University of Salerno

DEPARTMENT OF CHEMISTRY AND BIOLOGY "ADOLFO ZAMBELLI"

Ph.D. School in Chemistry

XXXI CYCLE

An ecological approach to the integrated monitoring of freshwater ecosystems

Dr. Alessandro Bellino

Supervisor Prof. Daniela Baldantoni Head of the Ph.D. School Prof. Gaetano Guerra

A.Y. 2017-2018

Contents

C	onten	its		i
Li	st of	Figures		iii
Li	st of	Tables		xi
1	Intr	oductio	on	1
2	Mat	terials a	and Methods	13
	2.1	Study	area	13
	2.2	Field s	surveys	16
	2.3	Passiv	re biomonitoring	18
		2.3.1	Bioaccumulators	18
			2.3.1.1 Helosciadium nodiflorum (L.) W.D.J. Koch	18
			2.3.1.2 Mentha aquatica L	20
		2.3.2	Sampling, sample processing and laboratory anal-	
			yses	21
	2.4	Active	e biomonitoring	23
		2.4.1	Bioaccumulators	23
			2.4.1.1 Fontinalis antipyretica Hedw	23
			2.4.1.2 Chara gymnophylla A. Braun	24
		2.4.2	Material selection and bag preparation	25
		2.4.3	Bag installation, sampling and analysis	26
	2.5	Water		28
		2.5.1	Sampling and sample processing	28

		2.5.2	Laboratory analyses	28
	2.6	Sedi	ments	30
		2.6.1	Sampling and sample processing	30
		2.6.2	Laboratory analyses	31
	2.7	Char	ophyte biodiversity	33
		2.7.1	Sampling and sample processing	33
		2.7.2	Laboratory analyses	35
	2.8	Data	analysis	37
		2.8.1	Charophyte biodiversity	37
		2.8.2	Biomonitor validation	39
		2.8.3	River quality	40
3	Res	ults		45
	3.1	Char	ophyte biodiversity	45
	3.2	Biom	nonitor validation	58
	3.3	Rive	r quality	63
4	Dis	cussio	n	89
Co	ntril	oution	ıs .	103
Aı	ppen	dix A	PTE concentrations in passive biomonitors	105
Aı	pen	dix B	PTE concentrations in active biomonitors	119
Aı	pen	dix C	PTE concentrations in sediments	129
Aı	pen	dix D	Analytes in water	141
Aı	pen	dix E	MEM maps based on passive and active biomon-	
			itors	147
Re	ferei	nces		155

List of Figures

1.1	Sceneries on the Bussento (left) and Calore Salernitano (right) rivers	8
1.2	Diagram relating the various tasks (circles) and the intermediate (dotted boxes) and principal (solid box) aims of the project.	10
2.1	An example of the biodiversity of the "Cilento, Vallo di Diano e Alburni" National Park. From top to bottom and left to right: <i>Bombina pachypus</i> Bonaparte, <i>Austropotamobius pallipes</i> Lereboullet, <i>Calopteryx virgo</i> L., <i>Chalcolestes viridis</i> Van der Linden, <i>Primula palinuri</i> Petagna, and <i>Soldanella sacra</i> A. & L. Bellino. All the photographs from the author.	15
2.2	Map of the sampling sites, in 2016 and 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where <i>H. nodiflorum</i> (■), <i>M. aquatica</i> (▲) or both the species (●) were found. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (●) are also shown	22
2.3	Bag construction from cheese molds	25
2.4	Bags floating in water and bag sampling. Bags containing <i>F. antipyretica</i> and <i>Ch. gymnophylla</i> can be distinguished from the darker color of the former	26

Map of the sampling sites, in 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where (•) <i>F. antipyretica</i> and <i>Ch. gymnophylla</i> bags were placed. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (•) are also shown	27
Map of the sampling sites, in 2016 and 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where (●) water analyses has been performed. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (▶) are also shown	29
Map of the sampling sites, in 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where (●) sediments were collected. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (▶) are also shown	31
Map of Charophyte populations observed along the Bussento (B), the Calore Salernitano (C) and the Alento (A) rivers, and in spring pools within the Perdifumo discrict (P) and Trentova (T) zone (image from Bing Maps). Populations on which morphological, physiological and ecological analyses were carried out (•) and those observed but not analysed due to their disapparence in 2018 (•) are indicated	34
Charophyte populations observed during the project, with indication of the species they belong to: <i>Ch. globularis</i> Thuillier (), <i>Ch. gymnophylla</i> A. Braun (), <i>Ch. vulgaris</i> L. (), and <i>Ch. vulgaris</i> var <i>papillata</i> K. Wallroth ()	46
Ternary diagram of the probability memberships of each thallus to <i>Ch. globularis</i> (■), <i>Ch. gymnophylla</i> (●), and <i>Ch. vulgaris</i> (▲) according to the fuzzy clustering. Populations are coded in different colors according to the legend	52
	and Calore Salernitano (C) rivers (image from Bing Maps) indicating where (•) F. antipyretica and Ch. gymnophylla bags were placed. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (•) are also shown. Map of the sampling sites, in 2016 and 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where (•) water analyses has been performed. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (•) are also shown. Map of the sampling sites, in 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where (•) sediments were collected. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (•) are also shown. Map of Charophyte populations observed along the Bussento (B), the Calore Salernitano (C) and the Alento (A) rivers, and in spring pools within the Perdifumo discrict (P) and Trentova (T) zone (image from Bing Maps). Populations on which morphological, physiological and ecological analyses were carried out (•) and those observed but not analysed due to their disapparence in 2018 (•) are indicated. Charophyte populations observed during the project, with indication of the species they belong to: Ch. globularis Thuillier (•), Ch. gymnophylla A. Braun (•), Ch. vulgaris L. (•), and Ch. vulgaris var papillata K. Wallroth (•). Ternary diagram of the probability memberships of each thallus to Ch. globularis (•), Ch. gymnophylla (•), and Ch. vulgaris (•) according to the fuzzy clustering. Populations

3.3	Conditional recursive partitioning tree based on charophyte morphometric traits. Colors indicate to which species populations belong to: <i>Ch. globularis</i> (—), <i>Ch. gymnophylla</i> (—), and <i>Ch. vulgaris</i> (—). Node probabilities and splitting rules are also reported	53
3.4	NMDS biplots based on the Charophyte morphometric traits (a) and photosynthetic pigment concentrations (b), with the superimposition of confidence ellipses (for $\alpha=0.05$) relative to <i>Ch. globularis</i> (—), <i>Ch. gymnophylla</i> (—), and <i>Ch. vulgaris</i> (—). The centroid for each population are also shown. eccc.r: proportion of ecorticate cells on the total cell number in radii	54
3.5	Stressplots relative to the NMDS on the Charophyte morphometric traits (a) and photosynthetic pigment concentrations (b). The coefficient of determination relative to the linear and non-linear regressions between the distances in the NMDS spaces and the original distances are also reported.	55
3.6	Average mass, in percent to thallus dry weight, of deposited carbonates on Charophyte thalli. Different letters indicate significant differences among sites according to the estimated marginal means test (for $\alpha=0.05$). Colors indicate species according to the legend	55
3.7	Average mass, in percent to thallus fresh weight, of epiphyte diatoms on Charophyte thalli. Different letters indicate significant differences among sites according to the estimated marginal means test (for $\alpha = 0.05$). Colors indicate species according to the legend	56
3.8	SEM images of <i>Ch. globularis</i> oospores showing extended	30
	wings	56
3.9	Chromatograms of the pigment extracts of <i>Ch. globularis</i> (—), <i>Ch. gymnophylla</i> (—), and <i>Ch. vulgaris</i> (—). Peak	
	identification is reported in Table 3.5	57

3.10	Stressplots relative to the NMDS on the <i>M. aquatica/H. nodi- florum</i> raw (a) and scaled (b) data, and to the NMDS on the <i>Ch. gymnophylla/F. antipyretica</i> raw (c) and scaled (d) data. The coefficient of determination relative to the linear and non-linear regressions between the distances in the NMDS spaces and the original distances are also reported	59
3.11	NMDS biplots based on raw (a) and scaled (b) PTE concentration data, with the superimposition of confidence ellipses (for $\alpha=0.05$) relative to M . $aquatica~()~and~H$. $nodiflorum~()~in~2016~(\blacksquare)~and~2017~(\blacktriangle).$	60
3.12	NMDS biplots based on raw (a) and scaled (b) PTE concentration data, with the superimposition of confidence ellipses (for $\alpha = 0.05$) relative to <i>Ch. gymnophylla</i> () and <i>F. antipyretica</i> (—) in 2017 (\blacktriangle)	61
3.13	Connectivity diagrams developed for the Bussento, the Calore Salernitano and the joint river systems based on passive biomonitoring sites in 2016 or 2017. Spatial weighting matrices were computed through weighting of the diagrams.	64
3.14	Connectivity diagrams developed for the Bussento, the Calore Salernitano and the joint river systems based on active biomonitoring sites. Spatial weighting matrices were computed through weighting of the diagrams	65
3.15	RDA triplots computed using the selected MEMs as predictors and the PTE concentrations in passive and active biomonitors in the Bussento, the Calore Salernitano, and the joint river systems as dependent variables. For the interpretation of MEMs, refer to Figures E.1 to E.6	67
3.16	Mantel correlograms based on data from H . nodiflorum and M . aquatica (a), and from F . antipyretica and Ch . gymnophylla. Black squares indicate significant (for $\alpha = 0.05$) spatial cor-	
	relations	69

	Multivariate spatial outlier plots (left) and break-down of each PTE contribution (right), based on PTE concentrations in roots of <i>H. nodiflorum</i> and <i>M. aquatica</i> in 2016 and 2017. PTE values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red: high values). Multivariate spatial outlier plots (left) and break-down of each PTE contribution (right), based on PTE concentrations in roots of <i>F. antipyretica</i> and <i>Ch. gymnophylla</i> in 2016 and 2017. PTE values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red:	70
3.19	high values)	71
3.20	the 3-mode compositional tensor	72
	centration distribution in the 4 BCR fractions: exchangeable (■), bound to Fe-Mn oxides (■), bound to organic matter	
3.21	(*), residual (*)	76
3.22	bound to organic matter (*), residual (*) Stacked barplots of the non-essential element (Al, As, Cd, Pb) concentration distribution in the 4 BCR fractions: ex-	77
3.23	changeable (•), bound to Fe-Mn oxides (•), bound to organic matter (•), residual (•)	78
	than 1% of the total variance in the 3-mode compositional tensor	78

3.24	Ternary diagram showing the estimated relative abundance of quartz, calcite and dolomite in the sediments of the 18 sites on the Bussento and Calore Salernitano rivers: B.02 (\square), B.08 (\bigcirc), B.11 (\triangle), B.15 ($+$), B.16 (\times), B.18 (\diamondsuit), B.21 (∇), B.22 (\boxtimes), B.27 (\times), B.29 (\bigoplus), C.01 (\bigoplus), C.03 (\boxtimes), C.06 (\boxplus), C.09 (\boxtimes), C.10 (\boxtimes), C.15 (\blacksquare), C.16 (\bullet), C.17 (\blacktriangle). Confidence ellipses for 1σ (\longrightarrow), 2σ ($-$ - $-$), and 3σ (\cdots) are also shown	79
3.25	RDA triplots computed using the ilr-transformed percentages of quartz, calcite, and dolomite as predictors and the total PTEconcentrations (a) and the loadings of the mode n. 1 compositional tensor upon the 9 selected tensors as response variables (b). Confidence ellipses (for $\alpha=0.05$) relative to the Bussento (—) and the Calore Salernitano () rivers are also shown	80
3.26	NMDS biplot relative to the total PTE concentrations in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha = 0.05$) relative to each sites are also shown.	81
3.27	NMDS biplot relative to the PTE concentrations in the exchangeable fraction in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha = 0.05$) relative to each sites are also shown.	81
3.28	NMDS biplot relative to the PTE concentrations bound to Fe-Mn oxides in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha = 0.05$) relative to each sites are also shown	82
3.29	NMDS biplot relative to the PTE concentrations bound to the organic matter in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha = 0.05$) relative to each sites are also shown.	82

3.30	NMDS biplot relative to the PTE concentrations in the residual fraction in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha = 0.05$) relative to each sites are also shown	83
3.31	Stressplots relative to the NMDSs based on the total PTE concentrations (a) and on the PTE concentrations in the exchangeable (b), bound to Fe-Mn oxides (c), bound to organic matter (d), and residual (e) fractions. The coefficient of determination relative to the linear and non-linear regressions between the distances in the NMDS spaces and the original distances are also reported	84
3.32	Multivariate spatial outlier plots (left) and break-down of the contribution of each variable (right), based on macronutrient, micronutrient, and anion concentrations in water in 2016. Values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red: high values).	85
3.33	Multivariate spatial outlier plots (left) and break-down of the contribution of each variable (right), based on macronutrient, micronutrient, and anion concentrations in water in 2017. Values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red: high values).	86
3.34	Multivariate spatial outlier plots (left) and break-down of the contribution of each variable (right), based on TOC, TN and photosynthetic pigments in water in 2016 (upper panels) and 2017 (lower panels). Values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue:	
	low values, red: high values)	87

E.1	MEM map based on passive biomonitoring data, relative	
	to the Bussento-Bussentino river system. MEMs are or-	
	dered from left to right in relation to their importance in	
	the relative RDA. Square size indicate the relative strength	
	of spatial autocorrelation (■: positive; □: negative)	148
E.2	MEM map based on passive biomonitoring data, relative	
	to the Calore Salernitano-Rio Pietra-Fasanella river system.	
	MEMs are ordered from left to right in relation to their	
	importance in the relative RDA. Square size indicate the	
	relative strength of spatial autocorrelation (■: positive; □:	
	negative)	149
E.3	MEM map based on passive biomonitoring data, relative to	
	the joint river system. MEMs are ordered from left to right	
	in relation to their importance in the relative RDA. Square	
	size indicate the relative strength of spatial autocorrelation	
	(■: positive; □: negative)	150
E.4	MEM map based on active biomonitoring data, relative	
	to the Bussento-Bussentino river system. MEMs are or-	
	dered from left to right in relation to their importance in	
	the relative RDA. Square size indicate the relative strength	
	of spatial autocorrelation (\blacksquare : positive; \square : negative)	151
E.5	MEM map based on active biomonitoring data, relative to	
	the Calore Salernitano-Rio Pietra-Fasanella river system.	
	MEMs are ordered from left to right in relation to their	
	importance in the relative RDA. Square size indicate the	
	relative strength of spatial autocorrelation (■: positive; □:	
	negative)	152
E.6	MEM map based on active biomonitoring data, relative to	
	the joint river system. MEMs are ordered from left to right	
	in relation to their importance in the relative RDA. Square	
	size indicate the relative strength of spatial autocorrelation	
	(■: positive; □: negative)	153

List of Tables

2.1	Microwave oven mineralization program adopted for sample preparation	23
2.2	D2 PHASER XRD system settings for sediment mineralogy analysis	33
2.3	Dehydration steps adopted in <i>Chara</i> spp. oospore preparation for SEM analysis	36
2.4	RP-HPLC settings adopted for Charophyta photosynthetic pigment profiling	38
3.1	Morphological traits analysed on the 12 Charophyte populations reported in Figure 2.8, with indication of the abbreviations used in the text.	47
3.2	Morphological traits (mean: upper table; s.e.m.: lower table) of the thalli from the 12 Charophyte populations reported in Figure 2.8. Abbreviations are reported in Table 3.1. Units for the number of internodes, branchlets, corticate and ecorticate cells are in counts, units for lengths and widths are in μ m, unless otherwise specified	48
3.3	Morphological traits (mean: upper table; s.e.m.: lower table) of the antheridia and archegonia from the 12 Charophyte populations reported in Figure 2.8. Abbreviations are reported in Table 3.1. A "-" means that only 1 observation was recorded, and there was not enough information	10
	to calculate s.e.m. Units are in μ m	49

3.4	Concentration (mean: upper table; s.e.m.: lower table) of chlorophyll a (Chl a), chlorophyll b (Chl b), pheophytin a (Pheo a), pheophytin b (Pheo b), and total carotenoids (Car).	
	Units are in μ g g ⁻¹ f.w	50
3.5	HPLC pigment profile of <i>Chara</i> spp., with indication of peak retention times and resolution	51
3.6	Results of the Mantel correlation tests based on the Manhattan distance metric	58
A.1	PTE concentrations (mean) in <i>H. nodiflorum</i> from the Bussento and Calore Salernitano rivers in 2016. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified	106
A.2	PTE concentrations (s.e.m.) in <i>H. nodiflorum</i> from the Bussento and Calore Salernitano rivers in 2016. Units are in $\mu g \ g^{-1}$	
A.3	PTE concentrations (mean) in <i>H. nodiflorum</i> from the Bussento and Calore Salernitano rivers in 2017. Units are in $\mu g g^{-1}$	107
A.4	d.w., unless otherwise specified	108
A.5		109
A.6		110
A.7	PTE concentrations (mean) in <i>M. aquatica</i> from the Bussento river in 2017. Units are in μ g g ⁻¹ d.w., unless otherwise	111
A.8	PTE concentrations (s.e.m.) in <i>M. aquatica</i> from the Bussento river in 2017. Units are in μ g g ⁻¹ d.w., unless otherwise	112
	specified	113

A.9	PTE concentrations (mean) in M . aquatica from the Calore Salernitano river in 2016. Units are in μg g ⁻¹ d.w., unless otherwise specified	114
A.10	PTE concentrations (s.e.m.) in M . aquatica from the Calore Salernitano river in 2016. Units are in μ g g ⁻¹ d.w., unless otherwise specified	115
A.11	PTE concentrations (mean) in <i>M. aquatica</i> from the Calore Salernitano river in 2017. Units are in μ g g ⁻¹ d.w., unless otherwise specified	116
A.12	PTE concentrations (s.e.m.) in <i>M. aquatica</i> from the Calore Salernitano river in 2017. Units are in $\mu g g^{-1}$ d.w., unless	117
B.1	PTE concentrations (mean) in <i>F. antipyretica</i> from the Bussento river. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.	120
B.2	PTE concentrations (s.e.m.) in <i>F. antipyretica</i> from the Bussento	121
B.3	PTE concentrations (mean) in <i>F. antipyretica</i> from the Calore Salernitano river. Units are in μ g g ⁻¹ d.w., unless otherwise specified	122
B.4	PTE concentrations (s.e.m.) in <i>F. antipyretica</i> from the Calore Salernitano river. Units are in μ g g ⁻¹ d.w., unless otherwise	
B.5	specified	123
B.6	specified	124
B.7		125
	Calore Salernitano river. Units are in μ g g ⁻¹ d.w., unless otherwise specified.	126

B.8	PTE concentrations (s.e.m.) in <i>Ch. gymnophylla</i> from the	
	Calore Salernitano river. Units are in μ g g ⁻¹ d.w., unless otherwise specified	127
C 1		
C.1	Total PTE concentrations (mean) in sediments from the	
	Bussento and Calore Salernitano. Units are in $\mu g g^{-1} d.w.$,	120
C_{2}	except for Al, Ca, Fe, Mg, expressed in mg g ⁻¹ d.w	130
C.2	Total PTE concentrations (s.e.m.) in sediments from the	
	Bussento and Calore Salernitano. Units are in $\mu g g^{-1} d.w.$,	121
C 2	unless otherwise specified	131
C.3	PTE concentrations (mean) in the exchangeable fraction in	
	sediments from the Bussento and Calore Salernitano. Units	122
C A	are in μ g g ⁻¹ d.w., unless otherwise specified	132
C.4	PTE concentrations (s.e.m.) in the exchangeable fraction in	
	sediments from the Bussento and Calore Salernitano. Units	122
C F	are in μ g g ⁻¹ d.w., unless otherwise specified	133
C.5	PTE concentrations (mean) in the fraction bound to Fe-Mn	
	oxides in sediments from the Bussento and Calore Salerni-	104
0.6	tano. Units are in μ g g ⁻¹ d.w., unless otherwise specified.	134
C.6	PTE concentrations (s.e.m.) in the fraction bound to Fe-Mn	
	oxides in sediments from the Bussento and Calore Salerni-	105
~ =	tano. Units are in μ g g ⁻¹ d.w., unless otherwise specified.	135
C.7	PTE concentrations (mean) in the fraction bound to organic	
	fraction in sediments from the Bussento and Calore Saler-	104
	nitano. Units are in μ g g ⁻¹ d.w., unless otherwise specified.	136
C.8	PTE concentrations (s.e.m.) in the fraction bound to organic	
	fraction in sediments from the Bussento and Calore Saler-	
	nitano. Units are in μ g g ⁻¹ d.w., unless otherwise specified.	137
C.9	PTE concentrations (mean) in the residual fraction in sedi-	
	ments from the Bussento and Calore Salernitano. Units are	
	in μ g g ⁻¹ d.w., unless otherwise specified	138
C.10	PTE concentrations (s.e.m.) in the residual fraction in sedi-	
	ments from the Bussento and Calore Salernitano. Units are	
	in μ g g ⁻¹ d.w., unless otherwise specified	139

D.1	PTE concentrations in water from the Bussento and Calore	
	Salernitano rivers in 2016. Units are in μ g L ⁻¹ d.w., unless	
	otherwise specified	142
D.2	Dissolved O ₂ , electrical conductivity, pH, and concentra-	
	tion of anions, photosynthetic pigments, TC, IC, TOC, and	
	TN in water from the Bussento and Calore Salernitano rivers	.143
D.3	PTE concentrations in water from the Bussento and Calore	
	Salernitano rivers in 2017. Units are in μ g L ⁻¹ d.w., unless	
	otherwise specified	144
D.4	ORP, dissolved O ₂ , electrical conductivity, pH, and concen-	
	tration of anions, photosynthetic pigments, TC, IC, TOC,	
	and TN in water from the Bussento and Calore Salernitano	
	rivers	145

Chapter 1

Introduction

Diffuse environmental pollution is considered one of the key evidences of Earth system transition into a novel geologic era, defined as "Anthropocene" from the pervasive effects of human activities on the whole ecosphere (Malhi, 2017). This is the outcome of the large auxiliary energy inputs and the introduction of novel materials, determining a massive outbreak of human population during the last centuries, with a shift from internally controlled (density dependent) logistic to exponential dynamics (Cohen, 2003). Undoubtedly welcomed from sociological and welfare points of view, the changes in human population dynamics and the associated ever growing demand for energy and resources, is nonetheless steadily impairing global equilibria, with dramatic consequences on millions of species, human inclusive. Indeed, the current biodiversity crisis, sometimes considered the 6th mass extinction event in Earth history (Barnosky et al., 2011), is primarily caused by anthropogenic activities both directly (through harvesting, habitat loss, introduction of invasive species...) and indirectly (through climate change, pollution, disease spreading...). The causes of species extinction are regularly multiple and interwined, with dynamics usually too complex to be coped with (Barnosky et al., 2011). A chilling example is provided by the near extinction of the Mediterranean endemic and iconic bivalve Pinna nobilis L., already threatened

by pollution, harvesting, trawling and anchoring, which is currently brought to extinction by a novel parasite favoured by climate warming and possibly spreaded by human transports with unprecedented speed (Vázquez-Luis et al., 2017).

Generally, habitat degradation and loss is considered the single most important determinant of biodiversity decline (Segan et al., 2016), and the institution of protected areas where species can persist is often proposed to locally counteract the process (Le Saout et al., 2013). However, protected areas may serve multple purposes, involving the conservation of peculiar geological structures and even the preservation of cultural or social aspects (Geneletti and Van Duren, 2008). An example of a multi-purpose protected area is the "Cilento, Vallo di Diano e Alburni" National Park (PNCVDA), awarded of four UNESCO World Heritage designations for its biodiversity, geodiversity, cultural landscape and mediterranean diet. Irrespective of the purpose, environmental monitoring is pivotal in the management of protected areas, allowing to gather information on current environmental criticalities and evaluate the effects of policies and actions (Arthington, 2015). The process, known as "adaptive management", forms the backbone of ecosystem management and promotes the adaptation of environmental policies based on monitoring results (Valavanidis, 2018). At the European level, the Water Framework Directive (WFD) provides an exceptional example of adaptive ecosystem management (Spencer, 2017) not confined to protected areas. Indeed, the directive introduced an experimentalist approach to water governance through a recursive strategy based on setting provisional goals and revising them in the light of monitoring outcomes. On monitoring itself, the WFD also constitutes a leap forward, encouraging the use of biomonitoring and integrated approaches (Besse et al., 2012).

Monitoring of water ecosystems, especially rivers, represents an exceptionally complex task, due to the continuous water movements and the consequent need to consider the temporal fluctuations in the parameters analysed (Besse et al., 2012; Szczerbińska and Galczyńska, 2015). For physical parameters like conductivity or tempera-

ture, field installation of probes and dataloggers allows reconstructing continuous-like dynamics (Mueller et al., 2013). Field probes made up by ion-sensitive electrodes are also available for some chemicals but, with the exception of a few selected ions, they are used as "watchdogs" for anomalous events rather than for accurate parameter measurements. Therefore, monitoring of dissolved chemical pollutants is mostly accomplished by periodically analysing water, the time required for the analyses setting the maximum achievable temporal sampling frequency (Bartram and Ballance, 1996). This approach provides information on the real temporal variations in pollutant concentrations, but has major drawbacks in the costs associated with and the coarse reconstruction of pollutant dynamics (Baldantoni et al., 2018). Indeed, pollution peak events are easily missed with monthly or even weekly samplings, which already constitute a challenging task (Besse et al., 2012). Moreover, the associated costs usually impose a tradeoff between temporal and spatial density of samplings: the wider the monitored area the lesser the achievable sampling frequency (Besse et al., 2012). High spatial sampling densities are still necessary to reconstruct accurate spatial pollution gradients, which is one of the main goals of most monitoring programs. In this context, working with average concentrations per site rather than dynamics would be even more straightforward and would provide clearer, but less informative, scenarios.

For chemicals with high affinity for sediments like non-polar organics and several metals, sediments act as pollutant reservoirs and their analysis may fulfill these goals (Kilunga et al., 2017), providing information on the mean temporal concentrations per sampling site. Sediments are often readily available in large quantities, store pollutants over long times and, considering their stratigraphy, may be even used for retrospective reconstruction of historical pollution events (Blais et al., 2015; Schillereff et al., 2016). The advantages of sediment analysis have drawn considerable attention for environmental monitoring of rivers, lakes, estuaries and marine coastal systems (Spencer, 2017) whenever the study of temporal dynamics is not concerned. Sed-

iment analysis is also pivotal in the estimation of environmental risks associated to the re-mobilization of stored pollutants due to changes in hydrological or chemical processes of the system (Zoumis et al., 2001; Zhang et al., 2015). Indeed, the adsorption/desorption equilibria at the interface between water and sediments are controlled by several factors like sediment mineralogy, temperature, pH, redox potential, conductivity and presence of chelating agents like humic compounds (Matagi et al., 1998). Variations in each of these parameters, even due to the natural hydrological fluctuations, may promote pollutant mobilization from sediments and enhance their availability for biota (Zhang et al., 2015). The dependence of pollutant accumulation in sediments upon environmental conditions and sediment properties (Bartram and Ballance, 1996) is not only of concern for risk evaluation, but constitutes also the main drawback of sediment analysis for pollution gradient reconstruction (Baldantoni et al., 2018). Gradients obtained this way, in fact, mostly reflect the spatial variations in sediment pollutant accumulation potential rather than true pollutant loads (Bartram and Ballance, 1996). To overcome these limitations, systems exhibiting coherent behaviour toward pollutant concentrations over the monitoring area should be employed. The complexity of these systems spans from simple chemical matrices accumulating selected pollutants, as in the case of diffusive gradient thin films, to organisms or communities (Mangal et al., 2016).

The use of biota for environmental monitoring is defined "biomonitoring" and is not only a cheaper and more accurate way to derive spatial pollution gradients (Besse et al., 2012; Bartram and Ballance, 1996; Chapman, 1992), but also the unique way to evaluate the possible transfer of pollutants through food webs and their effects on organisms and higher organization levels (Chapman, 1992). Organism behaviour toward environmental pollutant concentrations set the delimitation between two biomonitor classes (Markert et al., 2003; Czédli et al., 2014): bioaccumulators, exhibiting linear accumulation dynamics over wide ranges without significant damages, and bioindicators, sensitive even to small concentrations of pollutants, determining al-

terations in their physiology, biochemistry, morphology, behaviour or community structure and composition. These alterations constitute the endpoints employed in evaluating environmental quality using bioindicators (Markert et al., 2003; Czédli et al., 2014). Conversely, pollutant concentrations are directly measured in bioaccumulators and constitute proxies for cumulative environmental concentrations over the exposure time (Markert et al., 2003). Plant roots (Baldantoni and Alfani, 2016) or animal liver (Czédli et al., 2014) are common targets in bioaccumulation studies, since most pollutants tend to accumulate there, but the ultimate sites of pollutant accumulations are speciesand pollutant-specific. A clear example is provided by Pb and Cd, both non-essential elements to plants and both commonly present as divalent cations in the environment, but the first accumulating preferentially in roots and the latter in leaves (Greger, 2004). The choice of target organisms, organs and pollutants is thus crucial in any biomonitoring program using bioaccumulator species (Markert et al., 2003). Between plants and animals, the former are usually preferred for bioaccumulation studies because they absorb pollutants directly from the environment without any transfer through food webs, because they are non-mobile, ensuring precise georeferentiation of results, and for ethical considerations (Markert et al., 2003; Parmar et al., 2016). Animals on their own, especially those of higher trophic levels, provide information on the actual pollutant transfers through food webs, where plants only provide estimates based on the availability for primary consumers (Markert et al., 2003; Parmar et al., 2016). The data, however, cannot be referenced to precise areas and the analyses are usually unfeasible due to the small and often endangered populations of top predators. Nonetheless, animals are commonly employed as bioindicators, either through the use of behavioural endpoints and biomarkers like enzyme activities or stress-related gene expression, or at the community level by exploiting the differential sensitivity of taxa (Parmar et al., 2016). An example of the latter approach in river monitoring is provided by the macro-invertebrate water quality index (MWQI), based on both relative abundance of taxa and their pollution sensitivity (Parmar et al., 2016). Moreover, sessile animals like some filter feeders (e.g. mussels) share several traits with plants in their behaviour as bioaccumulators and can be used alike (Aguirre-Rubí et al., 2019). To fill in the table, bacteria, fungi, algae, mosses and lichens are also used as biomonitors, either as bioindicators (even in commercial ecotoxycological test kits like those with Vibrio fischeri or Raphidocelis subcapitata), or as bioaccumulators, particularly in the case of mosses and some fungi (Markert et al., 2003). The large surface area of moss phylloids and several algal thalli, and their direct absorption of pollutants like polycyclic aromatic hydrocarbons and metals, make them valued bioaccumulators for these kinds of pollutants (Favas et al., 2018). So far, however, mosses are used primarily for air biomonitoring (Renaudin et al., 2018), with fewer applications in aquatic environments, and only recently (Favas et al., 2018) algae received attention despite some evidences of considerable accumulation potentials for several metals. An unique feature of these organisms, placing them among the most useful tools for field biomonitoring, is the ease of transplanting to areas where they are not originally present. The technique, known as "active biomonitoring" as opposed to "passive biomonitoring" using native organisms, fulfills two primary goals: monitoring areas where no biomonitor naturally occurs and controlling for the exposure time, which are the main limitations of passive biomonitoring (Chmist et al., 2018; Szczerbińska and Galczyńska, 2015). Indeed, exposure time has to be grossly estimated in passive biomonitoring rather than accurately measured (Markert et al., 2003), although the long exposures, usually of several months, partly made up for this by dumping the effects of estimation errors. Most importantly, the spatial covering in passive biomonitoring is constrained by the natural occurrence of biomonitors, which may lead to knowledge gaps in critical areas (Markert et al., 2003; Chmist et al., 2018). Mosses and algae, instead, can be placed almost anywhere in multiple samples, using a variety of containers collectively known as "bags" (Esposito et al., 2018), and allowing to obtain higher spatial sampling densities than those usually achievable through passive biomonitoring.

Whichever approach, the use of multiple biomonitors at the same time is a means to obtain higher confidences on the derived gradients and possibly fill the gaps for some biomonitors based the others, although direct comparisons are only possible among sites with the occurrence of the same species (Markert et al., 2003). The biomonitoring of the Irno river (Baldantoni and Alfani, 2016) and the Sarno river (Baldantoni et al., 2018) are two examples of the advantages of using an ensemble of biomonitors, employed to enhance the confidence on spatial pollution gradients in the former and to monitor two different areas in the latter. It is worth noting that in (Baldantoni et al., 2018), with no overlap in the distribution of the two biomonitors, no direct comparison was possible between the springs and the river course, but clear pollution gradients were still obtained. In fact, here lies the main strength of biomonitoring in respect to water chemical monitoring (Szczerbińska and Galczyńska, 2015): the ability to derive stationary gradients by integrating the temporal fluctuations in pollutant concentrations, although at the expense of no information about the actual pollutant concentrations in the environment (Markert et al., 2003). Most importantly, biomonitors are sensitive and may accumulate only pollutants in bioavailable form, providing information on the actual spatial distribution of pollutant availability for biota (Baldantoni et al., 2018). These points advocate for a change in the perspective by which biomonitoring and chemical water/sediment monitoring are viewed: they are complementary rather than alternative solutions for environmental monitoring (Allan et al., 2006). The idea of an integrated monitoring is a straightforward consequence of the change and has its foundations in trying to bring together the advantages of both techniques. The drawback is represented by the higher costs and time associated to this approach, but they are worthwhile in areas with peculiar criticalties or vulnerability, like protected areas.

The concept of integrated monitoring may be further expanded to include the gathering of all the information necessary to obtain a comprehensive view of ecosystem status, processes and functionality, involving not only pollution monitoring, but also activities like

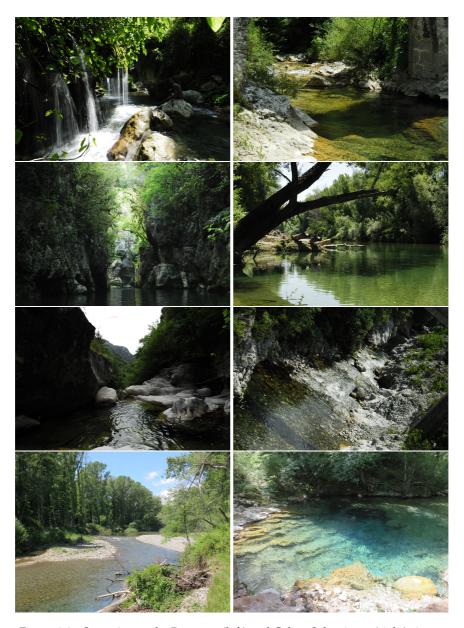


Figure 1.1: Sceneries on the Bussento (left) and Calore Salernitano (right) rivers.

biodiversity or geodiversity estimation (Liu et al., 2012). The present research falls in this context by combining passive and active biomonitoring, sediment mineralogy, element total content analysis and partitioning among sediment fractions and water chemical analyses. The approach was applied to the main river systems of the PNCVDA, the Bussento and the Calore Salernitano Figure 1.1, in order to obtain clear scenarios of river quality and of the subtended processes, in an area hosting exceptional biodiversity comprising endangered species like the otter (*Lutra lutra* L.), the freshwater crayfish (*Austrapotamobius pallipes* Lereboullet) and the Apennine wellow-bellied toad (*Bombina pachypus* Bonaparte). A graphical abstract of the main tasks and goals is shown in Figure 1.2.

The project was especially focused on chemical element analysis, either in matrices like sediments and water, or in passive and active biomonitors. Specifically, 19 elements among (according to Farago, 2008) macronutrients (Ca, K, Mg, P, S), micronutrients (Co, Cr, Cu, Fe, Mn, Na, Ni, Si, V, Zn) and non-essential elements (Al, As, Cd, Pb), collectively referred to as Potentially Toxic Elements (PTEs), were analysed. Being persistent, potentially biomagnified and, in some cases, toxic even at low concentrations like As, Cd and Pb, PTEs are pollutants of major concern in aquatic ecosystems (Cardwell et al., 2013). Within the Bussento and the Calore Salernitano rivers, PTEs were monitored using a passive approach for two consecutive years using the roots of two bioaccumulator plants: Helosciadium nodiflorum (L.) W.D.J. Koch and Mentha aquatica L. They were flanked during the 2nd year by two active bioaccumulators: a moss, Fontinalis antipyretica Hedw., and a charophyte alga, Chara gymnophylla A. Braun, to expand spatial covering to sites with potential criticalties but without passive biomonitors. Such an experimental setup is a novelty in biomonitoring studies, where passive and active biomonitoring were, to our knowledge, never combined and where one-year studies are the rule. Indeed, by integrating the temporal fluctuations in pollutant concentrations over exposure times often of several months, bioaccumulators are able to provide stationary pollution gradients even after one sampling, mak-

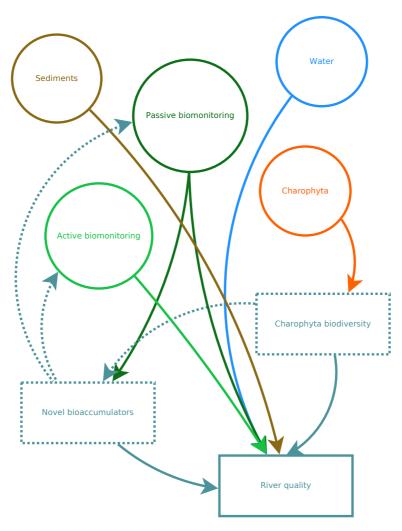


Figure 1.2: Diagram relating the various tasks (circles) and the intermediate (dotted boxes) and principal (solid box) aims of the project.

ing repetitions usually undue (Markert et al., 2003; Szczerbińska and Galczyńska, 2015). Albeit far more expensive in terms of time and resources, the experimental setup chosen for the project fulfilled the need of ascertaining possible variations in PTE concentration gradients over the time in a highly vulnerable area, and to validate the use of novel biomonitors. Indeed, H. nodiflorum (Baldantoni et al., 2018; Baldantoni and Alfani, 2016) and *F. antipyretica* (Alam, 2018) are widely recognised as useful biomonitors of PTEs in Mediterranean rivers, but this is not the case of *M. aquatica* and, especially, *Ch. gymnophylla*. *M*. aquatica was already employed as passive bioaccumulator in freshwater ecosystems (Zurayk et al., 2001; Branković et al., 2012), but the use of its roots was never validated, whereas Ch. gymnophylla was never employed as biomonitor so far. It is known that some Chara spp. are able to accumulate Cd, Cu, Zn and Pb (Srivastava et al., 2008), but nothing is known on the relationship between environmental concentrations and accumulation, and thus on the actual feasibility of these species in biomonitoring studies. Shedding light on these topics, validating the use of M. aquatica as a passive biomonitor and Ch. gymnophylla as an active biomonitor, is thus one of the primary goals of the present research and an essential step in river quality estimation.

The selection of novel bioaccumulators was obviously constrained to native species, in order to avoid the introduction of allochtonous species, possibly interfering with local communities. *M. aquatica* is widely distributed in Italy (Maffei, 1998) and its choice was straightforward, but notions on the Charophyte flora of the PNCVDA were non-existent and outdated at the regional level. Therefore, the biodiversity of Charophyta within the boundaries of the PNCVDA and in its neighbourhood was investigated, in order to discover which species were present, their distribution and their ecology, allowing also to evaluate the feasibility of transplanting specimens in rivers from the lentic systems usually colonised.

The gradients obtained from passive and active biomonitoring often provide hints on the possible causes of environmental contamination, from the associations among pollutants and the neighbourhood of potential polluting activities. The derived scenarios, however, are usually provisional and additional information from other matrices is needed. To this end, PTEs were also analysed in water and sediments, where, in addition to PTE total concentrations, their partitioning into several fractions (exchangeable, bound to Fe and Mn oxides, bound to organic matter, included in minerals) was also investigated, as well as sediment mineralogy through X-ray diffraction. Indeed, although detailed information on element concentrations in soils (Thiombane et al., 2018) and sediments (Albanese et al., 2007) of the PNCVDA is already available, element actual availability and distribution in different sediment fractions was never investigated, in spite of their importance for biota. PTEs, however, are usually not sufficient to identify certain types of river pollution, like wastewater discharges, and to evaluate their effects at the ecosystem level, including dissolved oxygen depletion, eutrophication and dramatic effects on communities. For this reason, water analysis involved also parameters like anions, photosynthetic pigments, conductivity and dissolved oxygen.

Chapter 2

Materials and Methods

2.1 Study area

The "Cilento, Vallo di Diano e Alburni" National Park is the largest protected area in Campania and one of the largest in Italy (Romano et al., 2013), covering ~ 181.048 hectares and including 80 districts. It lies in the southernmost part of the province of Salerno where it was founded in 1991 to preserve the unique flora and fauna biodiversity of the area Figure 2.1, warranting the park a UNESCO biosphere reserve designation. Several species, mostly endangered, are endemic of the area, like Primula palinuri Petagna, which symbolizes the park on its logo, Minuartia moraldoi Conti, or Soldanella sacra A. & L. Bellino, a novel plant species described by our research group in 2015 on the Gelbison Massif, with unique phylogeography and ecology (Bellino et al., 2015). Numerous other endangered species, often endemic to southern Italy, find in the park isolated refugia, like Eokochia saxicola (Guss.) Freitag & G. Kadereit and Athamanta ramosissima Port., or constitute large populations in the area, as in the case of *Lepus corsicanus* de Winton and Lutra lutra L. (Marcelli and Fusillo, 2009). The outstanding geomorphological diversity of the park (Longobardi et al., 2011), with landscape mosaics of steep mountains, deep ravines, hilly areas and alluvial planes seamless interlacing from the coastline to the

Materials and Methods Study area

inland, partly accounts for its rich biodiversity and justified its recognition as the first geopark in Italy and its inclusion in the European and UNESCO Global Geopark Network in 2010 (Cuomo et al., 2013). According to Santangelo et al. (2005) 263 geosites may be recognised, distributed in 4 geomorphological units: carbonatic mountainous massifs, with summit karst landscapes, deep structural slopes and wide piedmonts areas, ii) terrigenous mountainous massifs, with sharp crests and deeply incised ravines, iii) marly-clayey hills, with gentle slopes and dendritic drainage patterns and iv) intermontane basins, alluvial and coastal plains. Although mostly comprising sites of geomorphological and stratigraphical value, approximately 26% of the geosites are of paleontological and paleoenvironmental importance, comprising also human settlements dating back to paleolithic times. The area has been successively occupied over time during the Neolithic period, by Bronze and Iron Age societies, Etruscans, Greek colonists, Lucanians, Romans, and was pivotal for the ancient road network during the Middle Ages, as evident in the feudal castles and religious establishments built along routes (http://whc.unesco.org/en/list/842). In recognition of its outstanding cultural heritage, the "Cilento, Vallo di Diano e Alburni" National Park was included also in the UNESCO World Heritage List in 1998 (http://whc.unesco.org/en/list/842), and it was still here that the Mediterranean diet, defined as an intengible heritage by UNESCO (http://www.unesco.org/culture/ich/ index.php?lg=en&pg=00011&RL=00884), was first described.

The Bussento and Calore Salernitano are among the main river systems of the PNCVDA, and originate both from Mt. Cervati (40° 17′ N, 15° 29′ E; 1899 m a.s.l.), in the Apennines. Accurate descriptions of the drainage basins of the Bussento and Calore Salernitano rivers are reported in Longobardi et al. (2011) and in Maione et al. (2000), respectively. The drainage basin of the Bussento river (37 km long) is characterized by soils and rocks with different hydraulic permeability and a highly hydrogeological conditioning (Longobardi et al., 2011). Consequently, the groundwater circulation is very complex and exchanges between surface water and groundwater usually occur

Study area Materials and Methods

Figure 2.1: An example of the biodiversity of the "Cilento, Vallo di Diano e Alburni" National Park. From top to bottom and left to right: *Bombina pachypus* Bonaparte, *Austropotamobius pallipes* Lereboullet, *Calopteryx virgo* L., *Chalcolestes viridis* Van der Linden, *Primula palinuri* Petagna, and *Soldanella sacra* A. & L. Bellino. All the photographs from the author.

Materials and Methods Field surveys

(Longobardi et al., 2011; Cuomo et al., 2013). The main stream of the Bussento river partly flows in wide alluvial valleys and partly carving steep gorges and rapids, where a number of springs increase progressively the river discharge (Longobardi et al., 2011; Cuomo et al., 2013). Downstream, the river merges with its main tributary, the Bussentino creek, originating from the eastern sector of the drainage basin and flowing along deep canyons and gorges, mainly constituted of limestone and marly limestone (Cuomo et al., 2013). After the confluence with the Sciarapotamo creek, the Bussento river crosses a terraced floodplain and, finally, a coastal plain (Cuomo et al., 2013), flowing into the Tyrrhenian Sea. The drainage basin of the Calore Salernitano (or Calore Lucano) river (63 km long) is characterized by heterogeneous patches: gorges and endorheic areas, with tectonically driven drainage patterns (Maione et al., 2000). This wide range of landforms is mainly due to the heterogeneous lithology characterizing the entire area (Maione et al., 2000). The main course of the Calore Salernitano river flows between high rocky walls and merges with two important tributaries in the middle course: the Fasanella and the Rio Pietra creeks. The Calore Salernitano river is an important left tributary of the Sele river, in which it flows into at a distance of around 10 Km from the Tyrrhenian Sea.

2.2 Field surveys

Extensive field surveys, aimed at defining the spatial sampling grid and at searching for suitable passive biomonitors, were carried out in April-June 2016 on the Bussento-Bussentino and the Calore Salernitano-Rio Pietra-Fasanella river systems. The expeditions focused on sites with potential criticalties, like those in the neighbourhood of roads, rails and wastewater treatment plants, and on sites with peculiar hydrogeomorphological features, like springs, ponors and confluences. Candidate sites for field surveys were selected using a Geographical Information System developed for the project on the Quantum GIS 2.18 platform (QGIS Development Team, 2018), with information

Field surveys Materials and Methods

obtained from the "Geoportale della Regione Campania" (https:// sit2.regione.campania.it/), the SINAnet network (www.sinanet. isprambiente.it/) and the "Geoportale Nazionale" (http://pcn. minambiente.it/mattm/). River networks were extracted from the SINAnet 20 m Digital Elevation Model (DEM), interpolated at 5 m using a regularized spline with tension and smoothing algorithm with the function r.resamp.rst of the Quantum GIS GRASS backend. Specifically, drainage basins were extracted from the depressionless DEM, obtained with the function r.fill.dir, using the r.watershed function and selecting the cells in the log-transformed flow accumulation layer with values > 6. The hydrological networks within the Bussento and the Calore Salernitano drainage basins were then manually cleaned and classified based on the Strahler's order using the function r.stream.order. The 1th order stretches contributing directly to high order streams (4th to 6th) were then selected as candidate spring areas for field surveys. Moreover, the ends of the stretches of the second and third to highest order were included in the candidate site list as representative of the principal confluences in the Bussento and Calore Salernitano river systems. Sites with potential criticalties related to vehicular or train traffic, and accessible by car, were then obtained with the intersection of the river networks and the road and rail networks, using the function intersect of the basic Quantum GIS function set. Additional sites were also selected based on literature information on the presence of wastewater treatment plants, resurgences along the main river paths and ponors, as well as to enhance spatial resolution of sampling. Overall, 18 Km of the Bussento-Bussentino river system and 14 Km of the Calore Salernitano-Rio Pietra-Fasanella were explored, defining the spatial sampling grid and a set of candidate biomonitors fulfilling the following criteria:

- wide distribution in both the river system;
- wide distribution along the river path from spring to mouth;
- native in the area;

Materials and Methods Passive biomonitoring

 reliable records as bioaccumulator in literature for at least one species in the set.

