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Abstract 

The aim of the present thesis work is to show the developed researches 
and the related results on the project and development of Very Large Scale 
Integration (VLSI) electronic circuits and in particular on Hardware (HW) 
accelerators and dedicated arithmetic units which could be used in resource 
and time constrained applications, with particular attention to image and 
video contents ones. The range of applications in this field stems from 
image filtering and enhancement to object recognition and Neural 
Networks (NN), to list only some of the most demanding ones. The aim of 
the present work is to create a set of HW accelerators tools capable of 
being integrated in a single Digital Signal Processor (DSP) to carry out the 
needed pre-filtering operations on the considered input data. 

The present work will develop the HW simplifications needed to 
implement the well-known algorithms in HW friendly fashion, in order to 
obtain a resource optimization which results in better trade-offs between 
area and power consumption, maximum operating frequency, resource 
utilization and portability. 

The following thesis will be organized as follows: 
 the importance of digital image processing and its developments 

are explained in the introduction with particular attention to HW 
applications; 

 a new floating point (FP) multiplier for dedicated applications have 
is shown, capable of simplifying the HW complexity of FP 
Multiply and Accumulate (MAC) used in several filter 
applications; 

 a HW accelerator structure for Low Dynamic Range (LDR) images 
enhancement capable of working with several image resolutions up 
to 4K UHDTV format is presented; 

 a design of an offset tolerant sensing circuit for Static Random 
Access Memory (SRAM) circuits is developed to address the 
integration related problems for these kind of circuits; 

 a HW accelerator using Gabor filters is presented to address pre-
filtering issues in image retrieval problems, while reducing the 
computational burden of the overall operation via careful 
simplifications and approximations; 

 the previously developed instruments and acquired knowledge are 
used to develop part of a NN, in order to obtain a speed up during 
pre-filtering operations, which represents the real bottleneck of the 
overall architecture. 
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Introduction 

In the last decades more and more applications arose in the field of digital 
image processing, due to the development and the diffusion of new data 
processing algorithms, handheld devices and automatic systems. These 
developments caused a huge growth in the amount of data related to image 
and video content to be processed, which in turn resulted in many cases in 
several constraints in the developed applications, in particular, due to the 
increase in the resolution formats and in the information carried in the image 
(e.g. the extension of the dynamic range). This obviously represents a 
problem for hard real-time applications in which the system has to produce 
the result in a well defined and reduced amount of time, in order to satisfy 
the requirements needed by the other parts of the system to carry on the 
computation. This chapter sketches a brief recap of the main results related 
to image digital processing. 

 
i.1 Background 

From a mathematical standpoint an image could be seen as a function of 
two variables [Gonzalez C., Woods R. E., 2007] f(x,y), being x and y the two 
spatial coordinates describing the image space and determining  an output 
which could be a single value representing for example the gray level of the 
image in that point, or a vector, taking into account the different components 
composing a model for the definition of the image (e.g. the three emulsions 
sensible for red, green and blue spectral components for analog images and 
the RGB [Red Green Blue] color model for digital images). In the case of 
analog images we would have a continuous value, while in the case of digital 
images the result will be a discrete and limited set of values. Moreover, any 
digital image has to be obviously composed by a finite number of elements, 
while the reproduction of an analog image is related only to the light 
wavelength, the photographic film and it, of course, a continuous function. 
The elements composing the digital image are called picture elements or 
pixels. 

One of the most important features of digital image processing is that, 
changing only the dedicated sensors, it is possible to extend the processing 
algorithms to images obtained using not only sensors working in the visible 
band of the electromagnetic (EM) spectrum, but in every bandwidth, and, 
moreover, not only to the light spectrum, but also to acoustic waves. An 
example using multi wavelength imaging is reported in Figure i.1. 

 



 
 

 

 

 
Table i.1 Class of used wavelengths in Digital Image Processing, 
frequencies and applications. 

Class Frequency [Hz] Applications 

Gamma Ray > 5·1019 Medical Diagnostics, Astronomy 

X-Ray 3.4·1016 - 5·1019 
Medical Diagnostics, Industrial 

Diagnostics 

Ultra Violet 7.9·1014 - 3.4·1016 
Lithography, Biological Imaging, 

Astronomy 

Visible 3.9·1014 - 7.9·1014 Used in all other reported applications 

Infrared 3·1011 – 3.9·1014 Satellite Imaging 

Microwave 109 - 3·1011 Astronomy, Geographic Area 
Definition 

Radio < 109 Medical Diagnostics, Astronomy 

Ultrasound 2·104 - 2·108 
Medical Diagnostics, Artefacts 

Diagnostics 

 

Applications about digital image and video content date back to 1960s 
when the contemporary developments of computers and high-level 
programming languages made it possible the first processing on digital 
images. However, it was only thanks to the miniaturization of the 
components due to the introduction of VLSI techniques and Hardware 
Description Languages (HDLs) in the 1980s that these applications became 
of huge commercial interest, making this one of the most important research 
fields. Another turning point in image processing diffusion was represented 
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by the introduction of handheld devices, such as digital cameras, 
smartphones,  

 

 

 

 

 

 

 

 

 

 

 

 

which together with Internet-of-Things (IoT) applications highlighted the 
need for high frequency, low power and reduced area applications. The 
target performances could be achieved via different trade-offs and 
approximations, feasible using software (SW) implementations, HW ones or 
both. In particular, low level tasks, as contrast enhancement, simple changes 
in the image settings and simple computations, could be carried out in real-
time by a SW system, having the benefit of being more easy to program, 
more flexible and being a general purpose system; obviously the drawback 
in these systems are related to the fact that they are not optimized for any 
task, which is represents particularly a problem in the case of specific high 
level tasks, like in features extraction, image recognition and in general all 
the tasks having higher computational complexity. For these reasons, 
nowadays several demanding applications demand for at least a HW 
accelerator stage before carrying the rest of the computations in SW. In fact, 
the different specific tasks require different approaches, in particular for high 
level tasks. 
 
i.2 Sampling, Quantization and Resolution 

Image sensors usually output continuous voltages, which need to be 
converted in order to be fed to digital screens, digital image processors and 
other devices working on discrete signals. The conversion is done obtaining 
discrete values for both spatial coordinates and amplitude of the input image; 
the former task is called sampling, while the latter is called quantization. The 

 
Figure i.1 Image of galaxy Centaurus A at different wavelengths, together with a 

composition of the same images [http://www.atnf.csiro.au/people/lop009/multiwave.html]. 



 
 

 

sampling in space is mostly determined by the 
image, since it is inherent to mechanical limits, lenses manufacturing, dark 
currents and similar issues. The maximum sampling rate is established by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the density of sensing elements in the considered image sensor. Quantization 
is instead obtained by digitaliz
can be obtained digitalizing the image linearly, as in usual Low Dynamic 
Range (LDR) images, or not linearly, as 
(HDR) photography. The final result of these processes is a matrix of 
numeric values representing the image, in which each value is ca
The number of matrices to represent a single image depends on the image 
coding: in the case of gray scale images it is possible to use a single matrix 
to represent the image, while if dealing with RGB images three 
the three channels are needed, for example. Figure 

Figure i.2 Principal applications in digital image processing.

sampling in space is mostly determined by the sensor which acquires the 
since it is inherent to mechanical limits, lenses manufacturing, dark 

currents and similar issues. The maximum sampling rate is established by  

of sensing elements in the considered image sensor. Quantization 
is instead obtained by digitalizing the amplitude of the incoming signals; it 
can be obtained digitalizing the image linearly, as in usual Low Dynamic 
Range (LDR) images, or not linearly, as it happens in High Dynamic Range 
(HDR) photography. The final result of these processes is a matrix of 
numeric values representing the image, in which each value is called pixel. 

es to represent a single image depends on the image 
g: in the case of gray scale images it is possible to use a single matrix 

to represent the image, while if dealing with RGB images three matrices for 
ree channels are needed, for example. Figure i.3 shows the results 

Principal applications in digital image processing. 
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obtained quantizing Lena image with a different number of quantization 
levels. 

Another important concept in digital image processing is resolution 
which gives the minimum quantity of detail the image can carry, e.g. how 
close two lines in a picture could be being visibly resolved. The higher the 
resolution, the better it is possible to distinguish the details in the image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resolution of the obtained images tends to increase when using better image 
sensors. Standard formats from a minimum of 352x240 pixels (Video CD) to 
a maximum of 10k x 7k pixels (IMAX HD) are used, depending on the task 
of interest. 

 
i.3 Image Enhancement 

Image enahnacement algorithms change a lot according to the particular 
application they have to be fit. For this reason, the different problems have to 
be dealt using different solutions, also from an HW standpoint. The chosen 
methods could change depending on the wavelength at which the image was 
taken, the particular field of application (medical, photographic, astronomy, 
etc.), the parts of the images we are interested to enhance (colors, edges, 
particular patterns) and more. Due to the number of applications to consider, 
general purpose processing is left to SW implementations, while HW ones 
focus on particular issues and are hence specific purpose oriented to carry 

 
Figure i.3 Lena grayscale image varying quantization levels, n. 

 



 
 

 

out the most complex operations from a computational standpoint. Due to 
that, a huge attention is dedicated to HW accelerator architectures, which 
tend to enhance the performances of computationally heavy operations in 
particular algorithms, at the general end of enhancing their performances. 

The computations could be derived in spatial or frequency domain, 
according to considerations regarding the complexity of the operation in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Usually, spatial domain is preferred when possible and cost-effective, in 

order to avoid the introduction of transformation and anti-transformation 
techniques. Different techniques in both domains are now briefly explained, 
to gain an insight on the various problems that could arise in image 
processing applications. 

 
i.3.1 Spatial Domain Techniques 

Spatial domain processing describes techniques made up by several 
operations carried out on a group of neighboring pixels that could be 
mathematically described as: 

 
 ),(),( yxfTyxg   (i.1) 

being f(x,y) and g(x,y) the original and the processed images, while T[·] 
represents the particular operator applied on the original image. While it 
seems from the above formulation that operations could be performed only 
over single images, it is possible that operators are applied over several 
images, in case it is necessary to interpolate over the a set of images pixel-

 
Figure i.4 Resolution formats examples for different applications 

[https://it.wikipedia.org/wiki/File:Digital_video_resolutions_(VCD_to_4K).svg]. 
 



 

 

wise. However the processing can be done on single pixels, the operations 
are usually carried out on tiles made up 
squares, rectangles or circular

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Simple or complex operations 

the particular
applied operator T[·] . 
filtering operations
worth to notice that even if we are approaching the problem as a 2D (Two
Dimensional) one, the same considerations apply to 3D (Three
domains and even to multidimensional clusters of data, more in general. 
Another important thin
used in the processing 
depending on the particular mask used, the level of detail to be achieved by 
the processing, the timing constraints of the 
resources to be used.

Examples of image transformations are represented by:
 
 
 
 
 
 
 
 

In linear spatial filtering applications the operations are carried out via 
multiplications and subsequent additions of the partial products obtained. 
This kind of operation is known as
Multiply and Accumula
the most computation

Figure i.5

wise. However the processing can be done on single pixels, the operations 
are usually carried out on tiles made up of neighboring pixels which could be 
squares, rectangles or circular approximations.   

Simple or complex operations could be performed according to the aim of 
particular enhancement task, the masks used in the processing and the 

applied operator T[·] . These kind of operations are also known as spatial 
filtering operations and the mask could also be referred to as 
worth to notice that even if we are approaching the problem as a 2D (Two
Dimensional) one, the same considerations apply to 3D (Three
domains and even to multidimensional clusters of data, more in general. 
Another important thing to highlight is that the size of the particular mask 
used in the processing could enhance or worsen the overall filtering results, 
depending on the particular mask used, the level of detail to be achieved by 
the processing, the timing constraints of the particular application and the 
resources to be used. 

Examples of image transformations are represented by: 
 Image negative; 
 Log transformations; 
 Gamma corrections; 
 Piece-wise functions transformations; 
 Image subtraction; 
 Averaging; 
 Thresholding; 
 Histogram processing. 

In linear spatial filtering applications the operations are carried out via 
multiplications and subsequent additions of the partial products obtained. 
This kind of operation is known as convolution and is carried out using
Multiply and Accumulate (MAC) units. MAC operation 
the most computationally intensive in image processing, also because of the 

 
5 Examples of (a) square, (b) rectangular and (c) circular tile patterns in spatial 

domain image processing. 
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fact that it is an operation that has to be repeated several times during the 
processing; multiplications are still one of the most time consuming 
operations, depending on the kernel coefficients, image representation and 
the particular implemented architecture.
thus the result associated to a particular pix
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for a generic kernel having dimensions (
operation gives the spatial filtering for the considered tile of the image and it 
is then conventionally associated to the central pi
order to avoid interpolations and further operations, tiles having a well
defined central pixel are usually considered
dimensions). Two examples of filter masks are reported in Figure 
 
 
 
 
 
 
 
 
 
 
 
 

In this context great sharpening filters assume great importance. Different 
sharpening filters are used in various applications
importance due to their key role in object recognition algorithms, among the 
others. Due to the role they will have in the further discussions, a brief 
examination of this class of filters is conducted.

 
i.3.1.1 Sharpening Filters 

Sharpening filters are specifically used to highlight details in an image or 
to enhance blurred details in image and video multimedia contents.
studies have been conducted on how to describe sharpening operation from
mathematical standpoint. 

Several methods have been proposed using first and second order 
derivatives. It is important to notice that in the digital domain derivatives are 
defined in terms of differences and the first derivative operation has to 
respect the following properties:

Figure i.6 Examples of (a) average and (b) horizontal Sobel filters.

fact that it is an operation that has to be repeated several times during the 
multiplications are still one of the most time consuming 

operations, depending on the kernel coefficients, image representation and 
the particular implemented architecture. Hence, in general, the response and 
thus the result associated to a particular pixel could be written as 

 nymxf ),(  (i.2) 

for a generic kernel having dimensions (m,n). The result of the above 
operation gives the spatial filtering for the considered tile of the image and it 
is then conventionally associated to the central pixel of the tile. Moreover, in 
order to avoid interpolations and further operations, tiles having a well-
defined central pixel are usually considered (i.e. tiles having odd 

Two examples of filter masks are reported in Figure i.6. 

In this context great sharpening filters assume great importance. Different 
sharpening filters are used in various applications and have got great 
importance due to their key role in object recognition algorithms, among the 

Due to the role they will have in the further discussions, a brief 
examination of this class of filters is conducted. 

ening filters are specifically used to highlight details in an image or 
to enhance blurred details in image and video multimedia contents. Several 
studies have been conducted on how to describe sharpening operation from a 

ethods have been proposed using first and second order 
derivatives. It is important to notice that in the digital domain derivatives are 
defined in terms of differences and the first derivative operation has to 
respect the following properties: 

 
 

Examples of (a) average and (b) horizontal Sobel filters. 
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 it must be zero among segments having pixels of constant values; 
 it must be non-zero among segments having pixels of different 

values. 
Following the same considerations, the second derivative operation has to 
respect the following properties: 

 it must be zero in areas having pixels of constant values; 
 it must be non-zero when the first derivative among the considered 

segments of pixels is non constant. 
Moreover, even if the second derivative is computationally more intensive to 
calculate than the first derivative, it is often preferred to the latter one due to 
its better performances in term of fine detail recovery and for its higher 
sensitivity to step responses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
The simplest isotropic second derivative two-variable function is the 

Laplacian as demonstrated in [Rosenfeld A., Kak A.C., 1982] 
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Figure i.7 Examples of first derivative filtering using Sobel filters. 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Furthermore, in [Witkin, A. P., 1983], [Koenderink J.J., 1984] and 

[Lindeberg T., 1994] demonstrated that the descriptive equation of linear 
scale space is the one describing linear diffusion. The equation is a Partial 
Differential Equation (PDE) that could be written as 

 

 2



c
s  (i.4) 

satisfying a maximum principle according to which the amplitude of local 
maximums tends to decrease while decreasing the resolution, while local 
minimums show the opposite behavior. Furthermore, it is possible to 
demonstrate that normalizing the Laplacian it is possible to obtain scale 
invariance, which is a desired behavior in image recognition and feature 
extraction algorithms. In fact, as stated in [Mikolajczyk, K., 2002], 
[Mikolajczyk K., Schmid C., 2005] the use of the normalized Laplacian 
produces more stable function if compared to the Hessian function or the 
gradient. Obviously, due to the operators involved in the calculations, it is 
possible to state that the so built filters will give higher responses in the case 
of abrupt discontinuities among the values of neighboring pixels. The 
Laplacian function is mainly used to retrieve image details and enhance high 
frequency components (e.g. corners or edges) at the end of subsequently 
enhancing the original image for further use. 

 
 

Figure i.8 (a) Example of second derivative filtering using Laplacian filters for detail 
enhancement and (b) sharpening of original Lena image. 
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To conclude the discussion above spatial domain filters, it has to be 
noticed that also non-linear spatial filters have great importance in image 
processing, even if they are usually computationally more intensive than 
linear ones. They are often used in applications aiming to reduce noise and 
in image recovery. 

 
i.3.1 Frequency Domain Techniques 

From Fourier signal theory it is known that it is possible to represent a 
periodic signal via a sum of periodic sine and cosine signals having different 
frequencies and amplitudes called Fourier Series (FS). However, Fourier 
theory also gives a mean to represent non-periodic signals surrounding a 
finite area, using the so called Fourier Transform (FT). The most important 
feature of FT and FS is that ideally it is possible to develop all the wanted 
operations in the frequency domain and then transform back the obtained 
results in the original domain having correct results and no information loss. 
In digital domain the Fast Fourier Transform (FFT) algorithm is of particular 
use, since it represents a fast way to calculate the Discrete Fourier Transform 
(DFT), which is the equivalent of the FT for discrete signals. The modern 
technique was developed in the 1965 by Cooley and Turkey [Cooley, James 
W. and John W. Tukey, 1965], but different formulations of FFT algorithms 
arose since then, due not only to exact algorithms, but also to several 
approximate algorithms, which result in faster calculations while 
maintaining the accuracy error under a certain limit. 

2D DFT is defined as 
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while its inverse is given by 
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Any FT could be separated into a spectrum magnitude component and  into a 
phase one given by 

)},(Im{)},({Re),( 2 vuFvuFvuF   (i.7) 
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In a frequency plot the DC component of the image concentrates in the 
origin of the plot, while the AC components tend to distribute farther from 



 
 

 

the origin with the growth of frequency considered. High frequency 
components, such as corners and edges, tend to be located in the upper right 
corner of such a plot. 

Several properties make the frequency domain more suitable for image 
processing operations in particular cases. For example, one of the most 
important properties of the frequency domain is that the convolution of 
signals is substituted with the multiplication between the signals, thus 
simplifying this calculation stage. However, in several applications, working 
on small tiles of the input images it is still convenient to work in the spatial 
domain for the complexity related to the operations of transformation and 
anti-transformation and for the pre and post-processing operations related to 
the FT and Inverse Fourier Transform (IFT), which does not compensate for 
the simplification of the convolution operation. All the previously seen 
filtering applications could be also implemented in the frequency domain 
and each filter could be seen as a low pass, high pass or band pass filter. 

In the following all the reported filters are presented both in spatial and 
frequency terms, in order to give the reader a better insight.
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Chapter I 
Bachet’s Multipliers 

 
I.1 Introduction 

In recent years the need of elaborating both image and video high-quality 
media contents gave rise to an intense interest in the research activity, 
principally meant to the improvement of filters and MAC units. Usually, the 
first requirement to be taken into account in high-quality elaboration is the 
speed of these units, which is to say, the highest frame rate per second (fps) 
achievable by the system. Most of the times the chosen solution is to brutally 
allocate large number of arithmetic operators, which could cause in several 
cases, the slackening of the overall circuit. Other solutions in the modern 
literature recur to serialization and folding techniques techniques [G. D. 
Licciardo, A. D'Arienzo, A. Rubino, 2015], [Parhi K. K., 2007] or try to kick 
the problem intervening on the complexity of the algorithms. The former 
solution usually results in a significant reduction in performaces, while the 
latter approach, together with a careful design of the MAC units and of the 
overall architecture, remains the best way of achieving a good trade-off 
among Power, Performances and Area (PPA) requirements. 

Some solutions are also based on the complete substitution of the 
multiplier units, while recurring to fast adders and shifters [Paul B. C., Fujita 
S., Okajima M., 2009], [Meher P.K., 2009] to achieve the same results for 
the particular operand codings, Canonical Signed Digit (CSD) and Modified 
Booth (MB), primarily [Hewlitt R. M., Swartzlantler E. S., 2000], 
[Tsoumanis K., Axelos N., Moshopoulos N., Zervakis G., Pekmestzi K., 
2016]. It has to be highlighted that the filters simplification results 
particularly effective when at least one of the operands involved in the 
calculations can be reduced to a certain finite set of pre-calculated values, 
which is the case of pre-defined kernel filters. Distributed Arithmetic (DA) 
[Peled A., Liu B., 1974] techniques could be applied in these cases to obtain 
a partition of multiplication into simpler shift-and-add operations.  Of 
course, in this kind of solutions the use of memories to store the pre-
calculated coefficients to compute the final result is fundamental. However, 
it would be possible to reduce the overall memory usage by using Multiple 
Constants Multiplications (MCM) techniques [Voronenko Y., Püschel M., 
2007.], [Aksoy L., Flores P., Monteiro J., 2014], which allow the DA use 
also in place of usual MB and CSD [Berkeman A., Owall V., M. Torkelson, 
2000]. Nevertheless, DA techniques can lead to eccessive increment of 
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mapped physical resources and, hence, a careful trade-off between its bit-
serial operation and the partial sums parallelism needs to be found. 

The candidate explored the possibility of development of a new 
partitioning scheme based on DA techniques to be used in high accuracy 
FP32 filtering applications having one integer input, based on the 
substitution of FP32 multipliers with FI adder chains without loss of 
accuracy. The obtained architecture is fit for multiple-constant filtering 
applications, working with FP and having a set of pre-calculated kernel 
coefficients and a finite range for the integer input values. 

 
I.2 Mathematical Background 

Claude Gaspard Bachet de Mèziriac was a well-known French 
mathematician from XVII, whose studies was mainly focused around 
arithmetic and number theory. Of particular importance was his “Problem 
plaisants” which was a collection of arithmetical tricks and questions. One 
of the problems the famous mathematician posed in this book is about 
integer partitions, stated as [O’Shea E., 2008]: 

 
“What is the least number of pound weights that can be used on a scale pan 
to weigh any integral number of pounds from 1 to 40 inclusive, if the weights 

can be placed in either of the scale pans?” 
 
Even if the problem was proposed for a single range of integer values, it is 
generalizable for any given range of integer values, given the theory and the 
theorem developed during the years and reported in what follows. The 
problem was called Bachet’s Weights Problem after and several results on of 
number theory were derived from it. 

The solution of the original problem is found using no more than four 
weights, namely {1, 3, 9, 27}, given that one could only add or subtract the 
different values to obtain the resultant integer. Table I.1 reports the different 
coefficients combination to obtain all the values in the original range. From 
the obtained results, it seems pretty obvious to deduce that is possible to 

obtain all the integer values in the range 



  )13(

2

1
;1 1n

 using only the first 

n powers of 3. Such decomposition could be useful for different fields, e.g. 
to obtain the optimal cuts of coins and currency for economics [Tesler L. G., 
1995], where it is however not used in favor of the easier and more intuitive 
decimal system [Van Hove L., 2001]. More important for us is the fact that it 
could be used in the simplification of the circuitry devoted to filtering 
apparatus [Vigliar M., Licciardo G. D., 2013]. 

During the years several demonstrations have been devoted to partitions 
and in particular to generalize Bachet’s problem and theory to any kind of 
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integer number range. The interest for this problem has been reignited in the 
beginning  of  the  past   century  by one  of  the  greatest  mathematicians  in 

 

Table I.1 Coefficients combinations to compose the numbers in the 
original Bachet’s problem interval. 

Val. Coeff. Val. Coeff. Val. Coeff. Val. Coeff. 

