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ABSTRACT

Weather-induced landslides cause a large number of casualties as well as
severe economic losses worldwide every year. Such a diffuse risk cannot
be mitigated only by means of structural works, typically characterized by
significant economic and environmental impacts. Therefore, landslide
early warning systems (LEWS) are being increasingly applied as non-
structural mitigation measures aiming at reducing the loss-of-life
probability and other adverse consequences from landslide events by
prompting people to act appropriately and in sufficient time to reduce the
possibility of harm or loss. The systems can be distinguished, as a function
of the scale of design and operation, in two different categories. Territorial
systems (Te-LEWS), deal with multiple landslides over wide areas at
regional scale, i.e. typically a basin, a municipality or a region; local systems
(Lo-LEWS) address single landslides at slope scale.

In a preliminary phase of this study, a detailed review of Lo-LEWS
operational worldwide is provided. The information has been retrieved
from peer-reviewed articles published in scientific journals and
proceedings of technical conferences, books, reports, and institutional
web pages. The main characteristics of these systems have been
summarized and described according to a scheme based on a clear
distinction between three modules: landslide model, warning model and
warning system. The monitoring strategies implemented therein have been
presented and discussed, focusing on the monitored parameters and the
monitoring instruments for each type of landslide. Subsequently, warning
models developed within Te-LEWS for weather-induced landslides have
been analyzed, pointing out that: their outputs are strongly dependent
from the accurateness and reliability of the information on landslide
occurrences; and only meteorological variables are considered in most of
the cases, thus leading to an unavoidable uncertainty in the empirically
defined thresholds. To overcome these issues, original procedures for
defining warning models are herein proposed and tested on case studies
in Campania and Emilia-Romagna regions (Italy) and in Norway. In Italy,
a probabilistic approach has been developed to determine landslide
conditional probabilities related to rainfall of specific intensity and
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duration. The adopted Bayesian methodology allows to consider the
uncertainty of the data and to provide a quantitative assessment of the
reliability of the results. Data on landslide occurrences have been derived
from a new landslide inventory, named “Franeltalia”, wherein data are
retrieved from online journalistic news; the correlations between
landslides and rainfall have been assessed by analyzing satellite-rainfall
records within weather alert zones. On the other hand, the methodology
proposed for Norway aims at integrating the hydro-meteorological
variables employed within the regional model used by the national early
warning system (i.e. combinations of relative water supply and relative soil
water saturation degree) with monitoring data collected at local scale,
specifically pore water pressure observations acquired by the Norwegian
Geotechnical Institute for a variety of projects. The analyses are carried
out on a number of hydrological basins (test areas) defined at national
scale and selected considering the occurrence of landslides in loose soils
from 2013 to 2017 and the availability of a significant number of pore
water pressure measurements. For each basin, the alerts issued by the
regional model are assessed by means of a 2-step analysis employing
indicators derived from simple moving averages of the pore water
pressure measurements.

The warning models developed herein were successfully applied to
selected case studies. Therefore, the proposed methodologies can be
considered valuable frameworks considering aspects that are crucial for
improving the efficiency of the models, such as: the potential of non-
conventional landslide inventories and remote sensing monitoring
instruments to complement the traditional sources of data, the use of
probabilistic techniques for defining more objective rainfall thresholds,
and the additional contribution of the information derived from the local
observations of pore water pressures.
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SOMMARIO

Le frane meteo-indotte causano un numero elevato di vittime oltre a
ingenti perdite economiche in tutto il mondo ogni anno. Un rischio tanto
diffuso non puo essere mitigato solamente attraverso opere strutturali,
tipicamente contraddistinte da considerevoli impatti economici e
ambientali. D1 conseguenza, i sistemi di allerta da frana (LEWS) vengono
sempre piu applicati come misure di mitigazione di tipo non strutturale
con lo scopo di ridurre la probabilita di perdita della vita e altre
conseguenze avverse derivanti da eventi franosi inducendo le persone ad
agire responsabilmente e in tempo utile per ridurre la possibilita di danno
o perdita. Tali sistemi possono essere classificati in due differenti categorie,
in funzione della scala a cui vengono progettati e applicati. I sistemi
territoriali (Te-LEWS), si occupano di numerose frane su vaste aree a scala
regionale, tipicamente un bacino idrografico, un comune o una regione; i
sistemi locali (Lo-LEWS) operano su singole frane alla scala di pendio.

In una fase preliminare di questo studio, ¢ presentata una rassegna
dettagliata dei sistemi di allerta locali operanti in tutto il mondo. Le
informazioni sono state ricavate sia da articoli specializzati pubblicati in
riviste, sia da atti di conferenze tecniche, libri, report e pagine web
istituzionali. Le principali caratteristiche di questi sistemi sono state
sintetizzate e descritte secondo uno schema basato su una chiara
distinzione tra tre moduli: modello di franosita, modello di allerta e sistema
di allerta. Le strategie di monitoraggio ivi implementate sono state
presentate e discusse, concentrandosi particolarmente sui parametri
monitorati e sugli strumenti di monitoraggio adottati per ciascun tipo di
frana. Successivamente, sono stati analizzati i modelli di allerta sviluppati
all’interno dei sistemi di allerta territoriali, rilevando che i loro rendimenti
dipendono  fortemente dall’accuratezza e dall’affidabilita  delle
informazioni sull’occorrenza delle frane e nella maggior parte dei casi sono
considerate soltanto variabili meteorologiche, portando dunque a
un’ineluttabile incertezza nelle soglie definite in via empirica. Al fine di
risolvere queste problematiche, delle procedure originali per definire dei
modelli di allerta sono proposte in questo lavoro e testate in casi di studio
in Emilia-Romagna e Campania (Italia) e in Norvegia. In Italia, un
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approccio probabilistico ¢ stato sviluppato per determinare le probabilita
condizionate relative a frane di specifica durata e intensita. I.a metodologia
bayesiana adottata permette di considerare lincertezza dei dati e di
garantire una stima quantitativa dell’affidabilita dei risultati. Le
informazioni sull’occorrenza delle frane sono state derivate da un nuovo
inventario di frane, chiamato “Franeltalia”, i cui dati sono ricavati da
articoli di stampa online; le correlazioni tra frane e piogge sono state
valutate analizzando dati satellitari di pioggia all'interno di zone di allerta
meteo. Invece, la metodologia proposta per la Norvegia mira ad integrare
le variabili meteorologiche impiegate nel modello regionale utilizzato dal
sistema nazionale di allerta (combinazioni di apporto idrico e grado di
saturazione del suolo relativi) con dati di monitoraggio raccolti a scala
locale, nello specifico misure di pressioni interstiziali acquisite dal
Norwegian Geotechnical Institute per diversi progetti. Le analisi sono
eseguite su una serie di bacini idrografici (aree di studio) definiti a scala
nazionale e selezionati considerando 'occorrenza di frane in sedimenti
sciolti dal 2013 al 2107 e la disponibilita di un numero significativo di
misure di pressioni interstiziali. Per ogni bacino le allerte emanate dal
modello regionale sono valutate attraverso un’analisi in due passi che
impiega indicatori derivati da medie mobili semplici delle misure di
pressioni interstiziali.

I modelli di allerta sviluppati in questo studio sono stati applicati con
successo al casi di studio selezionati. Di conseguenza, le metodologie
proposte possono essere considerate degli utili schemi che tengono conto
di aspetti cruciali per migliorare 'efficienza dei modelli di allerta, fra cui: il
potenziale di inventari di frana non convenzionali e strumenti in
telerilevamento nell’integrare le tradizionali fonti di dati, l'utilizzo di
tecniche probabilistiche per definire soglie pluviometriche piu obiettive e
il contributo addizionale delle informazioni detrivate da osservazioni locali
di pressioni.
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1 INTRODUCTION

Problem statement

Weather-induced landslides are widespread and destructive natural
phenomena occurring all around the world that may cause severe human
and economic losses. The continuous urbanization process in landslide
prone areas and the increasing number of extreme atmospheric
phenomena have drastically raised, worldwide, the exposure of people
affected by weather-induced landslides. Landslide risk can be reduced by
adopting different mitigation methods, such as: active measures reducing
the probability of occurrence of landslides, engineering works decreasing
the vulnerability of the elements at risk, and non-structural actions.
Among the latter, landslide early warning systems (LEWS) certainly
constitute a significant option available to the authorities in charge of risk
management and governance. LEWS aim at reducing the loss-of-life
probability and other adverse consequences from landslide events by
informing individuals, communities, and organizations threatened by
landslides to prepare and to act appropriately and in sufficient time to
reduce the possibility of harm or loss (UNISDR 2006). LEWS have been
recognized as important tools for landslide risk reduction and community
resilience in many recent international initiatives (e.g., Sendai Framework
for Disaster Risk Reduction 2015-2030, UN Agenda 2030 for sustainable
development, European Climate Adaptation Platform). Therefore, in
recent years scientists, governmental agencies and NGOs have shown an
increasing interest in LEWS.

LEWS can be designed and employed at two different reference scales
(e.g., Thiebes et al. 2012; Calvello 2017). Systems addressing single
landslides at slope scale can be referred to as local systems (Lo-LEWS).
Systems dealing with multiple landslides over wide areas at regional scale
can be referred to as territorial systems (Te-LEWS), ie., they can be
employed over a basin, a municipality, a region, or a nation (Piciullo et al.
2018).

Many literature contributions describe LEWS operational at both local
and regional scale dealing with weather-induced landslides. Yet, standard
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requirements for the definition of an efficient LEWS still do not exist, thus
crucial aspects may be neglected by systems developers and managers. The
efficiency of LEWS strongly depends on the monitoring strategies
adopted and the method developed for the definition of the warning
model. Indeed, monitoring strategies play a central role, both in the design
and in the operational phase of a LEWS, as suitable parameters to monitor
must be identified and the most appropriate monitoring instruments need
to be selected according to a set of criteria, such as simplicity, robustness,
reliability, and cost. Another crucial issue is the definition of an
appropriate warning methodology that considers the quantity and the
quality of the input data and the expected outputs of the model.

Objectives
This PhD thesis aims at defining and testing original methodologies for

improving the performance of warning models employed within LEWS
for weather-induced landslides.
In the following, the main research questions and the respective objectives
are summarized.
How to improve guantity and guality of landslide data?
e Definition and population of a landslide inventory from online
news
¢ Analyses on landslide occurrences at regional scale
How to best incorporate remote sensing data into current land-based monitoring
networks?
e Collection of meteorological monitoring data from satellite
observations
e Analysis of remote sensing data at regional scale
e Integration between widespread meteorological monitoring data
and local observations
How to define rainfall thresholds in an objective and reproducible way?
e Definition of probabilistic thresholds for landslide occurrence
e Development and implementation of a probabilistic warning
model
How can local observations be profitably used within warning models implemented at
regional scale?
e Identification of the most appropriate parameters to be monitored
at local scale in relation to the types of landslide under surveillance
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e Development and implementation of a multi-scalar warning
model

Thesis Outline

Chapter 2 presents the main characteristics of the landslide phenomena
addressed herein, their possible consequences in terms of human and
economic losses, and the mitigation measures available for landslide risk
management. Regarding non-structural options, LEWS are introduced by
describing their structure and by summarizing the findings of literature
contributions on Lo-LEWS and Te-LEWS operational all around the
world. Concerning Lo-LEWS, the information refers to 29 systems for
which the main characteristics are analyzed considering three main
modules: landslide model, warning model, and warning system (Pecoraro
et al. 2018). Information on Te-LEWS are derived from three recent
literature reviews reporting 24 Te-LEWS operational worldwide for
rainfall-induced landslides (Piciullo et al. 2018), 21 regional LEWS
operational in Italy (Pecoraro and Calvello 2016), and rainfall thresholds
employed within 45 Te-LEWS operational worldwide (Segoni et al.
2018a).

In Chapter 3 the monitoring strategies adopted within the reviewed Lo-
LEWS and the Te-LEWS are discussed and analyzed in terms of
monitored parameters and monitoring instruments. Moreover, the main
characteristics of the warning models employed within the Te-LEWS are
also reported. These analyses allow highlighting some relevant aspects that
need to be taken into account in order to improve the efficiency of LEWS:
the definition of objective and reproducible warning models; the
availability of reliable landslide records and monitoring data; the
integration of local geotechnical observations within warning models.
Chapter 4 introduces a framework highlighting the steps necessary for the
definition of a warning model for weather-induced landslides: collection
of the input data; delimitation of the warning zones; identification of the
landslide events; selection of the warning parameters; spatial-temporal
correlation between landslide events and weather events; calibration and
validation of the warning model. Following this framework, two original
methodologies are proposed for the definition of warning models for
weather-induced landslides: a probabilistic warning model, developed by
applying a Bayesian approach to determine the conditional probability of
landslide occurrence; and a multi-scalar warning model, integrating
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widespread meteorological monitoring data and geotechnical observations
collected at local scale.

In Chapter 5 the probabilistic warning model is tested in two Italian
regions, Emilia-Romagna and Campania, adopting as territorial units the
weather warning zones defined by the two regional civil protection
agencies. Data on landslide occurrences are derived from the “Franeltalia”
catalog, a landslide inventory based on information retrieved from online
Italian news (Calvello and Pecoraro 2018). Rainfall measurements are
derived from the satellite-based NASA Global Precipitation Measurement
(GPM) database, and are elaborated through Google Earth Engine, a
cloud-platform for planetary-scale environmental data analysis. Triggering
and non-triggering rainfall events are differentiated considering the
spatial-temporal distribution of landslide events within each territorial
unit. A Bayesian framework is applied to determine the probability of
landslide occurrence associated to each combination of rainfall parameters
and to define the warning levels within the model. The two probabilistic
models are validated using two different validation procedures.

In Chapter 6, the multi-scalar warning model is applied considering 30
Norwegian hydrogeological basins starting from the nationwide Te-LEWS
currently operational in Norway. These territorial units have been
identified considering information available at national scale according to
two selection criteria. The warning events issued by the national system,
which only takes into account gridded monitoring data (i.e., rainfall and
normalized values of water supply and soil water content), are assessed
considering trends of local pore water pressure observations. The warning
model is defined looking at the results of parametric analyses so as to
identify the best-performing parameters to be employed. The multi-scalar
warning model is finally validated employing statistical performance
indicators.

Finally, in Chapter 7 the results achieved are discussed and analyzed in
order to evaluate the potential of the proposed methodologies in

improving the performance of warning models for weather-induced
landslides.



2 EWS FOR WEATHER-INDUCED
LANDSLIDES

Weather-induced landslides are widespread phenomena, representing a
significant risk for people, structures and infrastructures in many parts of
the world. Such a diffuse risk cannot be mitigated only by means of
structural measures, thus landslide early warning systems (LEWS) are
being increasingly applied as non-structural risk mitigation measures.

Section 2.1 introduces the main features and the possible consequences of
the weather-induced landslides, also reporting the structural and non-
structural risk mitigation measures. Section 2.2 focuses on landslides eatly
warning systems, presenting their main structure and differentiating
between local systems (Lo-LEWS) and territorial systems (Te-LEWS).
Section 2.3 presents a literature review on Lo-LEWS and an analysis of
their main characteristics considering three main modules: landslide
model, warning model, and warning system. Finally, Section 2.4
summarizes information on Te-LEWS gathered from three recent
literature contributions: Piciullo et al. (2018) described and analysed the
main characteristics of territorial LEWS operational worldwide; Pecoraro
and Calvello (2016) presented a review on regional LEWS for weather-
induced landslides in Italy; Segoni et al. (2018a) investigated the
procedures for defining rainfall thresholds for landslide occurrence.

2.1 WEATHER-INDUCED LANDSLIDES

2.11 Types of landslides and possible consequences

According to Cruden (1991), a landslide can be defined as “@ movement of a
mass of rock, debris or earth down a slope” activated or triggered by causes that
can be either external or internal. However, the generic term “landslide”
includes a wvariety of different phenomena, which are not perfectly
repeatable, thus it is not possible to develop a taxonomic classification.
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Therefore, since the early decades of the last century several classification
schemes considering several discriminating factors have been proposed
(e.g., Skempton 1953; Varnes 1958; Blong 1973; Varnes 1978; Hutchinson
1988: Cruden and Varnes 1996; Leroueil et al. 1996; Hungr et al. 2001: and
Hungr et al. 2014). For instance, the classification proposed by Varnes
(1978) distinguishes among three types of materials (i.e., rock, debris, and
earth) and five types of movements (i.e., fall, topple, slide, lateral spread,
and flow). An additional class (i.e., the complex movements) is introduced
by the author in order to define any combination of more than one
movement. Cruden and Varnes (1996) allows differentiating between
slow- and fast-moving landslides on the basis of seven velocity classes,
each of them associated to a probable destructive significance. Hungr et
al. (2014) state that simple term assigned to a landslide type (or a specific
case) should reflect the particular focus of the researcher. Following this
approach, Calvello (2017) proposes that for early warning purposes a
landslide should be classified on the basis of its propagation phase and
taking into account four main characteristics: i) type of movement and
material, ii) activity phase, iii) velocity, and iv) volume (Figure 2.1).

Velocity
A Rapid Mass Movements
Rock falls Rock slides Rock avalanches
Hyperconcentrated flows
Debris flows/avalanches
Shallow slides <> First failure
(coarse-grained)
<> Reactivation
Shallow slides <
(fine-grained)
Deep-seated
Creep slides
Earth slides/ Earth flows Volume
|

Figure 2.1 Example of landslide classification scheme for early warning purposes
proposed by Calvello (2017)
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This thesis addresses weather-induced landslides occurring in shallow soil
layers as first failure phenomena. They comprise a wide range of slope
movements of limited size that mainly develop in soil layers up to a
maximum of a few meters, such as shallow slides, debris slides, debris
flows, debris avalanches, and hyperconcentrated flows. The main
triggering mechanism for these landslides typically consists of rain or snow
infiltration in shallow soil layers, resulting in an increase of the pore water
pressure and a decrease of the soil shear strength (Caine 1980), as well as
in the loss of the apparent cohesion in partially saturated soils (Fredlund
1987). The triggering process is characterized by a nearly totally absence
of warning signs. Although the triggering volume is often limited, the
landslide mass may incorporate the soil material lying along the slope in
the propagation phase, increasing significantly the volume. Moreover, in
steep channels shallow slides may evolve into debris flows, destructive
phenomena characterized by extremely high velocities (Hungr et al. 2014).
Shallow weather-induced landslides can occur frequently and often
simultaneously over large areas, thus they represent a widespread risk for
local communities, structures, and infrastructures in many parts of the
world (Calvello 2017). Recently, several different global databases (e.g., the
EM-DAT International Disaster Database, the NASA Global Landslide
Catalogue, and the Global Fatal Landslide Database) provided data on the
societal impact of these landslides. However, information is generally
related to all type of landslides and global databases generally
underestimate the landslides impact on society, as landslide events are
often incorporated in other major climate-related natural disasters (Petley
2012; Kirschbaum et al. 2015). Nevertheless, their analysis allows some
general considerations on human and economic losses of weather-induced
landslides, their spatial distribution and possible future trends. For
instance, the EM-DAT database suggested that weather-induced
landslides account for 5.2% of natural climate-related disaster events,
resulting in 18,418 deaths and about 8 billion EUR of economic losses
(Guha-Sapir et al. 2018). Moreover, Froude and Petley (2018)
demonstrated that the majority of the 4862 fatal landslide events reported
in the Global Fatal Landslide Database between 2004 and 2016 were
triggered by rainfall or snowmelt (79%) and were mainly concentrated in:
Central America, the Caribbean islands, Andes mountains, East Africa, the
Himalayan Arc, China, and the European Alps. Finally, Haque et al. (2010)
reported that 1.3 to 3.6 million Europeans live in landslide prone areas and
8000 to 20,000 km of roads and railways are highly exposed to landslides.
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2.1.2  Structural and non-structural risk mitigation measures

The awareness of the possible catastrophic consequences of landslides, in
terms of victims and social-economic impacts, led the technical and
scientific community to the adoption of a rigorous approach aimed at an
efficient and effective prevention, mitigation and control of landslide risk.
To this aim, Fell et al. (2005) proposed an integrated logical framework
for landslide risk management, including three phases: risk analysis, risk
assessment, and risk management (Figure 2.2).

