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Abstract 

 

 

 

 
In this work, a method for the quality detection of the in-shell hazelnuts, 

based on the low field NMR, has been proposed. The aim of the work is to 

develop an in-line classification system able to detect the hidden defects of the 

hazelnuts. After an analysis of the hazelnut oil, carried out in order to verify 

the applicability of the NMR techniques and to determine some configuration 

parameters, the influence factors that affect these measurements in presence 

of solid sample instead of liquids have been analyzed. Then, the measurement 

algorithms were defined. 

The proposed classification procedure is based on the CPMG sequence and 

the analysis of the transverse relaxation decay. The procedure includes three 

different steps in which different features are detected: moisture content, 

kernel development and mold development. These quality parameters have 

been evaluated .analyzing the maximum amplitude and the second echo peak 

of the CPMG signal, and the T2 distribution of the relaxation decay. In order 

to assure high repeatability and low execution time, special attention has been 

put in the definition of the data processing. Finally, the realized measurement 

system has been characterized in terms of classification performance. In this 

phase, because of the reduced size of the test sample (especially for the 

hazelnuts with defects) a resampling method, the bootstrap, was used. 

 



Introduction 

 

 

 

 

 
In recent years, quality control in agricultural and food products is 

becoming a key factor for several factors, like increasing safety and 

customer satisfaction, and reducing financial losses due to the storage 

and selling of low quality products. Several standards, related to the 

processes and products, have been adopted to define the minimum 

requirements that must be satisfied by companies. In order to check if 

the quality requirements are met, the firms use laboratory equipment to 

detect the main properties of their products. This kind of 

instrumentation guarantees reliability and precision, but it is expensive 

and requires high skilled personnel. For these reasons, farmers and food 

industries also require non-destructive techniques for in-line evaluation 

of the quality of their products. Several techniques, like X-rays, infrared 

spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, have been 

investigated to perform quality analysis on agricultural and food 

products. Among them, Nuclear Magnetic Resonance (NMR) is 

increasing its usability, showing to be an effective detection method in 

the food quality control. In this work, Time Domain – NMR (TD-NMR) 

has been employed for the development of a system for the in-line 

classification of the hazelnuts in shell. Several techniques have been 

adopted to check the quality requirements related to the hazelnuts. The 

dimension of the shell and the blank nuts are easily detected using 

machines based on mechanical techniques (e.g. compressed air). They 

are not enough accurate but characterized by low cost and high 

throughput. A different method to detect empty hazelnuts, based on the 

analysis of the acoustic signal generated from the impact of the nut on 

a steel plate, has also been proposed. Using the same principle, a sorting 

method of cracked, hollow and regular shell has been developed for 

hazelnuts and pistachio nuts, exploiting Frequency Domain (FD) signal 

processing techniques and Artificial Neural Networks (ANNs) for the 



X 

classification. Moreover, RF impedance measurement has been 

employed to determine the moisture in a batch of in-shell hazelnuts. 

These techniques provide classification methods based on single 

features or they are not suitable for in-line detection. 

For many years, NMR techniques were used in chemical analysis 

and medical diagnosis, but recently, thanks to the development of 

permanent magnets and the improvements in the signal processing, 

several industrial applications have been investigated. In particular, the 

NMR methods based on time domain analysis proved to be suitable for 

food quality detection related to fat, oil and water components. The 

quality of the hazelnuts is mainly determined by the moisture content 

and the quantity and quality of their main component, which is the oleic 

acid. For these reasons, the use of the TD-NMR appeared to be 

appropriate for the analysis of this kind of product. In a first phase of 

the work, the tests have been conducted on oil samples extracted from 

healthy and unhealthy hazelnuts. This allowed focusing the analysis on 

the composition of the material without considering the effect of 

external influence factors like moisture or the shape of the sample. 

Thanks to these tests, the optimal parameters for the system setup and 

the pre-processing algorithms were defined. Moreover, an algorithm for 

the classification of the hazelnut oils, based on Singular Value 

Decomposition (SVD), has been proposed. Later, an analysis of the 

influence factors has been carried out and then a two-stage 

classification method for the in-shell hazelnuts has been developed. It 

is based on the analysis of the transverse relaxation decay obtained from 

the CPMG signal. In the first stage, the empty hazelnuts, with a not well 

developed kernel and with a high moisture content are detected 

exploiting the differences among the amplitude of the CPMG signal, 

while in the second stage, molded hazelnuts are detected analyzing the 

differences among the components of the multi-exponential decays of 

the transverse relaxation signal. The thesis is organized as follows: 

Chapter I describes the quality control parameters involved in the 

hazelnuts processing and the main techniques used in the food quality 

control, focusing on the NMR applications. Chapter II shows an 

overview of the NMR techniques and a description of the system. 

Chapter III contains a description of the influence parameters and the 

data processing and test oil samples. Chapter IV describes the signal 

processing techniques employed in the analysis of the hazelnuts and 

Chapter V shows the classification algorithm for the in-shell hazelnuts. 

 



 

 

Chapter I 

Quality control in hazelnuts 

processing 
 

 

 

 

 
 

I.1 Main properties and hidden defects of the hazelnuts 

Hazelnuts are widely used in the confectionary industry for their flavor and 

taste. They are characterized by a high nutritional value due to the presence of 

several components, mainly lipids (about 60% w/w), carbohydrates, proteins, 

sugar and dietary fibers (Memoli et al., 2017). Turkey is the most important 

producer of hazelnuts in the world, with more than 70% of the overall 

production, followed by Italy and United States (FAOSTAT, 2017). Both the 

yearly world production and the hazelnuts quality depend on the climate 

condition. In order to guarantee a suitable level of quality, several standards 

have been defined by the producing countries and regions. They define the 

minimum quality requirements of the fruits in terms of dimension, aspect, 

hidden defects. Other requirements, related to the quality of the hazelnuts and 

the place of production, can be found, for example, in the European Union 

certification like the Protected Geographical Indication (PGI). The most recent 

international standard has been set by the Organization for Economic Co-

operation and Development (OECD, 2011). It defines the quality requirements 

for the in-shell hazelnuts and hazelnut kernels intended for direct consumption 

or for food. The minimum requirements are described in the following. The 

shell must be: 

 Intact; only slight superficial damages are allowed. 

 Clean; free of any foreign matter. 

 Free from blemishes and stains affecting more than 25% of the 

surface of the shell. 

 Well formed. 

The kernel must be: 

 Free from rancidity. 
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 Sufficiently developed; kernels should fill at least 50% of the 

shell cavity. 

 Not desiccated. 

 Free from blemishes and stains affecting more than 25% of the 

surface of the shell. 

 Well formed. 

The whole nut must be: 

 Free from mold filaments. 

 Free from living pests. 

 Free from damage caused by pests. 

 Free of any foreign smell or taste. 

 Dried; moisture content not greater than 12% for the whole nut or 

7% for the kernel. 

The standard also defines the maximum allowed defects related to each 

requirements providing three quality classes: extra class, class I and class II. 

Figure I-1 shows the aspect of healthy and unhealthy kernels. 

 

 

Figure I-1 Hazelnut kernels: (1) mold and pest damage; (2) desiccated and 

not well developed; (3) healthy 

 

There are many varieties of hazelnuts cultivated in several areas. Each 

cultivar has specific characteristics and can produce fruits with different 

properties. Among the cultivars, “Tonda di Giffoni”, that is produced in the 

south of Italy by the “Consorzio di Tutela Nocciola di Giffoni I.G.P., is 

appreciated for its quality which is particularly suitable for the processing 

industry. It is certified by the European Union with the Protected Geographical 

(1) 

(2) 

(3) 
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Indication (PGI) that defines the following features: dimension of the shell not 

less than 18 mm; dimension of the kernel of the unshelled hazelnuts not less 

than 13 mm; moisture content after drying not more than 6% (Commission 

Regulation (EC) No 1257/2006 of 21 August 2006). 

The price of the hazelnuts it is strictly related to the quality. In particular, 

it is determined on the basis of the percentage of the defects found in a batch. 

For this reason, farmers need nondestructive techniques to detect the hidden 

defects of the hazelnuts in order to avoid a price reduction selling the product. 

 

I.2 Techniques to detect hazelnuts quality 

The main technique used to detect the hidden defects of the hazelnuts is 

the visual inspection. This is a sample based method in which a batch of at 

least 100 nuts are examined and classified. A procedure to carry out this kind 

of test has been defined by the U.S. Food and Drug Administration in the 

Macroanalytical Procedures Manual (MPM) (FDA, 1984). The document 

defines the test procedures for several food products, like fruits, vegetables, 

grain, dairy, cheese and seafood. Nut products method is described in the 

chapter V-10. It defines: 

 Sample preparation. 

 Sequential sampling plans. 

 Visual and organoleptic examination. 

 Classification of reject nuts. 

 Report. 

This method requires time and skilled personnel for a correct nut 

classification. Other techniques have been investigated in order to achieve 

automatic systems to check the quality parameters of the hazelnuts. 

The dimension of the shell and the blank nuts are detected by means of 

machines based on mechanical techniques. In particular, calibrator machines 

able to sort the whole hazelnuts on the basis of their diameter are available 

making use of sieves with different diameters. Air compressed-based 

machines can detect and separate some kinds of foreign body, like leaves or 

pieces of wood, from the whole hazelnuts. They can also detect blank nuts, 

even if they are not accurate. These kinds of equipment are useful for a 

pretreatment of the product but they does not represent quality control system. 

A different method to detect empty hazelnuts, based on the analysis of the 

acoustic signal generated by the impact of the nut on a steel plate, has been 

proposed (Onaran et al., 2005). It exploits both time-domain and frequency-

domain analysis of the signal and can be used for a real-time detection. Using 

the same principle, a sorting method of cracked, hollow and regular shell has 

been developed for hazelnuts (Kalkan and Çetisli, 2011) and pistachio nuts 

(Mahdavi-Jafari et al., 2008), exploiting Frequency Domain (FD) signal 

processing techniques and Artificial Neural Network (ANNs). Several studies 

have been conducted related to the moisture content determination. This is an 



Chapter I 

4 

important quality parameter because a high level of moisture causes fungal 

diseases and mold formation, and then postharvest losses. Based on the 

weather condition around the harvest period, the moisture content of the 

hazelnuts can be more than 30%. They are dried using industrial dryer or, 

often, by means of sun drying techniques. After this process, farmers need 

instruments to verify that the moisture content is lower than the limits imposed 

by the quality standards. The most common method to evaluate the moisture 

content in food is based on oven drying in which the sample is heated under 

specified conditions and the amount of moisture is determined calculating the 

loss of weight: 

%𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒−𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒

𝑤𝑒𝑖𝑔ℎ𝑡 𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒
× 100   ( 1 ) 

Other methods, related in particular to seeds and nuts, have been proposed. 

RF impedance measurement has been employed to determine the moisture in 

single grain and peanut kernels placed in a small parallel plate capacitor 

(Nelson et al., 1992). The samples are placed between two electrodes and a 

measurement of the impedance is made at two different frequencies. The 

difference of the measured impedances is related to the moisture content. A 

similar method has been applied to determine the amount of moisture in in-

shell hazelnuts placed in a probe with two vertical parallel-plate electrodes 

able to host a sample of 250 g of nuts (Solar and Solar, 2016). More complex 

analytical techniques have been used to evaluate some quality characteristics 

of the hazelnuts. For example, a study for the identification of chemical 

markers of hazelnut roasting, based on Headspace Solid Phase 

Microextraction (HS-SPME) coupled with Gas Chromatography – Mass 

Spectrometric (GC-MS) detection has been proposed (Nicolotti et al., 2013). 

Near Infrared (NIR) Spectroscopy has also been used to detect flawed kernels 

and to estimate lipid oxidation (Pannico et al., 2015). These kinds of 

techniques allow extracting complex features in a non-destructive way, but 

are suitable for laboratory testing and cannot used for industrial applications. 

 

I.3 Nondestructive techniques in food quality control 

In recent years, the quality control in both processes and products is 

becoming an important issue in the food supply chain. In order to guarantee 

the compliance to the international standards and regulations, farmers and 

food industries need nondestructive techniques to check the quality of their 

products. Nondestructive techniques can be defined as the qualitative and 

quantitative measurements that has been surveyed without any chemical, 

physical, mechanical and thermal damage to the product (Aboonajmi and 

Faridi, 2016). Several studies have been conducted using different techniques 

to carry out quality control on agricultural and food products at different 

stages, from the plantation, to the post-harvesting and then the processing. 
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Among these techniques, visual spectroscopy exploits the light energy 

absorption at specific wavelengths, in the visible region (380-750 nm), of the 

chemical components of the food materials. In this way, some compositional 

information can be determined from the spectra of the samples under test. On 

the same principle, but in a different range of wavelength (780-2500 nm), is 

based the NIR spectroscopy. This kind of techniques are not reliable in case 

of heterogeneous materials, and they usually require a considerable calibration 

effort (Dalitz et al., 2012). Microwave sensing is an emerging technique for 

internal quality detection in water-containing materials taking advantage of 

the dipolar nature of water and dispersion associated with its dielectric 

properties at microwave frequencies (Trabelsi and Nelson, 2016; Meng et al., 

2017). Several applications, based on both acoustics and ultrasound 

techniques, have been proposed (Aboonajmi and Faridi, 2016). They are based 

on the analysis of the waves, generated by a source, that pass through the 

product tissue, and they allow evaluating the freshness and the ripeness of 

some kinds of food. X-ray imaging is another method that has been applied in 

food inspection. Some applications to fresh agricultural products, using 

medical grade computed tomography, are described in (Donis-Gonzalez et al., 

2014). Moreover, a study for the quality assessment of the onions, using x-ray 

computed tomography, can be found in (Speir and Haidekker, 2017). 

