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Introduction

Positioning means to gain awareness, within a certain accuracy, of
a mobile device location. It is not a stand alone application, but
rather a service that is ground to several applications. Hundreds of
research groups worldwide have been developing automated loca-
tion systems for several decades, first for military, then for civilian
purposes.

To date the standard solution to outdoors positioning is pro-
vided by the Global Navigation Satellite Systems (GNSS), that is
the GPS and the forthcoming Galileo.

Challenges are different indoors and require micro-detailed geo-
referencing to satisfy users’ growing needs. To geo referentiate a
building is not enough if the position of users inside the building
is also relevant to the application. Objects are used as landmarks,
and relationships among the objects are crucial for symbolic rep-
resentation of the whole system. The applications to this scenario
are manifold and range from logistics to routing, from personal
safety to emergency response.

Unluckily, GNSS do not work properly indoors for the absence
of Line Of Sight (LOS) propagation between the satellites and
the mobile, such that deep multipath effects randomize the times
of arrival of the signals. This prevents GNSS from achieving a
satisfactory degree of accuracy, to the extent that it cannot be used
for determining whether a person stays inside or outside a certain
building, and it is by no means possible to locate it within a room
or a floor. The impossibility of using satellite systems was already
clear in the mid ’90s and has driven toward the exploitation of local
technologies; consequently, a plethora of choices has been explored.
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None of them has shown optimal or even sufficient performances
in all settings, so the research in this field keeps on gathering much
interest inside the Navigation Community.

The main interest has been drawn to ‘local technologies’, that
are non invasive, cheap and under the full control of the provider;
in particular, the reuse of technologies already deployed for wire-
less communication purposes yields a great opportunity. Thus,
RFID, Bluetooth, WiFi and ZigBee have been employed into lo-
cating systems, some of which being proposed as popular commer-
cial solutions, like LandMARC or ActiveBadge. Our choice falls
on the Wireless Local Area Network (WLAN) and, concerning the
architecture and the experimental results described in the thesis,
on its main example: the standard IEEE 802.11 also named WiFi.

To avoid or, at least, attenuate the multipath problem and,
above all, the addition of further costly hardware as, for example,
accurate clocks or directional antennas, we adopt, as the relevant
parameter to measure, the power propagated between transmitter
and receiver, that can go over walls and obstacles. However, we
must counteract a variety of unpredictable effects which make it
difficult to properly use the signals and to achieve good accuracies.

Such physical limits boost the contribution of optimization
techniques provided by the discrete signal processing theory. Among
the others, we rather prefer Bayesian techniques borrowed by the
Probability Theory because they provide elegant and powerful
tools by formulating the positioning problem in terms of estima-
tion theory.

Anyway, even the most sophisticated processing techniques
have strong limits: indoors accuracies tighter than 2 meters are
achieved only in very peculiar conditions and after heavy train-
ing stages. The reason lies in the environment, that is not only
difficult to understand but also changes rapidly.

That is the reason why this thesis has been thought, designed
and written: we believe that the actual borders in indoor position-
ing can be overcome and the only way of doing it is by looking at
the environment.
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Environment profiling

The indoor environment can change drastically from place to place
and also from time to time. Some elements of environment profil-
ing are thus necessary in order to improve or, sometimes, to get
satisfactory performances. Even if the classic positioning tech-
niques assume perfect knowledge of the environment, yet the el-
dest studies about indoor localization put in evidence the need
to catch the environmental most relevant changes by means of
adaptive algorithms.

Several techniques can be used to this aim are many, depend on
the framework adopted, on the model of the transmission channel
and so forth. Also, the environmental ‘discovery’ can be considered
as side information in the positioning problem or can consist in a
set of variables of interest for some applications.

We cast this problem, after having provided suitable models,
onto a probabilistic problem to use the Bayesian framework, whose
algorithms are properly handled and modified to meet the new
challenge.

Co-localization

Then we address a scenario fitting more practical considerations,
although it is formalized and solved in a mathematical setup. In
indoor positioning the mobile device must be located, while the
transmitters are considered known and perfectly located in a local
reference system.

But is this hypothesis reasonable? In many case it is, but not
always. The transmitters are positioned according to ‘communi-
cation’ requirements rather than to the ‘positioning’ task. When
the communication needs change (or for whatever reason), they
can be moved accordingly. In this case someone could look after
their new position and update the algorithms, but providing algo-
rithms that automatically find the transmitters, or at least some
of them, and use their measurements with a degree of reliability
proportional to their provenience knowledge would surely be a step
forward.



4

Consider now another example: we are getting used at large
buildings with tens of WLAN transmitters. Some of them, per-
haps, are managed by the same person who puts on the locating
system, but most of them is not. This latter’s measurements can
be of great interest in order to boost the positioning accuracy and
should be accounted for.

Co-localization, as this topic is called in the literature, is very
recent and is here explored by means of Bayesian tools, for which
we will resort to further modifications of the corresponding algo-
rithms.

Simultaneous Localization And Mapping

Being localization an estimation problem, the map of the building
is a set of constraints on the estimate. This set can be of poor
relevance in open spaces, but it is of great interest in buildings full
of offices and hallways. The question is: can we use properly the
map?

The answer is yes, of course, but only if we knew the map.
Otherwise, the most elegant and cheap solution we can exploit
consists in estimating it together with the mobile’s position. This
topic, arisen in the robotic literature in the mid ’80s, has been
experimenting strong theoretical improvements during the last 20
years and, let aside some peculiar cases, is normally undertaken
by means of the Bayesian theory.

Simultaneous Localization And Mapping (SLAM) is different
from co-localization since it aims at determining a building map,
useful also in the future for other users or other applications. Even
if some authors perform SLAM by employing only WLAN based
measurements, the fusion with other sensors’ measurements has
been gaining favour. In this view, data from Inertial Measure-
ments Units (IMU) are exploited. The mix of these two types of
data is interesting for they are extremely heterogeneous: WLAN
measurements are consistent with a reference system anchored to
the building, while IMU’s data refer to the user’s system. Their
fusion is challenging, but if well done it can highly boost the per-
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formances, being one type of measurements ‘strong’ in the weak
points of the other one.

Summary of the thesis

The thesis is organized as follows: a basic review of estimation
theory is proposed in Chapter 1; in Ch. 2 we present indoor
localization instead, as well as the main techniques adopted so
far in the literature. The thesis’ original contribution is provided
starting from Ch. 3 where the environment profiling is considered.
Co-localization is instead the topic addressed in Ch. 4 mainly from
a theoretical point of view; it provides a strong formalization that
is also useful in Ch. 5, where the final scenario with the fusion
of WLAN and IMU measurements within the SLAM set up is
considered.

Among thousands of other considerations that could be made
here, we’d rather say what is our long term project: we would like
to provide a contribution to a piece of the scientific research that
walks, and sometimes sprints, towards the provision of a better
quality of life to humans, all humans, conscious that ‘real progress
happens only when advantages of a new technology become avail-
able to everybody’.
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Chapter 1

Basics of Estimation
Theory



8 1. Basics of Estimation Theory

Localization is an estimation problem and thus it is appro-
priate, in the first chapter, to describe some general elements of
estimation theory. Since the topic is very spread, we will deal
with just a part of it; some guidance in our choices is given by
next chapters’ content and thus more attention will be paid to
those concepts which are applicated in indoor localization.

Among a plethora of choices, none of which is wrong, we split
the estimation theory in two branches: static and dynamic es-
timation. This division, despite being arbitrary, is particularly
important in the view of indoor localization because it reflects the
division between their fields of application, techniques being used
and, usually, research groups working on positioning.

Besides the estimation criteria and algorithms, we also pro-
vide the main theoretical bounds commonly used as benchmarks.
The importance of such bounds is essential for the reseachers to
understand how much room for improvements they have.

The chapter is so composed: static estimation is dealt with
in Sect. 1.1, followed by the presentation of the corresponding
Cramer-Rao based bounds in Sect. 1.2; similarly, we present dy-
namic estimation and its bounds in Sects. 1.3 and 1.4 respectively;
some considerations are finally pointed out in Sect. 1.5.

1.1 Static estimation

We first deal with static estimation, in which a suitable function
of the measurements - the estimator - is used to infer the value
assumed by a variable - the estimatee. A large variety of frame-
works is possible, based on what is assumed about the estimatee
and the measurement models. In detail, the estimatee may be as-
sumed either continuous- or discrete-valued: in the latter case the
estimation is rather named classification and, in absence of mod-
els, nonparametric methods based on prefilled databases have to
be used. In the other case probabilistic techniques are employed
and the assumed nature of the estimatee, whether deterministic
parameter or random variable, leads to Bayesian or classic statis-
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tical techniques rispectively.

1.1.1 Probabilistic estimators

Probabilistic estimators are divided into two families, i.e. Bayesian
and non Bayesian. The difference is that Bayesian estimation
treats the estimatee like a random variable with an assigned pdf,
while non Bayesian estimation deals with non random, but un-
known, variables. In principle, they represent two completely
different approaches, but most times the choice between them is
based on convenience: if some prior information on the variable is
available, Bayesian statistics allows its exploitation; on the other
hand, non Bayesian techniques are often easier.

Only continuous valued estimatees are considered in this sec-
tion; nevertheless, the extension to the discrete case is straightfor-
ward.

Non Bayesian estimators

Let θ ∈ Rnx be a nonrandom variable and y ∈ Rny a set of mea-
surements. If the estimator is θ̂(y), the estimation error is defined
as

θ̃ = θ − θ̂(y)

and the corresponding Mean Squared Error (MSE) is

C = E
[
θ̃θ̃

′]
.

An important case is met when the estimator is unbiased, i.e.

E
[
θ̂
]
= θ;

then the MSE corresponds to the estimator covariance and their
minimizations are equivalent.

Minimum Variance Unbiased Estimator (MVUE) An un-
biased estimator with minimum covariance

θ̂(y) = argmin
θ̂

cov(θ̂(y))
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is the MVUE and is automatically optimal w.r.t. MSE. MVUEs
are not very popular, indeed, because they may not exist1 and,
anyway, they are often very difficult to carry out.

Best Linear Unbiased Estimator (BLUE). MVUE can be an
arbitrary function of data, but if we add a linearity constraint

θ̂(y) = Hy,

where H is a (nx ×ny) matrix, we obtain a suboptimal estimator,
called BLUE, much more tractable from a mathematical point of
view. That is why BLUE is very common, even if it leads to errors
typically higher than MVUE (unless the MVUE is already linear).

Maximum Likelihood Estimator (MLE). Let us define the
likelihood function of data as

L(θ) = p(y|θ),

and the log-likelihood function, more useful in the presence of
exponential pdfs

l(θ) = log p(y|θ).

The maximization of both w.r.t. θ (it is equivalent since the log-
arithm is a monotonically increasing function) leads to MLE

θ̂(y) = argmin
θ

l(θ).

MLE is usually biased and does not imply bounds on the MSE.
Besides its comfortable tractability, the main reason for its pop-
ularity is that it is asymptotically efficient: with the addition of
new independent measurements, MLE becomes unbiased and its
covariance tends to zero.

1MVUE must exhibit the minimum MSE for all values of θ.
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Bayesian estimators

Let θ ∈ Rnx be a random variable with prior distribution p(θ) and
y ∈ Rny a set of measurements. The estimator is again a function
θ̂(y), whose error covariance is

C = E
[
θ̃θ̃

′]
,

with θ̃ = θ − θ̂(y). Note that now the expectation is done w.r.t.
the joint distribution p(θ,y).

Minimum Mean Square Error (MMSE). The MMSE esti-
mator minimizes the MSE

θ̂(y) = argmin
θ̂

C = argmin
θ̂

E
[
θ̃θ̃

′]
.

It can be shown that the MMSE estimator of θ is the expectation
of θ after that the data vector y is observed

θ̂(y) = E [θ|y] .

MMSE is usually difficult to find and thus other solutions are pre-
ferred. As in the non Bayesian case, a linear restriction is also used.

Linear Minimum Mean Square Error (LMMSE). The re-
striction of the MMSE estimators to the class of linear (or affine)
functions of data leads to the LMMSE estimators

θ̂ = Hy+G,

with H and G matrices of dimensions (nx×ny) and (nx×1) respec-
tively. LMMSE is much more common than MMSE for its math-
ematical tractability, even if a higher MSE is usually achieved.

Maximum A Posteriori Estimator (MAP). The estimator
that maximizes the posterior pdf is called MAP

θ̂ = argmax
θ

p(θ|y) = argmax
θ

p(y|θ)p(θ)
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in which, like in MLE, the logarithm can be taken. Note that the
effective difference from MLE is due to the presence of the prior
distribution of θ; nevertheless, MLE and MAP involve different
probabilistic frameworks.

1.1.2 Non probabilistic estimators

In absence of models, the estimation can be based on a set of la-
beled measurements, generated at known values of θ and collected
during a training stage. Then, we can basically either estimate a
probabilistic measurement model as a function of θ, or use non
probabilistic techniques.

In this section we evaluate two non probabilistic approaches:
the former is used in classification and does not require an explicit
statement of the measurement model, the latter assumes a non
random model and minimizes its divergence from the real data.

Fingerprinting

If θ is a non random variable with values in a finite set of cardi-
nality N

θ ∈ C = {θ1, . . . ,θN}

and no measurement model is supposed, fingerprinting based meth-
ods represent an important alternative. Several variants have been
proposed which differ in some part, but the central point is always
the ’fingerprint’. The fingerprint of a class is essentially a set of
measurements collected in the corresponding hypothesis that is
stored in a database during an off-line training stage.

The fingerprint from the estimatee during the estimation stage
is thus compared with those ones stored into the database, in order
to find the ‘nearest’ one in some sense. For this task k-Nearest
Neighbours (k-NN) based algorithms are easily applicable.
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k - Nearest Neighbours

The k-NN is a classification algorithm first presented in [FH89]2.
During a former training stage, M records about N classes, with
M > N , are collected with known prior association. Then, when
an unlabeled record is available, its ’distance’ from the previous
records is computed according to some metric space (e.g. Eu-
clidean distance). The resulting vector of distances d is then
sorted in ascending order and the first k entries are selected (clos-
est records): the algorithm opts for the most represented class
among them.

The power of k-NN is well expressed by its convergence fea-
tures, whose complete description, made in terms of Information
Theory, is proposed in [CH67].

Least Squares Estimator (LSE)

LSE is based on a linear measurement model assigned with an
additive non random error n

y = Hθ + n

and the sum of the errors is then minimized

J = (y−Hθ)′(y−Hθ).

If θ is discrete (with finite cardinality) the search of the minimum
can be done in an exhaustive way, otherwise the solution is found
by setting the gradient of J w.r.t. θ to zero

∇θJ = −2H ′(y−Hθ)′ = 0,

which yields
θ = (H ′H)−1H ′y.

Alternative LS methods allow to weight each error component in
a different way3, yielding the Weighted LSE. If the model is not

2The original technical report is dated 1951.
3For example if the covariance of the errors is known it could be used as a

measure of data informativeness.
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linear, we have to use instead an iterative procedure, based on the
gradient descent algorithm [SA05, Ch. 3].

1.2 Cramer Rao Lower Bound

The Cramer Rao Lower Bound (CRLB) provides a lower bound
for the covariance (and MSE) of an unbiased estimator when the
estimatee is a non random parameter. Being it just a theoretical
bound, the existence of an unbiased estimator whose covariance
achieves CRLB is not ensured at all and is case dependent.

The CRLB is defined as the inverse of the Fisher Information
Matrix (FIM), that is a classic measure for the information con-
tained in some data y about the estimatee θ. We now start with
the definition of the FIM and then we state the main result about
the CRLB.

Definition 1 (FIM for nonrandom parameter). The FIM for a
nonrandom parameter θ given data y is provided by (logarithms
meant in the natural base)

J (θ) = E

[(
∂

∂θ
log p(y|θ)

)T (
∂

∂θ
log p(y|θ)

)]
. (1.1)

An alternative form of the FIM is given by

J (θ) = −E

[
∂2

∂θ2 log p(y|θ)
]
. (1.2)

The FIM is evaluated at the true value of θ and thus it is a
function of θ. The inverse of FIM is the CRLB, that is in turn
the lower bound of the MSE of any unbiased estimators.

Theorem 1 (CRLB for nonrandom parameters). If θ̂(y) is an
unbiased estimator of the non random parameter θ and in the
hypothesis that

∂p(y|θ)
∂θ

and
∂2p(y|θ)

∂θ2
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exist and are absolutely integrable, then the MSE satisfies

P = E

[(
θ − θ̂(y)

)T (
θ − θ̂(y)

)]
≥ J (θ)−1 (1.3)

where J(θ)−1 is the CRLB.

The proof is a simple application of the Schwarz inequality and
is reported in several books, see for example [VT01].

If the MSE of an unbiased estimator achieves the CRLB, then
this estimator is said to be efficient. An efficient estimator must
be a MVUE. Since the CRLB may depend on the true value θ,
which is unavailable (otherwise there is no need for estimation),
the efficient estimator may not exist; however, the MVUE may
still exist in that case [Kay93].

1.2.1 CRLB for Bayesian estimators

The Posterior CRLB (PCRLB) is an extension of the CRLB valid
in the Bayesian estimation theory [VT01]. In this framework the
estimatee θ is a random variable and we refer to the joint distri-
bution p(θ,y) instead of the likelihood pdf p(y|θ).

Definition 2 (FIM for random parameters). The FIM for a ran-
dom parameter θ given data y is provided by (logarithms meant
in the natural base)

J (θ) = E

[(
∂

∂θ
log p(θ,y)

)T (
∂

∂θ
log p(θ,y)

)]
. (1.4)

An alternative form of FIM is given by

J (θ) = −E

[
∂2

∂θ2 log p(θ,y)

]
. (1.5)

In both cases the expectation is done w.r.t. θ and y jointly.
The inverse of FIM is the PCRLB, that is in turn the lower bound
of the MSE of an estimator.
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Theorem 2 (CRLB for random parameters). If θ̂(y) is an esti-
mator of the random parameter θ and in the hypotheses that

∂p(y|θ)
∂θ

and
∂2p(y|θ)

∂θ2

exist and are absolutely integrable,

lim
θ→∞

B(θ)p0(θ) = 0, (1.6)

lim
θ→−∞

B(θ)p0(θ) = 0, (1.7)

with

B(θ) =

∫ ∞

−∞

[
θ̂(y)− θ

]
p(y|θ) dy,

then the MSE satisfies

P = E

[(
θ − θ̂(y)

)T (
θ − θ̂(y)

)]
≥ J (θ)−1 (1.8)

where J(θ)−1 is the CRLB and p0(θ) is the prior distribution of
θ.

The conditions (1.6)-(1.7) are the extension of the unbiased-
ness to the random parameter case, but they are much weaker.
In fact, the intuitive counterpart of unbiasedness in the Bayesian
estimation would be

E[θ] = E[θ̂(y)]

with expectation w.r.t. data likelihood, that is equivalent to re-
quire B(θ) = 0, ∀θ; the conditions (1.6)-(1.7) of the Theorem 2
require instead that the asymptotic behaviour w.r.t. θ, weighted
on the tails of the prior pdf, be regular.

1.3 Bayesian dynamic estimation

The main problem when addressing a dynamic system is mathe-
matical tractability. Complexity requirements prompt sequential
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solutions whose complexity does not grow over time, otherwise
their field of applicability is dramatically reduced to few instants.
To achieve these results, Hidden Markov Models (HMM [Rab89])
are usually employed in a Bayesian framework. In HMMs a nx-
dimensional (hidden) state xk ∈ Rnx evolves over time according
to a process model and the ny-dimensional observable yk ∈ Rny is
some noisy function of the state. The peculiarities are two; at k

• the next state xk+1 is independent of the past given the
present xk (one step memory), viz.

p (xk+1|x0:k) = p (xk+1|xk) ; (1.9)

• each observable depends only on the contemporary state,
viz.

p
(
yk|x0:k,y0:k−1

)
= p (yk|xk) . (1.10)

Condition in eq. (1.9) brings to a comfortable application of
the chain rule to the hidden state distribution (before the mea-
surements observation); starting from a known prior pdf p(x0) for
the initial state x0, we obtain

p(x1:k) = p(x0)
k∏

s=1

p(xs|xs−1). (1.11)

Condition in eq. (1.10), instead, greatly simplifies the likelihood
statement of the measurements series, i.e.

p(y1:k|x1:k) =
k∏

s=1

p(ys|xs). (1.12)

The resulting system statement consists of two equations

xk+1 = f(xk,vk), (1.13)

yk = g(xk,nk), (1.14)

named process and measurement models, respectively. In detail
vk and nk are the process and the measurement noises and are
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assumed white and mutually independent. Their distributions to-
gether with the state prior and the functions f and h are known.

The solution to Bayesian dynamic estimation is based on the
computation of the hidden state pdf after the measurements ob-
servation; more precisely, since we aim at online estimation, we
are interested in the posterior pdf

p(xk|y1:k) (1.15)

for a generic k > 0 and a sequential approach is required, i.e.
p(xk|y1:k) should be computed from p(xk−1|y1:k−1) with constant
time complexity.

In contexts denoted by the absence of real time requirements,
we can also estimate a whole sequence jointly; if K is the final
instant, the posterior pdf of interest is then

p(x0:K |y1:K). (1.16)

After that the pdf of either eq. (1.15) or eq. (1.16) is available,
Bayesian estimators like MAP, MMSE and LMMSE can be used,
according to the definitions provided in the Sect. 1.1.1.

1.3.1 Theoretical solution

System (1.13)-(1.14) admits an elegant theoretical solution, ex-
pressed in the form of a sequential procedure; given posterior pdf
(1.15) at the generic instant k− 1 and a new measurement yk, we
first compute the prediction pdf

p
(
xk|y1:k−1

)
=

∫
p (xk|xk−1) p

(
xk−1|y1:k−1

)
dxk−1, (1.17)

and then the new posterior is provided by the update step

p(xk|y1:k) =
p (yk|xk) p

(
xk|y1:k−1

)
p
(
yk|y1:k−1

) , (1.18)
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where

p
(
yk|y1:k−1

)
=

∫
p (yk|xk) p

(
xk|y1:k−1

)
dxk (1.19)

is a normalization factor and does not need to be computed. Equa-
tions (1.17)-(1.18) are clearly derived through a marginalization
over xk−1 and Bayes theorem respectively, after the application of
the Markov properties of eqs. (1.9)-(1.10). Nevertheless, practical
implementations of this procedure are strongly case dependent:
except very peculiar cases, suitable approximations are required.

1.3.2 Linear Gaussian system: Kalman Filter

In the following we will denote the estimator of xk given the mea-
surements y1:s by x̂k|s. Let us consider a Linear Gaussian (LG)
Model

xk+1 = Fxk + vk, (1.20)

yk = Gxk + nk, (1.21)

with F andG known matrices of suitable dimensions, vk ∼ N (0, Q)
and nk ∼ N (0, R). In this case the MMSE estimator for the state
sequence is provided by a very popular algorithm: the Kalman Fil-
ter (KF). KF is a sequential algorithm which follows the prediction-
update procedure. Indeed, a solution in closed form is possible
because of a singular result on the recursive computation of the
posterior pdf. In fact, it can be easily shown [Hay01] with recur-
sive arguments that for a LG system the posterior pdf is Gaussian
distributed, if the prior pdf was too. More in detail, if

p(xk−1|y1:k−1) ≡ N
(
x̂k−1|k−1, Pk−1|k−1

)
we have for the state pdf after the prediction step of eq. (1.17)

p(xk|y1:k−1) ≡ N
(
x̂k|k−1, Pk|k−1

)
,
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and for the pdf after the update step of eq. (1.18)

p(xk|y1:k) ≡ N
(
x̂k|k, Pk|k

)
.

The starting point, of course, is that a Gaussian prior is given

p(x0) ≡ N (x̂0, P0) .

Therefore, computing recursively the posterior pdf means to prop-
agate its mean and covariance matrix over time.

KF does exactly this. The result, instant by instant, is an un-
biased estimator that is the conditional mean x̂k|k of the posterior
pdf. Recalling results in the Sect.1.1.1, this estimator corresponds
to the MMSE estimator for xk. Its covariance matrix Pk|k is also
computed and is equivalent to the MSE. The algorithm is now
briefly summarized.

Algorithm 1 (Kalman).

For k = 0 set

• x̂0 = E [x0];

• P0 = E [(x0 − E [x0])(x0 − E [x0])
′].

For k = 1, 2, . . ., compute:

• State prediction: x̂k|k−1 = F x̂k−1|k−1;

• Covariance prediction: Pk|k−1 = FPk−1|k−1F
′ +Q;

• Kalman gain matrix: Kk = Pk|k−1G
′ [GPk|k−1G

′ +R
]−1

;

• State update: x̂k|k = x̂k|k−1 +Kk

(
yk −Gx̂k|k−1

)
;

• Covariance update: Pk|k = (I −KkG)Pk|k−1.

Note that in this case the KF estimates are optimal also in the
MAP sense, because posterior pdfs are Gaussian and their means
coincide with their corresponding modes.
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1.3.3 Alternative derivation of the Kalman Fil-
ter

The KF optimality can be stated also in an alternative form, that
also corresponds to its first development and is useful in the se-
quential estimation in Non Linear Gaussian (NLG) and Non Lin-
ear Non Gaussian (NLNG) systems.

The posterior pdf of the state at k results in

p(xk|y1:k) =
p(xk,yk|y1:k−1)

p(yk|y1:k−1)
.

Neglecting p(yk|y1:k−1) because it is independent of xk, a further
factorization of the left term yields

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1), (1.22)

where white noise is assumed. Now if the LG model (1.20)-(1.21)
is assumed, both pdfs on the right side of eq. (1.22) are Gaussians,
viz.

p(yk|xk) = N (Cxk, Rn) ,

p(xk|y1:k−1) = N
(
x̂k|k−1, Pk|k−1

)
,

where xk|k−1 and Pk|k−1 are computed like in Algorithm 1. The
value xk at which the posterior is maximized (or averaged) is
clearly the minimum point of the cost function

J(xk) = (yk−Cxk)
′R−1

n (yk−Cxk)+(xk−x̂k|k−1)
′P−1

k|k−1(xk−x̂k|k−1),

(1.23)
that is the sum of the errors derived from the exploitation of the
new measurement and from the prediction step, weighted on their
respective covariance matrices. Similarly, we can define the batch
cost function for x0:k−1

J(x0:k) =
k∑

s=1

(ys − Cxs)
′R−1

n (ys − Cxs)+

(xs − x̂s|s−1)
′P−1

s|s−1(xs − x̂s|s−1). (1.24)
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This derivation, although being less strong from a theoretical
point of view, is much more general than the other one, since eq.
(1.23) can be always stated provided that the dynamic system
is known. This means that KF application does not require the
Gaussian assumptions in the model (1.20)-(1.21), but on the other
hand only in this case it achieves Bayesian optimality. In the
general non linear non Gaussian (NLNG) framework the optimal
solution does not exist in close form, and suboptimal approaches
are being used.

Another important remark is that this derivation is particularly
common when one deals with partially unknown systems: in the
next chapter we will see that a reformulation of the metrics of eq.
(1.23) is sufficient to extend KFs to those cases.

1.3.4 Non Linear Gaussian system: Kalman
based filters

If the system is non linear but admits Gaussian additive noises

xk+1 = f(xk) + vk, (1.25)

yk = g(xk) + nk, (1.26)

the KF in the form of the Algorithm 1 cannot be applicated as it
is. Indeed optimal algorithms in the MMSE or MAP sense do not
exist in closed form and suboptimal solutions are in order. Next
we present two algorithms, both based on KF, that tackle the non
linearity in different ways: the Extended Kalman Filter and the
Unscented Kalman Filter.

Extended Kalman Filter

The Extended Kalman Filter (EKF) is the most popular approach
to Non Linear Gaussian (NLG) dynamic systems and is based
on a first order approximation of the non linear functions. More
precisely, a time variant linear system is obtained at each instant
by stopping the Taylor series of the non linear functions at the
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first order term, that is

xk+1 = F̃kxk + vk, (1.27)

yk = G̃kxk + nk, (1.28)

where the matrices F̃k = ∇xk
f(xk) and G̃k = ∇xk

g(xk), given by
the gradient of the model and measurement functions respectively,
are evaluated at the best available estimation of xk.

Algorithm 2 (Extended Kalman).

For k = 0 set

• x̂0 = E [x0];

• P0 = E [(x0 − E [x0])(x0 − E [x0])
′].

For k = 1, 2, . . ., compute:

• Process model: F̃k = ∇xk
f(xk)|x̂k−1|k−1

;

• State prediction: x̂k|k−1 = F̃k−1x̂k−1|k−1;

• Covariance prediction: Pk|k−1 = F̃k−1Pk−1|k−1F̃
′
k−1 +Q;

• Measurement model: G̃k = ∇xk
g(xk)|x̂k|k−1

;

• Kalman gain matrix: Kk = Pk|k−1G̃
′
k

[
G̃kPk|k−1G̃

′
k +R

]−1

;

• State update: x̂k|k = x̂k|k−1 +Kk

(
yk − G̃kxk|k−1

)
;

• Covariance update: Pk|k =
(
I −KkG̃k

)
Pk|k−1.
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EKF is not very accurate and it should be avoided when high
performance is required. In fact, EKF is based on the assumption
that each posterior pdf is approximated by Gaussians, whose mean
and covariance matrix are propagated. In a NLG model, indeed,
EKF ensures the exact propagation of the mean only, while the es-
timated covariance matrix is not equal to the true one. This leads
to unpredictable errors and, furthermore, an unstable behaviour
could be experienced.

On the other hand, if this is not the case, EKF ensures sim-
plicity and low complexity and this is the reason why EKF is still
very used.

Unscented Kalman Filter

A different approach to NLG systems is provided by UKF, pro-
posed by [JUDW95] in 1995, that is based on a deterministic sam-
pling of the state space. Like EKF, this method is also based on
the Gaussian posterior approximation, whose mean and covari-
ance matrix are propagated. Nevertheless, it is generally more
accurate than EKF because it can be shown that EKF propagates
exactly only the mean (first order approximation of the posterior),
while UKF can propagate both exact mean and covariance matrix
(second order approximation of the posterior).

In the practice the performances improvement, if any, is paid
with an increment in complexity, since multiple sampling points
must be handled. The net result is that EKF is still used wherever
it shows a stable and accurate enough behaviour.

The theoretical setup in UKF is based on the Unscented Trans-
formation (UT), that is a method for calculating the statistics of
a random variable which undergoes a nonlinear transformation.
A deeper analysis of both UT and UKF goes beyond the thesis’
concern and the interested reader can refer to [Hay01, Ch. 7].
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1.3.5 Non Linear Non Gaussian systems

In the general case of NLNG systems, represented by the model
(1.13)-(1.14) and here restated for clarity

xk+1 = f(xk,vk), (1.29)

yk = g(xk,nk), (1.30)

the KF based algorithms should be avoided. As the main problem
is related to non Gaussianity, the same arguments are still valid
for the class of LNG systems.

Particle Filters (PFs) are drawing more and more interest con-
cerning the solution of general dynamic systems [AMGC02]- [FHL+03].
Even if conceptually simple, their exploitation has been put off
until this last decade for technological issues: their heavy com-
putational burden requires an amount of hardware resources that
was made available only recently.

PFs deal with non linearity and, above all, with non Gaussian-
ity by sampling in a random way the state space. For this reason
they belong to the family of Monte Carlo sampling techniques.

