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Abstract 
 

The research project "Chemical and biological study of natural substances 

active on the Central Nervous System" has been focused on the possible effects of 

essential oils, their main constituents (in particular monoterpenes), plant extracts 

and/or their fractions and/or their constituents on the expression of some proteins 

involved in the adenylate cyclase 1 pathway, on cell electrophysiology and their 

potential effect on in vivo models. 

Eight species were selected including three aromatic plants (Lavandula 

angustifolia, Coriandrum sativum, Laurus nobilis); two Citrus medica cultivars 

(cv 'liscia' and cv 'rugosa'); two species of Ipomea genus known because also 

Ipomea violacea, a famous 'smart drugs', belongs to this genus; and Hypericum 

hircinum belonging to the same genus of Hypericum perforatum known for its 

antidepressive properties. Essential oils have been obtained from the aerial parts 

of L. angustifolia and L. nobilis, from C. sativum fruits and from the two cultivars 

of C. medica flavedo, while from the aerial parts of the two Ipomea species and H. 

hircinum we obtained different extracts by using solvents with increasing polarity. 

We analyzed the chemical composition of essential oils and the extracts by 

GC-MS for the first one, and by thin-layer chromatography (TLC), adsorption 

chromatography and HPLC for the second one. With this procedure it was 

possible to identify the main constituents of essential oils and the fractions with a 

chemical profile of interest. 

Subsequently, were performed several in vitro and in vivo assays following a 

bioassay guided fractionation. 

We evaluated the cytotoxicity of the substances on human neuroblastoma cells 

(SH-SY5Y) in order to determine the most appropriate concentrations to treat  

the cells to study the effect on adenylate cyclase 1, protein kinase A, pERK and 

ERK protein expression. 
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In collaboration with the University of Genoa, we evaluated the possible 

effects on cellular electrophysiology of L. angustifolia essential oil, its main 

constituent and of H. hircinum methanolic extract.  

Finally, in the period of research carried out at the Department of 

Psychobiology of the University of Valencia in Spain, we evaluated the effects of 

the essential oil of L. angustifolia and of the linalool on stress and social 

interactions with different experimental procedures in vivo. 
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1. Introduction 
 

1.1 Plants used in traditional medicine for their effects on Central Nervous 

System  

 

Traditional medicine is an important source for the study of medicinal plants. 

Nowadays, this science is revalued by an extensive activity of research on 

different plant species and their therapeutic principles (Nencini et al. 2006).  

Often, in the course of the story, the humans have utilised plants not only as 

food sources or dietary supplements but also as part of their ritual and healing 

practices. In most preliterate cultures, a central role in therapeutic rites is played 

by “magical plants”, most of which are represented by hallucinogenic species. The 

use of these plants is socially accepted and often there is a close relationship 

between the supernatural and the alteration of the habitual state of consciousness 

produced by hallucinogenic plants. This fundamental property has led these plants 

to be considered divine or sacred, and appropriate for use in religious and curative 

ceremonies. In fact, these species are seen as intermediaries between the human 

world and that of supernatural forces (Furst 1972). For these reasons, the 

knowledge and the practice of using plants for healing rituals assumed a special 

characteristics: often it is secretly kept and conveyed by shamans, priests and 

other religious figures, who are very knowledgeable about herbs and who 

combine their botanical, phytotherapeutical and toxicological knowledge with 

religious elements and rituals based on magic, superstition and ancestral beliefs 

(Diaz et al. 1979, De Feo et al. 1992).  

Phytochemical and pharmacological investigations on some of these species 

revealed that they really act on Central Nervous System. The rational study of 

“magical plants” appears now to be a useful and chartered way to study 

psychoactive drugs. Moreover, data collected clearly show a deep knowledge of 

these hallucinogenic species.  
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Some of the “magical” plants belong to the solanaceous genus Brugmansia 

known with vernacular names “floripondio”, “campanchu” or “yerba del diablo”, 

and are used in the traditional Peruvian medicine to reach altered states of 

consciousness (De Feo 2003). 

 

 

 

 

 

 

Figure 1.1 Brugmansia arborea (A); Iresine herbstii (B). 

 

Brugmansia sanguinea (R. et P.) D. Don leaves tincture, for example, is 

claimed to have hallucinogenic effects when absorbed through the nasal mucous 

and is also used during the ritualistic ceremonies to help in divination (De Feo 

2008). B. arborea extracts showed the property to reduce morphine withdrawal in 

vitro (Capasso and De Feo, 2002). Iresine herbstii exerts important psychotropic 

effects on CNS (Capasso and De Feo, 2002).  

Also Claviceps purpurea, a pathogenic fungus that infects rye and cause a 

disease known as ‘ergot’, has been used in traditional medicine for a long time. A 

small dose can be used for migraine or blood pressure regulation but their effects 

on the Central Nervous System (CNS) are deleterious, in fact consumption of rye 

bread contaminated was responsible for epidemic ergotism that occurred in the 

past (Douhan et al. 2008). 
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Figure 1.2 Claviceps purpurea sclerotium (A); rye contaminated by Claviceps purpurea (B). 

1.2 Plant secondary metabolites  

 

The psychoactive properties of plants are attributable to the presence of their 

secondary metabolites. These chemical compounds are not required for the basic 

photosynthetic or respiratory metabolism such as primary metabolites, but 

increase the plant ability to survive and overcome local challenges allowing them 

to interact with their environment, including pathogens and herbivorous and 

symbiotic insects (Harborne 2014). One of their fundamental roles is to be 

allelopathic defenders of plants, against competitor plants (Wink 2003). 

Moreover, some secondary metabolites are toxic to herbivores acting with their 

Central and Peripheral Nervous System as agonist or antagonist of 

neurotransmitter system or forming structural analogs of endogenous hormones 

(Wink 2003, Miller and Heyland 2010). In some plants, secondary metabolites 

can give also resistance to salt or drought (Trossat et al. 1998, Nuccio et al. 1999).  

Plant secondary compounds are usually classified on basis of their chemical 

structure and synthetic pathways in three large molecule families: alkaloids, 

terpenes and phenolic compounds (Bourgaud et al. 2001, Kennedy and Wightman 

2011). Alkaloids are a group of nitrogen-containing compounds present in about 

20% of plant species; they are specific to define plant genus and species and  

sparsely distributed in the plant kingdom (Zulak et al. 2006, Bourgaud et al. 

2001). 

A 

B 
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       Figure 1.3 Major pathways of secondary metabolite biosynthesis and their relationship with 

primary metabolism (Taiz and Zeiger 2002). 

 

As secondary metabolites, they play a defensive role against herbivores and 

pathogens interfering with signal transduction or binding to neuroreceptors (Wink 

2000). Often alkaloids are classified on the basis of their structural similarity or 

their common precursor; some of them are used as hallucinogens, social drugs or 

psychotropic medicine.  

Terpenes are a group of more than 30,000 lipid soluble compounds and are 

classified according to the number of isoprene units that they contain.  

They have different functions: herbivore deterrence, pollinator symbiotes 

attraction, antigerminative and phytotoxic actions, and insect toxicity, in fact they 

can affect their CNS (De Almeida et al. 2010, De Martino et al. 2010, Rattan  

2010). Moreover, they can be also solvents for mass compounds that would 

solidify and clog transport systems in plants (Zulak et al. 2006). 

Phenolic compounds are synthesized from the phenylpropanoid pathway. 

Structurally, they have at least one aromatic hydrocarbon ring with one or more  
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hydroxyl groups attached. These secondary metabolites are common to all higher 

plants because they are involved in lignin synthesis. Moreover, they attract 

symbiotic insects and deter herbivores (Bourgaud et al. 2001). The ecological 

roles of phenolic compounds include functions as phagostimulants, allelopathic 

agents in intra-plant relationships; they can act also in antioxidant defenses and 

the absorption of UV light (Treutter 2006). 

1.3 Essential oils and aromatherapy 

 

Essential oils (EOs) are natural complex mixtures of volatile compounds 

isolated usually by hydro-distillation, and characterized by a strong odour. They 

can be synthesized by all plant organs and possess various biological activities on 

humans, animals, and other plants.  

In nature, essential oils play an important role in the plant care as antibacterial, 

antivirals, antifungals, insecticides and also against herbivores by reducing their 

appetite for such plants.  

They also may attract or repel insects to favour interplant communication 

(Baser and Buchbauer 2015). Essential oils are considered as multifunctional 

agents thanks to their strong stimulation of the human smell because olfactory 

information reaches a number of cortical areas without being relayed in the 

thalamus (Wiesmann et al. 2001) (fig. 1.5).  

Studies in vitro with bacteria and mammalian cells demonstrated that EOs 

seem to have no specific cellular targets but as lipophilic compound they pass 

through the cytoplasmic membrane and disrupt its typical structure; this evidence 

could explain their cytotoxicity (Bakkali et al. 2008).  

Moreover, the available literature reports antinociceptive, anticancer, antiviral, 

antioxidant and anticancer effects of essential oils, among others (Adorjan and 

Buchbauer 2010, Nunes et al. 2015). 
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Figure 1.4 Structural formulae of selected components of essential oils: Linalool (A); 

Limonene (B); 1,8-Cineole (C); Geranyl-acetate (D); Geraniol (E).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Limbic system: how odor molecules act on brain. 

 

Different studies have been carried out to unravel the effects of essential oils 

and aromatic species on CNS have been reported effects on learning, memory, 

attention, and effects on the treatment of stress (Dobetsberger and Buchbauer 

2011).  
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Aromatherapy is the therapeutic use of essential oils extracted from leaves, 

flowers, and other plant parts combined with massage and the olfactory system 

involvement to treat various physical or psychological conditions (Lee et al. 

2011). Its relevance is growing, due to the anxiolytic properties showed by some 

aromatic plants such as Lavandula angustifolia Mill., Salvia sclarea L.,  

Citrus limon L., Anthemis nobilis L. (Setzer 2009, Baser and Buchbauer 2015).  

Anxiety is among the most common forms of psychopathology worldwide; the 

symptoms are shortness of breath, heart palpitations and pale skin. In recent years, 

its prevalence as a medical condition has increased because both animals and 

humans are continually exposed to various anxiety-promoting situations in their 

environment. Usually the treatment of persistent anxiety required the use of 

benzodiazepines but they have many side-effects so the alternative management 

of anxiety and social relationships has become salient in contemporary life (Linck 

et al. 2010, Woelk and Schläfke 2010).  

Essential oils are used in aromatherapy also for the effects of their constituents 

in the treatment and prevention of some diseases related to the Central Nervous 

System such as epilepsy, Alzheimer’s disease and Parkinson’s disease 

(Dobetsberger and Buchbauer 2011, Babar et al. 2015). 

1.4 Smart drugs  

 

Nowadays, there is a growing interest in recreational drugs also called ‘smart 

drugs’ derived from natural materials, natural products or their simple derivatives. 

These agents have become popular for personal use to enhance performance in 

exams or at work, mental energy, concentration and alertness acting upon the 

synthesis of neurotransmitters, such as acetylcholine (Appendino et al. 2014, 

Canterbury and Lloyd 1994). It is possible to compare smart drugs with anabolic 

steroids; in fact, the first enhance mental performance, the second ones improve 

physical performance. 
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Figure 1.6 Common smart drugs. 

 

The fundamental difference is that steroids have shown serious negative side-

effects, instead there is no sufficient information about smart drugs negative 

effects (Canterbury and Lloyd 1994, Scheske and Schnall 2012). 

Internet have increased the diffusion of smart drugs, that now are available on 

line in different formulations such as pills, tablets, powders, liquids, chewing gum 

and single plant material or extracts (Schmindt et al. 2011).  

These products represent the legal alternative to cannabis, in fact they can be 

plants rich in alkaloids or stimulant and psychotropic substances, or plant 

mixtures that act as a ‘shuttle’ hiding illegal compounds and allowing them to 

avoid legal restriction and to be marked (Cornara et al. 2013).  

The main problem is the identification of these herbal mixtures because often 

the material is very fragmented. Cornara et al. demonstrated, with combination of 

micromorphological, molecular and chemical technique, that it is necessary a 

multidisciplinary approach to identify plant material and to understand if plants 

contain alkaloids or play a ‘green shuttle’ role (Cornara et al. 2013).  
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1.5 Plant selected  

 

1.5.1 Lavandula angustifolia 

 

 

 

 

Figure 1.7 Lavandula angustifolia. 

Order: Lamiales  

Family: Labiatae (Lamiaceae)  

Species: Lavandula angustifolia Mill. 

Plant morphology: Lavender is a perennial herbs or small shrubs with purple-

blue aromatic flowers. The leaves are linear or lanceolate with herbaceous 

branches. The flowers are small with blue caliber; the blue or violet corolla has 4 

stamens.  

Linalool, camphor, terpinen-4-ol, linalyl acetate, β-ocymene and 1,8-cineole 

are reported to be the main components of lavender essential oil (Price 1993, 

Koulivand et al. 2013). This essential oil possesses different biological activities 

and only few studies have investigated the effects of its major constituent, 

linalool, on brain activity or specific receptor populations (Elisabetsky et al. 1995; 

Elisabetsky et al.  1999).  

Re and coworkers showed that linalool inhibits acetylcholine release at the 

neuromuscular junction modifying ion channel function (Re et al. 2000).  

Linalool has also antidepressant like effects in fact decrease the immobility time 

in tail suspension test (Coelho et al. 2013). 
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Studies in vivo have demonstrated that an intraperitoneal injection of lavender 

essential oil enhanced rotarod activity and increased dopamine receptors subtype 

D3 expression in the olfactory bulbs of mice (Kim et al. 2009). Moreover, this 

essential oil improves the cognitive performance of scopolamine induced mice, 

showing a neuroprotective effect in Alzheimer disease model in vivo (Xu et al. 

2016).  

 

1.5.2 Coriandrum sativum 

 

 

 

 

 

Figure 1.8 Coriandrum sativum. 

Order: Apiales 

Family: Apiaceae (Umbelliferae) 

Species: Coriandrum sativum L. 

Plant morphology: Coriander is an erect herbaceous plant up to 80 cm tall 

with isolated and pinnate leaves, the upper leaves instead are more irregularly 

divided into narrowly linear segments. The inflorescences are umbels with 

peduncles up to 8 cm long and flowers are small white to pinkish. Fruits are 

subglobose.  

Coriander is originating from the Mediterranean region and cultivated in 

different parts the world. All parts of the plant are edible, the plant and its fruits 

are used as a spice in different countries. In folk medicine, the fruits of coriander 

are recommended for the treatment of anxiety, insomnia or for relief of  
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nervousness (Mandal and Mandal 2015). Moreover it is useful in the treatment of  

inflammation, indigestion, vomiting, dysentery, diarrhoea (Varier 1994). Leaf 

preparations have been used to treat coughs and abdominal discomforts (Bruneton 

1995). Linalool, geranyl acetate, nerol and neral are the main components of C. 

sativum essential oils (Ebrahimi et al. 2010).  

This oil showed inhibitory activity against Gram-positive and Gram-negative 

bacteria, indicating that it is adapt for food preservation (Matasyoh et al. 2009).  

Studies in vivo have reported coriander extracts and its essential oil for 

potential hypnotic sedative activities, anxiolytic, muscle relaxant and 

anticonvulsant effects (Emamghorashi and Heidari-Hamedani 2004, Hosseinzadeh 

and Madanifard 2005, Emamghorashi and Heidari-Hamedani 2006, Mahendra and 

Bisht 2011).  

1.5.3 Citrus medica 

 

 

 

 

 

Figure 1.9 Citrus medica. 

Order: Geraniales 

Family: Rutaceae 

Species:  Citrus medica L. 

Plant morphology: Citron is a woody plant with simple leaves, has white 

flowers with 5 petals, 5 sepals and stamens stacked in bunches. The carpels are 

welded throughout their length.  
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Citron, native to Southeast Asia, was imported to the Mediterranean around 300 

B.C. probably, it arrived in Italy through the Hebrews who introduced the 

cultivation of citron on the Calabrian coasts, Amalfi Coast, and Garda Lake  

(Gabriele et al. 2009; Savo et al. 2011). Two local cultivars of Citrus medica L. 

are grown on the Amalfi Coast: C. medica cv. ‘liscia’, known by the vernacular 

name of ‘cedro’, and C. medica cv. ‘rugosa’, known as ‘ponsino’. These two 

cultivars contributed to the agricultural biodiversity of this area, as well as other 

Citrus species. However, their diffusion is decreasing, due to the technical 

difficulties for their cultivation and to the competition of lemon cultivations.  

The taxonomy of Citrus species is complex. In fact, recent genetic analyses 

have shown that only three species belong to the genus Citrus: C. maxima (Burm.) 

Merr., C. medica L., and C. reticulata Blanco (Uzun and Yesiloglu 2012). 