Among the nondestructive techniques, NMR is increasing its usability in 

food quality control. In the next paragraph an overview of the food 

applications of this technique will be presented. 

 

I.4 Using NMR in food quality control 

NMR has been mainly used, in the past, in chemical analysis and medical 

diagnosis. The applications in food quality control have been developed 

progressively, thanks to the technical improvement in the instrumentation, the 

signal processing and especially the development of permanent magnets that 

allowed a significant cost reduction of the NMR equipment. 

The NMR systems can be classified, on the basis of the technique used to 

carry out the analysis, in three main categories: 

 NMR Spectrometry. 

 NMR Relaxometry. 

 MRI (Magnetic Resonance Imaging). 

NMR Spectrometry, also named High Field NMR or Fourier Transform 

NMR (FT-NMR), makes use of superconducting magnets with a static 

magnetic field usually higher than 1 T. It is based on the frequency domain 

analysis of the NMR signals and it allows obtaining quantitative information 

related to the chemical composition of the samples under test. 

Relaxometry mainly differs from the spectrometry for the use of permanent 

magnets that makes it the cheapest NMR technique and, for this reason, the 

most interesting to investigate industrial applications. It is also named Low 
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Field NMR or Time Domain NMR (TD-NMR) because it employs magnets 

with a static magnetic field that is usually lower than 1 T and the signal 

analysis, differently from the spectrometry, is carried out in the time domain. 

MRI is a technique highly used in medical diagnosis because it allows 

achieving images of the organs of the body. It is more complex than the 

previous techniques because it makes use of gradient magnetic fields in 

addition to the main static magnetic field to produce the images. 

 

 

Figure I-2 Summary of the NMR applications on the basis of the static 

magnetic field strength for permanent magnets (Source: Mitchell et al., 

2013)  

 

All of the above techniques have been investigated in food analysis. An 

overview of the food applications of the liquid state FT-NMR can be found in 

(Mannina et al., 2012). It presents a review of the NMR methodologies in food 

quality control, analyzing several aspects as the sample preparation, which is 

an important step to obtain reproducible spectra, the spectral analysis and the 

statistical analysis. It also describes some applications to several products like 

alcoholic beverage, fruits and vegetables, milk and dairy products. An 

example of food authentication is described in (Parker et al., 2014), in which 

a bench-top spectrometer has been used for the analysis of olive oil with 

adulteration of hazelnut oil. A study on the compositional analysis of wine in 

a full intact bottle has been proposed in (Weekley et al., 2003). In the paper, 

the capability to detect acetic acid spoilage has been investigated using NMR 

spectrometry system. An overview of the potential applications of NMR and 

MRI for compositional and structural analysis, inspection of microbiological, 

physical and chemical quality, food authentication, on-line monitoring of food 

processing is presented in (Marcone et al., 2013). A review focused on the 



Quality control in hazelnuts processing 

7 

development of TD-NMR and MRI based sensors for different food 

applications, can be found in (Kirtil et al., 2017). 

Several studies have been carried out on methods and applications of Low 

Field NMR. A method for Solid Fat Content (SFC) and simultaneous oil and 

moisture determination has been described in (Todt et al., 2006). Applications 

on quality control of different food products have been proposed: the 

evaluation of quality of oranges during storage (Zhang et al., 2012); Analysis 

of water dynamic states and age-related changes in mozzarella cheese 

(Gianferri et al., 2007). The interest towards the industrial applications of the 

TD-NMR is constantly increasing. A study of the perspective of the use of the 

TD-NMR as in-line industrial sensor can be found in (Colnago et al., 2014). 

Among the proposed applications in in-line monitoring, Low Field NMR has 

been employed for the evaluation of the internal browning of whole apples 

(Chayaprasert and Stroshine, 2005). Moreover, an automated system for oil 

and water content determination in corn seeds has been proposed in (Wang et 

al., 2016). 

The main applications of the TD-NMR in food quality control are related 

to the evaluation of the presence of water, moisture, oil, fat, that are well 

detected by this technique. The quality of the hazelnuts is strictly related to 

the presence of moisture and fatty acids and then, in this work, Low Field 

NMR has been taken into account as a suitable technique for the analysis of 

the hazelnuts quality. In the next chapter, an overview of the NMR methods 

and the equipment used to carry out the analysis will be depicted. 
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NMR methods and equipment 

 

 

 

 
II.1 NMR Theory 

NMR is based on the magnetic properties of the nuclei of the atoms. The 

nuclei are characterized by a nuclear spin quantum number (I) that can be 

equal to or greater than zero, with values multiples of ½. Only the nuclei with 

a value of I different by zero are NMR-sensitive, while the nuclei with I=0, 

which are those with atomic mass and atomic number both even, are NMR-

silent. The main characteristic of the spinning nuclei is that they possess an 

angular momentum (P) and charge, and the motion of the charge causes the 

presence of a magnetic moment (µ). The magnetic moment is proportional to 

the angular momentum: 

𝜇 = 𝛾 ∙ 𝑃        ( 2 ) 

Where γ is the gyromagnetic ratio, which is constant for each nucleus. 

When the nuclei are placed in an external static magnetic fields (B0), the 

microscopic magnetic moments align themselves relative to the field in a 

discrete number of orientation, depending on the energy states involved (they 

depend on the possible spin states). The effect of the static magnetic field on 

the magnetic moment is to impose a torque that causes a motion of the vector 

representing the magnetic moment on the surface of a cone around the 

direction of the field (Fig. II-1). 

 

Figure II-1 Motion of a magnetic moment (μ) of a nucleus in a static 

magnetic field (B0) 
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This motion is referred to as Larmor precession and its rate depends on the 

strength of the applied field and the gyromagnetic ratio of the nucleus. 

The rate can be expressed in terms of angular velocity ω0 (rad s-1): 

𝜔0 = −𝛾 ∙ 𝐵0        ( 3 ) 

 Or frequency f0 (Hz): 

𝑓0 = −
𝛾

2𝜋
𝐵0        ( 4 ) 

This is named Larmor frequency of the nucleus. For the proton (1H) the 

gyromagnetic ratio (γ) is 26.75·107 rad T-1s-1. With a 1 T static magnetic 

field the larmor frequency is 42.25 MHz. In the table II.1, the gyromagnetic 

ratio, natural abundance and relative sensitivity (to the proton) for the main 

NMR-sensitive nuclei is shown. 

 

Table II.1 Natural abundance, gyromagnetic ratio and relative sensitivity 

(to 1H) of some NMR-sensitive nuclei 

Nucleus Natural 

abundance [%] 

γ [rad T-1s-1] Relative 

sensitivity [%] 
1H 99.98 26.75·107 100.0 
13C 1.11 6.73·107 1.6 
19F 100.00 25.18·107 83.3 
31P 100.00 10.84·107 6.6 

 

The 1H nucleus has the highest NMR sensitivity and can be found in most 

materials. For this reason it is the most used in the NMR experiments. 

At a macroscopic level, the effect of the static magnetic field is a net 

magnetization vector (M0) on the same direction of the applied field, which is 

conventionally considered the z-axis of a Cartesian co-ordinate system 

(Claridge, 2016). When the nuclei are placed in the field, the magnetization is 

not instantaneous, but it increases exponentially (eq. 5): 

𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒
−

𝑡

𝑇1)      ( 5 ) 

The time constant T1 is the longitudinal relaxation time. It is an important 

parameter because it can be used to get information about the sample under 

test during the NMR experiments. Moreover, when a sample is placed in the 

magnetic field, or after an experiment, it is necessary to wait a period of at 

least 5T1 to be sure that the magnetization has recovered. This period, on the 

basis of the material under test, can be several seconds. 

When a material is placed in the static magnetic field and the magnetization 

process is complete, to obtain a NMR signal it is necessary a radiofrequency 

(RF) pulse at the Larmor frequency (which is the resonance frequency of the 

system) that generates an oscillating magnetic field B1 in a plane orthogonal 
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to the direction of B0. This can be made transmitting the RF pulse to a coil 

placed in the static field (Fig. II.2). 

 

Figure II.2 Oscillating magnetic field B1 generated by a RF pulse 

transmitted to a coil placed orthogonally in the static magnetic field B0 

The effect of B1 is to rotate the magnetization vector, which is along the z-

axis, by an angle θ, called flip angle that can be expressed as: 

𝜃 = 𝛾 ∙ 𝑡𝑝 ∙ 𝐵1        ( 6 ) 

Where tp is the duration of the RF pulse. At the end of the RF pulse the 

magnetization vector returns to the equilibrium and, during this process, it 

induces a RF voltage in the coil. The maximum amplitude of the voltage is 

obtained when θ = π/2. When the magnetization vector returns to the 

equilibrium, the component Mz increases according to eq. (5). This process is 

named longitudinal relaxation. At the same time, another independent process 

occurs, the transverse relaxation, in which the component of the magnetization 

in the x-y plane decreases to zero. This process is always faster than the 

longitudinal relaxation. It can be expressed by the eq. (7): 

𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦𝑒
−

𝑡

𝑇2       ( 7 ) 

Where the time constant T2 is the transverse relaxation time. This is, 

together with the longitudinal relaxation time (T1), one of the main parameters 

used to get quality information about the material under test, in particular in 

the NMR relaxometry. Conversely, the NMR spectroscopy is based on the 

frequency domain analysis of the signal induced in the coil at the end of the 

RF pulse. In the next paragraph a description of the NMR instrument will be 

depicted.     

 

II.2 NMR equipment  

A NMR instrument is composed, regardless of the use as spectrometer or 

relaxometer, by four main components: 

 Magnet; 

 Probe; 
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 Transmitter; 

 Receiver. 

 

II.2.1 Magnet 

The magnet is used to generate the static magnetic field B0. The field must 

be extremely homogeneous in the volume that contains the sample under test, 

in order to have the same resonance frequency in the different sections of the 

sample. The most homogeneous field can be obtained with the 

superconducting magnets, which are composed by a coil with a wire of 

superconducting material immersed in liquid helium to maintain the coil at the 

low temperature needed to guarantee the superconducting property of the 

wire. These kind of magnets are mainly used in the applications that need high 

field with the highest homogeneity, like the NMR spectroscopy for chemical 

analysis. In the low field NMR, permanent magnets are used instead of the 

more expensive superconductive magnets. They are not able to produce a 

perfect homogeneous field as required in the NMR spectroscopy, but can be 

used in the Relaxometry, where several pulse sequences techniques have been 

developed to limit the effect of the field inhomogeneity and to obtain quality 

information about the samples under test. Using the permanent magnets 

allowed a great reduction of the overall cost of the systems and the emergence 

of the NMR industrial applications. 

The main parameter of the magnet is the static magnetic field (B0), which 

also determines the resonance frequency of the NMR system (see eq. 4). Other 

parameters are: 

 Field homogeneity (ΔB0/B0); 

 Dimension of the field homogeneity area 

 

II.2.2 Probe 

The probe is the component that allows transmitting the excitation signals 

to the samples and receiving the NMR signal in response to the excitation. It 

is connected both to the transmitter and the receiver and its purpose is to 

deliver the rotating magnetic field B1 to the sample and to detect the signal at 

the end of the excitation RF pulse, during the relaxation time. The main 

component of the probe is the coil (with inductance L) which is placed inside 

the magnet in order to obtain a B1 field orthogonal to B0 when the transmitter 

sends the RF pulses. The sample under test is arranged in the coil of the probe 

in order to be subjected both to the static and the rotating fields. The probe 

also includes two variable capacitors for the frequency tuning (Ctune) and the 

impedance matching (Cmatch) (Fig. II.3). The probe circuit is characterized by 

three quantities (Teng, 2012): 

 Resonance frequency; 

 Impedance at the resonance; 
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 Q factor. 

 

 

Figure II-3 Example of probe circuit 

The two capacitors are used to adjust the value of the resonance frequency 

of the circuit to the resonance frequency of the NMR system, and to obtain, at 

that frequency, an impedance of 50 Ω. The Q factor depends on the resonance 

frequency and it can be defined by: 

𝑄 =
𝑓0

∆𝑓
          ( 8 ) 

Where f0 is the resonance frequency and Δf is the bandwidth of the 

resonance circuit. In order to increase the probe sensitivity, the probe design 

is made to obtain the highest value of Q. 

 

II.2.3 Transmitter 

The transmitter provides the RF pulses to send to the probe for the sample 

excitation. It has to be able to generate the RF signals with the requested 

frequency, phase, amplitude and pulse width. The signals have to be amplified 

in a power range that depends on the NMR application, and it can be from 10 

W to hundreds watt. 