In PFs, the posterior pdf is approximated by

p (xk|y1:k) ≈
Np∑
i=1

wi
kδ(xk − xi

k), (1.31)

where {xi
k}i=1,...,Np

is the set of state hypotheses or particles. Two

main problems arise: i) how to (randomly) sample particles and
ii) how to compute weights in order to obtain the asymptotic con-
vergence of the sampled distribution to the real one.

The main issue is that it is not always easy to draw samples
from a generic distribution. The first algorithm we are going to
present is not used in the practice but solves this problem. After
that, the most popular PF will be described.

1.3.6 Sequential Importance Sampling

Sequential Importance Sampling (SIS) algorithm is a PF that
overcomes the problem of sampling from a generic distribution
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by means of the Importance Sampling.
Suppose that the estimatee x has a distribution p(x) from

which it is difficult to draw realizations but that is easy to eval-
uate in some points of its domain. Therefore, instead of drawing
particles {xi

k}i=1,...,Np
from p(x) and approximate the posterior as

in eq. (1.31) with equal weights

wi =
1

Np

,

we rather draw them from an importance density q(x), chosen in
a suitable way. In this case the approximation of eq. (1.31) is
fulfilled with

wi ∝ p(xi)

q(xi)
.

An iteration of the SIS algorithm is summarized in Alg. 3; its
sequential extention is then straightforward.

Algorithm 3 (Sequential Importance Sampling).

At k > 0

• For any i = 1, . . . , Np

– Draw xi
k ∼ q(xk|xi

1:k−1,yk);

– Assign the particle with a weight

wi
k ∝

p(xi
k|xi

1:k−1,yk)

q(xi
k|xi

1:k−1,yk)
;

• Normalize the weights such that their sum is 1.

The choice of the sampling function q(· ) depends on the par-
ticular application and eventually contains the new measurement
yk. If so, the PF is also called ‘likelihood’ PF.
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1.3.7 Sequential Importance Sampling with Re-
sampling

SIS has a big drawback that prevents people from using it. This
problem is known like ‘particle degeneracy’ and consists in the
fact that after few steps of the sequential procedure most particles
will be far from the truth (and have nearly zero weights) and thus
the ‘effective’ number of particles is much lower than Np. A good
measurement for the number of effective particles is supposed to
be [AMGC02]

N̄eff =
1∑Np

i=1(w
i
k)

2
. (1.32)

Sequential Importance Sampling with Resampling (SIR) overcomes
the particle degeneracy problem by means of a resampling step.
The idea is to resample the particles in accordance with a proba-
bility measure proportional to the weights when N̄eff is lower than
a threshold NT . A common scheme for SIR is given below.

Algorithm 4 (Sequential Importance Resampling).

At k > 0

• For any i = 1, . . . , Np

– Draw xi
k ∼ q(xk|xi

1:k−1,yk);

– Assign the particle with a weight

wi
k ∝

p(xi
k|xi

1:k−1,yk)

q(xi
k|xi

1:k−1,yk)
;

• Normalize the weights such that their sum is 1;

• Compute N̄eff as in eq. (1.32);



28 1. Basics of Estimation Theory

• If N̄eff < NT , resample the particles according to a multi-
nomial distribution using the weights as probabilities, and
then set uniform weights

wi
k =

1

Np

.

A common threshold is NT = 2
3
Np; note that the resampling

introduces further uncertainty, so that, even if it allows to avoid
degeneracy, the best pdf approximation is the one before resam-
pling.

Many variants of SIR have been proposed over the past years
to overcome some kinds of drawbacks. For example Auxiliary
Sampling Importance Resampling (ASIR) is a type of likelihood
PF in which a first weight is assigned to the particle relative to the
new datum likelihood and, after a resampling step, classic SIR is
applicated. The Regularized PF, instead, substitutes ‘impulsive’
functions of the particles in eq. (1.31) with smooth functions taken
from a suitable kernel (Gaussian or other), as a further remedy for
particle degeneracy.

All PF variants, however, show some advantages only in par-
ticular applications, so that the choice of the best PF is strongly
dependent of the application. Further details can be found in
[AMGC02] that, although it was written in 2002, is still today the
most cited and popular work about particle filters, and in [RAG04]
that is a collection of articles about the recent developments in this
field.

We conclude this section with the description of an interesting
technique that is very used today to reduce PF complexity: Rao-
Blackwellized Particle Filters.

1.3.8 Rao-Blackwellized Particle Filters

Whatever application and PF algorithm are handled, the critical
point lays in the state space sampling. What has been noted by
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several authors is that the processing complexity of PFs grows
more than linearly with the state space cardinality, that should be
reduced as much as possible.

Rao-Blackwellized Particle Filters (RBPFs) are the most cited
way to reduce the sampling complexity. Let X denote the state
space of caridinality |X|. To sample X means to draw a |X|-
dimensional vector x ∈ X. The RBPF exploits constraints over X,
if any, to decompose the state space in two disjointed subspaces,
say XS and XD, with

XS ∩ XD = 0,

XS ∪ XD = X,

|XS|+ |XD| = |X|,

where 0 is here the empty set. Each particle sampling takes place
in two subsequent steps:

• first sample into XS to obtain the i− th state hypothesis xi
S;

• then, given xi
S, determine the corresponding xi

D ∈ XD in a
deterministic way.

The advantage of this scheme is straightforward: only a part
of the state space is effectively sampled and then deterministic
techniques are employed to complete the particle. It is intuitive
that it cannot be done in general, but only in the presence of some
conditions. The most common cases are

• xi
D ∈ XD is deterministically obtained given xi

S ∈ XS, viz.

xi
D = f(xi

S);

• an optimal (or even sub-optimal) estimation xi
D according

to a suitable criterium is achievable given xi
S, ex. by means

of KF-based algorithms.
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1.4 Sequential PCRLB

The PCRLB of Sect. 1.2.1 can fit dynamic estimation by means
of a recursive procedure that was presented by Tichavsky et al.
in [TMN98] and it is here briefly reported. A general extension
to the presence of unknown parameters in the dynamic models is
also reported. The notation about matrices used throughout this
section is a bit less intuitive than before and is shown in App. B.

1.4.1 Bound with known models

Let Θk = {θi}i=0,2,...,k be the target trajectory until the instant

k, Yk = {yi}i=1,2,...,k the set of measurements, Xk = [ΘT
k , Θ̇

T

k ]
T =

{xi}i=1,2,...,k the state vector sequence and x̂k|k = [θ̂
T

k|k,
ˆ̇θT
k|k]

T the
estimated state (givenYk). We first start by computing the Fisher
Information Matrix (FIM), whose inverse is the CRLB, relative to
the whole trajectory Xk, using Yk like data. Since Xk is a random
parameter, the FIM is defined like

Ik = E
{
−∇Xk

[∇Xk
log p(Xk,Yk)]

T
}
, (1.33)

where the expectations are over both Xk and Yk, and it holds true
that in mild hypotheses

E
{
(X̂k|k −Xk)(X̂k|k −Xk)

T
}
≥ I−1

k , (1.34)

for any trajectory estimates X̂k|k.
We are actually interested in the sequential state estimation

x̂k|k. In this case, it can be derived from (1.33) and (1.34) that
the Cramer Rao bound becomes

Pk = E
[
(x̂k|k − xk)(x̂k|k − xk)

T
]
≥ J−1

k . (1.35)

The inequality in eq. (1.35) means that the difference Pk − J−1
k

is a positive semidefinite matrix. The information matrix Jk is
nx×nx sized, with nx the number of state variables, and is obtained
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from Ik. In [TMN98] an effective sequential computation of Jk is
performed by

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k , k ≥ 0, (1.36)

where the matrices D are square, sized nx × nx and independent
of k 

D11
k = E

{
−∇xk

[
∇T

xk
log p(xk+1|xk)

]}
,

D12
k = E

{
−∇xk

[
∇T

xk+1
log p(xk+1|xk)

]}
,

D21
k = E

{
−∇xk+1

[
∇T

xk
log p(xk+1|xk)

]}
,

D22
k = E

{
−∇xk+1

[
∇T

xk+1
log p(xk+1|xk)

]}
+

E
{
−∇xk+1

[
∇T

xk+1
log p(yk+1|xk+1)

]}
,

where the expectations are done w.r.t. xk, xk+1 and, in the last
line, yk+1.

Remark 1. Eq. 1.36 represents a recursive way in which the
PCRLB of Sect. 1.2.1 can be computed for dynamic models and
thus the conditions required for the validity of the bound are ex-
actly the same, but now they are applied to the whole trajectory.

Remark 2. In the case of LG systems, when the KFs are optimal
as they minimize the MSE of the estimator, the FIM of eq. (1.36)
is the inverse of the estimator covariance matrix Pk+1|k+1 of Alg.
1. In fact it is well known that the sequence of matrices Pk|k can be
computed in advance, being it independent of the true trajectory
followed by the user. For the other systems, this procedure is very
similar to the EKF; the only difference is that in this latter the
gradients of the model functions are evaluated at the estimated
state, rather than at the true state.

Remark 3. The prior distribution of the state is typically con-
sidered a Gaussian whose parameters reflect the knowledge about
the starting conditions; its FIM J0, in this case, is the inverse of
the prior covariance matrix. A uniform prior pdf cannot be used,
since it is discontinuous on its lips, unless different bounds are
being used. At this aim, the Ziv-Zakai Bound (ZZB) (presented
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in [ZZ69], improved and extended by other authors) is similar to
the CRLB, but it allows hard limitations on the prior distribution.
Unluckily it is still not avilable for sequential procedures and thus
it is not suitable in dynamic problems.

Remark 4. The computation of the matrices D can be done
exactly only in some trivial cases (e.g. for a LG model), but
normally some of them require numerical solutions, e.g. Monte
Carlo and deterministic sampling techniques4.

1.4.2 Bound with partially unknown models

In the case of partially unknown models we need some further
insight. We deal with a deterministic and unknown static pa-
rameters vector p which we include into the previously used joint
distribution of the state trajectory and the data. Stating for sim-
plicity a fictitious dynamic model for p

pk+1 = pk,

we define accordingly the Fisher information matrix of eq. (1.33):

Ik = E
{
−∇{Xk,p}[∇{Xk,p} log p(Xk,p,Yk)]

T
}
, (1.37)

where the expectations are over Xk,p and Yk. The solution re-
quires defining the following matrices

H11
k = E

{
−∇xk

[∇T
xk

log sk]
}
,

H12
k = E

{
−∇xk

[∇T
pk

log sk]
}
,

H13
k = E

{
−∇xk

[∇T
xk+1

log sk]
}
,

H22
k = E

{
−∇pk

[∇T
pk

log sk]
}
,

H23
k = E

{
−∇pk

[∇T
xk+1

log sk]
}
,

H33
k = E

{
−∇xk+1

[∇T
xk+1

log sk]
}
,

4The employment of the unscented sampling in the computation of the
matrices is performed with interesting results in [LLP09].
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where

sk = p(xk+1|xk,pk)p(yk+1|xk+1,xk,pk)

= p(xk+1|xk)p(yk+1|xk+1,pk), (1.38)

and the expectations are over xk, xk+1, pk and yk+1.
The required FIM results in the block matrix

Jk =

[
J11
k J12

k

J21
k J22

k

]
,

where the blocks are computed recursively

J11
k+1 = H33

k − (H13
k )T [J11

k +H11
k ]−1H13

k , (1.39)

J12
k+1 = [H23

k ]T − (H13
k )T [J11

k +H11
k ]−1(J12

k +H12
k ), (1.40)

J21
k+1 = [J12

k+1]
T , (1.41)

J22
k+1 = J22

k +H22
k − (J12

k +H12
k )T [J11

k +H11
k ]−1(J12

k +H12
k ).

(1.42)

The remarks made in the case with known models are still valid
here. A further relevant consideration is that the block relative to
the Fisher information of the parameter normally diverges

J22
k

k→ ∞.

This is due to the fact that the information about the static pa-
rameters grows unbounded and thus an efficient and consistent
estimator, if any, would produce a perfect output asymptotically.

1.5 Concluding remarks

In the end, we would like to stress that all estimation techniques
are usually based on different models of the same reality. Since the
final aim in estimation is the real object, the model, and hence the
estimation technique, is just a design choice performed by whom
is addressing the estimation problem. This choice is not unique at
all and is usually the main challenge in an engineering problem,
in which the designer’s experience is essential.





Chapter 2

A Survey of WLAN Indoor
Positioning Techniques
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Over the last decades several researchers have investigated
indoor navigation, exploring any possible technologies and ap-
proaches. The topic is still far from a satisfying, even sub-optimal,
solution.

An incredible amount of factors makes indoor navigation dif-
ficult to meet. The modelization of the environment, the user
motion, the possibility to use some devices and their real techni-
cal features are all issues mixing into the analysis of the problem
in an inextricable way.

But, perhaps, the most challenging point is that such factors
change dramatically in different experimental testbeds and even
for the same testbed over time. For this reason, the simplest tech-
niques, meant to be more general, keep prevailing over the others,
above all in Industry, while a wider variety of approaches has been
proposed in Academy.

In this chapter we provide an overview of the state of the art
in indoor localization. At the moment, we only deal with classic
localization: estimation of side parameters or maps is put off to
the next chapters.

Since now, when we describe an approach we will always high-
light the reasons why it has been proposed and what kind of needs
are met. In particular, each argument is considered in the light of
the next chapters’ content. This can appear limitative, but on the
other hand it provides a suitable base for the thesis’ work.

Anyway, a point should be clear in our minds: whatever mod-
els and techniques are used, the underlying problem is always the
same, i.e. somebody, walking around, must be detected and lo-
cated. The design choices always pursue a suitable ratio amongst
attainance to real world, complexity and availability of resources.

After a brief analysis of the main ad-hoc localization systems
in the Sect. 2.1, we will pay our attention mostly to the reuse of
RSS signals in WLANs (Sect. 2.2), whose most valuable example
is IEEE 802.11 (WiFi). We will formalize the problem (Sects. 2.3 -
2.4) and then WLAN localization techniques are classified in static
(Sect. 2.5) and dynamic systems (Sect. 2.6); this choice reflects
not only their deep technical differences, but also the opposite
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point in which the trade-off between performance and complexity
is fixed. In the end, in Sect. 2.7 a brief description of the tech-
nologies more related to this thesis’ contribution is given and in
Sect. 2.8 we make our last considerations.

2.1 Indoor localization: earlier works

One of the first approaches for indoor localization was based on
Infrared (IR) signals. In the system ActiveBadge [WHFaG92], de-
veloped at Olivetti Research Laboratory (now AT&T Cambridge)
between 1989 and 1992, a badge worn by the user sends a IR pulse
every 10 seconds1. Some sensors can detect those pulses, recog-
nize the users and transmit information to a central server. Ac-
tiveBadge has been adopted by many universities in Great Britain
and USA; its main advantage lays in its low costs, but it is affected
by some drawbacks. Mainly the point is that receivers act as prox-
imity sensors and thus the estimated user’s position is identified
with the receiver’s position. Good quality performances can be
only obtained as receivers’ density is high enough and a suitable
power management is allowed. Some versions of badges are repre-
sented in Fig. 2.1.

Other approaches employ the time of arrivals of ultrasound
pulses. Many problems arise from reflections, from the lack of LOS
and when the distance between transmitter and receiver exceeds
few meters. For these reasons it is more reliable for the off-the-shelf
systems to make use of combined RF-ultrasound signals and to
measure the time between the arrivals of these two pulses. Cricket
[PCB00], developed at MIT since 20002, and Active Bat [HHS+99],
developed at Cambridge since 1997, are the major examples of
ultrasound based locating systems.

1In the original version the badge only sent a 5 bit code on identifica-
tion purposes; in the most recent versions a bi-directional communication is
allowed and the badge is equipped with a microprocessor.

2Cricket current version is dated 2004.
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Figure 2.1 Active Badge modules: bottom left, the first version, with a
unique five bit code; bottom right, the second version, with a ten bit code;
top left, the third, current, version, with a forty-eight bit code, bi-directional

capabilities, and an on-board 87C751 microprocessor. Source:
http://www.cl.cam.ac.uk.

Spot On [HVBW01] and LandMarc [NLLP04] are the most
famous systems based on the use of active RFIDs. Basically, some
RFID readers in known locations can detect an active tag worn
by a close user and measure the power received. Trilateration is
thus employed to estimate the user’s location.

2.2 RSS based localization: why?

It is worthy to note that all of the systems described above, al-
though quite costly, are not used for communication tasks, being
them dedicated to localization. The use of opportunistic signals
from communication systems, instead, takes advantage from in-
frastuctures that are already available and constitutes the cheap-
est solution to the localization problem indoors.

In this context, the use of RSS measurements within wireless
communication systems has drawn a constant interest over the last
decade. The main idea is to extract distance information from the
RF signals used in many wireless communication systems and then
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to use trilateration schemes to localize the user.
Outdoors, this idea is being explored by mobile telephony. 4G

mobile networks are expected to provide their subscribers with
location aware services and thus must be equipped with localiza-
tion capabilities, either stand alone or in cooperation with GNSS.
Their precision, anyway, is too coarse for indoor environments.
The exploitation of WLANs appears more promising in such con-
texts in order to obtain a fine user’s localization inside a building
by a simple reuse of already available data. The most common
example is given by IEEE 802.11 (WiFi) technology, capable of
performing localization without any additive hardwares.

2.3 WLAN indoor positioning

Some formalization is now needed. To preserve a good degree of
readibility, we provide here only a minimal setup, valid all over
the thesis, postponing further details until they are used.

Throughout this thesis we will assume that NUS users and NAP

APs are present in the area under surveillance, say A ∈ R2, limited
in the plane and a Cartesian coordinates system is defined. Time
is discrete, due to the use of digital processing techniques, and is
denoted by the variable k = 0, 1, 2, . . .. The i-th user’s position at
k is the vector θi,k ∈ A, where subscript i is usually omitted in
single user frameworks, while the j − th AP’s position is denoted
by xj,AP ∈ A and assumed still over time3. Moreover each AP
is identified by a unique ID, e.g. the MAC address or some local
label.

The RSS measurements vector sk available at k is composed of
at most NAP tuples whose j − th element is

sj,k =< IDj, y1,j,k, . . . , yNUS ,j,k >, j = 1, . . . , NAP (2.1)

where yi,j,k is the RSS, in dBm if not stated otherwise, measured
by the i− th user and delivered by the j− th AP at k. In absence

3The pointwise approximation for both users and APs is extremely com-
mon in localization; if the size of the user is small compared to the accuracy
achieved this is not limiting.
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of ambiguity, we will use the vector yi,k = {yi,j,k}j=1,...,NAP
with

implicit reference to IDs. Again, the subscript i will be omitted
in single user frameworks.

Note that in eq. (2.1) the ID does not imply the knowledge of
the AP’s position. It only refers to the fact that measurements are
always ‘labeled’, but some information about APs can be missing.
More in general, we include a set of information about AP’s and
radio propagation into a WLAN mapW, whose exact composition
is case sensitive and is put off until real cases are undertaken.

A similar concept holds for the building map, say M, which
can consist of walls, rooms, furniture, with a degree of refinement
that is strictly case dependent.

In the end, we will consider for simplicity the case NUS = 1, if
not stated otherwise.

2.3.1 Application architecture: server based vs.
server free

RSS measurements can be processed either by the user or by the
network. In the former case, namely self-positioning, problems as
computational and memory capabilities of the user device (for ex-
ample a smart phone) or its limited battery life should be cared,
yielding the choice of simple and time saving algorithms. On the
other hand this approach can be very effective in the case of mul-
titarget positioning, since each user can compute its own position
regardless of the others’ presence. In the latter case the measure-
ments can be transmitted using the WLAN network itself, and a
location server can estimate the user’s location. Meaningfully a
server-based architecture, being less constrained in terms of en-
ergy consumption and computational capabilities than a mobile
user, allows the application of more complicated techniques which
account for the environmental variability. However, multitarget
positioning is more critical in this scenario. In [ABG+10] an ex-
ample of the potential of a server based architecture is provided:
in this case the diffraction effects due to the presence of other users
(cars in a parking lot) are tackled.
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2.4 Indoor RF channel

The indoor RF channel is characterized by so several effects that
it is almost impossible to list them as well as to cope with them.
That is why we focus our attention on those issues that are re-
ported in the literature as the most relevant for our aims.

The first effect we consider is key in RSS-based indoor posi-
tioning. While the RF signal is moving forward, its energy spreads
on a larger surface and thus the energy absorbed by the receiv-
ing antenna is inversely proportional to the propagation distance.
Unluckily this effect is deterministic only in ideal conditions but
in a real scenario it is affected by several unpredictable causes.

Indoors, the effect of small objects or moving people is to ran-
domize the signal propagation. In fact they cause a plethora of
events, like (multiple) reflections, diffractions and attenuations
which depend on the obstacle size and composition in relation
to the operative frequency. The combination af all these effects
leads to multipath and, thus, to fading [Par00]; an example of
RSS measurements plotted against the distance between user and
APS is in Fig. 2.2. Anyway, a separation is necessary between
the cases of slow and rapid fluctuations of the signals, since dif-
ferent characterizations are usually employed. A deeper analysis
of fading is proposed in the Ch. 3; here, after an introduction
on the signal features at the receiver, we describe some popular
propagation models.

2.4.1 Signal amplitude

In a digital transmission, a popular and effecive way to modelize
the effects due to fading is to multiply the transmitted signal by a
random process relative to the presence of multipath components.
In terms of complex envelopes, the received signal ũ (t) can be
written as [BB99, p.699]

ũ (t) = r(t)ejθ(t)s̃ (t) + ñ (t) ,

where r(t)ejθ(t) is the cited complex process and ñ (t) is a complex
Gaussian noise with zero mean and PSD equal to N0.
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Figure 2.2 Path loss model validation with noise in evidence; on the
abscissa we report the distance between user and AP. Borrowed

from [BP00b].

Here, we assume a (frequency) nonselective fading, i.e the co-
herence bandwidth Bcb of the channel is much greater than the
signal bandwidth W , leading to a slowly changing fading. In this
hypothesis the fading term can be considered constant within the
signal transmission. Furthermore the constant phase can be esti-
mated with sufficient accuracy, yielding coherent detection. Con-
sequently, the complex envelope ũ (t) of the received signal can be
now written as [BB99]

ũ (t) = rs̃ (t) + ñ (t) .

Note that this model differs from fading free transmission since r is
a random rather than a deterministic, even unknown, attenuation.
Accordingly, the SNR can be defined as [SA05]

γ =
r2ES

N0

,

wherein Es is the energy of s (t).
The mean SNR E [γ] is

E [γ] =
E [r2]ES

N0

in which the mean squared value of r, depending on the adopted
distribution, is the mean power expected in the location under
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test. Indeed we focus on the fading effect only, so our performance
figures could neglect the symbol energy and the PSD of noise,
considering them constant. In other words, for us

SNR = E [γ] = E[r2].

In many cases the decay models are given in terms of the power
in dB

y = 20 log10 r
△
= 2ξ ln r = ζ ln r,

where ξ = ζ/2 = 10/ ln 10.

2.4.2 Propagation models

Exploitation of RSS measurements has prompted research about
wireless RF signals propagation. The reference law in this case is
known as Friis formula and describes the power attenuation in the
free space signal propagation. Given a power PT delivered by an
antenna with gain GT (ϕ) (ϕ is the direction of interest), the power
Pr received at distance d by another antenna with gain GR is

Pr = GT (ϕ)GR(ϕ)

(
λ

4πd

)2

PT , (2.2)

with λ wavelength of the propagated EMF and provided that far
field conditions hold4. Eq. (2.2), depicted in Fig. 2.3, represents
a watershed in wireless communications and is still today funda-
mental in research. But propagation in real world is different from
what it is foretold in the free space condition and required further
investigation as mobile telephony systems began a reality. As a
result, most works are relative to the frequency bands used in tele-
phony, from 900 MHZ up to 2 GHz, which are a bit lower than
our frequencies of interest (ISM band at about 2.45 GHz).

Indoor propagation is also investigated with two scopes: pen-
etration of mobile telephony signals in buildings and coverage of
internal WLANs.

4In the ISM band, for example, λ ∼ 10 cm, so that after a couple of meters
the assumption is true.
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Figure 2.3 Path loss model without wall effects - eq.(2.3); on the top
power in mW and linear axes, on the bottom power in dB against distance

in log scale.

The basic idea is to extend eq. (2.2) in order to account for as
many effects as possible in a simple way. Taking the logarithm,
the received power is expressed by

Pr,dB = h− 10α log

(
d

d0

)
, (2.3)

where h includes the effects of antennas and frequency together
with the delivered power5, d0 is a reference distance (e.g. far field
limit) and α = 1÷ 4 is the decaying factor (α = 2 in free space).

Other deterministic effects such as floor or wall attenuation
can be met with additive loss factors. In the latter case, the Wall
Attenuation Factor - WAF - model has been presented in [BP00b]
and used by many other authors

Pr,dB = h− 10α log

(
d

d0

)
− c×WAF, (2.4)

5That is why we prefer to avoid common definitions like the power delivered
at distance d0.
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where WAF is the power loss due to a single wall and c is the
number nW of walls between transmitter and receiver up to a
limit, since the effect of new walls is less and less meaningful.
As for the floors attenuation, a fully similar model was proposed
in [Par00] and here omitted. In both cases the loss is heavily
dependent of the building materials: this is why their values are
case dependent.

The model of eq. (2.3) is useful to describe the power law in
the far field conditions, that is 1 ÷ 2 m at microwaves. At closer
distances the model is not accurate at all and it diverges for d → 0.
To avoid degeneracies in a real situation some tricks must be used,
for example we can assume that the AP is raised of 1÷2 m on the
user’s plane. An alternative propagation model rarely adopted in
the literature that overcomes this problem is presented in [NV05]
and also used in [BMM11]

Pr =
h

1 + βdα
, (2.5)

where β is a scaling factor for the distances. According to this
model, in far field conditions the propagation law is the same
as in the Friis formula, while for d → 0 the field is limited by
h and does not diverge. Furthermore, this model is remarkably
continuous and infinitely derivable for d > 0.

Other models are less common in the literature and can be
found in [Rap96].

2.5 Static localization

In static localization users are assumed to be somewhere in the
area under surveillance and information about their previous tra-
jectory is not employed at all. Another implicit hypothesis is that
the user keeps still at least during sensing and processing opera-
tions. The time indication is only used to indicize a sequence of
independent estimations.

Static localization is reasonable when saving hardware resources
is a must and easy-to-go techniques are employed; historically it
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was the first framework to be investigated and today it is pretty
common in self-positioning where energy constrained devices are
used, e.g. smartphones.

2.5.1 Ray-tracing

In some niche applications where hardware resources are not a
problem at all, the most performing solution to static localization
is ray tracing. It denotes a family of techniques based on the op-
tics approximation: the EMF is partitioned in a beam of mutually
independent rays6 and effects like diffraction and reflections can be
taken into account by providing the software with detailed infor-
mation on the environment. The hardware requirements of such
techniques are usually high, above all in indoor environments, due
to the contemporary presence of a large number of rays and to
their interaction with several objects. However approaches with
different compromises between complexity and performance are
available.

Other (even more complicated) techniques avoid optics approx-
imation, as they look for a numerical solution of Maxwell equations
at RF frequencies of the EMF.

For a complete analysis of ray tracing see [Par00, Sect 7.4]
and references therein. We now say that besides the already cited
computational requirements, softwares implementing ray tracing
are typically protected by copyrights and are thus quite expen-
sive. Therefore most applications should be tackled by other less
expensive, despite sufficiently accurate techniques.

2.5.2 Fingerprinting techniques

With no doubts, the approach ‘leader’ in WLAN static localization
is fingerprinting, due to its simplicity and effectiveness.

Several variants have been proposed which differ in some part,
but the central point is always the radio ‘fingerprint’. The finger-

6This approximation is almost exact only at optical frequencies but in this
case it is used at RF frequencies.



2.5. Static localization 47

print of a place is essentially a set of RSS measurements collected
from there. Some meaningful locations are selected in the area
under surveillance and their fingerprints are stored in a database
called Radio Map (RM) during an off-line training stage.

The fingerprint of the position to estimate in the locationing
stage is thus compared with those stored in the RM, in order to
find the ‘nearest’ one in some sense. K-Nearest Neighbours (k-NN)
algorithm, described in the Sect. 1.1.2, fits this scenario very well,
but complexity issues limit its applicability. A large dataset to
store and handle is a nightmare for terminals with few hardware
resources. K-NN based solutions which face this problem try to
include into the RM only a ‘summary’ of the training measure-
ments without losing precision. The more concise the summary is,
the more versatile the resulting algorithm is.

RADAR: simplicity rules

RADAR was presented in 2000 by [BP00b] and still today is the
most popular k-NN based algorithm. It employs k = 1 (in [CH67]
the admissibility of 1-NN is also stressed) and is based on an
approximation of the RM: the fingerprints stored are not rep-
resented by the list of all measurements collected, but by their
means. Thus, any training point is characterized by only a vector
of mean RSS values disregarding the true number of measurements
collected.

From a different point of view, RADAR is equivalent to a first
order characterization of the empirical distributions at every train-
ing point. It is evident that higher order features could be ex-
tracted, reaching a halfway solution between standard 1-NN and
RADAR (see Sect. 2.5.3). Nevertheless, for its simplicity RADAR
keeps being very popular in WLAN based indoor localization and
it is usually the benchmark for the other localization systems.

SVM based fingerprinting

Fingerprinting does not assume any measurement model, and this
is both good and evil at the same time. In fact on one hand a
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model would bridle reality by neglecting most effects difficult to
describe analytically; on the other hand the (also online) tuning of
parameters within an assigned model can be a rail in which classic
algorithms can work to increase the algorithms accuracy in real
world applications.

In [BB05] Support Vector Machines (SVM), a powerful family
of algorithms in the framework of the Statistical Learning Theory,
are employed in order to set the parameters of an assigned mea-
surement model. This latter is not a propagation model based
on the EMF properties, but is rather a heuristic model, linear or
not, whose parameters are set up according to training stages. It
is used instead of fingerprinting to reduce the complexity of the
training stage whilst preserving the accuracy.

2.5.3 Probabilistic techniques

Several positioning techniques require a probabilistic characteri-
zation of the indoor channel. While for tracking, as we will see,
probabilistic approaches are very exploited, in static localization
fingerprinting techniques are considered simpler and sufficiently
accurate, so the statistical techniques are less used. Nonethe-
less, advanced Bayesian approaches for WLAN localization are
presented also in [MEM+05] and in [RMT+02]. More recently, the
Horus system in [YA08] builds a radio map including the empiri-
cal pdfs of the RSS collected in some test locations and, then, the
online RSS likelihood is computed. Also the autocorrelation of the
measurements coming from the same AP is taken into account.

A brief survey of the most relevant problems regarding the
probabilistic modelization of the Wlan indoor channel follows.
One of the most difficult issues to tackle is the fading effect mod-
eling that, as said above, is responsible for the randomness of the
measurements. Both slow and fast fading can be described by
probabilistic models, with different degrees of complexity, whose
suitability is strongly dependent of the case.

Recalling the notation of Sect. 2.3, the pdfs of interest are
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• the RSS likelihood with respect to θ

p(y|θ) (2.6)

• the a-posteriori pdf of θ given RSS

p(θ|y), (2.7)

where we denote all pdfs with p(· ). Note that time is neglected
but this does not imply that each AP provides one RSS only: the
underlying assumption is that the user’s position does not vary
over time during the collection of measurements.