Moreover, the Citrus species are able to crossbreed, producing fruits with a wide 

range of morphological and organoleptic characteristics. Today, the fruits of both 

cultivars are used locally only for fresh alimentary consumption. In past times, 

both citrons have also been employed in traditional medicine as an anti-infective, 

an anti-inflammatory, and to treat digestive disorders. Fruits and leaves are used 

in different countries in the treatment of allergic inflammation, for treating colds, 

as a decongestant, an expectorant, and a carminative, in the treatment of 

pathologies of the intestinal tract and rectum, as well as a stomachic, an 

antispasmodic, a diuretic and a digestive (Yeung 1985, Uzun and Yesiloglu  

2012).  

The citron essential oils are used for flavouring, for perfuming, in fruit 

beverages, in soft drinks, in cosmetics, and in household products (Yeung 1985). 

Different studies reported evidence that Citrus consumption is associated with a 

reduced cancer incidence (Li et al. 2010). Menichini and coworkers (2010) 

reported the chemical profile and the photo-induced cytotoxic activity of Citrus 

bergamia Risso and Poit. and Citrus medica cv. ‘Diamante’. Both oils exhibited a  
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selective inhibition of the A375 tumoral cell line. Russo and coworkers (2014)  

studied the cytotoxic effect of the Bergamot (Citrus x bergamia Risso & A. Poit.) 

essential oil on SH-SY5Y neuroblastoma cells and its components, limonene and 

linalyl acetate, were able to induce cell death.  

There are no studies on Citrus medica essential oil effects in vivo. 

Nevertheless, CNS effects of other Citrus species are reported: C. limon essential 

oil has showed a sedative and anxiolytic effect, probably involving the GABAA 

receptor complex (Lopes Campelo et al. 2011); C. aurantium enhances the time 

spent in the open arms of elevated plus maze, suggesting an anxiolytic effect 

(Carvalho-Freitas and Costa 2002). 

1.5.4 Laurus nobilis 

 

 

 

 

 

Figure 1.10 Laurus nobilis. 

Order: Laurales 

Family: Lauraceae 

Species: Laurus nobilis  

Plant morphology: Laurel is an evergreen dioecious tree or shrub. The leaves 

are alternate leathery with slightly wavy margins. The leaves have an aromatic 

smell and taste a little bitter. The flowers have a white perianth and they are 

grouped in small umbels. The fruit is a black ovoid drupe containing a single seed. 
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The laurel is native to the southern parts of Europe and the Mediterranean area; is 

widely cultivated in many countries. Its dried leaves and the essential oil deriving 

from leaves are used as a valuable spice and a flavouring agent in culinary and 

food industry. The leaves have been used, in Iranian folk medicine, to treat 

epilepsy, neuralgia, and parkinsonism (Zargari 1990, Aqili 1992). Leaves and 

fruits have been reported to possess aromatic, stimulant, and narcotic properties 

(Abu-Dahab et al. 2014). Several studies reported the antimicrobial and the 

antioxidant properties of laurel essential oil and/or extracts (Santoyo et al. 2006, 

Derwich et al. 2009, Ozcan et al. 2010).  

The leaves of L. nobilis are traditionally used orally to treat the symptoms of 

gastrointestinal problems, such as epigastric bloating and flatulence (Qnais et al. 

2012). The essential oil of laurel leaves is widely used in the perfume and soap 

industries (Kosar et al. 2005). Moreover, it has been used for relieving 

haemorrhoid and rheumatic pains (Zargari 1990). It also has diuretic and 

antifungal activities (Zargari 1990, Aqili 1992, Patrakar et al. 2012). Sayyah and 

coworkers (2002) showed that Laurus nobilis essential oil showed a sedative 

effect protecting NMRI mice against seizure and reduced time spent on rotarod. 

1.5.5 Ipomea transvaalensis 

 

 

 

 

 

Figure 1.11 Ipomoea transvaalensis 

Order: Solanales 

Family: Convolvulaceae 
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Species:  Ipomea transvaalensis A. Meeuse 

Plant morphology: Perennial plant with long fusiform tuberous root-stock. 

Stems are annual, herbaceous, and suberect or prostrate, up to 1 m long. Leaves 

are narrowly deltoid-cordate to broadly cordate-suborbicular, up to 45 mm long. 

Corolla is funnel-shaped, 20-40 mm long, pink to magenta or white with purple 

centre. The most peculiar aspect is the bright orange fuzzy seeds.  

There are no studies in literature on Ipomea transvaalensis extracts and their 

biological activities and composition. 

1.5.6 Ipomea cairica 

 

 

 

 

Figure 1.12 Ipomoea cairica flowers. 

 

Order: Solanales 

Family: Convolvulaceae 

Species:  Ipomea cairica (L.) Sweet 

Plant morphology: A rampant perennial climber reaching up to 5 m or more 

in height, or creeping along the ground. The alternately arranged leaves are 

divided into five or seven narrow lobes. The tubular flowers are purple to pinkish-

purple with a darker purple centre. The fruit capsules are more or less globular 

and turn from green to brown in colour. The seeds have smooth surfaces 

interspersed with dense tufts of long silky hairs. 

An I. cairica ethanolic extract presents an antinociceptive effect instead 

aqueous extract showed anti-RSV (respiratory syncytial virus) activity in vitro  
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(Ma et al. 2002, Ferreira et al. 2006). Lima and Braz-Filho (1997) demonstrated 

that the main constituents of the I. cairica methanol extract were scopoletin, 

umbelliferone and arctigenin. Arctigenin presents antioxidant, anti-inflammatory 

and cytotoxic activities (Cho et al. 2004). Moreover, I. cairica essential oil has 

showed larvicidal properties (Thomas et al. 2004).  

Only few studies have been carried out to explore the in vivo effects of Ipomea 

species on Central Nervous System. Sivaraman and Muralidaran (2010) 

demonstrated that Ipomea aquatica methanol extract had a CNS depressant 

activity in Swiss albino mice; instead Herrera-Ruiz and co-workers (2007) studied 

the biological activities of Ipomea stans ethyl acetate extract highlighting its 

anxiolytic, anticonvulsant and potential sedative effects. 

1.5.7 Hypericum hircinum 

 

 

 

 

 

 

Figure 1.13 Hypericum hircinum. 

 

Order: Malpighiales 

Family: Hypericaceae 

Species:  Hypericum hircinum 

Plant morphology: An herbaceous perennial growing freely wild in 

uncultivated round, woods, hedges, roadsides, and meadows. Leaves pale green,  

sessile and oblong. Flowers have five sepals and petals and are yellow. Calyx and 

corolla are marked with black dots and lines. 
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Some plants belonging to the genus Hypericum are used in different part of the 

world as traditional plants (Yazaki and Okada 1994). Unlike H. perforatum, 

known as St. John's wort, which has been the subject of many phytochemical and 

pharmacological studies in the treatment of moderate depression (Greeson et al. 

2001), no many studies have been carried out on H. hircinum biological activities. 

This plant is traditionally used in Lucanian folk medicine for the treatment of 

cough (Pieroni et al. 2004) and in Sardinian medicine for its antiseptic properties 

and in form of decoction to treat bronchitis (Ballero et al. 1997).  

H. hircinum essential oil shows antioxidant, and antiproliferative activities 

(Quassinti et al. 2013). Pistelli and coworkers (2000) demonstrated that  

methanolic extract have a stronger activity against Staphylococcus aureus than the 

isolated constituents (quercetin, quercitrin, biapigenin). Hypericum hircinum 

leaves methanol extract contain shikimic acid, chlorogenic acid, rutin, quercetin, 

quercetin-7-O-glucoside (Mandrone et al. 2017). Quercetin inhibits the viral 

enzyme that catalyzes the HIV dsDNA integration into the cell genome (HIV-1 

Integrase) and has MAO-inhibitory properties (Lee et al. 2001, Vandegraaff et al. 

2001). 

Studies in vivo on Hypericum species reported controversial results: H. 

hircinum and H. perfoliatum extracts reduced CD1 mice locomotor activity in 

open field test highlighting an anxiogenic activity (Diana et al. 2007). Instead 

Beijamini and Andreatini (2003) reported that the administration of H. perforatum 

produces anxiolytic effects in an elevated plus maze. 

 

1.6 SH-SY5Y cells as a model for in vitro studies on Central Nervous System 

 

SH-SY5Y cells, derived from human neuroblastoma, have been often utilized 

as a cellular model for in vitro experiments in neuroscience because of their many  
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biochemical and functional characteristic of neuronal cells (Xie et al. 2010, 

Kovalevich and Langford 2013). 

 

 

 

 

 

 

Figure 1.14 Neuroblastoma human cells (SH-SY5Y) (Raguenez et al. 1999). 

 

In fact, this cell line have showed catecholaminergic neuronal properties such as 

moderate activity of dopamine-β-hydroxylase and tyrosine hydroxylase (Biedler 

et al. 1978, Ross and Biedler 1985), and basal noradrenaline release (Påhlman 

1984).  

These properties have made SH-SY5Y cells adapt as a model to study 

neurotoxicity, neuroprotection and Parkinson’s disease for their dopaminergic 

characteristics (Xie et al. 2010). Moreover, they are used to investigate secondary 

messengers response associated with delta opioid and muscarinic receptors (M1, 

M2 and M3) (Lambert and Nahorski 1990, Vaughan et al. 1995).  

 

 

1.7 Role of adenylyl cyclase 1, Protein kinase A and Extracellular Signal 

Regulated Kinase in Central Nervous System 

 

Cyclic adenosine-3’,5’-monophosphate (cAMP) is involved in different 

physiological cell functions such as differentiation, development and cellular  
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death; in particular in neurons can regulated synaptic plasticity, learning and 

memory process and chronic pain (Willoughby and Cooper 2007, Zhuo 2012).  

Adenylyl cyclase (ADCY) is an integral membrane protein composed of two 

repeated domains, each containing six hydrophobic transmembrane segments, 

short loops that linked them and two cytoplasmic regions (C1 and C2) responsible 

for forskolin- and G-protein stimulated catalysis and catalyses the conversion of 

ATP into a key intracellular second messenger cAMP (Zhang et al. 1997) (fig. 

1.15).  

Nine isoforms of membrane-bound adenylyl cyclases (ADCY1-9) modulated 

by G proteins and one cytoplasmic isoform of soluble ADCY have been reported 

with their own tissue distribution and distinct biochemical properties (Sunahara 

and Taussig 2002, Pavan et al. 2009).  

 

 

 

 

 

 

 

 

Figure 1.15 Adenylyl cyclase (ADCY) structure. The protein can be divided into 2 

transmembrane domains (TM1 and TM2 with extracellular N-glycosylation sites) and 2 cluster 

cytoplasmic loops (C1 and C2).  C1a and C2a are highly conserved catalytic ATP-binding regions, 

which dimerize to form the catalytic site. C1b and C2b domains are less conserved (Willoughby 

and Cooper 2007). 

 

ADCY1 is neurospecific and is expressed downstream from the glutamate N-

methyl-D-aspartate (NMDA) receptors in the areas of the brain associated with 

neuronal plasticity (Abdel-Majid et al. 1998, Zhuo 2012). 
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Intracellular levels of cAMP regulate Protein kinase A (PKA) (fig. 1.16), 

which begins an enzymatic cascade of phosphorylation reactions in the cell 

activating the Rap1 B-Raf complex. 

 

 

 

 

 

 

 

Figure 1.16 cAMP dependent protein kinase A (PKA) (Alberts et al. 2017). 

 

This cytoplasmatic pathway ends with the phosphorylation of Extracellular 

Signal Regulated Kinase (ERK) that allows this protein to translocate into the  

nucleus of neurons where activate CREB-dependent gene transcription (Impey et 

al. 1998, Duhan et al. 1999, Kawasaki et al. 1999, Sweatt 2000, Zanassi et al. 

2001) (fig.1.17).  

In the nervous system, ERK pathway is implicated in a number of different 

forms of plasticity, including activation of gene transcription, structural 

modification at the synapse, receptor insertion and regulation of dendritic protein 

synthesis (Davis and Laroche 2006). The activation of this pathway occurs in a 

variety of locations and situations, some of which contribute to painful conditions 

(Cruz and Cruz 2007).  ERK is involved in the learning process, acquisition and 

maintenance of long-term memory in mammals (Martin et al. 2000). However, 

PKA stimulation of ERK activity may regulate neuronal survival and synaptic 

plasticity (Grewal et al. 1999).  
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Figure 1.17 Schematic representation of signalling pathway studied (Guseva et al. 2014). 

 
 

  



1. INTRODUCTION 

28 

 

  



2.  AIM OF STUDY 

 29  

 

2. Aim of the study 

 

The aims of this study are: 

-  to select vegetal species with a possible activity on CNS; 

- to characterize the chemical composition of essential oils derived from 

Lavandula angustifolia and Laurus nobilis aerial part, from Coriandrum sativum 

fruits and from the peel of the fruits of the two cultivars of Citrus medica; 

- to characterize the chemical composition of extracts derived from Ipomea 

transvaalensis, Ipomea cairica and Hypericum hircinum aerial parts; 

- to evaluate the cytotoxicity of the EOs, their main constituent and the extracts 

against SH-SY5Y cell line;  

- to study the role of EOs, their main constituent and the extracts on expression 

of ADCY1, pERK, ERK and PKA in SH-SY5Y cell line; 

- to study the possible influence of Lavandula angustifolia and Coriandrum 

sativum essential oils and their principal component in cellular electrophysiology; 

- to study in vivo the possible effects on central nervous system of Lavandula 

angustifolia essential oil and its main constituent, linalool. 
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3. Results 

3.1 Essential oils composition 

 

Tables 3.1-3.4 show the percent chemical composition of the essential oils; 

compounds are listed according to their elution order on a HP-5MS column 

3.1.1 Lavandula angustifolia 

 

Hydrodistillation of the aerial parts of L. angustifolia furnished a pale yellow 

oil in 5% on a dry mass basis. Altogether, 59 compounds were identified, 

accounting for 97.3% of the total oil. Linalool (33.1%), linalyl acetate (10.4%), 

1,8-cineole (8.0%) and borneol (4.5%) are the main components.  

Table 3.1 Chemical composition of the essential oils of Lavandula angustifolia (LA). 

No. Compound 

 

LA 

 

Ki
a
 Ki

b
 Identification

c
 

1 α-Pinene 0.8 922 939 1,2 

2 Camphene 0.6 935 954 1,2 

3 Thuja-2,4(10)-diene 0.1 957 960 1,2 

4 β-Pinene 0.9 980 979 1,3 

5 Myrcene 1.9 985 990 1,2 

6 α-Phellandrene 0.2 991 1002 1,2 

7 δ-3-Carene 0.9 1000 1008 1,2 

8 α-Terpinene 0.2 1000 1017 1,3 

9 p-Cymene 0.4 1009 1024 1,2 

10 Limonene 2.1 1014 1029 1,2,3 

11 1,8-Cineole 8 1017 1031 1,2 

12 (Z)-β-Ocimene 0.6 1025 1037 1,2 

13 (E)-β-Ocimene 1.4 1036 1050 1,2 

14 γ-Terpinene 0.3 1046 1059 1,2 

15 cis-sabinene Hydrate 0.2 1057 1070 1,2 
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16 cis-Linalool oxide 0.1 1063 1072 1,2,3 

17 Terpinolene 0.7 1076 1088 1,2,3 

18 Linalool 33.1 1099 1096 1,2,3 

19 (2E)-Heptenyl acetate 0.2 1100 1113 1,2 

20 Menth-en-2-ele-1-ol t 1109 1121 1,2,3 

21 Allo-Ocymene 1.3 1115 1132 1,2 

22 trans-pinocarveol 0.1 1125 1135 1,2 

23 Camphor 11.0 1135 1146 1,2,3 

24 Lavandulol 0.1 1153 1169 1,2 

25 Borneol 4.5 1155 1160 1,2 

26 Pinocarvone 0.1 1165 1164 1,2 

27 Neo-iso-Isopulegol 2.3 1166 1171 1,2 

28 cis-Linalool oxide t 1172 1170 1,2,3 

29 Menthol 0.2 1177 1171 1,2 

30 α-terpineol 1.6 1182 1188 1,2 

31 Hexyl butanoate 0.5 1183 1192 1,2 

32 Nerol 0.2 1215 1229 1,2 

33 Hexyl-(2E)- butanoate 0.3 1228 1242 1,2 

34 Linalyl acetate 10.4 1247 1257 1,2 

35 Iso-3-Thujanol acetate 0.1 1275 1270 1,2 

36 Neo-3-Thujanol acetate 0.1 1281 1276 1,2 

37 α-Terpinen-7-ale 0.1 1283 1285 1,2 

38 ρ-Cymen-7-ol t 1297 1290 1,2 

39 Terpinyl acetate 0.1 1315 1317 1,2 

40 Mirtenyl acetate t 1315 1326 1,2,3 

41 α-Terpinyl acetate 0.8 1355 1349 1,2 

42 α-Cubebene 0.2 1368 1348 1,2 

43 α-Copaene 1.4 1374 1376 1,2 

44 β-Cubebene 0.2 1378 1388 1,2 

45 Longifolene 0.2 1394 1407 1,2 

46 (Z)-Caryophyllene 3.3 1408 1408 1,2 

47 (E)-Caryophyllene 0.4 1413 1419 1,2,3 

48 cis- Thujopsene 0.3 1424 1431 1,2 

49 β-copaene 0.3 1433 1432 1,2 
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50 α-Guaiene 0.3 1442 1439 1,2 

51 6,9-guaiadiene 0.9 1445 1444 1,2 

52 alloaromadendrene 0.3 1458 1466 1,2 

53 cis-muurola-4(14,5)diene 0.2 1468 1468 1,2 

54 β-selinene 0.3 1486 1490 1,2 

55 δ-selinene 0.5 1490 1492 1,2 

56 γ-cadinene 0.2 1511 1513 1,2 

57 Caryophyllene oxide 0.4 1572 1583 1,2,3 

58 epi-α-cadinol 0.2 1629 1640 1,2 

59 β-bisabolol 1.2 1672 1675 1,2 

 Total compounds 97.3    

 Oxygenated Monoterpene 72.9    

 Monoterpene 12.6    

 Sesquiterpenes 9.2    

 Oxygenated sesquiterpenes 1.6    
 

 

aKovats retention index on HP-5 MS column; bKovats retention index on HP Innowax; c1 = Kovats 

retention index, 2 = mass spectrum, 3 = coinjection with authentic compound; t = trace, less than 0.05 % 

 

3.1.2 Coriandrum sativum 

 

Hydrodistillation of fruits of C. sativum furnished a pale yellow oil in 2.1% 

yield on a dry mass basis. Thirty-six compounds were identified accounting  

for 99.3% of the total oil. The main compounds are linalool (67.8%), α-pinene 

(5.0%) and camphor (5.0%). Other compounds, in a lesser amount are p-cymene 

(2.8%), γ-terpinene (2.7%) and limonene (2.6%). 
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Table 3.2 Chemical composition of the essential oils of Coriandrum sativum (CS). 