1 1 11 9+3-1 21 27-9+3 31 27+3+1 

2 3-1 12 9+3 22 27-9+3+1 32 27+9-3-1 

3 3 13 9+3+1 23 27-3-1 33 27+9-3 

4 3+1 14 27-9-3-1 24 27-3 34 27+9-3+1 

5 9-3-1 15 27-9-3 25 27-3+1 35 27+9-1 

6 9-3 16 27-9-3+1 26 27-1 36 27+9 

7 9-3+1 17 27-9-1 27 27 37 27+9+1 

8 9-1 18 27-9 28 27+1 38 27+9+3-1 

9 9 19 27-9+1 29 27+3-1 39 27+9+3 

10 9+1 20 27-9+3-1 30 27+3 40 27+9+3+1 
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number theory of the past century, G. H. Hardy, in one of the most famous 
and utilized textes in that field of study since then [Hardy G. H., Wright E. 
M., 2008]. These results were then reconsidered and extended mainly thanks 
to two papers in the last twenty years [Park S. K., 1998], [Rødseth Ø. J., 
2006]. From the obtained results it is possible to demonstrate that, defining a 
set 

},3,...,3,3,3{: 1210 RW n
r

  (I.1) 

where )3...333( 1210  nrR  , it is possible to write every integer in 
the [0, r] set as a superposition of the terms in Wr, each multiplied for a 
coefficient chosen in the group }1,0,1{: C . The choice of the coefficients is 
however not unique, since it is possible to use only additions and use the set 

}2,1,0{:C  obtaining the same results. To sum up the various theorems 
obtained around this topic it is possible to state that 
 
Theorem I.1 Defined as partition of a positive integer r the ordered 
sequence of positive integers that sum to nr   ...210  where 

n  ...210 and the set },...,,,{: 210 nrW   it can be demonstrated 
that: 

1. every integer 0≤q≤r can be written as: 





n

i
iiCq

0

  (I.2) 

2. there does not exist another partition of r satisfying 1. with fewer parts 
than n+1. 

Corollary II.1 Every partition of r is composed by exactly 

31 log (2 ) 1n r      parts. 

Table II.2 shows the application of the generalized partitioning method. An 
example of the proposed decomposition using an integer range [0, 255] and 
hence six parts, could be given, e.g. for input “42” which can be rewritten as 
42=(0)1+(-1)3+(-1)9+(-1)27+(+1)81+(0)134, namely the set of values from 
Table I will be {0,-1,-1,-1,+1,0}. 

The above results can be applied to the development of MAC operations 
between a generic vector of coefficients Ak and a vector of integer limited 
inputs xk: 







1

0

K

k
kk xAy  (I.3) 

and substituting (I.2) in (I.3), it results 
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Table I.2 Coefficients combinations to compose the numbers in the 
generalized Bachet’s problem for any integer interval. 

Values 

Partition 

λ0 λ1 λ2 ... λn 

1 1 0 0 ... 0 

2 -1 1 0 ... 0 

3 0 1 0 ... 0 

4 1 1 0 ... 0 

5 -1 -1 1 ... 0 

... ... ... ... ... ... 

q C0 C1 C2 ... Cn 

... ... ... ... ... ... 

n 1 1 1 ... 1 
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Considering that for several multimedia applications the parameter n  is 
small and that all the integers in the range could be obtained with a linear 
superposition of the parts, the previously shown results could be used to 
write all the multiplications involved in the MAC operations and thus in 
filtering operations, recurring to a partition of pre-calculated terms, obtained 
multiplying a priori the product of Ak and the parts obtained for the partition 

range. In usual DA techniques the term xk is decomposed as 
1

0

2
s

i
k ki

i

x b




 , 

where {0,1}kib   represents the sign digit, in a way similar to the Ci 
coefficient in the Bachet’s case. It is possible to rewrite (I.4) in the DA case 
in form of a partition as: 


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s
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were s is the number of bits of the binary representation of the input. Due to 
this parameter, it is possible to state that, although, the use of bki in place of 
Cki contributes to reduce the number of logic elements used to implement 
(I.5), the actual values of s are significantly higher than n used in (I.4). 
Therefore, using Bachet’s partition theory it is possible to strongly reduce 
the number of operators to implement the inner products in equation (I.4). 
 
I.3 Architectural Design 

I.3.1 Bachet’s Multipliers 

In all the considered implementations the incoming pixels are acquired in 
raster scan mode, directly from an image source, such like an image sensor. 
The method derived from the above reported theory has been used to 
implement the filtering scheme reported in Figure I.1 for the calculation of 
the convolution G I between a FP32 kernel, G, and an input unsigned 
integer vector, I, coded using m bits. The obtained architecture for a single 
multiplier is shown in Figure I.2. The decomposition of G and the parts 
involved in it are defined offline and from that it is possible to decompose 
each element of I in n+1 parts, according to Table I.2. The pre-multiplied 
coefficients obtained multiplying the parts and the kernels are stored in dual 
port Read Only Memories (ROMs) in a Look-Up Table (LUT) fashion, 
while another ROM dedicated to the Ci coefficients, coded on 2 bits each, 
stores the different combinations used to select the sign of the operands to  
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Figure I.1 Scheme of the convolution circuit used as case study of the proposed 

decomposition method. 
 

 
Figure I.2 Scheme of the proposed multiplier, deployed in a Gaussian convolution. 
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compose the final result. This further needed memory is composed by 
(n+1)2m+1 bits. In the proposed architecture the multipliers are substituted 
using n adders, as shown in the dashed box of Figure I.2. To optimize the 
structure, the adders are distributed along a 2log ( 1)n    depth tree. Even if 

in principle FP adders should have been used, it is possible to derive a sort of 
custom coding of the partial results which allows us to reduce the overall 
operation complexity while not altering the multiplication final result. The 
peculiar used coding is derived starting from the standard IEEE754 FP32 
coding [ANSI/IEEE754 - 1985, 1985] and increasing all the exponents of the 
pre-computed coefficients to the greatest one, contemporarily increasing the 
number of bits to code the significands accordingly, to avoid truncations 
during the operations and take into account all the shifted codes. 

All the derived implementations have been targeted to both Field 
Programmable Gate Arrays (FPGAs), using a Xilinx Virtex 7 
XC7V2000tflg1925-1, as part of the proFPGA DUO ASIC prototyping 
board [Xilinx, 2015], and std_cells, using TSMC CMOS 90nm libraries. The 
obtained data for a single multiplier are reported in Table II.3 and Table II.4. 

Table I.3 Synthesis of the proposed multiplier in comparison with recent 
FPGA oriented designs. 

 FPGA 
 

Bachet* 
Conventional 

FP32* 
[Arish S., 2015] 

Target Platform Virtex 7 Virtex 7 Virtex 4 
LUTs 475 612 1545 

Memory [bytes] 904 52  -- 
Worst Path Delay [ns] 2.456 8.235 4.77 

Power** [W] 0.909 1.113 -- 
*Three stage pipeline   
**Normalized at 100MHz 
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Table I.4 Synthesis of the proposed multiplier in comparison with recent 
std_cells oriented designs. 

 Std_cells 
 

Bachet* 
[Basiri M. A., 

2014] 
[Själander 

M.**, 2009] 

Target Platform 
CMOS 
90nm 

CMOS 45nm CMOS 65nm 

Area [µm2] 
21269*** 

(5961/15308) 
63682 52000 

Worst Path Delay [ns] 2.61 2.18 2.5 
Power**** [mW] 2.41 0.37 9.36 

Area-Delay-Power  
[μm2∙ns∙mW] 

3.75·104 5.16·104 1.21·106 

*Three stage pipeline    
**Modified-Booth multiplier   
***in parenthesis logic/memories  
****Normalized at 100MHz 

 
When possible IPs provided by Xilinx have been used, to obtain a fair 

comparison; to the same aim, both architectures are configured with a 3-
stage pipeline. In the std_cell implementation Carry-Save Adders (CSA) 
have been used and no optimized conventional multiplier has been found for 
comparison in the same technology. The work in [Arish S., Sharma R.K., 
2014], for FPGA, and [Basiri M. A., Sk. N. M., 2014], [Själander M., 
Larsson-Edefors P., 2009] for std_cells have been found for comparison. 

From the comparisons in Table I.3 and Table I.4 it is possible to state that 
the FPGA implementation is the most advantageous one, thanks to the 
possibility of using hard macros to implement the ROM structures. Due to 
these reasons, the proposed implementation is capable of achieving a speed 
up of 335% if compared to a conventional FP32 multiplier, since using 
slow/slow corner simulations for both of the structures we obtain 2.456 ns 
and 8.235 ns, respectively. Moreover, the physical resources needed to 
implement the proposed architecture are 30% less than in the case of the 
design proposed by [Arish S., Sharma R.K., 2014] and also the worst path 
delay results almost halved. 

For the std_cell implementation it is possible to state that it shows 
competitive performances against the two designs proposed by [Basiri M. 
A., Sk. N. M., 2014] and [Själander M., Larsson-Edefors P., 2009], using a 
two stage pipeline. Moreover, even if the comparison designs are 
implemented on shrunk technologies, we obtain similar worst path delays, 
while having a huge reduction in terms of the occupied area. Considering 
that the implemented design uses LUTs implemented memories and not 
optimized structure, the obtained results are encouraging towards an ASIC 
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implementation of it. All the above considerations contribute to the have a 
Area-Delay-Power (ADP) product of 4 23.75 10 m ns mW   , which is better 
than the ADP products of the structures in the comparison. 
 
I.3.2 1D Filtering with Bachet MAC Units 

The method could be applied to every particular kernel, but it has been 
targeted to a Gaussian filter for two main reasons: its large diffusion in 
multimedia elaboration and its computational complexity, which makes it 
one of the trickiest separable filters to work with. The kernel of a 1D 
Gaussian filter could be written in as 

2

2

2),( 
x

AexG


  (I.6) 

Thanks to the separability property it is possible to decompose the 2D 
Gaussian filter in two 1D consecutive Gaussian filters. In that case, the 
implementation in the space/time domain is typically preferred to the 
frequency conversion, since usually the filters dimensions are not that big to 
justify for the FFT/IFFT conversion circuits.  

Establishing the input range, given by m, as m=8, which is a common 
choice for representation of Chroma and Luma components in image 
processing, it is possible to state from the previously developed theory, that I 

could be partitioned using the first 8
31 log 2(2 1) 1 6n         parts from 

Table I.2. The convolution operation could then be rewritten as 
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All the inner products, Gj λi, could be computed for each value of the input I 
in the given range [0,255] for every different kernel coefficient. This can be 
done due to the fact that Gj remains constant once and K have been 
defined, which can be done knowing that the minimum kernel length to 
obtain good accuracy of the results could be established in K=6and that 
it translates in the storing of only 3values, due to the Gaussian 
symmetry.  The  input  value  is  used  to  access  the LUTs and choose the  
needed coefficients from them; the coefficients LUTs are in principle 
sharable among all the multipliers. The collected outputs coming from the 
ROMs are sent to a bank of multiplexer (MUX) to select the correct input for 
the adders. From what stated before, the other ROMs have depth 3 and 
provide the terms that must be added toward the final results. Moreover, 
since it is not desirable to implement an exponent handling after every 
operation, we considered the greatest and the smallest coefficients resulting 
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from this pre-computation, which are 
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to make it possible to carry out the intermediate operations using fixed point 
coding, which makes the implementation easier. This kind of considerations 
is general and could obviously be applied to any kind of different considered 
filter. For a single multiplier in that particular case, the above considerations 
would cause a FI coding on  

      bitsl n 375.29134log5.6log23 22    (I.9) 

Another HW friendly simplification has been introduced to reduce the effect 
of this operand enlargement on the ROMs dimensions, omitting the exponent 
in the partial results and introducing it back only in the final one, in order to 
normalize the obtained data to the standard FP32 format. An exampling of 
the used coding is given in Table I.5 where it has been employed on the 
smallest coefficient with Uint-8 inputs and = 4. 

The amount of required memory to implement the proposed solution is 
reported in Table I.6, where also a comparison with a canonical radix-2 DA 
implementation is given. 

Table I.5 Custom coding applied on the smallest pre-multiplied 
coefficient with Uint-8 inputs and = 4. 

Smallest 
Coefficient 

r λn FP32 coding of  1.1x10-3 

1.1x10-3 256 134 

0 01110101 00100000010110111100000 

Modified coding of  1.1x10-3 

0000000000000100100000010110111100000 
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Table I.6 Required memory as a function of the input range. 

 Ci+λn (Ci) [Kbits] 
Input length [bits] Bachet radix-2 DA  

8 5.958 (3.072) 5.896 (2.048) 
9 10.535 (7.168) 8.937 (4.608) 
10 

17.703 (14.336) 
15.050 

(10.240) 
... ... ... 

m  
λn=(n+1)[(3)l]  

Ci=(n+1)2m+1 
λn=m [(3)l]  

Ci=m 2m 

 
The graph in Figure I.3 reports the required number of additions as a 
function of the input length, m. It is worth to notice that for m>4 the 
proposed solution is always better than the canonical DA in terms of 
required addition operations, while the required memory becomes 
significantly higher only for m>9, which is to say, when the lower number of 
parts becomes to be compensated by the number of bits required for Ci.  

Of course, the advantages of the proposed solution are evident when a 
large number of multipliers is required. For the first example of 
implementation given next, where m=8 and C structures are 
required to implement a full-parallel circuit. Then, using the proposed 
decomposition is possible to save 50 adders from the case of a radix-2 DA. 
The shareability between all the MACs of the memory structures, the 
proposed solution proves itself better than a canonical radix-2 DA to 
implement filters with fixed kernel dimensions. 

Table I.7 reports the results for the implementation of a 1D Gaussian 
filtering circuit based on the proposed multiplier architecture. The filter is 
made up by 25 multipliers and an output adder tree to perform the final 
addition of the partial results. In this case, the FPGA implementation 
achieves a 824% speed-up, as the worst path delay passes from 16.986 ns to 
2.981 ns. At the same time the LUTs count is decreased by 44.21%. 

On the other hand, in std_cell implementation we achieve an area 
reduction of 19.52% and a speed-up of 11.93%. The implemented design has 
in this case a higher power dissipation, mainly due to the non optimized 
memory structures, which show high dynamic power dissipation. It is worth 
to notice that in the proposed implementation all the ROM memories have to 
be read on the same clock edge from the multipliers; even if on FPGA this 
does not require particular attention, this does not apply for the ASIC 
implementation. In fact, the latter requires a custom implementation of very 
small ROMs in order to show good performances, as shown in [Paul B. C., 
Fujita S., Okajima M., 2009]. 

Finally, it is important to highlight that the amount of memory required 
for such a design would not represent a real problem for image and video  
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processing applications, since in these cases buffer memories in the order of 
Mbits are usually required, making the amount of memory required for the 
storage of the coefficients often negligible. 
 

Table I.7 Synthesis results of the 1D Gaussian Convolution Circuit. 

 FPGA Std_cells 
 

Bachet 
Conv. 
FP32 

Bachet Conv. FP32 

Platform Virtex 7 Virtex 7 90nm 90nm 
LUTs/Area [µm2] 8654 15512 275339 342127 

Mem. [bytes] 904  -- 904 -- 
Delay[ns] 2.981 16.986 3.99 4.531 

Power* [W] 2.317 4.495  28.011∙10-3 16.907∙10-3 
    *Normalized at 100MHz 

 
I.3.3 2D Filtering with Bachet MAC Units 

The achieved results on the multiplier unit and the 1D filter have then 
been used to implement a 2D non separable generic filter for which equation 
(I.7) becomes 

 
Figure I.3 Comparison between required resources of the proposed partitioning method and 

the radix-2 DA for 1D filtering, with l=37 and (3σ+1)=13; the number of adders is given for a 
single multiplier. 

 



Chapter I 

14 
 







 












 












 








 









 







 









2

1
,

2

1
)(

2

1
,

2

1

2

1
,

2

1
),(),(

00

1

0

1

0 0
,

1

0
00

1

0 0
,

1

0
00

1

0
00

K
jy

K
hxCF

K
jy

K
hxCF

K
jy

K
hxIjhFyxO

i

K

h

JK

j

n

i
ijh

K

h
i

K

j

n

i
ijh

K

h

K

j



  (I.10) 

and starting from this form it is possible to derive a convolutional 
architecture capable of directly performing the operation in 2D. In that case, 
since it is not possible to implement a Serial Input Parallel Output (SIPO) 
structure, and hence we have to reproduce the modules generating the Ci 
coefficients. For this reason, we limited the dimension of the tile to 3x3, 
which however is a really common size in several multimedia applications, 
like Visual Search (VS). The method could be improved using further 
techniques to improve the memories behavior or recurring to folding and 
reuse of the structures in case the tiles dimensions become too big, in case of 
necessity. In this case, the coding has to be further modified to take into 
account the 2D nature of the filtering. In fact, repeating the same 
calculations as before we obtain 
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AeyxG
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  (I.11) 

which, given the same considerations previously developed, results in 
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 (I.12) 

      bitsl n 4437134log14log23 22    (I.13) 

A block scheme of the proposed implementation is shown in Figure I.4, 
where it is possible to notice how the system could be divided into two main 
sub-systems: 

 the memory module, which codes the input data; 

 the filtering module, which carries out the calculations related to the 
considered tile. 
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The incoming pixels are sent to the conversion module, where the 
coefficients for each one of them are derived from the coefficients LUT. The 
coefficients are then sent to a buffering structure capable of storing a number 
of coefficient vectors equal to the width of the considered image, W, 
multiplied for the vertical dimension of the kernel; for the considered case it 
translates in a 640×3 strucuture (W=640), where each location store lC=12 
bits. The structure is a SIPO folded like a stripe buffer, giving as output all 
the coefficients of the considered tile at the same time. It is important to note 
that such a structure aligns automatically the new incoming pixels, since 
after the filtering operations all the values of the SIPO are shifted by one 
position; hence, the architecture does not need any further circuit to reshuffle 
or reorder the values. A straightforward implementation of the memory 
module would in principle be done using registers, but would not represent 
an optimal solution given the amount of physical resources to be allocated. 
Considering the proposed case, it is possible to state that for a VGA image 
(W=640) and a kernel dimension K=25, the needed resources would be 
640×25×12 bits =188 Kbits. Due to this kind of considerations it would be 
better to implement the proposed structure using Static Random Access 
Memories (SRAMs) to emulate the SIPO structure in a buffer fashion. It also 
has to be highlighted that due to these choices it is possible to implement the 
structure via dual-port SRAMs, allowing the reading and the writing of the 

 
Figure I.4 Example of Gaussian 2D filter function in space domain and in frequency domain, 

respectively. 
 

 
Figure I.4 Scheme of the proposed 2D filter implementation using Bachet multipliers units. 
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data during the same clock cycle. The dimensions of any of the SRAM 
structures is lC×(WK), while the parallel reading of the K×K tile of interest 
is obtained using K registers to complete each SRAM row. 

Figure I.5 presents a block diagram representation of the filtering module, 
with the interconnections of the various units and the Bachet’s multipliers 
block. As in the previous case, the LUTs are not only storing the K 
coefficients, but also their 2’s complement to be selected when the 
coefficient Ci=1. As it has been done in the previous case, the length of the 
operands have been increased and a custom coding has been developed for 
the particular case; starting from the same consideration we obtained, 
establishing Fmin and Fmax as the minimum and the maximum values of the 
used kernel a codelength 
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where 23 bits is the length of the standard FP32 significand. The 
normalization stage is introduced at the end of the overall computation to 
normalize the output in a standard FP32 format just one time and avoid 
intermediate normalizations. 

To have further insights on the developed structure and have comparison 
to the related literature, the filter processor has been implemented with a 2D 
symmetric Gaussian kernel 
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A square kernel with dimension K=3 has been implemented, since it is the 
minimum usable dimension for VS applications. The range of input values 

 
Figure I.5 Block diagram of Filtering Module, representing the way the “equivalent” 

multipliers are interconnected. 
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has been chosen as r=256, using Uint-8, hence lc=12 bits also in this case. 
Due to these considerations it is possible to write 

2
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1
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  GG  (I.15) 
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and from that results a length of the significands 

   bitsel ns 44log23 9
2    (I.17) 

The curve reported in Figure I.6 generalizes the results for different 

dimensions of the kernel tile. 
 
Using the same platforms of the previous implementation we obtained the 

results reported in Table I.7. 
A fair comparison evaluation has been achieved using Xilinx IPs for 

arithmetic structures and configuring the different implementations using a 
three stage pipeline. The total requirement in terms of memorized 
coefficients is of 904 bytes, while it is clear the advantage of the proposed 
structure on a FPGA platform precisely because of the use of hard macros 
for the memory implementation. The critical path delay shows a speed-up of 
371% with respect to a conventional FP32 multiplier and the physical 
resource usage is 38.6% less than in the latter case. 

Table I.7 Synthesis results of the 2D Gaussian Convolution Circuit. 

 
Figure I.6 Required resources of the 2D convolution-based filter as a function of its 

dimensions, when m=8 bits and W=640 pixels. 
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 FPGA Std_cells 
 

Bachet 
Conv. 
FP32 

Bachet Conv. FP32 

Technology 
Virtex 

7 
Virtex 7 90nm 90nm 

LUTs/Area[µm2] 4750 7732 294217 386768 
Mem. [bytes] 904 -- 904 -- 

Worst Path Delay*[ns] 4.700 17.432 4.426 8.717 
Power** [W/mW] 0.684 0.907 13.980 13.594 

*1 pixel filtered per clock cycle    
**Normalized at 100MHz  
 

In std_cell the considerations are slightly different; in fact, while the 
proposed structure achieves a 94.8% speed-up and a 24% area reduction, the 
power dissipation is higher than in the conventional case, mainly due to the 
dynamic power dissipated in the memory structures. It is worth to highlight 
that even in this case the amount of memory required does not represent an 
actual problem in real multimedia applications, since it is negligible 
compared to the other memory structures involved. Table I.8 shows a 
comparison with the existent literature. 

Table I.8 Comparison among the obtained results and the ones found in 
literature. 

 FPGA Std_cells 
 

Bachet* 
[Huang 

F.C., 2012] 
Bachet 

[Cobello 
F., 2015] 

Technology 
CMOS 
90nm 

CMOS 
180nm 

Virtex 7 Spartan 6 

Area /LUTs [µm2] 294217 N.A. 4750 5052 
Memory [bytes] 276 kb 224 kb 904 b -- 

Worst Path Delay*[ns] 4.426 10 4.7 10 
Power** [mW/W] 13.980 N.A. 0.684 N.A. 

*scaled to 3 octaves, 6 scales   **Normalized at 100MHz  

 
Raw comparisons could be carried out scaling our design to the same 
dimensions of [Huang F.C., Huang S.Y., Ker J. W., Chen Y. C., 2012], 
which implements a 2D Gaussian filter to develop Scale Invariant Feature 
Transform (SIFT) filtering stage, in a three octaves, six scales 
implementation. In this case, even if the calculations are developed on 24 
bits FI coding, the greater quantity of memory required in the proposed 
design is compensated by the lower number of adders and multipliers. The 
design in [Cobello F., Leon J., Iano Y., Arthur R., 2015] instead presents a 
16 bits implementation on a Xilinx Spartan 6, having the same granularity of 
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the used Virtex 7. Even in the FP16 case, the proposed solution reveals 
advantageous both in worst delay path delay time and area occupation, 
proving the solution is really fit for bounded integer inputs implementations. 
 
I.3.4 Memory Reduced Bachet’s Multipliers 

Another implementation has been developed to overcome the problems 
related to the memory occupation in memory constrained applications. The 

amount of memory to be stored increasing the considered tile dimensions are 
reported in Figure I.6. However, Figure I.7 shows the results obtained using 
the proposed architecture for memory reduced implementations. 

 
The amount of memory to be used is related to the input range to be 

considered and it is only due to the memory storing the parts of the Bachet 
decomposition, which undergoes to a huge increase with the increase of the 
filter size. An analytical expression for this increase in the number of bits is 
shown in equation I.18 
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It could be seen that due to the memory increase it is possible to obtain 
unacceptable results for particular constrained implementations. In this kind 
of implementations a method of deriving the other coefficients starting from 
the coefficients Fh,j λ0 of the coefficients related to the first parts and theirs 

 
Figure I.7 Required memory resources of the 2D convolution-based filter as a function of its 

dimensions, when m=8 bits. 
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2’s complement counterparts. The other coefficients are obtained thorugh 
shifting and adding operations starting from these, since a left bit shifting 
operation corresponds to a multiplication by a factor 2. The obtained results 
and the correspondent operations are reported in Table I.9 in the case of a 8 
bits input for all the needed coefficients. 

