− t
µY − µα−1

X e
− t
µX

µαY − µαX
, t ≥ 0.

Example 2.4.2. Let Y be a random variable taking values in [0, b), with b ∈
(0,+∞], and let E [Y α] and E

[
(Y − t)α−1

+

]
be finite, 0 ≤ t < b. Furthermore, we

define a random variable X with cumulative distribution function

FX(x) :=


0, x < 0,

p+ (1− p)FY (x), 0 ≤ x ≤ b,

1, x ≥ b,

where FY (x) is the cumulative distribution function of Y and 0 < p ≤ 1. We

remark that X can be viewed as a 0-inflated version of Y , i.e. X = I · Y , where I
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is a Bernoulli r.v. independent of Y. It is easily ascertained that

fZα (t) =
αE
[
(Y − t)α−1

+

]
E [Y α]

≡ f
Y

(1)
α

(t) ≡ f
X

(1)
α

(t), t ≥ 0.

We note that the density of Zα given in (2.15) is related to the densities of the frac-

tional equilibrium variables X
(1)
α and Y

(1)
α which, by virtue of (2.4), are respectively

given by

f
X

(1)
α

(t) =
αE
[
(X − t)α−1

+

]
E [Xα]

and f
Y

(1)
α

(t) =
αE
[
(Y − t)α−1

+

]
E [Y α]

, t ≥ 0.

Indeed, from (2.15) the following generalized mixture holds:

fZα (t) = cf
Y

(1)
α

(t) + (1− c) f
X

(1)
α

(t) , (2.16)

where

c =
E [Y α]

E [Y α]− E [Xα]
≥ 1. (2.17)

Such representation is useful to find an expression for the moments of Zα. In fact,

from (2.7), (2.16) and (2.17), Proposition 2.4.2 follows immediately.

Proposition 2.4.2. Let α ∈ R+ and suppose that X and Y are two nonnegative

random variables such that E [Xα] < E [Y α] < +∞, and X
0

≥
sur α

Y . Then

E [Zr
α] =

αB (α, r + 1)

E [Y α]− E [Xα]

{
E
[
Y α+r

]
− E

[
Xα+r

]}
, r ∈ R+. (2.18)

With the notation of 1.C(3) of [96], let λα(X) denote the normalized moment of a

random variable X, i.e.

λα(X) =
E [Xα]

Γ(α + 1)
, α > 0. (2.19)

We are now ready to prove the main result of this section.

Theorem 2.4.1. Let 0 < α ≤ 1. Suppose that X and Y are two nonnegative

random variables such that E [Xα] < E [Y α] < +∞, and X
0

≥
sur α

Y . Moreover, let

Theorem 2.3.1 hold for some function g. Then

E [g (Y )]− E [g (X)] =
c0

Γ (α)

{
E
[
Y α−1

]
− E

[
Xα−1

]}
+ {λα(Y )− λα(X)}E [Dα

0 g (Zα)] , (2.20)
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where Zα is a random variable whose density is defined in (2.15), and c0 = Γ (α) [x1−αg(x)] (0+).

Proof. By applying Theorem 2.3.1 for n = 0, cf. formula (2.14), we have

E [g (Y )]− E [g (X)] =
c0

Γ (α)

{
E
[
Y α−1

]
− E

[
Xα−1

]}
+

1

Γ (α + 1)

{
E [Y α]E

[
Dα

0 g
(
Y (1)
α

)]
− E [Xα]E

[
Dα

0 g
(
X(1)
α

)]}
.

From (2.16), (2.17) and (2.19) the theorem is straightforwardly proved.

Under certain hypotheses, the Lagrange’s Theorem guarantees the existence of a

mean value belonging to the interval of interest. With regard to Theorem 2.4.1,

one might therefore expect that a probabilistic analogue of this relation holds too.

However, the relation Xα ≤st Zα ≤st Y α does not hold in general. It can be satisfied

only when E [Xα] ≤ E [Zα] ≤ E [Y α], which is case (ii) of the next Proposition. For

simplicity’s sake, if X is a random variable with E [Xα+1] < +∞, we set

Vα (X) := E
[
Xα+1

]
− α (E [Xα])2 , α ∈ R+, (2.21)

which turns out to be a fractional extension of the variance of X.

Proposition 2.4.3. Let 0 < α ≤ 1 and let X and Y satisfy the assumptions of

Theorem 2.4.1, with E [Xα+1] and E [Y α+1] finite. Then,

(i) E [Zα] ≤ E [Xα]

⇔ Vα (Y )− Vα (X) ≤ −{E [Y α]− E [Xα]} {αE [Y α]− E [Xα]} ;

(ii) E [Xα] ≤ E [Zα] ≤ E [Y α]

⇔

{
Vα (Y )− Vα (X) ≥ −{E [Y α]− E [Xα]} {αE [Y α]− E [Xα]}
Vα (Y )− Vα (X) ≤ {E [Y α]− E [Xα]} {E [Y α]− αE [Xα]} ;

(iii) E [Y α] ≤ E [Zα]

⇔ Vα (Y )− Vα (X) ≥ {E [Y α]− E [Xα]} {E [Y α]− αE [Xα]} ;

(iv) E [Zα] =
2α

α + 1

E [Xα] + E [Y α]

2
⇔ Vα(Y ) = Vα(X),

where Vα has been defined in (2.21).

Proof. It follows easily from the identity

E [Zα]− E [Xα]

E [Y α]− E [Xα]
=

1

α + 1

{
αE [Y α]− E [Xα]

E [Y α]− E [Xα]
+

Vα(Y )− Vα(X)

(E [Y α]− E [Xα])2

}
,

which is a consequence of (2.18) written for r = 1.
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Corollary 2.4.1. Let 0 < α ≤ 1. Suppose that X and Y are two nonnegative

random variables such that E [Xα] < E [Y α] < +∞, and X
0

≥
sur α

Y . Moreover, if

β > α− 1, let Theorem 2.3.1 hold for some function g(x) ∼ xβ, x→ 0+. Then

E [g (Y )]− E [g (X)] = {λα(Y )− λα(X)}E [Dα
0 g (Zα)] ,

where Zα is a random variable whose density is defined in (2.15).

Proof. We observe that the first term in formula (2.20) vanishes, since c0 ∼ x1−α+β
∣∣
x=0+ =

0, and hence the thesis holds.

As application, we now show a result of interest to actuarial science. A deductible

is a treshold amount, denoted d, which must be exceeded by a loss in order for a

claim to be paid. If X is the severity random variable representing the size of a

single loss event, X > 0, and if the deductible is exceeded (that is, if X > d), then

the amount paid to offset part or all of that loss is X − d. Therefore, for d > 0, the

claim amount random variable Xd is defined to be

Xd := (X − d)+ =

{
0, for X ≤ d,

X − d, for X > d.
(2.22)

If a deductible is established, there will be fewer payments than losses, because

there are some losses that do not produce payments at all. It is clear from equation

(2.22) that Xd has a mixed distribution. In particular, such random variable has an

atom at zero representing the absence of payment because the loss did not exceed

d. The interested reader is referred to [71] and [73] for further information. Let

b = sup {x|FX (x) < 1}. Bearing in mind Definition 2.15, the next Proposition

immediately follows from Corollary 2.4.1.

Proposition 2.4.4. Let 0 < α ≤ 1 and 0 < r < s < b. With reference to (2.22),

suppose that Xs

0

≥
sur α

Xr and λα(Xs) < λα(Xr) < +∞. Moreover, let g satisfy the

assumptions of Corollary 2.4.1. Then

E [g (Xr)]− E [g (Xs)] = [λα(Xr)− λα(Xs)]E [Dα
0 g (Zα)] ,

where Zα is a random variable with density

fZα(z) = α
E
[
(Xr − z)α−1

+

]
− E

[
(Xs − z)α−1

+

]
E [Xα

r ]− E [Xα
s ]

, z ≥ 0.

We conclude this section with the following example.

Example 2.4.3. Let 0 < α ≤ 1 and 0 < r < s.
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(i) Let X be an exponential random variable with parameter λ. Due to (2.19) and

Proposition 2.4.4, we have

E [g (Xr)]− E [g (Xs)] = λ−α
(
e−λr − e−λs

)
E [Dα

0 g (Z)] ,

where Z turns out to be exponentially distributed with parameter λ as well. In

this case, it is interesting to note that for 0 < r < s and 0 < u < v it results:

E [g (Xr)]− E [g (Xs)]

E [g (Xu)]− E [g (Xv)]
=
e−λr − e−λs

e−λu − e−λv
,

which is independent of g.

(ii) Now let X be a 2-phase hyperexponential random variable with phase probabil-

ities p and 1− p, 0 < p < 1, and rates λ1 and λ2. Similarly, it holds

E [g (Xr)]− E [g (Xs)] =
{
pλ−α1

(
e−λ1r − e−λ1s

)
+ (1− p)λ−α2

(
e−λ2r − e−λ2s

)}
E [Dα

0 g (Zα)] ,

where the density of Zα is, for z ≥ 0,

fZα (z) =
pλ1−α

1 e−λ1z
(
e−λ1r − e−λ1s

)
+ (1− p)λ1−α

2 e−λ2z
(
e−λ2r − e−λ2s

)
pλ−α1 (e−λ1r − e−λ1s) + (1− p)λ−α2 (e−λ2r − e−λ2s)

.

2.5 Concluding remarks

The overall aim of this chapter is to present a novel Taylor’s theorem from a prob-

abilistic and a fractional perspective at the same time and to discuss other related

findings. It is meaningful to note that, while the coefficients of our formula (2.9)

are expressed in terms of the Riemann-Liouville fractional derivative, it is possible

to establish a fractional probabilistic Taylor’s theorem in the Caputo sense too. We

recall that the Caputo derivative, denoted by ∗D
α
a+, is defined by exchanging the

operators Im−αa+ and Dm in the classical definition (1.4). Taking the paper of Odibat

et al. [105] as a starting point, the following theorem, which is in some sense the

equivalent of Theorem 2.3.1, can be effortlessly proved.

Theorem 2.5.1. Let α ∈ (0, 1] and let X be a nonnegative random variable with

distribution F and moment E
[
X(n+1)α

]
< +∞ for some integer n ≥ 0. Assume that

g is a function defined on IF , with IF defined in (2.8), and suppose that ∗D
α
0+g(x) ∈

C (IF ) for k = 0, 1, . . . , n+1 and E
[∣∣∣∗D(n+1)α

0 g
(
X

(n+1)
α

)∣∣∣] < +∞. Then E [g (X)] <
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+∞ and

E [g(X)] =
n∑
i=0

(
∗D

iα
0+f
)

(0)

Γ (iα + 1)
E
[
X iα

]
+

E
[
X(n+1)α

]
Γ ((n+ 1)α + 1)

E
[
∗D

(n+1)α
0 g

(
X(n+1)

α

)]
,

where ∗D
nα
0+ = ∗D

α
0+ · ∗Dα

0+ · · · ∗Dα
0+ (n times) and X

(n+1)
α has density (2.4).
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Chapter 3

A fractional counting process and

its connection with the Poisson

process

3.1 Introduction

As recalled by Mainardi et al. [95], a stochastic process {N(t), t ≥ 0} is a counting

process if N(t) represents the total number of “events” that have occurred up to

time t. The concept of renewal process has been developed to describe the class of

counting processes for which the times between successive events (waiting times) are

independent identically distributed (i.i.d.) nonnegative random variables, obeying

a given probability law. It is often assumed that t = 0 is a renewal point. Renewal

processes have been successfully used to model, e.g., radioactive decay, neural spike

trains, failure times in software testing. For more details on renewal theory see the

classical books by Cox [27], Feller [50], and Ross [132]. Exponentially distributed

waiting times lead to the classical Poisson process, which is Markovian. Indeed, the

exponential distribution characterizes processes without memory. However, other

waiting time distributions are also relevant in applications, in particular the ones

with a fat tail caused by a power law decay of their density. Non-Markovian renewal

processes with waiting time distributions described by functions of Mittag-Leffler

type, that exhibit a power law decay, have increasingly been attracting attention

within the research community. By resorting to different approaches (renewal the-

ory, fractionalization of the governing equation, inverse subordinator), several as-

pects and definitions on a fractional generalization of the Poisson process have been

pointed out by many authors, see for instance Repin and Saichev [131], Laskin [83]

and [84], Mainardi et al. [94], Uchaikin et al. [147], Beghin and Orsingher [17] and

[18], Meerschaert et al. [100], Politi et al. [125], Leonenko et al. [86].
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In addition, counting processes with integer-valued jumps play a major role in many

fields of applied probability, since they are useful to describe simultaneous but inde-

pendent Poisson streams (see Adelson [1] for instance). The case of fractional com-

pound Poisson processes has been investigated by Scalas [137], Beghin and Macci

[13], [14] and [15]. Certain fractional growth processes including the possibility of

integer-valued jumps have been introduced in Orsingher and Polito [110], Orsingher

and Toaldo [113] and Polito and Scalas [126] by suitably time-changing a homoge-

neous Poisson process. A generalization of the space-time fractional Poisson process

involving the Caputo type Saigo differential operator is introduced and its state

probabilities are obtained using the Adomian decomposition method in [70]. The

relevance of fractional compound Poisson processes in applications in ruin theory

and their long-range dependence have been investigated in Biard and Saussereau

[20] and [21], and Maheshwari and Vellaisamy [91]. Such processes might also be

used in disaster risk management. For instance, Brooks et al. [22] showed that

variability of tornado occurrence has increased since the 1970s, due to a decrease in

the number of days per year with tornadoes combined with an increase in days with

many tornadoes.

In the present chapter we analyse a suitable extension of the fractional Poisson pro-

cess, say Mν(t), which performs k kinds of jumps of amplitude 1, 2, . . . , k, with rates

λ1, λ2, . . . , λk respectively. Along the same lines as Beghin and Orsingher [18], in

Section 3.2 we consider a suitable fractional Cauchy problem whose solution, ex-

pressed in terms of a generalized Mittag-Leffler function, represents the probability

mass function of Mν(t). Besides, we analyse two useful representations for Mν(t).

We first prove that Mν(t) can be expressed as a compound fractional Poisson pro-

cess, this representation being essential to obtain a waiting time distribution. Then

we show that Mν(t) can be regarded as a homogeneous Poisson process with k kinds

of jumps stopped at a random time. Such random time is the sole component of this

subordinating relationship affected by the fractional derivative, since its distribution

is obtained from the fundamental solution of a fractional diffusion equation.

In Section 3.4 we face the problem of determining certain waiting time and first-

passage-time distributions. Specifically, we evaluate the probability that the first

jump of size j, j = 1, 2, . . . , k, for the process Mν(t) occurs before time t > 0.

Interestingly, we prove that the first occurrence time of a jump of amplitude j has

the same distribution as the waiting time of the first event of the classical fractional

Poisson process with parameter λj, j ∈ {1, 2, . . . , k}. This is an immediate exten-
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sion of a well-known result. Indeed, for a Poisson process with intensity λ1 + λ2

and such that its events are classified as type j via independent Bernoulli trials

with probability
λj

λ1+λ2
, the first occurrence time of an event of type j is distributed

as the interarrival time of a Poisson process with intensity λj, j = 1, 2. In Theo-

rem 3.4.1 we extend this result to the fractional setting. The remarkable difference

is that the exponential density characterizing the Poisson process is replaced by a

Mittag-Leffler density. In the same section, we also study the distribution of the

first passage time of Mν(t) to a fixed level when k = 2. We express it in an integral

form which involves the joint distribution of the fractional Poisson process.

Finally, in Section 3.5 we obtain a formal expression for the moments of Mν(t),

and show that both the ratios given by the powers of the fractional Poisson process

and of the process Mν(t) over their means tend to 1 in probability. This result is

useful in some applications. In fact, from a physical point of view, it means that the

distance between the distributions of such processes at time t and their equilibrium

measures is close to 1 until some deterministic ‘cutoff time’ and is close to 0 shortly

after.

In the remaining part of this section we briefly recall some well-known results on the

fractional Poisson process which will be used throughout the chapter. The starting

point for our investigations is the analysis carried out by Beghin and Orsingher [17]

and [18]. They generalise the equation governing the Poisson process by substituting

the time-derivative with the fractional derivative in the Caputo sense (1.5) of order

ν ∈ (0, 1], thus obtaining:

dp νk
dtν

= −λ(pk − pk−1), k ≥ 0,

with initial conditions

p k(0) =

1 if k = 0

0 if k ≥ 1.

and p−1(t) = 0. The solution to the Cauchy problem involves the Mittag-Leffler func-

tion (1.11). It is expressed as the distribution of a process, denoted by N ν
λ (t), t > 0,

and it reads

p k(t) = P {N ν
λ (t) = k} = (λtν)k Ek+1

ν,kν+1(−λtν). (3.1)

The fractional Poisson process N ν
λ (t), t > 0, represents a renewal process with

interarrival times Uj distributed according to the following density, for j = 1, 2, . . .

37



and t ∈ (0,∞)

f ν1 (t) = P {Uj ∈ d t} /d t = λtν−1Eν,ν(−λtν),

with Laplace transform

L{f ν1 (t) ; s} =
λ

s ν + λ
.

The density of the waiting time of the kth event, Tk =
∑k

j=1 Uj, possesses the

Laplace transform

L{f νk (t) ; s} =
λk

(s ν + λ)k
.

Its inverse can be obtained by applying formula (1.12) and can be expressed, as for

the probability distribution, in terms of a Mittag-Leffler function as

f νk (t) = P {Tk ∈ d t} /d t = λkt kν−1E k
ν,kν(−λtν).

The corresponding distribution function can be obtained by integration and reads

F ν
k (t) = P {Tk < t} = λktkνEk

ν,kν+1(−λtν). (3.2)

The moment generating function of the process N ν
λ (t), t > 0, can be expressed as

E
[
esN

ν
λ (t)
]

= Eν,1 (λ (es − 1) t ν) , s ∈ R. (3.3)

The mean and the variance of N ν
λ (t) read

E [N ν
λ (t)] =

λtν

Γ (ν + 1)
, (3.4)

and

Var [N ν
λ (t)] =

2 (λtν)2

Γ (2ν + 1)
− (λtν)2

(Γ (ν + 1))2 +
λtν

Γ (ν + 1)
. (3.5)

respectively. In general, the analytical expression for the mth order moment of the

fractional Poisson process is given by (cf. Laskin [84], Eq. (40))

E [(N ν
λ (t))m] =

m∑
l=0

Sν (m, l) (λtν)l , (3.6)

where Sν (m, l) is the fractional Stirling number, expressed in terms of the standard

Stirling number S (m, l) as follows (cf. Laskin [84], Eq. (32)):

Sν (m, l) =
l!

Γ (νl + 1)
S (m, l) =

1

Γ (νl + 1)

l∑
n=0

(−1)l−n
(
l

n

)
nm.
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3.2 A fractional counting process

Let {M1(t); t ≥ 0} be a counting process defined by the following rules:

1. M1(0) = 0 a.s.;

2. M1(t) has stationary and independent increments;

3. P{M1(h) = j} = λjh+ o(h), for j = 1, 2, . . . , k;

4. P{M1(h) > k} = o(h),

where k ∈ N ≡ {1, 2, . . .} is fixed, and λ1, λ2, . . . , λk > 0. This is a suitable extension

of the Poisson process. We define

p j(t) = P
{
M1 (t) = j

}
, j ∈ N0 ≡ {0, 1, 2, . . .},

and then consider how p j(t) evolves in some short time period h.