 

No. 

 

Compound 

 

 

CS 

 

Ki
a
 Ki

b
 Identification

c
 

1 α-Thujene 0.1 909 929 1,3 

2 α-Pinene 5.0 922 939 1,2 

3 Camphene 1.0 935 954 1,2 

4 Sabinene 0.7 961 975 1,2 

5 β-Pinene 0.8 980 979 1,3 

6 Myrcene 0.1 985 990 1,2 

7 δ-3-Carene 0.1 1000 1008 1,2 

8 p-Cymene 2.8 1009 1024 1,2 

9 Limonene 2.6 1014 1029 1,2,3 

10 1,8-Cineole 0.1 1017 1031 1,2 

11 (Z)-β-Ocimene 1.1 1025 1037 1,2 

12 (E)-β-Ocimene 0.1 1036 1050 1,2 

13 γ-Terpinene 2.7 1046 1059 1,2 

14 cis-sabinene Hydrate t 1057 1070 1,2 

15 cis-Linalool oxide 0.7 1063 1072 1,2,3 

16 Terpinolene 0.5 1076 1088 1,2,3 

17 Linalool 67.8 1099 1096 1,2,3 

18 Camphor 5.0 1135 1146 1,2,3 

19 Borneol 0.3 1155 1160 1,2 

20 Terpinen-4-ol 0.3 1167 1177 1,2 

21 p-cimen-8-ol 0.1 1176 1182 1,2 

22 α-terpineol 0.6 1182 1188 1,2 

23 Methyl Chavicol 0.1 1188 1196 1,2 

24 Safranal t 1197 1196 1,2 

25 n-decanal t 1207 1201 1,2 

26 Citronellol 0.3 1217 1225 1,2 

27 Neral 0.1 1230 1238 1,2 

28 Geraniol 2.0 1248 1252 1,2 

29 Geranial 0.1 1268 1267 1,2 

30 Thymol 0.1 1296 1290 1,2 

31 10-undecenal t 1294 1299 1,2 



3. RESULTS 

35 

 

      

32 Mirtenyl acetate 0.2 1315 1326 1,2,3 

33 Neryl acetate t 1346 1361 1,2 

34 (E)-2-undecenal 0.1 1359 1360 1,2 

35 Geranyl acetate 3.7 1382 1381 1,2 

36 (E)-Caryophyllene 0.1 1413 1419 1,2,3 

 Total compounds 99.3    

 Oxygenated Monoterpene 77.8    

 Monoterpene 17.6    

 Sesquiterpenes 3.7    

 
aKovats retention index on HP-5 MS column; bKovats retention index on HP Innowax; c1 = Kovats 

retention index, 2 = mass spectrum, 3 = coinjection with authentic compound; t = trace, less than 0.05 % 

 

3.1.3 Citrus medica 

 

Hydrodistillation of the peel from fruits of C. medica cv. ‘liscia’ and C. medica 

cv. ‘rugosa’ gave yellow essential oils characterized by a typical citrusy and floral 

odor, with yields of 0.9% and 0.75%, respectively.   

In all, 100 compounds were identified, 82 for C. medica cv. ‘liscia’, accounting 

for 91.4% of the total oil, and 88 for C. medica cv. ‘rugosa’ accounting for 92.0% 

of the total oil. Monoterpene hydrocarbons are the main constituents in both oils, 

79.1% for cv. ‘liscia’ and 80.2% for cv. ‘rugosa’. In both oils, limonene (67.2%–

62.8%), camphene (8.5%–10.9%), and β-pinene (1.4%–1.7%) were other main 

components.  

In the oil from C. medica cv. ‘liscia’ other components in a lesser amount are 

geranyl acetate (0.9%), and α-trans-bergamotene (0.5%); in the oil from cv. 

‘rugosa’ geraniol (0.7%), geranial (0.7%), neral (0.5%), isopulegol (0.7%), and α-

bisabolol (0.5%) are present. 

 

 



3. RESULTS 

36 

 

 

Table 3.3 Chemical composition of the essential oils isolated from the peels of Citrus medica cv. 

‘liscia’ (CL) and C. medica cv. ‘rugosa’ (CR). 

 

No. 

 

Compound 

 

 

CL 

 

CR 
Ki

a
 Ki

b
 Identification

c
 

1 α-Thujene - 0.1 915 930 1,2 

2 α-Pinene 0.8 1.2 921 939 1,2 

3 α- Fenchene 0.1 0.1 934 952 1,2 

4 Camphene 8.5 10.9 964 954 1,2 

5 β-Pinene 1.4 1.7 980 979 1,3 

6 α-Phellandrene 0.5 0.6 991 1002 1,2 

7 δ-2-Carene 0.1 0.3 1004 1002 1,2 

8 p-Cymene - 0.1 1012 1024 1,2 

9 Limonene 67.2 62.8 1022 1029 1,2,3 

10 (Z)-β-Ocimene t 0.1 1028 1037 1,2 

11 (E)-β-Ocimene 0.1 0.3 1038 1050 1,2 

12 γ-Terpinene 0.3 0.7 1047 1059 1,2 

13 Linalool oxide furanoid 0.3 t 1064 1072 1,2 

14 trans-Linalool oxide - t 1086 1086 1,2 

15 Terpinolene 0.1 0.3 1077 1088 1,2,3 

16 Linalool 0.3 1.3 1091 1096 1,2,3 

17 α-Pinene oxide t 0.1 1095 1099 1,2 

18 Perillene t t 1103 1103 1,2 

19 1,3,8-p-Menthatriene - t 1100 1110 1,2 

20 trans-Thujone t 0.1 1106 1114 1,2,3 

21 Dehydro Sabina ketone 0.1 0.1 1111 1120 1,2 

22 allo-Ocymene t 0.1 1119 1132 1,2 

23 cis-p-Mentha-2,8-dien-1-ol - t 1126 1137 1,2 

24 cis-Limonene oxide - 0.5 1133 1136 1,2 

25 trans-Limonene oxide - t 1140 1142 1,2,3 

26 neo allo-Ocimene - t 1152 1144 1,2 

27 Isopulegol - 0.1 1144 1149 1,2 

28 Citronellal t 0.2 1155 1153 1,2 

29 Isoborneolo - t 1163 1160 1,2,3 

30 neo-iso-Isopulegol 0.8 0.7 1167 1171 1,2 
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31 α-Terpineol 0.7 0.6 1180 1188 1,2 

32 Hexyl butanoate - t 1183 1192 1,2 

33 Dihydrocarveol t t 1185 1193 1,2 

34 Methyl chavicol - t 1190 1196 1,2 

35 trans-4-Caranone 0.3 0.1 1195 1196 1,2,3 

36 Decenal - t 1198 1196 1,2 

37 2-Decanol 0.3 0.1 1202 1199 1,2 

38 cis-4-Caranone 0.1 0.3 1209 1200 1,2 

39 endo-Fenchyl acetate 0.9 0.4 1219 1220 1,2 

40 Tymol methyl-ether - t 1223 1235 1,2 

41 Neral 0.1 0.5 1231 1238 1,2 

42 Geraniol 0.9 0.7 1246 1252 1,2,3 

43 Geranial 0.1 0.7 1261 1267 1,2 

44 n-Decanol 0.3 - 1263 1269 1,2 

45 trans-Carvone oxide 0.1 0.1 1276 1276 1,2,3 

46 Thymol - 0.4 1283 1290 1,2,3 

47 p-Cymene-7-ol - t 1292 1290 1,2 

48 10-Undecenal 0.1 t 1294 1299 1,2 

49 n-Nonanyl acetate 0.1 t 1301 1312 1,2 

50 Citronellic acid t t 1314 1313 1,2 

51 δ-Elemene 0.4 0.2 1326 1338 1,2,3 

52 α-Terpinyl acetate t 0.1 1355 1349 1,2,3 

53 Citronellyl acetate 0.1 0.1 1343 1352 1,2,3 

54 Eugenol - t 1348 1359 1,2 

55 Neryl acetate 0.7 0.6 1354 1361 1,2,3 

56 α-Ylangene t t 1364 1375 1,2,3 

57 α-Copaene - t 1368 1376 1,2,3 

58 Geranyl acetate 0.9 0.5 1373 1381 1,2,3 

59 β-Patchoulene 0.1 0.1 1380 1382 1,2 

60 Methyl eugenol 0.1 0.1 1396 1403 1,2,3 

61 Italicene 0.1 t 1399 1405 1,2 

62 Sesquithujiene 0.1 t 1403 1405 1,2 

63 Longifolene 0.5 0.6 1407 1407 1,2 

64 β-Duprezianene 0.1 0.1 1417 1422 1,2 



3. RESULTS 

38 

 

       

65 γ-Elemene 0.1 0.1 1422 1436 1,2,3 

66 α-trans-Bergamotene 0.5 0.4 1424 1434 1,2 

67 α-Guaiene t t 1432 1439 1,2,3 

68 Aromadendrene 0.1 0.1 1441 1441 1,2,3 

69 (Z)-β-Farnesene 0.1 0.1 1445 1442 1,2,3 

70 (E)-β-Farnesene t t 1449 1456 1,2 

71 cis-Cadin-1(6),4-diene - t 1457 1463 1,2 

72 9-epi-(E)-Caryophyllene t 0.1 1469 1466 1,2,3 

73 β-Acoradiene t t 1473 1470 1,2 

74 γ-Gurjenene t - 1478 1477 1,2 

75 α-Amorphene 0.1 t 1482 1484 1,2,3 

76 Aristolochene t t 1486 1488 1,2 

77 β-Selinene 0.1 0.1 1490 1490 1,2 

78 α-Selinene 1.0 0.6 1496 1498 1,2 

79 α-Cuprenene 0.1 t 1502 1505 1,2 

80 δ-Amorphene - 0.1 1511 1512 1,2 

81 γ-Cadinene 0.1 - 1523 1523 1,2 

82 (Z)-Nerolidol t - 1526 1532 1,2 

83 γ-Cuprenene t t 1530 1533 1,2 

84 (E)-Nerolidol 0.3 t 1552 1563 1,2 

85 Caryophyllene oxide - 0.1 1572 1583 1,2,3 

86 Globulol t t 1580 1590 1,2 

87 β-Oplopenone t t 1597 1607 1,2 

88 Guaiol 0.1 t 1599 1600 1,2 

89 1-epi-Cubenol t t 1618 1628 1,2 

90 Eremoligenol t - 1629 1631 1,2 

91 α-Muurolol t - 1631 1646 1,2,3 

92 epi-α-Muurolol 0.1 0.1 1644 1642 1,2 

93 Pogostol 0.3 t 1647 1653 1,2 

94 Cedranol 0.1 0.1 1658 1673 1,2 

95 α-Bisabolol 0.1 - 1674 1685 1,2,3 

96 Eudesm-7(11)-en-4-ol t 0.5 1682 1700 1,2 

97 (Z)-α-trans-Bergamotol 0.1 - 1688 1690 1,2 

98 Nootkatol 0.3 - 1703 1715 1,2 
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99 (2Z,6E)-Farnesol t - 1711 1723 1,2 

100 Oplopanone t - 1717 1740 1,2 

 Total compounds 91.4 92.0    

 Monoterpene hydrocarbons 79.1 80.2    

 Oxygenated Monoterpene 4.8 6.9    

 Sesquiterpenes hydrocarbons 4.2 3.2    

 Oxygenated sesquiterpenes 2.5 1.6    

 Non terpenes 0.8 0.1    
 

 

aKovats retention index on HP-5 MS column; bKovats retention index on HP Innowax; c1 = Kovats 

retention index, 2 = mass spectrum, 3 = coinjection with authentic compound; t = trace, less than 0.05 % 

3.1.4 Laurus nobilis 

 

The hydrodistillation of the leaves of L. nobilis, harvested in Montecorice 

(Campania, Southern Italy) provided an essential oil characterized by a typical 

odor, in a yield of 0.57% on the fresh weight. In all, 55 compounds were 

identified, accounting for 91.6% of the total oil. Oxygenated monoterpenes 

represent 48.6% of the EO, with 1,8-cineole (31.9%), sabinene (12.2%), and 

linalool (10.2%) as the main components. Other components were α-terpinyl 

acetate (5.9%), α-pinene (5.8%), α-terpineol (3.3%), methyl-eugenol (3.3%), 

neoiso-isopulegol (2.5%), eugenol (1.6%), β-pinene (1.4%), and γ-terpinene 

(1.0%). Sesquiterpenes represent 3.4% of the oil, the hydrocarbons 3.2% (β-

funebrene 0.5%, β-elemene 0.4%, spathulenol 0.4%), and the oxygenated 

compounds 0.2%.  
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Table 3.4 Chemical composition of the essential oils of Laurus nobilis (LN). 

 

No. 

 

Compound 

 

LN Ki
a
 Ki

b
 Identification

c
 

1 Methyl pentanoate 0.1 850 828 1,2 

2 Ethyl isovalerate 0.1 853 858 1,2 

3 α-Thujene 0.7 916 930 1,2 

4 α-Pinene 5.8 922 939 1,2,3 

5 Camphene 0.8 935 954 1,2 

6 Sabinene 12.2 962 975 1,2 

7 β-Pinene 1.4 980 979 1,2,3 

8 α-Phellandrene 0.5 991 1002 1,2,3 

9 δ-2-Carene 0.4 997 1002 1,2 

10 α-Terpinene 0.6 1004 1017 1,2,3 

11 o-Cymene 0.3 1013 1026 1,2 

12 1,8-Cineole 31.9 1016 1031 1,2,3 

13 (Z)-β-Ocimene 0.2 1028 1037 1,2 

14 (E)-β-Ocimene 0.2 1038 1050 1,2 

15 γ-Terpinene 1.0 1048 1059 1,2,3 

16 cis-Sabinene hydrate 0.3 1057 1070 1,2 

17 o-Mentha-3,8-diene 0.5 1077 1072 1,2 

18 trans-Sabinene hydrate 0.1 1093 1098 1,2 

19 Linalool 10.2 1096 1096 1,2,3 

20 exo-Fenchol 0.1 1111 1121 1,2 

21 allo-Ocymene 0.2 1118 1132 1,2 

22 trans-Sabinol 0.2 1128 1142 1,2 

23 Camphor 0.2 1133 1146 1,2,3 

24 β-Pinene oxide 0.1 1147 1159 1,2 

25 Isoborneolo 0.5 1155 1160 1,2 

26 iso-Isopulegol 0.6 1157 1159 1,2 

27 neo-iso-Isopulegol 2.5 1165 1171 1,2 

28 α-Terpineol 3.3 1180 1188 1,2,3 

29 cis-Carveol 0.2 1219 1229 1,2 

30 cis-p-Mentha-1(7),8-dien-2-ol 0.1 1232 1230 1,2 
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31 trans-Sabinene hydrate acetate 0.7 1246 1256 1,2 

32 2-(1E)-Propenyl-phenol 0.1 1265 1267 1,2 

33 neo-3-Thujanol acetate 0.4 1275 1276 1,2 

34 α-Terpinen-7-al 0.3 1284 1285 1,2 

35 iso-Verbanol acetate 0.3 1306 1309 1,2 

36 α-Terpinyl acetate 5.9 1340 1349 1,2 

37 Eugenol 1.6 1347 1359 1,2,3 

38 Cyclosativene 0.1 1360 1371 1,2 

39 Longicyclene 0.2 1373 1374 1,2 

40 β-Elemene 0.4 1381 1390 1,2 

41 Methyl-eugenol 3.3 1394 1403 1,2,3 

42 β-Funebrene 0.5 1408 1414 1,2 

43 cis-Thujopsene 0.2 1427 1431 1,2 

44 Spirolepechinene 0.1 1445 1451 1,2 

45 allo-Aromadendrene 0.1 1449 1460 1,2,3 

46 γ-Himalachene 0.1 1474 1482 1,2 

47 α-Amorphene 0.1 1483 1484 1,2 

48 δ-Amorphene 0.1 1502 1512 1,2 

49 δ-Cadinene 0.2 1512 1523 1,2 

50 Elemicin 0.5 1546 1557 1,2 

51 Spathulenol 0.4 1563 1578 1,2,3 

52 Caryophyllene oxide 0.3 1572 1583 1,2,3 

53 Thujopsan-2-α-ol 0.1 1580 1587 1,2 

54 Viridiflorol 0.2 1591 1592 1,2 

55 Eremoligenol 0.1 1630 1631 1,2 

 Total compounds 91.6    

 Monoterpene hydrocarbons 34.0    

 Oxygenated monoterpene 48.6    

 Sesquiterpenes hydrocarbons 3.2    

 Oxygenated sesquiterpenes 0.2    

 Phenolic compounds 5.6    

 
aKovats retention index on HP-5 MS column; bKovats retention index on HP Innowax; c1 = Kovats 

retention index, 2 = mass spectrum, 3 = coinjection with authentic compound; t = trace, less than 0.05 % 
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3.2 Extracts composition 

 

3.2.1 Hypericum hircinum 
 

Thin layer chromatography (TLC) highlighted the presence of flavonoids in the 

Hypericum hircinum methanol extract that was purified by size-exclusion 

chromatography on Sephadex LH-20. We obtained 139 fractions; their 

homogeneity was evaluated by TLC which allowed them to be  

combined into 15 major fractions (fig. 3.1). Analytic HPLC chromatograms 

revealed in flavonoid fraction the presence of three flavonoids: isoquercetin, rutin 

and quercetin (fig.3.2-3.3). 