Table I.9 Detailed shift and add operations for an 8 bits input 
design. 

 Operation Number of Shifts Number of Additions 
λ0=1 -- 0 0 
λ1=3 2+1 1 1 
λ2=9 23+1 3 1 
λ3=27 25-22-1 7 2 
λ4=81 26+24+1 9 2 
λ5=134 27+22+2 10 2 
λ0=-1 -- 0 0 
λ1=-3 -2-1 1 1 
λ2=-9 -23-1 3 1 
λ3=-27 -25+22+1 7 2 

 
This approach reduces the amount of embedded ROMs to be implemented 
on the targeted FPGA at the cost of allocating more logic and algebraic 
elements. 

From that kind of implementation the results of Table I.10 are obtained. 
The implementation is been targeted only to FPGA since memory constrains 
are problematic particularly in that type of implementations. 

Table I.10 Synthesis results of the 2D Gaussian convolution circuit using 
the reduced memory implementation. 

 FPGA 
 Bachet Reduced Memory 

Technology XC7V 
LUTs 7760 

Memory [bytes] 417 
Delay[ns] 4.720 

Power* [mW/W] 0.728 
*Normalized at 100MHz 

 
Comparing the results for this implementation to the ones in Table I.7 it 

is possible to state that the proposed reduced memory implementation has 
got approximately the same delay path of the original Bachet’s 
implementation, while consuming 63.3% more area and 6.4% more power. 
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The memory usage is however reduced by approximately 28.4% and the 
performances would be even better in the case of taking into account larger 
filter sizes. 

Table I.11 shows the fps performances on various image resolutions for 
the various implemented architectures. 

 

Table I.11 Performances of the reported designs in terms of fps 
varying the resolution of the frames. 

 Bachet 
Bachet  

Red. Mem. 
Conv. 
FP32 

MB 
Prop. 
FP16 

Cabello 

VGA 
(640x480) 692 689 186 370 471 325 

Full-HD 
(1920x1080) 102 102 27 54 69 48 

4K UHDTV 
(3840x20160) 25 25 6 13 17 12 

  
I.4 Conclusions 

Several ways of implementing an easy, compact and low power 
consuming circuit devoted to the calculation of multiplications and MAC 
operations and using a decomposition of the operands in smaller factors has 
been implemented. The method well applies for limited range operands in 
the development of FP32 calculations. The partitioning method allows 
implementing the circuitry for convolution operators, which are typically 
employed in filters, without multipliers, encoders and auxiliary circuitry. 
These are completely substituted by simplified adders and memory 
structures for storing pre-multiplied coefficients. Moreover, a simplified 
implementation has been proposed, for memory constrained applications. 
The proposed solutions obtain state-of-the-art performances. The solutions 
are well suited for the application of multi-constant multiplication 
techniques, in order to further simplify the circuital topology. 
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Chapter II 
LDR2HDR Filters HW Design 

 
II.1 Introduction 

Starting from the previous work on filtering structures, their 
implementations and the acquired knowledge in FP coding, we tried to 
improve a system first developed by the laboratory group [G. D. Licciardo, 
A. D'Arienzo, A. Rubino, 2015], making it more feasible to work on 
different image dimensions and thus making it possible to show LDR images 
on HDR screens without having to resize them when a change in the 
resolution occurs. 

During the last years HDR applications become more and more popular 
due to the possibility of obtaining a more faithful representation of human 
vision in image and video applications. The main problem in fidelity in 
multimedia issues is related to the limited range to represent pixel values and 
correctly display them on a screen. The definition of dynamic range is the 
ratio between the darkest and the brightest points of a scene, which could be 
determined in digital processing as 

pixm

pixM
DR

_

_
  (II.1) 

where M_pix represents the maximum pixel value of the considered image 
while m_pix represents the minimum pixel value of the same. DR is usually 
measured also using stops. A stop represents a variation of the brightness of 
a factor 2. From this simple definition it is possible to state that a traditional 
LDR camera is capable of 8 f-stops, since the data are coded on 8 bits. On 
the contrary the human eye is capable of discriminating up to more than 20 
f-stops. This difference between the two values leads to the huge perspective 
differences between a multimedia content and the eye viewed scene. To give 
an insight on the importance of such a matter, it could be reminded that a 
classic film camera achieves 15.5 stops, meaning it was far more faithful in 
representing the light of a scene having high values of dynamic range. 
Moreover, special developed films and devices where capable of achieving 
up to 26.6 f-stops [Wyckoff C.W., 1969]. For all the reasons previously 
stated, a lot of researchers began to try to expand the dynamic range of 
digital content since the beginning of the ‘90s. The research became more 
and more important in the last decade, thanks to the development of filming 
techniques, digital cameras and screens aiming to use higher definitions and 
to give the viewer a more realistic experience. 
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Some of the problems related to that task are: 
 the high amount of data to store to correctly represent the high 

dynamic content; 
 the costs of HDR screens and in general of HDR devices is still high 

if compared to other technologies; 
 the methods to show a LDR image on a HDR device. 

The above described issues translate in different approaches and solutions to 
achieve cheaper, more efficient and standardized HDR devices. In particular, 
in the case of capturing devices, multi sensor systems have been developed 
and used to achieve the reconstruction of the final image while avoiding 
artifacts and halo effects. However, the research is far from reaching a 
turning point, since it is not easy to realize consistent and reliable cameras 
using multiple sensors for high resolution images. Nevertheless, several 
prototype have been developed, achieving performances of  20 f-stops and 
30 fps, but they are far from getting to the market. Furthermore, the need for 
data storage became a major issue, due to the fact that a single frame at 4K-
Ultra High Definition TV (UHDTV) needs 95 Mbytes, meaning 167 Gbytes 
for any minute of video at 30 fps [Chalmers A., Debattista K., 2017]. Also, a 
lot of effort is now put on finding new data compression methods, dedicated 
to HDR processing and to the development of quality metrics, due to the fact 
that there is no uniform and well-defined metric or a standardized format to 
evaluate and display HDR content. However, either FI with large fractional 
parts or FP solutions are used to expand the lighting range representation. 

In our research, we focused on the problem of developing a HW design 
capable of generating a HDR result starting from a single LDR frame. This 
is needed step, in order to develop HDR screen technologies capable of 
showing also old LDR content, not needing multiple exposure images of the 
same frame, which is usually not available. This problem is the inverse of 
the one of mapping HDR images on LDR frames, which represent a well-
known problem, solved thanks to different transformation techniques 
[Reinhard E., Ward G., Pattanaik S., Debevec P, 2006], [Myszkowski K., 
Mantiuk R., Krawczyk G., 2008], [Banterle F., Artusi A., Debattista K., 
Chalmers A., 2011] and known as Tone Mapping (TM). The opposite 
problem, inverse Tone Mapping (iTM), has been raised only in the recent 
years [Masia B., Agustin S., Fleming R. W., Sorkine O., Gutierrez D., 2009], 
[Banterle F., Chalmers A., Scopigno R., 2013]. The problem arose due to the 
higher availability of HDR reproduction devices compared to HDR 
acquisition systems, which make it necessary the development of techniques 
to show the common LDR contents on HDR reproduction devices. Several 
algorithms working on different exposure images and combining them was 
first proposed [Masia B., Agustin S., Fleming R. W., Sorkine O., Gutierrez 
D., 2009], [Debevec P. E., Malik J., 1997]. Later, also expansion techniques 
starting from a single LDR frame and using an expansion map has been 
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proposed and developed; these techniques could be differentiated in local 
[Banterle F., Ledda P., Debattista K., Chalmers A., 2008], [Rempel A. G., 
Trentacoste M., Seetzen H., Young H. D., Heidrich W., Whitehead L., Ward 
G., 2007] and global operators techniques [Masia B., Agustin S., Fleming R. 
W., Sorkine O., Gutierrez D., 2009]. Even if global methods gives good 
results from a perspective point of view [Akyüz A. O., Fleming R., Riecke 
B. E., Reinhard E., Bülthoff H. H., 2007], analytical measurements and 
perceptual tests have been carried out show that when possible local 
methodology is preferable. The better results come at the cost of a higher 
computational complexity [Banterle F., Ledda P., Debattista K., Bloj M., 
Artusi A., Chalmers A., 2009], with the consequent difficulty of obtaining 
real-time performances. In fact, unless of recurring to several algorithm 
simplifications [Rempel A. G., Trentacoste M., Seetzen H., Young H. D., 
Heidrich W., Whitehead L., Ward G., 2007] or using hard computing Central 
Processing Unit/Graphic Processing Units (CPU/GPU) combined systems 
[Kovaleski R. P., Oliveira M. M., 2009], the latencies of the SW 
implementations make these systems not fit to meet real-time performances 
unless using low resolution images. In contrast it is possible to develop a 
HW Application Specific Image Processor (ASIP) capable of carrying out 
the calculations related to these algorithms up to 4K-UHDTV resolution, 
achieving almost real-time performances on FPGA and real-time 
performances in std_cell implementation. 

Before going on with the description of the implemented architecture and 
used techniques, a brief review of color spaces and coding techniques for 
pixels is provided, at the end of developing an unambiguous and clear 
description of the ideas involved in the following description. 

 
II.1.1 Color Spaces and Encodings 

A color space, also known as gamut, is a set of colors representing all the 
color that a certain screen is able to display or, in general, the set a certain 
device is able to reproduce. A lot of different color spaces have been created 
for various applications and to improve the understanding of how to obtain 
better color displaying on devices. However, all the considered color spaces 
span a smaller space than the Lab color space, representing the range of 
colors a human eye can see. A lot of color spaces exists, for different 
purposes and different applications; nevertheless, the most used ones and the 
two here examined are RGB and Y’UV, which represent two device 
independent models. An example of RGB and Y’UV components for the 
same image is given in Figure II.1. 
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Figure II.1 Y’UV and RGB components example [http://resizing.info/p2s.html]. 
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II.1.1.1 RGB Color Space 

An RGB color space is any kind of color space defined on additive 
operations among these three components. The color space will be composed 
by all colors that could be made up using red, green and blue components. 
RGB systems are often used in computer graphics and in general nowadays 
consumer’s displays, since the color space provides a good representation of 
the human eye perception. However, high end devices often work on color 
spaces having larger spans if compared to the standard RGB (sRGB) one. 
This color space is based on three channels for red, green and blue 
components, each of them coded on 8 bits. That is why alternative RGB 
color spaces, such as Adobe RGB, have been developed color spaces 
covering larger spans. However, even if sRGB is still the standard color 
space for most of the consumer devices, new models capable of spanning 
larger color spaces are acquiring more and more importance. Among them 
one of the main alternatives to RGB color space is represented by Y’UV 
color space.  
 
II.1.1.2 Y’UV Encoding 

Y’UV encoding definition has its roots in the analog transmission of 
color images for the display on black and white devices. It was necessary to 
have a signal suitable for black and white televisions that could be used also 
on color screens in combination with additional signals for the chrominance. 
The signal chosen for such a task was the luminance component (also known 
as Luma), while the additive signals were chosen as ultraviolet (UV) because 
they are color difference signals, which allows us to modify the image using 
pixels shifts without altering the brightness of the image. 

One of the main advantages of Y’UV systems is related to the lower 
bandwidth needed. In fact, the human eye is more sensible to changes in 
brightness than it is to changes in spatial sensitivity to colors. For this reason 
it is possible to allocate less bandwidth for the UV or chrominance (Chroma) 
components. This results in a signal compression due to the subsampling, 
which is usually done halving the Chroma horizontal resolution (4:2:2 
subsampling) or both the horizontal and vertical resolution (4:2:0 
subsampling), while very few devices still use the uncompressed (4:4:4) 
solution. However, Y’UV is not an absolute color space, but represents a 
way of encoding RGB information in a lossy way. Nevertheless the 
brightness range allowed by an RGB coding is far lower than the one 
allowed by a Y’UV coding. Due to that, Y’UV coding is usually preferred 
for HDR applications in which the range of the luminance of the frame 
represents the main issue. 

Matrix transformation between RGB and Y’UV encoding are reported in 
equations II.2 and II.3. 
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In the following a Y’UV encoding is considered for the development of 
the proposed HDR system. 

 
II.2 Algorithmic Considerations 

For what previously stated, we choose a method capable of obtaining a 
HDR image starting from a single frame, using a local operator and working 
on Y’UV encoded data. In particular, the last choice gives us the possibility 
of performing only the expansion of the Luma component, which is the most 
important for the human eye perception, while maintaining the Chroma 
components in their compressed states, saving bandwidth and memory, 
while obtaining HDR compatible results from the computation. 

The general behavior of the proposed algorithm could be explained in 
two phases: 

 the LDR Luma image undergoes an intermediate expansion using a 
sigmoid function; 

 a second selective expansion is performed, using a further filtering 
stage, to obtain a further enhancement for darker and lighter regions 
of the intermediate frame. 

The input Luma components of the LDR original image, LD(x,y), are 
taken as inputs and used to calculate the incremental average, La

inc(x,y), 
using the sigmoid function derived from inverting the Tone Mapping 
operator. Analytically, we obtain 
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In the above formula λ represents a normalization term used to eliminate the 
singularity in the above equation. It is important to notice that several similar 
algorithms reported in literature [Huo Y., Yang F., Brost V., 2013], 
[Banterle F., Ledda P., Debattista K., Chalmers A., 2008] calculate the 
average Luma value over all the input image before proceeding to the 
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LDR2HDR conversion; however, the main purpose of the proposed design is 
to perform an on-the-fly elaboration of the input frame, in order to achieve 
hard real-time performances. Due to that and to the unavailability of 
obtaining the entire frame to process at the beginning of the computation, we 
decided to calculate the moving average online during the process, 
continuously updating the value at each incoming pixel, following the raster 
scan order of the incoming pixels, which could be acquired by a memory 
device or directly by a sensor.  

After that step we implement in HW a process similar to the dodging 
and burning technique in photographic processing 
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yxLyxL

R

D
MH   (II.5) 

where the LR term in the second factor of the above equation is calculated as 
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In the equation (II.6) LR is calculated using an edge bilateral filter as shown 
in [Durand F., Dorsey J., 2002]. Furthermore, the other functions involved in 
equation (II.6), G1 and G2, are a one-dimensional (1D) gaussian function, G1, 
and a 2D gaussian function, G2, defining also the k(x,y) are defined as 
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where A1 and A2 are real constants, l and m are relative integer numbers, 
{l,m}ℤ and Mx and My are the horizontal and vertical dimensions of the 
filter. 

The above equations have to be simplified to obtain a HW friendly 
design, since a straightforward implementation would require a huge amount 
of MAC units. A piece-wise approximation of the above equations for the 
bilateral filter is provided in [Durand F., Dorsey J., 2002] in the frequency 
domain. On the contrary, the proposed design focuses on a spatial filtering 
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technique in order to reduce the latency related to the transformation and 
antitransformation operarations, while achieving lower area requirements. 
The proposed modification exploits the separability of the multidimensional 
gaussian kernels, allowing us to write 
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These simplifications holds for the k(x,y) equation in (II.7). Exploiting these 
simplifications it is possible to achieve the wanted computational complexity 
reduction of the previously reported equations. The complexity of the overall 
operation passes from O(M 2) to O(M) due to the separability of the gaussian 
kernels; the tile processing is divided in two smaller elaborations, first over 
the rows and then over the columns. This will cause the implementation of 
an additional structure, as described in the following, but results in a general 
improvement of the proposed design, nevertheless. 
 
II.3 Numerical Considerations 

A gaussian function is defined on an infinite domain, while on the 
contrary a gaussian digital filter is of course defined using a finite number of 
values. It is possible to obtain a good approximation of a gaussian filter in 
HW considering only the first 3σ of the gaussian as an approximation of the 
real function and truncating the rest of it, considering the standard deviation 
of the gaussian function, σ. Considering 3σ of the 1D gaussian function it is 
possible to take into account approximately the 99.73%, meaning that only 
the 0.27% of the space spanned by the original gaussian is not taken into 
account. This choice allows to state that the excluded values are two order of 
magnitudes smaller than the median value of the filter, guaranteeing a good 
accuracy in the developed computations. It is important to highlight that 
different approximations could be made in order to obtain different 
speed/area trade-offs, using lower M values, hence sacrificing the accuracy 
of the design.  

Wanting to develop a comparison with the work in [Durand F., Dorsey J., 
2002], we established the values of σ1 and σ2 according to that. In particular 
σ1=16 and σ2=3 were considered, obtaining M=48 and thus considering a  
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Table II.1 Algorithm performances compared with [Huo Y., Yang 
F., Brost V., 2013]. 

Images 
Dynamic range [a.u.] 

PSNR [dB] SSIM Ref. 
[Huo,2013] 

Current 
Work 

bridge_close 1.13x104 1.13x104 24.6 97.8% 
bridge_far 2.41x103 2.05x103 26.0 96.6% 

city 5.92x104 6.49x104 22.0 94.3% 
football 3.64x105 3.63x105 49.2 99.9% 
garden 2.05x107 2.12x107 35.5 97.9% 

highway 1.89x103 1.58x103 21.0 94.0% 
mill 1.85x106 1.86x106 36.4 98.0% 
Prato 1.69x107 1.76x107 41.9 96.5% 
tulips 5.41x102 5.49x102 25.9 90.8% 

 
kernel having dimensions (2M+1) (2M+1)=97×97 pixels. A comparison 

between the considered method and the one reported in [Huo Y., Yang F., 
Brost V., 2013] is reported in Table II.1, in terms of Peak Signal-to-Noise 
Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The set has 
been   chosen   because  the   considered   images    has  different   exposure 
levels, making the set a good one to test for the various lighting conditions 
and gradients and make the overall observation independent from the 
particular exposure conditions. From the results in Table II.2 is possible to 
notice that the differences in dynamic range between the two 
implementations are almost negligible, while also the PSNR and SSIM 
values provide good results. In particular, SSIM shows an average value of 
96.2%, proving the good accuracy of the proposed method, despite of the 
approximations performed to achieve a HW friendly design, capable of 
meeting acceptable area and timing requirements. It is also possible to 
further notice that the PSNR values are lower for frames having values of 
Luma decreasing from the top to the bottom of the frame (e.g. “highway” 
frame), while an opposite result could be highlighted in the images having 
Luma values increasing from top to bottom (e.g. “football” or “Prato” 
frames). Examples of the proposed elaboration are shown in Figure II.2 for 
the “highway” and “mill” frames. 

Then we conducted several tests to correctly choose the values of the 
couple (σ1, σ2). In these tests σ1 values in the range [0.1; 0.5] and values in 
the range [4; 32] were considered. A new metric was defined, in order to 
obtain  numerical  information  on  the  goodness  of the  proposed  method 
and provide a fair comparison between the various couples of values to be 
tested. The new defined metric is derived from three parameters indicated as 
Ploss, Pret and Pinv,  which  are the  probability  of contrast  loss,  retention  and  
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inversion, respectively, calculated comparing the HDR final result to the 
LDR original frame. The chosen score function is so definined

invlossret PPPS 2  

where the factor 2 for the term P
kind of error. The results of the conducted tests are reported in Table II.2.
From the reported data it is possible to state that the best score fu
obtained using (σ1, σ2)=(0.2, 32); nevertheless, the implementation of such a 
design would require the partial storage of at least 32 rows of data, which 
would be far too much in the case of high resolution frames, and will also 
cause a major increase in the number of arithmetic units, resulting in 
unacceptable performances both in terms of area occupation and power 
consumption. Due to these considerations,  we  choose  the set of parameters

Figure II.2 Application of the proposed expansion method to (a) “highway” (PSNR = 21.0 
dB) and (b) “mill” (PSNR = 36.4 dB) 

inversion, respectively, calculated comparing the HDR final result to the 
The chosen score function is so definined 

 (II.10) 

where the factor 2 for the term Pinv is related to the higher severity of that 
kind of error. The results of the conducted tests are reported in Table II.2. 
From the reported data it is possible to state that the best score function is 

)=(0.2, 32); nevertheless, the implementation of such a 
design would require the partial storage of at least 32 rows of data, which 
would be far too much in the case of high resolution frames, and will also 

increase in the number of arithmetic units, resulting in 
unacceptable performances both in terms of area occupation and power 

Due to these considerations,  we  choose  the set of parameters 

(a) 

(b) 
 

Application of the proposed expansion method to (a) “highway” (PSNR = 21.0 
dB) and (b) “mill” (PSNR = 36.4 dB) frames. 
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Table II.2 Average quality metrics on the considered image set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(σ1, σ2)=(0.2, 4), in order to obtain a better trade-off in ADP performances, 
truncating the gaussian monolateral dimension to Mx=3σ2 and My=σ2, 
choosing to deal with an asymmetric gaussian filter of smaller dimensions. 
The dimensions of the considered filter are then 25×9. 

The elaboration is conducted on the Luma component of the LDR frame 
coded in Y’UV. A careful study to reduce the number of bits used to code 
the partial results and the final HDR Luma component has been conducted. 
First it has to be notice that all the quantities involved in the computation are 
non negative since the input LDR pixel is represented only using positive 
values in an integer range [0:255], while the coefficients of the gaussian 
kernels are always represented by real positive numbers. From these 
considerations it is possible to state that the sign controls on the intermediate 
results could be avoided, while it could be juxtaposed in the final FP 
standard compliant result. The original Luma LDR component is coded 
using 8 bits per pixel, while for the final coding we choose FP32 standard. 
Another consideration was developed starting from the extreme values of the 
terms in the above equations; in particular, we evaluated the minimum 

σ1 σ2 Ploss Pret Pinv S=Pret- Ploss-2Pinv 

0.1 

4 0.0252 0.0453 0.044 0.0112 
8 0.0247 0.0463 0.0045 0.0126 
16 0.0244 0.0468 0.0045 0.0134 
32 0.0243 0.0469 0.0045 0.0136 

0.2 

4 0.0257 0.0482 0.0050 0.0125 
8 0.0253 0.0501 0.0051 0.0147 
16 0.0247 0.0514 0.0050 0.0167 
32 0.0241 0.0524 0.0050 0.0184 

0.3 

4 0.0269 0.0488 0.0056 0.0106 
8 0.0265 0.0509 0.0057 0.0130 
16 0.0260 0.0524 0.0056 0.0151 
32 0.0247 0.0493 0.0054 0.0137 

0.4 

4 0.0282 0.0479 0.0062 0.0073 
8 0.0279 0.0504 0.0063 0.0100 
16 0.0273 0.0522 0.0062 0.0125 
32 0.0261 0.0538 0.0060 0.0158 

0.5 

4 0.0290 0.0474 0.0066 0.0051 
8 0.0287 0.0499 0.0067 0.0077 
16 0.0283 0.0517 0.0065 0.0104 
32 0.0269 0.0537 0.0063 0.0142 
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and 4.2, respectively, while their maximum values are 1.9104 and 74.3. The 
final range of the exponential part of the FP number is defined by these 
amounts and it is possible to state that the range to be spanned by the 
exponent is [-17; 14], meaning that it is possible to code the exponent using 
6 bits, spanning a range [-31; 32] and saving two bits with respect with the 
standard 8 bits exponent defined in IEEE-754 standard. These 
simplifications lead in turn to a great reduction of the overall datapath 
involved in the calculation of the LR factor and overall reduce the amount of 
memory to be used for the storage of the intermediate results. 

 
II.4 Architectural Considerations 

The proposed design provides a HW friendly implementation of an iTM 
algorithm made up by: 

 an incremental average calculation unit for the Luma components; 
 a bilateral filter based on partial serialization and stripe buffers; 
 small buffers dedicated to the storage of Chroma components. 

The overall detailed structure is presented in Figure II.3, in which it is 
possible to highlight two main structures which develop the main operations: 

 a module devoted to the calculation of the LR via the computation of 
its numerator and denominator, NR and DR; 

 a module devoted to the computation of LM and LH starting from the 
partial results of the LR module and the module computing the 
moving average. 

The input pixels are acquired in raster scan mode, while the developed 
real-time architecture allows us to avoid the use of buffer structures or 
caching apparatus external to the acquisition device. After each pixel arrives 
to the processing unit in Y’UV uncompressed format, it is possible to 
separate the Luma component from the Chroma ones, to provide the former 
to the elaboration structure and the latter to a Chroma dedicated 
synchronization buffer, needed to construct the final HDR image. Then the 
Luma components are processed to derive the incremental average La

inc and 
the LM and LH terms to finally compute the expanded HDR Luma result.  

