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Introduction

Information technology allows solving numerous problems regard-
ing all the aspects of everyday life, including technical activities
related to the design of devices and systems. In the electronic field,
different types of softwares are widely used to support designers
in solving the problems of electronic circuit design, at device level
and system level. Power electronics is one of the most important
modern technologies, since power supply systems are used to feed
any electric and electronic device and system in manifold applica-
tions (e.g. computers, automotive, aerospace, consumer electron-
ics, etc). The features of power supplies affect the reliability and
performances of the whole system in which they are used. Switch-
ing power supply design is mostly driven by high efficiency and
high reliability requirements. The strong non linearity of switch-
ing power supplies and the difficulty of application of advanced
design methodologies often push designers to adopt a conserva-
tive approach, based on simplified robust and reliable methods.
This mostly result in sub-optimal design solutions characterized
by components oversizing.

This dissertation discusses innovative applications of enhanced
numerical techniques and intelligent algorithms to power supplies
optimization and design. The impact of innovative modeling and
computing techniques in the discovery of novel advanced solutions
outperforming the traditional conservative designs is emphasized.
A detailed introductory overview of major power electronics de-
sign issues is provided hereafter, to help the reader in better un-
derstanding of the technical foundations of the dissertation.
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Power electronics is ever moving towards higher efficiency and
higher power density solutions. Reduction in the size and weight
of power electronics systems and increasing efficiency requirements
are two main specifications in Switch-Mode Power Supply (SMPS)
design [1]. Magnetic components — inductors and transformers
— occupy a significant amount of space in today’s power supplies,
and furthermore, considerable losses occur in these components.
In order to achieve a higher level of miniaturization, reduction in
the size of these components is crucial. However, as higher power
densities are also required, heat dissipation and temperature rise
may become critical issues too. This is particularly accentuated
in integrated System on Chip (SoC) applications. As in SoC as
in discrete solutions, attention should be paid to the power losses
and thermal analysis of magnetic parts.

Ferrite Power Inductors (FPIs) are usually the first choice
for high-efficiency designs of SMPS, thanks to their resulting low
losses [2] [3]. However, FPIs suffer of a pretty sharp inductance
drop when their current exceeds a certain threshold, occurring
due to the saturation of their magnetic core. For each FPI, the
manufacturer typically provides the values of saturation currents
I10%, I20% and I30%, causing 10%, 20% and 30% drop of the in-
ductance with respect to its nominal value Lnom. These param-
eters are normally used by SMPS designers to select FPIs: the
higher the values I10%, I20% required by a given application, the
bigger the magnetic cores necessary to realize inductors having a
desired nominal inductance [4]. In fact, the conventional design
approach usually adopted by SMPS designers consists in ensuring
that, even in the worst case conditions, the peak current flowing
through the inductor does not exceed the I10% or I20% saturation
current, keeping the inductor peak-to-peak current ripple ∆iLpp
close to 40% [5]. This limitation is partially motivated by the
assumption that the inductor operating with a higher saturation
degree may be subjected to a higher peak-to-peak current ripple
and power losses. As a possible second reason, it looks difficult
to predict the peak-to-peak current ripple when the inductor op-
erates in the region where its inductance sharply rolls off. The
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consequence of the adoption of such conventional design approach
is that inductors are often oversized, thus requiring more space in
SMPS and having, usually, a higher price.

In recent years, inductors saturation has been the subject of
several scientific investigations [6–13]. Some authors have veri-
fied that smaller volume inductors working in moderate saturation
help achieving more compact SMPSs with an acceptable amount
of power losses [10–13]. In [10] it has been demonstrated that a
saturable inductor is suitable for power factor correction applica-
tions, and can save considerable space (up to 65%) and cost over
a conventional linear inductor. In [11] a saturable inductor has
been adopted in the photovoltaic inverter application. It has been
shown that the inductor can be designed with an adapted satu-
ration characteristic, allowing a reduction of the inductor volume
by about 15% compared to a constant inductance, over the whole
current range of the inverter. In [12] a method has been presented
on how to adjust the inductance curve of a saturable inductor
with respect to a desired shape, showing that a highly efficient
construction with low stray fields and maximum package density
can be achieved, with 32% smaller size if compared to traditional
non-saturated solutions. In [13] Milner et al. have demonstrated
that a 3.3x3.3x1.0mm3 (10.9mm3) ferrite-core 1µH inductor rated
for 1.6A can properly operate in a converter also past its satura-
tion point up to 2.1A. The authors have also proved that the
saturated inductors can reduce PCB area by 50% over compet-
ing non-saturated alternatives, while increasing total peak-power
conduction losses by no more than 3%.

To effectively and safely exploit the benefits offered by the use
of FPIs in moderate and controlled saturation, appropriate satura-
tion models and power loss models are needed, reliably describing
inductor behavior by including saturation effects. Generally, in-
ductor models can be divided into two main categories: physical
models and behavioral models [14]. The first category refers to
numerical models based on the physical principles governing the
device. Such models are obtained by constructing a system of
physical equations using the geometry and material information
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of inductor. The two most popular physical models for inductors
are the Jiles-Atherton model [15] and the Preisach model [16], de-
scribing the hysteresis loop of the magnetic core material, starting
from which both the magnetic permeability and core losses can
be derived as a function of the DC bias magnetic field. How-
ever, most physical models require additional winding and core
data well beyond what is typically available in manufacturers’
datasheets. Such models are complicated and not practical for
engineers. While physical modeling techniques can be effectively
used during the inductor design stage, behavioral models are more
suitable for system-level simulations. Such models are based on
the use of empirical equations or equivalent circuits, by means of
which the experimental inductor characteristic of interest can be
fitted, e.g., saturation, power losses, hysteresis, etc. Such models
are simpler compared to physical models, and easier to use for
SMPS designers. Therefore, the behavioral model-based approach
is adopted in this dissertation to reliably describe the main char-
acteristics of ferrite inductors needed to analyze their behavior in
saturation.

The key point is that the saturation and power loss models
of FPIs have to be consistent with the large-signal square-wave
voltage conditions imposed by SMPSs to inductors. As regards
the saturation models, recently several inductor manufacturers
have started providing more complete information about the in-
ductance vs current (L vs iL) curves for their magnetic parts at
different temperatures [17–19]. To accurately describe such curves,
an arctangent-based behavioral model has been recently proposed
in [20], which can be used in combination with a developed numer-
ical algorithm to reliably reconstruct the inductor current wave-
shape under SMPS conditions, including saturation. Such model
and numerical algorithm have been verified only for positive induc-
tor currents in Continuous Conduction Mode (CCM). However,
certain applications may involve High Current Ripple (HCR) in-
ductor operation, which represents the new trend in power convert-
ers using wide band-gap devices, such as Silicon Carbide (SiC) and
Gallium Nitride (GaN) transistors [21]. HCR operation can result
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in the occurrence of negative inductor currents in synchronous-
rectification converter topologies, and Discontinuous Conduction
Mode (DCM) in diode-rectification topologies. Hence the existing
arctangent-based saturation model needs to be extended and the
relative numerical algorithm adapted also to cases involving neg-
ative inductor currents and DCM operation, in order to develop
a generalized saturation behavioral model for FPIs. However, to
obtain realistic reconstructions of the inductor current waveforms
in saturation, reliable L vs iL data are needed. The datasheet L vs
iL curves of FPIs are typically characterized by high uncertainty
levels (e.g., ±20%), due to manufacturing tolerances on compo-
nents. Moreover, such curves are measured under small-signal
sinusoidal voltage test conditions, thus making the manufactur-
ers’ data not sufficiently reliable for a realistic determination of
the peak-to-peak inductor current ripple in large-signal square-
wave voltage conditions imposed by the SMPS operation. There-
fore, the systematic procedures are needed for identification of the
temperature-dependent L vs iL curves in real SMPS conditions.

As regards the power loss models, FPIs total power losses are
determined by winding losses and magnetic core losses. However,
the core and winding losses cannot be easily measured as separate
contributions in SMPS applications. FPIs total power losses can
be alternatively evaluated as the sum of a DC term and an AC
term. Since the DC losses can be easily estimated from the DC
winding resistance and the DC current flowing through the wind-
ing, the major challenge still remains how to determine a compact
behavioral model for the AC losses of FPIs, given as a function of
the main operating conditions directly imposed to the inductor by
the SMPS. Eventually, the saturation models and power loss mod-
els of FPIs need to be coherent between them. As discussed above,
the saturation L vs iL curves depend on the inductor temperature,
which, in its turn, is dependent on the ambient temperature and
inductor total power losses, through the device thermal resistance.
Thus the temperature is not a real input to the inductor model,
but rather an output, representing the response of the device to
given ambient temperature and total power losses. Therefore the
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inductor total power losses should be used as an input to the satu-
ration model, instead of temperature. Once the saturation models
and power loss models of FPIs have been identified, they can be
adopted at system-level simulation of the converter, so as to dis-
cover and exploit the benefits offered by the use of FPIs operating
in saturation.

Considering the above issues, the aim of this dissertation is
to provide organic and systematic answers to the problems of the
high-power-density SMPS design exploiting the use of FPIs oper-
ating in saturation. In particular, the specific objectives of this
dissertation are:

a) development of numerical techniques and intelligent algo-
rithms for generation and discovery of behavioral models for
saturation and power losses of FPIs used in SMPS applica-
tions;

b) development of enhanced numerical algorithms, using the
above models, able to reliably predict the FPIs behavior un-
der given SMPS conditions;

c) development of enhanced numerical algorithms able to iden-
tify feasible inductor solutions, possibly operating in satu-
ration, allowing to reduce the inductor size and increase the
converter power density.

The dissertation is organized as follow:

In Chapter 1, a generalized arctangent-based behavioral model
accurately fitting the L vs iL curve of FPIs is presented. Such
model can be used in combination with the proposed numerical
algorithm to reliably predict the inductor current wave-shape in
whatever operating condition, including saturation.

In Chapter 2, the Evolutionary Algorithm-based approach for
the identification of the temperature-dependent L vs iL curves of
FPIs is discussed, based on the use of experimental inductor cur-
rent waveforms and temperatures in real SMPS conditions. Then,
an alternative approach is presented, based on the local and global
approximations of the inductor saturation characteristic, obtained
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under small-amplitude and large-amplitude current ripple condi-
tions, respectively.

In Chapter 3, a non-linear modeling of ferrite inductors with a
stepped air-gap is discussed. The arctangent-based L vs iL model,
proposed in Chapter 1 for fixed air-gap FPIs, is extended to a
double-arctangent model. Such model accurately describes the sat-
uration characteristic of stepped air-gap inductors and allows to
reliably predict their current wave-shapes in saturation.

In Chapter 4, the Sustainable Saturation Operation (SSO) of
FPIs is discussed, which is verified if the inductor current ripple,
power losses and temperature rise are acceptable and reliable for
both the device and the SMPS, despite the inductance drop de-
termined by the core saturation. An algorithm is presented which
identifies SSO-compliant FPIs with minimum size and volume,
thus allowing to increase the SMPS power density, while preserv-
ing the overall converter efficiency.

In Chapter 5, behavioral modeling of the FPIs total power
losses is presented, followed by the modeling of the sole AC loss
contribution. Both approaches are based on the use of a Genetic
Programming algorithm, which identifies the power loss model
structure and the relevant parameters, starting from a set of ex-
perimental power loss data measured on a wide range of SMPS
operating conditions.

In Chapter 6, a novel power-loss-dependent saturation model is
presented, which provides the inductance as a function of inductor
current, parameterized with respect to the component total power
losses.





Chapter 1

Saturation Behavioral
Modeling of Ferrite
Inductors

This chapter discusses saturation behavioral modeling for Fer-
rite Power Inductors (FPIs) used in Switch-Mode Power Supply
(SMPS) applications. First, a brief description of the main proper-
ties of ferrite materials is given, followed by some useful definitions
of inductance. Then, an analytical model is presented accurately
describing the inductance versus current saturation characteristic
of FPIs. A numerical method is discussed for reliable prediction of
the inductor current waveform, including possible operation in sat-
uration. Such method and relative numerical algorithm are valid
for both Continuous Conduction Mode (CCM) and Discontinuous
Conduction Mode (DCM), as well as for both Synchronous Recti-
fication (SR) and Diode Rectification (DR) converter topologies.

1.1 Magnetic Core Materials

In power electronics, there are two basic classes of the soft mag-
netic materials used for magnetic cores of transformers and induc-
tors [22]. The first class of materials are alloys of iron containing
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some amounts of other elements, such as silicon (Si), nickel (Ni),
chrome (Cr), and cobalt (Co). These materials are referred to
as ferromagnetic materials. The values of the saturation induc-
tion begin at 1.4 T , and for some of the materials the values are
near 1.9 T . The electrical resistivity of these alloys is only slightly
higher than that of good conductors, such as copper or aluminum.
The second class of magnetic materials are ferrimagnetic materials
(ferrites). Ferrites are ceramic materials, basically soft magnetic
oxide mixtures of iron and other magnetic elements, such as man-
ganese (Mn), zinc (Zn), nickel, and cobalt. They are characterized
by a high resistivity. The order of magnitude of the resistivity is
at least 106 higher than that of the first class.

Depending on the applications, the desirable properties of the
magnetic materials are different. In most soft magnetic material
applications, high permeability and saturation induction and low
coercivity and power losses are preferable. Mechanical properties
of the materials are also important. Generally, it is not possible
to have all the desirable properties in a single material, so for
a given application the choice of the material is usually a com-
promise. Currently ferrites are still the soft magnetic materials
most widely used in power electronics. The most important char-
acteristic of ferrites, as compared to other magnetic materials, is
the high volume resistivity of the material. In high frequency ap-
plications eddy current losses are usually dominant and increase
approximately with the square of the frequency. These losses are
inversely proportional to the resistivity. Therefore, the high resis-
tivity of the ferrites is the factor most contributing to their wide
application in high frequency magnetic components. A brief de-
scription of the main properties of ferrites is presented next.

1.1.1 Ferrites: Main Properties

Ferrites are dark gray or black ceramic materials. They are chem-
ically inert, brittle, very hard, and difficult to process, except with
water-cooled diamond tools. Ferrites are derived from iron oxide
mined from the earth. Metals such as nickel, zinc and manganese
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are added to the iron oxide. Ferrite material is then pressed and
fired to form a crystalline structure that gives ferrite cores their
properties. The general chemical formula is MeFe2O3, where Me
represents one or more divalent transition metals, such as man-
ganese, zinc, nickel, cobalt, or magnesium. The most common
combinations are manganese and zinc (MnZn) or nickel and zinc
(NiZn). MnZn ferrites are characterized by a high permeability,
high saturation induction levels and low eddy current losses, usu-
ally they are applicable up to a few MHz. NiZn have lower perme-
abilities with very low eddy current losses. They are, in general,
used in higher frequency ranges (above 1 MHz) and are suitable
for low induction levels.