 

 

 

 

 

Figure 3.1 TLC profiles of the 15 major fractions (10 μl) developed with mobile phase A 

(CHCl3: CH3OH: H2O; 80:18:2 v/v/v) and B (BAW, C4H10O: CH3COOH: H2O; 60:25:15 v/v/v) 

and revealed with cerium sulfate. 

 

 

 

 

 

 

Figure 3.2 Flavonoids identified: Isoquercetin (A), Rutin (B), Quercetin (D). 

 

A B 

A B C 
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Figure 3.3 Representative HPLC analytic chromatograms of flavonoid fraction. 

 

3.2.2 Ipomea cairica 

 

Thin layer chromatography (TLC) highlighted the presence of alkaloids in the 

Ipomea cairica methanol extract (fig. 3.4) that were purified by size-exclusion 

chromatography on Sephadex LH-20.  

We obtained 138 fractions; their homogeneity was evaluated by TLC which 

allowed them to be combined into 10 major fractions.  

However, no biological activities were found for the extract and its fraction, so 

the chemical characterization of these extracts was no performed. 
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Figure 3.4 TLC profiles of the chloroform: methanol (9:1) and methanol extract of Ipomea 

cairica (10 μl) developed with mobile phase BAW (C4H10O: CH3COOH: H2O; 60:25:15 v/v/v) 

showing the alkaloids (orange spots) after revealing them with the Dragendorff’s reagent.  

 

3.2.3 Ipomea transvaalensis 

 

Thin layer chromatography (TLC) revealed the presence of alkaloids in the 

Ipomea transvaalensis chloroform: methanol (9:1) extract (fig. 3.5).  

We separated the methanolic fraction containing the alkaloids from the 

chloroform one, by solvent extraction. Then, one gram of the methanol fraction 

was purified by adsorption chromatography.  

We obtained 180 fractions; their homogeneity was evaluated by TLC which 

allowed them to be combined into 10 major fractions. The fraction X contains 

alkaloids and had a weight of 100 mg. The yield was very low so we decided to 

purify alkaloids by extraction with solvents. In this way we obtained 415 mg of 

alkaloids from 1 g of the methanol fraction of the CHCl3: CH3OH extract. The 

alkaloid fraction was purified by RP-HPLC; then structural determination of two 

isolated compounds (ergine and ergometrine) was performed by 
1
H NMR (fig. 

3.6-3.7).  
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Figure 3.5 TLC profiles of the chloroform: methanol (9:1) and methanol extract of Ipomea 

transvaalensis (10 μl) developed with mobile phase BAW (C4H10O: CH3COOH: H2O; 60:25:15 

v/v/v) showing the alkaloids (orange spots) after revealing them with the Dragendorff’s reagent.  

 

Figure 3.6  
1
H NMR Spectrum (600 MHZ, CD3OD) and molecular structure of Ergine. 
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Figure 3.7  
1
H NMR Spectrum (600 MHZ, CD3O) and molecular structure of Ergometrine. 

 

 

3.3 Cytotoxicity on SH-SY5Y cells 

 

Cytotoxicity of essential oils, their main components and extracts was 

evaluated using an MTT assay performed on the human neuroblastoma cell line 

(SH-SY5Y). 

3.3.1 Linalool, Lavandula angustifolia and Coriandrum sativum essential oils 

After 24 h of treatment, linalool, L. angustifolia and C. sativum essential oils 

revealed different cytotoxic activities, with IC50 values of 334.5, 591.8 and 663.2 

µg/ml, respectively. Treatment of SH-SY5Y neuroblastoma cells with 800 µg/ml 

of linalool for 24 h resulted in a strong cytotoxic activity with 92% cell death.  

 



3. RESULTS 

47 

 

 

However, treatment with 800 µg/ml of L. angustifolia and C. sativum essential 

oils resulted in 78% and 63% cell death, respectively (fig. 3.8). 

 

 

Figure 3.8 Cell viability calculated as a percentage after MTT assay. Cells were treated with 

different concentrations (50-800 µg/ml) of linalool (A); L. officinalis  (B); and C. sativum (C) 

essential oils, for 24 h and solvent (DMSO, 0.1%) alone. Data are the mean ± SD of three 

experiments (
*
p< 0.05, 

***
p< 0.001, 

****
p< 0.0001 vs. DMSO). 

 

 

3.3.2 Limonene, Citrus medica cv ‘liscia’ and Citrus medica cv ‘rugosa’ 

essential oils 

 

Limonene, C. medica cv. ‘liscia’, and C. medica cv. ‘rugosa’ essential oils 

revealed different cytotoxic activities. Limonene and C. medica cv. ‘rugosa’ EO 

showed an IC50 > 2000 µg/ml, instead C. medica cv. ‘liscia’ EO showed an IC50 

of 718.2 µg/ml. Treatment of SH-SY5Y neuroblastoma cells with 800 µg/ml of 

limonene for 24 h resulted in a low cytotoxic activity. However, treatment with 

800 µg/ml of C. medica cv. ‘liscia’ EO resulted in a stronger cytotoxicity than C. 

medica cv. ‘rugosa’ EO with 38% cell death (fig. 3.9). 
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Figure 3.9 Percentage of cell viability after MTT assay. Cells were treated with different 

concentrations (50–800 μg/ml) of limonene (A); C. medica cv. ‘liscia’ (B) and C. medica cv. 

‘rugosa’(C) essential oils, for 24 h and solvent (DMSO, 0.1%) alone. Data are the mean ± SD of 

three experiments 
*
p < 0.05, 

**
p < 0.01, 

***
p < 0.001, 

****
p < 0.0001 vs. DMSO. 

 

3.3.3 1,8 Cineole and Laurus nobilis essential oil 

 

The treatment of SH-SY5Y neuroblastoma cells with of 1,8-cineole (800 – 50 

µg/ml) and Laurus nobilis essential oil (800 – 50 µg/ml) for 24 h resulted in a low 

cytotoxic activity.  

1,8-Cineole and essential oil showed an IC50 > 2000 µg/ml and IC50 = 471.1 

µg/ml, respectively. However, the treatment with essential oil resulted in a 

stronger cytotoxicity (IC50 < 500 µg/ml) (fig. 3.10). 

 

 

 

 

 

 

 

Figure 3.10 Cell viability calculated as percentage after MTT assay. Cells are treated with 

different concentrations (800-50 µg/ml) of 1,8 cineole (A) and L. nobilis essential oil (B), for 24 h 

and solvent (DMSO, 0.1%) alone. Data are the mean ± SD of three experiments 
**

p< 

0.01,
****

p<0.0001 vs. DMSO. 
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3.3.4 Ipomea transvaalensis extracts 

 

Ipomea transvaalensis cloroform: methanol (9:1) extract and its metanolic 

fraction revealed different cytotoxic activities. I. transvaalensis 9:1 extract 

showed an IC50 = 1338.9 µg/ml, instead its methanolic fraction, that contained 

some alkaloids, showed an IC50 of 258.4 µg/ml (fig. 3.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Cell viability calculated as percentage after MTT assay. Cells are treated with 

different concentrations (5000-78 µg/ml) of I. transvaalensis 9:1 extract  (A), and I. transvaalensis 

fraction of  9:1 extract (B) for 24 h and solvent (DMSO, 0.1%) alone. Data are the mean ± SD of 

three experiments 
**

p< 0.01, 
***

p<0.001,
 ****

p<0.0001 vs. DMSO. 

 

 

3.3.5 Ipomea cairica extract 

 

After a treatment for 24 h of SH-SY5Y neuroblastoma cells with I. cairica 

methanol extract (5000 – 78 µg/ml), the results showed an IC50 = 353.5 µg/ml; 

instead after a treatment with I. cairica fraction of methanol extract (5000 – 78 

µg/ml) we have an IC50 > 5000 µg/ml (fig. 3.12).  
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Figure 3.12 Cell viability calculated as percentage after MTT assay. Cells are treated with 

different concentrations (5000-78 µg/ml) of I. cairica  methanol extract (A) and I. cairica fraction 

of methanol extract (B) for 24 h and solvent (DMSO, 0.1%) alone. Data are the mean ± SD of 

three experiments 
**

p< 0.01, 
***

p<0.001, 
****

p<0.0001 vs. DMSO. 

 

3.3.6 Hypericum hircinum extract 

 

The treatment of SH-SY5Y neuroblastoma cells with of (5000–78 µg/ml)  

Hypericum hircinum methanol extract for 24 h resulted in a low cytotoxic activity, 

with an IC50 = 451.5 µg/ml (fig. 3.13). 

 

 

 

 

 

Figure 3.13 Cell viability calculated as percentage after MTT assay. Cells are treated with 

different concentrations (5000-78 µg/ml) of H. hircinum extract for 24 h and solvent (DMSO, 

0.1%) alone. Data are the mean ± SD of three experiments 
***

p<0.001, 
****

p<0.0001 vs. DMSO. 
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3.4 ADCY1, pERK, ERK, PKA: Western Blot Analysis 

 

We investigated the effects of essential oils, their main components and 

extracts in an SH-SY5Y cell line. More representative Western blots and 

quantitative densitometric analysis for protein expression in SH-SY5Y human 

neuroblastoma cells are shown in Figures 3.14-3.36. 

3.4.1 Linalool 

 

Treatments of SH-SY5Y neuroblastoma cells with 200 and 100 µg/ml of 

linalool for 24 h significantly reduced ADCY1 and PKA protein expression. Only 

the concentration of 200 µg/ml inhibited pERK and ERK expression (fig. 3.14-

3.15). 

 

 

 

 

 

 

 

 

Figure 3.14 Representative Western blot of ADCY1, pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with linalool.  
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Figure 3.15 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with linalool. The panel shows densitometric analysis of bands in the control and treated groups. 

Values are the mean ± SD in each group (n= 3). 
*
p < 0.05, 

**
p < 0.01, 

*** 
p < 0.001, 

**** 
p <0.0001, 

compared to control (ANOVA followed by Dunnett’s multiple comparison test). 

 

3.4.2 Lavandula angustifolia essential oil 

Treatment for 24 h with 200 µg/ml of L. angustifolia appears to increase 

ADCY1 and ERK expression, but there are no significant variations in the 

expression of pERK and PKA (fig. 3.16 - 3.17). 

 

 

 

 

 

 

 

 

 

Figure 3.16 Representative Western blot of ADCY1, pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with L.angustifolia essential oil. 
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Figure 3.17 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with L. angustifolia essential oil. The panel shows densitometric analysis of bands in the control 

and treated groups. Values are the mean ± SD in each group (n= 3). 
*
p < 0.05, compared to control 

(ANOVA followed by Dunnett’s multiple comparison test). 

 

3.4.3 Coriandrum sativum essential oil 

 

C. sativum essential oil increased both pERK and PKA expression at 

concentration of 100 µg/ml, instead concentration of 50 µg/ml increased only 

pERK expression. Moreover, no concentrations of C. sativum essential oil had 

significant effects on ADCY1 and ERK expression (fig. 3.18-3.19).  

 

 

 

 

 

 

Figure 3.18 Representative Western blot of ADCY1, pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with C. sativum essential oil. 
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Figure 3.19 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with C. sativum essential oil. The panel shows densitometric analysis of bands in the control and 

treated groups. Values are the mean ± SD in each group (n= 3). 
*
p < 0.05, 

**
p< 0.01, compared to 

control (ANOVA followed by Dunnett’s multiple comparison test). 

 

3.4.4 1,8 Cineole 

 

Treatments of SH-SY5Y neuroblastoma cells with 400 µg/ml of 1,8-cineole for 

24 h increased pERK and PKA expression and no had influence on ADCY1 and 

ERK protein expression (fig. 3.20-3.21). 

 

 

 

 

 

 

Figure 3.20  Representative Western blot of ADCY1, pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with 1,8-Cineole. 
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Figure 3.21 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with 1,8-Cineole. The panel shows densitometric analysis of bands in the control and treated 

groups. Values are the mean ± SD in each group (n= 3). 
*
p < 0.05, compared to control (ANOVA 

followed by Dunnett’s multiple comparison test). 

 

3.4.5 Laurus nobilis essential oil 

 

L. nobilis essential oil reduced significantly ADCY1 expression in SH-SY5Y 

cells after a treatment with 200 and 100 µg/ml for 24 h, instead concentrations of 

200-100 and 50 µg/ml inhibited pERK expression but none of used concentrations 

influenced PKA and ERK expression (fig. 3.22-3.23). 

 

 

 

 

 

 

 

Figure 3.22 Representative Western blot of ADCY1, pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with L. nobilis essential oil. 
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Figure 3.23 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y treated with 

L. nobilis essential oil. The panel shows densitometric analysis of bands in the control and treated 

groups. Values are the mean ± SD in each group (n= 3). 
*
p < 0.05, 

**
p < 0.01, 

***
 p < 0.001, 

**** 
p < 

0.0001 compared to control (ANOVA followed by Dunnett’s multiple comparison test). 

 

3.4.6 Limonene 

 

Treatments of SH-SY5Y neuroblastoma cells with 800 µg/ml of limonene for 

24 h significantly influenced ADCY1 expression in fact appear to increase  

ADCY1 expression. Instead, no significant effects on pERK, ERK and PKA 

expression have been registered (fig. 3.24-3.25). 

 

 

 

 

 

 

Figure 3.24 Representative Western blot of ADCY1, pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with limonene. 
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Figure 3.25 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with limonene. The panel shows densitometric analysis of bands in the control and treated groups. 

Values are the mean ± SD in each group (n= 3). 
*
p < 0.05, compared to control (ANOVA followed 

by Dunnett’s multiple comparison test). 