The criteria were chosen to ensure accurate biomonitoring of the river systems while possibly validating novel biomonitors, to allow direct comparisons among sites within and between the river systems, and to avoid the use of allochtonous species. The resulting set comprised 2 plant species: *Helosciadium nodiflorum* (L.) W.D.J. Koch and *Mentha aquatica* L.

2.3 Passive biomonitoring

2.3.1 Bioaccumulators

2.3.1.1 Helosciadium nodiflorum (L.) W.D.J. Koch

H. nodiflorum, previously known as Apium nodiflorum (L.) Lag. (Ronse et al., 2010), is a perennial aquatic plant belonging to the Apiaceae family (Pignatti, 1982). It has stems up to 1 m tall (Zurayk et al., 2001), erect or prostrate, glabrous, rooting at lower nodes, with leaves pinnately compound with up to 4 pairs of leaflets (Pignatti, 1982). The umbels are compound, with up to 20 unequal rays and small flowers with white or greenish white corolla. The flowers are self-compatible but protandrous and insect pollinated, producing schizocarps having 5 slightly raised ridges, and mericarps ovate oblong and brownish (Pignatti, 1982). The species is diploid (Ronse et al., 2010), with a chromosome number 2n = 22, but an aneuploid count (2n = 20) also has been reported. Natural hybrids have been reported between *H. inundatum* × *H. nodiflorum* and between *H. nodiflorum* \times *H. repens* (Ronse et al., 2010). H. nodiflorum grows in canals, ditches, marshes, springs and along the margins of lakes, ponds, rivers and streams at elevations of up to 350 m, either emersed or submersed at depths < 1 m (Bonanno et al., 2017; Bonanno and Vymazal, 2017). It is particularly common in clear, shallow water along the margins of high order streams, being moderately shade-tolerant and highly tolerant of turbulence, although it occurs most often in sites with moderate flow rates (Baldantoni and Alfani, 2016). This species grows mainly in alkaline waters (pH: 7.7–8.0; alkalinity: 170–250 ppm), which are low in nutrients (3–6 ppm nitrate; <0.3 ppm ammonia nitrogen; <0.3 ppm phosphate phosphorous), but can also grow in eutrophic waters (http://dx.doi.org/10.2305/IUCN. UK.2013-1.RLTS.T164030A13575513.en). The fruits lack a dormancy requirement and are dispersed by the water. They remain afloat for less than 2 days when ripe, but for more than 90 days when dry, retain their germinability (Les, 2017). The seeds germinate on wet substrates or in shallow water. Seedling establishment requires open conditions and they can appear quickly in sites that have been dredged. However, seedling survivorship usually is low and continual disturbance is necessary to alleviate competition with other species. The populations persist principally by means of overwintering shoots rather than as seedlings. The plants are perennial from a persistent root crown. Vegetative propagation occurs by shoot fragments, which develop new roots within a few days. The stems can become fairly persistent when rooting firmly into gravel substrates. The plants tend to be shallowly rooted (22–29 cm) but are fairly tolerant to substrate desiccation if not for prolonged duration, and produce longer roots in drained sites. When growing under hypoxic conditions, this species is also able to oxygenate the substrate. The species is regarded as a weed in Portugal and Spain, where it is native. According to Les (2017), it has not yet been reported as invasive anywhere in North America, where it was introduced (reportedly before 1788), along with Chile (before 1878), Mexico and New Zealand (before 1947). H. nodiflorum is recognised as a good bioaccumulator for river biomonitoring of PTEs in the Mediterranean area (Baldantoni et al., 2018; Baldantoni and Alfani, 2016; Zurayk et al., 2001), and its ability to uptake significant concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, U, and Zn, phytostabilising them in the roots, makes this species also a potential candidate for phytoremediation applications (Moreira et al., 2011).

Materials and Methods Passive biomonitoring

2.3.1.2 Mentha aquatica L.

M. aquatica is a perennial aquatic pant belonging to the Lamiaceae family (Pignatti, 1982). It has stems up to 1 m tall, erect, square, glabrous to pubescent, with leaves opposite, elliptic, lanceolate or ovate, shortly petiolate and with serrate margins (Pignatti, 1982). The flowers are bilabiate, in dense verticillate cymes condensed in a terminal globose cluster, with a pink, pubescent, tubular corolla characterised by a 2-lobed upper and 3-lobed lower lip and with 4 stamens, gynobasic style, and 4-lobed ovary (Les, 2017). The flowers are self-compatible but protandrous and mainly insect pollinated, producing a schizocarp dehiscing into 4 smooth nutlets. The species is octaploid, with a chromosome number 2n = 96. The species is keen to hybridise with numerous species of the genus Mentha, notably with M. piperita, M. longifolia, M. spicata, and M. suaveolens (Les, 2017). M. aquatica grows emersed or submersed in shallow water of fens, marshes, meadows, and along lake, pond, river, and stream margins at elevations of up to 1000 m. The plants are adapted to a wide range of pH (4.5–7.8) and tend to occur on sandy substrates or muck. They are not salt-tolerant but can occur along brackish wetland margins or in tidal freshwater sites (http://dx.doi.org/10.2305/IUCN. UK.2014-2.RLTS.T164509A63304147.en) They do withstand physical perturbation and tend to increase at sites where disturbance (e.g., trampling by livestock) occurs. This species is regarded as a wetland pioneer and occurs in sunny to partially shaded sites. Mature nutlets, about 200 per plant, are dispersed by water and can represent a large proportion of viable propagules occurring in river drift. Plants growing in a submerged state usually produce lower biomass, but their shoots elongate significantly as an adaptive response. Vegetative reproduction occurs mainly by the diffuse production of rhizomes, but plants also are dispersed by stem or rhizome fragments. The roots normally are colonized by arbuscular mycorrhizae (Les, 2017).

M. aquatica has been demonstrated to accumulate metals, but no information on their distribution in different plant organs is available

(Branković et al., 2010, 2012), and the species was rarely employed in biomonitoring studies so far (Zurayk et al., 2001).

2.3.2 Sampling, sample processing and laboratory analyses

The 2016 sampling campaign encompassed 39 sites, 21 on the Bussento and 18 on the Calore Salernitano river systems, later changed to 24 on the Bussento and 15 on the Calore Salernitano for the 2017 sampling campaign. Overall, 17 and 14 sites overlapped in the two years for the Bussento and Calore Salernitano river systems, respectively (Figure 2.2). Each site was georeferenced using a GPSMAP 62s (Garmin, USA) handheld GPS receiver with a horizontal resolution of 1-3 m. In order to carry out samplings in the least achievable time span and minimize sampling efforts, expeditions were carefully planned using web-based routing services like Google $\mathsf{Maps}^{\mathbb{R}}$ and IGM 1:25000 charts to allow sampling at 4-8 sites per day. At each site, 6-10 healthy and fully developed *H. nodiflorum* and *M. aquatica* plants were randomly collected from riverbanks over a 20-50 m stretch of the river. For each species, roots were then sampled, washed throughly in situ with river water to remove sediments, organisms and other exogenous materials, pooled together to obtain an homogeneous sample, and stored in polyethylene bags.

Back at the laboratory samples were left to dessicate on filter paper sheets at room temperature for one week, then manually pulverised in china mortars using liquid nitrogen and finally dried in an incubator (ISCO 9000, Sil.Mar Instruments, Milano, Italy) at 75 °C until constant weight.

Three subsamples per root sample were acid digested in a microwave oven (Milestone Ethos, Shelton, CT, USA), using 1 mL 50% HF (Sigma-Aldrich, Milano, Italy) and 2 mL 65% HNO₃ (Sigma-Aldrich, Milano, Italy) per 125 mg of sample. The mineralization program is reported in Table 2.1.

After digestion, the solutions were diluted to a final volume of 25 mL in polypropilene flasks, using milli-Q water (Millipore Elix 10,

Materials and Methods Passive biomonitoring

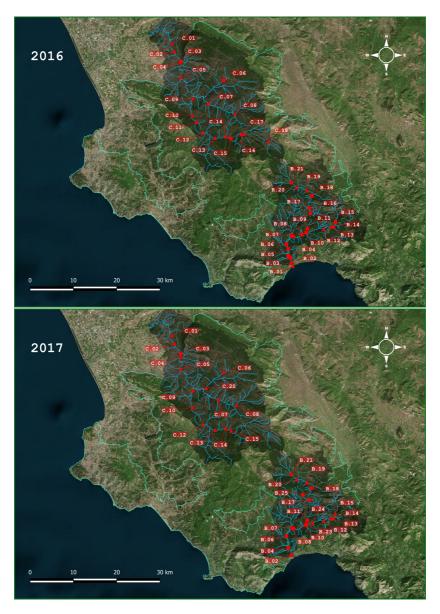


Figure 2.2: Map of the sampling sites, in 2016 and 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where *H. nodiflorum* (■), *M. aquatica* (▲) or both the species (●) were found. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (▶) are also shown.

ACTIVE BIOMONITORING MATERIALS AND METHODS

	1 st	2 nd	3 rd	4 th	5 th	6 th
Power (W)	250	0	250	400	0	500
Time (min)	2	2	5	5	2	5

Table 2.1: Microwave oven mineralization program adopted for sample preparation.

Darmstat, Germany) and analysed by means of inductively coupled plasma optical emission spectrometry (PerkinElmer Optima 7000DV, Wellesley, MA, USA) to quantify macronutrient (Ca, K, Mg, P, S), micronutrient (Co, Cr, Cu, Fe, Mn, Na, Ni, Si, V, Zn) and non-essential element (Al, As, Cd, Pb) concentrations. A PTFE Gem-Cone/Cyclonic chamber nebulizer was employed. Method accuracy was estimated through the concurrent analysis of standard reference material (1575a pine needles, Mackey et al. (2004)), using the recovery percentage of each element to correct PTE quantification in root samples. The method precision, calculated as relative standard deviation, based on n=9 sequential measurements of the same sample for each element, ranged from 2 to 7%, depending on the element.

2.4 Active biomonitoring

2.4.1 Bioaccumulators

2.4.1.1 Fontinalis antipyretica Hedw.

F. antipyretica is a large pleurocarpous aquatic moss belonging to the Fontinalaceae family, with shoots 5-8 mm wide and up to 50 cm long (Welch, 2014). The leaves are 4-5 mm long and strongly folded inwards along the midline, with the fold-line forming a prominent keel. The shoots are usually 3-sided, with the keels forming the angles and the overlapping halves of adjacent leaves forming the sides. The leaf lacks a nerve and its tip is bluntly pointed and untoothed. Capsules are uncommon, and almost hidden amongst the leaves, occurring only on thalli which have undergone a period of exposure above the water

Materials and Methods Active biomonitoring

(Atherton et al., 2010). The species colonizes various substrates, including rocks, stones, tree roots and branches, always submersed or emersed nearby water, along streams and rivers from the plain to the subalpine belt (Symoens, 2012). It is the moss species most commonly used as bioaccumulator in biomonitoring of freshwater environments, especially in relation to PTEs like As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn (Debén García et al., 2016; Bruns et al., 1997; Phillips and Rainbow, 2013).

2.4.1.2 Chara gymnophylla A. Braun

Ch. gymnophylla, a macroscopic algae belonging to the Characeae family (http://www.algaebase.org), is closely related to Ch. vulgaris L. and sometimes considered a variety of the latter (Bazzichelli and Abdelahad, 2009). However, although intermediate forms between the species are commonly observed, the species in their typical habitus are easily distinguished, even at macroscopic level, with the presence of gametangia on ecorticate (Ch. gymnophylla) or corticate (Ch. vulgaris) branchlets (Bazzichelli and Abdelahad, 2009). The thalli of Ch. gymnophylla are 3-25 cm tall, slender, green to brown, usually with carbonate encrustations and with short globose stipulodes in 2 rows. The internodes are 1-6 times longer than branchlets, corticated, with diplostichous, aulacanthous, thylacanthous or sometimes isostichous cortex. Spine cells are globular, shorter then axis diameter (Bazzichelli and Abdelahad, 2009; Stoyneva and Gärtner, 2004). The branchlets are 6-11 per whorl, ecorticated or with 1-2 corticated segments. In this case, ecorticate cells bring antheridia and archegonia. Branchlet terminal cells are conical or mucronate (Bazzichelli and Abdelahad, 2009; Stoyneva and Gärtner, 2004). The species is monoecious, with gametangia separated or more often geminate or conjoined. Archegonia are usually encrusted by carbonate depositions and are 500-800 x $350-525 \mu m$ in size, 1-2 times shorter than bracteoles. Mature oospores are brown to black, smooth or granulated. The antheridia are orangered, globose, 400-600 μm in diameter (Bazzichelli and Abdelahad, 2009;

Stoyneva and Gärtner, 2004). The species is usually observed in lacustrine environments, where it's able to form large mats (Ahmadi et al., 2012). To our knowledge, *Ch. gymnophylla* has never been employed in biomonitoring studies as a PTE accumulator.

2.4.2 Material selection and bag preparation

The selection of the source populations of *F. antipyretica* and *Ch. gymno-phylla* fulfilled two main criteria: i) large population consistency, preventing harms from collection on its viability, and ii) absence of criticalties according to the results of 2016 passive biomonitoring. For *F. antipyretica*, the population located in the middle stretch of the Bussento river around 200 m upstream of a sluice (site B.07), was selected. Due to the lack of *Chara* spp. populations on the Bussento and the Calore Salernitano rivers large enough to provide sufficient material without threatening their conservation, transplants of *Ch. gymnophylla* were collected from a spring pool (40° 16′ 38.82″ N; 14° 59′ 53.00″ E) on the coastal area of the "Cilento, Vallo di Diano e Alburni" National Park. For each species, ~1.5-2.0 Kg f.w. of thalli were collected in one occasion, cleaned *in situ*, and stored in separate pools with original river or spring pool water for 1-7 days until bag preparation and installation.

Figure 2.3: Bag construction from cheese molds.

Bags were built using pairs of cheese molds, coupled and fastened together on 3 points using zip ties with uncutted long ends, Materials and Methods Active biomonitoring

favouring bag uncluttering and their tossing around in water (Figure 2.3). The 250 mL "Primavera" mold model (Morgan Line, Firenze, Italy) was choosen for its truncated hemisphere shape, better approximating a spherical shape when joined in pairs than common conical or cylindrical molds. Moreover, the low density of the polyethylene/polypropylene copolimer used for mold construction allows bags to float at the water level, keeping mosses and algae in the euphotic zone and reducing variance associated to bag vertical position in the water column (Figure 2.4).

Figure 2.4: Bags floating in water and bag sampling. Bags containing *F. antipyretica* and *Ch. gymnophylla* can be distinguished from the darker color of the former.

2.4.3 Bag installation, sampling and analysis

Bags were filled with ~20-30 g of *F. antipyretica* or *Ch. gymnophylla* right before field installation and were then washed in EDTA 1M solution for 10' to reduce PTE initial content and variability among samples (Debén García et al., 2017). In each site, 6 bags were attached to tree

roots and branches or stones with floating nylon line to further prevent bag sinking. Specifically, bags were placed in pairs, each constituted by a moss bag and an algae bag, over a 20-50 m stretch of the river, attaching them alternately on both riverbanks, whenever possible. At 2 sites, the 6 bags were attached together, due to local water depth constraints.

Figure 2.5: Map of the sampling sites, in 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where () *F. antipyretica* and *Ch. gymnophylla* bags were placed. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (•) are also shown.

Active biomonitoring allowed extending monitoring to 4 sites missing *H. nodiflorum* and *M. aquatica* populations: 3 sites in the spring area of the Bussento river and one site on the Fasanella river (Figure 2.5). Bags were left to accumulate *in situ* for 3 weeks before collecting and dessicating at room temperature for 1 week. Samples were then manually pulverised in china mortars, using liquid nitrogen in the case of *F. antipyretica*, oven dried at 75 °C until constant weight, and were then mineralized following the acid digestion protocol described for

MATERIALS AND METHODS WATER

passive biomonitors (subsection 2.3.2). Similarly, PTE analysis was carried out as described in subsection 2.3.2.

2.5 Water

2.5.1 Sampling and sample processing

During the 2016 and 2017 sampling campaigns, water physical and chemical analyses, including electrical conductivity (HI9835, Hanna Instruments), temperature, dissolved oxygen, redox potential and pH (all with a multi-parametric probe (HI9147, Hanna Instruments) were performed in situ (Figure 2.6). Moreover, water samples were collected for i) PTE analysis (3 x 50 mL), acidified to pH = 2 in the field with 65%HNO₃, ii) total organic carbon (TOC), inorganic carbon (IC) and total nitrogen (TN) (3 x 50 mL) and iii) photosynthetic pigment and anion analysis (3 x 1.5 L). Samples were kept cold and in the dark during sampling and processed the same day, back in the laboratory, to extract photosynthetic pigments or frozen at -18 °C for all the other analyses. Specifically, water samples for pigment analysis were vacuum-filtered on glass filters, from which pigments were extracted with 100% acetone at -18 °C until the analysis, carried out 1 week later. A 10 mL aliquot of each filtered water sample was further filtered on 0.2 μ m cellulose filters for anion analysis.

2.5.2 Laboratory analyses

Water PTE concentration analysis was carried out by means of inductively coupled plasma optical emission spectrometry (PerkinElmer Optima 7000DV, Wellesley, MA, USA), as described in the subsection 2.3.2.

Quantification of Br⁻, Cl⁻, F⁻, NO₂⁻, NO₃⁻, PO₄³⁻, and SO₄²⁻ was performed through Ion-Exchange chromatography, using a IonPac AS19 250 mm x 4 μ m column (Dionex, USA), with a 50 mm security guard, on a DX120 chromatography system (Dionex, USA). Eluent was con-

Water Materials and Methods

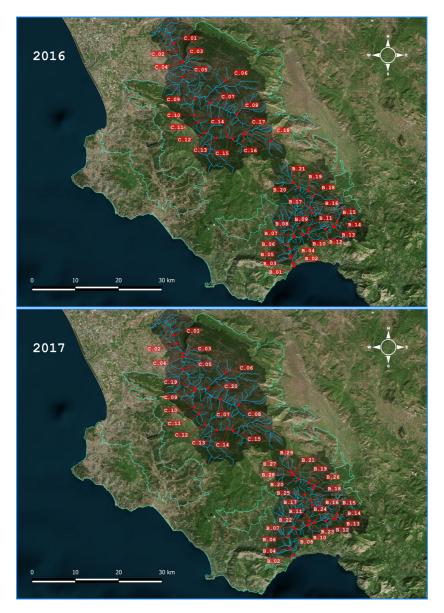


Figure 2.6: Map of the sampling sites, in 2016 and 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where (●) water analyses has been performed. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (●) are also shown.

Materials and Methods Sediments

stituted by a Na_2CO_3 : $NaHCO_3$ solution (3.5 mM : 1.0 mM), flushed at 1.10 mL min⁻¹ flow rate and pression < 1400 KPa.

Photosynthetic pigment analysis was performed by means of UV-Vis spectrophotometry, using a UV-Vis 1800 (Shimadzu, Kyoto, Japan) spectrometer, and spectra deconvolution in the range 350-750 nm through Gauss Peak Spectra fitting (Küpper et al., 2007). Equations for Chlorophyta were employed for all the samples with the exception of the one belonging to site C.16 in 2016, for which the equations for Euglenophyta provided a better fit.

TOC, IC and TN analyses were carried out using a TOC-V CSN TOC/TN analyzer (Shimadzu, Kyoto, Japan), measuring TOC as the difference between total carbon and IC.

2.6 Sediments

2.6.1 Sampling and sample processing

Sediment sampling was carried out in April 2018 on a restricted set of sites (Figure 2.7), 10 on the Bussento and 8 on the Calore Salernitano rivers, including all sites exhibiting criticalties according to the 2016 or 2017 monitorings and a few controls. At each site, 1-2 Kg of sediments from the 0-3 cm layer were manually collected using plastic bags, limiting the loss of fine particles and avoiding metal contamination. Back in the laboratory, sediments were placed in boxes built of filter paper, in order to facilitate water loss, dried in an incubator (ISCO 9000, Sil.Mar Instruments, Milano, Italy) at 75 °C until constant weight and sieved through 2 mm mesh size sieves (Retsch GmbH, Haan, Germany) to retrive the granulometric fraction. An aliquot (~50 g) of sieved sediments was pulverised in agata mortars using a PM4 planetary ball mill (Retsch GmbH, Haan, Germany) for PTE total concentration analysis and X-ray diffraction analysis, and the rest was kept for PTE fractionation and particle size distribution analysis.

SEDIMENTS MATERIALS AND METHODS

Figure 2.7: Map of the sampling sites, in 2017, along the Bussento (B) and Calore Salernitano (C) rivers (image from Bing Maps) indicating where (●) sediments were collected. Boundaries of the "Cilento, Vallo di Diano e Alburni" National Park (—) and drainage basins (►) are also shown.

2.6.2 Laboratory analyses

Sediment PTE total concentration was analysed on mineralised samples according to the method described in subsection 2.3.2, with slight modifications. In particular, three subsamples of 250 mg per sediment sample were mineralised with 2 mL 50% HF (Sigma-Aldrich, Milano, Italy) and 4 mL 65% HNO₃ (Sigma-Aldrich, Milano, Italy) and diluted to a final volume of 50 mL in polypropilene flasks, using milli-Q water (Millipore Elix 10, Darmstat, Germany). PTE quantification was carried out by means of inductively coupled plasma spectrometry, as described in subsection 2.3.2. Due to the different matrix in respect to plant samples, method accuracy was estimated through the concurrent analysis of NCS DC73321 "China soil" certified reference material from China National Analysis Center for Iron and Steel (Beijing, China), using the recovery percentage of each element to correct

Materials and Methods Sediments

PTE quantification in sediment samples.

PTE fractionation in sediments was carried out according to a modified BCR sequential extraction procedure (Rauret et al., 1999). Specifically, 3 subsamples of 500 mg per each sediment sample were weighted in 40 mL Nalgene $^{\text{TM}}$ PTFE centrifuge tubes, along with a blank and 3 subsamples of BCR-701 "Lake sediments" certified reference material from European Community Bureau of Reference (Pueyo et al., 2001). Each sample was then subjected to the following sequential extraction steps (Rauret et al., 1999):

- 1st Step **Exchangeable PTEs** 20 mL of an acetic acid (CH₃COOH) 0.11 M solution, shaked head-to-toe for 16 hours at room temperature;
- 2nd Step **PTEs bund to Fe/Mn oxides** 20 mL of a hydroxylamine hydrochloride (NH₂OH·HCl) 0.5 M solution in 50 mM HNO₃, shaked head-to-toe for 16 hours at room temperature;
- 3rd Step **PTEs bund to organic matter** 5 mL of a hydrogen peroxide (H_2O_2) 8.8 M solution at pH = 2, for 1 hour at room temperature and then for 1 hour at 85 °C. At the same temperature, the volume was then reduced to ~1.5 mL and additional 5 mL of hydrogen peroxide solution were added, further drying the solution to ~1 mL. 25 mL of an ammonium acetate (CH₃COONH₄) 1.0 M solution at pH = 2.0 were added and the suspension was shaked head-to-toe for 16 hours at room temperature;
- 4th Step **Residual PTEs** 24 mL of aqua regia (37% HCl : 65% HNO₃, 3:1 v:v) solution, shaked head-to-toe for 16 hours at room temperature.

After each step, samples were centrifuged at 3000 rpm for 20 minutes to collect and store, in polypropylene bottles, the extracts, and the sediments were washed with milli-Q water and newly centrifuged with the same settings before the subsequent extraction step.

The extracts from the 4th Step were diluted 1:5 with milli-Q water in polypropylene flasks to a final volume of 50 mL, whereas the extracts from the other steps were directly analysed. PTE concentrations were quantified by means of inductively coupled plasma optical emission spectrometry (PerkinElmer Optima 7000DV, Wellesley, MA, USA), correcting concentrations based on the average PTE concentrations in the extracts from the BCR-701 certified reference material.

Mineralogical analysis was performed by means of X-ray diffraction analysis on pulverised samples, using a D2 PHASER (Bruker Corporation, Billerica, USA) benchtop XRD system. In particular, pulverised samples were placed in plastic holders for powder analysis, and the X-ray diffractograms were aquired using the parameters reported in Table 2.2, with continous scanning. The presence and estimated abundances of the major mineralogical components in the sediment samples were then obtained through Rietveld refinement of the diffractograms, using the Profex (Doebelin and Kleeberg, 2015) software and data from the Crystallography Open Database (http://www.crystallography.net) and the RUFF (http://rruff.info/) databases.

Timestep	2θ	Step width	PSD opening
0.100 s	5.002° - 65.004°	0.006°	5.002°
Fence height	Anode material	Tension	Current
1 mm	Cu	30.0 kV	10.0 mA

Table 2.2: D2 PHASER XRD system settings for sediment mineralogy analysis.

2.7 Charophyte biodiversity

2.7.1 Sampling and sample processing

Each Charophyte population encountered during the 2016 and 2017 sampling campaigns was georeferred using a GPSMAP 62s (Garmin,

USA) handheld GPS receiver with a horizontal resolution of 1-3 m and identified at the species or subspecies/variety level using dichotomous keys (Bazzichelli and Abdelahad, 2009). Considering the lack of information on the Charophyte flora of the "Cilento, Vallo di Diano e Alburni" National Park, also populations outside the Bussento and Calore Salernitano drainage basins, and even outside the park boundaries (owing to its involuted perimeter) but in its neighbourhood, were included in the present research. A map showing all the observed populations is provided in Figure 2.8.

Figure 2.8: Map of Charophyte populations observed along the Bussento (B), the Calore Salernitano (C) and the Alento (A) rivers, and in spring pools within the Perdifumo discrict (P) and Trentova (T) zone (image from Bing Maps). Populations on which morphological, physiological and ecological analyses were carried out (•) and those observed but not analysed due to their disapparence in 2018 (•) are indicated.

In order to further confirm species identification and evaluate the differentiation among populations, several morphological, biochemical and ecological traits of all the populations occurring in 2018 were also analysed. Thalli were collected using polyethylene bags during May 2018, ensuring the presence of reproductive structures for most

of the taxa and avoiding the loss of some populations due to Summer drought. In the laboratory, thalli were carefully separated and treated according to the type of traits analysed. Specifically:

- 5 thalli were fixed and preserved in formalin-acetic acid-alcohol (FAA) solution at 4 °C for morphological analyses (Ruzin, 1999);
- 5 thalli were fixed in FAA for epiphyte diatom biomass analysis (Sviben et al., 2018);
- 5 thalli were used for photosynthetic pigment extraction, by means of 3 replicate extractions per sample with 100% acetone at -18 °C for 1 day, and pooling of the fractions (Bellino et al., 2014);
- 3×5 g f.w. of thalli per population were dried in an incubator (ISCO 9000, Sil.Mar Instruments, Milano, Italy) at 75 °C until constant weight for carbonate encrustation analysis (Sviben et al., 2018).

In addition, oospore for Scanning Electron Microscopy (SEM) analysis were retrieved from sediments, manually cleaned under a SMZ445 stereomicroscope (Nikon Instruments, Tokyo, Japan) with pin forceps and placed in 10% aqueous solution of Triton-X100 for 1 hour at 60 °C in 1.5 mL polypropilene microcentrifuge tubes. Oospore were then washed throughly with distilled water, kept in 1N HCl for 60% at room temperature to remove carbonate encrustations, and then cleaned of the radiate cells using pin forceps under a SMZ445 stereomicroscope. Oospore were finally dehydrated using a graded ethanol series as reported in Table 2.3, placed on SEM stubs, dried under N_2 flux overnight, and sputter coated with a 10 nm Au layer, optimizing the method reported in Urbaniak (2011).

2.7.2 Laboratory analyses

Morphological analyses (Ruzin, 1999) were performed through image analysis using the ImageJ 1.8.0 (Schneider et al., 2012) software, on

Table 2.3:	Dehydration	steps	adopted:	in <i>Chara</i>	spp.	oospore preparation f	or SEM
analysis.	-	-	-			*	

	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th
EtOH	25%	40%	60%	80%	90%	100%	Anhydrous
Time	1 day	2 days	2 days				

images taken either using a Df (Nikon Imaging, Tokyo, Japan) camera equipped with a 58 mm f/1.4 (Voigtländer, Tokyo, Japan) lens, for the measurement of internode length, or a CoolSnap K4 (Photometrics, Tucson, USA) camera mounted on a Dialux 20 (Leitz, Wetzlar, Germany) microscope, for all the other parameters. These included cortex and stipuloides types, internode length and diameter, spine length and width, number of branchlets, number, length and width of corticate and ecorticate cells on branchlets, diameter of antheridia, length and width of archegonia, and height and diameter of coronula. Microscope images were taken at 25x, 100x, 250x and 400x magnifications.

Weighted samples for epiphyte diatom biomass analysis (Sviben et al., 2018), placed in 50 mL polyethylene centrifuge tubes, were sonicated in a Labsonic LBS1-3 (FALC, Treviglio, Italy) ultrasonic cleaner in FAA solution for 30 minutes. Thalli were then removed, the FAA solution centrifuged at 4000 rpm for 20 minutes and the supernatant discarded. Samples were treated with 30% hydrogen peroxide for 7 days, in order to remove organic matter and, after a second centrigugation, the supernatant was discarded and the samples were dried in an incubator (ISCO 9000, Sil.Mar Instruments, Milano, Italy) at 75 °C. Epiphyte diatom biomass was then estimated through weighting of the diatom frustules, referring it to each thallus fresh weight.

Gravimetric analyses were employed in measuring carbonate encrustation, according to Sviben et al. (2018). Specifically, the dried samples were weighted and treated with 16% HCl for 15 min, in order to remove carbonates, then washed several times with distilled water, dried in an incubator (ISCO 9000, Sil.Mar Instruments, Milano, Italy)

Data analysis Materials and Methods

at 75 °C and then weighted again. The mass of carbonates precipitated on the surface of Charophyte samples was then estimated as the difference between the initial and the final weight.

Chlorophylls, pheophytin and carotenoids were quantified on the acetone extracts through UV-Vis spectrophotometry and spectra deconvolution (Bellino et al., 2014) using the Gauss Peak Spectra fitting (Küpper et al., 2007) technique. In particular, the absorbance spectra of the centrifuged (5000 rpm for 10 minutes) samples were recorded in the range 350-750 nm using a UV-Vis 1800 (Shimadzu, Kyoto, Japan) spectrometer and were deconvoluted using the set of equations for Chlorophyta provided by Küpper et al. (2007). Micromolar concentrations were then referred to the fresh weight of thalli. Pigment profile (Bellino et al., 2014), instead, was evaluated by means of reversed phase high performance liquid chromatography (RP-HPLC) with MWD (430 nm and 450 nm) and fluorimetric (ex: 432 nm, em: 660 nm) detection. Specifically, pigments were separated on a Kinetex 5 µm EVO C18 150 x 4.6 (Phenomenex, Torrance, USA) analytical column, equipped with the dedicated security guard column, with a TSP AS3500 (Thermo Scientific, Waltham, USA) chromatography system, using a binary gradient method specifically developed for the task. Details on the RP-HPLC protocol are provided in Table 2.4.

2.8 Data analysis

Data analysis was tailored on each specific aim represented in Figure 1.2: i) investigate Charophyte biodiversity and ensure the use of native active biomonitors, ii) validate *M. aquatica* and *Ch. gymnophylla* as novel PTE biomonitors and iii) evaluate river quality, with special emphasis on spatial PTE concentration patterns.

2.8.1 Charophyte biodiversity

Length and width of internodes, spines, corticate and ecorticate cells on branchlets, archegonia and coronulas were employed in calculating Materials and Methods Data analysis

Table 2.4: RP-HPLC settings adopted for Charophyta photosynthetic pigment profiling.

Column	Kinetex 5 μ m EVO C18 150 x 4.6
Loop	$20~\mu L$
Sample matrix	Acetone:water 7:3 v:v
Elution type	Gradient
Eluent A	250 mM Pyridin in water (30%) : MeOH (70%)
Eluent B	Ethyl acetate (30%): MeOH (70%)
Temperature	30 °C
Detection	UV-Vis spectrometry: 430 nm and 450 nm / Fluorimetry - ex: 432 nm, em: 660 nm

	Time (min)	A (%)	B (%)	Flow rate (mL/min)
	0	58	42	1.00
	6	45	55	1.00
Gradient profile	10	15	85	1.00
	20	0	100	1.00
	24	0	100	1.00
	25	58	42	1.00

the sizes (as the product length × width) and proportions (as the ratio length × width) of each thallus part. Sizes and proportions were the used as morphological traits in multivariate analyses, with the addition of the ratio of corticate cells on the total branchlet cell number, of the presence/absence of reproductive structures on corticate cells, and of the cortex type. The assignment of each thallus to one of the three species observed was performed using fuzzy partitioning into 3 clusters, choosing an exponential membership coefficient equal to 1.4, in order to provide an optimal compromise between partitioning crispness and fuzziness. The analyses were performed using the functions daisy and fanny of the "cluster" (Maechler et al., 2018) package, visualizing membership probabilities through a ternary diagram drawn with the function ggterm of the "ggterm" (?) package. The differentiation among Charophyte populations (Figure 2.8) in respect

Data analysis Materials and Methods

to the morphological traits was evaluated through a Non-metric Multidimensional Scaling (NMDS), based on 2 axes and on the Gower distance metric, with the superimposition of confidence ellipses (for $\alpha=0.05$) for the species. The choice of the Gower distance metric was forced by the need to calculate distances with mixed type variables: binary, multinomial, and numeric. The analyses were performed within the R 3.5.1 (R Core Team, 2018), using functions metaMDS and ordiellipse of the "vegan" package (Oksanen et al., 2018). The contribution of each morphological trait to the differentiation of populations was then evaluated by fitting murphometric variables onto the NMDS space, with the function envfit of the "vegan" package. The same techniques were adopted also in evaluating population differentiation, and variable contribution in determining it, based on the abundance of chlorophyll a, chlorophyll b, pheophytin a, pheophytin b, and total carotenoids.

The differences in carbonate encrustation and epiphyte diatom biomass among species and populations were analysed through one-way analyses of variance using either the population or the species identifier as fixed factors. Pairwise comparisons over estimated marginal means, using the Tukey multiplicity correction were carried out following rejection of the ANOVA null hypothesis. The analyses were performed within the R 3.5.1 programming environment, with the functions aov of the "stats" (R Core Team, 2018) package and emmeans of the "emmeans" (Lenth, 2018) package.

2.8.2 Biomonitor validation

The validation of M. aquatica and Ch. gymnophylla relied on the similarities between their PTE accumulation behaviour and those of H. nodiflorum and F. antipyretica, respectively. To this aim, distance based multivariate techniques, involving NMDS/confidence ellipses superimposition and Mantel correlation test, were employed. In particular, the differentiation in PTE accumulation behaviour was estimated by analysing the possible overlap of confidence ellipses (for $\alpha = 0.05$)

Materials and Methods Data analysis

relative to the biomonitors in NMDS spaces, based on 3 axes and on a Manhattan distance metric. As previously described in subsection 2.8.1, different distance metrics were tested, choosing the one providing the best stress figure. To separately evaluate the similarities between the couples of passive and active biomonitors in relation to the absolute PTE concentrations or in relation to the spatial accumulation patterns only, the analyses were performed either on the raw data or on data scaled in the [0,1] interval for each biomonitor. Details on the functions employed are provided in subsection 2.8.1. Moreover, the overall similarities in PTE accumulation behaviour between M. aquatica and H. nodiflorum and between Ch. gymnophylla and F. antipyretica was also evaluated through the Mantel correlation test, using the same distance matrices employed in NMDS analyses and $1 \cdot 10^5$ permutations, with the function mantel of the "vegan" package.

2.8.3 River quality

The evaluation of river quality, in relation to PTEs, focused primarily on extracting the spatial scales of variations in PTE concentrations in biomonitors, sediments, and water, on estimating the spatial extent of local alterations in PTE concentrations and on identifying critical locations. The same approach was adopted also in analysing the spatial patterns of organic or nutrient loads from soil leaching, through several indicators measured in water, like TOC, TC, photosynthetic pigments and anions.

The extraction of the spatial scales relied on Moran's Eigenvector Maps (MEMs), coupled with Redundancy Analysis (RDA). Specifically, shapefile layers containing the average PTE concentrations per site in *Ch. gymnophylla* and *F. antipyretica*, and in *H. nodiflorum* and *M. aquatica* in both 2016 and 2017 were created using the Quantum GIS 3.2 software (QGIS Development Team, 2018), and imported as "SpatialPointDataFrame" within the R 3.5.1 programming environment using the function read0GR of the "rgdal" (Bivand et al., 2018) package. Lists of candidate spatial weighting matrices for sampling

Data analysis Materials and Methods

points on the Bussento and Calore Salernitano rivers, based on Delanunay triangulation, Gabriel's graph, Relative neighbourhood graph and Minimum spanning tree connectivity topologies, were then built and individually weighted according to 4 different weighting shemes: "binary" - without weights, "flin" - linear weighting function, "fdown" - concave-down weighting function, and "fup" - concave-up weighting function. The 0.2, 0.4, 0.6, 0.8 set of coefficients was employed for both the "fdown" and "fup" functions. Separate lists for each of the "W", "B", "C", "U", "minmax", and "S" weighting styles were produced, summing up to 240 individual spatial weighting matrices evaluated for each dataset of passive biomonitors, active biomonitors, sediments and water. Since the dataset of Ch. gymnophylla and F. antipyretica, and those of H. nodiflorum and M. aquatica were jointly analysed, a normally distributed random jitter, with ($\mu = 0$; $\sigma = 2$) was added to the site coordinates in order to avoid duplicates. The lists of spatial weighting matrices were built using the function listw.candidates of the (Dray et al., 2018) (Dray et al., 2018) package.

The MEM variables (*i.e.*, eigenvectors of a doubly centered spatial weighting matrix) were then computed for each candidate spatial weighting matrix and both the selection of the best spatial weighting matrix and of a subset of significant positive MEMs were carried out using the function listw.select of the "adespatial" package. The selection of the spatial weighting matrices was performed by maximizing the adjusted r^2 , using a Sidak correction for multiple tests to the P-value of the global test for each spatial weighting matrix, whereas the selection of the best MEM subsets was performed through forward selection. The final covariance-based RDAs, with MEMs as predictors and PTE concentrations in biomonitors and environmental matrices as response variables, were then computed using the function rda of the "vegan" package.

The extent at which local alterations propagated in space was estimated through the analysis of Mantel correlograms, calculated using the function mantel.correlog of the "vegan" package.

The identification of spatial outliers was performed using the func-

Materials and Methods Data analysis

tions map.plot and uni.plot of the "mvoutlier" (Filzmoser and Gschwandtner, 2018) package, to identify sites with peculiar criticalities using the approach of Filzmoser (2005). In particular, multivariate outliers were identified separately in relation to macronutrients, micronutrients, and non essential elements in passive and active biomonitors, and water, and in relation to TOC, TC, photosynthetic pigments and anions in water.

The analysis of PTE fractionation data on sediments, aimed at evaluating differences among sites in their pattern of PTE distribution among the exchangeble, bound to Fe-Mn oxides, bound to organic matter, and residual fractions, required the development of a novel machine learning approach. BCR data can be represented, in fact, by 3-mode compositional tensors, in which a matrix containing the proportion of each PTE in the 4 different fractions is associated to each site. The analysis of this data structure poses two main challenges: i) the use of Compositional Data Analysis (CoDA) approaches, and ii) an extension of classic multivariate techniques to 3-mode tensors. The proposed approach couples log-ratio transformation, commonly employed in opening closed compositional data, and Principal Tensor Analysis on 3-modes (PTA-3) for the truncated Singular Value Decomposition of compositional tensors.

Compositional matrices relative to the distribution of each PTE in the exchangeble, bound to Fe-Mn oxides, bound to organic matter, and residual fractions in each site were coded as "acomp-class" objects using function acomp of the "compositions" (van den Boogaart et al., 2018) package within the R 3.5.1 programming environment. The resulting 19 matrices were organised in a list and subjected to an isometric log-ratio transformation using the function ilr of the "compositions" package. The resulting matrices were then stacked and organised in an array using the function sapply of the "base" (R Core Team, 2018) package, which was then subjected to a PTA-3 decomposition, using the function PTA3 of the "PTAk" (Leibovici, 2010) package. The maximum number of Principal Tensors was set to 2 (nbPT = 2), computing all the solutions for 2-mode tensors (nbPT2 =

Data analysis Materials and Methods

1), and selecting tensors explaining a percentage of the total variance > 1%.

Object loadings onto the selected tensors (mode n. 1) were then employed as descriptors of the pattern of PTE distribution in the BCR fractions for each site and used to build a dendrogram representing the distances among sites. The dendrogram was computed using functions agnes and as .dendrogram, from the "cluster" and "dendextend" packages, respectively, starting from an Euclidean distance matrix produced using the function daisy of the "cluster" package. Biplot of the element loadings (mode n. 3) and ilr-transformed variables (mode n. 2) were then produced to evaluate the distribution of elements in relation to their characteristic distribution pattern into the exchangeble, bound to Fe-Mn oxides, bound to organic matter, and residual fractions.

Site differentiation in relation to the total PTE concentrations in sediments, and in relation to the PTE concentrations in each of the BCR fractions was also evaluated through NMDSs, based on 2 axes and on the Manhattan distance metric, with the superimposition of the confidence ellipses (for $\alpha = 0.05$) relarive to the sites. The analysis was performed using the functions metaMDS and ordiellipse of the "vegan" package.

The estimated abundance of quartz, Calcite, and dolomite, obtained through Rietvield's refinement of XRD diffractograms, was employed in evaluating site differentiation based on mineralogical composition and to evaluate possible relationships between the mineralogical composition and the total and exchangeable PTE concentrations. To these ends, a ternary diagram, with the superimposition of confidence ellipses for 1σ , 2σ , and 3σ , was firstly produced using the function plot.acomp of the "compositions" package. The compositional variables representing the abundance of quartz, calcite, and dolomite were then subjected to an isometric log-ratio transformation and employed as predictors in RDAs using the total PTE concentrations and the loadings of the mode n.1 compositional tensor upon the selected tensors as response variables. Confidence ellipses (for

Materials and Methods Data analysis

 α = 0.05) relative to the Bussento and the Calore Salernitano rivers were also superimposed on the RDA triplots to evaluate possible differentiations between the two rivers.

The analysis of the spatial outliers based on the concentrations in water of macronutrients, micronutrients, non-essential elements, anions, photosynthetic pigments, TOC, and TN was carried out according to Filzmoser (2005), as described for the computing of the outlier maps based on PTE concentrations in passive and active biomonitors. The functions map.plot and uni.plot of the "mvoutlier" package were employed.

Chapter 3

Results

3.1 Charophyte biodiversity

Overall, 4 Charophyceae taxa were observed within the "Cilento, Vallo di Diano e Alburni" National Park and in its neighbourhood, all belonging to the *Chara* genus: *Ch. globularis* Thuillier, *Ch. gymnophylla* A. Braun, *Ch. vulgaris* L., and *Ch. vulgaris* var *papillata* K. Wallroth. Pure populations were invariably observed in all the studied area.

According to the classification based on dichotomous keys, *Ch. vulgaris* was the most widely distributed taxon, constituting 7 out of 17 populations, followed by *Ch. gymnophylla*, with 6 populations, and *Ch. globularis*, with 3 populations, whereas only 1 population of *Ch. vulgaris* var *papillata* was observed (Figure 3.1). *Ch. gymnophylla* and *Ch. vulgaris* colonised a wider range of environments than *Ch. globularis*, being observed in spring ponds, small lakes, and riverbanks, whereas the latter was observed only in small lakes.

Unfortunately, population traits were investigated on 3 of the observed taxa, due to the disappearance of the *Ch. vulgaris* var *papillata* population (B.06, Figure 2.8) in 2018. In addition, due to insufficient amount of thalli, photosynthetic pigments were not analysed in population A.05 and carbonate encrustation was not analysed in populations A.05 and B.03.

Results Charophyte biodiversity

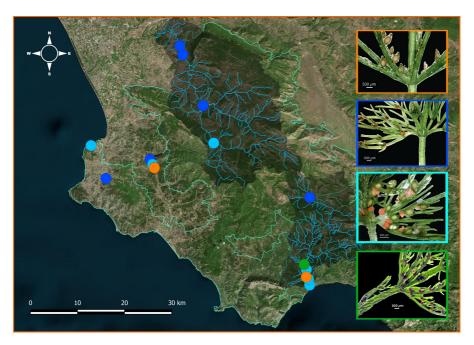


Figure 3.1: Charophyte populations observed during the project, with indication of the species they belong to: *Ch. globularis* Thuillier (•), *Ch. gymnophylla* A. Braun (•), *Ch. vulgaris* L. (•), and *Ch. vulgaris* var *papillata* K. Wallroth (•).

The main morphological traits (Table 3.1) of the 12 populations from the Alento, the Bussento, and the Calore Salernitano rivers, and from the spring ponds in the Perdifumo and Trentova districts are reported in Tables 3.2 and 3.3. SEM images of *Ch. globularis* oospores (B.04), showing extended wings, on average 25.04 μ m wide, are reported in Figure 3.8.

Due to the presence of sterile thalli in populations A.04, B.03 and C.02, the traits related to the antheridia and archegonia (oos.v, oos.r, oog.v, oog.r, oc.v, oc.r) were not included in the fuzzy clustering and NMDS analysis on the morphometric traits, in order to preserve the largest number of observations. The attribution of each population to *Ch. globularis*, *Ch. gymnophylla*, or *Ch. vulgaris* based on fuzzy clustering (Figure 3.2) was similar to the one obtained using dichotomous keys. The analysis, moreover, highlighted the tendency of each

Charophyte biodiversity Results

Table 3.1: Morphological traits analysed on the 12 Charophyte populations reported
in Figure 2.8, with indication of the abbreviations used in the text.

	Number	Length	Diameter	Size	Ratio
Internodes	i.n.	i.l.	i.w.	i.v.	i.r.
Spines		s.l.	s.w.	s.v.	s.r.
Branchlets	b.n.				
Ecorticate cells	ec.n.	ec.l.	ec.w.	ec.v.	ec.r.
Corticate cells	cc.n.	cc.l.	cc.w.	cc.v.	cc.r.
Oospore		oos.l	oos.w	oos.v.	oos.r.
Oogonia		oog.l	oog.w	oog.v.	oog.r.
Coronula		oc.l	oc.w	oc.v.	oc.r.

thallus to exibit the traits typical of a single species or intermediate traits. With the exception of population A.01, close to the boundary between *Ch. gymnophylla* and *Ch. vulgaris*, all the populations were clearly classified in one group only.

The conditional recursive partitioning Figure 3.3 tree resolved the ambiguous positioning of A.01 in the fuzzy clustering, attributing the population to *Ch. gymnophylla* based on the presence of reproductive structures on ecorticate cells. In particular, the cortex type allows to differentiate *Ch. globularis* from the other species, whereas the type of cells bringing reproductive structures allows to differentiate *Ch. gymnophylla* and *Ch. vulgaris*. The size of internodes and of corticate cells provided also further differentiations among populations within single species.