• p 0(t + h) is the probability that no events have taken place at time t + h,

starting from t = 0. This can happen by no events happening until time t and

then no events in the interval [t, t+ h]. This means

p 0 (t+ h) = p 0 (t) (1− (λ1 + . . .+ λk)h) + o(h);

• p j(t+ h), j = 1, 2, . . . , k− 1, is the probability for j events to happen at time

t + h. This can happen by j − r, r = 1, 2, . . . , j, events happening until time

t and r events in the interval [t, t+ h], or by j events happening until time t

and no events in the interval [t, t+ h]. This means

p j (t+ h) = h

j∑
r=1

λr p j−r(t) + p j (t) (1− (λ1 + . . .+ λk)h) + o(h);

• p j(t + h), j = k, k + 1, . . . , is the probability for j events to happen at time

t + h. This can happen by j − r, r = 1, 2, . . . , k, events happening until time

t and r events in the interval [t, t+ h], or by j events happening until time t

and no events in the interval [t, t+ h]. This means

p j (t+ h) = h

k∑
r=1

λr p j−r(t) + p j (t) (1− (λ1 + . . .+ λk)h) + o(h).

These can be rewritten as

p 0 (t+ h)− p 0 (t)

h
= − (λ1 + . . .+ λk) p 0 (t) +

o(h)

h
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p j (t+ h)− p j (t)

h
=

j∑
r=1

λr p j−r(t)−(λ1 + . . .+ λk) p j (t)+
o(h)

h
, j = 1, . . . , k−1

p j (t+ h)− p j (t)

h
=

k∑
r=1

λr p j−r(t)−(λ1 + . . .+ λk) p j (t)+
o(h)

h
, j = k, k+1, . . .

Now we take the limit as h → 0, this causing the terms o(h) to vanish. We obtain

the following system of difference-differential equations satisfied by the probability

mass function of the process M1(t):

dp 0(t)

dt
= −Λ p 0(t)

dp j(t)

dt
=
∑j

r=1 λr p j−r(t)− Λ p j(t), j = 1, . . . , k − 1

dp j(t)

dt
=
∑k

r=1 λr p j−r(t)− Λ p j(t), j = k, k + 1, . . . ,

for Λ = λ1 + λ2 + . . .+ λk, together with the condition

p j(0) =

1, j = 0

0, j ≥ 1.

In this chapter we examine a fractional extension of {M1(t); t ≥ 0}. We obtain a

proper probability distribution and explore the main properties of the corresponding

fractional process. With reference to the Dzherbashyan-Caputo fractional derivative

(1.5) and for all fixed ν ∈ (0, 1] and k ∈ N, let {Mν(t); t ≥ 0} be a counting process,

and assume that the probability distribution

p νj (t) = P {Mν (t) = j} , j ∈ N0 ≡ {0, 1, 2, . . .}, (3.7)

satisfies the following system of fractional difference-differential equations

dp ν0(t)

dtν
= −Λ p ν0(t)

dp νj (t)

dtν
=
∑j

r=1 λr p
ν
j−r(t)− Λ p νj (t), j = 1, 2, . . . , k − 1

dp νj (t)

dtν
=
∑k

r=1 λr p
ν
j−r(t)− Λ p νj (t), j = k, k + 1, . . . ,

(3.8)

for Λ = λ1 + λ2 + . . .+ λk, together with the condition

p j(0) =

1, j = 0

0, j ≥ 1.
(3.9)

40



When ν = 1 system (3.8) identifies with the classical difference-differential equations

of the process M1(t). Furthermore, when k = 1 the process Mν(t) identifies with

the process N ν
λ (t) considered in Section 3.1.

Hereafter we will obtain the solution to (3.8)-(3.9) in terms of the generalized Mittag-

Leffler function (1.11) and show that it represents a true probability distribution.

To this purpose, we first obtain the moment generating function of Mν(t) in terms

of the Mittag-Leffler function.

Proposition 3.2.1. For all fixed ν ∈ (0, 1] and k ∈ N, the moment generating

function of Mν(t) is given by

E
[
esM

ν(t)
]

= E ν,1

( k∑
j=1

λj
(
ejs − 1

)
t ν
)
, t ≥ 0, s ∈ R. (3.10)

Proof. We multiply the jth equation of the system (3.8), j ∈ N, by zj. We sum the

resulting equations on j and we write the result in the form

∂

∂tν

(
+∞∑
k=0

zkp νk(t)

)
= −Λ

+∞∑
k=0

zkp νk(t) +
k−1∑
j=1

zj
j∑
r=1

λrpj−r(t) +
+∞∑
j=k

zj
k∑
r=1

λrpj−r(t),

(3.11)

where Λ = λ1 + · · · + λk. We set G(z, t) := E
[
zM

ν(t)
]

and then rearrange the

summands, so that equation (3.11) can be rewritten as

∂G(z, t)

∂tν
= −ΛG(z, t) +

k∑
j=1

λjz
jG(z, t).

Furthermore, taking into account condition (3.9) too, we have

G(z, 0) =
∞∑
k=0

zkp νk(0) = 1,

and the probability generating function of the process Mν(t) satisfies the Cauchy

problem 
∂G(z, t)

∂tν
= −

k∑
j=1

λj
(
1− zj

)
G(z, t)

G(z, 0) = 1.

By adopting a Laplace transform approach we obtain

L{G(z, t); s} =
sν−1

sν +
∑k

j=1 λj(1− zj)
.
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Equation (3.10) thus follows recalling formula (1.12) and that G(es, t) = E
[
esM

ν(t)
]
.

We remark that the use of the Caputo fractional derivative allows us to use standard

initial conditions in the previous proof (cf. (1.6)).

Let us now show that Mν(t) can be expressed as a compound fractional Poisson

process.

Proposition 3.2.2. For all fixed ν ∈ (0, 1] we have

Mν(t)
d
=

N ν
Λ(t)∑
i=1

Xi, t ≥ 0, (3.12)

where N ν
Λ(t) is a fractional Poisson process, defined as in (3.1), with intensity Λ =

λ1 + λ2 + . . .+ λk. Moreover, {Xn : n ≥ 1} is a sequence of i.i.d. random variables,

independent of N ν
Λ(t), such that for any n ∈ N

P{Xn = j} =
λj
Λ
, j = 1, 2, . . . , k, (3.13)

and where both N ν
Λ(t) and Xn depend on the same parameters λ1, λ2, . . . , λk.

Proof. The moment generating function of Y (t) :=
∑N ν

Λ(t)
i=1 Xi, t ≥ 0, can be ex-

pressed as

E
[
esY (t)

]
= E

[
E
[
esY (t)

∣∣∣N ν
Λ(t)

]]
= E

[(
E
[
esX1

])N ν
Λ(t)
]
.

Hence, since

E
[
esX1

]
=

1

Λ

k∑
j=1

λj e
js,

we have

E
[
esY (t)

]
= E

[
eN

ν
Λ(t) ln( 1

Λ

∑k
j=1 λj e

js)
]
.

Finally, making use of Equation (3.3) we immediately obtain that the moment gen-

erating function of Y (t) identifies with the right-hand side of (3.10). The thesis

follows after recalling that a moment generating function uniquely determines a

distribution.

We remark that, due to Proposition 3.2.2, Mν(t) can be regarded as a special case

of the process defined in Equation (7) of Beghin and Macci [14], under a suitable

choice of the probability mass function (qk)k≥1 and the parameter λ. Furthermore,

42



according to Definition 7.1.1 of [19], the process Mν(t) is a compound Cox process,

since Beghin and Orsingher [18] show that N ν
Λ (t) is a Cox process with a proper

directing measure. Moreover, Mν(t) is a compound fractional process, and thus it

is neither Markovian nor Lèvy (cf. Scalas [137]).

We are now able to obtain the probability mass function (3.7) of Mν(t). Indeed, the

following Proposition holds true.

Proposition 3.2.3. The solution p νj (t) of the Cauchy problem (3.8)-(3.9), for j ∈
N0, ν ∈ (0, 1] and t ≥ 0, is given by

p νj (t) =

j∑
r=0

∑
α1+α2+...+αk=r
α1+2α2+...+kαk=j

(
r

α1, α2, . . . , αk

)
λα1

1 λ
α2
2 . . . λαkk trνEr+1

ν,rν+1(−Λtν).

(3.14)

Proof. From (3.12) and from a conditioning argument we have

p νj (t) = P {Mν (t) = j} =

j∑
r=0

P {X1 +X2 + . . .+Xr = j}P {N ν
Λ(t) = r} .

Since X1, X2, . . . , Xr are independent and identically distributed (cf. (3.13)), it fol-

lows that

P {X1 +X2 + . . .+Xr = j} =
∑

α1+α2+...+αk=r
α1+2α2+...+kαk=j

(
r

α1, α2, . . . , αk

)

×
(
λ1

Λ

)α1
(
λ2

Λ

)α2

. . .

(
λk
Λ

)αk
,

where the sum is taken in order to consider all the possible ways of performing r

jumps, with α1 jumps of size 1, . . ., αk jumps of size k, and such that the total

amplitude, i.e. α1 + 2α2 + . . . + kαk, equals j. Hence, recalling formula (3.1), the

proposition follows.

Proposition 3.2.3 is an extension of Proposition 2 of [39], which studies case k = 2.

Some plots of probabilities (3.14) are shown in Figure 3.1 and Figure 3.2.

From (3.14) we note that, for ν ∈ (0, 1],

p ν0(t) = Eν,1(−Λtν), t ≥ 0.

Moreover, recalling the definition of the generalized Mittag-Leffler function (1.11)

and formula (3.14), we obtain hereafter the distribution of the process Mν(t) in the

special case ν = 1.
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Figure 3.1: Probability distribution of Mν(t), given in (3.14), for j = 0, 1, . . . , 11, with k = 3,
ν = 0.5, λ1 = λ2 = λ3 = 1, (a) t = 1 and (b) t = 2. The displayed probability mass is (a) 0.797292
and (b) 0.629278.
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Figure 3.2: Probability distribution of Mν(t), given in (3.14), for 0 ≤ t ≤ 2, with
k = 3, λ1 = λ2 = λ3 = 1, (a) ν = 0.5 and (b) ν = 1.

Corollary 3.2.1. The probability mass function p 1
j(t), for j ∈ N0 and t ≥ 0, is

given by

p 1
j(t) =

j∑
r=0

∑
α1+α2+...+αk=r
α1+2α2+...+kαk=j

λα1
1 λ

α2
2 . . . λαkk

α1!α2! . . . αk!
tre−Λt. (3.15)

3.3 Equivalent representation

We will now examine an interesting relationship between the process Mν(t) and the

process M1(t). In fact, we show that the following representation holds:

Mν(t)
d
= M1 (T2ν (t)) ,

where T2ν (t) is a suitable random process. Thus Mν(t) can be considered as a

homogeneous Poisson-type counting process with jumps of sizes 1, 2, . . . , k stopped

at a random time T2ν (t).
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Let us denote by g(z, t) = g 2ν (z, t) the solution of the Cauchy problem
∂ 2νg(z,t)
∂t 2ν = ∂ 2g(z,t)

∂z 2 , t > 0, z ∈ R

g (z, 0) = δ (z) , 0 < ν < 1

∂g(z,t)
∂t

∣∣∣∣
t=0

= 0, 1
2
< ν < 1.

(3.16)

It is well-known that (see [93] and [92])

g 2ν (z, t) =
1

2tν
W−ν,1−ν

(
−|z|
tν

)
, t > 0, z ∈ R, (3.17)

where

Wα,β (x) =
∞∑
k=0

x k

k! Γ (αk + β)
, α > −1, β > 0, x ∈ R, (3.18)

is the Wright function. Let

ḡ 2ν (z, t) =

2 g 2ν (z, t) , z > 0

0, z < 0
(3.19)

be the folded solution to (3.16), so that negative spatial values are mapped into their

positive counterparts. Moreover, let T2ν (t) be a random process (independent from

the process M1 (t)) whose transition density P {T2ν (t) ∈ dz} /dz is given in (3.19).

Remark 3.3.1. It has been proved in Orsingher and Beghin [107] that the solution

g2ν to (3.16) can be alternatively expressed as

g2ν (z, t) =
1

2Γ (1− ν)

∫ t

0

(t− w)−ν fν (w, |z|) dw, z ∈ R,

where fν (·, y) is a stable law Sν (µ, β, σ) of order ν, with parameters µ = 0, β = 1

and σ =
(
z cos πν

2

) 1
ν .

Proposition 3.3.1. The process Mν (t) and the process M1 (T2ν (t)) are identically

distributed.

Proof. From (3.7) and (3.19) we have

P
{
M1 (T2ν (t)) = n

}
=

∫ ∞
0

p1
n(z) ḡ 2ν (z, t) dz.
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Hence, making use of (3.15) and (3.18) we get

P
{
M1 (T2ν (t)) = n

}
=

n∑
j=0

∑
α1+α2+...+αk=j
α1+2α2+...+kαk=n

λα1
1 λ

α2
2 . . . λαkk

α1!α2! . . . αk!

× 1

tν

∫ ∞
0

e−Λz zjW−ν,1−ν

(
− z
tν

)
dz.

For y = Λz, the last expression identifies with (3.14) due to the following integral

representation of the generalized Mittag-Leffler function in terms of the Wright

function, derived by Beghin and Orsingher [18]:

Ek+1
ν,kν+1(−Λtν) =

1

k! Λk+1 t(k+1)ν

∫ ∞
0

e−y y kW−ν,1−ν

(
− y

Λtν

)
dy.

This completes the proof.

Remark 3.3.2. Beghin and Orsingher [18] proved an analogous subordination re-

lationship, i.e.

N ν
λ (t)

d
= N 1

λ(T2ν (t)),

where N ν
λ (t) is the fractional Poisson process defined in (3.1) and T2ν (t) is the

random time defined above.

Remark 3.3.3. By taking ν = 1/2, from Proposition 3.3.1 we have that M1/2 (t)

and M1 (T1 (t)) are identically distributed. We note that the random time T1 (t),

t > 0, is a reflecting Brownian motion. Indeed, in this case equation (3.16) reduces

to the heat equation 
∂g
∂t

= ∂ 2g
∂z 2 , t > 0, z ∈ R

g (z, 0) = δ (z) ,

and the solution g1 (z, t) is the density of a Brownian motion B (t) , t > 0, with in-

finitesimal variance 2. After folding up the solution, we find the following probability

mass

P
{
M1 (T1 (t)) = n

}
=

∫ ∞
0

p1
n(z)

e−
z2

4t

√
πt

dz

= P
{
M1 (|B (t)|) = n

}
,

so that M1/2 (t) is a jump process at a Brownian time.

Remark 3.3.4. It is worth noticing that both the composition of the fractional

Poisson process N ν
λ (t) defined in (3.1) and of the fractional process Mν(t) defined
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in (3.7) with the random time T2ν (t) yield fractional processes of different order, i.e.

N ν
λ (T2ν (t))

d
= N ν2

λ (t) and Mν(T2ν (t))
d
= Mν2

(t).

Taking into account the subordinating relations examined in Proposition 3.3.1 and

in Remark 3.3.2, this fact follows immediately from Remark 3.1 of [81], since, in

general, the composition of two stable subordinators of indices β1 and β2 respectively

is a stable subordinator of index β1β2.

Remark 3.3.5. Bearing in mind Proposition 3.2.2, setting

Sr = Λ · E[Xr] =
k∑
j=1

jr λj, r = 1, 2,

and recalling (3.4) and (3.5), we can more easily compute the mean and the variance

of the process. In fact, by Wald’s equation we have

E [Mν(t)] = E[X] · E [N ν
Λ (t)]

=
S1 t

ν

Γ (ν + 1)
, t ≥ 0.

Moreover, by the law of total variance, we get

Var [Mν(t)] = Var [X] · E [N ν
Λ(t)] + (E [X])2 · Var [N ν

Λ(t)]

=
S2 t

ν

Γ(ν + 1)
+ S2

1 t
2ν Z(ν), t ≥ 0,

where

Z(ν) :=
1

ν

(
1

Γ (2ν)
− 1

νΓ2(ν)

)
.

As a consequence it is not hard to show that Var [Mν(t)] − E [Mν(t)] > 0, or,

equivalently, that the process Mν(t) exhibits overdispersion, since Z(ν) > 0 for all

ν ∈ (0, 1) and Z(1) = 0. Generally speaking, a real-valued random variable Y is

said to be overdispersed if Var [Y ] − E [Y ] > 0, and a process Y (·) is said to be

overdispersed if all the random variables {Y (t) : t > 0} are overdispersed. Finally,

we point out that a formal expression for the moments of process Mν(t) is provided

in Lemma 3.5.1.
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3.4 Waiting times and first-passage times

We now evaluate the probability distribution function of the waiting time until the

first occurrence of a jump of size i, i = 1, 2, . . . , k, for the process Mν(t). We first

observe that the following decomposition holds:

Mν(t) =
k∑
j=1

j Mν
j (t), t ≥ 0,

where

Mν
j (t) :=

N ν
Λ(t)∑
i=1

1{Xi=j}, j = 1, 2, . . . , k.

In other words, Mν
j (t) counts the number of jumps of amplitude j performed by

Mν(t) in (0, t]. We also introduce the random variables

Hj := inf
{
s > 0 : Mν

j (s) = 1
}

and Gj ∼ Geo

(
λj
Λ

)
, j = 1, 2, . . . , k.

In other words, Hj represents the first occurrence time of a jump of amplitude j for

the process Mν(t), whereas Gj is a geometric random variable with parameter
λj
Λ

that describes the order of the first jump of amplitude j in the sequence of jumps of

Mν(t). We prove that Hj is distributed as the waiting time of the first event of the

fractional Poisson process defined in (3.1) with parameter λj. Indeed, the following

result holds.

Theorem 3.4.1. Let j ∈ {1, 2, . . . , k}. Then

P {Hj ≤ t} = λjt
νE ν,ν+1 (−λjtν) , t > 0. (3.20)

Proof. By conditioning on Gj, due to Equations (3.12) and (3.2), for t > 0,

P {Hj ≤ t} = EGj
[
P
{
Hj ≤ t | Gj

}]
=

+∞∑
n=1

P
{
Hj ≤ t | Gj = n

}
P
{
Gj = n

}
=

+∞∑
n=1

F ν
n (t)

λj
Λ

(
1− λj

Λ

)n−1

=
+∞∑
n=1

ΛntnνEn
ν,nν+1(−Λtν)

λj
Λ

(
1− λj

Λ

)n−1

= λjt
ν

+∞∑
n=0

Λntnν
(

1− λj
Λ

)n
En+1
ν,(n+1)ν+1(−Λtν).
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By using formula (2.3.1) of [99], i.e.

1

Γ (α)

∫ 1

0

uγ−1 (1− u)α−1E δ
β,γ

(
zuβ
)

du = E δ
β,γ+α (z) ,

(where Re(α) > 0, Re(β) > 0 and Re(γ) > 0) for α = β = ν, γ = nν + 1, δ = n+ 1

and z = −Λtν , we get

P {Hj ≤ t} =
λjt

ν

Γ(ν)

+∞∑
n=0

Λntnν
(

1− λj
Λ

)n ∫ 1

0

unν (1− u)ν−1E n+1
ν,nν+1 (−Λ tνuν) du

=
λjt

ν

Γ(ν)

∫ 1

0

(1− u)ν−1
+∞∑
n=0

[
Λtν

(
1− λj

Λ

)
uν
]n
E n+1
ν,nν+1 (−Λ tνuν) du.

Due to formula (2.30) of [18], i.e.

+∞∑
n=0

(λwtν)nE n+1
ν,νn+1 (−λtν) = E ν,1 (λ (w − 1) tν) , |w| ≤ 1, t > 0,

we have

P {Hj ≤ t} =
λjt

ν

Γ (ν)

∫ 1

0

(1− u)ν−1E ν,1 (−λj tνuν) du.

By making use of formula (2.2.14) of [99], i.e.∫ 1

0

zβ−1 (1− z)σ−1Eα,β (xzα) dz = Γ (σ)Eα,σ+β (x) ,

(where α > 0; β, σ ∈ C; Re(β) > 0 and Re(σ) > 0), for σ = α = ν, β = 1 and

x = −λjtν , we get

P {Hj ≤ t} = λjt
νE ν,ν+1 (−λjtν) , t ≥ 0.