Figure II.4 schematizes the operation principle of the filtering stage; the 
computation of F(x,y,m) starts after the acquisition of the first (2Mx+1) pixels 
from the acquisition device, to store them into a stripe buffer structure of 
dimensions W∙(2MY +1), being W the width of the considered frame, while 
(2Mx+1) and (2MY +1) are the horizontal and vertical dimensions of the 
considered filter. It is worth to underline that the stripe buffer is needed to 
store the partial results before sending them to the vertical filter. 
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Figure II.3 General scheme of the proposed. 

Figure II.4 Detailed scheme of the 1st stage, showing the sub-modules for the bilateral 
filtering calculation. 
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Finally a further elaboration unit is needed to calculate and update the 
La

inc(x,y) value at each clock cycle before the elaboration takes place, in 
order to obtain a on-the-fly processing and the unavailability of the average 
Luma of the frame in the beginning of the computation. The operation to 
compute is shown in (II.11). 
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II.4.1 LR and Output Modules 

In principle the filtering stages for the calculation of NR and DR changes 
only for the coefficients used, meaning that the project of the filtering stage 
is the same for both the structures. 

The LR module exploits the 2D filtering operation and is composed by 
two 1D filters, in order to exploit the separability property of the gaussian 
kernels, with a stripe buffer between to separate the 1D filtering operations. 
It must be noticed that to carry out the elaboration related to the vertical 
filter the stripe buffer has to be sequentially accessed column-wise. 
Moreover, assuming MX = MY = 3σ2 and that σ = 4, each 1D filter involves 
25 pixels. A parallel straightforward implementation on all the pixels would 
require the implementation of 100 FP multipliers and 98 FP adders, working 
on 29 bits data. This justifies the use of MY = σ2, allowing to reduce the 
number of FP units to 68 multipliers and 64 adders and to contain the 
dimensions of the stripe buffer, while still representing a good 
approximation compared to the previously considered choice of parameters. 

Finally, after these computations, the Output module computes the 
quantities 2 inc
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Finally, the output of the computation of equation (II.12) is converted 
from our custom FP29 format to the standard IEEE-754 FP32 one, in order 
to obtain data to be used for further computations without the need of 
preliminary conversions. 
 

II.4.2 Stripe Buffer and Multi-Resolution Implementation 

The general design of the stripe buffer and its operation principle are 
depicted in Figure II.5. The principle of work of the structure follows a SIPO  
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architecture, storing the incoming partial results, one per clock cycle, and 
providing as an exit 2MY +1 data to the vertical filtering structure. The SIPO 
is capable of providing a continuous alignment of the stored data, making it 
possible to process 2MY +1 per cycle. 

Implementing the SIPO using only flip flops (FFs), but it is not 
convenient both in terms of area and power performances. In fact, such an 
implementation would require the implementation of a high number of FF 
units. Due to this, we decided to implement the buffering structures using 
SRAMs which behavior emulates the SIPO’s one. In particular, the 
availability of hard macros to implement dual-port SRAMs in FPGA made it 
possible an easy implementation of these structures. The SRAMs implement 
long shift register capable of providing the output data while being written 
with a new one. Moreover, we need a number of such structures equal to the 
dimension of the vertical filter; this could be one implementing each row of 
the stripe-buffer using a dual-port Block Random Access Memory (BRAM) 
of appropriate dimensions. Moreover, this kind of approach greatly 
simplifies the extension of the proposed design in the case of the elaboration 
of frames having different resolutions. In fact, while the architecture 
presented in [G. D. Licciardo, A. D'Arienzo, A. Rubino, 2015] was tailored 
for the processing of Full-HD frames only, it is possible to develop a design 
working on frames having different resolutions by projecting a unit capable 
of managing the various First In First Out (FIFO) structures composing the 
stripe buffer. The width of the image to be processed is used as a control 
signal by the FIFO structures to obtain a correct storage of the partial data, 

 
Figure II.5 Operation principle of the stripe-buffer. 
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while two different behavior have to be taken into account depending on if 
the width of the image to be processed exceeds the dimension of the FIFO 
rows, W, or not.  

In fact, it is possible to state that: 
 in the case the dimension of the incoming frame is lower than 

W=1920 or equal to it, the memorization of new data in the FIFO 
structures is interrupted when after the storage of W data per row, 
while the architecture follows the same behavior described in [G. D. 
Licciardo, A. D'Arienzo, A. Rubino, 2015]; 

 if the incoming frame has a width higher than W, up to 3840, two 
consecutive FIFO structures are used as a single FIFO to store a 
single row of partial data of the input pixels. Obviously, in this case 
only five filtered data per cycle could be transferred to the vertical 
filter. The correct transfer of the data is achieved using control 
signals and multiplexer units, which makes it possible to choose 
which data have to be sent to the second filtering module. 

It is then possible to state that in the former case the image filtering will 
have parameters MX = 3σ2 and MY = σ2, while in the case of the elaboration 
of 4K UHDTV image we will have MY = 0.5σ2. A detail of the proposed 
technique is sketched in Figure II.6, where the multiplexer structures used to 
achieve the multiresolution operations are clearly shown. 

As it is possible to notice, the implemented method to achieve 
multiresolution processing does not require big amount of logic structures, 
while ensuring the required behavior with only a little worsening in the time 
performances, as proven in the following. However, it shows an increase in 
terms of arearequired on the FPGA board by the design in terms of occupied 
LUTs. 
 
II.5 Implementation Results 

The developed architecture has been implemented on 
axc7v2000tflg1925-1 FPGA board, of the family Xilinx Virtex 7, while the 
Xilinx Vivado software has been used for the synthesis and the verification 
of the proposed design, and in TSMC CMOS 90nm std_cells. Table II.3 
reports the results of the implementation and compare them to the one 
presented in [G. D. Licciardo, A. D'Arienzo, A. Rubino, 2015]. 

Aiming to obtain an implementation as most independent as possible 
from the FPGA board and to have indications for future ASIC 
implementations of the proposed design, we decided to consider 
implementations not exploiting the use of DSPs. It is possible to notice how 
the new implementation shows an increase in terms of area occupation if 
compared to the design in [G. D. Licciardo, A. D'Arienzo, A. Rubino, 2015]. 
In fact, the logic units introduced to achieve multiresolution operations  
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increase the number of LUTs of 7.33%. Also the maximum operating 
frequency is reduced if compared to the single resolution architecture case, 
since the arrival time critical path increases of 13.22%, making the 
maximum operating frequency 60.4 MHz, allowing processing 
approximately 60 Mpixels per second. The FP multiplier units used in the 
vertical filtering structure compose the critical path. The structure is then 
capable of processing a Full-HD frame in 34.4 ms, which means that it can 
elaborate 29 fps, achieving in this case and in the case of lower resolutions 
real-time processing. Instead, in the case of 4K UHDTV resolution the 
processing time of a single frame is 139 ms, which allows the architecture to 
process only 7 fps, not achieving in this case real-time performances. 
However, the proposed design shows far greater operating frequencies than 
SW implementations. In fact, the same algorithm, implemented in MATLAB 
ver. 2012b and running on a 4 cores/8 threads Intel Xeon at 3.2 GHz, takes 
approximately 8 hours to process a single VGA (640x480 pixels) frame. 
Regarding the std_cell implementation, it is worth to notice that the superior 

 
Figure II.6 Composition of the stripe-buffer with MUX structures for multi-resolution. 
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flexibility of the design  cause an increase of 0.1 mm2 (0.13%) in terms of 
occupied area and an overall increase of approximately 12.5% of the worst 
path delay, causing in turn a little decrease of the fps that can be processed. 

It is worth to notice that it would be possible to develop further 
operations between on FP32 data and fixed data sets in a more HW friendly 
fashion, using multiplier units exploiting decomposition methods, such the 
ones used in Distributed Arithmetic (DA), like Bachet’s one previously 
described, in order to obtain a more compact and less power demanding 
implementation. Furthermore, even in this case the transferring of data to 
and from the memory structures is one of the largest contribution to the data 
path delay, making a careful study on the memory structures needed in order 
to develop ad hoc, faster and more reliable storage units. 

TABLE II.3 Synthesis results of the proposed design. 

 FPGA std_cell 

 
[Licciardo 

et al.] 
Proposed 

[Licciardo 
et al.] 

Proposed 

LUTs/Area [mm2] 51.3 k 55.06 k 7.7 7.8 
BRAMs 58 58 - - 

Worst Path Delay [ns] 14.632 16.567 7.092 7.978 
Full-HD fps 31 29 67 60 

 
 

II.6 Conclusions 

A new HW architecture to process frames having different resolutions 
acquired from an image sensor and elaborate them to obtain their HDR 
version, starting from a single LDR frame. The structure results more 
flexible than the one presented in [G. D. Licciardo, A. D'Arienzo, A. Rubino, 
2015] and achieves state-of-the-art performances, obtaining a structure 
capable of working with multiresolution image sensors. 

The main features of the developed design are: 
 Streaming elaboration on input data received from image sensors, 

for on-the-fly conversion of input images; 
 Absence of frame buffers to store the input and the partially 

elaborated image data; 
 The possibility to completely substitute off-the-chip DRAM by a 

reduced amount of embedded SRAM, which enables the 
implementation of embedded application-specific image 
processor (ASIP) tightly coupled with image sensors; 
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 Scalable architecture that allows setting the area/speed ratio, to 
favor a platform independent implementation from FPLs to ASIC 
std_cells. 

It is worth to underline that the proposed design achieves the above 
features by exploiting the separability property of the two-dimensional 
Gaussian kernel, which is largely employed in image and video elaboration 
methods; therefore, regardless of the specific application, similar 
characteristics can be reproduced in a large number of different ASIPs, 
demanding for high integration level and real-time elaboration, as happens 
for example, in difference-of-Gaussian-based visual search algorithms. 

Further studies could be related to the development of a full-custom 
project of an integrated circuit (IC) to obtain an ASIP for HDR2LDR 
conversion, capable of achieving higher operating frequencies, lower power 
dissipations and real-time performances even in the case of 4K UHDTV 
image processing. 

Finally, an example of final elaboration of a HDR obtained image is 
reported in Figure 7 for the frame “city”, complete of the Chroma 
components. Obviously, all the reported images have been transformed back 
using a Tone Mapping Operator (TMO) in order to show them on standard 
HDR screens and on paper, which is the main cause for the darker areas in 
the derived image, due to the application of the dodging and burning like 
step in the HDR elaboration. We further underline how this LDR 
reconstructed image using TMO is just to give an idea of the contrast 
enhancement using HDR, but it is of course not possible reproducing the 
effects of the derived HDR result on LDR screens. 
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(a) 

 
(b) 

 
Figure II.7 Example of LDR to HDR conversion (a) the original LDR frame; (b) the HDR frame 

obtained through iTM. 
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Chapter III 
Voltage Sense Amplifiers circuits 

for SRAMs 
III.1 Introduction 

In the previously developed designs we saw how the times of response to 
extract data from the memory and to write data on it. That is why, during the 
years part of the research has focused around finding new solutions towards 
achieving better performances memories. During these studies the research 
group developed a new sensing scheme for SRAMs, in order to obtain better 
performances in terms of area occupation, power consumption and 
reliability, obtaining, as will be shown next, a better offset rejection. The 
present work is supported in part by Europractice Program. 

More and more demanding PPA constrains for SRAM memories and the 
increasing growing storing densities tend to require reduced voltage 
variations that a single memory cell can induce on the attached bit-line while 
still obtaining an acceptable accessing time. This trend is in contrast with the 
increase of the offset voltage, VOS, generated by the mismatch of the 
components of the sensing circuitry and incremented by the MOSFET 
scaling. In addition to that, the need for less power demanding architectures, 
leads to the lowering of the bias voltages, which further worsens the offset 
related problems and could unacceptably compromise the memory 
operations. In order to overcome this issues, during the last years, improved 
sensing circuits have been proposed, using offset compensation and 
cancellation techniques, capable of mitigating or eliminating the offset in a 
certain measure [A.J. Bhavnagarwala, X. Tang., J.D. Mandl, 2001], [S.R. 
Nassif, 2001]. 

 
III.2 Background 

Semiconductor memories represent one of the main components in 
nowadays processing units. In fact, from their improvement it is possible to 
achieve huge benefits for the overall system. The types of developed 
Random Access Memories (RAMs) are principally of two types: Static 
Random Access Memories (SRAMs) and Dynamic Random Access 
Memories (DRAMs). A RAM memory chip is made up memory cells 
organized in the form of a matrix; that’s why usually we refer to RAM 
components also specifying the wordlength and the depth of the memory, in 
order to give an indication of the organization of the memory cells. That’s 
why the row of the matrix are referred to as word lines (WL), while its  
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columns are also referred to as bit lines (BL), since once the WL is chosen 
every BL carries only one bit of information. Hence, to access the memory a 
row address and a column address are needed. Every access operation is 
carried out in three steps: 

 row decoding to activate the word line; 
 column decoding to activate the read/write (RW) circuit to access 

the single memory cell; 
 the reading or writing operation itself. 

It is worth to underline that in the following we will always refer to 
circuits in the Complementary Metal-Oxide Semiconductor (CMOS) 
technology, since they usually represent the ones of interest almost the 
totality of nowadays applications and for the ones presented in this thesis 
work. 
 
III.2.1 SRAMs Overview 

The static definition of SRAMs is due to the fact that the bits memorized 
in the memory cells is stored and does not need to be restored until the chip 
is connected to the power supply. This property is derived from the behavior 
of the fundamental component of a SRAM, the latch. As it is well-known, 
the latch shows three possible working points, of which two are stable ones, 
while the third could be easily perturbed and end up in one of the other two, 
depending on the entity of the perturbing signal. This behavior is due to the 

 
Figure III.1 Breadboard measurement setup for the developed SRAM offset compensation 

design. 
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positive feedback provided by the
structure. SRAMs are particularly needed in high speed applications, due to 
the latch behavior and its capability of fast restoring the data (e.g. cache 
memories); in fact, the positive feedback guarantees extremely 
commutations during writing operations, while there is no need to restore the 
information after any reading operation, since the data is not erased during 
the operation. These performances come at the cost of higher power losses, 
due to the higher cur
of the reading lines. A 6 transistors (6T) CMOS SRAM cell is shown in 
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reduction of the number of transistor used to build a single cell; the first 
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consists of just a CMOS and a capacitor which charge and discharge are 
driven by the CMOS. Moreover, in all DRAMs it is necessary to perform a 
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positive feedback provided by the inverting amplifiers loop in the latch 
structure. SRAMs are particularly needed in high speed applications, due to 
the latch behavior and its capability of fast restoring the data (e.g. cache 
memories); in fact, the positive feedback guarantees extremely 
commutations during writing operations, while there is no need to restore the 
information after any reading operation, since the data is not erased during 
the operation. These performances come at the cost of higher power losses, 
due to the higher currents needed to charge the parasitic capacitive elements 
of the reading lines. A 6 transistors (6T) CMOS SRAM cell is shown in 
Figure III.2. 

 
.2 DRAMs Overview 

DRAMs invention is due to the need of obtaining higher memory 
densities capable of storing higher amounts of data. This is achieved storing 
the information in a capacitive element. This is done mainly through a 
reduction of the number of transistor used to build a single cell; the first 
DRAMs were made up by 3 transistors (3T) while right now th
design is the one using just 1 transistor (1T), for which a matrix of cells is 
shown in Figure III.3. The structure of a single cell is almost trivial, since it 
consists of just a CMOS and a capacitor which charge and discharge are 
driven by the CMOS. Moreover, in all DRAMs it is necessary to perform a 

Figure III.2 6T CMOS SRAM cell [https://en.wikipedia.org/wiki/Static_random
access_memory#/media/File:SRAM_Cell_(6_Transistors).svg
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inverting amplifiers loop in the latch 
structure. SRAMs are particularly needed in high speed applications, due to 
the latch behavior and its capability of fast restoring the data (e.g. cache 
memories); in fact, the positive feedback guarantees extremely fast 
commutations during writing operations, while there is no need to restore the 
information after any reading operation, since the data is not erased during 
the operation. These performances come at the cost of higher power losses, 

rents needed to charge the parasitic capacitive elements 
of the reading lines. A 6 transistors (6T) CMOS SRAM cell is shown in 

DRAMs invention is due to the need of obtaining higher memory 
higher amounts of data. This is achieved storing 

in a capacitive element. This is done mainly through a 
reduction of the number of transistor used to build a single cell; the first 
DRAMs were made up by 3 transistors (3T) while right now the most used 
design is the one using just 1 transistor (1T), for which a matrix of cells is 

The structure of a single cell is almost trivial, since it 
consists of just a CMOS and a capacitor which charge and discharge are 
driven by the CMOS. Moreover, in all DRAMs it is necessary to perform a 

 
https://en.wikipedia.org/wiki/Static_random-

access_memory#/media/File:SRAM_Cell_(6_Transistors).svg]. 
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periodic refresh operation of the stored data, in orde
capacitances and the transistors always shows not negligible loss currents, 
capable of corrupting the data. The refresh operation consists in reading the 
data and rewriting it in the memory cell; of course, this operation has to be 
repeated periodically on all the memory cells constituting the memory.

However, both SRAMs and DRAMs need a sensing circuit to correctly 
perform the RW operations. The developed work consists in the project of a
new sense amplifier (SA) which is capable of improving most of the SA 
performances and paves the way to the development of new memory chips 
for high performances. 
 

III.3 Sense Amplifiers 

As the name suggests, SA
voltages or currents and amplify them, in order to obtain the voltage levels 
which generated them as outputs once again. It is important to highlight that 
in order to obtain a memory circuit with enough memory density, it is
fundamental to have SAs capable of working on high number of cells, 
allowing to instantiate less SAs while obtaining the same performances in 

Figure III.3 

operation of the stored data, in order to retain them, since 
capacitances and the transistors always shows not negligible loss currents, 
capable of corrupting the data. The refresh operation consists in reading the 
data and rewriting it in the memory cell; of course, this operation has to be 
repeated periodically on all the memory cells constituting the memory. 

However, both SRAMs and DRAMs need a sensing circuit to correctly 
perform the RW operations. The developed work consists in the project of a 
new sense amplifier (SA) which is capable of improving most of the SA 
performances and paves the way to the development of new memory chips 

As are amplifiers capable of sensing differential 
voltages or currents and amplify them, in order to obtain the voltage levels 
which generated them as outputs once again. It is important to highlight that 
in order to obtain a memory circuit with enough memory density, it is 
fundamental to have SAs capable of working on high number of cells, 
allowing to instantiate less SAs while obtaining the same performances in 

 
 

3 1T CMOS DRAM cell matrix. 
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terms of correctness and speed of RW operations. Let us examine the case of 
a voltage sensing amplifier. 
Read Operation: Before a WL could be addressed via a row decoder, all the 
matrix BLs are charged to a fixed voltage known as pre-charge voltage, VPR, 
using a pre-charge net. Then, the SAs are connected, one for each BL, to the 
BL itself and to a reference voltage equal to VPR. After the pre-charge phase 
it is possible to address the chosen WL imposing to it the logic high voltage 
level to switch on the transistors to access the memory cells of the chosen 
row, the voltage of the cell is read and produce a variation in the order of mV 
from the VPR value in output, causing, in turn, the SA to detect the difference 
between its two terminals and then amplify this difference to obtain the 
reconstructed original logic level (0 or VDD) of the cell as output. In the end, 
using the Column decoder, only the output of one amplifier is selected and 
taken as output, corresponding to the particular cell (or group of cells) to be 
read. 
Write Operation: the write operation follows the read one, with the 
exception that the column decoder imposes the output value of the amplifiers 
using low impedance circuits, which is then, send as input to the cell using a 
simple switch, while the columns on which the data is not imposed retain the 
previous value. 
 
III.4 Offset Issues 

As seen before, the differential signal coming from the accessing of a 
single memory cell is small, which represents the reason sense amplifying 
circuits are developed. Ideally, the input/output (I/O) curve of the SA is 
perfectly symmetrical; in other words, it gives an output half the logic swing 
when a null voltage is applied as input, while it gives the high logic value 
and the low logic value for positive or negative differences between the 
signal coming from the memory cell and the reference one, respectively. 

Figure III.4 SA ideal characteristic. 
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Real life scenarios are however a lot different from that, since the 
characteristics of the real devices could change due to technological 
processed tolerances. E.g. the channel length of a MOS device, the thickness 
of the oxide depositions, the geometry of source, drain and gate regions and 
the doping profiles could be different from their nominal value in a certain 
percentage. Due to that, devices having nominally the same performances 
could show work slightly differently in reality. This is a well-known issue, 
directly related to the inevitable processes tolerances, but in the particular 
case of memory SAs makes them to have an input offset voltage, which 
entity could not be a priori known. The previous scheme could then be 
represented adding a  further voltage on the non inverting terminal and the 
aim of the SAs has also to compensate for the offset, which effect is shown 
in Figure III.5 both for a positive and a negative offset. The effect of the 
offset could then be summarized as follows: when the signal on the BL 
results smaller in module then the offset of the SA, then a mistake read 
operation takes place. It is also to be noticed that even if the sense signal is 
bigger in module than the offset, it still reduces the differential input to the 
SA, decreasing the speed in the data reading and hence the overall 
performances of the memory chip. 

 
III.5 Latch CMOS 

The CMOS latch is the fundamental circuit used in RW operations on 
memory cells, due to the amplification it provides to the small differences 
provided at its input terminals. A CMOS latch is basically composed by a 
loop of two CMOS inverters, as shown in Figure III.6. 

 
Figure III.5 SA characteristics in presence case of offset. 
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More in detail, the inverters are realized in Full Complementary Metal
Oxide Semiconductor (FCMOS) technology, meaning Positive Metal
Semiconductor (PMOS) are realized using a form factor given by following 

p

n
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

 

 represents the width of the width of the PMOS device and 
represents the length of its channel, while µp is the mobility of the holes in 
the device; the terms reporting the n subscripts are related to the Negative 

Oxide Semiconductor (NMOS) counterpart. NMOS devices are 
usually projected using the minimum allowable sizes, in order to obtain 
higher densities, while the use of PMOS devices results in an increase if 
compared to NMOS, mainly due to the lower mobility of holes than 

 However, this disadvantage is highly compensated by the fact that
a FCMOS process, involving also PMOS devices, could achieve an ideally 
perfectly symmetric I/O curve and an increase in terms of speed due to the 
fact that the PMOS devices conductivity is in this case equal to the one of 

The ideal characteristic of a FCMOS inverter is reported in Figure 
, considering the skews and the non instantaneous response of the 

As stated before, the latch circuit has got three equilibrium points, of 
which two are stable and one is unstable. The mathematical formulation for 
the three states could be written as 
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Figure III.6 Scheme of a CMOS latch. 
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The third state is obviously not stable, since the closed loop gain is equal to 
the product of the gains of the two inverters on the threshold point, meaning 
that small variations in either of the two voltages could lead the equilibrium 
point to move fast towards one of the other stability points. In fact, the high 
gain produces a fast instauration of a new stable scenario, as evident by the 
following equations 


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1
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   (III.3) 

From what reported it is clear that, if the voltage at node Ǫ varies for a 
certain quantity ΔV, the voltage at Ǭ varies as VLT + A1ΔV, obtaining then on 
Ǫ, VLT + A1 A2ΔV and so on until the system does not reach the stability. It is 
important to notice that the starting voltage difference ΔV could be arbitrary 
small and still capable of create a positive loop, reaching a stable state. Same 
approach can be applied for voltage differences at node Ǭ obtaining the 
same results. 
 
III.6 Offset Compensation Schemes 

In the last few years several sensing schemes have been proposed and 
developed, aiming to overcome the issues related to the increase of the 
offset, principally caused by the scaling oft eh architectures, both in terms of 

 
Figure III.7 Ideal characteristic of a CMOS latch. 
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voltages and dimensions of the devices. Two main techniques have been 
proposed in literature: offset compensation and offset cancellation [P.Bhatia, 
B.S.Reniwal, S.K. Vishvakarm, 2015], [J.S. Shah, D. Nairn, M. Sachdev 
2013]. The most elementary and simple condition to be satisfied by the SA 
to obtain a correct reading is the following 

   OFFS VV  maxmin    (III.4) 

which is to say that the offset voltage value must always be lower than the 
sensing voltage value, allowing the correct amplifying of the BL signals 
along the two SLs. Aiming to satisfy inequality III.4 it is possible to 
maximize the minimum value of the module of ΔVS or to minimize the 
maximum value of the module of the offset voltage, ΔVOFF. 