NMDS analysis clearly differentiated the confidence ellipse relative to the 3 species, especially in relation to the proportion of ecorticate cells in radii and to the size of corticate and ecorticate cells. (Figure 3.4). The relative positioning of the confidence ellipses relative to the species was similar in the NMDS based on the concentrations of chlorophyll a, chlorophyll b, pheophytin a, pheophytin b, and total carotenoids, reported in Table 3.4, although the confidence ellipse for

counts, units for lengths and widths are in μm , unless otherwise specified. Table 3.2: Morphological traits (mean: upper table; s.e.m.: lower table) of the thalli from the 12 Charophyte populations reported in Figure 2.8. Abbreviations are reported in Table 3.1. Units for the number of internodes, branchlets, corticate and ecorticate cells are in

Population	Species	i.n.	i.l. (mm)	i.w.	s.1.	s.w.	b.n.	ec.n.	cc.n.	ec.l.	ec.w.	cc.l.	cc.w.
A.01	Ch. gymnophylla	∞	25.73	502	54.9	23.12	5.1	1.33	2.512	982.1	148.49	1205.3	174.81
A.02	Ch. vulgaris	9	17.918	495.3	62.79	36.25	4.942	1.148	2.25	1139	153.84	1238.7	470
A.03	Ch. vulgaris	8	46.44	650.1	100.32	44.79	5.252	1.15	2.104	1028.8	157.32	1431.3	184.3
A.04	Ch. globularis	11	12.642	387.8	49.35	49.35	3.754	1	2.558	970	298	1152.5	157.76
A.05	Ch. globularis	7	23.83	388.66	73.18	66.8	5.246	1.1	3.128	1027	140.18	1058	144.52
B.03	Ch. vulgaris	6	23.77	432.4	87.8	33.46	3.956	1.018	1.95	1384	221.11	1168	234.6
B.04	Ch. globularis	7	11.75	296.46	63.3	53.4	5.13	1.046	1.898	1325	380	1427	189.59
B.21	Ch. gymnophylla	12	9.77	315.09	103	65.15	6.57	1.548	1.152	2098	306.9	2112	887
C.02	Ch. gymnophylla	8	13.73	373.23	79.5	65.3	5.754	1.382	1.122	2017	580	2234	236.3
C.12	Ch. vulgaris	7	48.09	749.8	104.77	88.4	5.676	1.118	2.006	1091	183.86	1307.5	210.73
P.01	Ch. gymnophylla	9	32.54	558.3	86.93	29.49	4.414	1.958	1.516	1162.3	162.58	1245.8	171.15
T.01	Ch. vulgaris	9	28.01	465.1	49.47	37.58	4.746	1.17	2.084	1060.3	157.4	1218.7	171.07
Population	Species	i.n.	i.l. (mm)	i.w.	s.1.	s.w.	b.n.	ec.n.	cc.n.	ec.l.	ec.w.	cc.l.	cc.w.
A.01	Ch. gymnophylla	1	1.27	7.12	3.42	2.04	0.259	0.078	0.117	25.7	2.76	31.0	4.78
A.02	Ch. vulgaris	1	0.568	29.6	5.58	4.38	0.339	0.090	0.108	108	6.53	83.1	301
A.03	Ch. vulgaris	1	4.97	43.5	5.25	1.98	0.209	0.070	0.052	42.6	3.55	47.3	9.40
A.04	Ch. globularis	1	0.690	11.2	3.77	3.77	0.752	0.000	0.342	124	157	19.2	2.27
A.05	Ch. globularis	1	2.00	9.61	4.58	20.3	0.145	0.045	0.156	131	8.63	34.0	3.33
B.03	Ch. vulgaris	1	3.73	14.4	12.9	1.24	0.732	0.018	0.136	136	5.15	107	12.1
B.04	Ch. globularis	1	3.34	5.61	11.0	10.4	0.175	0.030	0.240	165	205	129	7.25
B.21	Ch. gymnophylla	1	1.23	6.38	20.1	2.63	0.586	0.101	0.082	110	15.6	263	521
C.02	Ch. gymnophylla	1	2.36	6.09	16.1	11.2	0.580	0.080	0.061	128	385	179	11.3
C.12	Ch. vulgaris	1	4.55	39.0	6.57	12.4	0.212	0.044	0.052	66.3	4.81	52.7	9.20
P.01	Ch. &ymnophylla	1	1.50	29.9	6.29	4.41	0.320	0.028	0.102	67.5	4.26	80.5	3.92
T.01	Ch. vulgaris	1	3.98	12.0	2.43	7.78	0.154	0.052	0.101	42.7	2.98	41.5	3.43

Charophyte biodiversity Results

Table 3.3: Morphological traits (mean: upper table; s.e.m.: lower table) of the antheridia and archegonia from the 12 Charophyte populations reported in Figure 2.8. Abbreviations are reported in Table 3.1. A "-" means that only 1 observation was recorded, and there was not enough information to calculate s.e.m. Units are in μ m.

Population	Species	oos.l.	oos.w.	oc.l.	oc.w.	oog.w.
A.01	Ch. gymnophylla	404.26	297.01	126.16	136.54	249.53
A.02	Ch. vulgaris	429.05	225.93	108.4	119.19	186.65
A.03	Ch. vulgaris	382.75	209.6	70.94	102.61	207.69
A.04	Ch. globularis	525.9	314	134.38	130.24	204.42
A.05	Ch. globularis	578.3	332.04	113.09	123.04	143.77
B.03	Ch. vulgaris	516.82	341.65	129.12	166.92	195.93
B.04	Ch. globularis	568.77	301.94	148.98	132.43	218.02
B.21	Ch. gymnophylla	277.98	242.88	91.47	97.64	233.74
C.02	Ch. gymnophylla	165.31	110.31	56.06	66.89	186.93
C.12	Ch. vulgaris	462.19	356.16	98.84	132.39	306.66
P.01	Ch. gymnophylla	427.98	227.42	115.88	117.87	195.69
T.01	Ch. vulgaris	416.9	248.41	112.63	125.52	230.53
Population	Species	oos.l.	oos.w.	oc.l.	oc.w.	oog.w.
Population A.01	Species Ch. gymnophylla	oos.l. 4.85	oos.w.	oc.l. 6.67	oc.w.	oog.w. 28.99
	1					
A.01	Ch. gymnophylla	4.85	11.35	6.67	6.46	28.99
A.01 A.02	Ch. gymnophylla Ch. vulgaris	4.85 48.2	11.35 34.14	6.67 8.13	6.46 7.63	28.99 13.22
A.01 A.02 A.03	Ch. gymnophylla Ch. vulgaris Ch. vulgaris	4.85 48.2	11.35 34.14	6.67 8.13	6.46 7.63	28.99 13.22
A.01 A.02 A.03 A.04	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis	4.85 48.2 19.87	11.35 34.14 7.55	6.67 8.13 8.77	6.46 7.63 4.49	28.99 13.22 12.66
A.01 A.02 A.03 A.04 A.05	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. globularis	4.85 48.2 19.87	11.35 34.14 7.55	6.67 8.13 8.77	6.46 7.63 4.49	28.99 13.22 12.66 - 36.14
A.01 A.02 A.03 A.04 A.05 B.03	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. globularis Ch. vulgaris	4.85 48.2 19.87 - 15.14	11.35 34.14 7.55 - 16.04	6.67 8.13 8.77 - 1.56	6.46 7.63 4.49 - 9.07	28.99 13.22 12.66 - 36.14 4.41
A.01 A.02 A.03 A.04 A.05 B.03 B.04	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. globularis Ch. vulgaris Ch. vulgaris Ch. globularis	4.85 48.2 19.87 - 15.14 - 26.92	11.35 34.14 7.55 - 16.04 - 17.94	6.67 8.13 8.77 - 1.56 - 17.08	6.46 7.63 4.49 - 9.07 - 8.09	28.99 13.22 12.66 - 36.14 4.41 14.43
A.01 A.02 A.03 A.04 A.05 B.03 B.04 B.21	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. globularis Ch. vulgaris Ch. vulgaris Ch. globularis Ch. globularis Ch. gymnophylla	4.85 48.2 19.87 - 15.14 - 26.92 41.92	11.35 34.14 7.55 - 16.04 - 17.94 50.22	6.67 8.13 8.77 - 1.56 - 17.08 15.57	6.46 7.63 4.49 - 9.07 - 8.09 14.91	28.99 13.22 12.66 - 36.14 4.41 14.43 29.4
A.01 A.02 A.03 A.04 A.05 B.03 B.04 B.21 C.02	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. globularis Ch. vulgaris Ch. vulgaris Ch. globularis Ch. globularis Ch. gymnophylla Ch. gymnophylla	4.85 48.2 19.87 - 15.14 - 26.92 41.92 15.99	11.35 34.14 7.55 - 16.04 - 17.94 50.22 16.01	6.67 8.13 8.77 - 1.56 - 17.08 15.57 0.71	6.46 7.63 4.49 - 9.07 - 8.09 14.91 5.68	28.99 13.22 12.66 - 36.14 4.41 14.43 29.4 7.48

Ch. vulgaris overlapped the confidence ellipses of *Ch. globularis* and *Ch. gymnophylla*, which were clearly separated (Figure 3.4). The coefficient of determination for the linear models relating the distances in the NMDS spaces with the original distances were equal to $r^2 = 0.901$ and $r^2 = 0.988$ for the morphometric trait and photosynthetic pigment datasets, respectively (Figure 3.5).

Carbonate encrustation (Figure 3.6) ranged from \sim 50% d.w. to more than 80% d.w. and showed significant differences among among sampling sites (P < 0.001) and among the species (P < 0.001), with

Results Charophyte biodiversity

Table 3.4: Concentration (mean: upper table; s.e.m.: lower table) of chlorophyll a (Chl a), chlorophyll b (Chl b), pheophytin a (Pheo a), pheophytin b (Pheo b), and total carotenoids (Car). Units are in $\mu g g^{-1}$ f.w.

Population	Species	Chl a	Chl b	Pheo a	Pheo b	Car
A.01	Ch. gymnophylla	150.27	93.75	69.86	< LOD	121.73
A.02	Ch. vulgaris	293.2	121.69	27.08	0.766	194.22
A.03	Ch. vulgaris	181.62	76.28	27.03	2.227	102.9
A.04	Ch. globularis	597.9	261.9	52.89	2.45	243.41
B.03	Ch. vulgaris	151.8	52.68	19.88	24.12	65.64
B.04	Ch. globularis	196.5	81.56	8.64	< LOD	96.81
B.21	Ch. gymnophylla	97.64	39.66	7.43	5.147	33.278
C.02	Ch. gymnophylla	167.5	99.1	76.2	83.8	162.4
C.12	Ch. vulgaris	217.13	86.39	13.9	0.2	127.8
P.01	Ch. gymnophylla	191.56	93.67	46.53	0.162	113.44
T.01	Ch. vulgaris	254.25	103.35	16.71	0.493	123.93
Population	Species	Chl a	Chl b	Pheo a	Pheo b	Car
Population A.01	Species Ch. gymnophylla	Chl a 6.94	Chl b	Pheo a	Pheo b	Car 2.29
	1					
A.01	Ch. gymnophylla	6.94	3.55	3.22	< LOD	2.29
A.01 A.02	Ch. gymnophylla Ch. vulgaris	6.94 17.0	3.55 7.35	3.22 1.54	< LOD 0.498	2.29 7.04
A.01 A.02 A.03	Ch. gymnophylla Ch. vulgaris Ch. vulgaris	6.94 17.0 7.43	3.55 7.35 2.86	3.22 1.54 1.58	< LOD 0.498 0.602	2.29 7.04 5.57
A.01 A.02 A.03 A.04	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis	6.94 17.0 7.43 36.0	3.55 7.35 2.86 18.9	3.22 1.54 1.58 5.95	< LOD 0.498 0.602 1.16	2.29 7.04 5.57 8.01
A.01 A.02 A.03 A.04 B.03	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. vulgaris	6.94 17.0 7.43 36.0 11.1	3.55 7.35 2.86 18.9 4.45	3.22 1.54 1.58 5.95 2.13	< LOD 0.498 0.602 1.16 2.11	2.29 7.04 5.57 8.01 4.65
A.01 A.02 A.03 A.04 B.03 B.04	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. vulgaris Ch. globularis	6.94 17.0 7.43 36.0 11.1 16.4	3.55 7.35 2.86 18.9 4.45 7.07	3.22 1.54 1.58 5.95 2.13 0.870	< LOD 0.498 0.602 1.16 2.11 < LOD	2.29 7.04 5.57 8.01 4.65 5.60
A.01 A.02 A.03 A.04 B.03 B.04 B.21	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. vulgaris Ch. globularis Ch. globularis Ch. gymnophylla	6.94 17.0 7.43 36.0 11.1 16.4 4.00	3.55 7.35 2.86 18.9 4.45 7.07 1.43	3.22 1.54 1.58 5.95 2.13 0.870 1.11	<lod 0.498 0.602 1.16 2.11 <lod 0.773</lod </lod 	2.29 7.04 5.57 8.01 4.65 5.60 0.286
A.01 A.02 A.03 A.04 B.03 B.04 B.21 C.02	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. vulgaris Ch. globularis Ch. globularis Ch. gymnophylla Ch. gymnophylla	6.94 17.0 7.43 36.0 11.1 16.4 4.00 19.8	3.55 7.35 2.86 18.9 4.45 7.07 1.43 15.1	3.22 1.54 1.58 5.95 2.13 0.870 1.11 15.9	<lod 0.498 0.602 1.16 2.11 < LOD 0.773 19.8</lod 	2.29 7.04 5.57 8.01 4.65 5.60 0.286 30.1
A.01 A.02 A.03 A.04 B.03 B.04 B.21 C.02 C.12	Ch. gymnophylla Ch. vulgaris Ch. vulgaris Ch. globularis Ch. vulgaris Ch. globularis Ch. globularis Ch. gymnophylla Ch. gymnophylla Ch. vulgaris	6.94 17.0 7.43 36.0 11.1 16.4 4.00 19.8 7.62	3.55 7.35 2.86 18.9 4.45 7.07 1.43 15.1 2.73	3.22 1.54 1.58 5.95 2.13 0.870 1.11 15.9 3.20	<lod 0.498 0.602 1.16 2.11 <lod 0.773 19.8 0.200</lod </lod 	2.29 7.04 5.57 8.01 4.65 5.60 0.286 30.1 11.1

Ch. gymnophylla and *Ch. vulgaris* exhibiting higher values than *Ch. globularis*. Conversely, epiphyte diatom biomass (Figure 3.7) did not differed among species (for $\alpha = 0.05$), but only among sampling sites (P < 0.001).

The binary HPLC method developed allowed the separation and the identification of 17 pigments (Table 3.5 and Figure 3.9). Main charophyte pigments were detected in all the samples, with variations in the abundance of chlorophyllides a and b and γ -carotene and α -carotene between *Ch. globularis* and the other two species (Figure 3.9).

Charophyte biodiversity Results

 $\label{thm:continuous} \textbf{Table 3.5: } \textbf{HPLC pigment profile of } \textit{Chara } \textbf{spp., with indication of peak retention times and resolution.}$

Peak	Compound	Retention time (min)	Resolution
1	Chlorophyllide a	3.259	3.700
2	Chlorophyllide b	4.063	9.578
3	Neoxanthin	6.294	6.932
4	Violaxanthin	7.840	2.511
5	Antheraxanthin	8.480	9.008
6	Lutein	10.444	6.588
7	cis-Zeaxanthin	11.461	1.397
8	trans-Zeaxanthin	11.688	15.718
9	Chlorophyll b	14.247	2.392
10	Vinyl-chlorophyll b	14.617	2.59
11	Pheophitin b	15.070	4.880
12	Chlorophyll a	15.947	1.306
13	Vinyl-chlorophyll a	16.209	1.409
14	Pheophitin a	16.508	13.452
15	γ-Carotene	19.470	2.351
16	α -Carotene	20.024	2.659
17	β-Carotene	20.649	

Results Charophyte biodiversity

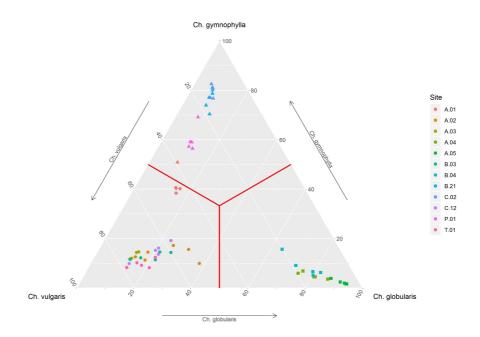


Figure 3.2: Ternary diagram of the probability memberships of each thallus to *Ch. globularis* (\blacksquare), *Ch. gymnophylla* (\bullet), and *Ch. vulgaris* (\blacktriangle) according to the fuzzy clustering. Populations are coded in different colors according to the legend.

Charophyte biodiversity Results

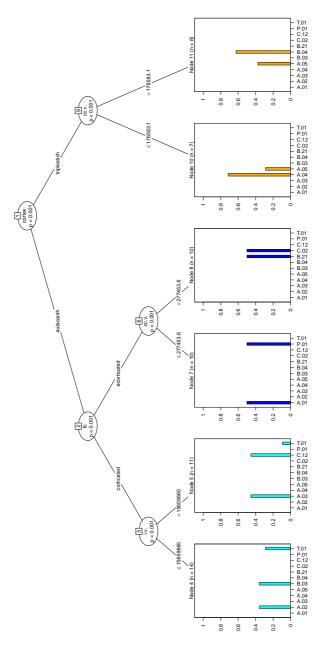
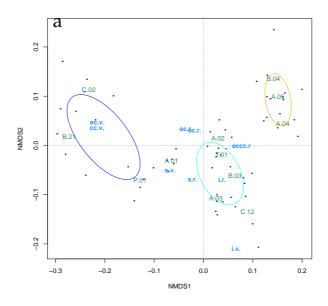



Figure 3.3: Conditional recursive partitioning tree based on charophyte morphometric traits. Colors indicate to which species populations belong to: Ch. globularis (—), Ch. gymnophylla (—), and Ch. vulgaris (—). Node probabilities and splitting rules are also reported.

Results Charophyte biodiversity

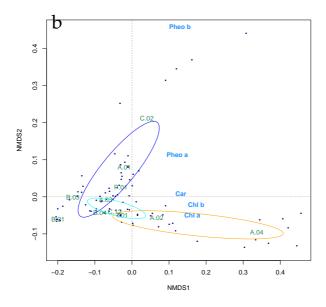


Figure 3.4: NMDS biplots based on the Charophyte morphometric traits (a) and photosynthetic pigment concentrations (b), with the superimposition of confidence ellipses (for $\alpha = 0.05$) relative to *Ch. globularis* (—), *Ch. gymnophylla* (—), and *Ch. vulgaris* (—). The centroid for each population are also shown. eccc.r: proportion of ecorticate cells on the total cell number in radii.

Charophyte biodiversity Results

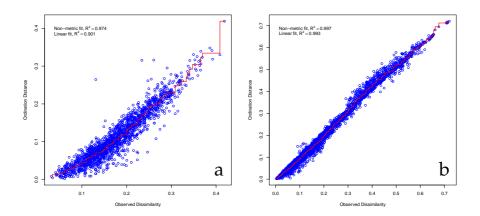


Figure 3.5: Stressplots relative to the NMDS on the Charophyte morphometric traits (a) and photosynthetic pigment concentrations (b). The coefficient of determination relative to the linear and non-linear regressions between the distances in the NMDS spaces and the original distances are also reported.

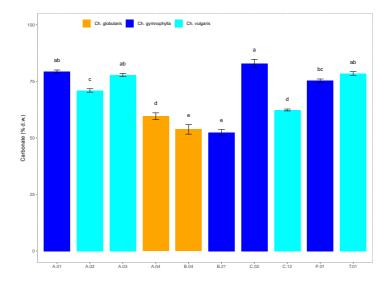


Figure 3.6: Average mass, in percent to thallus dry weight, of deposited carbonates on Charophyte thalli. Different letters indicate significant differences among sites according to the estimated marginal means test (for $\alpha=0.05$). Colors indicate species according to the legend.

Results Charophyte biodiversity

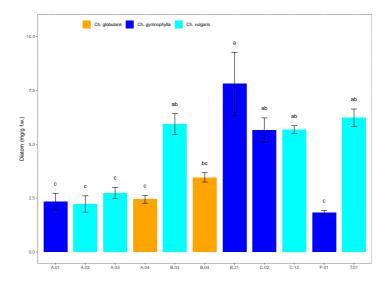


Figure 3.7: Average mass, in percent to thallus fresh weight, of epiphyte diatoms on Charophyte thalli. Different letters indicate significant differences among sites according to the estimated marginal means test (for $\alpha=0.05$). Colors indicate species according to the legend.

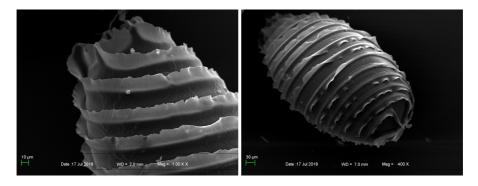


Figure 3.8: SEM images of *Ch. globularis* oospores showing extended wings.

Charophyte biodiversity Results

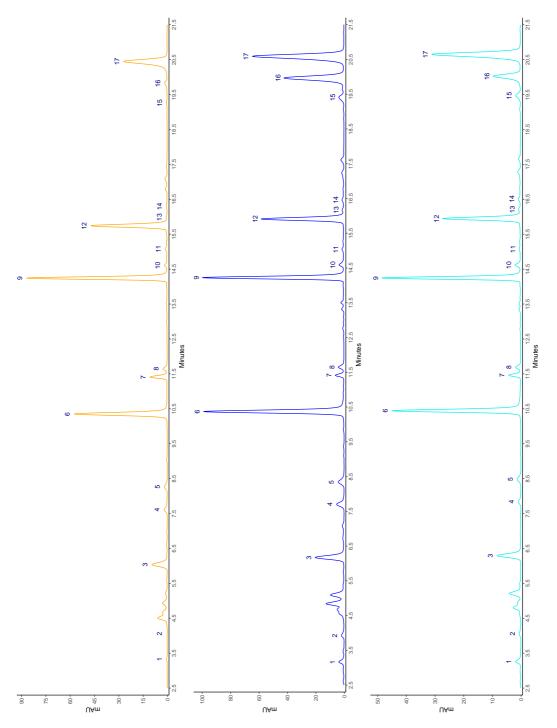


Figure 3.9: Chromatograms of the pigment extracts of Ch. globularis (—), Ch. gymnophylla (—), and Ch. vulgaris (—). Peak identification is reported in Table 3.5.

Results Biomonitor validation

3.2 Biomonitor validation

The Mantel tests and the NMDS analyses were based on the Manhattan distance metric, which provided the best NMDS stress figures for all the datasets. Significant correlations between the distance matrices for *M. aquatica* and *H. nodiflorum* and for *Ch. gymnophylla* and *F. antipyretica* were highlighted by the Mantel correlation tests (Table 3.6). Dataset scaling in the [0, 1] interval increased the Mantel correlation coefficients in respect to the row dataset in the case of *M. aquatica* vs. *H. nodiflorum*, but not in the case of *Ch. gymnophylla* vs. *F. antipyretica* (Table 3.6).

Table 3.6: Results of the Mantel correlation tests based on the Manhattan distance metric.

	M. aquatica vs. H. nodiflorum			
	r	<i>P</i> -value		
Raw data	0.1753	< 0.05		
Scaled data	0.4873	< 0.001		
	Ch. gymnophylla vs. F. antipyretica			
	Ch. gymnoj	ohylla vs. F. antipyretica		
	r cn. gymnoj	P-value		
Raw data		,,,		

The linear regressions between the original distances and those from the NMDS spaces had determination coefficients $0.921 < r^2 < 0.989$ (Figure 3.10).

The NMDS for passive biomonitors based on the raw data highlighted a large overlap of the confidence ellipses for *H. nodiflorum* in 2016 and *M. aquatica* in 2016 and 2017, with a clear separation of the *H. nodiflorum* 2017 ellipse from the others (Figure 3.11). The differentiation was related to the higher concentrations, on average, of Cu and Mg, and the lower concentrations of Pb and As in *H. nodiflorum* roots collected in 2017 (Figure 3.11). Confidence ellipses for *M. aquatica*

BIOMONITOR VALIDATION RESULTS

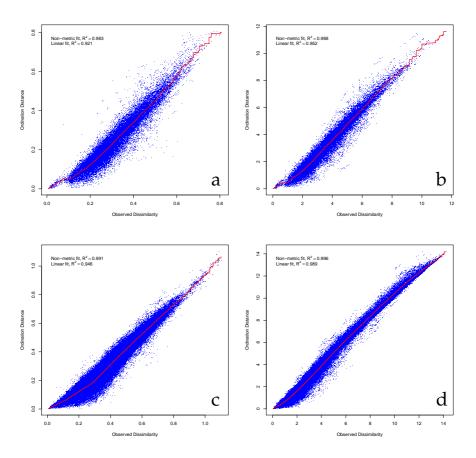


Figure 3.10: Stressplots relative to the NMDS on the *M. aquatica/H. nodiflorum* raw (a) and scaled (b) data, and to the NMDS on the *Ch. gymnophylla/F. antipyretica* raw (c) and scaled (d) data. The coefficient of determination relative to the linear and non-linear regressions between the distances in the NMDS spaces and the original distances are also reported.

and *H. nodiflorum* largely overlapped, instead, in the NMDS based on scaled data (Figure 3.11).

A clear-cut separation between the confidence ellipses for *Ch. gymno-phylla* and *F. antiyretica* was highlighted by the NMDS based on the raw data, with the former exhibiting on average higher concentrations of As, Ca, K, Mg, Na, Pb, S, and Zn, and the latter higher concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, and V (Figure 3.12). The differentiation

RESULTS BIOMONITOR VALIDATION

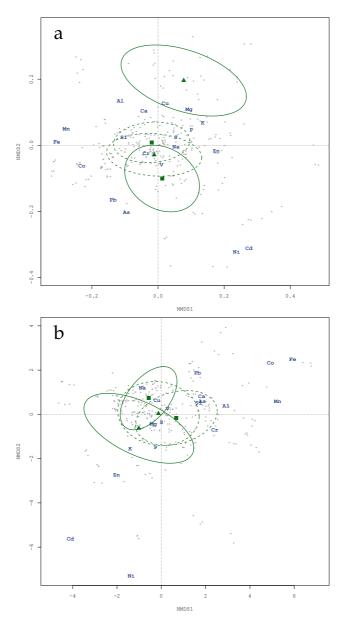


Figure 3.11: NMDS biplots based on raw (a) and scaled (b) PTE concentration data, with the superimposition of confidence ellipses (for $\alpha=0.05$) relative to M. aquatica (- - -) and H. nodiflorum (—) in 2016 (\blacksquare) and 2017 (\blacktriangle).

BIOMONITOR VALIDATION RESULTS

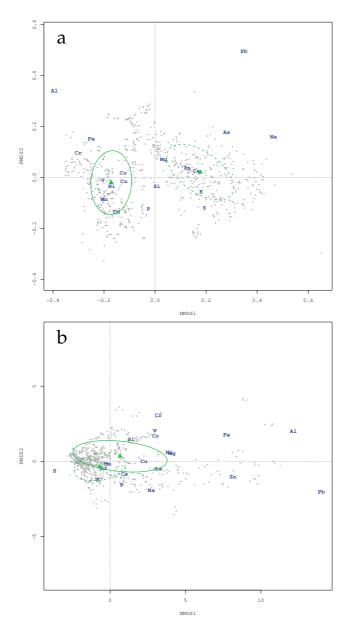


Figure 3.12: NMDS biplots based on raw (a) and scaled (b) PTE concentration data, with the superimposition of confidence ellipses (for $\alpha=0.05$) relative to *Ch. gymnophylla* (- - -) and *F. antipyretica* (—) in 2017 (\blacktriangle).

RESULTS BIOMONITOR VALIDATION

disappeared in the NMDS based on the scaled data, with the ellipses relative to *Ch. gymnophylla* and *F. antipyretica* encircling each other's centroids (Figure 3.12).

3.3 River quality

The connectivity diagrams developed for the Bussento, the Calore Salernitano and the joint river systems, relative to the sampling sites in which passive biomonitoring, active biomonitoring, water monitoring, and sediment analysis were performed, are reported in Figures 3.13 and 3.14.

Among the spatial weighting matrices developed for the Bussento river, the global tests using the passive biomonitoring data selected a binary weighted (*i.e.* with no weighting) Gabriel's graph, producing an adjusted- $r^2 = 0.2813$ and P < 0.01. The same connectivity topology was selected also for the spatial weighted matrices relative to the Calore Salernitano (adjusted- $r^2 = 0.3531$, P < 0.01) and the joint river systems (adjusted- $r^2 = 0.3685$; P < 0.01), although in either cases, a concave-up weighting scheme was choosen, with coefficients equal to 0.2 and 0.8, respectively. For the best spatial models, the forward selection algorithm selected 9 MEMs explaining the PTE variations in *M. aquatica* and *H. nodiflorum* in the Bussento river, 2 MEMs for the Calore Salernitano, and 11 MEMs for the joint river systems.

The connectivity topologies selected based on the active biomonitoring data varied among the Bussento, the Calore Salernitano, and the joint river systems. The global tests selected a relative neighbourhood graph either in the case of the Bussento (adjusted- $r^2 = 0.5257$, P < 0.01) or the joint river systems (adjusted- $r^2 = 0.4324$, P < 0.01), with the former unweighted and the latter linearly weighted. In the case of the Calore Salernitano, a Delaunay triangulation with concave-up (coefficient equal to 0.8) weighting was selected, producing an adjusted- $r^2 = 0.6536$ and P < 0.01. The MEMs explaining the PTE variations in *Ch. gymnophylla* and *F. antipyretica* were 8 in the case of the Bussento, 10 in the case of the Calore Salernitano, and 12 in the case of the joint river systems.

The covariance-based RDAs using the selected MEMs as predictors and PTE concentrations in passive and active biomonitors in the Bussento, the Calore Salernitano, and the joint river systems as re-

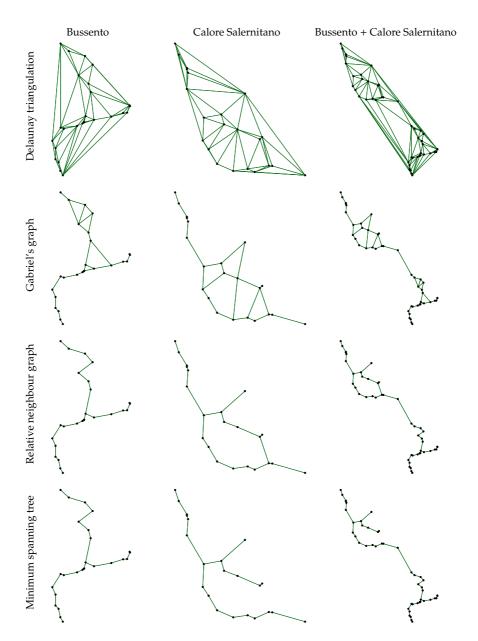


Figure 3.13: Connectivity diagrams developed for the Bussento, the Calore Salernitano and the joint river systems based on passive biomonitoring sites in 2016 or 2017. Spatial weighting matrices were computed through weighting of the diagrams.

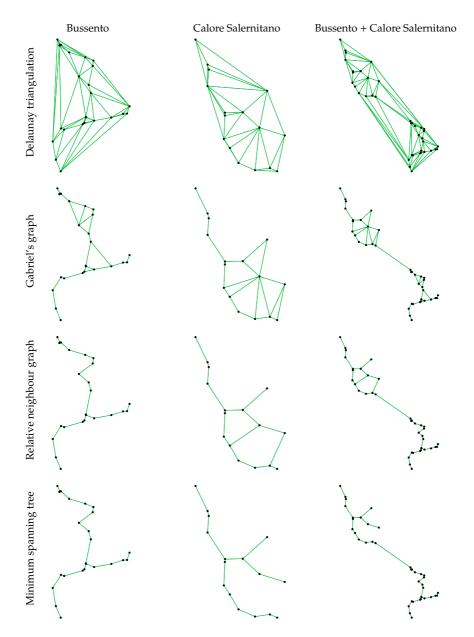


Figure 3.14: Connectivity diagrams developed for the Bussento, the Calore Salernitano and the joint river systems based on active biomonitoring sites. Spatial weighting matrices were computed through weighting of the diagrams.

sponse variables are reported in Figure 3.15. The distribution of the PTEs in H. nodiflorum and M. aquatica in the RDA space relative to the Bussento river, were primarily related to the directions described by MEMs 14, 13 and 15, and by MEMs 1, 2, and 6 (P < 0.05 for all MEMs). MEMs 1, 2, and 11 (P < 0.001 for all MEMs), instead, primarily determined the distribution of PTEs in *F. antipyretica* and *Ch.* gymnophylla. In the case of the RDAs relative to the Calore Salernitano river, MEM 1 (P < 0.01) appears to dominate the distribution of the PTEs from passive biomonitors, whereas 2 main groups of MEMs determined the distribution of PTEs from active biomonitors: Cd, K, P, and S were primarily related to MEMs 15, 11, and 3 (P < 0.01, P < 0.05, and P < 0.05), and the other PTEs to MEMs 10, 14, 2, and 9 (P < 0.01for all MEMs). MEM 3 (P < 0.01) explained most of the variance in PTE distribution in the RDA triplot based on passive biomonitoring data relative to the joint river sistems, followed by MEMs 19 and 14, and by MEM 4 (P < 0.05 for all MEMs). Numerous MEMs, instead, contributed to explain the variance in the PTE concentrations in active biomonitors in the case of the joint river system: 2 (P < 0.001), 1, 26, 33, 7, 38, 3, and 21 (P < 0.05 for all MEMs).

Mantel correlograms (Figure 3.16), idicate significant spatial correlations, albeight with low values, in the case of the joint *Ch. gymnophylla/F. antipyretica* dataset, but not in the case of the joint *H. nodiflorum/M. aquatica* dataset. Specifically, positive correlations (r = 0.050 and r = 0.071; P < 0.05 in both cases) were observed in the 1.8 Km and 5.4 Km lag classes, and a negative correlation (r = -0.124; P < 0.01) was observed for the 12.6 Km lag class.

The PTE concentrations measured in the Bussento and Calore Salernitano in *H. nodiflorum* and *M. aquatica* in 2016 and 2017 are reported in Tables A.1, A.3, A.5, A.7, A.9 and A.11, and those in *F. antipyretica* and *Ch. gymnophylla* in 2017 are reported in Tables B.1, B.3, B.5 and B.7.

The multivariate spatial outlier maps, according to Filzmoser (2005), in relation to the macronutrient, micronutrient, and non-essential element concentrations in *H. nodiflorum* and *M. aquatica*, and in *Ch. gymnophylla* and *F. antipyretica* are shown in Figures 3.17 and 3.18,

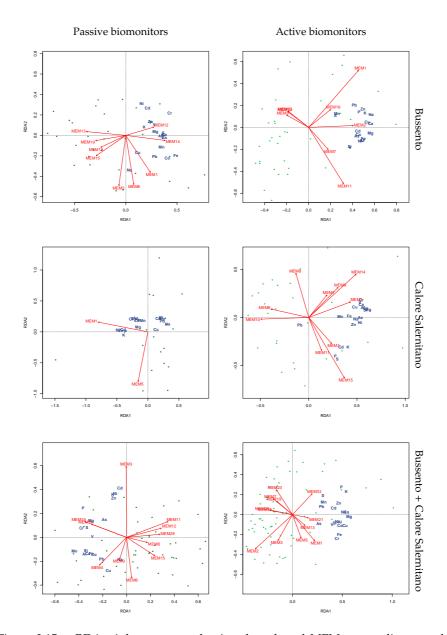


Figure 3.15: RDA triplots computed using the selected MEMs as predictors and the PTE concentrations in passive and active biomonitors in the Bussento, the Calore Salernitano, and the joint river systems as dependent variables. For the interpretation of MEMs, refer to Figures E.1 to E.6.

respectively. The analysis produced similar maps for micronutrients and non-essential elements, both in the case of passive biomonitoring data and in the case of active biomonitoring data, with the identification of common spatial outliers. In particular, 6 (B.11, B.21, B.23, B.24, C.03, C.09) common spatial outliers among micronutrients and non-essential elements were identified based on passive biomonitoring data and 12 (B.18, B.20, B.21, B.25, B.26, B.27, B.29, C.03, C.07, C.15, C.19, C.20) using active biomonitoring data. PTE concentrations in *H*. nodiflorum and M. aquatica identified 9 additional sites as spatial outliers for micronutrients: B.01, B.02, B.09, B.10, B.14, B.17, B.18, C.05, and C.12, and 2 additional sites for non-essential elements: C.06 and C.15. Based on PTE concentrations in Ch. gymnophylla and F. antipyretica, 3 (B.11, B.12, B.17), and 4 (B.14, B.19, C.06, C.13) outliers were unique to micronutrients and non-essential elements, respectively. Macronutrients in passive biomonitors identified sites B.05, B.06, B.09, B.14, B.16, B.17, B.24, B.25, C.03, and C.09, as spatial outliers, some of them identified also by the macronutrient concentrations in active biomonitors (B.11, B.14, B.17, B.18, B.19, B.20, B.21, B.25, B.26, B.27, B.28, B.29, C.03, C.07, and C.19). Overall, sites B.21, C.09 and, to a lesser extent, C.03, were the ones showing the largest deviations from the others in relation to micronutrients and non-essential elements, and also in relation to macronutrients in the case of active biomonitors. Ni, Cd, Fe, Co, As, P, S, and Ca were the elements with the largest contribution to the outlyingness definition based on PTE concentrations in H. nodiflorum and M. aquatica, whereas also Al, V, Pb, Zn, Si, Mg, and K contributed to identify outliers in the case of *Ch. gymnophylla* and *F. antipyretica*.

The total PTE concentrations in sediments and their concentrations in the exchangeable, bound to Fe-Mn oxides, bound to organic matter, and residual fractions are reported in Tables C.1, C.3, C.5, C.7 and C.9.

The singular value decomposition of the 3-mode compositional tensor, describing the pattern of PTE distribution within the exchangeable, bound to Fe-Mn oxides, bound to organic matter, and residual fractions, extracted 9 tensors individually explaining a percentage of the total variance > 1% and cumulatively the 88.07% of the total variance

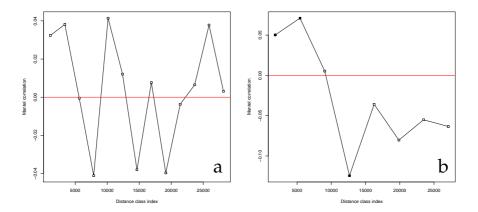


Figure 3.16: Mantel correlograms based on data from *H. nodiflorum* and *M. aquatica* (a), and from *F. antipyretica* and *Ch. gymnophylla*. Black squares indicate significant (for $\alpha = 0.05$) spatial correlations.

ance. The 1st tensor alone justified the 69.82% of the total variance, and the 2nd the 5.00%. The biplot obtained projecting the modes n. 2 (ilr-transformed relative abundances within the BCR fractions) and n. 3 (PTE abundances) onto the 1st and 2nd tensors produced the outline of Figure 3.19. The 1st axis points toward an increase in the residual fraction, whereas the 2nd toward an increase in the fraction bound to Fe-Mn oxides. Element distributions highlight 2 main gradients in relation to the tensors: the first beginning with Ca, showing the lowest abundance in the residual fraction together with Cd, and ending with Fe, showing the highest concentrations in the residual fraction, and the second beginning with K and S, with the lowest abundance in the fraction bound to Fe-Mn oxides, and ending with Mn, for which the fraction bound to Fe-Mn oxides dominated upon the others. The distribution of each element within the 4 BCR fractions in each site is reported as stacked bar plots in Figure 3.22.

The dendrogram computed from the loadings of mode n. 1 onto the 9 tensors selected by the PTA-3 algorithm (Figure 3.23), associating the sites in relation to the similarities in PTE distribution among the BCR fractions, differentiated the sites C.15, C.16, and C.17, located

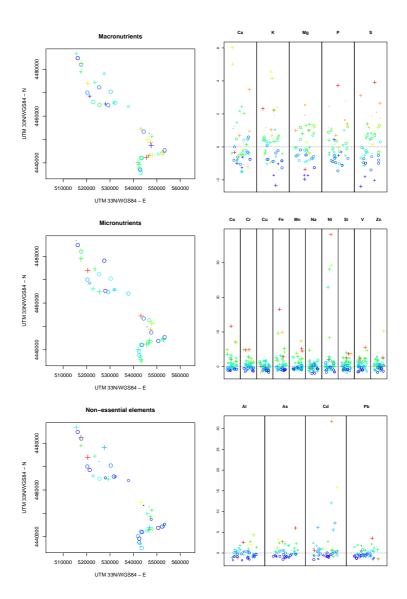


Figure 3.17: Multivariate spatial outlier plots (left) and break-down of each PTE contribution (right), based on PTE concentrations in roots of *H. nodiflorum* and *M. aquatica* in 2016 and 2017. PTE values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red: high values).

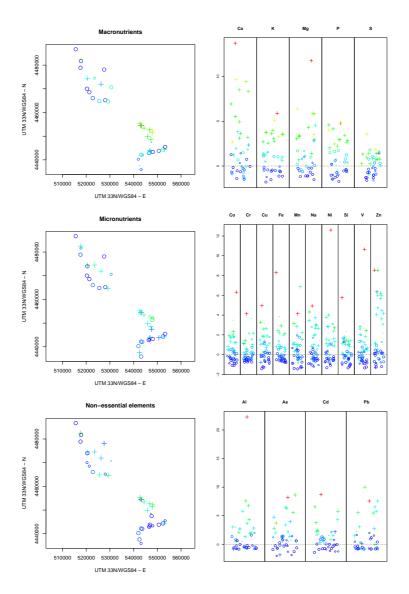


Figure 3.18: Multivariate spatial outlier plots (left) and break-down of each PTE contribution (right), based on PTE concentrations in roots of *F. antipyretica* and *Ch. gymnophylla* in 2016 and 2017. PTE values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red: high values).

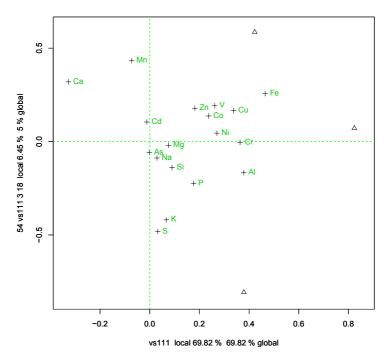


Figure 3.19: Biplot of the projections of modes n. 2 and n. 3 onto the 1st and 2nd tensors obtained through the PTA-3 algorithm on the 3-mode compositional tensor.

in the upper stretch of the Calore Salernitano, from the others. In addition, two other main clusters were highlighted, one comprising most of the sites on the Bussento-Bussentino river system, and another futher splitted into a cluster comprising sites B.02, B.16, and B.18, and a cluster comprising the rest of the sites on the Calore-Rio Pietra-Fasanella river system, respectively. Terminal leaves were in some cases associated based on their geographical distance, as in the case of the clusters B.16-B.17 and B.21-B.27.

The ternary diagram showing the composition in terms of quartz, calcite and dolomite of the sediments from the 18 sites on the Bussento and Calore Salernitano rivers is represented in Figure 3.24. Sites lies along a gradient of relative abundances of quartz and calcite, with percentages of dolomite lower than 20%. The only exception was site B.21, with $\sim 60\%$ of dolomite and similar contents of calcite and quartz.

The site lie on the boudary of the 3σ confidence interval, whereas all the others are enclosed within the 2σ limit.

The ilr-transformed percentages of quartz, dolomite, and calcite are significant (P < 0.001) in determining the site and element distributions in the RDA triplot using the total PTE concentrations in sediments as response variables, but fail to differentiate the two river systems (Figure 3.25). The sites belonging to the Bussento and the Calore Salernitano were, instead, clearly separated on the RDA triplot computed using the ilr-transformed variables as predictors and the loadings of the mode n. 1 compositional tensor upon the 9 selected tensors as response variables. Even in this case, the axes were significant (P < 0.001) in determining the distribution of sites and response variables within the RDA space (Figure 3.25).

The NMDS based on total PTE concentrations in sediments (Figure 3.26) differentiated the sites on the Calore Salernitano from those on the Bussento river, the former characterised by higher concentrations of P and As, and the latter characterised by higher concentrations of K. Moreover, each group was further differentiated into 2 main clusters. For the sites on the Calore Salernitano river, C.15, C.16, and C.17, were characterised by higher Cd, S, and Na concentrations, whereas C.01, C.03, C.06, C.09, and C.10, by higher Si, Cu, Al, Cr, Fe, Zn, Co, and Ni concentrations. For the sites on the Bussento river, B.21, B.22, and B.22, differentiated from the others in relation to their higher Mg, K and Ca concentrations, whereas the other sites were characterised by higher concentrations of the same elements characterising the cluster of sites C.01, C.03, C.06, C.09, and C.10. No clear association of sites B.21 and C.03 with high concentrations of Cd and Ni, highlighted by both passive and active biomonitors, was observed in relation to sediment total concentrations. The same holds true also for the NMDS based on each BCR fraction, shown in Figures 3.27 to 3.30. The NMDS biplots based on the PTEs bound to Fe-Mn oxides and organic matter fractions data (Figures 3.28 and 3.29) highlight a grouping structure similar to the one described for the NMDS based on total PTE concentrations, with sites C.01, C.03, C.06, C.09, and C.10 grouped together and a position

of site B.21 on the higher end of the Mg vector. Conversely, the NMDS based on PTEs bound to the exchangeable and the residual fractions data (Figures 3.27 and 3.30) did not show any clear differentiation of the sites, with the exception of site C.06 in relation to Fe exchangeable concentration. The stresspots relative to the NMDS based on the total PTE concentrations and on the PTE concentrations in each BCR fraction are reported in Figure 3.31, highlighting coefficients of determination relative to the linear regression between the distances on the NMDS spaces and the original distances always higher than 0.9, with the exception of the NMDS based on PTE concentrations in the exchangeable fraction ($r^2 = 0.773$).

PTE concentrations in water in the Bussento and Calore Salernitano rivers in 2016 and 2017 are reported in Tables D.1 and D.3, respectively, whereas ORP, dissolved O₂, electrical conductivity, pH, and concentration of anions, photosynthetic pigments, TC, IC, TOC, and TN are reported in Tables D.2 and D.4. The multivariate outlier maps relative to the macronutrient, micronutrient and anion concentrations in water in 2016 and 2017 are reported in Figures 3.32 and 3.33, respectively. The outlier maps relative to the non-essential elements in 2016 and 2017 were not produced due to their concentrations below the limits of detection (Al: 1 μ g L⁻¹, As: 2 μ g L⁻¹, Cd: 0.1 μ g L⁻¹, Pb: 1 μ g L⁻¹). With the exception of sites B.08 and B.11 in 2016 and sites C.03 and C.07 in 2017, all the spatial outliers (B.01, B.14, B.16, C.01, C.02. C.03, C.04, C.05, C.07, C.16, C.17, C.18 in 2016, and B.16, B.21, B.25, B.27, C.01, C.02. C.03, C.04, C.05, C.07, C.20, C.21 in 2017) identified based on anion concentrations were selected also based on macronutrient concentrations. In addition, the analysis on macronutrient concentrations selected also sites B.13, B.19, and C.10 in 2016, and sites B.13, B.15, B.24, B.28, and C.09. The number of outliers detected based on micronutrient concentrations was greater in 2016 than in 2017, with 8 sites selected on the Bussento river (B.01, B.04, B.13, B.14, B.16, B.17, B.19, B.20) and 7 on the Calore Salernitano river (C.01, C.02, C.03, C.06, C.16, C.17, C.18), whereas 6 sites were altogether identified in 2017 (B.16, B.21, B.25, B.27, B.28, B.29, C.15). The elements mostly contributing to the

outlyingness definition in 2016 were P, K, Fe, Mn, Zn and Na, together with chlorides and nitrates. In 2017, all the macronutrients and anions contributed to the definition of the spatial outliers, together with Cu, Cr, Co and Si. The multivariate outlier maps (Figure 3.34) based on photosynthetic pigments, TOC and TN indicated sites B.01, B.02, B.03, B.04, B.05, B.16, B.17, C.01, C.04, C.05, C.09, C.13, and C.16 as outliers in 2016, and sites B.04, B.06, B.10, B.12, B.14, B.15, B.16, B.21, B.25, C.01, C.03, C.05, C.11, C.12, C.14, C.19, and C.20 in 2017. Chlorophylls and total carotenoids contributed mostly to the outlyingness definition both in 2016 and 2017, with a contribution of TN in 2017.