Ferrite cores are gapped by creating a space in the magnetic
flux path. These gaps are achieved by grinding the gap in a one-
piece core or placing a non-magnetic spacer between halves of as-
sembled cores. This explains the performance differences between
them and the iron powder cores, in terms of magnetic saturation.
Iron powder cores consist of small particles of pure iron, coated
with a thin electrically insulating layer and pressed to a bulk ma-
terial at high pressure. The small non-magnetic distances between
the particles act as tiny air-gaps, which do not all saturate at ex-
actly the same flux level (applied current), so a saturation happens
in a gradual fashion. Ferrites, instead, saturate in a much more
abrupt fashion. Fig. 1.1 depicts typical L vs iL characteristics of
power inductors realized with ferrite (red) and iron powder (blue)
core, both having the same nominal inductance of 12 µH but dif-
ferent saturation behavior [17].

One of the effects of introducing an air-gap in a magnetic
core results in a reduction of its effective permeability and, con-
sequently, of the inductance. Another effect is a flattening (or
shearing) of its hysteresis loop [23]. For this reason, the hysteresis
is not taken into account hereinafter during the modeling of FPIs.
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Figure 1.1: Typical L vs iL curves of ferrite and iron powder core
inductors.

1.2 Inductance: Definitions

The term inductance can be defined in different ways with respect
to the non-linearity of the magnetic flux linkage Ψ versus the
winding current iL (or, Ψ vs iL) dependence [22]. Let us note that
the flux linkage Ψ represents the magnetic flux linked to all turns
of the inductor winding, which is related to the average flux Φ of
one turn according to: Ψ = Φ · n, where n is the winding turn
number.

The slope of the chord in the Ψ vs iL curve is called chord
inductance, amplitude inductance or static inductance (see Fig.
1.2(a)), and is denoted as Ls:

Ls =
Ψ

iL
(1.1)

The derivative of the flux linkage Ψ = Ψ(iL) with respect to
the current iL is the differential, or dynamic, inductance Ld, which
is observed when small signals are superimposed to the inductor
current iL:

Ld =
dΨ

diL
(1.2)

For material presenting hysteresis (see Fig. 1.2(b)), a minor
loop is observed resulting in a lower small-signal inductance, called
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Figure 1.2: Flux linkage Ψ as a function of current iL: (a) without
hysteresis; (b) with hysteresis.

reversible inductance Lr, given by (1.3):

Lr =
∆Ψ

∆iL
(1.3)

Neglecting the hysteresis, the differential inductance equals the
reversible one: Ld = Lr. The shaded area in Fig. 1.2(a) represents
the stored inductive energy. Therefore an energetic inductance Lw
can be defined as:

Lw =
2
∫ Ψ

0
iLdΨ

i2L
(1.4)

The relation between the different definitions of inductance for a
normal saturating curve (without hysteresis and with a negative
second derivative) is: Ld < Lw < Ls.

Inductors are tested by manufacturers by using proper test
conditions. Their characterization is often performed by applying
a sinusoidal voltage of angular frequency ω to the inductor, which
results in a non-sinusoidal inductor current. The inductance value
is obtained as follows:

Lv =
Vrms
ωIrms

(1.5)
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where Vrms and Irms are the measured RMS voltage and current
values. The same measurement can be done feeding inductor with
a sinusoidal current of angular frequency ω, and sensing the in-
ductor voltage.

1.3 Inductance vs Current Behavioral

Model for FPIs

Fig. 1.3 shows a typical curve of the dynamic inductance L versus
the winding current iL (or, L vs iL) for a FPI. Fig. 1.3 highlights
the inductance values Lhigh and Llow at the two curve extremes.
For gapped-core inductors, the deep-saturation inductance Llow is
about 10%-20% of the weak-saturation inductance Lhigh. Accord-
ingly, three regions of operation can be identified:

- the weak-saturation region, wherein the inductance slightly
decreases with respect to Lhigh, down to about 70%-80% of
Lhigh;

- the deep-saturation region, wherein the inductance is lower
than about 20%-30% of Lhigh and approaches Llow;

- the roll-off region, wherein the inductance is comprised be-
tween about 70%-80% of Lhigh and 20%-30% of Lhigh.

Figure 1.3: Typical L vs iL curve of a FPI.
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The L vs iL curves of FPIs can be analytically described by
means of an arctangent function, defined as follows:

L [iL (t)]=Llow+
Lhigh − Llow

2

{
1− 2

π
atan {σ [|iL (t) |−I∗L]}

}
(1.6)

where parameters Lhigh and Llow are the horizontal asymptotes
of the L vs iL curve, I∗L is its inflection point at which L(I∗L) =
1/2

(
Lhigh+Llow

)
, and σ is proportional to the slope of the curve

in I∗L according to dL/diL |iL=I∗L
= −σ

(
Lhigh−Llow

)
/π. The val-

ues of Lhigh and Llow can be taken from the inductance curves
provided in the manufactures’ datasheets. The values of σ and
I∗L are usually not directly available, but they can be obtained by
applying (1.6) for two current values iL(t) = Iα% and iL(t) = Iβ%,
corresponding to the α% drop and the β% drop of inductance with
respect to Lhigh, namely Lα% and Lβ%, respectively. Any couple
of percent drops between 10% and 90% can be adopted, if the in-
ductance curves are available on such a range. According to (1.6),
given α% = 30% and β% = 70%, the values of σ and I∗L can be
calculated by using (1.7):

σ =
cot(πΓ30%)− cot(πΓ70%)

I30% − I70%

(1.7a)

I∗L =
I70% cot(πΓ30%)− I30% cot(πΓ70%)

cot(πΓ30%)− cot(πΓ70%)
(1.7b)

Γ30% =
L30% − Llow

Lhigh − Llow
, Γ70% =

L70% − Llow

Lhigh − Llow
(1.7c)

where L30% and L70% are relative to the 30% drop and the 70%
drop with respect to Lhigh, occurring in the correspondence of the
currents I30% and I70% respectively. An example of comparison
between the datasheet L vs iL curve and the curve modeled by
means of the arctangent function (1.6) is shown in Fig. 1.4.

Some power inductors manufacturers provide data describing
the change of the L vs iL curves with temperature. Mostly, the
curves available in datasheets present a horizontal left-side drift
with increasing temperature [17], as shown in Fig. 1.5. Starting
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Figure 1.5: Temperature impact on datasheet L vs iL curves.

from the L vs iL curves relative to two different reference temper-
atures (namely, Tα and Tβ), thermal coefficients ∂30% and ∂70% can
be determined for the current values I30% and I70%:

∂30% =
I30%@Tβ−I30%@Tα

I30%@Tα (Tβ−Tα)
∂70% =

I70%@Tβ−I70%@Tα

I70%@Tα (Tβ−Tα)
(1.8)

From (1.8), the temperature impact on I30% and I70% can be
evaluated through (1.9):

I30%(T ) = I30%@Tα [1 + ∂30%(T − Tα)] (1.9a)

I70%(T ) = I70%@Tα [1 + ∂70%(T − Tα)] (1.9b)

Therefore, from (1.9) the updated temperature-dependent val-
ues of σ and I∗L can be determined by means of (1.7a) and (1.7b).
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1.4 Method for Inductor Current

Reconstruction

This Section discusses a generalized method for predicting FPIs
behavior in SMPS applications, including possible inductor opera-
tion in saturation, with a reliable evaluation of the current ripple.
Such method and relative numerical algorithm are valid for both
Continuous Conduction Mode (CCM) and Discontinuous Conduc-
tion Mode (DCM) operation, as well as for both Synchronous Rec-
tification (SR) and Diode Rectification (DR) topologies of SMPSs.
Fig. 1.6 depicts the three basic converter topologies considered for
the investigation. The main quantities of interest relevant to buck,

(a) (b)

(c) (d)

(e) (f)

Figure 1.6: Converter topologies: (a) DR buck; (b) SR buck; (c)
DR boost; (d) SR boost; (e) DR buck-boost; (f) SR buck-boost.
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Table 1.1: Main quantities for buck, boost and buck-boost.

Topology buck boost buck-boost

Average current
in inductor [A]

Iout Iout/(1−D) Iout/(1−D)

Average current
in diode D0/
switch Q1 [A]

Iout(1−D) Iout Iout

Average current
in switch Q0 [A]

IoutD IoutD/(1−D) IoutD/(1−D)

Average rise
voltage

in inductor [V]
Vin−Vout Vin Vin

Average fall
voltage

in inductor [V]
−Vout Vin−Vout −Vout

Switch Q0

duty-cycle (in
CCM)

Vout/Vin 1−Vin/Vout Vout/(Vin+Vout)

boost and buck-boost converters operating in CCM are listed in
Table 1.1.

The converter achieves output voltage Vout regulation thanks
to a controller, which adjusts the duty-cycle D until the difference
of the output voltage with respect to the desired nominal value is
nulled, or reduced below a certain acceptable accuracy threshold.
Whatever control technique is implemented, the controller ensures
the desired output voltage regulation in steady-state operation at
the instant load current. Then, the output, input and inductor
currents settle at their due average values, namely Iout, Iin and
IL respectively. In a buck converter, the energy continues to flow
into the load (via the inductor) during the entire switching period
Ts. Therefore, the average inductor current must be equal to the
load current. In a boost or buck-boost converter, the energy flows
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into the output (via the diode) only during the fall-time interval.
Thus, the average diode current must be equal to the load current.

In CCM operation, the converter imposes a square-wave volt-
age of period Ts to the inductor: a constant positive voltage VLr is
applied to the device during the rise-time interval Tr = [0, DTs),
and a constant negative voltage VLf is applied to it during the fall-
time interval Tf = [DTs, Ts], as shown in Fig. 1.7(a). If the induc-
tor operates in the weak-saturation region of the L vs iL curve, its
inductance is almost equal to the nominal value Lnom, and its cur-
rent presents a triangular wave-shape, as depicted in Fig. 1.7(b).
A magnitude of the peak-to-peak current ripple ∆iLpp = Ipk − Ivl
can be approximated by (1.10):

∆iLpp =
VLrD

fsLnom
(1.10)

where fs = 1/Ts is the converter switching frequency.
If the inductor operates in the roll-off region, its inductance

varies with the instantaneous inductor current iL(t) during the
switching period, thus resulting in a cusp-like wave-shape of the
ripple (see Fig. 1.7(c)), whose magnitude is not easy to estimate.
The next Subsection discusses a method for predicting a wave-
shape of such a distorted waveform and evaluating a magnitude of
the peak-to-peak current ripple, by using the saturation behavioral
model (1.6).

1.4.1 Inductor Saturation Modeling

From (1.6), the instantaneous inductor voltage vL(t) is related to
the current iL(t) according to (1.11):

vL(t) = L [iL (t)]
diL(t)

dt
=

1

2

(
Lhigh + Llow

) diL(t)

dt
+ ...

− 1

π

(
Lhigh − Llow

)
atan {σ [|iL (t) | − I∗L]} diL(t)

dt

(1.11)

where vL represents the inductance voltage drop only. Integrating
(1.11) between 0 and t ∈ Tr (within the rise-time interval) yields
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Figure 1.7: Inductor waveforms in CCM: (a) voltage, (b) current
in weak-saturation operating condition, (c) current in roll-off op-
erating condition.

(1.12), while integrating (1.11) between DTs and t ∈ Tf (within
the fall-time interval) provides (1.13):

∫ t

0

vL(t)dt = VLr · t =

∫ t

0

L [iL (t)]
diL(t)

dt
dt (1.12)
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∫ t

DTs

vL(t)dt = VLf · (t−DTs) =

∫ t

DTs

L [iL (t)]
diL(t)

dt
dt (1.13)

By solving integrals in (1.12) and (1.13), two main equations
can be obtained, provided in (1.14) and (1.15) respectively:

−VLr · t+
1

2

(
Lhigh + Llow

)
[iLr(t)− iL0] + ...

− 1

π

(
Lhigh − Llow

)
· z|iLr(t)iL0

= 0, for t ∈ Tr
(1.14)

−VLf · (t−DTs) +
1

2

(
Lhigh + Llow

)
[iLf (t)− iLD] + ...

− 1

π

(
Lhigh − Llow

)
· z|iLf (t)

iLD
= 0, for t ∈ Tf

(1.15)

where iL0 = iL(0), iLD = iL(DTs), iLr(t) and iLf (t) are the un-
known instantaneous values of the rising and falling inductor cur-
rents during Tr and Tf respectively, and z corresponds to the iL-
based indefinite integral given by (1.16):

z = z (iL) =

∫
atan [σ (|iL| − I∗L)] diL (1.16)

In particular, z is equal to z+ for iL ≥ 0 and z− for iL < 0, given
by (1.17a) and (1.17b) respectively:

z+ =(iL−I∗L) atan [σ (iL−I∗L)]−
log
[
1+σ2 (iL−I∗L)2]

2σ
(1.17a)

z−=− (iL+I∗L) atan [σ (iL+I∗L)]−
log
[
1+σ2 (iL+I∗L)2]

2σ
(1.17b)

According to (1.14), z(iL) has to be determined between iL0 and
iLr(t) during the interval Tr. If both such values are positive, the
resulting inductor current waveform is above zero, and it follows
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that:

z|iLr(t)iL0
= z+|iLr(t)iL0

= ...

(iLr(t)−I∗L) atan [σ (iLr(t)−I∗L)]−
log
[
1+σ2 (iLr(t)−I∗L)2]

2σ
+ ...

− (iL0−I∗L) atan [σ (iL0−I∗L)] +
log
[
1+σ2 (iL0−I∗L)2]

2σ
(1.18)

Otherwise, if iL0 is negative and iLr(t) is positive, it results:

z|iLr(t)iL0
= z−|0iL0

+ z+|iLr(t)0 = ...

(iLr(t)−I∗L) atan [σ (iLr(t)−I∗L)]−
log
[
1+σ2 (iLr(t)−I∗L)2]

2σ
+ ...

+ (iL0+I∗L) atan [σ (iL0+I∗L)]−
log
[
1+σ2 (iL0+I∗L)2]

2σ
+ ...

−2I∗Latan [σI∗L]+
log
[
1+σ2 (I∗L)2]

2σ
(1.19)

According to (1.15), z(iL) has to be determined between iLD and
iLf (t) during the interval Tf . Similarly, if both such values are
positive, it follows that:

z|iLf (t)
iLD

= z+|iLf (t)
iLD

= ...

(iLf (t)−I∗L) atan [σ (iLf (t)−I∗L)]−
log
[
1+σ2 (iLf (t)−I∗L)2]

2σ
+ ...

− (iLD−I∗L) atan [σ (iLD−I∗L)] +
log
[
1+σ2 (iLD−I∗L)2]

2σ
(1.20)

Otherwise, if iLD is positive and iLf (t) is negative, it results:
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z|iLf (t)
iLD

= z+|0iLD + z−|iLf (t)
0 = ...