According to Sect. 1.1, maximizing the RSS likelihood over θ
leads to MLE within a non Bayesian framework, while the pos-
terior expectation and maximization lead to MAP and MMSE
estimators, respectively. It is worthy to say that in suitable hy-
potheses, ML and MAP criteria bring to the same estimator. In
fact, given the prior pdf p0(θ) of the user’s location, we can apply
the Bayes Theorem to eq. (2.7), yielding

p(θ|y) = p(y|θ)p0(θ)
p(y)

. (2.8)

In the maximization of eq. (2.8) p(y) is not involved and, if the
prior pdf is uniform, we can write

max
θ

p(θ|y) = max
θ

p(y|θ).

Note that ML and MAP criteria are drawn from different prob-
abilistic frameworks: throughout this thesis we are mostly inter-
ested to a Bayesian framework and thus to the MAP (or even
MMSE) rule.

We now present the main models proposed for the likelihood
function. A general model for the RSS vector is analogous to the
one of eq. (1.14)

y = g(θ,n), (2.9)
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where g(· ) = {gj(· )}j=1,...,NAP
is a vectorial function of the user’s

position θ corrupted by noise, say n7.
This means that y is in turn a random vector whose char-

acteristics, given θ, depends on the noise n. Assuming further
that n has NAP independent components {nj}j=1,...,NAP

such that
yj = gj(θ, nj), RSS from different APs are also independent given
θ, and thus

p(y|θ) =
NAP∏
j=1

p(yj|θ), (2.10)

where p(yj|θ) is given by the fading model adopted.

2.6 Dynamic localization

If the user is in a building and is localized periodically, the final
result is its temporal sequence of positions, i.e. its trajectory.
Intuition can help us in stating that the trajectory contains further
information that static localization cannot exploit. In particular
we refer to the strong correlation that exists between estimates
close in time.

The goal of dynamic localization is the estimation of a whole
trajectory rather than a sequence of single positions. It appears
straightforward that a more powerful framework is necessary to
exploit user’s positions correlation also preserving mathematical
tractability. The Bayesian dynamic estimation described in Sect.
1.3 is a natural, despite not univoque, setup for this scenario.

2.6.1 Bayesian approach

The model (1.13)-(1.14) of Sect. 1.3 is here restated for clarity

xk+1 = f(xk,vk), (2.11)

yk = g(xk,nk). (2.12)

7In the practice, noise is dependent of the position, even if it is often
assumed position-independent in probabilistic models.
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While for the measurements model the considerations of Sect. 2.4
are still valid, the process model useful in our application can be
expressed as

xk+1 = Fxk + vk (2.13)

where F is a constant matrix of dimensions (nx×nx), called state
transition matrix, and vk is a Gaussian noise with zero mean and
covariance matrix Q (nx × nx)

vk ∼ N (0, Q) .

The state x includes but is not limited to the user’s position. In-
deed, several choices are possible about the state composition and
this affects the matrices F and Q. Markov hypothesis on x does
not allow to use variables related to different instants. Thus the
only way to increase the ‘memory’ effect is to employ derivatives
of the position at the same instant, i.e. user’s velocity and accel-
eration.

Independently of the state variables choice, two approaches can
be derived with relevant differences in the noise properties; the
former is based on the sampling of a continuous-time (CT) model,
the latter assumes directly a discrete time (DT) model [BSLK01,
Ch. 6].

CT white noise acceleration

Let the scalar θ(t) be the user’s position in one dimension at the
continuous time instant t. If we imposed

θ̈ = 0,

with reference to the second derivative w.r.t. time, the user’s
velocity would be constant and its position linearly related to time.
We impose instead the condition

θ̈ = ṽ(t), (2.14)

where ṽ(t) is a continuous time zero mean white noise with

E [ṽ(t)] = 0

E [ṽ(t)ṽ(s)] = σ2
vδ(t− s),
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and σ2
v is the power spectral density of the white noise. The cor-

responding state vector is composed of the user’s position and
velocity

x =
[
θ, θ̇
]T

and the CT movement model is

ẋ(t) = Ax(t) +Dṽ(t), (2.15)

with

A =

[
0 1

0 0

]
, D =

[
0

1

]
.

Sampling the system in eq. (2.15) with a constant sampling
time τ > 0 yields

xk+1 = Fxk + vk, (2.16)

where

F = eAτ =

[
1 τ

0 1

]
,

and

v(k) =

∫
eA(τ−s)Dṽkτ+s d s.

The covariance matrix of vk is thus

Q = E
[
vkv

T
k

]
=

[
1
3
τ 3 1

2
τ 2

1
2
τ 2 τ

]
σ2
v .

The velocity changes over a sampling period τ are of the order
of √

Q22 = σv

√
τ ,

that can help again to set σv. In particular a Nearly Constant
Velocity Model (NCVM) is obtained when expected changes in
velocity are much smaller than the actual velocity. The cases of
θ ∈ R2 and θ ∈ R3 are simple extensions: the elements in the
matrices F and Q are multiplied each by an identity matrix of
order 2 and 3 respectively. As a final remark, we say that the
velocity is a Wiener process, being the integral of a white process.



2.6. Dynamic localization 53

DT white noise acceleration

Another common kinematic model is directly defined in discrete
time

xk+1 = Fxk + Γvk, (2.17)

in which the discrete-time process noise vk is a scalar-valued zero-
mean white sequence

E[v(k)v(j)] = σ2
vδkj, (2.18)

δkj is the Kronecker function and Γ a suitable gain matrix.
In this case we have for the one dimensional case and scalar vk

(the extension is the same as before)

F =

[
1 τ

0 1

]
, Γ =

[
1
2
τ 2

τ

]
.

In other words, this is a piecewise constant white acceleration
model, because the noise is considered constant into the sampling
period. The covariance of the process noise multiplied by the gain,
Γvk, is

Q = E[ΓvkvkΓ
T ] = Γσ2

vΓ
T =

[
1
4
τ 4 1

2
τ 3

1
2
τ 3 τ 2

]
σ2
v .

From a physical point of view vk and σv are accelerations. A
NCVM is obtained if the following condition is true: the changes
in the velocity over a sampling interval, which are of the order of
σvτ , are small compared to the actual velocity.

CT Wiener process acceleration

We can include also acceleration into the state vector

x =
[
θ, θ̇, θ̈

]T
and assume that it is a Wiener process, by imposing

...
θ = ṽ(t).
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Again, the movement model is

ẋ(t) = Ax(t) +Dṽ(t), (2.19)

with

A =

 0 1 0

0 0 1

0 0 0

D =

 0

0

1

 .

Sampling the system in eq. (2.19) with a constant sampling time
τ > 0 yields

xk+1 = Fxk + vk, (2.20)

where

F =

 1 τ τ 2/2

0 1 τ

0 0 1

 .

The covariance matrix of vk results in

Q = E
[
vkv

T
k

]
=


1
20
τ 5 1

8
τ 4 1

6
τ 3

1
8
τ 4 1

3
τ 3 1

2
τ 2

1
6
τ 3 1

2
τ 2 τ

σ2
v .

The changes in the acceleration over a sampling period τ are
of the order of √

Q33 = σv

√
τ ,

that is a guideline for the choice of σv. In particular a Nearly
Constant Acceleration Model (NCAM) is obtained when expected
changes in acceleration are much smaller than the actual acceler-
ation.

DT Wiener noise acceleration

Similarly to DT white noise velocity model, but with the state
composed by user’s position, velocity and acceleration, the matri-
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ces of model (2.17) are

F =

 1 τ τ 2/2

0 1 τ

0 0 1

 , Γ =


1
2
τ 2

τ

1

 .

The covariance matrix is

Q = E[ΓvkvkΓ
T ] = Γσ2

vΓ
T =

[
1
4
τ 4 1

2
τ 3

1
2
τ 3 τ 2

]
σ2
v .

For this model, σv should be of the order of the magnitude of
the maximum acceleration increment over a sampling period.

2.6.2 KF based approaches

All movement models presented so far are linear with Gaussian
noise. On the contrary, the measurement model is not linear at
all and, if Rice likelihoods are employed, neither Gaussian. This
is the reason why standard Kalman Filter cannot be applied and
its suboptimal variants are needed.

The EKF algorithm of Sect. 1.3.4 deals with non linearity in a
simple way, even if the performance must be then evaluated. Let
us consider first the Lognormal model, viz., in dBm,

yk = g(θ) + nk ∼ N (g(θ), R) .

To apply the Alg. 2 we have to linearize g(· ) at every time step,
according to

G =
∂g(θ)

∂θ

∣∣∣∣
θ=θ̂k|k−1

.

This can be done if g(θ) is derivable, as it is the case of the model
of eq. (2.3). The WAF model of eq. (2.4), on the other hand, is
singular since the number of walls is a non continuous function of
the position. UKF can be also applicated to indoor localization
straightforwardly as shown in [PW08].

In the case of RSS likelihoods modeled according to a Rice r.v.,
the non Gaussianity is a further source of approximation.
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2.6.3 Particle Filter based approaches

In principle, Particle Filters (PFs) are keen on dealing both with
non linearity and, above all, with non Gaussianity. Since resam-
pling is necessary to avoid particle degeneracy, SIR algorithm (and
its variants) is going to be used.

The state is xk whose samples are drawn from a suitable im-
portance density

q(xk|xi
0:k−1,y1:k)

and, subsequently, are properly weighted. A popular choice is to
use a ‘predictive’ function as importance density and then the RSS
likelihood as weight. In view of this we factorize the joint pdf of
the state sequence

p(x0:k|y1:k) = p(yk|x0:k,y1:k−1)p(xk|x0:k−1,y1:k−1)p(x0:k−1|y1:k−1)

= p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1). (2.21)

By defining the importance density as the prediction pdf

q(xk|xi
0:k−1,y1:k) = p(xk|xi

k−1),

the weight results in

wi
k = p(yk|xk)p(x0:k−1|y1:k−1).

Applying recursive arguments to p(x0:k−1|y1:k−1), a useful formula
for the weight is obtained, viz.

wi
k = p(yk|xi

k)w
i
k−1.

A different choice is required by SIR; in this case the new RSS
measurement is included in the importance density

q(xk|xi
0:k−1,y1:k) = p(xk|xi

k−1,yk),

which deals with the factorization

p(x0:k|y1:k) = p(xk|xi
k−1,yk)p(yk|x0:k−1,y1:k−1)p(x0:k−1|y1:k−1),

(2.22)
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and thus the recursively computed weight is

wi
k = p(yk|xi

0:k−1,y1:k−1)w
i
k−1.

With this formulation, state sampling is expected to be more pre-
cise, but the computation of both importance density and weights
are not straightforward anymore. In fact the importance density
can be expressed, thanks to Bayes Theorem, as

p(xk|xi
k−1,yk) ∝ p(yk|xk)p(xk|xi

k−1),

from which xk can be drawn only in some cases: if Gaussian like-
lihoods in dB are employed the product of two Multivariate Gaus-
sians is again Gaussian and thus sampling can be done; otherwise
it could encompass serious difficulties.

As for the weight, marginalization over xk is necessary

p(yk|xi
0:k−1,y1:k−1) =

∫
p(yk|xi

k)p(x
i
k|xi

k−1) dxk,

whose solution is available at least in a numerical way. ASIR can
represent a way to perform something similar by avoiding these
problems, but it employs a more complex procedure.

2.7 Survey of the technologies of inter-

est

The contribution of this thesis is relative to WLAN indoor lo-
calization and the experimental part has been fully developed by
means of IEEE 802.11 (WiFi) compliant devices. In this section,
we provide a brief survey of the WiFi standard with its main
technical features. Also Inertial Measurement Units (IMUs) are
shortly presented, since the argument proposed in Ch. 5 is based
on a data fusion framework between WiFi RSS measurements and
IMU’s derived step measurements.
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Figure 2.4 Typical WiFi infrastructure

2.7.1 IEEE 802.11 standard

IEEE 802.11 is today the most used WLAN technology. In the
infrastructure topology the AP is the base station that forwards
data to the user devices or to a connected network (see fig. 2.4).

There are many versions of the standard, indicated by the let-
ters a,b,g and n respectively, in which the differences are mainly
relative to their bit rates and other features. The most used ver-
sions are 802.11b and 802.11g, since many receivers are compatible
with both. They operate with a Direct Sequence Spread Spectrum
(DSSS) based modulation in the license free ISM band (≈ 2.45
GHz). The maximum allowed bit rates are 11 and 54 Mbps for
the ‘b’ and ‘g’ versions respectively; the last standard ‘802.11n’
can operate also at 5 GHz with higher data rates and is equipped
with MIMO antennas.

The maximum transmission power is set to 100 mW, allowing
to cover up to one hundred meters, depending on the environment.
The frequency band is split in 11 channels, but only 3 of them are
fully not overlapped; it is thus important in the design of a WiFi
network with at least 4 APs to assign the same channel to the
farthest APs.
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Beacon frames are periodically emitted by the APs for net-
work tasks, such as the synchronization of the receivers’ clocks to
the AP’s clock. Since the resolution of this latter in off-the-shelf
APs (1µs) is too coarse to yield an accurate distance estimation,
time of arrivals (TOA) based techniques are usually avoided, un-
less employing additive hardware, with a raising of the costs. For
example, Ciurana et al. propose an AP prototype to perform TOA
based positioning and tracking in [ICB+06] and in [CBC06] respec-
tively8. Also, a slightly different system is proposed in [YOT+05],
where time differential of arrival (TDOA) techniques are used. As
for angle of arrivals (AOA) based algorithms, MIMO antennas
are required, so that only the version ‘n’ of the standard can be
employed without additive hardware.

Anyway, the RSS of the beacon frame emitted by the access
point is measured by the receiver and made available to high level
applications. Therefore, such information can be exploited by a
localization system. Note that, even if the standard indicates a 8
bit (256 levels) quantization for the RSSI measurement, it does not
define its resolution nor accuracy, that are typically unavailable to
the user. Common resolutions are, however, -100 dBm to 0, with
1 dBm sized steps.

In [VSK+10] an anechoic chamber is used to characterize the
RSSI measurement features for some popular products such as
IPod and IPad. In detail, some practical aspects should be taken
into account:

• even if antennas are usually specified as omni-directional,
some meaningful imperfections often occur, yielding a bias in
the measurements which depends on the direction of arrival;

• sometimes, the rate at which the device provides RSSI mea-
surements can be higher than the sampling rate and in this
case the same measurement can be provided several times;

8In the practice they add a network receiver with better time resolution
to APs.
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Figure 2.5 A foot mounted IMU. Taken from http://www.wearable.ethz.ch

• even if different RSSI are given, they could be statistical cor-
related due to hardware problems, above all if the sampling
rate is too high.

Again, such information is usually not reported anywhere.

2.7.2 Inertial Movement Units

An inertial measurement unit (IMU) worn by a pedestrian who
is walking in a building is of great help in localization. A com-
fortable and popular solution is to attach the IMU to a user’s
shoe, as in Fig. 2.5. Such sensor essentially provides a sequence of
measurements (at a relatively high rate ∼ 100Hz) of the acceler-
ation (in 2 or 3 dimensions) and its utility in localization systems
has been widely proved. In fact, a single integration filtering on
those data provides velocity, and a double one makes it possible
to infer the user’s position. Given a kinematic (and usually prob-
abilistic) model for the pedestrian movement and another one for
the measurements, the algorithm often employed in order to ob-
tain location inference is EKF. The result is a sequence of step
measurements at the rate of about 1 step per second.

Although this method promises a great accuracy, some draw-
backs should be tackled. Unluckily, the actual measurements are
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always affected by a drift that, when integrated twice, makes the
position estimate to diverge very rapidly with time. Therefore, in
the practice an ‘open loop’ procedure can be adopted only for few
seconds and more complex ‘stable’ algorithms must be expoited.
More details about this will be given in the Ch. 5.

2.8 Concluding remarks

In this chapter we gave a survey of the main approaches adopted
in indoor localization. Some choices were necessary for space rea-
sons and we have neglected the techniques less addressed in the
positioning literature. We have not considered aspects like the es-
timation of side parameters and maps, that can have a dramatic
impact on positioning techniques and performances. This will be
the next chapters’ focus.





Chapter 3

Adaptive Techniques for
Indoor Positioning
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After a review of the main mathematical, algorithmic and tech-
nical aspects involved in the thesis, we now start describing the
original contribution we aim to provide. This chapter proposes a
basilar analysis of the environment profiling, with most emphasis
drawn to the theoretical issues which make this task difficult, al-
though necessary at the same time. After stating the models for
the pedestrian movement and the power propagation that will be
used, with minor variants, throughout the whole thesis, we will
identify the environment uncertainties that usually characterize
the indoor positioning, and we develop various solutions by means
of Bayesian techniques. For this reason, some problems concerning
the application of the algorithms presented in the previous chap-
ters must be fixed with suitable changes. For example we deal
with the presence of barriers in the environment to formulate a
more realistic model of the true user motion.

After that, we propose a simulative study in a simplified frame-
work to figure out the main criticisms in this kind of analysis and,
finally, an example of experimental case study characterized by
very advers environmental conditions.

It should be clear that in this chapter we are not supposed to
provide operative algorithms, nor exhaustive analyses of the envi-
ronmental profiling. Just, we want to approach the problem and
explore the possible solutions offered by the Bayesian Probability
Theory.

Briefly, we refine the user’s movement model to account for the
obstacles and propose a study about its parameters in Sect. 3.1
and 3.2 respectively. In Sect. 3.3 the Bayesian setup is applied
to formalize the environmental profiling and then we present the
corresponding solutions in Sect. 3.4; in Sect. 3.5 we introduce
the variance noise filter. Simulative experiments corroborating
the effectiveness of the proposed approaches are carried out in
Sects. 3.6-3.7 and the corresponding theoretical bound is described
in Sect. 3.8. Finally, experimental results and some concluding
remarks are proposed in Sect. 3.9 and Sect. 3.10 respectively.
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3.1 Walking pedestrian: a tractable model

As it was assumed in Ch. 2 the pedestrian is modeled like a
material point whose two dimensional position at the time instant
k ≥ 0 is encoded in the vector θk ∈ A ⊆ R2.

The user’s motion is modeled through the NCVM introduced
in Sect. 2.6.1; for clarity, we recall that it prospects a state vector
composed of the user’s position and velocity (both in 2D)

xk =
[
θT
k , θ̇

T

k

]T
,

where the superscript T means transpose, and a dynamic model
sampled at the time instants kτ, k ≥ 0

xk+1 = Fxk + vk.

The matrix F is defined like

F = I2 ⊗

(
1 τ

0 1

)
,

while the zero mean white process vk, hence supposed Gaussian,
has a covariance matrix Q

Q = E [vkv
′
k] = σ2

vI2 ⊗

(
1
3
τ 3 1

2
τ 2

1
2
τ 2 τ

)
.

Above we have introduced for clarity the identity matrix I2 of
order 2 and the Kronecker product ⊗.

3.1.1 How to model physical barriers

Barriers in real environments are walls, relevant pieces of furni-
ture or whatelse is capable of limiting the user’s movement. The
pedestrian’s visual system, that is liable for the barrier avoidance,
cannot be sensed by an external system and thus suitable mod-
els for such barriers should be introduced. In other words, this is



66 3. Adaptive Techniques for Indoor Positioning

equivalent to a set of constraints on the estimation problem that,
beside causing bias, refine the overall performances.

A way to address this problem is to step up to a more general
movement equation

xk+1 = f(xk) + vk.

This approach was adopted, among the others, in [BU11] to in-
clude the routes information into the maritime tracking algorithms.
Although several simple models could be proposed for the barriers,
we want to add a further constraint relative to the mathematical
properties of the model; in detail, we require that both the function
f(· ) and its gradient be continuous (the existence of the gradient
itself is assumed as well). Furthermore, when the user is far from
the obstacle it holds

f(xk) ∼= Fxk

like in the unbounded case. The resulting ‘soft’ model is compli-
ant with the mathematical assumptions typically required by the
tracking algorithms and by the Cramer Rao based analysis.

Our proposal aims at reducing and eventually inverting the
user’s velocity according to a sigmoid function when the user ap-
proaches the barrier. Consider for simplicity the one dimensional
case, with the user’s position limited to be θk < θB. The velocity
θ̇k is influenced by the distance θB − θk from the obstacle through
a sigmoid function

θ̇k+1 = (1− 2sζ(θB − θk)) θ̇k + vθ̇,k, (3.1)

where

sζ(t) =
1

1 + e−t/ζ

is a sigmoid function and vθ̇,k is the component of vk relative to the
velocity. This model ensures that when the user is bound to impact
on the obstacle, its velocity is first reduced and then inverted, so
that it moves away from it. We say that this constraint is soft,
because θk can be greater than θB for some k . This trick, however,
for the low velocities of our applications has a very little impact on
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Figure 3.1 Typical trajectories generated by (a) the soft bounded model
and the (b) reflection model.

the degree of approximation of the model, whilst making it more
easy to handle. A typical trajectory generated by this model is
shown in Fig. 3.1.a.

All obstacles can be modeled like similar barriers. Note that
the choice of ζ should be case sensitive: for walls ζ ≈ 1 looks
proper, even if a study for the optimal setting of the sigmoid para-
maters ( i.e. ζ and the sigmoid center since here set to θB) would
be of interest.

As a special case we mention that ζ = 0 resumes the reflec-
tive model, whose typical example is depicted in Fig. 3.1.b: the
velocity is simply inverted in the case of barrier crossings, i.e. the
matrix F is switched between two choices in which only the veloc-
ity sign is changed. Further details are omitted for this model is
not used anymore.

3.1.2 Measurement Model

The fading effect has a high impact on the signal propagation,
especially indoors. Following the analysis in [Par00], the signal
amplitude r can be expressed like

r = rS· rF ,
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where rS and rF account for slow and fast fading respectively. In
Appendix A we propose a deep study of the main probabilistic
models for slow and fast fading, aimed at providing a common
analysis framework. Concerning this, slow fading is usually well
characterized by a Lognormal model

rS ∼ pL(r) =
1√
2πσr

exp

(
−(log r − µ)2

2σ2

)
, (3.2)

where µ and σ are dependent of the distance between the user and
the AP; a suitable model for fast fading is instead given by the
Rice (or Nagakami-n) pdf

rF ∼ pR(r) =
2(1 +Kf )r

Ω
exp

(
−Kf −

(Kf + 1)r2

Ω

)
· I0

(
2r

√
Kf (Kf + 1)

Ω

)
, r ≥ 0 (3.3)

whose parameters areKf ≥ 0 and Ω = E[r2] and I0(·) is the zeroth
order modified Bessel function of the first kind. The Rice pdf is
quoted a suitable model for fast fading in case of LOS propagation
conditions; if the LOS is not present, the Rayleigh pdf is best
suited, that is a Rice pdf with Kf = 0 [Par00]. The Kf factor has
a strong physical meaning, since it represents the ratio between
the ‘main’ signal component and the ‘floor’ (due to multipath)
powers.

Since the RSS measurements are usually available in dBm, we
are particularly interested in the power characterization in loga-
rithms, since in far field conditions the power results in the square
of the signal amplitude; this allows us to split the slow fading effect
from the fast fading one:

y = 20 log r = 20 log rS + 20 log rF . (3.4)

Concerning the slow fading term, it is easy to show that yS =
20 log rS is distributed according to a Gaussian pdf

yS ∼ N
(
µdB, σ

2
dB

)
, (3.5)
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with mean E[yS] = µdB = κµ and variance VAR[yS] = κ2σ2, where
κ = 20/ log(10).

The fast fading term yF = 20 log rF is expressed interestingly
by means of the function

yF ∼ pR(rF ) =
2(1 +Kf ))

κ
exp

(
2(y − ΩdB)

κ
−Kf

−(Kf + 1) exp

(
2(y − ΩdB)

κ

))
· I0
(
2
√
Kf (Kf + 1) exp

(
y − ΩdB

κ

))
, (3.6)

where ΩdB = κ/2 log(Ω) is a shift parameter and thus affects only
the expectation, while the variance is almost only dependent of
Kf :

E[20 log rF ] = ΩdB − e(Kf );

VAR[20 log rF ] = v(Kf ).

The functions e(Kf ) and v(Kf ) have been computed numerically
for Kf ∈ [0, 20], because this range covers the typical values of
Kf (see also [GME99]), and they are shown in Fig. 3.2; suitable
analytical approximations can be performed by means of either
polynomial fits or the Nagakami-m pdf [KA07].

Finally, it results that

E[y] = E[yS] + E[yF ], (3.7)

and, assuming independence between slow and fast fading effects,

VAR[y] = VAR[yS] + VAR[yF ]. (3.8)

The mean power in dB is tuned according to a deterministic
propagation model; in our case we use the path loss model [BP00b]

E[y] = Pdj = hj − 10αj log

(
dj
d0

)
, (3.9)



70 3. Adaptive Techniques for Indoor Positioning

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

 K
f

 e
(K

f)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

K
f

 v
(K

f)

(a) (b)

Figure 3.2 Plot of the functions e(Kf ) (a) and v(Kf ) (b) vs. Kf .

where dj the Euclidean distance between user and the j-th AP,
hj and αj are the reference power and the propagation exponent
respectively. Since now we will denote briefly

h = {hj}j=1,...,NAP
, α = {αj}j=1,...,NAP

,

that will be subject to further analysis later.

3.2 Effect of the parameters in the move-

ment process

The parameters of the movement model have a remarkable im-
pact on the performances of the algorithms. As an example, we
here investigate the behavior of EKF when variations for different
values of σv and τ within the NCVM assumed in this chapter.

In each subplot of Fig. 3.3 only a parameter of the movement
model varies, whereas the other one is kept fixed (see the true
values in the corresponding caption). The results confirm what
we said above: an increase of the randomness in the target motion
due to a higher noise power reduces the overall performances; in
this case a knee is present between 1 and 1.5 m/s1.5. This gives
a numerical evaluation for the condition on σv required by the
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Figure 3.3 RMSE plotted according to variations of the movement model:
in the left plot σv varies in the range [0, 1.5] m/s1.5, with a constant τ = 0.2

s; on the right τ varies in the range [0, 0.5] s, σv = 0.1 m/s1.5

NCVM:

σv ≪
1√
τ
≈ 2.23.

Furthermore, from the analysis of the right side plot of Fig.
3.3, we can state that a larger sampling period τ acts in the same
way. These two effects are both visible in the expression of the
covariance matrix Q, whose components are all proportional to
both σv and τ .

3.3 Introducing uncertainty in the RSS

propagation model

A further step within RSS based indoor localization concerns adap-
tivity to environmental uncertainties or unknown parameters. In
the propagation model of eq. (3.9) there are at least two param-
eters that can be of interest to us: the reference power h and
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the propagation exponent α; moreover also the variance of the
measurement noise is usually uncertain.

In this section we provide a preliminary study about the on
line estimation of the above parameters together with the user’s
trajectory, by employing only the RSS measurements. First we
consider each parameter alone, and then we address the issues
arising from the multi-parameter estimation.

Before stating our proposals, we briefly review the existing
techniques.

3.3.1 Existing techniques

Yet from the eldest studies about indoor localization the need
for adaptive algorithms was stressed. The first, quite rough, at-
tempt to profile the environment was an enhancement of RADAR,
presented in [BP00a]; it consists in building up several RMs in
different conditions (at various day and night times or different
activities) and in choosing the best one on line. This last decision
is taken using each AP like a probe for the others.

Other RADAR based approaches explore similar solutions (e.g.
in [YYN08]): for all of them the main drawback lays in the fact
that the training phase must be iterated, and thus the complexity
gets worse and worse. The use of probes and suitable interpolation
techniques can boost the situation but additive hardware is still
necessary.

Tracking algorithms open new doors to researchers who want
to account for the environmental fluctuations. Among the batch
algorithms, those based on the Expectation-Maximization princi-
ple are used to provide ML estimates of the parameters [MS00].
These methods are typically not keen to follow fluctuations but
only to estimate static unknown parameters and it is overcome
by resorting to some shortcomings, like e.g. splitting data into
windows; in this case, of course, optimality is no more pursued.

If an online ‘dual’ estimation is needed, instead, other algo-
rithms must be addressed. In a recent work some authors propose
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an on-line calibration of the RSS measurements SNR [CWYS09],
used to correct data before deploying EKF with a logarithmic
propagation model. For this aim, a number of tags are deplyed in
known positions along with the APs.

3.3.2 Bayesian approach

Let
{pk}k=0,1,2,... , pk ∈ RNpar

be a (vectorial) parameter of dimension Npar, that states a Non-
Linear Gaussian (NLG) system:

xk+1 = f(xk) + vk (3.10)

yk = g(xk,pk) + nk. (3.11)

The parameter can be static, i.e. pk = p,∀k, or can admit fluc-
tuations; in either cases, we can assign a fictitious probabilistic
dynamic model

pk+1 = pk + rk (3.12)

in which rk is assumed, for convenience, to be a Gaussian white
noise with zero mean, suitable covariance matrix Rr

k and arbitrary,
but known, prior µp(p).

In our localization problem we have two aims: to determine i)
a (causal) estimate θ̂0:k of the user’s trajectory θ0:k that minimizes
the root mean square error (RMSE)

k∑
t=0

√
E
[
||θ̂t − θt||2

]
, (3.13)

and ii) a final parameter pdf that can be used afterwards by other
users as a refined prior pdf.

We explore now three approaches: in the first one we define an
extended model by stacking the user’s state and the parameters
into a new state vector and we perform the MSE optimization
in terms of this new state; the second one, based on the Rao
Blackwellized Particle Filters (RBPFs), focuses on the θ0:k optimal
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estimation using the parameters as side information, and providing
at the end their distribution; the last approach approximates the
RBPF to deal with computational issues.

3.4 Proposed solutions

3.4.1 Joint filtering

If we are interested in the optimal (causal) estimate of the param-
eters, the Bayesian score function to adopt is the joint posterior
pdf of x0:k and p0:k

p(x0:k,p0:k|y1:k). (3.14)

The most straightforward way to undertake this problem is to
jointly infer xk and pk by stacking them into a new extended
state zk

zk =

[
xk

pk

]
.

The dynamic model for zk is thus expressed by

zk+1 = f̃(zk) + ṽk, (3.15)

yk = g̃(zk) + nk. (3.16)

When the user is far from obstacles, the linear approximation
f̃(zk) ≈ F̃zk holds, where

F̃ =

[
F 0

0 INpar

]

is a new transition matrix of dimensions (Nx·Npar) × (Nx·Npar),
whose blocks have consistent dimensions; otherwise

f̃(zk) = [fT (xk),p
T
k−1]

T .

Moreover
g̃(zk) = g(xk,pk),
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and

ṽk =

[
vk

rk

]
is again a Gaussian random vector with zero mean and covariance
matrix, given by Q̃

Q̃ =

[
Q 0

0 Rr
k

]
.

The choice for Rr
k is not unique and can meet several needs. Usu-

ally a better choice consists in decreasing the noise power over
time, rather than employing a constant matrix: in fact a greater
uncertainty is needed for the initial setting of the parameters; sub-
sequently the adaptability can be reduced to deal with rarer vari-
ations.