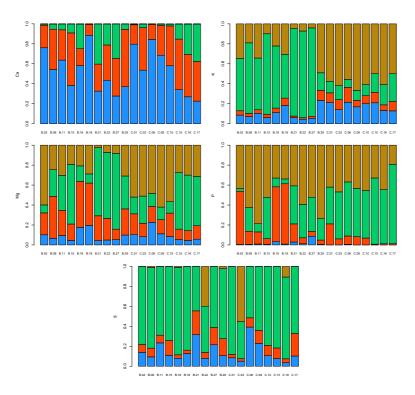


Figure 3.20: Stacked barplots of the macronutrient (Ca, K, Mg, P, S) concentration distribution in the 4 BCR fractions: exchangeable (\blacksquare), bound to Fe-Mn oxides (\blacksquare), bound to organic matter (\blacksquare), residual (\blacksquare).

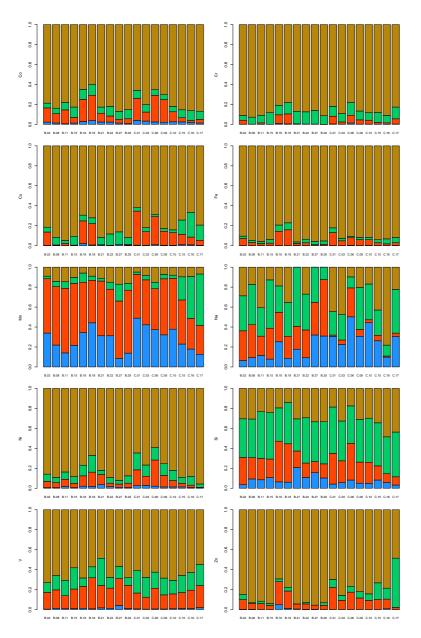


Figure 3.21: Stacked barplots of the micronutrient (Co, Cr, Cu, Fe, Mn, Na, Ni, Si, V, Zn) concentration distribution in the 4 BCR fractions: exchangeable (), bound to Fe-Mn oxides (), bound to organic matter (), residual ().

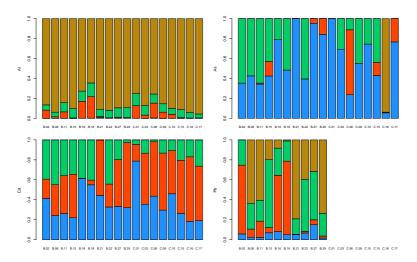


Figure 3.22: Stacked barplots of the non-essential element (Al, As, Cd, Pb) concentration distribution in the 4 BCR fractions: exchangeable (), bound to Fe-Mn oxides (), bound to organic matter (), residual ().

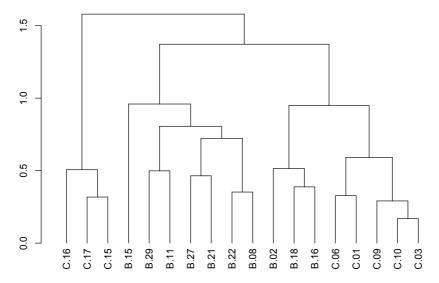


Figure 3.23: Dendrogram based on the Euclidean distance matrix of the projections of mode n. 1 onto the 9 tensors explaining more than 1% of the total variance in the 3-mode compositional tensor.

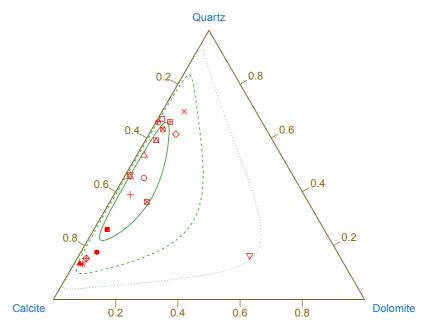


Figure 3.24: Ternary diagram showing the estimated relative abundance of quartz, calcite and dolomite in the sediments of the 18 sites on the Bussento and Calore Salernitano rivers: B.02 (\square), B.08 (\bigcirc), B.11 (\triangle), B.15 ($^+$), B.16 (\times), B.18 (\Diamond), B.21 (∇), B.22 (\boxtimes), B.27 (\boxtimes), B.29 (\bigoplus), C.01 (\bigoplus), C.03 (\boxtimes), C.06 (\bigoplus), C.09 (\boxtimes), C.10 (\boxtimes), C.15 (\blacksquare), C.16 (\blacksquare), C.17 (\blacktriangle). Confidence ellipses for 1 σ (\longrightarrow), 2 σ (- - -), and 3 σ (\cdots) are also shown.

Results River quality

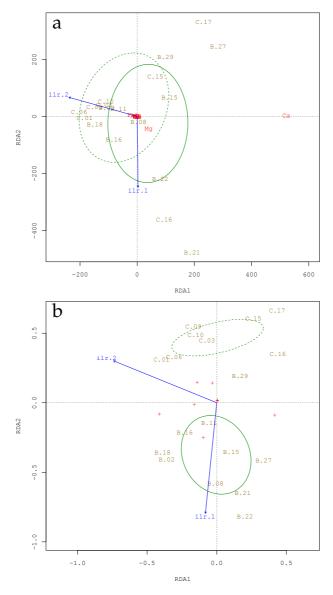


Figure 3.25: RDA triplots computed using the ilr-transformed percentages of quartz, calcite, and dolomite as predictors and the total PTEconcentrations (a) and the loadings of the mode n. 1 compositional tensor upon the 9 selected tensors as response variables (b). Confidence ellipses (for $\alpha = 0.05$) relative to the Bussento (—) and the Calore Salernitano (- - -) rivers are also shown.

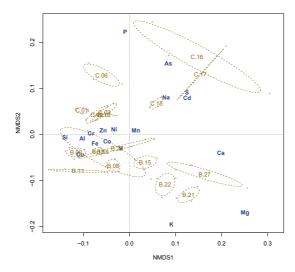


Figure 3.26: NMDS biplot relative to the total PTE concentrations in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha = 0.05$) relative to each sites are also shown.

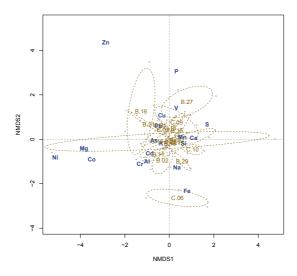


Figure 3.27: NMDS biplot relative to the PTE concentrations in the exchangeable fraction in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha=0.05$) relative to each sites are also shown.

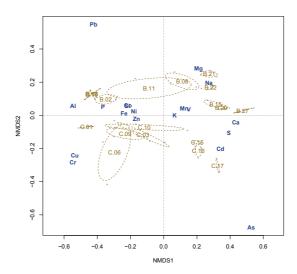


Figure 3.28: NMDS biplot relative to the PTE concentrations bound to Fe-Mn oxides in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha=0.05$) relative to each sites are also shown.

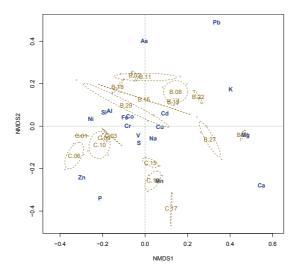


Figure 3.29: NMDS biplot relative to the PTE concentrations bound to the organic matter in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha=0.05$) relative to each sites are also shown.

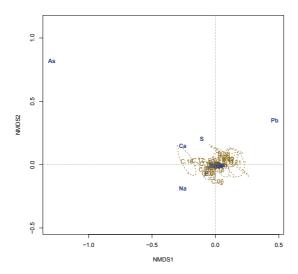


Figure 3.30: NMDS biplot relative to the PTE concentrations in the residual fraction in sediments of the 18 sites on the Bussento and the Calore Salernitano rivers. Confidence ellipses (for $\alpha=0.05$) relative to each sites are also shown.

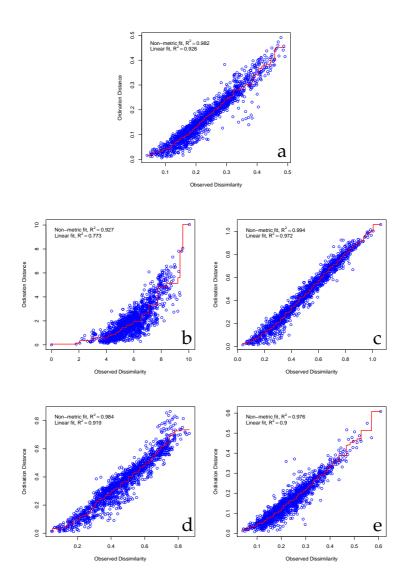


Figure 3.31: Stressplots relative to the NMDSs based on the total PTE concentrations (a) and on the PTE concentrations in the exchangeable (b), bound to Fe-Mn oxides (c), bound to organic matter (d), and residual (e) fractions. The coefficient of determination relative to the linear and non-linear regressions between the distances in the NMDS spaces and the original distances are also reported.

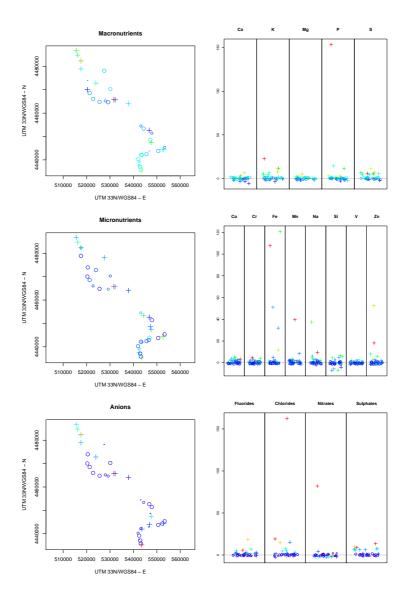


Figure 3.32: Multivariate spatial outlier plots (left) and break-down of the contribution of each variable (right), based on macronutrient, micronutrient, and anion concentrations in water in 2016. Values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red: high values).

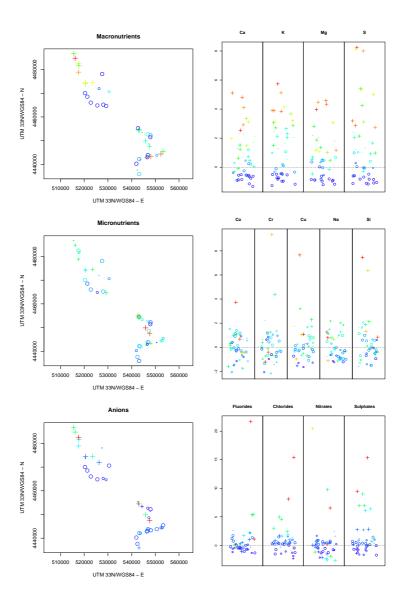


Figure 3.33: Multivariate spatial outlier plots (left) and break-down of the contribution of each variable (right), based on macronutrient, micronutrient, and anion concentrations in water in 2017. Values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red: high values).

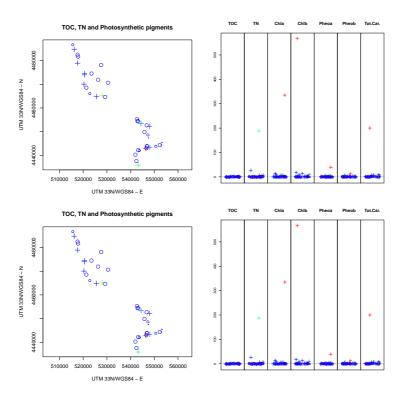


Figure 3.34: Multivariate spatial outlier plots (left) and break-down of the contribution of each variable (right), based on TOC, TN and photosynthetic pigments in water in 2016 (upper panels) and 2017 (lower panels). Values on the right are centered and scaled according to the MCD estimates. Crosses represent spatial outliers, colored according to their position with respect to the multivariate data distribution (blue: low values, red: high values).

Chapter 4

Discussion

The project engaged in the concept of integrated monitoring in its broadest definition, involving multiple and deeply interwined activities, which allowed to fulfill its three main goals and point out where future efforts should be directed.

Accurate spatial gradients of PTE concentrations were highlighted through the joint use of ensembles of both passive and active biomonitors, in turn allowed by the validation of the novel biomonitors and the evaluation of local biodiversity. In this context, the Charophyte flora of the "Cilento, Vallo di Diano e Alburni" National Park is characterised by an exceptional biodiversity, completely overlooked to date. Indeed, of all the species observed in the area, 3 were never recorded at the regional level according to the most recent and authoritative revision of the Italian flora (Bazzichelli and Abdelahad, 2009), and Ch. vulgaris var. papillata was never observed even at the national level (Bazzichelli and Abdelahad, 2009; Guiry and Guiry, 2018). All the species represent thus novel additions to the Charophyte flora of either Campania or Italy. Albeit the current taxonomic position of *Ch. vulgaris* var. papillata poses it as a variety of a subcosmopolitan and widespread species, Ch. vulgaris, its recording is of paramount importance considering the limited known distribution of the taxon (Guiry and Guiry, 2018) and the uncertainties in Charophyte taxonomy. Indeed, the entire group is currently under intensive taxonomical revisions, thanks to novel molecular data, which are changing the taxonomical ranking of numerous entities and shedding light on their morphological plasticity (Schneider et al., 2015; Nowak et al., 2016; Schneider et al., 2016; Urbaniak and Sakayama, 2017). Recent advances point toward an alleged lower number of species, as compared to morphometric taxonomies, but with extreme plasticity in their morphological traits. The variations result from the interaction of genetic and environmental determinants, possibly through the involvement of epigenetic alterations (Nowak et al., 2018; Puche et al., 2018), and the efforts of several groups are rapidly converging to clarify these topics (Beilby et al., 2018).

Our data also highlighted extreme plasticity in population traits, although the relative contribution of specific and environmental determinants varied in relation to the kind of traits. Of the 17 populations observed during the three years of the research, we were able to collect information on the morphology, photosynthetic pigments, and carbonate encrustation of 12, due to the disappearence of some populations during the sampling. On the positive side, 4 of the missing populations belonged to Ch. gymnophylla or Ch. vulgaris, already accounting for 70% of the studied populations. On the negative side, the unique population of Ch. vulgaris var. papillata was lost. Focused explorations are thus needed to ascertain wether the taxon got extincted in the area or still survives with other populations. Morphological, biochemical (photosynthetic pigment concentrations), and ecological (carbonate encrustation, epiphyte diatom biomass) traits lie on a gradient of increasing environmental contribution and decreasing species-specificity. Indeed, the differentiation between Ch. gymnophylla and Ch. vulgaris, based on their morphology, disappears in relation to their photosynthetic pigment concentrations and carbonate encrustation, and all the species became indistinguishable when considering the epiphyte diatom load on the surface of thalli. Ecological traits, in particular, can be deeply modified by the environment and may exhibit wide temporal fluctuations, although species-specific traits can play an inportant role in the carbonate deposition process (Herbst et al., 2018a,b) and may favour or hinder the colonization of thalli by epibionts (Sviben et al., 2018).

The differentiation between *Ch. gymnophylla* and *Ch. vulgaris* assumes particular importance in the context of the systematic position of the species which, due to the presence of populations with intermediate traits, were long considered to belong to the same taxon. Our analysis shows, instead, that the species can be clearly distinguished based on the presence of reproductive structures on the radii corticate cells, on the corticate cell number and on the size of internodes.

The possibility to unambiguously identify *Ch. gymnophylla* and *Ch. vulgaris* has pivotal consequences for their use in freshwater biomonitoring, allowing the accurate definition of the source material, especially in the case of sympatric populations. Indeed, our analysis allowed to definitely attribute the source population for bag preparation to *Ch. gymnophylla* and to ascertain its distribution in the Bussento and Calore Salernitano rivers, preliminary steps to its validation as a novel active biomonitor.

Usually, the validation of novel bioaccumulators is carried out by studying the kinetics of pollutant accumulation in controlled conditions (see for example Díaz et al., 2012). This approach is invaluable in providing key parameters like pollutant accumulation rate, saturation time and range of linearity in biomonitor responses. However, field conditions rarely match the experimental settings employed in mesocosm studies, making the direct translation of these parameters to field applications questionable. Indeed, the complex network of interactions with the abiotic and biotic environment experienced by biomonitors in the field shapes their responses, which cannot be predicted by simple kinetics. The actual validation of novel biomonitors mandate thus the study of their field behaviour in relation to pollution gradients, that, although conceptually simple, requires independent information on stationary spatial gradients of pollutants in bioavailable form. As specified in the Introduction section, chemical analyses of water and sediments can rarely provide such information, and the validation of novel biomonitors often relies on comparing the obtained gradients with the distribution of known pollution sources. Examples of this approach are in Lafabrie et al. (2007), Baldantoni and Alfani (2016), and De Nicola et al. (2017). Recently, the introduction of chemical matrices mimicking the behaviour of bioaccumulators, like Diffusive Gradients in Thin films (DGTs), but with a lower sensitivity to environmental variations, provided researchers with a seemingly reliable reference for the validation of biomonitors in situ (Jordan et al., 2008; Waltham et al., 2011; Philipps et al., 2018a). DGTs, however, are not a perfect reference, representing a model system with substantially different sensitivity to environmental factors and to the analytes accumulated in respect to biomonitors (Peters et al., 2003; Philipps et al., 2018a,b), and sometimes DGT and biomonitor were employed in conjunction to improve accuracy of environmental monitoring rather than to validate biomonitors (Stark et al., 2006; Diviš et al., 2012). Moreover, in some cases the situation was even reversed, with the responses of DGTs validated against known bioaccumulators, like F. antipyretica (Ferreira et al., 2013).

The use of established biomonitors, validated by means of multiple techniques in multiple occasions, as improved references over DGTs and similar chemical matrices is a straightforward consequence of these considerations, provided they have similar behaviour toward pollutant accumulation in respect to the novel biomonitors. Obviously, the main limitation of the this approach lies on the requirement of concomitant occurrence of both biomonitors in several locations along spatial gradients of environmental pollution, a constraint of limited relevance in active biomonitoring, though. This approach was adopted in the present research to validate *Ch. gymnophylla* and *M. aquatica* as novel active and passive biomonitors, respectively. The effectiveness in biomonitoring studies of the references chosen, *F. antipyretica* and *H.* nodiflorum, was repeatedly assessed in both controlled and field conditions. H. nodiflorum was shown by Vlyssides et al. (2005) to exhibit Michaelis-Menten kinetics in the accumulation of several metals, notably Cd, Cr, Cu, Pb, Mn, Ni, Hg, As, Zn, and Sn. Its definite field validation as an exemplary biomonitor for Mediterranean river, however, was carried out by Baldantoni and Alfani (2016), who demonstrated how the roots of this species were able to provide spatial gradients fitting the distribution of known pollution sources, and averaged over the responses of 6 others candidate biomonitors. *F. antipyretica* currently represents the *de facto* standard in river "bryomonitoring" of PTEs, radionuclides, and organic pollutants (Augusto et al., 2011; Favas and Pratas, 2013; Gecheva and Yurukova, 2014; Debén et al., 2018). Its effectiveness has been recognised since 1981 (Ledl et al., 1981), but it is only in recent years that river biomonitoring using mosses bacame an established technique and the number of studies employing *F. antipyretica* has increased (Debén García et al., 2017). As in the case of *H. nodiflorum*, also for this species Michaelis–Menten kinetics in PTE accumulation were described, although the actual kinetics may vary in relation to exposure time and pollutant concentrations (Díaz et al., 2012).

The uniform responses between the couples of passive biomonitors and active biomonitors are remarkable, extending beyond similarities in gradients to involve also absolute concentrations in the case of *M*. aquatica and H. nodiflorum. Revealing in this context is the wide overlap of the confidence ellipses for the two species in 2016 and 2017 in the NMDS space, even in the case of raw data, where the unique group differentiating from the others was the one relative to *H. nodiflorum* in 2017. As expected in relation to the stationary nature of the gradients obtained through biomonitoring (Baldantoni and Alfani, 2016), M. aquatica provided the same PTE concentration patterns in both the years, substantially overlapping with those of *H. nodiflorum* in 2016. The differentiation between *H. nodiflorum* in 2017 and the others, however, disappeared when scaling the data, suggesting the presence of some sites where only *H. nodiflorum* was collected and showed unusually high PTE concentrations. A possible site showing these characteristics was B.21, one of the springs of the Bussento in the Sanza district, exhibiting exceedingly high PTE concentrations in biomonitors in both the years, but where *M. aquatica* did not occur in 2017. The hypothesis is further supported by the increase in the Mantel correlation through data scaling, indicating that the presence of unusual PTE concentration values in a single set of data was responsible for the differences between the biomonitors, rather than PTE bioaccumulation patterns. Accordingly, data scaling did not substantially affect the Mantel correlation between Ch. gymnophylla and F. antipyretica, although wide differences in absolute PTE concentrations were highlighted by the NMDS based on the row data. In particular, the two species showed different selectivities toward PTEs, with F. antipyretica accumulating higher concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, and V, and Ch. gymnophylla accumulating higher concentrations of As, Ca, K, Mg, Na, Pb, S, and Zn. Irrespective of these variations, attributable to morphophysiological differences between the two species (Naser et al., 2011; De Nicola et al., 2013), however, the patterns of PTEs were largely in agreement, as denomstrated by the high Mantel correlations and the wide overlap between their relative confidence ellipses following data scaling. In this context, it is worth considering the conservativeoriented choices in the techniques employed in data analysis. On the exploratory side, the NMDS with the superimposition of confidence ellipses does not donsider a priori subdivisions of observations into several groups, as in CVA, but rather tries to preserve the original distances while shrinking the multivariate space onto a predefined set of axes (Podani, 2005; Podani and Morrison, 2017). As a result, positions in NMDS space represent only the relative distances among observations: if groups differ in absolute concentrations or PTE accumulation patterns, their differences are projected onto the NMDS space, allowing an a posteriori group differentiation, the opposite happening for the similarities. On the inferential side, the Mantel correlation test is known to have significantly lower power in detecting significant correlations as compared to univariate techniques like the Pearson's or the Spearman's correlation tests (Legendre and Legendre, 2012). The values obtained for the correlations between the pairs of active and passive biomonitors represent thus exceptional agreements between the *patterns of distances* in the original matrices.

Providing spatial concentration patterns of PTE concentrations

comparable to some of the best biomonitors in their classes, both *M. aquatica* and *Ch. gymnophylla* can be considered valuable passive and active bioaccumulators, respectively, for Mediterranean river biomonitoring. Moreover, on the practical side, both the species have some advantages over their references. On the one hand, *M. aquatica* showed to be more widespread than *H. nodiflorum*, at least in the Bussento-Bussentino and the Calore Salernitano-Rio Pietra-Fasanella river systems, allowing a wider spatial covering of passive biomonitoring. On the other hand, *Ch. gymnophylla*, as most Charophytes, exhibit high grow rates and biomass production (Laffont-Schwob et al., 2015), can be easily cultivated (Nowak et al., 2018), allowing virtually uncontaminated source material, and can be dried and pulverised with more ease than *F. antipyretica* (no need of liquid nitrogen freezing), simplifying laboratory operations.

In the context of river monitoring, the coherent behaviour of both the passive and active biomonitors ensured the accurate derivation of spatial PTE concentration gradients. Overall, most of the variations in PTE concentrations appear at local or medium scale, with seemingly no large-scale gradients. All of the MEMs extracted, in fact, represent local and medium spatial scales, even the lower order ones, usually describing large spatial scales (Dray et al., 2006; Bauman et al., 2018). The most important MEMs extracted in relation to the patterns of PTE concentrations in active biomonitors, however, tend to represent variations at scales larger than in those extracted using passive biomonitoring data, especially in the case of the Bussento river. The Mantel correlograms further support this scenario, indicating that local alterations do not propagate in space, except for small distances when considering PTE concentrations in *F. antipyretica* and *Ch. gymnophylla*. Indeed, a slight positive autocorrelation at the lower distance classes was observed in PTE concentrations in active biomonitors only, rapidly falling to negative values and then to null autocorrelations. This occurrence is usually related to the presence of strong local determinants of the observed patterns (Borcard et al., 2011), indicating that PTE concentration patterns tend to be similar within small spatial ranges, and quickly vary with increasing distances.

As expected based on the similar spatial scales represented by MEMs, all the PTEs exhibit similar behaviour in respect to the MEMs in the RDAs, indicating common local sources of variations for all of them. Notable exceptions, however, are the associations among Cd, K, Ni and Zn, and among Al, As, Ca, Co, Fe, Mn, Pb, and Si, especially evident in the RDAs based on PTE concentrations in H. nodiflorum and M. aquatica. In this context, the comparison of the spatial outlier maps and the raw data indicate the presence of localized hot-spots of PTE concentrations in biomonitor roots in several sites along the course of the Bussento and the Calore Salernitano rivers, notably B.11, B.17, B.18, B.21, B.25, B.26, C.03, and C.09. Among them, the sites B.17, B.18 and B.26, located on the upper course of the Bussento river, B.25, on the Ciciriello river, a tributary of the Bussento, and C.09, on the middle course of the Calore Salernitano river, are especially associated to high concentrations of Al, As, Ca, Co, Fe, Mn, Pb, and Si. Conversely, the sites where the highest concentrations of Cd, K, Ni, Zn, and sometimes Cr, are invariably springs: B.21, in the upper course of the Bussento river, B.11, in the Morigerati district, where the Bussento emerges after its hypogeous course (Bovolin et al., 2017), and C.03, on the Calore Salernitano in the Castelcivita district, where water from most of the Alburni karst system emerges (Ducci et al., 2008). Conversely, the patchiness in hot-spot spatial distribution appears lower when considering the PTE concentration gradients derived from active biomonitoring. In this case, in fact, most of the sites on the upper course of the Bussento river were identified as spatial outliers, either in relation to macronutrient, micronutrient or non-essential element concentrations, along with localized hot-spots like C.03, C.09, C.15, C19, and C.20.

The absolute concentrations reached by several micronutrients and non-essential elements in biomonitors, especially the roots of *H. nodi-florum*, raise concerns when compared to reference concentrations, or concentrations derived from other studies employing the same species. Indeed, values up to two order of magnitude higher in respect to the

Standard Reference Plant (Markert et al., 2015) were recorded for some PTEs, notably Al, Fe, Ni and V, and up to one order of magnitude higher for several others, like As, Cd, Co, Cr, and Mn. Mn and Ni, in addition, reached in H. nodiflorum roots in sites B.17 and B.21 values more than $1 \cdot 10^3$ times higher in respect to the concentrations measured in the roots of the same species by Bonanno et al. (2017) and Bonanno and Vymazal (2017) in four areas affected by different levels of anthropogenic impacts. It is, however, the comparison of Ni concentrations in *H. nodiflorum* with those measured in the spring area of the Sarno river that raises the major concerns about river quality in several sites of the Bussento and Calore Salernitano rivers. Indeed, values up to $\sim 40~\mu g \cdot g^{-1}$ were recorded in the spring area of the Sarno river (Baldantoni et al., 2018), whereas in C.03, and especially B.21 springs, values up to $\sim 250 \ \mu \text{g} \cdot \text{g}^{-1}$ and $\sim 450 \ \mu \text{g} \cdot \text{g}^{-1}$, respectively, were observed. The same considerations apply in the case of Cd, where concentrations up to $\sim 20~\mu g \cdot g^{-1}$ and $\sim 14~\mu g \cdot g^{-1}$ in C.03 and B.21, respectively, were observed, against an average concentration of 2.4 μ g·g⁻¹ in the spring area of the Sarno river (Baldantoni et al., 2018). F. antipyretica, although similarly highlighting B.21 as the most critical site, exhibits concentrations lower or in the same order of magnitude than those reported for the same species (Samecka-Cymerman et al., 2005; Samecka-Cymerman and Kempers, 1999) transplanted in sites downstream sewage sludge sources or growing on basaltic substrates.

The constant association of the highest PTE concentrations with springs is remarkable, and may be attributed either to groundwater contamination from anthropogenic activities or the crossing of PTE-enriched lithological layers, or to changes in PTE bioavailabilities. Sediment analysis, however, did not reveal neither the presence of peculiar mineralogical structures, apart from a relatively high abundance of dolomite in B.21, or higher total PTE concentrations, nor variations in the bioavailability of Ni, Cd, Cr, or V associated to the sites where bioaccumulators highlighted the highest concentrations. Indeed, PTE concentrations in the exchangeable fraction were relatively uniform across all the studied sites, with the exception of site C.06, in the upper

course of the Fasanella river, characterised by higher Fe exchangeable concentrations, that did not reflect into higher concentrations in biomonitors, though. Although wider differences among sites were related to the PTE concentrations bound to Fe-Mn oxides and organic matter, neither the associations among PTEs observed in biomonitors nor the associations of sites based on the highlighted criticalities were observed in the NMDS spaces obtained from these data. Explanatory in this context is the clustering of sites based on their overall pattern of PTE bioavailabilities, grouping sites mostly in relation to their geographical proximity rather than to the criticalities detected through the biomonitoring.

The hypothesis of groundwater contamination assumes thus particular relevance, especially in relation to the known vulnerabilities of some of the studied areas. This is especially true for the site C.03, for which detailed studies are available (Ducci et al., 2008), coding this area as one at "high risk of groundwater contamination", and site B.21, characterised by a superficial basal plate with water circulation through debris (D. Guida, personal comuication).

A simple model of continuous emissions from the springs to the rivers, however, does not account for the PTE concentrations in water below the limits of detection for several micronutrients and nonessential elements. Moreover, it cannot explain the differences in the spatial scales of variation in the gradients obtained through passive and active biomonitoring. Indeed, the MEM spatial analysis, the Mantel correlograms, and the spatial outlier maps, provide a coherent scenario of the spatial scales relevant to H. nodiflorum and M. aquatica, and to F. antipyretica and Ch. gymnophylla, with the former reacting to conditions widely and rapidly changing in space, and the latter highlighting more gradual spatial changes. These differences may be attributable to the double interaction with sediments and water in the case of the rooted passive biomonitors, as compared to the unique interaction with water of the active biomonitors. Indeed, the interaction with sediments, intrinsically more variable in space, may be advocated to explain the finer spatial scales of vatiation in PTE concentrations highlighted by *H. nodiflorum* and *M. aquatica*. However, sediment analysis demonstrated a degree of spatial uniformity in bioavailable concentrations incompatible with the gradients obtained through passive biomonitoring. Albeit a role of sediments as modifiers of the uptake behaviour of *H. nodiflorum* and *M. aquatica* cannot be definitely excluded, major determinants for the observed gradients should be searched in water.

A refinement of the groundwater contamination model, accounting for erratic emission pulses, may solve this multi-faceted problem in its entirety. Indeed, pollution peak events got easily missed by water chemical monitoring, explaining the low PTE concentrations observed in water samples, but are integrated by biomonitors. The exposure time, however, shapes the obtained gradients, since the longer the exposure, the higher the likelihood of peak picking, and the deeper the differences between the source areas and their neighbourhood. A process similar to image staking in enhancing the signal from weak areas (Morozov and Dueker, 2003). Therefore, the longer exposure of H. nodiflorum and M. aquatica (6-7 months), in respect to F. antipyretica and Ch. gymnophylla (21 days) is possibly the key in explaining the differences in the spatial gradients they produced. This hypothesis is further supported by the season covered by passive biomonitoring, characterised by heavy rain events. Indeed, it is known that the hydrology of several groundwater systems in the area, notably C.03, behave according to a "piston-flow" model (Celico, 1994; Bovolin et al., 2015, 2017). The groundwater laminar flows and the presence of deposition ponds allow these systems to accumulate dissolved and suspended matter in the underground system, released in occasion of rain events increasing the pressure in the hydrological system (Ravbar et al., 2011; Ford and William, 2013). The outcomes are sudden and short-living emission pulses of ions and particulate matter (Ravbar et al., 2011; Bovolin et al., 2017), almost impossible to detect with water chemical monitoring, but easily recorded by biomonitors.

Water analyses, however, allowed to highlight kinds of criticalities undetectable using *H. nodiflorum* and *M. aquatica* or *F. antipyretica* and

Ch. gymnophylla. In particular, spatial outliers related to the presence of high anion concentrations (especially Cl^- , NO_3^- , and SO_4^{2-}), associated to high concentrations of macronutrients, were identified in the sites B.16, the at the mouth of the "La Rupe" ponor on the upper course of the Bussento river, C.16, in the Valle dell'Angelo district, on the upper course of the Calore Salernitano river, and in all the sites on the lower course of the Calore Salernitano river. The proximity of wastewater treatment plants and the absence of other known sources of organic matter and nutrients in soluble forms, allow the attribution of the outliers in the upper course of both the Bussento and the Calore Salernitano rivers to the presence of wastewater discharges within the rivers. This hypothesis, is further supported by the observation, during the 2016 sampling campaign, of floating sewage sludges in site C.16. Conversely, the diffuse high anion concentrations in the lower course of the Calore Salernitano, associated to the presence of high concentrations of photosynthetic pigments, indicating eutrophic conditions, match the distribution of intensive agricultural sistems settled along the river course. Soil leaching of soluble nutrients like, SO_4^{2-} , may thus explain the distribution of these analytes in river water.

Overall, three main criticalities were thus highlighted in the Bussento-Bussentino and Calore Salernitano-Rio Pietra-Fasanella river systems: i) the presence of springs occasionally emitting water with high PTE concentrations, ii) the presence of wastewater discharges and iii) the presence of nutrient leaching from agricultural soils. With the exception of the latter, the criticalities appear to be localized to few sites on both the river systems, an occurrence involving also the presence of high Al, As, Co, Fe, and Mn concentrations in a few sites, which are likely related to the presence of metallic structures or wastes in the riverbed.

The approach embraced for the research, joining chemical, physical, botanical, zoological, geological, cartographical and statistical skills, represents a true ecological strategy to the study of complex ecosystems, and an example of how multiple activities can be coupled to obtain a comprehensive view of freshwater ecosystem integrity. De-

spite the enormous efforts required, it is the unique approach capable of dealing with the complexity of ecological systems, and what it is advocated for to cope with the current global and local scale crises of the Anthropocene.

Contributions

The implementation of this research was allowed by the financial support of the "Cilento, Vallo di Diano e Alburni" National Park and the Ecology group of University of Salerno, which funded the three-years Ph.D. fellowship. The whole project was coordinated, on the Park side, by Dr. Laura De Riso, and on the University side by Prof. Daniela Baldantoni and Anna Alfani, Supervisor and Co-Supervisor of this Ph.D. thesis, respectively. A fruitful exchange of opinions with Prof. Domenico Guida and Dr. Maurizio Carotenuto (Co-Supervisors at University of Salerno), Prof. Gianluca Sarà (Co-Supervisors at University of Palermo) and Prof. Antonio Proto (Co-Examiner at University of Salerno) elevated the results of this research.

Appendix A

PTE concentrations in passive biomonitors

Table A.1: PTE concentrations (mean) in *H. nodiflorum* from the Bussento and Calore Salernitano rivers in 2016. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

					B.17 6873.3													
0.408	0.135	1.426	0.514	0.849	0.444	0.287	0.068	0.206	0.232	0.458	0.217	0.224	0.165	0.115	0.213	0.269	0.323	1 10
4549	8780	4742	6499	16340	9858	7517	4025	6722	6722	7727	5274	5439.5	5123	3996.5	5658	6332	6735	(2
11.817	3.784	20.265	10.687	1.454	0.838	0.946	0.534	1.554	1.82	1.109	1.208	1.311	1.255	1.01	1.024	0.972	0.903	9
0.79	0.77	2.302	2.419	17.93	7.865	4.79	0.414	1.228	3.475	2.343	2.032	2.086	3.242	1.661	3.006	3.239	2.193	6
3.027	3.657	8.055	21.553	8.143	6.879	5.51	1.107	5.13	6.757	7.983	5.451	4.619	2.464	2.233	5.4	4.702	6.369	٤
10.367	4.849	7.472	13.502	17.23	16.91	24.63	11.325	6.629	8.515	21.952	16.959	27.673	20.931	39.396	27.705	26.748	29.695	2
659.72	539.9	2400	2158.9	23780	9521.9	3788	263.74	1027	1731.2	1508.1	1636	1870.3	2738.3	862.1	2670	2318.9	2880	
13610	23789	45827	20007	14377.2	18619.1	18016	5385	15465	32709	28419	17348.5	15623	18720.9	22022	15450	13260	16686	;
5380.1	6966	4893	>8000	>8000	6873.9	5570	>8000	5709.9	>8000	4936	6149.2	>8000	7617.2	>8000	6438.3	5725.27	7024	9.1.1
49.136	200.8	334	1841.5	1839.3	1626.3	1038	34.369	162.91	1266.25	940.02	553.3	398.41	471.16	171.236	518.98	865.7	191.05	17111
20211.3	11463	7296.4	9604	12575	15318.2	16926	11522	6258.6	9832.2	12760	13374	11882	13334.5	12423	13476.7	13645	14675.9	1 40
10.693	4.127	246.91	448.75	10.079	7.272	7.05	8.78	91.267	74.617	32.145	24.197	10.688	11.108	8.775	11.396	9.974	8.384	1
1517.75	1620.8	2174.35	2266.9	1322.1	1711	1768	1056.3	2589.6	2350.2	3354.94	1861.7	1550.7	1034.81	1813.37	1405.31	1252.1	1404.15	-
0.569	1.101	0.803	1.073	2.136	2.213	1.344	1.319	0.902	0.911	1.87	0.878	0.879	0.457	0.416	0.745	0.814	0.513	1.0
2484.65	2336	2848	3468.6	3172	4000.5	2965	2106.8	3412.3	2881	6545.5	3001.1	2943.3	2511.7	2714.5	3137.5	3218	2582.3	
9135	12500	14780	17597.5	22430	35938	17092	5611.1	17513	11817	45817	20687	18259	9211	5495.9	20439	26962.06	24850	٤
																	53.33	
54.095	20.45	296.6	126.176	62.74	43.287	130.14	85.5	61.42	63.87	148.19	55.541	69.15	57.251	82.9	56.1	51.63	57.16	

Table A.2: PTE concentrations (s.e.m.) in H. nodiflorum from the Bussento and Calore Salernitano rivers in 2016. Units are in $\mu g g^{-1} d.w.$, unless otherwise specified.

	ı Cd	ဝိ	Ç	Cu	Ъе	×	Mg	Mn	Na	ï	Ь	Pb	S	$S_{\mathbf{i}}$	>	Zn
10	0.013	3 0.068	0.122	0.069	107	57.9	107	1.59	31.1	0.109	69.9	0.032	20.3	1380	1.02	1.38
īδ	0.04	.1 0.003	0.158	0.451	48.0	219	9.92	33.1	175	0.112	27.3	0.063	47.5	4.80	0.828	1.74
484	0.02	3 0.078	0.027	0.248	227	195	71.9	8.39	73.2	0.153	5.90	0.022	29.0	549	0.668	1.20
$\overline{}$	0.01	5 0.022	0.034	0.128	11.6	141	,	0.525	159	0.062	5.86	0.141	28.5	80.8	0.139	0.335
'n	0.018	8 0.050	0.109	0.193	9.99	24.3	55.7	66.9	63.1	0.163	5.35	0.000	14.5	267	0.502	0.630
0.	0.02	860.0 98	0.109	0.499	57.1	175	,	8.74	112	0.135	24.3	0.036	55.1	728	0.872	2.10
œ	0.02		0.352	0.289	158	91.9	21.4	13.3	70.9	0.201	15.4	0.085	69.7	826	0.872	0.895
∞			0.170	0.175	28.7	341	50.9	2.93	247	0.278	5.58	0.102	71.0	439	0.490	3.60
			0.206	0.062	9.08	120	•	5.07	63.3	0.239	14.8	0.106	72.2	135	2.94	1.30
5		_	0.085	0.026	10.4	219	37.6	1.45	75.8	0.479	11.4	0.134	52.6	446	0.315	2.08
∞	0.022	2 0.003	0.096	0.276	2.41	240	•	0.787	258	1.37	18.1	0.601	63.0	25.7	0.755	3.26
			0.02	0.04	6	2	3	3	9	0.01	∞	0.002	3	5	0.01	0.02
4.		_	0.035	0.192	91.1	43.4	43.8	2.89	70.8	0.265	11.4	0.088	14.8	222	0.483	0.615
3	_		0.356	0.493	1430	9.89	•	97.0	136	0.281	15.0	0.092	22.7	1040	1.62	1.04
2			0.462	0.095	59.0	300	•	14.4	123	2.23	12.6	0.046	39.7	28.2	0.952	0.303
6.74		3 0.711	0.172	0.372	1230	259	144	237	50.1	3.21	5.32	0.256	41.1	1660	1.64	3.81
<u>0</u>	0 0.049	9 0.057	0.741	0.399	81.5	225	617	11.4	312	0.014	65.7	0.540	146	1910	1.42	1.81
Ó	0.058	8 0.016	0.033	0.023	92.9	104	47.7	0.287	40.2	0.085	5.88	0.113	8.52	154	0.632	0.181

Table A.3: PTE concentrations (mean) in *H. nodiflorum* from the Bussento and Calore Salernitano rivers in 2017. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

326.85	11.668	3160	2719.5	<lod< th=""><th>1965</th><th>56.39</th><th>3591.6</th><th>51.87</th><th>10366</th><th>43840</th><th>357.6</th><th>6.678</th><th>4.216</th><th>0.18</th><th>8.263</th><th>4610</th><th>0.076</th><th>873.4</th><th>C.03</th></lod<>	1965	56.39	3591.6	51.87	10366	43840	357.6	6.678	4.216	0.18	8.263	4610	0.076	873.4	C.03
27.5	3.94	8630	1617	0.101	1644	1.945	5540	591	7120	55530	911	7.93	1.222	0.55	0.852	7880	0.057	2112	B.25
9.64	2.60	6418	467.64	<lod< td=""><td>790</td><td>3.50</td><td>368.44</td><td>103.3</td><td>1012</td><td>2907</td><td>649.8</td><td>2.213</td><td>1.446</td><td>0.173</td><td>0.195</td><td>3725</td><td>0.036</td><td>1158</td><td>B.23</td></lod<>	790	3.50	368.44	103.3	1012	2907	649.8	2.213	1.446	0.173	0.195	3725	0.036	1158	B.23
254.76	62.813	29450	4070	0.155	5547	293.59	3233	5210	13420	41010	4168	40.21	46.5	1.395	14.16	17690	0.197	13950	B.21
94.2	13.9	10310	2220	0.191	1860	8.8	4250	153	6770	60000	1250	43.2	2.97	0.766	1.105	7710	0.049	4060	B.18
106.03	22.32	35740	4301	0.16	3133	7.741	5311	8986	11002	36340	21860	25.81	10.656	4.77	<lod< td=""><td>33950</td><td>0.074</td><td>14820</td><td>B.17</td></lod<>	33950	0.074	14820	B.17
46.31	14.915	11630	3211.9	0.057	2945.3	20.126	2985	289.76	11240	21812	1252	9.207	4.919	0.422	0.852	9780	0.046	3713	B.11
162.45	27.80	32142	4296	<lod< td=""><td>4996</td><td>69.18</td><td>2787</td><td>1680</td><td>15426</td><td>31932</td><td>4957</td><td>19.42</td><td>13.318</td><td>2.94</td><td>1.992</td><td>18366</td><td>0.136</td><td>5949</td><td>B.10</td></lod<>	4996	69.18	2787	1680	15426	31932	4957	19.42	13.318	2.94	1.992	18366	0.136	5949	B.10
26.9	6.25	4840	2222	< LOD	1174	2.73	4140	177.5	6140	15860	263	6.86	0.682	0.264	0.203	3040	0.015	763	B.08
106.72	20.83	31070	3291	0.039	3186	8.346	5269	632.5	12223	32960	4302	27.1	5.908	1.161	1.132	13546	0.119	7436	B.07
63.06	10.331	7855	2873.1	0.01	1024.8	5.251	3127	2786.5	11620	16564	1710.2	18.002	1.941	1.303	0.41	8160	0.02	3179.8	B.06
58.05	10.44	10220	2859	< LOD	1871	3.011	3687	211.02	11028	23600	1499	22.24	3.94	0.44	0.548	11710	0.025	5160	B.04
48.2	6.13	14860	1353	< LOD	1520	3.53	2910	207	4790	35220	1820	15.8	2.42	0.499	0.324	6760	0.064	3350	B.02
Zn	V	Si	S	Pb	P	Ni	Na	Mn	Mg	K	Fe	Cu	Cr	Со	Cd	Ca	As	Al	Site

Table A.4: PTE concentrations (s.e.m.) in *H. nodiflorum* from the Bussento and Calore Salernitano rivers in 2017. Units are in µg g⁻¹ d.w., unless otherwise specified.

	l	l _	~	_	_	10	61	~		10	_	61		, c
	Zn					11.5							11.7	•
	Λ	4.41	2.51	0.345	1.25	2.73	0.01	0.698	2.19	11.4	0.693	0.01	1.66	0.565
~:	Si	10900	2350	207	3140	2040	5	200	2460	8280	3350	rC	3660	201
400	S	926	34.2	69.5	110	951	3	75.3	138	1810	110	3	069	14.4
1 12 CONCERNATION (Section) 2011 (Section) with motion and Education and Carolic Carol	Pb	<lod></lod>	< LOD >	0.010	0.039	< LOD	0.005	0.036	0.078	0.191	0.155	0.005	0.080	< LOD
	Ь	1100	174	33.2	294	496	œ	70.9	194	1520	255	∞	202	21.8
2 11 2	Ņ	2.59	0.276	0.430	0.691	1.17	0.01	0.524	0.770	7.17	69.9	0.01	0.844	2.56
	Na	2120	248	105	513	1750	9	120	366	3450	542	9	2380	57.0
	Mn	151	9.18	8.96	47.8	75.3	3	8.44	528	125	156	3	253	1.27
ic Car	Mg	3480	743	429	739	2620	3	1130	477	5520	1830	3	3080	836
	Х	15100	1270	902	3400	0089	2	789	2400	1000	3410	2	3880	878
	Fe	1390	330	49.8	447	110	6	151	1370	1010	131	6	330	16.5
	Cu	12.0	1.19	0.593	2.24	2.92	0.04	0.133	2.09	35.1	1.90	0.04	3.39	0.176
	Cr	1.80	1.15	0.045	0.224	0.297	0.07	0.480	0.769	2.41	1.61	0.07	0.528	0.491
1016	Со	0.375	0.072	0.056	0.097	0.113	0.03	0.029	0.362	0.626	0.062	0.03	0.234	0.003
	Cd	0.229	0.008	0.015	0.070	0.093	0.001	0.054	< LOD	0.893	0.002	0.001	0.361	0.199
. (Ca	5030	2460	472	521	1080	2	1170	1890	6390	1830	2	3370	1170
	As	0.046	0.014	0.007	0.011	900.0	0.002	0.002	0.017	0.039	0.001	0.002	0.024	0.008
	Al	2390	1290	73.4	362	326	1	529	1510	3350	1060	1	910	78.8
	Site Al As	B.02	B.04	B.06	B.07	B.08	B.10	B.11	B.17	B.18	B.21	B.23	B.25	C.03
•														

Table A.5: PTE concentrations (mean) in *M. aquatica* from the Bussento river in 2016. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