 

 

 

3.4.7 Citrus medica essential oils 

 

Treatments with 400, 200, 100, 50 µg/ml of C. medica cv. ‘liscia’ and C. 

medica cv. ‘rugosa’ essential oils appear to influence significantly ADCY1  

expression with an over expression and a down expression of ADCY1, 

respectively (fig. 3.26-3.28). Moreover, treatment with 400, 200 and 100 µg/ml of 

C. medica cv. ‘liscia’ essential oil increased pERK and PKA expression 

(fig.3.26a-3.27), instead ERK expression only was affected by the concentration 

of 100 µg/ml. Treatments with 200 and 100 µg/ml of C. medica cv. ‘rugosa’ 

essential oil decrease PKA and ERK expression, and treatment with 400 µg/ml 

increases pERK expression (fig. 3.26b-3.28). 
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Figure 3.26  Representative Western blot of ADCY1,  pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with C. medica cv. ‘liscia’ (A) and C. medica cv. ‘rugosa’ (B) essential 

oils. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with C. medica cv. ‘liscia’ essential oil. The panel shows densitometric analysis of bands in the 

control and treated groups. Values are the mean ± SD in each group (n= 3). 
*
p < 0.05, 

****
p < 

0.0001 compared to control (ANOVA followed by Dunnett’s multiple comparison test). 
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Figure 3.28 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with C. medica cv. ‘rugosa’ essential oil. The panel shows densitometric analysis of bands in the 

control and treated groups. Values are the mean ± SD in each group (n= 3). 
*
p < 0.05, 

**
p < 0.01, 

***
p < 0.001 compared to control (ANOVA followed by Dunnett’s multiple comparison test). 

 

 

3.4.8 Ipomea transvaalensis extracts 

 

Ipomea transvaalensis cloroform : methanol (9:1) extract no affects ADCY1, 

PKA and ERK expression. Moreover, treatment with 125 µg/ml increase pERK 

expression (fig. 3.29a-3.30). Treatment with each concentration (125 – 31.5 

µg/ml) of Ipomea transvaalensis alkaloid fraction of cloroform: methanol (9:1) 

extract decreased ADCY1 expression. Instead, only treatments with 125 and 62.5 

µg/ml decrease PKA expression, and concentration of 125 µg/ml increases pERK 

expression (fig. 3.29b-3.31). 
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Figure 3.29  Representative Western blot of ADCY1,  pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with Ipomoea transvaalensis cloroform: methanol (9:1) extract (A) and 

Ipomoea transvaalensis alkaloid fraction of cloroform: methanol (9:1) extract (B). 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with Ipomoea transvaalensis cloroform: methanol (9:1) extract. The panel shows densitometric 

analysis of bands in the control and treated groups. Values are the mean ± SD in each group (n= 

3). 
*
p < 0.05 compared to control (ANOVA followed by Dunnett’s multiple comparison test). 
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Figure 3.31 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with Ipomoea transvaalensis alkaloid fraction of cloroform: methanol (9:1) extract. The panel 

shows densitometric analysis of bands in the control and treated groups. Values are the mean ± SD 

in each group (n= 3). 
*
p < 0.05, 

**
p < 0.01, compared to control (ANOVA followed by Dunnett’s 

multiple comparison test). 

 

3.4.9 Ipomea cairica extract 

 

Ipomea cairica methanol extract and its fraction no affect significantly the 

expression of proteins studied. However, results showed a tendency of Ipomea 

cairica fraction of metanol extract to increase expression of ADCY1 and ERK 

(fig. 3.32-3.34) 
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Figure 3.32 Representative Western blot of ADCY1,  pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with Ipomoea cairica methanol extract (A) and Ipomoea cairica fraction of 

methanol extract (B). 

 

 

 

 

 

 

 

 

 

 

Figure 3.33 Relative expression of  ADCY1, pERK, ERK and PKA in SH-SY5Y cells treated 

with Ipomoea cairica methanol extract. The panel shows densitometric analysis of bands in the 

control and treated groups. Values are the mean ± SD in each group (n= 3).  
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Figure 3.34 Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y treated with 

Ipomoea cairica fraction of methanol extract. The panel shows densitometric analysis of bands in 

the control and treated groups. Values are the mean ± SD in each group (n= 3).  

 

3.4.10 Hypericum hircinum extract 

 

Treatment with 250 µg/ml of Hypericum hircinum methanol extract decreased 

ADCY1 expression. Instead, treatment with 250, 125 and 62.5 µg/ml increased 

pERK expression (fig. 3.35-3.36). 

 

 

 

 

 

 

Figure 3.35  Representative Western blot of ADCY1, pERK 1/2, ERK 1/2, PKA proteins in 

SH-SY5Y cells treated with H. hircinum methanol extract. 
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Figure 3.36  Relative expression of ADCY1, pERK, ERK and PKA in SH-SY5Y treated with 

H. hircinum methanol extract. The panel shows densitometric analysis of  bands in the control and 

treated groups. Values are the mean ± SD in each group (n= 3). 
**

p < 0.01, compared to control 

(ANOVA followed by Dunnett’s multiple comparison test). 

 

 

3.5 Effects on Neuronal Activity  

 

To evaluate if exposure to the selected essential oils affects neuronal 

spontaneous electrical activity, the mean firing rate (MFR) of primary cultures of 

rat cortical neurons was considered.  

3.5.1 Linalool, Lavandula angustifolia and Coriandrum sativum essential oils 

 

To evaluate the role of linalool, the major component of the two essential oils, 

in the reduction of neuronal networks functionality, we exposed neuronal cultures 

to increasing amounts of this compound. As illustrated in figure 3.37, linalool was 

considerably more potent than the two essential oils in reducing MFR, showing an 

IC50 of 25 µg/ml (fig. 3.37a). Neuronal networks subjected to L. angustifolia  
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essential oil induced a concentration-dependent inhibition of activity with an IC50 

value for MFR of 100 µg/ml and a total  block at 200 µg/ml (fig. 3.37 b).  

Differently, C. sativum essential oil reduced electrical activity with an IC50 

value for MFR of 88 µg/ml, while a dose of 200 µg/ml completely blocked the 

firing activity (fig. 3.37c). 

 

 

 

Figure 3.37 Effects of  linalool (A); L. angustifolia (B); and C. sativum (C) essential oils on 

mean firing rate (MFR) of cortical cultures grown on microelectrode arrays. Each data point is the 

mean ± SEM of 3 independent experiments (
*
p <0.005 with respect to the normalised baseline 

values).  

 

3.5.2 Hypericum hircinum 

 

Hypericum hircinum methanol extract was considerably more potent than 

linalool and the two essential oils in reducing MFR, in fact, the treatment showed  

an IC50 of 0,01 µg/ml (fig 3.38). 
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Figure 3.38 Effects of Hypericum hircinum methanol extract on mean firing rate (MFR) of 

cortical cultures grown on microelectrode arrays. Each data point is the mean ± SEM of 3 

independent experiments (
*
p <0.005 with respect to the normalised baseline values).  

 

3.6 Studies in vivo 

 

3.6.1 Linalool and Lavandula angustifolia essential oil effects in OF1 mice 

 

3.6.1.1 Open Field 

 

The results of the basal activity of mice in the open field test (after saline 

administration) are shown in fig. 3.39. The ANOVA of the distance travelled 

showed that the administration of linalool [F (2,42) = 6.736; p < 0.01] essential oil 

had a significant effect. The ANOVA of the velocity showed that the 

administration of linalool [F (2,42) = 5.427; p < 0.01] essential oil had a 

significant effect. The results showed that that mice treated with linalool (100 

mg/kg) travelled a lower distance with a lower velocity than mice treated with L. 

angustifolia essential oil (200 mg/kg) and their respective control group. The 

ANOVA of the time spent in the centre of the open field and the ANOVA of the 

frequency to enter in the central area of the open field did not reveal any 

significant effect (data not shown). 
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Figure  3.39  Effects  of  Linalool  and L. angustifolia essential oil  administration on the open-

field test. A. Effects of linalool (100 mg/Kg) and L. angustifolia essential oil (200 mg/Kg)  

administration on the distance travelled by mice in the open field test. The bars represent the  mean  

(±  SEM)  of the distance travelled (cm)  by  animals  in the different treatments groups. B. Effects 

of linalool (100 mg/Kg) and L. angustifolia essential oil (200 mg/Kg) on the velocity of mice  in 

the open field test. The bars represent the mean (± SEM) velocity (cm/s) of animals in the different 

treatment groups.  
**

p  <  0.01  significant  difference  with  respect  to  the  CONTROL .  

 

3.6.1.2 Elevated plus maze 

 

EPM data (fig. 3.40) revealed that the number of entries in the closed arms was 

lower by animals treated with linalool and L. angustifolia essential oil than those 

in the control group (p < 0.01 and p < 0.05 respectively). The number of total 

entries [F(2,42) = 2.964; p < 0.05] was lower in mice treated  

with 100 mg/kg of linalool than in those receiving 200 mg/Kg of L. angustifolia 

essential oil.  
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Figure 3.40 Effects of linalool and L. angustifolia essential oil administration on mice in the 

EPM. Animals were divided into the following  three treatment groups:  CONTROL (SALINE) 

(n=15), LINALOOL (n=15) and L. ANGUSTIFOLIA essential oil (n=15). Data are presented as 

mean values ± SEM. A. Entries in closed arms. 
*
p<0.05; 

**
p<0.01 differences with the control 

group.  B. Total entries. 
*
p< 0.05 difference with the control group.  

 

3.6.1.3 Tail suspension test  

 

The ANOVA showed that administration of L. angustifolia essential oil 

[F(2,42)= 7.806;  p < 0.01]  had a significant effect. In fact, the results showed 

that the L. angustifolia group was immobile for longer than the control and the 

linalool group, indicating that the administration of L. angustifolia essential oil 

produces depressive-like behaviour (fig. 3.41). 
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Figure 3.41  Effects of  linalool and L. angustifolia essential oil administration on the time  

mice were immobile during the tail suspension  test.  Animals were divided into the following  

three groups: CONTROL (SALINE) (n=15), LINALOOL (n=15) and L. ANGUSTIFOLIA 

essential oil (n=15). The  bars  represent  the  mean  time  (±  SEM)  in  seconds  (s)  that  the  

animals were immobile. 
**

p  <  0.01,  significant difference with respect to the CONTROL group. 

 

3.6.1.4  Social interaction test 

 

The data for the different types of behaviour evaluated in the social interaction 

test are presented in Table 3.5. More time was spent in Social Investigation by 

mice receiving linalool (100 mg/Kg) and L. angustifolia essential oil (200 

mg/Kg), showing a significant difference with respect to their saline control group 

(p<0.05). Similar results were obtained analysing the mean time spent in each 

contact (Unit of Social Investigation), which was higher among animals receiving 

linalool (100 mg/Kg) and L. angustifolia essential oil (200 mg/Kg) (p < 0.0001 

and p < 0.01, respectively) than the control group. 

Accordingly to this results, less time was spent in Non-Social Exploration by 

mice receiving linalool (100 mg/Kg) and L. angustifolia essential oil (200 mg/Kg) 

with respect to their saline control group (p < 0.01). Instead, values for Explore  

from a Distance and Latency of Social Investigation no showed significative 

differences with respect the control group. 
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Table 3.5 Means of accumulated times (in seconds) with SEM allocated to different categories 

of spontaneous behaviour from the social interaction test in adult mice divided into the following 

groups: CONTROL (SALINE) (n=15), 100 mg/Kg of LINALOOL (n=15) and 200 mg/Kg of L. 

ANGUSTIFOLIA essential oil (n=15). 

 

 

 

 

 

 

 

 

 

Data are the mean values ± SEM. *p < 0.05, **p < 0.01, ****p < 0.0001, differences with the control groups. 

 

3.6.2 Linalool and Lavandula angustifolia essential oil effects in OF1 mice with 

social stress 

3.6.2.1 Elevated plus maze 

 

EPM data (table 3.6) revealed that the number of entries in the closed and open 

arms were lower for animals treated with linalool 100 mg/kg after social defeat 

than those in the saline explora control group (p < 0.001 for the entries in closed 

arms, p < 0.05 for the entries in open arms). Moreover, mice treated with 100 

mg/kg of linalool and 200 mg/Kg of  L. angustifolia essential oil spent more time 

in closed arms than those in the saline explora control group (p < 0.01 and p < 

0.05, respectively).  Instead, the percentage of time spent in open arms was less 

for mice treated with linalool after social defeat than those of explora control 

group (p < 0.05).  

 

 

 

 Control Linalool EO 

L. angustifolia 

Non-social exploration 534 ± 5 494 ± 9
** 

491 ± 12
** 

Explore from a distance 3 ± 0.3 2 ± 0.3 2 ± 0.4 

Social investigation 50 ± 6 83 ± 8
* 

84 ± 10
* 

Unit of social investigation 1 ± 0.2 3 ± 0.2
**** 

2 ± 0.3
** 

Latency of social investigation 20 ± 3 13 ± 2 12 ± 2 
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The number of total entries [F(3,41) = 8.109; p < 0.001] was lower in mice 

treated with linalool and L. angustifolia essential oil after social defeat than those 

of saline explora control group (p < 0.001 and p < 0.05, respectively).  

 

Table 3.6 Effects of linalool and L. angustifolia essential oil on stressed mice in the EPM. 

 

 Control 

(explora) 

SD 

saline 

SD 

Linalool 

SD 

EO 

L. angustifolia 

Time in open arms 50 ± 8 30 ± 6 18 ± 7 34 ± 9 

% Time in open arms 22 ± 2 13 ± 3 8 ± 4
*
 14 ± 4 

Time in central platform 38 ± 4 50 ± 9 37 ± 12 40 ± 10 

Time in closed arms 169 ± 14 213 ± 13 244 ± 18
**

 225 ± 16
*
 

Entries in open arms 24 ± 4 26 ± 6 9 ± 3
*
 15 ± 2 

% Open entries 32 ± 3 35 ± 5 29 ± 7 31 ± 4 

Entries in closed arms 49 ± 5 42 ± 3 22 ± 6
***

 33 ± 4 

Total entries 73 ± 7 68 ± 8 28 ± 8
***

 48 ± 6
*
 

 

Data are the mean values ± SEM. *p < 0.05; **p < 0.01; ***p<0.001 differences with the explora control 

groups. 

 

3.6.2.2 Social interaction test 

 

The data for the different types of behaviour evaluated in the social interaction 

test are presented in Table 3.7. Lower time was spent in Social Investigation by 

mice receiving physiological solution after social defeat  showing a significant 

difference with respect to their saline explora control group (p < 0.01). 

Accordingly to these results, more time was spent in Non-Social Exploration by 

mice receiving physiological solution after social defeat with respect to their 

saline explora control group (p < 0.05).  

Moreover, mice treated with linalool (100 mg/Kg) and L. angustifolia essential 

oil (200 mg/Kg) after social defeat spent more time in Social Investigation and  
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less time in Non-Social Exploration respect to their control group treated with  

physiological solution after social defeat, showing significant differences 

(respectively p < 0.01 for linalool and p < 0.01, p < 0.05 for L. angustifolia 

essential oil).  

Instead, the mean time spent in each contact (Unit of Social Investigation), 

values for Explore from a Distance and Latency of Social Investigation no showed 

significative differences with respect the control group. 

 

Table 3.7 Means of accumulated times (in seconds) with SEM allocated to different categories 

of spontaneous behaviour from the social interaction test in adult mice divided into the following 

groups: CONTROL (EXPLORA SALINE) (n=11), SD SALINE (n=10);  SD LINALOOL 100 

mg/Kg (n=12) and SD L. ANGUSTIFOLIA essential oil 200 mg/Kg  (n=12). 

 Control 

(explora) 

SD 

saline 

SD 

Linalool 

SD 

EO  

L. angustifolia 

Non-social exploration 448 ± 14 492 ± 8
* 

433 ± 13
## 

447 ± 12
#
 

Explore from a distance 3 ± 0.5 3 ± 1 3 ± 0.4 3 ± 0.4 

Social investigation 121 ± 12 77 ± 6
** 

132 ± 9
##

 129 ± 12
##

 

Unit of social investigation 4 ± 1 3 ± 0.1 4 ± 0.4 4 ± 0.4 

Latency of social investigation 12 ± 3 17 ± 3 15 ± 2 15 ± 2 
 
*p < 0.05; **p < 0.01 differences with the explora saline control groups; #p < 0.05; ##p < 0.01 differences with 

SD saline.  

 

3.6.3 Linalool and Lavandula angustifolia essential oil acute or chronic 

administration effects on social stress and social interaction of OF1 mice 

3.6.3.1 Acute administration 

Elevated plus maze 

EPM data (not shown) revealed no significant differences between the four 

groups of animals. No significant differences were detected between treated mice 

and their control with respect all the parameters considerated.  
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Social defeat 

The ANOVA for resident mice revealed an effect of the time spent engaged in 

attack [F(2, 33) = 12.39; p < 0.0001], showing that mice displayed less attack 

behaviour in the social defeat against mice treated with linalool (100 mg/Kg) and  

L. angustifolia essential oil (200 mg/Kg) (p < 0.01 and p < 0.0001, respectively). 

In the case of intruder mice treated with L. angustifolia essential  

oil (200mg/Kg), the latency of defensive/submissive behaviour showed a 

significant effect [F(2, 33) = 4.464; p < 0.05]; mice displayed their first 

defensive/submissive behaviour significantly later than their control group (p < 

0.05) (Table 3.8). 

 

Table 3.8 Social interaction during the resident–intruder paradigm to induce social defeat (SD). 

 

Social defeat Control Linalool EO 

L. angustifolia 

    

Intruder mice    

Avoidance 82 ± 9 66 ± 6 57 ± 13 

Latency avoidance 12 ± 5 6 ± 2 19 ± 9 

Defense/Submissive 48 ± 9 51 ± 11 34 ± 12 

Latency defense/submissive 27 ± 9 11 ± 3 111 ± 43
* 

    

Resident mice    

Threat 3 ± 1 2 ± 0.3 1 ± 0.3 

Latency threat 18 ± 6 17 ± 7 28 ± 9 

Attack 33 ± 5 18 ± 2
** 

10 ± 2
****

 

Latency attack 9 ± 5 15 ± 7 37 ± 26 
 

Data presented as mean values ± SEM. *p < 0.05, **p < 0.01, ****p<0.0001 differences with respect to the 

control. 
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Social interaction test 

The data for the different types of behaviour evaluated in the social interaction 

test are presented in Table 3.9. Lower time was spent in Social Investigation by 

mice receiving physiological solution before social defeat showing a significant 

difference with respect to their saline explora control group (p < 0.01). According 

to these results, more time was spent in Non-Social Exploration by mice receiving  

physiological solution with respect to their saline explora control group (p < 0.01). 