 
III.6.1 Offset Compensation Schemes 

Maximizing the minimum value of the module of ΔVS is of interest if and 
only if it is possible to amplify the incoming sense signal, because instead it 
would not be possible to overcome offsets higher than these signals. Hence, 
the most used technique of this type consists in pre-amplifying the sense 
signal before sending it to the SAs. Through that amplification the system 
tries to compensate the offset that is why these techniques are called offset 
compensation schemes. Offset compensation solution tends to amplify the 
sensed voltage using charge transferring and differential amplifiers in order 
to improve the signal-to-noise ratio (SNR). 

 
III.6.2 Offset Cancellation Schemes 

Minimizing the maximum value of the module of the ΔVOFF is done using 
ad hoc schemes capable of directly reducing the offset; for that reason they 
are usually called reduction or cancellation techniques, even if they could 
exploit the amplification concepts too. Offset cancellation paradigm aims to 
reduce the offset voltage exploiting the high gains of operational amplifiers. 

 
Moreover, it is possible to recognize to different approaches: 
 Current Sense Amplifiers (CSA) [E. Seevinck, P.J.V. Beers, H. 

Ontrop, 1991], which operates well in the case of reduced voltage 
swings, but shows larger area occupation and ace times; 

 Voltage Sense Amplifiers (VSA) [B. Wicht, T. Nirschl and D. 
Schmitt-Landsiedel, 2004], achieving lower area occupation, while 
having the drawback of higher power consumptions.  

Aiming to overcome the principal limitations of the two approaches, 
hybrid current-voltage schemes have been proposed [M. Sharifkhani, E. 
Rahiminejad, S.M. Jahinuzzaman, M. Sachdev, 2011], [D. Ahn-Tuan, K. 
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Zhi-Hui, Y. Kiat-Seng, 2008], which main related issue is represented by the 
circuit area occupation nonetheless. 

The developed system is a novel VSA scheme combining the offset 
cancellation and compensation strategies. The obtained area occupation for 
the proposed implementation results lower than in the case of other 
architectures previously presented. In addition, good performances in terms 
of energy consumption are achieved compared to other architectures 
developed in the same technology. In fact, even in the case a slightly higher 
energy per cycle is required, due to the presence of the inverter amplifiers, 
this drawback is compensated by a more compact implementation of the 
overall sensing circuit and by a better offset compensation. The circuit 
exploits a direct connection of the offset compensating inverters (OC-
inverters) to the bit-lines, allowing separating the SA from the BLs while 
amplifying the voltage variations induced by the memory cell at the same 
time. 

Using Cadence EDA tools and TSMC PDKs at 180nm, simulations have 
been conducted, showing that the proposed design is tolerant to much higher 
offset values than previously presented in literature ones, while achieving 
reduced memory access time, TACC, and higher operation frequency. 

 
III.7 Proposed Scheme 

Several sub-circuits make up the proposed scheme: 
 a memory cell which is controlled by the WL signal enabling the 

reading and writing of the cell; 
 a circuit to pre-charge the BLs at the same value before any 

reading operation, activating the EQ signal; 
 a FCMOS Offset Compensation inverters (OC-inverters) per bit-

line, which can be closed in feedback using the switches 
controlled by the PT1 and PT2 signals; 

 a latch SA, which is made up by two FCMOS inverters 
controlled using the signals SAN and SAP. 

A general scheme of the proposed sensing circuit and its various 
operations is depicted in Fig. III.8. It is possible to notice that while the I/O 
data could be read on the two SLs, SA1 and SA2, the circuit is placed 
between BL1 and BL2, which are respectively the BL and the complemented 
BL. 

The sequence of the operations of the scheme is described in the 
following: 

 First the circuit undergoes a pre-charge phase to equalize the BLs 
and the sense lines (SLs) to VDD/2. In this phase the memory cell 
is not accessed, hence WL=0 and the SA latch is not enabled 
setting SAN= VDD and SAP=0, while EQ, PT1 and PT2 signals 



Chapter III 

52 
 

are high. In order to optimize power consumption, in this phase 
the OC-inverters and the SA are switched off. 

 The second phase is the offset cancellation one. In [Y. Watanabe, 
N. Nakamura, S. Watanabe, 1994] a way to strongly reduce the 
offset problem simply short-circuiting the input and the output is 
presented. This technique allows the PMOS and the NMOS of 
the OC-inverters to work near the maximum gain point, in the 
saturation region, where they behave as amplifiers. This allows 
canceling the offset which causes the skewing of the transfer 
characteristics of the OC-inverters. This could result in an 
attenuation of the voltage variation induced by the memory, 
which could cause an incorrect reading of the data. The 
considered offset is only the one due to electrical and geometrical 
differences mismatches in the parameters of the MOS devices 
attested on the two lines. 

 After that the circuit proceeds to read the data from the memory 
cell in the offset compensating phase. In this phase WL goes high 
and the signals EQ, PT1 and PT2 are lowered (EQ=PT1=PT2=0). 
The access time, TACC, identifies the WL active period, which 
should be sufficient to amplify the voltage variation between the 
bit-lines, since the offset to be compensated by the sensing 
scheme depends upon the access time. The voltage difference 
between the bit-lines, vBL, is amplified as Max

SA OC INV BLV A V   . 
 

 
Figure III.8 Scheme of the proposed circuit. 
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 Finally, the sensing phase could be carried out, switching on the 

SA latch while turning off the OC
goes low (SAN=0), while the SAP signal goes high (SAP=V
activating the latch and causing the SA lines to reach rail
values, giving the correct output. 
OC-inverters invert the output values at the SA with respect to 
the sensed variation. For this reason, the outputs c
BL1 and BL2 will be the signals SA2 and SA1

The waveforms of the control signals for a single period of operation are 
shown in Figure III.9, while a 
the described sensing scheme i

 
III.8 Results 

Simulations for the proposed 
Cadence ADE environment 
example of reading from the memory, in the case of a 
give in Figure III.11. It is important to underline that the operation period 
shown in Figure III.11 has been dilated to clearly show the different phases 
of the reading operation. In the reported simulation, bit
CBL1=CBL2=1 pF has been taken in

Figure III.9 Waveform of the control 

Finally, the sensing phase could be carried out, switching on the 
SA latch while turning off the OC-inverters. The SAN signal 
goes low (SAN=0), while the SAP signal goes high (SAP=VDD), 
activating the latch and causing the SA lines to reach rail-to-rail 
values, giving the correct output. It is worth to underline that the 

inverters invert the output values at the SA with respect to 
the sensed variation. For this reason, the outputs corresponding to 
BL1 and BL2 will be the signals SA2 and SA1, respectively.  

he waveforms of the control signals for a single period of operation are 
, while a circuit schematic of a MOS implementation of 

the described sensing scheme is reported in Figure III.10. 

he proposed sensing scheme have been carried out using 
 using the TSMC 180 nm CMOS PDKs. An 

example of reading from the memory, in the case of a “0” stored value is 
. It is important to underline that the operation period 

has been dilated to clearly show the different phases 
of the reading operation. In the reported simulation, bit-line capacitances 

has been taken into account, while a VDD=1.8 V have 

 
Waveform of the control signals over a single period of operation. 
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Figure III.11 MOS BLs and SLs waveforms during the reading of a “0”. 

 

Figure III.10 MOS implementation of the proposed sensing scheme. 
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been imposed. The offset is increased varying the threshold voltage of the 
MOS devices, VTH, obtaining a maximum VOS=20 mV on the OC-inverters. 

Moreover, a careful evaluation of the energy consumption and a study of 
the variations of the minimum sensed signal, TACC and TINV, which is the 
period of time in which the OC-inverters must be turned on, has been 
conducted to obtain a better evaluation of the compensation phase when 
increasing the offset value. Moreover, the minimum TINV has been chosen in 
order to achieve a minimum input variation vSA before the turning on of the 
SA latch. Starting from the considerations developed in [S.-H.Woo, H.Kang, 
K.Park, S.-O. Jung, 2010], according to which in a latch based SA the vSA 
parameter shows a = 8 mV in the case of a 180nm process, we imposed 
TINV to obtain a minimum vSA = 3the results are shown in Figure III.12a. 
As it is possible to notice, the minimum value of TINV capable of obtaining 
vSA> 3for all the considered range of offsets is TINV=400 ps. A 
comparison in terms of access times is also shown in Figure III.12b where it 
is possible to notice that increasing TACC will cause an increase in the energy 
consumed by the structure. The energy consumption shows an almost linear 
dependence varying the TINV while it is almost insensitive to the variations of 

Figure III.12 a) Sensed voltage varying VOS; b) Energy consumption varying VOS; c) 
Minimum access times varying VOS at TINV=400ps for the proposed scheme and for the 

design in [M. Sharifkhani, E. Rahiminejad, S.M. Jahinuzzaman, M. Sachdev, 2011]. 
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TACC. Due to these considerations, it is possible to state that reducing TACC 
and TINV is an optimal solution to both achieve higher frequencies of 
operation and lower energy consumptions. TINV is in particular critical since 
in this period the inverters shows high static power consumption. Figure 
III.12c reports a comparison between the access times achieved by the 
proposed design and the ones related to the scheme reported in [M. 
Sharifkhani, E. Rahiminejad, S.M. Jahinuzzaman, M. Sachdev, 2011]. The 
access time required to correctly performing the read operation increase with 
the offset value, but the increase rate is in our case lower than the one in [M. 
Sharifkhani, E. Rahiminejad, S.M. Jahinuzzaman, M. Sachdev, 2011]; in 
particular, our design achieves access times approximately 80% lower than 
those in [M. Sharifkhani, E. Rahiminejad, S.M. Jahinuzzaman, M. Sachdev, 
2011]. 

The design layout has been developed with Cadence Virtuoso Analog 
Design Environment using TSMC 180nm PDK libraries. A detailed 
description of the developed layout is shown in Figure III. 13, in which it is 
possible to notice all the structure of  the offset compensation circuit as well 
as accessory structures needed for testing and signal management, as the 
capacitance submodule and the buffer for the generation of the internal 
signals. Figure III.13 also shows the overall layout obtained using Virtuoso 
ADE with pins and wire bondings and the final obtained ASIC fabricated 
thanks to Europractice mini@sic Program 2016. 

 
III.9 Comparisons 

Table III.1 details the principal results of the proposed design and 
compares them with the ones achieved by implementations in the recent 
literature. Even if a higher number of transistors compose the proposed 
design, the possibility to use devices with smaller dimensions allows us to 
obtain a lower area occupation than the one in [D. Ahn-Tuan, K. Zhi-Hui, Y. 
Kiat-Seng, 2008]. In [D. Ahn-Tuan, K. Zhi-Hui, Y. Kiat-Seng, 2008] it is 
also possible to find other schemes for charge-transfer, ultra-low power and 
high speed. From a comparison of these implementations with our design, it 
is possible to state that the proposed scheme achieves better performances in 
both area occupation and power consumption. In addition, the performances 
in terms of sensing delay are improved, due to the offset compensation 
phase, which reduces the access time parameter. Hence, the design could 
handle higher offset values than the other implementations without reading 
errors. A lower period of operation is also achieved, thanks to the lower 
sensing delay; the minimum period of operation is 1.5 ns. The 
implementation in [J.S. Shah, D. Nairn, M. Sachdev 2013] has a lower 
energy consumption, but this solution is only capable of withstanding offsets 
related to a variation in the threshold voltage value of the MOS devices. On  
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the contrary, the proposed solution obtains good compensation performances 
also in the case of variations of the geometrical parameters of the devices. 

The presented scheme achieves state-of-the-art performances in terms of 
sensing delay, area occupation and offset compensation in the case of an 
180nm technology. Furthermore, the proposed design shows a good tradeoff 
between energy consumption, area occupation and speed. In order to 
understand how the circuit performances vary with the scaling of the 
devices, future studies could aim to investigate the scaling of the proposed 
scheme. In fact, the latest designs are developed in shrunk technologies 
[N.Chandoke, N.Chitkara, A. Grover, 2015], [H. Jeong, J. Park, T.W. Oh, 
W. Rim, T. Song, G. Kim et al, 2016], which raises new challenges in the 
development of sense amplifier circuits. 

 
 

Figure III.13 Design layout obtained using Virtuoso ADE and TSMC PDK 180nm, overall 
layout showing also pins and wire bondings and the final obtained ASIC developed thanks to 

the Europractice mini@sic Program 2016. 
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TABLE III.1 Comparison of the proposed design with the related literature. 

 Prop. Shah Sharifkhani Ahn-Tuan 

Technology [nm] 180 180 180 180 

Bias Voltage [V] 1.8 1.8 1.8 1.8 

Number of MOS 16 13 13 16 

Area [µm2] 54 -- -- 376 

Sensing Delay [ns] 0.13 0.7 0.3 0.26 

 Max ΔVOS [mV] 100 ±35 40 -- 

TACC [ps] 58 -- 270 -- 

Energy [pJ] 0.467 0.212 0.84 -- 

 
III.10 Conclusions 

It is then possible to state that the proposed SA scheme is capable of 
improving the performances in terms of absolute offset rejection if compared 
to other circuits in literature aiming to the same result, while achieving state-
of-the-art results also in terms of occupied area and sensing delay. Further 
studies have to be conducted on the real circuit, in order to obtain real case 
results while understanding how the circuit could be further improved. 

However, the desired project and improvement of a memory scheme 
allow the development of faster ASICs, with particular reference to the ones 
in which memory accesses represent the main bottleneck mainly due to the 
high number of memory accesses. 
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Chapter IV 
Gabor Filtering Applications for 

Visual Search 

IV.1 Introduction 

After the development of a new SRAM SA scheme, in order to obtain 
better performances in memory constrained application using high amounts 
and high density of memory cells, the research was addressed to develop 
new HW systems for pre-filtering and accelerate the operations in 
multimedia applications, with particular attention to VS ones. These kind of 
applications are fundamental in nowadays electronic systems in IoT and NN, 
where they usually compose the initial stage of processing nodes in 
dedicated applications, which are nowadays more and more important also in 
handheld and power constrained devices. 

In this field, one of the most used filters is the Gabor filter, due to its 
attributes, which make it fit for several applications. In fact, Gabor filters are 
a class of linear band-pass filters, allowing selecting the frequency of interest 
via tuning of the filter parameters, and, moreover, they are capable of 
minimizing the joint uncertainty for frequency and spatial position [J.M. 
Guo, H. Prasetyo, K. Wong, 2014]. The proposed work, developed in this 
chapter, is then focused on this kind of filters, from the related mathematical 
background to the implementation and evaluation related to the developed 
HW system. 

Several studies showed the capability of Gabor filters of providing a well-
fit description of mammalian visual cortex cells [J. G. Daugman, 1985], 
which of course make this family of filters very attractive for computer 
vision applications. Moreover, Gabor filters produce robust features for the 
detection of edges and corners in image applications [J.-K. Kamarainen, V. 
Kyrki, H. Kälviäinen, 2002], while showing a certain selectivity along 
preferential orientations via the selection of the number of angles in the 
range [0, π] along calculate the filtering operations, which guarantees a 
certain rejection to rotations. These are the main reasons why Gabor filters 
play a key role also in edge and corner detection, segmentation and gait 
analysis applications [W. Jiang, K.-M. Lam, T. Z. Shen, 2009], [W.-C. 
Zhang, F.-P. Wang, T. L. Zhu, Z.-F. Zhou, 2014], [H. Hu, 2013], [B. 
Kwolek, 2005]. 
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However, in case of real-time requirements the high computational 
complexity of such filters could be overcome only recurring to hardware 
(HW) implementations of the filtering operation itself. Moreover, through a 
careful optimization of the filtering structure, this could result also in low-
power consumption operations, while still achieving good accuracy in the 
results. It has also to be underlined that the recent literature presents very 
few HW oriented designs employing Gabor filters, due to their complexity. 
Works in [E. Cesur, N. Yildiz, V. Tavsanoglu, 2011] and [E. Cesur, N. 
Yildiz, V. Tavsanoglu, 2012] show real-time operations achieved by using 
reduced 3x3 Gabor-like kernels and one orientation only to implement a 
Cellular Neural Network (CNN). Another implementation is described in 
[Y.C.P. Cho, N. Chandramoorthy, K.M. Irick, V. Narayanan, 2012], but it is 
strictly platform-dependent since the good performances are due to the use 
of high-frequency overclocked DSPs embedded in modern FPGAs and thus 
the solution is also of limited interest. Performances of the Gabor filter and 
their computational complexity give rise to a number of trade-offs, which are 
regulated by the high number of parameters defining the kernels and the 
number of orientations. In several cases Gabor-like solutions approximating 
Gabor filters allows obtaining acceptable performances, while significantly 
reducing the accuracy, sometimes in ways not acceptable for particular 
application. 

Moreover, these techniques find interesting applications in medical 
diagnostics. In fact, the significant improvements medical diagnostics 
underwent in the last years, due to the availability of new apparatus, e.g. x-
ray Computed Tomography (CT) scan and Magnetic Resonance (MR), based 
on the detection of anomalies from acquired images, and therefore to image 
and data processing techniques allowed to further develop ad hoc 
multimedia systems for these kind of applications. In particular, the 
development of methods for the accurate identification of specific elements 
in the images is fundamental to achieve good detection and acceptable 
results from a diagnostic standpoint [C.-Y. Lu, B.-Z. Jing, P.P.K. Chan, D. 
Xiang, W. Xie, et al., 2016], [G. Humpire-Mamani, A. J. M. Traina, C. 
Traina, 2012]. Furthermore, the presence of artifacts, blurring effects and 
noise in the acquired images causes difficulties in the interpretation of the 
results [B. Ergen, A. Çinar, G. Aydin, 2012.], which, in turn, could result in 
some cases in wrong diagnosis. Finally, several medical exams require high 
resolution image processing, such mammographic exams, which in some 
cases could require the processing of up to twelve million pixels. 

In this context the development of an ASIC allows the possibility of 
closely coupling the image processor with medical sensors obtaining images 
capable of supporting the medical team decisions. This is for example the 
case of sensors used in laparoscopic exams, where cameras use resolutions 
up to Full-HD (1920x1080 pixels) and 4K-UHDTV (3840x2160 pixels) and 
low power operations are required.  
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The developed work shows a careful choice of the parameters and allows 
an accurate implementation of 2D Gabor filters with a computational 
complexity that can be adapted to differently capable target platforms. In 
order to show this, different HW designs of a Gabor filter based edge 
detection system have been developed, implementing two, four and eight 
orientations and all capable of real-time processing with different ADP 
performances and accuracies. The derived ASIPs are targeted to both FPGAs 
and ASICs, using CMOS 90nm std_cells. Moreover, developing different 
design trade-offs it is possible to achieve real-time processing using working 
frequencies lower than the maximum one, allowing to obtain lower power 
consumptions, which makes the solutions promising for further System-on-
Chip (SoC) developments, integrated with acquisition sensors, together with 
the obtained results in terms of occupied area. 

 
 

 
 
 

 
Figure IV.1 Real part of Gabor filter with f0=0.2, θ=0, γ=1 and η=1. 
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IV.2 Theoretical Background 

Gabor functions are made up by the multiplication of two simpler 
functions: a Gaussian and a complex exponential. It is worth to note the 
dimensions of the Gabor filter to be used obviously vary with the particular 
application and that in the following the focus will be on 2D Gabor 
functions, obtained multiplying a generic two-dimensional Gaussian 
function for a complex exponential. The obtained function could be written 
in the form [J.-K. Kamarainen, V. Kyrki, H. Kälviäinen, 2002] 
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Figure IV.2 Imaginary part of Gabor filter with f0=0.2, θ=0, γ=1 and η=1. 
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with: 
 x and y representing the spatial coordinates of the considered filter; 
 0f  central frequency of the considered Gabor filter; 

   rotation angle for the particular orientation of the filter; 
   sharpness of the Gaussian along the major axis; 

  sharpness of the Gaussian along the minor axis. 
An example of a Gabor function for the set of parameters f0=0.2, θ=0, γ=1 
and η=1 is shown in Figure IV.1 and Figure IV.2, for the real and imaginary 
part of the function, respectively. As it is possible to notice, the real part of 
the Gabor function is an even function, while its imaginary part is an odd 
one. These properties allow exploiting the separation property of Gaussian 
based kernels along their orthogonal directions. In turn, this lead to obtain a 
reduction in the computational complexity of the filtering operations 
developed in HW along the orthogonal directions θs={0, π/2}, as shown in 
the following. The FT of the Gabor function is shown in Figure IV.3, where 
it has to be underlined that just half of the function is shown, since for the 
odd property of the function two lobes symmetric with respect to the origin 
of the axis have to expected. 

It should now be clearer how the features obtained via Gabor filters are 
stable functions in terms of image rotation, frequency scaling and translation 
operations. These properties allow us to state that Gabor features are robust 
in terms of noise rejection, image distortion and objects deformation. In 
particular, it is now evident how the invariance to image rotations is obtained 
thanks to the rotation property of the Gabor function, which is to say thanks 
to chosen set of angles along to perform the filtering operation. Having 
larger angle sets obviously provides better rejection to a wider set of angle 
rotations. In fact, the filter response for rotated images could be obtained via 

 
Figure IV.3 FT of Gabor filter with f0=0.2, θ=0, γ=1 and η=1. 
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filtering the original non-rotated image for the rotated Gabor filter, which 
can be easily obtained setting θ angle properly [J.-K. Kamarainen, V. Kyrki, 
H. Kälviäinen, 2002]. 

Furthermore, from the considerations developed in [W. Jiang, K.-M. 
Lam, T. Z. Shen, 2009] and [F. Pellegrino, W. Vanzella, V. Torre, 2004] it is 
possible to say that in the context of edge detection applications it is possible 
to develop robust results using only the imaginary part of the Gabor function 
and then of the filtered data. In fact, since the input of the image is always 
represented by real values in these cases, it is possible to use ass filter only 
the imaginary function 
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which avoids us to develop complicated modulus calculations, achieving a 
further reduction in the time required to perform the filtering operations and 
of the overall number of operations to be performed to carry out the final 
result.  

 
IV.3 Mathematical Remarks and Algorithmic Considerations 

From the observations developed in [F. Pellegrino, W. Vanzella, V. Torre, 
2004] the best way to detect also thin edges in images is not to obtain the 
candidate feature via a linear sum of the different orientations results, 
calculated over each scale. On the other hand, to detect these edges it is more 
convenient to use only the maximum result along the various orientations for 
each considered pixel coordinates. In order to avoid the use of a bank of 
Gabor filters with different central frequencies, which would complicate the 
design, a multiscale Gabor filter can be instead implemented to achieve a 
certain invariance to scale changes for the obtained features, as shown in [W. 
Jiang, K.-M. Lam, T. Z. Shen, 2009] and [G.D. Licciardo, T. Boesch, D. 
Pau, L. Di Benedetto, 2016]. This solution allows to obtain a certain 
invariance to scale changes while not complicating excessively the design, 
allowing to obtain acceptable performances in terms of speed, accuracy, 
noise rejection, invariance, power and area occupation. 

The method is applied on grayscale images, filtered using the Gabor 
functions derived from the chosen set of parameters and orientations at each 
scale. Since Gabor filters could assume negative values, only positive values 
coming out from the filtering stage are taken into account, to obtain only 
positive or null values at the end of the calculations, according both to the 
significant values for the image coding and to a maximum selection 
methodology. This allows to obtain a set of NSc·NOr candidate features, 
where NSc represents the number of considered scales in the design and NOr  
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represents the number of orientations calculated for each scale. From the set 
of candidates obtained for each coordinate of the image to be filtered only 
the maximum result is chosen as the proposed feature to compose the final 
resulting image. 

The following sections are dedicated to the determination of the 
parameters of the Gabor filters, obtained developing several considerations 
on the parameters themselves and the chosen number of scales, in order to 
establish a set of parameters fit for the development of a HW edge detection 
design, capable of obtaining acceptable trade-offs in real case scenarios. 
 