RISK MANAGEMENT
RISK ASSESSMENT
RISK ANALYSIS
HAZARD ANALYSIS
Political ‘Sodial
aspirations ‘demands
Budget
Other
constraints
RISK MITIGATION Monitor and
CONTROL OPTIONS & CONTROL PLAN Review

Figure 2.2 Schematic representation of the integrated risk management process
proposed by Fell et al. (2005)

Within this framework, risk analysis represents the basic level of risk
management process and it is essentially aimed at the estimation of the
current or potential level of risk in a specific area affected by a given
landslide phenomenon. Risk analysis generally contains the following
steps: definition of scope, danger (threat) identification, estimation of
probability of occurrence to estimate hazard, evaluation of the
vulnerability of the element(s) at risk, consequence identification, and risk
estimation.
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In general terms, landslide risk (R) can be expressed through the widely
accepted formula of Varnes (1984):

R=HXER XV (2.1)
where: H (hazard) is the probability that a particular landslide
phenomenon occurs within a certain area in a given period of time; Ex
(elements at risk) are people, building, engineering works, infrastructures,
environmental features and economic activities in the area affected by a
landslide; I (vulnerability) is the degree of loss to a given element or a set
of elements within the area affected by a landslide, expressed on a scale
from O (no loss) to 1 (total loss).

Risk assessment is the process of making a decision or recommendation
on whether existing risks are tolerable and present risk control measures
are adequate, and if not, whether alternative risk control measures are
justified or will be implemented. To this aim, the outputs from the risk
analysis are compared against values judgements and risk tolerance criteria
determined taking account of political, legal, environmental, regulatory
and societal factors.

Finally, risk management represents the systematic application of
management policies, procedures and practices in order to identify,
analyze, assess, and in case mitigate and monitor landslide risk. The risk
management process is iterative, requiring consideration of the risk
mitigation options and the results of the implementation of the mitigation
measures and of the monitoring.

According to UNISDR (2006), mitigation measures can be classified into
two main groups: structural measures (i.e., any physical construction to
reduce or avoid possible impacts of landslides, or the application of
engineering techniques or technology to achieve landslide resistance and
resilience in structures or systems) and non-structural measures (i.e.,
mitigation strategies not involving physical construction which use
knowledge, practice or agreement to reduce disaster risks and impacts, in
particular through policies and laws, public awareness raising, training and
education).

Following equation (2.7), structural measures mainly address either hazard
(e.g., reduction of the general slope angle, modification of geometry
and/or mass distribution, sutface drains) or vulnerability (e.g., diversion
channels, re-modelling of the slope, planting and vegetation of the slope,
catch trenches). Conversely, non-structural measures usually address
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elements at risk (e.g., land-use planning, early warning, public
preparedness).

Within these frameworks, landslide early warning systems (LEWS) may be
considered a non-structural passive mitigation option to be employed in

areas where risk, occasionally, rises above defined acceptability levels
(Calvello 2017).

2.2 LANDSLIDE EARLY WARNING SYSTEMS

2.2.1 Structure and main modules

LEWS are being increasingly applied worldwide, mainly because of: their
lower economic costs and environmental impact compared to structural
measures (e.g., Intrieri et al. 2012; Thiebes and Glade 2016); the
continuous development of new technologies for landslide monitoring
(e.g., Chae et al. 2017; Crosta et al. 2017); and increasing availability of
reliable databases to calibrate the warning models (e.g., Haque et al. 2016;
Calvello and Pecoraro 2018). LEWS aim at reducing the loss-of-life
probability and other adverse consequences from landslide events by
informing individuals, communities, and organizations threatened by
landslides to prepare and to act appropriately and in sufficient time to
reduce the possibility of harm or loss (UNISDR 2000).

The types of landslides and the mechanisms responsible of their
occurrence or reactivation, as well as the early warning conditions that
might be detected before a paroxysmal phase of movements, vary widely
depending on the geo-environmental context. Therefore, it is necessary
for managers of LEWS to adapt the design of the systems to the particular
conditions at the locations where these systems will be operational. To this
aim a certain degree of flexibility is required during the implementation,
while at the same time universal standards should be defined so that
uniformity in the development of such systems and improvement of
community resilience in landslide prone areas can be obtained.

In 2006 UNISDR defined a simple list of the main elements and actions
that national governments or community organizations can refer to when
developing or evaluating people-oriented early warning systems for natural
hazards. The checklist is structured around four key components: i) risk
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knowledge, i.e., systematic assessment of hazards and vulnerabilities; ii)
monitoring and warning service, i.e., accurate and timely forecasting of
hazards using reliable, scientific methods and technologies; iii)
dissemination and communication, i.e., clear and timely distribution of
warnings to all those at risk; iv) response capability, i.e., national and local
capacities and knowledge to act correctly when warnings are
communicated. Di Biagio and Kjekstad (2007) focus on EWS for
landslides and introduce a block diagram describing the four main
activities that should be implemented in: monitoring, analysis of data and
forecasting, warning and response. The framework proposed by Sassa et
al. (2009) in the context of the project “Early Warning of Landslide” is
divided into three main flows. The central flow contains the monitoring
of triggering factors and the development of landslide risk maps and eatly
warning technologies. The left flow represents an aspect of technology for
site and time prediction of landslides. Finally, the right flow refers to the
social aspects, including the risk communication and the evacuation
systems. Intrieri et al. (2013) point out that an EWS may suffer from the
imbalance among their components; for instance, often some of them may
lack in the social/communication aspects. The authors describe landslide
EWS as the balanced combination of four main activities: design,
monitoring, forecasting and education. Recently, the scheme proposed by
Piciullo et al. (2018) identifies the main components necessary to design a
territorial EWS for rainfall-induced landslides, highlighting the importance
of both technical and social aspects. For this purpose, the conceptual
model is organized as a jigsaw puzzle, based on four main modules of the
warning system: i) setting, ii) correlation law, iii) decisional algorithm, and
1v) warning management.

Although the proposed schemes and the described elements correctly
represent LEWS, a more detailed and representative conceptual model for
LEWS is herein provided. For this purpose, Figure 2.3 introduces a
scheme modified from a similar framework developed by Calvello (2017)
for weather-induced landslides. The proposed layout cleatly differentiates
among three main modules: landslide model, warning model and warning
system. Within this framework, a landslide model is one the components
of a warning model and the latter is one of the components of an eatly
warning system. A landslide model may be described as a functional
relationship between landslide causes (e.g., weather, geomorphological,
anthropic) and landslide events, taking into account the geological,
geomorphological and hydrogeological features of the slope and the data
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provided by monitoring instruments. A warning model includes the
landslide model as well as warning criteria and warning levels. Warning
criteria are represented by the decision-making procedures necessary for
issuing the warnings and for establishing a connection between the
outputs of the landslide model to a set of warning levels. Each warning
level is associated to the state of activity of the landslide, to the possible
consequences and, of course, to the expected actions from the actors
involved (e.g., EW managers, politicians, scientist, stakeholders, citizens).
The number of levels adopted by the model can vary from a minimum of
two—i.e., warning, no warning—to five or more. Finally, a warning model
is part of a warning system, whose other four components are: warning
dissemination, communication and education, community involvement
and an emergency plan. On this issue, it is important to stress the role of
the community and the social aspects in general, at times neglected by
technicians, but still essential, as well as other components, for LEWS to
be effective.

WARNING SYSTEM
Warmning
dissemination Communication
& Education
WARNING MODEL
Warning
criteria
Community
invol it
LANDSLIDE MODEL involvemen
Warning
Monitoring levels
Landslide
cause
Landslide Emergency
GEO event plan

characterization

Figure 2.3 Framework identifying the main modules of landslide early warning
systems (modified from Calvello 2017)

2.2.2 The scale of analysis

LEWS can be designed and employed at two different reference scales
(e.g., Thiebes et al. 2012; Calvello and Piciullo 2016). Systems addressing
single landslides at slope scale can be named as local (Lo-LEWS). Systems
dealing with multiple landslides over wide areas at regional scale are
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referred to as territorial systems (Te-LEWS), i.e., they can be employed
over a basin, a municipality, a region, or a nation (Piciullo et al. 2018).

The main aim of Lo-LEWS is the temporary evacuation of people from
areas where, at specific times, the risk level to which they are exposed is
considered to be intolerably high. They typically implement a network of
instruments to monitor the parameters most relevant for early warning
purposes, considering predisposing and triggering factors. Their design
and operation are strongly influenced by numerous constraints and
factors, from time to time different, depending on the characteristics (e.g.,
size, possible precursors, potential velocity) of the landslide under
surveillance.

On the other hand, Te-LEWS are used to provide generalized warnings to
authorities, civil protection personnel and the population over
appropriately-defined homogeneous warning zones of relevant extension.
Typically, these systems address weather-induced landslides through the
monitoring and prediction of meteorological parameters.

A key difference between local and territorial LEWS is represented by the
definition of a “landslide event”. Regarding local LEWS, a landslide event
may be represented either by: a single active or dormant phenomenon; a
potential slope instability, due to a first failure of a soil or rock mass.
Differently, for territorial LEWS a landslide event may be defined as a
series of landslides grouped on the basis of their characteristics, so as to
implicitly evaluate the numerosity of a set of multiple phenomena
occurring in a given area within a given time period.

The scale of analysis of a LEWS also inevitably influences the stakeholders
involved as well as most of its operational characteristics, including: the
model adopted to characterize a landslide event; the criteria to issue the
warnings and their meaning; the lead time; the tools used to disseminate
the warnings; the definition of the emergency plan.

Recently, Sittele et al. (2012) and Stahli et al. (2015) distinguished among
three classes of EWS for natural hazards: i) alarm systems, detecting
process parameters of a phenomena already in progress; i) warning
systems, monitoring triggering factors before the beginning of a landslide
event; and iii) forecasting systems, predicting the level of danger of a
landslide process. According to the authors, they can be differentiated
considering: the area under surveillance, the lead time, the parameter
monitored, the number of warning levels, and the degree of automation.
Calvello (2017) presented a scheme combining the two categories of
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LEWS defined on the basis of their scale of analysis with the classification
proposed by Sittele et al. (2012) and Stahli et al. (2015). Local LEWS are
indeed typically implemented as either alarm or warning systems; whereas
territorial LEWSs are generally used as either warning or forecasting
systems (Table 2.1).

Table 2.1 Local and territorial LEWS function of detection factors, lead time and
warning characteristics (Calvello 2017)
Class Class Lead

(function (Sittele et Detection time Warning
of scale) al. 2012)

Parameters of .
Local Alarm . Short Automatic
ongoing event

Local and . Factors of Predefined
S Warning . Extended
territorial susceptibility thresholds
o . Sensor  data Regular Data
Territorial Forecasting . . .
and forecasts intervals interpretation

Many LEWS operational all around the world and reported in the
scientific literature deal with weather-induced landslides. Comprehensive
reviews of systems operational at both local and regional scale are
presented in Sections 2.3 and 2.4, respectively.

2.3 REVIEW ON LOCAL LANDSLIDE EARLY WARNING
SYSTEMS

(based on Pecoraro et al. 2018)

2.3.1 Location, period, and state of activity

Figure 2.4 presents a summary of the location and the period of activity
of 29 Lo-LEWS operational all around the world. The majority of them
(22) are currently active both as prototypes (4) and as operational systems
(18). On the other hand, in five cases prototype systems were designed at
operating for relatively limited periods of time: Nojiri River basin, Japan
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(AS_1991_P); Moscardo catchment, Italy (EU_1995_P); Wollongong,
Australia (OC_2005_P); Banjarnegara, Indonesia (AS_2007_P); and
Swabian Alb, Germany (EU_2007c_P). Only two of the operational
systems described herein are no longer active: Xintan Town, China
(AS_1977_N) and North Vancouver, Canada (NA_2009_N). Among the
29 Lo-LEWS reported herein, only few applications have been gathered
before the 2000s.

a)

b) 1975 1985 1990 1995 2000 2005 2010 2015
N P S

A

Nintan Town €N) : T Tas N
Nojiri River Basin (JP)

Taiwan torrents (TW)
: ‘Wushan Town (CN)
Lake Sarez (TJ)
¥ )

Coastal areas (EN)

South-west Germany (DE)
Acsta valley (IT-23)
Aknes (N

Status. B
[ [— (T2 EU 20106 A
gl Oc A
Prototype Mt Rainier (USA)
[ rerminated Vancouver (CA)

ML Ruapehu (NZ)
Wollongong (AU)

Figure 2.4 Local landslide early warning systems: a) national distribution; b)
location and period of activity (Pecoraro et al. 2018)

The oldest system was designed in Xintan Town, China (AS_1977_N) in
1977 for addressing a large rock avalanche on the northern bank of the
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Yangtze River. On 12 May 1985 the upper part of the hillside collapsed
destroying the historical town located in front of the slope. However, the
system successfully predicted the catastrophic collapse and all the 1371
inhabitants of the surrounding area were warned and evacuated in time
(Wang 2009). In 1991, a prototype system was employed in the Nojiri
River basin, Japan (AS_1991_P) for detecting the possible occurrence of
debris flows on the flanks of Mt. Sakurajima volcano through embedded
acoustic sensors (Takeshi 2011). In the early 1990s, USGS developed an
automated lahar warning system comprising a network of geophones, a
ground-based radio telemetry system and a warning-dissemination
component. After a first application at Mt. Rainier, USA (NA_1998_A) in
1997, the system was installed in many other lahars-threatened areas
situated in USA, Indonesia, the Philippines, Ecuador, Mexico, and Japan
(Pierson et al. 2014). The first two systems operational in Europe were
carried out in the Moscardo catchment, Italy (EU_1995_P) and in the
south-eastern coastal areas of England (EU_1997_A). In the first case,
seismic detectors were placed along debris flows prone channels in the
summers 1995 and 1996 for assessing their capability to detect phenomena
while in progress (Arattano 1999). In the second case, a series of dramatic
landslide events led to the establishment of a number of real-time Lo-
LEWS to safeguard people exposed at risk from future potential landslip
and cliff-top recession (Clark et al. 1996). Furthermore, the large majority
of the systems—24 out of 29—have been developed in the last 20 years,
especially in Europe. Among them, the system operational in the Sorfjord
region, Norway (EU_2004_A) since 2004 is particularly well-known and
well-described in the scientific literature. Indeed, the Aknes rockslide
under surveillance represents a significant threat to the local communities
for the potential to trigger a tsunami as a consequence of the fall of the
sliding mass into the fjord. For this reason, the landslide is investigated
year-round by a variety of monitoring instruments, including nine corner
reflectors, GPS, laser, radar and seismic sensors. However, it should be
noted that the successful operation of this system relies more on social
aspects, i.e. the trust between the experts making the observations and the
residents of the area threatened by the tsunami, rather than on technical
aspects (Blikra et al. 2013). Other relevant examples of local LEWS
deployed in Europe are addressing the following: a complex slope
movement in the Southern French Alps known as La Valette landslide
since 2007 (EU_2007_A); a large and deep colluvial landslide affecting the
municipality of Ancona, Italy since 2008 (EU_2008_A); and a complex
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phenomenon composed of retrogressive rockslides and rock avalanches
threatening the village of Preonzo in the Swiss Alps since 2010
(EU_2010c_A). Besides, many other LEWS exist at local scale outside
Europe. In Asia, local LEWS have been implemented both at prototype
(AS_2007_P, AS_2014_P) and operational systems (AS_2002_A,
AS_2004_A, AS_2005_A). Among the latter, the system employed in
Wushan Town, China (AS_2004_A) has been operational since 2004 for
monitoring the Yuhuangge landslide, the largest of the 27 phenomena
affecting the area where hundreds of building and structures have been
relocated after the impoundment of the Three Gorges Reservoir in 2003
(Yin et al. 2010). In North America, a relevant example is represented by
the system deployed in 2005 at Turtle Mountain, Canada (NA_2005_A)
dealing with the Frank Slide, which partially buried the city of Frank in
1903, killing over 70 people (Read et al. 2005). In Oceania, a system has
been installed since 2000 at Mt. Ruapehu, New Zealand (OC_2000_A),
where lahars are likely to occur either when the crater lake over flows or
when the tephra dam collapses with or without a volcanic eruption
(Massey et al. 2009).