   

 

Figure II-4 Block diagram of the transmitter 

 

Figure II-4 shows a block diagram of the NMR transmitter. It is composed 

by three diffeent blocks: 
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 A timing controller that manages the pulse width and the timing of 

the pulse sequences; 

 A RF signal generator; 

 A RF power amplifier. 

The transmitted RF pulse is a sinusoidal signal at the resonance frequency 

of the system (f0) with duration tp. It can be expressed in the time domain as: 

𝑥(𝑡) = 𝐴 ∏ (
𝑡

𝑡𝑝
) 𝑐𝑜𝑠(2𝜋𝑓0)      ( 9 ) 

And in the frequency domain by its fourier transform: 

𝑋(𝑓) =
𝐴𝑡𝑝

2
[𝑠𝑖𝑛𝑐(𝑓 − 𝑓0)𝑡𝑝 + 𝑠𝑖𝑛𝑐(𝑓 + 𝑓0)𝑡𝑝]               ( 10 ) 

The RF pulses excites the frequencies around the resonance frequency in a 

bandwidth that depends on the pulse duration tp. 

 

II.2.3 Receiver 

The receiver has to be able to detect the weak RF signal from the probe. 

As previously described (Fig. II-3), the coil of the probe is used both for 

exciting and for detecting the signal. The excitation pulse is a power signal, 

so the receiver must be protected when the TX pulses are applied. To do this, 

the receiver is connected to the probe by means of a device called duplexer 

and a λ/4 cable (Fig. II.5). The duplexer is made of fast switching diodes. It 

allows, together with the λ/4 cable, protecting the receiver: 

 When the pulse is on, the high power RF is routed to the probe and 

the receiver is protected by disconnecting it or shorting it to 

ground; 

 When the pulse is off, the receiver is connected to the probe and 

the transmitter is disconnected. 

The received signal is amplified and then a quadrature detection is carried 

out to obtain a baseband NMR signal from the RF signal. 

 

 

Figure II-5 Transmitter-receiver connection to the duplexer 
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      The following figure shows a block diagram of the receiver: 

 

 

Figure II-6 Block diagram of the receiver 

 

The received signal has a low-level amplitude that has to be amplified 

using a low-noise preamplifier that is design to add the lowest possible noise 

level. In addition, a bandpass filter (BPF) is used in order to filter the noise 

outside the band of interest before the quadrature detector. 

 

 

Figure II-7 Block diagram of the quadrature detector 

 

The quadrature detector is composed by: 

 Local oscillator (LO): it provides a sinusoidal signal with  

frequency fLO; 

 π/2 phase shifter: it provides a sinusoidal signal with a π/2 phase 

shift respect to the signal generated by the LO; 

 Mixer: it multiplies the input signal x(t) and the signal of the LO 

in the I channel, and the input signal and the phase shifted signal 

in the Q channel; 

 Lowpass filter (LPF). 

The signals obtained in the I and Q channel have the frequency: f0 – fLO, 

where f0 is the frequency of the input signal x(t). 

The input signal, received from the probe, can be written as: 
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𝑥(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑡)      ( 11 ) 

Where f0 is the Larmor frequency; while the signal generated by the LO and 

the π/2 phase shifter can be written, respectively: 

𝑥𝐿𝑂(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓𝐿𝑂𝑡)      ( 12 ) 

𝑥𝑆𝐻(𝑡) = −𝑠𝑖𝑛(2𝜋𝑓𝐿𝑂𝑡)     ( 13 ) 

The output of the mixer for the I channel is: 

𝑥(𝑡) ∙ 𝑥𝐿𝑂(𝑡) =  𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑡) ∙ 𝑐𝑜𝑠(2𝜋𝑓𝐿𝑂𝑡) =
𝐴

2
[𝑐𝑜𝑠2𝜋(𝑓0 + 𝑓𝐿𝑂)𝑡 +

𝑐𝑜𝑠2𝜋(𝑓0 − 𝑓𝐿𝑂)𝑡]      ( 14 ) 

 

While the output for the Q channel is: 

𝑥(𝑡) ∙ 𝑥𝑆𝐻(𝑡) =  𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑡) ∙ (−𝑠𝑖𝑛(2𝜋𝑓𝐿𝑂𝑡)) =
𝐴

2
[−𝑠𝑖𝑛2𝜋(𝑓0 + 𝑓𝐿𝑂)𝑡 +

𝑠𝑖𝑛2𝜋(𝑓0 − 𝑓𝐿𝑂)𝑡]      ( 15 ) 

As can be seen from eq. (14) and eq. (15), at the output of the mixer the signals 

can be expressed as the sum of two sinusoidal components with frequency 

f0+fLO and f0-fLO. The component with frequency f0+fLO is filtered using the 

LPF, and then only the component with frequency f0-fLO is present at the 

output of the quadrature detector. 

 The frequency of the local oscillator must be equal to the resonance 

frequency of the system (fLO = f0) in order to have a baseband NMR signal at 

the output of the receiver. This is useful because the NMR signals have a 

narrowband frequency spectrum around the resonance frequency, so the 

baseband conversion allows simplifying the signal processing. 

 

 

II.3 NMR methods 

 Several techniques have been developed to obtain NMR signals in order 

to extract information like the frequency spectrum, in the case of FT-NMR, or 

the longitudinal (T1) and transverse (T2) relaxation time, the diffusion 

coefficient (D), in the case of TD-NMR. In this work, 1H TD-NMR has been 

employed and two pulse sequences have been taken into account: 

 Single pulse; 

 CPMG. 

These techniques does not require complex hardware and are relatively 

fast, so they are suitable for the industrial applications. 

 



NMR methods and equipments 

17 

II.3.1 Single pulse sequence 

Single pulse is the simplest sequence to obtain an NMR signal response. A 

short and strong RF pulse at the resonance frequency of the system is produced 

by the transmitter to excite the frequencies in the NMR spectrum; during the 

RF pulse, the magnetization of the nuclei inside the sample rotates, and the 

duration of the pulse is chosen to obtain a rotation of the magnetization vector 

of π/2 rad. At the end of the RF pulse, the nuclei of the sample return to the 

initial position generating an NMR signal (FID signal). 

In order to acquire the FID signal correctly, it is necessary to synchronize 

the transmitter and the receiver by means of a control signal (Blanking signal). 

 

 

Figure II-8 Time diagram of the single pulse sequence (Source: Spincore 

Technologies Inc., 2014) 

Figure II-8 shows a time diagram of the single pulse sequence. When the 

blanking signal becomes active, the RF power amplifier (RFPA) is switched 

on, and the RF pulse is transmitted to the probe after the blanking delay, that 

is the time needed to warm-up the RFPA before the RF pulse can start (Fig. 

II-9). After the pulse time (tp) the blanking signal becomes de-active and the 

RFPA is switched off, but the receiver can start to acquire the NMR signal 

only after the transient time, also named dead time, which is the time needed 

to switch off the RFPA. After the acquisition time, in which the receiver 

acquires the FID signal, a new pulse sequence can be started on the same 

sample only after the repetition delay, which is the time needed to completely 

recover the magnetization of the sample (eq. 5). 
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Figure II-9 Blanking signal and RF pulse at the resonance frequency (Source: 

Spincore Technologies Inc., 2014) 

 

Both the blanking delay and the transient time are related to the RF power 

amplifier and have to be the shortest possible. In particular, the transient time 

does not allow acquiring all the FID signal (Fig. II-10).  

 

 

Figure II-10 FID signal acquired by means of single pulse 
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In a perfectly homogeneous field (ΔB/B0<10-6), the FID signal corresponds 

to the transverse relaxation decay (eq.7). In this case, it can be used to calculate 

the transverse relaxation time (T2) or, alternatively, a Fourier transform can be 

carried out to obtain the spectral components of the signal and then the 

chemical composition of the sample (FT-NMR). Conversely, in presence of a 

non-homogeneous field, the FID signal decreases faster than the transverse 

relaxation decay. In this case, the decay is mainly due to the field 

inhomogeneity, and not to the magnetization of the sample. The exponential 

decay of the FID signal can be expressed in terms of the time constant T2
* 

instead of T2, where: 

1

𝑇2
∗ =

1

𝑇2
+ 𝛾

∆𝐵0

2
       ( 16 ) 

As can be seen from eq. (16), the time constant T2
* is inversely proportional 

to the static magnetic field variation (ΔB0).  

The field inhomogeneity causes a resonance frequency variation in the 

different sections of the sample. The result is that it is not possible to perform 

the spectral analysis to determine the molecular structure of the sample. Figure 

II-11 and Figure II-12 show the effect of the field inhomogeneity in the time-

domain and in the frequency-domain. 

 

 

Figure II-11 Effect of inhomogeneity in time domain. (a) Homogeneous field; 

(b) inhomogeneous field 
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Figure II-12 Effect of inhomogeneity in frequency domain. (a) Homogeneous 

field; (b) inhomogeneous field 

 

In the frequency-domain, the faster decay in time corresponds to a broader 

spectral line, and then a higher frequency resolution that does not allow 

discriminating the several spectral components related to the molecular 

composition of the sample. In this case is only possible to perform a 

quantitative analysis of the liquid part of the sample (that are the molecules 

containing 1H atoms excited at the resonance frequency). 

 

II.3.1 CPMG sequence 

This technique is largely adopted in Low Field NMR because it allows 

obtaining qualitative information about the sample in presence of field 

inhomogeneity. In more details, it is used to determine the transversal 

relaxation time (T2) which is the time constant of the exponential decay of the 

NMR signal in presence of a perfect homogeneous field. 

The CPMG sequence (Fig. II-13) consists of a π/2 RF pulse (same as the 

single pulse) followed by a train of π RF pulse (it takes twice the time of the 

π/2 RF pulse). The distance between the π/2 RF pulse and the first π RF pulse 

is denoted as τ; the time interval between two π RF pulses is 2τ. The effect of 

this kind of sequence is to obtain a FID signal after the π/2 RF pulse which 

has a fast decay due to the field inhomogeneity, and a train of echo signals in 

the middle of the distance between the π RF pulses; the amplitude of the echo 

signals gradually decreases after each π RF pulse. The maximum of the 

amplitude of each echo gives the relaxation curve that can be used to estimate 

the decay time T2. 

The acquisition of the FID signal starts at the time 0. It is generated by the 

π/2 RF pulse (that is not shown in the figure); after a time τ a π RF pulse is 
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generated and after a time τ there is the peak of the first echo; an echo is visible 

each 2τ 

 

 

Figure II-13 CPMG sequence (first nine echoes) 

 

In the evaluation of the transverse relaxation curve, the odd echoes are 

usually discarded because the amplitude can be affected by an error due to an 

incorrect length of the π R pulse, therefore only the even echoes are taken into 

account. 

 

Figure II-14 Comparison between the transverse relaxation curve obtained 

with the CPMG (decay with time constant T2) and the decay curve of the FID 

signal affected by field inhomogeneity (decay with time constant T2
*) 

 

Figure II-14 shows an example of the evaluation of transverse relaxation 

curve with the CPMG and the comparison between the decay of the curve 

obtained using the CPMG and the decay of the FID signal that is affected by 

the field inhomogeneity (see eq.16). As can be seen from the figure: 

𝑇2
∗ ≪ 𝑇2       ( 17 ) 
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II.4 The adopted TD-NMR measurement system 

The TD-NMR instrument used for the experimental work is composed by 

three main components: 

 NMR console; 

 Magnet and probe; 

 Personal computer. 

 

II.4.1 NMR console iSpinNMR™ 

The NMR console is manufactured by Spincore Technologies Inc. It 

includes all the electronics to perform the generation and transmission of the 

excitation pulse sequences as well as the acquisition of the RF signals from 

the probe. It allows employing a resonance frequency up to 37.5 MHz. The 

main parameters are: 

 Internal RF PA 20 W PEP; 

 Internal Arbitrary Waveform Generation; 

 DDS for RF output pulse with 14-bit resolution @300 Ms/s; 

 ADC with 14-bit resolution @75 Ms/s; 

 Internal Digital Down Conversion; 

 Internal Signal Averaging of Baseband data in multiple acquisitions; 

 USB 2.0 Interface to transfer data to PC. 

A block diagram of the NMR console is depicted in figure II-15. It is 

composed by three block: (1) The RadioProcessor USB is a digital board that 

manages the data acquisition, the excitation pulse generation and the timing. 

In the receiving section, the pre-amplified RF signal from the probe is 

acquired by a 14-bit resolution ADC and then is demodulated in a digital down 

converter. In the digital transmitter the RF pulses are generated and converted 

to analog using a 14-bit resolution DAC. (2) The RF Power Amplification is 

composed by a RFPA and a low-pass filter. (3) The Small-Signal Pre-

amplification is composed by a low-noise 60 dB pre-amplifier and a low-pass 

filter.  
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Figure II-15 iSpinNMR™ console block diagram (Source: Spincore 

Technologies Inc., 2014) 

 

II.4.2 Magnet and probe 

These components have been designed for the specific application 

considering that the probe, placed in the magnet, has to be able to host a whole 

hazelnut. To this aim, the probe has a cylindrical coil characterized by height 

and diameter both equal to 25 mm. The permanent magnet has the following 

characteristics (Figure II-16): 

 Air gap: 40 mm; 

 Pole face diameter: 150 mm 

 Dimension of the uniform magnetic field: 25 mm diameter, 25 mm 

high; 

 Field uniformity: 10-4 ΔB0/B0; 

 Static magnetic field: 0.513 T at 23.0 °C. 