Therefore Hj is distributed as the waiting time of the first event of the fractional

Poisson process defined in (3.1) (cf. (3.2)).

The result shown in Theorem 3.4.1 is an immediate extension of the well-known

result for the classical Poisson process, i.e. for ν = 1, where Hj is exponentially

distributed with parameter λj.

We will now be concerned with the distribution of the first passage time to a fixed

level for the process Mν(t), denoted as

τn = inf {s > 0 : Mν (s) = n} , n ∈ N. (3.21)
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The following result concerns the case k = 2, i.e. when the process Mν(t) performs

jumps of sizes 1 and 2.

Theorem 3.4.2. The cumulative distribution function of the first passage time τn

when k = 2 reads

P {τn ≤ t} =
+∞∑
h=n

h∑
j=dh

2
e

j∑
i=1

(
i

n− i

)(
j − i

h− n− j + i

)(
λ1

λ1 + λ2

)2j−h(
λ2

λ1 + λ2

)h−j

×
∫ t

0

P
{
N ν
λ1+λ2

(t) = j,N ν
λ1+λ2

(s) = i
}

ds, t > 0. (3.22)

Proof. Since the process Mν(t) performs jumps of size 1 and 2, and has non-

independent increments, the computation of the cumulative distribution function

of the first passage time (3.21) can be carried out as follows:

P {τn ≤ t} =
+∞∑
h=n

∫ t

0

P {Mν (t) = h,Mν (s) = n} ds

=
+∞∑
h=n

h∑
j=dh

2
e

j∑
i=1

∫ t

0

P
{
Mν (t) = h,Mν (s) = n | N ν

λ1+λ2
(t) = j,N ν

λ1+λ2
(s) = i

}
× P

{
N ν
λ1+λ2

(t) = j,N ν
λ1+λ2

(s) = i
}

ds.
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Making use of Proposition 3.2.2 we have:

P {τn ≤ t} =
+∞∑
h=n

h∑
j=dh

2
e

j∑
i=1

∫ t

0

P

{
j∑
r=1

Xr = h,
i∑
l=1

Xl = n

}

× P
{
N ν
λ1+λ2

(t) = j,N ν
λ1+λ2

(s) = i
}

ds

=
+∞∑
h=n

h∑
j=dh

2
e

j∑
i=1

∫ t

0

P

{
i∑
l=1

Xl = n,

j∑
r=i+1

Xr = h− n

}

× P
{
N ν
λ1+λ2

(t) = j,N ν
λ1+λ2

(s) = i
}

ds

=
+∞∑
h=n

h∑
j=dh

2
e

j∑
i=1

∫ t

0

P

{
i∑
l=1

Xl = n

}
P

{
j∑

r=i+1

Xr = h− n

}

× P
{
N ν
λ1+λ2

(t) = j,N ν
λ1+λ2

(s) = i
}

ds

=
+∞∑
h=n

h∑
j=dh

2
e

j∑
i=1

(
i

n− i

)(
λ1

λ1 + λ2

)2i−n(
λ2

λ1 + λ2

)n−i

×
(

j − i
h− n− j + i

)(
λ1

λ1 + λ2

)2j−2i+n−h(
λ2

λ1 + λ2

)h−n−j+i
×
∫ t

0

P
{
N ν
λ1+λ2

(t) = j,N ν
λ1+λ2

(s) = i
}

ds,

thus giving Eq. (3.22).

To the best of our knowledge, the bivariate distribution shown in the right-hand

side of (3.22), i.e. P
{
N ν
λ1+λ2

(s) = i, N ν
λ1+λ2

(t) = j
}

, cannot be expressed in a closed

form. Orsingher and Polito [111] derived an expression in terms of Prabhakar inte-

grals, i.e.:

P
{
N ν
λ1+λ2

(s) = i, N ν
λ1+λ2

(t) = j
}

= (λ1 + λ2)j
(

Ei
ν,νi,−(λ1+λ2);(t−s)+

(
Ej−i
ν,ν(j−i−1)+1,−(λ1+λ2);(z+s−t)+

× yν−1Eν,ν(− (λ1 + λ2) yν)

)
(z)

)
(t),

where (
Eγ
ρ,µ,ω;a+φ

)
(x) =

∫ x

a

(x− t)µ−1Eγ
ρ,µ (ω (x− t)ρ)φ (t) dt

is the Prabhakar integral (see [128] for details). Politi et al. [125] use the renewal

approach as well and evaluate the joint probability given in (3.22) by introducing

the random variable Yi. Such random variable denotes the residual lifetime at s

(that is the time to the next epoch) conditional on N ν
λ1+λ2

(s) = i, i.e. Yi
def
=

51



[
τi − s | N ν

λ1+λ2
(s) = i

]
whose cumulative distribution function is denoted by FYi(y).

Therefore,

P
{
N ν
λ1+λ2

(s) = i, N ν
λ1+λ2

(t) = j
}

= P
{
N ν
λ1+λ2

(t)−N ν
λ1+λ2

(s) = j − i | N ν
λ1+λ2

(s) = i
}

× P
{
N ν
λ1+λ2

(s) = i
}
,

where

P
{
N ν
λ1+λ2

(t)−N ν
λ1+λ2

(s) = j − i | N ν
λ1+λ2

(s) = i
}

=


∫ t−s

0

P
{
Nν
λ1+λ2

(t− s− y) = j − i− 1
}

dFYi(y), if j − i ≥ 1,

1− FYi(t− s), if j − i = 0.

As an example, we prove that the two aforementioned expressions coincide in the

case j − i ≥ 1. We recall that the probability density function of Yi is expressed as

(cf. Eq. (21) of [125]):

fYi (y) =

∫ s
0

duf νi (u) f ν1 (y + s− u)∫ s
0

duf νi (u) [1− F ν
1 (s− u)]

. (3.23)

Density (3.23) can be alternatively expressed as (cf. Section 3.1):

fYi (y) =

∫ s
0

duλiuiν−1Ei
ν,iν(−λuν)λ(y + s− u)ν−1Eν,ν(−λ(y + s− u)ν)∫ s

0
duλiuiν−1Ei

ν,iν(−λuν) [1− λ(s− u)νEν,ν+1(−λ(s− u)ν)]
,

where we have set λ1 + λ2 = λ. The denominator in the previous expression can be

simplified by recurring to the following relations (cf. (4.2.3) of [57] and cf. Th. 2 of

[72]):

Eα,β(z) =
1

Γ(β)
+ zEα,α+β(z),

and ∫ x

0

(x− t)β−1Eγ
α,β[a(x− t)α]tν−1Eσ

α,ν(at
α)dt = xβ+ν−1Eγ+σ

α,β+ν(ax
α),

for α, β, γ, a, ν, σ ∈ C (<(α), <(β), <(ν) > 0). Indeed, we get

1− λ(s− u)νEν,ν+1(−λ(s− u)ν) = Eν,1(−λ(s− u)ν)

and ∫ s

0

duλiuiν−1Ei
ν,iν(−λuν)Eν,1(−λ(s− u)ν) = λisiνEi+1

ν,iν+1(−λsν).

52



From (3.1), the bivariate distribution in Politi et al. [125] becomes

∫ t−s

0

dy (λ(t− s− y)ν)j−i−1Ej−i
ν,(j−i−1)ν+1 (−λ(t− s− y)ν)

×
∫ s

0

duλiuiν−1Ei
ν,iν(−λuν)λ(y + s− u)ν−1Eν,ν(−λ(y + s− u)ν).

We change the order of integration; then the substitution y + s− u = z yields

λj
∫ s

0

uiν−1Ei
ν,iν(−λuν)

(∫ t−u

s−u
zν−1Eν,ν(−λzν)

× (t− u− z)ν(j−i−1)Ej−i
ν,(j−i−1)ν+1(−λ(t− u− z)ν) dz

)
du.

The previous formula coincides with the bivariate distribution given in Theorem 2.1

of Orsingher and Polito [111], which, in turn, can be expressed in terms of Prabhakar

integrals, as outlined in Remark 2.2 of the same paper.

It is meaningful to stress that when k = 2 the passage of Mν(t) to a level n is

not sure. In fact, the process can cross state n without visiting it due to the effect

of a jump having size 2.

3.5 Convergence results

For the processes N ν
λ (t) and Mν(t), introduced respectively in (3.1) and in (3.7),

we now focus on a property related to their asymptotic behavior as the relevant

parameters grow larger.

Proposition 3.5.1. Let ν ∈ (0, 1]. Then for a fixed t > 0 we have

N ν
λ (t)

E [N ν
λ (t)]

Prob−−−−→
λ→+∞

1.

Proof. We study the convergence in mean of the random variable
N ν
λ (t)

E[N ν
λ (t)]

to 1. Due

to the triangle inequality we have

E
[∣∣∣∣ N ν

λ (t)

E [N ν
λ (t)]

− 1

∣∣∣∣] ≤ 2.

Therefore, we can apply the dominated convergence theorem and calculate the fol-
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lowing limit:

lim
λ→+∞

E
[∣∣∣∣ N ν

λ (t)

E [N ν
λ (t)]

− 1

∣∣∣∣] = lim
λ→+∞

+∞∑
j=0

∣∣∣∣∣ j
λtν

Γ(ν+1)

− 1

∣∣∣∣∣ (λtν)j Ej+1
ν,jν+1(−λtν). (3.24)

Taking account of the behavior of the generalized Mittag-Leffler function for large

z (see [135] for details), i.e.:

Eδ
α,β(z) ∼ O

(
|z|−δ

)
, |z| > 1,

we can conclude that limit (3.24) equals 0. This fact proves the proposition since

convergence in mean implies convergence in probability.

The previous result can be extended to a more general setting. Recalling the ex-

pression (3.6) for the moments of N ν
λ (t), the proof of the next proposition is similar

to that of Proposition 3.5.1 and thus is omitted.

Proposition 3.5.2. Let ν ∈ (0, 1] and r ∈ N. Then, for a fixed t > 0,

[N ν
λ (t)]r

E {[N ν
λ (t)]r}

Prob−−−−→
λ→+∞

1.

In order to prove an analogous result for Mν(t), in the following lemma we give a

formal expression for the moments of the process.

Lemma 3.5.1. The mth order moment of the process Mν(t), t ≥ 0, reads

E {[M ν(t)]m} =
m∑
r=0

trν

Γ (rν + 1)

∑
i1+...+ik=r

(
r

i1, . . . , ik

)
λi11 . . . λ

ik
k

×
∑

n1+...+nk=m

(
m

n1, . . . , nk

)[
dn1

dsn1

(
es − 1

)i1 . . . dnk

dsnk

(
eks − 1

)ik] ∣∣∣∣
s=0

.

(3.25)

Proof. By applying Hoppe’s formula in order to evaluate the derivatives of the mo-

ment generating function of the process M ν(t), cf. (3.10), we have

E {[M ν(t)]m} =
m∑
r=0

(Eν,1(z))(r)
∣∣
z=

∑k
j=1 λj(e

js−1)tν

r!
Am,r

(
k∑
j=1

λj
(
ejs − 1

)
tν

)∣∣∣∣∣
s=0

,

(3.26)
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where

Am,r

(
k∑
j=1

λj
(
ejs − 1

)
tν

)
=

r∑
h=0

(
r

h

)(
−

k∑
j=1

λj
(
ejs − 1

)
tν

)r−h

× dm

dsm

(
k∑
j=1

λj
(
ejs − 1

)
tν

)h
.

Since (
d

dz

)m
Eγ
α,β(z) = (γ)mE

γ+m
α,β+mγ(z),

we get

(Eν,1(z))(r)
∣∣
z=

∑k
j=1 λj(e

js−1)tν
= r!Er+1

ν,rν+1

(
k∑
j=1

λj
(
ejs − 1

)
tν

)
.

Moreover, recalling definition (1.11),

Er+1
ν,rν+1

(
k∑
j=1

λj
(
ejs − 1

)
tν

)∣∣∣∣∣
s=0

=
1

Γ(rν + 1)
.

Therefore, equation (3.26) reduces to

E {[M ν(t)]m} =
m∑
r=0

1

Γ(rν + 1)
Am,r

(
k∑
j=1

λj
(
ejs − 1

)
tν

)∣∣∣∣∣
s=0

=
m∑
r=0

1

Γ(rν + 1)

dm

dsm

(
k∑
j=1

λj
(
ejs − 1

)
tν

)r
,

since
∑k

j=1 λj (ejs − 1) tν |s=0 = 0.

The thesis (3.25) then follows observing that(
k∑
j=1

λj
(
ejs − 1

)
tν

)r
= tνr

∑
i1+...+ik=r

(
r

i1, . . . , ik

)
λi11
(
ejs − 1

)i1 . . . λikk (ejs − 1
)ik ,

and then applying the product rule for the mth derivative of an arbitrary number

of factors.

It is now immediate to verify the following result for Mν(t).

Proposition 3.5.3. Let ν ∈ (0, 1] and m ∈ N. Then, for i ∈ {1, 2, . . . , k} and for

a fixed t > 0, we have
[M ν(t)]m

E {[M ν(t)]m}
Prob−−−−→

λi→+∞
1.
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Proof. By virtue of (3.25), convergence in probability can be obtained by proving

convergence in mean, as in Proposition 3.5.1.

The results presented in this section are interesting in some physical contexts. We

recall that a family of stochastic processes U (λ) = U (λ)(t) exhibits cut-off behaviour

at mean times if (see, for instance, Definition 1 of [10])

U (λ)

E [U (λ)]

Prob−−−−→
λ→+∞

1.

or, equivalently, limλ→∞ P
(
U (λ) > cE

[
U (λ)

])
= 1 for c < 1 and 0 for c > 0. As

λ→ +∞, a suitable distance between the laws P
(
U (λ)(t) ∈ •

)
and the corresponding

invariant measures π(λ) (•) converges, in macroscopic time units, to a step function

centered at deterministic times tcutλ .

Hence, Propositions 3.5.1, 3.5.2 and 3.5.3 show that the processes [N ν
λ (t)]m and

[Mν (t)]m, m ∈ N, exhibit cut-off behavior at mean times with respect to the rel-

evant parameters or, roughly speaking, that they somehow converge very abruptly

to equilibrium.

We finally remark that in this context the sufficient condition given in Proposition

1 of [10] is not useful to prove Proposition 3.5.1, since it holds only when ν = 1.
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Chapter 4

On a fractional alternating Poisson

process

Alternating renewal processes are special types of renewal processes. Specifically,

an alternating renewal process is a stochastic process in which the renewal interval

consists of two random subintervals that alternate cyclically. During the first one

the process is in mode 1, whilst during the second one the process is in mode 0.

For example, consider a repairable system which might periodically be in ON mode

(running) or in OFF mode (in repair) for a random time. See Cox [27] for details.

An alternating renewal process has been recently used to describe the buildup of

perceptual segregation [140]. Other examples can be taken from the fields of inven-

tory control, finance, traffic control, etc.; cf. [152] for more details. If the system

starts in state 1 and if a cycle consists of a mode-1 and a mode-0 interval, then the

process that counts the number of cycles completed up to time t is an alternating

renewal process, where returns to state 1 are the arrivals (cycle completions).

Let {Uk; k = 1, 2, . . .} and {Dk; k = 1, 2, . . .} be independent sequences of in-

dependent copies of two non-negative absolutely continuous random variables U ,

describing the duration of a mode-1 period, and D, describing the duration of a

mode-0 period. Therefore, the k-th cycle is distributed as

Xk
d
= U (k) +D(k), (4.1)

where

U (k) = U1 + U2 + · · ·+ Uk, D(k) = D1 +D2 + · · ·+Dk, k = 1, 2, . . . (4.2)

The cumulative distribution functions of U and D are denoted respectively by FU

and FD, whereas the corresponding complementary cumulative distribution func-
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tions are FU and FD. If Uk and Dk are exponentially distributed with posi-

tive parameters λ and µ, the resulting counting process having interarrival times

U1, D1, U2, D2, . . . is the alternating Poisson process (see, for instance, [82] for de-

tails). Equivalently, an alternating Poisson process is a 2-state continuous-time

Markov chain, whose state occupancy probabilities satisfy, for t ≥ 0 and λ, µ > 0,

the system of equations: 
d p11

dt
= −λ p11(t) + µ p10(t)

d p10

dt
= λ p11(t)− µ p10(t)

(4.3)

It is well-known (cf. [82]) that the solutions of system (4.3), subject to the initial

conditions p11(0) = 1 and p10(0) = 0, and normalizing condition p11(t) + p10(t) = 1,

are

p11(t) =
µ

λ+ µ
+

λ

λ+ µ
e−(λ+µ)t and p10(t) =

λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t.

Specifically, let Y (t), t ≥ 0, be a stochastic process with state space {0, 1}. If Y (t)

describes the state of the process at time t and pij(t) = P (Y (t) = j |Y (0) = i), then

p11(t) and p10(t) represent respectively the probabilities of being in states 1 and 0 at

time t starting from state 1 at t = 0. Similarly, the probabilities of being in states

1 and 0 at t starting from state 0 at t = 0 are found to be, for t ≥ 0,

p01(t) =
µ

λ+ µ
− µ

λ+ µ
e−(λ+µ)t and p00(t) =

λ

λ+ µ
+

µ

λ+ µ
e−(λ+µ)t.

If we define, for j ∈ {0, 1},

pj(t) = P (Y (t) = j)

= P (state j occupied at time t) t ≥ 0,

and note that, by a conditioning argument,

pj(t) = p1(0)p1j(t) + p0(0)p0j(t),

then

p1(t) =
µ

λ+ µ
+

[
p1(0)− µ

λ+ µ

]
e−(λ+µ)t

and

p0(t) =
λ

λ+ µ
+

[
p0(0)− λ

λ+ µ

]
e−(λ+µ)t.
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The Chapter is organized as follows. In Section 4.1, we develop the analysis of

the fractional version (in the Caputo sense) of the alternating Poisson process, by

determining explicitly the probability law, the renewal function and the renewal

density. In Section 4.2, we deal with the asymptotic behaviour of the process, with

special attention to the limit probability of being in state 1 as time grows larger,

and to similar ratios involving the fractional moments of the renewal variables of the

process. Finally, we exploit a suitable transformation of interest in the context of

alternating renewal processes aiming to derive new Mittag-Leffler-like distributions.

4.1 Main results

In order to generalize the equations governing the alternating Poisson process, we

now replace in (4.3) the time derivative with the fractional derivative in the Caputo

sense (1.5) of order ν ∈ (0, 1], thus obtaining the following system:
dν p11

dtν
= −λ pν11(t) + µ pν10(t)

dν p10

dtν
= λ pν11(t)− µ pν10(t)

(4.4)

subject to the initial conditions p11(0) = 1 and p10(0) = 0, and normalizing condition

p11(t) + p10(t) = 1. We remark that the use of the Caputo derivative allows us to

avoid fractional initial conditions.

Proposition 4.1.1. The solution of the Cauchy problem (4.4), for t ≥ 0 and ν ∈
(0, 1], is given by

pν11(t) = 1−λtνEν,ν+1(−(λ+µ)tν) and pν10(t) = λtνEν,ν+1(−(λ+µ)tν), (4.5)

where Eα,β(t) is the Mittag-Leffler function (1.11).

Proof. Due to formula (1.6), the Laplace transform of the solution to system (4.4)

becomes, for s > (λ+ µ)1/ν ,
L{pν11(t); s} =

sν−1

sν + (λ+ µ)
+ µ

s−1

sν + (λ+ µ)

L{pν10(t); s} = λ
s−1

sν + (λ+ µ)

(4.6)

System (4.6) can be inverted by using formula (1.12). We obtain

pν11(t) = Eν,1(−(λ+ µ)tν) + µtνEν,ν+1(−(λ+ µ)tν)

= 1− λtνEν,ν+1(−(λ+ µ)tν),
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where the last equality follows from formula (4.2.3) of [57], i.e.