Table 2.2 lists information on the location and the country where the
system has been employed, the institution in charge of operating the
system, the source of the data used for the analyses and the year of the last
information available. In the large majority of the cases—27 out of 29—
the systems are operated either by government institutions, often directly
involved in landslide risk management, or by civil protection agencies
operating at national or regional level. Only two prototype systems are
designed and managed by university research groups: the Nojiri River
basin, Japan (AS_1991_P) and Wollongong, Australia (OC_2005_P). The
information on the period of activity and the main characteristics of the
Lo-LEWS was retrieved on different sources: articles published in
international journal, proceeding of international conferences, web pages,
and grey literature. Systems for which recent up to date information on
the state of activity is not available have been considered operational for
the following years, unless information on their termination was found in
literature. It is worth mentioning that, besides the 29 Lo-LEWS reported
in Table 2.2, many other systems are operational at local scale around the
wortld to deal with unstable slopes in various contexts, such as: road and
railway embankments, pipelines and open pit mines. If they have not been
included herein, it means that information on these systems is not
available, it was not found or it is privately disclosed in internal reports.
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Table 2.2 Location, country, managing institution, source of information, and
year of most recent information of the Lo-LEWS reviewed by Pecoraro et al. (2018)

. .. Source of Latest
ID Location Institution . . . .
information information
AS_1977_N  Xintan Town (CN) No info [29], [46] 2016
AS_1991_P Nojiri River Basin (JP) Kyoto University [21], [41] 2004
AS_2002_A Taiwan torrents (TW) SWCB [52] 2011
AS_2004_A  Wushan Town (CN) MLR [47], [51] 2010
AS_2005_A Lake Sarez (TJ) Ministry of Defense [13] 2007
AS_2007_P Banjarnegara (ID) AIT [18], [39] 2009
AS_2014_P  Longjingwan (CN) SKL.GP [19], [23] 2015
Moscardo catchment Forest Service of Friuli-
EU_1995_P (IT) Venezia Giulia Region (1 1996
EU_1997_A  Coastal areas (EN) No info [8], [40] 2015
EU_2000_A Nals (IT) Civil Defence [40], [44] 2015
EU_2000b_A Iﬂgrabe?cﬁ;cmmt Cantonal CCU 2], [23] 2009
EU_2002_A South-west (DE) No info [44] 2002
EU_2003_A Aosta Valley (IT) Aosta Control Centre [5], [42], [43] 2010
Aknes/Tafjord Early
EU_2004_A Aknes NO) Warning Centre [3], [4,] 26], [27] 2013
. ARPA Lombardia
EU_2006_P Ruinon (IT) Early Warning Centre [3], [10] 2006
EU_2007_A La Valette (FR) RTM [48] 2017
EU_2007b_P  Torgiovannetto (IT) No info [20] 2007
EU_2007c_P  Swabian Alb (DE) BMBF [44] 2008
Ancona Monitoring
EU_2008_A Ancona (IT) Center 131, [6], [7], [9] 2012
. Regional Geological
EU_2009_A Mont de La Saxe (IT) [11], [12], [32] 2015
Survey
EU_2009b_A Mannen (NO) Aknes/Tafjord EWC [3], [4], [26] 2013
. . Alice Bel Colle
EU_2010_A  Alice Bel Colle (IT) municipality [36] 2010
. . Geological Bureau of
EU_2010b_A  Bagnaschino (IT) the Province of Cunco [17] 2012
Department of
EU_2010c_A Preonzo (CH) Territory - Canton of [30], [31] 2016
Ticino
NA_1998_A Mt Rainier (USA) USGS and PCEM  [28], [37], [49], [50] 2018
NA_2005_A Turtle Mountain (CA) Albe“gu(jfe(;}‘)glcal [16], 351, [38] 2014
NA_2009_N Vancouver (CA) Ministry of Forests [22] 2011
Department of
OC_2000_A Mt Ruapehu (NZ) Conservation [24], [33] 2010
OC_2005_P  Wollongong (AU) University of [14], [15] 2005

Wollongong
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<« Legend:

a) Institution: SWCB: Soil and Water Conservation Bureau; MIR: Ministry of Land and Resonrce;
AIT: Asian Institute of Technology; SKLLGP: State Key Laboratory of Geohazard Prevention and
Geoenvironment Protection;, CCU: Cantonal Crisis Unity RTM: Restaunration des Terrains en
Montagne; BMBE: German Federal Ministry of Education and Research; EWC: Early Warning
Centre; USGS': United States Geological Survey; PCEM: Pierce County Emergency Management

b) Source of information: [1]: Arattano (1999); [2]: Badous et al. (2009); [3]: Baroi et al. (2012);
[4]: Blikra et al. (2013); [5]: Broccolato (2010); [6]: Cardellini and Osimani (2011); [7]:
Cardinaletti et al. (2011); [8]: Clark et al. (1996); [9]: Cotecchia (2006); [10]: Crosta and Agliardi
(2003); [11]: Crosta et al. (2014); [12]: Crosta et al. (2015); [13]: Di Biagio and Kjekstad (2007);
[14] Flentje and Chowdbury (2005); [15]: Flentje and Chowdbury (2006); [16]: Froese and Moreno
(2014); [17]: Ginliani et al. (2010); [18]: Honda et al. (2008); [19] Huang et al. (2013); [20]
Intrieri et al. (2012); [21] Itakura et al. (2000); [22] Jakob et al. (2012); [23] Ju et al. (2015);
[24]: Keys and Green (2008); [25]: Kristensen and Blikra (2011); [26]: Kristensen et al. (2010);
[27]: Lacasse and Nadim (2011); [28]: LaHusen (1998); [29]: Li et al. (2016); [30]: Loew et al.
(2012); [31]: Loew et al. (2016); [32]: Manconi and Giordan (2015); [33]: Massey et al. (2010);
[34]: McArdell et al. (2007); [35]: Moreno and Froese (2010); [36]: Olivieri et al. (2012); [37]:
Pierson et al. (2014); [38]: Read et al. (2005); [39]: Sassa et al. (2009); [40]: Stahli et al. (2015);
[41]: Takeshi (2011); [42]: Tamburini (2005); [43]: Tamburini and Martelli (2006); [44]: Thiebes
(2011); [45]: Thiebes et al. (2014); [46]: Wang (2009); [47]: Wang et al. (2008); [48]: web page
Sfrom OMIV (accessed: 23 October 2017); [49]: web page from USGS (accessed: 05 September 2018);
[50]: web page from PCEM (accessed: 05 September 2018); [51]: Yin et al. (2010); [52]: Yin et al.
(2011)

In the following sections, the 29 Lo-LEWS introduced herein are
discussed and analyzed considering the three main modules introduced by
Calvello (2017) and already described in Chapter 2: landslide model,
warning model and warning system.

2.3.2 Landslide model

The landslide model is the first module needed to design a Lo-LEWS,
according to the scheme proposed in Section 2.2.1. Table 2.3 summarizes
the landslide models used in the systems reported herein in terms of:
covered area, landslide cause(s), type(s) of landslide, and monitoring
system.
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Table 2.3 Information on landslide model developed within the Lo-LEWS

reviewed by Pecoraro et al. (2018)

Covered Type(s) of Landslide o
1D area landslide cause(s) Monitoring system
AS_1977_N  0.75km> Rock avalanche Rainfall The, Crack, WLM
AS_1991_P 10 km? Debris flows Rainfall Geoph
17 + 3 sites . . 17 on-site + 3 mobile stations:
AS_2002_A (35,980 km?) Debris flows Rainfall RG, Cam, Geoph, Hyd, WS
2 Deep-seated Rainfalland ~ GPS, TDR, Inc, Piez, RG, OptF,
AS_2004_A 075 km colluvial human activity WLM
AS_2005_A 1.5 km” No info Rainfall WLM, Acc, GPS, SprS, WS
AS_2007_P 1 km?> No info Rainfall EExt, RG, Piez, Cam
AS_2014 P 0.008 km®> Rainfall-induced Rainfall RG, Inc, Piez
EU_1995_P 4.1 km> Debris flows Rainfall Seis
EU_1997 A Osites Cliff top Sea activity Tilt, EExt, PS, GPS, Inc
km?) recession
EU_2000_A App. 0.3 km? Debris flows Rainfall Geoph, Piez, RG, Cam
EU_2000b_A 9.5 km’ Debris flow Rainfall Geoph, Sat, Cam, RG
EU_2002_A  0.035 km? No info No info GPS
5 . Rainfall and EExt, GPS, WS, TotS, Piez,
EU_2003_A 4*<1km No info snowmelt GbSAR
2 . Rainfalland  GPS, TotS, GbSAR, BExt, Crack,
EU_2004_A 075 km Rockslide snowmelt Tilt, Geoph, WS, DMS, PS
EU_2006_P  0.26 km> Rockslide Rainfall EExt, TotS, WS, GPS, InSAR
. ) . . WS, Inc, Piez, BExt, GPS, Cam,
EU_2007_A 0.5 km Mudslide Rainfall LiDAR
EU_2007b_P (.03 km> Rockslide Rainfall EExt, RG, Cam
EU_2007¢_ P 0.4 km? Rockfall Rainfall Inc, Tilt, TDR, Tens, WS, Piez
EU_2008_A App. 3 km? No info Rainfall TotS, GPS, RG, DMS, PS
5 . Rainfall and Surface: InSAR, GPS, TotS
EU_2009_A 0.15 km Rockslide snowmelt Deep: Inc, BExt, PS, DMS
EU_2009b_A 025 km? Rockslide Rainfalland ~ BExt, GPS, GbSAR, DMS, PS,
snowmelt WS
EU_2010_A  0.45 km? No info Rainfall DMS, Inc, PS
. 2 Deep-seated Rainfall and
EU_2010b_A  0.15 km roto-translational ~ snowmelt DMS, PS, TotS, WS, Inc
EU_2010c_ A (0] km?  Rockslides and Rainfall  EExt, RG, TotS, Crack, GbSAR
rock avalanches
NA_1998_A 100 km? Lahars Snowmelt and Geoph
volcanic activity
NA_2005_A 0.5 km> Rock avalanche Rainfall Tilt, BExt, Crack, WS, RG, TDR
NA_2009_N 160.76 km?  Debris flows Rainfall RG
OC_2000_A 0.2 km? Lahars Dam break 3 Geoph, WLM
OC_2005_P 2 sites Rainfall-induced Rainfall Inc, Piez, RG
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<« Legend: The: Theodolite; TotS: Total station; Crack: Crackmeter; Mic: Microphone; RG: Rain
gange; Cam: Camera; Geoph: Geophone; WILNM: Water level meter; WS: Weather station; Bar:
Barometer; GPS: Global positioning system; TDR: Time domain reflectometer; Inc: Inclinometer; Hyd:
Hydrometer; PT: Pressure transducer; OptE: Optic fiber; Ace: Accelerometer; TM: Turbidity mteter;
EExt: Embedded Extensometer; BExt: Borebhole Extensometer; Seis: Seismometer; Tilt: Tiltmeter;
Sat: Satellite sensor; GbSAR: Ground-based synthetic aperture radar; DMS: “Differential monitoring
of instability” colummn; InSAR: Interferometric synthetic aperture radar; LiDAR: Light detection and
ranging; Tens: Tensiometer)

Covered area

The reviewed systems are mostly designed to operate at slope scale,
dealing with a single landslide system over a limited portion of territory.
Although they have been designed to operate at the same scale of
operation, the area under surveillance varies by orders of magnitude,
ranging from less than 1 km* to more than 100 km* (Figure 2.5).

10°

M A<1km?
M 1km?<A<100km?
M A>100km?

104

103

102

10t

Area [km?]

10°

101

102

103

AS_1991 P

EU_2000b_A

AS_1977_A

EU_2000_A

NA_2009_N

NA_1998_A

EU_1995_N

AS_2005_A

EU_1997_A

EU_2003_A

0C_2005_P

EU_2010_A

EU_2009b_A

0C_2000_A

EU_2010c_A

EU_2008_A

AS_2007_P

AS_2004_A

EU_2004_A

EU_2007_A

NA_2005_A

EU_2007c_P

EU_2006_P

EU_2009_A

EU_2010b_A

EU_2002_A

EU_2007b_P

AS_2014 P

AS_2002_A

Figure 2.5 Lo-LEWS reported in the literature ordered by covered area

The smallest warning areas are covered by the systems operational in:
Longjingwan, China (AS_2014_P); South-west Germany (EU_2002_A);
Torgiovannetto, Italy (EU_2007b_P); and Preonzo, Switzerland
(EU_2010c_A). The first one refers to a rather typical Lo-LEWS
established in 2014 and aimed at monitoring the Longjingwan landslide,
an unstable mass characterized by a length of 200 m and a width of 40 m
(Figure 2.6). According to field surveys, the landslide was reactivated by
an intense precipitation event on 24 June 1995. Despite the relatively small
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sliding surface, the landslide represents a high potential risk for the
inhabitants of the nearby Jinzhong Town (Ju et al. 2015).
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Figure 2.6 Schematic view (a) and cross section (b) of the Longjingwan landslide
(Ju et al. 2015)

Conversely, larger areas are investigated by the following systems: Taiwan
(AS_2002_A); Mount Rainier, USA (NA_1998_A); and North
Vancouver, Canada (NA_2009_N). The former, established by the
Taiwanese Council of Agriculture Soil and Water Conservation Bureau
(SWCB) in 2002, is a peculiar Lo-LEWS, as it is formed by 17 on-site
monitoring stations located in the proximity of potential debris flows
torrents (Figure 2.7). However, the presence of 1,503 debris flows-prone
channels around the island and the extreme variability of the rainfall
regime in the monsoon season could lead to an ineffective warning.
Therefore, in 2004 the system has been integrated by three more mobile
monitoring stations, equipped with the same instruments of the on-site
ones. This project is aimed both at increasing the capability of collecting
field data and enhancing the probability of detecting debris flow events
while already occurring (Yin et al. 2011).
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monitoring station located around Taiwan island (Yin et al. 2011)

Landslide canse(s)

Figure 2.8 displays that twenty-six of the 28 Lo-LEWS for which the
landslide cause is clearly specified deal with weather-induced landslides,
Le. triggered by rainfall, snowmelt or a combination of both. It should be
stated that at Mt. Rainier, USA (NA_1998_A) the investigated lahars
(volcanic debris flows) mainly form when water from snowmelt mixes
with loose volcanic material. However, in some cases they can be directly
associated with the effects of the volcanic activity when snow and glaciers
are melted by lava and other pyroclastic surges produced by a volcanic
eruption.

B Weather
B Weather and other causes
O Other

O No info

Figure 2.8 Causes of landslides addressed within the Lo-LEWS reviewed by
Pecoraro et al. (2018)
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In the two remaining cases, EU_1997_A and OC_2000_A, the landslides
under surveillance are not triggered by weather conditions. The former
has been designed to cope with cliff top recessions along the southern and
eastern coasts of England, which are caused by sea abrasion, mass
movements and water erosion (Figure 2.9). On the other hand, the lahars
monitored by the latter are typically triggered by the failure of a tephra
dam in the former outlet of the lake or by the collapse of part of the rim
of a crater lake. Other possible triggers may include eruptions that have
ejected water from the crater lake.

Figure 2.9 Coastal landslide occurred in Scarborough, south-eastern coast of
England (McInnes and Moore 2011)

Type(s) of landslide

Figure 2.10 shows the types of landslides monitored in the Lo-LEWS
described herein. Almost all the systems—28 out of 29—deal with one
type of landslide: this is not surprising, as systems operating at slope scale
are designed and managed according to the characteristics of the landslide
under surveillance, which in turn strongly influence the choices on the
parameters to be monitored and the monitoring methods. The most
investigated phenomena are debris flows (8) and rockslides (6). In two
cases (AS_2014_P and OC_2005_P) only generic statement that the
systems address rainfall-induced landslide is reported. Furthermore,
neither the types of landslide under investigation nor the style of
movement is mentioned for six systems.

24



2. EWS for weather-induced landslides

6 6
3
2 2
. 1 1 :
T T T T T - T T T )

z 3 2 3 3 = 2 5 £
2 = S = o k3 = = <
&= 0 < © T =) o] ) a =
2 S Kol 83 T T <} =] o S
5 3 © ] £5 & 2 g =

] = H &S5 38 = @

o ~ o — S5 =3

S (=) c = o

3 3 £

-4 o =

O

Figure 2.10 Type of landslide under surveillance within the Lo-LEWS reviewed
herein. Total is higher than 29 because two different type of landslides are
considered in EU_2010c_A (Pecoraro et al. 2018)

A peculiar system is operational in Preonzo, Switzerland (EU_2010c_A),
where a series of retrogressive rockslides and rock avalanches are being
monitored as a part of an extremely complex phenomenon (Figure 2.11).
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Figure 2.11 Map of the Preonzo 2012 trigger, propagation, and deposition areas.
Elements at risk (industrial area of Sgrussa, cantonal road, A2 highway) are also
shown (Loew et al. 2016)

2.3.3 Warning model

The landslide model is part of the warning model, whose two other
components are warning criteria and warning levels. Table 2.4 lists the
main characteristics of the warning models developed within the 29 Lo-
LEWS: warning criteria, warning parameters, and warning levels.
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Table 2.4 Information on warning model developed within the Lo-LEWS
reviewed by Pecoraro et al. (2018). Legend: HM: Heuristic method; CL:
Correlation law; PM: Probabilistic model

. o . Warning
ID Warning criterion Warning parameters levels
AS_1977_N  Power law: velocity vs. failure time (CL) Velocity 2
AS_1991_P Empirical cor're.latlon with acoustic Acoustic emission 5
emission (HM)
AS_2002_A Rainfall intensity or cumulated rainfall (1) ~ [anfall intensity or 2
’ accumulated rainfall
Empirical correlation with displacement, Displacement,
AS_2004_A . .
pore water pressure, strains (HM) pore water pressure, strains
Empirical correlation with seismic Seismic acceleration, stream
AS_2005_A  acceleration, stream flow, displacement,  flow, displacement, water 3
water quality, rainfall (HM) quality, rainfall
AS_2007_D Cotrelation ,Wlth antecedent rainfall and Ante.cedent rainfall, 3
displacement (CL) displacement
AS_2014_P Empirical velocity thresholds (HM) Velocity 4
EU_1995_P Correlation with acoustic emission (HM) Acoustic emission 2
EU_1997_A Empirical thresholds (HM) DlsPlacem‘?l‘:V’ jround“’““ 2
EU_2000_A Correlation with acoustic emission (HM) Acoustic emission 2
EU_2000b_A Rainfall intensity-duration (CL) Rainfall 2
EU_2002_ A Pre-defined thresholds based on rate of Displacement 3
movement (HM)
EU_2003_A Rainfall and displacement thresholds (HM)  Rainfall, displacement 3
EU_2004_A Velocity level (HM) Velocity 5
EU_2006_P Power law: velocity vs. failure time (CL) Velocity 3
EU_2007_A No info No info No info
EU_2007b_P Empirical velocity thresholds (HM) Velocity 3
. Empirical correlation with pore water Pore water pressure,
BU_2007e_P pressure and displacement (HM) displacement 3
EU_2008_A Empirical thresholds (HM) Displacement, rainfall, 5
groundwater level
EU_2009_A Empirical displacement thresholds (HM) Displacement 3
EU_2009b_A Velocity level (HM) Velocity 5
EU_2010_A Empirical displacement thresholds (HM) Displacement 4
EU_2010b_A Rain intensity-duration law (CL) Rainfall 2
EU_2010c_A Correlation law: velocity vs. time of failure Velocity 4
(€L i
NA_1998_A Correlation with acoustic emission (HM) Acoustic emission
NA_2005_A Empirical velocity-based thresholds (HM) Velocity 4
NA_2009 N Discriminant analysis of rainfall events Rainfall 5
(M)
OC_2000_A Correlation with absolute lake level (HM) Absolute lake level 6
OC_2005_P Intensity-duration (CL) Rainfall 3
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Warning criteria

A warning criterion can be defined as a functional relationship whereby
the occurrence of the landslides under surveillance is related to the
parameters being monitored (e.g., displacements, rainfall). Figure 2.12
displays that twenty-seven of the 29 identified systems employ empirical
models, which can be further subdivided into heuristic methods (19 cases)
and correlation laws (8 cases). On the other hand, a probabilistic model
has been developed in North Vancouver, Canada (NA_2009_N). No
information is available for the system dealing with La Valette landslide,
France (EU_2007_A).