Considering the value of the static magnetic field, the resonance frequency 

of the system is 21.8 MHz 
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Figure II-16 Permanent magnet and probe 

 

The field homogeneity of the magnet is 10-4 ΔB0/B0.This is a typical value 

for a commercial permanent magnet. The figure II-17 shows the field variation 

in function of the position in the x-y plane. Considering a 1H probe, a variation 

of 1mT of the static magnetic field causes a variation of the Larmor frequency 

greater than 40 kHz. 

In order to work in the highest homogeneity area, the centre of the coil of 

the probe must be placed in correspondence of the (0,0) x-y coordinates (Fig. 

II-17). This point can be found considering the maximum amplitude of the 

FID signal for a sample at the resonance frequency, achieved moving the 

probe inside the magnet. 

The probe needs to be tuned to the resonance frequency of the system 

(f0=21.8 MHz) and, in addition, the impedance has to be matched to be 

matched to 50 Ω. This has been made by means of a Vector Network Analyzer 

(Fig. II.18), adjusting the two variable capacitors Ctune and Cmatch (Fig.II-3) 
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Figure II-17 Field strength as a function of the position in the magnet 

 

 

Figure II-18 Probe tuning and matching 
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II.4.3 Personal computer 

The NMR console is connected to a personal computer through an USB 

2.0 interface. The complex data of the acquired NMR signal, after a baseband 

digital down conversion, are stored in an internal RAM memory and then can 

be transferred to the PC for the automatic processing. A Labview user 

interface has been implemented to send the setting commands to the NMR 

console and to carry out the signal processing and the classification algorithm 

on the received signals. 

 

 

Figure II-19 Software component diagram of the Labview user interface 

 

The Labview user interface makes use of the API functions, provided in a 

spinapi.dll library by the Spincore Technologies Inc., to send the setting 

commands to the programmable RadioProcessor board (Fig. II.19). 

 

 

II.5 Influence parameters in liquid and solid samples 

The development of industrial applications with TD-NMR has been 

possible thanks to the decreasing costs of the electronic components and the 

use of permanent magnets instead of the more expensive superconducting 

magnets. However, there are two main disadvantages of using TD-NMR with 

permanent magnet: 

 Field inhomogeneity; 

 Dependence of the field from the temperature 
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The effects of the field inhomogeneity have been already illustrated in the 

previous paragraphs. 

Permanent magnets have a coefficient of temperature in the order of -1000 

ppm/°C, so the static magnetic field, and then the resonance frequency, 

changes when the temperature changes. In order to limit the resonance 

frequency variation due to the temperature variation, the magnet has been 

equipped with a temperature controller and insulated by means of sheets of 

extruded polystyrene (Fig. II-20). 

 

 

Figure II-20 Magnet insulated by means of extruded polystyrene sheets 

 

II.5.1 Temperature controller 

The temperature controller is composed by: 

 2 RTDs PT100 A class placed inside the magnet, near each pole; 

 2 Peltier Modules, for heating and cooling, placed outside the magnet, 

behind each pole; 

 1 microcontroller Microchip PIC® 18F4550, implementing the PID 

control algorithm 
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The temperature controller allows reducing the temperature variation of 

the magnet at ± 0.1 °C. 

In this way, when the operating temperature is kept at 23.0 ± 0.1 °C the 

resonance frequency variation is lower than 5 kHz around the nominal value. 

The following figure shows a block diagram of the temperature controller 

system: 

 

 

Figure II-21 Block diagram of the temperature controller 

 

The system is composed by two independent channels, one for each pole 

of the magnet. The microcontroller acquires the temperature from the two 

channels on the SPI port. Each temperature sensor is connected to a 22 bit 

resolution ADC that provides the temperature data on a SPI port connected to 

the microcontroller (Fig.II-21), which can select the channel by means of a 

chip select signal. The PID control algorithm, on the basis of the read 

temperatures, set the value and the direction of the current in the current 

generators of the two channels, by means, respectively, of a PWM signal and 

a switch signal. In this way, it is possible to control the heating and cooling 

level of the peltier cells connected to the current generators. 

 

II.5.2 Other influence parameters 

In offline applications, NMR experiments are frequently conducted on 

liquid samples; solid samples are pre-treated to extract liquid parts, or cut in 
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pieces for being inserted into the test tube, which is arranged into the probe. 

In this way, it is possible to use commercial benchtop NMR systems. These 

kind of systems are used in a laboratory environment, where a strict control of 

the parameters related to the equipment and the samples is allowed. In 

particular, the temperature of the sample must be controlled because the NMR 

signals, e.g. the CPMG signal, are affected by the temperature variations 

(Carosio et al., 2016). Moreover, some other issues have to be highlighted 

working with solid samples. This is often the case of inline applications, in 

which there is no pre-treatment of the material under test. Solid samples are, 

in many cases, heterogeneous materials with different weight and shape; this 

causes several effects that do not occur in liquid samples: 

 Amplitude variation of the NMR signal and then S/N variation, due to 

the weight variation of the samples; 

 resonance frequency variation due to the different positions of the 

samples inside the magnet; 

 presence of several time constants into the transverse relaxation decay 

due to heterogeneous samples. 

Finally, the physical properties of hazelnuts influence the NMR signals, 

because of the presence of the shell. Indeed, the hazelnuts are mainly 

composed by lipids, which are well detected by TD-NMR, while the shell 

presents some other components, making this product a heterogeneous 

material. In details, the presence of the shell causes a faster decay of the 

transverse relaxation signal compared to the unshelled nut (Fig. II-22). 

Moreover, even considering nuts with the same size, the shape and the weight 

of the kernel may be very different, affecting the S/N ratio of the NMR signal 

related to each nut. In particular, being the weight of the kernel closely related 

to the maximum signal amplitude, the S/N ratio is smaller for lighter nuts (Di 

Caro et al., 2017). 
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Figure II-22 Example of CPMG signal for nut with shell and nut without shell 

 



 

 

Chapter III 

Hazelnut oil characterization 

 

 

 

 
In order to set-up the instrument for hazelnuts diagnosis, preliminary tests 

were conducted on oil samples extracted from the hazelnuts. In this way, it 

was possible to concentrate the analysis on the composition of the material 

without considering some external parameters like humidity or the shape of 

the sample that can affect the results. This allowed determining the parameters 

related to the CPMG sequence, and the pre-processing and processing 

algorithms to carry out the analysis. 

 

III.1 Instrumental parameters 

Before starting the analysis on the samples, a test of the NMR instrument 

has been carried out in order to verify the operation of the equipment (Fig. III-

1). 

 

 

Figure III-1 NMR system test setup 

 

The NMR console provides a TTL output connector where the main 

internal digital signals are available, this allows checking the timing 

synchronization of the transmit and the receiving section of the instrument. 

In particular, two parameters have been set: 

 Blanking delay; 

 Transient Time (Dead time). 

These parameters depend on the system hardware, in particular the RF 

power amplifier. The former is the time needed to warm-up the amplifier; it 
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affects the total time of a single NMR experiment because the pulse 

transmission can start at the end of this delay. The latter is the time needed to 

ring down the high voltage induced in the coil at the end of the RF pulse. It 

affects the receiver section because the sample acquisition can start after this 

time. 

The values set are: 

 Blanking delay = 3 ms; 

 Transient time = 16 µs. 

 

The main parameter related to the pulse sequences (both single pulse and 

CPMG) is the width of the π/2 RF pulse. This is the value that allows rotating 

the magnetization vector by π/2 respect to the direction of the static magnetic 

field (eq. 6), and it can be determined using a pulse width finder procedure 

consisting in calculating the amplitude of the FID signal for several values of 

the pulse width (tp). The width corresponding to the maximum amplitude of 

the FID signal is the width of the π/2 RF pulse (Fig. III-2). 

 

 

Figure III-2 Pulse width finder procedure 

 

This procedure allows determining the π RF pulse used in the CPMG 

sequence, which is the pulse width with a null FID signal amplitude. The π 

RF pulse with is approximately twice as much the π/2 RF pulse width. 



Hazelnut oil characterization 

33 

Applying the pulse width finder procedure in the case of interest the following 

values have been found: 

 π/2 RF pulse width = 8 µs; 

 π RF pulse width = 16 µs. 

 

III.2 CPMG setup 

As described in the chapter II, in order to limit the effect of the field 

inhomogeneity due to the use of permanent magnets, it is suitable to make use 

of the CPMG sequence instead of the single pulse 

In addition to the width of the π/2 RF pulse and the π RF pulse, the CPMG 

sequence requires the definition of other parameters (Fig. II-13): 

 τ, which determines the distance among the π RF pulse and then 

the echoes (2τ); 

 number of echo to acquire, which determines the acquisition time. 

 sampling frequency of the received signal; 

 

The time interval between two π RF pulses has been set to 4 ms (τ = 2 ms). 

This is also the time between the echoes that represent the points of the 

transverse relaxation decay, so it has been chosen in order to have enough 

point of the relaxation curve. 

For each CPMG sequence, 50 echoes were acquired; the number of echoes 

is limited by the S/N ratio: when the amplitude of the echo signal is below the 

noise level, it is impossible to detect the peak. 

A sampling frequency of 500 kHz was adopted to have enough points of 

the CPMG signal for each echo.). 

The acquisition time can be calculated from the previous parameters: 

𝐶𝑃𝑀𝐺 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑁𝑒𝑐ℎ𝑜(𝜋 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ + 2𝜏) + 𝜏 ( 18 ) 

In this case, the acquisition time is about 200 ms. 

 

III.3 Echo response pre-processing 

NMR signals have low amplitude (about 10 µV) and are affected by a high 

level of noise, due, both to RF interferences and A/D conversion. In the CPMG 

sequence the amplitude of the echoes decrease at each π RF pulse while the 

noise level does not change, therefore it is difficult to estimate the amplitude 

of the last echoes (Fig. III.3). 
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Figure III-3 Example of acquisition of CPMG signal after 50 ms 

 

Usually, the NMR instruments are able to perform an internal signal 

averaging over several acquisitions. This allows increasing the S/N ratio of 

the received signal. In particular: 

𝑆

𝑁
∝ √𝑁       ( 19 ) 

Where N is the number of acquisitions of the signal (Fig. III-4). 

 

 

Figure III-4 Acquired echo signal (45th echo) with a single sequence (in 

green) and with an average over 32 sequence (in red)  

 

Considering the acquisition time, and the time interval between two 

acquisitions on the same sample, which has to be greater than the repetition 

delay (the time to recover the magnetization at the end of the pulse sequence), 
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the applicability of this procedure is limited to applications that do not require 

a fast execution time (e.g. laboratory applications). 

In this work, in order to better evaluate the amplitude of the echoes that 

have a lower S/N ratio, avoiding the use of the time consuming multiple 

acquisitions procedure, a pre-processing of the signal has been performed. 

As previously described, each echo peak corresponds to a point of the 

transverse relaxation decay, and so the relevant information related to the 

CPMG signal are contained in the acquired samples of the echoes. 

Three methods have been evaluated and compared to detect the echo peak 

amplitudes (Di Caro et al., 2016): 

 Mean value of k samples around the peak position; 

 Sum of the spectral components of the magnitude of the FFT for 

the echo signal; 

 Maximum of the curve obtained with a polynomial regression on 

the echo signal. 

The echo peaks in the CPMG sequence are located in the middle of the 

time between two π RF pulses, therefore they are in a known position in the 

acquired signal. 

 

III.3.1 Mean value 

The Mean value method exploits this property to determine the peak 

position and estimate its value applying a smoothing factor to reduce the effect 

of noise. 

The position (n) of the peak of the i-th echo in the acquired samples is: 

𝑛 = 𝑖 ∙ (2𝜏 + 𝜋 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ) ∙ 𝑓𝑠    ( 20 ) 

Where fs is the sampling frequency of the acquired signal. 

The amplitude of the i-th echo peak is calculated as the mean value of the 

samples in the interval: [n −
k

2
, n +

k

2
]. 
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Figure III-5 Mean value method on echo signal with k=12 

 

III.3.2 FFT magnitude 

The second method relies on the property that the number of nuclei excited 

at the resonance frequency is proportional to the area of the FFT magnitude. 

This is because, for the magnet inhomogeneity, the nuclei in the different 

sections of the sample are subjected to a different resonance frequency, so 

their contribution to the FFT magnitude is located in a different frequency 

respect to the resonance frequency of the system (Fig.II-12). The noise level 

is calculated and subtracted considering the FFT magnitude outside the 

frequency range of interest. 
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Figure III-6 FFT magnitude of the echo signal (in red); noise level (in green) 

 

The noise level (NL) has been calculated on the basis of the mean value 

and the standard deviation of the FFT magnitude corresponding to the noise 

(the green regions in fig. III-6): 

𝑁𝐿 = 𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅ + 𝑠(𝑛𝑜𝑖𝑠𝑒)     ( 21 ) 

 

III.3.3 Polynomial regression 

About the third method, a second order polynomial regression has been 

applied to the echo signal (Fig. III-7), considering, for each echo, 160 samples 

around the peak, located at the position according to eq. (20); the echo peak is 

the maximum of the regression curve (Eq. 22) - (Eq. 24): 

𝑦𝑟𝑒𝑔 = 𝑃2𝑥2 + 𝑃1𝑥 + 𝑃0     ( 22 ) 

∆= 𝑃1
2 − 4𝑃2𝑃0       ( 23 ) 

𝑚𝑎𝑥 = −
∆

4𝑃2
       ( 24 ) 

Where max is the echo peak. 
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Figure III-7 Second order polynomial regression on echo signal 

 

III.3.4 Comparison among the three methods 

In order to choose the most robust method, tests were made on signals 

suitably corrupted by noise and the repeatability in the peak estimation was 

valuated. 