Algorithms

Standard tracking algorithms for Non Linear Non Gaussian (NLNG)
systems can be employed [Hay01,AMGC02]; altough not very keen
to deal with NLNG systems, Kalman Filter based approaches can
be taken in consideration for their simplicity. In [PAR11] the EKF
has been tested in his joint version, and gave mediocre results. The
PF based techniques, instead, are preliminary shown to be much
more effective and in this chapter we focus on them and, more
in detail, with SIR algorithm, denoted in this framework by the
name Joint SIR (JSIR), that is here briefly summarized.

The i-th particle at instant k contains a hypothesis {xi
0:k,p

i
0:k};

the initial values (k = 0) are simply drawn from the priors

xi
0 ∼µx(x0),

pi
0 ∼µp(p0);

(3.17)

then the JSIR is based on the following factorization of eq. (3.14):

p(x0:k,p0:k|y1:k) ∝p(xk|xk−1)· p(pk|pk−1)

· p(yk|xk,pk)· p(x0:k−1,p0:k−1|y1:k−1). (3.18)
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In the above, the importance density that is used to sample the
particles is

p(xk|xk−1)· p(pk|pk−1)

while the new RSS likelihood updates the weights; in summary:

• for the i− th particle draw independently

xi
k ∼ p(xk|xi

k−1),

pi
k ∼ p(pk|pi

k−1);

• update the weight

wi
k = wi

k−1· p(yk|xi
k,p

i
k); (3.19)

• normalize the weights such as
∑

iw
i
k = 1;

• resample if need be.

Resampling can be made accordingly to the method proposed
in [AMGC02], based on a heuristic measure of the particles deple-
tion and is aimed at attaining a suitable diversity.

3.4.2 Rao Blackwellized Particle Filters

Joint filtering is affected by an increase in the state space cardi-
nality as new parameters are estimated, for example due to the
presence of more APs. In the PF case this is a limitation, since
the number of particles (and thus the complexity) necessary to
ensure the convergence to optimal values is strongly related to it.
A solution can be represented by the Rao Blackwellized Particle
Filters (RBPF), presented in a general form in [RAG04], in which
the state space is split into two subspaces: one is explored through
Monte Carlo Methods (as in classic PFs) and the other one is sub-
sequently explored in a deterministic way. In the case of RBPF
approach the score function assumes the form

p(x0:k|y1:k). (3.20)
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that is slightly different from the one in eq. (3.14), as the pa-
rameters are not explicitely present, but added through a further
marginalization. Therefore, the i− th particle at k contains only
a hypothesis for {xi

0:k}; the initial value (k = 0) are again drawn
from the prior

xi
0 ∼ µx(x0);

then the algorithm is based on the following factorization of eq.
(3.20):

p(x0:k|y1:k) ∝ (3.21)

p(yk|x0:k,y1:k−1)· p(xk|x0:k−1,y1:k−1)· p(x0:k−1|y1:k−1).

For the i− th particle at k the following steps are in order:

• the user’s state is drawn like before from the predictive im-
portance density

xi
k ∼ p(xk|xi

0:k−1y1:k−1) = p(xk|xi
k−1); (3.22)

• the particle’s weight is updated with the RSS likelihood

wi
k = wi

k−1· p(yk|xi
0:k,y1:k−1); (3.23)

• the weights are normalized such as
∑

iw
i
k = 1;

• the resampling is performed if needed.

The main difference with JSIR is that now the RSS likelihood has
to be marginalized over the parameters:

p(yk|xi
0:k,y1:k−1) =∫

p(yk|xk,pk)p(pk|xi
0:k−1,y1:k−1)dpk, (3.24)

where suitable simplifications were employed. To compute the
parameters distribution we use a KF-based filter (the KF in the
case of linear models, Extended or Unscented KF if not); if

p(pk−1|xi
0:k−1,y1:k−1) ∼ N

(
mk−1|k−1, Sk−1|k−1

)
, (3.25)
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then the prediction step results in

p(pk|xi
0:k−1,y1:k−1) ∼ N

(
mk|k−1, Sk|k−1

)
, (3.26)

and the update step provides

p(pk|xi
0:k,y1:k) ∼ N

(
mk|k, Sk|k

)
. (3.27)

The expressions formk|k−1, Sk|k−1, mk|k and Sk|k are computed like
in [Hay01] as well as the extensions for the EKF and the Unscented
KF (UKF).

The solution to the integral in eq. (3.24) depends on the ex-
act definition of pk and on the RSS likelihood model. A special
case is obtained when p = h, i.e. we want only to estimate the
reference Signal Strength (SS), and the RSS likelihood is assumed
Lognormal (Gaussian in dB). In this case the integrand function
in eq. (3.24) is the product of two Gaussian distributions and
is in turn a Gaussian-like (although a normalization is required)
function whose mean and variance can easily be obtained 1

p(yk|hk,x
i
k)p(hk|xi

0:k−1,y1:k−1) = cf(hk), (3.28)

where f(· ) represents Gaussian pdfs and 0 < c < 1 is a normaliza-
tion constant. Note that the first term in eq. (3.28) is Gaussian
with respect to the variable yk: here we are exploiting the fact the
in the propagation model of eq. (3.9) the variables yk and hk are
exchangeable. For this reason, the recursive weight results in

wi
k ∝ wi

k−1· c,

with c being on turn the ratio

p(yk|hk,x
i
k)p(hk|xi

0:k−1,y1:k−1)

f(hk)

at an arbitrary value of the variable hk, e.g. its expected value. A
similar consideration holds if p = α.

1If fi(x) ∼ N(mi,Σi), i = 1, 2 the function f(x) = f1(x)· f2(x) is propor-
tional to a Multivariate Gaussian function with mean and covariance matrix

m =
(
Σ−1

1 +Σ−1
2

)−1 (
Σ−1

1 m1 +Σ−1
2 m2

)
, Σ =

(
Σ−1

1 +Σ−1
2

)−1
,

respectively.
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3.4.3 Comments on JSIR and RBPF

JSIR is optimal in the sense that it converges to the optimal so-
lution (w.r.t the extended state) as the number of particles ap-
proaches infinite. The RBPF has the same property only if the
KF algorithm computes the exact distribution of the parameter,
namely when pk is expressed by means of a Linear Gaussian (LG)
Model given xi

k, viz.
2

pk+1 = Fppk + rk,

y′
k = Cppk + nk, (3.29)

where Fp and Cp are constant matrices, rk and nk are Gaussian
white (and uncorrelated) noise processes and y′

k is the observable.
This holds if either h or α have Gaussian RSS likelihoods, but not
in general.

Another point of interest in NLG models is the need of a nu-
merical evaluation of the integral (3.24), thus representing a bot-
tleneck from a computational point of view. For there reasons we
now provide an approximation of the RBPF that is computation-
ally suitable even in NLNG models.

3.4.4 Discrete model

A simplified representation of the parameters state space can help
to handle the complexity problems. We propose to decompose the
parameters space into a finite number of disjoint cells P̃j, each
represented by its mean value, say p̃j; accordingly, the random
process of eq. (3.12) is approximated by

pk =
{
p̃j,k

}
j=1,...,NJ

(3.30)

and the corresponding prior probabilities result in

µj =

∫
µp(p0) d P̃j.

2The parameters prior is also assumed Gaussian.
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Resorting again to the score function of eq. (3.20) and to the
factorization of eq. (3.21), we address the RBPF algorithm, but
we compute differently the terms which involve the parameters. In
particular, in such hypotheses, the parameter distribution inside
the i− th particle is approximated by

p(pk|xi
0:k,y1:k) ≈

NJ∑
j=1

Pr
{
pk ∈ P̃j|xi

0:k,y1:k

}
δ
(
pk − p̃j,k

)
.

The recursive computation of the above distribution can be per-
formed by means of the Approximated Grid Based (AGB) algo-
rithm presented in [AMGC02], that is the counterpart of the KF
with a discrete state space.

3.5 Variance filter

If the unknown (or partially known) variable is the variance of the
measurement noise, joint estimation is not possible anymore. The
reason lies in the fact that it produces a ‘low-pass’ version of the
state, filtering out the noise: in this case, instead, we should do
the opposite. In this case a dual filter approach is necessary, in
which two competing filters alternate state and variance estima-
tions sequentially in time. The variance estimation is based on the
auxiliary state space model

σ2
k+1 = σ2

k + rk, (3.31)

in which σ2
k is a state variable and rk is a fictitious Gaussian pro-

cess, and on the maximization of the metrics

JML(σ2) = −
N∑
k=1

(
log(2πσ2

ϵk
) +

(ϵk)
2

σ2
ϵk

)
, (3.32)

where ϵk = yk − h(x̂k|k−1) is the prediction error and its variance
σ2
ϵk

depends on σ2. Note that also the predicted state x̂k|k−1, and
accordingly ϵk, depend on the noise variance and this complicates
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Figure 3.4 Testbed adopted in the simulations; in the figure Lx = 40 m
and Ly = 20 m and the APs are in the positions denoted by red circles.

the solution. On the other hand we could neglect this latter depen-
dence, leading to a simpler approximated solution, that is however
reported to be unreliable by some authors (see [Nel00]). The fil-
ter is explained in [Hay01,Nel00]: the derivation is quite tedious
and some spots are put off to the App. C, while some simulative
experiments are shown in Sect. 3.7.3.

3.6 Simulation of tracking systems

Several computer experiments were designed in order to show and
deeply analyse our proposal’s performances. We chose to separate
the fast fading from the slow fading, to avoid combined effects
which would be difficult to discriminate. The testbed, represented
in Fig. 3.4 is composed by a 40 × 20 m open area where a user
walks according to the model of Sect. 3.1 with σv = 0.1 m/s2 and
τ = 1 s and 5 APs denoted by red circles periodically emit beacon
signals. The mean received power is given by eq. (3.9), where the
reference SS vector h is affected by uncertainty. In particular we
assume the starting value of h being drawn from a Multivariate
Gaussian prior distribution with known mean h0 and diagonal
covariance matrix with elements σ2

h; in some simulation settings
a step-wise variation of some component of h is also impressed.
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The starting user’s state x0 is drawn from a Multivariate Gaussian
prior distribution with diagonal covariance matrix, whose nonzero
terms are set to 1 for the position variables (σ2

θ1 and σ2
θ2) and

0.1 for the velocity variables (σ2
θ̇1

and σ2
θ̇2
). Finally, all results

are averaged on series of independent data and are presented in
terms of a sampling approximation of the positioning RMSE in
eq. (3.13).

We drop the simulative characterization of the tracking algo-
rithms in the case of fully known models because it is redundant,
since it is provided by many authors and it is not our focus at
all. Indeed in the next section we will use the ‘clairvoyant’ system
to give a tight benchmark to the performances obtained by our
adaptive algorithms. Nevertheless, we can state some considera-
tions carried out after extensive simulative studies:

• there is no real gain, in this case, in using UKF instead of
EKF unless in very high measurement variance conditions;

• the same holds for ASIR with respect to SIR, both for Log-
normal and Rice fading;

• as for PFs, we found that in our simulative frameworks we
have almost convergent results with a number of particles in
the interval Np = 500÷ 1000.

3.7 Simulative analysis of partially un-

known models

We now present some simulative results, performed in the frame-
work of Sect. 3.6; the results concerning the JEKF applied to
the reference SS profiling are presented in [ABR10] and omitted
here to give more space to PF-based algorithms: this choice is also
confirmed by the fact that PFs are much more robust with real
measurements and thus represent the standard in today localiza-
tion systems.
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Therefore, the PF-based algorithms of Sect 3.4 will be tested
with both slow fading and fast fading. We provide a deep char-
acterization in the case of the p = h, and further considerations
about the cases p = α and p = [h,α].

3.7.1 Reference SS estimation

Slow fading

To test the slow fading effects, the measurements in dB are drawn
according to the Gaussian model of eq. (3.5); beside JSIR, we test
RBPF and not AGB because RBPF is not affected by computa-
tional problems in this case, as seen in Sect. 3.4.3. The first test is
obtained with σ2

h = 9 and compares the results of JSIR and RBPF;
as a reference we also draw the corresponding results obtained by
the clairvoyant SIR algorithm (no parameter estimation) fed up
with the true values of the reference SS. All algorithms are applied
with 1000 particles and their RMSEs are plotted against time in
Fig. 3.5.a. The initial RMSE value is related for all of them to
the covariance matrix of the state prior, viz.√

E
[
||θ̂0 − θt||2

]
=
√

σ2
θ1 + σ2

θ2 =
√
2;

then, both adaptive algorithms have a transient in which, by esti-
mating the parameters, they retrieve the same performance shown
by the non adaptive algorithm fed up with the true parameter val-
ues. The differences between JSIR and RBPF lay in the overshoot
amplitude and in the speed of convergence: in both cases very rel-
evant benefits are achieved by RBPF. This is a direct consequence
of the algorithms adaptivity: as it is shown in Fig. 3.5.b the mean
error

∆h = |h− ĥ|

on the estimated reference SS is rapidly torn down in the RBPF
case to a steady state value that is slightly greater than zero, but
nevertheless it does not affect the RMSE. This behavior is tightly
foretold in [TMN98] in terms of the related Posterior Cramer Rao
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Figure 3.5 Slow fading effect shown by means of computer experiments on
the testbed of Fig. 3.4: JSIR and RBPF are applied with σ2

h = 9, σ2
y = 5

and number of particles in the range Np = 1000; we show (a) the positioning

RMSE and (b) mean estimation error ∆h = |h− ĥ| on the parameter.

Lower Bound (PCRLB), whose steady state values both in the
presence and in absence of unknown parameters are the same;
even if in our case this is not strictly possible since we adopt in
the estimation a fictitious dynamic model for the parameter with
nonzero noise variance, the performance is very similar. It would
be of interest to optimize the algorithms w.r.t. the noise variance
of the parameters but this issue goes beyond our aims.

Let us dig deeper into the algorithms evaluation. In Fig. 3.6 we
show the results of our algorithms applied in the same conditions
as in Fig. 3.5, but with a variable number of particles in the range
Np = 200 ÷ 1000: even 200 particles are sufficient for RBPF in
order to overcome JSIR applied with as many as 1000 particles.

We also carried out an analysis of the performances related to
variations of σ2

h and σ2
y in Fig. 3.7, subplots (a) and (b) respec-

tively. We depict the results concerning RBPF which show a little
variability in the positioning RMSE ; only a 100 % increase in
the measurement variance σ2

y deteriorates the performances of 25
%. In the measurement variance case, looking at the steady state
values evaluated in Table 3.12, a pejorative effect is reported due
to variations of σ2

y (but it is a less than linear behavior).

As a final test, we imposed a downside step variation on the
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Figure 3.6 Positioning RMSE (both JSIR and RBPF) related to computer
experiments concerning slow fading in the setup of Fig. 3.4 with number of
particles in the range Np = 200÷ 1000; here, σ2

h = 9, σ2
y = 5 and Np = 500.

0 200 400 600 800 1000
0

1

2

3

4

5

6

Time

R
M

S
E

 (
m

)

 

 

σ2
h
=1

σ2
h
=9

σ2
h
=25

(a) σ2
h

0 200 400 600 800 1000
0

1

2

3

4

5

6

Time

R
M

S
E

 (
m

)

 

 

σ
y
2=1

σ
y
2=5

σ
y
2=10

σ
y
2=15

(b) σ2
y

Figure 3.7 Computer experiments concerning slow fading for RBPF
applied to the testbed of Fig. 3.4: positioning RMSE plotted vs time with
different values of (a) the prior variance of the parameter in the range

σ2
h = 1÷ 25 and (b) the measurement variance σ2

y = 1÷ 10; 500 particles
were employed always.
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Figure 3.8 Computer experiments concerning slow fading in the setup of
Fig. 3.4 with a -5 dB step variation on the parameter of a single AP at
k = 500 in order to mimic a sudden shadowing; here σ2

h = 9, σ2
y = 5 and

Np = 500.

reference SS of one AP in order to simulate a sudden obstruction
due, for example, to an obstacle. As before, this produces only a
transient but the steady state RMSE is unchanged, as shown in
Fig. 3.8 for RBPF (see the caption for the simulation details).

Fast fading

The fast fading effects are modeled by means of a Rice pdf as
described in Sect. 3.1.2; beside JSIR, we test the AGB algorithm
instead of the RBPF for the reasons explained in Sect. 3.4.3.
Fig. 3.9 highlights a comparison between our proposals and the
clairvoyant SIR algorithm, all applied with σ2

h = 9, σ2
y = 5 and

Np = 1000 to the testbed of Fig. 3.4; it is clearly shown the
effectiveness of AGB due to a very sharp convergence with respect
to JSIR, although the steady state value is slightly greater than
JSIR’s. This is due to the discrete set of parameter values assumed
in AGB, whose choice is key in the algorithm performance. We
prefer a uniform sampling of h in a suitable set, to account for
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Figure 3.9 Fast fading effect onto RMSE shown by means of computer
experiments on the testbed of Fig. 3.4: JSIR and AGB with δh = 1 dBm are
applied with σ2

h = 9, σ2
y = 5 and number of particles in the range Np = 1000.

sudden changes during the estimation. The step size, say δh, can
be tuned by considering the full mismatch case: the maximum
difference between the true value of the parameter and the closest
discretized value is δh/2 and must be lower than the expected
error ∆h. Since we have found out in the computer experiments
that ∆h ≈ 0.5 dBm, than we choose

δh = 1 dBm,

as a suitable compromise between algorithm complexity and per-
formance (less 10 % of steady state RMSE increase with respect
to JSIR).

The results of the analysis with respect to number of particles
(Np = 200 ÷ 1000), step size (δh = 0.5÷ 2) and down side varia-
tion of one AP’s reference SS are shown, all in terms of positioning
RMSE, in Fig. 3.10 and Fig. 3.11. In detail, Fig. 3.10.b confirms
that there is room for improvement by setting a lower δh. The
results about variations of σ2

h and σ2
y do not present relevant dif-

ferences in relation to the slow fading case; we only report in Tab.
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Figure 3.10 Computer experiments concerning fast fading applied to the
testbed of Fig. 3.4: we report the positioning RMSE plotted vs time

obtained (a) by both JSIR and RBPF with different set of particles in the
range Np = 200÷ 1000 and (b) by AGB with step size in the range

δh = 0.5÷ 2; where not otherwise reported we use σ2
h = 9, σ2

y = 5, Np = 200
and δh = 1 dBm.

Slow Fading (RBPF) Fast Fading (AGB)
σ2
y = 1 1.1936 -

σ2
y = 3 1.6961 2.2424

σ2
y = 5 1.9600 2.8125

σ2
y = 10 2.4623 2.8657

σ2
y = 15 2.7777 2.9516

Figure 3.12 Steady state values of the positioning RMSE for different
values of the measurement variance in the range σ2

y = 1÷ 15; here σ2
h = 9,

Np = 500 and δh = 1 dBm.

3.12 the RMSE steady state values vs the measurement variance
σ2
y.

3.7.2 Other cases

The exponent α can be sometimes an unknown parameter as well.
We have tested our algorithms in scenarios where only α is un-
known or variable, that is

p = α,
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Figure 3.11 Fast fading effect: RMSE restoration after a -5 dB step
variation on one AP’s h at the time instant k = 500; we use σ2

h = 9, σ2
y = 5,

Np = 200 and δh = 1 dBm.

similarly to the reference power in Sect. 3.7.1. The results are
omitted because they are fully similar to the previous case. More
interestingly, in the composite case

p = {h,α}

severe identifiability problems arise. We shall introduce the point
through a simple example: let y be a scalar observation, a and b
the (partially) unknown parameters. It is straightforward that if
y = a+ b, we cannot discriminate between a and b observing only
y and thus the identifiability problem cannot be solved (unless
specific side information is available). On the other hand, if y =
a + b· t, with t known, the variations of a and b have different
impacts on y, since the former is an additive constant on y and
the latter is a slope term. In our case we have instead

y = a+ bt̂+ n,

where t̂ is the estimate of t based on the same observations y.
When also a random noise is added all the algorithms tested have
shown an unstable behavior. This is why in the next chapters we
will always deal with only the reference power estimation.
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3.7.3 Variance estimation

The first scenario being discussed in this section requires the esti-
mation of only the AP’s noise variances. In Fig. 3.13 we show the
tracking of the variances with different forgetting factors and the
corresponding positioning RMSE. The comparison with the per-
formances of the algorithm without the variances tracking high-
lights the action of the variance filter. The forgetting factor sets
the trade off between velocity of the convergence and residual un-
certainty and too low values can lead to stability problems.

More interestingly, we have tested the variance filter matched
with the reference power estimation and the results are in Fig.
3.14. Even though in the transients some coupling between the
estimators is evident, an enhanced stability is shown in the end
both in the parameters tracking and in the positioning perfor-
mances. Analogous results are found in the case of contemporary
estimation of variances and α, while severe identifiability problems
are again reported in the estimation of all parameters.

3.8 Evaluation of the Cramer Rao Lower

Bound

The sequential Posterior CRLB described in Sect. 1.4 was cast on
our framework to study its theoretical limits. The matrices defined
in Sect. 1.4.1 and in Sect. 1.4.2 w/o and with unknown parameters
respectively are here specified and implemented numerically.

In the case we assume a Lognormal measurement model the
matrices D of Sect. 1.4.1 can be expressed like follows:

D11
k = Exk

{
fT
x (xk)R

−1
v fx(xk)

}
,

D12
k = −Exk

{
fT
x (xk)

T
}
R−1

v ,

D21
k = [D12

k ]
T
,

D22
k = R−1

v + Exk+1

[
gTx (xk+1)R

−1
n gx(xk+1)

]
.

The functions fx(· ) and gx(· ) are the first order linearization of
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Figure 3.13 Variance estimation for all 4 APs by means of the exact filter,
on the left λ = 0.99, on the right λ = 0.999: variances tracking (1 run) and

mean experimental error (over 200 MC trials) in the target location;
non-stationary SNR, starting from SNR = 20 dB, α = 1.7.
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Figure 3.14 h (top) and variances (middle) estimation for all 4 APs by
means of the exact filter: in both cases λ = 0.99; on the bottom there is the

mean experimental error in the target location; non-stationary SNR,
starting from SNR = 20 dB, α = 1.7.
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the functions f(· ) and g(· ) respectively:

fx(xk) = ∇xk
f(xk),

gx(xk+1) = ∇xk+1
gk+1(xk+1).

The computations involve matricial operations and are described
in App. D; we notice that fx(xk) ≈ Fxk when the user is far away
from the obstacles (see Sect. 3.1.1). The FIM Jk, whose inverse
provides the CRLB, is thus given by eq. (1.36).

In the case of unknown parameters the H matrices of Sect.
1.4.2 result in

H11
k = Exk

{
fT
x (xk)R

−1
v fx(xk)

}
,

H12
k = 0,

H13
k = −Exk

{
fT
x (xk)

T
}
R−1

v ,

H22
k = E

{
gTp (xk+1,pk)R

−1
n gp(xk+1,pk)

}
,

H23
k = E

{
gTp (xk+1,pk)R

−1
n gx(xk+1,pk)

}
,

H33
k = R−1

v + E
{
gTx (xk+1,pk)R

−1
n gx(xk+1,pk)

}
,

where

fx(xk) = ∇xk
f(xk),

gp(xk+1,pk) = ∇pk
g(xk+1,pk),

gx(xk+1,pk) = ∇xk+1
g(xk+1,pk).

The FIM is thus computed like in the Sect. 1.4.2.

In the case we assume a Rice measurement model, the compu-
tation of the gradients is much more tedious in D22

k , H22
k , H23

k and
H33

k ; further details are proposed in App. D.
We give two simulative shots about the CRLB evaluation. In

Fig. 3.15 the (root) CRLB is compared to the RMSE obtained
from the JEKF with SNR=10, 20, given the Gaussian likelihood
model. The most interesting point to figure out is that there is
a divergence between the bound and the real performances by
lowering the SNR.
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Figure 3.15 Bayesian (root) CRLB for the sequential tracking, compared
with the EKF empirical RMSE. Here τ = 1, σv = 0.1, data SNR (Gaussian

case) equal to 10 and 20 dB; 10000 Monte Carlo trials.

In Fig. 3.16 we show the limits in the cases described through-
out this chapter: full known model (black continuous line), refer-
ence power estimation (dotted red), exponent estimation (green
semi-dotted) and both (dotted blue). As foretold in Sect. 1.4.2,
they all converge to the same value, since the information describ-
ing the parameters grows endless. This is true also in the case of
both h and α estimation, where the algorithms fail: before saying
that the limit makes no sense in this case (that is possible as well),
we should remember that the identifiability problem found in the
Sect. 3.7.2 could arise from a lack of sensibility in the algorithms
rather than being a theoretical problem.

3.9 Experimental Results

Experiments on real datasets have been carried out in the scenary
depicted in Fig. 3.17: it consists of an underground car park sized
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Figure 3.16 Bayesian (root) CRLB for the sequential tracking in all the
examined cases. Here the initial state x0 has a Gaussian distribution on the

measure area centered in the true position and with unitary covariance
matrix, τ = 1, σv = 0.1, SNR = 20 dB.

Figure 3.17 Experimental setting: the APs are denoted by red circles and
are indicated with SSi, i = 1, . . . , 5. Also the channel of the 802.11 band
used by any AP is indicated at a 2.4GHz frequency. Note that only 3
channels are available, thus, in order to avoid interferences, we have

exploited the fact that the distances between SS3 and SS5 and between SS1
and SS4 are greater than the APs range in reception.
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Figure 3.18 Graphical RSS from SS2; smoothing through splines.

about 45 × 40 m, in which a 802.11 (WiFi) network with 5 APs
3COM 7760 operates. In the parking area there are obstacles of
reinforced concrete and cars. The number, type and position of the
cars in the assigned sites are absolutely random and cannot be put
under control. The sampling frequency is about 1 measurement
per second, and the measurements are the power levels expressed
in dB. Furthermore, they are quantized in order to be integer
values, but we will not explicitly take account of the consequent
rounding in our algorithms.

A starting analysis of our data shows how difficult the inference
is because of the very high dispersion in the received powers. In
fact, in Fig. 3.18 we show the mean power measurements collected
in a training stage throughout the whole setting and relative to
the AP called SS2; an interpolation based on splines is adopted to
smooth the picture. We can see how the signal propagation is not
circular at all, but is highly influenced by the obstacles (on the
ground truth no information was noted down about the cars).

The training dataset consisted of 1000 measurements vectors
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Figure 3.19 RMSE of KF, JKF, SIR and JSIR applied to the setting in
Fig.3.17: (top) the estimated path loss model is employed, (bottom) h is

alterated with an error of +10 dB for all APs.

(50 points, 20 measurements per point), useful to estimate the
parameters h and α of the path loss model of eq. (2.4) for each
AP through a Minimum Squares optimization rule. After that, a
virtual path has been simulated in the car park (marked line in Fig.
3.17), sorting the measurements collected in various points. In
this particular scenario we have observed a bad behavior of JEKF
approach (see Fig. 3.19). This is due to the significant departure
from Gaussianity (in dB) hypothesis (the Rice distribution better
fits the channel variability in the considered scenario) and to a
very high variance affecting the channel noise.

The results, shown in Fig. 3.19, highlight the adaptive behav-
ior of the joint estimator. Indeed, using the parameters of the
propagation model estimated on real data as the actual value for
SIR and the initial estimation for JSIR, the two algorithms show
the same performances (about 5 meters of error, see the plot on
top). By corrupting the same parameters with an increase of 10
dB for all APs, the initial error in both algorithms significantly
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Figure 3.20 h tracking performed by the approximated JSIR algorithm for
SS1, SS2 and SS3. The uncorrupted values are indicated with dotted lines.

gets worse. However the JSIR quickly retrieves the performances
it had in the former case (see the plot on bottom), due to its track-
ing capability. An example of learning curve regarding h relative
to some APs is presented in Fig. 3.20. Further experiments on
adaptive behavior, performed, for example, by imposing different
errors among the APs, have yielded quite similar results.

3.10 Concluding remarks

We have shown the basics in the application of the Bayesian Prob-
ability Theory to indoor localization with the addition of the envi-
ronment profiling. We modified some classic algorithms to account
for some propagation parameters involved in the chosen models.
Some further issues have been undertaken, like the obstacle avoid-
ance and the comparison between measurements generated under
different probabilistic models. We have evaluated our algorithms’
effectiveness and robustness by means of extensive computer ex-
periments, as well as a very advers experimental scenario.
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In the next chapters, these techniques will be further developed
to address more elaborate and attractive problems. Thus also
many practical details, here omitted because beyond our actual
aims, will be dealt with.



Chapter 4

Co-Localization:
Exploiting WLAN Signals
of Opportunity
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So far, we analyzed positioning systems based on the assump-
tion that we know precisely where the APs are. Nevertheless, in
several practical situations this information is not available or,
sometimes, it is not accurate enough. In fact, in the present chap-
ter we drop this hypothesis and undertake the topic known in the
literature like co-localization.

Consider this problem, depicted in Fig. 4.1: a person having
a WiFi compliant device, such as a smartphone, enters a building
where a WiFi network is active. After the association procedure,
the user equipement (UE) receives from the fixed network some
information about the building structure, such as the floor map,
position and features of the active APs and so on. After that,
the UE starts measuring the RSS and can either perform the lo-
calization on its own end (self-positioning) or send the measure-
ments to the server end (server based positioning) by means of a
suitable protocol (e.g. see the localization architecture proposed
in [ABG+10]). Suppose, now, that it detects pilot signals also from
APs whose positions are unmanaged (for example, because they
either belong to other networks or have been moved recently): we
wonder whether we can usefully exploit such measurements or we
should just ignore them.

The answer is of course yes; in this chapter we are going to
develop a Bayesian framework aimed at exploiting the RSS from
APs located in unknown positions. We will find that an estimation
of the unmanaged APs is made in terms of the position pdf, that
is used to ‘weight’ their measurements. The result is that as our
knowledge about those APs grows, the corresponding RSS are even
more relevant in the Bayesian algorithms.

After a literature review about co-localization (Sect. 4.1), we
examine in Sect. 4.2 a possible architecture of the practical posi-
tioning system. Then, the theoretical framework will be developed
in Sects. 4.3 and 4.4; an intuitive study on mapping is proposed
in Sect. 4.5 and we develop the Bayesian filter in Sect. 4.6, whose
approximation is dealt with in Sect. 4.7. Simulative and real world
experiments are provided in Sects. 4.8 and 4.9 respectively.
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Figure 4.1 Scheme representing the architecture of a positioning system
based on both managed and unmanaged WLANs.

4.1 Literature review

The idea of employing further information to improve the accu-
racy of WLAN based positioning algorithms is already present in
the literature. Cooperative localization refers to scenarios in which
different UEs are allowed to exchange some data [DRFF10]. In op-
portunistic or redundant localization different kinds of infrastruc-
tures are jointly used to infer the position of a mobile user [ZZ09].
Moreover, wireless nodes mapping by means of a mobile agent
equipped with a GPS receiver (outdoors) is exploited in [SR04] by
means of a probabilistic framework.

The co-localization paradigm is instead introduced in [PPY+12],
where the authors develop a first machine-learning-based approach
that combines collaborative filtering with graph based semi super-
vised learning. A sequential extension of the algorithm is also
provided that can meet also environmental changes and, in a fur-
ther scenario, they also integrate IMU’s data. The results are
interesting, even if not easily evaluable, being their experimental
scenarios not accurately specified and no absolute measures of the
error provided.
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Figure 4.2 Protocols involved in our scenario for authentication and
localization.