− (iLf (t)+I∗L) atan [σ (iLf (t)+I∗L)]+
log
[
1+σ2 (iLf (t)+I∗L)2]

2σ
+ ...

− (iLD−I∗L) atan [σ (iLD−I∗L)] +
log
[
1+σ2 (iLD−I∗L)2]

2σ
+ ...

+2I∗Latan [σI∗L]−
log
[
1+σ2 (I∗L)2]

2σ
(1.21)

Equations (1.14) and (1.15) can be solved with respect to the
inductor current iL,x(t) (x = {r, f}) only in numerical form. How-
ever, the inductor currents in t = 0 and t = DTs are not known
in advance, so an iterative procedure and guess values for iL0 and
iLD are needed. A possible guess value iL0,guess of the valley in-
ductor current can be determined starting from the peak-to-peak
current ripple evaluated in non-saturated condition for triangular
inductor current wave-shape (see Eq. (1.10)), according to (1.22):

iL0,guess = IL −
VLrD

2fsLnom
(1.22)

Given iL0,guess, equation (1.14) can be solved in numerical form
in t = DTs to find iLD,guess. From these guess values, (1.14) and
(1.15) must be solved within the intervals Tr and Tf to get the
values of the inductor current in a given number of sampling points
Ns for each interval. The following Subsections discuss a procedure
for proper selection of sampling points over the switching period,
and the resulting inductor current reconstruction in CCM and
DCM.

1.4.2 Current Reconstruction in CCM

Inductor Operation with Positive Currents

If the inductor operates in CCM with a limited magnitude of the
peak-to-peak current ripple and its resulting current waveform is
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always above zero during the switching period, a good reconstruc-
tion of the current wave-shape within each time interval can be
achieved by means of five time samples (Ns = 5) as shown in Fig.
1.8, corresponding to:

- the starting instant ts;

- the ending instant te;

- the middle instant tm, given by the intersection of the tan-
gents in ts and te;

- the left middle instant tlm, given by the intersection of the
tangents in ts and tm;

- the right middle instant trm, given by the intersection of the
tangents in tm and te.

Samples and corresponding time instants are shown for the
rise-time interval Tr in Fig. 1.8, indicated with subscript ”1”.
Samples and time instants relative to the fall-time interval Tf will
be hereinafter indicated with subscript ”2”. The tangents to the
current waveform in ts, tm and te instants are indicated as fs, fm
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Figure 1.8: Typical saturated current waveform of a FPI in CCM.
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and fe, respectively. The flow diagrams given in Fig. 1.9 summa-
rize the entire procedure to calculate the samples of the inductor
current over the switching period. Let us refer to the rise-time
interval Tr = [0, DTs]. Thus, ts1 = 0 and te1 = DTs. Let us
suppose that the inductor current iL(ts1) = iL0 is known. Given
iL0, a root-finding algorithm can be applied to equation (1.14) to
find the value iL(te1) = iLD: in this circumstance, it is t = DTs
in (1.14) and iLr(t) = iLD is the unknown. Since the inductor
current is never negative during the switching period in this par-
ticular case study, the integral solution for z(iL) refers to positive
iL values only. For both iL0 and iLD, (1.6) provides the relevant
dynamic inductance L and, for each sample, the ratio between the
inductor voltage VLr and the inductance L allows to evaluate the
inductor current slope diL/dt, useful for the analytical expression
of the tangents fs1 and fe1, as highlighted in Fig. 1.9. The tan-
gents to the inductor current in ts1 and te1 intersect each other at
the time instant tm1. Given iL0, a root-finding algorithm can be
applied again to equation (1.14) to find the value of iL(tm1): in
this circumstance, it is t = tm1 in (1.14) and iLr(t) = iL(tm1) is the
unknown. Then, the tangent to the inductor current in tm1 can
be determined. It intersects the tangent in ts1 and the tangent
in te1 in correspondence of the time instants tlm1 and trm1, re-
spectively. Finally, applying a root-finding algorithm to equation
(1.14), iL(tlm1) and iL(trm1) can be found. Thus, the five samples
within Tr interval are obtained. A similar approach can be used
to obtain the current samples and the corresponding time instants
ts2, tlm2, tm2, trm2 and te2 in the fall-time interval Tf = [DTs, Ts],
by applying a root-finding algorithm to equation (1.15) and as-
suming ts2 = te1 = DTs, te2 = Ts, iL(ts2) = iL(te1) = iLD. The
number of samples Ns can influence the accuracy and reliability
of the inductor current prediction. Under certain operating con-
ditions yielding deeper inductor saturation levels, more samples
could be needed to achieve a good reconstruction of the inductor
current wave-shape, as shown hereinafter.
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Figure 1.9: Algorithm for inductor current wave-shape reconstruc-
tion including positive current values.
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Inductor Operation with Positive and Negative Currents

If the inductor operates in SR converters with a high magnitude
of the peak-to-peak current ripple, its resulting current waveform
may become negative for a certain portion of the switching pe-
riod. In this case the tangents fs and fe, used to identify the
sampling time instant tm, may intersect each other outside the
interval of reference, thus causing a failure of the inductor cur-
rent reconstruction procedure discussed so far. This is due to the
fact that the inductor current waveform is concave on a negative
range and convex on a positive range, as depicted in Fig. 1.10.
To avoid algorithm failures when both positive and negative in-
ductor currents are present (or, equivalently, when iL0 and iLD
have opposite sign), the two middle instants tm1 and tm2 relative
to the intervals Tr and Tf have to correspond to zero-crossings
of the inductor current in the respective intervals. An example
of the resulting samples in such operating conditions is given in
Fig. 1.10, relative to the rise-time interval Tr. The flow diagram
given in Fig. 1.11 summarizes the entire procedure to calculate

Figure 1.10: Typical saturated current waveform of a FPI in CCM
including positive and negative current values.
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Figure 1.11: Algorithm for inductor current wave-shape recon-
struction including positive and negative current values.
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the five samples of the inductor current over the same interval.
The unique difference with respect to the flow diagram of Fig. 1.9
is that, if iL0 and iLD have opposite sign, the time instant tm1

has to be automatically fixed at iL = 0: in this circumstance, it
is iLr(tm1) = 0 in (1.14) and t = tm1 is the unknown. A similar
approach can be used to obtain the current samples and the cor-
responding time instants in the fall-time interval Tf , by replacing
subscript ”1” with subscript ”2”, Eq. (1.14) with Eq. (1.15) and
VLr with VLf (in the gray shaded block, consider ts2 = te1 = DTs,
te2 = Ts , iL(ts2) = iLD = iL(te1)). Thus the flow diagram of Fig.
1.11, including the case of inductor current wave-shapes with both
positive and negative values, generalizes the results of the flow di-
agram of Fig. 1.9, which is valid for inductor current wave-shape
reconstruction when only positive current values are involved.

Inductor Current Ripple Evaluation

In the above procedure for inductor current reconstruction, all
the samples have been calculated assuming that the value of iL0

is known. The calculation of iL0, iLD and of the resulting current
ripple can be achieved by means of the flow diagram shown in Fig.
1.12, given the converter operating conditions {Vin, Vout, Iout, fs}
and the inductors parameters

{
Lhigh, Llow, σ, I∗L

}
. In particular,

starting from the guess reference value iL0,guess (estimated by means
of Eq. (1.22)), the inductor current wave-shape reconstruction is
performed for the rise-time and the fall-time intervals by means
of the generalized procedure given in the flow diagram of Fig.
1.11. Such reconstruction is iteratively updated, until the result-
ing average output current Ĩout of the reconstructed wave-shape
corresponds to the assigned load current Iout. In fact, by using
the previous current samples, we can impose that:

Iout = fs

∫ Ts

0

iout(t)dt ∼= fs

(
Ψr + Ψf

2

)
= Ĩout (1.23)

where 1/2(Ψr + Ψf ) is an approximation of the integral of iout(t)
via the trapezoidal method, starting from the inductor current
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Figure 1.12: Generalized algorithm for inductor current recon-
struction and ripple evaluation.

wave-shape reconstruction. In particular, 1/2Ψr and 1/2Ψf are the
approximations of the integral over the rise-time and the fall-time
interval, respectively. In a buck converter, the effective average
inductor current IL is equal to the average output current Iout
(see Table 1.1), so that Ψr 6= 0 and Ψf 6= 0 are both needed to
evaluate Ĩout. Such quantities are given by (1.24) and (1.25):

Ψr = [iL(ts1)+iL(tlm1)](tlm1−ts1)+[iL(tlm1)+iL(tm1)](tm1−tlm1)+...

+[iL(tm1)+iL(trm1)](trm1−tm1)+[iL(trm1)+iL(te1)](te1−trm1)

(1.24)

Ψf = [iL(ts2)+iL(tlm2)](tlm2−ts2)+[iL(tlm2)+iL(tm2)](tm2−tlm2)+...

+[iL(tm2)+iL(trm2)](trm2−tm2)+[iL(trm2)+iL(te2)](te2−trm2)

(1.25)

For a boost or buck-boost converter, the current of the diode
D0 (or the MOSFET Q1 in SR converters) can instead be used
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as a reference to evaluate Ĩout, since the average diode current ID
(or the average MOSFET current in SR topologies) is equal to the
average output current Iout (see Table 1.1). In such conditions,
Ψr = 0 and Ψf 6= 0 have to be adopted to evaluate Ĩout in (1.23).
For each iteration of the algorithm given in Fig. 1.12, the dif-
ference |Iout − Ĩout| is determined: if it is lower than a minimum
acceptable error ε (ε = 1e-5 in this study), then the loop is ter-
minated, otherwise the reference guess value (iL0,guess) is updated
based on a linear law. In particular, the new value of iL0,guess is
obtain as:

iL0,guess(new) = iL0,guess + δi(Iout − Ĩout) (1.26)

where the factor δi determines the convergence speed and the sta-
bility of the algorithm (δi = 0.1 in this study).

1.4.3 Current Reconstruction in DCM

If the inductor operates in DR converters with a high magnitude
of the peak-to-peak current ripple, its resulting current waveform
may become zero for a certain portion of the switching period, thus
causing inductor operation in DCM. Under these circumstances, a
constant positive voltage VLr is applied to the inductor during the
rise-time interval Tr = [0, D1Ts) and a constant negative voltage
VLf is applied to it during the fall-time interval Tf = [D1Ts, (D1+
D2)Ts), while both inductor voltage and current are zero during
the idle-time interval Ti = [(D1 +D2)Ts, Ts], as depicted in Fig.
1.13, where the inductor current waveform is relative to operating
conditions involving saturation.

Equations (1.14) and (1.15) are still valid in DCM. However,
since the inductor current is never negative during the switching
period, the integral solution for z(iL) refers to positive iL values
only. The inductor currents iLr(t) for t ∈ Tr and iLf (t) for t ∈ Tf
are two unknowns of interest in (1.14) and (1.15), which can be
numerically solved only if D1 and D2 are known. In fact, in this
condition, iL(0) = iL[(D1+D2)Ts] = iL(Ts) = 0. Let us consider
that for inductor operation in CCM, D1 = D and D2 = 1−D are
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Figure 1.13: Inductor waveforms in DCM: (a) voltage, (b) current
in roll-off operating condition.

known in advance because of the inductor volt-second balance [24],
whereas iL0 is not. In such a case, an appropriate current guess
value must be used and an iterative procedure adopted in order
to find a correct iL0 value, giving a proper inductor current re-
construction with the desired average current value. Conversely,
for inductor operation in DCM, the iL0 value is always zero and
D1 and D2 must be iteratively evaluated, until the desired av-
erage inductor current is obtained. Guess values for D1 and D2

(namely, D1,guess and D2,guess) can be obtained assuming the in-
ductor operation in a non-saturated condition, with a triangular
current wave-shape. From the inductor volt-second balance and
output capacitor charge balance [24], D1,guess and D2,guess values
can be estimated for each converter topology. From the inductor
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volt-second balance over a switching period, it follows:

VL = fs

∫ Ts

0

vL(t)dt = 0 ⇒ VLrD1 + VLfD2 = 0 (1.27)

From the output capacitor charge balance obtained for a tri-
angular inductor current wave-shape, for buck topology it is:

IC = IL − Iout = 0 ⇒ Iout =
1

2

VLrD1Ts
L

(D1+D2) (1.28)

whereas for boost and buck-boost topologies it follows:

IC = ID − Iout = 0 ⇒ Iout =
1

2

VLrD1Ts
L

D2 (1.29)

By solving (1.27) and (1.28) for {D1, D2}, the following guess
values can be obtained for the buck converter:

D1,guess =

√
−2LVLfIout

VLr(VLr − VLf )Ts
D2,guess = −VLr

VLf
D1,guess (1.30)

By solving (1.27) and (1.29) for {D1, D2}, the following guess
values can be obtained for the boost and buck-boost converters:

D1,guess =

√
−2LVLfIout

V 2
LrTs

D2,guess = −VLr
VLf

D1,guess (1.31)

Given D1,guess and D2,guess, (1.14) and (1.15) must be solved
within the time intervals Tr and Tf , in order to obtain the inductor
current values in a given number of sampling points Ns for each
interval. An example of the resulting samples in such operating
condition is given in Fig. 1.14, where samples and corresponding
time instants are shown for the time interval Tf . The procedure
given in the flow diagram of Fig. 1.11 is valid also in DCM to
calculate the five samples of the inductor current over the interval
Tr. In particular, the following set-up can be adopted: ts1 = 0,
te1 = D1,guessTs, iL(ts1) = iL0 = 0, for the rise time interval Tr.
If D1,guess is known, the root-finding algorithm can be applied to
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Figure 1.14: Typical saturated current waveform of a FPI in DCM.

(1.14) to find the value iL(te1) = iLD: in this circumstance, it is
t = D1,guessTs in (1.14) and iLr(t) = iLD is the unknown. Then,
the tangents to the inductor current in ts1 and te1 can be evalu-
ated, which intersect within the time interval Tr in t = tm1. Given
iL0 = 0, the root-finding algorithm can be applied again to (1.14)
to find the value of iL(tm1): in this circumstance, it is t = tm1

in (1.14) and iLr(t) = iL(tm1) is the unknown. The intersections
of the tangents to the inductor current in ts1 and tm1 and of the
tangents to the inductor current in tm1 and te1 can be determined.
They intersect in t = tlm1 and t = trm1, respectively. Finally, ap-
plying the root-finding algorithm to (1.14), iL(tlm1) and iL(trm1)
can be found. Thus, the five samples {ts1, tlm1, tm1, trm1, te1}
within Tr are obtained. A similar approach can be used to obtain
the current samples and the time instants {ts2, tlm2, tm2, trm2, te2}
in the interval Tf by applying the root-finding algorithm to (1.15),
assuming ts2 = te1 = D1,guessTs, te2 = (D1,guess + D2,guess)Ts,
iL(ts2) = iL(te1) = iLD and iL(te2) = iL(ts1) = 0, for the fall time
interval Tf . Also in DCM, deeper inductor saturation levels may
require more samples for reliable reconstruction of the inductor
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current wave-shape.
The flow diagrams of Fig. 1.12 can be used for DCM as well, to

analyze the current iL(t) over the whole switching period Ts, given
the converter operating conditions and the inductor parameters.
In particular, starting from the guess reference values D1,guess and
D2,guess, the inductor current wave-shape reconstruction is per-
formed for the rise-time and the fall-time intervals by means of
the generalized procedure given in the flow diagram of Fig. 1.11,
also including the DCM idle-time interval Ti wherein the inductor
current is zero. Such reconstruction is iteratively updated, un-
til the resulting average output current Ĩout of the reconstructed
wave-shape corresponds to the assigned load current Iout. Regard-
ing the convergence rule given in Fig. 1.12, the unique difference
with respect to CCM is that D1,guess value has to be iteratively
updated, instead of iL0,guess value, according to (1.32):

D1,guess(new) = D1,guess + δi(Iout − Ĩout) (1.32)

whereas D2,guess(new) is automatically determined as a function of
this new value, according to (1.27).