In particular, two signal (one from healthy hazelnuts oil (HO), one from 

unhealthy hazelnuts oil (UO)) have been acquired and Gaussian noise was 

added to the signals generating 100 noise signals for each one of these. The 

three pre-processing algorithms were run on the two set of signals and the 

standard deviation in the peak estimation was calculated. In Figure III-8, for 

both HO and UO oil, the measured standard deviation is reported. As can be 

seen the polynomial regression algorithm is characterized by the best 

repeatability over all on the smallest peaks that characterize the oil response, 

in detail the relative uncertainty is quite constant for all the peaks.  
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Figure III-8 Comparison among the three pre-processing methods 

 

III.4 Study of the echo decay envelope 

As described in the chapter II, the echo decay envelope represents the 

transverse relaxation decay, which provides qualitative information about the 

sample. Over the acquired CPMG signal, composed by the FID signal and 50 

echoes, the odd echoes have been discarded because the amplitude can be 

affected by an error due to an incorrect length of the π RF pulse. This error 

doesn’t affect even echoes, therefore only 25 echoes and the initial FID signal 

have been used in the analysis; moreover, normalized amplitudes have been 

used (Fig. III-9). 
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Figure III-9 Acquired CPMG signal and echo envelope 

 

Two different approaches were set up. Using these quantities it is possible 

to discriminate between oil extracted from healthy hazelnuts and oil extracted 

from unhealthy hazelnuts. 

The first method defines a parameter, ES, that synthetizes the normalized 

amplitudes of the final echoes, the second one approximate the echo decay 

envelope by means of a multi-exponential function. 

 

III.4.1 ES parameter 

The following parameter has been introduced as a synthetic information 

about the final trend of the response: 

𝐸𝑆 = ∑
𝐴(𝑖)

𝐴(1)
26
𝑖=𝑝        ( 25 ) 

Where p was fixed on the basis of experimental results, A(i) is the 

amplitude of the i-th echo, A(1) is the amplitude of the FID signal. 

The ES parameter takes account of the slowest relaxation components of 

the decay signal. 

 

III.4.2 Multi-exponential approximation 

The transverse relaxation decay obtained from the CPMG signal can be 

expressed as a multi-exponential function: 

𝑦( 𝑡𝑖) = ∑ 𝑥𝑗𝑒
−

𝑡𝑖
𝑇2𝑗 𝑚

𝑗=1     1 ≤ 𝑖 ≤ 𝑛    ( 26 ) 

Where y(ti) is the amplitude of the i-th echo; xj and T2j are the amplitude 

and the time constant of the j-th relaxation component. 
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A multi-exponential inversion algorithm should be used to get the 

relaxation spectrum (the distribution of the time constants of the relaxation 

decay). There are many algorithms implemented to solve this kind of problem 

(see Appendix). In this work, an algorithm presented in (Chen et al., 2009), 

based on singular value decomposition (SVD), has been used. This method 

makes use of the matrix theory to solve the eq. (26). 

The first step is to rewrite eq. (26) in matrix form: 

𝑌 = 𝐴 ∙ 𝑋       ( 27 ) 

Where Y is the array with the n samples of the measured signal, X is the 

array containing the amplitude of the m relaxation components, A is a 𝑛 × 𝑚 

matrix with coefficients: 

𝐴𝑛×𝑚 = [𝑎𝑖𝑗] = [𝑒

−𝑡𝑖
𝑇2𝑗]     (28) 

T2j are m pre-assigned, logarithmically spaced, relaxation time constants 

in the T2 distribution range. 

ti are the sampling times of the measured signal. 

The solution of eq.(27) determines the T2 distribution. This is a typical 

highly ill problem and requires an iterative solution in which a non-negatively 

condition for the components of the X array is applied. 

First, the singular value decomposition of the matrix A is calculated: 

𝐴𝑛×𝑚 = 𝑈𝑚×𝑚 ∙ 𝑆 ∙ 𝑉𝑛×𝑛
𝑡  (29) 

Then, the solution of the equation (27) with linear least square algorithm 

can be found: 

𝑋 = 𝑉 ∙ 𝑆−1 ∙ 𝑈𝑡 ∙ 𝑌  (30) 

If some components of the X array are negatives, the non-negativity 

condition is applied and the inversion algorithm is computed again, until all 

elements of X become non-negatives (Fig. III-10). 

 

 

Figure III-10 SVD algorithm 

 

The following parameters have been used: the number of samples of the 

measured signal n = 26; the number of pre-assigned time constant can’t exceed 
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n (otherwise the equation (27) is undetermined), in this case is 25, in a range 

from 0.01 s to 0.25 s. 

 

III.5 Experimental results on oil samples 

III.5.1 Sample preparation 

All the samples of oil used for experimental verification were extracted 

from hazelnuts of cultivar “Tonda di Giffoni” and prepared using the same 

procedure, as described in (Amaral et al., 2006) and (Memoli et al., 2017): the 

hazelnuts were manually deshelled, cracked, and sorted by a visual inspection 

of the kernels in two different samples [apparently healthy (no damage), and 

unhealthy (mouldy and cimiciate) hazelnuts]. Thereafter, 100 g of finely 

chopped nuts were suspended in diethyl ether (1:3 w/w) and kept under 

magnetic stirring at room temperature in a stoppered dark flask. After 2 h, the 

suspension was filtered through filter paper and the residues were treated once 

again in the same fresh solvent, applying the described procedure twice. The 

residues were washed twice with 10 ml of diethyl ether; thereafter, the solvent 

was rotary evaporated under reduced pressure at 40 °C. The oil extracted was 

stored at 4  C in tubes protected from light with aluminium foil and flushed 

with nitrogen. Finally, the chemical analysis on the two kinds of oil samples 

was performed by means of the gas chromatography (Memoli et al., 2017). 

 

III.5.2 Experimental results 

Eighteen oil samples (9 from healthy hazelnuts, 9 from unhealthy 

hazelnuts) were prepared for the training phase in order to set up the 

processing algorithms whereas, different fifty oil samples (25 from healthy 

hazelnuts, 25 from unhealthy hazelnuts) were prepared for testing and 

validation (Di Caro et al., 2017b).  

Figure III-11 shows the curves of the maximum values of the echoes for 

the training samples. As can be seen, as expected, the curves of the two kind 

of oils are well separated when the number of echo increases. 
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Figure III-11 Normalized echo amplitude for healthy (blue) and unhealthy 

hazelnut oil (green) 

 

ES Parameter 

 

In order to fix the value of p of eq. (25) the value of the MARGIN is 

evaluated on the training samples. The MARGIN is defined as the difference 

between the minimum value of ES parameter for oils extracted from unhealthy 

hazelnuts, and the maximum observed for the other kind of oil: 

𝑀𝐴𝑅𝐺𝐼𝑁 = 𝑚𝑖𝑛(𝐸𝑆𝑈𝑂) − 𝑚𝑎𝑥 (𝐸𝑆𝐻𝑂)   ( 31 ) 

In figure III-12 the trend of the MARGIN with p is reported. The greater 

values of the MARGIN are obtained when the ES parameter is calculated 

taking into account only and all the echoes where the curves of the two kinds 

of oil are separated, so the value of p can’t be too small (p=5 corresponds to 

0.024 s in Fig.III-7, where the echo responses are high and very similar). 

Furthermore, when p is too large (p=20 corresponds to 0.164 s), the ES 

parameter is calculated on few and smaller echo signals that are affected by a 

higher level of noise, and the MARGIN decreases. The maximum MARGIN 

is obtained with: p = 17; 

Hereafter this value is used. 
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Figure III-12 MARGIN related to different values of p (p=15 correspond to 

0.12 s in Fig. III-7) 

 

In Table III-1 the results related to 20 measures on each of the 18 training 

samples (9 healthy hazelnut oils and 9 unhealthy hazelnut oils) are 

summarized; the mean, the standard deviation and maximum of the ES 

parameter are reported for healthy hazelnut oil (HO) in the first three columns, 

and for the unhealthy hazelnut oils (UO) in the next three columns, but the 

minimum value is indicated. 

 

 

Table III-1 The measured parameters on the training healthy (HO) and 

unhealthy (UO) hazelnut oils on repeated tests 

 
ESHO 

mean 

ESHO 

σ 

ESHO 

max 

ESUO 

mean 

ESUO 

σ 

ESUO 

min 

Sample # 1 1.53 0.0027 1.54 1.74 0.0034 1.73 

Sample # 2 1.48 0.0032 1.49 1.66 0.0039 1.65 

Sample # 3 1.48 0.0036 1.48 1.65 0.0033 1.64 

Sample # 4 1.50 0.0025 1.50 1.58 0.0038 1.57 
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Sample # 5 1.53 0.0033 1.54 1.66 0.0036 1.65 

Sample # 6 1.50 0.0030 1.51 1.57 0.0033 1.56 

Sample # 7 1.45 0.0031 1.46 1.70 0.0046 1.69 

Sample # 8 1.52 0.0044 1.53 1.58 0.0042 1.58 

Sample # 9 1.52 0.0034 1.53 1.57 0.0039 1.56 

 

For the classification of the two kinds of oils, all the observed mean values, 

have been taken into account, the observed statistics on the whole sets are 

reported in Table III-2. To this aim two thresholds, Upper Threshold (UTHR), 

and Lower Threshold (LTHR), are defined and consequently three regions are 

identified: (1) the values of ES greater than UTHR identify the unhealthy 

hazelnut oil; (2) the values lower than the LTHR identify the healthy hazelnut 

oil; (3) the values between the thresholds identify the ambiguous region. 

 

Table III-2 Parameters on the whole population of healthy (HO) and 

unhealthy (UO) hazelnut oils: Mean Value (𝐸𝑆), Standard Deviation (s) 

𝐸𝑆HO s(ESHO)  
ESHO 

maximum  
𝐸𝑆HO s(ESUO) 

ESUO 

minimum  
MARGIN 

1.50 0.03 1.53 1.63 0.06 1.57 0.04 

 

The two thresholds (UTHR and LTHR) have been fixed on the basis of the 

measured ES values, and in particular on the basis of the mean and standard 

deviation observed on the two kind of oils (Table III-2): 

UTHR = ESUO − s(ESUO) = 1.57 (32) 

LTHR = ESHO + s(ESHO) = 1.53  (33) 

The margin value between the regions (1) and (2) is given by: 

UTHR − LTHR = 0.04 (34) 

In order to obtain a further verification of the correctness of the data 

processing, the results in terms of MARGIN were also calculated for the mean 

and FFT magnitude approaches for the echo peak evaluation 

In the following table (III-3), the results on the same samples, applying the 

previously described Mean value and FFT magnitude algorithms to determine 

the echo peak, are shown: 
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Table III-3 The measured parameters on healthy (HO) and unhealthy (UO) 

hazelnut oil using the Mean and FFT methods for the echo peak 

determination 

Method Mean FFT 

 ESHO ESUO ESHO ESUO 

Sample # 1 
1.62 1.82 1.56 1.66 

Sample # 2 
1.59 1.72 1.49 1.69 

Sample # 3 
1.57 1.74 1.52 1.78 

Sample # 4 
1.55 1.69 1.49 1.64 

Sample # 5 
1.63 1.73 1.54 1.67 

Sample # 6 
1.57 1.64 1.59 1.48 

Sample # 7 
1.52 1.80 1.48 1.67 

Sample # 8 
1.64 1.76 1.47 1.71 

Sample # 9 
1.60 1.65 1.54 1.56 

Mean Value (𝐸𝑆) 1.59 1.73 1.52 1.65 

Std Deviation (s) 0.04 0.06 0.04 0.09 

Min 1.52 1.64 1.47 1.48 

Max 1.64 1.82 1.59 1.78 

MARGIN 0.00 -0.11 

 

As can be seen from table III-3, the two discarded algorithms show a worse 

performance, in terms of MARGIN than the polynomial regression. Moreover 

using these approaches the ES value is not able to discriminate the two kinds 

of oil. 

 

Using the values obtained in the training phase, in order to verify the 

classification capability of the proposed method, other tests were made on 

different oil samples, in particular 25 samples of oil extracted from healthy 
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nuts and 25 samples extracted from unhealthy nuts, for each sample one 

measurement was done. 

 

 

Figure III-13 Test results on 50 samples (25 healthy hazelnut oil blue 

points; 25 unhealthy hazelnut oil green points) 

 

The results of these tests are summarized in the Figure III-13: there has not 

been any classification error in the fifty samples; seven samples are in the 

ambiguous region (three unhealthy hazelnut oil and four healthy hazelnut oil), 

forty-three samples have been correctly detected (twenty-two unhealthy 

hazelnut oil and twenty-one healthy hazelnut oil). 