W Heuristic method
B Correlation law
B Probabilistic model

ONo info

Figure 2.12 Warning criteria adopted within the Lo-LEWS reviewed by Pecoraro
et al. (2018)

Heuristic approaches rely on the identification of the conditions which
lead to slope instability by analyzing monitoring data and landslide activity.
The threshold values are typically defined through an expert judgment,
without any rigorous statistical, mathematical or physical criterion. An
example is represented by the system employed at Lake Sarez, Tajikistan
(AS_2005_A), where long-term monitoring data have been collected since
the international “Lake Sarez Risk Mitigation project” was launched in
2000. The acquired historical observations have been analyzed and
multiple thresholds have been implemented considering the following
parameters: seismic acceleration, stream flow, displacement, water quality,
and rainfall; in addition, the system is supported by visual observations of
the landslide activity (D1 Biagio and Kjekstad 2007). Another example is
the system employed in Torgiovannetto, Italy (EU_2007b_P) empirically-
based movement rate thresholds (mm/day) have been defined considering
measurements from a network of extensometers installed within the
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rockslide body (Figure 2.13). The thresholds for each extensometer have
been derived by analysing the most critical periods of the whole dataset
and their reliability has been assessed by performing a back analysis
supported by expert judgement and interpretation. Moreover, the system
is designed to be flexible, since the thresholds can be modified as soon as
new data become available (Intrieri et al. 2012).

Threshold = 1.00 mm

Ell
+E10

Velocity (mm/day)

05110007
12002108
21/06m08
28110008
08/03/108

§ 1607109
231109
0200410
10/08/10
181210
27104111

Figure 2.13 Example of extensometers data used for defining the thresholds in
Torgiovannetto (Intrieri et al. 2012)

Eight systems employ correlation laws derived from a statistical analysis
of historical data. For weather-induced landslides, thresholds are defined
as the lower-bound limit to the rainfall conditions which resulted in slope
instability plotting two representative variables (e.g., intensity, duration,
antecedent rainfall, accumulated rainfall) in Cartesian, semi-logarithmic or
logarithmic coordinates. In some cases, the thresholds are refined by
considering also the rainfall events that did not results in landslides.
Intensity-duration (ID) thresholds have been defined for four systems:
Taiwan torrents (AS_2002_A), Illgraben catchment (EU_2000b_A),
Bagnaschino (EU_2010b_A), Wollongong (OC_2005_P). A peculiar
model has been applied in Banjarnegara (AS_2007_P), where the
algorithm is based on two different monitoring parameters: antecedent
rainfall in 24 and 72 h and cumulative displacements. On the other hand,
systems addressing rockslides—Ruinon (EU_2006_P) and Preonzo
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(EU_2010c_A)—employ a power law defined assuming that a
catastrophic event would be preceded by an “accelerating creep”
behaviour (Crosta and Agliardi 2003; Loew et al. 2016). In both the cases,
the failure time # ie. the time interval between the beginning of the
monitoring activity and the collapse of the unstable slope, has been
derived by a power-law relationship obtained by time-integrating the
equation which relates the displacement acceleration {2 of a material close

to failure to the velocity 0 (Figure 2.14a,b).
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Figure 2.14 Failure time calculated from rate of movement in (a) Ruinon (Crosta
and Agliardi 2003) and (b) Preonzo (Loew et al. 2016)

Finally, the system operational in North Vancouver (NA_2009_N) from
2009 to 2011 employed a probabilistic model for the definition of the
thresholds. Indeed, a discriminant function analysis was conducted to
identify the rainfall variables which provide the best predictive
discriminatory power and variance. The outcomes of the correlation
matrix suggested that the most intercorrelated rainfall variables are the
antecedent and the intensity. These parameters allow the classification of
a rainstorm into landslide triggering (L.S) or non-landslide triggering
(NLS) groups. The difference between the classification scores of each
group, ACS, can be assumed as a reasonable proxy for the likelihood of
debris flows occurrence because it represents the distance to the centroid
of each data population (Jakob et al. 2012).

Warning parameters

Warning parameters can be considered as variables representative of the
landslide behaviour, whose critical values must be identified for the
definition of the thresholds to be implemented. As expected,
displacements (in terms of rate of movement, velocity and acceleration)
are the primary parameters for 15 systems, as they provide direct evidence
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of the state of activity of the landslide under surveillance- Besides,
meteorological parameters have been considered for 8 systems addressing
weather-induced landslides. It is worth mentioning that variables not
included in the warning model have been investigated in a large number
of cases (21). The need for additional information may be attributed to the
willingness to evaluate the landslide model, towards possible updates of
the adopted warning model. For example, although the thresholds
developed for the rock avalanche under surveillance at Turtle Mountain
(NA_2005_A) are based on rate of movement (primary parameters),
displacement and cracking (secondary parameters) and rainfall (tertiary
parameters) are also monitored (Froese and Moreno 2014).

Warning levels

Figure 2.15 shows that the majority of the 29 Lo-LEWS employ two (8
cases) or three (10 cases) warning levels. Indeed, as stated by Medina-
Cedina and Nadim (2008) the definition of many thresholds could lead to
a needless complexity not necessarily improving the reliability of the
system. However, several systems deployed in the 2000s employ four
warning levels (6 cases) or more (4 cases). The highest number of warning
levels, from base level (ordinary state) to level 5 (risk characterized by a
conditional probability of 100%), is adopted at Mt Ruapehu
(OC_2000_A).

B>4
B4
o3
m2
O No info

Figure 2.15 Number of warning levels adopted within the Lo-LEWS reviewed by
Pecoraro et al. (2018)

In North Vancouver (NA_2009_N), the warning model was designed to

avoid sudden transitions between the four warning levels: no watch, watch
I/watch II, warning I, warning IT (Figure 2.16). Therefore, each level was
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preceded by the level that was higher or lower in the hierarchy, without
skipping any step. Moreover, each level was typically maintained for at
least six consecutive hours, otherwise an override was issued to avoid
confusion to the system users. No information on this issue is available
for the system employed for La Valette landslide (EU_2007_A).

Warning level
transitions

Figure 2.16 Warning level transitions and switches that allow transitions from one
warning level to another (Jakob et al. 2012)

2.3.4 Warning system

The landslide model and the warning model are embedded in the warning
system, which refers both to technical issues and social aspects. Table 2.5
summarizes the main characteristics of the warning models developed
within the 29 Lo-LEWS: lead time, warning statements, media employed
to spread the warnings to the recipients, as well as decision-making
process for issuing a warning. All these aspects vary significantly among
the systems depending both on the warning level and on the aims for
which they are designed and managed.
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Table 2.5 Information on warning system of Lo-LEWS reviewed by Pecoraro et

al. (2018)
ID Lead time Warning Information tools Decision-making
statement
AS_1977_A 24 hours Public No info No info
AS_1991_P Few seconds Internal No info No info
AS_2002_A <1 hour Internal Triggering signal No info
AS_2004_A No info Public Website Government
AS_2005_A <1 hour Public Warning messages Control centre
AS_2007_P 1 to 24 hours Public Web pages No info
AS_2014_P 24 hours Public Web pages Experts judgement
EU_1995_N Few seconds Internal No info No info
EU_1997_A No info Internal Automatic phone calls No info
EU_2000_A 20. to 60 Public Flood lights No info
minutes
. . . Automated
EU_2000b_A Few seconds  Public Flashing lights, sirens .
alert signals
EU_2002_A No info Internal Automatic phone calls Road authorities
EU_2003_A 24 hours Internal Warning messages Expert group
Web pages, public
EU_2004_A 24 hours Public meeFlr}gs, NEWSpapers, Early Warning Centre
television, radio, sirens K
automatic phone calls
EU_2006_P 24 hours Public No info No info
EU_2007_A No info Public No info Local risk managers
EU_2007b_P 24 hours Internal  Automatic notification No info
EU_2007c_P 24 hours Public ~ Two traffic lights, SMS Experts
EU_2008_A 1to 3 hours Internal Warning SMS, direct call Civil Protection Depathént
of the Ancona Municipality
EU_2009_A  1hour Public Warning messages, Civil Protection
traffic lights
EU_2009b_A >24hours  Public SMS, emails, Early Warning Centre
electronic warning siren
. . Technical personnel of the
EU_2010_A No info Internal SMS, direct call Alice Bel Colle Municipality
EU_2010b_A  No info Public No info No info
EU_2010c_A  >1hour  Internal SMS Cantonal officers and
automatic alarms
NA_1998_A 40 minutes to Public \X/zftr'nng IESSAgEs, Automated system
3 houts television, radio, sirens
Warning messages, Municipal and provincial
NA_2005_A 24 houts Internal
phone calls emergency managers
NA_2009_N 6 hours Public Warning messages Warnings 1.1p dated
automatically
OC_2000_A > .to 30 Internal Pagers:, phone calls, Decision-making authorities
minutes internet
OC_2005_P 6 hours Public Web pages No info
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Lead time

The lead time can be described as the interval between the beginning of a
landslide event and the time when a warning is issued. Therefore, it must
be necessarily longer than the response time needed to undertake the
appropriate actions in case of emergency. According to Calvello (2017),
systems operating at slope scale can be classified into two main categories:
alarm systems and warning systems. The former typically detect process
parameters (e.g. acoustic signal) of a phenomenon already in progress
providing a very short lead time, on the order of seconds or minutes; on
the contrary, the latter monitor triggering factors (e.g. rainfall) before the
beginning of a landslide event, thus ensuring a longer lead time, typically
more than one hour. Eight of the 29 Lo-LEWS presented herein can be
considered alarm systems, as the lead time varies from few seconds to
several minutes. Most of them deal with debris flows, such as the
prototype system employed in the Moscardo catchment (EU_1995_P) in
1995 and 1996 for research purposes. The four seismic detectors installed
at a distance of about 20 meters from the torrent channel were capable to
detect three events occurred during the period of analysis in near-real-

time, i.e. few seconds before the arrival of the debris flows front (Figure
2.17).
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Figure 2.17 Seismic measurements from a geophone installed in the Moscardo
catchment on 5 July 1995 (Arattano 1999)

Conversely, fifteen systems can be considered warning systems, as the lead
time varies from 1 to 24 h. Indeed, they typically address landslides which
evolve slowly in the initial phase, but can be characterized by movement
rates rapidly increasing before a general failure stage (e.g. rockslides, deep-
seated landslides). As an example, the lead time is expected to be 24 h in
Swabian Alb (EU_2007c_P), where a limit-equilibrium model was
integrated into a semi-automated prototype early warning system in the
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context of the ILEWS project, aimed at assessing the stability conditions
of the slow-moving landslide under surveillance every 24 h (Figure 2.18).
Information on the provided lead time is not available for the remaining
six systems.
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Figure 2.18 ILEWS status control highlighting the parameters monitored and the
thresholds for issuing the daily alerts (Thiebes et al. 2014)

Warning statements

Table 2.5 shows that in 12 cases only internal statements are planned,
hence the information is not directly spread to the public in an eatly stage,
but it is targeted to competent authorities, such as politicians, scientists,
government institutions, civil protection agencies, or infrastructure
authorities. For example, in the system designed for assessing the Ancona
Landslide in Italy (EU_2008_A) a team of engineers, geologists, technical
experts and urban planners have access year-round the values of the
monitored parameters. Moreover, a special task force, named “Centro
Operativo di Controllo” (COC), is in charge of coordinating the
emergency actions established in case a warning is issued (Figure 2.19).
The COC is an interagency structure, which involves experts from other
municipality departments as well as experts from other local institutions
and organizations and is coordinated by the Major of Ancona who is
responsible for all risk mitigation measures (Cardinaletti et al. 2011).
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Figure 2.19 Organization of the structure designed for assessing the Ancona
Landslide (Cardinaletti et al. 2011)

Differently, in the remaining 17 cases the systems are designed to directly
inform and warn the population of a possible occurrence of a landslide,
prompting them to move to safer places. For example, in Wollongong
(OC_2005_P) a web-based software to provide real-time graphical
updates of the monitoring data as well as the issued warnings has been
developed as a joint initiative of the research time in charge of managing
the prototype system and University of Wollongong Centre for
Educational Development and Interactive Resources (CEDIR). Figure
2.20 presents the home page of the website reporting a map of the
monitoring stations and a list of the monitored sites in the upper left part
of the page (Flentje and Chowdhury 2005).

landslide monitoring stations

.resources

useful links

particular location.

Figure 2.20 Home page of the website dedicated at spreading information on
landslides under surveillance in Wollongong (Flentje and Chowdhury 2005)
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Information tools

Figure 2.21a,b displays the communication strategies developed within the
29 Lo-LEWS described herein. Warning messages, typically sent as an
SMS, are the most used tool—13 out of 29—, because many recipients
can be easily informed even in emergency situations and the latency
between a decision to alert to message receipt is minimized. In nine cases,
warning signals, such as traffic lights and sirens, are adopted along road
and railways threated in mountainous environments. Moreover, manually
or automated phone calls have been also employed in Lo-LEWS deployed
before 2000, while internet-based tools, such web pages and email, have
been used in more recent systems. Although many communications tools
are available, redundancy has been often overlooked in the reviewed Lo-
LEWS, because only 21% of them combine two techniques and 14% more
than two techniques. However, two relevant exceptions are represented
by the systems operational in Aknes (EU_2004_A), and at Mt. Rainier
(NA_1998_A), where several techniques—SMS sent in Norwegian,
English, and German; warning messages on website, automated phone
calls, newspapers, radio/television news ads; warning sitens in the former;
warning messages, radio/television news ads, warning sirens in the
latter—are combined and evacuation drills are also conducted.
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Figure 2.21 Communication tools used (a) and their redundancy (b) within the
Lo-LEWS reviewed by Pecoraro et al. (2018)

Decision-making process

In a number of cases—11 out of 29—information on criteria for issuing
or canceling an alert are not available. However, in the majority of the
documented cases (14) the alerts are issued manually by system managers,
experts or local authorities. The only documented exceptions are:
Illgraben catchment (EU_2000_A), for which alert signs are activated by
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a detection system; Preonzo (EU_2010c_A), where the highest level of
warning is issued by cantonal officials supported by an automated alert
system based on crack meters (Figure 2.22); Mt. Rainier (NA_1998_A),
where the alerts are issued by a computer base station, after analyzing the
signals from the field stations; and North Vancouver (NA_2009_N),
where the warning levels were updated hourly combining rainfall measures
from a rain gauge and rainfall forecasts.

Figure 2.22 Downstream view of two radar sensors for measuring flow depth as
employed in the Illgraben catchment (Badoux et al. 2009)

2.4 REVIEWS ON TERRITORIAL LANDSLIDE EARLY
WARNING SYSTEMS

2.41 Reviews on territorial landslide early warning systems

Piciullo et al. (2018) prepared a review on 24 Te-LEWS operational
worldwide. The information was retrieved from different sources:
international journals and publications, scientific reports, web pages, and
gray literature, and, in some cases, personal contacts of the authors with
system managers. Figure 2.23 provides a summary of the location and the
state of activity of the reviewed systems.
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Figure 2.23 Territorial landslide early warning systems operational worldwide:
location and period of activity. Legend: red squares: dates of catastrophic
landslide events; dark blue: period of activity, retrieved from reliable references;
light blue: period of activity, assumed by authors (Piciullo et al. 2018)

Only few experiences at regional scale have been carried out before 2005:
the majority of the systems have been designed and managed in USA
(NA1,NA2,NA3, NA4), even though other examples are reported in Asia
(AS1, AS2) and in South America (SA1). On the other hand, in the last
decade many other systems have been employing around the world, in
Asia and in BEurope, particulatly in Italy (6 cases). In 9 cases out of 24,
systems have been employed after catastrophic landslide events (red
squares in Figure 2.23), causing many victims and significant economic
losses. Only two of the reviewed systems are no longer active, both of
them located in the USA and employed in the San Francisco Bay (NA1)
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and in the city of Seattle, Washington (NA4). The former terminated
because the institution in charge of operating the system, i.e. the National
Weather Service, experienced a net staff reduction, while the latter was
operational under an informal agreement between USG, NWS and the city
of Seattle for four years, in the period 2002-2005.

The reported territorial LEWS operate at three different territorial levels:
national (AS4, AS5, AS7, EU6, EU7), regional (AS2, AS3, AS6, AS8, AS9,
EU1, EU2, EU3, EU4, EU5,NA1, NA2, NA3, NA5, SA2), and municipal
(AS1, NA4, SA1). The warning area varies by orders of magnitude, even
among systems operating at the same level. The majority of the reviewed
systems (18) are designed to forecast the possible occurrence of landslides
on natural slopes. Only in few cases (AS8, AS9, SA1, SA3) both natural
and man-made slopes are considered. Hong Kong (AS1) is the only
reported example of a system exclusively designed for man-made slopes,
grouped into four main categories: cut slopes, rock slopes, fill slopes, and
retaining walls. Although all the reported Te-LEWS deal with weather-
induced landslides, in some cases (9) they also consider other natural
disasters, such as: hurricanes, floods, typhoons, and snow avalanches.
The main characteristics of the reviewed systems have been analyzed and
discussed according to a conceptual model organized in four main tiles:
setting, modelling, warning, and response. Besides, the authors presented
some considerations and insights on criteria for assessing the success of
the systems, i.e. the efficiency and the effectiveness.

2.4.2 Regional LEWS operational in Italy

Pecoraro and Calvello (2016) described the 21 LEWS designed and
operated by the Italian regions as a part of the hydrogeological risk
mitigation strategy. The report has been prepared for the Project of
National Relevance (PRIN) “Landslide risk mitigation through sustainable
countermeasures”. Information was gathered from a variety of sources,
including national and regional laws, technical reports and web pages of
the institutions in charge of managing the systems.

The regional LEWS have been introduced by a national law on landslide
and flood risk management (DPCM 2005), as a response to a catastrophic
landslide event that occurred in Sarno in 1998 (Cascini 2004). The Italian
Civil Protection System is constituted by an early warning national office
(called Central Functional Centre, CFC) and a network of 21 Regional
Centres (called Periferic Functional Centres, CFP), whose main activities
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are the prediction, monitoring and evaluation of critical flooding and
landslide events resulting from heavy rainfalls and (seldom) snowmelt.
Moreover, the CFP are in charge of designing and operating the regional
LEWS (Figure 2.24).

The study is organized into two parts. Firstly, the structure of the Central
Functional Centre is described reporting: the general organization, the
responsibilities of the different actors involved in hydrogeological risk
management, the criteria for defining the warning zones and the
thresholds for landslide occurrence, the procedures for spreading the
warnings, as well as the tasks assigned to the CFP. In the second part the
authors summarized and discussed the main aspects related to the design
and the implementation of the regional LEWS, such as: types of natural
hazards under surveillance; number of warning zones; monitoring
systems; warning criteria and number of warning levels; communication
tools. Table 2.6 reports some of the abovementioned aspects as well as
the year of the most recent update for each system.