IV.3.1 Filter Central Frequency, f0 

f0 represents the central spatial frequency of the Gabor filter, which is 
always defined in the range [0, 0.5], since it is possible to state that the 
maximum frequency to be considered, fN=0.5, is given by the Nyquist 
theorem. The central frequency has to be carefully chosen, since frequencies 
below 0.1 could cause a degradation in the obtained features accuracy due to 
higher blurring in the resulting image and to the impossibility of following 
sharp edges. On the other hand, frequencies above 0.2 may require filters 
with narrower bandwidths, requiring an unwanted oversampling of the 
kernel with respect to the resolution grid of the input image [W.-C. Zhang, 
F.-P. Wang, T. L. Zhu, Z.-F. Zhou, 2014]. Moreover, it could be possible to 
consider more central frequencies in order to obtain more results and a more 
robust system, obviously at the cost of implementing more units, and hence 
at the cost of higher area and power consumption or lower operating 
frequencies. 

 
IV.3.2 Set of Orientations, θ 

As previously seen, the number of considered orientations is one of the 
primary concerns in Gabor filter applications, if not the one of the most 
important ones, since it determines the rejection to rotations of the original 
image. The considerations to be developed in this case regard the desired 
trade-off between the computational complexity of the design to be 
developed and the level of disturbance rejection to be achieved. In fact, 
using a growing number of orientations tends to give better performances in 
terms of detected edges, but at the same time another convolution per scale 
has to be performed for any new direction to be computed. In turn, this 
increases the total number of orientations to be computed and the number of 
overall operations to be carried out; in particular, the increase in the number 
of MAC operations is linear with the number of considered operations. 
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Another important characteristic to notice is that the number of orientations 
to be considered is always a power of 2 and then the complexity of the 
operation increase by such a factor every time we increase the number of 
angles; furthermore, the angles span uniformly the space and thus the 
different rotation angles differ by fixed quantities. 

Table IV.1 and Table IV.2 report the PSNR and SSIM indexes calculated 
taking as reference the image obtained filtering with the eight orientations 
set, θEight={kπ/8}, where k is an integer in the range [0,7], on two different 
sets: 

 a public domain test image set composed by a significant subset of 
online test image database available at 
[https://homepages.cae.wisc.edu/~ece533/images/]; 

 a public domain test image database, used for medical applications 
related to retinal blood vessel detection, DRIVE database 
[https://www.isi.uu.nl/Research/Databases/DRIVE/]. 

From the reported data, it is possible to state that, in terms of detection 
capability, the two orientations implementation, requiring the lowest number 
of operations, fails in detecting several edges if compared to the reference 
case, while the four orientations case combines edge detection comparable to 
the eight directions case, without overly increasing the overall number of 
operations required. In the following, also a method to obtain an eight 
orientation design based on some simplifications is carried out, in order to 
achieve acceptable accuracies when required. 

TABLE IV.1 PSNR and SSIM values obtained comparing the imaginary part 
of 2Or and 4Or results with the eight orientations case for 
[https://homepages.cae.wisc.edu/~ece533/images/] database. 

Image 
2Or 4Or 

PSNR [dB] SSIM PSNR [dB] SSIM 
airplane 21.90 0.72 25.16 0.87 
baboon 20.11 0.58 25.47 0.86 

boat 23.40 0.68 26.78 0.84 
Lena 23.42 0.66 27.56 0.88 

peppers 23.49 0.68 26.00 0.84 
Average 22.46 0.66 26.19 0.86 

 

 

 



 
 

67 
 

TABLE IV.2 PSNR and SSIM values obtained comparing the imaginary part 
of 2Or and 4Or results with the eight orientations case for 
[https://www.isi.uu.nl/Research/Databases/DRIVE/] database. 

Image 
2Or 4Or 

PSNR [dB] SSIM PSNR [dB] SSIM 
Average 25.70 0.82 29.71 0.91 

 
IV.3.3 Gaussian Sharpness Values, γ and η 

The γ and η parameters are the standard deviations of the Gaussian 
envelope along x’ and the Gaussian projection of the Gabor filters along y’, 
respectively. Their tune is fundamental to avoid blurring problems and 
excessive sensitivity of the filters to small variations of the images. 
Moreover, their values must be evaluated in conjunction with the considered 
scales kernel dimensions, NS. Another important evaluation to be developed 
regards the quality of the input image set, since the parameters could be 
finely tuned to obtain improvements for a certain specific application over 
another. In particular, it is possible to proceed through objective and 
subjective evaluations of the results in order to obtain a better behavior for 
the considered system. In the following, γ=1 has been imposed to include at 
least one period of the periodic component in the Gaussian envelope, and 
thus to ensure the presence of the odd function needed for edge detection [R. 
Mehrotra, K. R. Namuduri, R. Ranganathan, 1992]. This is due to the fact 
that the Gaussian shape has been adequately approximated by imposing the 
minimum filter dimensions to 6γ+1 as shown in [G.D. Licciardo, A. 
D'Arienzo, A. Rubino, 2015]. The previous considerations result in giving 
rise to a filter having minimum dimensions 7x7; however, in our design this 
filter has been combined to a 9x9 one to implement a multiscale architecture 
improving the accuracy and the stability of the final results. Finally, η=15 
has been imposed in order to simplify equation (IV.3) in a HW friendly 
fashion, as will be clearly shown in the following. 

 
IV.3.4 Scales Dimensions, Ns 

In the development design only filters having the same dimensions along 
the two dimensions, Nx and Ny, for which Nx= Ny =Ns; this is done both to 
simplify the design and to consider only symmetric Gabor kernels. Through 
several observation it has been possible to state that impose high values of Ns 
will result in excessive blurring along the detections of the edges, while 
lowering the parameter too much will result in too sensitive systems in the 
case of noisy input images. 
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Due to these considerations and aiming to achieve both good edge 
detection and a saving in the used resources and arithmetic units, we decided 
to implement two scales having dimensions 7x7 and 9x9. Moreover, it is 
worth to notice that, if necessary, it is possible to obtain further 
enhancements in the edge detection results using higher number of scales or 
orientations. In this sense, the proposed choice is obviously a trade-off 
between the detection capability and accuracy achievable by the design and 
its complexity, which mainly depends on the overall number of arithmetic 
operations involved in the calculation process. 

Two examples of the obtained results for two images taken from the 
previously considered databases are shown in Figure IV.4 and Figure IV.5, 
together with the varying number of orientations used and the established set 
of parameters. 

 

 
Figure IV.4 (a) Original Lena image and obtained results for 0 0.2f  , 1  , 15 

considering 7x7 Gabor filter and  (b) two, (c) four and (d) eight orientations. 
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IV.4 Numerical Remarks 

Usual image filtering application implemented via SW use FP32 data 
according to the IEEE-754 FP32 format. As seen in Chapter I, these 
implementations are often too heavy to be directly implemented in HW. In 
fact, while FP32 obviously guarantees high accuracy in the final results, the 
use of this type of coding is usually avoided, since it results in an 
unacceptable degradation of the performances in terms of working 
frequencies, power consumptions, area occupation and resource usage. This 
is obviously related to the general higher complexity of the arithmetic units 
used in FP32 operations in combination with the high number of MAC units 
to be considered in such filtering operations. Due to this computational 

 
Figure IV.5 (a) Original DRIVE dataset image and obtained results for 0 0.2f  , 1  , 15 

considering 7x7 Gabor filter and  (b) two, (c) four and (d) eight orientations. 
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burden and the consequent unacceptable performance degrading, HW 
implementations usually recur to FI formats instead of FP ones, accepting a 
certain degradation in the accuracy of the results and choosing at the same 
time a number of significant bits in the codelength capable of guaranteeing 
results close enough to the a FP implementation. 

Considerations have been developed starting from the theory developed in 
[G.D. Licciardo, T. Boesch, D. Pau, L. Di Benedetto, 2016] for the case of 
2D Gaussian filters for the modeling of a worst case scenario on the 
obtainable tiles to be processed for the various considered angle orientations. 
The so developed model allows for the development of a method for 
choosing a minimum codelength in which the Least Significant Bit (LSB) is 
not affected by the approximation errors, meaning that adding more bits 
would not result in an improvement in the overall results, since them would 
be affected by the approximation errors. The data obtained from these 
considerations on approximations are reported in Table IV.3, varying the 
number of bits of the coefficients codelength. 

TABLE IV.3 Maximum error on the Gabor Filter coefficients varying the FI 
codelength for the chosen set of parameters. 

Number of 
Bits 

Maximum 
Error 

14 1.04E-04 
15 5.95E-05 
16 2.98E-05 
17 1.27E-05 
18 7.58E-06 

 
The FI codings under test for the Gabor kernel coefficients approximations 
are made up by 1 bit for the sign, 1 bit for the integer part and varies the 
number of bits used for fractional part. We choose for the filter coefficients a 
FI16 coding, in order to obtain good accuracy, while containing the size of 
the arithmetic units, at the same time. 

After this first evaluation, in order to achieve a better understanding of 
the error propagation derived from the coefficients approximation, the worst 
case errors for the whole filtering operation have been computed along the 
different orientations. In this case the pixels of the input tile have been 
imposed to have maximum values (255) in correspondence of the positive 
values of the filter and minimum ones (0) in correpondence of the other filter 
values. Since the final results are by definition all positive numbers, as 
preoviously stated, no sign bit will be considered in the final results. This 
allows us to consider smaller codelenghts and in particular to obtain a FI12 
coding in which the 8 Most Significative Bits (MSBs) represent the integer 
part, while the 4 LSBs respresent the fractional one. Finally, it has to be 



 
 

71 
 

noticed that the reduction of the codelength for the final results is mainly 
related to the propagation of the errors caused by the approximations on the 
original Gabor kernel coefficients along the convolution calculations. Due to 
that, a FI codelength in which the LSB results not affected by those 
approximations and errors has been chosen. Table IV.4 reports the results 
discussed above, varying the codelength for the final result. 

TABLE IV.4 Maximum error on the filtering results for the chosen 
codelength of the Gabor coefficients. 

Number of Bits Maximum Error LSB 
10 1.05E-01 2.50E-01 
11 4.95E-02 1.25E-01 
12 3.57E-02 6.25E-02 
13 3.57E-02 3.13E-02 
14 2.00E-02 1.56E-02 

 
IV.5 Proposed Designs 

The chosen designs to be implemented and considered are mainly five: 
 a two orientations implementation (2 Or); 
 a canonical four orientations implementation (4 Or); 
 a shared four orientations implementation (4 Or-Shared); 
 a canonical eight orientations implementation (8 Or); 
 a shared eight orientations implementation (8 Or-Shared). 
The considered sets of orientations are then 
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   (IV.4) 

It is important to highlight how the shared designs have been derived 
from the canonical ones through a careful resource reorganization and units 
sharing in case in the specific application would be preferable to sacrifice the 
maximum frequency to obtain the same accuracies of the canonic designs, 
while saving resources and obtaining smaller area occupation. The such 
obtained trade-offs are fundamental to correctly evaluate what would be the 
best fitting design for the specific application. 

The general backbone of all the designs is sketched in the block diagram 
of Figure IV.6, while a detail of the various units composing it is provided in 
the following. 
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IV.5.1 Gabor Coefficients Memories Figure IV.5 General block scheme of the 

proposed designs 

The coefficients of the kernels of the Gabor filters are stored in dedicated 
memory structures, in order to be sent to the Arithmetic Units at any time the 
calculations have to start. Another information comes from the consideration 
that the function in equation (IV.3) is a symmetric one; thanks to that 
characteristic it is possible to write that 

2/
,,0 ),,,(   jiji GGfjiG    (IV.5) 

for i, j ∈ I and θ ∈[0, π/2], it is possible to state that the dimensions of the 
data to be stored and, thus of the memories to be implemented, can be 
reduced, since a lower number of coefficients is needed, due to the 
symmetry itself. In particular, for the orientations θ=0 and θ=π/2 all the rows 
and columns, respectively, have got the same associated value and hence it is 
possible to store only NS coefficients instead of NS

2. 
In the case of the orientations θ= π/4 and θ= 3π/4 another symmetry could 

be found along the diagonal axis of the associated kernel matrices (minor 
and major diagonal, respectively), allowing us to state that only (2NS –1) 
coefficients are needed in this case. 

 
Figure IV.6 General block scheme of the proposed designs. 
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Finally, for the orientations θ= π/8, θ= 3π/8, θ= 5π/8 and θ= 7π/8 it is not 
possible to simply define such a symmetry along an axis and just a central 
symmetry could be found, allowing us to obtain a reduction of the 
coefficients up to one half of starting ones. All the considerations developed 
apply for the particular set of parameters, which allows to obtain a 
considerable reduction in the total number of coefficients to use, thanks to 
their symmetry and to considerations related to their numerical 
approximations. 

Considering the previous results and the use of the FI16 coding, three 
memories of 112 bits, 256 bits and 384 bits must be instantiated when NS=7; 
for NS=9, the dimensions of the memories to be stored increase to 144 bits, 
400 bits and 640 bits. Figure IV.7 reports the memory requirements for 
different scales, varying the number of orientations, while Figure IV.8 
details the symmetry of the kernels for the various orientations. 

 
IV.5.2 Memory Module 

The Luma components of the incoming pixels are coded on 8 bits, 
acquired in raster scan order from the image source and are then stored in a 
Memory Module in order to wait for the filtering operations. The Memory 
Module is arranged to operate like a long FIFO, having overall dimensions 
WxNS

max, where W is the width of the input image and NS
max is the dimension 

Figure IV.7 Memory utilization in bits varying the filter dimensions. 
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of the greatest kernel. Due to these considerations, the design uses NS
max 

dual-port RAMs, one for each row, which has dimensions 1x(W-NS
max), 

while a bank of NS
maxxNS

max  registers terminates the rows to make the pixels 
available in parallel to the Arithmetic Unit. The overall behavior is the same 
shown for the memory module in Chapter I. 
 

IV.5.3 Arithmetic Unit 

The Arithmetic Unit represents the main calculation unit of the proposed 
design; it computes the partial results elaborating the initial data coming 
from the Gabor Coefficients Memories and the Memory Module and 

 
Figure IV.8 Scheme of the various kernel matrices and their symmetries. 
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develops the needed filtering operations for each orientation, combining 
MAC operations. 

Exploiting the separability property of equation (IV.5) along the directions 
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   (IV.6) 

it is possible to reduce the complexity of the computation along these 
directions from O(Ns

2) to O(Ns). Furthermore, the choice of taking η=15 in 
the parameters choice simplifies (IV.6) as: 
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   (IV.7) 

where I is the vector defined having all unitary values, I=[1,1,…,1]. 
It is worth to underline that the impossibility to separate the kernel along 

the remaining orientations is the main reason of the increment of arithmetic 
components. Figure IV.9 reports an analysis of the required number of 
adders and multipliers as a function of the filter dimensions and of the 
number of orientations. Aiming to mitigate these problems, the Shared 
designs presents a reduced Arithmetic Unit, obtained by re-using the same 
structures to calculate both the π/4 and 3π/4 orientations in the case of the 
four orientations implementation and to calculate the coupled orientations 
(π/8, 5π/8) and (3π/8, 7π/8), respectively. 

These implementations reduce the number of adders and multipliers used, 
with respect to the canonical designs, as reported as reported in Table IV.5. 
Obviously, the cost to pay is in this case the increase of the latency time, 
because the shared designs need two clock cycles to filter a single pixel 
along all the orientations for each scale. 
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TABLE IV.5 Adders and multipliers used in the considered designs with two 
scales. 

Orientations Adders Multipliers 
2 Orientations 56 32 
4 Orientations 568 292 

4 Orientations Shared 312 162 
8 Orientations 824 812 

8 Orientations Shared 568 422 

 

IV.5.4 Control Unit 

The Control Unit is a finite state machine (FSM) capable of managing the 
correct transferring of the data to and from the Arithmetic Unit and its sub-
units, through several control signals. The FSM also takes into account the 
case of processing near the image corners or edges, in order to correctly 
filter the image, juxtaposing null masks in these regions to complete the 
incoming tiles. Moreover, it synchronizes the used scales, which is 
fundamental to obtain all the filtered data related to the same pixel available 
at the input of the Max Pooling Unit at any beginning of a new clock period. 

Figure IV.9 Number of the total multiplier units, varying the filter dimensions. 
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IV.5.5 Max Pooling Unit 

The Max Pooling Unit compares the results coming from the Arithmetic 
Unit, computed for the various orientations and scales, and selects the 
greatest value among them 
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as a feature candidate to compose the final resulting image of the edge 
feature candidates. 
 
IV.6 Synthesis and Results 

The designs have been targeted to a Xilinx Virtex 7 XC7V2000tflg1925-
1, as part of the proFPGA DUO ASIC prototyping board and to TSMC 
CMOS 90nm std_cells using Cadence Encounter RTL Synthesis tool. 
Synthesis results have been reported in Table IV.6, Table IV.7 and Table 
IV.8. 

Now, it is possible to further justify the use of FI coding over FP32 one, 
due to its minor complexity. In fact, it is possible to state that from the 
developed HW designs a single FP32 multiplier would require 681 LUTs 
compared to the 126 LUTs used in the  FI implementation, while a FP32 
adder would require a 239 LUTs compared to the 77 LUTs for the FI 
implementation. From this consderations it is possible to say that a FP32 
implementation of the Arithmetic Unit for the 4Or architecture, would 
approximately 334604 LUTs compared to the 59453 LUTs obtained using 
the chosen FI coding. It is worth to underline that the Xilinx Virtex 7 
XC7V2000tflg1925-1 has 1221600 available LUTs, beeing a high-end 
board, but a FP32 design could not be implemented on lower end boards and 
moreover, an 8 Or design would be totally not implementable in a FP32 
scenario. Meanwhile, the std_cell implementation of the same design using 
TSMC CMOS 90nm technology would require an area of approximately 13 
mm2, which is usually unacceptable for applications in which usually one of 
the main focuses is integration and resource savings. 
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TABLE IV.6 Synthesis of the designs on FPGA platform using DSPs. 

 FPGA 
 With DSPs 
 2Or 4Or 4Or-Shared 

Target platform Virtex 7 Virtex 7 Virtex 7 
LUTs 4022 27042 22281 
FFs 2864 16220 11833 

DSPs 32 260 146 
Path Delay[ns] 5.60 6.40 10.00 

Power [W] 0.775 1.629 1.748 
fps 86 75 48 

 8Or 
8Or-

Shared 
Cesur et al. 

Target platform Virtex 7 Virtex 7 Stratix 4 
LUTs 36604 27132 14025 
FFs 24508 15249 20321 

DSPs 316 174 202 
Path Delay[ns] 5.60 11.20 6.73 

Power [W] 1.446 1.493 -- 
fps 86 43 71 

 
TABLE IV.7 Synthesis of the designs on FPGA platform without using DSPs. 

 FPGA 
 Without DSPs 
 2Or 4Or 4Or-Shared 

Target platform Virtex 7 Virtex 7 Virtex 7 
LUTs 8233 59930 41265 
FFs 3440 21812 14912 

DSPs -- -- -- 
Path Delay[ns] 5.60 6.40 10.00 

Power [W] 0.821 1.898 2.327 
fps 86 75 48 
 Without DSPs 
 8Or 8Or-Shared 

Target platform Virtex 7 Virtex 7 
LUTs 76672 49298 
FFs 30564 18566 

DSPs -- -- 
Path Delay[ns] 5.60 11.20 

Power [W] 1.733 1.789 
fps 86 43 
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TABLE IV.8 Synthesis of the designs in std_cells. 

 Std_cells 
 2Or 4Or 4Or-Shared 

Target platform 90 nm 90 nm 90 nm 
Area [μm2] 1002929 2414128 1801557 
Delay[ns] 2.86 3.37 6.83 

Power [mW] 14.013 76.453 27.135 
fps 168 143 70 

 
It is worth to underline that the reported power estimations are normalized 

at 100 MHz, while the fps performances are evaluated on Full-HD 
(1920x1080 pixels) image resolution. 

From the above tables, it is possible to notice that the 2 Or architecture 
achieves the highest working frequency and the lowest power consumption 
and area occupation. However, it is the worst design in terms of accuracy, 
because it returns worse results in terms of edge detection. Thus this kind of 
implementation could not be used in applications where the accuracy is of 
primary concern. On the contrary, the 4 Or-Shared and the 8 Or-Shared 
implementations provide the same results of the 4 Or and 8 Or 
implementations in terms of accuracy, respectively. At the same time, using 
these designs it is possible to achieve great reductions in terms of area, while 
sacrificing the maximum working frequency of the overall system. In fact, 
the main drawback is represented by the higher delay when compared to the 
other solutions. However, considering that it exhibits a delay of 6.83 ns in 
std_cells and 10 ns in FPGA, real-time performances are achieved up to 
equivalent frame resolutions of 2209x2209 and 1825x1825 for the ASIC and 
FPGA respectively, all compatible with Full-HD standard. Therefore, 
considering the ADP product and the accuracy of the results, the shared 
solutions appear as the optimal choice, if there are no strict requirements in 
terms of power budget and area consumption. 

In fact, the 4 Or-Shared implementation obtains a better edge detection 
compared to the 2 Or at the cost of a 79.6% area overhead and 93.6% 
increase in power consumption for an ASIC implementation. At the same 
time, the 4 Or-Shared provides the same accuracy of the 4 Or 
implementation, while reducing the area occupation of 25.4% and the power 
consumption of 64.5%. The 8 Or-Shared and the 8 Or implementation are 
not yet being developed and studies using std_cell technology, which would 
be object of further studies. However, from the FPGA data it is possible to 
develop some considerations to state what has to be expected in that case. 
These implementations would obtain a better edge detection compared to the 
4 Or at the cost of an area overhead and greater power consumption, while 
the 8 Or-Shared provides the same accuracy of the 8 Or implementation 
reducing the area occupation. 
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The data have been obtained imposing the constraints on the PVT 
(Process, Voltage, Temperature) point as WORST process, HIGH voltage 
and HIGH temperature, to address the worst-case timing scenario. 
 
IV.7 Conclusions 

The proposed work develops the design of new ASIPs to implement the 
Gabor filter both for general purpose applications and medical imaging ones. 
The proposed designs are relevant for pre-processing applications in portable 
and resource-constrained devices. 

Thanks to HW friendly implementations, state-of-the-art performances 
are achieved both on FPGA and std_cell implementations; in particular it has 
been possible to develop an 8 Orientation architecture capable of achieving 
better detection while obtaining acceptable ADP performances, which is a 
the only design doing so present in literature at the moment. 

Future works could regard more studies on the proposed ASIC 
architecture towards its possible fabrication, while considering further 
developments to the overall architectures, in order to achieve better designs 
in terms of power and energy. To improve the design Distributed Arithmetic 
techniques could be used to further simplify the arithmetic circuitry, to 
explore the possibility further increasing the number of orientations and 
scales and to reduce the area occupation to make the ASIP more feasible for 
integration with image sensors [S. Venkatachalam, S.-B. Ko, 2017]. These 
developments are needed in order to make the design suitable for more 
resource-constrained applications and to achieve even better detection 
results. Finally, further developments could regard the implementation of the 
proposed designs on more shrunk technologies, in order to obtain better 
ADP performances and achieve the integration of the ASIP with the related 
image sensors. 
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Chapter V 
Neural Networks in Multimedia 

Processing 

V.1 Introduction 

Since the last part of the research topics was devoted to VS and 
segmentation applications in multimedia processing, it seemed a natural 
consequence to shift the focus of the research also on the latest applications 
related to these techniques, represented by NN and NN dedicated HW 
accelerators. The interest in this kind of applications is a natural 
consequence of the research on Gabor filters applications; in fact, several 
implementations of Gabor filters are used as pre-filtering stages for NN or in 
combination with them to provide better results [E. Cesur, N. Yildiz, V. 
Tavsanoglu, 2012]. 