 

Multi-exponential approximation 

In order to calculate the T2 distribution on the transversal decay signal, the 

SVD algorithm has been applied on the same samples used in the former 

method, using 18 training samples. Applying the algorithm as described in the 

paragraph III-4 on the 18 training samples, the 9 healthy hazelnut oils show a 

T2 distribution different from the 9 unhealthy hazelnut oils. In particular, all 

samples have a short time constant T2,1 = 0.01 s, with same amplitude 

(maximum percentage of variation  lower than 10%). Moreover, all samples  

also have a second, longer time constant that is different between the healthy 

and unhealthy hazelnut oils: healthy hazelnut oils have a time constant T2,2 = 

0.14 s, whereas the unhealthy hazelnut oils have T2,2 = 0.15 s. 
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As for the ES parameter, comparing the results obtained using the 

polynomial regression algorithm for the echo peak determination with the 

other two methods, only the first allows discriminating between the two kinds 

of oil without classification errors (Fig.III-14). 

  

 

Figure III-14 T2 distribution on 9 samples of healthy oil (blue points) and 

unhealthy oil (green points) using the mean algorithm (a), FFT algorithm 

(b) and polynomial regression algorithm (c) for the echo peak determination 

 

Analyzing the previous results, the T2,2 time constant can be used as 

classification parameter for the two kind of oils. 

 Furthermore, the result obtained about the T2 distribution is coherent with 

the result concerning with the ES parameter: a higher level of the ES parameter 

for the unhealthy hazelnut oil suggests the presence of a higher time constant 

in the T2 distribution, and this is confirmed by the new method in which 

unhealthy hazelnut oils have a slower time constant (T2,2 = 0.15 s) greater than 

the slower time constant of the healthy hazelnut oils (T2,2 = 0.14 s). 

As for the previous algorithm (ES parameter), to validate the results 

obtained on the training samples, experimental verification has been carried 

out on the 50 test samples (25 healthy hazelnut oils, 25 unhealthy hazelnut 

oils) with the aim to confirm the ability of the SVD algorithm for the T2 

distribution calculation to correctly classify the two kind of oils (Fig.III-15). 
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Figure III-15 T2 distribution for 25 samples of healthy hazelnut oil (in blue) 

and 25 samples of unhealthy hazelnut oil (in green) 

 

Figure III-15 shows the results of the SVD algorithm applied to the signals 

acquired from 50 samples (25 healthy hazelnut oil and 25 unhealthy hazelnut 

oil). The T2 distribution shows that all samples of the two kind of oils are well 

separated, having a different slower time constant T2,2. 

In conclusion, comparing the two methods, the T2 distribution by means of 

multi-exponential approximation showed a better capability in the oil 

classification than the ES parameter. 
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Chapter IV 

In-shell hazelnuts 

characterization 

 

 

 

 
In this chapter, starting from the results related to the CPMG techniques 

employed in the oil samples classification, the in-shell hazelnuts have been 

analyzed. Moreover, a more complex classification algorithm, respect to the 

oil samples, has been developed, due to the presence of more quality 

properties to detect and more influence factors that affect the system. 

 

As described in the first chapter, hazelnuts quality depends on several 

parameters, like: 

 Moisture content; 

 Kernel development; 

 Presence of mold or bug disease. 

 

While the analysis on the presence of mold and bug disease can be done 

both on oil and hazelnuts, the moisture content and the kernel development 

are only related to the hazelnuts. 

The main advantage on carrying on the NMR experiments on oil samples 

lies on the homogeneous composition of the material. Oil does not contain 

moisture or any other solid or liquid contaminant. Moreover, it is possible to 

perform the tests on samples that contain always the same quantity of material. 

All these characteristics disappear when working on solid and 

heterogeneous materials like the whole hazelnuts. 

In the following, the data processing on the CMPG signal to determine the 

quality parameters of the hazelnuts will be depicted (Fig. 4-1). 

 



Chapter IV 

52 

 
 

Figure IV-1 Block diagram of the data processing on the in-shell hazelnuts 

 

IV.1 CPMG sequence 

The CPMG sequence has been carried out with the following parameters: 

 500 kHz sampling frequency; 

 π/2 RF pulse: 8 μs; 

 π RF pulse: 16 μs; 

 Dead time: 16 μs; 

 Blanking delay: 3 ms; 

 τ = 2 ms; 

 Necho = 60. 

 

The number of echo is the only parameter that differs from the tests on oil 

samples. With this value the acquisition time is about 240 ms (Eq. 18). 
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Discarding the odd echoes, 30 values are available to obtain the transverse 

relaxation decay (Fig. IV-2) 

 

 

Figure IV-2 Normalized amplitude of the first 0.10 s of the CPMG signal (in 

blue) for a nut sample; echo decay envelope (in red). 

 

IV.2 Moisture content evaluation 

The moisture content has been evaluated considering the relationship 

between the maximum of the FID signal, which is related to the weight of the 

kernel including the moisture, and the peak of the second echo of the CPMG 

signal that occurs after about 8 ms (Figure IV-3). At this time, the component 

of the signal related to the water content is already decayed. This is because 

bound water (e.g. the moisture inside a solid sample) has a very fast 

transversal decay, and the contribution to the decay is considered negligible 

after 7 ms (Todt et al., 2016). 

As previously described, the maximum of the FID signal has been 

determined as the mean value of the first three samples of the acquired signal, 

while the second echo peak as the maximum of the second order polynomial 

regression on 160 samples around the position of the peak (Fig. IV-3). 

In order to evaluate the relationships between the 2nd echo and the FID 

signal, well-dried hazelnuts are analyzed to define the condition useful to 

discriminate dry from wet hazelnuts. In particular, since the maximum 

allowed moisture content is 6%, 100 samples of hazelnuts have been dried to 

a value lower than the limit according to the AOAC 925.40 method (Horwitz, 

2000). 
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Figure IV-3 First exponential decay (FID signal) and second echo of the 

CPMG signal; first three samples of the FID signal second order polynomial 

regression on the second echo (in red) 

 

Then, the CPMG signal of the dried nuts has been studied; in Figure IV-4 

the measured amplitudes of 2nd echo respect to the FID signal are reported. On 

these data, the linear least square regression method has been applied 

obtaining the m and b parameters of the regression line (Fig. IV-4): 

𝐴𝑒𝑐ℎ𝑜 = 𝑚 ∙ 𝐴𝐹𝐼𝐷 + 𝑏         ( 35 ) 
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Figure IV-4 Relation between the amplitude of the FID signal and the 2nd 

echo peak for 100 dried hazelnuts samples (in green) and regression line 

(eq.35) (in red) 

 

A statistical analysis has been carried out calculating the standard deviation 

σm and σb related, respectively, to the parameter m and b. At this point, a dry 

threshold line has been defined as (Fig. IV-5): 

𝐴𝑒𝑐ℎ𝑜
𝑇𝐻𝑅 = (𝑚 − 3𝜎𝑚)𝐴𝐹𝐼𝐷

𝑇𝐻𝑅 + (𝑏 − 3𝜎𝑏)      ( 36 ) 
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Figure IV-5 Relation between the amplitude of the FID signal and the 2nd 

echo peak for 100 dried hazelnuts samples (in green); dry threshold line (in 

black) 

 

The threshold line and the relation between the amplitude of the FID signal 

and the second echo peak for 100 dried samples are reported in fig. IV-5.  

 

IV-3 Kernel development evaluation 

According to the OECD standard for in-shell hazelnuts (OECD, 2011), the 

kernel development is one of the features that determines the nut quality. Only 

hazelnuts with a well-developed kernel have to be selected. In particular, the 

hazelnut kernel should fill at least the 50% of the shell cavity and has not to 

be desiccated. These properties can be related to the weight of the kernel 

(Fig.IV-6). Unfortunately, the weight of kernel cannot be determined from the 

weight of the whole hazelnut because the weight of the shell depends on 

several variables related to the soil condition during the growth. 

Figure IV-6 shows the relationship between the weight of the whole 

hazelnut and its kernel for 100 samples. It can be seen that the weight of the 

hazelnut does not allow the discrimination between well and not-well 

developed kernels, while the weight of the kernel is more appropriate. This is 

because the weight of the shell significantly affects the total weight of the nut. 
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Figure IV-6 Relation between weight of the hazelnut and weight of the 

kernel for fully developed kernels (in blue) and not well developed kernels (in 

red). 

 

The in-shell hazelnuts have been tested acquiring the CPMG signal and 

weighting it by means of a scale with a resolution of 0.05 g (Fig. IV-7). 

Then, the nuts have been unshelled and classified by means of visual 

inspection of the kernel. Finally, using the same scale employed for the whole 

nuts, the hazelnut kernels have been weighted. 
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Figure IV-7 Scale with a 0.05 g resolution 

 

The weight of the hazelnut kernel can be related to the amplitude of the 

FID signal. This is because the kernel contains 1H molecules that react to the 

NMR signal, while the shell is mainly composed by inorganic molecules that 

are not excited at the resonance frequency of the 1H probe. Only the dried 

hazelnuts have been considered in order to ignore the contribution to the signal 

due to the 1H molecules related to the moisture. 

The relationship between the amplitude of the FID signal and the weight 

of the kernel on the same 100 samples is shown in Figure IV-8. As can be 

seen, the two set of data (well-developed and not well-developed kernels) are 

separated, so a threshold on the amplitude of the FID signal has been defined 

to discriminate between full and insufficient developed kernels. In particular, 

a margin of 5% on the minimum value of the amplitude of the FID signal 

related to the full-developed hazelnuts has been considered to set the 

threshold. In this way, all the full-developed kernels have been correctly 

classified. Over the 15 not-well developed kernels, only one has been mis-

detected (see Figure IV-8). 
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Figure IV-8 Relation between the amplitude of the FID signal and weight of 

the kernel for fully developed kernels (in blue) and not well developed kernels 

(in red). Threshold calculated with a margin of 5% on the lowest amplitude of 

the FID signal (in black). 

 

IV-4 T2 distribution calculation using the SVD algorithm 

Following the moisture content and the kernel development evaluation, on 

the hazelnuts that have not been discarded, the analysis on the T2 distribution 

is carried out in order to evaluate the presence of mold  

The echo decay envelope is composed by 31 points (n=31 in Eq. 26), 

corresponding to the amplitude of the fast decay signal and 30 echoes (the 

even ones). The T2 range has been chosen from 0.01 s to 0.30 s and it has been 

divided in 30 logarithmically spaced time constants (m=30 in Eq. 26). 

The figure IV-9 shows the T2 spectrum calculated using the SVD algorithm 

on several samples of healthy (in blue) and unhealthy (in green) hazelnuts. 

Both kinds of hazelnuts showed the same three T2 components with the 

amplitudes in the same range. Differently of what happened in the case of the 

oil sample analysis, in the case of the in-shell hazelnuts this method does not 

allow discriminating between healthy and unhealthy samples. 

A reason can be that, because of the presence of the shell and other 

influence factors, a lower resolution in the T2 spectrum calculation is required 

to be able to find out the differences in the spectral components of the two 

kinds of samples. 

Starting from these consideration, a method to improve the resolution in 

the T2 distribution has been proposed. Moreover, a classification algorithm 

has been developed. It is based on several classification steps, in which for 
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each step a single feature is detected and the hazelnuts affected by defects are 

discarded. In particular, in the first step the moisture content inside the 

hazelnuts is evaluated; the second step evaluates the kernel development and, 

at the end, the T2 distribution of the well-formed and correctly dried hazelnuts 

is determined to classify the healthy and unhealthy kernels. In this way, the 

analysis on the T2 distribution is made on hazelnuts with more homogeneous 

characteristics in terms of moisture and kernel dimension, in order to reduce 

the effect of the influence factors. 

 

 
Figure IV-9 T2 spectrum for healthy hazelnuts (in blue) and unhealthy 

hazelnuts (in green) calculated by means of the SVD algorithm 

 

IV-5 T2 distribution 

As described in the previous paragraph, the SVD algorithm does not allow 

discriminating between healthy and unhealthy hazelnuts that show the same 

three time constant. Using this algorithm, the resolution on the T2 axis is 

determined by the number of the pre-assigned time constants in the selected 

range. This number is limited by the available number of points of the 

transverse relaxation decay (the vector Y in eq. 27). In order to obtain a 

solution of eq. 27, if n is the dimension of the Y vector, the number m of the 

pre-assigned time constants has to satisfy the condition: 

𝑚 ≤ 𝑛        ( 37 ) 
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The way to increase the number of time constants, and then to reduce the 

T2 resolution, is increasing the number of points of the acquired transverse 

relaxation decay. This can be done acquiring a greater number of echo signals, 

because each echo peak corresponds to a point of the transverse relaxation 

decay, then using a lower value of τ. 

In this work a different approach has been used exploiting the results 

obtained using the SVD algorithm: both kinds of hazelnuts showed three time 

constant, so a model with three exponential decays has been applied to 

represent the transverse relaxation decay related to the hazelnuts (Fig. IV-10): 

𝑦( 𝑡𝑖) = ∑ 𝑥𝑗𝑒
−

𝑡𝑖
𝑇2𝑗 3

𝑗=1       ( 38 ) 

 

 

Figure IV-10 Modeling of the transverse relaxation decay using a three 

component multi-exponential function 

 

At this point, a solution of eq. 38, in least square sense, using a nonlinear 

fitting algorithm has been searched, considering a range of variation of T2j 

around the values obtained using the SVD algorithm. In this way, a better 

resolution on the T2 distribution has been achieved. 