21 Periferic
-1, Functional Centres

,../%_;;Lf/

\"R_ Sicily f
‘\w
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Figure 2.24 Functional Centres in charge of designing and operating regional
LEWS in Italy (Pecoraro and Calvello 2016)
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Table 2.6 Regional LEWS operational in Italy: natural hazards addressed;
warning zones; communication tools (Pecoraro and Calvello 2016)

Regional Warning Communication
LEWS Natural hazards Zones tools
Landslides, heavy rainfall, floods, heat Email, certified
Abruzzo . . 6 . .
waves, snow, wind, storm tides email, website
Aosta Valley Landslides, heavy rainfall, heat Waves, snow, 4 Fax, email, website
’ snow avalanches, storm tides
Autonomous .
Province of ~ Landslides, heavy rainfall, snow avalanches 1 Website, féx’ SMS,
email
Bolzano
Autonomous Fax. SMS. phon.
Province of No info 1 % » phone
call, website, TV
Trento
. Landslides, heavy rainfall, floods, heat Fax, website, SMS,
Basilicata . . 3 .
waves, snow, wind, storm tides email, PEC
Calabria Landslides, heavy rgmfall, ﬂoods, heat 6 Fax, website
waves, snow, wind, storm tides
. Landslides, heavy rainfall, floods, heat .
Campania . . 8 Fax, website
waves, snow, wind, storm tides
Emilia- Landslides, heavy rainfall, floods, heat 3 Fax, email, SMS,
Romagna waves, snow, wind, storm tides website
Friuli-Venezia Landslides, heavy rainfall, floods, snow, Email, certified
Giulia snow avalanches email, SMS, website
Lazio Landslides, heavy rainfall, floods 7 SMS, website
. Landslides, heavy rainfall, floods, heat Email, PEC, SMS’
Liguria . . 5 Facebook, Twitter,
waves, snow, wind, storm tides .
websites
Landslides, heavy rainfall, floods, heat Phone call, fax,
Lombardy . 8 .
’ waves, snow, snow avalanches, wind SMS, website
Marche Landslides, heavy r‘amfall, ﬂoods, heat 4 Fax, website
waves, snow, wind, storm tides
Molise Landslides, heavy rgmfall, ﬂoods, heat 3 Fax, website
waves, snow, wind, storm tides
. Landslides, heavy rainfall, floods, heat Fax, website, phone
Piedmont 11
waves, snow, fog call
. Landslides, heavy rainfall, floods, heat Fax, Webslte? SMS,
Puglia ) . 9 email, certified
waves, snow, wind, storm tides .
email
Sardinia Landslides, hgavy ramfall‘, floods, snow, 7 SMS, email, website
wind, storm tides
Sicily Landslides, heavy rainfall, floods 9 Email, SMS’
. website
Landslides, heavy rainfall, floods, snow, Fax, email, SMS,
Tuscany o . 26 .
wind, storm tides phone call, website
Umbria Landslides, heavy rainfall, floods, snow, ice 6 Fax, website
Landslides, heavy rainfall, floods, snow, Fax, email, SMS,
Veneto 8

snow avalanches

website
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2.4.3 Rainfall thresholds for landslide occurrence

Segoni et al. (2018a) reviewed the rainfall thresholds defined for landslide
occurrence in the last 9 years. The authors examined all published papers
presenting studies on the definition of thresholds, including the
contributions on their employment into prototypal or operational LEWS.
However, the research was restricted exclusively to peer-reviewed papers
written in English and published in journals in order to guarantee the
accessibility and the readability to all the reviewed works. They identified
115 thresholds described in 107 papers (two or more thresholds were
presented in some articles). Figure 2.25 displays that literature
contributions report rainfall thresholds for a large variety of countries.

Thresholds per Country

[(Jo [ 210 > 10

Figure 2.25 Geographical distribution of the analyzed rainfall thresholds.
Countries colored based on the number of published thresholds. In the inset in
the bottom left, the number of papers per scientific journal in which they were
published. (Segoni et al. 2018a)

The large majority of them are defined in Europe and Asia (52 and 36%,
respectively); 9% of the reported thresholds are located in the Americas,
while Africa and Oceania are only marginally represented in this dataset
(1% each). The authors stated that this distribution partially reflects the
distributions of landslide hazard and risk across the world. Besides, they
noted that Africa and central/south America start to focus on the issue of
landslide forecasting only recently, thus the scientific progress in this field
is still advancing.

On the other size, in North America the low number of papers (3%) is
mainly related to a landslide risk lower than other continents, as all the
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thresholds are implemented (or to be implemented) within operational
LEWS. About half of the papers describe thresholds located in two
countries: Italy (35%) and China (14%). According to the authors, this can
be explained again with the high exposure to landslide risk of these two
countries. This statement is also confirmed by considering that about half
(53%) of the thresholds operational into LEWS relates to test sites located
in Italy, while half of the papers which describe study areas in China
reports prototypal or operational LEWS.

Figure 2.26 reveals that the number of thresholds published in
international journal in the last years is increasing, because splitting the
surveyed time interval into 3-year periods, more than half of the works
(55%) were published in the 2014-2016 (20 papers in 2014, 24 in 2015,
and 20 in 2016), while 22% both in the 2008-2010 and in the 2011-2013.
Moreover, among the 59 thresholds employed within early warning
systems (40 prototypes and 19 operational), 33 of them (56%) were
published in the 2014-2016. These outcomes can be interpreted as a proof
that researches on rainfall thresholds and on their employment within
LEWS are pressing issues in the scientific community.

25
LEWS

E Yes

20 A
MW Preliminary
B No
15
10
5 I I
0 —

2008 2009 2010 2011 2012 2013 2014 2015 2016

Figure 2.26 Bar chart showing the number of thresholds published in scientific
journals from 2008 to 2016. Each year, the number of thresholds implemented in
a LEWS (Yes), the preliminary thresholds (Preliminary), and thresholds not
deemed to be part of a LEWS (INo) are also shown by means of different colored
bars (Segoni et al. 2018a)
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Data collected on rainfall thresholds were grouped into four categories:
publication details, geographical distribution and uses, dataset features,
threshold definition. In each category the authors selected descriptive
information to characterize each one of the 115 thresholds in order to
define the most important steps needed to obtain replicable and reliable
thresholds with a high predictive capability.

Regarding this review, it should be noted that only information on rainfall
thresholds implemented into operational or prototypal Te-LEWS—45 out
of 115—are presented and discussed in Chapter 3.
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3 MONITORING STRATEGIES AND
WARNING MODELS

Monitoring strategies and warning models are fundamental technical
aspects to be taken into account in order to define an efficient LEWS.
Over the last decades, many systems have been operational both at
regional and local scale all around the world, as reported in the literature
reviews introduced in Chapter 2. These valuable experiences provide the
means for describing these aspects and for investigating their role in the
success/ failure of a LEWS.

This Chapter is organized into three main parts. Section 3.1 analyses the
monitoring  strategies developed within operational Lo-LEWS.
Successively, Section 3.2 reports and discusses information on monitoring
strategies and warning models developed within Te-LEWS for weather-
induced landslides. Finally, Section 3.3 highlights several questions that
need to be addressed for improving the performance of warning models
implemented within LEWS for weather-induced landslides.

3.1 MONITORING STRATEGIES WITHIN LO-LEWS

(based on Pecoraro et al. 2018)

3.1.1 Classification of monitoring instruments

Monitoring is a crucial continuous activity within a LEWS. Indeed,
monitoring is necessary to investigate landslide occurrence and activity as
well as to define thresholds and alert criteria to be adopted within a
warning model in the design phase. Besides, triggering parameters need to
be continuously monitored in order to assess the probability of thresholds
exceedance in the operational phase. Mikkelsen et al. (19906) stated that
monitoring of landslides represents a considerable challenge for
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geotechnical engineers and elaborated the first classification presented in
the literature, differentiating monitoring techniques in: surface movement
measurements, ground displacement measurements, groundwater
monitoring and others. Besides, the instruments can be further classified
into manually and automated, based on how the measurements are
performed. According to Savvaidis (2003), landslide monitoring
techniques can be differentiated in: remote sensing, photogrammetric,
ground-based geodetic, satellite-based geodetic, and geotechnical. Their
applicability varies from case to case depending on several factors, such
as: expected risk, accessibility of the area, potential for damage, and
availability of resources. In a report of the ClimChAlp project, Komac et
al. (2008) individuated four main categories for slope monitoring methods:
geodetic, geotechnical, geophysical and remote sensing. The author also
discussed the possible fields of application, considering surface extension,
coverage, and predominant morphology. Baron et al. (2012) described the
parameters monitored for different types of landslides and presented some
relevant examples from test sites in Europe. Recently, Stihli et al. (2015)
presented an overview of the technologies typically used in EWS for
weather-induced landslides operational worldwide. They also discussed
the applicability of such technologies to alarm, warning and forecasting
systems.

Besides global reviews on monitoring strategies, literature contributions
also exist on specific issues. For example, Arattano and Marchi (2008)
reviewed the sensors applied for debris flow monitoring. According to
them, the warning devices can be subdivided into three main classes: i)
advance warning systems, predicting the possible occurrence of an event
before its occurrence through the monitoring of the triggering factors; ii)
event warning systems, monitoring a debris flow while in progress and
providing an alarm; and iii) post-event warning systems, detecting a debris
flow already occurred allowing the appropriate risk mitigation measures
(e.g., stopping the traffic on a railway). Furthermore, Scaioni et al. (2014)
presented a classification of remote sensing techniques for geotechnical
investigation, also discussing about their applicability to the different types
of landslides. Applications are classified into three main classes: 1) landslide
recognition, classification, and post-event analysis; ii) landslide monitoring
(i.e., monitoring the activity of existing landslides); and iif) landslide
susceptibility and hazard assessment. Michoud et al. (2012) described the
techniques for landslide detection (i.e. new landslides recognition from
space or airborne imagery), characterization (i.e. retrieving information on
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failure mechanism and volume involved), rapid mapping (i.e. fast semi-
automatic image processing for changes detection and/or target detection;
hotspot mapping) and long-term monitoring (i.e. processing data for
retrieving deformation patterns). Stumpf et al. (2012) provided criteria for
the selection of the most suitable remote sensing technologies based on:
type of landslide, rate of movement, scales of analysis and risk
management strategy. Tofani et al. (2012) described and evaluated the
most innovative landslide remote sensing techniques, aiming at addressing
their future scientific and technological developments.

By elaborating the literature contributions described herein, Calvello
(2017) classified the landslide monitoring instruments in terms of
parameters, activities and methods of monitoring (Table 3.1). The
monitoring strategies adopted within the Lo-LEWS presented herein are
analysed and discussed according to this classification.

The monitored activities are classified into three main categories: (i)
deformation, i.e. direct monitoring of the actual kinematic behaviour of a
landslide; (ii) groundwater and soil moisture, i.e. monitoring of the pore
water pressure conditions which could lead to an activation or an
acceleration of a landslide; and (iii) trigger, i.e. monitoring the external
process responsible of activating or accelerating a landslide. For each
activity a certain number of monitoring parameters can be defined.

The monitoring methods are classified in six main categories: (i)
geotechnical, identifying ground geomorphologic evolution and providing
measurements of ground displacements, soil deformation, groundwater
level and total stress in the soil; (i) hydrologic, measuring the distribution
and the movement of the water on and below ground surface; (iii)
geophysical, monitoring changes in the landslide mass, observing physical
parameters of soil or rock mass (e.g. density, acoustic/elastic parameters,
resistivity, etc.); (iv) geodetic, assessing landslide displacements by
measuring horizontal and vertical angles as well as by tracking GPS
distances; (v) remote sensing, monitoring surface displacements and
characterizing the slope instability factors without any physical contact
with the landslide mass; (vi) meteorological, measuring the weather
parameters that may trigger a landslide (e.g., rainfall, snowmelt) and/or
influence its behaviour (e.g., wind, air temperature).
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Table 3.1 Instruments used for landslide monitoring within LEWS, classified
considering the parameters and the activities monitored and the monitoring
methods (modified from Calvello 2017)

Monitoring method
. . = — & 5
Monitored Monitored S g 8 9 z B
activity parameter % = E = 2 =
s | 5| & 3 2 &
o =, o o o1
g || 8 © ; 5
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<« Legend: Inc: Inclinometer; BExt: Borehole extensometer; DMS: “Differential monitoring of
stability” column; Tilt: Tiltmeter; GPS: Global positioning satellite; Int: Interferometer; TotS: Total
station; Cam: Camera; GbliD: Ground-based 1.IDAR; AlLiD: Airborne . IDAR; GbSAR:
Ground-based synthetic aperture radar; InSAR: Interferometric synthetic aperture radar; UAV
Unmanned air vehicle; OptE: Optic fiber; EExt: Embedded extensometer; Geoph: Geophone; Crack:
Crackmeter; Ace: Accelerometer; Seis: Seismometer; GPR: Ground penetrating radar; Piez: Piezometer;
PS: Perforated standpipe; Tens: Tensiometer; TPsy: Thermocouple psychrometer; EICS: Electrical
conductivity sensor; ThCS: Thermal conductivity sensor; TDR: Time domain reflectometer; Sat: Satellite
sensor; RG: Rain gange; WS: Weather Station; Bar: Barometery WILM: Water level meter; Hyd:
Hydrometer; SprS: Spring sampling

3.1.2 Activities and parameters monitored

Monitored parameters can be defined as “phenomenon indicators or
factors related to slope (area of interest), which could be quantified and
monitored in time” (Baron et al. 2012). A key issue for any LEWS
operational at local scale is the understanding of the behaviour of such
site-specific parameters and, especially, the evaluation of their role as early
warning indicators by identifying their critical values (i.e., thresholds)
through an advanced knowledge of their temporal evolution. Figure 3.1a
displays the parameters monitored in the 29 Lo-LEWS reviewed herein
and Figure 3.1b presents the information in terms of monitored activities
based on the classification introduced in Table 3.1. As expected, the large

majority of the systems—27 out of 29—monitor deformation, expressed
in terms of displacement (15 cases), velocity (8 cases), acoustic emissions
(8 cases), cracking (4), acceleration (2), and strain (1). Indeed, they show
direct evidence of active deformations and movements in the slope,
providing relevant information for early warning purposes. Although
displacements are investigated in the large majority of the cases, velocity
and acceleration are more commonly considered for describing the
kinematic behaviour of landslides in rock. In addition, a large number of
Lo-LEWS monitor triggering parameters (21 cases), especially rainfall (20
cases), because they can be assumed as the main triggering factor for the
majority of the investigated landslides. Groundwater conditions are
investigated in 16 systems, mainly in terms of pore water pressure (8 cases)
and groundwater level (7 cases), which are recorded at intervals related to
the period of the year and to the soil characteristics. The groundwater
regime may display rapid response to intense rainfall or a gradual
rise/decline of the groundwater level during wet/dry seasons. Only in 5
cases other parameters have been employed. An example is the system
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deployed at Lake Sarez, eastern Tajikistan (AS_2005_A), where the
fluctuations of the lake level and the turbidity of the water represent
significant landslide precursors.
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Figure 3.1 Inventory of the parameters (a) and the activities (b) monitored within
the 29 reviewed Lo-LEWS according to the classification of Table 3.1 (modified
from Pecoraro et al. 2018)

Further analyses have been carried out in order to determine the most
investigated activities in relation to the type of landslide under surveillance
(Figure 3.2). Although the number of records for several classes of
landslides is quite limited, deformation activity has been investigated in all
the cases. The two most common classes of landslides, i.e. debris flows
and rockslides, employ very different parameters, even though the activity
monitored is the same. Two parameters are concurrently or alternatively
investigated for debris flows: rainfall (trigger activity) to predict an event
before its occurrence, and acoustic emission (deformation activity) to
detect a phenomenon while in progress. Conversely, displacement and rate
of movement (deformation activity) have always been considered for
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characterizing the state of activity of the rockslides. It is worth mentioning
that in the majority of the cases, independently on the type of landslide
under surveillance, groundwater and meteorological parameters are also
investigated. This seems to suggest that redundancy of the monitored
parameters is a crucial aspect to consider for better understanding the
behaviour of the landslide and for improving the reliability of the system.

2
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Figure 3.2 Monitored activities in relation to the type oflandslide and to the group
of parameters according to the classification of Table 3.1; totals are higher than
29, i.e. the total number of reviewed Lo-LEWS, because multiple parameters are
monitored in some systems and two different types of landslides are considered
in EU_2010c_A (Pecoraro et al. 2018)

3.1.3 Monitoring methods

The monitoring methods implemented within Lo-LEWS depend on the
site-specific conditions of the slope to be investigated and, as a
consequence, on the parameters monitored. Once the parameters more
suitable for the landslide under surveillance are identified, the most
appropriate monitoring instruments can be selected according to the
following criteria: simplicity, robustness, reliability, and cost. Many types
of monitoring instruments are available and allow the LEWS designers
and managers to choose among several options for investigating each class
of parameters. Figure 3.3a displays the monitoring instruments used
within the 29 Lo-LEWS presented herein while Figure 3.3b summarizes
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the monitoring methods according to the classification proposed in Table
3.1.
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Figure 3.3 Inventory of the monitoring instruments (a) and methods (b) employed
within the 29 reviewed Lo-LEWS according to the classification of Table 3.1
(modified from Pecoraro et al. 2018)

A large number of systems (23) employ more than one monitoring
method, confirming that redundancy is a crucial aspect for developing
monitoring strategies. A relevant example is represented by the system
operational at Wushan Town, China (AS_2004_A), where the ground and
deep displacements of a deep-seated colluvial landslide are monitored
through geotechnical and geodetic methods (i.e., inclinometers and GPS).
The system is also integrated by hydrologic (i.e., water level meter),
geophysical (i.e., TDR), and meteorological sensors (i.e., a network of rain
gauges). The most employed monitoring methods are geotechnical and
meteorological, because both of them are considered in 21 systems.
Geotechnical methods are used for measuring deformation and
groundwater, mainly by means of traditional sensors (i.e., inclinometers,
piezometers, perforated standpipes, and extensometers), which deliver
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reliable data and are robust and cheap. However, systems addressing large
and complex phenomena, often employ expensive instruments, such as
differential monitoring of stability (DMS) columns (6 cases) which may
provide profiles of horizontal and vertical displacements as well as pore
water pressure measurements along monitored boreholes. Besides, in 13
systems geotechnical instruments are combined with geodetic sensors in
order to achieve additional information on the absolute displacements of
the landslides with respect to some reference points. GPS devices are
preferred in the large majority of the cases (11), because they ensure
reliable results and are flexible, since measurements are possible even
during the night and under adverse weather conditions. As stated before,
meteorological methods are also widely used, including both rain gauges
(12 cases) and weather stations (10 cases). Remote-sensing techniques,
especially cameras and ground-based synthetic aperture radars (GbSAR),
are employed in a number of applications (13), because they allow
updating the knowledge on the long-term behaviour of a landslide.
However, these techniques are quite expensive and do not provide real-
time data suitable for early warning purposes.

Monitoring methods are also analyzed in relation to the investigated
landslide (Figure 3.4).