4.2 Architecture

A simple architecture which allows the exploitation of unmanaged
APs makes use of a dedicated Locations Server (LS) and a suitable
protocol, called Location Information Protocol (LIP) [ABG+10].
We will consider next a IEEE 802.11 (WiFi) network.

Fig. 4.2 depicts the procedures which take place for a WLAN
network before starting location:

1. IEEE 802.11 association process takes place when UE enters
in the network radio coverage. UE starts sending an As-
sociation Request to the AP. After the AP receives the as-
sociation request successfully, it will reply with Association
Reply. When UE receives the Association Reply message, it
changes its status from a new station to a registered station.

2. The second step is the WLAN Direct IP Access procedure.
In this case, the network will authenticate a user on the basis
of the credentials.

The solution we propose is founded on a localization protocol,
LIP, for the exchange of signaling data between UE and LS. LIP is
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Figure 4.3 Types and corresponding structure of LIP messages.

an application layer protocol based on UDP, employing 3 types of
messages showed in Fig. 4.3 and illustrated in the next paragraph.

4.2.1 Location message exchange

We now explain how the location process takes place in our design.
After a successfully completed WLAN Direct IP Access procedure
between UE and AAA server, the Authenticator sends a LIP Init
message (Fig. 4.3.a) to the LS, containing the new user ID. The
LS checks whether the user is allowed to access the network ser-
vices, and then it sends to UE a LIP Info message (Fig. 4.3.b)
containing a list of the managed APs list with the relative MAC
and, eventually, the measurement rate to adopt. If this number
is set to zero no measurement is collected in this phase, other-
wise the user starts to collect measurements at the given rate and
sends them to the LS, through LIP Update messages (Fig. 4.3.c).
The latter elaborates the received data in order to estimate the
user’s location. If need be, the LS can send a LIP Info message to
the user in order to stop the RSS measurements dispatching. The
succession of LIP messages within a session is listed in Fig. 4.4.
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Figure 4.4 Flow of LIP messages within a session.

4.3 Theoretical setting

Let us focus now on the derivation of the Bayesian algorithms
aimed at co-localization, provided the needed degree of formaliza-
tion.

A pedestrian user is assumed to walk inside an indoor area A ⊆
R2 of interest; its two dimensional position θt ∈ A is expressed in
terms of a locally defined, Cartesian reference system (x, y) and
evolves in time from t0 = 0 on. The user’s movement is driven
by its intention and, at a lower level, by its sensorial systems that
interact with the building map to avoid obstacles and choose a
path leading to the goal; since, differently from what happens with
the robots, these variables are not measurable, we ought to use
general models exploiting the continuity of the user’s trajectory.
In particular, we refer to the NCVM presented in Sect. 2.5.3. The
only difference is that now we’d rather sample the time in a non
regular way, i.e. at the arbitrary instants 0 = t0 < t1 < . . . <
tk−1 < tk and build a user’s state vector into which we stack its
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position θt and velocity θ̇t:

xk=̂
[
θT
k , θ̇

T

k

]T
, (4.1)

where T means transpose and we denote the time instants by their
indices. The dynamic model of the user is thus modeled by the
stochastic process:

xk = Fkxk−1 + vk

starting from an arbitrarily distributed initial state x0 with prior
pdf

x0 ∼ µx(x0). (4.2)

The prediction matrix Fk, provided τk=̂tk − tk−1, is defined by

Fk = I2 ⊗

(
1 τk

0 1

)
,

while the zero mean white process vk, hence supposed Gaussian,
has a covariance matrix Qk

Qk = E [vkv
′
k] = σ2

vI2 ⊗

(
1
3
τ 3k

1
2
τ 2k

1
2
τ 2k τk

)
.

The continuous time process noise intensity σv and τk must always
match the requirements for NCVMs, i.e. the changes in velocity
during τk must be much smaller than the actual user’s velocity (in
norm)

σv

√
τk ≪ ||θ̇k||. (4.3)

The area under test is equipped with NAP Access Points (APs);
the arbitrary j-th AP, located statically in θj,AP ∈ A, broadcasts
periodically its unique SSIDj inside a beacon signal. The user
WLAN device is able to measure the amplitude yj,k of the beacon
signal emitted at time k by the j-th AP and has available a more
complex Wlan measurement meant for convenience as the n-uple

sj,k =< SSIDj, yj,k,θj,AP ,pj >,
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where pj is a set of static informations about the AP useful in the
positioning application, as we will see shortly. The set of WLAN
measurements collected at k will be denoted by sk. Our main
assumption is that the measurements sj,k are independent both in
time and among different APs, given the user’s state.

For simplicity, we will typically refer to the set of RSS measure-
ments at k > 0 and to the set of the APs’ positions and parameters
as

yk = {yj,k} , θAP = {θj,AP} , p =
{
pj

}
, (4.4)

for j = 1, . . . , NAP , respectively.

4.3.1 Propagation model and parameters

We assume the Lognormal fading model and path loss propaga-
tion model as described in the Sect. 3.1.2. Like before, we give
attention to the parameters h and α that are the reference SS and
the decaying exponent, respectively.

4.4 Problem statement

The positioning techniques based on the models of Sect. 4.3 re-
quire the knowledge of both the APs’ positions θj,AP and the pa-
rameters involved; in our case the parameters are hj, αj and σj

that will be stacked into the vector pj. In our setting we assume
that we have only partial knowledge about some of the APs. In
this view, we split the matrices in eq. (4.4) after a suitable sorting:

yk =
{
yF
k ,y

P
k

}
, θAP =

{
θF
AP ,θ

P
AP

}
, p =

{
pF ,pP

}
, (4.5)

where the superscript F denotes the fully known APs and P de-
notes those partially known APs. The partial knowledge of these
latters is expressed by defining prior pdfs for both θP

AP and pP ,
viz.

µθ(θ
P
AP ), µp(p

P ), (4.6)
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that can be factorized, being position and parameters for different
APs assumed mutually independent:

µθ(θ
P
AP ) =

∏
j

µθj(θ
P
j,AP ), (4.7)

µp(p
P ) =

∏
j

µpj(p
P
j ). (4.8)

Note that the independence assumption for the parameter vectors
pj is not straightforward and is more accurate if the APs are
far enough each other, otherwise the propagation features can be
correlated also for different APs.

The Bayesian score function (at k) is represented by

p
(
x1:k,θ

P
AP |θF

AP ,p
F ,y1:k

)
; (4.9)

it is causal, since it refers only to past and present measurements,
and it needs a recursive computation. The variables bearing the
superscript F are inserted for clarity and will be omitted hence-
forth. Note that the parameters set pP does not appear explicitly
but is nevertheless necessary in the computation of the pdf in eq.
(4.9); our choice is to consider them by means of the marginaliza-
tion: ∫

p
(
x1:k,θ

P
AP ,p

P |y1:k

)
d pP , (4.10)

that will be detailed later on.
The variables and their mutual correlations are graphically

shown in the Dynamic Bayesian Network of Fig. 4.5, where two
adjacent time slices are depicted. The user’s intention Int, the
visual system Vis and the building Map are introduced for clar-
ity, but are not evaluated in this paper; the DBN shows clearly
that the AP’s position and parameters are considered static in our
framework.

4.4.1 Approaching the solution

We propose a solution to eq. (4.9) that is based on the Rao Black-
wellized Particle Filters [DFG01]. The key idea is to factorize the
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Figure 4.5 Dynamic Bayesian Network concerning colocalization.

pdf by splitting the localization part from the mapping part

p
(
x1:k,θ

P
AP |y1:k

)
= p

(
θP
AP |x1:k,y1:k

)
· p (x1:k|y1:k) . (4.11)

Inside a particle, only the user’s trajectory is drawn and then
used to update the mapping pdf deterministically; therefore the
particle will not contain a hypothesis about the partially known
AP’s positions, but their pdf. The mapping pdf will be at first
very widespread (unless sharp prior pdfs are assumed), and thus
the measurements from such APs will be almost useless to the
localization purpose. Nevertheless, since the mapping pdf can be
seen like the residual error in the AP’s knowledge and its breadth
as a measure for it, we can expect that it gets even sharper at
any new measurements, leading to a better exploitation of the
measurements.

There are two possible causes of drawbacks in this approach: i)
co-localization is attractive only if the map pdf converges (and thus
the measurements from the partially known APs are profitably
used) quickly in relation to the walking time; ii) even supposing



4.5. How mapping works 109

Figure 4.6 Mapping via simulated experiments: a user is assumed to walk
on the blue sketched trajector and the actual position is the red full circle;
APs indicated by squares and their measurements are collected when the

user lays in the positions denoted by blue circles. The first AP is denoted by
a small blue square and its pdf is graphically reported by means of a dotted
texture (darker color means higher pdf); similarly the second AP’s position
is stressed by a magenta circle and its pdf by a plain texture. The notation

we use is also summarized in Fig. 4.6, where the maps after k = 5
measurements are provided; here α = 2 and σ = 8 for both APs.

that the number of particles is sufficiently high in order to properly
explore the state space, nobody ensures us about the convergence
of the algorithm to the ‘true’ trajectory and to the true ‘map’,
even if valuable guidance in this direction is provided by several
authors in other problems [MTKB02,BMM11].

Now we carry out a preliminary simulative analysis to get an
answer to this issues. As for the point (i) we do not need to develop
the full algorithm, but only to test the mapping part. Then, more
theoretical insight will be provided, before approaching the latter
point.

4.5 How mapping works

The consistency of mapping by means of RSS measurements was
already shown in [SR04] where the positions of some sensors within
a wireless network were investigated by means of a mobile probe
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(a) k=7 (b) k=9

(c) k=11 (d) k=15

Figure 4.7 Mapping evolution in the simulative scenario reported in Fig.
4.6 for k = 7, 9, 11, 15.
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whose position was intended to be exactly known. They used
a probabilistic approach similar to ours, but we propose further
insight.

We assume that the parameters in pP
j , corresponding to the

j-th AP, are known and we denote its position pdf with

pk(θ
P
j )=̂p(θj,AP |pP

j ,x1:k,yj,1:k); (4.12)

a simple application of the Bayes Theorem leads to the recursive
computation:

pk(θj,AP ) ∝ p(yj,k|xk,p
P
j ,θj,AP )· pk−1(θj,AP ), (4.13)

where we implicitly exploit the relations between the variables
there are encoded in the DBN of Fig. 4.5. We shall note that
the likelihood function of the single measurement, being Gaussian
w.r.t. yj,k, has a circular symmetry in the space of θj,AP , Log-
normally distributed in range and uniform in angle. After hav-
ing collected k measurements, the map is simply the (normalized)
product of those k circular non-concentric functions which results
in a narrow peak on the AP’s location, if k is sufficiently high.

In Figg. 4.6-4.7 we show the results of a simulative experiment
in which a user is assumed to walk on the blue sketched trajectory.
The measurements from two static APs are collected when the
user lays in the positions denoted by blue circles, according to the
models of Sect. 4.3, with α = 2 and σ = 8. The red full circle
indicates the user’s actual position; the first AP is denoted by a
small blue square and its pdf is graphically reported by means of
a dotted texture (darker color means higher pdf); similarly the
second AP’s position is stressed by a magenta circle and its pdf
by a plain texture. The notation we use is also summarized in
Fig. 4.6, where the maps after k = 5 measurements are provided.
Here we can see the two pdfs have resulted into semicircular pdfs,
narrower for the AP 1, that is positioned closer to the trajectory,
and more widespread for the AP 2. Fig. 4.7 shows how the same
experiment evolves for k = 7, 9, 11, 15; the notation is the same as
in Fig. 4.6. As for the AP 1, yet at k = 7 the pdf is composed
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of two quite narrow peaks: one overlaps the right AP’s position,
while the latter lays in the symmetric position with respect to the
almost linear trajectory. This complies with the fact that RSS
measurements are basically noisy distance measurements. When
the users start to turn on his right, he breaks the symmetry and
the specular peak vanishes; at the same time, the right peak gets
even narrower.

Focusing our attention on the AP 2, the only difference we
can note is that the resulting peak in its position pdf is much less
narrow, since it is farther from the user’s trajectory. In fact, it is
implicit in the RSS propagation model that the uncertainty over
the distance measurement obtained from the RSS is proportional
to the distance itself.

Referred to the same experiment we shall also consider a wrong
trajectory hypothesis and the map pdfs that are consequently gen-
erated. In Fig. 4.8 the blue path is, like before, the true user’s
trajectory, used in the generation of the measurements, while the
red path is the estimated one, used in the map computation. Com-
paring Fig. 4.8 to Fig. 4.7 we can figure out some remarkable dif-
ferences: for both APs the map peaks are far away from the true
AP’s positions and, even more important in the view of the co-
localization, they are much more widespread that in the true path
case of Fig. 4.7. This pdf breadth is due to the fact that subse-
quent measurement likelihoods do not overlap sufficiently, causing
large peaks and, as we will see, lower weights in the particle filter.

To provide a measure of the distributions’ breadth we can
resort to entropy, defined for a continuous variable x ∼ p(x)
as [CT01]

H = −
∫

p(x) log p(x) d x (4.14)

In Fig. 4.9 we compare the entropies of the AP’s map pdfs gener-
ated in the example above; the entropies are computed by means
of a sufficient numerical approximation. In Fig. 4.9.a we depict
the entropies relative to the AP 1 mapping: the one corresponding
to the true trajectory achieves lower values, i.e. narrower pdf, yet
after few measurements; the same considerations are still true for
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(a) k=7 (b) k=9

(c) k=11 (d) k=15

Figure 4.8 Mapping evolution in the simulative scenario reported in Fig.
4.6 for k = 7, 9, 11, 15 but employing a wrong hypothesis of the user’s

trajectory (in red); the true trajectory which is involved in the measurement
generation (in blue) is the same as in Fig. 4.7.



114 4. Co-Localization: Exploiting WLAN Signals of Opportunity

0 5 10 15
4

5

6

7

8

9

10

11
AP 1

time k

E
nt

ro
py

 

 

True trajectory
False trajectory

(a) AP 1

0 5 10 15
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5
AP 2

time k

E
nt

ro
py

 

 

True trajectory
False trajectory

(b) AP 2

Figure 4.9 Numerical approximation of the entropy (eq. (4.14)) of the
APs’ position pdf: (a) AP 1, (b) AP 2.

the AP 2 in Fig. 4.9.b. The minimization of the entropy as a
result of the Bayesian algorithm can be also found in [SGB05].

4.6 Bayesian filter

We exploit the implications encoded in the DBN of Fig. 4.5 to
develop our algorithm. At this aim, we factorize the posterior pdf
of the state in the following way:

p (x0:k|y1:k) = p(yF
k |xk)· p(yP

k |xk,y
P
1:k−1)·

p(xk|xk−1)· p(x0:k−1|y1:k−1), (4.15)

where the likelihood term which involves the measurements yP
k

associated to the partially unknown APs must be further processed
to figure out the map contribution

p(yP
k |xk,y

P
1:k−1) =∫

p(yP
k |xk,θ

P ,yP
1:k−1)p(θ

P |x0:k−1,y
P
1:k−1) d θP . (4.16)

A further marginalization involves the parametes pP , still not de-
fined in our case.
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4.6.1 Map and parameter set estimation

Being the APs’ positions assumed mutually independent, we can
factorize the mapping pdf in

p(θP |x0:k,y
P
1:k) =

∏
j

p(θP
j |x0:k,y

P
j,1:k), (4.17)

which allows us to account for one arbitrary AP j only. If the
models are fully specified, i.e. void pP

j , the solution to the map-
ping problem is already provided in the Sect. 4.5, showing how
the mapping pdf can be computed recursively by multiplying the
likelihood when a new measurement is available and, then, nor-
malizing it. Otherwise, a marginalization on pP

j is necessary.

For simplicity, we try to reduce at our best the complexity of
pP
j ; we found that the sensibility to αj and σj is not as relevant

as the fact that we do not know hP
j in advance [BMM11]. This is

the reason why we assume here

pP
j = hP

j

and assign fixed values to the other parameters. Furthermore, we
model hP

j like a discrete random variable with values in a suitable
finite set {hh}h=1,...,NH

. So the map of the AP j can be expressed
like

p(θP
j |x0:k,y

P
j,1:k) =

∫
p(θP

j ,p
P
j |x0:k,y

P
j,1:k) d pP

j

=

NH∑
j=1

Pr
{
hh|x0:k,y

P
j,1:k

}
p
(
θP
j |hh,x0:k,y

P
j,1:k

)
, (4.18)

that is a mixture of the distributions p
(
θP
j |hh,x0:k,y

P
j,1:k

)
given

by eq. (4.13) at different values hh with coefficients resulting in
the reference SS probabilities. Defining for simplicity

pk(hh) = Pr
{
hh|x0:k,y

P
j,1:k

}
,
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we obtain the recursive computation of the pP
j probabilities

pk(hh) ∝ pk−1(hh)· p(yPj,k|x0:k, hh)

= pk−1(hh)

∫
p(yPj,k|θP

j ,x0:k, hh)p(θ
P
j |x0:k, hh) d θP

j , (4.19)

that is a mixture of pdfs as those achieved in Figg. 4.6-4.8 at
different values hh. The proportionality sign in the first line of eq.
(4.19) refers to the fact that the probabilities must be normalized
w.r.t. h.

4.6.2 Rao Blackwellized Particle Filter

In RBPF the particle i is composed of a hypothesis for the state
trajectory and the mapping pdf :{

xi
0:k, p

i
(
θP
j |xi

0:k,y
P
j,1:k

)}
i=1,...,Np

.

The initial state vector xi
0 is drawn according to the prior µx(x0)

of eq. (4.2) and a uniform distribution has been used

wi
0 =

1

Np

.

Then, at the arbitrary time instant k, we can employ the factor-
ization of eq. (4.15) to obtain the sampling step

xi
k ∼ p(xk|xi

k−1), (4.20)

and the weighting step

wi
k ∝ wi

k−1· p(yF
k |xi

k)· p(yP
k |xi

0:k,y
P
1:k−1). (4.21)

Some insight is required by the last innovation term in eq. (4.21),
hereafter denoted for simplicity with Ik. First we can note that,
in our hypotheses, it can be factorized into single APs terms
(i.e. each AP provides an independent contribution to the par-
ticle weight):

I ik =
∏
j

I ij,k =
∏
j

p(yPj,k|xi
0:k, y

P
j,1:k−1); (4.22)
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then the j − th term results, by substituting eq. (4.18) into eq.
(4.16), in

I ij,k =
∑
h

pik−1(hh)

∫
p(yPj,k|xi

k,θ
P
j , hh)p

i
k−1(θ

P
j ) d θP

j (4.23)

Finally, resampling can be performed according to a heuristic
criterium, as described e.g. in [AMGC02].

4.6.3 Summary of the algorithm

The algorithm is now summarized in detail.

Algorithm 5 (RBPF Co-localization).

For k = 0 and every particle i

• draw xi
0 ∼ µx(x0);

• set p0(hh) = µp(hh).

For k = 1, 2, . . ., compute:

• For any i = 1, . . . , Np

– Draw xi
k ∼ p(xk|xi

k−1);

– Compute I ik as in eq. (4.22), with the factors I ij,k given
by eq. (4.23);

– Assign a weight to the particle as in eq. (4.21);

– Update the hh probabilities according to eq. (4.19) and,
thus, update the map pdf as in eq. (4.18);

• Normalize the weights such that their sum is 1;

• Resample if required.
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Figure 4.10 Dual estimation scheme for the algorithms proposed.

4.7 An approximation based on con-

curring filters

Alg. 5 may be prohibitive for computational issues, above all with
several APs to care. An alternative approach is based on the
following marginalization of the posterior pdf at k, i.e.

p(xk,θ
P
AP |y1:k) = p

(
xk|θP

AP ,y1:k

)
p
(
θP
AP |y1:k

)
. (4.24)

We choose to maximize the two terms on the right-end side of
eq. (4.24) in a decoupled way through a dual estimation algorithm.
Such scheme is sketched in the block diagram of Fig. 4.10 and
summarized in the following pseudocode:

Algorithm 6 (Dual Filter Co-localization).

• Initialization

– 1. [x̂1] =UEfilter
(
yF
1 , [ ], θ̂

F

AP , [ ]
)
;
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– 2. [θ̂
P

1 ] =APfilter(x̂1, [ ],y
P
1 );

• For k = 2, 3, . . .

– 3. [x̂k] =UEfilter(yK
k ,y

P
k ,θ

F
AP , θ̂

P

k−1);

– 4. [θ̂
P

k ] =APfilter(x̂k, θ̂
P

k−1,y
P
k );

• End

This means that initially the first UE’s position x1 is inferred
only by employing fully known APs’ measurements yF

1 , and an

initial estimation θ̂
P

1
1 of θP

AP is then carried out; indeed in this
step also previous partially known APs’ estimates can play a role.
For k > 1:

• the UE filter computes the UE’s position estimate x̂k, given
the measurements yP

k and the partially known APs’ locations

estimates θ̂
P

k−1, available at the end of the previous step;

• the AP filter uses the last x̂k and the previous θ̂
P

k−1 to get a

new estimation θ̂
P

k .

We now propose a solution for the UE filter, and two different
implementations of the AP filter.

1The subscript AP is omitted for simplicity.
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4.7.1 UE filter

The UE filter has to maximize the first term on the right end side
of eq. (4.24). Since we use fingerprinting we only process present
measurements, yielding

x̂k = argmax
xk

p
(
xk|θP ,yk

)
. (4.25)

According to our approach, θP in (4.25) is substituted by its esti-

mate θ̂
P

k−1 available at the end of the previous step

p
(
xk|θP ,yk

)
≈ p

(
xk|θ̂

P

k−1,yk

)
. (4.26)

In this case, we can assume a uniform prior pdf of xk and apply
the Bayes rule

x̂k = argmax
xk

p
(
xk|yk, θ̂

P

k−1

)
= argmax

xk

p
(
yk|xk, θ̂

P

k−1

)
. (4.27)

RADAR is the most widespread and simple way to solve eq.
(4.27) without assigning an explicit propagation model to RSSs
and we will use it.

4.7.2 AP filter

The positions θP of the partially known APs should be estimated
from the measurements y1:k by maximizing the second term in the
right end side of eq. (4.24)

θ̂
P
= argmax

θP
p
(
θP |y1:k

)
. (4.28)

The RSSs measurements only provide distance information be-
tween the related AP and the UE, so in principle the whole UE’s
trajectory till k must be used in evaluating eq. (4.28), yielding

θ̂
P

k = argmax
θP

p
(
θP |x̂1:k,y1:k

)
. (4.29)
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Clearly, the partially known APs’ locations are mutually inde-
pendent, and thus from now on we are going to consider just one
of them.

We briefly describe two algorithms, based on different models
for the partially known AP’s position and then we figure out their
performances. Both exploit a sequential Bayesian approach that
permits to refine the estimate at every step. This method turns
out to be particularly useful not only when the positioning is per-
formed at the UE side, but also when, in a server based localization
architecture, few users with roughly initial position estimates do
not allow for the localization of unknown APs by proximity or
triangulation techniques.

Discrete state

In this approach we assume that the APs can be located in a
discrete set of points in the area of interest (for example we could
use the same grid as in the radio map, but this is not mandatory).
The partially known AP’s trajectory is trivially represented by one
position repeated in time, thanks to their stationarity.

Let us model this trajectory as the underlying state of a Hidden
Markov Model, whose data are the RSS measurements. Techni-
cally, we set a unitary transition matrix for the hidden state θP

AP

(dealing with stationarity), and a non-informative uniform prior
distribution.

Moreover, each RSS (expressed in dBm) is assumed both to be
conditional independent of the others and to cope with a Gaus-
sian distribution, whose mean is related to the physical distance
between user and AP and whose variance must be set. Further
details about the parameters of the proposed RSS likelihood func-
tion will be given in Sect. 4.8, along with a simple propagation
model.

The well known Viterbi Algorithm (VA) can be applied straight-
forwardly in this context for limiting the computational complex-
ity when the optimal maximum a posteriori probability estimate
is sought. Following the analysis in [sti00], in our case it results
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in cumulating the RSS log-likelihood given each test point and
in choosing, instant by instant, the trajectory with the maximum
‘weight’.

Continuous state

If a continuous model for the AP’s position is given, PFs are eas-
ily applicable. In this case the AP’s kinematics has to include a
fictitious random model, e.g. a white Gaussian noise rk with zero
mean and given covariance matrix Qr [Nel00]

θP
k = AθP

k−1 + rk, (4.30)

where A is the unitary matrix. Now, given the UE estimation
x̂k, the SIR algorithm can be applied with a suitable number of
particles [AMGC02]. This technique promises better performances
than the former approach, but is computationally heavier, and
this can be critical for both energy constrained UEs and real-
time processing. Nonetheless, a server based location server, if
available, overcomes this problem.

4.7.3 Complexity & Scalability

The UE filter has RADAR’s pros and cons: quick in run time,
but filling the database can be really heavy. Moreover the system
is easily scalable with new users but requires a RM for each new
known AP. As for the AP filter, VA needs basically the sampling
of the RSS likelihood functions on the chosen grid for any APs;
therefore even if its complexity depends upon the grid density,
the overall burden is very low. In PF, instead, the complexity is
linearly related to the amount of particles times the number of
detected APs. In the practice this latter approach turns out to be
quite heavier in both memory storage and CPU activity.
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Figure 4.11 Simulative testbed.

4.8 Simulation results

The scenario in Fig. 4.11 has been adopted to test our approxi-
mated algorithms. It mimics a building floor 50× 50 m sized with
3 fully known APs (denoted by ’X’), 2 unknown APs (’O’), and 3
users who walk in it. A server based architecture is supposed to be
in force; the location server has at its disposal the RSS measure-
ments of all the users in real time, and can use them to estimate
the unknown APs’ positions in a joint way. Later, in the sec-
tion with the experimental results, we will show a self-positioning
scheme that is even more challenging.

The RM has been built up on a 2m spaced grid by using a
theoretical propagation model in which the power decays with the
distance d in accordance with the WAF model, here restated for
clarity

P (d) = P (d0)− 10α log10

(
d

d0

)
− nW ×WAF, (4.31)

where

• d0 is a reference distance (the APs are supposed to be raised
of d0 from the users’ plane to avoid singularities);
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• α is the decaying exponent, α = 2 in free space, α = 1 ÷ 4
indoors;

• nW is the number of walls between UE and AP and WAF
is the attenuation factor due to each wall.

In our simulations, we set

d0 = 1.6m, P (d0) = −34.22 dBm, α = 2, WAF = 3dBm.

The fading model is Lognormal, i.e. Gaussian in dBm with unitary
variance.

In Fig. 4.12 the empirical cumulative probability functions
(ECDF) for the localization error (in terms of RMSE) are depicted
for the proposed algorithms; here 100 particles are used for the PF.
Each plot refers to one of the users and shows the ECDF obtained
with four implementations:

• in blue continuous line, the basic system (BS) only based on
the exploitation of known APs (it is a lower bound for the
performances);

• in red dotted line, a clairvoyant (CV) system that relies also
on unknown APs’ true positions (it is an upper bound);

• in black line with circles, the system based on VA that ex-
ploits RSS from all APs;

• in green line with squares, the PF based system.

In the legend we also report empirical mean and standard devi-
ation for all distributions. In all cases the proposed algorithms
perform better than the basic system, with PF achieving perfor-
mances very close to the CV system. We recall, however, that PF
is heavier than VA in terms of hardware resources requirements.
The estimation error for the unknown APs’ positions is plotted as
a function of time in Fig. 4.13; it is also visible that VA suffers a
discretization effect, not present in PF.
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In PF we can increase the number N of particles to improve
the performances. This has been verified in the previous scenario
and the results are depicted in Fig. 4.14 that, however, shows only
a light effect as N is tuned in the range 100÷ 500.

4.9 Experimental results

The experimental scenario, depicted in Fig. 4.15, is a 1-floor
11 × 17 m sized apartment, with 4 APs. The measurements are
collected by means of a laptop equipped with an external device
ORINOCO 802.11 b/g compliant. A free software is used to collect
approximately 1 RSS per second for any detected APs. All compu-
tations are made off line on the measuring laptop. For simplicity,
no attention has been paid to the orientation of the antennas, or
to the measurements resolution of 1 dBm, despite the fact that a
suitable modeling of these effects can improve the performances of
the localization algorithm.

We tuned the parameters in the WAF model by means of a
radio map, consisting of 100 measurements per point times 43
points (the intersections of the lines within the grid, less the points
marked by a cross), and the entire procedure took about two hours.
The measurements in the localization phase were collected in the
positions denoted by red points in Fig. 4.15. Real data differ from
theoretical models for several reasons. First, the adopted path loss
model is very simple and does not consider the obstacles. Simi-
larly, the Lognormal model for RSS measurements is quite reliable,
but cannot account for all the effects causing noise. Nevertheless,
the experimental results obtained with these simple models fit our
expectations well.

Fig. 4.16 shows the results of the proposed algorithms in the
experimental testbed of Fig. 4.15, where AP 1 is supposed to be
an unknown AP, while the other APs are known. In the top plot
(a) the ECDF of the localization error is displayed, showing good
performances for the proposed algorithms, while the bottom plot
(b) reports the error in unknown AP estimation against time. No-
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ticeably, PF is able to achieve a reliable estimate of the AP’s posi-
tion quickly and thus allows a meaningful improvement in the user
localization. The covariance matrix Qr of the fictitious noise rk
is supposed to be diagonal with equal entries, whose square roots
are σr = 0.05. The price paid in the real case is that a greater
number of particles is necessary; in our setup, for example, 1000
particles are needed to achieve good results. The VA algorithm,
despite achieving a worse estimation of the AP, also performs well.

4.10 Concluding remarks

Colocalization provides the interesting opportunity to improve po-
sitioning accuracy in dense scenarios. We have set up a Bayesian
framework providing the exact solution and a good approxima-
tion. Simulative and experimental results have confirmed the con-
vergence of our algorithms.

Strong similarities hold between colocalization and SLAM, that
is the next chapter’s content. We have preferred, however, to keep
them separated since they refer to different goals: in colocaliza-
tion we only deal with signals from unmanagedWLANs to improve
the positioning accuracy and we determine the AP’s position (in
probability) to help next users but we do not aim to estimate the
building map at yet.
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(a) User 1

(b) User 2

(c) User 3

Figure 4.12 Localization error for all the users and described algorithms,
referred to the simulative testbed in Fig. 4.11. For each curve empirical mean
(M) and standard deviation (S) are also reported.
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Figure 4.13 Unknown APs’ position RMSE in meters for both algorithms,
referred to the simulative testbed of Fig. 4.11.

Figure 4.14 ECDF of the localization error for one UE in the simulative
testbed in Fig. 4.11; the UE filter implements RADAR and the AP filter is
based on PF with different amounts of particles. For comparison the curve

referring to the clairvoyant (CV) case is also shown.
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Figure 4.15 Experimental testbed.
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(a) Empirical CDF

(b) AP estimation error

Figure 4.16 ECDF (a) of the localization error for one user and all
described algorithms (PF employs 1000 particles), referred to the

experimental testbed in Fig. 4.15 with AP 1 supposed unknown; the UE
filter implements RADAR. For each curve mean (M) and standard deviation
(S) are also reported. In (b) the RMSE for the unknown AP’s position is

reported vs time.
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WLAN aided Simultaneous
Localization And Mapping
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While driving a car with a GNSS navigator on our side, we can
typically see our position overlapped to a map of the region on the
screen. The aim is not to improve the localization algorithm, but
rather to provide a guidance to the user in a more intuitive way
than just the absolute coordinates.