More in detail, the ranges of the unknown parameters have been set. 

For the three time constants: 

 𝑇2,1 ∈ [0.001s, 0.010s]; 

 𝑇2,2 ∈ [0.055s, 0.065s]; 

 𝑇2,3 = 0.27 𝑠 

The time interval of the time constants has been determined considering a 

range similar to the T2 resolution of the SVD algorithm. In this way, the T2 

resolution is considerably reduced; In particular, this has been done for the 

first two exponential component, while the third component showed a low 

sensitivity to the time constant variation and, for this reason, T2,3 has been 

forced to a fixed value. 

While for the amplitudes the non-negativity condition has been forced: 

 𝑥𝑖 ∈ [0,1]  𝑖 = 1,2,3  
The ranges of the of the time constants have been determined  
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The non-linear least square solver finds the best solution in the ranges of 

the parameters with the following condition: 

𝑚𝑖𝑛
𝑥

∑ (𝑦𝑖
𝑚 − 𝑦𝑖)2

𝑖       ( 39 ) 

Where yi
m = ym(ti) are the measured points of the transverse relaxation decay, 

yi are the fitting data. 

Using this method, a very low resolution on the T2 axis has been achieved, 

only considering the range of interest. This allows avoiding a computational 

overload due to the acquisition of more points to perform the SVD algorithm 

with the same resolution. 

In figure IV-11 the T2 spectrum for healthy and unhealthy hazelnuts is 

shown. 

 

 

Figure IV-11 T2 spectrum for healthy hazelnuts (in blue) and unhealthy 

hazelnuts (in green) calculated by means of the non-linear least square fitting 

 

 A detailed analysis and the classification algorithm for the in-shell 

hazelnuts, considering the several properties previously analyzed, will be 

presented in the next chapter. 

 



 

 

Chapter V 

Classification algorithm 

 

 

 

 
In this chapter, a classification algorithm for the in-shell hazelnuts, based 

on the data processing described in the previous chapter, is proposed. It is 

composed by three steps: 

1. Evaluation of the moisture content; 

2. Evaluation of the kernel development; 

3. Evaluation of the presence of mold. 

 

In the first step, the hazelnuts with a moisture content greater than the limit 

imposed by the quality standards are discarded; the correctly dried hazelnuts 

are then evaluated on the basis of the kernel development. In this step the 

following defects are detected and discarded: 

 Empty hazelnuts; 

 Not well developed kernels; 

 Desiccated kernels. 

Finally, in the third step the presence of mold is evaluated and the healthy 

hazelnuts are selected. 

The three steps are carried out on a single signal, acquired by means of the 

CPMG sequence, so for each sample, only one CPMG sequence is required. 

The tests were conducted on hazelnuts supplied by “Consorzio di Tutela 

Nocciola di Giffoni I.G.P.”. For each sample of hazelnut with shell, the 

following procedure was used to perform the test: 

1. Insertion of the hazelnut with shell inside the probe; 

2. Acquisition of the signal by means of CPMG sequence; 

3. Signal processing on the data acquired by the instrument and 

classification of the hazelnut by means of classification algorithm; 

extraction of the hazelnut from the probe; 

4. Breakage of the shell and classification of the hazelnut as healthy or 

unhealthy by means of vision inspection; 

 

Verification of the classification algorithm comparing the results with the 

vision inspection method. 
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In the following figure, a block diagram of the experimental set up is 

shown. The tests were carried out on 300 samples of hazelnuts, 220 dried 

samples and 80 fresh samples. 

 

 

Figure V-1 Experimental setup 

 

In the next paragraphs, each steps of the classification algorithm will be 

described highlighting the classification performance. 

 

V.1 Moisture content evaluation 

As described in the previous chapter, the moisture content evaluation is 

made analyzing the relationship between the amplitude of the FID signal 

(AFID) and the amplitude of the 2nd echo of the CPMG sequence (Fig. IV-3). 

According to the threshold line defined in (eq. 36), the well-dried hazelnuts 

have to satisfy the following condition: 

𝐴𝑒𝑐ℎ𝑜 > (𝑚 − 3𝜎𝑚)𝐴𝐹𝐼𝐷 + (𝑏 − 3𝜎𝑏)    ( 40 ) 

In the following figures, the results obtained on 220 dried hazelnuts and 80 

fresh hazelnuts are shown. 
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Figure V-2 Comparison among the dry threshold line (in black) and the 

amplitudes of the FID signal and the 2nd echo peak for 220 dried hazelnuts 

samples (in blue). 

 

As can be seen from the figure V-2, one in 220 samples of dried hazelnuts 

has been mis-detected. 

Figure V-3 shows the results on the 80 fresh hazelnuts. All the samples 

have been correctly detected. Moreover, the fresh samples with a value close 

to the threshold line have a lower moisture content than others. This is due to 

the drying effect of the sun, so the moisture content can vary on the basis of 

the weather condition during the harvest and the storage. 



Chapter V 

66 

 

Figure V-3 Comparison among the dry threshold line (in black) and the 

amplitudes of the FID signal and the 2nd echo peak for 80 fresh hazelnuts 

samples (in red). 

 

V.2 Kernel development evaluation 

In this paragraph, the analysis on the kernel development on the 219 

hazelnuts correctly classified as dried in the previous step, is described. It is 

made exploiting the threshold on the amplitude of the FID signal defined in 

the paragraph IV-3.  

In particular, three category of defects: the well-formed nuts and the blank, 

insufficiently developed and desiccated have been included in the not well 

developed kernel 

The well-formed hazelnuts have to satisfy the condition: 

𝐴𝐹𝐼𝐷 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑      ( 41 ) 

In the following figure (V-4), the results related to the 219 samples selected 

from the previous step are shown. 

As can be seen, all the well-developed kernels have been detected and only 

one in 25 not-well developed kernels has been not correctly classified. 
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Figure V-4 Relation between the amplitude of the FID signal and weight of 

the kernel for 219 hazelnuts samples: fully developed kernels (in blue) and not 

well developed kernels (in red) 

 

V.3 Mold presence evaluation 

The analysis of the mold presence is made on the dried and well-developed 

hazelnuts. It exploits the differences in the T2 spectrum between the unhealthy 

(with presence of mold) and healthy hazelnuts. The T2 spectrum is obtained 

as described in the paragraph IV-5. 

Analyzing the T2 spectrum in figure IV-11, the healthy hazelnuts exhibited 

a greater value of the second time constant than the unhealthy ones, but the 

two categories are not well separated. 

Moreover, the unhealthy hazelnuts are characterized by two different 

behaviors, compared to the healthy nuts: 

1. The unhealthy hazelnuts that are not completely developed, 

because the damage appeared during the kernel growth, show an 

higher amplitude (x1) of the first exponential component and, at 

the same time, a lower amplitude (x2) of the second exponential 

component; 

2. The unhealthy hazelnuts that are completely developed, for 

example because the mold developed during the storage due to an 

high level of moisture, exhibit a higher amplitude (x2) of the 

second exponential component with a lower time constant (T2). 

 

Starting from these considerations, the two kinds of unhealthy hazelnuts 

have been analyzed. 
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V.3.1 Unhealthy hazelnuts not completely developed 

The T2 spectrum related to the first two components of the exponential 

decay is shown in figure V-5. 

 

 

Figure V-5 T2 spectrum related to the first two components of the transverse 

relaxation decay. Unhealthy thresholds (THRU1 and THRU2) in red. 

 

In order to discriminate the unhealthy hazelnuts not completely developed, 

an unhealthy condition, based on the amplitude of the first and the second 

exponential components, has been defined: 

(𝑥1 > 𝑇𝐻𝑅𝑈1) 𝑎𝑛𝑑 (𝑥2 < 𝑇𝐻𝑅𝑈2)    ( 42 ) 

Where THRU1 and THRU2 are the thresholds on the amplitude x1 and x2, 

respectively. 

The unhealthy condition relies on the property of the unhealthy hazelnuts 

that are not completely developed to have a fat content lower than the typical 

value contained in the healthy hazelnuts (Memoli et al., 2017). The effect on 

the relaxation curve is a faster decay that results in a greater amplitude of the 

first exponential decay and a lower amplitude of the second exponential decay 

in the T2 spectrum. 

The unhealthy condition allowed discarding all the unhealthy hazelnuts not 

completely developed, with lower than 2% of healthy hazelnuts wrongly 

classified as unhealthy. 
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V.3.2 Unhealthy hazelnuts completely developed 

The analysis of the T2 spectrum of the hazelnuts with this kind of defect 

revealed that the significant difference with the healthy nuts can be observed 

on the second component of the transverse relaxation decay. In particular, the 

unhealthy hazelnuts tend to exhibit a lower time constant (T2) and, at the same 

time, a higher amplitude (x2) than the healthy hazelnuts. Moreover, most of 

the healthy hazelnuts exhibited a time constant very close to the upper bound 

of the range. Starting from this consideration, a two steps procedure was set 

up: (i) a healthy condition has been defined to detect the healthy hazelnuts: 

𝑇2,2 > 𝑇𝐻𝑅𝐻       ( 43 ) 

 

The threshold has been chosen considering the maximum value of the time 

constant related to the unhealthy hazelnuts adding a margin of 5% on that 

value. 

The figure V-6 shows the time constant and the amplitude related to the 

second exponential component for the healthy and unhealthy hazelnuts and 

the healthy threshold. 

 

 

Figure V-6 Healthy condition on the T2 value of the second exponential 

component of the transverse relaxation decay for healthy (in blue) and 

unhealthy (in green) hazelnuts. 

 

As can be seen from the previous figure, the healthy threshold allows 

correctly classifying most of the healthy hazelnuts, but several samples fall in 

the unhealthy area (T2,2 < THRH). In this case, it is not possible to discriminate 

the two kind of nuts on the basis of the amplitude or the time constant. Then, 

in order to try highlighting the differences among the two classes of nuts 
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included in the unhealthy area, (ii) an analysis on the relation between 

amplitude and time constant has been carried out. In particular, the best 

selectivity was obtained considering the ratio between the amplitude and the 

square value of the time constant. In Fig. V-7 the ratio between the amplitude 

and the square and the time constant of the second component versus the ratio 

between the amplitude and the square and the time constant of the first 

component are reported for the healthy (in blue) and unhealthy (in green) 

hazelnuts. 

 

 

Figure V-7 Relation between ratio of the amplitude and the square of the time 

constant [s-2] of the first two exponential components for the healthy (in blue) 

and unhealthy (in green) hazelnuts 

 

As can be seen from the figure V-7, the two categories of nuts are still not 

completely separated, but the greatest sensitivity is observed on the 𝑥2 𝑇2,2
2⁄  
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parameter. In order to set a threshold on this parameter, an approach based on 

ROC curve has been adopted. In detail, in order to define the threshold for the 

healthy area (eq. 44) the global performances of the classification procedure 

have been taken into account, as described in V.3.3. 

𝑥2

𝑇2,2
2 < 𝑇𝐻𝑅       ( 44 ) 

 

V.3.3 Threshold setting by means of ROC curve analysis 

The ROC curves (Fawcett, 2006) have been carried out considering as 

unhealthy hazelnuts all the samples with defects: empty, not well developed, 

desiccated and with mold. Only the moisture content has not been considered 

because, even if it is a quality parameter, it is not a defect of the hazelnut. 

The analysis has been carried out considering two classes: 

 Unhealthy hazelnuts: positive test; 

 Healthy hazelnuts: negative test. 

The parameters used to evaluate the classification errors are described in 

the following table: 

 

Table V-1 Classification error parameters 

Classification parameter Description 

True positive, TP Unhealthy sample correctly classified 

False positive, FP Healthy sample classified as unhealthy 

True negative, TN Healthy sample correctly classified 

False negative, FN Unhealthy sample classified as healthy 

 

From the parameters defined in table V-1, the following measures can be 

defined: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  ( 45 ) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=

ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  ( 46 ) 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
=

ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  ( 47 ) 

The true positive rate (TPR) (eq. 45), also named sensitivity or recall, 

represents the capability of the system to detect the unhealthy samples. The 

false positive rate (FPR) (eq.46) is a measure of the false alarms, namely the 

healthy samples wrongly classified as unhealthy. The true negative rate (TNR) 

(eq.47) is the specificity, which represents the capability of the system to 

detect the healthy hazelnuts. 
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The ROC curve is a two-dimensional graph in which the y-axis is 

represented by the TPR and x-axis is represented by the FPR (Fawcett, 2006). 

It allows depicting the tradeoff between the benefits, represented by the 

true positive rate, and the costs, represented by the false positive rate (Fawcett, 

2006). Each point of the ROC curve is related to a value of the threshold to 

set, and it is obtained calculating the TPR and FPR using that value of the 

threshold. 

Figure V-8 shows the ROC curve related to the classification of the 

hazelnuts obtained varying the threshold THR. 