1.5 Experimental Verification

A MATLAB code has been developed to implement the proposed
numerical algorithm for inductor current reconstruction. The be-
havior of the Coilcraft MSS5131-472 inductor has been simulated
and tested, both in CCM and in DCM. The method has been
validated experimentally for the buck and boost converters, since
the FPIs analysis for the buck-boost converter is based on formu-
las similar to the ones of the boost converter (see Table 1.1). In
particular, the results of simulations have been validated through
experimental tests realized by means of three Texas Instruments
evaluation boards:

- the TPS54160EVM-230 [25], shown in Fig. 1.15(a) and im-
plementing a DR buck, with nominal specifications: Vin=6-
36V, Vout=3.3V, Iout,max=1.5A, fs=465kHz;
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- the TPS55340EVM-017 [26], shown in Fig. 1.15(b) and im-
plementing a DR boost, with nominal specifications: Vin=5-
12V, Vout=24V, Iout,max={0.8A@Vin=5V, 1.9A@Vin=12V},
fs=600kHz;

- the LM5122EVM-1PH [27], shown in Fig. 1.15(c) and im-
plementing a SR boost, with nominal specifications: Vin=9-
20V, Vout=24V, Iout,max=4.5A, fs=250kHz.

For current measurements, the MSS5131-472 part has been con-
nected to each board through a pair of wires allowing to hang
a current probe, as shown in Fig. 1.15(a)-(c). The experimental
measurements set-up included a LeCroy WaveSurfer 3054 500MHz
Oscilloscope, a LeCroy CP030 30A current probe, a Sorensen Elec-
tronic Load SLM-4 mainframe with SLM series electronic load
modules 60V/60A/300W, a 30V/3A Key Tech DF1731SB dual
out DC Power Supply, a Fluke 179 digital multimeter with a type
K thermocouple, as shown in Fig. 1.15(d).

Since the inductor saturation curves provided in manufactur-
ers’ datasheets are typically subjected to about 20%-30% uncer-
tainty, an identification procedure has been herein adopted to ob-
tain more accurate L vs iL curves at two different reference tem-
peratures. The resulting saturation curves are depicted in Fig.
1.16 for 25°C and 75°C, while the relative identified parameters
are given in Table 1.2. From such curves, the parameters {Lhigh,
Llow, σ, I∗L} of the arctangent model (1.6) and their thermal de-
pendences have been evaluated according to (1.7)-(1.9). The sat-
uration curves identification procedure is discussed in detail in
Chapter 2.

Table 1.2: MSS5131-472 saturation curves parameters.

Lhigh

[µH]
Llow

[µH]
I30%,25°C

[A]
I70%,25°C

[A]
I30%,75°C

[A]
I70%,75°C

[A]

5.7 0.1 1.43 1.87 1.29 1.64
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(a) (b)

(c)

(d)

Figure 1.15: (a)-(c) Evaluation boards adopted for the experimen-
tal tests; (d) experimental set-up.
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Figure 1.16: MSS5131-472 saturation curves.

Three groups of experimental tests have been performed by
means of the evaluation boards of Fig. 1.15(a)-(c), to validate
the proposed generalized numerical algorithm for inductor cur-
rent reconstruction in saturation. First, the TPS54160EVM-230
DR buck board has been adopted to test the MSS5131-472 opera-
tion in CCM under conditions of limited current ripple, involving
positive current values only, thus validating the inductor current
reconstruction procedure described in Subsection 1.4.2 and sum-
marized in the flow diagram of Fig. 1.9. Six different case stud-
ies have been considered, whose relative operating conditions are
listed in the first part of Table 1.3. Second, the LM5122EVM-1PH
SR boost board has been used to test the MSS5131-472 operation
in CCM under conditions of high current ripple, involving positive
and negative current values, thus validating the inductor current
reconstruction procedure described in Subsection 1.4.2 and sum-
marized in the flow diagram of Fig. 1.11. Six analyzed case studies
and relative operating conditions are listed in the second part of
Table 1.3. Eventually, the TPS55340EVM-017 DR boost board
has been used to test the MSS5131-472 operation in DCM, thus
validating the inductor current reconstruction procedure described
in Subsection 1.4.3. Six analyzed case studies and relative oper-
ating conditions are listed in the third part of Table 1.3. For each
case study, experimental inductor temperature has also been mea-
sured and used to determine the temperature-dependent values



1.5. Experimental Verification 39

Table 1.3: Case studies and relevant operating conditions.

Case studies
Vout
[V ]

fs
[kHz]

Vin
[V ]

Iout
[A]

Texp
[°C]

D
R

b
u
ck

#1

3.3 465

5 1.00 29.1
#2 5 1.30 30.4
#3 5 1.60 32.8
#4 8 1.00 32.4
#5 8 1.30 33.3
#6 8 1.60 35.3

S
R

b
o
os

t

#7

24.0 253

18 0.10 58.5
#8 19 0.10 50.7
#9 20 0.10 45.8
#10 19 0.20 51.3
#11 19 0.25 52.2
#12 19 0.30 52.8

D
R

b
o
os

t

#13

24.2 591

9 0.20 44.6
#14 9 0.25 46.2
#15 9 0.30 51.8
#16 12 0.30 47.1
#17 12 0.35 49.4
#18 12 0.40 51.8

of σ and I∗L of the arctangent model (1.6), adopted during the
inductor current reconstruction for the relative case study.

Fig. 1.17(a)-(f), Fig. 1.18(a)-(f) and Fig. 1.19(a)-(f) show the
inductor current measurements (green waveforms) and the simu-
lation results (red lines with circle markers) obtained by using the
proposed generalized algorithm for the case studies given in Table
1.3 and tested on the DR buck (#1 - #6), SR boost (#7 - #12)
and DR boost (#13 - #18), respectively. For higher accuracy,
the inductor current ripple prediction has been obtained by using
Ns ≥ 5, requiring MATLAB computing times up to 20 sec.
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(f) case study #6

Figure 1.17: MSS5131-472 current waveforms in DR buck: experi-
mental measurements (green waveforms) vs simulated reconstruc-
tions (red lines with circle markers).
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Figure 1.18: MSS5131-472 current waveforms in SR boost: experi-
mental measurements (green waveforms) vs simulated reconstruc-
tions (red lines with circle markers).
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Figure 1.19: MSS5131-472 current waveforms in DR boost: ex-
perimental measurements (green waveforms) vs simulated recon-
structions (red lines with circle markers).
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First, a default value Ns = 5 has been adopted for each case
study, thus obtaining 9 initial samples tk per switching period,
with k = 1, ..., 9 (the last sample of the rise-time interval Tr co-
incides with the first sample of the fall-time interval Tf ). Then,
a recursive procedure has been implemented to obtain additional
current samples in the regions wherein the inductance is strongly
variable, determined in the following way. For each couple of the
contiguous initial samples tk and tk+1, an additional intermediate
sample tj has been generated if the percent difference between the
respective inductor current slopes diL(tk)/dt and diL(tk+1)/dt ex-
ceeded a certain threshold (50% in this study). Such sample tj is
given by the intersection of the two tangents to the inductor cur-
rent waveform in tk and tk+1. Then, the same recursive procedure
has been applied on subintervals [tk, tj] and [tj, tk+1], thus obtain-
ing other additional samples, up to a maximum of Nmax samples
within the interval [tk, tk+1] (Nmax = 2 in this study).

Fig.s 1.17-1.19 show a very good agreement between the ex-
perimental results and simulated current wave-shapes, for all the
considered case studies, both in CCM and in DCM. It is worth
noting that the ringing of the inductor current waveforms in the
DR boost converter (see Fig. 1.19) is due to the coupling of the in-
ductance with the parasitic capacitances of the MOSFET and the
diode during the idle-time interval of DCM operation. For each
case study, the simulated and experimental peak-to-peak ripple
and rms current values are given in Table 1.4. The simulated rms
current ILrms has been estimated by adopting a piece-wise linear
approximation of the inductor current waveform, starting from the
samples of the current Ik and the respective time instants tk pro-
vided by the proposed inductor current reconstruction algorithm,
as given in (1.33):

ILrms u

√√√√ 1

Ts

2(Ns−1)∑
k=1

(
I2
k+1 + Ik+1Ik + I2

k

)
(tk+1 − tk)

3
(1.33)

The results show that the errors on the peak-to-peak and rms
values are all limited in the range of ±10% with respect to the
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Table 1.4: Experimental vs simulated inductor current data.

Case studies
∆iLpp
(exp.)

[A]

∆iLpp
(sim.)

[A]

∆iLpp
error
[%]

ILrms
(exp.)

[A]

ILrms
(sim.)

[A]

ILrms
error
[%]

D
R

b
u
ck

#1 0.45 0.44 -2.1 1.01 1.01 ∼0
#2 0.50 0.49 -2.7 1.31 1.31 ∼0
#3 0.72 0.71 -2.0 1.61 1.60 -0.1
#4 0.93 0.95 1.3 1.04 1.04 ∼0
#5 1.25 1.27 1.2 1.33 1.33 ∼0
#6 2.30 2.29 -0.4 1.69 1.67 -1.0

S
R

b
o
os

t

#7 7.83 8.43 7.7 1.34 1.33 -0.9
#8 3.63 3.68 1.2 0.88 0.93 5.3
#9 2.53 2.62 3.4 0.72 0.76 5.6
#10 4.80 4.59 -4.4 1.01 1.01 ∼0
#11 5.37 5.20 -3.1 1.10 1.07 -2.4
#12 5.80 5.96 2.7 1.18 1.15 -2.4

D
R

b
o
os

t

#13 1.60 1.61 0.3 0.79 0.78 -1.1
#14 2.20 1.98 -9.9 0.94 0.91 -3.3
#15 3.23 3.18 -1.6 1.14 1.11 -2.6
#16 1.98 1.82 -8.3 0.86 0.83 -3.9
#17 2.75 2.65 -3.7 0.10 0.99 -1.0
#18 3.70 3.50 -5.5 1.19 1.11 -6.5

experimental data. It is worth remarking that case studies like
#7 and #12, characterized by very high magnitudes of the peak-
to-peak current ripple, have been considered to highlight the re-
liability of the discussed modeling approach. In real-world SPMS
applications, such extreme conditions are avoided for safety and
efficiency reasons. Indeed, they are prevented by current limit cir-
cuitry integrated in each SMPS. These simulations demonstrate
the reliability of the proposed generalized algorithm for inductor
current reconstruction in whatever operating conditions, including
saturation.
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The main outcome of the research activity presented in this
Chapter resulted in the publication of the scientific papers:

� G. Di Capua, N. Femia, K. Stoyka, ”A Generalized Numer-
ical Method for Ferrite Inductors Analysis in High Current
Ripple Operation”, Integration, the VLSI Journal, vol. 54,
pp. 473-484, June 2017.

� G. Di Capua, N. Femia, K. Stoyka, ”An Improved Algorithm
for the Analysis of Partially Saturated Ferrite Inductors in
Switching Power Supplies”, 13th Int. Conf. on Synthesis,
Modeling, Analysis and Simulation Methods and Appl. to
Circuit Design (SMACD), June 2016.





Chapter 2

Saturation Curves
Identification of Ferrite
Inductors

This chapter discusses the identification of the inductance vs cur-
rent (L vs iL) saturation curves for FPIs operating in SMPSs. The
experimental L vs iL curves provided in manufacturers’ datasheets
and on-line tools are typically characterized by high uncertainty
levels (e.g., ±20%). Moreover, such curves are measured under
small-signal sinusoidal voltage test conditions, whereas SMPSs
impose large-signal square-wave voltages to the inductors, thus
making the manufacturers’ data not sufficiently reliable for a re-
alistic determination of the peak-to-peak inductor current ripple
in SMPS. The first part of this Chapter discusses the Evolution-
ary Algorithm-based approach for the L vs iL curves identifica-
tion starting from experimental measurements performed in real
SMPS conditions. Then, an alternative approach is presented,
based on the local and global approximations of the inductor sat-
uration characteristic, obtained under small-amplitude and large-
amplitude current ripple conditions, respectively.
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2.1 Evolutionary Algorithm-based

Approach

Evolutionary Algorithms (EAs), like Genetic Algorithm (GA) and
Differential Evolution (DE), have been widely used for parame-
ters identification and model parameters extraction of magnetic
devices, such as inductors, transformers and magnetic cores. The
GA has been adopted to identify the parameters of a π-based phys-
ical model for RF inductors in [9]. Immune algorithm and µ-GA
have been adopted for topology optimization of inductor shapes in
[11]. The geometric programming has been applied to the trans-
former design optimization problem in [14], to minimize the total
mass (or cost) of the core and wire material, while ensuring proper
transformer ratings and design constraints, like efficiency, voltage
regulation, temperature rise and winding fill factor. In [15], the
GA has been adopted to fit the magnetic permeability vs frequency
characteristics of ferrite cores. The DE method has been used in
[16] to extract the parameters of the Jiles-Atherton model for fer-
rites. Eventually, in [18] it has been proved that the DE ensures
better and faster fitting than the GA. For this reason, the DE
algorithm has been adopted hereinafter to identify the saturation
curves of FPIs operated in SMPSs.

2.1.1 Differential Evolution

Differential Evolution (DE) was developed by Price and Storn in
1995. Like genetic algorithms, the DE repeatedly modifies a pop-
ulation of individual solutions. Each individual is represented by
a vector of numeric parameters to be identified during the opti-
mization process. Each vector is assigned a fitness value, which
represents its goodness in the population. Like the GAs, the DE
uses three typical operators to search the solution space: crossover,
mutation and selection. Among these operators, mutation plays
a key role in the performance of the DE algorithm [28]. Similarly
to the other population-based algorithms, the DE generates new
points that are perturbations of existing points; in particular, the
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DE perturbs vectors with the scaled difference of two randomly
selected population vectors - from here the name ”differential”
evolution.