Indoors the situation is very different, since the knowledge of
the map in the estimation process has a striking effect on the
performances. This is valid not only in the RSS-based localization
but in all cases of indoor tracking, how it is well known in the
literature.

In a more abstract way, the point is that the map represents
a set of constraints, typically very tight, on both the user’s true
trajectory and the estimator. This is equivalent, of course, to
bound the error, leading to a more accurate estimation and, un-
fortunately in some contexts, to a biased estimator, also when the
unconstrained one was unbiased.

Employing the map in the algorithm design is, therefore, a
precious tool which helps lowering the error but, on the contrary,
there is a critical drawback: the map is often not available at all,
at least with a sufficient degree of accuracy. One sometimes could
depict it manually with a quite big effort, but it would be much
more efficient and elegant if we could retrieve it by processing the
same data employed for the user’s localization.

This paradigm is known in the literature as Simultaneous Lo-
calization And Mapping (SLAM). Altough it was first defined
within the robotics community in the mid ’80s, an increasing in-
terest is being paid over this last years to SLAM for pedestrians.
Even if, at a first sight, one could think that SLAM is always the
same for robots as well as for pedestrians, it will be soon clear
that the frameworks are totally different, so that independent ap-
proaches and, thus, solutions are needed.
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5.1 SLAM for robots

Robots can use a large gamma of sensors, ranging from inertial
units to cameras and lasers. Furthermore, some robots can easily
exchange some selected information and measure their mutual dis-
tance, as proposed and analized in many papers, e.g. in [MZZ+09,
GABS10]. Several experiments employing heterogeneous robots
were carried out in the past. Here the key point is how to control
the robot movement to avoid obstacles and explore the whole en-
vironment, while the sensing part is less constrained, due to the
large number of sensors used.

5.2 SLAM for pedestrians

There are two main differences between SLAM for robots and for
human users: the type of information to exploit and the movement
models to adopt. We shall now examine the former difference,
while the movement models are beyond the aims of this chapter.

A pedestrian cannot provide his own intention (‘what he wants
to do’) or sight (‘what he sees’) to a processing unit. Moreover,
such invasive sensors like cameras or lasers are not likely to be
used by common people walking somewhere in a building. We
think that three kinds of information can be mostly used:

• step measurements

• proximity measurements,

• distance measurements.

We will now briefly discuss these types of measurements and
give some examples about how they can be collected in the prac-
tice. Their fusion in a single framework will be then discussed
later throughout this chapter.
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Figure 5.1 Maps retrieved by processing IMUs’ data with the ZUPT
algorithm [Fox05].

5.2.1 Step measurements

Quite recent work has shown remarkable advances in the area of in-
door positioning with low cost inertial sensors worn by pedestrians.
The work of Foxlin on foot mounted Inertial Measurement Units
(IMUs) [Fox05] has shown how zero velocity updates - ZUPTs-
during the rest phase of a pedestrians foot can be used to miti-
gate the problem of non-linear error growth in inertial integration
over time. Nevertheless, errors still accrue over time, especially
the heading error which is only weakly observable from the zero
velocity update. Fig. 5.1 shows the data from the IMU attached
to a shoe processed in a typical Inertial Navigation System (INS)
using ZUPTs: the drifts (particularly in heading) lead to large di-
vergence from the true path. Three groups independently showed
that this problem can be addressed by employing known building
layouts [KR08,BWK08,WH08]. All used PF methods where the
building layout information is used to constrain particle movement
to within the areas accessible to a pedestrian. As a result, long
term error stability can be achieved when the map is sufficiently
accurate and the layout sufficiently constrains the motion.
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5.2.2 Proximity measurements

Proximity information is being used within indoor localization
since the first contributions in this field. It indicates the possi-
bility to sense that the user is getting close to a known place.
There are many practical ways to do this:

• the user can manually report the place when he sees it;

• automatic proximity sensors deployed in the environment,
e.g. RFID tags, infrared sensors, magnetic sensors, etc. . .

A further issue concerns whether the places can be uniquely iden-
tified or only a binary information is available; in the latter case
the user detects a place, but does not know which one. Deeper
considerations are provided later in Sect. 5.5.

5.2.3 Distance measurements

Distance measurements from some reference points are much more
accurate than simple proximity detections, but more difficult to
obtain for pedestrians, since lasers and cameras are not exploitable.
One of the most popular choices in indoor environments is pro-
vided by RSS measurements from WLANs that are related to the
distance from the APs, as seen in the previous chapters. Of course,
since we are interested in probabilistic approaches, models for both
propagation channel and RSS likelihood are needed.

To make our line of thought clear, we aim at developing and
testing a probabilistic framework in which those heterogeneous
measurements are fused together and used for SLAM. Particular
attention, of course, will be paid to all the aspects about the inte-
gration of RSS measurements in a wider framework, partly made
available by previous works.

Before dealing with that, a review of the existing literature is
proposed.
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5.2.4 Literature review

SLAM for pedestrian is quite a recent topic. To the best of our
knowledge there are two main approaches, both converging to our
final framework:

• SLAM based on Wlan measurements;

• SLAM based on step measurements provided by IMUs.

Both approaches bring, in the end, to the fusion of these two
types of measurements but, interestingly, with different solutions.
Moreover, also proximity information can be exploited.

We now present the main results achieved in pedestrian SLAM,
starting from single sensor frameworks; afterwards multisensor ex-
tensions will be analyzed. Mostly, we will focus deep on the com-
bined IMU based SLAM, and new advances will be proposed con-
cerning the integration with WLAN measurements.

5.3 WiFi based SLAM

Ferris et al. in [FFL07] propose a technique for solving the WiFi
SLAM problem using the Gaussian Process Latent Variable Model
(GPLVM) to determine the latent-space locations of signal strength
data from unknown APs. They show that GPLVM, in combina-
tion with an appropriate motion dynamics model, can be used to
reconstruct a topological connectivity graph from a signal strength
sequence which, in combination with the learned Gaussian Process
signal strength model, can be used in SLAM.

The work has severe limits: the motion model relies on very
simplistic assumptions and consequently the results, beside show-
ing physical consistency, require experimental setups with very
simple structures (hallways and only 90 degrees turns). Never-
theless it is the base for a more recent work in which the fu-
sion with odometry data, which basically provide a motion model
that is much more accurate, heavily increases the performances
[HMQ+11]; moreover, connections with the colocalization tech-
nique in [PPY+12] are also noted.
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5.4 IMU’s based SLAM

Over the last few years several research groups have dealt with
the stabilization of the IMU’s based indoor navigation: to this
end, the residual cumulative error of the resulting odometry in
heading over time could be mitigated by using map information
[KR08,BWK08,WH08]. Of course, we are more interested in es-
timating the map along with the user’s trajectory, that is the
case of FootSLAM algorithm, developed in 2009. It is based on a
probabilistic framework in which particle filters and suitable ap-
proximations are used to implement the Bayesian solution.

FootSLAM [RAK09] uses a Bayesian estimation approach, where
the state is the user’s pose P (position and heading) and step mea-
surements allow to update both the user’s trajectory and the envi-
ronment map over time. The implementation employs the RBPF,
where each particle is composed of both a user trajectory instance
and its related map. This latter is obtained by partitioning the en-
vironment into hexagonal cells and estimating all the transitions
probabilities for each visited cell. Extensive experiments show
that convergence of both mapping and localization occurs when
the user walks on closed loops and enough particles are used. The
fusion of several datasets (Collaborative FootSLAM) is also dealt
with in [RGPA11].

We now analyze and discuss the main points of the algorithm,
together with some interesting results and limitations. Also PlaceS-
LAM will be acquainted as the first example of data fusion in the
FootSLAM framework. Finally, the integration of RSS measure-
ments will be handled, leading to the algorithm WiSLAM, that is
the main original contribution of this chapter.

5.4.1 Dynamic Bayesian Network

The key concepts involved in the FootSLAM derivation are sum-
marized in the DBN, of which the Fig. 5.2 represents two time
slices. The pose P is a set of user’s features, in this case his po-
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Figure 5.2 Two time slices of the Dynamic Bayesian Network for
FootSLAM framework. The full description is reported in the text.

sition in 2 dimensions and heading1; it evolves according to the
intention Int of the pedestrian and his current sight Vis. These
are both strongly influenced by the floor map M and can be nei-
ther measured nor processed, but are included in the model for
clarity. The M itself is of course not known in advance but will
be estimated on the fly.

The step U is a vector that links deterministically two subse-
quent poses, viz.

Pk = Uk +Pk−1 (5.1)

and is the variable that can be measured at each step. The mea-
surement ZU is corrupted by a correlated noise encoded in the
variable E. Note that the IMU makes inertial measurements (dis-
tance and angle) with a rate of about 100-200 Hz and some pre-
liminary processing is then performed to obtain the ZU (whose
frequence is down to 0.5-1 Hz), as described in Sect. 2.7.2 and

1No conceptual difference should show up when dealing with 3D scenarios:
to our knowledge such extension is currently in progress.
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therein references. Nevertheless, it is common to consider ZU as
a direct measurement and this is what we will do since here.

Finally we can note that the MAP is assumed to be static: in
this case it appears obvious, but when applied to a more generic
concept of map it is less straightforward and constitutes an as-
sumption.

5.4.2 Bayesian formulation

In the Bayesian formulation the joint posterior pdf of both the
state variables and the map at instant k given the step measure-
ments is

p(P0:kU0:kE0:k,M|ZU
1:k). (5.2)

By exploiting the relationships implied in the DBN of Fig. 5.2, it
factorizes into

p(M|P0:k)· p(P0:kU0:kE0:k|ZU
1:k), (5.3)

which splits localization from mapping. Note that in the right
term the influence of the map is implicit: thanks to the knowledge
of the map, estimated from the measurements, better accuracy
(and stability) is achievable in the user’s localization.

Let us focus on the last term of eq. (5.3). It allows a recursive
formulation based on the independence relationships encoded in
the DBN:

p
(
{PUE}0:k |Z

U
1:k

)
∝p
(
ZU

k | {PUE}0:k ,Z
U
1:k−1

)
· p
(
{PUE}k | {PUE}0:k−1 ,Z

U
1:k−1

)
· p
(
{PUE}0:k−1 |Z

U
1:k−1

)
=p
(
ZU

k | {UE}k
)
· p ({Ek|Ek−1}) · p

(
{PU}k | {PU}0:k−1

)
· p
(
{PUE}0:k−1 |Z

U
1:k−1

)
. (5.4)

The term in the first line of eq. (5.4) represents the likelihood of
the k-th step measurement given the state at the same instant
(the correlation with the past is encoded into Ek), while the terms
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Figure 5.3 Hexagon based map.

on the second line are the state transition at time k. In detail
the map plays a role into the right end term of the second line,
providing prior information for the new user’s pose Pk. This can
be expressed from a mathematical point of view by marginalizing
over M

IM =̂ p
(
{PU}k | {PU}0:k−1

)
=

∫
M

p ({PU}k |Pk−1,M) p (M|P0:k−1) dM (5.5)

It is obvious that the solution to integral eq. (5.5) needs a formal
definition for M. Indeed the whole algorithm must be approxi-
mated in a suitable way.

5.4.3 Probabilistic map

The area of the floor is discretized in a set of hexagons (this shape
has been chosen because they can fill the area without overlap-
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pings, as for the base stations coverage in mobile communications)
and the map is the set of transition probabilities between couples
of adjacent hexagons.

The important concept is that here the map is meant as a
‘probabilistic map’, as for the colocalization in Ch. 4. Therefore,
to estimate a map means to estimate all of the transition proba-
bilities, i.e. the probability of crossing at k the edge e between the
arbitrary hexagon Hh and Hj (see Fig. 5.3)

Me
h(Pk−1)

= P (Pk ∈ Hj|Pk−1 ∈ Hh) (5.6)

for any h and j. Moreover, not adjacent hexagons are assumed
mutually independent: this is a good approximation if the radius
of the hexagon is large enough (0.5 m is the typical value reported
in the experiments) and it also prevents from multiple crossings
in one step.

5.4.4 Filter implementation

The Bayesian filter for FootSLAM is implemented by means of
the RBPF (see Sect. 1.3.8), in which a hypothesis for the state
{P,U,E}0:k is drawn for all particles, based on a ‘likelihood PF’.
The Rao-Blackwellization is chosen to reduce the state space to
sample, so that the particle number necessary for the convergence
of the PF to the Bayesian filter is minimized. In detail, the sam-
pling is performed in three steps; for the arbitrary particle i we

• sample Ei
k from p

(
Ek|Ei

k−1

)
• sample Ui

k from p
(
Uk|ZU

k ,E
i
k

)
• compute Pi

k = Pi
k−1 +Ui

k.

Then, basing on the state hypothesis the map p
(
M|Pi

0:k

)
is

updated in the way described in [RAK09]; the transition proba-
bilities are estimated with a frequentist approach, in terms of the
number of times, say N e

h, that the edge e linking the hexagon h to
a neighbor is crossed by the user in either way.
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In the end, each particle encompasses{
Pi

k,U
i
k,E

i
k, p
(
M|Pi

0:k

)}
. (5.7)

The final step of the algorithm lays in the weighting step

wi
k ∝ wi

k−1· I iM , (5.8)

where I iM is the integral in eq. (5.5) evaluated for the particle
hypothesis of both the state and the map. The computation is
done by choosing a beta distribution for p

(
Me

h|Pi
0:k

)
, that also

allows for the introduction of prior information

I iM ∝ N e
h + αe

h

Nh + αh

, (5.9)

where Nh =
∑

e N
e
h, α

e
h is a prior count assigned to the edge e and

αh =
∑

e α
e
h.

5.4.5 Summary of the algorithm

FootSLAM is now briefly summarized.

Algorithm 7 (FootSLAM).

• Initialize all NP particles to Pi
0 = (x, y, h = 0) where x, y

and h denote the pose location and heading in two dimen-
sions; draw Ei

0 from a suitable initial distribution for the
odometry error state.

For each time step increment k:

• Draw U i
k, E

i
k from the proposal density

p
(
Uk|ZU

k ,E
i
k

)
· p
(
Ek|Ei

k−1

)
and compute Pi

k by adding the vector Ui
k to Pi

k−1.
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• Compute the new weights wi
k by normalizing on i the prod-

ucts (5.8), where I iM is given by eq. (5.9) and relies on the
counts until k − 1.

• Update the map, adding the new count for all particles.

• Resample if necessary.

5.4.6 Real data experiments

The algorithm is shown to recover the heading error cumulation
and to provide a good quality map of the floor, with the conse-
quence that the user is well tracked. Experiments are relative to
10 minutes walks around an office layout with the user wearing
a foot mounted IMU. All the processings were made off line, due
to the high number of particles implied by the complexity of the
state space. In fact in all experiments at least 10000 particles were
necessary for esuring the convergence.

In Fig. 5.4.a one such example of map is given. The darkness of
the hexagons represents the density of particles crossing it (darker
stays for more particles), with the main errors being highlighted
by orange ovals and the arrows used as a rough graphic version of
the error vectors. The ground truth is overlapped to perceive the
quality of the estimated map. The main errors are inherent in the
door crossings and do not exceed a couple of meters in the worst
case, while better accuracy is shown in the corridors that are fre-
quented more often. This difference is not casual: the frequentist
approach used in the map estimation leads to the need for loop
closure. More insight about this concept and its consequences will
be provided later, together with some possible solutions.

In Fig.5.4.b the map from another experiment is shown to high-
light the potentialities of FootSLAM. Here the resulting map is
used to even correct inaccuracies in the ground truth: in fact the
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(a)

(b)

Figure 5.4 Maps estimated by FootSLAM: in (a) the main errors, altough
of scarce importance, are highlighted, in (b) the algorithm can help

correcting errors in the ground truth.
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Figure 5.5 Map processed by FeetSLAM, derived from 4 independent
maps obtained through FootSLAM. The elaboration is offline, and

encompasses only the best particle.

room in the up-right corner of the ground truth has been enlarged
over time and the blue line shows the actual position of the wall.

5.4.7 Collaborative FootSLAM: FeetSLAM

An extension of FootSLAM in a multiuser scenario is represented
by FeetSLAM [RGPA11], where cooperation between more users
is used to improve tha map accuracy. Here, the maps of some
users, as provided by FootSLAM, are fused together by means of
an iterative offline algorithm.

In Fig. 5.5 a map resulting from the fusion of 4 datasets is de-
picted. For computational issues, only the best weighted particle
is involved in the fusion rather than the weighted average of all
particles. This is due to the fact that SLAM is invariant for trans-
lation, rotation and scale, so that each map should be modified
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(a) (b)

Figure 5.6 Intuitive particle selection in FootSLAM based algorithms:
loop closure in (a) is preferred than the ’open area’ map in (b).

properly to fit the others before the merging algorithm can take
place. This operation is quite time consuming, so it is done only
on one particle, the ‘best’ one, per user.

5.4.8 Considerations

FootSLAM results are really interesting but undergo remarkable
limitations which promote new lines of research. To this end, an
intuitive analysis of the algorithm is useful.

As said above, step measurements are affected by a noisy pro-
cess, correlated and difficult to model, that can accrue over time
leading to meaningless maps, as the ones in Fig. 5.1. The estima-
tion of the map is used to correct those errors so that the results of
Fig. 5.4 can be achieved. To understand how the correction takes
place, we shall consider the following case study: a user walks
around a rectangular path enclosing three loops, and two of the
particles hypothesize the trajectory as depicted in Fig. 5.6.

Now we wonder which one is selected by the algorithm, i.e. has
the highest weight. The crucial point is to evaluate I iM of eq. (5.9)
in the two cases; note that in principle both could be true, but
it is intuitive that the one in Fig. 5.6.a is much more likely than
the other one, since it represents better an indoor layout. Indeed
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FootSLAM gives priority to well structured and connected maps
in which loops tend to overlap. Mathematically this is done by
considering that the integrand function in eq. (5.9) is enhanced by
the overlapping of the two distributions involved: the previously
estimated map and the new likelihood function2. On the other
hand, if they do not overlap that particle is considered unlikely
and thus it is penalized.

Now, FootSLAM limitations should be clear:

• it fails in open spaces, i.e. where situation of Fig. 5.6.b could
be true;

• its convergence is strictly linked to loop closure (or even
several loop closures).

This can also be seen as a set of constraints on the movement of
the user. The addition of other sensors in a suitable data fusion
framework can mitigate or even overcome these problems, leading
to a more versatile algorithm.

Of course, we need a framework that is scalable with highly
heterogeneous data. Whatever sensor we add, we can expect that:

• the state of the algorithm is augmented with a new map
related to the new type of measurement and independent of
the other maps;

• its contribution to the particle weights is independent of the
other sensors’.

5.5 Integrating proximity information:

PlaceSLAM

A first example of heterogeneus data fusion is the integration of
proximity information into FootSLAM. Let us consider a set of
‘places’ recognizable by the user, manually or by means of some

2The map distribution acts here as prior information.
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Figure 5.7 Combined Dynamic Bayesian Network for FootSLAM and
PlaceSLAM showing two time slices. Arcs that only pertain to the
FootSLAM aspect are drawn dotted. Measurements Z are in blue.

automatic equipment, and assume that when the user gets close
to a place, a notification is available in the algorithm. This is
possible with either manual notifications (the user himself presses
a key after seeing a place) or automatic equipment, e.g. RFID
tags.

PlaceSLAM [RAK10] is an algorithm that extends FootSLAM
to include also proximity information. The most interesting case
is when the algorithm ignores the places’ number and locations: in
this case a new map, say L, is supposed to include each discovered
place. As described in the DBN of Fig. 5.7, the map L influences
the newly defined state variable, say Ak, indicating if a place is
detected at instant k: the related measurement ZL

k can be either
the ID of the place detected, if for example a RFID tag is being
used, or just a boolean variable if no information on the place ID
is available.

When the user starts walking the map L is empty, until the
first place is detected and a Gaussian pdf is assigned to the place
position3. Note again that the map is probabilistic: the position

3The Gaussian pdf, employed for simplicity, is centered on the user current
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pdf, in terms of its parameters, is stored for each place. From now
on, any detection should be associated either to a place previously
included in the map or to a new one; in the case of ID trans-
mission this is straigthforward, otherwise some choice criterium is
required4.

5.5.1 Bayesian filter & implementation

The score function in PlaceSLAM is the joint posterior pdf

p(P0:kU0:kE0:k,A0:k,M,L|ZU
1:k,Z

L
1:k) (5.10)

of the state augmented with the new variable A0:k and the maps
given all measurements. This is implemented with a RBPF, sim-
ilar to FootSLAM’s approach (see Alg. 7), except for two main
differences:

• the particle hypotheses include now{
Pi

k,U
i
k,E

i
k,A

i
k, p
(
M|Pi

0:k

)
, p
(
L|Ai

0:k,P
i
0:k

)}
. (5.11)

where the map L is updated at each measurement ZL
1:k;

• the weight wi
k of each particle is

wi
k ∝ wi

k−1· I iM · I iL, (5.12)

where I iM is the same as in FootSLAM (see eq. (5.9)) and it
is thus related to the floor map M, while I iL, related to the

position and has a standard deviation related to the visibility of the place
itself.

4In [RAK10] a distance dmin is arbitrarly set: if the current pose is farther
from any other known place than dmin, then a new place is added to the map
L.
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places map L, is a numerical approximation5 for

IL = p
(
ZL

k |Pi
0:k,A

i
0:k,Z

L
0:k−1

)
=

∫
L

p
(
ZL

k |L,Pi
0:k,A

i
0:k

)
· p
(
L|
{
Pi,Ai,ZL

}
0:k−1

)
dL.

(5.13)

5.5.2 Considerations

An experimental analysis about PlaceSLAM is presented in [RAK10]
and here only summarized. The authors show how the places map-
ping is robust even with binary measurements. The net result is
that convergence is sped up, since passing by a place suddenly
reduces the particles variance. Nonetheless loop closure limitation
still holds, since a single detection of a place is not sufficient for a
meaningful contribution.

5.6 WiSLAM: improving FootSLAMwith

WiFi

PlaceSLAM is a first attempt to overcome FootSLAM limitations,
but is still limited by some factors as the number and disposition of
places and the way of detecting them: either additive hardware or
manual effort is needed. We have already seen that opportunistic
signals like WLAN power measurements are a chance to reuse a
technology already available in indoor environments. Furthermore
they also provide distance instead of proximity information in a
wider range, so that also one AP is supposed to give a valuable
contribution.

In the case of WLAN measurements the map should include
information about the APs, such as their position, as well as other

5The approximation is easily computable by assuming a Gaussian distri-
bution for the distance at which the place is detected; moreover, a missed
detection is considered possible.
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Figure 5.8 DBN for WiSLAM showing two time slices. The Map can
include any features and information to let the pedestrian choose Int, while
W is the WLAN map, in our case composed of APs’ position and emitted

power.

parameters that could be useful. Of course, introducing new vari-
ables can increase the complexity of the algorithm, so that a com-
promise is necessary. In this case we introduce only one further
parameter per AP, i.e. the emitted power, its knowledge being of
capital importance in WLAN based indoor navigation.

The resulting algorithm, named WiSLAM [BMM11], is the
main original contribution of this chapter and is next analyzed
in detail starting from the theorical approach up to extensive ex-
perimental results.

5.6.1 Preliminaries

We represent the estimation problem through a DBN similar to
FootSLAM’s and PlaceSLAM’s ones (see Fig. 5.8 for two adjacent
time slices). The pedestrian is assumed to be guided by his in-
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tention Int (e.g. to reach a room or to exit the building), that
is influenced by the human visual system Vis and thus by the
environment Map (M). The intention, neither measurable nor
processed in our algorithm, determines the step Uk that leads to
the new pose Pk, given the past one Pk−1. The step measurement
ZU

k is observable (odometry) and is affected by IMU’s correlated
errors encoded in the state variable Ek. In WiSLAM there is the
RSS vector ZW

k as well, that is basically a noisy measurement of
the current distance between the user and any number of APs.
It is influenced by the WLAN Map W, concerning position and
emitted power of the APs. Note that the length of ZW

k is variable,
since the user can either enter or exit APs’ ranges. This is easily
handled since the RSS measurements are always labeled because
the APs transmit their MAC address.

RSS Models

Our main assumptions are that RSS from different APs are in-
dependent given the user’s position and, furthermore, the APs’
maps W are also independent. This allows us to compute the
contribution of each AP independently. Moreover, different mea-
surements from the same AP are also conditionally independent.
Despite this assumption be quite common in the literature, it
should be validated with real data. Given the current Euclidean
distance rk of the user from the AP, located at xAP , the RSS like-
lihood is assumed to be Gaussian with variance σ2 and mean h(rk)
given by the simple model [BP00b]

h (rk) = h− 20α log10 (rk/d0) , (5.14)

where h is the reference signal strength emitted by the AP, ac-
counting also for the antenna orientation and gain, α is the prop-
agation exponent, varying from 2 (free space) up to 4, and d0 is
a known reference distance. Note that both h and α are usually
unknown, and h is found to vary strongly for different APs with
dramatic effects on the mapping, unless it is learnt. This is why
we introduce both xAP and h in the WiFi map W. We found less
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sensitivity to α and thus for simplicity we set α = 2. Finally, it
was convenient to model h as a discrete random variable, indepen-
dent from AP to AP, with Nh equally spaced values {hh}h=1..Nh

for any APs.

5.6.2 Bayesian filter

Extending the approach of Sect. 5.4.2 we are interested in the joint
posterior

p(P0:kU0:kE0:k,W,M|ZU
1:k,Z

W
1:k) (5.15)

of the state histories, floor and WiFi maps given step and RSS
measurements, which factorizes into

p(M|P0:k)· p(W|P0:k,Z
W
1:k)· p(P0:kU0:kE0:k|ZU

1:k,Z
W
1:k). (5.16)

Following the FootSLAM derivation, the last term in eq. (5.16)
admits a recursive formulation based on the independence relation-
ships encoded in the DBN:

p
(
{PUE}0:k |Z

W
1:k,Z

U
1:k

)
∝

p
(
ZU

k | {UE}k
)
· p
(
ZW

k |P0:k,Z
W
1:k−1

)
·

p ({Ek|Ek−1}) · p
(
{PU}k | {PU}0:k−1

)
·

p
(
{PUE}0:k−1 |Z

U
1:k−1,Z

W
1:k−1

)
. (5.17)

The novelty in WiSLAM with respect to FootSLAM is the RSS
likelihood term.

From eq. (5.16) it is clear that the W map can have a strong
influence on the posterior. We define

IW =̂ p
(
ZW

k |P0:k,Z
W
1:k−1

)
=

Nk∏
j=1

p
(
ZW

j,k|P0:k, Z
W
j,1:k−1

)
=

∫
W

p
(
ZW

k |W,Pk

)
· p
(
W|P0:k−1,Z

W
1:k−1

)
dW.

(5.18)
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The above integral is over a 3 dimensional space: the spatial di-
mensions are continuous (the AP’s position), the last one is the
discrete-valued signal strength. These considerations allow us to
marginalize over h

IW =

Nh∑
h=1

Pr
(
hh|P0:k−1,Z

W
1:k−1

)
·∫

xAP

p
(
ZW

k |xAP , hh,Pk

)
· p
(
xAP |hh,P0:k−1,Z

W
1:k−1

)
dxAP .

(5.19)

WLAN map learning

The last point to consider is the map learning. Of course M is
evaluated like in FootSLAM, Sect. 5.4.2. With the factorization

p(W|P0:k,Z
W
1:k) = p(xAP |h,P0:k,Z

W
1:k)· p(h|P0:k,Z

W
1:k), (5.20)

we split the WLAN map estimation into two separate tasks. To
determine the probabilities for hh and assuming a suitable prior,
e.g. uniform, we apply the Bayes rule to express:

Pr
(
hh|P0:k,Z

W
1:k

)
∝p
(
ZW

k |hh,P0:k,Z
W
1:k−1

)
·

Pr
(
hh|P0:k−1,Z

W
1:k−1

)
. (5.21)

More insight is needed when looking at the estimation of the
AP’s position xAP , given h. The arguments explained in the Sect.
4.5 are still valid here: given the parameter, the AP’s location pdf
results in

p
(
xAP |hh,P0:k,Z

W
1:k

)
∝ p

(
ZW

k |xAP , hh,Pk

)
· p
(
xAP |hh,P0:k−1,Z

W
1:k−1

)
∝

k∏
s=1

p
(
ZW

s |xAP , hh,Ps

)
, (5.22)

that is the normalized product of k non concentric donut-shaped
functions.
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The complete p(W|P0:k,Z
W
1:k) is thus a mixture of NH ‘donuts’

products, in which the coefficients, that are the probabilities for
hh (last term in eq. (5.20)), also evolve over time, viz.

p
(
W|P0:k,Z

W
1:k

)
∝

Nh∑
h=1

{
Pr
(
hh|P0:k−1,Z

W
1:k−1

)
[

k∏
s=1

p
(
ZW

s |xAP , hh,Ps

)]
· δ (h− hh)

}
,

(5.23)

where δ(· ) denotes the Dirac function.

5.6.3 Filter implementation

Like in FootSLAM, for a RBPF implementation of the Bayesian
filter, we sample from the ‘likelihood PF’ proposal density:

p
(
Uk|ZU

k ,E
i
k

)
· p
(
Ek|Ei

k−1

)
. (5.24)

The RSS contribution is a further factor in the particle weights

wi
k ∝ wi

k−1· I iM · I iW (5.25)

where I iM is relative to M estimation (Sect. 5.4.4) and I iW is a con-
venient numerical approximation for IW in eq. (5.19). The nature
of this approximation is pivotal from the implementation point of
view. The first method we propose is useful for some preliminary
results, then a more rough approximation will be required.

WLAN Map sampling

Let us consider a set of NW points
{
xj
AP

}
j=1...NW

uniformly drawn

in the area under test (or deterministically sampled on a grid). We
can now approximate the distribution of W given data and user’s
poses up to k [AMGC02]

p
(
xAP |hh,P

i
0:k,Z

W
1:k

)
≈

NW∑
j=1

ãjkδ
(
W−Wj

)
(5.26)
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where the weights

ãjk ∝ p
(
xj
AP |hh,P

i
0:k,Z

W
1:k

)
(5.27)

are normalized over j.
We can approximate the integral in eq. (5.19) at the arbitrary

instant k by∫
p
(
ZW

k |Pi
k,xAP , hh

)
p
(
xAP |hh,P

i
0:k,Z

W
1:k−1

)
dxAP

≈
∫

p
(
ZW

k |Pi
k,xAP , hh

) NW∑
j=1

ãjk−1δ
(
xAP − xj

AP

)
dxAP

=

NW∑
j=1

ãjk−1

∫
p
(
ZW

k |Pi
k,xAP , hh

)
δ
(
xAP − xj

AP

)
dxAP

=

NW∑
j=1

ãjk−1p
(
ZW

k |Pi
k,x

j
AP , hh

)
, (5.28)

yielding for I iW

I iW =

∫
p
(
ZW

k |W,Pi
k

)
p
(
W|Pi

0:k−1,Z
W
1:k−1

)
dW

=

Nh∑
h=1

{
Pr
(
hh|Pi

0:k−1,Z
W
1:k−1

)
·
∫

p
(
ZW

k |xAP , hh,P
i
k

)
p
(
xAP |hh,P

i
0:k−1,Z

W
1:k−1

)
dxAP

}
≈

Nh∑
h=1

{
Pr
(
hh|Pi

0:k−1,Z
W
1:k−1

) [NW∑
j=1

ãjk−1p
(
ZW

k |Pi
k,x

j
AP , hh

)]}
,

(5.29)

that is easily computable for each particle.