The mean time spent in each contact (Unit of Social Investigation) was lower 

among animals receiving physiological solution before social defeat than the 

control group (p < 0.05). 

Moreover, mice treated with linalool (100 mg/Kg) and L. angustifolia essential 

oil (200 mg/Kg) before social defeat spent more time in Social Investigation 

(respectively p < 0.0001 and p < 0.05) and less time in Non-Social Exploration 

(respectively p < 0.001 and p < 0.05) respect to their control group treated with 

physiological solution before social defeat, showing significant differences.  

Instead, values for Explore from a Distance and Latency of Social Investigation 

no showed significative differences with respect the control group. 

 

Table 3.9 Means of accumulated times (in seconds) with SEM allocated to different categories 

of spontaneous behaviour from the social interaction test in adult mice divided into the following 

groups: CONTROL (EXPLORA SALINE) (n=12), SD SALINE (n=12);  SD LINALOOL 100 

mg/Kg (n=12) and SD L. ANGUSTIFOLIA essential oil 200 mg/Kg  (n=12). 

 Control 

(explora) 

SD 

Saline 

SD 

Linalool 

SD 

EO 

L. angustifolia 

Non-social exploration 454 ± 11 511 ± 8
** 

447 ± 12
### 

469 ± 13
#
 

Explore from a distance 2 ± 0.3 3 ± 0.4 2 ± 0.3 2 ± 0.4 

Social investigation 110 ± 11 63 ± 8
** 

126 ± 12
#### 

96 ± 6
#
 

Unit of social investigation 4 ± 0.4 2 ± 0.2
**

 3 ± 0.3 3 ± 0.6 

Latency of social investigation 8 ± 2 9 ± 3 7 ± 2 8 ± 2 
 

**p < 0.01 differences with the explora saline control groups; #p < 0.05; ###p < 0.001; ####p < 0.0001, 

differences with SD saline.  
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3.6.3.2 Chronic administration 

Elevated plus maze 

EPM data (table 3.10) revealed that the number of entries in the closed arms 

were lower by animals treated with linalool 100 mg/kg before social defeat than 

those in the saline explora control group (p < 0.05). Moreover, mice treated with 

200 mg/Kg of L. angustifolia essential oil spent more time in central platform than 

those in the saline explora control group (p < 0.05). The number of total entries 

was lower in mice treated with linalool before social defeat than those of saline 

explora control group (p < 0.05). 

 

Table 3.10 Effects of linalool and L. angustifolia essential oil on stressed mice in the EPM. 

 

 

Data are presented as mean values ± SEM. *p < 0.05 differences with the explora control groups. 

 

Social defeat 

The ANOVA for resident mice revealed an effect of the time spent engaged in 

attack [F(2, 33) = 15.18; p < 0.0001], and an effect on latency of attack  

[F(2,33) = 5.854;  p < 0.005] showing that mice displayed less attack behaviour in 

the social defeat against mice treated with L. angustifolia essential oil (200  

 

 

 Control 

(explora) 

SD 

saline 

SD 

Linalool 

SD 

EO 

L. angustifolia 

Time in open arms 43 ± 9 25 ± 4 25 ± 6 35 ± 5 

% Time in open arms 16 ± 3 10 ± 2 12 ± 4 16 ± 2 

Time in central platform 27 ± 6 23 ± 9 50 ± 13 74 ± 18
*
 

Time in closed arms 229 ± 11 243 ± 14 237 ± 19 208 ± 20 

Entries in open arms 22 ± 4 17 ± 2 13 ± 3 18 ± 3 

% Open entries 36 ± 9 40 ± 4 35 ± 5 36 ± 4 

Entries in closed arms 39 ± 6 31 ± 6 20 ± 4
*
 28 ± 3 

Total entries 61 ± 9 49 ± 7 33 ± 7
*
 46 ± 5 
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mg/Kg)  (p < 0.0001 for time spent in attack and p < 0.05 for latency of the attack) 

than those of control group.  

In the case of intruder mice treated with L. angustifolia essential oil (200 

mg/Kg), the time engaged in avoidance [F(2, 33) = 7.721; p < 0.001] and in 

defensive/submissive behaviour showed a significant effect [F(2, 33) = 9.410; p < 

0.001]; these mice in fact displayed less defensive/submissive behaviour and  

avoidance than their control group (p < 0.001 and p < 0.001, respectively) (Table 

3.11). 

 

Table 3.11 Social interaction during the resident–intruder paradigm to induce social defeat (SD). 

 

Social defeat Control Linalool EO 

L. angustifolia 

    

Intruder mice    

Avoidance 82 ± 9 57 ± 9 37 ± 4
*** 

Latency avoidance 12 ± 5 7 ± 2 16 ± 4 

Defense/Submissive 48 ± 9 43 ± 5 10 ± 4
***

 

Latency defense/submissive 27 ± 9 20 ± 7 21 ± 6 

    

Resident mice    

Threat 3 ± 1 3 ± 1 22 ± 1 

Latency threat 18 ± 6 53 ± 30 88 ± 37 

Attack 33 ± 5 25 ± 3 6 ± 2
****

 

Latency attack 9 ± 5 5 ± 2 95 ± 36
* 

 

Data presented as mean values ± SEM. *p < 0.05, ***p < 0.001, ****p <0.0001; differences with respect to the 

control. 

 

 

Social interaction test 

 

The data for the different types of behaviour evaluated in the social interaction 

test are presented in Table 3.12. Less time was spent in Social  Investigation  

by mice receiving physiological solution before social defeat showing a  
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significant difference with respect to their saline explora control group (p < 0.01). 

Accordingly to these results, more time was spent in Non-Social Exploration by 

mice receiving physiological solution with respect to their saline explora control 

group (p < 0.01). The mean time spent in each contact (Unit of Social 

Investigation) was lower among animals receiving physiological solution before 

social defeat than the control group (p < 0.01). 

Moreover, mice treated with linalool (100 mg/Kg) and L. angustifolia essential 

oil (200 mg/Kg) before social defeat spent more time in Social Investigation  (p < 

0.01 and p < 0.01, respectively) and less time in Non-Social Exploration (p < 0.05 

and p < 0.001, respectively) respect to their control group treated with 

physiological solution, showing significant differences.  

Instead, values for Explore from a Distance and Latency of Social Investigation 

no showed significative differences with respect the control group. 

 

Table 3.12 Means of accumulated times (in seconds) with SEM allocated to different 

categories of spontaneous behaviour from the social interaction test in adult mice divided into the 

following groups: CONTROL (EXPLORA SALINE) (n=12), SD SALINE (n=12); SD 

LINALOOL 100 mg/Kg (n=12) and SD L. ANGUSTIFOLIA essential oil 200 mg/Kg  (n=12). 

 
**p < 0.01 differences with the explora saline control groups; #p < 0.05, ###p < 0.001; differences with SD 

saline.  

  

 

  

 Control 

(explora) 

SD 

saline 

SD 

Linalool 

SD 

EO 

L. angustifolia 

Non-social exploration 454 ± 11 511 ± 8
** 

459 ± 11
## 

446 ± 12
### 

Explore from a distance 2 ± 0.3 3 ± 0.4 2 ± 0.3 2 ± 1 

Social investigation 110 ± 11 63 ± 8
** 

115 ± 10
## 

114 ± 11
## 

Unit of social investigation 4 ± 0.4 2 ± 0.2
**

 4 ± 1
 

4 ± 0.4 

Latency of social investigation 8 ± 2 9 ± 3 20 ± 5
 

15 ± 0.3 
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4. Discussion 
 

4.1 Essential oils composition 

 

Oxygenated monoterpenes are highly predominant in L. angustifolia, C. 

sativum and L. nobilis essential oils, instead in both C. medica essential oils 

monoterpene hydrocarbons are predominant.  

The major components of L. angustifolia oil were linalool (33.1%), camphor 

(11.0%), linalyl acetate (10.4%), and 1,8 cineole (8%). Our results agree with data 

by Koulivand and coworkers (2013) who reported linalool, linalyl acetate, 1,8-

cineole, β-ocimene, terpinen-4-ol, and camphor as the main constituents of L. 

angustifolia essential oil. However, the percentage of single constituents varies in 

different samples (Cavanagh and Wilkinson 2002; Woronuk et al. 2011). In our 

essential oil borneol, (E)-ocimene, α-terpineol and (Z)-caryophyllene were found 

in moderate concentrations, comparable to the L. angustifolia essential oil from 

India (Verma et al. 2010). 

The main constituents in our C. sativum essential oil were linalool (67.8%), 

camphor (5.0%), α-pinene (5.0%) and geranyl acetate (3.7%), in agreement with 

previous studies of Shahwar and coworkers (2012) and Mandal and Mandal 

(2015). The chemical composition of C. sativum essential oil may change 

depending on environmental conditions and is also affected by the duration and 

condition of storage (Ebrahimi et al. 2010). In our sample, the amount of linalool 

was 67.3%, higher than in the essential oils analysed by Khani and coworkers 

(2012), and by Mandal and Mandal (2015), who found percentages of linalool of 

57.57% and 58%, respectively. The observed variations in the relative percentages 

of single constituents may be attributed mainly to environmental conditions, 

method of harvesting, and methods used to obtain the essential oil (Misharina 

2001; Smallfield et al. 2001; Gil et al. 2002). 
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In the composition of the essential oil of L. nobilis 1,8 cineole (31.9%), sabinene 

(12.2%), and linalool (10.2%) are the main components, with other compounds in 

low percentages or even in traces. The comparison with most recent literature 

concerning the chemical composition of the essential oil of  L. nobilis from other 

Mediterranean areas, showed substantial differences in fact, 1,8-cineole 

percentage found (31.9%) is lower than the values recorded in other studies: 

Turkey 44.97% (Ekren et al. 2013), Tunisia 56.0% (Snuossi et al. 2016), Cyprus 

58.59% (Yalcin et al. 2007), Morocco 52.43% (Derwich et al. 2009), but similar 

to Algerian oil (34.62%) (Jemaa et al. 2012). In  our  sample, the amount of 

sabinene was 12.2%,  higher than in the essential oils analysed by Derwich and 

coworkers (2009), Snuossi and co-workers (2016), and Yalcin (2007), who found 

percentages of sabinene of 6.13, 3.5, and 3.32%, respectively. Linalool was found 

in concentrations comparable to previous studies (Jemaa et al. 2012, Ekren et al. 

2013) but in oil analysed by Derwick and coworkers (2009) linalool was not 

found. 

In C. medica essential oils there were no relevant quali-quantitative differences 

in the chemical composition neither with regard to the percentages of the classes 

of compounds nor to the main components. In both oils, limonene and camphene 

are the main components, even if the composition of the EO of C. medica cv. 

‘rugosa’ is more complex, but many of its constituents are present in very low 

percentages or even in traces. The comparison with the available literature 

concerning the chemical composition of the EO of citron from other countries, 

had showed substantial differences. Limonene percentages found (67.2% and 

62.8%) are significantly higher than the values recorded in different parts of the 

world or even in Italy: South Korea, 52.44% (Kim et al. 2013); China, 33.84% 

(Wu et al. 2013); Santa Maria del Cedro (Italy), 59% (Gabriele et al. 2009); and 

Iran, 56.6% (Monajemi et al. 2005).  
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Other notable differences relate to the content in γ-terpinene exceeding 20% and 

of α- and β-pinene, reported between 7.73% (Wu et al. 2013) and 16.3% 

(Monajemi et al. 2005). Camphene range is 8.5%–10.9%  (cv. ‘liscia’ and cv. 

‘rugosa’, respectively) in samples studies in this research, but this compound is 

practically absent or in traces in the oils reported in literature. 

4.2 Extracts chemical composition  

4.2.1 Hypericum hircinum 

 

We identified in Hypericum hircinum methanol extract isoquercetin, rutin and 

quercetin. Our results corroborate with previous studies that reported that the H. 

hircinum leaves contain chlorogenic acid, rutin, isoquercitrin, quercetin and 

hyperforin (Pistelli et al. 2000; Sagratini et al 2008). Quercetin and rutin were 

found also in other Hypericum species (Stojanovic et al. 2013). 

4.2.2 Ipomea transvaalensis 

 

We identified from chloroform: methanol extract of I. transvaalensis two 

alkaloids, ergine and ergometrine.  

Many species of genus Ipomea contain ergine such as I. asarifolia (Desr.) 

Roem. & Schult., I. corymbosa (L.) Roth ex Roem. & Schult; instead I. tricolor 

Cav., I. muelleri Benth. and I. violacea L. contains both ergine and ergometrine 

(Meira et al. 2012; Nowak et al. 2016). 

 

4.3 Cytotoxicity on SH-SY5Y cells  

4.3.1 Essential oils  

 

MTT assay results showed that L. nobilis essential oil is more cytotoxic against 

SH-SY5Y cells than the other essential oils studied with an IC50 of 471  
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µg/ml. Our findings indicated that L. nobilis EO is also more cytotoxic than its 

main component: 1,8-cineole. Specific induction of apoptosis by 1,8-cineole was 

observed in human leukemia Molt 4B and HL-60 cells, but not in human stomach  

cancer KATO III cells (Hiroyukimoteki et al. 2002). Our results showed that the 

essential oil had less cytotoxicity than the one tested on ACHN and C32 cell lines 

(IC50 202.6 and 209.7 µg/ml for ACHN and C32, respectively) (Loizzo et al. 

2007) and the leaf extract tested on human neuroblastoma cell lines SK-N-BE(2)-

C and SH-SY5Y (Pacifico et al. 2013). 

Prashar and coworkers (2004) reported that L. angustifolia essential oil is 

cytotoxic to human skin cells in vitro (HMEC-1, HNDF, 153BR). Imelouane and 

coworkers (2010) studied the cytotoxicity of the essential oils of Lavandula 

dentate aerial parts and flower on five human cancer lines (P388D1, PC3, V79,U-

373 MG, MCF7). They reported that the cytotoxicity of the flower oil is stronger 

than that of the oil from aerial parts. Conversely, to our knowledge no studies 

have been carried out to verify the cytotoxicity of C. sativum essential oil on 

neuroblastoma or other cell lines.  

However, comparing the IC50 values, our findings indicated that C. medica cv. 

‘liscia’ EO is more cytotoxic than C. medica cv. ‘rugosa’ EO and limonene. 

Monajemi and coworkers (2005) reported that the EO of C. limon with large 

amounts of limonene (98.4%) was less cytotoxic than C. medica  

with low content of limonene (56.6%) on MCF-7 and HeLa cell lines. Our results 

agree with previous studies reporting that low concentrations of limonene were 

ineffective in cell death in SH-SY5Y cells (Corasaniti et al. 2007, Russo et al. 

2014).  

Among the main components of the essential oil considered, linalool has 

stronger cytotoxic activity (IC50 = 334 µg/ml) than 1,8-cineole and limonene with 

IC50 > 2000 µg/ml. Ravizza and coworkers (2008) demonstrated that linalool 

possesses antiproliferative effects against two human breast  
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adenocarcinoma cell lines (MCF7 WT and MCF7 AdrR), and Sun and coworkers 

(2015) reported similar results in human prostate cancer cells (DU145), at 

concentrations of 50 and 80 µM, respectively.  

However, in our experiments the IC50 values for all essential oils was > 20 

µg/ml, indicating that they were not cytotoxic as judged by the criterion set by the 

National Cancer Institute (Geran et al. 1972), which states that only natural 

substances with IC50 < 20 µg/ml are considered cytotoxic against the treated cells. 

The different cytotoxicity between each essential oil and their main component 

can probably be attributed to a synergistic activity of this and other minor 

components present in the essential oil.  

 

4.3.2 Extracts and fractions 

 

Ipomea cairica methanol extract is more cytotoxic against SH-SY5Y cells than 

the other extracts studied and its alkaloid fraction, with an IC50 of 353 µg/ml. 

However, fraction of chloroform: methanol Ipomea transvaalensis  

extract showed an IC50 of 258 µg/ml; probably the alkaloids present in this 

fraction are different or in different proportion respect to those present in fraction 

of Ipomea cairica methanolic extract.  

Lin et al. reported that two components of Ipomea cairica methanol extract, 

arctigenin and trans-2,3-dibenzylbutyrolactone, have a strong cytotoxicity against 

A549 (human lung cancer cell) and human prostate cancer epithelial cell (LNCaP) 

(Lin et al. 2008).  

No studies in literature reported data on Ipomea transvaalensis extracts 

cytotoxicity and its alkaloids.  

The Hypericum hircinum methanol extract showed an IC50 = 451 µg/ml. 