Eα,β(z) =
1

Γ(β)
+ zEα,α+β(z). (4.7)

Then we invert the second equation in system (4.6) and get

pν10(t) = λtνEν,ν+1(−(λ+ µ)tν).

This completes the proof of (4.5).

Solutions (4.5) can be interpreted as the probabilities for a fractional alternating

Poisson process of being in states 1 and 0 at time t starting from state 1 at time

t = 0. We assume that t = 0 is a renewal point. Specifically, if Y ν(t), t ≥ 0, is a

stochastic process with state space {0, 1}, then

pν11(t) = P (Y ν(t) = 1 |Y ν(0) = 1)

and

pν10(t) = P (Y ν(t) = 0 |Y ν(0) = 1) .

Similarly to (4.5), we find that the probabilities of being in states 1 and 0 at t

starting from state 0 at t = 0 are

pν01(t) = µtνEν,ν+1(−(λ+ µ)tν)

and

pν00(t) = Eν,1(−(λ+ µ)tν) + λtνEν,ν+1(−(λ+ µ)tν)

= 1− µtνEν,ν+1(−(λ+ µ)tν).

By analogy with the non-fractional case, we define

pνj (t) = P (state j occupied at time t)

= pν1(0)pν1j(t) + pν0(0)pν0j(t),

so that, if the process starts in state 1 at t = 0,

pν1(t) = pν11(t) and pν0(t) = pν10(t). (4.8)

We point out that whereas the starting alternating Poisson process is Markovian, the

new process Y ν(t) is semi-Markov. Indeed, similarly to other stochastic processes,
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the “fractionalization” produces persistence or long memory effects.

Such state occupancy probabilities can be recovered also by a different approach.

Indeed, we suppose that the random variable Uk (Dk), describing the duration of

the kth time interval during which the system is in state 1 (state 0), is equally

distributed with a random variable U (D) following a Mittag-Leffler distribution

with density

fU(t) = λtν−1Eν,ν(−λtν),
(
fD(t) = µtν−1Eν,ν(−µtν)

)
, t > 0, 0 < ν < 1,

(4.9)

and complementary cumulative distribution function

FU(t) = Eν,1(−λtν),
(
FD(t) = Eν,1(−µtν)

)
, t > 0, 0 < ν < 1. (4.10)

We recall that densities (4.9) are characterized by fat tails, with polynomial decay,

and, as a consequence, the mean time spent by the process both in state 1 and in

state 0 is infinite.

The probability density function of the first cycle X (cf. Eq. (4.1)), due to the

independence of its summands, can be recovered by inverting its Laplace transform:

LX(s) = LU(s)LD(s) =
λµ

(sν + λ)(sν + µ)
, (4.11)

so that, bearing in mind formula (1.12), we recover the following generalized mixture,

for λ 6= µ:

fX(t) =
µ

µ− λ
λtν−1Eν,ν(−λtν)−

λ

µ− λ
µtν−1Eν,ν(−µtν), t > 0. (4.12)

In the next proposition we derive the expression of the renewal function of the

considered alternating process.

Proposition 4.1.2. Let M(t), t ≥ 0, be the renewal function of an alternating

process whose inter-renewal times are distributed as in (4.12). Then

M(t) = λµt2νEν,2ν+1(−(λ+ µ)tν), t > 0. (4.13)

The corresponding renewal density is

m(t) = λµt2ν−1Eν,2ν(−(λ+ µ)tν), t > 0. (4.14)

Proof. With regard to (4.12), the Laplace transform of the renewal function of the
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considered process, which we call M(t), is (cf. [104])

L{M(t); s} =
LX(s)

s(1− LX(s))
=

1

s
· λµ

sν(sν + (λ+ µ))
, (4.15)

where the last identity follows from (4.11). From Equation (4.15) we infer that the

Laplace transform of the corresponding renewal density is

L{m(t)} = L
{

dM(t)

dt

}
= sL{M(t)}

=
λµ

sν(sν + (λ+ µ))
,

which can be inverted with the help of formula (1.12) in order to obtain

m(t) =
λµ

λ+ µ

tν−1

Γ(ν)
− λµ

λ+ µ
tν−1Eν,ν(−(λ+ µ)tν),

this giving (4.14). In addition, the renewal function turns out to be the following:

M(t) =
λµ

λ+ µ

tν

Γ(ν + 1)
− λµ

λ+ µ
tνEν,ν+1(−(λ+ µ)tν)

= λµt2νEν,2ν+1(−(λ+ µ)tν),

where the last equality is due to (4.7). The proof of (4.13) is thus complete.

From the theory of alternating renewal processes (cf. formula (6.66) of [104]), it is

known that, for t ≥ 0,

π1(t) = FU(t) +

∫ t

0

m(t− x)FU(t)dx,

where π1(t) is the probability that at time t the process is in state 1 and m(t) is the

renewal density. Such explicit expression for π1(t) is derived by solving a renewal

equation. Recalling (4.14) and (4.10), we obtain

π1(t) = Eν,1(−λtν) + λµ

∫ t

0

(t− x)2ν−1Eν,2ν(−(λ+ µ)(t− x)ν)Eν,1(−λxν)dx

= Eν,1(−λtν)− λ2t2νEν,2ν+1(−λtν) + λ(λ+ µ)t2νEν,2ν+1(−(λ+ µ)tν)

= 1− λtνEν,ν+1(−(λ+ µ)tν),

(4.16)

where the last equality follows from (4.7). Due to (4.5), we observe that probability

(4.16) equals the first of (4.8). Therefore, the random times between consecutive

events for a fractional alternating Poisson process alternate between two Mittag-
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Leffler distributions with parameter λ and µ, respectively. Consequently, the two

approaches considered, i.e. the one based on the resolution of the fractional system

of equations (4.4), and the one based on renewal theory arguments, lead to two

alternating processes with the same one-dimensional distribution.

4.2 Asymptotic behaviour and some transforma-

tions

We begin the present section by studying the asymptotic behaviour of the process

Y ν(t), with reference to pν1(t) = π1(t).

Proposition 4.2.1. The limiting probability that the fractional alternating Poisson

process is in state 1 is given by

lim
t→+∞

pν1(t) =
µ

λ+ µ
.

Proof. From (4.8) we observe that the limiting probability of being in the first phase

of the considered process is:

lim
t→+∞

pν1(t) = lim
t→+∞

(1− λtνEν,ν+1(−(λ+ µ)tν))

= lim
t→+∞

λ

λ+ µ

(
λ+ µ

λ
− (λ+ µ) tνEν,ν+1(−(λ+ µ)tν)

)
.

It holds that (λ+ µ) tνEν,ν+1(−(λ + µ)tν)
t→+∞→ 1, since we are dealing with the

probability distribution function of a Mittag-Leffler random variable with parameter

λ+ µ. Hence

lim
t→+∞

pν1(t) =
λ

λ+ µ

(
λ+ µ

λ
− 1

)
=

µ

λ+ µ
,

this completing the proof.

Hereafter we give an alternative proof of Proposition 4.2.1 using the following Taube-

rian theorem which can be found in Widder [151].

Theorem (Tauberian Theorem). If α(t) is non-decreasing and such that the integral

f(s) =

∫ ∞
0

e−stdα(t)
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converges for s > 0, and if for some non-negative number γ and some constant C

f(s) ∼ C

sγ
as s→ 0,

then

α(t) ∼ Ctγ

Γ(γ + 1)
as t→ +∞.

Alternative proof of Proposition 4.2.1. Recalling (4.5), the probability of being in

state 0 is

pν0(t) = 1− pν1(t) = λtνEν,ν+1(−(λ+ µ)tν).

This is a non-decreasing function on the interval [0,+∞) such that∫ ∞
0

e−st dpν0(t) = s
λs−1

sν + (λ+ µ)
=

λ

sν + (λ+ µ)
.

Since
λ

sν + (λ+ µ)
→ λ

λ+ µ
as s→ 0,

then, due to Tauberian Theorem (γ = 0),

pν0(t)→ λ

λ+ µ
as t→ +∞.

Consequently,

pν1(t)→ µ

λ+ µ
as t→ +∞.

It is noteworthy to point out that the fractional alternating Poisson process displays

the same long-run proportion of time spent in mode 1 as its non fractional counter-

part (cf. [82]). Such proportion can be interpreted as the time average of a particle’s

location for a sufficiently long time. Interestingly, from this fact one gets that weak

ergodicity breaking occurs in both cases. This property is usually stated by saying

that ensemble average and time average of physical observables, such as the position

of the particle, differ, the last one being taken in the long time (infinite) limit. The

underlying phase space, however, remains accessible. Moreover, the result presented

in Proposition 4.2.3 is in accordance with Theorem 5 of [102], where the limiting

distribution of the spent lifetime is presented in the case of infinite mean renewal

periods.

We are now concerned with other kinds of proportions involving the fractional mo-

ments of the sub-renewal periods of the process Y ν(t).
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Proposition 4.2.2. Let U and D be random variables with densities (4.9). Then

E[U q]

E[U q] + E[Dq]
=

1

ξq/ν + 1
, ξ =

λ

µ
, 0 < q < ν ≤ 1.

Proof. By [122], the expression for the qth moment, q < ν, of a random variable

with density (4.9) is

E[U q] =
qπ

νλq/νΓ(1− q) sin(qπ/ν)
. (4.17)

The proof follows by conveniently substituting the expression for the qth moment

of D.

To prove Proposition 4.2.3 below we need the following Lemma (see [88]).

Lemma 4.2.1. Let X be a positive random variable with Laplace transform φ. Then

E [Xr] =
r

Γ(1− r)

∫ +∞

0

s−r−1 (1− φ(s)) ds, r ∈ (0, 1).

With regard to (4.2), we observe that (cf. [18])

fkU(t) = P{U (k) ∈ dt}/dt = λktνk−1Ek
ν,νk(−λtν), t > 0, 0 < ν < 1, (4.18)

with Laplace transform

L
{
fkU(t); s

}
=

λk

(sν + λ)k
. (4.19)

The density and the Laplace transform of D(k) can be obtained from (4.18) and

(4.19) respectively, by replacing λ with µ. We are now ready to prove the next

proposition, which gives an immediate extension of Proposition 4.2.2.

Proposition 4.2.3. Let U (k) and D(k) be random variables defined as in (4.2). Then

E
[(
U (k)

)q]
E
[
(U (k))

q]
+ E

[
(D(k))

q] =
1

ξq/ν + 1
, ξ =

λ

µ
, 0 < q < ν ≤ 1. (4.20)

Proof. From Lemma 4.2.1 and Eq. (4.19), for q ∈ (0, 1),

E
[(
U (k)

)q]
=

q

Γ(1− q)

∫ +∞

0

s−q−1

(
1− λk

(sν + λ)k

)
ds

=
q

Γ(1− q)

k−1∑
i=0

(
k

i

)
λi
∫ +∞

0

sν(k−i)−q−1

(sν + λ)k
ds,

where the last equality is due to the binomial theorem. By applying formula 3.241-4
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of [60], i.e.

∫ +∞

0

xµ−1

(p+ qxν)n+1
dx =

1

νpn+1

(
p

q

)µ/ν
Γ(µ/ν)Γ(1 + n− µ/ν)

Γ(1 + n)
,

where 0 < µ
ν
< n+ 1, p 6= 0, q 6= 0, we obtain, for 0 < q < ν ≤ 1,

E
[(
U (k)

)q]
=

q

Γ(1− q)

k−1∑
i=0

(
k

i

)
1

νλ q/ν
Γ(k − i− q/ν)Γ(i+ q/ν)

Γ(k)

=
q

Γ(1− q)
1

νλ q/ν

k−1∑
i=0

(
k

i

)
B (k − i− q/ν, i+ q/ν) , (4.21)

where B(x, y) denotes the Beta function. Observe that, in an analogous way, we

can calculate

E
[(
D(k)

)q]
=

q

Γ(1− q)
1

νµ q/ν

k−1∑
i=0

(
k

i

)
B (k − i− q/ν, i+ q/ν) .

The thesis thus follows.

Some plots of the ratio (4.20) are provided in Figure 4.1.
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Figure 4.1: The ratio (4.20) is shown on the left for 0 < ξ ≤ 1 and q/ν =
0.1, 0.2, . . . , 0.9 (from bottom to top), on the right for 1 ≤ ξ ≤ 100 and q/ν =
0.1, 0.2, . . . , 0.9 (from top to bottom).

Hereafter we aim to explore new stochastic models related to the fractional alternat-

ing Poisson process. Specifically, with reference to the process Y ν(t), we now study

a special transformation of the random variables involved. Such transformation,

acting on pairs of non-negative random variables having unequal finite means, is

an extension of the equilibrium operator. It is of interest since it arises essentially

from stochastic processes characterized by two randomly alternating states. In fact,
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it is suitable to describe the asymptotic behaviour of the corresponding spent life-

time (cf. [32]). In general, if X and Y are non-negative random variables such that

E[X] < E[Y ] < +∞, then

fZ(x) =
F Y (x)− FX(x)

E[Y ]− E[X]
, x ≥ 0, (4.22)

is the probability density function of an absolutely continuous non-negative random

variable Z if and only if X ≤st Y , where ≤st is the usual stochastic order (i.e.,

X ≤st Y if and only if FX(x) ≤ F Y (x) for all x). In Eq. (4.22), FX(x) and F Y (x)

denote the survival functions of X and Y , respectively. We write Z ≡ Ψ(X, Y ) to

mean that Z is a random variable with density (4.22).

Example 4.2.1. Let U and D be random variables having Mittag-Leffler densities

with parameters λ and µ respectively, expressed by (4.9), and fix a positive real

number α, 0 < α < ν ≤ 1, such that the random variables Uα and Dα have finite

means. If λ < µ, one has U ≤st D and then Uα ≤st Dα. From (4.10), (4.17) and

(4.22), the density of Z ≡ Ψ(Uα, Dα) is

fZ(t) =
νλα/νµα/νΓ(1− α) sin (απ/ν)

απ (λα/ν − µα/ν)
(
Eν,1(−µtν/α)− Eν,1(−λtν/α)

)
, t ≥ 0.

(4.23)

Figure 4.2 shows various plots of density (4.23).

Consequently, from the probabilistic mean value theorem given in Theorem 4.1

of [32], if g is a measurable and differentiable function such that E [g (Dα)] and

E [g (Uα)] are finite and if its first derivative g′ is measurable and Riemann-integrable

on the interval [x, y] for all y ≥ x ≥ 0, then E [g′ (Z)] is finite and

E [g (Dα)]− E [g (Uα)] = E [g′ (Z)] (E [Dα]− E [Uα]) ,

where Z is a random variable having density (4.23).

Example 4.2.2. Let us consider the random variables U (1) and U (2) (cf. (4.2)), with

densities (4.9) and (4.18) respectively. Again, we fix a positive real number α, with

0 < α < ν ≤ 1, such that both random variables involved, i.e.
(
U (1)

)α
and

(
U (2)

)α
have finite first order moments. Since U (1) ≤st U (2), and then

(
U (1)

)α ≤st (U (2)
)α

, we

can study the transformation Ψ acting on
(
U (1)

)α
and

(
U (2)

)α
. The complementary

cumulative distribution functions of U (1) and U (2) are expressed in terms of the

generalized Mittag-Leffler function (1.11), since (cf. (4.10))

P
(
U (1) > t

)
= 1− λtνEν,ν+1(−λtν), t ≥ 0 (4.24)
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Figure 4.2: Density (4.23) for various choices of α and ν, with λ = 1 and µ =
1.01, 2, 5, 15 (from bottom to top near the origin).

and (cf. [18])

P
(
U (2) > t

)
= 1− λ2t2νE2

ν,2ν+1(−λtν), t ≥ 0. (4.25)

Recalling that (cf. formula (5.1.12) of [57]) if α, β, γ ∈ C and Re α > 0, Re β > 0,

Re β − α > 0

zEγ
α,β = Eγ

α,β−α − E
γ−1
α,β−α, (4.26)

the following equality holds:

Eν,ν+1(−λtν) = λtνE2
ν,2ν+1(−λtν) + E2

ν,ν+1(−λtν), t ≥ 0,

and then

λtνEν,ν+1(−λtν) = λ2t2νE2
ν,2ν+1(−λtν) + λtνE2

ν,ν+1(−λtν), t ≥ 0. (4.27)

Due to formula (5.1.14) of [57], i.e.

αE2
α,β = Eα,β−1 − (1 + α− β)Eα,β
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if α, β ∈ C and Re α > 0, Re β > 1, then

E2
ν,ν+1(−λtν) =

1

ν
Eν,ν(−λtν). (4.28)

By using (4.28) into (4.27), we get

λtνEν,ν+1(−λtν) = λ2t2νE2
ν,2ν+1(−λtν) +

λtν

ν
Eν,ν(−λtν), t ≥ 0, (4.29)

and the function tνEν,ν(−λtν) is positive due to the complete monotonicity of

tν−1Eν,ν(−λtν) (cf. (5.1.10) of [57]). Consequently, recalling (4.24) and (4.25), from

(4.29) we obtain

1− λ2t2νE2
ν,2ν+1(−λtν) ≥ 1− λtνEν,ν+1(−λtν)

⇐⇒ P
(
U (2) > t

)
≥ P

(
U (1) > t

)
⇐⇒ U (1) ≤st U (2)

⇐⇒
(
U (1)

)α ≤st (U (2)
)α
.

Hence, if Z ≡ Ψ
((
U (1)

)α
,
(
U (2)

)α)
, from (4.17) and (4.21) we have, for t ≥ 0,

fZ(t) =
Γ(1− α)ν2λα/ν sin(απ/ν)

α2π

(
λtν/αEν,ν+1(−λtν/α)− λ2t2ν/αE2

ν,2ν+1(−λtν/α)
)
.

It follows that, making use of (4.26), for 0 < α < ν ≤ 1 and λ > 0 we obtain

fZ(t) =
Γ(1− α)ν2λα/ν sin(απ/ν)

α2π
λtν/αE2

ν,ν+1(−λtν/α), t ≥ 0. (4.30)

Again, from Theorem 4.1 of [32], if g is a suitable function and Z is a random

variable with density (4.30), then

E
[
g
((
U (2)

)α)]− E
[
g
((
U (1)

)α)]
= E [g′ (Z)]

(
E
[(
U (2)

)α]− E
[(
U (1)

)α])
.

4.3 Concluding remarks

In this chapter we have studied a generalization of the alternating Poisson process

from the point of view of fractional calculus. In the system of differential equations

governing the state occupancy probabilities for the alternating Poisson process we

replace the ordinary derivative with the Caputo one, thus endowing the process with

persistent memory. We obtain the probability mass function of a fractional alternat-

ing Poisson process and then show that it can be recovered also by means of renewal

theory arguments. Furthermore, we provide results for the behaviour of some quanti-
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ties characterizing the process under examination and derive new Mittag-Leffler-like

distributions of interest in the context of alternating renewal processes.
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Chapter 5

On a jump-telegraph process

driven by alternating fractional

Poisson process

5.1 Introduction

The (integrated) telegraph process is a continuous-time stochastic process that de-

scribes a random motion on the real line. The motion has finite (constant) velocity

c > 0, and its direction is reversed at every event of a homogeneous Poisson process

with intensity λ. The transition density p(x, t) of the telegraph process satisfies a

second-order (hyperbolic) telegraph equation (see the seminal articles by Goldstein

[56] and Kac [68]), namely

c2 ∂
2p

∂x2
=
∂2p

∂t2
+ 2λ

∂p

∂t
.