The aim of a NN is to recognize patterns in the input data; a pattern is 
defined as a particular arrangement of features or descriptors. At the same 
time it is possible to define pattern classes as families of patterns sharing 
some common characteristics. A generic pattern could be represented as a 
numeric vector and the recognition of a particular class starting from its 
features could be performed, for example, evaluating the most likelihood 
function or the Euclidean distance between the class vector and the obtained 
candidate vector. As an example, let’s consider the simple classification of 
different rectangles in an image. If we want to select among other rectangles 
only the ones having particular dimensions it is possible to associate to all 
the rectangles a point on two variables graph, which variables represent the 
width and the height of the particular rectangle. It is then possible to 
associate to the particular measurements we want to recognize a class, 
associated to a region in the two variables graph, and evaluate the distance of 
the sample rectangle from the class to evaluate if it belongs to it or not. This 
is a simple example, but with the relative modifications it is possible to 
extend this kind of considerations to fingerprints analysis, face recognition, 
gait analysis and several other problems which are nowadays more and more 
important in consumer electronics. 
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The recognition could be performed following mainly two different 
approaches: a decision-theoretic approach and a structural one. Structural 
techniques are based on relationships of the patterns shapes and are based on 
shape numbers, which are score functions taking into account the similarity 
of the shapes of the boundary regions, while decision-theoretic approach 
relies on the use of discriminate functions and quantitative evaluations, not 
considering the structural relationships of the pattern shapes. In the 
following only decision-theoretic approach will be taken into account, while 
structural techniques will not be further discussed. 

If x represents a generic n-dimensional pattern vector, having K pattern 
classes, χ1, χ2, …, χK, the problem reduces to find K functions, s1, s2, …, sK, 
such as that a pattern x is associated to the class χ i if and only if 

)()( xsxs ji   ijKj  ;,...,1              (V.1) 

Decision boundaries between the various contiguous regions are defined by 
the values in the plane for which the following equality is obtained 

)()( xsxs ji     (V.2) 

An example of decision theoretic approach is matching, in which each class 
is represented by a model pattern vector; after that, any new input pattern is 
assigned to the class which it is closest in terms of a previously established 
metric. As previously stated, the simplest choice is the Euclidean distance 
metric, also known as minimum distance classifier, but, of course, it is not 
the only one possible (e.g. correlation derived matching). 

 
Figure V.1 Example of simple region separation in pattern recognition. 
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The probability for a particular pattern to be associated to a particular 
class si is identified by p(si|x); a misclassification of a pattern verifies 
whenever a pattern x belonging to the class si is associated to another class 
sj, such loss in the pattern is indicated by Lij. The conditional average risk 
indicates the average loss on all the considered classes 





K

i
iiijj sPsxpLxr

1

)()|()(    (V.3) 

It is possible to compare the various rj(x) and assign every incoming pattern 
to the class having the minimum value in order to minimize the conditional 
average risk. Such a classifier is called Bayes classifier since it exploits the 
Bayes a posteriori probability. The classifier is optimal in the sense of 
minimizing the misclassification probability. However, this holds iif the 
probability density functions of patterns and the probability of occurrence of 
each class are known a priori. Due to these limitations, usually assumptions 
on the density functions and estimation of the parameters have to be made in 
order to use Bayes classifiers. The most common assumption is to consider 
the Gaussian probability density function for the density functions p(x|si). In 
the general n-dimensional case the Gaussian density are specified by the 
mean vector, mi, and the covariance matrix, Cj, approximated as 
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Moreover, since we are dealing with Gaussian functions it would be 
convenient to consider the logarithm of the Bayes decision functions instead 
of the Bayes decision function themselves. This obviously does not affect 
the result, since the logarithm function is monotonic and the values 
considered for the Bayes decision functions are all positive. Furthermore, the 
optimal classifier in a Bayes sense is defined by the following attributes: 

 the pattern classes are described by Gaussian functions; 
 all covariance matrices are equal to the identity matrix; 
 all classes have the same probability to occur. 

In this case the pattern classes we obtain are Gaussian clouds having the 
same shape in n-dimensions, which are usually called hyperspheres. 
 
V.2 Neural Networks 

The approaches seen so far use simple patterns and estimate simple 
statistical parameters for the different pattern classes. Sets of patterns are 
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also known as training patterns, while the related sets of parameters are also 
known as training set; having a training set it is possible to obtain the set of 
decision relations defining the decision regions in the considered variable 
space, this process is known as training or learning. Basically, the training 
patterns are used to derive the parameters related to the decision function of 
each region. Obviously, after having defined the decision boundaries it is 
possible to estimate the goodness of the considered classifier by simply 
classifying actual patterns and verifying the correctness of the classification. 

In this scenario neural networks are utilized to develop the training for 
the coefficients and vary the coefficients of the network in a way that the 
coefficients could be modified by any of the coefficients of the decision 
functions, in order to obtain the requested decision functions by successive 
adaptations of the coefficients. NNs are mainly composed by two 
components: 

 the neurons, which are units calculating a given function of the 
inputs entering the neuron itself (which is usually a weighted 
average of the inputs which is then passed to non-linear 
activation function, usually a sigmoid, plus a certain bias); 

 the connections between the neurons, which represent the 
coefficients for which multiply the inputs to the neuron and are 
the trainable coefficients described above. The training of the 
coefficients could be achieved using different algorithms (such 
like Gradient based and Back-propagation techniques), but 
particular attention has to be paid to avoid overfitting issues, 
which could worsen the classification performances of the NN. 

A general base scheme of a NN is presented in Figure V.2. The units 
called hidden units are needed, together with back-propagation technique to 
obtain NNs capable of describing non linear functions [D. E. Rumelhart, G. 
E. Hinton, R. J. Williams, 1986]. 

The desired training algorithm has to derive a set of weights, w, and 
biases, b, capable of  approximating the desired output y(x) for all the 
training inputs x. To do that, usually a cost function is derived, such that the 
vectors  w and b which minimize the function are to be found 

2
)(),(  

x
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Then the problem becomes the minimization of a cost function which 
could be carried out using the gradient descent algorithm, well-known since 
the XIX century. The method consists in choosing a random starting point x, 
computing the derivatives of the function related to this point, using the 
gradient, choosing the minimum and negative value of the derivative, 
recalculating the derivative and repeat these steps until a minimum is 
reached. Obviously, we want to possibly reach the absolute minima of the 
function and not any random local minima; this could be achieved using 
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techniques like the stochastic gradient algorithm, in which the introduction 
of random noise allows to escape local minima
would not be an issue as stated in [

Back-propagation algorithm is used to
∂C/∂w and ∂C/∂b, needed in any gradient descent technique
fast way, obtaining the training of the network in an acceptable time. As 
stated before, back-propagation was first developed in the 
E. Jr Bryson, Y.-C. Ho, 1969], 
and further developed in [D
1986]. For back-propagation to work, the cost function need to satisfy two 
conditions: 

 it can be written as an aver
individual training examples. This assumption is needed because the 
back-propagation algorithm calculates the partial derivatives on 
single training examples;

 it can be written as a function of the outputs of the N
that the outputs are not function of a particular set of bias and 
weights, but only of the activations.

Hence, the back-propagation concerns about the variations in the 
and biases in order to optimize the cost function. We then define
function as 

Figure V
[https://en.wikipedia.org/wiki/File:Colored_neural_network.svg

techniques like the stochastic gradient algorithm, in which the introduction 
of random noise allows to escape local minima, but in most problems that 

stated in [Y. LeCun, Y. Bengio, G. Hinton, 2015]. 
propagation algorithm is used to compute the gradient components, 

needed in any gradient descent technique, in a relatively 
fast way, obtaining the training of the network in an acceptable time. As 

propagation was first developed in the ‘60s and ‘70s [A. 
C. Ho, 1969], [S. Linnainmaa, 1970] and then rediscovered 

D. E. Rumelhart, G. E. Hinton, R. J. Williams, 
propagation to work, the cost function need to satisfy two 

it can be written as an average over the cost functions obtained over 
individual training examples. This assumption is needed because the 

propagation algorithm calculates the partial derivatives on 
single training examples; 
it can be written as a function of the outputs of the NN. This means 
that the outputs are not function of a particular set of bias and 
weights, but only of the activations. 

propagation concerns about the variations in the weights 
and biases in order to optimize the cost function. We then define the error 
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where l
iq  represents the input to the generic i-th neuron of the l-th layer. 

Back-propagation is mainly developed through four fundamental equations: 
L

a
L qC '     (V.8) 

where   represents the Hadamard product, a represents the activations, σ the 

activation functions and L  is the error of output layer; 
LlTll qw '))(( 11      (V.9) 

which relates the error in the considered layer to the one in the next layer; 

l
il

ib

C 



               (V.10) 

l
i

l
jl

ij

a
w

C 1



               (V.11) 

two equations to consider the change rate of the cost function with respect to 
the biases and weights. What is fundamental about the back-propagation is 
the simultaneous calculation of all the partial derivatives, using just the 
results from the forward layer of the NN to develop the backward one, as 
can be noticed from the equations set. 

To sum up, the resulting algorithm will then proceed as follows: 
 forward propagation is calculated through the layers; 
 the cost function is calculated; 
 backward propagation is calculated and error functions for any 

neuron is evaluated; 
 the weight’s gradient is obtained multiplying the input activations 

and the calculated delta functions; 
 the learning rate (defined as a percentage of the weight’s 

gradient) is subtracted from the original weights. 
This algorithm is then repeated until the NN does not reach an acceptable 
and desired performance. 

Particular importance have multi layer NN, which are capable of learning 
complex, non linear and multidimensional tasks, resulting particularly 
appealing in speech, image and video recognition applications. In fact, in 
such applications the use of fully connected layers is not possible because of 
the high number of data to be processed, since starting from images of a few 
hundred pixels and considering one hundred hidden units in the network, one 
would already need several thousands of weights and furthermore this kind 
of NN does not show particular invariance to translations and distortions of 
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the input signal; this will result in larger fully connected layer networks 
having the same performances of smaller non fully connected ones and also 
in longer training times [Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998]. 
For these reasons, several NN configurations which avoid using only fully 
connected layers have been derived over the years as it is possible to notice 
in Figure V.3, each one having different performances for different 
applications. An important class of NN is represented by Convolutional 
Neural Networks (CNN), in which the main operation is represented by a 
convolution followed by addition of the biases and a threshold or sigmoid 
function for any layer. Varying the number and the type of layers or the 
number of neurons per layer will cause major changes to the performance of 
the overall network, as shown in [A. Krizhevsky, I. Sutskever, G. E. Hinton, 
2012]. Furthermore, subsampling operations are developed since after 
finding a feature its absolute position in the original series of data becomes 
less important and this allows reducing the resolution of the feature maps 
and thus the number of convolutions and operations to be carried out by the 
NN and also the number of weights and coefficients to be considered in the 
layers following the subsampling operation. Thanks to all these 
characteristics, CNNs are capable of obtaining three main features: shift, 
scale and distortion invariance. These are achieved dividing the processing 
in smaller local blocks, which represent the convolution units, capable of 
processing the data related to a small portion of the previous layer to process 
and obtain local information; the operation is then repeated layer after layer 
in order to obtain more and more descriptive features from the combination 
of the ones obtained processing the previous layers. 

In the following we present in more detail the architecture of one of the 
most used CNNs nowadays, AlexNet, and then present the developed work 
on weights coefficients coding using Vector Quantization (VQ) technique, 
for which an ad hoc HW decompression unit has been developed. 

 
V.2.1 AlexNet 

AlexNet was first presented in [A. Krizhevsky, I. Sutskever, G. E., 
Hinton, 2012] and it is one of the most studied CNNs since then. The CNN 
was developed to work on ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) 2010 dataset, which is composed by 1 million high 
resolution images classified in 1000 categories. While the ImageNet dataset 
is composed by images of different resolutions, AlexNet CNN was thought 
to work with 256x256 resolution images only, but it is important to highlight 
that no preprocessing has been done on the original images, but only 
cropping operations to select 256x256 regions of the image to be processed. 
The architecture of the network is shown in Figure V.4, in which the  
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different layers and their  dimensions are  highlighted. AlexNet is  composed  
by  five convolutional layers and three fully connected layers. The first five 
layers are the convolutional ones, followed by the fully connected and by a 
softmax unit producing the  output distribution over the specified 1000 
classes. Table V.1 sums up the size and the number of the various kernels 
used in AlexNet implementation, while the fully connected layer are made 
up by 4096 neurons each. Some of the kernels used by the CNN are reported 
in Figure V.5 However, the whole AlexNet architecture has 60 million 
different parameters. 
 
TABLE V.1 Size and number of kernels involved in AlexNet CNN. 

 Size Number 
Conv. Layer 1 11x11x3 96 
Conv. Layer 2 5x5x48 256 
Conv. Layer 3 3x3x256 384 
Conv. Layer 4 3x3x192 384 
Conv. Layer 5 3x3x192 256 

 
It is important to notice that while usually the neurons’ outputs are modeled 
using a tanh(·) form or in general a sigmoidal-like one, in AlexNet they are 
modeled using a simplified model known as Rectified Linear Unit (ReLU), 
which function is shown in Figure V.6 [V. Nair, G. E. Hinton, 2010]. The 
use of these saturated units allows obtaining a huge acceleration in the 
training phase and is also simpler to implement in HW than sigmoidal-like 
functions. 

AlexNet represented the first successful application of CNNs on large 
datasets winning the first prize in ILSVRC 2012 obtaining a top-5 error rate 
of 15.3%, which represents the percentage of test examples for which the 
correct label is not in the first five results. The obtained results paved the 
way to a huge increase in efforts in CNNs, since the results represented a 

 
Figure V.4 AlexNet architecture scheme [A. Krizhevsky, I. Sutskever, G. E. Hinton, 2012]. 
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More and more systems aim to use CNNs and AlexNet
only in SW or GPUs, in order to obtain better performances. 

due to the considerable increase in the number of operations to be carried out 
from the system. In fact, from the 60 millions parameters and 1 GOps of the 
AlexNet, we moved to systems having up to 150 million parameters 
(ResNet) and requiring up to 20 GOps (VGG19). One of the main problems 
in the use of these networks in HW is obviously represented by the amount 

5 The 96 kernels used for the processing of the first convolutional layer in AlexNet

Figure V.6 ReLU function graph. 
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of memory to be used, while obtaining compatible performances in terms of 
occupied area and power. One of the possible solutions for such a problem is 
to use VQ technique in order to compress the kernel representation and then 
decompress them when needed. The implementation of a decompression unit 
for VQ is the work developed by the candidate at STMicroelectronics, 
Cornaredo (MI) in the last year of his PhD, specifically made for low power 
NN applications. 

 
V.3 Chip Implementation for CNNs 

In [G. Desoli, V. Tomaselli, E. Plebani, G. Urlini, D. Pau, V. D’Alto, T. 
Majo, F. De Ambroggi, T. Boesch, S. Singh, E. Guidetti, N. Chawla, 2016], 
a new chip architecture specific for CNNs was presented. The use of CNNs 
in portable devices is more and more required for IoT applications; to use 
these architectures in handheld and portable device is fundamental to 
develop an ad hoc SoC, in order to obtain acceptable performances in terms 
of power consumption and efficiency. The SoC has also to be as much as 
possible reusable to implement different NN algorithms and solve problems 
as scalability, cost and bandwidth issues. The system has been developed in  
FD-SOI 28nm technology and is capable of working at frequencies up to 1 
GHz with a power consumption of 6 µW/MHz at a voltage of 0.6 V. The 
SoC is made up by 8 DSP clusters (each one with a 16 KB cache, a 64 KB 
local RAM, a 64 KB shared RAM), 4 SRAM banks achieving a total 
memory of 4x16x64 KB and a coprocessor sub system. 

In particular, the work has been focused on the development of a 
particular unit of the coprocessor, which represents the main unit of the 
entire design. The coprocessor is composed by 8 convolutional accelerators 
to develop the convolution operations, 16 Direct Memory Accesses (DMAs) 
stream engines for the data exchange among to and from different units, 
which allows to support dataflow based processing and could cast the data to 
multiple units at the same time, several units for the image treatment (e.g. for 
cropping, color conversions, coding, decoding and a corner detector), a 
decompression unit, sensor input interfaces, one microphone interface and a 
Digital Visual Interface (DVI) output interface. The connections of the 
various blocks of accelerator are reconfigurable at startup and at runtime, 
creating processing chains and dedicated connections for the data exchanges 
among the various units. The operations developed using the DMAs are then 
synched with the one carried out by the DSP clusters using ad hoc interrupts. 
In turn, this results in better power management and high flexibility if 
compared to classic data transfer structure like buses or HW data paths. The 
chip is capable of mapping the CNN like the AlexNet. 
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TABLE V.2 Number of operations for any layer of AlexNet CNN. 

 
In particular it is possible to make the chip develop the   heavy  calculations  
part,  thus  obtaining  an  optimization  of  the  NN performances.  In fact, 
the convolutions only represent almost the 85% of the total  operations  of  
any  layer  of   the  network  in  which  convolution  is involved. It is 
important to highlight that in this scenario the convolutional accelerators are 
capable of developing the work of 16 DSPs, while the other layers for 
ReLUs, pooling and normalization units could be carried out using other 
dedicated structures or DSPs. A detail of the number of operations for any 
layer of the AlexNet CNN is reported in Table V.2.  The chip accounts for 
2318 KB of on-chip SRAM for the weight parameters and 1436 KB for the 
feature maps, plus approximately 10 MB of external RAM dedicated to the 
fully connected layers. As it is possible to notice the on-chip memory is 
considerably smaller than the amount detailed in the above table; however, 
the various operations are developed in series, so the parameters and the 
feature maps are updated during the computation to develop the following 
required operations. The operations are thus developed in smaller batches 
both for the weights kernels and the feature maps, the partial results are 
obtained, accumulated and reused. In particular, as will be shown next, the 
total memory dedicated to the kernels could be reduced using a 
compression/decompression technique, in order to optimize the total data to 
be transferred to perform the calculations for any single batch. Moreover, the 
use of the DMAs allows executing the batches using different configurations 
according to the requirements to achieve serial or parallel batch processing 
on different DMAs at the same time, thus optimizing the performances in 
terms of power and bandwidth. 

Layers Operation Num. of Ops. [M] Mem. 

Conv. Layer 1 
Conv. 11x11 

105 35 K 
ReLU, Norm, Pool 

Conv. Layer 2 
Conv. 5x5 

223 307 K 
ReLU, Pool 

Conv. Layer 3 
Conv. 3x3 

149 884 K 
ReLU 

Conv. Layer 4 
Conv. 3x3 

224 649 K 
ReLU 

Conv. Layer 5 
Conv. 3x3 

74 442 K 
ReLU, Pool 

Fully Conn. Layer 1  37 37 M 
Fully Conn. Layer 2  16 16 M 
Fully Conn. Layer 3  4 4 M 

Total  832 59.317 M 
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As stated before, it is possible to consider a compression/decompression 
operation to further improve the memory usage and the bandwidth during the 
batch operations. The compression of the weights could be performed in 
several ways, such as K-Nearest Neighbors (KNN), allowing a non linear 
reduction of the parameters to eight or fewer bits at the cost of an increase in 
the AlexNet top-1 error rate of 0.3%. The results at 200 MHz and 0.575 V as 
nominal operating conditions shows that the network can carry out all the 
operations needed for an AlexNet in 17.1 ms, developing approximately 1.3 
GOps and consuming only 61 mW in the case of weights and features coded 
on 16 bits and only 41 mW in the case of weights and features coded on 8 
bits, while processing one 227x227 pixel image. 

Moreover, the chip is capable of implementing not only the operations 
needed for an AlexNet but also for other CNNs and has been already tested 
for applications like emotion detection, autonomous control for simulations 
(e.g. for videogames) and, of course, object recognition.  
 
V.4 Vector Quantization Theory 

The version of the chip presented before used Scalar Quantization (SQ) 
technique for the weights kernels, while the candidate developed a HW 
decoder unit to allow the use of VQ. In this section the theory related to SQ 
and VQ is analyzed before describing the developed HW unit. 

 
V.4.1 Scalar Quantization 

As stated in paragraph i.2, quantizing a series of data corresponds to 
associating the nearest approximating value taken from a finite set of 
determined fixed values as a response to a certain analog input. Scalar 
quantizers (so called because of the fact they are one-dimensional) could be 
defined as functions mapping a certain real input range into a finite range of 
N rational values called codebook, C, having a certain predefined size 
(which is usually related to the input range dynamic or the sensor 
specifications): 

CQ :                (V.12) 

In this case the outputs of the quantizer are usually called output levels 
instead of codebooks. The resolution of the quantizer is given by r = log2 N 
and it gives the number of bits needed for the quantization. For every word 
of the codebook it is possible to derive an associated partition of ℝ, in which 
any set of points associated to one of the N values of the codebook is called a 
cell, Ri, any Ri has no intersection with the other Rj, when i≠j, and for which 
it is possible to write 
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Moreover, the quantizer is defined as a regular one iff each cell is an interval 
and any output of the quantizer is internal to the interval, which means yi is 
not a boundary point. 

Every quantizer could be seen as composed by two main sub-units: an 
encoder, E, and a decoder, D. These two operations uniquely determines the 
quantizer, since the encoder is specified by the input partition, while the 
decoder is specified by the output values (the codebook), which is all that is 
needed for the quantizer description. The encoding operation relates the 
inputs to the index of the codebook, ℝ→I, while the decoding one maps the 
obtained index to the related codebook, I→C. It is possible to note how the 
project of the encoder and the decoder could be developed independently up 
to a certain point, and in particular that the decoder can be easily 
implemented using a look-up table procedure to store the codebook values. 

The simplest form of the encoder is a selection form of the form 


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otherwise

Rx i
            (V.14) 

and then produces the index to be sent to the decoder, which looks in the 
table of values and produces the i-th word of the codebook as output. 

It is important to notice that due to the separation of the tasks it is 
possible to find an optimal encoder given the decoder and, viceversa, an 
optimal decoder given the encoder. The first problem is equivalent to finding 
the best possible partition given C. It is found that the best encoder is the one 
in which the obtained partition consists of all the inputs closer to the i-th 
word of the codebook than the other outputs; in other words, the best 
encoder given the decoder satisfies the nearest neighbor condition. On the 
contrary, fixing the encoder and wanting to obtain the best decoder, we 
obtain the so called centroid condition. The centroid condition minimizes the 
squared distortion measure, implying that the i-th element of the codebook is 
given by  ii RXXEy  | given X a random variable representative of the 
input behavior; however, a more general centroid condition could be found 
to consider also other distortion measures for specific cases. From this 

 
Figure V.7 General block scheme of a quantizer unit, highlighting the encoder and decoder 

units. 
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condition follows that in the case of a uniform input probability density 
function all the yi will be the midpoint of the considered cell. However, it has 
to be underlined that these conditions cannot alone guarantee the optimality 
of the quantizer [S.P. Lloyd, 1982]; nevertheless, the Gaussian probability 
density function (pdf) satisfies the conditions for which these two conditions 
could be considered necessary and sufficient, meaning that in all the cases in 
which a Gaussain pdf could be used a optimal quantizer could be obtained. 

Before moving on to the VQ, let us describe one of algorithms used to 
derive scalar quantizers. We describe this algorithm because, even if it was 
derived for SQ, it is possible to extend it to VQ problems and, hence, it 
results of particular interest for the present discussion. The algorithm was 
developed by Lloyd in 1957 and its main concept consists in taking a given 
codebook and starting from that obtain an improved one. The algorithm is 
iterative, so it will continue to improve the codebook until a suitable 
criterion is met. Having defined the average distortion of a codebook 
referred to a distortion measure d(x, y) as D=E[d(X, Q(X))] for the quantizer 
Q(x), it is possible to first define the Lloyd iteration procedure and then the 
algorithm. The Lloyd iteration to improve the codebook implies to 

 take a codebook Ck={yi} and find the optimal partition into 
nearest neighbor cells; 

 use the centroid condition to find the optimal codebook, Ck+1, 
related to the cells defined using nearest neighbor algorithm. 

Then the algorithm could be described as follows 
 an initial codebook C1 is chosen and the number of iterations is 

set to k=1; 
 from the codebook Ck Lloyd iteration is performed to obtain Ck+1; 
 the average distortion is calculated for the new Ck+1. If the 

difference between the distortions related to Ck and Ck+1 is less 
than a certain threshold the algorithm ends, otherwise it take k+1 
as the new k and repeat the operations from the second step. 

Further details on SQ could be found in literature [R. M. Gray, 1992]. 
 