To produce the mutant vector for each vector of the current
population (target vector), the DE adds the scaled, random vec-
tor difference to a third randomly selected population vector (base
vector). Then it recombines the obtained mutant vector with the
target vector, so as to obtain a trial vector. In the selection stage,
the trial vector competes against the population vector of the same
index (target vector). The procedure repeats until all the popu-
lation vectors have competed against a randomly generated trial
vector. The survivors of such competitions become parents for the
next generation in the evolutionary cycle [29]. The technical name
for the described method is ”DE/rand/1/bin”, because the base
vector is randomly chosen, one vector difference is added to it and
because the number of parameters donated by the mutant vector
during the crossover closely follows a binomial distribution. There
exist several DE strategies discussed in literature [28], which use
different mutation operators. The above strategy is often referred
to as ”classic DE”. In this study, such strategy has been adopted.
A brief overview of key steps of the ”DE/rand/1/bin” is next pre-
sented. A complete description of the DE principles and operation
is available in [29].

Population Structure

DE maintains a pair of vector populations, both containing Np D-
dimensional vectors of real-valued parameters. The current popu-
lation, symbolized by Px, is composed of the vectors xi,g that have
already been found to be acceptable in the previous comparisons:

Px,g = (xi,g) , i = 0, 1, ..., Np − 1, g = 0, 1, ..., gmax,

xi,g = (xj,i,g) , j = 0, 1, ..., D − 1
(2.1)

The index g = 0, 1, ..., gmax indicates the generation to which a
vector belongs. In addition, each vector is assigned a population
index i, going from 0 to Np − 1. Parameters within vectors are
indexed with j, going from 0 to D − 1.
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Mutation

Once initialized, the DE mutates randomly chosen vectors to pro-
duce an intermediary population Pv of Np mutant vectors vi,g:

Pv,g = (vi,g) , i = 0, 1, ..., Np − 1, g = 0, 1, ..., gmax,

vi,g = (vj,i,g) , j = 0, 1, ..., D − 1
(2.2)

In particular, differential mutation adds a scaled, randomly se-
lected vector difference to a third vector. Eq. (2.3) shows how
to combine three different, randomly chosen vectors to create a
mutant vector vi,g:

vi,g = xr0,g + SF · (xr1,g − xr2,g) (2.3)

The scale factor SF ∈ (0, 1+) is a positive real number that con-
trols the rate at which the population evolves. While there is no
upper limit on SF , effective values are seldom greater than 1.

The base vector index r0 is a randomly chosen vector index that
is different from the target vector index i. The difference vector
indices r1 and r2 are also randomly selected, once per mutant, and
have to be distinct from each other and from both the base and
target vector indices. Such procedure is repeated Np times, until
the mutant population Pv is constructed, containing one mutant
vector for every member of the current population Px.

Crossover

Once the mutant population has been generated, each vector in
the current population is recombined with the respective mutant
vector, to produce a trial population Pu of Np trial vectors ui,g:

Pu,g = (ui,g) , i = 0, 1, ..., Np − 1, g = 0, 1, ..., gmax,

ui,g = (uj,i,g) , j = 0, 1, ..., D − 1
(2.4)

In particular, the DE generates a trial vector according to a uni-
form crossover scheme:

ui,g = uj,i,g =

{
vj,i,g, if (randj(0, 1) ≤ Cr or j = jrand)

xj,i,g, otherwise
(2.5)
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The crossover probability Cr ∈ [0, 1] is a user-defined value that
controls the fraction of parameter values that are copied from the
mutant. In addition, the trial parameter with randomly chosen
index jrand is taken from the mutant to ensure that the trial vec-
tor does not duplicate xi,g. During recombination, trial vectors
overwrite the mutant population.

Selection

If the trial vector ui,g has an equal or lower fitness function F value
than that of its target vector xi,g, it replaces the target vector in
the next generation; otherwise, the target retains its place in the
population for at least one more generation:

xi,g+1 =

{
ui,g, if F (ui,g) ≤ F (xi,g)

xi,g, otherwise
(2.6)

Once the new population is created, the process of mutation, re-
combination and selection is repeated until the optimum is located,
or a pre-specified termination criterion is satisfied, e.g., the num-
ber of generations reaches a preset maximum gmax. Fig. 2.1 shows
a detailed flow diagram of the DE algorithm, proposed by Price
and Storn in [29].

2.1.2 Saturation Curves Identification by DE

The L vs iL curves identification has been formulated as an op-
timization problem and solved by means of the DE, as discussed
in [30]. For a given FPI, the goal has been to identify the pa-
rameters of the behavioral model (1.6) at two different reference
temperatures (namely, Tα and Tβ), starting from the experimen-
tal measurements of the inductor current and temperature. Once
the curves relative to Tα and Tβ have been obtained, the curve at
whatever temperature T (comprised between Tα and Tβ) can be
derived by using formulas (1.7)-(1.9).

The DE individual has been composed of the following parame-
ters to be identified {Lhigh,Llow,I30%@Tα ,I70%@Tα ,I30%@Tβ ,I70%@Tβ},
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Figure 2.1: Flow diagram of the DE algorithm.

where IX%,Y represents the saturation current corresponding to
the X% drop of inductance with respect to weak-saturation value
Lhigh at given temperature Y . Since Lhigh and Llow present a
weak temperature sensitivity (see Fig. 1.5), the same values of
such parameters have been assumed for Tα and Tβ, thus reducing
the number of variables to be identified from eight to six parame-
ters. The goal of the DE has been to identify the optimal values
of such parameters, providing the best fitting between the experi-
mental inductor current waveforms and the respective wave-shapes
reconstructed by means of the generalized algorithm described in
Chapter 1. N different case studies have been considered, result-
ing in N different inductor current waveforms and temperatures.
The fitness function F given in (2.7) has been adopted for the DE
minimization:
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F =

√√√√ N∑
i=1

[(
IPKsim,i − IPKexp,i

IPKexp,i

)2

+

(
IV sim,i − IV exp,i

IV exp,i

)2
]

(2.7)

where {IPKexp,i, IV exp,i} are the experimental peak and valley cur-
rent values and {IPKsim,i, IV sim,i} are the corresponding simulated
values, with i = 1, ..., N . The flow diagram of Fig. 2.2 depicts a
procedure to evaluate the fitness function F of each individual in
the DE population, given the converter operating conditions and
experimental data of inductor current iL(t) and temperature T for

L vs iL curve @TN

Case Study #N
T=TN

{IPKsim,1 , IVsim,1}

Start

Oper. conds. {Vin , Vout , Iout , fs}
Experimental data {iL(t) , T} 

in N case studies

DE individual

L
high

L
low

I30%@T I70%@T

L vs iL curve @T1

Inductor current 
reconstruction on Ts

Fitness 
Evaluation

End

I30%@T I70%@T

Case Study #1
T=T1

  

Inductor current 
reconstruction on Ts

{IPKsim,N , IVsim,N}

Figure 2.2: Flow diagram for fitness evaluation.
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the N analyzed case studies. In particular, for the i-th case study,
the L vs iL curve is updated at temperature Ti by using formulas
(1.7)-(1.9) and parameters {Lhigh, Llow, I30%@Tα , I70%@Tα , I30%@Tβ ,
I70%@Tβ} given by the DE individual. Then, the inductor current
wave-shape is reconstructed by means of the algorithm of Fig.
1.12, thus providing {IPKsim,i, IV sim,i} values, which are used to
compute the fitness function over the N analyzed case studies.

2.1.3 Case Studies and Discussion

Experimental data, used by the DE to identify the FPIs satura-
tion curves, have been obtained by using the Texas Instruments
TPS54160EVM-230 buck converter evaluation board [25], with
nominal specifications: Vin = 6-36V, Vout = 3.3V, Iout,max = 1.5A,
fs = 465kHz. Two Coilcraft ferrite core inductors have been con-
sidered for the analysis, namely the MSS7341-183 (Lnom = 18µH)
and MSS5131-472 (Lnom = 4.7µH), whose main datasheet charac-
teristics are given in Table 2.1. The instrumentation used for the
experimental measurements included a LeCroy WaveRunner 44Xi
Oscilloscope with LeCroy PP008 passive probes, a Tektronix TCP
305 current probe with Tektronix TCP A300 amplifier, a H&H ZS
1880 Electronic Load and a 0-30V/5A DF 1731SB Dual-Out Lin-
ear DC Power Supply, as shown in Fig. 2.3.

Figure 2.3: Measurement set-up.
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Table 2.1: Investigated inductors and their main characteristics

Part Number
Dimensions

[mm3]
L

[µH]
DCR
[mΩ]

Isat[A]
30%

drop

Irms[A]
40◦C

rise

MSS7341-183 7.3x7.3x4.1 18 75 1.62 2.65
MSS5131-472 5.1x5.1x3.1 4.7 38 1.42 2.50

Table 2.2: Test conditions: Vout = 3.3V, fs = 465kHz

MSS7341-183 MSS5131-472
Case
study

#

Vin
[V ]

Iout
[A]

T
[°C]

Vin
[V ]

Iout
[A]

T
[°C]

1 6 1.5 28 5 1.0 29
2 6 1.8 30 5 1.3 30
3 6 2.1 32 5 1.6 33
4 12 1.5 29 8 1.0 32
5 12 1.8 31 8 1.3 33
6 12 2.1 34 8 1.6 35

Temperature measurements have been carried out using a Fluke
54 II B dual input digital thermometer (accuracy 0.05% + 0.3°C),
with a type K thermocouple. For each inductor, the measure-
ments of inductor current and temperature have been performed
in N = 6 different case studies of the the converter input voltage
and output current, listed in Table 2.2. The resulting inductors
operating temperatures are also provided, next to the respective
test conditions.
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MSS7341-183 inductor

For the MSS7341-183 inductor, reference temperatures Tα and Tβ,
used for L vs iL curves identification, have been fixed at 25°C and
50°C, respectively, thus resulting in the following set of parame-
ters to be identified with the DE: {Lhigh, Llow, I30%@25°C , I70%@25°C ,
I30%@50°C , I70%@50°C}. The DE algorithm parameters have been
set-up as follows: population size Npop = 30 individuals, number of
generations Ngen = 100, scale factor for the DE mutation operator
SF = 0.85, and crossover probability for the DE crossover operator
Cr = 1. Five independent DE runs have been performed, starting
from different random initial populations, in order to verify the
repeatability of the algorithm and identify the optimal discovered
solution. The resulting parameters for the MSS7341-183 inductor
are shown in Fig. 2.4, corresponding to the fitness function values
in the range F = [0.02631, 0.02910]. In can be noted that the re-
sults are quite repeatable, which means that the DE algorithm con-
verges close to the same solution in all the runs. The optimal solu-
tion with the minimum fitness function value (i.e., F = 0.02631),
obtained during the 5-th DE run, is given in Table 2.3. Fig. 2.5
shows that the simulated saturation curves of the MSS7341-183
part (”sim” subscript), obtained by using model (1.6) and param-
eters of Table 2.3, provide lower inductance than the datasheet
curves declared by the manufacturer (”dat” subscript), especially
in the roll-off region. Fig. 2.6 shows the experimental inductor
current waveforms (green lines) and the reconstructed wave-shapes
obtained by using the DE-based saturation curves (red lines with
circle markers), for the six case studies of Table 2.2. For each
case study, experimental inductor temperature provided in Table
2.2 has been used to determine the temperature-dependent val-
ues of σ and I∗L of the arctangent model (1.6), adopted during
the inductor current reconstruction. The plots highlight an excel-
lent agreement between the experimental and simulated current
waveforms, thus validating the proposed DE-based approach for
saturation curves identification in SMPS operating conditions.
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Figure 2.4: L vs iL curve parameters of the MSS7341-183 inductor
for five DE runs.
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Table 2.3: MSS7341-183 saturation curve parameters.

Lhigh

[µH]
Llow

[µH]
I30%@25°C

[A]
I70%@25°C

[A]
I30%@50°C

[A]
I70%@50°C

[A]

15.0 0.7 1.89 2.19 1.62 1.88
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Figure 2.5: Simulated DE-based curves (”sim” subscript) vs
datasheet curves (”dat” subscript) for MSS7341-183 inductor.

MSS5131-472 inductor

For the MSS5131-472 inductor, reference temperatures Tα and Tβ
have been fixed at 25°C and 75°C respectively, resulting in the fol-
lowing set of parameters to be identified: {Lhigh, Llow, I30%@25°C ,
I70%@25°C , I30%@75°C , I70%@75°C}. The DE algorithm parameters
have been set-up as follows: {Npop = 100, Ngen = 100, SF = 0.85,
Cr = 1}. Five independent algorithm runs have been performed,
and optimal DE solution with the minimum fitness function value
(i.e., F = 0.0434) has been selected, given in Table 2.4. Fig. 2.7
shows that the simulated saturation curves of the MSS5131-472
part (”sim” subscript), obtained by using model (1.6) and parame-
ters of Table 2.4, provide higher inductance in the weak-saturation
region and lower inductance in the roll-off region if compared to
the datasheet curves (”dat” subscript).
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Figure 2.6: MSS7341-183 current waveforms: experimental mea-
surements (green lines) vs simulated reconstructions obtained by
using DE-based L vs iL curves (red lines with circle markers).
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Table 2.4: MSS5131-472 saturation curve parameters.

Lhigh

[µH]
Llow

[µH]
I30%@25°C

[A]
I70%@25°C

[A]
I30%@75°C

[A]
I70%@75°C

[A]

5.7 0.1 1.43 1.87 1.29 1.64
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Figure 2.7: Simulated DE-based curves (”sim” subscript) vs
datasheet curves (”dat” subscript) for MSS5131-472 inductor.

Fig. 2.8 shows the experimental inductor current waveforms
(green lines) and reconstructed wave-shapes obtained by using the
DE-based saturation curves (red lines with circle markers) in six
analyzed case studies. Also in this case, the plots highlight an
excellent agreement between experimental and simulated current
waveforms. Finally, Fig. 2.9 shows the experimental inductor cur-
rent waveforms of the two analyzed inductors for case study #6
of Table 2.2, together with the reconstructed current wave-shapes
obtained by using the datasheet saturation curves. For both induc-
tors, the predicted peak-to-peak ripple is smaller than the experi-
mental one, since in the current range of interest the datasheet L
vs iL curves overestimate the real saturation characteristics. This
may determine unreliable prediction of the overall inductor power
losses and unreliable inductor selection in the SMPS application
under study. The DE-based curves, instead, yield much more re-
alistic current predictions for the same case study (see Fig.s 2.6(f)
and 2.8(f)).
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Figure 2.8: MSS5131-472 current waveforms: experimental mea-
surements (green lines) vs simulated reconstructions obtained by
using DE-based L vs iL curves (red lines with circle markers).
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Figure 2.9: Experimental inductor current waveforms (green lines)
vs simulated reconstructions obtained by using datasheet L vs iL
curves (red lines with circle markers).