Under suitable conditions, the aforementioned equation tends asymptotically to the

heat diffusion equation. In other words, the transition density of the telegraph pro-

cess tends to the transition density of the one-dimensional Brownian motion, the

former being more general but more difficult to deal with than the latter. The

telegraph process has been introduced to overcome the serious limitations of the

Brownian motion in the realistic representation of real random motions, that is to

say the infinite speed at which a particle travels and the non-differentiability of the

trajectory (which implies total absence of inertia). Various extensions of the tele-

graph process have been proposed in the literature towards motions characterized

by two or more than two velocities, or by random velocities, or with velocity changes

governed by an alternating renewal process. The telegraph process and its gener-

alizations have been widely applied in biomathematics and in queueing theory (see
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[55], [116] and Section 1 of [33]).

Motions with deterministic or random jumps along the alternating direction at each

velocity reversal have been studied in detail (cf. [34] and [38]), also with a special

focus on some general rescaling properties [89]. Damped versions of the telegraph

process have been considered in [129] and [37] in the presence and in absence of

jumps, respectively. A jump-telegraph process is interesting for the purposes of

financial modelling. For the sake of brevity, we only mention two works: the pa-

per by Ratanov [130], in which the author proposes a new generalisation of the

jump-telegraph process with variable velocities and jumps, and then applies this

construction to markets modelling; and the recent book by Kolesnik and Ratanov

(see [74] and references therein), which gives a thorough investigation on the tele-

graph process and its applications to option pricing. Estimation procedures for the

standard and geometric telegraph process ([29], [30], [66]), and for a Brownian mo-

tion governed by a telegraph process [127], have been recently provided under the

hypothesis of discrete-time sampling.

In the last decades a number of works have appeared analysing processes governed

by (space)-time fractional telegraph equations, obtained by replacing the ordinary

derivatives in the telegraph equation by suitable fractional derivatives (cf. [107] and

[114]). The key features of the resulting processes include long-range memory, path-

dependence, non Markovian properties, anomalous diffusion behaviour. Masoliver

[97] justified on physical grounds the fractional telegraph equation. Special forms

of fractional telegraph equations with rational order are studied in [16]. Another

approach is adopted in [17], in which the authors propose a finite-velocity planar

random motion whose changes of direction occur at times spaced by a fractional

Poisson process. In general, fractional calculus is useful in computing probability

distribution functions with fat tails. In the recent past pure jump fractional processes

have attracted great attention. Just to mention a few examples, [18] illustrates

various results on the fractional Poisson process and also focuses on certain higher-

order extensions, whilst a fractional counting process with multiple jumps has been

studied in [40] (Chapter 3 of the dissertation). See also [126] for a generalization of

the space-fractional Poisson process. Birth, birth-death and death processes have

been investigated in [108], [109] and [112] respectively.

In the light of the previous investigations, and aiming to construct a more general

model that takes into account both the occurrence of jumps and the fractional

nature, in this chapter we propose and study a one-dimensional jump-telegraph

process with deterministic jumps occurring at velocity changes, and with intertimes

governed by a fractional alternating counting process that has been studied in detail

in [42] and in Chapter 4. We obtain the probability law of the new process, which
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is given in a series form involving the generalized Mittag-Leffler function (1.11). We

also discuss the uniform convergence of the distribution.

We devote special attention to the case of jumps having constant size. It turns out

that the structure of the solution (see Proposition 5.3.1) is quite similar to that ob-

tained in [38], even though the shape of the relevant density is qualitatively different,

due to the special form of the underlying generalized Mittag-Leffler distributions.

We also obtain the mean of the process in the special case of identically distributed

upward and downward intertimes, and compare it to the means of other fractional

processes. We stress that the mean results in the sum of two terms. The first term

is linear in time and refers to the alternating component of the motion. The second

term is a power of time, where the exponent ν is the “tail” index of the underlying

generalized Mittag-Leffler distribution, and is related to the jump component of the

motion.

An interesting but difficult problem is the determination of the first-passage-time

distribution through a constant boundary. This problem for an asymmetric tele-

graph process has been treated in [90], where the distributions of the first-passage

times are described by using the Laplace transforms and their inversions. We provide

a formal expression of the first-passage-time distribution (in series form) by condi-

tioning on the number of jumps. The formal expression is finally used to provide

suitable lower bounds.

5.2 Probability law of the jump-telegraph process

Let {(Xt, Vt), t ≥ 0} denote a jump-telegraph process, where Xt and Vt represent

respectively the position and the velocity of a particle running on the real line. The

motion is performed starting at the origin at time 0, with two alternating constant

velocities, say −v, c. The initial velocity can be either −v or c. The velocities

change at random times, which are the epochs of an alternating counting process

{Nt, t ≥ 0}. A jump occurs at each velocity change, the jump’s displacement being

αk > 0 (upward jump) or −βk < 0 (downward jump) if it follows the kth period of

forward or backward motion, respectively.

Formally, the process is described by the following stochastic equations, for t > 0

and V0 ∈ {−v, c}:

Xt =

∫ t

0

Vs ds+
Nt∑
k=1

[
αk − βk

2
− sgn(V0)

αk + βk
2

(−1)k
]
, (5.1)

Vt =
c− v

2
+

[
V0 −

(
c− v

2

)]
(−1)Nt . (5.2)
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Figure 5.1: Left panel: a sample path of Vt. Right panel: the corresponding sample path of Xt;
the displacement of each jump is also indicated.

We assume that {Uk}k∈N and {Dk}k∈N are independent sequences of independent

copies of the nonnegative random variables U and D, which describe the duration of

the kth random period in which the motion proceeds forward or backward, respec-

tively. Note that the interarrival random times of the alternating counting process

{Nt, t ≥ 0} are U1, D1, U2, D2, . . . (resp. D1, U1, D2, U2, . . .) when the initial velocity

is positive (resp. negative).

In a previous paper [38] the case of Erlang-distributed random periods U and D and

deterministic jumps has been studied in detail. As a novelty, in the present chapter

we investigate the case when the random times U and D separating consecutive

velocity changes (and jumps) follow a Mittag-Leffler distribution with parameters

(λ, ν) and (µ, ν), respectively. With reference to the function (1.10) introduced in

Section 1.2, for parameters λ, µ > 0 and 0 < ν < 1, we consider the probability

density functions (PDF’s)

fU(t) = λtν−1Eν,ν(−λtν), fD(t) = µtν−1Eν,ν(−µtν), t > 0, (5.3)

and the complementary cumulative distribution functions

F U(t) = P(U > t) = Eν,1(−λtν), FD(t) = P(D > t) = Eν,1(−µtν), t > 0.

(5.4)

We recall that for ν = 1 formulas (5.3) and (5.4) lead to exponential distributions.

Furthermore, for k ∈ N the probability density functions of

U (k) = U1 + U2 + · · ·+ Uk, D(k) = D1 +D2 + · · ·+Dk, (5.5)

are respectively (cf. Eq. (2.19) of [18]),

f
(k)
U (t) = λktνk−1Ek

ν,νk(−λtν), f
(k)
D (t) = µktνk−1Ek

ν,νk(−µtν), t > 0, (5.6)
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where Ek
ν,νk(·) has been defined in (1.11). Note that the distributions given in (5.6)

can be viewed both as generalized Erlang distributions and as generalized Mittag-

Leffler distributions (see Jose et al. [67]). They are also named Positive Linnik

distributions (cf. [26] and [117]). Moreover, such distributions are involved in the

analysis of the fractional Poisson process and its extensions (cf. [94], [18] and [40]).

It is worth pointing out that, under the assumptions (5.3) and (5.4), the process

{Nt, t ≥ 0} constitutes the fractional alternating Poisson process investigated in [42]

(Chapter 4 of the thesis). Let us now introduce the following forward and backward

transition PDF’s, for x ∈ R, t > 0 and y ∈ {−v, c}:

f(x, t | y)dx = P[Xt ∈ dx, Vt = c |X0 = 0, V0 = y],

b(x, t | y)dx = P[Xt ∈ dx, Vt = −v |X0 = 0, V0 = y].

The probability law of (Xt, Vt) has an absolutely continuous component

p(x, t | y) = f(x, t | y) + b(x, t | y), (5.7)

and a discrete component

P[Xt = yt, Vt = y |X0 = 0, V0 = y].

In order to provide the formal expression of the above functions, we denote by

α(k) = α1 + α2 + · · ·+ αk
(
β(k) = β1 + β2 + · · ·+ βk

)
the total amplitude of the first k upward (downward) jumps. Moreover, we set

Ij,k(x, t) :=

{
1 if −vt+ α(j) − β(k) < x < ct+ α(j) − β(k)

0 otherwise
x ∈ R, t > 0,

and

τ∗ =
vt+ x

c+ v
, θk =

α(k) − β(k)

c+ v
, ηk =

α(k+1) − β(k)

c+ v
. (5.8)

Theorem 5.2.1. The probability law of (Xt, Vt), t > 0, conditional on positive initial

velocity c is given by the discrete component

P[Xt = ct, Vt = c |X0 = 0, V0 = c] = Eν,1(−λtν), (5.9)

and by the absolutely continuous component for the forward and backward transition
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PDF’s, for x ∈ R:

f(x, t | c) =
+∞∑
k=1

{
Ik,k(x, t)

c+ v
µk
(
ct− x
c+ v

+ θk

)νk−1

Ek
ν,νk

(
−µ
(
ct− x
c+ v

+ θk

)ν)

×λk
(
vt+ x

c+ v
− θk

)νk
Ek+1
ν,νk+1

(
−λ
(
vt+ x

c+ v
− θk

)ν)}
, (5.10)

b(x, t | c) =
+∞∑
k=0

{
Ik+1,k(x, t)

c+ v
λk+1

(
vt+ x

c+ v
− ηk

)ν(k+1)−1

×Ek+1
ν,ν(k+1)

(
−λ
(
vt+ x

c+ v
− ηk

)ν)
×µk

(
ct− x
c+ v

+ ηk

)νk
Ek+1
ν,νk+1

(
−µ
(
ct− x
c+ v

+ ηk

)ν)}
, (5.11)

where the function Ek+1
ν,νk+1(·) has been defined in (1.11).

Proof. Since P[Xt = ct, Vt = c |X0 = 0, V0 = c] = F U(t), Eq. (5.9) follows immedi-

ately from Eq. (5.4). In Theorem 2.1 of [38] the following general expressions have

been proved for t > 0 and x ∈ R:

f(x, t | c) =
+∞∑
k=1

Ik,k(x, t)

c+ v
f

(k)
D (t− τ∗ + θk)

∫ t

t−τ∗+θk

f
(k)
U (s− t+ τ∗ − θk)F U(t− s) ds,

(5.12)

b(x, t | c) =
I1,0(x, t)

c+ v
fU(τ∗ − η0)FD(t− τ∗ + η0)

+
+∞∑
k=1

Ik+1,k(x, t)

c+ v
f

(k+1)
U (τ∗ − ηk)

∫ t

τ∗−ηk
f

(k)
D (s− τ∗ + ηk)FD(t− s) ds,

(5.13)

where τ∗, θk and ηk have been defined in (5.8). Therefore, densities (5.10) and (5.11)

can be obtained from Eqs. (5.3), (5.4) and (5.6) and noting that the integrals in the

right-hand side of (5.12) and (5.13) can be computed by means of (cf. Th. 2 of [72])∫ x

0

(x− t)β−1Eγ
α,β[a(x− t)α]tν−1Eσ

α,ν(at
α)dt = xβ+ν−1Eγ+σ

α,β+ν(ax
α),

for α, β, γ, a, ν, σ ∈ C (<(α), <(β), <(ν) > 0).

Theorem 5.2.2. The series on the right-hand side of Eqs. (5.10) and (5.11) are

uniformly convergent for x ∈ R and for fixed t > 0.
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Proof. Set, for x ∈ R, k ∈ N and t > 0,

fk(x, t | c) := P[Xt ∈ dx, Vt = c, Nt = k |X0 = 0, V0 = c]

=
Ik,k(x, t)

c+ v
µk
(
ct− x
c+ v

+ θk

)νk−1

Ek
ν,νk

(
−µ
(
ct− x
c+ v

+ θk

)ν)
× λk

(
vt+ x

c+ v
− θk

)νk
Ek+1
ν,νk+1

(
−λ
(
vt+ x

c+ v
− θk

)ν)
.

The forward transition PDF (5.10) can thus be split as

f(x, t | c) =
k∗−1∑
k=1

fk(x, t | c) +
+∞∑
k=k∗

fk(x, t | c),

where k∗ ∈ N is determined by the Archimedean property of the real numbers so

that νk∗ > 1. In general, for all k ∈ N,

fk(x, t | c) ≤
Ik,k(x, t)

c+ v
µk
(
ct− x
c+ v

+ θk

)νk−1

Ek
ν,νk

(
−µ
(
ct− x
c+ v

+ θk

)ν)
.

In fact, the generalized Mittag-Leffler function Ek+1
ν,νk+1 (−λtν), k ≥ 0, suitably nor-

malized by the factor (λtν)k, represents a proper probability distribution (see [18]).

If k > k∗, for fixed t > 0 the function
(
ct−x
c+v

+ θk
)νk−1

is monotonically decreasing in

x ∈
(
−vt+ α(k) − β(k), ct+ α(k) − β(k)

)
. Consequently, we have:

(
ct− x
c+ v

+ θk

)νk−1

≤
(
ct− x
c+ v

+ θk

)νk−1
∣∣∣∣∣
x=−vt+α(k)−β(k)

= tνk−1.

Moreover, we note that the function Ek
ν,νk

(
−µ
(
ct−x
c+v

+ θk
)ν)

is monotonically in-

creasing in x ∈
(
−vt+ α(k) − β(k), ct+ α(k) − β(k)

)
(cf. Section 2.3 of [99]), so that

Ek
ν,νk

(
−µ
(
ct− x
c+ v

+ θk

)ν)
≤ Ek

ν,νk

(
−µ
(
ct− x
c+ v

+ θk

)ν)∣∣∣∣∣
x=ct+α(k)−β(k)

=
1

Γ (νk)
.
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The forward PDF thus satisfies the following relation:

f(x, t | c) ≤
k∗−1∑
k=1

fk(x, t | c) +
+∞∑
k=k∗

Ik,k(x, t)

c+ v
µk

tνk−1

Γ (νk)

≤ t−1

c+ v

+∞∑
k=k∗

(µtν)k

Γ (νk)

=
t−1

c+ v

+∞∑
r=0

(µtν)r+k
∗

Γ (ν(r + k∗))

=
t−1

c+ v
Eν,νk∗ (µtν) .

Uniform convergence then is due to Weierstrass M-test.

Remark 5.2.1. Due to symmetry, if V0 = −v the probability law of (Xt, Vt) can be

obtained from Theorem 5.2.1 by interchanging f with b, U with D, c with v, x with

−x and αi with βi for all i ∈ N, thus having

f(x, t | − v) =
+∞∑
k=0

{
Ik,k+1(x, t)

c+ v
µk+1

(
ct− x
c+ v

− η̃k
)ν(k+1)−1

×Ek+1
ν,ν(k+1)

(
−µ
(
ct− x
c+ v

− η̃k
)ν)

×λk
(
vt+ x

c+ v
+ η̃k

)νk
Ek+1
ν,νk+1

(
−λ
(
vt+ x

c+ v
+ η̃k

)ν)}

and

b(x, t | − v) =
+∞∑
k=1

{
Ik,k(x, t)

c+ v
λk
(
vt+ x

c+ v
− θk

)νk−1

Ek
ν,νk

(
−λ
(
vt+ x

c+ v
− θk

)ν)

×µk
(
ct− x
c+ v

+ θk

)νk
Ek+1
ν,νk+1

(
−µ
(
ct− x
c+ v

+ θk

)ν)}
,

where

η̃k =
β(k+1) − α(k)

c+ v
=
βk+1

c+ v
− θk.

Corollary 5.2.1. If the initial velocity is random, i.e. V0 is either c or −v with

equal probability, we obtain

P[Xt = ct |X0 = 0] = 1
2
Eν,1(−λtν),

P[Xt = −vt |X0 = 0] = 1
2
Eν,1(−µtν),

V0 =

{
c w.p. 1/2,

−v w.p. 1/2.
(5.14)
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Furthermore, from (5.7) the transition PDF of Xt is

p(x, t) := P[Xt ∈ dx |X0 = 0] =
1

2
[p(x, t | c) + p(x, t | − v)]

=
1

2
[f(x, t | c) + b(x, t | c) + f(x, t | − v) + b(x, t | − v)] , (5.15)

where the forward and backward transition PDF’s conditional on initial velocity are

given in Theorem 5.2.1 and Remark 5.2.1.

5.3 Constant jump sizes

We now focus on the special case when all the jumps have equal constant amplitude,

say α. Hereafter we obtain the explicit expression of the density p(x, t) defined in

(5.15).

Proposition 5.3.1. Let αk = βk = α > 0 for all k ∈ N, and let U and D be

Mittag-Leffler distributed with parameters (λ, ν) and (µ, ν), respectively. Let P(V0 =

c) = P(V0 = −v) = 1/2. The probability law of Xt is characterized by the discrete

component indicated in (5.14), and by the absolutely continuous component p(x, t)

specified hereafter.

(i) If 0 < t < α/(c+ v) then

p(x, t) =



ϕ−1(x, t), −vt− α < x < ct− α

ϕ0(x, t), −vt < x < ct

ϕ1(x, t), −vt+ α < x < ct+ α

0 otherwise,

(ii) if α/(c+ v) ≤ t < 2α/(c+ v) then

p(x, t) =



ϕ−1(x, t), −vt− α < x < −vt

ϕ−1(x, t) + ϕ0(x, t), −vt < x < ct− α

ϕ0(x, t), ct− α < x < −vt+ α

ϕ0(x, t) + ϕ1(x, t), −vt+ α < x < ct

ϕ1(x, t), ct < x < ct+ α

0 otherwise,

79



(iii) if t ≥ 2α/(c+ v) then

p(x, t) =



ϕ−1(x, t), −vt− α < x < −vt

ϕ−1(x, t) + ϕ0(x, t), −vt < x < −vt+ α

ϕ−1(x, t) + ϕ0(x, t) + ϕ1(x, t), −vt+ α < x < ct− α

ϕ0(x, t) + ϕ1(x, t), ct− α < x < ct

ϕ1(x, t), ct < x < ct+ α

0 otherwise,

with

ϕ−1(x, t) =
1

2 (c+ v)

+∞∑
k=0

{
µk+1

(
ct− x− α
c+ v

)ν(k+1)−1

Ek+1
ν,ν(k+1)

(
−µ
(
ct− x− α
c+ v

)ν)

× λk
(
vt+ x+ α

c+ v

)νk
Ek+1
ν,νk+1

(
−λ
(
vt+ x+ α

c+ v

)ν)}
,

ϕ0(x, t) =
1

2 (c+ v)

+∞∑
k=0

{
µk+1

(
ct− x
c+ v

)ν(k+1)−1

Ek+1
ν,ν(k+1)

(
−µ
(
ct− x
c+ v

)ν)

× λk+1

(
vt+ x

c+ v

)ν(k+1)

Ek+2
ν,ν(k+1)+1

(
−λ
(
vt+ x

c+ v

)ν)
+ λk+1

(
vt+ x

c+ v

)ν(k+1)−1

Ek+1
ν,ν(k+1)

(
−λ
(
vt+ x

c+ v

)ν)
× µk+1

(
ct− x
c+ v

)ν(k+1)

Ek+2
ν,ν(k+1)+1

(
−µ
(
ct− x
c+ v

)ν)}

and

ϕ1(x, t) =
1

2 (c+ v)

+∞∑
k=0

{
λk+1

(
vt+ x− α
c+ v

)ν(k+1)−1

Ek+1
ν,ν(k+1)

(
−λ
(
vt+ x− α
c+ v

)ν)

× µk
(
ct− x+ α

c+ v

)νk
Ek+1
ν,νk+1

(
−µ
(
ct− x+ α

c+ v

)ν)}
.