-~ TOTAL
-~ Geotechnical
.~ "Hydrologic
,_// Geophysical
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- Remote sensing
r, Meteorological
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Figure 3.4 Monitoring methods grouped in relation to the type of landslide and to
the group of instruments according to the classification of Table 3.1; totals are
higher than 29, i.e. the total number of reviewed Lo-LEWS, because multiple
monitoring methods are employed in some systems and two different types of
landslides are considered in EU_2010c_A (Pecoraro et al. 2018)
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Geotechnical methods are widely employed for all types of landslides,
apart from debris flows monitoring. In these cases, monitoring strategies
are based either on meteorological instruments for measuring the
triggering factor (i.e., rainfall) or on geophysical instruments for recording
the ground vibration produced by the moving mass of water and debris.
Geotechnical and geophysical methods are often combined for
monitoring the evolution of the rockslides. Furthermore, remote sensing
techniques provide additional information in a certain number of cases. In
particular, cameras are used for debris flows and GbSAR and
interferometric synthetic aperture radars (InSAR) are employed for large

and destructive phenomena, such as rockslides and deep-seated colluvial
landslides.

3.1.4 Monitoring strategies

The performed analyses revealed that redundancy of monitoring strategies
is a crucial aspect of operational Lo-LEWS. However, some parameters
and instruments are more reliable than others for issuing an alert. Figure
3.5a,b presents the number of the parameters monitored and the
monitoring instruments within the 29 Lo-LEWS described herein (in red
colour in the Figure), highlighting which parameters and the instruments
are directly used for issuing the alerts (in blue colour in the Figure). It
should be noted that in seven cases, the exceedance of more than one
parameter is considered to issue a warning. Therefore, the total number of
parameters employed for warning purposes (40) exceeds the total number
of systems. As expected, displacement and its derivates (velocity and
acceleration) are the parameters most widely employed (25 cases). Besides,
displacement and velocity are considered the main warning parameters in
18 cases. They are investigated through a variety of sensors, among which
the highest warning potential can be attributed to GPS devices (9 cases),
embedded extensometers (6 cases), and inclinometers (5 cases). Since
other literature contributions (Baron and Supper 2013; Michoud et al.
2013) indicate traditional instruments (e.g., inclinometers and
extensometers) as the most reliable sensors for warning purposes, the
widespread application of GPS techniques is quite surprising. On the
other hand, recent studies demonstrated that these types of instruments
are very suitable for landslide monitoring, as they proved to be accurate,
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rapid, efficient, and cost-effective, especially when the study area is higher
(Gulla et al. 2018, Song et al. 2018).
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Figure 3.5 a) Total number of monitored parameters composing the monitoring
networks and monitored parameters directly used to issue the warnings. b) Total
number of instruments composing the monitoring networks and instruments
directly used to issue the warnings (Pecoraro et al. 2018)

Rainfall is also widely considered (in 20 cases), since most of the
investigated phenomena are weather-induced landslides. Rainfall is
monitored by means either by rain gauges or weather stations, when
additional parameters (e.g., snowmelt, and temperature) are required for
landslides occurring in mountainous environments. Acoustic emissions
are crucial for systems aimed at detecting debris flows in their initial stage.
In a good number of applications (e.g., Arattano and Marchi 2008) they
are monitored through geophones, which have demonstrated to be robust
and reliable sensors. It is worth mentioning that a good number of
instruments, although are part of several monitoring networks, have not
been considered suitable for early warning. For example, data acquired by
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remote sensing sensors have not been included in any warning model
because they are still not mature enough for geotechnical applications, yet
they have a high warning potential (Baron and Supper 2013). Finally,
although redundancy of monitoring strategies is only one of the aspects to
be considered for designing a successful Lo-LEWS, it should be stressed
that acquiring as more information as possible can improve the efficiency,
the robustness, and the reliability of the systems.

3.2 MONITORING STRATEGIES AND WARNING MODELS
WITHIN TE-LEWS

3.2.1 Monitoring strategies

A key technical issue for the operation of an effective Te-LEWS is the
identification, measurement and monitoring of landslide precursors.
Monitoring strategies are typically based on prediction and forecasting of
meteorological parameters over appropriately defined homogenous
warning zones.

Figure 3.6a displays that rainfall is the main monitored parameter for all
the territorial systems reviewed by Piciullo et al. (2018). However, six Te-
LEWS employ additional thresholds based on: soil water content (in 4
cases), pore water pressure (1) and hydrometric parameters (1). A relevant
example is the prototype system deployed in the city of Seattle,
Washington (NA4), where an antecedent water index representing the
depth of water above or below the amount required to bring a 2-m-deep
column of soil to “field capacity” was also monitored. As expected, in the
large majority of the cases (22) automatic rain gauges are the most adopted
instrument for providing information in near real-time (Figure 3.6b). The
only exception is represented by the national LEWS operating in Japan
(AS5), which does not employ a network of rain gauges as main tool for
rainfall monitoring. Rainfall intensities used in the system are estimated by
a Radar Automated Meteorological Data Acquisition System and
distributed by the Japan Meteorological Agency. However, a number of
systems (14) employ both data from a network of rain gauges and weather
radar observations. Geotechnical instruments (i.e. piezometers and
tensiometers) are considered in solely three cases: Malaysia (AS4), Norway
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(EU7), and Seattle (NA4). They can provide supplemental data needed to
determine the likelihood of a rainfall threshold-exceeding actually
producing landslides, and are particularly valuable in areas where soil water
conditions change significantly thorough the year, yet they may prove
useful in other areas as well. Moreover, in addition to rainfall monitoring
some systems employ weather forecasts, mainly using nowcasting
estimates provided by different numerical meteorological models, typically
developed and deployed at national level.
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Figure 3.6 Monitored parameters (a) and monitoring methods (b) employed
within the 24 Te-LEWS operational worldwide

Looking at the Italian regional systems (Pecoraro and Calvello 2016),
rainfall is again the main parameter to be investigated in all the 19 cases
for which this information is available (Figure 3.7a). On the other hand,
soil water content is also considered a critical parameter for landslide
triggering, as it is monitored in 12 cases. A peculiar example is represented
by the system employed in the Umbria region, where the rainfall
thresholds originally employed were successively combined with soil water
content simulations derived by a physically-based model. Furthermore,
snowmelt is also monitored in Aosta Valley and Emilia-Romagna, two
mountainous regions where landslides may be triggered by prolonged
rainfall as well as by rapid snowmelt from a sudden rise of the temperature.
Figure 3.7b shows that rain gauges are employed by all the regional
systems, even though in a number of cases (11) they are supported by
weather radar observations and in three regions (i.e. Umbria, Liguria, and
Veneto) satellite estimates are also used. Moreover, geotechnical
instruments are part of the monitoring networks of the systems
operational in: Aosta Valley (extensometers and inclinometers), Emilia-
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Romagna (inclinometers and piezometers), Umbria (extensometers) and
autonomous province of Trento (extensometers, inclinometers, and
piezometers). However, geotechnical data have been mainly used for
adjusting operational rainfall thresholds without being part of any warning
model.
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Figure 3.7 Monitored parameters (a) and monitoring methods (b) employed
within the 21 regional LEWS operational in Italy

The review proposed by Segoni et al. (2018a) highlights that still the rain
gauges are by far the most used instrument to obtain rainfall data for
threshold analysis within the 45 Te-LEWS: 86.7% of the systems employ
rain gauges, among which 6.7% combines rain gauges and radar
measurements (Figure 3.8).

radar6.7%
rain gauges

86.7% satellite 2.2%

— | ns.aa%

Figure 3.8 Sources of rainfall data used to define thresholds within the 45 Te-
LEWS operational worldwide (modified from Segonrs et al. 2018a). Legend: n.s.:
not specified
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On the other hand, 6.7 and 2.2% of the rainfall measurements are
provided only by radar and satellite measurements, respectively. In some
circumstances, this is a forced choice, because no reliable rain gauge
network exists in the studied area and satellite or radar measurements are
the best choices available. Conversely, in other cases, the choice of using
radar is an attempt to obtain rainfall measurement with higher spatial and
temporal resolution and reduced uncertainties. The source of rainfall data
is not clearly specified for the 4.4% of the systems. In 6 cases (13.3%),
additional monitoring instruments, besides those used to obtain rainfall
data for the threshold analysis, were used. In particular, in 3 cases (6.7%),
they consist in other instruments used to measure rainfall, e.g., to integrate
rainfall measures or to have redundancy of rainfall data. In two cases, the
systems are equipped with instruments for temperature measurements.
The use of temperature sensors is due to cope with snowmelt-induced
landslides to take into account snow accumulation/melting phenomena in
regional scale threshold analysis, or to model the degree of saturation in
order to adjust operational rainfall thresholds. Only in one case
piezometers are employed for providing additional information on pore
water pressure variations.

3.2.2 Warning models

The warning model of a Te-LEWS for weather-induced landslides
typically consists in defining one or more thresholds for landslide
occurrence in a certain area of interest. The rainfall thresholds are typically
based on correlation laws derived from a statistical analysis of historical
data. According to Guzzetti et al. (2007), they can be differentiated into
three main categories: A) thresholds that combine precipitation
measurements obtained from specific rainfall events; B) thresholds that
consider antecedent rainfall conditions; and C) other thresholds. The first
category can be further subdivided, depending on the precipitation
measurements, in: A1) intensity-duration; A2) rainfall event-duration; A3)
total event rainfall; and A4) rainfall event-intensity.

Following this schematization, Figure 3.9 describes the thresholds defined
within the 24 Te-LEWS reviewed by Piciullo et al. (2018). The majority of
the systems (17) employ intensity-duration thresholds (A), whereas other
thresholds (C) are used in 7 cases and antecedent conditions (B) are
considered in 6 cases. Rainfall event-duration thresholds (A2) are deployed
only in the system designed to address landslides along highways in
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Taiwan (ASG). Ten systems employ one threshold, yet two thresholds are
evaluated simultaneously in 7 cases. An example is the system operational
in Rio de Janeiro (SA1), where a combination of antecedent condition of
rainfall through the measurement of 24-h and 96-h cumulated rainfall was
first considered. Successively, a third rainfall variable representing the
intensity duration, i.e. the hourly rainfall, was added to the previous two.
Other or two more complex thresholds are adopted in the remaining 7
cases, such as in Hong Kong (AS1). Japan (AS5), and Norway (EU7). The
latter is a peculiar system, since the thresholds currently used have been
derived from empirical tree-classification using 206 landslide events
occurred throughout the country, as a function of two variables: relative
water supply (derived from rainfall and snowmelt), and relative soil water
content.
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Figure 3.9 a) Classification (following the schematization by Guzzetti et al. 2007)
and b) number of thresholds employed in the 24 Te-LEWS operational worldwide
(Piciullo et al. 2018)

Figure 3.10 groups the thresholds employed within the 21 Italian regional
LEWS (Pecoraro and Calvello 2016). Among the reviewed systems, only
in Liguria and Marche two thresholds are combined: intensity-duration
(A1) and antecedent conditions (B). On the other hand, one threshold is
applied in 16 circumstances, equally distributed between intensity-duration
(A1) and others (C). Among the latter, in six systems (Campania, Lazio,
Lombardy, Sardinia, Sicily, and Umbria) rainfall precursors are related to
returns period estimated on the basis of probabilistic analyses of historical
rainfall. The values obtained for each type of precursor correspond to a
different risk scenario, ie. level of warning. A peculiar example of
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thresholds definition is represented by the system operational in Emilia-
Romagna. The model employed is called SIGMA, whose name reflects the
central role assumed by standard deviations in the proposed methodology.
The areas of the region susceptible to landslide events has been subdivided
into territorial units, each one associated to a reference rain gauge. The
time series of cumulated rainfall from 1 to 365 days have been derived for
each rain gauge and the cumulative rainfall series are approximated by a
standard Gaussian distribution. Proceeding in the same way for the
number of cumulative rainfalls between 1 and 365 days, it is possible to
build the precipitation curves (o curves) associated with various
probabilities of non-exceedance. Multiples of the standard deviation (o)
are used as thresholds to discriminate between ordinary and extraordinary
rainfall events. In Aosta Valley, multiparametric thresholds have been
defined by combining 30-day antecedent rainfall with quantitative weather
forecasts (average and peak rainfall intensity, and snowmelt). In the
remaining 3 cases, information on rainfall thresholds employed is not
available.
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Figure 3.10 a) Classification (following the schematization by Guzzetti et al. 2007)
and b) number of thresholds employed in the 21 regional LEWS operational in
Italy

Segoni et al. (2018a) stated that the rainfall thresholds for landslide
occurrence are characterized by three relevant features: source of landslide
data, variables or parameters employed and methods used.

Regarding the landslide databases, 44% of the reviewed systems makes use
of two or more sources of information, trying to compile a database as
much complete as possible. As an instance, local newspapers usually
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report with good temporal precision landslides that had a relevant impact
on human infrastructures but very rarely provide reliable
technical/scientific information (e.g., landslide type). On the contrary,
scientific reports may be rich of details but sometimes they may not state
clearly the exact moment or day of landslide occurrence. Figure 3.11a
reports the distribution of landslide information source. The most used
sources of information are reports (used in 19 cases), which can have
various different origins: fire brigades, «civil protection, local
administration, technical offices, and scientific reports. News found in
newspapers archives (14 cases) and/or on internet (5) are another relevant
source of information. Furthermore, 12 systems make use of official
databases released by different organizations, mainly governmental
organizations, local authorities, or research institutions. Remote sensing
can be a valuable tool to compile post-event catalogs or to constantly
update large inventories, indeed surveys performed by remote sensing
techniques were used in 5 circumstances. Historical records of various
origin were taken into account for 3 systems, while in 2 cases are used
datasets prepared for previous works. In 3 circumstances, the source of
landslide data is not clearly defined.

The methods adopted for the definition of the thresholds in Te-LEWS
reported by Segoni et al. (2018a) can be grouped into two classes: manual
and statistical (Figure 3.11b). The former are applied in 55.6% of the cases
in which the thresholds are actually drawn manually in several ways:
delimiting the lower bound of the point cloud representing the triggering
rainfall conditions, searching the best fit of the lower part of the cloud, or
adopting a regression. The latter are used in 37.7% of the cases through
the following approaches: frequentist analysis, partial duration series,
return time calculations, or point density analysis. The methods are not
clearly specified in 6.6% of the cases. Further proposals of thresholds
using different methods have been presented in the literature, yet not
employed in any operational or prototypal Te-LEWS. Among them, it is
worth mentioning the probabilistic models based on Bayesian analyses
tested by Berti et al. (2012) in the Emilia-Romagna region (Italy) and by
Robbins (2016) in Papua Nuova Guinea.

Figures 3.11c,d display that three combinations of rainfall parameters are
more commonly implemented into the reviewed systems: intensity-
duration (A1), antecedent conditions (B), and others (C). The most used
combination is intensity-duration (21 cases), whose definition follows a
consolidated tradition which dates back to Caine (1980). The second most
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used approach relies on antecedent conditions (11 cases), which can be
derived using several combinations of rainfall measures, such as: daily
rainfall and 15-day antecedent rainfall, 3- and 30-day antecedent rainfall,
daily and 3-day cumulated rainfall. In some cases, rainfall measures are not
used directly but processed to calculate antecedent rainfall indexes, in
order to better account for the degree of saturation of the soil (e.g., Jaiswal
and van Westen 2010). In 6 cases intensity-duration and antecedent are
combined. Out of these categories, 7 systems employ a wide variety of
parameters to define rainfall thresholds. As instance, the abovementioned
regional system operational in Emilia-Romagna uses the standard
deviation from the mean rainfall amount accumulated during
progressively increasing time steps.
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Figure 3.11 a) Information sources used to define the thresholds, b) methods used
for drawing or defining the thresholds, c) classification (following the
schematization by Guzzetti et al. 2007) and d) number of thresholds employed in
the 45 Te-LEWS operational worldwide (modified from Segoni et al. 2018a).
Legend: n.s.: not specified
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3.3 OPEN ISSUES

The literature contributions reported herein describe many landslide early
warning systems (LEWS) deployed to address weather-induced landslides
both at regional and slope scale all around the world. The efficiency of a
LEWS strongly depends on the monitoring strategies adopted and the
method developed for the definition of the warning model. As already
mentioned, monitoring strategies play a central role, both in the design
and in the operational phase of a LEWS, as suitable parameters for
monitoring must be identified and the most appropriate monitoring
instruments selected according to a set of criteria, such as simplicity,
robustness, reliability, and cost. On the other hand, the definition of the
warning model also represents a crucial issue for scientists and managers
involved in landslide risk management. In particular, there are no standard
procedures indicating steps that cannot be neglected in order to ensure
objectivity and reproducibility of the implemented method.

Warning models developed for weather-induced landslides are mainly
based on correlation laws, for which thresholds are defined considering
one or more combinations of the monitored parameters that have led (or
not lead) to slope movements. Thresholds are drawn either by delimiting
triggering and non-triggering conditions in cartesian planes or by
statistically analyzing historical data. These methods do not typically
include a quantitative assessment of the uncertainties correlated to the
results, that may be due to incomplete or inadequate: input data,
knowledge on the physical process, and reconstruction of the rainfall
events (Berti et al. 2012, Robbins 2016).

The reliability of a warning model does not depend solely on the applied
method, but also on the quantity and quality of the input data, i.e. historical
landslide records and rainfall measurements (or other meteorological
parameters). A landslide catalog that is regularly updated and as much
complete as possible—not only in terms of number of events reported,
but also in terms of information to be used in the analyses—is critical for
supporting the calibration and the validation of a warning model (Battistini
et al. 2013, Kirschbaum et al. 2015). Unfortunately, in many cases data on
landslide occurrence are either not available or accessible only to a
restricted number of scientists, technicians, and insiders (Segoni et al.
2018a).

Regarding rainfall measurements, the most used monitoring instruments
are by far rain gauges, whose spatial density varies significantly from case
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to case. Overall, decrease in gauge density leads to increased
underestimation of rainfall, which in turn leads to large underestimation
of the thresholds, especially in those based on the correlation between
intensity and duration (Nikolopoulos et al. 2014, 2015).

As already mentioned, in almost all the cases only meteorological
parameters are included within the warning model. However,
meteorological monitoring does not allow to take into account critical soil
properties controlling the initiation of the triggering process. Depending
on these conditions, landslides may be triggered in response to a large
variety of rainfall combinations. Therefore, although the integration of
geotechnical parameters (e.g., pore water pressure, soil water content,
ground deformation) within warning models for weather-induced
landslides may be very challenging for some types of landslides, they can
provide additional information to determine the likelihood of rainfall
events actually triggering landslides (Baum and Godt 2010, Stahli et al.
2015, Calvello 2017).
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4 THE PROPOSED METHODOLOGIES

In this Chapter the main elements to be considered in the development of
a warning model for weather-induced landslides are summarized in a
conceptual framework (Section 4.1). In particular, the influence of the
input data and the necessary activities needed for obtaining reliable results
are highlighted. Considering the proposed framework as well as the
relevant aspects according to Section 3.3, two procedures are defined for
the development of a probabilistic warning model (Section 4.2) and a
multi-scalar warning model (Section 4.3). Their application to specific case
studies is presented in Chapters 6 and 7, respectively.