V.4.2 Vector Quantization 

Vector Quantization represents an extension of SQ to a finite set of 
ordered values instead of a single one, allowing applying the concept of 
quantization to multiple dimensional data. It is important to underline that 
SQ could be considered as a particular case of VQ, considering 
monodimensional vectors. VQ finds application in complex digital signal 
processing, especially in cases in which the input signals are already 
inherently digital ones and a compression of the input set is desirable. This 
technique assumes particular importance in the case of pattern description, 
which could be well described using vectors and in applications in which the 
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input data usually show a certain correlation, such as in the case of parts of 
speech waveforms or images. The compression due to the results of VQ can 
in these cases provide huge benefits to the further processing of the data, 
since a reduction in the number of bits of the operands causes a complexity 
reduction in the overall operation to be considered. As in the previous case, 
it is possible to state that a vector quantizer Q of size N and dimension m 
could be viewed as a function 

CQ m :                (V.15) 

where C is the codebook C = (y1,…,yN) where any element of the codebook 
is a m-dimensional real vector. The number of bits needed per vector 
component is calculated as 

mNr /)(log2                (V.16) 

is known as the resolution of the quantizer and provides a measure of the 
maximum achievable accuracy, given that the codebook is well designed. 
The resolution is only related to the number of words in the codebook and 
the dimensionality of the input vectors, but it does not take into account the 
number of bits used for the representation of the codevectors, since those 
considerations are related to the architecture and to the correct description of 
the codebook, but not strictly to the quantizer itself, which is assumed to be 
described with an appropriate number of bits per codevector. Moreover, as 
before, to any element of the C set is associated a partition of ℝm called cell, 
such that 

)(})(:{ 1
ii

m
i yQyxQxR               (V.17) 

Also the separation between encoder and decoder still applies for vector 
quantizers, since 

IE m :  and mID :             (V.18) 

where I is the set of indexes corresponding to the codebook elements and the 
encoder could be described as in equation (V.14). 

A fundamental result about VQ is given by the following theorem, stating 
that a VQ developed coding will always be at least as good as any other [R. 
M. Gray, 1992]; in other words, there are no coding techniques which 
outperforms VQ coding in terms of bit rate and resolution. 

Theorem: For any given coding system mapping a signal vector into one 
of N binary words and reconstructs the approximate vector from this binary 
word, there exists a vector quantizer with codebook size N giving the same 
reproduction as the given coding system for any input vector. 



 
 

97 
 

An example of the cell partition obtained using VQ on an arbitrary two 
dimensional input space is given in Figure V.8, where a regular vector 
quantizer is considered. 

It is important to highlight that VQ works better in the representation of 
correlated data, since it is possible to derive Voronoi cells concentrating in 
the denser regions and obtain better lower distortions between the 
quantization result and the original data. A distortion measurement could be 
derived assigning a cost function, d(x, x), associated to the quantizer input, x, 
and to the reproduction vector obtained at the exit of the quantizer, x. It is 
then possible to quantify the quantizer performance using the average 
distortion given by 

 ),( XXdED                 (V.19) 

which is the time average of the distortion function and which magnitude 
gives an indication of the performance of the overall system. Moreover, if 
the process is stationary and ergodic it is possible to state that not only an 
above limit to the (V.19) exists, but also that it equals the statistical 
expectation d = D. One of the most used measures of distortion is the well-
known squared error also known as Euclidian distance and defined as 

 
Figure V.8 Example of representation of the cells obtained using VQ encoding on a 2D vector 

space. 
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A special class of vector quantizers to be discussed is the nearest 
neighbor or Voronoi vector quantizers, which have the feature by the 
property of being completely characterized by means of the codebook and a 
distortion measure and which are optimal to minimize the average distortion. 
This in intrinsic in the Voronoi vector quantizer definition, since such a 
quantizer is defined as 

 IjyxdyxdxR jii  ),,(),(:              (V.21) 

meaning that each cell is formed by all the points x showing a lower 
distortion if reproduced with yi than with any other codevector of the 
codebook. 

It is then possible to find an optimal vector quantizer starting from the 
given one and improving it iteratively; the first codebook to be used could be 
generated using different approaches (e.g. random coding). The optimization 
procedure is repeated until a vector quantizer sufficiently close to an optimal 
is obtained. It is important to notice that this procedure while not 
guaranteeing the optimality of the quantization, for which there are no closed 
form solutions, guarantees at least to reduce or leave unchanged the 
distortion measure iteration after iteration. The improvement of the starting 
codebook could be obtained using a generalized formulation of the 
previously presented Lloyd algorithm which is also known as k-means 
algorithm [J. MacQueen, 1967].  

The generalized Lloyd iteration for the improvement of the codebook 
knowing the statistics is in this case given by the following steps: 

 take a codebook Cl={yi; i= 1,…, N} the nearest neighbor 
condition is used to find an optimal partition of the set into 
quantization cells. If ties occur in the evaluation of the distortion 
measure assign the considered point to the cell having the lowest 
index; 

 using the centroid condition the next codebook is computed for 
the cells found in the previous step. 

Then the algorithm could be described as follows, in which it is possible to 
notice that only the second step is changed compared to the previously 
presented in the non generalized Lloyd algorithm: 

 take the initial codebook Cl and set l=1; 
 from the codebook Cl Lloyd iteration is performed to obtain the 

improved codebook Cl+1; 
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 the average distortion is calculated for the new Cl+1. If the 
difference between the distortions related to Cl and Cl+1 is less 
than a certain threshold the algorithm ends, otherwise it take l+1 
as the new l and repeat the operations from the second step. 

A flow chart of the algorithm is visible in Figure V.9. It is easy to notice 
from what has been said that the generalized Lloyd algorithm is a sort of 
descent algorithm, since each iteration reduce the average distortion and 
every iteration generates a new codebook, leading to a local minimum in the 
average distortion measure. Due to that, while the generalized Lloyd 
algorithm guarantees to stop in a local minimum it cannot guarantee to find 
the global minimum and thus the optimal codebook. 

Another algorithm very used for the definition of the codebooks in VQ 
problems is the Linde-Buzo-Gray (LBG) algorithm [Y. Linde, A. Buzo, R. 
Gray, 1980]. This is an iterative algorithm which exploits a splitting method 
starting from an initial codebook C0: 

 the initial codevector is obtained calculating the average of the 
training sequence 


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N
c
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            (V.22) 

 
Figure V.9 Flow chart of generalized Lloyd algorithm. 
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 this vector is split in two subvectors obtained multiplying the initial 
vector for two coefficients 

incc )1()0(
1    incc )1()0(

2            (V.23) 

where ε is a small positive threshold (usually assumed to have values 
around 0.001); 

 the optimal codebook for the partial step is obtained using the 
Lloyd’s method;  

 the second and third steps are repeated on the new codebooks, 
increasing the number of codevectors after any iteration until the 
desired number of codebooks is obtained to finally obtain the 
desired optimized level quantizer. 

The algorithm represents a method to form a good codebook starting from a 
single codevector or from a limited number of codevectors. It thus provides a 
method to produce a codebook from scratch starting from a training 
sequence and proceeding with successive approximations derived quantizers. 
 
V.5 Proposed HW Decompression Unit 

Several architectures exploiting VQ related results have been used during 
the years for speech and image recognition, but not too many works could be 
found on the use of VQ in neural network environment. However, two 
examples of the use of this technique on NNs could be found in [Z. Huang, 
X. Zhang, L. Chen, Y. Zhu, F. An, H. Wang, S. Feng, 2017], while a 
discussion on different compression methods to be used in NNs could be 
found in [Y. Gong, L. Liu, M. Yang, L. Bourdev, 2014]. In the proposed 
work we focused on the project and development of a decompression unit 
given that the required sub-optimal codebooks were already calculated using 
k-means nearest neighbor. We underline that in the following the 
compression steps have been separately conducted. 

The developed unit will be part of the developments of the previously 
described chip architecture dedicated to NNs developed at 
STMicroelectronics. In a first implementation of the chip the technique used 
to reduce the burden of the weights to be memorized was a scalar 
quantization one. The structure is right now used for the decompression of 
the weight kernels only and it is used to mainly obtain memory 
optimizations and a more flexible structure to implement different NNs. The 
structure has to be capable of working both with 8 bits and 16 bits data and 
to manage different numbers of codevectors and codewords per codevector. 
In particular, for the different implementations a number of codewords from 
one to eight has been considered, where each codeword could be written in 8 
or 16 bits format; it is important to note that the decompression factor is 
equal to the number of considered codewords per codevector and, in 



 
 

101 
 

particular, the case of only one codeword corresponds to the use of a scalar 
quantizer. These considerations lead to consider a dimension for the single 
codeword that could vary from a minimum of 8 bits (in the case of 
codevectors composed by one codeword of 8 bits) to a maximum of 128 bits 
(in the case of eight codewords per codevector of 16 bits each). Moreover, 
the size of the considered codebook could be chosen differently according to 
the application; different sizes have been taken into account, from 16 up to 
256 codevectors per codebook. Therefore, the structure has to provide 
different solutions to meet the needs of different applications, achieving 
flexibility, reusability and ensuring good performances in terms of working 
frequency, complexity and area occupation. 

The main components composing the developed vector quantizer 
decompressor are: 

 a memory module to store the codebooks; 
 input/output streaming engines to provide data to the structure 

and read them from it; 
 bus interfacing signals of the unit with the other units of the 

overall architecture; 
 buffering structures for the correct management of the I/O 

streams; 
 control and glue logic. 

A general block scheme of the proposed architecture is presented in Figure 
V.10. 

Since the proposed decompression unit is based on streaming inputs 
provided by dedicated stream engines, it could achieve better performances 
in terms of maximum working frequency and latency time if compared to a 
non-streaming architecture, which would require transmitting all the data 
over a bus, which would be also have a more complex arbitration. The data 
to be transmitted over the two streams are the indexes to access the 
codebook, namely the data to be decompressed, and the codevectors to be 
then read, which are organized in codebooks and written into a dedicated 
memory. The advantages of using streaming signals come with the drawback 

 
Figure V.10 Block scheme of the proposed decompression unit. 
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of the need of start and stop signals which have to be activated and 
deactivated in an event based fashion. 

In the case of codevectors made up by more than 4 codewords it is 
possible to allow the allocation of the same codevector on two memory 
locations instead of a single one, exploiting the possibility of considering 
two following addresses as one, as described in V.11. The stream engine 
could provide a maximum of 24 bits per cycle and the codevectors could be 
formed by more than this number of bits. Since the stream engine cannot, in 
general, carry a single codevector per cycle to the unit, the stream carrying 
the codebook data is written in a buffering structure from which the data will 
be then transferred to the memory as soon as at least a codevector is ready to 
be written. In particular, in order to obtain a better management of the stream 
data, a circular buffer structure capable of 96 bits has been chosen, to allow 
the writing of new data while ensuring reasonable dimensions of the buffer. 
An example of the behavior of the circular buffer for this application is 
depicted in Figure V.12 for the writing of 4 codewords of 16 bits each. One 
problem in the development of the different considerations related to the NN 
operations is the latency time needed to write the first codebook to be read in 
the further processing. For this reason, in the developed unit, after the 
writing of the first codebook, cycles which are not used to read the memory 
are used to continue to perform writing operations, aiming to obtain a new 
codebook available to be read, before the operations on the first one are 
completed and thus reducing the latency time between one batch processing 
of a network layer and the other. Due to these considerations, the memory 
cut to be used has been chosen to be 1024x64 bits (maximum number of 
codewords per codevector x maximum length of the data format x maximum 
number of codevectors x 2 = 8x16x256x2 = 65536 bits). These choice 
guarantees enough space to manage the various cases to be dealing with, 
while also having a fitting geometry, since its dimensions are powers of two. 
A second buffer has then to be put after the output from the codebook, since 
the output stream carries out one codeword per cycle, on a maximum of 16 
bits.  It is worth to note as a special case that when considering codevectors 
made up by just one codeword, it would be not possible to write the second 
codebook while reading the first one, since the memory will be accessed in 
read mode at the beginning of each cycle. However, it is important to note 
that in case of necessity the codebook could be loaded also using the bus 
interface. The number of cycles between one reading and the next one 
increases with the number of words to be read, up to one read operation 
every 8 clock cycles for the case of 8 codewords of 16 bits each. 

In order to correctly develop all the read and write operations, several 
control signals are needed. In particular, signals for the streaming 
management of the data to write and the index to read are needed to detect 
the start and end of the streaming frame, to correctly stop the streams 
without losing any data and, in general, to synchronize data coming from the  
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streams, the buffers and the memory. Moreover, the data coming from the 
bus interface are used to configure the codebook read and write operations, 
establishing the number of codevectors and codewords to be used. From the 
discussion previously developed, it is possible to state that one bit is enough 
to set the data format of the kernels, which could assume only two values, 
while seven bits are needed to provide the number of codevectors per 
codebook ([1:256]) and other three are used for the number of codewords 
per codevector ([1:8]). Another important parameter is the number of 
batches to be processed with a single codebook. For this parameter we 
choose to use five bits, which allows taking into account a maximum of 31 
batches on which to use the same codebook, while reserving one value for 
the case in which the codebook has to be used on a hypothetically infinite 
number of batches. 

Other fundamental signals in the proposed unit are the counters needed 
for the correct writing of the previously described circular vector for all the 
different considered lengths of the codevectors to be written. In particular, at 
the end of obtaining a fast writing of the codebook without complicating the  

 
Figure V.11 Example of reorganization of the look-up table addresses in the case of 

considering 6 codewords per codevector. 
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writing operation too much, we choose to reuse portions of the circular 
buffer before restarting the writing operation of the buffer and resetting the 
counters. This is done to speed up the writing of the codebooks in the 
memory. 

Given these assumptions it is possible to summarize and describe the 
overall behavior of the units as it follows: 

1. the incoming partial data, composing the weights kernel are 
stored on a circular buffer; 

2. when a data packet stored on the partial buffer is enough to write 
one codevector, namely when 

 loccwfrdwr  8)(              (V.24) 

where wr and rd represents the write and read pointers of the 
buffer, f is the format of the incoming weights (8/16 bits) and 
cwloc is the number of considered codewords per memory address 
(which is maximum 4), the next look-up table location is written; 

 
Figure V.12 Example of use of the circular vector to write three codevectors made up by 4 
codewords of 16 bits each; any vector location represents a byte, the colored locations are 

considered written. 
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3. as soon as the first codebook has been written the decoding 
operations could begin; the codevectors are read and stored in a 
partial buffer from which they are then sent as output one 
codeword per clock cycle; 

4. if it is possible to interleave write operations to the reading ones, 
a new codebook is written while reading the first one, obtaining a 
lower latency time for the subsequent batch processing; 

5. the reading operation is repeated until the current batch of frames 
is completely decompressed; 

6. the next codebook becomes active and the processing restart from 
step 4. until no further frame has to be processed and the unit 
output goes in idle state. 

Several tests were led on the unit to achieve a thorough understanding of 
its functioning and to take into account all the various test cases, considering 
different combinations of the parameters determining the structure behavior. 
In particular automated tests to check out the correctness of the writing 
operation to the memory and of the readings from it were conducted for all 
the combination of the parameters. A first evaluation of the tests has been 
conducted checking the outputs corresponding to the incoming data and 
roughly verifying the correctness of the unit behavior. Then the same tests 
have been run on the same structure working together with other units in the 
top architecture and the results have been compared to the ones previously 
obtained. The two tests gave the same results to the same inputs, which 
together with the previously developed evaluations ensure the correct 
behavior of the decompression unit for any combination of the setting 
parameters. 

The structure has been developed for FPGA prototyping and in 40nm 
technology obtaining a maximum operating frequency of 650 MHz, meaning 
that when the codebook is ready, 6.5·108 weights per second could be 
provided to the subsequent calculation units. Moreover, due to the simplicity 
of the developed architecture the area occupation of the structure could be 
considered negligible in almost every relevant NN applications. In fact, not 
taking into account the memory, the logic design needs only 13 kgates, while 
an area occupation six times higher is obtained considering also the memory 
storing the codebooks. 

 
V.6 Conclusions 

The proposed work develops the design of a HW accelerator dedicated to 
the decompression unit to implement part of a quantizer scheme based on 
VQ technique to be used in a chip architecture dedicated to NNs 
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acceleration. The design is relevant for the pre-processing of data in 
applications dedicated to the filtering of data and thus very useful for 
convolutional NNs. The development of the unit has been done in a HW 
friendly fashion, in order to reduce latency times and achieve better working 
frequencies and low area occupation. In particular, we managed to obtain a 
structure capable of managing codevectors composed by a number of 
codewords from one to eight and having different formats, which allows 
covering several cases useful in HW accelerators dedicated to NN 
framework. 

Future works could regard further integration of the proposed architecture 
with other HW accelerator units for NN data processing, together with the 
evaluation of related compression techniques in order to further improve the 
actual performance of the developed accelerator.



Chapter VI 

107 
 

Chapter VI 
Conclusions 

The aim of the thesis work was to project and develop HW accelerators 
for fast computing in multimedia applications. The starting point for the 
research has been the research and development on new multiplier structures 
to improve the performances of FP32 multipliers involved in image and 
applications aiming to high resolutions and devoted to FP processing, such 
like HDR filtering related ones. The researches resulted in a multiplier 
structure based on adder chains and normalization units instead then FP32 
multipliers, fit for applications dealing with fixed filters and aiming to high 
precisions for further data processing. The methodology is based on 
operands partitions derived from DA theory; it allows deriving compact and 
low power consuming circuit to improve the calculation of filtering 
operations, mainly on MAC and convolution operations. The burden of FP32 
devoted circuits is substituted using simplified adders and memory structures 
for storing pre-multiplied coefficients. A second implementation of this 
solution has been derived in the case of applications working on memory 
constrained devices. 

Starting from the developed considerations about high precision MAC 
units, we improved an existing LDR2HDR processor to make it work on 
different resolutions input images, up to 4K UHDTV. Hence, the structure is 
more reusable and flexible if compared to the previous versions of the same 
architecture and implement a streaming elaboration of input data for on-the-
fly conversion of LDR images without using any frame buffer for the 
partially elaborated data and reducing the dimensions of the other buffers 
and memory modules. Moreover, the developed ASIP use a reduced amount 
of SRAM instead of off-chip DRAM, enabling the coupling of the developed 
processor with the sensors. Finally, the structure is scalable and 
reconfigurable to set the area/speed ratio performances exploiting the 
separability property of the two-dimensional Gaussian kernel, which is 
largely employed in image and video elaboration methods and a careful HW 
project. The developed studies allow us to say that it would be possible to 
develop dedicated ICs for HDR2LDR conversion to achieve higher 
operating frequencies, lower power dissipations and real-time performances 
even in the case of 4K UHDTV image processing. Still, in this kind of 
applications the time related to the transferring of the data to and from the 
memories represents a huge issue. 

To kick the latter problem related to the memory structures in multimedia 
applications, a new SA scheme for SRAMs has been proposed. The main 
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feature of the proposed scheme is a better offset rejection if compared to 
other circuits in literature aiming to the same result, while also reducing the 
sensing delay, allowing faster writing and reading operations and keeping 
contained area requirements. An IC has been developed and realized in the 
development of the project and further studies will regard real case results 
and tests, while understanding how further improvements of the same could 
be achieved. Hence, the desired project allow the development of faster 
ASICs, especially the ones presenting memory accessing constrains, in 
which the high data transferring rate to and from the memories represents the 
bottleneck. 

Then the research focused back on filtering structures, reconnecting to the 
previous projects. In particular, the design of new ASIPs implementing 
Gabor filters has been developed to pre-process images in portable and 
resource-constrained devices. Thanks to HW optimizations and a careful 
design of the sub-units composing the overall architecture it has been 
possible to develop several designs using 2, 4 and 8 orientations of the 
Gabor filters and capable of achieving acceptable detection while obtaining 
acceptable ADP performances and trade-offs for the different applications. 
Further developments are needed to obtain more fitting architectures for 
resource constrained devices and achieve even more accurate detections. In 
particular, it would be interesting to develop further analysis dedicated to the 
ASIC implementation of the proposed designs, in order to gain more insight 
towards a better description of a dedicated chip to be used in edge detection, 
segmentation and VS applications. 

Finally, the previously developed knowledge has been used to develop 
part of a quantizer structure to be used in NN context, capable of obtaining a 
decompression scheme dedicated to the weight kernels of the NN, exploiting 
VQ technique. The architecture is part of a more complex HW framework to 
accelerate NN processing and calculations, in which it allows developing 
better pre-processing of the data for applications mainly devoted to filtering 
using convolution. The unit has been developed in HW friendly fashion, to 
obtain a good area occupation and lower design latency times, while also 
achieving higher maximum operating frequencies. The structure is flexible, 
in the sense that it can work on several codebook and codevector structures, 
having different number of codevectors, codewords for codevector and data 
format, allowing to be reusable to implement different NNs schemes. These 
features also allow using the unit in combination with different HW 
accelerator units working on data on which a compression/decompression 
operation would be beneficial. 

The interests of the candidate during the PhD followed the developing of 
HW filters designs, starting from the simplest operations which could be 
found in such structures and moving towards the research on NN HW 
accelerators, which represents, nowadays, one of the most active and 
interesting research field in digital design and circuits and systems 



 
 

109 
 

developments. Even if several results have been achieved, the presented 
designs could be further developed and improved and it is possible to find 
different developments needed especially for the developments of suitable 
ASICs, which would represent the goal of a HW design project and which 
has been developed, in part, only for the SA and decompression schemes. 
The candidate aim to further develop these researches in the near future, if 
possible, as well as to further develop his knowledge on NNs, at the end of 
achieving HW improvements through a better knowledge of digital designs 
dedicated to artificial intelligence.
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Acronyms and Symbols List 
1D    One-Dimensional 
2D    Two-Dimensional 
3D    Three-Dimensional 
1T    One Transistor 
3T    Three Transistors 
6T    Six Transistors 
ADE    Analog Design Environment 
ADP    Area-Delay-Power 
ASIP    Application Specific Image Processor 
BL    Bit Line 
BRAM    Block Random Access Memory 
CMOS Complementary Metal-Oxide 

Semiconductor 
CNN Convolutional Neural Networks 
CPU Central Processing Unit 
CSA    Current Sense Amplifier 
CSD    Canonical Signed Digit 
CT    Tomography  
DA    Distributed Arithmetic 
DFT     Discrete Fourier Transform 
DMA    Direct Memory Access 
DRAM    Dynamic Random Access Memory 
DSP    Digital Signal Processor 
DVI    Digital Visual Interface 
EM    Electromagnetic 
FF    Flip Flop 
FFT     Fast Fourier Transform 
FIFO    First In First Out 
FP    Floating Point 
FPGA    Field Programmable Gate Array 
fps    frame rate per second 
FS    Fourier Series 
FSM    Finite State Machine 
FT    Fourier Transform 
FCMOS Full Complementary Metal-Oxide 

Semiconductor 
GPU Graphic Processing Unit 
HDL    Hardware Description Language 
HDR    High Dynamic Range 
HW    Hardware 
IFT    Inverse Fourier Transform 
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ILSVRC ImageNet Large Scale Visual Recognition 
Challenge 

I/O    Input/Output 
IoT    Internet-of-Things 
KNN    K-Nearest Neighbors 
LBG    Linde-Buzo-Gray 
LDR    Low Dynamic Range 
LSB    Least Significant Bit 
LUT    Look-Up Table 
MAC    Multiply and Accumulate 
MB    Modified Booth 
MR    Magnetic Resonance 
MSB    Most Significant Bit 
MUX    Multiplexer 
NMOS    Negative Metal-Oxide Semiconductor 
NN    Neural Networks 
OC    Offset Compensating 
pdf    probability density function  
PDE    Partial Differential Equation 
PMOS    Positive Metal-Oxide Semiconductor 
PPA    Power Performance and Area 
PSNR     Peak Signal-to-Noise Ratio 
RAM    Random Access Memory 
ReLU    Rectified Linear Unit 
RGB    Red Green Blue 
ROM    Read Only Memory 
RW    Read/Write 
SA    Sense Amplifier 
SIFT    Scale Invariant Feature Transform 
SIPO    Serial Input Parallel Output 
SL    Sense Line 
SNR    Signal-to-Noise Ratio 
SoC    System-on-Chip 
SQ    Scalar Quantization 
SRAM    Static Random Access Memory 
sRGB    standard Red Green Blue 
SSIM     Structural Similarity Index Measure 
SW    Software 
TMO    Tone Mapping Operator 
UHDTV   Ultra High Definition TV 
UV    Ultraviolet 
VLSI    Very Large Scale Integration 
VQ    Vector Quantization 
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VS    Visual Search 
VSA    Voltage Sense Amplifier 
WL    Word Line 