Proof. It is a straightforward consequence of Eq. (5.15), by recalling that assumption

αk = βk = α > 0, k ∈ N, yields θk = 0 and ηk = η̃k = α/(c+ v).

It is interesting to note that the functions ϕi, i = −1, 0, 1, have a specific probabilistic

meaning. Indeed, ϕ−1 (ϕ1) represents a measure of the sample-paths of the process

that perform a number of downward (upward) jumps that is one more the upward

80



(downward) jumps in interval (0, t], whereas ϕ0 refers to the case when the number

of upward and downward jumps concide.

We also remark that Proposition 5.3.1 is an immediate extension of Proposition 4.1

of [38], which concerns the case of exponentially distributed interarrival times. In

Figures 5.2÷5.7 we show some plots of density p(x, t) obtained in Proposition 5.3.1

for three choices of ν and two choices of the switching intensities. The Mittag-Leffler

function with three parameters has been evaluated by means of the MATLAB R© rou-

tine:

Garrappa, Roberto. The Mittag-Leffler function.

https://it.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-

function?requestedDomain=www.mathworks.com

MATLAB Central File Exchange. Updated December 07, 2015.

We first observe that the vertical asymptotes of density p(x, t) are due to the singular

behaviour at 0+ of the Mittag-Leffler distribution. Similarly to the case of exponen-

tially distributed interarrival times (cf. Figures 2 and 3 of [38]), at the beginning of

the motion the probability mass is concentrated in a neighbourhood of the origin

and of ±α (due to the occurrence of a small number of jumps). As time grows

larger, the singularities are shifted towards the endpoints of the spatial interval and

the effect of further velocity changes and jumps makes the density smoother and

smoother, so that the probability mass is spread over the whole diffusion domain.

Let us now analyse the mean displacement of the particle, described by Xt, when

the upward and downward jumps are constant, and possibly different.

Proposition 5.3.2. Let αj = α and βj = β for all j ∈ N, and let both U and D

be Mittag-Leffler distributed with parameters (λ, ν). Let P(V0 = c) = P(V0 = −v) =

1/2. Then, for t > 0 we have

E(Xt|X0 = 0) =
1

2

[
(c− v) t+ (α− β)

λtν

Γ (ν + 1)

]
. (5.16)

Proof. The proof is similar to that of Proposition 4.5 of [38]. Indeed, denoting by

Ey(·) the mean conditional on V0 = y ∈ {−v, c}, from (5.1) we need to compute

E(Xt|X0 = 0) =
1

2

[∫ t

0

Ec(Vs) ds+

∫ t

0

E−v(Vs) ds

+ Ec

(
Nt∑
k=1

wk

)
+ E−v

(
Nt∑
k=1

wk

)]
.
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By setting

pr(t) = P(Nt = r),

we have (cf. (2.33) and Remark 3.4 of [18])

Ec

(
Nt∑
k=1

wk

)
=
α− β

2

+∞∑
n=0

n pn(t)− α + β

2

+∞∑
n=0

p2n+1(t)

=
α− β

2

λtν

Γ(ν + 1)
+
α + β

2
λtνEν,ν+1 (−2λtν) . (5.17)

Moreover, due to formula (2.30) of [18], we have

E
[
(−1)Nλ(s)

]
= Eν,1 (−2λsν) . (5.18)

(See also Ferraro et al. [51], where the autocovariance function for a random tele-

graph signal of Mittag-Leffler type is studied). Then, from (5.2),∫ t

0

Ec(Vs) ds =
c− v

2
t+

c+ v

2
tEν,2(−2λtν). (5.19)

Similarly to Eqs. (5.17) and (5.19), we have:

E−v

(
Nt∑
k=1

wk

)
=
α− β

2

λtν

Γ(ν + 1)
− α + β

2
λtνEν,ν+1 (−2λtν)

and ∫ t

0

E−v(Vs) ds =
c− v

2
t− c+ v

2
tEν,2(−2λtν). (5.20)

Therefore, the thesis follows from Eqs. (5.17)-(5.20).

Let us now discuss some features of the mean given in (5.16). First of all, we note

that the linear term (c−v)t has to be attributed to the alternating motion, the term

(α−β)λtν/Γ(ν+1) is related to the jump component of the motion, characterized by

Mittag-Leffler distributed intertimes, and the factor 1/2 is due to the random initial

velocity V0. Eq. (5.16) is in agreement with Eq. (39) of [38] for the jump-telegraph

process with exponentially distributed intertimes, that we recover for ν = 1.

In Table 5.1 we provide the mean of some fractional stochastic processes that can

be compared with the conditional mean of Xt determined in (5.16). We note that

cases (vi), (vii) and (viii) refer to birth-death type processes with n0 progenitors.

Moreover, the fractional Poisson process (i) becomes identical to Xt for c = v = 0

(no telegraph component), α = 1 and β = −1 (upward jumps of size 1 occur at

every event of the underlying fractional Poisson process). A similar remark holds
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for the process with multiple jumps (iv).The mean of the jump-telegraph process Xt,

under the assumptions of Proposition 5.3.2, vanishes in the symmetric case when

c = v and α = β, as well as for the symmetric fractional (telegraph) process studied

in [107] (case (ix) of Table 5.1). Figure 5.8 shows the means considered in cases

(i)÷(viii) of Table 5.1, for two choices of ν, with λ = 1, µ = 0.5 and n0 = 10,

and for k = 3 and λ1 = λ2 = λ3 = 1 in case (iv). The asymptotic behaviour of

the means given in Table 5.1 is finally provided in Table 5.2, obtained thanks to

formulas (4.4.16) of Gorenflo et al. [57] and (A.3) of [134]. In case (viii) of Table

5.2, γ ' 0.577216 is the Euler’s constant and ψ(z) = Γ′(z)/Γ(z) is the digamma

function, i.e. the logarithmic derivative of the gamma function.

Table 5.1: Expected values of some processes of interest

fractional process mean value ref.

(i) Poisson process λtν

Γ(ν+1)
[18]

(ii) alternative Poisson process λt
ν

Eν,ν(λt)

Eν,1(λt)
[17]

(iii) 2nd-order Poisson process λtν

2Γ(ν+1)
− λtν

2
Eν,ν+1(−2λtν) [18]

(iv) Poisson process with jumps 1, . . . , k
∑k
j=1 jλjt

ν

Γ(ν+1)
[40]

(v) linear birth process Eν,1(λtν) [108]
(vi) linear birth-death process n0Eν,1((λ− µ)tν) [109]
(vii) linear death process n0Eν,1(−µtν) [112]
(viii) sublinear death process

∑n0

j=1

(
n0+1
j+1

)
(−1)j+1Eν,1(−µjtν) [112]

(ix) telegraph process 0 [107]

Table 5.2: Asymptotic behaviour of the means of some processes of interest

(i) λtν

Γ(ν+1)
(v) exp{λ1/νt}

ν

(ii) (λt)1/ν

ν
(vi) n0

exp{(λ−µ)1/νt}
ν

, for λ > µ
(iii) λtν

2Γ(ν+1)
− 1

4
(vii) n0

1
Γ(1−ν)µtν

(iv)
∑k
j=1 jλjt

ν

Γ(ν+1)
(viii) 1

Γ(1−ν)µtν
(n0 + 1)[γ − 1 + ψ(n+ 2)]

We conclude this section with the following theorem, which gives the conditional

distribution of Xt in absence of jumps, recovered by applying Theorem 2.1 of [33].

We omit the proof since it proceeds similarly to that of Theorem 5.2.1.

Theorem 5.3.1. Let U and D have Mittag-Leffler distribution with parameters

(λ, ν) and (µ, ν) respectively, and let α = β = 0. For all t > 0 we have

P[Xt = ct, Vt = c |X0 = 0, V0 = c] = Eν,1(−λtν);
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moreover, for −vt < x < ct it holds

f(x, t | c) =
1

c+ v

+∞∑
k=1

{
µk
(
ct− x
c+ v

)νk−1

Ek
ν,νk

(
−µ
(
ct− x
c+ v

)ν)
×

×λk
(
vt+ x

c+ v

)νk
Ek+1
ν,νk+1

(
−λ
(
vt+ x

c+ v

)ν)}
,

b(x, t | c) =
1

c+ v

+∞∑
k=0

{
λk+1

(
vt+ x

c+ v

)ν(k+1)−1

Ek+1
ν,ν(k+1)

(
−λ
(
vt+ x

c+ v

)ν)
×

×µk
(
ct− x
c+ v

)νk
Ek+1
ν,νk+1

(
−µ
(
ct− x
c+ v

)ν)}
,

and

b(x, t | − v) =
1

c+ v

+∞∑
k=1

{
λk
(
vt+ x

c+ v

)νk−1

Ek
ν,νk

(
−λ
(
vt+ x

c+ v

)ν)
×

×µk
(
ct− x
c+ v

)νk
Ek+1
ν,νk+1

(
−µ
(
ct− x
c+ v

)ν)}
,

f(x, t | − v) =
1

c+ v

+∞∑
k=0

{
µk+1

(
ct− x
c+ v

)ν(k+1)−1

Ek+1
ν,ν(k+1)

(
−µ
(
ct− x
c+ v

)ν)
×

×λk
(
vt+ x

c+ v

)νk
Ek+1
ν,νk+1

(
−λ
(
vt+ x

c+ v

)ν)}
.

5.4 First-passage-time problem

In this section we study the distribution of the (upward) first-passage time of Xt

through a constant barrier, say γ > 0, conditional on the initial state

τγ = inf {t ≥ 0 : Xt ≥ γ} , X0 = 0, V0 = c. (5.21)

The downward case can be treated similarly. Hereafter we express the probability

distribution of (5.21) in terms of the following subdensity functions:

gγ(t;n)dt := P (τγ ∈ dt, Nt = n) =
d

ds
P (τγ ≤ s,Nt = n)

∣∣∣
s=t
, n ∈ N.
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Proposition 5.4.1. For t > 0 it holds:

P (τγ ∈ dt) = Eν,1(−λtν)δ γ
c
(dt) +

+∞∑
k=0

gγ(t; 2k + 1)dt+
+∞∑
k=1

gγ(t; 2k)dt, (5.22)

where

gγ(t; 2k + 1)dt = P
(
cU (i) − vD(i−1) + α(i) − β(i−1) < γ, i = 1, . . . , k,

U (k+1) +Dk ∈ dt, cU (k+1) − vD(k) + α(k+1) − β(k) ≥ γ
)
, (5.23)

and

gγ(t; 2k)dt = P
(
cU (i) − vD(i−1) + α(i) − β(i−1) < γ, i = 1, . . . , k,

γ − α(k) + β(k) + (c+ v)D(k)

c
∈ dt

)
. (5.24)

Proof. By the law of total probability, we can express the conditional distribution

of τγ in the form

P (τγ ∈ dt) = P (U1 > t) δ γ
c
(dt) +

+∞∑
j=1

P (τγ ∈ dt, Nt = j) , (5.25)

where δγ/c is the Dirac’s delta measure at γ/c corresponding to the motion without

any direction switchings. Moreover, in Eq. (5.25), the series in the right-hand side

represents the absolutely continuous part of the distribution with the condition of

at least one direction reversal, and Nt is the fractional alternating Poisson process

introduced in Section 5.2. We also recall that U1 has a Mittag-Leffler distribution

with parameters (λ, ν). We consider two cases, namely when Nt is odd, and when

Nt is even. If by time t there have been 2k + 1, k ≥ 0, changes of direction (k + 1

upward and k backward), then the particle crosses level γ for the first time owing

to the effect of the (k + 1)th upward jump. If by time t there have been 2k, k ≥ 1,

changes of direction (k upward and k backward), then the first passage of the particle

through level γ is due to the effect of the upward motion after the last renewal event.

Recalling (5.5), this implies that density (5.25) becomes

P (τγ ∈ dt) = P (U1 > t) δ γ
c
(dt) +

+∞∑
k=0

gγ(t; 2k + 1)dt+
+∞∑
k=1

gγ(t; 2k)dt,

where gγ(t; 2k + 1)dt and gγ(t; 2k)dt have been expressed in (5.23) and (5.24). The

final expression (5.22) thus follows.
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We remark that formula (5.22) is formally effective, but the determination of an

explicit form of gγ(t; k) is hard to be obtained when k is large. Nevertheless, the

above result is useful since

ĝγ(t; k) :=
k∑
i=1

gγ(t; i), k ∈ N, (5.26)

constitutes a sequence of increasing lower bounds for P (τγ ∈ dt) when k grows. In

conclusion, Fig. 5.9 shows some plots of ĝγ(t; k), for k = 1, 2, 3 and for various

choices of the parameters involved, these giving lower bounds for the distribution

(5.25).
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Figure 5.2: Plots of density p(x, t) obtained in Proposition 5.3.1, for c = v = 1,
λ = µ = 1, α = 1 and ν = 0.5, when (a) t = 0.25, (b) t = 0.75, (c) t = 1.25, (d)
t = 10.

Figure 5.3: As in Fig. 5.2, with µ = 2.
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Figure 5.4: Plots of density p(x, t) obtained in Proposition 5.3.1, for c = v = 1,
λ = µ = 1, α = 1 and ν = 0.7, when (a) t = 0.25, (b) t = 0.75, (c) t = 1.25, (d)
t = 10.

Figure 5.5: As in Fig. 5.4, with µ = 2.
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Figure 5.6: Plots of density p(x, t) obtained in Proposition 5.3.1, for c = v = 1,
λ = µ = 1, α = 1 and ν = 0.95, when (a) t = 0.25, (b) t = 0.75, (c) t = 1.25, (d)
t = 10.

Figure 5.7: As in Fig. 5.6, with µ = 2.
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Figure 5.8: Expected values of the processes considered in Table 5.1.
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Figure 5.9: Plots of bounds (5.26) for γ = 2, α = β = 1, c = v = 1, λ = µ = 1 and
(a) ν = 0.5, (b) ν = 0.85, and for γ = 10, α = 2, β = 1, c = 2, v = 1, λ = 2, µ = 1
and (c) ν = 0.5, (d) ν = 0.85. The cases k = 1 (continuous line), k = 2 (dotted
line), and k = 3 (dashed line) are considered.
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Chapter 6

Competing risks driven by

Mittag-Leffler distributions, under

copula and time transformed

exponential model

6.1 Introduction

As recalled in Section 1.2, the Mittag-Leffler distribution was introduced by Pillai

in [122] in terms of the Mittag-Leffler function as a fractional generalization of the

exponential distribution. Its main features are: being singular at zero, completely

monotonic, long-tailed and geometrically infinitely divisible. Disparate phenomena

follow power law distributions in their tails. For example, there is increasing evidence

that the timing of many human activities, ranging from financial market transac-

tions and communication to entertainment and work patterns, follow non-Poisson

statistics, characterized by bursts of rapidly occurring events separated by long peri-

ods of inactivity. See Engle and Russel [48] and Barabasi [9] and references therein,

for instance. A recent contribution to the issue of the stationarity of the inter-event

power-law distributions has been given by Gandica et al. [54] Over the years, many

researchers have shown interest in deepening and generalizing Pillai’s results (cf. for

instance [52], [88], [2], [78] and [76]). The Mittag-Leffler distribution has been found

to be useful in a variety of applications. For example, in the fundamental paper of

Hilfer and Anton [64] the correspondence between continuous time random walks

(CTRWs) with Mittag-Leffler distributed waiting times and the time-fractional dif-

fusion equation is highlighted. CTRWs, under suitable hypothesis, are successfully

used to model normal and anomalous diffusion phenomena in physics (e.g. cf. [149]
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for an insight on the role of the Mittag-Leffler distribution in the Cole-Cole relax-

ation phenomena), in finance and economics (cf. [136] and references therein for a

minireview on the topic), in queueing theory (cf. [65] for a work on sales forecast

and planning). At the start of the 21st century many papers began to appear about

the fractional generalization of the pure and compound Poisson processes, replacing

the exponential waiting time distribution by a distribution given via a Mittag-Leffer

function with modified argument (see, for instance, [94], [17] and [100]). Therefore,

the direct involvement of such probability distribution in different areas of modern

science stimulates us to propose a competing risks model governed by Mittag-Leffler

distribution, even showing a connection between the quantities of interest and cer-

tain fractional stochastic processes, so to be able to deal with heavy-tailed data. In

the past decades some papers have appeared in this direction (e.g. [119] and [28]).

We mention that the competing risks approach is also adopted in some contexts of

Economics and Finance dealing with data observations containing severe outliers

(see, for instance, [3]). The setting of competing risks models based on heavy-tailed

distributions, such as the Mittag-Leffler one, is thus welcome.

Several authors considered the problem of establishing or testing the independence

between the competing cause and the failure time, this being a relevant issue in this

field (cf. for instance [47] and [31]). To this extent, it is interesting to note that

the proposed model exhibits the above-mentioned independence property. We also

remark that, even though in some applications such independence is unusual, certain

stochastic models properly include this property. See, for instance, the competing

risks model considered in [36], in which system failures are due to shock models

governed by a bivariate Poisson process.

We also investigate a competing cause setting in which the actual number of com-

peting causes is a latent discrete random variable. Many researchers have shown

interest in this scenario, since it turns out to be useful, among the other things, to

describe cure rate models (cf. [6] and [7]) and from a finantial point of view (see

[4] and [5]). The problem of identifying the distribution of the risks under copula

functions and the time transformed exponential model is also considered in the more

general case of arbitrary underlying distributions.

The chapter is organized as follows. In Section 6.2 we recall some essential aspects of

the competing risks model. In Section 6.3 we describe a Mittag-Leffler distribution-

based model, focusing on the quantities of interest and showing a relation with

fractional random growth phenomena. We also prove the independence between the

time to failure and the cause of failure, and show that hazard rates cross when one

of the parameters varies. Then we restrict our attention to some ageing properties

of the lifetimes involved in the competing risks model. In Section 6.4 we face the
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problem of identifying the distribution of failure times when their joint distribution

is expressed by means of copulas and the time transformed exponential model. Some

special cases regarding the Mittag-Leffler distribution-based model are treated nu-

merically. In Section 6.5 we adapt the model studied in Section 6.3 to the case of

a random number of independent competing risks. Even in this setting we are able

to show an interesting relationship with a fractional stochastic process. As a case

study, we consider a certain mixture of Mittag-Leffler distributions. An estimation

method for the parameters of such distribution, based on fractional moments, is

implemented.

6.2 Background on competing risks

Consider a competing risks problem in which a subject is exposed to n causes of

failure, with n ∈ N, and the occurrence of one of these will prevent any other

competing event from ever happening. Let X = (X1, X2, . . . , Xn) be a vector of

non-negative and not necessarily independent random variables, where Xi describes

the lifetime of the subject when its failure is due to the i-th risk, i ∈ {1, 2, . . . , n}.
Setting x := (x1, x2, . . . , xn), we denote by

F (x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

the joint cumulative distribution function of X and assume that it is absolutely

continuous, so that P(Xi = Xj) = 0 for all i 6= j. Moreover, let

F (x) = P(X1 > x1, X2 > x2, . . . , Xn > xn) (6.1)

be the survival function of X. Let T = min(X1, X2, . . . , Xn) be the observable

lifetime and δ the competing event, i.e. δ = i if and only if T = Xi, (i = 1, 2, . . . , n).

Their distributions can be expressed in terms of the so-called sub-distribution and

sub-survival functions:

F ∗i (x) = P(T ≤ x, δ = i), F
∗
i (x) = P(T > x, δ = i), (6.2)

with x ≥ 0 and i = 1, 2, . . . , n. Indeed, from (6.2) and from the law of total

probability we have, for x ≥ 0,

FT (x) = P(T ≤ x) =
n∑
i=1

F ∗i (x), F T (x) = P(T > x) =
n∑
i=1

F
∗
i (x), (6.3)
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and

P(δ = i) = F
∗
i (0). (6.4)

We remark that from (6.1) and the second of (6.2) one has the following property

of the sub-survival functions F
∗
i (x), i = 1, 2, . . . , n that will be used later:

d

dx
F
∗
i (x) =

∂

∂xi
F (x)

∣∣∣
x1=···=xn=x

. (6.5)

Such property can be proved as follows (cf. [23], and [146] for an alternative proof).