В.2	B.20	В.1	B.1	В.1	B.1	В.1	B.1	В.1	В.1	B.1	В.1	В.(В.(В.(В.(В.(В.С	В.(В.С	В.(Site
1973	2917	5529	3889	5700	188.6	49.3	5240	1676	088.4	525.1	780.6	775.3	070.4	513.8	1736	220.2	325.3	421.8	204.8	175.5	Al
0.298	0.06	0.137	0.46	0.245	0.039	0.054	0.141	0.01	0.069	0.073	0.205	0.127	0.112	0.134	0.163	0.021	0.077	0.13	0.278	0.12	As
11667	7244	10230	10710	14322	5197	8748	10274	5378	7150.9	5900	10386.4	6046.2	7314	5577	8422	5483	4076	6504	6932	5742	Ca
0.896	0.813	0.463	0.814	0.554	0.115	0.421	0.366	0.364	0.257	1.122	1.061	0.511	0.588	0.647	0.316	0.337	0.254	0.539	0.453	0.501	Cd
4.815	1.192	1.99	11.48	4.986	0.677	1.528	2.011	0.721	0.73	0.683	4.695	2.775	1.267	2.288	3.834	0.776	1.364	2.278	5.901	2.806	Co
5.983	2.831	4.17	4.466	5.151	1.817	1.409	3.894	2.096	1.958	2.244	6.093	2.799	2.668	2.664	3.731	1.944	1.065	3.12	2.659	2.885	Ç
22.596	17.75	22.462	7.166	11.265	10.694	12.119	16.888	16.248	17.652	6.416	10.587	12.716	8.792	12.444	9.363	21.031	16.218	20.831	15.714	19.817	Cu
7547	1346.1	2664	18880	6355	1039.2	920.4	2850	853.7	953.9	872.1	4488.5	2747	1507.5	1909.4	4888	1047.99	1468	2579.1	11353	2413.2	Fe
26897	24368	17715	26026	34570	8647	22189	32565	20047	19109	50904	40211	42052	30010	30981	32940	26464	14237	23331	20476	31709	×
6956.3	4288.9	5842	4566	4983	2388	2745.4	3968	5751.3	3602.5	5908.1	5118.2	3841.2	4615	4161.4	3446	4448.7	3486	4124.9	5201.7	4045.8	Mg
1950.1	202.1	320.3	993.9	3685	100.21	611.8	387.7	47.851	46.85	54.5	1736.2	1372.4	187.84	1179	1567	146.99	534	1044	643.8	1376.7	Mn
3180.12	4022.4	5530	6539	3551	3156	4029.2	3367.2	4236.8	2579	2562.2	4072.5	3971.2	4514.6	4303.9	5950	3535.3	5122	4641	3514.3	8242.9	Na
14.315	9.519	5.661	10.138	5.835	1.32	4.371	3.491	3.871	3.232	44.01	20.003	10.851	10.231	8.314	5.608	3.464	2.639	5.279	4.272	6.765	Z.
1394.13	1314.4	1351.5	1444.7	1559	1420.2	1065.9	1662.8	1665.7	1764.7	2865.8	2041.4	2476.1	1441.3	1448.8	1596.5	1576.6	944	1165.9	1030.6	1625.4	P
1.69	0.916	1.859	2.06	1.279	0.206	0.305	1.657	0.499	1.099	0.144	1.414	1.204	0.953	1.807	1.436	0.776	0.69	0.998	1.31	1.6	Pb
3140	2881.4	2411.8	3897	3901	1320.8	2471	3891.9	2934.4	2521.1	4272.9	3882.1	4026	2910.2	3146.7	4052	2327.6	2304	2426.7	2671.3	3228.1	s
24983	8320	17750	22930	25620	6445	4615.8	23350	5527	7895	11088	28461	14805	12778	21053	15285	6890.8	3213	10806	7798	9058	ī.
60.85	25.348	35.55	34.49	34.43	14.4	15.212	27.68	29.288	20.452	31.524	37.545	23.292	27.749	25.834	25.62	23.739	17.527	25.752	27.658	25.08	<
31.666	47.06	45.01	32.813	29.74	19.425	17.524	79.82	32.96	38.88	30.75	41.962	37.87	39.02	53.26	31.66	45.962	34.14	30.395	35.22	63.45	Zn

Table A.6: PTE concentrations (s.e.m.) in M. aquatica from the Bussento river in 2016. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

Site	A	As	Ca	Cd	Со	C	Cu	Fe	K	Mg	Mn	Na	ï	Ь	ЪЪ	S	Si	Λ	Zn
B.01	81.6	0.001	179	0.017	0.135	960.0	0.282	84.1	311	46.3	49.6	80.1	0.181	14.8	0.126	70.5	210	0.524	2.61
B.02	6.09	0.00	259	0.00	0.134	0.121	0.334	218	168	35.6	16.1	39.9	0.113	13.4	960.0	32.7	120	0.616	1.67
B.03	65.8	0.012	292	0.017	0.074	0.061	0.454	39.8	256	57.9	32.3	86.1	0.116	10.3	0.041	16.5	114	0.357	0.406
B.04	23.6	0.031	209	0.024	0.122	0.000	0.561	124	428	194	30.0	199	0.357	33.2	0.108	106	217	0.821	1.32
B.05	23.8	0.011	321	0.002	0.015	0.029	0.454	3.88	288	91.9	4.17	65.2	0.095	24.8	0.184	44.6	86.5	0.253	0.795
B.06	378	0.016	382	0.036	0.381	0.293	0.356	462	1290	240	160	352	0.398	36.4	0.233	217	855	1.83	1.30
B.07	31.1	0.010	208	0.024	0.093	0.046	0.369	33.9	321	56.4	53.4	36.9	0.178	21.8	0.093	42.5	692	0.161	1.50
B.08	9.96	0.014	426	0.012	0.036	0.015	0.274	51.1	491	120	8.15	84.7	0.310	46.5	0.051	29.8	393	0.398	1.26
B.09	34.4	9000	57.7	0.026	0.045	0.034	0.315	101	646	79.1	27.6	65.7	0.346	55.2	0.194	114	174	0.390	1.63
B.10	40.3	0.014	65.7	0.015	0.051	0.072	0.091	47.3	226	28.6	56.6	37.2	0.116	11.4	0.053	52.8	392	0.596	0.510
B.11	48.4	0.015	372	0.038	0.020	0.056	0.054	15.2	311	71.4	0.770	20.3	1.01	28.6	0.076	41.8	120	0.506	0.402
B.12	43.0	9000	87.4	0.014	0.022	0.054	0.398	23.8	498	71.8	1.18	45.6	0.163	46.4	0.138	51.6	208	0.467	2.02
B.13	130	0.005	365	0.008	0.027	0.094	0.241	65.4	250	70.9	0.819	6.09	0.126	11.0	0.064	31.0	640	0.923	1.46
B.14	648	0.014	459	0.010	0.188	0.408	0.336	265	936	119	15.1	54.6	0.301	17.0	0.047	62.7	1960	2.02	1.79
B.15	24.0	0.008	533	0.022	0.020	0.008	0.184	26.8	172	92.0	13.3	32.7	0.107	12.8	0.128	20.1	30.2	0.347	0.111
B.16	83.7	0.007	270	0.011	0.024	0.072	0.329	46.6	223	108	5.16	102	0.109	29.5	0.169	25.0	280	0.765	0.588
B.17	387	0.016	992	0.032	0.247	0.390	0.644	383	2390	329	250	243	0.427	109	0.652	273	1560	2.46	2.20
B.18	138	0.040	235	0.047	0.418	0.192	0.120	1010	538	125	52.5	118	0.242	30.7	960.0	103	1390	1.17	0.248
B.19	522	0.013	1290	0.037	0.125	0.269	0.656	188	262	295	22.5	235	0.406	28.1	0.008	70.8	1200	2.18	2.02
B.20	110	0.023	271	0.052	0.082	0.113	0.356	2.99	271	87.3	10.7	15.0	0.490	25.2	0.505	42.1	122	0.675	1.61
5	0	, , , ,			1														

B.11 B.12 B.13 B.14 B.15 B.15 B.17 B.18 B.07 B.08 B.10 B.06 3478.7 1213.8 33.32 1110.7 1384.6 892.7 5390 362.3 1149.2 354.13456 3298 2372 3694 \geq 0.071 0.215 0.193 0.176 0.244 0.033 0.232 0.163 0.101 0.447 0.064 0.16 0.517 As11868 8013 5869 5838 5614 4105 9694 9687 8045 2900 0.447 0.342 1.608 0.442 0.511 0.098 0.461 0.320.398 0.641 0.194 3.314 0.364 0.487 0.499 1.222 Cd 0.242 6.291 0.536 0.684 4.538 0.346 2.086 0.4310.572 3.619 4.031 1.336 1.287 4.973 0.674 5.268 3.144 3.602 2.467 6.9851.548 2.741 3.37 1.572 1.68 2.047 $^{\rm r}$ 6.487 9.842 3.906 10.035 15.204 5.242 4.85412.141 7.619 10.733 4.779 6.0958.59 7.09 3774.2 2451.2 378.1 6650.4 102.35 9772 647.5 13062 573 635.1 3464 1005 2112 5855 382.5 1639 Fe 21143 23520 35968 32446 14533 45152 34430 33950 21701 27431 46647 17350 43210 17251 18228 11174 4779.9 4077.8 2336.5 5231.6 3545.1 3585.4 3910 4926 2535 2862 3298 1310 36.461 632.42 3710.5 69.08 487.6 5799 111.31 1517.5 1423.5 3572.8 269.93 211.1 166.7 Mn 3120.83739.9 1523.83 2102.4 3357.3 3072 4579.4 4505.5 4942 5124 2689 1683 1611 Na 9.375 144.61 23.219 8.375 5.085 5.056 7.296 4.91 5.94 7.651 1.911 883.8 1867.4 1733.3 1315.9 3066.6 2828.2 1417.9 1491.8 2083.5 1384.9 936.3 1371.1 1712 P 0.379 0.381 0.1570.149 0.3050.4190.314 0.795 0.248 0.259 0.787 0.206 0.531 0.75 0.551 РЪ 3128.7 2301.2 2854.7 2513.5 2718. 1911.6 3707 4369 3532 1160 2400 1807.5 2529 1319 3381 S 13396.7 31458 17590 13288 14861 9336 17678 13514 31820 27522 9079 3233 30.891 45.58 16.716 15.68 38.736 24.52 28.46 35.01 11.223 35.024 40.146 18.113 25.772 26.934 33.781 53.892 41.338 27.152 14.291 24.08 49.46 34.76 29.68 26.65 129.44 15.679 14.97 Zn

Table A.7: PTE concentrations (mean) in M. aquatica from the Bussento river in 2017. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified

Table A.8: PTE concentrations (s.e.m.) in M. aquatica from the Bussento river in 2017. Units are in μg g⁻¹ d.w., unless otherwise specified.

		l																	
Land	Zn	0.486	0.993	0.255	0.549	0.590	0.485	3.22	2.27	0.979	1.62	0.541	2.50	1.84	0.02	86.6	1.73	0.158	0.652
	Λ	0.636	0.755	0.445	0.049	0.660	0.791	1.11	0.218	0.238	0.511	0.936	1.48	1.26	0.01	5.57	0.734	0.274	1.42
	Si	214	248	1030	122	326	425	376	154	228	447	8.76	376	1140	5	849	355	1560	15800
,,	S	56.0	59.3	105	71.7	0.99	87.7	52.9	45.3	63.4	124	21.7	197	50.0	3	397	1111	30.5	204
٥	Pb	0.019	0.116	0.073	0.100	0.081	0.014	0.029	0.024	0.015	0.033	0.028	0.039	0.064	0.005	0.072	0.029	0.042	0.225
ω	Ъ	23.8	55.8	25.1	43.8	14.9	68.2	33.6	64.3	42.3	49.5	18.6	97.4	44.9	8	190	53.3	14.9	115
	Ni	0.590	0.377	0.598	0.599	0.563	0.746	2.65	0.262	0.363	0.288	0.191	0.639	0.632	0.01	2.30	2.39	0.349	0.889
	Na	7.76	13.1	69.3	36.8	119	41.5	8.17	163	25.6	71.3	62.4	326	116	9	230	55.3	36.6	152
	Mn	1.78	7.31	61.8	6.55	8.90	29.0	4.34	0.715	26.8	25.3	1.38	215	27.0	3	145	2.27	1.90	7.15
	Mg	106	92.9	21.0	22.7	157	131	50.9	73.3	20.3	94.4	181	182	214	3	220	109	59.8	115
	K	310	591	554	299	1120	734	296	330	191	692	339	1380	871	2	0809	1490	440	2810
	Fe	32.6	74.1	86.9	41.6	12.6	110	200.	4.36	37.9	102	7.65	290	174	6	202	43.4	118	336
	Cu	0.310	0.085	0.568	0.173	0.164	0.111	0.097	0.029	0.112	0.352	0.198	0.439	0.494	0.04	2.56	0.211	0.578	0.386
	Cr	0.056	0.044	0.092	0.119	0.123	0.087	0.226	0.024	0.017	0.077	0.058	0.192	0.155	0.07	0.360	0.178	0.221	0.971
,	Со	0.014	0.026	0.045	0.035	0.034	0.053	0.052	0.003	0.032	0.080	0.008	0.201	0.097	0.03	0.190	0.008	0.046	0.510
	Cd	0.025	0.062	0.089	0.071	0.063	0.071	0.042	0.062	0.022	0.014	0.026	0.035	0.038	0.001	0.191	0.042	0.013	0.174
	Ca	138	328	184	156	151	149	241	143	588	145	272	309	882	2	946	77.8	388	204
	As	0.013	0.021	0.020	0.029	0.010	0.014	0.011	0.017	0.017	0.007	0.019	0.009	0.019	0.002	0.028	0.020	0.032	0.205
	Al	42.5	70.9	18.5	56.2	51.2	27.3	121	10.3	16.5	28.9	2.34	56.4	292	П	267	38.8	141	951
	Site	B.02	B.04	B.06	B.07	B.08	B.10	B.11	B.12	B.13	B.14	B.15	B.17	B.18	B.19	B.20	B.23	B.24	B.25
1																			

Table A.9: PTE concentrations (mean) in M. aquatica from the Calore Salernitano river in 2016. Units are in $\mu g g^{-1} d.w.$, unless otherwise specified.

C.18	C.17	C.16	C.15	C.14	C.13	C.12	C.11	C.10	C.09	C.08	C.07	C.06	C.05	C.04	C.03	C.02	C.01	Site
3836	368.2	1693	2695.9	622.2	5544	1665.7	1514	3433	10180	3370.5	2000.5	1395.2	5754	4871	1187.9	1997.1	3046	Al
0.084	0.061	0.077	0.145	0.043	0.196	0.116	0.072	0.133	0.691	0.093	0.067	0.09	0.224	0.153	0.316	0.101	0.293	As
7352	4907	6233	5399	4207.3	9756	5514	6640	7367	19763	7113	5528.1	4358	10791	9564	4900.8	5851	7943	Ca
0.458	0.446	0.42	2.425	0.161	0.437	0.756	0.142	0.402	0.618	0.698	0.183	2.208	0.413	0.957	12.238	0.294	0.432	Cd
1.164	0.936	1.192	1.365	0.513	2.073	2.011	0.611	1.533	9.935	1.344	0.676	0.799	2.778	2.661	0.86	1.221	3.534	Co
2.93	1.017	1.644	2.989	1.008	4.847	1.858	1.573	2.532	8.496	3.25	1.788	1.581	5.056	4.616	7.025	1.728	3.39	Ç
15.893	27.042	19.391	17.255	10.757	17.696	19.02	27.38	19.16	16.012	19.979	24.284	7.419	24.527	27.95	7.286	13.736	14.2	Cu
1656.6	543.3	832.7	2208	681.9	3259	2143	835.4	1749.8	16171	1649.8	884.3	777.5	4661.9	4446	771.2	1257.8	4933	Fe
20639	26984	23145	24962	15399	27003	26744	15620	19410	20488	28054	18530	33271	21284	20330	52596	19110	20421	*
5428	3718	3758	4219	2478.2	3966	4049	2891	4044	4245.6	3992.3	3274	2447.8	4311.7	4238	4768.3	3443.5	4365.5	Mg
96.69	302.22	439	143.02	103.95	220.26	815.2	40.3	238.6	2738.1	81.65	81.026	195.79	602.78	302.9	57.577	352.52	1225.4	Mn
4479	3568.9	3092.9	3824.7	1974.2	3485	2558.3	2375	3763	3446.7	3712.6	1578.94	2715	3373.1	3817	1293.3	2012.9	4242	Na
3.523	6.789	5.211	6.863	1.345	7.836	8.76	1.612	5.179	11.101	6.817	1.794	3.626	6.175	10.75	103.508	4.634	8.173	Z.
1162.4	1203	1533.4	1189.3	976.5	1706.8	1011.7	986.2	1115.8	1246.6	734	537.98	1482.5	1259.59	1128	2346.27	1003.51	1207.4	P
0.405	1.369	0.999	1.339	0.456	1.37	1.149	0.754	0.964	3.5	0.914	0.562	0.345	1.447	1.26	0.321	0.697	1.65	Pb
2342.7	2467.8	2839.1	2371.7	1213.2	2834	2149.4	1609	2123	2937.6	2476	1412.35	2837.1	2720.8	2278	3327.7	2032	2859.52	s
11574	1955.9	8090	13690	2544	25158	6487	5038	15961	43951	15092	6116.6	8317	23209	17240	5740	11183	26769	₹.
32.59	17.163	20.647	29.491	12.084	31.81	21.178	16.21	25.643	43.32	25.232	18.446	17.201	32.07	30	26.033	20.529	28.326	<
27.431	55.582	86.21	29.798	37.97	35.042	41.505	25.03	67.87	41.416	36.992	25.947	15.481	32.405	37.4	197.94	18.912	23.31	Zn

Table A.10: PTE concentrations (s.e.m.) in M. aquatica from the Calore Salernitano river in 2016. Units are in $\mu g g^{-1} d.w.$, unless otherwise specified.

Zn	1.06	0.097	2.05	10.7	0.935	0.575	0.995	0.597	0.554	2.51	4.58	0.522	0.847	2.30	0.168	3.25	0.280	0.805
>	0.327	0.140	0.140	2.88	0.684	0.483	0.334	0.341	0.344	0.659	2.21	0.498	1.62	0.339	0.376	896.0	0.414	1.95
Si	343	136	247	1480	461	321	84.0	199	266	814	543	321	681	117	166	541	22.8	536
S	9.85	25.6	46.4	214	34.4	9.99	2.64	11.1	57.7	67.1	219	62.6	142	31.6	17.4	66.3	21.6	83.1
Pb	0.003	0.141	0.108	0.112	0.025	0.128	0.248	0.025	0.063	0.145	0.169	0.056	0.063	0.192	0.042	0.101	0.133	0.089
Ь	17.0	7.85	6.36	110	7.28	28.2	2.67	354	10.4	16.3	64.8	11.2	33.0	13.2	20.8	44.9	15.8	46.2
Ÿ	0.135	0.050	0.184	5.53	0.178	0.204	0.068	0.135	0.243	0.100	0.580	0.298	0.236	960.0	0.146	0.206	0.200	0.203
Na	6.92	32.3	19.0	233	9.96	43.6	5.82	39.3	43.8	102	254	44.9	142	56.2	59.6	74.9	49.1	234
Mn	41.7	5.22	0.599	23.8	9.00	4.34	0.921	3.71	50.3	11.7	3.96	16.4	4.53	3.93	1.13	16.2	6.53	5.81
Mg	55.9	19.7	30.8	416	48.0	42.8	112	52.6	62.4	119	432	103	126	50.1	67.4	188	80.9	282
×	168	325	898	3140	458	418	84.7	156	114	824	1270	139	442	701	392	288	311	554
Fe	38.8	12.3	46.7	416	48.3	63.7	59.9	29.5	139	58.8	78.3	93.6	151	22.6	37.0	41.4	13.7	84.0
Cu	0.271	0.373	0.140	1.70	0.369	0.082	0.414	0.085	0.412	0.392	2.73	0.364	0.311	0.208	0.252	0.578	0.357	0.707
Cr	0.054	0.032	0.014	0.571	0.047	0.092	0.099	0.020	0.147	0.029	0.071	0.061	0.186	0.024	0.046	0.085	0.021	0.031
Со	0.028	0.007	0.041	0.237	0.030	0.043	0.029	0.003	0.131	0.063	0.067	0.061	0.063	0.020	0.019	0.056	0.029	0.076
Сд	0.011	0.007	0.029	0.682	0.003	0.062	0.018	0.023	0.030	0.012	0.045	0.033	0.019	0.020	0.065	0.007	0.015	0.019
Ca	330	219	42.2	625	165	141	98.4	148	237	161	1590	370	272	8.66	281	252	538	307
As	0.012	0.008	0.012	0.022	0.012	0.008	9000	0.00	0.012	0.008	0.016	0.002	0.003D	0.012	0.015	0.003	9000	0.004
Al	101	25.7	63.3	469	116	40.5	20.8	49.0	138	153	156	74.3	270	10.1	38.7	99.3	20.1	249
Site	C.01	C.02	C.03	C.04	C.05	C.06	C.07	C.08	C.09	C.10	C.11	C.12	C.13	C.14	C.15	C.16	C.17	C.18
	Cd Co Cr Cu Fe K Mg Mn Na Ni P Pb S Si V	Al As Ca Cd Co Cr Cu Fe K Mg Mn Na Ni P Pb S Si V 101 0.012 330 0.011 0.028 0.054 0.271 38.8 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 343 0.327	Al As Ca Cd	Al As Ca Cd	Al As Ca Cd Co Cr Cu Cu<	Al As Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Ph Ph Si Si V 101 0.012 330 0.011 0.028 0.054 0.027 13.8 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 343 0.327 25.7 0.008 219 0.007 0.007 0.007 0.007 0.014 0.140 46.7 88 30.8 0.599 19.0 0.184 6.36 0.108 46.4 247 0.140 416 3140 416 23.8 23.8 5.33 15.3 1.36 0.140 1.480 2.88 180 9.00 96.6 0.172 2.28 0.41 416 416 314 416 23.8 233 5.53 110 0.112 24.7 1480 2.88 46.9 0.012 6.55 0.029 0.047 0.369	Al As Ca Cd Co Cr Cu Fe K Mg Mn Na Ni Ph Ph Si Si V 101 0.012 330 0.011 0.025 0.024 0.271 388 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 343 0.327 25.7 0.008 219 0.007 0.007 0.032 0.373 12.3 32.8 10.9 7.85 0.141 25.6 136 0.140 45.3 0.012 42.2 0.039 0.041 0.140 41.7 868 30.8 0.599 19.0 0.184 424 247 0.140 469 0.012 42.2 0.029 0.041 0.140 416 314 416 23.8 23.8 23.8 10.0 0.141 41480 2.88 469 0.012 0.03 0.047 0.369 48.3 48.0	Al As Ca Cd Cr Cu Fe K Mg Mn Na Ni Ph Ph Si Si V 100 0.012 330 0.011 0.028 0.024 0.271 38.8 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 343 0.327 25.7 0.008 2.19 0.004 0.007 0.007 0.007 0.140 46.7 868 30.8 19.7 5.22 32.3 0.050 7.85 0.140 25.6 13.6 0.140 0.140 46.7 868 30.8 19.7 5.22 32.3 0.050 7.85 0.140 0.140 41.0 41.0 2.85 11.0 0.118 45.4 45.	Al As Ca Cd Cr Cu Fe K Mg Mn Na Ni Ph Ph Si Si V 1001 0.012 330 0.011 0.028 0.024 0.271 38.8 168 55.9 41.7 76.9 17.0 0.003 9.85 343 0.327 25.7 0.008 2.19 0.001 0.007 0.007 0.002 0.037 12.3 32.8 13.9 0.059 1.08 46.4 24.7 13.6 0.104 0.004 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.009 0.004 0.008 0.009 0.004 0.008 0.009 0.01 0.008 0.009 0.01	Al As Ca Ca Cr Cu Fe K Mg Mn Na Ni Ph Ph Si Si V 1001 0.012 330 0.011 0.028 0.027 12.3 12.3 17.0 0.036 17.8 17.0 0.03 9.85 343 0.323 25.7 0.008 219 0.001 0.007 0.007 0.007 0.007 0.014 46.7 868 19.7 5.22 32.3 0.050 7.85 0.140 25.6 13.9 17.0 0.050 9.84 19.7 5.22 32.3 0.050 1.46 31.0 19.9 5.8 19.0 0.59 19.0 0.18 45.9 41.0 19.0 0.18 45.9 41.0 19.0 0.18 45.4 47.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 <td>Al As Ca Ca<</td> <td>Al As Ca Ca<</td> <td>Al As Ca Ca<</td> <td>41 As Ca Ca<</td> <td>41 As Cd Cd Cr Cu Fe K Mg Mn Na Ni Ph Ph S Si V 101 0.012 330 0.011 0.028 0.024 0.271 3.85 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 3.43 0.327 25.7 0.002 2.19 0.002 2.29 0.004 0.004 0.004 0.014 0.104 46.7 88 19.7 5.22 32.3 0.005 0.141 45.7 88 19.7 5.22 32.3 0.009 4.41 46.7 88 30.8 10.8 40.9 0.014 40.1 11.0 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 41.0 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1</td> <td>41 As Ca Cd Cu Fe K Mg Mn Na Ni P P S Si V 10 0.012 3.30 0.011 0.028 0.024 0.271 3.88 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 343 0.322 5.7 0.008 2.19 0.007 0.007 0.004 0.014 46.7 868 30.8 1.52 32.3 0.036 0.044 0.044 46.7 868 30.8 1.69 1.79 1.79 1.41 2.69 1.11 2.69 1.12 3.23 5.29 1.79 0.78 0.44 46.7 1.89 48.0 9.09 9.09 1.41 46.7 48.0 9.09 9.09 9.09 48.3 48.0 48.0 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09</td> <td>41 As Ca Ca Cr Cu Fe K Mp Mn Ni Ni P Ps S Si V 101 0.012 0.024 0.024 0.221 3.28 1.68 5.59 4.17 76.9 0.135 1.70 0.03 9.85 9.34 0.05 0.041 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.047 0.029 0.047 0.029 0.049 0.041 5.9 4.8 <</td> <td>Cd Co Cr Cu Fe K Mg Mn Na Ni P Pb S Si V 0.011 0.028 0.054 0.271 38.8 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 34.3 0.327 1 0.007 0.007 0.003 0.054 0.273 12.3 325 19.7 52.2 32.3 0.050 7.85 0.141 25.6 18.7 0.050 0.044 46.4 46.7 6.059 19.0 0.184 6.36 0.108 6.059 19.0 0.058 0.144 48.0 9.00 9.66 0.178 6.36 0.144 48.0 9.00 96.6 0.178 6.28 0.144 48.0 9.00 96.6 0.178 7.28 0.029 0.029 0.044 4.18 4.24 43.4 43.6 0.020 0.023 0.044 4.18 4.24 43.6 0.049 0.049</td>	Al As Ca Ca<	Al As Ca Ca<	Al As Ca Ca<	41 As Ca Ca<	41 As Cd Cd Cr Cu Fe K Mg Mn Na Ni Ph Ph S Si V 101 0.012 330 0.011 0.028 0.024 0.271 3.85 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 3.43 0.327 25.7 0.002 2.19 0.002 2.29 0.004 0.004 0.004 0.014 0.104 46.7 88 19.7 5.22 32.3 0.005 0.141 45.7 88 19.7 5.22 32.3 0.009 4.41 46.7 88 30.8 10.8 40.9 0.014 40.1 11.0 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 41.0 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	41 As Ca Cd Cu Fe K Mg Mn Na Ni P P S Si V 10 0.012 3.30 0.011 0.028 0.024 0.271 3.88 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 343 0.322 5.7 0.008 2.19 0.007 0.007 0.004 0.014 46.7 868 30.8 1.52 32.3 0.036 0.044 0.044 46.7 868 30.8 1.69 1.79 1.79 1.41 2.69 1.11 2.69 1.12 3.23 5.29 1.79 0.78 0.44 46.7 1.89 48.0 9.09 9.09 1.41 46.7 48.0 9.09 9.09 9.09 48.3 48.0 48.0 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09	41 As Ca Ca Cr Cu Fe K Mp Mn Ni Ni P Ps S Si V 101 0.012 0.024 0.024 0.221 3.28 1.68 5.59 4.17 76.9 0.135 1.70 0.03 9.85 9.34 0.05 0.041 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.047 0.029 0.047 0.029 0.049 0.041 5.9 4.8 <	Cd Co Cr Cu Fe K Mg Mn Na Ni P Pb S Si V 0.011 0.028 0.054 0.271 38.8 168 55.9 41.7 76.9 0.135 17.0 0.003 9.85 34.3 0.327 1 0.007 0.007 0.003 0.054 0.273 12.3 325 19.7 52.2 32.3 0.050 7.85 0.141 25.6 18.7 0.050 0.044 46.4 46.7 6.059 19.0 0.184 6.36 0.108 6.059 19.0 0.058 0.144 48.0 9.00 9.66 0.178 6.36 0.144 48.0 9.00 96.6 0.178 6.28 0.144 48.0 9.00 96.6 0.178 7.28 0.029 0.029 0.044 4.18 4.24 43.4 43.6 0.020 0.023 0.044 4.18 4.24 43.6 0.049 0.049

Table A.11: PTE concentrations (mean) in *M. aquatica* from the Calore Salernitano river in 2017. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

						C.09 3093									Site Al
						3 0.53									l As
10340	4911	4337	5068	11191.1	5629	17915	4982	8960	3113	11209	5228	3707	4044	11355	Ca
0.67	1.914	0.362	0.487	0.902	0.502	0.52	0.58	0.559	2.038	0.585	0.252	5.635	0.226	0.465	Cd
1.447	1.106	0.383	3.401	4.242	0.54	8.435	0.638	0.93	0.72	3.886	0.493	0.173	0.109	1.874	Со
4.325	2.635	0.807	2.819	4.449	1.603	5.191	2.486	3.716	1.743	4.44	1.157	2.785	0.113	2.235	Cr
17.023	9.19	5.332	6.413	14.774	9.124	7.951	15.336	18.688	4.33	8.639	8.125	2.783	3.293	5.25	Cu
3401	2924	238.75	4769	9703.8	865.3	21921	1068.2	1776	862.1	9869	392.27	308.03	46.6	1676	Fe
17595	26810	20346	24703	25345	15762	13971	17905	17232	25067	17348	14938	42499	16514.2	22350	K
2760	3302	1719.47	3066	3312.1	2267	2355	2812.2	2510.6	1896.9	2957.7	1868.3	1996.3	1347.4	1023.3	Mg
508.4	244.9	99.76	2395.6	1605.5	129.93	2898.5	71.03	161.26	494.58	2047.6	903.5	32.273	115.27	3153	Mn
2677.6	2635.2	1198.4	3484	2115.15	2185.2	2627	2081	2309.4	2365.64	2329.8	1863.2	1143	993.65	1838	Na
4.418	6.41	2.24	7.485	7.943	3.259	5.713	3.77	6.92	3.26	5.366	3.176	50.85	4.329	11.83	Ni
741.2	961.6	868.8	1390.1	1075.23	604	1048.7	717.97	548	706.54	749.9	474.69	1713.9	549.21	711	P
0.404	0.464	0.438	0.451	0.551	0.275	0.745	0.252	0.906	0.304	0.934	0.262	0.177	0.102	0.454	РЬ
1657.7	1927.4	1911.91	2261.1	2135.04	1511.1	2691.4	1695.81	1564.9	1855.7	2253.8	1548.1	2239.1	1415.3	2381.9	Pb S
12675	9274	12495	11492	4320	5875	15051	7719	10297	4618.6	28332	4968.7	1502.7	1873.7	23170	Si
27.944	24.48	12.417	24.09	30.217	17.452	24.24	23.049	24.093	14.119	24.699	12.435	14.56	9.042	10.556	Si V
48.41	32.5	11.648	26.84	39.854	20.401	27.99	42.39	42.231	9.767	19.019	12.571	137.43	12.832	16.78	Zn

Table A.12: PTE concentrations (s.e.m.) in M. aquatica from the Calore Salernitano river in 2017. Units are in $\mu g g^{-1} d.w.$, unless otherwise specified.

7																
de per w	Zn	2.42	0.524	2.16	0.221	0.972	0.163	0.944	1.27	1.82	0.639	0.281	1.56	0.757	0.669	6.19
a.w., unices ounci wise speci	Λ	0.629	0.396	0.449	0.191	0.256	0.311	0.289	0.351	1.98	0.350	0.921	1.38	0.132	1.10	0.808
, unites	Si	1110	31.6	97.6	62.4	263	85.3	332	214	569	239	4140	869	203	670	712
	S	25.7	12.5	34.4	25.6	15.9	15.4	22.5	6.84	87.8	17.9	6.43	8.99	8.49	17.4	19.6
11 488	Pb	0.063	0.048	0.080	0.012	0.078	0.022	0.082	0.017	0.084	0.028	0.002	0.016	0.065	0.008	0.016
וז מוב ז	Ь	25.9	1.83	22.0	1.84	19.3	3.39	16.3	9.35	49.9	10.7	8.65	66.3	19.1	29.3	27.7
. ОП	Ņ	608.0	0.382	1.03	0.205	0.311	0.088	0.406	0.117	0.454	0.305	0.385	0.389	0.014	0.267	0.089
111 201	Na	112	7.84	5.65	27.4	90.5	2.78	47.7	35.1	112	14.2	5.19	103	15.1	56.5	65.1
0 111 0	Mn	177	1.28	0.457	10.1	51.5	3.66	1.35	2.67	97.0	1.23	17.2	86.4	3.96	10.3	4.00
minian	Mg	84.1	73.4	39.6	63.8	9.68	57.7	45.5	86.1	100	12.2	44.0	123	8.85	135	142
וכ סמוכ	K	1920	8.79	222	133	473	150	814	123	787	136	333	200	389	1080	686
Call	Fe	123	4.70	2.62	2.64	332	25.8	35.4	57.2	888	31.6	82.8	179	2.92	201	127
10111	Cu	0.652	0.077	0.131	690.0	0.612	0.054	999:0	0.494	0.853	0.394	0.038	0.626	0.150	0.147	0.827
is (s.e.iii.) In m , where m is the carrie calcinitation of the m (constant) m for m d	Cr	0.165	0.045	0.090	0.090	0.171	0.168	0.085	0.163	0.171	0.061	0.365	0.104	0.054	0.117	0.198
11 171. 44	Со	0.110	9000	0.015	0.027	0.023	0.026	0.037	0.029	0.250	0.025	0.024	0.157	0.034	0.055	0.052
.c.III.) 1	Сд	0.073	0.018	0.059	0.038	0.045	0.041	0.052	0.025	0.023	0.028	0.018	0.027	0.013	0.115	0.022
	Са	930	280	256	269	398	123	324	160	514	278	83.7	248	520	208	267
בווומח	As	0.026	0.010	0.008	0.003	0.016	0.009	0.010	0.008	0.030	0.011	0.024	0.011	0.001	900.0	0.003
T COI	Al	21.6	1.53	21.6	14.7	15.1	18.5	103	51.0	304	10.7	128	85.1	3.23	86.1	173
A.12. I LE COINCEILLAUDI	Site	C.01	C.02	C.03	C.04	C.05	C.06	C.07	C.08	C.09	C.10	C.12	C.13	C.14	C.15	C.20

Appendix B

PTE concentrations in active biomonitors

Table B.1: PTE concentrations (mean) in *E. antipyretica* from the Bussento river. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

В.29	В.28	B.27	B.26	B.25	B.24	B.23	B.22	B.21	B.20	B.19	B.18	B.17	B.16	B.15	B.14	B.13	B.12	B.11	B.10	В.08	B.07	B.06	B.04	B.02	Site
17010	4224	12100	24160	4448	341	556	2275	38260	24720	9420	16120	1094	4880	29.33	8007	995	1799	6850	2092	6934	689	4250	6270	168.9	Al
1.282	0.636	0.673	0.946	0.954	0.204	0.385	0.375	1.571	0.872	0.566	0.762	0.581	0.285	0.295	0.742	0.516	0.434	0.516	0.186	0.654	0.345	0.635	0.427	0.545	As
41770	16260	30550	35200	17170	2404	2886	3214	28476	34424	19720	32810	10392	5333	8387	17100	2830	4714	8160	3075	8253	2598	4575	5910	3471	Ca
2.385	1.452	1.201	1.619	2.209	0.57	0.924	0.853	2.519	1.548	1.011	1.429	1.468	0.716	0.68	1.474	0.909	0.793	0.995	0.557	1.181	0.793	1.093	0.819	0.975	Cd
3.176	1.264	1.786	3.641	2.088	1.093	1.951	1.145	4.729	3.304	2.15	2.665	1.908	1.652	0.573	2.123	1.203	1.172	1.966	1.273	1.842	0.834	1.483	1.619	0.753	Со
7.606	2.919	5.967	12.28	3.021	0.751	1.156	1.851	16.59	11.1	5.08	8.08	1.796	3.259	0.755	3.654	1.056	3.008	4.934	1.691	4.987	1.043	2.802	3.82	1.289	τ
20.03	17.9	19.04	31.48	16.79	4.296	6.409	6.246	25.801	26.31	20.51	22.38	12.56	12.74	4.505	15.507	7.672	6.515	12.11	7.056	8.073	5.61	8.685	8.51	3.748	Cu
6251	1935	4792	10970	1623	194.3	323.6	545.9	16046	9560	3980	6670	806	1172	151.9	2581	273.1	709.2	1493	559.8	1379.3	272.3	889	1284	296.6	Fe
12159	10995	10939	16867	8682	4160	5237	5766	13929	14746	10050	12601	7319	5256	2705	7430	4632	4302	6801	6779	7008	5853	5077	6439	3232.4	K
3105	1675	2524	4659	1271	511.1	681	892.8	4504.1	4409	2421	3287	945	1218	343.5	2585	774	764.4	1116	911	1293	747	1161	1456	451.6	Mg
1428	935	575.1	2179.1	1691	756	1713	1029	1184.3	1320.5	1932	1466.5	3104	629.4	308.6	1445	982	239.1	432.9	970.4	746.5	526.3	442.4	943.3	303.28	Mn
522.3	394.3	361.8	893.9	398.5	10.45	15.25	12.833	670.35	871	394.3	586.4	157.9	14.84	73.09	432.09	20.94	14.93	36.18	34.95	42.88	26.612	67.91	61.7	10.288	Na
62.6	24.37	62.6	50.44	34.67	6.39	19.26	15.738	107.42	57.74	35.22	54.01	35.2	8.429	17.63	34.46	10.331	10.21	20.95	11.523	18.629	8.596	10.055	8.82	5.678	Z.
4069	4105	3325	4298	4193	1409	2162.5	1569.2	2987.9	3722	3314.4	3152	4093	2005	1468.2	3219.8	2163	1322	1699.1	2055.3	1508.3	1939	807	1534	762.6	P
2.757	0.739	1.994	4.518	0.845	< LOD	< LOD	< LOD	6.065	4.061	1.774	2.798	0.303	0.017	< LOD	1.072	< LOD	< LOD	< LOD	<lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Рь</td></lod<></td></lod<>	< LOD	< LOD	< LOD	<lod< td=""><td>< LOD</td><td>Рь</td></lod<>	< LOD	Рь
1296.2	1306.5	1174.2	1407.9	1356.2	1001.7	1250	1013.9	1147.4	1212.2	1243.8	1341.5	1211.9	1354	573.3	1108.6	1349.9	990	1027.3	1355.7	1165.8	1226.5	883.7	1439.7	1179.4	s
57920	23530	31330	46860	39241	11185	21281	20585	71792	43940	25740	34590	24940	21940	13080	9340	28280	26345	31170	11566	42020	20078	39540	27400	31350	Si
33.8																									V
							1.574																		Zn

Table B.2: PTE concentrations (s.e.m.) in F antipyretica from the Bussento river. Units are in μg g⁻¹ d.w., unless otherwise specified.

Zn	0.037	0.220	0.131	0.080	0.026	0.092	0.117	0.067	0.195	3.55	0.828	0.154	2.77	3.87	5.09	2.99	1.06	0.050	0.195	0.211	3.66	3.82	1.96	2.05	4.73
>	0.633	86.6	4.28	1.13	0.682	1.88	4.84	1.35	0.253	1.16	269.0	3.76	626.0	5.27	3.37	4.92	1.75	1.84	0.469	2.27	1.13	4.69	2.28	0.880	5.69
Si	1090	0206	2610	247	2210	528	3150	661	1870	1200	1880	2300	1340	3070	4000	4160	416	646	788	523	268	4460	3060	3580	5950
S	40.8	78.4	41.5	42.2	19.2	34.7	26.2	29.3	45.5	45.3	37.6	102	51.4	27.2	41.4	47.1	20.5	35.7	14.7	66.2	32.6	35.7	13.1	69.1	56.1
Pb	< LOD >	< LOD	< LOD	< LOD	< LOD >	< LOD	< LOD	< LOD	< LOD	0.125	< LOD	0.016	0.056	0.490	0.437	0.472	0.205	< LOD	< LOD	< LOD	0.102	0.501	0.211	0.100	0.336
Ь	48.3	103	29.6	152	41.8	84.6	40.7	42.9	156	51.1	98.5	239	239	108	70.5	210	16.8	62.9	38.6	180	169	169	127	149	434
ï	0.076	2.35	0.889	0.376	0.244	0.633	1.26	0.302	0.574	2.42	1.43	0.639	1.31	4.94	3.81	3.60	1.60	0.560	1.66	1.03	2.14	2.77	3.40	1.73	8.55
Na	0.443	18.7	8.43	0.864	1.07	2.28	3.18	1.61	3.37	7.45	6.80	4.35	19.6	85.3	80.9	77.8	2.35	0.723	1.11	1.44	27.9	93.5	30.7	17.0	25.8
Mn	2.10	75.5	13.3	27.7	43.2	63.8	41.9	10.5	162	240	28.7	72.0	514	93.8	142	45.8	30.2	110	276	140	231	85.1	37.6	88.3	232
Mg	52.3	350	154	112	26.2	133	144	34.0	6.99	179	26.5	192	191	554	419	367	41.8	73.0	32.6	9.98	127	320	146	189	174
Ж	83.9	824	349	524	54.1	467	523	148	251	131	179	443	518	802	989	476	195	317	120	287	244	520	304	394	800
Fe	42.9	518	181	27.7	34.0	92.7	256	44.8	23.6	243	16.3	252	167	1230	1060	1030	119	61.0	17.7	44.4	200	1220	491	190	426
Cu	0.033	1.81	0.447	0.134	0.093	0.244	0.955	0.290	0.853	0.682	0.381	1.34	1.19	3.43	2.16	1.18	0.506	0.238	0.329	0.534	1.55	1.34	1.12	0.656	1.77
Cr	0.194	1.46	0.508	0.052	0.129	0.226	0.717	0.163	0.052	0.317	0.068	0.569	0.206	1.19	1.11	1.20	0.520	0.188	0.071	0.154	0.258	1.34	0.535	0.257	0.862
Co	0.015	0.520	0.190	0.026	0.037	0.072	0.211	0.045	920.0	0.181	0.049	0.200	0.197	0.258	0.262	0.294	0.060	0.061	0.223	0.163	0.190	0.304	0.138	0.101	0.313
Cd	0.026	0.144	0.030	0.019	0.049	0.026	0.029	0.021	0.038	0.044	860.0	0.061	0.067	0.063	0.109	0.132	860.0	0.020	0.013	0.023	0.090	0.122	0.090	0.153	0.475
Ca	251	1810	451	125	295	288	1250	191	105	1180	393	603	455	3350	3440	875	451	204	189	192	1070	1820	3260	1380	2420
As	600.0	0.128	0.036	0.012	0.044	0.011	0.043	0.011	0.038	0.026	0.054	0.048	0.031	0.053	0.064	0.092	0.075	0.010	0.010	0.012	0.033	0.081	0.056	0.073	0.229
Al	61.5	2730	1010	306	212	486	1570	501	186	892	5.13	1180	425	2660	2370	2890	1910	450	106	172	944	2070	1090	730	1230
Site	B.02	B.04	B.06	B.07	B.08	B.10	B.11	B.12	B.13	B.14	B.15	B.16	B.17	B.18	B.19	B.20	B.21	B.22	B.23	B.24	B.25	B.26	B.27	B.28	B.29

Table B.3: PTE concentrations (mean) in *F. antipyretica* from the Calore Salernitano river. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

C.20	C.19	C.15	C.14	C.13	C.12	C.11	C.10	C.09	C.08	C.07	C.06	C.05	C.04	C.03	C.01	Site
3867	5980	8350	128.8	663	1240	38.68	282	2061	4279	4360	75.9	625	1045	6263	17.97	Al
0.057	0.18	0.153	0.041	0.112	0.12	0.052	0.017	0.038	0.065	0.115	0.033	0.033	0.061	0.165	0.032	As
4266	7702	6983	2110	2484	2958	2956	2298	2681	4206	4790	1451	2765	3491	5787	1525	Ca
0.515	0.777	1.381	0.664	0.954	0.83	0.611	0.425	0.52	0.97	0.643	1.047	0.442	0.502	1.472	0.439	Cd
2.563	3.047	2.995	0.73	0.943	1.14	0.374	0.578	1.04	1.943	1.926	0.478	0.829	1.259	2.74	0.556	Со
7.894	18.32	17.82	2.063	3.283	5.057	1.597	2.007	2.144	9.277	11.41	0.816	3.34	5.81	12.35	1.569	Cr
6.687	10.166	8.884	4.1	4.355	5.526	1.683	4.362	5.548	5.774	6.034	1.511	4.211	5.273	7.991	1.26	Cu
5513	2548	2905.8	846.9	1788	1304	258.1	497.1	2449.4	4276	1074.6	569.4	1501	2167	3394	623	Fe
5725	7285	8510	4472	5615	4176	2031.3	3381	4959	7537	4196	3173	3611	3527	8643	2594	×
961.6	2219	1743	256.8	557.4	578.2	217.3	216.3	408.3	1363.4	1409	111.4	488	507.7	1962	177	$_{ m Mg}$
1882.9	871.8	992	344.3	628.7	447.8	91.7	174.5	836.7	1462	369.2	248.7	518.9	743.2	1261.4	236.4	Mn
< LOD	37.8	22.3	<lod< td=""><td><lod< td=""><td>2.9</td><td><lod< td=""><td><lod< td=""><td>2.2</td><td><lod< td=""><td>2.02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.11</td><td><lod< td=""><td>Na</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.9</td><td><lod< td=""><td><lod< td=""><td>2.2</td><td><lod< td=""><td>2.02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.11</td><td><lod< td=""><td>Na</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.9	<lod< td=""><td><lod< td=""><td>2.2</td><td><lod< td=""><td>2.02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.11</td><td><lod< td=""><td>Na</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2.2</td><td><lod< td=""><td>2.02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.11</td><td><lod< td=""><td>Na</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.2	<lod< td=""><td>2.02</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22.11</td><td><lod< td=""><td>Na</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2.02	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22.11</td><td><lod< td=""><td>Na</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22.11</td><td><lod< td=""><td>Na</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>22.11</td><td><lod< td=""><td>Na</td></lod<></td></lod<>	22.11	<lod< td=""><td>Na</td></lod<>	Na
25.23	28.24	32.09	14.418	20.4	19.259	7.411	11.16	14.746	29.07	21.56	8.727	8.6	9.57	45.12	10.25	N _i
1112.6	777.9	1631.3	994.3	1593.6	797.2	378.2	691.3	1259.2	1314.3	398.5	766.9	426.4	622.7	2132.6	339.4	P
< LOD	<lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>Pb</td></lod<></td></lod<>	<lod< td=""><td>Pb</td></lod<>	Pb
874.9	873.9	1551.3	890.4	1207.6	958	489.7	832.6	1409.1	1117.7	539.8	723.7	396.8	630.3	1832	606.6	S
22610	46190	40320	14920	25557	31088	16600	14550	13330	22710	31370	9424	16900	20840	32740	10728	Si
16.651	37.51	43.95	13.29	15.11	19.83	7.281	13.46	11.504	23.694	29.51	7.537	10.43	15.55	35.87	9.625	V
10.389	18.597	18.73	10.586	12.589	15.253	7.09	11.3	13.799	16.172	12.86	2.374	7.267	9.244	26.49	0.598	Zn

Table B.4: PTE concentrations (s.e.m.) in F. antipyretica from the Calore Salernitano river. Units are in μg g⁻¹ d.w., unless otherwise specified.