2.2 Local and Global

Characterization Approaches

This Section discusses the identification of the L vs iL satura-
tion curves by using two dual characterization approaches of FPIs:
the local approach, aimed at determining local polynomial models
valid in small-ripple conditions; the global approach, based on a
global non-linear model identified in large-ripple conditions.

2.2.1 Local Characterization of FPIs

The shape of the L vs iL curve for FPIs is highly nonlinear. How-
ever, if the current during Ts swings over a small interval, the curve
can be locally approximated by a linear or quadratic function, as
shown in Eq.s (2.8) and (2.9), respectively.

L [iL(t)] = α + βiL(t) (2.8)

L [iL(t)] = α + βiL(t) + γi2L(t) (2.9)

Models (2.8) and (2.9) can be used to generate a sequence of
local approximations of the L vs iL curve, based on a sequence
of contiguous current ripples covering the entire range from the
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weak-saturation to the deep-saturation region, as shown in the
top and central panels of Fig. 2.10. The increase of the DC bias
inductor current causes a decrease of the inductance, due to sat-
uration, leading to an increase of the current ripple. Therefore,
the inductor operating conditions have to be adjusted by gradu-
ally decreasing the volt-seconds imposed by SMPS to the inductor,
to prevent the transition to large-amplitude ripples, which would
make the local approximation inaccurate. This can be achieved
by reducing the voltage VLr applied to the inductor during the
rise-time interval, or the duty-cycle D, or both. The parameters
of local models (2.8) and (2.9) can be identified starting from ex-
perimental measurements of the inductor voltage and current in
small-amplitude current ripple conditions, as discussed hereafter.

2.2.2 Global Characterization of FPIs

Certain conditions of the DC current, switching frequency and
volt-seconds may result in a large-amplitude inductor current rip-
ple, covering the entire L vs iL curve during each switching period
(see the bottom panel of Fig. 2.10). In such a case, the linear
and quadratic approximations (2.8) and (2.9) are no more valid,
and a global non-linear model should be adopted, which is able to
accurately approximate the entire L vs iL curve:

L [iL (t)]=Llow+
Lhigh − Llow

2

{
1− 2

π
atan {σ [iL (t)−I∗L]}

}
(2.10)

Let us note that, unlike the original model (1.6) discussed in Sec-
tion 1.3, in model (2.10) the absolute value of inductor current
has been omitted, since only positive current values are considered
hereafter for the L vs iL curve identification. Once such curve is
determined on a positive current range, it can be symmetrically
reconstructed also on a negative current range. The parameters
{Lhigh, Llow, σ, I∗L} of global model (2.10) can be identified start-
ing from experimental measurements of the inductor voltage and
current in a large-amplitude current ripple condition, as discussed
hereafter.
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Figure 2.10: Local characterization with small-amplitude ripples
(top and central panels) and global characterization with large-
amplitude ripple (bottom panel).

2.2.3 Identification of Model Parameters

Linear Model

From (2.8), the instantaneous inductor voltage vL(t) is related to
the current iL(t) according to (2.11):

vL(t) = α
diL(t)

dt
+ βiL (t)

diL(t)

dt
(2.11)

Integrating (2.11) between 0 and t ∈ [0, Ts] yields (2.12):
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∫ t

0

vL(τ)dτ = α [iL(t)− iL0] +
β

2

[
i2L(t)− i2L0

]
(2.12)

By defining δ=−αiL0−1/2βi2L0, (2.12) can be recast as follows:∫ t

0

vL(τ)dτ = αiL(t) +
β

2
i2L(t) + δ (2.13)

If the inductor voltage and current waveforms are sampled over the
switching period in N time instants tk, k = 1, ..., N , the integral in
the left-hand side of (2.13) can be approximated via a trapezoidal
method, for each tk:∫ tk

0

vL(τ)dτ ≈ 1

2

k∑
i=2

{[vL(ti−1) + vL(ti)] (ti − ti−1)} =

= αiL(tk) +
β

2
i2L(tk) + δ

(2.14)

By evaluating (2.14) in the N sampling time instants tk, k =
1, ..., N , the system of N linear equations in three unknowns {α,
β, δ} is obtained, which can be numerically solved with a Lin-
ear Least Squares (LLS) algorithm, to obtain the parameters of
the local linear model (2.8). As the L vs iL curve is monotoni-
cally decreasing, feasible linear models have to fulfill the constraint
d[L(iL)]/diL = β ≤ 0.

Quadratic Model

From (2.9), the instantaneous inductor voltage vL(t) is related to
the current iL(t) according to (2.15):

vL(t) = α
diL(t)

dt
+ βiL (t)

diL(t)

dt
+ γi2L (t)

diL(t)

dt
(2.15)

Following the same steps as for the linear model, and assuming
ζ=−αiL0−1/2βi2L0−1/3γi3L0, we obtain:∫ t

0

vL(τ)dτ = αiL(t) +
β

2
i2L(t) +

γ

3
i3L(t) + ζ (2.16)
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which can be approximated as follows:∫ tk

0

vL(τ)dτ ≈ 1

2

k∑
i=2

{[vL(ti−1) + vL(ti)] (ti − ti−1)} =

= αiL(tk) +
β

2
i2L(tk) +

γ

3
i3L(tk) + ζ

(2.17)

By evaluating (2.17) in the N sampling time instants tk, k =
1, ..., N , the system of N linear equations in four unknowns {α,
β, γ, ζ} is obtained, which can be numerically solved with a LLS
algorithm, to obtain the parameters of the local quadratic model
(2.9). As the L vs iL curve is monotonically decreasing, feasible
quadratic models have to fulfill the constraint d[L(iL)]/diL = β +
2γ · iL ≤ 0.

Global Model

From (2.10), the instantaneous inductor voltage vL(t) is related to
the current iL(t) according to (2.18):

vL(t) =
1

2

(
Lhigh + Llow

) diL(t)

dt
+ ...

− 1

π

(
Lhigh − Llow

)
atan {σ [iL (t)− I∗L]} diL(t)

dt

(2.18)

Integrating (2.18) between 0 and t ∈ [0, Ts] yields (2.19):∫ t

0

vL(τ)dτ =
1

2

(
Lhigh + Llow

)
[iL(t)− iL0] + ...

− 1

π

(
Lhigh − Llow

)
· z+|iL(t)

iL0
= 0

(2.19)

where z+|iL(t)
iL0

can be evaluated by using Eq. (1.17a), as follows:

z+|iL(t)
iL0

= ...

(iL(t)−I∗L) atan [σ (iL(t)−I∗L)]−
log
[
1+σ2 (iL(t)−I∗L)2]

2σ
+ ...

− (iL0−I∗L) atan [σ (iL0−I∗L)] +
log
[
1+σ2 (iL0−I∗L)2]

2σ
(2.20)
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By evaluating (2.19) in the N sampling time instants tk, k =
1, ..., N , the system of N nonlinear equations in five unknowns
{Lhigh, Llow, σ, I∗L, iL0} is obtained, which can be numerically
solved with a Non-Linear Least Squares (NLLS) algorithm, to ob-
tain the parameters of the global model (2.10).

2.2.4 Experimental Verification

The proposed procedure for the L vs iL curves identification has
been applied to the Coilcraft MSS7341-183 inductor. Experimen-
tal tests have been carried out by means of the MADMIX system,
which is described later on in this study (see Chapter 5). Such au-
tomated measurement setup emulates a buck converter and mea-
sures the performances of power inductors under hard-switched
conditions. Alternatively, the low-cost method for on-line acqui-
sition of the inductor voltage and current waveforms in a given
power converter can be adopted [31].

The local and global characterization approaches have been
herein tested by means of the MADMIX system. Experimental
inductor waveforms have been sampled in N=200 samples over
the switching period. A MATLAB implementation of the LLS and
NLLS algorithms has been used for parameters identification of
each L vs iL model. Hereafter, the obtained results are presented
and compared.

Local Linear Models

To reconstruct the L vs iL curve with local linear models, the
MSS7341-183 inductor has been tested in a buck converter under
the operating conditions listed in Table 2.5, whose last column
provides the resulting experimental inductor temperatures. The
obtained local linear models are shown in the top panel of Fig.
2.11. In the bottom panel, the experimental inductor currents
(green waveforms) are compared to the wave-shapes simulated by
using the identified local linear L vs iL models in Simulink (red
dashed waveforms). Good predictions of inductor currents have
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Table 2.5: Test conditions for FPI local characterization

Case study
#

fs
[kHz]

Vin
[V ]

D
[−]

Iout
[A]

Texp
[°C]

1 350 15 0.5 0.32 24.3
2 350 15 0.5 1.00 27.6
3 350 10 0.5 1.60 29.1
4 350 5 0.5 2.15 32.7
5 350 4 0.3 2.80 36.6
6 350 4 0.2 3.80 49.7

 
 

 

 

 

 

 

 

Figure 2.11: Top: identified local linear L vs iL models; bottom:
experimental (green) and Simulink (red) current waveforms.

been obtained by using the linear models in all the investigated
case studies, going from weak- to deep-saturation region. The
values of the model parameters {α, β} are given in the left part
of Table 2.6 (section ”linear”).
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Local Quadratic Models

The MSS7341-183 inductor has been tested under the same op-
erating conditions as before. The resulting quadratic models are
shown in the top panel of Fig. 2.12. The quadratic function pro-
vides a better modeling of the L vs iL curve in the region where
the inductance drop-rate increases, because of the transition from
weak to deep saturation. Good predictions of inductor currents
are obtained also in this case (see the bottom panel of Fig. 2.12).
The values of the model parameters {α, β, γ} are given in the
right part of Table 2.6 (section ”quadratic”).

 
 

 

 

 

 

 

 

Figure 2.12: Top: identified local quadratic L vs iL models; bot-
tom: experimental (green) and Simulink (red) current waveforms.

Global Model

The MSS7341-183 inductor has been tested under the following
conditions: fs=350kHz, Vin=50V, D=0.5, Iout=1.1A, resulting in
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Table 2.6: Linear and quadratic models’ parameters

linear quadratic
Case study

#
α

[µH]
β

[µH/A]
α

[µH]
β

[µH/A]
γ

[µH/A2]
1 16.80 0.00 16.83 -0.01 -0.18
2 17.96 -1.50 15.74 3.13 -2.34
3 27.71 -8.97 5.03 19.32 -8.77
4 19.68 -6.15 32.50 -18.01 2.74
5 10.40 -2.71 20.98 -10.17 1.31
6 3.34 -0.50 -0.13 1.31 -0.24

a large-amplitude current ripple and inductor operating temper-
ature Texp = 48.7°C. The upper panel of Fig. 2.13 shows the
identified global model, while in the bottom panel the experimen-
tal current waveform is compared to the results of the simulation
performed in Simulink using the global L vs iL model. The fol-
lowing values of the model parameters have been obtained: Lhigh

= 18.6µH, Llow = 1.28µH, σ = 3.37A−1, I∗L = 1.83A.
Fig. 2.14 shows a comparison between the local and global

models of the MSS7341-183 inductor. The global model corre-
sponds to a fixed inductor temperature of 48.7°C, whereas local
models are associated to different temperatures in the range [24.3,
49.7]°C, increasing with the average inductor current (see Table
2.5). In the same figure, the experimental L vs iL curve of the
MSS7341-183 inductor is shown, which has been measured by the
MADMIX system under large-amplitude current ripple condition
(fs = 350kHz, Vin = 50V, D = 0.5, Iout = 1.1A, Texp = 48.7°C).
The identified global model is in a good agreement with such ex-
perimental curve.
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Figure 2.13: Top: identified global L vs iL model; bottom: exper-
imental (green) and Simulink (red) current waveforms.
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Figure 2.14: Comparison between identified L vs iL models and
experimental curve: light gray = linear model, black = quadratic
model, red = global model, green = MADMIX curve.
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The main outcome of the research activity presented in this
Chapter resulted in the publication of the scientific paper:

� G. Di Capua, N. Femia, K. Stoyka, M. Lodi, A. Oliveri, M.
Storace, ”Ferrite Inductor Models for Switch-Mode Power
Supplies Analysis and Design”, 14th Int. Conf. on Synthe-
sis, Modeling, Analysis and Simulation Methods and Appl.
to Circuit Design (SMACD), June 2017.



Chapter 3

Saturation Modeling of
Stepped Air-Gap Ferrite
Inductors

This chapter discusses saturation behavioral modeling of ferrite
inductors with a stepped air-gap. The arctangent-based L vs iL
model, proposed in Chapter 1 for fixed air-gap FPIs, is herein ex-
tended to a double-arctangent model, accurately describing the
saturation characteristic of stepped air-gap inductors. The nu-
merical algorithm for inductor current reconstruction is effectively
adopted in combination with a double-arctangent model, in order
to reliably predict current wave-shapes of stepped air-gap FPIs
operating in saturation.

3.1 FPIs with Stepped Air-Gap

Ferrite inductors with a stepped air-gap are characterized by the
presence of two different air-gaps in their magnetic core, as high-
lighted in Fig. 3.1. The reluctance R of such a core can be modeled
as a parallel of two different reluctances R1 and R2, representing
the parts of the core with a shorter air-gap length lg1 and a longer
air-gap length lg2, respectively. As a result, the total inductance
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Figure 3.1: Magnetic core with a stepped air-gap.

of the component realized with such a core can be expressed as
given in (3.1):

L =
n2

R
=
n2

R1

+
n2

R2

= L1 + L2 (3.1)

where n is the inductor winding turn number. Inductances L1 and
L2 correspond to parts of the core with air-gap lengths lg1 and lg2,
respectively.

Fig. 3.2 shows a typical curve of the dynamic inductance versus
current for a stepped air-gap FPI. Such curve presents two knees
due to the gradual saturation of the inductances L1 and L2. Since
L1 corresponds to the smaller air-gap, its saturation occurs at
lower current levels, thus determining the first knee in the L vs
iL curve of Fig. 3.2. The second knee is due to the saturation of
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Figure 3.2: Typical L vs iL curve of a FPI with a stepped air-gap.
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L2. As a result, stepped air-gap FPIs have larger inductance at
low-current levels (within the first knee of their L vs iL curve),
which can help to increase the converter efficiency at light-load
[32] [33]. On the other hand, lower inductance between the first
and second knee of the saturation curve can help to improve load
transient response to/from higher current. In [34] [35], a simplified
piecewise constant model has been proposed to describe the L vs iL
characteristic of a stepped air-gap ferrite inductor. To accurately
represent a real smooth profile of such a curve, an enhanced model
has been herein developed, presented in the next Section.

3.2 Inductance vs Current Behavioral

Model

The L vs iL curve of a stepped air-gap FPI can be analytically
described by means of a double-arctangent model, defined as fol-
lows:

L[iL (t)] = ...