5.6.4 Summary of the algorithm

The algorithm is now briefly summarized.
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Algorithm 8 (WiSLAM - sampled WLAN map).

• For k = 0

– Initialize all NP particles to Pi
0 = (x = 0, y = 0, h = 0),

where x, y and h denote the pose location and heading
in two dimensions; draw Ei

0 from a suitable initial dis-
tribution for the error state.

– Draw NW points xj
AP from the two dimensional area

under test (like i.i.d. realizations of a uniform r.v. or
deterministically on a grid).

– Set ∀ i, j, h, p
(
xj
AP |hh,P

i
0

)
= 1/NW , and Pr

(
hh|Pi

0

)
=

rh ≥ 0 (rh arbitrary but with
∑Nh

h=1 rh = 1).

• for each time step increment k:

– Particles U i
k, E

i
k are drawn from the proposal density

(5.24).

– The pose Pi
k is computed by adding the vector Ui

k to
Pi

k−1.

– The particle weight updates are simply

wi
k ≈ wi

k−1 · I iM · I iW
where I iM is computed like in FootSLAM and I iW like
in eq. (5.29), with ãjk−1 given in eq. (5.27).

– Compute p
(
M|Pi

0:k

)
, ∀i, like in FootSLAM.

– Update p
(
xj
AP |hh,P

i
0:k,Z

W
1:k

)
, ∀ i, j, h.

– Update Pr
(
hh|Pi

0:k,Z
W
1:k

)
, ∀ i, h, like (5.21), with the

integrals approximation (5.28) and normalize.

– Resampling can be performed if required.



158 5. WLAN aided Simultaneous Localization And Mapping

Figure 5.9 Experimental testbed adopted for results shown in Sect. 5.6.5.
In evidence the final pdfs for both APs’ positions produced by one of the

datasets.

5.6.5 Real world experiments

Extensive real data measurements were carried out to validate the
fundamentals of WiSLAM in an indoor area of about 20×40 m and
occupied by offices (refer to Fig. 5.9). We used a laptop equipped
with an internal network device Link 5100, compliant with IEEE
802.11 a/b/g, and carried by a human operator. The measure-
ments have been collected using a freeware working under Win-
dows 7 OS. We employed two APs (green squares in Fig. 5.9), a
Cisco AiroNet 1130 and an Apple Airport Extreme A1301 respec-
tively, both IEEE 802.11 a/b/g compliant.

Statistical analysis

Our first analysis aims at validating our hypotheses about mea-
surements. We start with the Autocorrelation Function (ACF)
of the measurement noise. In fact the WiFi API allows to read
measurements at whatever rate (typical rates for freewares are 1
RSS/s), but it does not ensure statistical independence. Fig. 5.10.a
shows the (normalized) autocorrelation function R(τ) of the RSS
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(a) Noise autocorrelation

(b) Propagation model (c) Likelihood model

Figure 5.10 Model validation: (a) RSS noise autocorrelation, (b)
propagation model, (c) likelihood model.
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Figure 5.11 RSS sequences from different APs (testbed of Fig. 5.9):
AP 1-2 are the positions depicted in Fig. 5.9, AP 3 is downstairs, AP 4 is far

from the user’s trajectory.

noise collected, with

R(τ) ∝
∑
k

(ZW
k − Z̄

W
)(ZW

k−τ − Z̄
W
),

against time; it has been computed on a sequence of 100 measure-
ments collected at a rate of 1 RSS/s, with Z̄

W
being the sample

mean. We can note that low values for R(τ) are achieved for mea-
surements 3 or 4 seconds apart and this will be our collecting rate,
even if some filtering could be useful in this case.

Fig. 5.10.b illustrates the fit of the propagation model pre-
sented in eq. (5.14). For this purpose a radio map was built in the
environment under test, considering also different directions of the
laptop; the resulting curve, obtained by a least squares approach
is depicted over the distance. The comparison with the theoretical
curve provides a measurement of the model mismatch, as well as
the best values for the model parameters. Moreover, in Fig. 5.10.c,
the histogram of the RSS collected in a static position presents a
’bell’ shape that corroborates the Gaussian hypothesis.
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(a) k=1 (b) k=5

(c) k=9 (d) k=11

(e) k=15 (f) hh probabilities

Figure 5.12 Mapping for a single AP: real data collected during a walk are
employed to map the AP’s position (a-e) and reference signal strength (f).
For the meaning of the symbols see Fig. 4.6. The environment is the one

depicted in Fig. 5.9 and is here omitted for clarity.
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(a) Exact - Only AP 1 (b) Exact - AP 1 + AP 2

Figure 5.13 Competing paths: products (normalized) of the IW terms for
both paths in Fig. 5.9, averaged on 10 datasets, in the cases of (a) only AP 1

involved and (b) both APs involved. The line related to the real path is
dotted with blue circles.

RSS prefiltering

Fluctuations in the output power of the AP and the non-ideal
behavior of the receiver lead to outlying measurements (about
2% of the total) of tens of dBm in the received signal. Since a
single outlier can have a negative effect on the convergence of the
algorithm and recalling that WiSLAM is an off-line algorithm,
we chose to prefilter the RSS series, with a basic approach, in
which a RSS measurement differing from both the previous and
the following ones by more than 10 dBm is removed.

Another kind of RSS prefiltering is related to multiple APs.
Since each AP needs the allocation of new processing resources, it
is of interest to process only those APs with stronger RSS measure-
ments, i.e. with a smaller noise on the related distance estimations.
An example is depicted in Fig. 5.11: the RSS sequences relative
to 4 APs are shown together with a heuristic threshold (see Fig.
5.9 for the testbed) and AP 3 and AP 4 are rejected. The former
is located on another floor of the same building. To neglect non-
planar APs is doubly important, because their RSS measurements
are strongly attenuated by the floor and also because distances are
distorted by the third dimension. The latter AP is on the same
floor as the user but far from his trajectory, so that it is not worth
being processed. Moreover, we neglect the 802.11a standard since
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at higher frequencies the effects of obstacles are more pronounced.

Preliminary results

Both the mapping and the localization part of WiSLAM were sep-
arately tested. To test a realistic scenario we took 10 datasets
following the same path during office hours, with the APs fully
operative. All the processings took place off-line, allowing non-
causal procedures like RSS prefiltering.

First we map the AP using the actual user’s positions and
estimating also the reference signal strength (7 values in the range
[−35,−5] dB, RSS standard deviation σ = 3 dB). In Fig. 5.12.a
we see that the W pdf after the first RSS is very spread and only
at k = 5 a better resolution is shown (Fig. 5.12.b). Two turns
are necessary to avoid ambiguity (Fig. 5.12.c-e) and the reason
is visible in Fig. 5.12.f, where the corresponding hh probabilities
are presented: the mapping is well performed when one reference
strength (in this case −25 dB) wins over the others (after about
k = 10 steps). This is the price paid for the h estimation.

Mapping is just a crucial part of SLAM, but not the only one.
RSS measurements allow us to distinguish between the real user’s
path from a competing one, affected by the heading error typical
of odometry (Fig. 5.9 - the right path is in blue). As a figure of
merit we use the product of the weights IW over time, normalized
for simplicity and averaged on all the datasets available. This is
shown in Fig. 5.13, highlighting the capability of our algorithm to
discriminate between the two paths after few steps. Furthermore,
we have considered a case with only the contribution of AP 1 (Fig.
5.13.a) and a case with both (Fig. 5.13.b), in which there are clear
benefits.

5.7 Simplified WiSLAM

Results in the Sect. 5.6.5 are promising, but meaningless since
only two particles are handled: but what about the final software
platform operating with thousand of particles?



164 5. WLAN aided Simultaneous Localization And Mapping

In this case the computational burden due to the sampling
and updating of the WLAN map for all particles prevents from a
practical implementation. Let us dig deeper this point.

In the Bayesian filter the key point is represented by the func-
tion

p
(
W|Pi

0:k−1,Z
W
1:k−1

)
· p
(
ZW

k |Pi
k,W

)
∝

k∏
s=1

p
(
ZW

s |Pi
s,W

)
.

(5.30)
When integrated, in fact, it provides the WLAN contribution to
the weight and, when normalized on W, it is the new Wlan map.

A concise way to express the last term of eq. (5.30) for a give
hh, recalling that likelihoods are Gaussian pdfs, is

k∏
s=1

p
(
ZW

s |Pi
s,W

)
∝ exp

{
−

k∑
s=1

(
ZW

s − hh + 20α log(rs/d0)
)2

2σ2

}
,

(5.31)
whose number of parameters grows in time, preventing from using
tabular approximations for the integral at least. The most direct
solution, the sampling (either static or dynamic) technique pre-
sented above, is computationally unmanageable, so that a more
rough, but still accurate, method is necessary. In this section we
provide our solution, based on a Gaussian Mixture approximation
of the WLAN map.

5.7.1 Wlan map approximation

To provide a good approximation for the map we need some guid-
ance. First, if we have only a few RSS, then the AP’s position
pdf is too spread to be useful in localization. That is why we can
start the algorithm when sufficient information is available about
the AP’s position. Its pdf tends to a set of quite narrow peaks
(given the power hypothesis hh), suggesting our main assumption:
we approximate each peak with a bivariate Gaussian function, so
that the whole pdf is expressed by means of a Gaussian Mixture
Model (GMM).
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Assumption 1 (GMM for xAP pdf). The pdf of the AP’s position
xAP given hh of eq. (5.22) can be approximated at the arbitrary
instant k by a GMM

p
(
xAP |hh,P0:k,Z

W
1:k

)
≈ p̂

(
xAP |hh,P0:k,Z

W
1:k

)
=̂

Npeak∑
p=1

ũp,kfp,k(xAP , hh), (5.32)

where

fp,k(W) ∼ N (µp,k, Sp,k) ,

ũp,k is a set of suitable coefficients whose sum is 1, µp,k and Sp,k

are mean and covariance matrix of the pth peak respectively.

Mainly, the GMM approximation allows us to express a non-
parametric pdf in terms of a parametric pdf that is much more
manageable. In App. E we will also sketch a theoretical justifica-
tion for it. Now, we develop a simple implementation for WiSLAM
that preserves the performance but overcomes its computational
problems. In detail we have to discuss the following three steps:

1. initialize the GMM when the algorithm is started;

2. update it recursively when a new RSS is available;

3. compute the weights I iW and update hh probabilities.

5.7.2 Initialization

The initialization step (see Fig. 5.14) is triggered when sufficient
measurements, say T , from a new AP are collected. Its goal is to
build the approximated WLAN map given the collected RSS and
the path hypothesized by each particle.

Let us recall the factorization of eq. (5.20) evaluated at step
T:

p̂(W|P0:T ,Z
W
1:T ) = p̂

(
xAP |h,P0:T ,Z

W
1:T

)
· p
(
h|P0:T ,Z

W
1:T

)
.
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Initialization step when AP k SSID is received for a sufficient number times

Initialization step when AP 2  SSID is received for a sufficient number times

RSS[1:T]

P[1:T-1] P[1:T]

h1

RSS[T+1]

P[T+1]

Nh x NPeaks

Peaks

Every “Peak” is an 

object with 6 floats:

weight

mean in 2 dim.

variances

covariance factor

Released

Release 

“donuts” and 

intersection

points

Initialization step when AP 1 SSID is received for a sufficient number times

RSS[1:T-1]

Find intersections among donuts

Normalize the weights to obtain

           p(W | h1, RSS[1:T], P[1:T])

Assign a weight to each peak

Define Npeaks Gaussian pdfs on 

the most averaged intersections

Average intersections within 

and assign each a “counter”

Compute donuts parameters

Find intersections among donuts

Normalize the weights to obtain

           p(W | hNh, RSS[1:T], P[1:T])

Assign a weight to each peak

Define Npeaks Gaussian pdfs on 

the most averaged intersections

Average intersections within 

and assign each a “counter”

Compute donuts parameters

hNh

Uniform prior 

for power 

hypotheses 

(Nh floats) 

Figure 5.14 Simplified WiSLAM: block scheme for initialization with
implementation tips. Variables in hexagons are global, the ones in ovals

must be created for any particles. To ‘release’ a variable means that it is not
used anymore and thus the related instance in the program can be erased.
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The h distribution can be assigned uniformly, while the first term
is given by the GMM in eq. (5.32). The main problem is to find
the GMM parameters, i.e. to guess peaks’ positions and parame-
ters only by employing the sequence of measurements and poses.
The solution found is not optimal but very reasonable: given hh

each RSS is equivalent to a distance measurement and thus it
specifies a circle of the plane. The Npeaks points in the plane in
which more donuts intersect are selected as locations for peaks.
Fig. 5.15 shows an example for this, adding some implementation
details. The next step would be to sample p

(
xAP |hh,P0:T ,Z

W
1:T

)
in a neighborhood of each selected point in order to extract sam-
ple mean µp,T and covariance matrix Sp,T for the peaks (we omit
the subscript h for simplicity). The coefficients ũp,T in eq. (5.32)
are given by the ratio between the exact pdf and the value of the
pth Gaussian pdf at the mean µp,T (a normalization over p is then
necessary)

ũp,T ∝ 2π· ∥Sp,T∥1/2· p
(
µp,T |hh,P0:T ,Z

W
1:T

)
. (5.33)

In the scheme in Fig. 5.14 we highlight that in the software im-
plementation the RSS history is a global variable, while the poses
history is different for any particles. Anyway, both can be released
at the end of the step, together with all other variables created:
in the next step we will need only new RSS and pose and the
parameters of the W posterior (peaks and power probabilities).

5.7.3 Recursion

At k > T a new RSS measurement ZW
k is available, triggering the

WiFi map updating. To compute the new xAP pdf given h we
apply the GMM approximation to eq. (5.22), i.e.

p̂
(
xAP |hh,P0:k,Z

W
1:k

)
∝ p

(
ZW

k |xAP , hh,Pk

)
· p̂
(
xAP |hh,P0:k−1,Z

W
1:k−1

)
=

Npeaks∑
p=1

ũp,k−1· fp,k−1(xAP , hh)· p
(
ZW

k |xAP , hh,Pk

)
. (5.34)
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Figure 5.15 Example of intersection points between 3 donuts relative to 3
different measurements; since the points lie in a circle with radius γ (in this
paper γ = 2 m) they are considered a single point. A sparse sampling in its

neighborhood is performed to extract the peak parameters.

This new mixture is not generally a GMM but, under certain
assumptions about the RSS likelihood, it is. Therefore, Ass. 1 is
automatically true after the initialization.

We set Pk = 0 for simplicity (a simple translation of the axes is
always sufficient) and represent the pdf in polar coordinates (r, θ).
We already noted that the radial component r is a Lognormal
r.v., while the angular component θ is uniform. The following
assumption is central in our approximation.

Assumption 2 (Gaussian band distribution). From now on we
will consider the curvature of the ’donut’ shaped pdf

p
(
xAP |hh,P0:1,Z

W
1

)
large enough so that it can be locally approximated by a ’band’
distribution (as in Fig. 5.17). Moreover, we approximate the range
pdf with a Gaussian r.v., instead of a Lognormal one, viz.

p
(
ZW

k |xAP ,Pk, hh

)
∝ exp−(r − r̂)2

2σ2
G

(5.35)

where r̂ and σG are respectively mean and standard deviation of
the original Lognormal pdf.
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Recursion for AP n at arbitrary time after initialization

Recursion for AP 2 at arbitrary time after initialization

RSS[k]

P[k]

h1

RSS[k+1]

P[k+1]

Nh x NPeaks

Peaks

Released

Recursion for AP 1 at arbitrary time after initialization

Update all peaks

Compute peak’s parameters and 

coefficients and get 

p(W | h1, RSS[1:k], P[1:k])

Fuse/Remove peaks

Compute new donut parameters

hNh

Nh x NPeaks

Peaks

Power

hypotheses 

probabilities

Update all peaks

Fuse/Remove peaks

Compute new donut parameters

Update the power hypotheses 

probabilities and compute I
w

I
w
->

weighting

Nh power

hypotheses 

probabilities

Release 

“donut” and 

eliminated 

peaks

Compute peak’s parameters and 

coefficients and get 

p(W | hNh, RSS[1:k], P[1:k])

Figure 5.16 Simplified WiSLAM: block scheme for recursion with
implementation tips. Variables in hexagons are global, the ones in ovals

must be created for any particles. To ‘release’ a variable means that it is not
used anymore and thus the related instance in the program can be erased.
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b a

y

xP

m

r

sG

a

k-1

>

Figure 5.17 Gaussian band distribution: linearization of the RSS
likelihood.

Ass. 2 is well explained by Fig. 5.17: we simply linearize the
measurement donut in the neighborhood of its intersection with a
peak. This is reasonable for narrow peaks, as we could expect if
k is large enough. We now show that under these hypotheses the
updated peak is again Gaussian, and so the new xAP pdf is a new
GMM. Of course we also provide, in the proof, a recursive way to
compute the parameters for the new GMM.

Proposition 1 (Recursive computation of the peaks). Employing
Ass. 1 for the distribution of xAP at k − 1 and Ass. 2 for the
kth RSS likelihood, their product can be expressed as a mixture of
Gaussian function

p
(
ZW

k |xAP , hh,Pk

)
· p̂
(
xAP |hh,P0:k−1,Z

W
1:k−1

)
=

Npeaks∑
p=1

up,kfp,k(xAP , hh), (5.36)

and thus the updated distribution for xAP at k is again a GMM
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(its parameters are reported in the proof)

p̂
(
xAP |hh,P0:k,Z

W
1:k

)
=

Npeaks∑
p=1

ũp,kfp,k(xAP , hh), (5.37)

with
ũp,k =

up,k∑NPeaks

p=1 up,k

. (5.38)

Proof. The proof is reported in App. F.

5.7.4 I iW approximation

Recalling the definition for IW and the h update, the integral
in eq. (5.19) is approximated by the sum of the unnormalized
coefficients in eq. (5.36) over p∫

xAP

p
(
ZW

k |xAP , hh,Pk

)
· p̂
(
xAP |hh,P0:k−1,Z

W
1:k−1

)
dxAP

=

NPeaks∑
p=1

up,k, (5.39)

that is used also in the hh probabilities update of eq. (5.21).

5.7.5 Summary of the algorithm

The simplified WiSLAM is now briefly summarized. Note that
odometry and RSS’ contributions from each AP are independent.
Therefore they are processed in a separate way to obtain indepen-
dent maps and they are only fused in the particle weights.
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Algorithm 9 (Simplified WiSLAM).

Initialization:

• Initialize all NP particles to Pi
0 = (x, y, h = 0), where

x, y and h denote the pose location and heading in two di-
mensions; draw Ei

0 from a suitable initial distribution for the
odometry error state.

Then, for each time step increment k and any particles:

• Draw U i
k, E

i
k from the proposal density in eq. (5.24), compute

Pi
k by adding the vector Ui

k to Pi
k−1.

• For all previously initialized APs, and all peaks:

– Update peaks’ parameters by using eqs. (F.2)-(F.6);

– Compute the unnormalized up,k of eq. (5.36) like in
App. F.

• Normalize the up,k over p to obtain ũp,k (eq. (5.38)).

• Compute a factor I iW and the new h distribution (eqs. (5.19)
and (5.21) respectively, with the integrals approximated like
in eq. (5.39)) for each processed AP.

• Update the particle weights as in eq. (5.25), where I iM are
computed as in FootSLAM [RAK09, eq. (5)].

• Decide if any detected but not yet employed AP should be
processed and, if so, initialize new APs’ posterior

p
(
W|P0:k,Z

W
1:k,h

)
by applying the algorithm in Fig. 5.14.

• Update the map M as in FootSLAM [RAK09, eq. (4)].
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Figure 5.18 Competing paths: products (normalized) of the IW terms for
both paths in Fig. 5.9, averaged on 10 datasets, in the cases of (a) only AP 1

involved and (b) both APs involved. Plot (c) shows the performance
obtained by the approximated WiSLAM in the same case as in (a)

(algorithm started after 5 measurements). The line related to the real path
is dotted with blue circles.

• Resampling can be performed if required.

5.7.6 Preliminary results

Simplified WiSLAM’s effectiveness has been supported by our ex-
periments: as an example, we show in Fig. 5.18 the results in
the same case as in Fig. 5.13.a, relative to the average over 10
independent datasets. Here, we start the algorithm at k = 5 and
we can see that with a little delay the expected performance is
achieved.

We also show in Fig. 5.19 the performance of both versions
of WiSLAM over a single dataset, to highlight that the simplified
algorithm consistency: even the emitted power probabilities share
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the same ongoing behavior.

5.7.7 Final results

The full algorithm (in its approximated version) was run in the
testbed of Fig. 5.9 over two independent walks of about 5 minutes
duration each, with the number of particles from about 20.000 to
50.000. The results are shown in Fig. 5.20 where the comparison
with the ground truth (known building layout) shows the accu-
racy of the estimated FootSLAM map. Also the final estimated
positions of the APs are remarkably close to the true ones.

We have also tested the algorithm employing only the particle
weights due to the WiFi measurements, i.e. we set a constant I iM
in eq. (5.25), meaning that the FootSLAM update was not being
used in the weight. By observing Fig. 5.21 one verifies that this
algorithm, whose weighting relies only on the RSS measurements
from two APs, converges to the true map, even if the positioning
of one of the APs is less accurate. This implies that WiSLAM
can be a useful approach even when FootSLAM will be expected
to experience problems in convergence, such as in buildings with
large open spaces, or few true loops during the walk.

A further experiment employing the full algorithm and 4 APs is
shown in Fig. 5.22, where an almost perfect fit between estimated
and true APs’ positions is achieved.

5.8 A further explanation for WiSLAM

FootSLAM, PlaceSLAM andWiSLAM provide optimal algorithms
in Bayesian sense; nevertheless, this does not ensure good perfor-
mances nor convergence. The following analysis does not pretend
to be rigorous, but represents an attempt to answer the following
question: why do they work in the end?
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Figure 5.19 Experimental validation: products of the weights related to a
single dataset.
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(a) Walk 1

(b) Walk 2

Figure 5.20 Two maps learnt by using full WiSLAM. Shown are an
overlap of the posterior (i.e. weighed average) map (in shades of grey) and

the more useful MAP map (i.e. the map of the ‘best’ particle) - blue.
Hexagons which the pedestrian has visited more often are more open,

unvisited ones are not shown. More white within the hexagons means more
frequently crossed transitions. Triangles indicate the real AP positions,

while the circles highlight their estimations. Parameters: 9 power hypotheses
3-dB spaced, σ = 5 dB, NPeaks = 14, (a) 50000 and (b) 20000 particles.
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Figure 5.21 Map learnt by using WiSLAM with IM constant (best particle
only). Triangles indicate the real AP positions, while the circles highlight

their estimations. The main error is indicated by an oval - the arrow showing
roughly the error vector. The parameters are the same as in Fig. 5.20.a.

Figure 5.22 Map learnt by using WiSLAM with 4 APs. The AP positions
and estimates are remarked by yellow ovals, while the circles highlight their

estimations. The parameters are the same as in Fig. 5.20.a.
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FootSLAM

In [RAK10] authors report a connection between ‘best weighted’
particles and the entropy of the map distribution: in particular
they remark that lower entropy maps are automatically preferred
by the algorithm rather than the others, even if a formal analysis is
missing. This is conceptually sounding because the entropy of the
map at k can be seen like the residual uncertainty on its estimation
after k measurements. In other words, the algorithm would be
looking for particles which extract as information as possible from
data, minimizing the entropy of the estimated map (recall it is a
pdf).

Following [SGB05], the entropy H(x,m|z) for the joint estima-
tion of a state vector x and map m for a RBPF approach given
measurements z results in

H(m,x|z) = H(x|z) + Ex|z [H(m|x, z)] , (5.40)

that accounts for the entropy of the state (first term on the right
side) and the entropy of the map averaged on state (second term).

Indeed the situation is quite more complex than it can appear:
the movement model acts like a constraint (or better a cost func-
tion) such that the state space in which the entropy should be
minimized is reduced in size. This avoids ’too’ concentrated maps
which are solutions of the unconstrained minimization: it would
be trivial in fact to find that the ‘back-and-forth’ map, allowing
only a transition between two adjacent hexagons, has the lowest
entropy at all.

PlaceSLAM and WiSLAM

In PlaceSLAM this concept is going to fail: first, adding new places
to the map is inherently a high entropy solution, but sometimes
it is required. Second, even when the algorithm decides to update
an old place, its new map results in the normalized product of two
bivariate Gaussians (the old map and the new measurement pdf).
The result is a new bivariate Gaussian whose entropy is related to
the covariance matrix, which depends in turn on the covariance
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matrices of the starting Gaussians; in other words the entropy for
all particles’ maps evolve in the same way. Their weights, instead,
are different, being them the unnormalized product’s integral and
thus the algorithm works the same. For this reason the ‘engine’
in PlaceSLAM is not the minimization of the map entropy, but
rather the ‘matching’ of the new measurement to the old map.

WiSLAM is conceptually very similar to PlaceSLAM. It only
differs in the shape of the distributions, as the map is a product of
k non-concentric ‘donut’ shaped pdfs and the new measurement
likelihood is a further ‘donut’. This brings to difficult evaluations
of the entropy, but if we use the approximations of simplified WiS-
LAM, we have the same considerations as in PlaceSLAM.

The difference from FootSLAM is that the new place or RSS
measurement is not involved in the state sampling but only in
the weight. As a result the trajectory hypothesis is due to step
measurements, and the other ones are used in the weighting.

Let us focus on the weights. Using the notation of eq. 5.40,
PlaceSLAM and WiSLAM weights can be expressed in a unified
way

Ik =

∫
m

p (zk|x0:k,m) p (m|x0:k−1, z1:k−1) dm

= < p (zk|x0:k,m) , p (m|x0:k−1) >, (5.41)

where < ·, · > denotes the inner product in the pdf functional
space. This implies that the weights follow a similarity score.
Furthermore, taking the logarithm and adopting the Jensen in-
equality, we find

log Ik = logEm|x0:k−1,z1:k−1
[p (zk|x0:k,m)]

≥ Em|xi
0:k−1,z

W
1:k−1

[
log p

(
zWk |xi

0:k,m
)]

= −D
(
p(m|xi

0:k−1, z
W
1:k−1)//p (zk|x0:k,m)

)
−H (p(m|x0:k−1, z1:k−1)) , (5.42)

where D(· //· ) and H(· ) denote the Kullback Leibler (KL) dis-
tance and the entropy for continuous variables respectively [CT01].
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Consequently, we can state that a particle is assigned a high weight
in the cases of:

• low KL distance between the old map and the new RSS likeli-
hood function, that is an entropy based matching criterium,

• low entropy of the old map.

This means that, besides the matching criterium, a low entropy
rule for the map holds, i.e. narrower maps are chosen. It finds an
intuitive explanation by considering that the map pdf represents
the residual uncertainty over the APs’ position, that is measured
by its entropy: minimizing this entropy means to extract as more
information about the map as possible from the RSS measure-
ments.

Referring to WiSLAM, in Fig. 5.23 we show the entropy evo-
lution of the pdf of the W map agaist the time (in Fig. 5.23.a,
we report only a numerical approximation) and the h discrete
distribution (Fig. 5.23.b) obtained from a set of simulated data.
Although some variability is present, their tendency to decrease is
clearly shown. Finally, we notice that this is consistent with the
entropy based considerations made in other papers about RBPF
SLAM, in particular in [SGB05], where a general expression for
the (floor) map entropy is obtained, and in [RAK10] about PlaceS-
LAM.
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Figure 5.23 Entropy of (a) the W map and (b) the h distribution for a
simulated dataset; the values in (a) are numerical approximations.





Conclusion

This thesis offers a theoretical and experimental analysis of some
relevant aspects concerning indoor WLAN-based positioning from
the Bayesian perspective. Our approach aims to avoid expensive
ad-hoc hardware, but rather to extract all the information needed
from the received power measurements already available within
WLANs for the communication task.

Our main claim is that the indoor environment is a source
of precious information that greatly improves the accuracy of all
locating systems. In fact, several properties of the environment are
heavily variable among different testbeds and in time: accounting
for those ones affecting the positioning accuracy is essential in
order to design high accuracy systems. Also, opportunity signals
can be profitably used, even though some care is necessary.

We choose three cases of interest. The first one requires algo-
rithms which can detect and follow the variations of some envi-
ronmental properties; to this aim the signal propagation has been
suitably modeled and the variability concerns some parameters
like the power emitted by the transmitters and the power loss due
to the signal propagation across the space.

The second scenario of interest finds its relevance in the high
diffusion of WLAN networks, several of which can co-exist into the
same area or even the same building. The consequent availabil-
ity of measurements of signals emitted by unmanaged networks,
whose base stations’ position and properties are unknown, is a
source of information about positioning that is not exploited by the
classical techniques. Therefore, we suggest a framework in which
these measurements are employed with a degree of reliability that
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varies according to the knowledge available on the transmitters.
The last case considered looks at the building map as a set of

constraints which, if used, can tighten up the accuracy. Although
some attempts employing stand alone WLANs were made, it is
much more profitable to merge power measurements from WLANs
with other sensors’ outputs. The consequent framework based on
data fusion is of extreme interest for both the theoretical challenges
offered and the actual improvements yielded.

All the previously described topics are met by means of the
Bayesian theory since this latter is a powerful and elegant frame-
work which conjugates the theoretical search for optimal solutions
with a strong physical interpretation of the variables involved. The
results, in terms of positioning accuracy and robustness, are always
validated through extensive computer and real world experiments,
showing the effectiveness of the proposed solutions.



Appendix A

RSS likelihood models

A.1 Rice fading

In the Rice fading model the fading envelope rR is described by a
Rice distribution (or n-Nakagami) [SA05]

p (rR) =
rR
σ2

exp

(
−(r2R + V 2)

2σ2

)
I0

(
rRV

σ2

)
, rR ≥ 0,

in which V is the amplitude of the Line-of-Sight component, σ2
R is

the variance of the two components of a complex scattered contri-
bution and I0 (·) is the modified Bessel function of zeroth order.
An alternative expression is in terms of the mean square value

E [r2R] = V 2 + 2σ2
R and of the Rice factor Kf

△
= V 2/2σ2

R that
quantifies the ratio among the power of the two components:

p (rR) =
2 (1 +Kf ) rR

E [r2R]
exp

(
−Kf −

(Kf + 1) r2R
E [r2R]

)
× I0

(
2rR

√
Kf (Kf + 1)

E [r2R]

)
, rR ≥ 0.

The power observation (in natural scale) is given by

y (t) = s (t) = |rR (t)|2
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and the AF is [SA05, [p. 23]]

AF =
1 + 2K

(1 +K)2
.