1	Zn	0.598	2.39	0.955	0.997	0.962	1.71	0.405	0.460	1.03	0.397	0.957	0.500	0.754	1.66	0.830	0.756
	Λ	0.421	1.20	2.02	2.06	0.339	4.66	0.360	0.893	1.30	0.518	1.16	1.08	1.07	4.67	1.46	0.846
	Si	069	6170	3340	3080	532	4850	1250	1070	1860	1510	552	905	1700	8150	2230	1100
	S	27.3	39.3	27.6	23.3	63.4	17.1	99.5	30.3	40.7	37.5	2.99	30.9	68.5	28.4	27.4	9.79
0 0	Чd	< LOD >	< LOD														
-	Ь	35.7	45.7	27.4	13.7	56.1	17.6	30.0	90.5	35.2	40.5	88.7	50.3	78.2	85.9	70.4	47.1
	Ni	0.647	1.15	1.82	1.82	0.597	2.67	2.15	0.405	1.02	0.487	0.815	1.36	0.898	3.17	1.49	1.08
	Na	< LOD	3.90	< LOD	< LOD	< LOD	1.53	< LOD	1.46	< LOD	< LOD	1.19	< LOD	< LOD	5.01	9.64	< LOD
	Mn	15.0	57.4	99.3	95.8	15.0	15.4	176	23.4	11.9	11.0	49.9	73.7	30.3	31.8	71.7	84.5
	Mg	29.9	128	89.2	108	42.0	301	48.3	44.9	40.8	26.0	83.3	51.1	43.4	193	133	57.7
	K	158	186	200	569	301	534	363	229	117	69.2	161	149	249	318	322	282
	Fe	42.7	169	292	282	76.2	45.0	516	9.89	34.7	32.9	148	202	94.8	93.3	210	248
	Cu	0.176	0.274	0.662	0.705	0.170	0.794	0.290	0.375	0.384	0.182	0.321	0.124	0.568	0.909	0.464	0.314
	Cr	0.152	1.22	1.32	1.04	0.232	2.90	0.436	0.202	0.424	0.303	0.541	0.357	0.508	2.98	1.29	0.800
,	Co	0.043	0.209	0.173	0.173	0.029	0.301	0.064	0.041	0.054	0.038	0.086	0.083	0.040	0.349	0.215	0.124
,	Сд	0.037	0.156	0.063	0.068	0.058	0.039	0.053	0.021	0.040	0.035	0.025	0.031	990.0	0.210	0.033	0.022
	Ca	240	202	449	239	199	702	195	145	209	183	119	153	569	793	308	463
	As	0.004	0.034	0.023	0.015	0.008	0.023	0.007	0.007	0.009	0.011	0.004	0.008	0.008	0.043	0.000	90000
	Al	2.72	647	413	295	37.0	1430	208	896	104	7.07	241	182	43.0	1620	1460	333
	Site	C.01	C.03	C.04	C.05	C.06	C.07	C.08	C.09	C.10	C.11	C.12	C.13	C.14	C.15	C.19	C:20

Table B.5: PTE concentrations (mean) in *Ch. gynnophylla* from the Bussento river. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

B.29	B.28	B.27	B.26	B.25	B.24	B.23	B.22	B.21	B.20	B.19	B.18	B.17	B.16	B.15	B.14	B.13	B.12	B.11	B.10	B.08	B.07	B.06	B.04	B.02	Site
14.71	4920	130.3	3570	78.7	3.066	15.54	408	36320	349.1	3260	5580	268	12.73	28	1533	39.4	69.1	5610	12.94	332.2	95.8	1148	1777	1055	AI
0.071	0.247	0.139	0.683	0.175	0.11	0.116	0.147	0.888	0.169	0.159	0.335	0.142	0.175	0.06	0.295	0.116	0.154	0.309	0.108	0.322	0.108	0.265	0.332	0.391	As
9463	16870	12720	18060	10570	6495	7229	10545	36200	14398	16310	19060	9330	7940	6230	12060	10873	8757	17020	6528	13235	8280	10750	12199	15048	Ca
0.179	0.298	0.262	0.263	0.321	0.153	0.203	0.225	0.825	0.284	0.228	0.357	0.221	0.256	0.128	0.244	0.196	0.14	0.386	0.21	0.285	0.187	0.254	0.356	0.288	Cd
0.361	1.793	0.889	1.437	0.659	0.154	0.288	0.798	7	1.011	1.807	2.244	0.639	0.356	0.095	1.168	0.431	0.326	2.121	0.256	0.916	0.672	0.866	1.629	1.498	Co
0.386	3.153	1.194	2.675	0.695	0.129	0.261	0.995	12.87	1.302	1.752	4.225	0.54	0.299	0.035	1.589	0.482	0.354	3.865	0.15	1.516	0.617	1.033	2.042	2.317	Ç
1.345	5.173	3.51	4.309	2.101	0.725	1.433	2.179	11.65	4.33	3.964	5.632	2.027	5.377	0.506	1.158	2.591	1.299	5.013	1.461	2.477	1.822	2.25	3.7	2.995	Cu
117.6	1572	521.1	1167	313.1	28.16	74.8	460	8660	590.7	1007	2017	257.6	76.28	10.93	828	152.6	95.4	2014	43.81	592.5	268.2	505	983.7	1170.6	Fe
17339	20930	13819	17050	22670	5648	4004	15490	27060	13129	19956	15652	18800	1237	8998	19458	15910	6194	22965	10650	7175	12780	7224	9859	3500	×
708.6	2866	1140.4	1420.7	1482	479.9	281.2	1440	7229	1226	1405	3026	1234	338.1	474	2457	988	550	3660	548	1164	895.7	1255	2243	1657	Mg
77.4	358.2	128.51	429.4	138.41	41.979	54	519.8	929	234.12	311.1	303.2	923	133.1	32.18	242	111.25	83.5	263.9	89.67	225.95	355.7	210.2	359.9	268.2	Mn
270	584.5	166.05	395.2	872	96.4	51.98	254.4	842.6	201.8	395.8	433.8	463.4	94.33	231.7	553.4	503	133.06	576.8	197.4	176.1	183.8	210.3	765.3	205.3	Na
3.466	8.4	10.426	8.79	3.396	1.541	6.288	9.209	51.5	6.32	8.49	16.23	3.75	3.234	2.754	6.69	4.937	3.74	20.88	5.454	12.538	7.263	5.37	9.766	7.672	Z.
595.6	833.6	576.8	1005.3	1354	359.4	526.6	680.2	2141	450.9	901.6	894	1192	1042.8	405.9	1053.8	1093	817.6	1971.6	694.3	966.7	586.6	532.9	800	549.2	P
0.301	0.015	0.102	0.553	0.138	0.004	< LOI	0.045	< LOI	0.089	0.595	< LOI	0.046	0.019	0.285	0.621	0.148	0.006	< LOI	0.011	< LOI	0.036	< LOI	< LOI	0.004	Pb
						_		_			_							_		_		_	_	1428.6	s
6958																								58160	ī.
3.453) 17.137	<
3 11.483							9 16.72																		Zn

Table B.6: PTE concentrations (s.e.m.) in Ch. gymnophylla from the Bussento river. Units are in $\mu g g^{-1} d.w.$, unless otherwise specified.

Zn	1.09	1.24	2.67	0.706	0.551	0.298	1.97	94.1	1.66	3.91	0.388	0.954	2.83	2.63	5.63	2.46	7.80	1.36	1.82	0.674	0.563	8.79	1.86	3.55	0.795
^	0.650	0.455	2.87	0.356	0.458	0.164	3.28	0.372	0.541	2.71	0.056	0.241	1.26	3.47	3.31	0.727	16.8	1.85	0.711	0.226	0.923	3.24	0.835	3.87	0.360
Si	1570	1100	6820	1410	2200	174	5110	460	3540	5820	283	311	1120	5750	7240	1330	24000	1350	2070	953	3520	6540	948	0269	931
s	26.6	74.8	46.3	103	35.4	85.6	37.1	149	569	51.2	151	84.9	195	56.4	44.4	61.0	430	74.5	86.4	36.8	41.6	280	9.08	27.3	141
Pb	0.004	< LOD >	< LOD >	0.024	< LOD >	0.007	< LOD >	900.0	0.080	0.110	0.145	0.012	0.028	< LOD >	0.475	0.029	< LOD	0.045	< LOD	0.004	0.076	0.365	0.022	0.011	960.0
Ъ	20.1	14.9	17.5	20.6	26.2	30.0	51.2	91.5	119	18.4	36.3	93.0	103	25.1	57.9	18.0	192	38.8	24.2	22.5	130	28.9	12.7	75.4	46.0
ïZ	0.455	0.255	1.13	0.360	0.300	0.199	1.93	0.212	0.141	1.01	0.183	0.235	0.420	1.56	2.24	0.244	7.63	0.732	0.325	0.184	0.381	1.66	0.390	1.46	0.262
Na	31.4	20.4	35.6	19.0	15.0	24.1	16.3	5.43	107	16.1	31.2	4.25	42.1	35.3	36.3	15.4	20.1	39.8	5.21	12.5	109	32.8	6.82	64.2	32.0
Mn	15.7	20.6	27.4	58.8	6.42	3.41	23.9	11.5	8.39	13.9	4.36	13.4	215	38.6	56.9	9.51	143	91.3	1.83	0.988	5.29	83.2	3.87	53.2	6.25
Mg	100	106	333	94.6	101	44.2	253	38.0	109	471	50.8	11.4	208	444	261	128	640	327	0.99	35.8	112	49.3	82.4	432	51.3
Ж	54.0	197	466	1020	206	1140	372	179	3810	871	824	125	1750	226	260	809	1240	1790	880	289	1180	1820	366	1320	206
Fe	81.2	47.6	217	20.8	40.7	4.04	339	15.6	19.7	255	2.32	2.82	95.1	356	314	70.7	1890	128	19.1	2.28	9.99	332	57.4	372	15.7
Cu	0.107	0.040	0.477	0.086	0.058	0.063	0.437	0.072	0.176	0.382	0.109	0.503	0.286	0.689	0.959	2.09	1.68	0.219	0.149	0.115	0.309	0.865	0.249	0.880	0.082
Cr	0.064	0.098	0.377	0.068	0.097	0.020	0.703	0.032	0.064	0.504	0.016	0.013	0.113	0.731	0.637	0.144	2.64	0.214	0.048	0.019	960.0	0.791	0.124	0.711	0.054
Co	0.043	0.027	0.245	0.026	0.032	0.012	0.266	0.020	0.025	0.169	0.008	0.012	0.124	0.313	969.0	0.065	1.47	0.123	0.029	0.018	690.0	0.293	090.0	0.352	0.025
Cd	0.031	0.015	0.027	0.021	0.020	0.009	0.026	0.013	0.013	0.019	0.013	0.012	0.017	0.017	0.029	0.016	0.056	0.024	0.018	0.021	0.033	0.025	0.014	0.028	0.018
Са	640	247	1040	1750	427	497	2450	236	407	1050	1450	463	1160	1660	3340	602	1160	364	382	474	1060	2500	260	1590	209
As	0.005	0.024	0.039	0.008	0.017	0.008	0.029	0.008	0.023	0.032	0.020	0.010	0.016	0.032	0.037	0.007	0.137	0.012	0.012	0.013	0.025	0.298	0.008	0.042	0.004
Al	216	342	561	17.4	44.7	8.60	1330	12.8	13.2	202	9.42	4.90	121	1470	1410	70.1	8850	166	2.51	0.542	39.1	1530	56.6	1280	3.45
Site		B.04																							

Table B.7: PTE concentrations (mean) in Ch. gymnophylla from the Calore Salernitano river. Units are in $\mu g g^{-1} d.w.$, unless otherwise specified.

C.20	C.19	C.15	C.14	C.13	C.12	C.11	C.10	C.09	C.08	C.07	C.06	C.05	C.04	C.03	C.01	Site
3090	8487	1387	28.59	8.1	24.02	34.37	41.3	5.67	15.95	6960	10.34	148.9	312	2620	14.53	Al
10.114	11.244	11.31	3.084	4.558	5.212	5.805	3.89	3.981	4.322	8.58	1.725	5.155	4.662	14.18	3.739	As
15814	19675	12650	9747	8885	9472	10710	9113	8513	12099	17065	7450	13382	14550	17380	9832	Ca
0.45	0.364	0.838	0.284	0.408	0.242	0.244	0.21	0.224	0.354	0.342	0.46	0.273	0.246	0.914	0.179	Cd
2.57	4.476	1.467	0.65	0.596	0.792	0.795	0.512	0.579	0.895	3.112	0.215	1.065	1.434	1.886	0.518	Со
4.091	9.202	2.193	0.774	0.601	0.69	1.05	0.493	0.443	1.33	6.757	0.074	1.421	2.215	3.11	0.585	Cr
9.35	11.823	5.988	5.013	4.337	3.784	3.882	3.494	4.441	5.139	9.288	1.158	5.145	7.491	6.58	2.817	Cu
3292	7492	1421	416.3	309.9	470	638.9	333	226.9	715	4730	91.6	993	1470	2309	324.7	Fe
14777	7559	9021	7508	12937	6547	2311	6738	12444	9193	5778	4168	7153	3582	20920	2934	×
2247	3290.6	1050	436	716.9	533	473.2	503.1	635	906.1	2716	232.9	959.7	954	2601	485.2	Mg
447.9	611.8	199.3	139.6	191.33	215.2	107.08	123.5	290.4	183.8	146.5	74.09	363.8	567.5	201.8	167.51	Mn
1196.4	1039.4	414.5	291.1	461.3	379.2	421.6	277.5	578.6	397.9	529.5	150.6	458	292.2	1111.4	261.5	Na
9.999	15.413	9.67	5.606	5.956	5.176	5.198	3.722	3.063	7.721	13.89	2.17	5.663	7.033	14.2	5.999	Z.
1034.7	743.3	1347	717.2	1170.5	745.2	631.6	570.6	803.4	1462.1	521.4	658.8	507.4	557.1	2634	424.1	P
< LOD	<lod< td=""><td>0.032</td><td>0.3</td><td>1.02</td><td>0.212</td><td>0.156</td><td>0.342</td><td>0.059</td><td>0.377</td><td><lod< td=""><td>0.115</td><td><lod< td=""><td><lod< td=""><td>0.096</td><td>0.24</td><td>Рь</td></lod<></td></lod<></td></lod<></td></lod<>	0.032	0.3	1.02	0.212	0.156	0.342	0.059	0.377	<lod< td=""><td>0.115</td><td><lod< td=""><td><lod< td=""><td>0.096</td><td>0.24</td><td>Рь</td></lod<></td></lod<></td></lod<>	0.115	<lod< td=""><td><lod< td=""><td>0.096</td><td>0.24</td><td>Рь</td></lod<></td></lod<>	<lod< td=""><td>0.096</td><td>0.24</td><td>Рь</td></lod<>	0.096	0.24	Рь
3846.5	1322.6	2701.4	1516	2362.1	1731	1411.4	1588	2391.4	3189	1348.5	1244.2	2151.7	1722.1	3899.2	1459.4	Pb S Si
66470	66880	57200	14810	19940	22766	27910	17230	16110	23290	49700	8090	29030	28430	66140	17381	Si
16.44	31.761	14.59	5.91	4.325	5.775	6.728	4.25	3.222	7.33	29.61	1.548	7.81	10.01	13.18	4.819	Si V
27.82				15.141												Zn

Table B.8: PTE concentrations (s.e.m.) in Ch. Symmophylla from the Calore Salernitano river. Units are in μg g⁻¹ d.w., unless otherwise specified.

V Zn	.363 0.722															2.5.1 1.86 1.85 0.155 0.685 2.86 3.21 1.03 1.87 0.474 1.32 1.15 1.24 0.602 1.68 0.320 0.723 0.836 0.01 0.836 1.01 0.633 1.08
Si	355 0.3	3600 3.		_												
S		7														45.4 38 41.8 35 51.8 11 14.3 43 111 15 76.7 10 10.9 16 60.9 16 58.5 77 23.6 21 128 4:
Pb	•															
7			٧		v	•	· · ·	V V	, ,	• •	v	V	v	v	V	COOPERATE OF COOPE
<u>,</u>	7	9 175	7												. 4.77.64 \$2 69 64 69 77 69 77 77	
Z	0.370		Ŭ		Ū	0 0										0.821 0.113 1.08 0.834 0.456 0.637 0.370 0.232 0.2468 0.468 0.567 0.567
Na	.,	.,					., .		.,			., ., ., ., ., .,				125 28.7 28.7 94.6 12.3 10.5 30.9 30.9 20.3 21.9 46.9 55.5
MIN																
Mg	32.5	591	191	1	0./8	87.0 22.5	22.5 29.1	22.5 29.1 29.1 77.6	87.0 22.5 291 77.6 31.3	87.0 22.5 291 291 77.6 31.3 33.5	87.0 22.5 22.5 29.1 77.6 31.3 33.5 34.3	87.0 22.5 22.5 29.1 77.6 31.3 33.5 33.5 34.3	87.0 22.5 22.5 29.1 77.6 31.3 33.5 33.5 34.3 56.1	87.0 22.5 22.5 29.1 77.6 31.3 33.5 33.5 34.3 56.1 21.1	87.0 22.5 291 291 77.6 33.3 34.3 34.3 56.1 41.9	87.0 22.5 291 291 77.6 31.3 33.5 34.3 34.3 56.1 41.9 190 73.7
4	181	1380	313	429	j	376	376 325	376 325 379	376 325 379 335	376 325 379 335 551	376 325 379 335 551 119	325 325 379 335 551 119 203	376 325 379 335 551 119 203 711	376 325 379 335 551 119 203 711 898	325 325 325 335 335 551 119 203 711 898	376 376 379 379 335 351 119 203 711 898 666
ьe	32.7	874	410	292		10.2	10.2	10.2 675 155	10.2 675 155 38.0	10.2 675 155 38.0 111	10.2 675 155 38.0 111 84.3	10.2 675 155 38.0 111 84.3 55.5	10.2 675 155 38.0 111 84.3 55.5 88.0	10.2 675 155 38.0 111 84.3 55.5 88.0	675 155 38.0 111 84.3 55.5 88.0 79.7 348	675 675 155 38.0 111 84.3 55.5 88.0 79.7 348
, נ	0.231	0.821	0.808	0.510		0.076	0.076	0.076 0.868 0.357	0.076 0.868 0.357 0.445	0.076 0.868 0.357 0.445 0.604	0.076 0.868 0.357 0.445 0.604	0.076 0.868 0.357 0.445 0.604 0.191	0.076 0.868 0.357 0.445 0.604 0.191 0.199 0.590	0.076 0.868 0.357 0.445 0.604 0.191 0.199 0.590 0.5410	0.076 0.868 0.357 0.445 0.191 0.199 0.590 0.410	0.076 0.868 0.357 0.445 0.604 0.191 0.199 0.590 0.590 0.777
ל	0.070	1.18	0.506	0.440		0.038	0.038	0.038 0.838 0.266	0.038 0.838 0.266 0.076	0.038 0.838 0.266 0.076 0.167	0.038 0.838 0.266 0.076 0.167 0.127	0.038 0.838 0.266 0.076 0.167 0.127	0.038 0.838 0.266 0.076 0.167 0.127 0.108	0.038 0.838 0.266 0.076 0.167 0.127 0.108	0.038 0.838 0.266 0.076 0.167 0.108 0.162 0.162	0.038 0.838 0.266 0.076 0.167 0.108 0.162 0.162 0.162
၅	0.031	0.611	0.241	0.222		0.013	0.013	0.013 0.317 0.109	0.013 0.317 0.109 0.065	0.013 0.317 0.109 0.065 0.106	0.013 0.317 0.109 0.065 0.106 0.053	0.013 0.317 0.109 0.065 0.106 0.053	0.013 0.317 0.109 0.065 0.106 0.053 0.040	0.013 0.317 0.109 0.065 0.106 0.053 0.040 0.088	0.013 0.317 0.109 0.065 0.106 0.053 0.040 0.088 0.070	0.013 0.317 0.109 0.065 0.053 0.040 0.088 0.070 0.255
5	0.012	0.198	0.018	0.022		0.024	0.024	0.024 0.015 0.027	0.024 0.015 0.027 0.019	0.024 0.015 0.027 0.019 0.015	0.024 0.015 0.027 0.019 0.015	0.024 0.015 0.027 0.019 0.015 0.006	0.024 0.015 0.027 0.019 0.015 0.006	0.024 0.015 0.027 0.019 0.015 0.006 0.012	0.024 0.015 0.027 0.019 0.015 0.006 0.012 0.022	0.024 0.015 0.027 0.019 0.015 0.012 0.006 0.022 0.0097
Ca	548	3160	1560	976		534	534	534 983 978	534 983 978 657	534 983 978 657 966	534 983 978 657 709	534 983 978 657 709 426	534 983 978 657 966 709 426 685	534 983 978 657 709 426 685 350	534 983 978 657 966 709 426 685 350	534 983 978 657 966 709 426 685 350 1020
As	0.150	4.30	0.515	0.523		0.235	0.235	0.235 0.674 0.341	0.235 0.674 0.341 0.180	0.235 0.674 0.341 0.180 0.403	0.235 0.674 0.341 0.180 0.403	0.235 0.674 0.341 0.180 0.403 0.259 0.103	0.235 0.674 0.341 0.180 0.403 0.259 0.103	0.235 0.674 0.341 0.180 0.403 0.259 0.103 0.380	0.235 0.674 0.341 0.180 0.403 0.259 0.103 0.380 0.100	0.235 0.674 0.341 0.180 0.403 0.259 0.103 0.380 0.100 1.66
A	5.75	1170	150	9.89		7.58	7.58	7.58 1530 4.14	7.58 1530 4.14 1.25	7.58 1530 4.14 1.25 19.5	7.58 1530 4.14 1.25 19.5 6.84	7.58 1530 4.14 1.25 19.5 6.84	7.58 1530 4.14 1.25 19.5 6.84 6.16	7.58 1530 4.14 1.25 19.5 6.84 6.16 2.75 5.38	7.58 1530 4.14 1.25 19.5 6.16 6.16 2.75 5.38	7.58 1530 4.14 1.25 19.5 6.84 6.16 2.75 5.38 684 684
Site	C.01	C.03	C.04	C.05		C.06	C.06 C.07	C.06 C.07 C.08	C.06 C.07 C.08	C.06 C.07 C.09 C.09	C.06 C.07 C.09 C.10 C.11	C.06 C.07 C.09 C.10 C.11	C.06 C.07 C.08 C.09 C.11 C.11 C.13	C.06 C.07 C.08 C.10 C.11 C.12 C.13	C.06 C.07 C.09 C.10 C.11 C.13 C.13	C.06 C.07 C.09 C.10 C.11 C.13 C.13 C.13 C.13

Appendix C

PTE concentrations in sediments

Table C.1: Total PTE concentrations (mean) in sediments from the Bussento and Calore Salernitano. Units are in $\mu g g^{-1}$ d.w., except for Al, Ca, Fe, Mg, expressed in

Site	A	As	Ca	Cd	Со	$C_{\mathbf{r}}$	Cu	Fe	×	$M_{ m g}$	Mn	Na	Z.	P	РЬ	S	Si	V	Zn
B.02	8.347	1.603	125	0.159	35.273	29.69	27.831	24.912	557.4	6.861	973	50.4	37.65	288.4	7.556	282.5	1498	22.545	82.21
B.08	6.595	1.264	182.9	0.223	32.49	28.73	29.74	23.95	913.9	13.54	703	77.3	33.13	279.9	16.84	611	743.3	22.383	80.2
B.11	8.493	1.596	146.8	0.274	46.86	41.35	38.01	31.72	1138	9.33	789	67.1	45.16	358.6	18.57	190.1	1412	34.14	103.89
B.15	5.427	1.403	239.5	0.276	23.555	26.63	19.378	16.907	1203.6	13.5	633.1	88.53	23.31	336	5.68	524.3	808.5	24.4	78.6
B.16	6.47	0.799	137.5	0.13	32.22	23.98	30.3	21.43	1063	12.467	1225	68.5	32.11	618	6.739	599	1836	21.39	79.9
B.18	5.016	1.01	102.53	0.131	23.07	17.34	19.15	14.892	516.7	6.628	594.4	91.5	24.89	266.4	7.225	559.4	1964	20.63	66.6
B.21	2.541	0.316	278.76	0.155	20.04	13.256	13.82	13.1	1228	41.23	837.2	107.19	23.71	202.4	5.88	142.8	541	22.867	40.31
B.22	3.754	1.193	221.5	0.167	22.05	17.62	15.48	15.35	1548.7	24.95	603	78.3	23.46	225.11	5.9	858	591.7	15.969	47.06
B.27	2.342	0.411	328.73	0.196	14.9	9.26	9.71	11.55	978.1	11.888	830	85.9	14.2	142.8	1.815	447.7	487.6	16.69	27.09
В.29	4.78	0.347	232.7	0.182	28.89	18.87	20.72	20.53	366	6.722	861	82.9	27	251.2	9.16	511	1089	22.37	67.02
C.01	6.232	0.553	84.15	0.102	26.508	25.44	24.33	18.235	438.7	4.435	1171.2	143.4	29.88	997.6	<lod< td=""><td>525.4</td><td>1888.1</td><td>19.602</td><td>70.12</td></lod<>	525.4	1888.1	19.602	70.12
C.03	6.772	0.703	119.8	0.277	29.88	29.64	26.21	21.56	443	5.61	960	118.3	37.05	1090.5	<lod< td=""><td>1239</td><td>1208</td><td>25.44</td><td>77.9</td></lod<>	1239	1208	25.44	77.9
C.06	3.115	0.656	73.9	0.293	25.36	17.26	10.16	15.8	291.7	2.217	734	176.9	23.85	938	<lod< td=""><td>77</td><td>1036</td><td>18.88</td><td>39.84</td></lod<>	77	1036	18.88	39.84
C.09	6.081	0.511	102.34	0.252	26.906	20.827	20.941	17.678	371	4.117	940.8	66.7	27.88	1016.3	<lod< td=""><td>263.18</td><td>990.4</td><td>19.159</td><td>68.74</td></lod<>	263.18	990.4	19.159	68.74
C.10	6.077	0.349	123.1	0.144	23.4	19.736	18.65	18.157	276.7	4.911	763.4	56.07	27.33	956.6	<lod< td=""><td>549</td><td>817</td><td>16.977</td><td>69.11</td></lod<>	549	817	16.977	69.11
C.15	3.645	0.695	213.57	0.299	16.793	19.448	12.598	12.343	322.9	7.616	701.3	110.4	22.79	1115	<lod< td=""><td>838</td><td>559.7</td><td>19.963</td><td>46.19</td></lod<>	838	559.7	19.963	46.19
C.16	4.024	16.5	228.1	0.477	38.1	24.37	15.02	16	496	32.2	734.6	290	52.5	1122.4	<lod< td=""><td>2436</td><td>675.2</td><td>16.22</td><td>47.34</td></lod<>	2436	675.2	16.22	47.34
C.17	2.924	0.295	302.41	0.333	10.46	10.18	7.389	8.472	157.1	5.63	762	65.78	13.85	899.2	<lod< td=""><td>470</td><td>385.5</td><td>12.19</td><td>65.6</td></lod<>	470	385.5	12.19	65.6

Table C.2: Total PTE concentrations (s.e.m.) in sediments from the Bussento and Calore Salernitano. Units are in μg g⁻¹ d.w., unless otherwise specified.

Zn	3.83	8.58	98.6	22.2	14.6	12.6	5.76	3.44	5.58	7.52	2.95	8.38	4.78	2.76	3.08	4.05	3.22	35.5
>	0.920	698.0	1.90	1.21	2.50	1.55	0.842	0.890	1.73	2.37	0.730	2.90	4.79	0.275	0.361	0.176	1.03	1.10
Si	199	68.5	311	20.2	344	113	34.9	52.9	82.5	173	50.9	135	225	84.9	228	12.5	69.1	38.3
S	29.5	109	40.1	64.7	128	43.3	16.3	390	51.2	131	39.6	824	5.69	8.60	160	27.8	999	161
Pb	0.370	0.883	2.83	1.29	0.689	0.276	2.42	1.35	0.662	4.89	< LOD							
Ь	15.8	17.8	63.8	10.9	181	15.3	45.0	8.25	14.6	27.9	19.1	36.0	61.1	12.2	27.8	40.8	90.1	28.4
z	1.81	1.62	3.24	1.45	86.9	0.845	2.49	3.26	1.58	3.04	1.07	4.63	4.22	0.797	1.34	0.787	10.9	1.93
Na	20.9	14.1	21.5	3.50	14.5	18.3	4.13	17.5	15.3	24.8	60.5	41.2	75.3	15.2	4.88	33.2	197	7.76
Mn	101	177	163	59.8	314	31.8	68.4	146	222	311	94.9	130	103	67.4	87.0	35.1	53.3	173
Mg	0.291	1.91	2.06	2.41	0.144	0.689	1.70	1.98	0.727	0.963	0.099	1.34	0.248	0.113	0.042	0.316	23.8	1.04
×	10.5	21.1	127	74.3	251	67.3	118	67.1	52.4	21.7	19.6	39.0	37.5	16.5	37.8	17.0	126	16.6
Fe	0.994	1.22	1.66	0.719	4.54	0.694	1.93	1.66	1.94	3.29	0.612	3.34	2.53	0.369	0.605	0.358	3.29	0.961
Cu	0.780	2.43	3.47	0.422	6.77	1.08	1.73	2.25	2.67	3.35	1.30	2.67	1.54	0.389	2.13	0.823	1.79	0.482
Cr	0.286	1.67	3.31	1.59	5.17	1.74	0.993	1.05	1.39	3.30	1.47	2.06	2.54	998.0	0.531	0.963	7.09	1.32
Co	0.732	1.73	2.36	0.957	5.57	1.48	2.00	2.21	2.65	3.35	989.0	4.21	4.76	928.0	1.09	0.437	13.8	1.20
Cd	0.008	0.027	0.041	0.012	0.008	0.012	0.011	0.005	0.014	0.033	0.013	0.052	0.045	0.081	0.009	0.016	0.208	0.066
Са	8.64	10.6	22.9	60.6	31.2	3.01	8:28	10.3	9:26	13.9	1.88	14.4	11.3	4.24	16.7	7.56	19.6	6.77
As	0.327	0.433	0.243	0.040	0.070	0.332	0.052	0.291	0.192	0.108	0.055	690.0	0.345	0.192	0.123	0.195	12.4	0.025
ΑΙ	0.317	0.366	0.995	0.323	1.43	0.355	0.204	0.229	0.279	1.03	0.332	0.754	0.371	0.128	0.130	0.176	0.631	0.330
Site	B.02	B.08	B.11	B.15	B.16	B.18	B.21	B.22	B.27	B.29	C.01	C.03	C.06	C.09	C.10	C.15	C.16	C.17

Table C.3: PTE concentrations (mean) in the exchangeable fraction in sediments from the Bussento and Calore Salernitano. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

0.039 < LOD 0 48.07 12.34	0.039 < LOD 0 48.07	0.039 < LOD 0	0.039 < LOD	0.039		~	19.99	96.7	323.19	20.09	11.28	0.026	0.033	0.139	0.064	68360	0.226	< LOD	C.17
41.7 17.6 < LOD 0 56.8 25.7	41.7 17.6 < LOD 0 56.8	41.7 17.6 < LOD 0	41.7 17.6 < LOD	41.7 17.6	41.7		95		23800	175	4.04	0.082	0.105	17.7	0.259	44930	3.18	1.29	C.16
28.93 0.299 < LOD 0 64.31 46	28.93 0.299 < LOD 0 64.31	28.93 0.299 < LOD 0	28.93 0.299 < LOD	28.93 0.299	28.93	•	60.89	_	407.08	67.48	4.19	0.118	0.027	0.409	0.079	72688	0.299	2.17	C.15
24.82 0.354 < LOD 0 57.84 40.1	24.82 0.354 < LOD 0 57.84	24.82 0.354 < LOD 0	24.82 0.354 < LOD	24.82 0.354	24.82		88.7	2	411.64	55.28	34.37	0.053	0.05	0.594	0.066	71403	0.26	3.92	C.10
5 20.49 0.361 < LOD 0 60.14 50.18	20.49 0.361 < LOD 0 60.14	20.49 0.361 < LOD 0	5 20.49 0.361 < LOD	20.49 0.361	20.49	٠.	.65	302	458.1	62.63	4.19	0.059	0.048	0.573	0.075	70190	0.282	0.752	C.09
88.8 0.498 5.4 <lod 30.22="" 85.1<="" td=""><td>88.8 0.498 5.4 < LOD 30.22</td><td>88.8 0.498 5.4 < LOD</td><td>88.8 0.498 5.4</td><td>88.8 0.498</td><td>88.8</td><td></td><td>.9</td><td>273</td><td>501.7</td><td>62.33</td><td>37.5</td><td>0.093</td><td>0.231</td><td>0.61</td><td>0.128</td><td>62390</td><td>0.155</td><td>13.94</td><td>C.06</td></lod>	88.8 0.498 5.4 < LOD 30.22	88.8 0.498 5.4 < LOD	88.8 0.498 5.4	88.8 0.498	88.8		.9	273	501.7	62.33	37.5	0.093	0.231	0.61	0.128	62390	0.155	13.94	C.06
26.68 1.044 < LOD 0 62.91 66.83	26.68 1.044 < LOD 0 62.91	26.68 1.044 < LOD 0	26.68 1.044 < LOD	26.68 1.044	26.68		5.6	40	460.8	61.91	9.8	0.111	0.065	0.985	0.098	64234	0.487	2.3	C.03
43.82 0.753 < LOD 0 44.47 79.8	43.82 0.753 < LOD 0 44.47	43.82 0.753 < LOD 0	43.82 0.753 < LOD	43.82 0.753	43.82		3.1	57	452.94	92.46	15.86	0.121	0.108	1.06	0.08	66992	0.553	10.02	C.01
5 25.69 0.234 1.276 0.149 54.08 112	5 25.69 0.234 1.276 0.149 54.08	5 25.69 0.234 1.276 0.149	5 25.69 0.234 1.276	5 25.69 0.234	25.69	٠.	9.15	119	666.9	84.78	2.561	0.053	0.003	0.225	0.058	86161	0.292	9.347	B.29
27.5 0.134 12.39 0.272 96.3 76	27.5 0.134 12.39 0.272 96.3	27.5 0.134 12.39 0.272	27.5 0.134 12.39	27.5 0.134	27.5		1.57	7	623.2	52.15	2.436	0.101	0.027	0.191	0.065	91040	0.392	7.596	B.27
7.27 0.377 2.793 0.396 67.98 63.68	7.27 0.377 2.793 0.396 67.98	7.27 0.377 2.793 0.396	7.27 0.377 2.793	7.27 0.377	7.27		88.3		1237.5	68.98	4.62	0.048	0.053	0.511	0.055	96340	0.472	5.352	B.22
19.06 0.842 5.93 0.293 45.22 112	19.06 0.842 5.93 0.293 45.22	19.06 0.842 5.93 0.293	19.06 0.842 5.93	19.06 0.842	19.06		51.6	26	1779	74.2	12.57	0.097	0.071	0.467	0.069	90820	0.316	21.2	B.21
7.96 0.452 2.309 0.355 71.16 119.81	7.96 0.452 2.309 0.355 71.16	7.96 0.452 2.309 0.355	7.96 0.452 2.309	7.96 0.452	7.96		2.8	26	1292	94.21	6.779	0.134	0.083	0.863	0.072	90820	0.489	12.84	B.18
17.25 0.667 19.7 0.544 47.841 116.84	17.25 0.667 19.7 0.544 47.841	17.25 0.667 19.7 0.544	17.25 0.667 19.7	17.25 0.667	17.25		1.7	42	2195	116.9	17.88	0.626	0.211	0.921	0.079	80000	0.631	12.67	B.16
6.99 0.142 2.433 0.391 57.12 85.37	6.99 0.142 2.433 0.391 57.12	6.99 0.142 2.433 0.391	6.99 0.142 2.433	6.99 0.142	6.99		37		601.3	73.05	<lod< td=""><td>0.064</td><td>0.034</td><td>0.313</td><td>0.061</td><td>91529.1</td><td>0.596</td><td>1.02</td><td>B.15</td></lod<>	0.064	0.034	0.313	0.061	91529.1	0.596	1.02	B.15
7.73 0.739 3.434 0.425 44.44 119.34	7.73 0.739 3.434 0.425 44.44	7.73 0.739 3.434 0.425	7.73 0.739 3.434	7.73 0.739	7.73		0.8	11	881.1	117.84	2.166	0.024	0.039	0.282	0.072	93550	0.548	7.155	B.11
7.25 0.211 1.749 0.418 57.33 69.19	7.25 0.211 1.749 0.418 57.33	7.25 0.211 1.749 0.418	7.25 0.211 1.749	7.25 0.211	7.25		54.4	1	887	64.1	8.71	0.082	0.066	0.438	0.054	99154	0.538	5.624	B.08
3.209 0.241 1.125	3.209 0.241 1.125 0.433 39.27	3.209 0.241 1.125 0.433	3.209 0.241 1.125	3.209 0.241	3.209		30.4	ယ	696.8	47.9	16.64	0.043	0.061	0.798	0.066	95050	0.566	3.82	B.02
Na Ni P Pb S Si	Na Ni P Pb S	Na Ni P Pb	Na Ni P	Na	Na		[<u>p</u>	Mn	Mg	×	Fe	Cu	Cr	Со	Cd	Ca	As	Al	Site
								ı											

Table C.4: PTE concentrations (s.e.m.) in the exchangeable fraction in sediments from the Bussento and Calore Salernitano. Units are in μ g g⁻¹ d.w., unless otherwise specified.

	ı																	
Zn	0.014	0.058	0.000	0.000	0.186	0.140	0.212	0.025	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.479	0.000
>	0.015	0.022	0.020	0.018	0.093	0.008	0.131	0.029	0.116	0.008	0.003	0.007	0.002	0.010	0.008	0.014	0.103	0.044
Si	3.06	4.68	7.31	2.15	8.87	3.27	20.0	1.92	17.6	13.2	10.0	8.29	13.1	1.12	7.78	5.48	13.6	2.96
s	2.55	1.85	7.90	1.54	0.699	4.79	8.48	4.23	39.1	2.82	3.12	4.97	3.91	4.25	8.27	3.11	28.9	6.05
Pb	0.050	0.014	0.031	0.015	0.015	0.004	0.032	0.037	0.084	0.037	0.000	0.000	< LOD >	0.000	0.000	0.000	0.000	0.000
۵	0.134	0.393	0.536	0.468	14.9	0.286	2.48	0.570	96.6	0.135	< LOD	< LOD	5.40	< LOD				
ï	0.023	0.072	0.173	0.037	0.061	0.058	0.238	0.110	0.071	0.014	0.016	0.048	0.116	0.004	0.083	0.015	17.3	0.020
Na	0.286	2.31	2.92	5.42	3.17	2.50	7.31	2.17	16.2	4.48	3.05	2.15	58.8	7.28	4.88	4.39	15.4	4.33
Mn	11.7	21.3	13.5	15.6	9.77	16.7	19.5	29.1	2.01	7.33	1.77	13.9	62.0	98.9	21.8	4.06	44.6	13.6
Mg	24.5	61.8	25.5	24.6	470	147	145	8.89	15.0	42.6	2.29	20.3	78.5	11.9	1.70	3.99	23400	9.26
¥	1.59	6.63	8.48	2.25	3.34	5.18	8.19	4.58	6.81	8.64	2.21	6.85	00.9	3.40	5.96	3.51	126	2.59
Fe	1.33	6.14	0.483	< LOD	1.59	0.852	6.32	2.91	0.483	0.524	3.40	1.21	19.8	2.13	82.9	1.06	1.63	1.81
Cu	0.017	0.023	0.003	0.013	0.222	0.007	0.027	0.015	0.067	0.014	0.012	0.020	0.040	0.009	0.015	0.009	0.082	0.004
ű	0.005	0.030	0.004	0.003	0.046	0.000	0.012	0.019	0.015	0.003	0.008	9000	0.079	0.002	0.007	9000	0.086	0.001
Co	0.041	0.038	0.030	0.037	0.085	0.038	0.230	0.058	0.033	0.021	0.022	0.041	0.093	0.029	0.071	0.014	17.3	0.015
Cd	0.004	0.002	9000	0.005	0.005	0.003	0.002	0.004	0.005	0.001	900.0	0.008	0.005	0.001	0.005	0.003	0.212	0.004
Ca	2300	921	1100	43.4	5170	1340	1150	1870	467	801	283	483	4060	3200	390	533	22500	1170
As	0.168	0.114	0.122	0.077	0.083	0.109	0.052	0.055	0.207	0.092	0.055	0.029	0.051	0.043	0.035	0.055	2.41	0.028
Al	1.41	0.466	0.646	0.510	4.74	1.80	10.3	0.972	0.376	0.660	5.12	1.25	6.97	0.752	2.53	1.16	1.29	< LOD
Site	B.02	B.08 0.466	B.11	B.15	B.16	B.18	B.21	B.22	B.27	B.29	C.01	C.03	C:06	C.09	C.10	C.15	C.16	C.17

otherwise specified. Table C.5: PTE concentrations (mean) in the fraction bound to Fe-Mn oxides in sediments from the Bussento and Calore Salernitano. Units are in $\mu g g^{-1}$ d.w., unless

				C.09														Site
14.69	12.92	25.69	243	376	462	219	781.7	23.75	20.26	0.009	24.64	076.9	1095	25.64	546	96.6	684.6	Al
0.069	0.03	0.091	< LOD	< LOD	0.427	< LOD	< LOD	0.055	0.019	< LOD	< LOD	< LOD	< LOD	0.203	0.017	< LOD	< LOD	As
120150	106330	108300	49200	30640	11160	51060	16370	133660	124070	78300	75540	11180	23270	126270	44560	73930	28220	Ca
0.182	0.172	0.159	0.062	0.144	0.16	0.142	0.017	0.119	0.092	0.038	0.086	0.006	<lod< td=""><td>0.12</td><td>0.104</td><td>0.069</td><td>0.031</td><td>Cd</td></lod<>	0.12	0.104	0.069	0.031	Cd
0.373	0.425	0.701	2.356	6.09	6.76	2.695	5.803	1.385	0.565	1.337	1.764	5.863	7.139	1.319	6.51	3.038	5.016	Co
0.529	0.342	0.335	0.77	0.885	1.342	0.658	1.95	< LOD	< LOD	< LOD	<lod< td=""><td>1.732</td><td>2.074</td><td><lod< td=""><td>0.564</td><td>< LOD</td><td>1.158</td><td>ť.</td></lod<></td></lod<>	1.732	2.074	<lod< td=""><td>0.564</td><td>< LOD</td><td>1.158</td><td>ť.</td></lod<>	0.564	< LOD	1.158	ť.
0.37	1.167	1.304	2.369	2.956	2.86	3.555	8.303	0.191	0	0	0.03	4.091	6.89	0.036	0.783	0.13	3.76	Cu
233	280.4	349.8	1055	1063	1208	1034	2368	241.6	117.44	434	279.6	2353.6	3069	434.9	691	733	1746	Fe
14.84	20.67	33.87	22.12	23.72	43.7	44.7	42.89	37.3	20.04	23.07	19.28	37.832	48.71	39.35	40.34	29.2	23.85	7
762.1	862	799.51	1155	585	352.8	754.3	928.9	1761	1255	5390	10250	2818	5751	2227	2355	5700	1506	Mg
219.7	238.8	309.9	388.8	528.3	301	432.6	513.9	543	477	281.5	459.2	253.2	618	392.9	511	411	530	Mn
2.299	3.07	6.12	1.67	4.58	51.3	5.25	2	46.9	28.01	21.73	24.45	20.19	20.13	27.38	12.97	25.42	15.04	Na
0.098	0.818	0.827	1.737	3.198	6.25	3.408	4.741	1.128	0.46	0.804	2.41	3.56	3.313	0.993	3.29	1.648	2.319	Z.
11.106	13.44	8.844	66.3	84	78.7	66.3	210.5	11	6.837	13.29	36.8	161	340	18.67	43.4	36.6	154	P
<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.185</td><td>0.088</td><td>0.095</td><td>0.024</td><td>5.328</td><td>3.799</td><td>0.298</td><td>3.02</td><td>1.368</td><td>5.209</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.185</td><td>0.088</td><td>0.095</td><td>0.024</td><td>5.328</td><td>3.799</td><td>0.298</td><td>3.02</td><td>1.368</td><td>5.209</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.185</td><td>0.088</td><td>0.095</td><td>0.024</td><td>5.328</td><td>3.799</td><td>0.298</td><td>3.02</td><td>1.368</td><td>5.209</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.185</td><td>0.088</td><td>0.095</td><td>0.024</td><td>5.328</td><td>3.799</td><td>0.298</td><td>3.02</td><td>1.368</td><td>5.209</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>0.185</td><td>0.088</td><td>0.095</td><td>0.024</td><td>5.328</td><td>3.799</td><td>0.298</td><td>3.02</td><td>1.368</td><td>5.209</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.185</td><td>0.088</td><td>0.095</td><td>0.024</td><td>5.328</td><td>3.799</td><td>0.298</td><td>3.02</td><td>1.368</td><td>5.209</td><td>Pb</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.185</td><td>0.088</td><td>0.095</td><td>0.024</td><td>5.328</td><td>3.799</td><td>0.298</td><td>3.02</td><td>1.368</td><td>5.209</td><td>Pb</td></lod<></td></lod<>	<lod< td=""><td>0.185</td><td>0.088</td><td>0.095</td><td>0.024</td><td>5.328</td><td>3.799</td><td>0.298</td><td>3.02</td><td>1.368</td><td>5.209</td><td>Pb</td></lod<>	0.185	0.088	0.095	0.024	5.328	3.799	0.298	3.02	1.368	5.209	Pb
106.12	97.6	89.08	56.7	34.45	7.13	31.26	17.85	86.95	77.19	50.12	34.04	18.92	20.65	77.72	14.73	53.43	22.12	s
31.72	61.2	79.3	172.5	209.4	381	264.8	578.8	154	54.33	85.47	89.81	754.9	749	151.4	302	158.5	410.9	Si
2.691	2.993	3.186	2.526	2.713	3.906	3.037	3.122	5.17	4.491	3.222	5.121	6.423	4.678	4.773	4.43	4.133	3.759	<
1.397	4.547	4.605	6.32	7.94	6.93	7.14	15.619	2.825	1.139	2.607	2.043	11.582	18.44	3.283	6.19	4.714	8.113	Zn

Table C.6: PTE concentrations (s.e.m.) in the fraction bound to Fe-Mn oxides in sediments from the Bussento and Calore Salernitano. Units are in μ g g⁻¹ d.w., unless otherwise specified.