=

L1[iL(t)]︷ ︸︸ ︷
Llow1+

Lhigh1 − Llow1

2

{
1− 2

π
atan {σ1 [iL (t)−I∗L1]}

}
+

+Llow2+
Lhigh2 − Llow2

2

{
1− 2

π
atan {σ2 [iL (t)−I∗L2]}

}
︸ ︷︷ ︸

L2[iL(t)]

(3.2)

where the arctangent-based model (1.6), previously discussed in
Chapter 1, is applied twice, to model the inductances L1 and L2 as
a function of the current iL(t). Parameters {Lhigh1, Lhigh2, Llow1,
Llow2, σ1, σ2, I∗L1, I∗L2} can be determined by applying a curve
fitting technique to the experimental L vs iL characteristic of a
given inductor. Let us note that, unlike the original model (1.6),
in model (3.2) the absolute value of inductor current has been
omitted, since only positive current values have been considered for
non-linear modeling of stepped air-gap inductors. However, it is
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Figure 3.3: Temperature impact on the L vs iL curve of a stepped
air-gap FPI.

possible to extend the model and relative numerical algorithm for
inductor current reconstruction also to a case including negative
current values, similarly to the generalized procedure described in
Chapter 1.

Like for fixed air-gap FPIs, the L vs iL curves of stepped air-
gap FPIs mostly present a horizontal left-side drift with increasing
temperature. Fig. 3.3 shows an example of the temperature im-
pact on the saturation curves for the Coilcraft 10µH MSS1210-103
inductor. To correctly model such thermal dependence, two ex-
perimental L vs iL curves can be used, relative to two different
reference temperatures (namely, Tα and Tβ). A NLLS technique
can be applied to fit each curve by means of the model (3.2) and de-
termine the parameters {Lhigh i, Llow i, σi, I∗L i}, i = 1,2, at Tα and
Tβ. Starting from these values, the thermal coefficients {∂high i,
∂low i, ∂σ i, ∂I i} can be estimated by using (3.3), for i = 1,2:

∂high i =
Lhigh i@Tβ

− Lhigh i@Tα

Lhigh i@Tα
(Tβ − Tα)

; ∂low i =
Llow i@Tβ

− Llow i@Tα

Llow i@Tα
(Tβ − Tα)

; (3.3a)

∂σ i =
σi@Tβ − σi@Tα
σi@Tα (Tβ − Tα)

; ∂I i =
I∗L i@Tβ − I

∗
L i@Tα

I∗L i@Tα (Tβ − Tα)
(3.3b)

Eventually, the thermal dependences of the double-arctangent
model parameters can be evaluated as given in (3.4):
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Lhigh i(T ) = Lhigh i@Tα
[1 + ∂high i(T − Tα)] (3.4a)

Llow i(T ) = Llow i@Tα [1 + ∂low i(T − Tα)] (3.4b)

σi(T ) = σi@Tα [1 + ∂σ i(T − Tα)] (3.4c)

I∗L i(T ) = I∗L i@Tα [1 + ∂I i(T − Tα)] (3.4d)

3.3 Inductor Current Reconstruction

From (3.2), the instantaneous inductor voltage vL(t) is related to
the current iL(t) according to (3.5):

vL(t) = L[iL (t)]
diL(t)

dt
= ...

=

{
Llow1+

Lhigh1−Llow1

2

{
1− 2

πatan {σ1 [iL(t)−I∗L1]}
}}

diL(t)
dt +

+

{
Llow2+

Lhigh2−Llow2

2

{
1− 2

πatan {σ2 [iL(t)−I∗L2]}
}}

diL(t)
dt

(3.5)

where vL represents the inductance voltage drop only. Integrating
(3.5) between 0 and t ∈ Tr (within the rise-time interval) yields
(3.6a), while integrating (3.5) between DTs and t ∈ Tf (within the
fall-time interval) provides (3.6b):

∫ t

0

vL(t)dt = VLr · t =

∫ t

0

L [iL (t)]
diL(t)

dt
dt (3.6a)∫ t

DTs

vL(t)dt = VLf · (t−DTs) =

∫ t

DTs

L [iL (t)]
diL(t)

dt
dt (3.6b)

By solving integrals in (3.6a) and (3.6b), two main equations can
be obtained, provided in (3.7) and (3.8) respectively:
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VLr · t = ...

=
Lhigh1+Llow1

2
[iLr(t)−iL0]−L

high1−Llow1

π
·z1|iLr(t)iL0

+

+
Lhigh2+Llow2

2
[iLr(t)−iL0]−L

high2−Llow2

π
·z2|iLr(t)iL0

(3.7)

VLf · (t−DTs) = ...

=
Lhigh1+Llow1

2
[iLf (t)−iLD]−L

high1−Llow1

π
·z1|

iLf (t)
iLD

+

+
Lhigh2+Llow2

2
[iLf (t)−iLD]−L

high2−Llow2

π
·z2|

iLf (t)
iLD

(3.8)

where iL0 = iL(0), iLD = iL(DTs), iLr(t) and iLf (t) are the un-
known instantaneous values of the rising and falling inductor cur-
rents during Tr and Tf respectively, and zi (i=1,2) corresponds to
the iL-based indefinite integral given by (3.9):

zi = zi (iL) =

∫
atan [σi (iL−I∗L i)] diL = ...

=(iL−I∗L i) atan [σi (iL−I∗L i)]−
log
[
1+σ2

i (iL−I∗L i)
2]

2σi

(3.9)

In (3.7), z1(iL) and z2(iL) have to be determined between iL0 and
iLr(t) during the rise-time interval Tr. Similarly, in (3.8), z1(iL)
and z2(iL) have to be determined between iLD and iLf (t) during
the fall-time interval Tf . As iL0 and iLD are not known in advance,
guess values have to be used and an iterative procedure adopted,
as discussed in Chapter 1. To reconstruct the entire profile of the
inductor current waveform, non-linear equations (3.7) and (3.8)
have to be numerically solved with respect to iLr(t) and iLf (t) in
a given number of sampling points over Tr and Tf intervals. The
position of such points can be determined by means of the tangent-
based algorithm described in detail in Chapter 1 and shown in Fig.
1.9 (in the flow diagrams, replace Eq. (1.14) with Eq. (3.7) and
Eq. (1.15) with Eq. (3.8)).
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3.4 Simulation Results and Model

Validation

The proposed model and relative algorithm for inductor current
reconstruction of stepped air-gap FPIs have been adopted to in-
vestigate the behavior of three Coilcraft inductors: the MSS1210-
103 (Lnom = 10µH), the MSS1210-153 (Lnom = 15µH) and the
MSS1210-223 (Lnom = 22µH). The L vs iL curves of these FPIs
have been taken from the on-line tool of the manufacturer [17],
at two reference temperatures Tα = 25°C and Tβ = 105°C. The
NLLS technique has been applied to fit each curve and determine
the parameters of model (3.2). For example, the fitted curves ob-
tained for the MSS1210-103 inductor are shown in Fig. 3.4, for
25°C (solid blue line) and 105°C (solid red line), superimposed
to the manufacturer’s curves (gray lines). In the same figure, the
dashed and dash-dotted lines represent the arctangent functions
L1 [iL(t)] and L2 [iL(t)] respectively, modeling the inductances L1

and L2 introduced in (3.1). The resulting parameters of model
(3.2) are given in Table 3.1 for the three inductors, at two refer-
ence temperatures. Starting from such values, thermal coefficients
{∂high i, ∂low i, ∂σ i, ∂I i}, i = 1,2, have been obtained by using (3.3).
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Figure 3.4: Datasheet L vs iL curves (gray) and fitting curves at
25°C (blue) and 105°C (red) for MSS1210-103 inductor.
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Table 3.1: Fitting curve parameters for MSS1210 inductors.

MSS
1210

T
[°C]

Lhigh1

[µH]
Lhigh2

[µH]
Llow1

[µH]
Llow2

[µH]
σ1

[A−1]
σ2

[A−1]
I∗L1

[A]
I∗L2

[A]

103
25 6.9 4.3 0.4 0.7 0.73 0.54 9.3 19.3
105 6.8 4.4 0.2 0.9 0.88 0.71 7.5 15.4

153
25 9.6 5.7 0.5 0.4 0.85 0.65 8.1 16.8
105 9.8 5.4 1.0 0.1 1.10 0.80 6.4 13.3

223
25 13.5 7.8 1.0 0.8 0.93 0.86 7.0 14.3
105 12.9 8.2 0.6 1.2 1.15 1.09 5.6 11.4

A MATLAB code has been developed to implement the nu-
merical algorithm for inductor current reconstruction of stepped
air-gap FPIs. The analysis of the investigated inductors has been
performed in six case studies listed in Table 3.2. For each of the
case studies #1, #3 and #5, three different operating conditions
have been considered (options (a), (b) and (c) in Table 3.2), cor-
responding to small-amplitude peak-to-peak current ripples cov-
ering different regions of the L vs iL curves for the three induc-
tors. Case studies #2, #4 and #6 correspond to large-amplitude
peak-to-peak current ripples covering the entire profile of the L
vs iL curves. Two different values of inductor temperature have
been assumed: T = 50°C for small-amplitude current ripple condi-
tions, and T = 75°C for large-amplitude current ripple conditions.
For each device, the relative parameters of the double-arctangent
model have been updated at the considered temperature, accord-
ing to (3.4).

The algorithm for current analysis of stepped air-gap FPIs has
been validated by comparison with PSIM simulations. The open-
loop buck topology has been adopted for simulations. The induc-
tor has been implemented as a current-controlled current source,
whose control signal is generated by means of a simplified C-block.
At the n-th simulation time instant tn, the C-block takes as inputs
the samples of the inductor voltage vL(tn) and current iL(tn) and
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Table 3.2: Case studies and relevant operating conditions.

MSS
1210

Case studies
T

[°C]

∆iLpp
error
[%]

103
#1

(a) Vin = 36V, Iout = 3.0A
50

-0.20
(b) Vin = 24V, Iout = 8.0A -0.14
(c) Vin = 16V, Iout = 14.0A -0.26

#2 Vin = 55V, Iout = 8.0A 75 -2.24

153
#3

(a) Vin = 36V, Iout = 3.0A
50

0.11
(b) Vin = 24V, Iout = 8.0A -0.09
(c) Vin = 16V, Iout = 13.0A -0.17

#4 Vin = 60V, Iout = 7.5A 75 -2.70

223
#5

(a) Vin = 36V, Iout = 2.0A
50

0.02
(b) Vin = 24V, Iout = 7.0A -0.01
(c) Vin = 16V, Iout = 11.0A -0.07

#6 Vin = 65V, Iout = 7.0A 75 -1.82

generates a new inductor current sample iL(tn+1) for the next time
instant tn+1. Inside the C block, the double-arctangent model pa-
rameters are updated according to (3.4) for a given inductor tem-
perature T , and the differential inductance L [iL(tn)] is evaluated
according to (3.2). Eventually, a new inductor current sample
iL(tn+1) is generated by means of (3.10):

iL(tn+1) = iL(tn) +
(tn+1 − tn)vL(tn)

L [iL(tn)]
(3.10)

Fig. 3.5 compares the results obtained in MATLAB and PSIM
for case studies #1, #3 and #5, relative to the small-amplitude
current ripple conditions of the three analyzed inductors. The left-
hand side plots compare the inductor current waveforms simulated
in PSIM (continuous lines) with those reconstructed in MATLAB
(dashed lines with circle markers). The right-hand side plots show
the L vs iL curves of the three inductors at 50°C (gray lines) and,
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for each curve, the three regions covered by the current ripple (col-
ored lines) in conditions (a), (b) and (c) of the relative case study
(see Table 3.2). Fig. 3.6 shows the obtained results for case stud-
ies #4, #6 and #8, relative to the large-amplitude current ripple
conditions of the three analyzed inductors. The left-hand side
plots compare the inductor current waveforms simulated in PSIM
(continuous lines) with those reconstructed in MATLAB (dashed
lines with circle markers). The right-hand side plots show the L vs
iL curves of the three inductors at 75°C (gray lines) and the curve
regions covered by the current ripple (colored lines). Fig.s 3.5 and
3.6 highlight a very good agreement between the current wave-
forms simulated in PSIM and reconstructed in MATLAB. The last
column of Table 3.2 provides percent errors between the peak-to-
peak current ripples obtained in PSIM and MATLAB. Low error
values (≤3% in absolute value) confirm the validity of the pro-
posed double-arctangent model and of the relative algorithm for
current reconstruction of stepped air-gap ferrite inductors. By us-
ing such model and algorithm, it is possible to reliably predict a
real magnitude of the inductor peak-to-peak current ripple with-
out performing time-consuming circuit simulations, and effectively
exploit the advantages offered by the use of stepped air-gap FPIs
operating in saturation.

The main outcome of the research activity presented in this
Chapter resulted in the publication of the scientific paper:

� Kateryna Stoyka, Giulia Di Capua, Nicola Femia, ”Model-
ing of Stepped Air-Gap Ferrite Inductors in Switching Power
Supplies”, 25th IEEE International Conference on Electron-
ics Circuits and Systems (ICECS), December 2018.
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Figure 3.5: Case studies with small-amplitude current ripples.
Left: current waveforms simulated in PSIM (continuous lines)
and reconstructed in MATLAB (dashed lines with circle mark-
ers). Right: inductance vs current curves (gray lines) and regions
covered by current ripple (colored lines).
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Figure 3.6: Case studies with large-amplitude current ripples.
Left: current waveforms simulated in PSIM (continuous lines)
and reconstructed in MATLAB (dashed lines with circle mark-
ers). Right: inductance vs current curves (gray lines) and regions
covered by current ripple (colored lines).



Chapter 4

Sustainable Saturation
Operation of Ferrite
Inductors

This chapter discusses the Sustainable Saturation Operation (SSO)
of FPIs in SMPS. A ferrite inductor is considered in SSO if its
current ripple, power losses and temperature rise are acceptable
and reliable for both the device and the SMPS, despite the in-
ductance drop determined by the core saturation. In the first
part of this Chapter, an algorithm is presented which identifies
SSO-compliant FPIs with minimum size and volume, given the
SMPS specifications about the allowed power losses, temperature
rise and peak-to-peak current ripple of the inductor. The second
part of this Chapter provides practical design guidelines for quick
and straightforward SSO-compliance validation of FPIs, based on
a simplified inductance model linearizing the FPI saturation char-
acteristic in the roll-off region.

4.1 FPIs Analysis in SSO

Let us refer to a buck converter with specifications Vin = 5V,
Vout = 3.3V, fs = 465kHz, and consider a Coilcraft MSS7341-183
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inductor of nominal inductance Lnom = 18µH, whose L vs iL char-
acteristic is depicted in the top part of Fig. 4.1. Accordingly, the
bottom part of Fig. 4.1 shows the current waveforms of the ana-
lyzed inductor relative to three different average current IL values,
such that the inductor peak-to-peak current ripple ∆iLpp falls en-
tirely within the weak-saturation region (red waveform, with IL
= 1A), the roll-off region (green waveform, with IL = 2A), or the
deep-saturation region (blue waveform, with IL = 3.5A). These
waveforms have been simulated by using a generalized numerical
algorithm for inductor current reconstruction presented in Chap-
ter 1. For each value of the average current IL, the operating point
swings along the L vs iL curve during the switching period Ts, as
highlighted in Fig. 4.1. In particular, the inductor current wave-
shape is cusp-like in the roll-off region, and its inductance swings
over the range from about 3µH to 12µH delimited by current ripple
extremes.