4.1 CONCEPTUAL FRAMEWORK

The definition of a warning model for weather-induced landslides presents
some critical issues, thus there are important steps that cannot be
neglected. Figure 4.1 displays a conceptual framework that summarizes
the main elements of the process: (i) input data, (i) activities, and (iii)
output.
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Figure 4.1 Conceptual framework highlighting the main elements needed for the
definition of a warning model for weather-induced landslides

Input data
The reliability of a warning model significantly depends on the quantity

and the quality of the input data, which can be derived by three different
sources of information: thematic maps, landslide databases, and
monitoring data. In addition, these details are also important in order to
determine the most appropriate methodology and to assess the feasibility
of a possible application to other case studies. Thematic maps can be used
to highlight the main features of the study area, such as the areal extension
and the geomorphological context (e.g., lithology, land use, and slope).
The former provides an indication on the spatial scale of analysis, which
in turn influences both the spatial extension of the landslide database and
the choice of the most suitable monitoring methods. The latter is related
to the types of landslides that may potentially occur within the study area
and the mechanics of the triggering processes (Stdhli et al. 2015, Calvello
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2017, Segoni et al. 2018a). Regarding the landslide database, using a high
and well-distributed number of recorded events (i.e., representative of a
wide range of different triggering conditions) is recommended for the
calibration of a warning model. In addition, landslide catalogs should be
populated constantly and timely in order to allow a recalibration of the
model when new data are available (Kirschbaum et al. 2015, Rosi et al.
2015, Battistini et al. 2017). Finally, monitoring data to be employed within
warning models are typically represented by meteorological parameters,
investigated through two different monitoring methods: in-situ
monitoring and remote sensing (Pecoraro et al. 2018, Piciullo et al. 2018,
Segoni et al. 2018a). Meteorological instruments deployed in-situ measure
directly and continuously the monitored parameter (e.g., rain gauges for
monitoring rainfall), thus they provide robust and reliable local
observations. It should be stressed that the highest possible density of
measurements is desirable, to better account for the spatial variability of
the monitored parameters. The selection of the most representative local
instrument(s) for a certain landslide event is not a trivial matter, therefore
the design of the monitoring network for local observations should be
based on quantitative and objective elements. On the other hand, recent
technological advances in remote sensing methods (i.e. weather radars and
satellite estimates) are encouraging their deployment for early warning
purposes. In particular, they allow enhancing the spatial and the temporal
resolution of the measurements (e.g., spatial resolution of weather radars
can arrive to few km?). They are particulatly helpful in areas where reliable
meteorological monitoring networks are not available. Furthermore, other
monitoring data available in the study area (e.g., monitoring of
geotechnical parameters) may provide fruitful information on the
landslides under surveillance, thus they can be profitably used to
complement the monitored meteorological parameters.

Activities

The main activities needed for the delimitation of the warning zones, the
analysis and the correlation of the input data, and the definition and the
validation of the warning model are herein described.

Partition into warning ones. A warning zone is the portion of territory alerted
with the same warning level and it can be seen as the spatial discretization
adopted for warnings (Calvello and Piciullo 2016). The aim is to divide the
study area into territorial units characterized by meteorological and
hydrogeological homogeneity. The criteria adopted for the definition of
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the warning zones generally consider the hydro-geomorphological
conditions of the area to be warned as well as the characteristics of the
employed monitoring network, including factors like: number of
monitoring instruments per unit area, climatic homogeneity, geology and
geomorphology (Calvello 2017). In addition, some authors (Jaiswal and
van Westen 2010, Segoni et al. 2014, Zhuang et al. 2014, among others)
state that in large study areas characterized by heterogeneous climatic
regimes and geomorphological characteristics each warning zone should
be independently analyzed for the definition of a specific threshold.
Ldentification of landslide events. Landslide events necessary for the calibration
of the warning model are retrieved from a landslides database according
to data, classification, spatial and temporal characteristics of the landslide
records. In some cases, the numerosity of the landslides triggered by the
same weather conditions can be also considered, thus the landslide events
can be differentiated into single landslide events and areal landslide events
(Calvello and Pecoraro 2018). In particular, single landslide events refer to
the occurrence of one landslide; areal landslide events are defined as a
series of landslides grouped on the basis of their characteristics, so as to
implicitly evaluate and classify the magnitude of a set of multiple
phenomena occurring in a given area within a given time period.
Regarding the types of landslides considered for the analyses, two different
approaches can be followed. If the adopted landslide catalog reports a
small number of records, all the weather-induced landslides that occurred
in the study area in the analyzed time frame may be included to increase
the number of landslides available for the analyses. Conversely, if a wide
number of landslides is reported in the database, landslides triggered or
favored by similar contour conditions (e.g., shallow landslides in loose
soils) may be grouped and considered separately for the calibration of the
thresholds in order to enhance the accurateness of the predictions. Finally,
only landslides for which information on cause and on spatial and
temporal characteristics is adequate should be considered, as a high degree
of uncertainty in the dataset could result in a significant decrease in the
performance of the warning model.

Selection of warning parameters. 'The monitoring data are processed and
analyzed in order to determine the most suitable warning parameters, i.e.
combinations of meteorological measurements that can provide an
adequate description of the triggering event (e.g., a combination of rainfall
intensity and duration for characterizing a rainfall event). Several aspects
should be taken into account in order to select the warning parameters:
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the types of landslides under surveillance, the geoenvironmental
conditions of the study area, and the climatic regime. As an example,
antecedent rainfall conditions would be more appropriate than rainfall
intensity for systems dealing with deep-seated landslides in low-
permeability soils.

Spatial-temporal correlation. The correlation between the landslide events and
the warning parameters is based on their spatial and temporal
characteristics. In particular, each landslide event occurring in a certain
warning zone within a given time period is associated to a set of warning
parameters, which are derived from the monitoring data collected in the
same warning zone and can be considered representative of the weather
conditions that triggered the landslide event. The reconstruction of the
conditions responsible for landslides initiation is not a trivial matter as it
can be characterized by a relevant degree of subjectivity and uncertainty
(Segoni et al. 2018a). For this reason, a standard criterion should be set in
advance to get objective and fully reproducible measures. To this aim, it
could be useful to implement an algorithm that reconstructs the triggering
and non-triggering conditions according to a reduced set of parameters to
account for different physical settings and operational conditions (Melillo
et al. 2015).

Definition of warning model. A warning model for weather-induced landslides
can be defined using a variety of methods, classifiable into three main
categories: heuristic, statistical, and probabilistic. Heuristic methods are
based on the identification of the conditions which lead to the triggering
of the landslides through a visual comparison between monitoring data
and landslide occurrences. In these cases, threshold values are typically
defined manually by expert judgment, without any statistical, mathematical
or physical criterion. Statistical methods comprise a wide variety of
techniques, such as: frequentist method, partial duration series, and point
density analysis. Thresholds are typically drawn as the lower-bound limit
to the conditions which resulted in slope instability plotting two
representative variables (e.g., rainfall intensity and duration) in Cartesian,
semi-logarithmic or logarithmic coordinates. In some cases, the thresholds
are refined by considering also the rainfall events that did not results in
landslides. Probabilistic approaches are aimed at identifying the
probability of landslide occurrence associated to each combination of
warning parameters. They provide objective and reproducible results
which can be easily updated when new data become available.
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Validation of warning model. In general terms, validation can be defined as
“the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses
of the model” (Corominas and Mavrouli 2012). Validation is one of the
most important issues in the definition of a warning model, as the
assessment of the predictive capability needs to be adequately analyzed
and supported by data (Calvello and Piciullo 2016, Piciullo et al. 2017b,
Segoni et al. 2018a). Depending on the availability of data, validation can
be performed either against the same dataset used to define the model (i.e.,
calibration and validation sets are not separated) or against a different
dataset that can be separated spatially, temporarily or randomly from the
calibration set. Different statistical methods have been developed and
applied for performance evaluation; they are based on the computation of
tools such as: contingency matrices, receiver operating characteristic
(ROC) curves, and duration matrices. A contingency matrix is compiled
to define true negatives (TN), true positives (TP), false negatives (FN),
and false positives (FP) and to derive a series of statistical indicators, such
as: efficiency index, threat score, odds ratio. A ROC analysis is devised to
assess the overall performance of the model by computing the area under
a curve drawn in the true positive rate vs false positive rate space, and
other parameters (Metz 1978). A duration matrix takes into account the
ovetlapping durations of warning levels and landslides events with the aim
of determining, within a given time frame, the amount of time of adequate
and inadequate behavior of the warning model (Calvello and Piciullo
2016). Alternative approaches adopted to quantify the performance of a
warning model include: a quantitative comparison with other models
aimed at demonstrating that the developed model is the best one for a
specific case study; comparison between model outputs and real data
counting only one or two statistical parameters (e.g., hits) and without
building a contingency matrix; visual and qualitative assessments (e.g.
visual comparison with landslide inventories).

Qutput

Warning events (l.e. the warning model output) are generated by
evaluating appropriately defined warning criteria (i.e. the decision-making
procedures required for issuing the warnings), in turn based on
correlations between the warning parameters (i.e. the triggering factor) and
the landslide events (i.e. the hazard for which warnings are issued). They
are represented by a set of warning levels issued within each warning zone,
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according to the magnitude of the expected impact. The number of
warning levels can vary from a minimum of two (i.e., warning, no warning)
to five or more (i.e., states with an increased probability of landslides). It
is worth mentioning that the adoption of a high number of levels requires
an adequate calibration of the thresholds as well as clear statements about
the meaning of the issued warnings. Indeed, each warning level is
associated to a series of characteristics of the landslide event, to a series of
potential consequences and, thus, to a series of appropriate actions to be
undertaken from relevant stakeholders (Calvello and Piciullo 2016,
Calvello 2017, Pecoraro et al. 2018).

The proposed conceptual framework could be used as a reference for the
development of a warning model for weather-induced landslides. Anyway,
it should be stated that a warning model needs to be constantly evaluated,
updated and upgraded to maintain or to increase its forecasting
effectiveness. Sections 4.2 and 4.3 present two warning models developed
according to the proposed framework and taking into account some of
the issues highlighted in Chapter 3.

4.2 PROBABILISTIC WARNING MODEL

As highlighted in Section 3.3, warning models implemented within
operational LEWS addressing weather-induced landslides are mainly
based on heuristic and statistical methods. Some literature contributions
(Berti et al. 2012, Robbins 2016) propose alternative approaches based on
the adoption of probabilistic techniques to evaluate the probability of
occurrence of landslides in a given area. However, a standardized
procedure does not exist and these models have not yet been implemented
within LEWS operational at real scale.

Figure 4.2 describes a methodology for the definition of a probabilistic
warning model, following the conceptual framework introduced in Section
4.1. In particular, a probabilistic analysis is performed to assess the
probability of landslide occurrence associated to each combination of the
warning parameters within a certain study area. The proposed procedure
includes: the identification of the main characteristics of the study area and
the collection of the input data (Phase I), the correlation between the
landslide events and the warning parameters (Phase II), and the
application of the probabilistic methodology (Phase III).
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Figure 4.2 Flowchart of the proposed methodology for the definition of a
probabilistic warning model for weather-induced landslides

In Phase I, information on the areal extension and on the geological,
geomorphological, hydrogeological and geotechnical features of the area
of interest is derived from thematic maps. The information is then used
to determine the scale of analysis of the model and to define homogeneous
warning zones based on the hydro-geomorphological conditions of the
warned area, such as climatic regime, geology, and geomorphology.
Moreover, input data to be employed within the warning model are
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derived from landslide catalogs and monitoring networks available and
accessible within the study area in the period of analysis. In Phase II,
landslide events addressed by the warning model are selected from the
available database and eventually grouped according to their
characteristics. Records of questionable quality as well as landslides not
clearly triggered by weather changes should not be considered. Besides,
monitoring data are analyzed in order to identify combinations of warning
parameters representative of the conditions which may lead to the possible
initiation of the landslides. After the weather events have been defined,
the landslide events that occurred within each warning zone are associated
to the adopted combinations of warning parameters, and the weather
events that resulted or did not results in landslides are identified. In Phase
II1, a probabilistic analysis is developed to compute the probability of
landslide occurrence for each possible combination of warning parameters
within the study area. This methodology allows to explicitly take into
account information from all input data and to highlight the weather
conditions corresponding to critical states of the system, i.e. conditions
that are likely to trigger landslides. Finally, a validation of the model is
performed in order to assess the predictive capability of the model so that,
if necessary, some parameters can be modified when new data become
available.

4.3 MULTI-SCALAR WARNING MODEL

Almost all the warning models presented and described in Chapter 3 are
based on meteorological monitoring, typically employing a network of rain
gauges for measuring rainfall in order to predict weather-induced
landslides by investigating their triggering factor. However, mechanisms
that lead to slope instability are often influenced by numerous factors (e.g.
slope gradient, soil properties, land use), thus there is not always a direct
relationship between meteorological parameters and landslide initiation.
Therefore, some authors (Baum and Godt 2010, Stihli et al. 2015, Calvello
2017) propose to integrate monitoring of geotechnical parameters within
the warning model, to obtain additional information useful to determine
rainfall events actually triggering landslides.

Figure 4.3 presents a methodology for the definition of a multi-scalar
warning model that combines monitoring data collected at regional and
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slope scale. The main aim is to improve the performance of the regional
warning model by integrating information from local observations. The
proposed procedure can be schematized into three successive steps:
collection of the input data and classification of the warning zones (Phase
I), application of the regional warning model (Phase II), and integration of
local observations (Phase I11).
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Figure 4.3 Flowchart of the proposed methodology for the definition of a multi-
scalar warning model for weather-induced landslides
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In Phase I, information on landslides that occurred within the area of
analysis are retrieved from available landslide catalogs in order to select
the types of landslides of interest for the warning model (i.e., landslide
events). The most appropriate monitoring data, in terms of widespread
meteorological measurements and local observations, are also collected in
this phase. The area of analysis is divided into territorial units of
appropriate areal extension (i.e. the warning zones adopted in the model)
considering the scale of analysis, intermediate between regional scale and
slope scale, so that information from widespread monitoring and local
observations may be profitably combined. The territorial units are
classified considering two criteria: the occurrence of landslide events in
the period of analysis and the availability of relevant information from
monitoring instruments in the proximity of the landslide source areas.
Following this classification, the most representative territorial units are
identified. In Phase II, the regional warning model developed employing
only meteorological data is applied. The performance of the issued
warning events (i.e., combinations of warning parameters exceeding pre-
defined thresholds) is then evaluated through a comparison with the
landslide events that occurred in the period of analysis. In Phase III, the
regional warning events are assessed by using the information derived
from the local observations within each warning zone. The multi-scalar
warning model is validated by means of statistical indicators and, if
necessaty, it is recalibrated. The obtained results can be also extended to
other areas, identified as similar to the warning zones used for the
development of the multi-scalar warning model.
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5 APPLICATIONS OF PROBABILISTIC
WARNING MODEL

This Chapter presents the application of the probabilistic warning model
defined in Section 4.2 aimed at determining the rainfall conditions critical
for landslide initiation. Firstly, Section 5.1 summarizes the main steps
necessary for the development of the model. Then, Section 5.2 and 5.3
describe the open-access data employed for this research, coming from a
non-conventional landslide inventory and a rainfall satellite monitoring
mission. A two-dimensional Bayesian methodology for the definition of
rainfall probabilistic thresholds is proposed in Section 5.4. Finally, the
results carried out applying this procedure to Emilia-Romagna and
Campania regions (Italy) are presented and discussed (Sections 5.5 and 5.6,
respectively).

5.1 PROBABILISTIC WARNING MODEL: WORKFLOW

Two probabilistic warning models have been developed and tested in two
different Italian regions, Emilia-Romagna and Campania, following the
procedure described in Section 4.2. Although some differences exist
between the two applications, the flowchart showed in Figure 5.1
summarizes the main common steps: delimitation of the warning zones
and collection of the input data (Phase I), correlation between landslides
and rainfall events (Phase II), calibration and validation of the probabilistic
warning model (Phase I1I).
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Figure 5.1 Flowchart of the proposed methodology for the definition of the
probabilistic warning models for rainfall-induced landslides applied to the
Emilia-Romagna and Campania case studies

In Phase I, the weather warning zones defined by the regional civil
protection agency are considered as the most appropriate territorial units
in relation to the scale of analysis and a series of homogeneity criteria. The
analyses are conducted using open-access input data: landslide records
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from a catalog of Italian landslides retrieved from online news; and rainfall
measurements from satellite monitoring,.

In Phase 11, shallow rainfall-induced landslides in loose soils are selected
from the database. Moreover, rainfall measurements are processed in
order to reconstruct the rainfall events considering duration and
cumulated rainfall as variables. To this aim, two different procedures are
employed for the two case studies. Landslides and rainfall events are
analyzed in order to define spatial-temporal correlations within each
territorial unit and to differentiate between triggering and non-triggering
rainfall conditions.

In Phase III, a probabilistic approach based on a two-dimensional
Bayesian analysis is developed to calculate the landslide probability
associated to the different types of rainfall events recorded in the database.
Following this methodology, the rainfall conditions more likely to trigger
landslides are identified, allowing to highlight critical levels of rainfall and
to determine probabilistic thresholds for landslide initiation. Finally, the
thresholds are validated employing two different procedures for the two
case studies.

5.2 LANDSLIDE DATABASE: THE “FRANEITALIA” PROJECT

(based on Calvello and Pecoraro 2018)

5.2.1 Methodology

“Franeltalia” is a geo-referenced open access catalog of recent landslides
affecting the Italian territory. The catalog has been developed consulting
online news sources from 2010 onwards and includes both fatal landslide
events and events that did not produce physical harm to people. Landslide
events are classified considering two numerosity categories and three
consequence categories. The numerosity categories are: single landslide
events (SLE), for records only reporting one landslide; and areal landslide
events (ALE), for records referring to multiple landslides triggered by the
same cause in the same geographic area. Both SLEs and ALEs are divided
in three consequence classes according to whether the event produced
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victims and/or missing people (C1, very sevete), injured petrsons and/or
evacuations (C2, severe), or did not cause any physical harm to people (C3,
minor). The “Franeltalia” catalog supplement already existing landslide
catalogs and inventories in Italy, including landslide inventory maps
produced by river basin authorities and databases of recent landslides
developed using news articles as sources of information.

Information retrieved from online news sources on landslides that occur
in Italy have been collected and organized within the new national
landslide catalog, following a methodology organized in seven successive
steps.

(1) Selection of sources. A certain number of online news media, published in
Italian language, were preliminarily screened in order to compare the
consistency and the quality of the outcomes. As a result of this activity,
the following two news aggregators were selected as sources of
information  for  the  catalog: 1)  Google  Alert, GA
(http:/ /www.google.com/alerts), a web setrvice that sends daily emails
when it finds web pages or news articles that match users’ search term(s);
2) the  Italian  Civil  Protection  press  review, CP
(http:/ /ilgiornaledellaprotezionecivile.it/), a selection of articles available
in pdf format collected daily from national, regional and local press.