		4	9	_	6	_	5	33	8	5	0	7		•	5	_	_	^	ç
	Zn	0.974	0.78	2.27	0.279	1.07	0.58	0.44	0.12	0.27	0.54	0.33	1.95	2.2	0.93	2.14	0.33	0.22	0.17
	Λ	0.156	0.338	0.922	0.125	0.367	0.091	0.454	0.153	0.726	0.755	0.215	0.319	0.807	0.174	0.054	0.096	0.101	0.096
	Si	75.3	27.6	133	14.4	135	11.2	9.49	5.68	7.29	22.6	24.4	90.2	148	47.0	59.8	10.5	10.8	3 57
	S	3.96	3.10	96.9	5.33	3.30	4.22	3.13	1.89	2.84	7.53	5.47	7.01	3.17	6.17	24.5	1.79	5.50	8 45
	Pb	0.372	0.171	1.78	0.057	0.335	0.210	0.019	0.038	0.034	0.038	< LOD	< LOD	< LOD	< LOD >	< LOD	< LOD	< LOD >	COI >
	Ъ	16.4	13.8	20.5	2.11	115	10.7	23.3	1.13	0.918	2.45	10.4	42.1	25.6	19.0	29.2	0.567	1.61	0.877
	Ni	0.155	0.227	1.60	0.086	0.356	0.143	0.156	0.188	0.234	0.433	0.331	0.335	2.32	0.320	0.729	0.058	0.082	060
	Na	4.14	2.21	1.59	1.44	3.51	4.78	2.73	0.847	4.34	22.2	1.01	5.25	23.9	4.58	1.67	1.65	1.73	0.635
	Mn	110	157	130	48.3	264	37.1	46.0	84.4	173	240	98.2	94.5	171	70.0	67.2	10.1	13.0	51.2
	Mg	350	1460	099	360	396	360	1090	264	100	391	8.92	70.2	71.2	106	142	9.26	29.7	27.7
	K	1.59	1.10	6.52	2.38	6.70	0.454	3.13	2.75	4.11	7.89	4.57	10.6	18.6	3.35	1.25	4.62	2.17	1.22
	Fe	200	136	304	68.5	423	43.7	59.0	8.44	4.47	32.7	162	296	273	154	257	20.3	28.8	22.5
	Cu	0.246	0.130	0.757	0.020	1.58	0.142	0.030	0.000	0.000	0.086	0.512	0.477	0.979	0.517	0.870	0.159	0.047	0.00
	Cr	0.021	< LOD >	0.417	< LOD >	0.220	0.072	< LOD >	< LOD >	< LOD >	< LOD >	0.136	0.342	0.155	0.173	0.255	0.011	0.016	0.064
	Co	0.844	0.711	2.09	0.107	0.687	0.258	0.303	0.317	0.133	0.300	0.174	0.552	1.99	1.34	0.689	0.068	0.009	0.045
	Cd	0.014	0.009	0.034	0.012	< LOD	900.0	0.010	0.007	0.013	0.030	0.005	0.043	0.049	920.0	0.009	0.011	0.030	0.015
	Ca	8070	9040	15200	10900	3920	2210	1440	2300	8230	8100	2020	11500	7230	2450	15900	1740	3620	5520
	As	< LOD	< LOD	0.016	0.203	< LOD	< LOD	< LOD	< LOD	0.019	0.055	< LOD	< LOD	0.427	< LOD	< LOD	0.012	0.013	0.035
	Al	15.4	29.2	361	3.58	128	30.9	2.88	0.461	4.51	3.64	42.1	173	122	111	125	5.93	1.88	293
e specifica.	Site Al	B.02	B.08	B.11	B.15	B.16	B.18	B.21	B.22	B.27	B.29	C.01	C.03	C.06	C:09	C.10	C.15	C.16	C.17

unless otherwise specified. Table C.7: PTE concentrations (mean) in the fraction bound to organic fraction in sediments from the Bussento and Calore Salernitano. Units are in $\mu g g^{-1} d.w.$

	229	290.9	363.4	512.2	283.5	644	C.01 760.1 < LOD	476.9	219.2	277.3	187.1	690.1	665	500.9	782	309.2	438	Site Al As
΄,) 682.83	Ū										Ca
880.0	0.045	0.061	0.015	0.033	0.005	0.037	0.005	0.005	0.039	0.074	<lod< td=""><td>0.053</td><td>0.05</td><td>0.095</td><td>0.098</td><td>0.1</td><td>0.063</td><td>Cd</td></lod<>	0.053	0.05	0.095	0.098	0.1	0.063	Cd
0.864	2.055	1.339	1.248	1.321	1.43	2.214	2.168	2.653	1.172	2.113	1.243	2.454	3.197	2.453	3.48	1.783	1.677	Co
1.201	1.804	1.93	1.477	1.856	2.193	2.473	2.523	1.626	1.259	2.156	1.661	1.968	2.288	3.065	3.146	2.002	1.4	Ů.
1.128	3.729	1.815	0.529	0.569	0.204	1.06	0.828	1.427	1.238	1.768	1.022	1.115	1.746	1.722	1.156	2.279	1.338	Cu
450.3	798	377.4	425	380.1	196.9	526.8	867	729	367.35	550.7	196.15	1044	1341	615.9	627	545.5	613.9	Fe
43.59	75	60.24	30.69	37.15	23.18	61.86	50.95	64.4	866.5	1345.8	1080	226.9	662	971.6	590	646.7	292.6	7
2777	4882	4313	559.7	519.2	290.6	1530	747.5	2218	9023	16510	28157	607.4	1930	8070	3270	3618	546.96	Mg
393.7	327.9	162.6	24.46	41.43	47.5	41	27.01	59.1	140.2	42.2	23.712	24.96	113.2	38.33	51.86	37.03	25.38	Mn
28.79	30.1	27.966	20.12	28.01	19.49	30.01	33.69	10.33	30.34	28.15	63.68	30.9	18.23	42.86	19.13	31.2	17.69	Na
0.455	3.126	1.378	2.804	3.284	2.97	4.173	5.074	1.984	0.505	1.325	0.982	4.164	3.42	1.579	3.325	1.746	2.761	Z.
714.9	608	739.3	454.8	491.5	508.1	513.4	368.2	53.9	49.02	75.25	77.2	12.92	54.6	139.4	29.5	66.42	7.53	P
<lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>2.08</td><td>0.88</td><td>3.079</td><td>0.909</td><td>1.467</td><td>1.838</td><td>3.865</td><td>3.88</td><td>4.358</td><td>1.913</td><td>Рь</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>2.08</td><td>0.88</td><td>3.079</td><td>0.909</td><td>1.467</td><td>1.838</td><td>3.865</td><td>3.88</td><td>4.358</td><td>1.913</td><td>Рь</td></lod<></td></lod<>	< LOD	< LOD	< LOD	< LOD	<lod< td=""><td>< LOD</td><td>2.08</td><td>0.88</td><td>3.079</td><td>0.909</td><td>1.467</td><td>1.838</td><td>3.865</td><td>3.88</td><td>4.358</td><td>1.913</td><td>Рь</td></lod<>	< LOD	2.08	0.88	3.079	0.909	1.467	1.838	3.865	3.88	4.358	1.913	Рь
316	2021	684.6	435	168.59	39.65	460	463.1	359	274.2	397.8	63.58	469.3	524	389.4	131	494	221.1	s
173	254.4	241.5	361	423.16	388.8	482.3	878.3	460	194.3	268.53	174.1	811.8	613	375.1	662	287.9	578.5	Si
2.571	2.873	3.423	2.285	3.224	3.049	5.065	4.38	1.738	2.031	1.724	6.243	2.264	1.813	5.201	5.291	3.206	2.216	<
32.4	5.141	7.74	4.514	4.346	2.355	3.853	5.474	1.711	0	0.767	0	2.539	2.28	1.455	2.47	0.655	4.12	Zn

Table C.8: PTE concentrations (s.e.m.) in the fraction bound to organic fraction in sediments from the Bussento and Calore Salernitano. Units are in μ g g⁻¹ d.w., unless otherwise specified.

_																			
	Zn	0.368	0.573	1.15	0.313	1.04	0.117	0.000	0.767	0.000	0.877	0.042	0.418	0.230	0.379	0.932	1.68	0.744	30.3
	Λ	0.482	0.551	0.582	0.317	0.336	0.248	0.345	0.702	0.496	0.703	0.246	0.620	0.808	0.147	0.437	0.136	0.453	0.077
	Si	43.5	39.2	180	10.2	144	75.1	19.1	9.23	26.2	119	53.8	29.1	51.3	5.24	118	12.7	11.7	34.3
	S	30.9	102	26.3	59.8	134	40.0	5.33	87.5	22.8	110	39.1	128	9.55	9.84	178	24.5	202	147
	Pb	0.056	0.223	1.27	0.286	0.260	0.018	0.082	0.079	0.363	0.760	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	Ъ	1.55	2.40	12.7	10.3	11.1	1.60	12.7	6.53	5.13	13.9	28.1	31.7	35.9	29.7	29.1	20.0	67.0	43.7
	Ni	0.107	0.515	0.760	0.000	1.27	0.208	0.028	0.278	0.100	0.553	0.323	0.126	0.195	0.082	0.655	0.129	0.897	0.128
	Na	4.93	11.8	4.53	9.21	3.03	6.31	5.73	2.59	3.82	1.69	7.38	2.56	3.10	5.06	4.28	0.845	2.45	3.82
	Mn	1.34	66.9	4.34	5.79	50.5	2.12	0.957	11.7	52.5	12.7	1.31	14.9	15.2	2.72	2.66	38.4	68.7	92.6
	Mg	5.19	923	2530	2030	666	31.9	828	1830	633	865	67.3	626	21.3	36.8	20.9	383	642	828
	K	20.1	27.0	142	46.2	324	9.69	131	9.66	51.7	32.9	5.37	7.26	2.33	2.22	86.9	4.58	15.0	7.16
	Fe	26.4	88.7	140	43.1	150	122	7.86	46.0	90.6	52.6	78.5	62.0	11.4	19.4	131	12.4	108	19.1
0	Cu	0.098	0.897	0.056	0.060	0.284	0.078	0.067	0.103	0.176	0.216	0.056	0.201	0.017	0.081	0.050	0.160	0.603	0.358
	Cr	0.067	0.181	0.318	0.071	0.157	0.053	0.093	0.108	0.087	0.077	0.076	0.080	0.384	0.101	0.203	0.057	0.032	0.064
	Со	0.054	0.167	1.13	0.098	0.288	0.142	0.088	0.295	0.166	0.267	0.152	0.486	0.183	0.028	0.269	0.053	0.260	960.0
	Сд	0.012	0.021	0.001	0.014	0.003	0.011	< LOD	0.007	900.0	0.004	0.004	0.002	0.005	0.005	0.012	0.016	0.008	0.058
	Са	378	1490	6750	3760	31900	8.69	7450	7210	8100	5550	2.96	2660	38.9	179	849	9989	12200	5460
,	As	0.180	0.398	0.137	0.103	0.091	0.358	< LOD >	0.243	< LOD >	< LOD >	< LOD >	0.079	0.074	0.158	0.089	0.155	0.060	< LOD >
cified.	Al	16.8	32.6	191	26.2	144	27.7	12.9	13.0	41.0	21.0	19.4	54.7	31.0	24.8	96.2	14.4	13.1	19.3
nerwise specified.	Site	B.02	B.08	B.11	B.15	B.16	B.18	B.21	B.22	B.27	B.29	C.01	C.03	C.06	C.09	C.10	C.15	C.16	C.17
er																			

Table C.9: PTE concentrations (mean) in the residual fraction in sediments from the Bussento and Calore Salernitano. Units are in $\mu g g^{-1}$ d.w., unless otherwise specified.

C.17	C.16	C.15	C.10	C.09	C.06	C.03	C.01	B.29	B.27	B.22	B.21	B.18	B.16	B.15	B.11	B.08	B.02	Site
2796	3781	3327	5467	5192	2355	5906	4681	4270	2095	3452	2308	3236	4700	4899	7158	6184	7220	Al
<lod< td=""><td>13.2</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	13.2	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>As</td></lod<></td></lod<>	<lod< td=""><td>As</td></lod<>	As
459	602	331	434	142.4	10.5	140	100	60	71.9	164.6	54	25.1	206.4	104	77.3	267	293.4	Ca
< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	<lod< td=""><td>< LOD</td><td>< LOD</td><td>Cd</td></lod<>	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	Cd
9.08	17.95	14.344	19.205	18.919	16.56	23.98	17.477	24.62	12.97	18.09	16.56	13.89	20.96	19.47	36.595	27.23	27.78	Со
8.41	22.12	17.156	17.44	18.039	13.49	26.44	20.86	17.24	7.98	15.41	11.524	13.56	19.4	23.53	37.6	26.67	27.071	Cr
5.864	10.04	9.361	15.7	17.356	7.007	21.49	15.08	19.05	8.37	13.66	12.68	13.81	21.04	17.556	36.05	27.25	22.69	Cu
7777	14910	11612	16642	16230	14360	19990	14984	19550	11060	14360	12610	11488	17000	15856	30400	22660	22540	Fe
78.53	224.7	161.34	168.6	247.5	162.5	274.5	252.4	179.6	39.4	110.8	54.3	157.7	235.1	119.7	389.3	173.9	193.09	K
1772	2631	2096	2784	2555.2	1072.4	2861	2305	2077	987	1816.1	1039.8	1910	2591	2608	2824	3334.6	4111	$_{ m Mg}$
52.2	72.84	67.91	61.42	68.42	111.3	81.3	57.2	139.8	141.5	91	92.8	53.45	72.1	64.9	115.5	100.64	87.73	Mn
14.7	215	47.4	9.46	13.6	17.27	56.3	63.9	< LOD	<lod< td=""><td>21.1</td><td><lod< td=""><td>32.44</td><td>12.9</td><td>11.3</td><td>27.3</td><td>13.4</td><td>14.5</td><td>Na</td></lod<></td></lod<>	21.1	<lod< td=""><td>32.44</td><td>12.9</td><td>11.3</td><td>27.3</td><td>13.4</td><td>14.5</td><td>Na</td></lod<>	32.44	12.9	11.3	27.3	13.4	14.5	Na
13.26	30.95	20.286	22.436	21.037	14.13	28.43	19.31	23.65	13.1	20.95	19.48	16.71	24.71	20.6	37.8	29.52	32.32	Ŋ.
173.2	501	366.9	435.5	440.9	345.8	510.8	418.93	185.1	74.5	133.78	82.54	90.16	203.3	175.51	282.4	175.11	125.7	P
<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.75</td><td>0.574</td><td>2.33</td><td>4.65</td><td>0.075</td><td>0.559</td><td>1.12</td><td>11.25</td><td>10.696</td><td>25.7 < LOD</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.75</td><td>0.574</td><td>2.33</td><td>4.65</td><td>0.075</td><td>0.559</td><td>1.12</td><td>11.25</td><td>10.696</td><td>25.7 < LOD</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.75</td><td>0.574</td><td>2.33</td><td>4.65</td><td>0.075</td><td>0.559</td><td>1.12</td><td>11.25</td><td>10.696</td><td>25.7 < LOD</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.75</td><td>0.574</td><td>2.33</td><td>4.65</td><td>0.075</td><td>0.559</td><td>1.12</td><td>11.25</td><td>10.696</td><td>25.7 < LOD</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6.75</td><td>0.574</td><td>2.33</td><td>4.65</td><td>0.075</td><td>0.559</td><td>1.12</td><td>11.25</td><td>10.696</td><td>25.7 < LOD</td><td>Pb</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6.75</td><td>0.574</td><td>2.33</td><td>4.65</td><td>0.075</td><td>0.559</td><td>1.12</td><td>11.25</td><td>10.696</td><td>25.7 < LOD</td><td>Pb</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6.75</td><td>0.574</td><td>2.33</td><td>4.65</td><td>0.075</td><td>0.559</td><td>1.12</td><td>11.25</td><td>10.696</td><td>25.7 < LOD</td><td>Pb</td></lod<></td></lod<>	<lod< td=""><td>6.75</td><td>0.574</td><td>2.33</td><td>4.65</td><td>0.075</td><td>0.559</td><td>1.12</td><td>11.25</td><td>10.696</td><td>25.7 < LOD</td><td>Pb</td></lod<>	6.75	0.574	2.33	4.65	0.075	0.559	1.12	11.25	10.696	25.7 < LOD	Pb
0	261	0	0	0	0	685	0	11.5	< LOD	342	< LOD	< LOD	6.24	< LOD	< LOD	6.47	0	s
168.4	333.8	192.9	243.7	307.6	181	393.9	351.2	363	163	174	165	277.9	357.7	196.7	328.7	227.68	456	Si
																	16.478	
31.81	36.84	33.84	58.281	56.45	30.55	66.9	49.03	62.49	25.91	43.66	38.05	51.7	55.4	73.8	95.23	74.75	69.97	Zn

Table C.10: PTE concentrations (s.e.m.) in the residual fraction in sediments from the Bussento and Calore Salernitano. Units are in μ g g⁻¹ d.w., unless otherwise specified.

1 1																		
Zn	4.42	7:37	7.33	21.8	12.5	13.4	5.83	4.24	5.35	8.38	2.91	8.41	2.89	2.94	0.523	2.34	4.15	5.23
Λ	0.610	0.684	2.00	1.02	2.15	1.29	0.229	0.536	0.953	1.70	0.851	2.22	3.23	0.565	0.193	0.357	1.42	1.16
Si	191	4.12	10.4	21.2	78.8	31.4	35.3	39.2	9.89	86.5	72.9	47.3	16.9	46.9	56.4	10.1	61.0	12.9
S	0.000	3.25	< LOD	< LOD	5.91	< LOD	< LOD >	342	< LOD	11.5	0.000	685	0.000	0.000	0.000	0.000	234	0.000
Pb	<lod></lod>	0.962	3.11	1.12	0.457	0.075	2.34	1.27	0.438	4.11	< LOD							
Ъ	12.9	7.89	55.6	4.40	59.0	7.11	6.73	90.6	17.4	43.6	9.01	27.8	19.3	6.44	27.5	20.5	108	24.1
N	1.77	1.03	1.01	1.63	5.54	1.14	2.50	3.00	1.31	2.74	1.17	4.62	1.67	0.637	0.560	0.653	7.44	1.93
Na	14.5	13.4	15.3	11.3	12.9	6.92	< LOD	21.1	< LOD	< LOD	53.0	44.8	8.00	5.79	1.64	36.5	203	3.79
Mn	4.53	3.37	25.5	10.9	14.4	4.05	14.7	29.6	16.7	56.5	3.68	12.6	16.4	8.16	4.19	1.35	8.85	13.0
Mg	111	92.9	232	169	730	214	80.5	51.5	106	522	193	388	98.4	42.2	117	114	303	185
Х	9.00	17.2	61.9	26.4	64.3	12.6	26.1	28.7	22.3	41.4	23.6	22.6	22.1	14.8	24.8	98.9	13.5	7.68
Fe	1210	1020	1230	263	4190	783	1870	1680	1920	3260	746	3450	2300	366	254	345	3150	922
Cu	0.840	1.92	3.09	0.440	5.79	1.00	1.81	2.26	2.57	3.63	1.22	2.37	0.532	0.320	1.54	0.559	1.20	0.160
Cr	0.322	1.53	2.82	1.59	4.88	1.73	0.920	1.16	1.32	3.36	1.40	2.29	1.99	0.699	0.149	0.920	7.17	1.23
Со	1.58	1.04	0.562	1.00	5.00	1.42	2.07	1.98	2.41	3.64	0.912	3.93	2.54	0.507	0.117	0.320	3.63	1.15
Cd	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
Са	86.9	141	38.6	64.6	48.5	13.0	54.0	86.1	37.0	34.8	100	104	10.5	32.2	104	566	108	110
As	<lod< td=""><td>< LOD</td><td>< LOD</td><td>13.2</td><td>< LOD</td></lod<>	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	13.2	< LOD					
Al	342		485															
Site	B.02	B.08	B.11	B.15	B.16	B.18	B.21	B.22	B.27	B.29	C.01	C.03	C.06	C.09	C.10	C.15	C.16	C.17

Appendix D Analytes in water

Table D.1: PTE concentrations in water from the Bussento and Calore Salernitano rivers in 2016. Units are in $\mu g L^{-1} d.w.$, unless otherwise specified.

~	3988.97	4738.12	0.31	28.85	9294.3	4.7	7224.25	1895.31	0.14	< LOD	0.09	0.68	< LOD	140942.59	C.18
936.71		3651.32	0.16	52.73	6622.61	6.76	7738.74	1699.04	11.49	^LOD	0.23	0.63	<lod< td=""><td>77429.24</td><td>C.17</td></lod<>	77429.24	C.17
4343.62		9194.39	0.28	1857.32	37253.03	66.1	15082.32	10439.19	23.94	1.38	0.83	0.78	\ LOD	122262.36	C.16
4993.73		1756.2	0.23	35.83	6607.5	0.07	6649 46	1872 27	0.78		0.32	0.08		113365.7	7. T
4068.9		2338.68	0.21	45.28	7944.66	1.72	9589.36	2182.6	0.19	4 LOD	0.25	0.24	<tod< td=""><td>123001.71</td><td>C.13</td></tod<>	123001.71	C.13
1250.08	۸.	2897.78	0.14	56.69	8915.91	4.99	9568.07	2493.66	0.33	<lod< td=""><td>0.31</td><td>0.32</td><td>< LOD</td><td>126455</td><td>C.12</td></lod<>	0.31	0.32	< LOD	126455	C.12
567.11	4	2892.22	0.27	50.45	8816.91	0.46	9567.57	2263.28	0.1	<lod< td=""><td>0.48</td><td>0.39</td><td><lod< td=""><td>121711.71</td><td>C.11</td></lod<></td></lod<>	0.48	0.39	<lod< td=""><td>121711.71</td><td>C.11</td></lod<>	121711.71	C.11
691.68	ယ	2472.15	0.25	46.76	5603.32	1.29	6373.85	1360.11	0.02	<lod< td=""><td>0.16</td><td>0.22</td><td>0.18</td><td>79427.13</td><td>C.10</td></lod<>	0.16	0.22	0.18	79427.13	C.10
273.52	42	3694.37	0.14	28.09	10463.61	5.77	10551.82	2497.56	0.3	<lod< td=""><td>0.2</td><td>0.08</td><td><lod< td=""><td>122162.88</td><td>C.9</td></lod<></td></lod<>	0.2	0.08	<lod< td=""><td>122162.88</td><td>C.9</td></lod<>	122162.88	C.9
81.96	39	4610.47	1.05	52.98	10055.48	1.81	15776.92	2377.29	0.19	<lod< td=""><td>0.54</td><td>0.13</td><td><lod< td=""><td>125506.74</td><td>C.8</td></lod<></td></lod<>	0.54	0.13	<lod< td=""><td>125506.74</td><td>C.8</td></lod<>	125506.74	C.8
26.03	503	8575.47	0.06	47.84	14932.41	1.31	16206.11	2925.86	< LOD	<lod< td=""><td>0.23</td><td>0.45</td><td><lod< td=""><td>113106.47</td><td>C.7</td></lod<></td></lod<>	0.23	0.45	<lod< td=""><td>113106.47</td><td>C.7</td></lod<>	113106.47	C.7
TOD.	^	3191.31	0.03	57.48	10259.2	3.06	9058.32	2436.22	7.21	<lod< td=""><td>0.5</td><td>0.5</td><td><lod< td=""><td>137322.85</td><td>C.6</td></lod<></td></lod<>	0.5	0.5	<lod< td=""><td>137322.85</td><td>C.6</td></lod<>	137322.85	C.6
4.41	501	7880.45	0.15	49.46	13326.59	3.86	11056.3	2543.49	0.23	<lod< td=""><td>0.09</td><td>0.23</td><td><lod< td=""><td>96215.44</td><td>C.5</td></lod<></td></lod<>	0.09	0.23	<lod< td=""><td>96215.44</td><td>C.5</td></lod<>	96215.44	C.5
8.17	666	9081.97	0.14	57.93	18263.46	3.57	14729	3505.69	0.19	<lod< td=""><td>0.21</td><td>0.47</td><td>0.11</td><td>120771.73</td><td>C.4</td></lod<>	0.21	0.47	0.11	120771.73	C.4
7.67	908	10680.82	0.05	91.68	21722.51	0.14	42529.07	4746.22	0.12	<lod< td=""><td>0.77</td><td>0.71</td><td><lod< td=""><td>195263.72</td><td>C.3</td></lod<></td></lod<>	0.77	0.71	<lod< td=""><td>195263.72</td><td>C.3</td></lod<>	195263.72	C.3
9.26	7779	8484.18	0.13	67.09	14500.87	0.29	21029.91	2931.31	0.01	<lod< td=""><td>0.23</td><td>1.06</td><td><lod< td=""><td>130682.99</td><td>C.2</td></lod<></td></lod<>	0.23	1.06	<lod< td=""><td>130682.99</td><td>C.2</td></lod<>	130682.99	C.2
.62	7951	9456.4	0.19	72.17	18587.44	5.15	26265.23	3872.22	<lod< td=""><td><lod< td=""><td>0.35</td><td>0.19</td><td><lod< td=""><td>155742.98</td><td>C.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.35</td><td>0.19</td><td><lod< td=""><td>155742.98</td><td>C.1</td></lod<></td></lod<>	0.35	0.19	<lod< td=""><td>155742.98</td><td>C.1</td></lod<>	155742.98	C.1
.53	4159	1756.73	0.09	48.22	5551.31	2.11	15247.7	1390.71	< LOD	<lod< td=""><td>0.17</td><td>0.18</td><td><lod< td=""><td>107804.65</td><td>B.21</td></lod<></td></lod<>	0.17	0.18	<lod< td=""><td>107804.65</td><td>B.21</td></lod<>	107804.65	B.21
94	133.	2670.95	<lod< td=""><td>66.15</td><td>7026.91</td><td>7.04</td><td>14261.72</td><td>1625.82</td><td>26.84</td><td><lod< td=""><td>0.1</td><td>0.34</td><td><lod< td=""><td>123421.19</td><td>B.20</td></lod<></td></lod<></td></lod<>	66.15	7026.91	7.04	14261.72	1625.82	26.84	<lod< td=""><td>0.1</td><td>0.34</td><td><lod< td=""><td>123421.19</td><td>B.20</td></lod<></td></lod<>	0.1	0.34	<lod< td=""><td>123421.19</td><td>B.20</td></lod<>	123421.19	B.20
31	1857.	1257.42	0.21	22.51	2904.27	4.75	5729.97	585.64	0.04	<lod< td=""><td>0.34</td><td>0.14</td><td><lod< td=""><td>52058.83</td><td>B.19</td></lod<></td></lod<>	0.34	0.14	<lod< td=""><td>52058.83</td><td>B.19</td></lod<>	52058.83	B.19
17	3907.	2277.68	<lod< td=""><td>50.66</td><td>5920.54</td><td>0.4</td><td>14872.82</td><td>1351.49</td><td><lod< td=""><td><lod< td=""><td>0.19</td><td>0.29</td><td><lod< td=""><td>93748.26</td><td>B.18</td></lod<></td></lod<></td></lod<></td></lod<>	50.66	5920.54	0.4	14872.82	1351.49	<lod< td=""><td><lod< td=""><td>0.19</td><td>0.29</td><td><lod< td=""><td>93748.26</td><td>B.18</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.19</td><td>0.29</td><td><lod< td=""><td>93748.26</td><td>B.18</td></lod<></td></lod<>	0.19	0.29	<lod< td=""><td>93748.26</td><td>B.18</td></lod<>	93748.26	B.18
47	5340.	4661.03	<lod< td=""><td>63.47</td><td>11505.86</td><td>15.67</td><td>19218.08</td><td>2227.17</td><td>1.24</td><td><lod< td=""><td>0.15</td><td>0.15</td><td><lod< td=""><td>132441.82</td><td>B.17</td></lod<></td></lod<></td></lod<>	63.47	11505.86	15.67	19218.08	2227.17	1.24	<lod< td=""><td>0.15</td><td>0.15</td><td><lod< td=""><td>132441.82</td><td>B.17</td></lod<></td></lod<>	0.15	0.15	<lod< td=""><td>132441.82</td><td>B.17</td></lod<>	132441.82	B.17
$^{\circ}$	3992.	10229.6	0.14	192.69	27132.61	5.63	16241.11	6366.02	0.57	<lod< td=""><td>0.11</td><td>0.68</td><td><lod< td=""><td>113341.41</td><td>B.16</td></lod<></td></lod<>	0.11	0.68	<lod< td=""><td>113341.41</td><td>B.16</td></lod<>	113341.41	B.16
6	4214.	2608.73	0.03	63.21	6677.45	0.54	14652.56	1158.69	<lod< td=""><td><lod< td=""><td>0.06</td><td>0.08</td><td><lod< td=""><td>105880.9</td><td>B.15</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.06</td><td>0.08</td><td><lod< td=""><td>105880.9</td><td>B.15</td></lod<></td></lod<>	0.06	0.08	<lod< td=""><td>105880.9</td><td>B.15</td></lod<>	105880.9	B.15
3	8630.7	8399.94	0.07	40.07	15310.11	2.66	15611.18	4395.01	0.16	1.77	0.82	0.16	<lod< td=""><td>104607.08</td><td>B.14</td></lod<>	104607.08	B.14
3	3873.6	3742.47	12.15	227.07	9434.2	2.25	19085.8	3859.23	2.75	<lod< td=""><td>0.4</td><td>0.99</td><td><lod< td=""><td>94024.97</td><td>B.13</td></lod<></td></lod<>	0.4	0.99	<lod< td=""><td>94024.97</td><td>B.13</td></lod<>	94024.97	B.13
9	3840.0	3369.43	0.27	55.88	7661.33	0.19	17630.91	1340.83	<lod< td=""><td><lod< td=""><td>0.13</td><td>0.12</td><td><lod< td=""><td>110556.15</td><td>B.12</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.13</td><td>0.12</td><td><lod< td=""><td>110556.15</td><td>B.12</td></lod<></td></lod<>	0.13	0.12	<lod< td=""><td>110556.15</td><td>B.12</td></lod<>	110556.15	B.12
2	5368.3	3327.69	0.03	78.01	8299.19	1.13	20046.81	2083.91	0.01	<lod< td=""><td>0.08</td><td>0.52</td><td><lod< td=""><td>106600.84</td><td>B.11</td></lod<></td></lod<>	0.08	0.52	<lod< td=""><td>106600.84</td><td>B.11</td></lod<>	106600.84	B.11
4	5562.8	3651.41	<lod< td=""><td>81.44</td><td>7765.7</td><td>0.04</td><td>22101.4</td><td>1714.54</td><td><lod< td=""><td><lod< td=""><td>0.12</td><td>0.4</td><td><lod< td=""><td>98477.2</td><td>B.10</td></lod<></td></lod<></td></lod<></td></lod<>	81.44	7765.7	0.04	22101.4	1714.54	<lod< td=""><td><lod< td=""><td>0.12</td><td>0.4</td><td><lod< td=""><td>98477.2</td><td>B.10</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.12</td><td>0.4</td><td><lod< td=""><td>98477.2</td><td>B.10</td></lod<></td></lod<>	0.12	0.4	<lod< td=""><td>98477.2</td><td>B.10</td></lod<>	98477.2	B.10
ĊΠ	4940.4	3421.4	0.12	60	8006.13	1.34	20201.16	1704.09	<lod< td=""><td><lod< td=""><td>0.13</td><td>0.19</td><td><lod< td=""><td>105615.04</td><td>В.9</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.13</td><td>0.19</td><td><lod< td=""><td>105615.04</td><td>В.9</td></lod<></td></lod<>	0.13	0.19	<lod< td=""><td>105615.04</td><td>В.9</td></lod<>	105615.04	В.9
5	5450.	3715.83	0.2	66.7	9601.29	1.7	23173.58	2026.65	<lod< td=""><td><lod< td=""><td>0.44</td><td>0.64</td><td><lod< td=""><td>125184.07</td><td>В.8</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.44</td><td>0.64</td><td><lod< td=""><td>125184.07</td><td>В.8</td></lod<></td></lod<>	0.44	0.64	<lod< td=""><td>125184.07</td><td>В.8</td></lod<>	125184.07	В.8
22	5412.3	3764.74	0.04	66.92	9578.38	1.88	22559.5	1991.38	< LOD	<lod< td=""><td>0.2</td><td>0.26</td><td><lod< td=""><td>124938.78</td><td>B.7</td></lod<></td></lod<>	0.2	0.26	<lod< td=""><td>124938.78</td><td>B.7</td></lod<>	124938.78	B.7
30	5122.ϵ	4657.12	0.13	59.72	10713.04	3.85	21627.15	2142.18	0.03	<lod< td=""><td>0.13</td><td>0.23</td><td>0.01</td><td>130984.57</td><td>B.6</td></lod<>	0.13	0.23	0.01	130984.57	B.6
4	4801.4	2944.03	<lod< td=""><td>52.95</td><td>8099.22</td><td>3.31</td><td>19143.71</td><td>1898.22</td><td>0.6</td><td><lod< td=""><td>0.45</td><td>0.15</td><td><lod< td=""><td>122664.68</td><td>B.5</td></lod<></td></lod<></td></lod<>	52.95	8099.22	3.31	19143.71	1898.22	0.6	<lod< td=""><td>0.45</td><td>0.15</td><td><lod< td=""><td>122664.68</td><td>B.5</td></lod<></td></lod<>	0.45	0.15	<lod< td=""><td>122664.68</td><td>B.5</td></lod<>	122664.68	B.5
7	5119.7	5374.08	0.03	57.79	11842.59	3.99	20773.62	2183.43	0.3	<lod< td=""><td>0.12</td><td>0.84</td><td><lod< td=""><td>138268.66</td><td>B.4</td></lod<></td></lod<>	0.12	0.84	<lod< td=""><td>138268.66</td><td>B.4</td></lod<>	138268.66	B.4
33	4947.3	4818.03	0.26	71.29	11060.17	4.39	20071.36	2216.39	0.39	<lod< td=""><td>0.13</td><td>0.12</td><td><lod< td=""><td>132466.84</td><td>В.3</td></lod<></td></lod<>	0.13	0.12	<lod< td=""><td>132466.84</td><td>В.3</td></lod<>	132466.84	В.3
13	4690.	4855.02	0.13	61.9	10830.42	0.36	20686.53	2129.97	0.55	<lod< td=""><td>0.4</td><td>0.31</td><td><lod< td=""><td>131961.76</td><td>B.2</td></lod<></td></lod<>	0.4	0.31	<lod< td=""><td>131961.76</td><td>B.2</td></lod<>	131961.76	B.2
72	5128.	15030.8	< LOD	95.72	119182.66	6.45	31752.96	6116.96	0.2	< LOD	0.21	0.65	< LOD	129568.65	B.1
	Si	S	Pb	P	Na	Mn	Mg	K	Fe	Cu	Cr	Со	Cd	Ca	Site
1															- 1

Table D.2: Dissolved O2, electrical conductivity, pH, and concentration of anions, photosynthetic pigments, TC, IC, TOC, and TN in water from the Bussento and Calore Salernitano rivers.

Car	$\mu \mathrm{g} \ \mathrm{L}^{-1}$	404.07	125.34	85.98	279.06	87.37	98.71	89.97	3594.68	522.67	120.25	313.74	524.22	293.76	< LOD	434.26	265.17	1517.48	210.79	250.31	173.46	138.79	271.44	214.8	175.49	191.75	218.26	103.55	34.89	1990.16	223.16	173.24	325.44	< LOD	265.51	224.4	182.71	< LOD	325.24	260.58
Pheo b	$\mu \mathrm{g} \ \mathrm{L}^{-1}$	141.03	62.45	59.18	151.83	49.65	79.47	45.24	1511.83	200.37	71.26	121.19	161.01	118.44	< LOD	134.88	117.73	78.15	95.53	103.22	79.57	90.13	131.47	95.81	82.6	94.43	70.83	20.48	21.84	488.12	92.66	114.85	160.84	< LOD	73.17	90.42	120.68	< LOD >	154.69	1/2 7E
Pheo a	$\mu \mathrm{g}~\mathrm{L}^{-1}$	319.43	216.25	168.76	495.98	172.75	217.04	174.31	3175	88.099	210.46	403.88	337.88	398.78	< LOD	307.39	257.01	450.08	306.44	315.37	302.44	261.1	254.24	324.83	320.49	283.79	269.31	110	53.7	1452.1	295.25	303.07	419.77	< LOD	167.49	187.19	304.85	< LOD	396.55	230.62
Chlb	$\mu \mathrm{g} \ \mathrm{L}^{-1}$	152.93	36.06	37.59	59.28	34.41	13.46	16.93	1018.94	204.61	24.09	91.62	242.69	75.01	< LOD	186.49	113.52	761.36	43	94.72	35.01	19.5	66.61	0.65	16.8	23.92	24.18	23.86	15.3	78.46	19.5	34.8	80.62	< LOD	60.87	55.86	69.16	< LOD	88.51	80.7
Chl a	$\mu \mathrm{g}~\mathrm{L}^{-1}$	584.33	87.01	87.53	192.07	89.92	26.46	69.55	6796.23	769.07	58.32	244.37	849.47	198.17	< LOD	628.16	369.31	2586.5	159.99	292.25	141.07	84.92	252.48	55.99	82.89	107.64	127.94	119.55	44.1	638.29	89.44	99.92	244.07	< LOD	285.58	240.42	189.04	< LOD	248.28	300 80
ZI.	${ m mg~L^{-1}}$	0.44	0.21	0.65	0.44	0.43	0.21	0.4	0.51	0.14	0.33	0.31	0.52	0.37	0.31	0.84	0.32	0.38	0.36	0.37	0.39	0.3	0.28	0.59	9.0	0.71	0.51	0.73	9.0	8.17	0.54	0.3	0.41	0.41	0.28	0.38	0.39	0.32	0.41	0.53
TOC	${ m mg~L^{-1}}$	1.84	0.71	0.55	0.59	0.91	0.92	1.61	2.24	0.53	0.2	0.78	0.87	1.38	0.2	1.03	1.63	0.48	6.0	1.29	1.14	0.38	0.85	1.28	3.28	2.38	23.72	4.16	2.34	7.72	4.05	0.59	0.64	0.77	1.2	1.81	0.51	0.82	90.0	1 2/
IC	${ m mg~L^{-1}}$	31.43	18.16	22.69	25.2	19.2	17.65	18.86	22.69	16.23	20.18	21.68	28.1	20.78	15.91	20.81	35.31	56.9	25.87	30.77	28.39	16.3	22.14	24.88	25.07	25.71	21.42	22.85	24.92	32.13	23.28	31.48	45.69	60.04	29.55	28.62	32.54	31.06	32.55	11
TC	${ m mg~L^{-1}}$	33.27	18.87	23.24	25.79	20.11	18.56	20.47	24.92	16.75	20.37	22.46	28.97	22.16	16.11	21.84	36.94	26.74	26.77	32.06	29.53	16.68	22.99	26.16	28.35	28.09	45.14	27	27.26	39.85	27.33	32.07	46.33	60.82	30.75	30.43	33.05	31.88	32.43	36.45
SO_4^{2-}	$\rm mg~L^{-1}$	20.37	4.25	4.09	4.34	3.94	11.7	3.83	12.91	4.07	3.01	3.09	5.14	2.79	2.02	2.67	6.62	3.07	5.79	5.08	5.19	4.62	10.69	3.42	3.34	3.19	2.47	2.04	1.86	14.74	5.32	5.86	12.8	15.93	13.17	11.52	3.88	11.59	5.17	C/ /
PO ₄ ³⁻	${ m mg~L^{-1}}$	<lod< td=""><td>< LOD</td><td>< LOD</td><td>1.45</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>< LOD</td><td>0.1</td></lod<>	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	1.45	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.1						
NO ₃	${ m mg~L^{-1}}$	1.43	1.63	3.22	1.87	1.93	1.2	1.65	1.19	98.0	1.71	1.38	1.21	1.18	1.9	1.32	1.41	1.47	1.08	1.82	1.73	2.11	69.0	1.62	1.66	1.59	2	2.41	2.4	34.6	0.75	0.7	0.91	1.49	0.51	0.56	1.28	0.77	1.01	111
NO ₂	${ m mg~L^{-1}}$	0.57	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.05	< LOD	< LOD	< LOD	< LOD	< LOD	90.0	0.08	< LOD	< LOD	< LOD	< LOD	< LOD	0.1										
Br-	${ m mg~L^{-1}}$	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.13	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.56	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	0.1				
CI_	$\rm mg~L^{-1}$	134.46	9	6.97	6.14	5.87	7.5	6.4	10.03	4.47	5.52	4.93	5.78	4.76	3.68	6.18	6.85	4.97	6.15	6.53	92.9	6.79	9.48	5.9	9	6.18	5.3	5.23	4.97	20.88	17.77	3.57	11.53	17.22	8.42	7.51	7.14	6.92	5.71	969
F	$\rm mg~L^{-1}$	90.0	0.07	0.07	0.05	0.04	0.04	0.04	0.00	0.03	0.03	0.03	0.05	0.03	0.04	0.04	0.05	0.03	90.0	90.0	0.00	0.08	0.11	0.03	0.03	0.03	0.03	0.03	0.02	0.12	0.08	0.03	0.14	0.3	90.0	0.07	0.04	90.0	0.04	200
Hd		8.17	8.01	8.16	7.78	8.07	7.87	7.82	8.16	8.08	7.99	7.87	8.22	8.15	7.91	7.96	7.76	7.5	7.59	7.69	7.76	8.14	8.11	7.81	7.92	7.86	7.92	7.88	8.04	8.2	7.88	7.84	7.77	7.74	7.96	7.93	8	8.01	7.93	7 91
e_	Sη	745	477	494	458	470	477	473	514	202	468	464	493	460	482	497	206	473	200	499	496	493	575	452	457	464	449	454	454	541	438	371	580	269	486	484	487	468	466	450
O ₂	%	100	72.5	83	99.2	139.6	91.8	96.4	109.3	89.9	82.4	89.4	2.96	94.2	89.9	104	104.5	107.2	26	103.1	103.6	95.9	9.66	94.4	98.4	100.6	77.4	91.2	100	55.4	87.2	100	106.4	09	92.7	95.2	85.9	72.1	06	00
Site		B.1	B.10	B.11	B.12	B.13	B.14	B.15	B.16	B.17	B.18	B.19	B.2	B.20	B.21	B.3	B.4	B.5	B.6	B.7	B.8	B.9	C:1	C.10	C.11	C.12	C.13	C.14	C.15	C.16	C.17	C.18	C:2	C.3	C.4	C.5	9.O	C.7	C.8	ە 4

Table D.3: PTE concentrations in water from the Bussento and Calore Salernitano rivers in 2017. Units are in $\mu g L^{-1} d.w.$, unless otherwise specified.

C.20	<u>ر</u>	<u>ر</u> () (.		C.	C.	Ö	Ċ	Ċ	0	Ċ	Ċ	Ö	Ö	0	В.	В.:	В.	В.	В.	В.	В.	В.	В.	В.:	В	В	В	В	В	В	В.	В	В	В.	В.	В.	В.	B.04	В.	Site	
-	_		-				_	-	•		-		•-																										_	, ,	ře 	
8.05	11.82			GOD TO	CLOD	CLOD	12.64	CLOD	CLOD	CLOD	6.34	3.18	5.64	6.37	0.92	24.38	4.81	7.61	16.95	11.6	14.82	CLOD	CLOD	9.26	11.55	10.96	CLOD	10.81	CLOD	9.24	8.86	14.62	1.94	CLOD	13.37	6.76	CLOD	CLOD	8.67	2.15	Al	
< LOD	<1.0D	4 F 2 F	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< LOD	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>As</td><td></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td>As</td><td></td></lod<>	< LOD	As	
36386.05	45616.22	16149.13	136/6.94	15507.15	16369.59	14404.98	47509.6	22961.3	17443.51	16079.41	44015.98	30469.3	32397.67	40983.53	25537.66	15257.91	20947.95	26312.27	22427.88	24223.75	61741.61	9829.96	18469.86	32829.2	37655.65	30168.74	11262.06	34360.63	18019.73	19667.83	30879.32	59335.89	24192.89	13185.55	53666.96	26081.05	15760.84	13469.62	38743.47	22256.06	Ca	
0.65	0.59	0.04	0.62	0.62	0.64	0.62	0.49	0.54	0.42	0.48	0.56	0.71	0.55	0.53	0.61	0.5	0.53	0.47	0.54	0.93	0.66	0.57	0.61	0.52	0.41	0.41	0.52	0.33	0.55	0.72	0.59	0.66	0.67	0.67	0.66	0.72	0.56	0.68	0.46	0.53	Cd	
0.58	0.36	0.09	0.11	0.31	0.36	0.64	0.17	0.26	0.07	0.37	0.06	0.12	0.35	0.41	0.51	0.3	0.3	0.32	0.24	1.07	0.43	0.17	0.59	0.57	0.53	0.19	0.45	0.46	0.51	<lod< td=""><td>0.66</td><td>0.48</td><td>0.55</td><td>0.7</td><td>0.57</td><td>0.41</td><td>0.55</td><td>0.52</td><td>0.33</td><td>0.34</td><td>Со</td><td></td></lod<>	0.66	0.48	0.55	0.7	0.57	0.41	0.55	0.52	0.33	0.34	Со	
1.74	1.27	2.91	1.81	1.83	1.58	1.86	0.99	1.91	2.28	1.97	1.41	1.65	1.43	1.34	1.81	4.36	1.43	1.4	1.88	1.27	1.59	1.34	1.52	1.43	1.82	2.02	1.45	1.68	1.51	1.93	1.99	1.61	1.02	1.45	1.99	1.54	1.23	1.21	1.76	1.51	Cr	
1.64	1.76	1.62	1.47	1.67	1.71	1.69	1.98	1.77	1.7	1.75	1.99	1.78	1.85	1.74	1.73	1.57	1.88	1.69	1.49	1.89	2.21	1.52	1.6	2.07	1.99	1.67	1.61	1.87	2.9	1.67	1.7	1.62	1.53	1.52	1.86	1.82	1.69	1.77	1.74	1.7	Cu	
< LOD	4001 ×	^ [OD /	^ EOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	Fe	
2228.86	2423.78	1408.03	1409.38	1454.86	1513.67	1499.85	2326.95	1793.47	1511.65	1453.1	2615.77	2171.31	2234.54	2738.38	2137.34	1494.63	2002.04	2023.72	1578.51	2055.81	2371.24	1348.94	1533.23	2207	2002.6	1810.36	1367.42	2083.12	2125.38	1899.78	1708.02	2362.25	1537.43	1503.39	2375.51	1927.32	1620.37	1437.16	1853.86	1637.78	K	
6274.25	6447.31	725	649.38	1275.32	1573.73	1435.43	6115.06	4931.4	2264.64	1249.8	6478.19	4736.12	11138.58	13337.93	8179.13	1410.32	5314.26	4892.33	3506.26	3227.31	14228.14	1441.23	4469.72	6934.95	6628.98	5250.38	1622.75	8910.76	2453.09	10512.88	4964.25	14839.78	4432.48	3659.53	14564.62	8566.4	4762.56	2085.97	7968.45	4728.98	Mg	
< LOD	0.12	\ LOD	\ LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>1.31</td><td>0.28</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>1.31</td><td>0.28</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>1.31</td><td>0.28</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>< LOD</td><td>1.31</td><td>0.28</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	< LOD	1.31	0.28	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>< LOD</td><td>0.95</td><td>0.35</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	< LOD	0.95	0.35	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td>Mn</td><td></td></lod<>	< LOD	Mn	
7614.84	6785.8	776.83	755.7	1091.67	1354.07	1305.24	5672.85	2844.15	1571.21	1165.55	7995.4	5930.56	5610.96	8354.58	5258.37	803.51	4916.64	2283.68	1902.04	5166.24	6009.2	515.74	1604.68	2601.34	3430.01	2946.47	601.08	4450.97	6273.9	4073.18	2528.07	6286.1	1790.69	1300.4	5196.35	3194.76	2019.08	885.64	3312.47	2721.42	Na	
< LOD	\ [O]	^ [0]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD	Z _i	
< LOD	4001 4001	^ [OD	\LOD	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td>< LOD</td><td>P</td><td></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>P</td><td></td></lod<>	< LOD	P	
< LOD	40.I.>	\ [0]	^ E	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>Рь</td><td></td></lod<>	< LOD	Рь	
4889.79	3606.96	607.75	626.55	721.83	798.1	832.75	2558.72	1590.34	1242.66	840.79	4830.03	3619.76	3444.46	4938.32	3090.72	574.15	1539.19	983.68	1096.53	1883.79	2447.39	599.69	1087.68	1564.73	1675.72	1302.06	592.33	2230.35	2064.54	2107.73	1932.27	2592.84	1087.19	890.9	2385.83	1600.54	1131.82	729.79	1717.39	1572.97	s	
428.52	133.21	1314.31	469.31	839.21	595.59	359.05	64.45	92.06	1133.22	533.38	658.1	1227.7	1038.78	624.8	1456.33	1104.9	2985.61	986.87	585.91	3393.93	223.2	839.86	56.5	1408.62	623.39	1380.64	265.11	710.96	928.85	856	563.96	380.43	423.39	1237.21	470.45	822.04	815.87	25.13	525.18	357.02	Si	
< LOD	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	^LOD /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0.45</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	0.45	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>< LOD</td><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	< LOD	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td>< LOD</td><td>V</td><td></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>V</td><td></td></lod<>	< LOD	V	
144	^I.OD 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19.01</td><td>2.03</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19.01	2.03	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	< LOD	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<></td></lod<>	<lod< td=""><td>< LOD</td><td>Zn</td><td></td></lod<>	< LOD	Zn	

Table D.4: ORP, dissolved O2, electrical conductivity, pH, and concentration of anions, photosynthetic pigments, TC, IC, TOC, and TN in water from the Bussento and Calore Salernitano rivers.