Since F (x) is absolutely continuous, there exists a function f(x1, x2, . . . , xn) such

that

F (x) = P(X1 > x1, X2 > x2, . . . , Xn > xn) =

∫ ∞
x1

· · ·
∫ ∞
xn

f(s1, s2, . . . , sn)ds1 . . . dsn.

Therefore,

F
∗
i (x) = P(T > x, δ = i)

= P(min(X1, X2, . . . , Xn) > x, δ = i)

= P(Xk > x,Xi ≤ Xk ∀k)

= P(Xi > x,Xk ≥ Xi ∀k)

=

∫ +∞

x

{∫ +∞

xi

· · ·
∫ +∞

xi

f(s1, s2, . . . , sn)
∏
k 6=i

dsk

}
dsi

=

∫ +∞

x

{
− ∂

∂xi
F (x)

∣∣∣
xk=xi ∀k

}
dsi.

Consequently,

− d

dx
F
∗
i (x) = − ∂

∂xi
F (x)

∣∣∣
x1=···=xn=x

.

For i = 1, 2, . . . , n and x ≥ 0, let us introduce the cause specific hazard rate (CSHR)

corresponding to the i-th cause of failure:

hi(x) = lim
τ→0+

1

τ
P(x < T ≤ x+ τ, δ = i |T > x).

We observe that F T (x) = F (x, . . . , x), x ≥ 0. In fact, to be alive at time x, all of the

potential failure times have to exceed x. From (6.5), the CSHR can be expressed as

hi(x) = − 1

F (x, . . . , x)

∂

∂xi
F (x)

∣∣∣
x1=···=xn=x

= − 1

F T (x)

∂

∂x
F
∗
i (x).
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Therefore, the following identities hold:

F ∗i (x) =

∫ x

0

hi(s)F T (s) ds, F
∗
i (x) =

∫ +∞

x

hi(s)F T (s) ds, (6.6)

for x ≥ 0 and i = 1, 2, . . . , n. Moreover, the hazard rate of T is given by

hT (x) = − d

dx
lnF T (x) =

n∑
i=1

hi(x), x ≥ 0. (6.7)

We remark that the sub-survival functions can be expressed as

F
∗
i (x) = F

∗
i (0) exp

{
−
∫ x

0

ri(s) ds

}
, x ≥ 0,

where, for x ≥ 0 and i = 1, 2, . . . , n,

ri(x) = − d

dx
lnF

∗
i (x) = lim

τ→0+

1

τ
P (x < T ≤ x+ τ |T > x, δ = i) . (6.8)

Indeed,

− d

dx
lnF

∗
i (x) = − 1

F
∗
i (x)

d

dx
F
∗
i (x)

= − 1

F
∗
i (x)

lim
τ→0+

F
∗
i (x+ τ)− F ∗i (x)

τ

= − 1

F
∗
i (x)

lim
τ→0+

P(T > x+ τ, δ = i)− P(T > x, δ = i)

τ

=
1

F
∗
i (x)

lim
τ→0+

P(T > x, δ = i)− P(T > x+ τ, δ = i)

τ

= lim
τ→0+

1

τ

P(x < T ≤ x+ τ, δ = i)

P(T > x, δ = i)

= lim
τ→0+

1

τ

P(x < T ≤ x+ τ, T > x, δ = i)

P(T > x, δ = i)

= lim
τ→0+

1

τ
P (x < T ≤ x+ τ |T > x, δ = i) .
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Moreover, recalling (6.8), if x ≥ 0,

F
∗
i (0) exp

{
−
∫ x

0

ri(s) ds

}
= F

∗
i (0) exp

{∫ x

0

d

ds
lnF

∗
i (s) ds

}
= F

∗
i (0) exp

{
lnF

∗
i (s)

∣∣∣x
0

}
= F

∗
i (0) exp

{
ln
F
∗
i (x)

F
∗
i (0)

}
= F

∗
i (x).

We note that, in general, hT (x) 6≡
∑n

i=1 ri(x).

As is well known, the random lifetime T of an item is said to be NBU [NWU]

(new better [worse] than used) if F T (t + x) ≤ [≥]F T (t)F T (x) for all x, t ≥ 0.

This means that the probability that an item of age t survives for an additional

duration x is less [greater] than, or equal to, the probability that a brand new item

survives for a duration x, whatever x and t. This ageing notion was extended in

[35] to the framework of the competing risks model. Indeed, the random lifetime

Xi, i ∈ {1, 2, . . . , n}, is NBU∗ [NWU∗] if and only if

F
∗
i (x | t) ≡

F
∗
i (t+ x)

F T (t)
≤ [≥]F

∗
i (x) ∀ x ≥ 0, t ∈ T ,

where T = {s ≥ 0 : F T (s) > 0} and

F
∗
i (x | t) = P(T > t+ x , δ = i |T > t), x ≥ 0, t ∈ T .

In other words, the probability that an item of age t survives for an additional

duration x and that the cause of failure will be the i-th, is less [greater] than or

equal to the probability that a brand new item survives for a duration x and that

the cause of failure will be the i-th, for all x and t.

6.3 A Mittag-Leffler distribution-based model

Let λ1, λ2, . . . , λn be positive parameters and let Λn := λ1 + λ2 + · · · + λn. With

reference to (6.2), we suppose that the i-th sub-distribution function, for x ≥ 0 and

i ∈ {1, 2, . . . , n}, reads

F ∗i (x) = P(T ≤ x, δ = i) = λix
νEν,ν+1(−Λnx

ν), (6.9)

where Eα,β(x) is the (two-parameter) Mittag-Leffler function (1.10).
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In Fig. 6.1 we show some plots of the sub-distribution functions given in (6.9) in

the presence of two competing risks. We generated such plots by making use of

the Mathematica R© built-in function Plot. The Mittag-Leffler function with two

parameters is implemented in the Wolfram Language as MittagLefflerE[a,b,z].

We see that F ∗1 (t) [F ∗2 (t)] is increasing [decreasing] when λ1 increases, for fixed t and

λ2. In the following proposition we see that T follows the Mittag-Leffler distribution.
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Figure 6.1: Sub-distribution functions given in (6.9), for n = 2, ν = 0.5 and λ2 = 1: (a)
F ∗1 (t) and (b) F ∗2 (t).

Proposition 6.3.1. For the model specified in (6.9), the probability of failure due

to the i-th risk, and the probability of failure before time x read respectively

P(δ = i) =
λi
Λn

, i ∈ {1, 2, . . . , n}

and

FT (x) = P(T ≤ x) = Λnx
νEν,ν+1(−Λnx

ν), x ≥ 0. (6.10)

Proof. Due to the asymptotic behaviour of the Mittag-Leffler function (cf. [135]),

i.e.

Eα,β(z) ∼ O
(
|z|−1) , |z| > 1,

we obtain from (6.9), for i ∈ {1, 2, . . . , n},

P(δ = i) = lim
x→+∞

F ∗i (x) =
λi
Λn

. (6.11)

In other words, the competing risks are classified as type i via independent Bernoulli

trials with probability λi
Λn
, i ∈ {1, 2, . . . , n}. Furthermore, from the first of (6.3) it

is immediate to obtain the distribution of the observable lifetime (6.10).

With regard to Proposition 2.2 of [42], the time to failure T has the same distribution
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as the interarrival time of the fractional growth process with n kinds of jumps

Mν(t)
d
=

N ν
Λn

(t)∑
k=1

Xk, t ≥ 0,

where N ν
Λn

(t) is a fractional Poisson process with intensity Λn (see [18] for details),

and {Xk : k ≥ 1} is a sequence of independent random variables, independent of

N ν
Λn

(t) given the parameters λ1, λ2, . . . , λn, and such that, for any positive integer

k,

Xk
d
= X = i, w.p.

λi
Λn

, i ∈ {1, . . . , n}. (6.12)

As it turns out, the probability of failure due to the i-th risk (6.11) is the same as

the probability (6.12) of occurrence of a jump of size i.

We recall here the expression for the q-th moment, q < ν, of the random lifetime T

having distribution (6.10). Such formula was derived in [122]:

E[T q] =
qπ

νΛ
q/ν
n Γ(1− q) sin(qπ/ν)

, q < ν.

We remark that the moments of T of order greater than ν are infinite.

In Fig. 6.2 we show some plots of the distribution function FT (x) given in (6.10)

and of the corresponding survival function,

F T (x) = P(T > x) = 1− Λnx
νEν,ν+1(−Λnx

ν), x ≥ 0, (6.13)

when n = 2. The expression for the sub-survival functions given in the second
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Figure 6.2: Distribution functions (a) given in (6.10) for λ1 = λ2 = 1 and survival
functions (b) given in (6.13), for ν = 0.5 and λ2 = 1, n = 2.

of (6.2) can be easily derived. In fact, from the law of total probability we can

express the probability of failure due to the i-th risk as the sum of the i-th sub-

distribution function and the i-th sub-survival function, i.e.

F ∗i (x) + F
∗
i (x) = P(δ = i), i = 1, 2, . . . , n,
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so that, from (6.11) and (6.9),

F
∗
i (x) =

λi
Λn

− λixνEν,ν+1(−Λnx
ν), i = 1, 2, . . . , n. (6.14)

In Fig. 6.3 some plots of the sub-distribution and sub-survival functions given in (6.9)

and (6.14) are shown.
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Figure 6.3: Sub-distribution and sub-survival functions given in (6.9) and (6.14) respec-
tively, when n = 2, for λ1 = λ2 = 1, (a) F ∗1 (t) = F ∗2 (t) and (b) F

∗
1(t) = F

∗
2(t).

Proposition 6.3.2. For the model (6.9), the cause specific hazard rate corresponding

to the i-th cause of failure, i ∈ {1, 2, . . . , n}, and the overall hazard rate from all

causes read, for x ≥ 0, respectively

hi(x) =
λix

ν−1Eν,ν(−Λnx
ν)

1− ΛnxνEν,ν+1(−Λnxν)
(6.15)

and

hT (x) =
Λnx

ν−1Eν,ν(−Λnx
ν)

1− ΛnxνEν,ν+1(−Λnxν)
. (6.16)

Proof. The expression for the cause specific hazard rate corresponding to the i-

th cause of failure is derived owing to the first of (6.6), to (6.9) and (6.13) and

applying the fundamental theorem of calculus. From (6.7), expression (6.16) easily

follows.

In Fig. 6.4 and in Fig. 6.5 some plots of the hazard rates (6.16) and of the cause

specific hazard rates (6.15) are displayed, limited to the case of two competing risks.

We now focus on the independence between the failure time and the cause of failure.

Indeed, the following proposition holds.

Proposition 6.3.3. With respect to the model (6.9), the observable lifetime T and

the cause of failure δ prove to be independent.

Proof. Owing to (6.10) and (6.11), the i-th sub-distribution function (6.9) F ∗i (x)

factorizes as FT (x)P(δ = i), i ∈ {1, 2, . . . , n}, x ≥ 0.
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Figure 6.4: Hazard rates given in (6.16), when n = 2, for (a) ν = 0.5 and λ2 = 1, (b)
λ1 = λ2 = 1.

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

2.0

2.5

h1HtL
HaL

Λ1=5

Λ1=2.5

Λ1=2

Λ1=1.5

Λ1=1

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

h2HtL
HbL

Λ1=1

Λ1=1.5

Λ1=2

Λ1=2.5

Λ1=5

Figure 6.5: Cause specific hazard rates given in (6.15), for n = 2, ν = 0.5 and λ2 = 1:
(a) h1(t) and (b) h2(t).

Equivalently, we can observe that T and δ are independent since the cause specific

hazard rates h1(x), . . . , hn(x) of X1, . . . , Xn, whose expression is provided by (6.15),

are proportional to each other.

Remark 6.3.1. With reference to Remark 2.1 of [35], the independence of T and

δ ensures that r1(t) = r2(t) = · · · = rn(t) = hT (t) for all t ≥ 0, where ri(t), i =

1, 2, . . . , n, and hT (t) have been expressed in (6.8) and (6.16), respectively.

Remark 6.3.2. Crossing hazard rate functions are interesting for survival analysis.

Indeeed, one is interested in comparing two hazard rate functions for evaluating a

treatment effect over a period of time. In relation to the model (6.9), from (6.16)

we have that the hT (x)’s intersect when the parameter ν varies (cf. Fig. 6.4(b)). To

fix ideas, let 0 < ν1 < ν2 ≤ 1 and let h1
T (x) and h2

T (x) be the two corresponding

hazard rates, that is to say:

h1
T (x) =

Λnx
ν1−1Eν1,ν1(−Λnx

ν1)

1− Λnxν1Eν1,ν1+1(−Λnxν1)
, x ≥ 0,

and

h2
T (x) =

Λnx
ν2−1Eν2,ν2(−Λnx

ν2)

1− Λnxν2Eν2,ν2+1(−Λnxν2)
, x ≥ 0.

By resorting to the asymptotic representation of the Mittag-Leffler function as t→ 0
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and t→ +∞ (cf. [144] and Remark 2.3 of [18]), we have the following:

ψ(x) := h2
T (x)− h1

T (x) ∼


Λn

x1−ν2

(
1

Γ (ν2)
− 1

Γ (ν1)xν2−ν1

)
, x→ 0+,

ν2 − ν1

x
, x→ +∞.

Due to continuity and Bolzano’s Theorem, since ψ(0+) = −∞ and ψ(x) → 0+ as

x → +∞, it follows that ψ(x) must be 0 at some point, this showing that h1
T (x)

and h2
T (x) intersect at least once.

We conclude this section with an interesting result concerning an ageing notion of

the random lifetimes X1, X2, . . . , Xn.

Proposition 6.3.4. As for the model (6.9), the random lifetimes X1, X2, . . . , Xn

are NWU∗.

Proof. As pointed out in [39], the time to failure T has the decreasing likelihood

ratio (DLR) property. Therefore, the random lifetime T belongs to the NWU class

too. Hence, since T and δ are independent, the result straightforwardly holds due

to Theorem 3.2 of [35].

6.4 Identifiability problem under copula and TTE

models

This section is devoted to the identification of the underlying distribution of latent

failure times and is inspired by the work of [69]. Identifiability, however, is not a

recent topic (see [138] and [148] and references therein to get an insight into the

problem). We highlight that the results presented hereafter have general validity

and that in Subsection 6.4.1 we will show an application to the model (6.9). Specif-

ically, we now tackle the problem of evaluating the so-called net survival functions

F i(x) := P(Xi > x), for x ≥ 0 and i = 1, . . . , n. We note that F i(x) is the marginal

survival function, due to i-th cause alone, associated with the joint multivariate

survival function (6.1). We will obtain estimates of the net survival functions F i(x)

on the basis of the sub-survival functions F
∗
i (x) defined in (6.2) by solving a sys-

tem of non-linear differential equations, which connects the two sets of functions.

The downside is that we need to impose a certain dependence structure to charac-

terize the joint distribution of the random vector X = (X1, . . . , Xn). One way to

do so is, for instance, to use copulas, as outlined in Theorem 6 of [23]. In prob-

abilistic terms, a function C : [0, 1]n → [0, 1] is a n-dimensional copula if C is a

joint cumulative distribution function of a n-dimensional random vector on the unit
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cube [0, 1]n with uniform marginals. The copula C contains all information on the

dependence structure between the components of the random vector, whereas the

marginal cumulative distribution functions contain all information on the marginal

distributions. Let us fix a copula function C(u1, . . . , un) for the joint distribution of

X.

Theorem. If C(u1, . . . , un) is differentiable with respect to ui ∈ (0, 1) and F i(xi) is

differentiable with respect to xi > 0 for all i = 1, . . . , n, then

d

dx
F
∗
i (x) = Ci[F 1(x), . . . , F n(x)]

d

dx
F i(x), (6.17)

where Ci(u1, . . . , un) = ∂
∂ui
C(u1, . . . , un).

In order to evaluate the functions of interest, we only need to specify a suitable

copula, assign a value to its parameters, give estimates of the sub-survival functions

and then solve the system numerically.

Since we focus on the bivariate case in the sequel, we first define in analytic terms

a two-dimensional copula.

Definition. A copula is a function C : [0, 1]2 → [0, 1] with the following properties:

1. For every x, y ∈ [0, 1],

C(x, 0) = 0 = C(0, y)

and

C(x, 1) = u and C(1, y) = y;

2. For every x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2 and y1 ≤ y2,

C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0.

We now aim to show a case in which X1 and X2 turn out to be identically dis-

tributed. Let C = C(x, y) be a bivariate copula. The following result ensures the

existence of the partial derivatives ∂C(x, y)/∂x and ∂C(x, y)/∂y for almost all x

and y, respectively.

Theorem (Theorem 2.2.7 of [103]). Let C be a copula. For any y ∈ [0, 1], the partial

derivative ∂C(x, y)/∂x exists for almost all x, and for such y and x,

0 ≤ ∂

∂x
C(x, y) ≤ 1.
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Similarly, for any x ∈ [0, 1], the partial derivative ∂C(x, y)/∂y exists for almost all

y, and for such x and y,

0 ≤ ∂

∂y
C(x, y) ≤ 1.

Furthermore, the functions x 7→ ∂C(x, y)/∂y and y 7→ ∂C(x, y)/∂x are defined and

nondecreasing almost everywhere on [0, 1].

We are interested, as we shall see later, in the equality of such derivatives, which is

attained if and only if C(x, y) = C(x + y). However, the class of copulas satisfying

this property is quite restricted, as the following lemma shows.

Lemma 6.4.1. The Fréchet-Hoeffding lower bound

C(x, y) = max{0, x+ y − 1}, 0 ≤ x, y ≤ 1, (6.18)

is the only copula which depends exclusively on the sum of its arguments.

Proof. It follows directly from the properties which define a copula.

If we choose the copula function (6.18) in system (6.17), under the hypothesis of

independence of T and δ, the distributions of the risks Xi, i = 1, 2, prove to be

identical, as is shown in the following Proposition.

Proposition 6.4.1. Let the joint distribution of X = (X1, X2) be governed by the

Fréchet-Hoeffding copula (6.18). If T , the observable lifetime, and δ, the cause of

failure, are independent, then X1 and X2 are identically distributed.

Proof. Due to the hypotesis of independence, we have F
∗
i (x) = F

∗
i (0)F T (x), i = 1, 2.

From (6.17), by observing that, due to Lemma 6.4.1, the partial derivatives of (6.18)

coincide, we have
F 1(x)

F 2(x)
=
F
∗
1(0)

F
∗
2(0)

, x ≥ 0.

By taking x = 0 in the latter identity, the thesis immediately follows.

Another way to impose a dependence structure is to assume that the random life-

times X1 and X2 follow the time transformed exponential (TTE) model. Specifically,

we assume that the joint survival function of X1 and X2 may be expressed in the

following way:

F (x) = P(X1 > x1, X2 > x2) = W [R1(x1) +R2(x2)], x1, x2 ≥ 0, (6.19)

where W : [0,+∞)→ [0, 1] is a continuous, convex, and strictly decreasing survival

function, such that W (0) = 1 and limx→+∞W (x) = 0, and where Ri : [0,+∞) →
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[0,+∞) is a continuous and strictly increasing function, such that Ri(0) = 0 and

limx→+∞Ri(x) = +∞ for i = 1, 2. Functions W and Ri, i = 1, 2, provide the

time transform and the accumulated hazards, respectively. The marginal survival

functions are given by

F 1(x1) = W [R1(x1)], x1 ≥ 0, F 2(x2) = W [R2(x2)], x2 ≥ 0. (6.20)

The classical TTE model refers to the case in which the accumulated hazards R1

and R2 in Eq. (6.19) are identical (cf. [11] and [121] for further details on this model

and its applications). Nevertheless, similarly as in [44], here we consider the more

general case of unequal accumulated hazards, so that X1 and X2 have different

marginal survival functions due to (6.20). As in [44], the following notation will be

used for the model (6.19): X ∼ TTE(W,R1, R2). The TTE model is important in

survival analysis, in that it allows us to separate dependence from ageing properties.