Quassinti and coworkers (2013) demonstrated that the potential inhibitory effect  
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on tumor cell growth of Hypericum hircinum essential oil is higher than our 

extract for T98G human glioblastoma cell line, PC3 human prostatic  

adenocarcinoma cell line, A431 human squamous carcinoma cell line and B16-F1 

mouse melanoma cell line.  

However, in our experiments the IC50 value for all the extracts and their 

fractions was > 20 µg/ml, indicating that they were not cytotoxic as judged by the 

criterion set by the National Cancer Institute (Geran et al. 1972). 

4.4 Western blot analysis  

 

The available literature reports a well-established role for adenylyl cyclase in 

the regulation of multiple brain processes, such as synaptic plasticity, learning, 

and memory. Moreover, a cross-talk between the cAMP signal transduction 

system and other signalling pathways, such as the ERK/MAP  

kinase regulatory system, has been described (Impey et al. 1999; Davis et al. 

2003).  

There are no studies on the action of natural substances on expression of 

ADCY1, PKA, pERK and ERK in SH-SY5Y cells. 

In this perspective, we carried out experiments to determine whether exposure 

to essential oils, their main components, different extracts and their alkaloid 

fraction can affect this or other pathways in SH-SY5Y cells. 

4.4.1 Essential oils and their main components 

 

Our results show that treatment with different concentrations of linalool 

inhibits ADCY1, PKA, pERK, and ERK expression in SH-SY5Y cell. The 

inhibition of these proteins could explain dose-dependent sedative effects in  

the Central Nervous System described by Elisabetsky and coworkers (1995; 

1999). Furthermore, because high levels of ERK activation correlated with  
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allodynia and hyperalgesia in several pain models, inhibitors of ERK  

phosphorylation could be used in order to reverse those altered pain states (Cruz 

and Cruz 2007). 

Differently to its principal component, L. angustifolia essential oil showed an 

ADCY1 and ERK increased expression. Probably, this essential oil influenced 

other intracellular pathway, respect to linalool, to determine a concentration-

dependent inhibition of neuronal networks described by Caputo and coworkers 

(2016). However, our results agree with those of Impey and coworkers (1998) that 

showed that odorants generate transient increases in cAMP and Ca
2+

, both of 

which stimulate ERK activity in CNS neurons and PC12 cells. Coriandrum 

sativum essential oil increase pERK and PKA expression.  

These results could be explained by an action mediated by other components of  

L. angustifolia and C. sativum essential oil that can modify the linalool effect. 

We also have studied the effect of 1,8-cineole and Laurus nobilis essential oil. 

Our results showed that 1,8 cineole increases pERK and PKA expression, instead 

L. nobilis essential oil reduced ADCY1 and pERK  expression in SH-SY5Y cell. 

This result could explain at molecular level the use of L. nobilis leaves in Iranian 

folk medicine, to treat epilepsy, neuralgia and parkinsonism (Zargari 1990, Aqili 

1992).  

Limonene, the main component of two cultivars of Citrus medica increased 

ADCY1 expression at a concentration of 800 µg/ml in SH-SY5Y but have no 

effect on pERK, ERK and PKA expression. Citrus medica cv. ‘liscia’ essential oil 

influenced ADCY1, PKA, pERK and ERK expression, in fact we have found an 

increase of these proteins expression.  

Our results corroborate with previous studies on extracts of different species of 

Citrus. Extracts of C. reticulata peels facilitated PKA/ERK/CREB signaling in 

hippocampal neurons and potently enhanced CRE-mediated transcription 

(Kawahata et al. 2013). Also hexane extracts derived from the peels of C. grandis  
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had the ability to induce activation of ERK1/2 and CREB in cultured neurons 

(Furukawa et al. 2012). 

Citrus medica cv. ‘rugosa’ essential oil influenced in different way ADCY1, 

PKA and ERK expression; in fact, it decreases these proteins expression. 

Probably, in L. nobilis and C. medica essential oils there are other components 

that could affect proteins expression and the activities showed are not due to their 

principal components.  

4.4.2 Extracts and their fractions 

 

The genus Hypericum comprises a number of species with many different 

biological activities, such as antimicrobial
 
(Pistelli et al. 2000) and antidepressant 

activities (Dar and Khatoon 2000). In this study we demonstrated that Hypericum 

hircinum methanol extract decreased ADCY1 and increased pERK expression. 

Different studies reported that some flavonoids can act on Central Nervous 

System in sedation, anxiolytic or anti-convulsive effects, and modulate protein 

and lipid kinase signalling pathways (Spencer 2008, Jäger and Saaby 2011). In 

particular, at molecular level, quercetin, a flavonoid present in our extract, 

increased cAMP response element-binding protein (CREB) expression (Suganthy 

et al. 2016).
 

However, hypericin, one of the main constituents of the genus Hypericum, 

inhibited the activating phosphorylation of extracellular signal-regulated MAP 

kinases (ERK1/2) in human retinal pigment epithelial cells and in EA.hy926 cells, 

an endothelial hybridoma expressing endothelial cell properties (Karioti and Bilia 

2010). Our results corroborate with Pistelli and coworkers, who reported that 

Hypericum hircinum leaves contain chlorogenic acid, quercetin, quercetrin, and 

biapigenin, but no phloroglucinol compounds such as hyperforins or hypericins 

(Pistelli et al. 2000).  Ipomea cairica methanol extract and its alkaloid fraction  
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showed no effects on protein expression. Ipomea transvaleensis CHCl3 : CH3OH 

(9:1) extract only increase pERK expression at a concentration of 125 µg/ml 

instead its alkaloid fraction decrease ADCY1 and PKA expression. 

There are no studies on biological activities of these Ipomea species extracts. 

However, between alkaloids that we have identified in I. transvaalensis extract 

there is the most important ergoline derivative in Convolvulaceae: ergine (D-

lysergic acid amide, LSA). This is a close analogue of best known hemisynthetic 

LSD (lysergic acid diethylamide) and presents hallucinogenic and 

psychotomimetic effects (Medeiros et al. 2003), but yet undiscovered mechanism 

of action (Paulke et al. 2013). Probably, ergine can increase oxytocin release and 

it can be used for treating or reducing the severity of psychotherapeutic or social 

disorders such as autism and in particular can act as an adjunct to behavioural 

therapy in obsessive-compulsive disorder, Tourette’s syndrome, schizophrenia 

and depression (Young and Modi 2012). 

Also, the other identified alkaloid, ergometrine, is known to be biologically 

active (Dawson and Moffatt 2012) and like other ergot alkaloids present in 

Convolvulaceae may have biological effect in humans, because of their structural 

similarity to LSD (Paulke et al. 2013). 

The psychotropic effects of LSD may include indirect changes in the regulation 

of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors (Marona-

Lewicka et al. 2011). This compound interacts with specific dopaminergic and 

noradrenergic receptors (Minuzzi and Cumming 2010). These activities can 

explain the effects of its analogues, ergine and ergometrine, on the proteins 

involved in the signal transmission in CNS.  
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4.5 Effects on neuronal activity 

 

4.5.1 Linalool,  Lavandula angustifolia and Coriandrum sativum essential oils 

 

In order to evaluate the potential effect of linalool and the essential oils of  L. 

angustifolia and C. sativum on neuronal spontaneous electrical activity, we 

exposed rat neuronal networks grown on MEA to increasing concentrations of all 

products. The approach allowed, for the first time, an efficacy assessment of 

linalool and of the two essential oils. The results showed a concentration-

dependent inhibition of neuronal networks firing activity for all the three agents, 

among which linalool is the most effective with an IC50 for MFR of 25 µg/ml. 

This result agrees with different studies in vivo that reported a sedative effect of 

linalool (Elisabesky et al. 1995, Linck et al. 2009). 

Conversely, the essential oils of L. angustifolia and C. sativum showed a lower 

efficacy as demonstrated by IC50 values of 100 and 88 µg/ml for L. angustifolia 

and C. sativum, respectively.  

Of note, the two essential oils revealed a similar efficacy, though the gas 

chromatography analysis demonstrated a considerable difference in their content 

of linalool. In fact, considering that L. angustifolia essential oil  

contains 33.1% linalool, the IC50 value corresponding to the pure compound  

is about 33 µg/ml, which is near that obtained with linalool alone. It could 

therefore be assumed that the inhibiting effect of L. angustifolia essential oil is 

principally mediated by linalool. Differently, C. sativum essential oil contains  

67.3% of linalool and, consequently, the IC50 corresponding to the pure compound 

is about 59 µg/ml.  
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This result could be explained by a reductive effect mediated by other 

components of C. sativum essential oil on the linalool-induced inhibition of 

electrical activity and shows that the combination of chemical mixtures leads to 

completely different effects from those obtained with each component applied 

singularly. 

However, the reduction of electrical activity can confirm the sedative effects 

observed in previous studies on Lavandula angustifolia essential oil and 

Coriandrum sativum hydro-alcoholic extract (Buchbauer et al. 1991, 

Rakhshandeh et al. 2012). 

 

4.5.2 Hypericum hircinum extract 

 

In our experiment H. hircinum methanol extract showed a decrease of the MFR 

with an IC50 of 0.01 µg/ml. Our result corroborate with different studies in 

literature that reported a sedative activity of some Hypericum species in relation to 

the CNS such as H. perforatum, H. hircinum (Gîrzu et al. 1997, Diana et al. 2007) 

and H. montbretii (Can and Özkay 2012). 

4.6 Studies in vivo 

 

In this part of study we focused our attention on pharmacological action on 

CNS of L. angustifolia essential oil and linalool, its main component.  

We administrated these substances in different conditions: i) without stress, ii) 

after and iii) before a stress condition. The results showed that L. angustifolia 

essential oil and linalool affect motor activity in OF1 mice. In the experiment I, in 

fact, in open field mice treated with linalool travelled a lower distance with a less 

velocity than their respective control group. Shaw and coworkers (2007)  

demonstrated, instead, that in rats L. angustifolia essential oil reduced peripheral  
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movement in open field; in our experiment we observed a little reduction but it is 

not statistically significant.  

In Elevated plus maze experiments, the number of entries in the closed arms 

was lower by animals treated with linalool and L. angustifolia essential oil than 

those in the control group. We obtained similar data in elevated plus maze of 

experiment II and III. The open field and elevated plus maze results showed an 

effect on motor activity of mice OF1 for both the substances studied.  

In literature some contradictory effects on motor activity of  L. angustifolia 

essential oil are reported. Chioca and collaborators (2013) observed that mice 

exposed to inhaled lavender essential oil increased the number of entries and time 

spent in the open arms, instead Kumar and coworkers (2013) reported that Silexan 

(a standardized essential oil produced from L. angustifolia flowers with 36% 

linalool and 34% linalyl acetate) decreased number of closed arm entries in the 

elevated plus-maze. However, our  results agree with Linck and coworkers (2008) 

that demonstrated that linalool reduced locomotor activity.  

Tail suspension test showed an increase of immobility time for mice treated 

with L. angustifolia essential oil; this could indicate that essential oil produces 

depressive-like effects but the data can also be affected by effects on motor 

activity.  

Coelho and coworkers (2013) showed that linalool was able to reduce the 

immobility time; in our test there was this effect but the reduction was not 

significant.  

Moreover, social interaction test in experiment I showed that in mice treated 

with linalool and essential oil of L. angustifolia the time spent in social 

investigation was increased respect to group control. This result agrees with Linck 

and coworkers (2010) that revealed a significant linalool effect in increasing the  
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social interaction time in comparison with controls. No data are present in 

literature about the effects of  L. angustifolia essential oil on social interactions.  

The social interactions test results of experiment II and III showed that our 

substances can cancel the stress effects of social defeat. In fact, both linalool and 

L. angustifolia essential oil increase time spent in social interactions respect to 

group control.  

Moreover, social defeat data of experiment II and III highlighted that resident 

mice are less aggressive with mice treated with linalool and L. angustifolia 

essential oil than the group control, and the intruder mice treated with L. 

angustifolia essential oil spent less time in defense and submissive behaviour than 

the group control. The mechanism of this social behaviour is very complicate and 

there are no other studies in this field.   

At this moment we can only hypothesize that probably the intruder mice 

produce pheromones that influenced residents or they reduced defensive  

behaviour for the effects on motor activity and consequently residents are less 

aggressive. 
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5. Conclusions  
 

Different plant species are active on various organs and systems and the study 

of the scientific basis to support their use has grown and continues to grow by 

little more than a century.  

Many vegetal extracts, essential oils and their main constituents are active on 

the Central Nervous System. In fact, they are used as sedatives, hypnotics, and 

tranquilizers and they may be useful in treating CNS disorders. 

However, to date no many studies have been carried out to verify the 

subcellular mechanism of these effects. 

Different studies reported an important role for adenylyl cyclase in the 

regulation of synaptic plasticity, memory, and other multiple brain processes.  

Some of the substances that I have studied in this PhD program showed 

different effects on CNS. We studied the effects of secondary metabolites at 

different levels: i) effects on in vitro proteins involved in the transmission of the 

signal; ii) effects on the electrophysiology of neuronal cells; iii) effects on 

animals. 

Our in vitro experiments demonstrated that even if the precise mechanism of 

the biochemical effects of essential oils and of secondary metabolites is still 

unclear, ADCY1 pathway might be involved (Caputo et al. 2016, Aliberti et al. 

2016, Caputo et al. 2017). Moreover, linalool, L. angustifolia and C. sativum 

essential oils and H. hircinum methanolic extract affect, in a  

concentration-dependent manner, neural firing activity in micro-electrode array 

(MEA) (Caputo et al. 2016). 

Our in vivo experiments showed that linalool and L. angustifolia essential oil 

had effects on the Central Nervous System. These substances affect mice OF1 

motor activity, increase social interaction and reverse stress effects. These  
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results highlight that could exist a relation between CNS and the use of essential 

oil in the aromatherapy.  

Furthermore, many studies correlate alterations of proteins studied in this 

doctoral project with genesis and development of different CNS diseases such as 

Parkinson and Alzheimer diseases (Du et al. 2014; Feld et al. 2014; Wang et al. 

2014).  

However, among the properties of many traditional medicinal plants, it has 

been reported their important role in alleviating or preventing symptoms of 

neurodegeneration (Howes et al. 2003). Some natural products, such as 

monoterpenoids have showed anti-Alzheimer and anti-Parkinsonian effects 

(Salakhutdinov et al. 2017) acting for example as acetylcholinesterase inhibitors 

(Chung et al. 2001). 

In this perspective and on the light of the results obtained, we will continue this 

study in order to search for natural substances that, acting on ERK and or PKA 

expression, could ameliorate symptoms of Alzheimer and Parkinson deseases. 
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6. Materials and Methods 
 

6.1 Plant material  

 

Lavandula angustifolia aerial parts and Coriandrum sativum fruits were 

collected in the Garden of Medicinal—Aromatic Plants in the Campus of the 

University of Salerno in July and August 2015, respectively. Fruits of Citrus 

medica cv. ‘liscia’ and C. medica cv. ‘rugosa’ were collected in February 2016 

from biological cultivations in the Coast of Amalfi. L. nobilis leaves were 

collected in February 2016, in Montecorice, Cilento area (Campania, Southern 

Italy) 90 m above sea level. Representative homogeneous samples of population 

were collected during the balsamic time. H. hircinum aerial parts were collected in 

June 2014, in Agerola (NA). 

All plants were identified by Prof. Vincenzo De Feo. Voucher specimens 

(labeled as DF/367/2015 for L. angustifolia and DF/392/2015 for C. sativum; De 

Feo/134/2016 for cv. ‘liscia’ and De Feo/133/2016 for cv. ‘rugosa’; DF/324/2016 

for L. nobilis and De Feo/237/2014 for  H. hircinum) were stored in the 

Herbarium of the Pharmaceutical Botany Chair at the University of Salerno on the 

basis of Flora d’Italia (Pignatti 1982).  

Ipomea transvaalensis and I. cairica aerial parts were collected in September 

2015 in the Hanbury Botanic Gardens in Ventimiglia (GE) and were identified by 

Prof. Laura Cornara of Dipartimento di Scienze della Terra, dell’Ambiente e della 

Vita, University of Genoa.  

6.2 Chemicals 

 

Linalool, 1,8 cineole, limonene, MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) were purchased by Sigma Italia, Milano. 
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6.3 Isolation of the Volatile Oil 

 

One kilogram of L. angustifolia and  L. nobilis dried leaves; of C. sativum 

dried fruits of C. medica peels were ground in a Waring blender and then 

subjected to hydrodistillation for 3 h according to the standard procedure 

described in the European Pharmacopoeia (2004).  

The oils were solubilized in n-hexane, filtered over anhydrous sodium sulphate 

and stored under N2 at +4°C in the dark until tested and analysed. 

6.4 Extraction Procedure 

 

One kilogram of Ipomea species and H. hircinum leaves were air-dried and 

then extracted, at room temperature, successively with solvents of increasing 

polarity (petroleum ether, chloroform, and methanol). Finally, each extract was 

evaporated to dryness under reduced pressure.  