% µS 101.9 353 1007.4 312 107.4 312 107.9 353 1007.1 326 1007.1 326 1007.1 326 1007.2 324 1007.2 32	7.91 8.18 7.86 8.27 8.23 7.75 7.75	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	-	,											
	7.91 8.18 7.86 8.27 8.23 7.75 7.75			5	mg L	$mg~L^{-1}$	${ m mg~L^{-1}}$	mg L-1	$mg~L^{-1}$	${ m mg~L^{-1}}$	${ m mg~L^{-1}}$	${ m mg~L^{-1}}$	$\mu \mathrm{g} \ \mathrm{L}^{-1}$	$\mu \mathrm{g} \ \mathrm{L}^{-1}$	$\mu \mathrm{g} \ \mathrm{L}^{-1}$	$\mu \mathrm{g} \mathrm{L}^{-1}$	μg L ⁻¹
	8.18 7.86 8.27 8.23 7.75 7.75	0.07	^	<lod< td=""><td><lod></lod></td><td>1.09</td><td>< LOD</td><td>6.56</td><td>21.01</td><td>18.97</td><td>2.04</td><td>0.38</td><td>0.43</td><td>0.16</td><td>98.0</td><td>0.3</td><td>0.44</td></lod<>	<lod></lod>	1.09	< LOD	6.56	21.01	18.97	2.04	0.38	0.43	0.16	98.0	0.3	0.44
	7.86 8.27 8.23 7.75 7.61 8.31	0.05	5.63	< LOD	< LOD	1.6	< LOD	3.68	21.36	19.26	2.1	0.41	2.87	0.91	1.64	96.0	2.04
	8.27 8.23 7.75 7.61 8.31	90.0	5.43	< LOD	< LOD	1.49	< LOD	3.18	19.12	17.21	1.91	0.31	2.96	86.0	1.33	-	2.05
	8.23 7.75 7.61 8.31	0.11	6.9	< LOD	< LOD	1.46	< LOD >	5.04	19.91	17.73	2.18	9.0	0.63	0.22	6.0	0.2	0.92
	7.75 7.61 8.31	0.12	6.31	< LOD	< LOD	1.42	< LOD	4.36	26	23.51	2.5	0.46	0.44	0.14	0.84	0.27	0.56
	7.61 8.31	0.1	6.24	< LOD	< LOD	1.65	< LOD	4.17	16.02	14.17	1.85	0.31	0.83	0.35	1.64	0.45	0.88
	8.31	0.1	6.37	< TOD	< LOD	2.43	< LOD	4.17	23.1	20.7	2.4	0.56	0.24	0.1	0.44	0.02	0.46
		90.0	99.5	< LOD	< LOD	1.68	< LOD	3.64	16.24	14.47	1.77	0.3	0.77	0.21	1.06	0.29	1.46
	7.98	0.02	2.68	< LOD	< LOD	2.05	< LOD	3.45	14.24	12.48	1.76	0.45	1.12	0.27	1.21	0.51	0.84
	8.07	0.04	5.71	< LOD	<lod></lod>	1.47	< LOD	4.38	15.73	13.88	1.85	0.52	0.7	0.3	2.04	0.71	1.13
	8.25	0.04	5.39	< LOD	< LOD	1.56	< LOD	3.46	9.72	8.02	1.7	50.69	0.21	60.0	0.49	0.14	0.52
	7.58	60.0	24.2	< LOD	< LOD	4.34	0.19	21.71	27.05	24.55	2.5	1.13	0.76	0.18	0.72	0.28	9.0
	7.88	0.07	5.46	< LOD	< LOD	1.39	< LOD	4.53	15.72	13.83	1.89	0.39	1.2	0.34	1.2	0.47	6.0
	7.92	90.0	3.28	< LOD	< LOD	0.87	< LOD	1.83	19.3	17.19	2.11	0.43	0.21	0.1	0.54	0.16	0.53
	8.09	0.03	3.51	< LOD	< LOD	29.0	< LOD	2.36	17	14.95	2.06	0.32	0.45	0.16	0.79	0.19	0.77
312	8.13	0.04	2.2	< LOD	< LOD	0.71	< LOD	1.63	13.07	11.19	1.88	0.31	0.32	0.13	0.54	0.18	0.56
	7.03	0.02	4.52	< LOD	< LOD	10.91	< LOD	3.4	18.61	16.4	2.22	3.24	0.41	0.24	0.65	0.13	1.04
325	8.02	60.0	5.63	< LOD	< LOD	1.34	< LOD	3.79	17.49	15.46	2.04	0.35	0.37	0.1	0.61	0.04	0.83
337	7.65	80.0	5.36	< LOD	< LOD	1.58	< LOD	3.71	17.49	15.35	2.14	0.42	0.2	0.15	0.38	0.14	0.54
286	8.25	0.05	5.63	< LOD	< LOD	1.36	< LOD	3.36	13.03	11.37	1.66	0.44	0.17	0.11	0.42	0.18	0.42
298	7.97	90.0	8.09	< LOD	< LOD	5.85	< LOD	4.18	12.94	11.31	1.63	1.06	0.54	0.16	6.0	0.12	0.82
313	7.97	0.05	5.11	< LOD	< LOD	68.0	< LOD >	3.27	20.84	18.49	2.35	0.41	92.0	0.24	1.37	0.44	1.09
306	8	0.03	7.12	< LOD	< LOD	1.27	< LOD	2.23	15.39	13.48	1.92	0.36	0.19	0.1	0.41	0.12	0.47
320	9.9	0.02	5.9	< LOD	< LOD	9.0	< LOD	3.76	21.1	18.64	2.46	0.32	0.38	0.17	99.0	0.15	0.7
249	^	0.02	2.77	< LOD	< LOD	1.25	< LOD	1.41	14.91	12.98	1.93	0.59	0.38	0.17	99.0	0.12	0.65
462	8.03	0.21	10.71	< LOD	<lod></lod>	0.35	< LOD	11.63	36.03	33.02	3.01	0.31	117.99	47.54	14.01	2.07	39.08
473	7.92	0.21	11.25	< LOD	0.04	0.7	< LOD	11.66	28.63	26.08	2.55	0.29	1.55	0.44	1.71	99.0	1.02
592	7.06	99.0	15.16	< LOD	0.02	1.36	< LOD	14.69	46.77	43.1	3.67	0.45	0.29	0.13	0.26	0.15	0.34
320	8.05	0.12	7.37	< LOD	< LOD	0.02	< LOD >	10.98	18.28	16.4	1.87	0.19	99.0	0.21	6.0	0.32	0.84
329	7.91	0.11	7.09	< LOD	<lod></lod>	0.15	< LOD	10.59	25.15	22.85	2.3	0.16	1.26	0.34	0.52	0.19	0.74
334	86.9	0.13	6.79	< LOD	< LOD	1.05	< LOD	4.69	16.69	14.82	1.87	0.38	98.0	0.25	0.51	0.16	0.48
297	8.18	60.0	6.05	< LOD	< LOD	0.54	< LOD	6.71	16.55	14.81	1.75	0.22	0.47	60.0	0.89	0.16	0.74
307	7.99	0.05	5.32	< LOD	< LOD	1.07	< LOD	3.93	11.64	10.16	1.48	0.38	0.22	0.12	0.63	0.22	9.0
293	7.82	0.04	3.48	< LOD	< LOD	0.25	< LOD	2.63	16.11	14.33	1.78	0.2	0.87	0.25	1.24	0.44	92.0
	8.22	0.04	4.17	< LOD	< LOD	0.63	< LOD	2.55	13.54	11.96	1.57	0.28	0.33	0.15	0.65	0.26	0.65
5 281	8.31	0.05	5.46	< LOD	< LOD	1.03	< LOD	3.13	10.52	9.18	1.34	0.26	3.93	1.3	0.58	0.25	2
3 293	8.28	0.02	4.5	< LOD	< LOD	0.75	< LOD	2.5	11.89	10.48	1.41	0.32	0.46	80.0	1.33	0.52	0.94
, 283	8.38	0.02	3.2	< LOD	< LOD	1.01	< LOD	1.26	11.68	10.25	1.43	0.41	9.0	0.11	6.0	0.13	66.0
283	8.4	0.03	3.75	< LOD	<lod></lod>	1.36	< LOD	1.34	12.24	10.8	1.45	9.0	1.03	0.61	2.68	1.28	1.4
290	8.04	0.05	4.75	< LOD	< LOD	2.01	< LOD >	1.96	11.72	10.27	1.45	0.53	0.22	0.14	0.4	0.17	9.0
304	8.02	0.07	6.14	< LOD	< LOD	0.25	< LOD	6.64	12.7	11.21	1.49	0.18	5.07	1.63	1.31	0.54	2.39
414	7.4	0.07	8.82	< TOD	< LOD	0.05	< LOD	14.11	14.96	13.31	1.66	0.11	0.97	0.31	99.0	0.35	0.91

Appendix E

MEM maps based on passive and active biomonitors

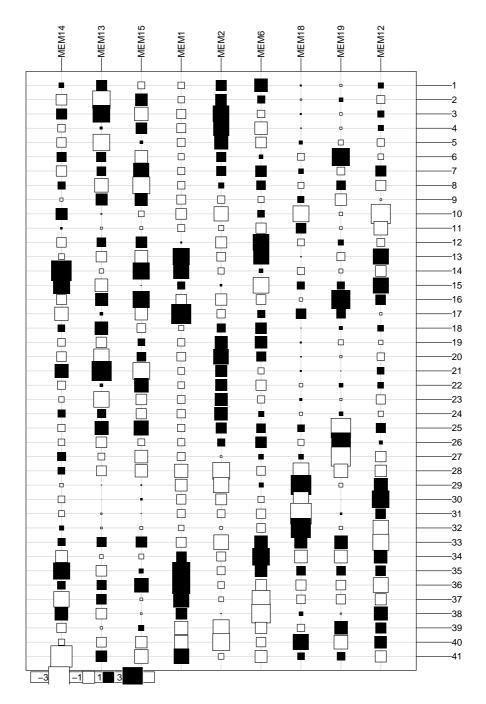


Figure E.1: MEM map based on passive biomonitoring data, relative to the Bussento-Bussentino river system. MEMs are ordered from left to right in relation to their importance in the relative RDA. Square size indicate the relative strength of spatial autocorrelation (\blacksquare : positive; \square : negative).

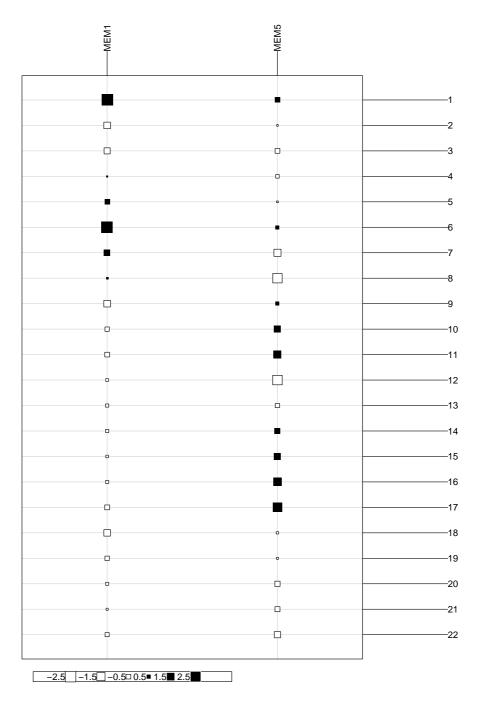


Figure E.2: MEM map based on passive biomonitoring data, relative to the Calore Salernitano-Rio Pietra-Fasanella river system. MEMs are ordered from left to right in relation to their importance in the relative RDA. Square size indicate the relative strength of spatial autocorrelation (\blacksquare : positive; \square : negative).

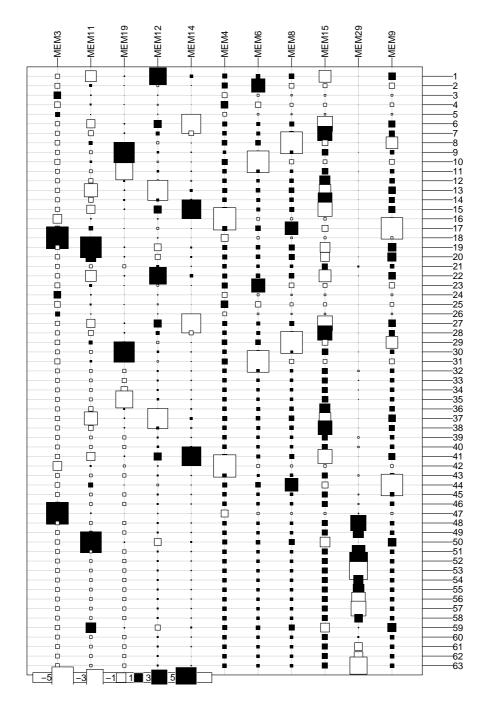


Figure E.3: MEM map based on passive biomonitoring data, relative to the joint river system. MEMs are ordered from left to right in relation to their importance in the relative RDA. Square size indicate the relative strength of spatial autocorrelation (\blacksquare : positive; \square : negative).

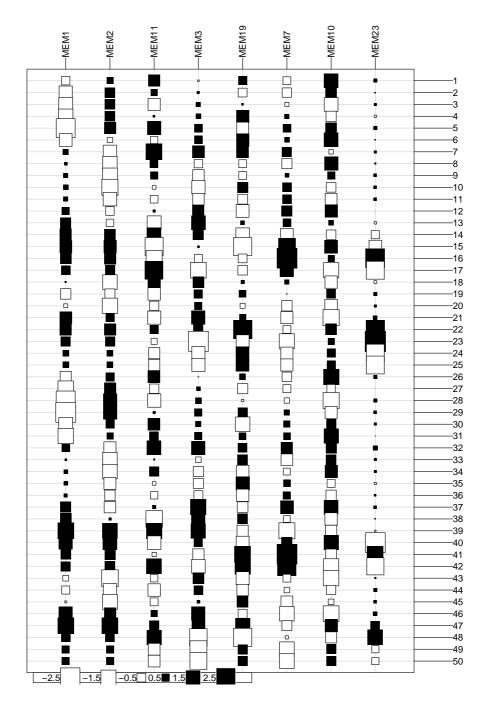


Figure E.4: MEM map based on active biomonitoring data, relative to the Bussento-Bussentino river system. MEMs are ordered from left to right in relation to their importance in the relative RDA. Square size indicate the relative strength of spatial autocorrelation (\blacksquare : positive; \square : negative).

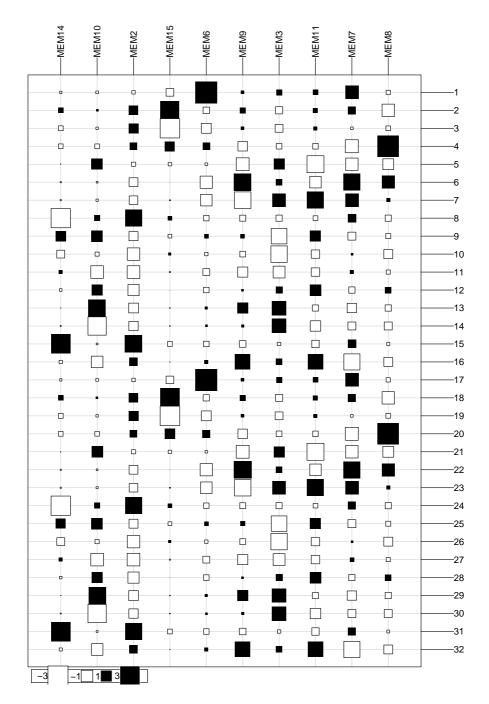


Figure E.5: MEM map based on active biomonitoring data, relative to the Calore Salernitano-Rio Pietra-Fasanella river system. MEMs are ordered from left to right in relation to their importance in the relative RDA. Square size indicate the relative strength of spatial autocorrelation (\blacksquare : positive; \square : negative).

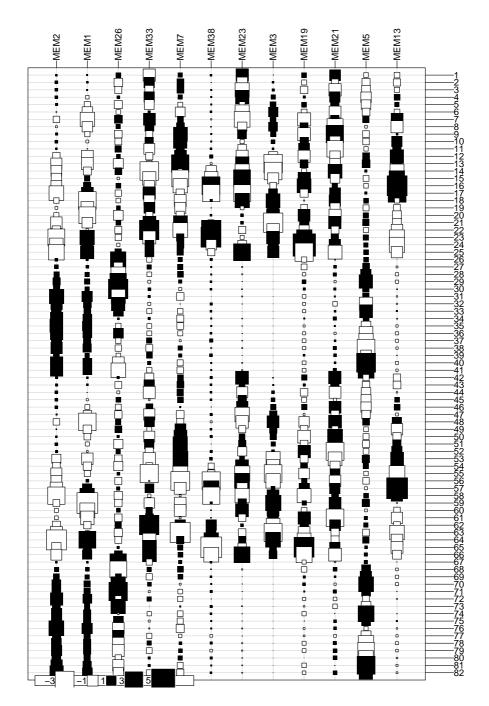


Figure E.6: MEM map based on active biomonitoring data, relative to the joint river system. MEMs are ordered from left to right in relation to their importance in the relative RDA. Square size indicate the relative strength of spatial autocorrelation (\blacksquare : positive; \square : negative).

References

- Aguirre-Rubí J, Ortiz-Zarragoitia M, Izagirre U, Etxebarria N, Espinoza F, Marigómez I (2019) Prospective biomonitor and sentinel bivalve species for pollution monitoring and ecosystem health disturbance assessment in mangrove-lined Nicaraguan coasts. Science of the Total Environment 649:186–200. doi:10.1016/j.scitotenv.2018.08.269
- Ahmadi A, Riahi H, Sheidai M, Van Raam J (2012) Some Charophytes (Characeae, Charophyta) from Central and Western of Iran including *Chara kohrangiana* species nova. Cryptogamie, Algologie 33:359–390. doi:10.7872/crya.v33.iss4.2012.359
- Alam A (2018) Biotic and abiotic stress tolerance in plants, chap. Bryomonitoring of environmental pollution. Springer Netherland, pp. 349–366. doi:10.1007/978-981-10-9029-5_13
- Albanese S, De Vivo B, Lima A, Cicchella D (2007) Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). Journal of Geochemical Exploration 93(1):21 34. doi:https://doi.org/10.1016/j.gexplo.2006.07.006
- Allan I, Vrana B, Greenwood R, Mills G, Roig B, Gonzalez C (2006) A "toolbox" for biological and chemical monitoring requirements for the European Union's Water Framework Directive. Talanta 69(2 SPEC. ISS.):302–322. doi:10.1016/j.talanta.2005.09.043
- Arthington AH (2015) Environmental flows: a scientific resource and policy framework for river conservation and restoration. Aquatic

- Conservation: Marine and Freshwater Ecosystems 25(2):155–161. doi:10.1002/aqc.2560. https://onlinelibrary.wiley.com/doi/pdf/10.1002/aqc.2560
- Atherton ID, Bosanquet SDS, Llawley M (eds.) (2010) Mosses and liverworts of Britain and Ireland: A field guide. British Bryological Society
- Augusto S, Gonzalez C, Vieira R, Máguas C, Branquinho C (2011) Evaluating sources of PAHs in urban streams based on land use and biomonitors. Environmental Science and Technology 45(8):3731–3738. doi:10.1021/es1036332
- Baldantoni D, Alfani A (2016) Usefulness of different vascular plant species for passive biomonitoring of Mediterranean rivers. Environmental Science and Pollution Research 23(14):13907–13917. doi: 10.1007/s11356-016-6592-6
- Baldantoni D, Bellino A, Lofrano G, Libralato G, Pucci L, Carotenuto M (2018) Biomonitoring of nutrient and toxic element concentrations in the Sarno River through aquatic plants. Ecotoxicology and Environmental Safety 148:520 527. doi:https://doi.org/10.1016/j.ecoenv. 2017.10.063
- Barnosky A, Matzke N, Tomiya S, Wogan G, Swartz B, Quental T, Marshall C, McGuire J, Lindsey E, Maguire K, Mersey B, Ferrer E (2011) Has the Earth's sixth mass extinction already arrived? Nature 471(7336):51–57. doi:10.1038/nature09678. Cited By 1049
- Bartram J, Ballance R (1996) Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. E & FN Spon
- Bauman D, Vleminckx J, Hardy OJ, Drouet T (2018) Testing and interpreting the shared space-environment fraction in variation partitioning analyses of ecological data. Oikos 1(1). doi:10.

- 1111/oik.05496. https://onlinelibrary.wiley.com/doi/pdf/10.1111/oik.05496
- Bazzichelli G, Abdelahad N (2009) Flora analitica delle Caroficee: alghe d'acqua dolce d'Italia. Ministero dell'Ambiente e della Tutela del Territorio e del Mare
- Beilby M, Schneider S, Puckacz A, Martín-Closas C (2018) Towards an integrated understanding of charophyte biology and paleobiology. Botany Letters 165(1):7–10. doi:10.1080/23818107.2017.1415819
- Bellino A, Alfani A, Selosse MA, Guerrieri R, Borghetti M, Baldantoni D (2014) Nutritional regulation in mixotrophic plants: new insights from *Limodorum abortivum*. Oecologia 175(3):875–885. doi:10.1007/s00442-014-2940-8
- Bellino A, Bellino L, Baldantoni D, Saracino A (2015) Evolution, ecology and systematics of *Soldanella* (Primulaceae) in the southern Apennines (Italy). BMC Evolutionary Biology 15(1):158. doi: 10.1186/s12862-015-0433-y
- Besse JP, Geffard O, Coquery M (2012) Relevance and applicability of active biomonitoring in continental waters under the Water Framework Directive. TrAC Trends in Analytical Chemistry 36:113 127. doi:https://doi.org/10.1016/j.trac.2012.04.004. Chemical Monitoring Activity for the Implementation of the Water Framework Directive
- Bivand R, Keitt T, Rowlingson B (2018) rgdal: Bindings for the 'Geospatial' Data Abstraction Library. R package version 1.3-4
- Blais J, Rosen M, Smol J (eds.) (2015) Environmental contaminants using natural archives to track sources and long-term trends of pollution, vol. 18. Springer Netherlands
- Bonanno G, Borg JA, Martino VD (2017) Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Science of The Total Environment 576:796 806. doi:https://doi.org/10.1016/j.scitotenv.2016.10.171

- Bonanno G, Vymazal J (2017) Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation. Journal of Geochemical Exploration 181:22 30. doi:https://doi.org/10.1016/j.gexplo.2017.06.018
- Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer-Verlag
- Bovolin V, Cuomo A, Guida D (2015) Monitoring activity at the Middle Bussento Karst System (Cilento geopark, southern Italy). Springer International Publishing. doi:10.1007/978-3-319-09054-2_57
- Bovolin V, Cuomo A, Guida D (2017) Hydraulic modeling of flood pulses in the Middle Bussento Karst System (MBSKS), UNESCO Cilento Global Geopark, southern Italy. Hydrological Processes 31(3):639–653. doi:10.1002/hyp.11056
- Branković S, Pavlović-Muratspahić D, Topuzović M, Glišić R, Milivojević J, Dekić V (2012) Metals concentration and accumulation in several aquatic macrophytes. Biotechnology and Biotechnological Equipment 26(1):2731–2736. doi:10.5504/bbeq.2011.0086
- Branković S, Pavlović-Muratspahić D, Topuzović M, Glišić R, Stanković M (2010) Concentration of some heavy metals in aquatic macrophytes in reservoir near city Kragujevac (Serbia). Biotechnology & Biotechnological Equipment 24(sup1):223–227. doi:10.1080/13102818.2010.10817840. https://doi.org/10.1080/13102818.2010.10817840
- Bruns I, Friese K, Markert PDB, Krauss GJ (1997) The use of *Fontinalis antipyretica* L. ex Hedw. as a bioindicator for heavy metals. 2. heavy metal accumulation and physiological reaction of *Fontinalis antipyretica* L. ex Hedw. in active biomonitoring in the River Elbe. Science of The Total Environment 204:161–176. doi: 10.1016/S0048-9697(97)00174-5

- Cardwell R, DeForest D, Brix K, Adams W (2013) Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems? Reviews of environmental contamination and toxicology 226:101–22. doi: 10.1007/978-1-4614-6898-1_4
- Celico PB (1994) Sull'idrogeologia e l'idrogeochimica dei monti Alburni (SA). Geologica Romana
- Chapman D (ed.) (1992) Water quality assessments A guide to use of biota, sediments and water in environmental monitoring. E&FN Spon, second edn.
- Chmist J, Hämmerling M, Szoszkiewicz K (2018) Choice of the most useful early warning system, based on AHP and Rembrandt Analysis. Acta Scientiarum Polonorum Hortorum Cultus 17(1):17
- Cohen JE (2003) Human population: The next half century. Science 302(5648):1172–1175. doi:10.1126/science.1088665. http://science.sciencemag.org/content/302/5648/1172.full.pdf
- Cuomo A, Guida M, Guida D, Villani P, Guadagnuolo D, Longobardi A, Siervo V (2013) Using Radon222 as a Naturally Occurring Tracer to investigate the streamflow-groundwater interactions in a typical Mediterranean fluvial-karst landscape: the interdisciplinary case study of the Bussento river (Campania region, Southern Italy). WSEAS Transactions on Systems 12:5893
- Czédli H, Csedreki L, Szíki G, Jolánkai G, Pataki B, Hancz C, Antal L, Nagy S (2014) Investigation of the bioaccumulation of copper in fish. Fresenius Environmental Bulletin 23(7):1547–1552. Cited By 3
- De Nicola F, Baldantoni D, Maisto G, Alfani A (2017) Heavy metal and polycyclic aromatic hydrocarbon concentrations in *Quercus ilex* L. leaves fit an a priori subdivision in site typologies based on human management. Environmental Science and Pollution Research 24(13):11911–11918. doi:10.1007/s11356-015-5890-8

- De Nicola F, Spagnuolo V, Baldantoni D, Sessa L, Alfani A, Bargagli R, Monaci F, Terracciano S, Giordano S (2013) Improved biomonitoring of airborne contaminants by combined use of holm oak leaves and epiphytic moss. Chemosphere 92(9):1224–1230. doi: 10.1016/j.chemosphere.2013.04.050
- Debén S, Fernández J, Carballeira A, Kosior G, Aboal J (2018) Improving active biomonitoring in aquatic environments: The optimal number and position of moss bags. Ecological Indicators 93:753–758. doi:10.1016/j.ecolind.2018.05.058
- Debén García S, Fernández J, A c, Aboal J (2016) Using devitalized moss for active biomonitoring of water pollution. Environmental Pollution 210:315–322. doi:10.1016/j.envpol.2016.01.009
- Debén García S, Aboal J, A c, Cesa M, Fernández J (2017) Monitoring river water quality with transplanted bryophytes: A methodological review. Ecological Indicators 81:461–470. doi:10.1016/j.ecolind.2017. 06.014
- Díaz S, Villares R, Carballeira A (2012) Uptake kinetics of As, Hg, Sb, and Se in the aquatic moss *Fontinalis antipyretica* hedw. Water, Air, and Soil Pollution 223(6):3409–3423. doi:10.1007/s11270-012-1120-x
- Diviš P, Machát P, Szkandera R, Dočekalová H (2012) In situ measurement of bioavailable metal concentrations at the downstream on the Morava river using transplanted aquatic mosses and DGT technique. International Journal of Environmental Research 6(1):87–94
- Doebelin N, Kleeberg R (2015) Profex: A graphical user interface for the rietveld refinement program BGMN. Journal of Applied Crystallography 48:1573–1580. doi:10.1107/S1600576715014685
- Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2018) adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-2

- Dray S, Legendre P, Peres-Neto P (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196(3-4):483–493. doi: 10.1016/j.ecolmodel.2006.02.015
- Ducci D, De Masi G, Delli Priscoli G (2008) Contamination risk of the Alburni Karst System (Southern Italy). Engineering Geology 99(3-4):109–120. doi:10.1016/j.enggeo.2007.11.008
- Esposito S, Loppi S, Monaci F, Paoli L, Vannini A, Sorbo S, Maresca V, Fusaro L, Asadi karam E, Lentini M, De Lillo A, Conte B, Cianciullo P, Basile A (2018) In-field and in-vitro study of the moss *Leptodic-tyum* riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction. PLOS ONE 13(4):1–16. doi:10.1371/journal.pone.0195717
- Farago ME (ed.) (2008) Plants and the chemical elements: biochemistry, uptake, tolerance and toxicity. Wiley-Blackwell. doi: 10.1002/9783527615919
- Favas P, Pratas J (2013) Uptake of uranium by native aquatic plants: Potential for bioindication and phytoremediation. In: N P (ed.) 16th International Conference on Heavy Metals in the Environment, ICH-MET 2012, vol. 1. EDP Sciences. doi:10.1051/e3sconf/20130113007
- Favas PJ, Pratas J, Rodrigues N, D'Souza R, Varun M, Paul MS (2018) Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere 194:158 170. doi:https://doi.org/10.1016/j.chemosphere.2017.11.139
- Ferreira D, Ciffroy P, Tusseau-Vuillemin MH, Bourgeault A, Garnier JM (2013) DGT as surrogate of biomonitors for predicting the bioavailability of copper in freshwaters: An ex situ validation study. Chemosphere 91(3):241–247. doi:10.1016/j.chemosphere.2012.10.016

- Filzmoser P (2005) Identification of multivariate outliers: A performance study. Austrian Journal of Statistics 34(2):127–138
- Filzmoser P, Gschwandtner M (2018) mvoutlier: Multivariate Outlier Detection Based on Robust Methods. R package version 2.0.9
- Ford D, William P (2013) Karst hydrogeology and geomorphology. Wiley
- Gecheva G, Yurukova L (2014) Water pollutant monitoring with aquatic bryophytes: A review. Environmental Chemistry Letters 12(1):49–61. doi:10.1007/s10311-013-0429-z
- Geneletti D, Van Duren I (2008) Protected area zoning for conservation and use: a GIS-based integration of multicriteria and multiobjective analysis. Landscape and Urban Planning 85:97–110
- Greger M (2004) Metal Availability, Uptake, Transport and Accumulation in Plants. Springer
- Guiry MD, Guiry GM (2018) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway
- Herbst A, Henningsen L, Schubert H, Blindow I (2018a) Encrustations and element composition of charophytes from fresh or brackish water sites habitat- or species-specific differences? Aquatic Botany 148:29–34. doi:10.1016/j.aquabot.2018.04.007
- Herbst A, von Tümpling W, Schubert H (2018b) The seasonal effects on the encrustation of charophytes in two hard-water lakes. Journal of Phycology 54(5):630–637. doi:10.1111/jpy.12772
- Jordan M, Teasdale P, Dunn R, Lee S (2008) Modelling copper uptake by *Saccostrea glomerata* with diffusive gradients in a thin film measurements. Environmental Chemistry 5(4):274–280. doi: 10.1071/EN07092

- Kilunga PI, Sivalingam P, Laffite A, Grandjean D, Mulaji CK, de Alencastro LF, Mpiana PT, Poté J (2017) Accumulation of toxic metals and organic micro-pollutants in sediments from tropical urban rivers, Kinshasa, Democratic Republic of the Congo. Chemosphere 179:37 48. doi:https://doi.org/10.1016/j.chemosphere.2017.03.081
- Küpper H, Seibert S, Parameswaran A (2007) Fast, sensitive, and inexpensive alternative to analytical pigment HPLC: Quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss Peak Spectra. Analytical Chemistry 79(20):7611–7627. doi: 10.1021/ac070236m. PMID: 17854156, https://doi.org/10.1021/ac070236m
- Lafabrie C, Pergent G, Kantin R, Pergent-Martini C, Gonzalez JL (2007) Trace metals assessment in water, sediment, mussel and seagrass species validation of the use of *Posidonia oceanica* as a metal biomonitor. Chemosphere 68(11):2033–2039. doi:10.1016/j.chemosphere. 2007.02.039
- Laffont-Schwob I, Triboit F, Prudent P, Soulié-Märsche I, Rabier J, Despréaux M, Thiéry A (2015) Trace metal extraction and biomass production by spontaneous vegetation in temporary Mediterranean stormwater highway retention ponds: Freshwater macroalgae (*Chara* spp.) vs. cattails (*Typha* spp.). Ecological Engineering 81:173–181. doi:10.1016/j.ecoleng.2015.04.052
- Le Saout S, Hoffmann M, Shi Y, Hughes A, Bernard C, Brooks TM, Bertzky B, Butchart SHM, Stuart SN, Badman T, Rodrigues ASL (2013) Protected areas and effective biodiversity conservation. Science 342(6160):803–805. doi:10.1126/science.1239268. http://science.sciencemag.org/content/342/6160/803.full.pdf
- Ledl G, Janauer G, Horak O (1981) Die Anreicherung von Schwermetallen in Wasserpflanzen aus einigen österreichischen Fließgewässern. Acta hydrochimica et hydrobiologica 9(6):651–663. doi:10.1002/aheh.19810090610

- Legendre P, Legendre L (2012) Numerical ecology. Elsevier
- Leibovici DG (2010) Spatio-temporal multiway decompositions using Principal Tensor Analysis on k-modes: The R package PTAk. Journal of Statistical Software 34(10):1–34
- Lenth R (2018) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.2.4
- Les D (2017) Aquatic dicotyledons of North America: ecology, life history, and systematics. CRC Press. doi:10.1201/9781315118116
- Liu HY, Bartonova A, Pascal M, Smolders R, Skjetne E, Dusinska M (2012) Approaches to integrated monitoring for environmental health impact assessment. Environmental Health: A Global Access Science Source 11(1). doi:10.1186/1476-069X-11-88
- Longobardi A, Cuomo A, Guida D, Villani P (2011) Earth and Environmental Sciences, chap. Water Resources Assessment for Karst Aquifer Conditioned River Basins: Conceptual Balance Model Results and Comparison with Experimental Environmental Tracers Evidences. InTechOpen, pp. 275–300. doi:10.5772/26310
- Mackey E, of Standards NI, (US) T (2004) Certification of NIST Standard Reference Material 1575a Pine Needles and Results of an International Laboratory Comparison. NIST special publication. U.S. Department of Commerce, National Institute of Standards and Technology
- Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2018) cluster: Cluster Analysis Basics and Extensions
- Maffei M (1998) Environmental factors affecting the oil composition of some *Mentha* species grown in north west Italy. Flavour and Fragrance Journal 3(2):79–84. doi:10.1002/ffj.2730030206. https://onlinelibrary.wiley.com/doi/pdf/10.1002/ffj.2730030206

- Maione U, Majone-Lehto B, Monti R (2000) New Trends in Water and Environmental Engineering for Safety and Life. Taylor & Francis
- Malhi Y (2017) The concept of the Anthropocene. Annual Review of Environment and Resources 42(1):77–104. doi:10.1146/annurev-environ-102016-060854
- Mangal V, Zhu Y, Shi Y, Guéguen C (2016) Assessing cadmium and vanadium accumulation using diffusive gradient in thin-films (DGT) and phytoplankton in the Churchill River estuary, Manitoba. Chemosphere 163:90 98. doi:https://doi.org/10.1016/j.chemosphere.2016.08.008
- Marcelli M, Fusillo R (2009) Assessing range re-expansion and recolonization of human-impacted landscapes by threatened species: a case study of the otter (*Lutra lutra*) in Italy. Biodiversity and Conservation 18(11):2941–2959. doi:10.1007/s10531-009-9618-2
- Markert B, Fränzle S, Wünschmann S (2015) Chemical evolution the biological system of the elements. Springer International Publishing
- Markert PDB, Breure A, Zechmeister H (eds.) (2003) Bioindicators and biomonitors: principles, concepts and applications, vol. 6. Elsevier
- Matagi S, Swai D, Mugabe R (1998) A review of heavy metal removal mechanisms in wetlands. African Journal of Tropical Hydrobiology and Fisheries 8
- Moreira H, Marques AP, Rangel AO, Castro PM (2011) Heavy metal accumulation in plant species indigenous to a contaminated portuguese site: Prospects for phytoremediation. Water, air and soil pollution 221(1-4):377–389
- Morozov I, Dueker K (2003) Signal-to-noise ratios of teleseismic receiver functions and effectiveness of stacking for their enhancement. Journal of Geophysical Research: Solid Earth 108(2):ESE 17–1 17–8

- Mueller P, Thoss H, Kaempf L, Güntner A (2013) A buoy for continuous monitoring of suspended sediment dynamics. Sensors (Switzerland) 13(10):13779–13801. doi:10.3390/s131013779
- Naser HM, Sultana S, Mahmud NU, Gomes R, Noor S (2011) Heavy metal levels in vegetables with growth stage and plant species variations. Bangladesh Journal of Agricultural Research
- Nowak P, Schubert H, Holzhausen A, Sommer V, Schaible R (2018) Morphological adaptations of *Chara baltica* and *Chara liljebladii* (Characeae) under different light conditions. Botany Letters 165(1):67–75. doi:10.1080/23818107.2017.1374209
- Nowak P, Schubert H, Schaible R (2016) Molecular evaluation of the validity of the morphological characters of three Swedish *Chara* sections: *Chara*, *Grovesia*, and *Desvauxia* (Charales, Charophyceae). Aquatic Botany 134:113–119. doi:10.1016/j.aquabot.2016.08.001
- Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5-2
- Parmar TK, Rawtani D, Agrawal YK (2016) Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science 9(2):110–118. doi:10.1080/21553769.2016.1162753. https://doi.org/10.1080/21553769.2016.1162753
- Peters A, Zhang H, Davison W (2003) Performance of the diffusive gradients in thin films technique for measurement of trace metals in low ionic strength freshwaters. Analytica Chimica Acta 478(2):237–244. doi:10.1016/S0003-2670(02)01512-X
- Philipps R, Xu X, Mills G, Bringolf R (2018a) Evaluation of diffusive gradients in thin films for prediction of copper bioaccumulation by yellow lampmussel (*Lampsilis cariosa*) and fathead minnow (*Pimephales*

- promelas). Environmental Toxicology and Chemistry 37(6):1535–1544. doi:10.1002/etc.4108
- Philipps R, Xu X, Mills G, Bringolf R (2018b) Impact of natural organic matter and increased water hardness on DGT prediction of copper bioaccumulation by yellow lampmussel (*Lampsilis cariosa*) and fathead minnow (*Pimephales promelas*). Environmental Pollution 241:451–458. doi:10.1016/j.envpol.2018.05.059
- Phillips D, Rainbow P (2013) Biomonitoring of Trace Aquatic Contaminants. Ettore Majorana International Science Series. Springer Netherlands
- Pignatti S (1982) Flora d'Italia. Edagricole, Bologna.
- Podani J (2005) Multivariate exploratory analysis of ordinal data in ecology: Pitfalls, problems and solutions. Journal of Vegetation Science 16(5):497–510. doi:10.1658/1100-9233
- Podani J, Morrison D (2017) Categorizing ideas about systematics: alternative trees of trees, and related representations. Rendiconti Lincei 28(1):191–202. doi:10.1007/s12210-017-0597-z
- Puche E, Sánchez-Carrillo S, Álvarez-Cobelas M, Pukacz A, Rodrigo M, Rojo C (2018) Effects of overabundant nitrate and warmer temperatures on charophytes: the roles of plasticity and local adaptation. Aquatic Botany 146:15–22. doi:10.1016/j.aquabot.2018.01.003
- Pueyo M, Rauret G, Lück D, Yli-Halla M, Muntau H, Quevauviller P, López-Sánchez J (2001) Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring 3(2):243–250
- QGIS Development Team (2018) QGIS Geographic Information System. Open Source Geospatial Foundation Project. Http://qgis.osgeo.org

- R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
- Rauret G, López-Sánchez J, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring 1(1):57–61. doi:10.1039/a807854h
- Ravbar N, Engelhardt I, Goldscheider N (2011) Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: The case of the Podstenjşek spring, Slovenia. Hydrological Processes 25(13):2130–2140. doi: 10.1002/hyp.7966
- Renaudin M, Leblond S, Meyer C, Rose C, Lequy E (2018) The coastal environment affects lead and sodium uptake by the moss hypnum cupressiforme used as an air pollution biomonitor. Chemosphere 193:506 513. doi:https://doi.org/10.1016/j.chemosphere.2017.11.045
- Romano A, Ventre N, Riso L, Pignataro C, Spilinga C (2013) Amphibians of the "Cilento e Vallo di Diano" National Park (Campania, Southern italy): Updated check list, distribution and conservation notes. Acta Herpetologica 5(2):233–244. doi:10.13128/Acta_Herpetol-9035
- Ronse A, Popper Z, Preston J, Watson M (2010) Taxonomic revision of european *Apium* L. sl: *Helosciadium* WDJ Koch restored. Plant systematics and evolution 287(1-2):1–17
- Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press
- Samecka-Cymerman A, Kempers A (1999) Background concentrations of heavy metals in aquatic bryophytes used for biomonitoring in

- basaltic areas (a case study from central France). Environmental Geology 39(2):117–122. doi:10.1007/s002540050442
- Samecka-Cymerman A, Kolon K, Kempers A (2005) A comparison of native and transplanted *Fontinalis antipyretica* Hedw. as biomonitors of water polluted with heavy metals. Science of the Total Environment 341(1-3):97–107. doi:10.1016/j.scitotenv.2004.09.026
- Santangelo N, Santo A, Guida D, Lanzara R, Siervo V (2005) The geosites of the Cilento-Vallo di Diano National Park (Campania region, southern Italy). Alpine and Mediterranean Quaternary 18(1):103–114
- Schillereff D, Chiverrell R, Macdonald N, Hooke J, Welsh K (2016) Quantifying system disturbance and recovery from historical mining-derived metal contamination at Brotherswater, northwest England. Journal of Paleolimnology 56(2-3):205–221. doi:10.1007/s10933-016-9907-1
- Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7):671–675. doi:10.1038/nmeth.2089
- Schneider S, Nowak P, Von Ammon U, Ballot A (2016) Species differentiation in the genus *Chara* (Charophyceae): considerable phenotypic plasticity occurs within homogenous genetic groups. European Journal of Phycology 51(3):282–293. doi:10.1080/09670262.2016.1147085
- Schneider S, Rodrigues A, Moe T, Ballot A (2015) DNA barcoding the genus *Chara*: molecular evidence recovers fewer taxa than the classical morphological approach. Journal of Phycology 51(2):367–380. doi:10.1111/jpy.12282
- Segan D, Murray K, Watson J (2016) A global assessment of current and future biodiversity vulnerability to habitat loss-climate change interactions. Global Ecology and Conservation 5:12–21. doi:10.1016/j.gecco.2015.11.002

- Spencer KL (2017) Estuarine and Coastal Hydrography and Sediment Transport, chap. Estuarine Deposited Sediments: Sampling and Analysis. Cambridge University Press, p. 153–178. doi: 10.1017/9781139644426.007
- Srivastava J, Gupta A, Chandra H (2008) Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Bio/Technology 7(3):255–266. doi:10.1007/s11157-008-9135-x
- Stark J, Johnstone G, Palmer A, Snape I, Larner B, Riddle M (2006) Monitoring the remediation of a near shore waste disposal site in Antarctica using the amphipod *Paramoera walkeri* and diffusive gradients in thin films (DGTs). Marine Pollution Bulletin 52(12):1595–1610. doi:10.1016/j.marpolbul.2006.05.020
- Stoyneva MP, Gärtner G (2004) Taxonomic and ecological notes to the list of green algal species from Bulgarian thermomineral waters. Berichte des Naturwissenschaftlich–Medizinischen Vereins in Innsbruck 91:67–89
- Sviben S, Matoničkin Kepčija R, Vidaković-Cifrek v, Sertić Perić M, Kružić P, Popijač A, Primc B (2018) *Chara* spp. exhibit highly heterogeneous light adaptation, calcite encrustation and epiphyton patterns in a marl lake. Aquatic Botany 147:1–10. doi: 10.1016/j.aquabot.2018.01.007
- Symoens J (2012) Vegetation of inland waters. Handbook of Vegetation Science. Springer Netherlands
- Szczerbińska N, Galczyńska M (2015) Biological methods used to assess surface water quality. Archives of Polish Fisheries 23(4):185–196. doi:10.1515/aopf-2015-0021
- Thiombane M, Zuzolo D, Cicchella D, Albanese S, Lima A, Cavaliere M, Vivo BD (2018) Soil geochemical follow-up in the Cilento World Heritage Park (Campania, Italy) through exploratory compositional

- data analysis and C-A fractal model. Journal of Geochemical Exploration 189:85 99. doi:https://doi.org/10.1016/j.gexplo.2017.06.010. Multifractals and singularity analysis in mineral exploration and environmental assessments
- Urbaniak J (2011) A SEM and light microscopy study of the oospore wall ornamentation in Polish charophytes (Charales, Charophyceae) genus *Chara*. Nova Hedwigia 93:1–28. doi:10.1127/0029-5035/2011/0093-0001
- Urbaniak J, Sakayama H (2017) Taxonomical analysis of closely related species of *Chara* l. section *Hartmania* (streptophyta: Charales) based on morphological and molecular data. Fottea 17(2):222–239. doi: 10.5507/fot.2017.004
- Valavanidis A (2018) Ecosystem approach management of environmental resources. an ecological strategy for integrated environmental conservaction. www.chem-tox-ecotoxorg 1:1–36
- van den Boogaart KG, Tolosana-Delgado R, Bren M (2018) compositions: Compositional Data Analysis. R package version 1.40-2
- Vázquez-Luis M, Álvarez E, Barrajón A, García-March J, Grau A, Hendriks I, Jiménez S, Kersting D, Moreno D, Pérez M, Ruiz J, Sánchez J, Villalba A, Deudero S (2017) S.O.S. *Pinna nobilis*: A mass mortality event in western Mediterranean Sea. Frontiers in Marine Science 4(JUL). doi:10.3389/fmars.2017.00220
- Vlyssides A, Barampouti E, Mai S (2005) Heavy metal removal from water resources using the aquatic plant *Apium nodiflorum*. Communications in Soil Science and Plant Analysis 36(7-8):1075–1081. doi:10.1081/CSS-200050499
- Waltham N, Teasdale P, Connolly R (2011) Contaminants in water, sediment and fish biomonitor species from natural and artificial estuarine habitats along the urbanized Gold Coast, Queensland.

- Journal of Environmental Monitoring 13(12):3409–3419. doi:10.1039/c1em10664c
- Welch W (2014) A Monograph of the Fontinalaceae. Springer Netherlands
- Zhang ZY, Abuduwaili J, Jiang FQ (2015) Pollution and potential ecology risk evaluation of heavy metals in river water, top sediments on bed and soils along banks of Bortala River, northwest China. Huan Jing Ke Xue 36:2422–2429
- Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilisation and demobilisation. Science of The Total Environment 266(1):195 202. doi:https://doi.org/10.1016/S0048-9697(00)00740-3
- Zurayk R, Sukkariyah B, Baalbaki R (2001) Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air and Soil Pollution 127:373–388. doi:10.1023/A:1005209823111