For the TTE model we can prove a result analogous to (6.17). Indeed, the following

theorem holds.

Theorem 6.4.1. For the TTE model (6.19), if W (x) is differentiable with respect

to x, x ∈ [0,+∞), and Ri(x) is differentiable with respect to x > 0 for i = 1, 2, then

d

dx
F
∗
i (x) = W ′[R1(x) +R2(x)]

d

dx
Ri(x), (6.21)

where W ′(x) =
d

dx
W (x).

Proof. From (6.5) and (6.19), along with the chain rule, we straightforwardly obtain

the result after having set x1 = x2 = x.

Again, (6.21) gives a nonlinear system of two differential equations where the func-

tions Ri(x) can be solved if the time transform W (x) and the sub-survival functions

are specified. In Subsection 6.4.1 we consider the case when the sub-survival func-

tions are provided by (6.14).

With reference to Theorem 6.4.1, arguments similar to those of Proposition 6.4.1

can be used to prove the following Corollary.

Corollary 6.4.1. For the TTE model (6.19), if T and δ are independent, then

R1(x) and R2(x) are proportional, i.e.

R1(x) =
F
∗
1(0)

F
∗
2(0)

R2(x), x ≥ 0.

We now prove an interesting result concerning families of survival functions depend-

ing on a rate parameter c > 0.
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Theorem 6.4.2. Let W c, c > 0, be a parametric family of continuous, convex and

strictly decreasing survival functions such that W c(x) = S(cx), x ≥ 0, for a proper

survival function S. If X satisfies two versions of the TTE model (6.19), namely

X ∼ TTE(W c, R1, R2) and X ∼ TTE(W c̃, R̃1, R̃2), where c 6= c̃ and the pairs of

accumulated hazards (R1, R2) and (R̃1, R̃2) are possibly different, then the marginal

survival functions of X are independent of the rate parameter c.

Proof. For two positive real numbers c and c̃, such that c 6= c̃, from Theorem 6.4.1

we have for i = 1, 2 and x ≥ 0,

d

dx
F
∗
i (x) = S ′(c[R1(x) +R2(x)]) c

d

dx
Ri(x),

d

dx
F
∗
i (x) = S ′(c̃[R̃1(x) + R̃2(x)]) c̃

d

dx
R̃i(x).

(6.22)

By combining these two expressions, we get

d

dx
S(c[R1(x) +R2(x)]) =

d

dx
S(c̃[R̃1(x) + R̃2(x)]),

and then, recalling that S is a proper survival function, one gets

c[R1(x) +R2(x)] = c̃[R̃1(x) + R̃2(x)].

From these facts, and making use of system (6.22), we can infer that

cRi(x) = c̃R̃i(x), i = 1, 2. (6.23)

Under the given assumption, the marginal survival functions associated with W c(x)

and W c̃(x) are given, for i = 1, 2, respectively by

F i,c(x) = W c(Ri(x)) = S(cRi(x))

and

F i,c̃(x) = W c̃(R̃i(x)) = S(c̃R̃i(x)).

From (6.23) we thus have F i,c(x) = F i,c̃(x), and the proof follows.

6.4.1 Special cases

In this subsection we solve the systems (6.17) and (6.21) by adopting a numerical

approach, having specified the copula function C and the time transform W , respec-

tively. With regard to model (6.9), the sub-survival functions are provided by (6.14),

where the value of the parameters are set as follows: λ1 = 1, λ2 = 3, ν = 0.7. We
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make use of the Mathematica R© built-in function NDSolve, which solves numerically

systems of differential equations and produces solutions F 1(x) and F 2(x), and R1(x)

and R2(x).

As far as the system (6.17) is concerned, the choice of the right copula is a delicate

task. Generally, one takes a parametric family of copulas among many existing oth-

ers and fit it to the data by estimating the parameters of the family. Usually, such

parameters control the strength of dependence between the variables of interest.

In a competing risks setting, however, the estimation of the copula parameter(s)

is not possible, since we do not have a set of pairwise observations of the failure

times X1 and X2, but only one observable failure time, i.e. min(X1, X2). In our

study, such parameters will be considered free, but in general they could be de-

duced from available knowledge about the degree of pairwise association between

the two competing risks, expressed, for example, in terms of Kendall’s τ . We will

make use of comprehensive copulas, that is to say copulas that can capture the

various degrees of association between the failure times X1 and X2, from extreme

positive to extreme negative dependence. In particular, for the model (6.9), with

reference to the representation (6.17), we explore the Gaussian copula, the Clayton

copula and the Plackett copula as alternatives, since they belong to different families

with different properties (cf., for instance, [103]). The Gaussian copula allows us to

create a family of bivariate normal distributions with a specified correlation coeffi-

cient. It belongs to the class of Elliptical copulas, which are the copulas of elliptical

distributions. The class of elliptical distributions provides a source of multivariate

distributions which share many of the tractable properties of the multivariate nor-

mal distribution and enables modelling of multivariate extremes and other forms of

nonnormal dependences. Gaussian copulas do not have neither upper nor lower tail

dependence. However, elliptical copulas do not have closed form expressions and

are restricted to have radial symmetry. The Clayton copula belongs to the class of

Archimedean copulas, which are characterized by a suitable generator. We chose

this copula in the set of the multivariate Archimedean copulas because it is easy

to compute. Moreover, the Gaussian copula tends to form elliptic groups, whereas

the copula of Clayton will tend to form groups “with pear shape”, this being due

to the property of lower tail dependence. The Plackett copula is constructed from

the Plackett family of distributions. It is neither Archimedean nor Elliptical, and it

has no tail dependence. In Fig. 6.6 we show some plots of the net survival functions

F 1(x) and F 2(x), x ≥ 0, corresponding to the following values of Kendall’s τ : 0.85,

0.35, −0.35 and −0.85. As for the TTE model (6.19), in Figs 6.7, 6.8 and 6.9 we

show some plots of the net survival functions F 1(x) and F 2(x), x ≥ 0, obtained

via numerical treatment of system (6.21), corresponding to three different choices
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of the time transform W (x): a power law, the Gompertz law and the exponential

law respectively, in order to modulate different dependence properties. The power

law leads to a proportional hazard model with a Gamma distribution as mixing

distribution; the Gompertz law may be used to model negative dependence and the

exponential law leads to independent laws (cf. [46]). The functions R1 and R2 have

been determined numerically, and then the corresponding analytical expressions are

not available.

6.5 Random number of competing risks

In the present section we consider a more general setting within which the failure

of the subject is due to a random number of independent competing risks. This

situation is of interest, among other things, in finance and biomedical studies. In-

deed, Artikis and Artikis and Artikis et al. proposed in [4] and in [5] respectively,

stochastic discounting models providing risk managers and analysts with valuable

information for making optimal decisions in the environment of a random number

of independent, competing and catastrophic risks. In the same environment, Bal-

akrishnan et al., [6] and [7], considered a cure rate model and analyzed a real data

set on cutaneous melanoma.

Let us now turn to the mathematical structure of the model. We suppose that the

failure of an item is subject to a random number N of independent competing risks,

with N taking values in S, where S ⊆ N. In this case, we shall refer to the observable

pairs (TN , δN), where TN is the time of failure of the item and δN describes the cause

or type of failure, in the presence of a random number N of causes. We again assume

that failure may be due to a single cause. The distributions of TN and δN conditional

on N = n are identical to those of the first one of (6.3) and (6.4), respectively.

Hence, the distribution function of TN and the probability mass function of δN can

be expressed respectively as follows:

P(TN ≤ x) =
∑
n∈S

P(Tn ≤ x)P(N = n), x ≥ 0,

P(δN = i) =
∑

n≥i; n∈S

P(δn = i)P(N = n), i ∈ S,

where Tn and δn refer to the case of n fixed causes. As for the fractional model

presented in Section 6.3, recalling Proposition 6.3.1 we thus have

P(TN ≤ x) =
∑
n∈S

Λnx
νEν,ν+1(−Λnx

ν)P(N = n), x ≥ 0, (6.24)
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and

P(δN = i) =
∑

n≥i; n∈S

λi
Λn

P(N = n), i ∈ S. (6.25)

Specifically, we point out that the distribution function (6.24) turns out to be a

mixture distribution. Recalling that the distribution of Tn is DLR, and that the

DLR property is closed under mixtures (cf. [12]), from (6.24) we immediately have

that TN is DLR, and thus NWU, too.

We now present some examples by specializing the probability mass function of N

and with a suitable choice of the parameters λi. In fact, we set λi := λi, for i ∈ S,

this being of interest since, in general, λi represents the hazard rate of a series system

with i independent and exponentially distributed components, each with parameter

λ. One gets Λn = λ1 + · · ·+ λn = λ (1 + · · ·+ n) = λ
n(n+ 1)

2
.

Example 6.5.1. (Discrete uniform distribution.) We have, for S = {1, . . . , n},

P(N = h) =
1

n
, h ∈ {1, . . . , n},

so that from (6.24) and (6.25)

P(TN ≤ x) =
λ

2n

n∑
h=1

h(h+ 1)xνEν,ν+1

(
−λh(h+ 1)

2
xν
)
, x ≥ 0,

and

P(δN = i) =
2i

n

n∑
h=i

1

h(h+ 1)

= 2
n+ 1− i
n(n+ 1)

, i ∈ {1, . . . , n}.

Example 6.5.2. (Truncated geometric distribution.) We have, for S = {1, . . . , n},

P(N = h) =
p(1− p)h−1

1− (1− p)n
, h ∈ {1, . . . , n}, p ∈ (0, 1).

Expressions (6.24) and (6.25) become respectively, for x ≥ 0,

P(TN ≤ x) =
λp

2 [1− (1− p)n]

n∑
h=1

h(h+ 1)(1− p)h−1xνEν,ν+1

(
−λh(h+ 1)

2
xν
)

and

P(δN = i) =
2ip

1− (1− p)n
n∑
h=i

(1− p)h−1

h(h+ 1)
, i ∈ {1, . . . , n}.

Example 6.5.3. (Fractional Poisson distribution.) With reference to Remark 2.5
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of [17], we assume that the random number of competing risks depends on time and

is represented by a fractional Poisson process Nλ
ν (t) with intensity λ, so that

P(Nλ
ν (t) = k) =

1

k!

dk

dsk

[
sk−1Eν,1

(
−λt

ν

s

)]
s=1

, k ≥ 1,

where Eα,β(x) is the Mittag-Leffler function (1.10). Therefore, the competing causes

happen to be countably infinite. If X1, . . . , XNλ
ν (t) are i.i.d. random variables with

probability distribution function F (z) describing the lifetime of the subject when

its failure is due to the i-th risk, then, for z ≥ 0,

P
(
TNλ

ν (t) < z
)

= P

(
min

1≤j≤Nλ
ν (t)

Xj < z

∣∣∣∣∣Nλ
ν (t) ≥ 1

)
=

1− Eν,1(−λtνF (z))

1− Eν,1(−λtν)
,

and

P
(
δNλ

ν (t) = i
)

=
∑
n≥i

2i

n(n+ 1)
P(Nλ

ν (t) = n), i ≥ 1.

6.5.1 Estimates and simulation results

In conclusion, in this section we develop a procedure for estimating the parameters

of the mixture distribution (6.24) of the random lifetime T . We adapt the approach

based on fractional moments proposed in [79]. Specifically, it is meaningful to give

an accurate estimate of the probabilities (6.25) since P(δN = i) is essential to assess

the model with a random number of causes.

For simplicity’s sake, we consider a situation where a unit can fail due to up to

three competing causes, i.e. S = {1, 2, 3}. The probability density function and the

fractional moments of TN read respectively

fTN (t) =
3∑

n=1

pnΛnx
ν−1Eν,ν(−Λnx

ν) (6.26)

and

E[T q
N ] =

qπ

νΓ(1− q) sin(qπ/ν)

3∑
n=1

pn

Λ
q/ν
n

, q < ν, (6.27)

where pn = P(N = n), n = 1, 2, 3.

Example 6.5.4. In order to perform a statistical analysis, we simulate a random

sample of size 104 from distribution (6.26). Along the lines of [79], this is done by

simulating each of the 3 components of the mixture by taking into account that

the Mittag-Leffler distribution can be equivalently represented as a scale mixture of

exponential distributions. To this aim we set λ1 = 1, λ2 = 5, λ3 = 10, ν = 0.75,
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p1 = 0.6 and p2 = 0.3.

A chi-square goodness of fit test at the 0.05 significance level, considering 10 classes,

has been also conducted in order to compare the observed sample distribution with

the theoretical density (6.26) having the parameter values assigned as before. The

value of the test statistic turns out to be 3.702, which is less than the critical value

χ2
0.05;3 = 7.815, so that the data are consistent with the theoretical density (6.26).

The results of the simulation are presented in Fig. 6.10, where the histogram pro-

vided by the simulated data is compared with the theoretical density (6.26).

Moreover, in order to perform the analysis in the presence of an unknown source

of randomness, we assume that for each observation the parameter ν is perturbed

from uniform noise, so that it is sampled independently, uniformly in the interval

[0.55, 0.95]. Formula (6.27) allows us to exploit the special version of the method

of moments estimators, involving the fractional moments, proposed in [79], for the

unknown parameters, i.e. λ1, λ2, λ3, ν, and the probabilities p1 and p2. In order to

apply such method, we choose six values qi =
(

1
2

)2i−1
, i = 1, . . . , 6, representing

the order of the moments. Furthermore, the estimates of the parameters have been

obtained by replacing (6.27) with its sample counterpart and solving the resulting

equations with the MATLAB R© function lsqnonlin, which is suitable for nonlinear

least-squares problems. The estimates of the parameters are shown in the second

row of Table 6.1.

Table 6.1: Parameter values
λ1 λ2 λ3 ν p1 p2

Assigned parameters 1 5 10 0.75 0.6 0.3
Estimated values 0.9856 4.9990 9.9998 0.7580 0.6051 0.2668

For completeness, we remark that a Mittag-Leffler random number can be expressed

through a suitable inversion formula as follows (see Kozubowski and Rachev [80]):

τν = −γt log u

(
sin(νπ)

tan(νπz)
− cos(νπ)

) 1
ν

,

where u, z ∈ (0, 1) are independent uniform random numbers, γt is the scale pa-

rameter, and τν is a Mittag-Leffler random number. Fulger et al. [53] found it

numerically convenient to use Mittag-Leffler random numbers generated according

to the previous equation in the Monte Carlo simulation of uncoupled continuous-

time random walks. Moreover, Mittag-Leffler random numbers can be generated by

means of the MATLAB R© routine:
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Germano, Guido, et al. Mittag-Leffler random number generator.

https://it.mathworks.com/matlabcentral/fileexchange/19392-mittag-leffler-random-

number-generator

MATLAB Central File Exchange. Updated April 04, 2016.
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Figure 6.6: Survival functions F 1(x) (left panel) and F 2(x) (right panel), x ≥ 0, for
the sub-survival functions (6.14), with λ1 = 1, λ2 = 3, ν = 0.7, and corresponding to
the Plackett copula (dashed line), to the Gaussian copula (dot-dashed line) and to the
Clayton copula (continuous line) within model (6.17).
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Figure 6.7: Survival functions F 1(x) (left panel) and F 2(x) (right panel), x ≥ 0, for the
sub-survival functions (6.14), with λ1 = 1, λ2 = 3, ν = 0.7, and corresponding to the time
transform W (x) = 1

(1+x)c , with c = 0.5 (dot-dashed line), c = 1 (dashed line) and c = 10

(continuous line) within model (6.19).

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

F1HtL

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

F2HtL

Figure 6.8: Survival functions F 1(x) (left panel) and F 2(x) (right panel), x ≥ 0, for the
sub-survival functions (6.14), with λ1 = 1, λ2 = 3, ν = 0.7, and corresponding to the
time transform W (x) = e−η(ex−1), with η = 1 (dot-dashed line), η = 10 (dashed line) and
η = 100 (continuous line) within model (6.19).
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Figure 6.9: Survival functions F 1(x) (left panel) and F 2(x) (right panel), x ≥ 0, for the
sub-survival functions (6.14), with λ1 = 1, λ2 = 3, ν = 0.7, and corresponding to the time
transform W (x) = e−x within model (6.19).
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Figure 6.10: Theoretical density (6.26) for λ1 = 1, λ2 = 5, λ3 = 10, ν = 0.75 and
(p1, p2, p3) = (0.6, 0.3, 0.1), and histogram of the simulated sample of size 10000.
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Conclusions and future

developments

In the present thesis we explored some connections between Probability Theory and

Fractional Calculus. While the former is a relatively old subject, the latter is a

branch of Mathematical Analysis that has been receiving some attention among the

community of researchers only recently. Despite its novelty, it has been successfully

applied to study phenomena in physics, chemistry, robotics, finance, engineering,

just to name a few, because of its ability to take into account the history and non-

local distributed effects. This allows scientists to describe the complexity of nature

better than integer-order calculus. Encouraged by the growing interest in this dis-

cipline, and driven by natural curiosity, we faced some interesting mathematical

challenges in the following direction.

First, we introduced the nth-order fractional equilibrium distribution in order to

develop certain fractional probabilistic analogues of Taylor’s theorem and mean

value theorem; then, we discussed other related findings. Afterwards, we investi-

gated Poisson-type and fractional Poisson-type processes subject to multiple jumps.

In particular, we obtained and analyzed the probability distribution function, dis-

cussed some equivalent representations, studied the behaviour of waiting times and

first-passage times and proved some convergence results. We then studied a gen-

eralization of the alternating Poisson process from the point of view of fractional

calculus, providing results for the behaviour of some quantities which characterize

the process under examination and deriving new Mittag-Leffler-like distributions of

interest in the context of alternating renewal processes. The random times of a

fractional alternating Poisson process have been used to describe the interarrival

times separating consecutive velocity changes of a generalized jump-telegraph pro-

cess. Among others, we obtained the probability law of the new process, devoted

special attention to the case of jumps having constant size and provided a formal

expression of the first-passage-time distribution through a constant boundary. The

last chapter deals with the specification and the analysis of a stochastic model for
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competing risks involving the Mittag-Leffler distribution, both from a theoretical

and from a numerical point of view.

Future research work could deal with:

• the “fractionalization” of some topics and models in reliability theory and

survival analysis, including ageing notions of random lifetimes, comparisons

based on stochastic orders, and relative ageing of distributions, following the

lines of Tapiero and Vallois [143] and [142], and continuing to pursue a path

adopted in Di Crescenzo and Meoli [43] and [41];

• the integration of such theoretical design with the peculiarities of the datasets

effectively available (from biology and from engineering), fitting the model

equations to the data, validating or detecting deficiencies in the models, con-

ducting statistical analyses;

• the definition of a fractional model for the somatic evolution of cancer which

generalizes the Luria-Delbrück model. Microbiologist Salvador Luria and the-

oretical physicist Max Delbrück in 1943 investigated mutations dynamics in

exponentially growing microbial populations and observed that virus-resistant

mutants emerge randomly, and not in response to selection, during the birth

events. Since then, many mathematical models inspired by the Luria–Delbrück

fluctuation test were developed to understand the emergence of drug resis-

tance in bacterial colonies and in malignant tumors. The proposed project

is currently being devoloped in collaboration with the Computational Biol-

ogy Group at the Department of Biosystems Science and Engineering, ETH

Zürich, directed by Prof. Dr. Niko Beerenwinkel.
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