6.5 Identification of the Extracts Components 

 

6.5.1 Thin Layer Chromatography (TLC) 

 

A 1 μl aliquot of the extracts or their fractions were spotted on silica-gel plates 

and developed with mobile phase A (CHCl3: CH3OH: H2O; 80:18:2  

v/v/v) and B (BAW, C4H10O: CH3COOH: H2O; 60:25:15 v/v/v). The developed 

TLC plate was dried and then sprayed with Dragendorff’s reagent that is widly 

used to detect different groups of alkaloids, or with cerium sulfate reagent to 

detects the other extracts components.  
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6.5.2 HPLC Analysis  

 

The methanolic extract of H. hircinum was fractionated by gel permeation 

chromatography on a Sephadex LH-20 column, eluiting with CH3OH. One 

hundred thirty nine fractions of about 10 ml each were obtained and pooled in 

fifteen main fractions (I-XV) on basis of their TLC similarity in CHCl3-CH3OH-

H2O (80:18:2) and C4H10O: CH3COOH: H2O (60:25:15). Fraction B (fraction 

V+VI) and C (VII) were purified with RPHPLC on a C18 µ-Bondapack column 

(30 cm × 7.8 mm), eluting with CH3OH-H2O (70%:30%, 60 min, flow 1 ml/min). 

Structural determination of three isolated compounds (isoquercetin, quercetin and 

rutin) was performed of  
1
H NMR, 

13
C NMR, 

13
C NMR DEPT data and their 

comparison with literature data (Agrawal 1989). 

6.6 GC-FID Analysis 

 

Analytical gas chromatography was carried out on a Perkin-Elmer Sigma-115 

gas chromatograph equipped with FID and data handling processor. The 

separation was achieved using a HP-5 MS fused-silica capillary column (30 m  

0.25 mm i.d., 0.25 m film thickness). Column temperature: 40°C, with 5 min 

initial hold, and then to 270°C at 2 C/min, 270°C (20 min); injection  

mode splitless (1 L of a 1:1000 n-hexane solution). Injector and detector 

temperatures were 250°C and 290°C, respectively. Analysis was also run by using 

a fused silica HP Innowax polyethylenglycol capillary column (50 m  0.20 mm 

i.d., 0.25 m film thickness). In both cases, helium was used as carrier gas ml/min. 

6.7 GC/MS Analysis 

 

Analyses were performed on an Agilent 6850 Ser. II apparatus, fitted with a 

fused silica DB-5 capillary column (30 m × 0.25 mm i.d., 0.33 µm film  
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thickness), coupled to an Agilent Mass Selective Detector MSD 5973; ionization 

energy voltage 70 eV; electron multiplier voltage energy 2000 V. Gas 

chromatographic conditions were as reported in the previous paragraph; transfer 

line temperature, 295 °C. 

6.8 Identification of the Essential Oil Components 

 

Most constituents were identified by gas chromatography by comparison of 

their Kovats retention indices (Ri) (determined relative to the tR of n-alkanes 

(C10–C35)), with either those of the literature (Jennings and Shibamoto 1980; 

Davies 1990; Adams 2007; Goodner 2008) and mass spectra on both columns 

with those of authentic compounds available in our laboratories by means NIST 

02 and Wiley 275 libraries (Wiley 1998). The components’ relative concentrations 

were obtained by peak area normalization.  

6.9  Human Neuroblastoma Cell Cultures 

 

Human neuroblastoma (SH-SY5Y) cancer cells were cultured in in RPMI 

medium supplemented with 1% L-glutamine, 10% heat-inactivated fetal bovine 

serum (FBS), 1% penicillin/streptomycin (all from Sigma Aldrich, St. Louis, MO, 

USA) at 37°C in an atmosphere of 95% O2 and 5% CO2. 

6.10 Primary Neuron Cultures 

 

Cortical neurons derived from enzymatically and mechanically dissociated  

cortex of day 18 embryonic Wistar SPF rat brain, as previously described  

(Novellino et al. 2011). After counting, 50,000–60,000 cells were plated on each 

poly-D-lysine (100 g/ml) and Laminin (0.02 mg/ml) coated 60-electrode PEDOT-

CNT MEA chip (Multi Channel Systems, Reutlingen, Germany). Neurons were  
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maintained in neurobasal medium (NB) supplemented with 2% B27 and 1% 

Glutamax-I, and maintained in a humidified incubator at 37°C in a 5% CO2 

enriched atmosphere. Half volume of the medium was exchanged three times a 

week. As previously reported, experiments were carried out from 4 to 6 weeks in 

vitro, when neuronal networks are mature and both neuronal  

and glial cells are present (Hogberg et al. 2011). Each preparation was tested in 

triplicate on neuronal networks derived from different isolations. All chemicals 

and reagents used for the preparation and maintenance of cultures were obtained 

from Invitrogen S.r.L. (Milan, Italy). All studies were performed according to the 

National Research Council’s guide for the care and use of laboratory animals by 

following protocols approved by the Institutional Animal Care and Use 

Committee. 

6.11 MTT Bioassay 

 

Human neuroblastoma cancer cells (SH-SY5Y) were plated (5 × 10
3
) in 96-

well culture plates in 150 µl of culture medium and incubated at 37°C in 

humidified 5% CO2. The day after, a 150 µl aliquot of serial dilutions of essential 

oils, their main component or extracts and their fractions were added to the cells 

and incubated for 24 h. DMSO alone was used as control. Cell viability was 

assessed through MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide) assay. Briefly, 30 µl of MTT (5 mg/ml) was added and the cells 

incubated for additional 3 h. Thereafter, cells were lysed  

and the dark blue crystals solubilized with 30 µl of a solution containing 50%, v/v, 

N,N-dimethylformamide, 20%, w/v, SDS with an adjusted pH of 4.5. The optical 

density (OD) of each well was measured with a microplate spectrophotometer 

(Thermo Scientific Multiskan GO, Monza, Italy) equipped with a 520 nm filter. 

Cell viability in response to treatment was calculated as a percentage of control  
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cells treated with DMSO at the final concentration 0.1% viable cells = (100 OD 

treated cells)/OD control cells (Picerno et al. 2005). 

6.12 Extraction Proteins and Western Blotting 

 

Cells were treated with different concentrations of essential oils, their main 

component or extracts and their fractions. The cells were collected after 24 h and 

lysed using the Laemmli buffer to extract total proteins. For Western Blot 

analysis, an aliquote of total protein was run on 8% SDS-PAGE gels and 

transferred to nitrocellulose. Nitrocellulose blots were blocked with 10% nonfat 

dry milk in Tris buffer saline 0.1% Tween-20 over night at 4°C and incubated 

with primary anti-ADCY1, anti-pERK, anti-ERK and anti-PKA (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) for 3 h at room temperature. 

Immunoreactivity was detected through sequential incubation with horseradish 

peroxidase-conjugated secondary antibody (Amersham Biosciences, Pittsburgh, 

PA, USA) and enhanced chemiluminescence reagents (ImmunoCruz, Santa Cruz 

Biotechnology, SantaCruz, CA, USA) (Petrella et al. 2006). The density of each 

band was measured by using ImageJ software (WS Rasband, ImageJ, NIH, 

Bethesda, MD). 

 

6.13 Data Recordings, Signal Processing and Data Analysis 

 

The spontaneous electrical activity was recorded by the USB MEA 120 INV 2 

BC System from Multi Channel Systems (MCS GmbH, Reutlingen, Germany) as 

previously reported (Novellino et al. 2011). Briefly, the MEA chips were placed 

into the MEA Amplifier (Gain 1000) and data were recorded by the MC_Rack 

software (MCS GmbH, Version 4.4.1.0) at a sampling rate of 10 kHz. A band 

pass digital filter (60–4000 Hz) was applied to the raw signal in order to remove  
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electrical background noise. Only the electric signal overcomes the spike 

detection threshold of 5.5 times the standard deviation of the mean square root 

noise, was identified and recorded.Throughout the experiment, the cell cultures  

were maintained  at  37°C by a temperature controller (TC02, MCS GmbH) and in 

a controlled and humidified atmosphere (9% CO2, 19% O2 and 72% N2) to 

maintain the pH balance (pH was 7.0 ± 0.3). The data analysis was conducted by 

importing data (for MCS software, *.mcd files) into NeuroExplorer software 

(Littleton, MA, USA) and considering the network mean firing rate parameter 

(MFR; number of spikes/s). After exportation to Excel spreadsheets, data were 

averaged over several MEAs to create concentration curves for each treatment. 

The estimated IC50 values (half-maximal inhibitory concentration) were obtained 

by interpolating the normalised concentration–response curves of single 

treatments with the following four-parameter logistic function using SigmaPlot 8 

software (Jandel Scientific, San Rafael, CA, USA): 

f(x) = Max + (Min-Max)/(1+(ɛ /x) β) 

where the variable x is the concentration of the compound; the parameter Min 

is the minimum effect; the parameter Max is the maximum effect; the parameter ɛ  

is the concentration at which the effect is reduced by 50% (IC50);  is a parameter 

related to the maximum slope of the curve, which occurs at concentration ɛ. 

6.14 Animals 

 

A total of 70 male mice of the OF1 strain (Charles River Barcelona, Spain) 

were employed in this study. The animals arrived at the laboratory at 21  days of 

age and were housed in groups of five in plastic cages (28 ×28×14.5 cm), under 

standard conditions: constant temperature (21 ± 2 °C), a reversed light schedule 

(white lights on: 19.30 – 07.30), and food and water available ad libitum (except 

during behavioral tests).  Procedures involving mice and their  
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care were conducted in conformity with national, regional and local laws and 

regulations, which are in accordance with the European Communities Council 

Directives (86/609/EEC, 24 November 1986).  

6.15 Drug treatment  

 

Animals  were  injected  intraperitoneally  with  100 mg/kg  of linalool (Sigma 

Aldrich, St. Louis, MO, USA) or 200 mg/kg of Lavandula  

angustifolia essential oil in  a  volume of  0.01  ml/g  of mice body weight. 

Linalool and essential oil were solubilized in physiological saline solution with 

2% Tween-80 and 1% DMSO. Control  groups  were  injected  with  

physiological  saline  (NaCl  0.9%),  which  was  also  used  to  dissolve  the   

drug. The doses of linalool and L. angustifolia essential oil used to test the effects 

on behaviour of mice in different situations were selected on the basis of previous 

studies (Kim et al. 2009, Coelho et al. 2013, Xu et al. 2016). 

  

6.16 Experimental design 

 

An overall description of the experimental procedure is provided in Table 6.1. 

Behavioral Tests began on PND 39. In experiment 1, 30 minutes after the 

administration of Linalool or L. angustifolia essential oil, OF1 mice (PND 39 to 

47) performed the Open Field, Elevated Plus Maze (EPM) and Social interaction 

test. Three groups were employed in this experiment: Control, Linalool 100 

mg/Kg, EO L. angustifolia 200 mg/Kg. In experiment 2, OF1 mice (PND 88) 

were exposed to social defeat (SD) followed, after 10  

minutes, by intraperitoneal injection of linalool or L. angustifolia essential oil and 

after 30 minutes, they performed the Elevated Plus Maze (EPM) and Social  
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Interaction test. Four groups were employed in this experiment: Control (Explora 

Saline), SD Saline, SD Linalool 100 mg/Kg, SD EO L. angustifolia 200 mg/Kg. 

In experiment 3, OF1 mice (PND 104 to 120) after 30 min of an acute or a 

cronic administration for 10 days of linalool or L. angustifolia essential oil were 

exposed to social defeat, and after 40 min they performed the Elevated Plus Maze 

(EPM) and Social interaction test. Again, four groups were employed in these 

experiments: Control (Explora Saline), SD Saline, SD Linalool 100 mg/Kg, SD 

EO L. angustifolia 200 mg/Kg. 

 

Table 6.1 Experimental procedure. 

PND 39-47 88 104-120 

 Experiment 1: 

effects in OF1 

mice 

Experiment 2:  

effects in social 

stressed OF1 mice  

Experiment 3: 

effects on social stress and social 

interaction of OF1 mice 

 Acute 

administration 

Social defeat 3a 

Acute 

administration 

3b 

Cronic 

administration 

(10 days) 

 Open Field 

Elevated plus 

maze 

Social 

interaction 

Acute 

administration 

Elevated plus 

maze 

Social interaction 

Social defeat 

Elevated plus maze 

Social interaction 

 

6.17 Open-field test 

 

An  open-field  apparatus  (32  ×  30  ×  32  cm)  made  of  black  Plexiglas  

was  used  to  evaluate  the  motor  behaviour  after  an intraperitoneal injection of 

physiological solution, linalool (100 mg/kg) or L. angustifolia essential oil  

administered 30 min before the test. The light in the room created an illumination 

of 150 lx at the centre of the open field. Animal behaviour was  
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tracked during a period of 30 min and analysed using EthoVision 3.1 software 

(Noldus Information Technology, Leesburg, VA). Total distance travelled (cm) 

and velocity (cm/s) were calculated.  Additionally,  we  measured  the  time  spent 

along the walls (periphery) and  in  the  centre  areas  of  the  open  field  and  the  

frequency  to  enter in  the  centre  in  order  to  evaluate  if  there  

were  differences  between the  groups  in  the  exploratory  tendencies  of  mice.  

In this study, we used the open-field test to evaluate the possible sedative effects 

of linalool and L. angustifolia essential oil. 

6.18 Elevated Plus Maze 

 

The Elevated Plus Maze (EPM) consisted of two open arms (30 × 5 × 0.25 cm) 

and two enclosed arms (30 × 5 × 15 cm). The junction of the four arms formed a 

central platform (5 × 5 cm). The floor of the maze was made of black Plexiglas 

and the walls of the enclosed arms of clear Plexiglas. The open arms had a small 

edge (0.25 cm) to provide the animals with additional grip. The entire apparatus 

was elevated 45 cm above floor level. In order to facilitate adaptation, mice were 

transported to the dimly illuminated laboratory 1 h prior to testing. At the 

beginning of each trial, subjects were placed on the central platform so that they 

were facing an open arm and were allowed to explore for 5 min. The maze was 

thoroughly cleaned with a damp cloth after each trial. The behaviour displayed by 

the mice was recorded automatically by an automated tracking control 

(EthoVision 3.1; Noldus Information Technology, Leesburg, VA). The 

measurements recorded during the test period were frequency of entries and time 

and percentage of time spent in each section of the apparatus (open arms, closed 

arms, central platform). An arm was considered to have been visited when the 

animal placed all four paws on it. Number of open arm entries, time spent in open  
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arms and percentage of open arm entries are generally used to characterize the 

anxiolytic effects of drugs (Pellow and File 1986; Rodgers et al. 1997). 

 

6.19 Social defeat 

 

Animals in the experimental group were exposed to one episodes of social 

defeat lasting 25 minutes each. An episode consisted of three phases, which began 

by placing the experimental animal or intruder in the home cage of the aggressive 

opponent or resident for 10 minutes. During this initial phase, the intruder was 

protected from attack by a wire mesh wall that permitted social interaction and 

species-typical threats from the male aggressive resident (Covington and Miczek 

2001). In the second phase, the wire mesh was removed from the cage and a 5-

minute period of confrontation began. In the third phase, the wire mesh was 

replaced for a further 10 minutes to allow social threats from the resident. The 

exploration group underwent the same protocol, but without the presence of a 

‘resident’ mouse in the cage. The second phase of each social defeat protocol was 

video-recorded and ethologically analysed in the experiment 2 and 3. The 

following behaviors were scored for resident mice: threat and attack; and time 

needed to perform the first threat and attack (latencies). In the case of intruder 

mice, the following behaviours were analysed: avoidance/flee and 

defensive/submissive behaviors; and time needed to exhibit the first 

avoidance/flee or defense/submission (latencies). 

6.20 Social interaction test 

 

This test consisted of confronting an experimental animal and a standard 

opponent in a neutral cage (61 × 30.5 × 36 cm) for 10 minutes following a 1 

minute adaptation period prior to the encounter. One day before testing,  
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standard opponents were rendered temporarily anosmic by intranasal lavage with 

a 4% zinc sulfate solution (Smoothy et al. 1986). This kind of mouse induces an 

attack reaction in its opponent, but does not outwardly provoke or defend itself  

since it cannot perceive a pheromone that is present in the urine of the 

experimental animals and functions as a cue for eliciting aggressive behavior in 

mice with a normal sense of smell (Brain et al. 1981; Mugford 1970). Behaviour 

was videotaped under white illumination. The videotapes were analysed using a 

custom-developed program that estimates the time devoted to different broad 

functional categories of behaviour (non-social exploration, social investigation, 

threat, attack and avoidance/flee,), each of which is characterized by a series of 

different postures and elements. A more detailed description can be found in 

Rodriguez-Arias et al. (Rodriguez-Arias et al. 1998). 

6.21 Statistical Analysis 

 

All experiments were carried out in triplicate.  

The data for each experiment were statistically analysed using Graph Pad 

Prism 6.0 software (GraphPad Software Inc., San Diego, CA, USA) followed by 

comparison of means (one-way ANOVA) using Dunnett’s multiple comparisons 

test, at a significance level of 
*
p < 0.05. 
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