(iz) 1dentification of effective keywords. Both the selected news aggregators may
be searched employing a Boolean keyword approach. Key landslide
terminology was assessed to select the terms that are more commonly used
in Italian language to deal with landslide events. As a result of this activity,
the two keywords selected for the searches are: “frana” (the Italian word
for “landslide”) and “frane” (the Italian word for “landslides”).

(izi) Collection of relevant news articles. When one of the two search terms
appears in daily searches conducted on the two information sources, the
related online article is flagged as a potential entry for the landslide catalog.
If the article refers to a new landslide event a record is added to the
landslide database. If the article refers to a landslide event already existing
in the database, the relative record is updated.

(iv) Identification of landslide categories. Landslide events are classified
considering two numerosity categories and three consequence categories.
The two numerosity categories are: single landslide events (SLE), for
records only reporting one landslide; and areal landslide events (ALE), for
records referring to multiple landslides triggered by the same cause in the
same geographic area (at most coincident with an administrative
Province). The latter category is used to simplify collection and reporting
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of the landslide records for the numerous cases when many landslides are
mentioned together in the news. The consequence classification is based
on the severity of the effects to human life, not considering other
consequence measures (e.g., economic loss, environmental damage). The
three categories are: very severe consequences (C1), for landslide events
with victims and/or missing people; severe consequences (C2), for events
with injured persons and/or evacuations; minor consequences (C3), for
landslide events that did not cause physical harm to people.

(v) Definition of other fields of database. Information on the landslide events
collected in the catalog always include: data on the spatial location of the
event, day of occurrence of the landslide(s), source(s) of information, and
number of landslides in case of ALEs. Additional information may
include: onset and duration of the landslide event, landslide characteristics,
phase of activity, details on the consequences.

(vi) Mining of information from the articles. For each record of the database, i.e.
for each inventoried landslide event, as much information as possible is
obtained from the articles in relation to each field.

(vii) Geo-referencing of the events. A single set of geographic coordinates
(WGS84 datum) is assigned to each record of the database, both for single
and areal landslide events. The following categories of spatial positions are
considered for SLEs: i) certain, if the news source cleatly specifies the
position of the landslide; ii) approximated, when the position of the
landslide can be inferred, although it is not clearly indicated; iii) unknown,
when the only information reported is the name of the municipality
affected by the landslide. In the latter case, the geographic coordinates of
the town hall are assigned. For ALEs, the assigned geographic coordinates
are only meant to represent a point within the area affected by the
landslide event and are thus useful only for maps drawn at national scale.

5.2.2 Database structure

The Franeltalia catalog was constructed adopting PostgreSQL version 9.6,
an open source Relational DataBase Management System, with the
PostGIS extension version 2.3. Tables, fields and relationships—designed
in a logical model—were translated into PostgreSQL physical tables,
tields, and one-to-one relationships. Figure 5.2 shows all the fields of the
database. Each reported landslide event is characterized by 40 unique
fields, which are grouped in 9 thematic tables: main info; spatial
information; temporal  information;  landslide characteristics;
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consequences to people, structures, infrastructures, cars and other
elements; and source. Not all fields are mandatory.
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Figure 5.2 Structure of the “Franeltalia” landslide database (Calvello and
Pecoraro 2018)

Inspection of Figure 5.2 reveals that the core of the catalog structure is the
main info table, that maintains a unique hierarchical relation with tables
containing information on the landslides, their consequences and the
sources of information, i.e. links to online articles. The tables are
connected through the identification code (ID), which is unique for each
record and whose format is designed to highlight the landslide event
category and the initial date of the event. The name of the landslide event
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is not a compulsory entry and, when possible, it quotes the terms most
commonly used to refer to the event. The landslide categories, as already
mentioned, are based on landslide numerosity and on the consequences
to human life of the landslide event. Both SLEs and ALEs are divided in
three consequence classes. Further compulsory information for each
record are the geographical coordinates of the landslide event and the
source(s) of data. When the GA service is used, the references are the web
addresses of the online news articles. When the CP press review is used,
the references include the day (the press review is published each working
day), the type (5 daily reviews are published in relation to the geographical
location of the source: national, northern Italy, central Italy, southern Italy,
main islands) and the pages of the PDF documents reporting the
information. Finally, data visualization and editing in the Franeltalia
database are allowed through a specific procedure that exploits QGIS
software (QGIS Development Team, 2018) as a client, and a dedicated
data visualization web interface.

According to many authors (e.g., Guzzetti 2000, Kirschbaum et al. 2010,
among others), characterizing landslide events from news reports and
other text-based sources is challenging, as information varies widely in
terms of both accuracy and availability, resulting in possible biases and
uncertainties affecting the catalog. Compulsory information in the
Franeltalia catalog include the geographical coordinates and the date of
each landslide event, as well as the number of landslides of ALEs. If, for
a given record of the database, the needed data are not directly reported
in any news, the operator is requested to compile the related fields using
his/her own judgement to infer from the available sources. The
uncertainty of the position of SLEs is specified by means of three
confidence descriptors associated to the geographical coordinates of the
landslide event, named: certain (Sd1); approximated (Sd2); municipality
(8d3). In the latter case, the operator has to identify the municipality
wherein the landslide event occurred and assign to the event the
geographical coordinates of the town hall. The geographic coordinates
attributed to ALEs are always indicative (Sd4) and are only meant to
approximately identify the geographical region affected by the mentioned
landslides. A second source of uncertainty may result from lack of detailed
information on the time of the event. In the vast majority of cases, the day
of the landslide event is reported in the news; quite often, a general
indication of the time of occurrence (e.g., “in the morning”) is also
available; sometimes, the date of the event is not reported and the news
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article only generically refers to the event as a past occurrence (e.g., “few
days ago”). The temporal uncertainty related to the occurrence of the
landslide events is specified by means of two confidence descriptors,
named: certain (Td1), when the news sources report at least the day of the
event; estimation (Td2), when the operator has to interpret the news
reports to assign a date to the event. In the first case, if more information
on the time of the event is reported the “time” field is also filled, either by
inserting the hour of the event or by specifying a time range (e.g., “in the
morning”). In both cases, if the landslide event lasts longer than one day,
the final day of the event is also reported. Finally, the uncertainty
associated to the number of landslides in ALEs is specified by means of
two descriptors, named: reported (Nd1), when the news reports that
number; and estimation (Nd2), when the operator has to infer from the
news to assign it. Most typically ALEs are due to extreme weather
conditions triggering, in one or more days, multiple landslides over wide
areas. In these cases, the news typically identifies the area affected by the
events and highlights the landslide(s) that produced the highest
consequences, only rarely reporting a number that can be considered
representative of all the landslides occurring during the areal event.

Four types of constraints are adopted to guarantee the correctness and
semantic integrity of the inserted records. A first group of constraints is
adopted to ensure the appropriateness of the information related to the
landslide numerosity class (SLE or ALE) and to the number of landslides
within a landslide event (i.e. the number of landslides must be equal to one
for SLEs and higher than one for ALEs). A second constraint limits the
values of the possible choices of the confidence descriptors that quantify
the uncertainties related to the number of landslides, their location and
their time of occurrence. Next, geographical data are validated by means
of a dictionary valid for Italy (first level for the regions, second level for
the counties, and third level for the municipalities). Finally, lists of pre-
identified values are adopted to standardize and harmonize the following
characteristics of the landslide events: typology, areal dimensions, trigger,
material, and activity phase.

Table 5.1 reports how the two selected news aggregators, GA and CP,
were used to populate the Franeltalia catalog from January 2010, i.e. the
beginning of the survey, to December 2017, i.e. the end of the period
reported herein. The CP was predominantly used for a series of reasons.
The daily press reviews from the Civil Protection are stored as an online
archive accessible at a later date. When the study started, at the end of
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2012, it was thus possible to go back in time and set January 2010, the
month of first available CP press reviews, as starting date. On the contrary,
the daily GA service has to be activated from a user. Therefore, GA was
tully operational for the Franeltalia catalog only from January 2013. To
overcome this limitation, the Google News search engine was also used
to look for landslide news published in the year 2012. Yet, the search
results were conditioned by the availability of the original online news
when the searches were performed, ie. first few months of 2013.
Moreover, it has been empirically found that GA results depend on the
location of the user as well as on its “habits” when using the Google search
engine. The same GA search queries may thus generate different sets of
online news articles for different users. Another important advantage of
CP over GA is that the searches and the data entries performed using CP
are less time-consuming. Indeed, the daily press reviews are already
organized in 5 searchable PDF documents: one document collecting news
of national relevance, mainly from countrywide news sources; the other
four documents referring to news from Northern Italy, Central Italy,
Southern Italy and the main Islands, respectively. This aspect of the CP,
i.e. non-automatic pre-processing of online news from personnel of the
civil protection, which may be considered a time-saving asset of this news
aggregator, turned into a drawback when the civil protection agency either
did not provide the press reviews (end of 2014) or performed limited
reviews (November 2015). In summary, the CP was used to populate the
Franeltalia catalog throughout the considered time period whenever
available, whereas GA was only used in 2013, from September 2014 to
February 2015, in November 2015 and, by means of the Google News
search engine, from January 2011 to December 2012.

Table 5.1 News aggregators used to populate Franeltalia from January 2010 to
December 2017 (Calvello and Pecoraro 2018)

News aggregator Period

Civil protection daily press review  From January 2010 to August 2014; from January 2015
(CP) to December 2017

From January 2011 to December 2012 (via Google
Google Alert service (GA) News search engine); year 2013; from September 2014
to February 2015; November 2015
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5.2.3 Database contents

The Franeltalia catalog currently spans from January 2010 to December
2017, containing a total of 8931 landslides, grouped in 4231 SLEs and in
938 ALEs (Table 5.2). About 2% of the 5169 landslide events had very
severe consequences to human life (C1), 14% of the records refer to
events with severe consequences to human life (C2), while the wvast
majority of records deals with landslide events that had minor
consequences to human life (C3).

Table 5.2 Landslides inventoried in the “Franeltalia” catalog from 2010 to 2017

Single Landslide Events Areal Landslide Events
Year (SLE) (ALE) Mumber of
C1 C2 C3 TOT C1 C2 C3 TOT

2010 12 100 498 610 2 36 171 209 1584
2011 16 60 302 378 4 20 68 92 821
2012 9 51 393 453 2 14 85 101 949
2013 12 77 538 627 1 39 114 154 1503
2014 15 111 844 970 3 36 144 183 1936
2015 9 63 377 449 2 17 58 77 801
2016 5 43 368 416 1 5 59 65 801
2017 3 45 280 328 1 13 43 57 536
TOT 81 550 3600 4231 16 180 742 938 8931

Figure 5.3 reveals that the sites affected by landslides are not equally
distributed in Italy. SLEs are abundant in many regions and, as expected,
there is a clear evidence of a correlation between an increasing density of
landslide events and the location of the main Italian mountain chains, the
Alps and the Apennines. ALEs are more common in the eastern sectors
of the Alps (Lombardy and Veneto regions) and in the central and
northern sectors of the Apennines (Tuscany, Liguria, Emilia-Romagna,
and Marche regions). Among the southern regions, the one most affected
by both single and areal events are Campania, Calabria and Sicily. The
highest number of landslides reported in the database occurred in
Toscana, mainly as a consequence of a series of major areal events
triggered by heavy rainstorms. The lowest number of events is recorded
in Puglia, whose territory mainly comprises plains. Most of the other
regions experiencing a large number of landslides are located in northern
Italy (Veneto, Lombardy, Emilia-Romagna and Liguria). In particular,
Lombardy is the region most affected by SLEs, mainly occurring in the
Alpine area where the presence of high relative relief and outcropping
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rocks, such as granite, metamorphic rocks, massive limestone and
dolomite, facilitate rock falls, rock slides and rock avalanches (Guzzetti,
2000).

400000 600000 800000 1000000 1200000 400000 600000 800000 1000000 1200000
HL YEAR
H g g g
2 2 B 1 M 2010 (E
v 1 M 2011

L ]
2012
. 50 2013

ﬂ X W 2014
£ &. 100 W 2015

4800000
4800000

4800000

4800000

W 2016

4500000
4500000
4500000

4500000

4200000
4200000
4200000
2200000

400000 600000 800000 1000000 1200000 400000 600000 800000 1000000 1200000

Figure 5.3 The “Franeltalia” landslide catalog for the period 01/01/2010—
31/12/2017: (a) SLE trecords; (b) ALE recotds (Calvello and Pecoraro 2018).
Legend: #L =Number of landslides

Figure 5.4 reports that in several regions (Lombardy, Veneto and
Piedmont) a non-negligible number of events occurred in the summer,
possibly in relation to extreme rainfall events or snowmelt processes in the
Alpine environment. On the contrary, in most parts of central and
southern Italy (e.g., Emilia-Romagna, Campania, and Sicily) a considerable
number of landslides occurred during the autumn and winter seasons.
These findings are consistent with the different seasonal failure scenarios
reported by Cascini et al. (2014) for the Campania region: distributed or
widespread first-time shallow slides triggered by frontal rainfall and
propagating as debris flows or debris avalanches between November and
May; local erosion phenomena and small first-time shallow slides triggered
by isolated convective storms between June and August; widespread
erosion phenomena triggered by hurricane-like rainfall, often turning into
hyperconcentrated flows, between September and October.
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Figure 5.4 Number of landslides inventoried in the 20 Italian regions,
differentiated per season (Calvello and Pecoraro 2018)

5.3 SATELLITE RAINFALL MEASUREMENTS

5.3.1 Global Precipitation Measurement (GPM) mission

Precipitation data have been derived from the satellite-based Global
Precipitation Measurement (GPM) mission, co-led by the National
Aeronautics and Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA). GPM mission aims at improving the
knowledge of Earth's water and energy cycles, improving the forecasting
of extreme events that cause natural disasters, and extending current
capabilities of using satellite precipitation information to directly benefit
society (Hou et al. 2014). The GPM Core Observatory is designed to work
with and anchor a constellation of satellites and ground systems from

partner agencies located in the United States, Japan, Europe, and India
(Figure 5.5).
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Figure 5.5 Constellation of satellites and international partners participating in

the GPM mission (https://pmm.nasa.gov/GPM)

The mission was launched on 27 February 2014 and was a successor of
the Tropical Rainfall Measuring Mission (TRMM), which provided data
on heavy to moderate rainfall in Earth’s tropics and subtropics from 1997
to 2015. TRMM data were used to obtain multiyear sets of tropical and
subtropical rainfall observations; develop a better understanding of the
interactions between sea, air, and land masses and their influence on global
rainfall and climate, improve the modelling of tropical rainfall processes,
and enhance satellite rainfall measurement techniques. GPM improves on
TRMM’s capabilities in a number of aspects. Although GPM employs only
two instruments—a Dual-frequency Precipitation Radar (DPR) and a
radiometer called GPM Microwave Imager (GMI)—versus the five
instruments on TRMM, they are some of the most advanced instruments
for monitoring precipitation from the space. Therefore, their combination
provides an increased sensitivity to light rain rates as well as more reliable
information on particle drop size distribution. One of the most significant
evolutions in GPM data is its broader global coverage. While TRMM
collected data in tropical and subtropical regions between roughly 35°
north and south latitude, GPM collects data between approximately 60°
north and south latitude. This allows GPM’s instruments to collect data
on storms as they form in the tropics and move into the middle and high
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latitudes. A significant GPM data enhancement over TRMM is its design
as a Core Observatory that coordinates data collection from a
constellation of partner satellites, rather than as a single satellite. The GPM
Core Observatory calibrates the data from almost a dozen orbiting U.S.
and international satellites that observe precipitation, ensuring a uniform
structure to the data collected from these satellites. The number of partner
satellites in the constellation will change over time as new satellites are
launched and older satellites are decommissioned (Kirschbaum et al.
2017).

GPM provides a wide variety of products retrieved combining data from
active and passive instruments in the Integrated Multisatellite Retrievals
for GPM (IMERG). This algorithm intercalibrates, merges, and time-
interpolates “all” satellite microwave precipitation estimates in the GPM
constellation, then incorporates microwave-calibrated satellite estimates
and precipitation gauge analyses (Huffman et al. 2018). IMERG uses the
GPM Combined Instrument precipitation estimate to intercalibrate all
available microwave data, similar to the TMPA approach, yet an advanced
time-interpolation scheme is employed in order to follow the estimated
motion of the precipitation systems. Precipitation datasets are available at
a variety of levels which denote the amount of data processing, from raw
data (level 1) to model outputs mathematically derived using the raw data
as input (level 3). Precipitation data used in this research have been derived
from the IMERG version 5 (v05b), which includes gridded precipitation
data collected every 30 min at a 0.1° X 0.1° (~10km X 10km) spatial
resolution, currently covering the latitude band 60°N—60°S (Table 5.3).

Table 5.3 Technical characteristics of the GPM products used in this research
(Huftman et al. 2018)

Integrated Multi-satellite Retrievals for GPM

Basic acronym IMERG
IMERG version 05b
GPM Level 3
Spatial resolution 0.1° x 0.1°
Temporal resolution 30 minutes
Coverage Gridded, 60°N-60°S
Latency 4 h (NRT/Eatly run)
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5. Applications of probabilistic warning model

5.3.2 Analysis of rainfall data

Satellite rainfall data retrieved from GPM database have been analyzed
through Google Earth Engine (GEE), a cloud-based platform for
planetary-scale environmental data analysis. GEE allows users to
download and upload global satellite imagery as well as to carry out the
analysis of large datasets (Gorelick et al. 2017). The data catalog hosts a
large repository of publicly available geospatial datasets, including
observations from a variety of satellite and aerial imaging systems,
environmental wvariables, weather and climate forecasts, land cover,
topographic and socio-economic datasets. Users can access and analyze
data from the public catalog as well as their own private data. The remote
sensing datasets required for large scale analyses are downloaded via a
web-based application programming interface (API) instantly using
Google’s high-performance parallel computation service. Analysis is
performed using an interactive development environment Farth Engine
(EE) Code Editor, which enables rapid prototyping and visualization of
results (Figure 5.6).

Asset JavaScript code editor Console
manager . ......... . output

.....

Figure 5.6 Components of the Earth Engine Code Editor at
https://code.earthengine.google.com

Code is typed by the user through the JavaScript code editor, which
formats and highlights the code, underlines code with problems, and
offers code completion hints for Earth Engine functions. Above the code
editor are buttons for running the script, saving the script, resetting the
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output map and console, and getting a link to the script. Asset manager in
the left panel is used to upload and manage user’s own image assets in
Earth Engine. The Map panel in the API returns the geographic region
visible in the Code Editor; customizations are available for this display
using the Map functions. Console output allows to print and export
something for the script, such as text, objects, or charts.

Figure 5.7 displays the methodology developed for analyzing the IMERG
version 5 (vO5b) GPM-Level 3 Final R