A.2 Lognormal fading

A.2.1 Lognormal distribution for powers

In the Lognormal fading the power observations in linear scale
s (d) are described by a Lognormal distribution [SA05]

pSL
(sL) =

ξ√
2πσsL

exp

(
−(10 log10 sL − µdB)

2

2σ2
dB

)
,

where ξ = 10
ln 10

. For the powers in deciBels ZL = g (SL) =
10 log10 SL one can find

pZL
(zL) =

ξ√
2πσdBsL |g′ (sL)|

exp

(
−(10 log10 sL − µdB)

2

2σ2
dB

)∣∣∣∣∣
sL=10

zL
10

(a)
=

ξ√
2πσdBsLξ

1
sL

exp

(
−(zL − µdB)

2

2σ2
dB

)

=
1√

2πσdB

exp

(
−(zL − µdB)

2

2σ2
dB

)
∼ N (µdB, σdB)

where the (a) follows from

g′ (sL) = (ξ ln sL)
′ = ξ

1

sL
.

Normally we estimate, for example in a calibration stage, the mean
power in dB µdB and the SNR, which allow the computation of
σdB. In fact, the value of σdB can be achieved by putting the
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Lognormal distribution of SL in its standard form

pSL
(sL) =

ξ√
2πσdBsL

exp

(
−(10 log10 sL − µdB)

2

2σ2
dB

)

=
1√

2π σdB

ξ
sL

exp

−

(
ln sL − µdB

ξ

)2
2
(

σdB

ξ

)2


that highlights the SNR

SNR = E [SL] = exp

µdB

ξ
+

(
σdB

ξ

)2
2


and thus the log mean

SNRdB = 10 log10E [SL] = 10 log10 exp

µdB

ξ
+

(
σdB

ξ

)2
2


= ξ ln exp

µdB

ξ
+

(
σdB

ξ

)2
2

 = µdB +
σ2
dB

2ξ

σdB = 2ξ
√

SNRdB − µdB.

The power µdB used to define the E [r2L] is again calculated at a
reference point; for d0, one has

µdB = P0.

The AF is [SA05, [p. 33]]

AF = exp

(
σ2
dB

ξ2

)
− 1 = exp [2ξ (SNRdB − µdB)]− 1.
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A.2.2 Lognormal distribution for amplitudes

Similarly, the Lognormal distribution is also used to describe the
amplitudes of the signal [Has93]. In this case rL =

√
sL (d) is

characterized by the pdf

pRL
(rL) =

2ξ√
2πσdBrL

exp

(
−(20 log10 rL − µdB)

2

2σ2
dB

)
so that the power calculated in dB assumes the form Z = g (RL) =
20 log10 rL, with a pdf

pR (rL) =
2ξ√

2πσdBrL |g′ (rL)|
exp

(
−(20 log10 rL − µdB)

2

2σ2
dB

)∣∣∣∣∣
rL=10

x
10

(a)
=

2ξ√
2πσdBrL2ξ

1
rL

exp

(
−(x− µdB)

2

2σ2
dB

)

=
1√

2πσdB

exp

(
−(x− µdB)

2

2σ2
dB

)
∼ N (µdB, σdB)

where the (a) follows from

g′ (rL) = (2ξ ln rL)
′ = 2ξ

1

rL
.

The value of σdB can be achieved by putting the Lognormal dis-
tribution of rL in the standard form

pRL
(rL) =

2ξ√
2πσdBrL

exp

(
−(20 log10 rL − µdB)

2

2σ2
dB

)

=
1√

2π σdB

2ξ
rL

exp

−

(
ln sR − µdB

2ξ

)2
2
(

σdB

2ξ

)2


By using [SA05, [p. 33]]

E
[
Rk

L

]
= exp

(
k

2ξ
µdB +

1

2

(
k

2ξ

)2

σ2
dB

)
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one has

E
[
R2

L

]
= exp

(
2

2ξ
µdB +

1

2

(
2

2ξ

)2

σ2
dB

)
= exp

(
µdB

ξ
+

1

2

(
σdB

ξ

)2
)

and thus

SNRdB = 10 log10 E
[
R2

L

]
= 10 log10 exp

µdB

ξ
+

(
σdB

ξ

)2
2


= ξ ln exp

µdB

ξ
+

(
σdB

ξ

)2
2

 = µdB +
σ2
dB

2ξ

The power µdB used to define the E [r2L] is again calculated at a
reference point; choosing d0, one has

µdB = P0.

and thus, like before,

σdB = 2ξ
√
E [r2L]− µdB.

The AF can be easily computed in

AFR = exp [2ξ (SNRdB − µdB)]− 1.

This shows that the same performance figures are achieved by
modeling either the amplitudes or the powers like Lognormal r.v.,
provided the same calibration of the power parameters in dB.

A.3 Comparison of Rice and Lognor-

mal

We need to build some rule to properly generate rician and Lognor-
mal random variables, in order to compare localization algorithm
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performance for both fading kinds. Moreover we know that we
have fading models that describe both the power in dB Z and the
channel fading amplitude R that are related by the relationship:

Z = ζ lnR ⇔ R = exp

(
Z

ζ

)
(A.1)

where ζ = 20/ ln 10 = 2ξ.
It is well known that when the shadowing phenomenon is pre-

dominant, the power in dB (say it ZL) is described by a normal
random variable with mean µdB and variance σ2

dB, i.e. the pdf:

pZL
(zL) =

1

σdB

√
2π

exp

(
−(zL − µdB)

2

2σ2
dB

)
(A.2)

the channel fading amplitude is well described by a Lognormal
random variable RL whose pdf is

pRL
(rL) =

ζ

rLσdB

√
2π

exp

(
−(ζ ln rL − µdB)

2

2σ2
dB

)
. (A.3)

Instead channel fading amplitude due to multipath is well de-
scribed by a rician random variable RR, whose pdf is:

pRR
(rR) =

2(Kf + 1)rR
Ω

exp

(
−(Kf + 1)r2R

Ω
−Kf

)
(A.4)

I0

(
2r

√
Kf (Kf + 1)

Ω

)
.

In this formulation Kf is the K-factor, while Ω is the mean power
in watt, i.e. Ω = E[R2

R]. The power in dB, by using the equation
(A.1), can be indicated by a r.v. ZR that has density function

pZR
(zR) =

2(Kf + 1)

ζΩ
exp

−
(Kf + 1) exp

(
2zR
ζ

)
Ω

−Kf +
2zR
ζ


(A.5)

I0

(
2 exp

(
zR
ζ

)√
Kf (Kf + 1)

Ω

)
.
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Figure A.1 Plot of functions e(Kf ) (a) and v(Kf ) (b) vs. Kf .

If we convert Ω in dB, i.e. ΩdB
△
= (ζ/2) ln(Ω), we can perform the

substitution Ω → exp(2ΩdB/ζ) in eq. (A.5) and we obtain

pZR
(zR) =

2(Kf + 1)

ζ
exp

−
(Kf + 1) exp

[
2(zR−ΩdB)

ζ

]
Ω

−Kf

(A.6)

+
2(zR − ΩdB)

ζ

)
I0

(
2 exp

[
(zR − ΩdB)

ζ

]√
Kf (Kf + 1)

)
.

(A.7)

By inspection it is evident that ΩdB is a shift parameter. Thus we
can say that

E[ZR] = ΩdB − e(Kf );

V AR[ZR] = v(Kf ).

Functions e(Kf ) and v(Kf ) can be numerically computed forKf ∈
[0, 20], because this range covers the typical value of the K factor
(see also [GME99]), and they are shown in Fig. A.1.

A.3.1 From Decibel to Watt Domain

Let’s introduce the coefficient of variation c(·), whose squared
value is defined as

c2(·) = V AR[·]
E2[·]

. (A.8)
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The issue is to generate Lognormal and rician random variables
such that their behavior in dB, is comparable. Thus, dealing with
the random variables ZL and ZR, whose pdf is defined in eq.(A.2)
and (A.7) respectively, we need that c(ZL) = c(ZR) in each point
of the surveilled area. Another constrain of the problem is that
the mean power of e.m. signal in dB follow the (simplified) decay
rule

E[P (d)] = E [Z] = P0 −
ζα

2
ln(d), (A.9)

where d is the distance between the access point (AP) and the
mobile user (MU), α is the decay coefficient and P0 is the power
for d = d0 = 1. Instead there is no known law that describes
the power variance behaviour as function of the distance between
AP and MU. Thus, for sake of simplicity, we will perform the
comparison by setting to a constant the power variance on the
whole surface, while the mean power will follow eq.(A.9). This idea
is simple to apply for the gaussian random variable ZL. Instead,
when we want to simulate the power of the e.m. field emitted by
an AP that is affected by multipath (i.e. ZR), in order to match
some value of mean µdB and variance σ2

dB in dB, the procedure
will be:

• compute Kf = v−1(σ2
dB);

• compute ΩdB = µdB + e(Kf );

• compute Ω = exp(2 ΩdB/ζ).

It is important to point out that, when comparing ZL and ZR,
we have to fix an upper bound for the variance in dB, that is:

maxσ2
dB = v(Kf )|Kf=0 ≈ 31.025. (A.10)

Now the question is: what happens if we apply this procedure
and then we want to compute the Amount of Fading (AF), that
is tipically defined in Watt? We know (see [SA05]) that, if we
indicate with S the power in watt, the AF is defined as

AF =
V AR[S]

E2[S]
, (A.11)
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Figure A.2 Plot of the ratio AFL/AFR vs. Kf .

i.e. it is the square value of the coefficient of variation computed
in watt. Moreover we know that, for a rician random variable RR

with pdf in eq.(A.4), the Amount of Fading is

AFR =
1 + 2Kf

(1 +Kf )2
, (A.12)

while for a log-normal random variable RL with pdf in eq.(A.3) it
is

AFL = exp

(
4σ2

dB

ζ2

)
− 1. (A.13)

So we can compare AFR and AFL in the hypothesis that there
is the relationship σ2

dB = v(Kf ) and, as shown in Fig. A.2, we
have that AFL > AFR. Their ratio is close to 1 only for large
values of Kf (or small values of σ2

dB), i.e. if they are close to zero.
Moreover we notice that while in the Rician case AFR ∈ [0, 1], in
the Lognormal one AFL is unbounded. In order to have a view of
pdf shapes obtained by means of this method of comparison, let’s
give a look to Fig. A.3.
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A.3.2 From Watt to Decibel Domain

In the previous section we have determined a simple procedure to
compute the Rician parameters in order to have a fixed coefficient
of variation in dB, for comparing, for example, the performance
of a localization algorithm under multipath and under shadowing.
In this section we want to replicate the same procedure in order
that multipath and shadowing will produce the same AF. So the
idea is to express σ2

dB as function of Kf by putting AFR = AFL.
The result is

σ2
dB =

ζ2

4
ln

[
1 +

(1 + 2Kf )

(1 +Kf )2

]
, (A.14)

and the behaviour is shown in Fig. A.4. It is worth noting that also
in this case we have an upper bound for Kf → 0, i.e. maxσ2

dB =
ζ2

4
ln(2) ≈ 13.07. Moreover we have to put equal also the mean

value of the power in Watt, i.e. E[R2
L] = E[R2

R]. So we have

Ω = exp

(
2µdB

ζ
+

2σ2
dB

ζ2

)
, (A.15)

that can be also expressed as

ΩdB = µdB +
σ2
dB

ζ
. (A.16)

Thus, when we want to simulate e.m. fields affected by multipath
or shadowing with the same AF , the procedure will be:

• compute σ2
dB as a function of Kf (or vice versa) according

to eq.(A.14);

• compute ΩdB = ζ
2
ln(Ω);

• compute µdB = ΩdB − σ2
dB

ζ
.

Now the question is: what happens to the square value of the
coefficient of variation c2(·) defined in eq.(A.8)? We have, by using
eq.(A.16) that

c2(ZL) =
σ2
dB

µ2
dB

=
σ2
dB(

ΩdB − σ2
dB

ζ

)2 , (A.17)
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and that

c2(ZR) =
v(Kf )

(ΩdB − e(Kf ))
2 . (A.18)

Thus, also remembering eq.(A.14), the two coefficients will be
function of both Kf and ΩdB. In Fig. A.5 we show the behaviour
of these coefficients through the ratio c2(ZL)/c

2(ZR). It is evident
that there is a great variation for small absolute values of ΩdB,
while for big values the ratio saturates towards a limit behaviour.
Also in this case we show several pdf shapes obtained by means
of this method of comparison (see Fig. A.6). We point out that
the plots for σ2

dB = 20 are missing, because in this case the upper
bound for the variance in dB is σ2

dB ≈ 13.07.
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Figure A.3 Equal c(·) in dB. Plots of Lognormal (continuous line) and rician
(dotted line) pdf in dB (a.*) and in the amplitude domain (b.*) for different
values of σ2

dB . In particular σ2
dB = 1 (*.1), σ2

dB = 5 (*.2) and σ2
dB = 10 (*.3).

The mean in dB is set to µdB = 0.
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dB vs. Kf (solid line) computed by putting AFR = AFL.
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Figure A.6 Equal AF in Watt. Plots of Lognormal (continuous line) and
rician (dotted line) pdf in dB (a.*) and in the amplitude domain (b.*) for
different values of σ2

dB . In particular σ2
dB = 1 (*.1), σ2

dB = 5 (*.2) and
σ2
dB = 10 (*.3). The mean in dB is set to µdB = 0.



Appendix B

Matricial notation

Let f(x) be a real function and x = [x1, ..., xd]
T a d dimensional

column vector. We define the gradient of f(x) like

∇xf =
∂f

∂x
=

[
∂f

∂x1

, ...,
∂f

∂xd

]T
. (B.1)

If we define another column vector y and a matrix A of adequate
dimensions, the following relations hold

∂

∂x

[
yTx

]
=

∂

∂x

[
xTy

]
= y; (B.2)

∂

∂x
[Ax] =

∂

∂x

[
xTAT

]
= A; (B.3)

∂

∂x

[
xTAx

]
=
[
A+ AT

]
x. (B.4)

This last amounts in 2Ax in the case of symmetric A.
Let now F (x) = [f1(x), ..., fn(x)]

T be a n dimensional function
of x. The Jacobian of F (x) is the matrix of size n x d defined like:

∇xF =

 ∂f1/∂x1 ... ∂f1/∂xd

...
. . .

...

∂fn/∂x1 ... ∂fn/∂xd

 .





Appendix C

Variance filter

The variance filter of interest is defined in [Hay01] and, among
the others, in [Nel00]. Let us consider the scalar case along with
the maximum likelihood score function, here defined for a set of
N observations

JML(σ2) = −
N∑
k=1

(
log(2πσ2

ϵk
) +

(ϵk)
2

σ2
ϵk

)
, (C.1)

where ϵk = yk − g(x̂k|k−1) is the prediction error and its variance
σ2
ϵk

is dependent upon σ2.
Given a starting estimation of the variance σ̂2

0 = E[σ2], with
q0 = E[(σ2 − σ̂2

0)
2], we perform a running estimation of σ2 as in

Kalman, composed at the generic instant k > 0 of two steps:

• a prediction step

σ̂2
k|k−1 = σ̂2

k−1|k−1,

qk|k−1 = λ−1qk−1|k−1,

where λ is the forgetting factor;

• an update step

qk|k−1 =
(
q−1
k|k−1 +HT

k σ
−2
r Hk

)
,

σ̂2
k|k = σ̂2

k|k−1 + qk|kH
T
k σ

−2
r ek.
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In the previous for k = 1 we assume σ2
k|k−1 = σ2

0 and qk|k−1 = q0,
and the maximum likelihood goal leads to

ek =

[ √
lϵ,k

σϵ,kϵk

]
,

Hk =

 −1
2

l
−1/2
ϵ,k

σ2
ϵ,k

∂σ2
ϵ,k

∂σ2

− 1
σϵ,k

∂ϵk
∂σ2 +

ϵk
2σ3

ϵ,k

∂σ2
ϵ,k

∂σ2

 ,

where lϵ,k =
σ2
ϵ,k

3ϵ2k−2σ2
ϵ,k
, and accountig for the fact that the state-to-

measurement matrix Ck is time varying

σ2
ϵ,k = σ2 + CkPk|k−1C

T
k . (C.2)

Also the derivatives in ek and Hk can be expressed:

∂σ2
ϵ,k

∂σ2
= 1 + Ck

∂Pk|k−1

∂σ2
CT

k ,

∂ϵk
∂σ2

= −Ck

∂xk|k−1

∂σ2
,

which need the computation of other derivatives by means of the
following recursive equations

∂Pk|k−1

∂σ2
=A

[
−∂Kk−1

∂σ2
Ck−1Pk−1|k−2+

(I −Kk−1Ck−1)
∂Pk−1|k−2

∂σ2

]
AT ,

∂Kk

∂σ2
=

I −KkCk

CkPk|k−1CT
k + σ2

∂Pk|k−1

∂σ2
CT ,

∂xk+1|k

∂σ2
=A

[
(I −KkCk)

∂xk|k−1

∂σ2
+

∂Kk

∂σ2
ϵk

]
, (C.3)

given initial (arbitrary) values.
Supposing a stable behavior of the algorithm (the analysis is

difficult because the involved matrices are time varying), these



C.1. Minor issues 203

derivatives tend to zero for k → ∞. A chance is to set them to
zero since k = 0. This simplified version of the filter, reported
as unstable by some authors, has been tested and the results are
available in the Sect. 3.5.

C.1 Minor issues

Some numerical issues were tackled:

• in (C.2) and in the second of (C.3) we use the current esti-
mation σ̂2

k|k−1 instead of the actual σ2;

• as explained in the references, it is better to filter the log-
arithm of the variances, mainly to avoid negative values
(see [Hay01] for the modified equations);

• the starting values used for the recursive derivatives in the
simulations are the following

∂x0

∂σ2
= [1, 1, 1, 1]′,

∂P0

∂σ2
= diag(1, 1, 1, 1),

∂K

∂σ2
= 1, (C.4)

where 1 is the unitary matrix of suitable size;

• the fictitious random process (3.31) describing the variance
is considered additive and Gaussian with the actual σ2 like
mean and variance σ2

r = 1/2, as suggested in the above ref-
erences.





Appendix D

CRLB computation

In this section we express in detail the computations of the matri-
ces required for the CRLB; we will exploit the notation of App. B
and the symmetry properties of Rv and Rn.

D.1 Gaussian measurements

In the case of fully known model as in Sect. 1.4.1, the matrices
involved, here restated for clearness, are



D11
k = E

{
−∇xk

[
∇T

xk
log p(xk+1|xk)

]}
,

D12
k = E

{
−∇xk

[
∇T

xk+1
log p(xk+1|xk)

]}
,

D21
k = E

{
−∇xk+1

[
∇T

xk
log p(xk+1|xk)

]}
,

D22
k = E

{
−∇xk+1

[
∇T

xk+1
log p(xk+1|xk)

]}
+

E
{
−∇xk+1

[
∇T

xk+1
log p(yk+1|xk+1)

]}
,

where the expectations are over xk, xk+1 and yk+1. We now as-
sume the user to be far away from the obstacles and thus we use
a linear model xk+1 = Fxk. Exploiting the Gaussian model in dB
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we obatain

log p(xk+1|xk) ∝ −1

2
(xk+1 − Fxk)

TR−1
v (xk+1 − Fxk)

log p(yk+1|xk+1) ∝ −1

2
(yk+1 − g(xk+1))

TR−1
n (yk+1 − g(xk+1)).

(D.1)

Now, applying the matricial operators, we can find

∇T
xk

log p(xk+1|xk) = [F TR−1
v (xk+1−Fxk)]

T = (xk+1−Fxk)
TR−1

v F.

The above provides straightforwardly

D11
k = E

{
−∇xk

[
∇T

xk
log p(xk+1|xk)

]}
= F TR−1

v F,

D21
k = E

{
−∇xk+1

[
∇T

xk
log p(xk+1|xk)

]}
= −R−1

v F,

where we have exploited the symmetry of Rv, and the fact that the
expectations vanish because R−1

v and F are deterministic matrices.
Similarly,

∇T
xk+1

log p(xk+1|xk) = −[R−1
v (xk+1−Fxk)]

T = −(xk+1−Fxk)
TR−1

v ,
(D.2)

leading to

D12
k = E

{
−∇xk

[
∇T

xk+1
log p(xk+1|xk)

]}
= −F TR−1

v .

As for D22
k , it is composed of two terms, the former is easily ob-

tained from eq. (D.2) and amounts to

E
{
−∇xk+1

[
∇T

xk+1
log p(xk+1|xk)

]}
= R−1

v ;

the latter takes into account that

∇xk+1
log p(yk+1|xk+1) = ḡT (xk+1)R

−1
n (yk+1 − ḡ(xk+1)),



D.1. Gaussian measurements 207

with ḡ(xk+1) = ∇xk+1
g(xk+1), leading to

E
{
−∇xk+1

[
∇T

xk+1
log p(yk+1|xk+1)

]}
= E

{[
∇xk+1

log p(yk+1|xk+1)
] [

∇xk+1
log p(yk+1|xk+1)

]T}
= E

{
ḡT (xk+1)R

−1
n (yk+1 − ḡ(xk+1))

(yk+1 − ḡ(xk+1))
TR−1

n ḡ(xk+1)
}

= Exk+1

{
ḡT (xk+1)R

−1
n

Eyk+1

[
(yk+1 − ḡ(xk+1))(yk+1 − ḡ(xk+1))

T
]
R−1

n ḡ(xk+1)
}

= Exk+1

{
ḡT (xk+1)R

−1
n E

[
nk+1n

T
k+1

]
R−1

n ḡ(xk+1)
}

= E
{
ḡT (xk+1)R

−1
n ḡ(xk+1)

}
. (D.3)

The final result is thus

D22
k = R−1

v + E
{
ḡT (xk+1)R

−1
n ḡ(xk+1)

}
.

In the case of unknown parameters the matrices are here restated

H11
k = E

{
−∇xk

[∇T
xk

log pk]
}
,

H12
k = E

{
−∇xk

[∇T
wk

log pk]
}
,

H13
k = E

{
−∇xk

[∇T
xk+1

log pk]
}
,

H22
k = E

{
−∇wk

[∇T
wk

log pk]
}
,

H23
k = E

{
−∇wk

[∇T
xk+1

log pk]
}
,

H33
k = E

{
−∇xk+1

[∇T
xk+1

log pk]
}
,

where the expectations are with respect to xk,xk+1,pk and yk+1

and

pk = p(xk+1|xk,pk)p(yk+1|xk+1,xk,pk) = p(xk+1|xk)p(yk+1|xk+1,pk).

Being it

log pk =− 1

2
(xk+1 − Fxk)

TR−1
v (xk+1 − Fxk)

− 1

2
(yk+1 − g(xk+1,pk))

TR−1
n (yk+1 − g(xk+1,pk)),

(D.4)
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we can easily find
∇T

xk
log pk = = (xk+1 − Fxk)

TR−1
v F,

∇T
xk+1

log pk = −(xk+1 − Fxk)
TR−1

v

+(yk+1 − g(xk+1,pk))
TR−1

n ḡx(xk+1,pk),

∇T
pk

log pk = (yk+1 − g(xk+1,pk))
TR−1

n ḡp(xk+1,pk),

where again ḡx(xk+1,pk) = ∇xk+1
g(xk+1,pk) and ḡp(xk+1,pk) =

∇pk
g(xk+1,pk). Now, from the first of the above we can find by

differentiating again with respect to xk (the expectation vanishes)

H11
k = F TR−1

v F.

From the second line we obtain
H13

k = −F TR−1
v ,

H23
k = E

{
ḡTp (xk+1,pk)R

−1
n ḡx(xk+1,pk)

}
,

H33
k = R−1

v + E
{
ḡTx (xk+1,pk)R

−1
n ḡx(xk+1,pk)

}
,

and finally from the last one{
H12

k = 0,

H22
k = E

{
ḡTp (xk+1,pk)R

−1
n ḡp(xk+1,pk)

}
.

D.2 Rice measurements

In the case of fully known models, assuming a Ricean model for
the RSS from the nAP nodes (yk+1,i is the RSS from the i− th AP
at the instant k + 1)

log p(yk+1|xk+1) =

nAP∑
i=1

{
log

[
2yk+1,i(1 + γ)

P (dk+1,i)

]
−

(1 + γ)y2k+1,i + γP (dk+1,i)

P (dk+1,i)

+ log

[
I0

(
2yk+1,i

√
γ(1 + γ)

P (dk+1,i)

)]}
. (D.5)
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The only matrix to be affected is D22
k , where

∇xk+1
log p(yk+1|xk+1)

=

nAP∑
i=1

α (P (dk+1,i)− y2(γ + 1)) I0

(
2yk+1,i

√
γ(γ+1)

P (dk+1,i)

)
d2k+1,iP (dk+1,i)I0

(
2yk+1,i

√
γ(γ+1)

P (dk+1,i)

)
+
yk+1,i

√
γ(γ + 1)I1

(
2yk+1,i

√
γ(γ+1)

P (dk+1,i)

)
d2k+1,i

√
P (dk+1,i)I0

(
2yk+1,i

√
γ(γ+1)

P (dk+1,i)

)
 (xk+1 − xAP,i),

(D.6)

leading to the computation of

E
{
−∇xk+1

[
∇T

xk+1
log p(yk+1|xk+1)

]}
by performing a further gradient. This computation is staightfor-
ward but involved and thus is here omitted.

In the case of unknown parameters, we have for H2,2
k

H2,2
k = E

[
nAP∑
i=1

∇pk
∇T

pk
[α logP0,i − α log dk+1,i

+
(1 + γ)y2k+1,i + γP0,i(d0/dk+1,i)

α

P0,i(d0/dk+1,i)α

− log I0

(
2yk+1,i

√
γ(1 + γ)

P0,i(do/dk+1,i)α

)]]
,

where the terms ∂2(·)
∂P0,i∂P0,j

= 0, i ̸= j. Similar arguments hold for

the last two matrices and, in particular

H33
k = R−1

v − E

[
∇xk+1

[
∇T

xk+1

nAP∑
i=1

log p(yk+1,i|xk+1,pk)

]]
.
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GMM approximation for
the peaks in WiSLAM

In Fig. E.1.a: the AP is located in the center and the user collects
k RSS measurements in uniformly spaced positions of the circle.
The symmetric version for Kullback Leibler (KL) divergence

Ds (p||p̂) =
∫

p log
p

p̂
+

∫
p̂ log

p̂

p
, (E.1)

is used to evaluate the approximation error between the posterior
AP’s position pdf and a Gaussian pdf with same mean and covari-
ance matrix for increasing values of k and the results are shown
in Fig. E.1:

• for small k the log of the KL divergence decreases linearly
with the square of k, as highlighted by the comparison with
the fitting curve in Fig. E.1.b;

• the mean of the Gaussian peak is centered on the AP’s posi-
tion while the covariance matrix is diagonal with its entries
asymptotically proportional to 1/k (see Fig. E.1.c).

These results indicate that the Gaussian approximation is asymp-
totically suitable for the peaks but it is still reasonable for small
k. However, in this case, we ensure more flexibility by allowing a
generic nondiagonal covariance matrix.
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(a) Framework

(b) KL divergence
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Figure E.1 Simulations confirming our guess about the asymptotical
distribution for W. Here R = 20, k = 2÷ 300. We show (a) the framework,
(b) the symmetric KL distance as defined in eq. (E.1) with its polynomial fit

and (c) the variances of the Gaussian approximation.



Appendix F

Proof of the Proposition 1

We will first show that

fp,k−1(xAP , hh)· p
(
ZW

k |xAP , hh,Pk

)
= c0· fp,k(xAP , hh), (F.1)

where c0 is a constant term and fp,k(xAP , hh) a Gaussian pdf, and
then we will compute the new GMM coefficients ũp,k.

The peak fp,k−1(xAP , hh) is distributed as a bivariate Gaussian
pdf, depending on AP’s emitted power hh and position xAP . This
latter is expressed in terms of the Cartesian reference system (x, y)
of Fig. 5.17, whose origin is in the center of the RSS likelihood
(Pk = 0). It is comfortable to rotate the axes by an angle α
counter clockwise, such that in the new system of coordinates
(a, b) the second component of the peak mean, say µR

k−1, is zero,
i.e. µR

k−1 = [µa,k−1, 0]
′ and the resulting covariance matrix SR

k−1 is

SR
k−1 =

[
σ2
a,k−1 ρk−1σa,k−1σb,k−1

ρk−1σa,k−1σb,k−1 σ2
b,k−1

]
.

In what follows we will consider just a peak at a given reference
power hh, denoting it with the simplified notation

fk−1(a, b)=̂fp,k−1(xAP , hh),

where a and b identify the coordinates of xAP in the rotated refer-
ence system. With this notation in mind, we recall that the peak’s
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conditional pdfs f(a|b) and f(b|a) are both Gaussian. Similarly,
we express the RSS likelihood function in the (a, b) system by a
simplified notation

gk(a)=̂p
(
ZW

k |xAP , hh,Pk

)
,

where we highlight that, if the Ass. 2 is employed, g(· ) is uni-
form along the axis b and it is Gaussian distribution along a with
parameters (r̂, σ2

G). We are interested in

fk(a, b) ∝ fk−1(a, b)· gk(a),

whose conditional pdfs{
fk(a|b) ∝ fk−1(a|b)· gk(a)
fk(b|a) ∝ fk−1(b|a)

are both Gaussian with easily computable parameters.
The problem of how to build up a compatible joint pdf from its

conditionals is studied in the auto-models literature [Bes74]. Re-
calling the results regarding Gaussian auto-models [GG10, Ch. 2],
the parameters of the new Gaussian joint pdf result in

ρ2k = dd′, σa,k =

√
e′

1− ρ2k
, σb,k =

√
e

1− ρ2k
, (F.2)

µa,k =
c′ + cρk

√
e′/e

1− ρ2k
, µb,k =

c+ c′ρk
√

e/e′

1− ρ2k
, (F.3)

where

c = −ρk−1
σb,k−1

σa,k−1

µa,k−1, d = ρk−1
σb,k−1

σa,k−1

, (F.4)

e = σ2
b,k−1(1− ρ2k−1), c

′ =
σ2
Gµa,k−1 + σ2

a,k−1(1− ρ2k−1)r̂

σ2
G + σ2

a,k−1(1− ρ2k−1)
, (F.5)

d′ =
ρk−1

σa,k−1

σb,k−1
σ2
G

σ2
G + σ2

a,k−1(1− ρ2k−1)
, e′ =

σ2
Gσ

2
a,k−1(1− ρ2k−1)

σ2
G + σ2

a,k−1(1− ρ2k−1)
. (F.6)
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Notice that we compute ρ2k and both its roots are feasible, since
−1 ≤ ρk ≤ 1. Therefore the sign of ρk should be set using other
physical considerations and here it must be the same as ρk−1, since
one can show that ρ2k ≤ ρ2k−1.

After having rotated this pdf by the same angle α, but clock-
wise, finding the updated µk and Sk of the peak in the original
coordinate system (x, y), the constant c0 in eq. (F.1) is computed
by fixing xAP , for example, on the mean µk:

c0 =
fp,k−1(µk, hh)· p

(
ZW

k |µk, hh,Pk

)
fp,k(µk, hh)

.

As for the coefficients ũp,k of eq. (5.37), we can observe that em-
ploying (F.1) in eq. (5.34) we find

p̂
(
xAP |hh,P0:k,Z

W
1:k

)
∝

Npeaks∑
p=1

ũp,k−1· fp,k−1(xAP , hh)· p
(
ZW

k |xAP , hh,Pk

)
=

Npeaks∑
p=1

up,k· fp,k(xAP , hh),

where the coefficients up,k=̂ũp,k−1· c0 must be normalized over p to
obtain the new ũp,k of eq. (5.37):

ũp,k =
up,k∑NPeaks

p=1 up,k

.
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