 

 

Figure V-8 ROC curve related to the threshold THR 
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The best value of the threshold (THR) is the value corresponding to the 

highest TPR considering the maximum acceptable FPR. 

Figure V-9 shows the point of the ROC curve corresponding to the selected 

value of the threshold, while the result of the classification using the selected 

threshold is depicted in figure V-10. 

 

 

Figure V-9 ROC curve and the selected threshold THR 
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Figure V-10 Relation between the amplitude and the square of the time 

constant [s-2] for the healthy (in blue) and unhealthy (in green) hazelnuts. 

Threshold (THR) in red. 

 

In this way, a sensitivity (TPR) of 97.0% and a specificity (TNR) of 80.8% 

has been obtain. The classification algorithm exhibited a high sensitivity, so a 

high capability to detect the unhealthy hazelnuts, with a specificity around the 

80%.  

A further analysis has been made on the threshold, in order to verify the 

effectiveness. A bootstrap resampling method has been used to obtain new 

datasets starting from the initial dataset. A description this method and the 

obtained results can be found in the next paragraph. 

 

V.3.4 Threshold validation using a bootstrap method 

A further analysis has been made on the whole procedure including the 

selected final threshold, in order to verify its effectiveness; because of the 

reduced size of the whole sample, a bootstrap resampling method has been 

used to obtain new datasets starting from the initial dataset. The bootstrap is a 

computationally intensive statistical technique that allows one to make 
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inferences from data without making strong distributional assumptions about 

the statistic that is calculated and/or the data.  

The main idea is that a number of new data sets, which are referred to as 

bootstrap samples, can be generated from the initial data set by sampling with 

replacement. With this resampling scheme, these distributions can be seen as 

approximations to the true distributions of the estimators, and then a good 

estimate can be obtained of the distribution of a statistics of interest, such as 

bias, standard deviation and so on (Liguori et al., 2017). In this work, the 

bootstrap method has been used to obtain 100 datasets starting from the initial 

dataset and computing the classification performance in order to verify the 

effectiveness of the selected threshold (THR). A block diagram of the adopted 

procedure is shown in the following figure. 

 

 

Figure V-11 Block diagram of the bootstrap resampling method 

 

The adopted procedure (Fig. V-11) is composed by the following steps: 

1. Bootstrap resampling on the initial dataset (N = 100); in this way, 

100 new datasets are generated from the initial one, with a different 

distribution of the classes (healthy, unhealthy): 

2. Using the classification algorithm with the previously described 

thresholds: calculation of the classification performance on the 

datasets generated using the bootstrap (TPRi and TNRi for 

i=1,…100); 

3. Calculation of the mean value (µ) and the standard deviation (σ) 

of the TPR and TNR indexes. 

Following this approach each generated dataset has a very different 

distribution of the several classes of samples; starting with a number of 

hazelnuts with mold equal to 13 in the initial dataset, a mean value of 15.8 and 

a standard deviation of 4.6 have been observed in the 100 generated datasets. 

The results of the estimated TPR and TNR indexes are shown in the table 

V-2. 

Table V-2 Classification performances using 100 datasets generated with 

bootstrap resampling 

 TPR TNR 

µ 97.6% 80.8% 

σ 2.7% 2.9% 

 

As can be seen from the table V-2, the mean value of the sensitivity (TPR) 

and the specificity (TNR) calculated on the 100 datasets generated using the 
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bootstrap resampling are similar to the values obtained on the initial database 

and the standard deviation is lower than 3% for both. According to these 

results, despite a large variation of the number of unhealthy samples in the 

datasets, the classification performances remain similar to the initial dataset. 

For this reason, the threshold THR has been considered reliable. 

 

V.4 Analysis of the algorithms execution time 

An analysis of the execution time of the algorithms employed in the 

classification procedure has been carried out in order to verify that they are 

compatible with the requirements of an in-line application. For each 

acquisition, the CPMG sequence is carried out and the data processing is 

performed on the acquired signal. As described in detail in chapter II, the 

CPMG sequence starts after the blanking delay and it is composed by a train 

of TX pulses. After the first TX pulse, a FID signal is received, while an echo 

signal is received after each following TX pulses. The time interval between 

the echoes is determined by the τ parameter, and it is equal to 2τ. 

In particular, in the proposed system the blanking delay is equal to 3 ms; 

the FID signal is acquired during the time τ (2 ms) and then the echoes are 

acquired after each TX pulses. The time interval between two TX pulses or, 

similarly, between two echoes is 2τ (4 ms). Sixty echoes are acquired for each 

sequence, therefore, the total time to perform a single CPMG sequence is 

around 245 ms (Fig. V-12). 

The processing is composed by two algorithms: (i) echo peak detection by 

means of second order polynomial regression; (ii) T2 distribution calculation 

by means of non-linear mean square exponential fitting. In order to estimate 

the processing time 100 runs were made on a personal computer with CPU 

Intel Core i5 2.7 GHz and Window 10 64 bit operating system. 

Table V-3 shows the mean value and the standard deviation of the 

execution time (Te) related to the three algorithms, calculated over 100 

acquisitions. 

 

Table V-3 Mean value and standard deviation of the execution time of the 

algorithms calculated over 100 acquisitions 

Algorithm description 𝐓𝐞
̅̅ ̅ 

[𝐦𝐬] 
s(Te) 

[ms] 

Echo peak detection with polynomial regression 0.55 0.22 

T2 distribution calculation with least square fitting 20.7 2.6 
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Figure V-12 Time diagram of the CPMG sequence (first two echo signal).TX 

pulses in red. 

 

Comparing the acquisition and execution time related to the echo peak 

detection, the time interval between two echoes is 8 ms (considering that the 

odd echoes are discarded); it is much higher than the execution time of the 

polynomial regression algorithm, so a real-time detection of the echo peaks is 

allowed. 

The non-linear least square fitting is very time consuming but compared 

with the total acquisition time is an order of magnitude lower, then it not 

represent a limit.  
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Chapter VI 

Conclusions 

 

 

 

 
In this work, a method for the quality detection of the in-shell hazelnuts 

has been proposed. It is based on the low field NMR, which is a non-

destructive technique employed in the quality control of food, especially in 

offline laboratory applications. This research project focuses on an in-line 

industrial application of the NMR system that has to be able to detect the 

hidden defects of the hazelnuts in order to help the farmers and the producers 

to meet the quality requirements imposed by the international standards and 

rules. For this aim, an analysis of the main NMR techniques and systems has 

been carried out, highlighting the influence parameters that affect the 

measurements and the issues related to the execution time of the data 

processing. Moreover, a permanent magnet and probe specifically designed 

for this application have been used in order to be able to host a whole nut. The 

work then focused on the signal processing, introducing pre-processing and 

processing algorithms in order to obtain execution times suitable to an in-line 

application. The proposed classification algorithm is based on the analysis of 

the transverse relaxation decay, which is obtained with the CPMG sequence. 

In particular, three different steps of the algorithm have been defined. In each 

step a single quality property of the hazelnuts is analyzed: the kernel 

development, that allows detecting the empty, not well developed and 

desiccated nuts, is evaluated considering the maximum amplitude of the 

acquired signal; the moisture content, which is related to the mold 

development, is evaluated analyzing the relation between the maximum 

amplitude of the CPMG signal and the second echo peak. Finally, the mold 

development is evaluated analyzing the T2 spectrum of the CPMG signal, 

which consists of the amplitudes and the time constants related to the multi-

exponential decomposition of the transverse relaxation decay. The first two 

features can be detected in a very fast way, only 12 ms are needed to obtain 

the results, because the information are contained in the first part of the 

acquired signal; for the third feature, the total acquisition time is needed, 

which is around 245 ms. 
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The classification algorithm showed a high sensitivity (97%) with a 

specificity around the 80%, so it is capable detecting the unhealthy hazelnuts 

but with a relatively high number of discarded healthy hazelnuts. A bootstrap 

method has been employed during performance evaluation in order to increase 

the sample population. The loss of specificity is mainly due to the third step 

of the algorithm, while in first two steps this value is similar to the sensitivity. 

This does not represent a limit because the defects related to the kernel 

development are well detected and they outnumber other kinds of defects. 

Moreover, the moisture content is also well detected by the classification 

algorithm, and this allows discarding the hazelnuts that contain a high level of 

moisture, that causes the mold development during the storage. 

A more accurate unhealthy detection could be obtained with a strictly 

control of the influence parameters or using more complex techniques, like 

the Magnetic Resonance Imaging (MRI), but they are not suitable solutions 

for an industrial application, both for the cost and for the complexity of the 

systems. 

Finally, the study has been carried out on the hazelnuts, but it can be easily 

extended to other kinds of fruit in shell, as well as the measurement algorithms 

can be applied in other kinds of NMR applications. 
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The analysis of the multi-exponential transient signals is particularly 

important for their occurrence in several fields, mainly applied physics and 

chemistry. Examples of problems involving this kind of signals are the 

fluorescence decay analysis in biophysics, the radioactive decay in nuclear 

physics, the reaction kinetics in chemistry and the study of the relaxation 

decay in the Nuclear Magnetic Resonance (Jibia and Salami, 2012). 

A multi-exponential transient signal can be expressed as a linear combination 

of exponentials: 

𝑆(𝜏) = ∑ 𝐴𝑖𝑒−𝜆𝑖𝜏𝑀
𝑖=1 + 𝑛(𝜏)     ( 48 ) 

Where M is the number of components, Ai is the amplitude of the i-th 

component, λi is the decay rate constant of the i-th component and n(τ) is the 

additive white Gaussian noise. The solution of eq.(48) consist of the 

determination of the parameters M, Ai and λi of the measured signal S(τ). The 

main problem in the analysis of this kind of signals is the non-orthogonality 

of the exponential decay functions. This means that if an attempt is made to 

determine the unknown parameters Ai, λi and M from finite time samples of 

the signal in eq.(48), the distribution function of the decay rates will not be 

unique (Jibia and Salami, 2012b). 

Several techniques have been proposed for the analysis of the multi-

exponential transient signals. They can be classified as time-domain or 

frequency-domain, and parametric or non-parametric (Salami et al., 2012). 

Time-domain techniques are the oldest methods of multi-exponential signal 

analysis. One of the first example of time-domain technique is the peeling 

method, which attempts to separate the various components based on the 

different slopes of the components at infinity (Mancin and Pilo, 1970). This 

method produces poor results when the signal contains more than two 

components. The main application of a frequency-domain technique has been 

the Gardner transformation. Several algorithms have been proposed, based on 
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this approach. It is based on the inversion of an integral form of eq.(48) into a 

convolutional integral and then the deconvolution is obtained applying the 

Fourier transform (Jibia and Salami, 2012c). Another category of techniques, 

exploited in different algorithms, is the linear regularization. An example of 

algorithm based on this technique is the uniform penalty inversion of multi-

exponential decay data (UPEN) that is used for the inversion of the relaxation 

decay of NMR signals in order to give a quasi-continuous distribution of the 

relaxation times. Usually, some smoothing of the distributions is implemented 

to avoid excess variation. When the same distribution has a sharp peak and a 

much broader peak or a “tail,” as for many porous media saturated with 

liquids, an inversion program using a fixed smoothing coefficient may 

broaden the sharp peak and/or break the wide peak or tail into several separate 

peaks, even if the coefficient is adaptively chosen in accord with the noise 

level of the data. The UPEN algorithm deals with this problem by using 

variable smoothing, determined by iterative feedback in such a way that the 

smoothing penalty is roughly constant (Borgia et al., 1998, Borgia et al., 

2000). Another algorithm based on linear regularization is CONTIN 

(Provencher, 1982). It exploits several constraints into the regularization in 

order to obtain a stable solution. In particular, it makes use of a combination 

of three strategies to determine the constraints: (1) Absolute prior knowledge, 

(2) statistical prior knowledge, and (3) the principle of parsimony. A 

comparison between the UPEN and CONTIN algorithm can be found in 

(Moody and Xia, 2004), in which the ability of detecting a decay component 

lower than the time of the first acquired echo in the CPMG sequence, is 

analyzed. In this work, as described in chapter 3 and 4, an algorithm based on 

singular value decomposition (SVD) has been used to determine the main 

components of the T2 distribution in the oil samples, and then a non-linear 

least square fitting considering a three component model of the signal. 

All the multi-exponential techniques have some advantages and 

disadvantages. The main parameters to take in account are: 

 Noise level of the acquired signal; 

 Number of components of the multi-exponential decay; 

 Time distribution of the components; 

 Time of execution of the algorithm. 

All the mentioned techniques suffer a low S/N ratio of the acquired signal. 

In particular, when the S/N ratio decreases, the solution of eq. (48) tends to be 

instable. Some techniques work better than other with signal that exhibit a few 

number of components, or when it is not required a small time resolution. 

Moreover, most of the algorithms are iterative procedures, and they are often 

computational inefficient. 

In the present work, the SVD algorithm has been adopted because it 

exhibited a stable solution in few iterations, so it proved to be suitable for the 

specific application. Moreover, the non-linear least square fitting, although is 

considered a computational inefficient technique, allowed obtaining the small 
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resolution required to discriminate between the similar components related to 

healthy and unhealthy hazelnuts, limiting the execution by means of the time 

constraints in the model of the signal, composed by three components with the 

time constants in predefined ranges.  