 

 

 

 

 

 

 

roll-off 

ΔiLpp1 ΔiLpp2 ΔiLpp3 

weak saturation deep saturation 

Figure 4.1: L vs iL curve and current waveforms of MSS7341-
183 inductor in weak saturation (red), roll-off (green) and deep
saturation (blue).
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Despite the inductance drop determined by the core saturation,
ferrite inductor may be considered in Sustainable Saturation Op-
eration (SSO) if its current ripple, power losses and temperature
rise satisfy the acceptability limits and efficiency requirements, for
both the device and the SMPS.

4.1.1 SSO-Analysis Algorithm

A generalized numerical algorithm for inductor current reconstruc-
tion presented in Chapter 1 can be incorporated into a higher-level
algorithm, to validate the SSO-compliant inductor solutions for
high-power-density SMPSs. The flow diagram of Fig. 4.2 depicts
the SSO-analysis algorithm allowing to determine the inductor
current ripple, power losses and operating temperature including
saturation effects. Given converter operating conditions {Vin, Vout,
Iout, fs} and inductor parameters {Lhigh, Llow, σ, I∗L}, such algo-
rithm evaluates the DC winding resistance Rdc(T ) and the cur-
rent values I30%(T ) and I70%(T ) of the L vs iL curve for evolving
inductor temperature T . In particular, the resistance Rdc(T ) is
evaluated by means of (4.1):

Rdc(T ) = Rdc,25°C [1 + ∂R(T − 25°C)] (4.1)

where Rdc,25°C is the DC winding resistance at 25°C and ∂R =
3.85e−3 °C−1 is the copper thermal coefficient. The current values
I30%(T ) and I70%(T ) are evaluated according to Eq. (1.9) and used
to reconstruct the inductor current wave-shape over the switching
period Ts by means of the generalized algorithm given in Fig. 1.12.
Based on the resulting current waveform, the peak-to-peak ripple
and rms current values are calculated and used to evaluate the
inductor total power losses, given as a sum of the winding and
core loss contributions. A detailed discussion on the winding and
core loss formulas presented in literature is provided in Chapter 5.
The SSO-analysis algorithm of Fig. 4.2 evaluates inductor winding
losses (Pwind) and core losses (Pcore) by means of formulas (4.2)
and (4.3), respectively:

Pwind = Rdc(T ) · I2
Lrms (4.2)
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Figure 4.2: SSO-analysis algorithm.

Pcore = K1f
X
s (K∗2∆iLpp)

Y (4.3)

In formula (4.3), the core loss coefficients K1, X and Y are typ-
ically provided by some power inductors manufacturers, whereas
the coefficient K∗2 represents the modified version of the nominal
K2 coefficient declared by the manufacturers for core loss estima-
tion in the weak-saturation region. In particular, K∗2 takes into
account the saturation degree of the inductor, as follows:

K2 =
Lnom
2nAe

, K∗2 =
Leq

2nAe
= K2

Leq
Lnom

(4.4)

where Leq represents the equivalent inductance of the device, de-
fined as the current-averaged inductance over the peak-to-peak
current ripple range, delimited by the valley (Ivl) and peak (Ipk)
current values:

Leq =
1

∆iLpp

∫ Ipk

Ivl

L(iL)diL (4.5)

Leq can be estimated via a trapezoidal approximation of the inte-
gral in (4.5), starting from the Ns inductor current samples (Ik)
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and the respective inductance values (Lk) provided by the inductor
current reconstruction algorithm, as given by (4.6).

Leq u
1

∆iLpp

Ns−1∑
k=1

[
(Lk + Lk+1)(Ik+1 − Ik)

2

]
(4.6)

Eventually, the winding and core loss contributions provided by
(4.2) and (4.3) are used by the SSO-analysis algorithm to evaluate
the inductor total power losses Ptot = Pwind + Pcore, and calculate
the new value of the inductor operating temperature Tnew:

Tnew = Ta + PtotRth (4.7)

where Ta is the ambient temperature, and Rth is the the equivalent
thermal resistance of the inductor. A realistic value of Rth can be
obtained from the temperature rise data T∆ = T − Ta (typically,
20°C or 40°C), provided by manufacturers for a given DC inductor
current Idc, according to (4.8):

Rth = T∆/
(
RdcI

2
dc

)
(4.8)

According to (4.7), the inductor temperature is iteratively up-
dated and referred to as a convergence parameter for the SSO
algorithm termination: if the normalized difference between Tnew
and T is lower than a given tolerance εT (in this work, εT=1e-4),
the SSO-analysis algorithm is terminated, otherwise the calcula-
tions are iterated.

4.1.2 Case Studies and Discussion

To verify the possibility of exploiting the FPIs operation in sus-
tainable and controlled saturation, an investigation has been herein
performed regarding a buck converter with specifications Vin =
5V, Vout = 3.3V, Iout = 1.5A, fs = 465kHz and Ta = 23.5°C. The
converter efficiency is defined as follows:

η = Pout/Pin (4.9)
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where Pout=VoutIout is the output power and Pin=(Pout+PBUCK)
is the input power of the converter, PBUCK being the total power
dissipated by the entire converter. PBUCK includes both semicon-
ductor and passive devices losses. Accordingly, it results that:

PBUCK = Pout(1− η)/η (4.10)

Let us assume a minimum efficiency requirement of 85% for the
converter. The total power loss budget PBUCK is about 0.87W.
Then, for the given case study, the following constraints have been
imposed:

- maximum inductor total power losses Ptot,MAX =15%PBUCK≈
130mW ;

- maximum inductor current ripple ∆iLpp,MAX = 50%IL =
0.75A;

- minimum equivalent inductance Leq,MIN = 20%Lnom (de-
pends on the specific inductor);

- maximum inductor temperature rise T∆,MAX =10°C.

Five Coilcraft ferrite inductor families have been considered for
the analysis, namely MSS5121, MSS5131, MSS6122, MSS6132 and
MSS7341. Their characteristics are summarized in Table 4.1. The
maximum current ripple condition allows a minimum inductance
value of 4µH for a given application. Accordingly, three inductors
have been selected for each family, with nominal inductance values
from 4.7µH to 7.4µH, taking into account that the solutions to
be explored include the possibility of operation in the roll-off re-
gion, thus resulting in the reduction of the equivalent inductance
with respect to Lnom. For each family, the data of the core volume
has been provided, normalized with respect to the volume of the
smallest family, namely MSS5121, in order to highlight a possible
inductor size reduction as a consequence of the use of FPIs in SSO.
Each one of the selected inductors can be classified as a feasible so-
lution for the design if its power losses, current ripple, inductance
and temperature rise values xk = {Ptot,k,∆iLpp,k, Leq,k, T∆,k} (with
k = 1, ..., 15) fulfill all the above constraints, namely:

Xfeasible = {xk| (Ptot,k≤Ptot,MAX) ∩ (∆iLpp,k≤∆iLpp,MAX)

∩ (Leq,k≥Leq,MIN) ∩ (T∆,k≤T∆,MAX)}
(4.11)
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Table 4.1: Investigated inductors and their main characteristics

Family
Dimensions

[mm3]
Volume
[mm3]

Normal.
volume

[%]

L
[µH]

Isat[A]
30%

drop

MSS5121 5.5x5.1x2.2 57.2 100
4.7 1.66
5.6 1.54
6.8 1.38

MSS5131 5.1x5.1x3.1 80.6 141
4.7 1.42
5.6 1.30
6.8 1.24

MSS6122 6.1x6.1x2.2 81.9 143
4.7 1.82
5.6 1.60
6.8 1.50

MSS6132 6.1x6.1x3.2 119.1 208
4.7 2.84
5.6 2.74
6.8 2.30

MSS7341 7.3x7.3x4.1 218.5 382
5.0 3.16
6.2 2.98
7.4 2.56

The SSO-analysis algorithm of Fig. 4.2 has been implemented
in MATLAB and applied to all the inductors of Table 4.1. On
average, three iterations have been sufficient for the algorithm
convergence. Fig. 4.3(a)-(d) shows the obtained simulation re-
sults, where the analyzed FPIs families have been represented by
using different marker colors, with the blue markers corresponding
to the smallest-volume cores and the red markers corresponding
to the biggest-volume cores. Fig. 4.3(a) shows the inductor to-
tal power losses Ptot vs the nominal inductance Lnom of the de-
vices, together with the maximum allowable total power losses
Ptot,MAX (red dashed line). It can be observed that no feasible
solutions are available for the MSS5121 and MSS6122 families.
Fig. 4.3(b) depicts the inductor current ripple ∆iLpp normalized
with respect to the average inductor current IL, together with
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Figure 4.3: Inductor families performances vs Lnom: (a) total
power losses; (b) normalized current ripple; (c) normalized equiv-
alent inductance; (d) temperature rise.

the maximum acceptable normalized current ripple ∆iLpp,MAX/IL
(red dashed-dotted line). For the MSS5121 and MSS5131 families
(blue and cyan markers, respectively) the current ripple values
increase for higher nominal inductances because of their deeper
saturation degree. Nevertheless, the maximum allowable ratio
∆iLpp,MAX/IL is satisfied also for such saturated smaller-volume
families. Fig. 4.3(c) shows the normalized equivalent inductances
Leq/Lnom, highlighting that all the parts are working either in the
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weak-saturation or in the roll-off region, since their Leq values are
all higher than 20% of the respective Lnom data. In Fig. 4.3(d) the
temperature rise T∆ values are eventually shown. All the consid-
ered FPIs present acceptable temperature rise, despite a possible
operation in partial saturation.

Some FPIs families do not allow any feasible solution, like the
MSS5121 and MSS6122 (see Fig. 4.3(a)). Other families may al-
low more than one feasible solution. Let us first compare the best
performing parts for each family. In particular, among the feasi-
ble solutions, those ones characterized by minimum total power
losses have been selected as possible optimal solutions for the
design, namely the MSS5131-472 (Lnom=4.7µH), MSS6132-472
(Lnom = 4.7µH) and MSS7341-502 (Lnom = 5µH). Their power
losses, volumes, current ripples, equivalent inductances and op-
erating temperatures, determined by means of the SSO-analysis
algorithm, are compared in Fig. 4.4. Power losses (square mark-
ers) and volumes (upside down triangle markers) are shown in
Fig. 4.4(a). The volume of the MSS7341 part is about three times
the MSS5131 part volume. As predictable, the smaller-core induc-
tors MSS5131-472 and MSS6132-472 have higher total power losses
compared to the biggest-core inductor MSS7341-502. Fig. 4.4(b)
shows the inductors normalized current ripples ∆iLpp/IL (triangle
markers) and equivalent inductances Leq (circle markers), which
are inversely proportional to the current ripple values. Finally,
Fig. 4.4(c) shows the normalized equivalent inductances Leq/Lnom
(facing left triangle markers) and temperatures (diamond mark-
ers) for the selected optimal solutions. The smallest-core induc-
tor MSS5131-472 is working within its roll-off region, with the
equivalent inductance Leq ≈76%Lnom. The two bigger-core induc-
tors MSS6132-472 and MSS7341-502 are, instead, working in the
weak-saturation region, with equivalent inductance values of more
than 95%Lnom. Therefore, between the smaller-core solutions, the
smallest-core inductor MSS5131-472 outperforms the bigger-core
MSS6132-472 in terms of losses, despite its higher saturation level
and ripple. Conversely, the MSS5131-472 has the highest, yet ac-
ceptable, operating temperature.
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Figure 4.4: Optimal solutions comparison: (a) total power losses
vs volume; (b) normalized current ripple vs equivalent inductance;
(c) normalized equivalent inductance vs temperature.
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Fig. 4.5(a) shows the simulated current waveforms of the three
optimal inductors under the given operating conditions. The MSS-
6132-472 and the MSS7341-502 inductors present triangular cur-
rent wave-shapes, as they are working in the weak-saturation re-
gion. The MSS5131-472 inductor, instead, shows a slightly cusp-
like current wave-shape due to the partial saturation. Fig. 4.5(b)
depicts the L vs iL curves of the selected optimal inductors and the
relevant operating regions, highlighted by means of thicker lines.
Each curve corresponds to the operating temperature resulting
from the SSO-analysis algorithm. Fig. 4.5(b) also highlights that
the MSS5131-472 instantaneous inductance swings between about
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Figure 4.5: Optimal solutions comparison: (a) inductor current
waveforms; (b) inductance vs current curves.
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4µH and 2.4µH during the switching period. Thus, the induc-
tance drops down to 50% of its nominal value Lnom = 4.7µH,
resulting in an equivalent inductance of 3.4µH (76% of Lnom).
In conclusion, the smallest-core inductor looks like an optimum
trade-off solution in terms of performance and volume.

Let us now explore the other feasible parts of the MSS5131
family, which are characterized by deeper saturation and slightly
higher losses (see Fig. 4.3(a),(c)). Fig. 4.6(a) compares the simu-
lated current waveforms for the inductors MSS5131-472 (Lnom =
4.7µH), MSS5131-562 (Lnom = 5.6µH) and MSS5131-682 (Lnom =
6.8µH). The relevant L vs iL curves are shown in Fig. 4.6(b), with
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Figure 4.6: MSS5131 family: (a) inductor current waveforms; (b)
inductance vs current curves.
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the operating regions highlighted by means of thicker lines. The
MSS5131-562 inductance varies in the range between 4.7µH and
1.6µH, whereas the MSS5131-682 inductance varies in the range
between 5.7µH and 1.6µH. Thus, they drop down to 28% and
25% of their nominal values respectively, with a resulting equiv-
alent inductance equal to 3.1µH (55% of Lnom) for MSS5131-562
and 3.4µH (50% of Lnom) for MSS5131-682 (as for MSS5131-472).
The peak-to-peak current ripple magnitudes determined by the
three parts are nearly the same, as shown in Fig. 4.6(a). The
power losses of MSS5131-562 and MSS5131-682 parts are few mW
higher than for the MSS5131-472 part (see Fig. 4.3(a)). All these
three MSS5131 design solutions are SSO-compliant for the buck
converter under study. The MSS5131-682 part can be selected if
a higher efficiency at light load is preferred, because of its higher
inductance at low current values. Conversely, the MSS5131-472
part is preferable if higher efficiency at heavy load is required.

4.1.3 Experimental Verification

SSO-Analysis Algorithm Validation

The SSO-analysis algorithm results have been validated through
experimental tests realized by means of the MADMIX system,
described in Chapter 5. Four inductors have been tested, namely
the MSS5131-472 (IUT #1), MSS5131-562 (IUT #2), MSS6132-
472 (IUT #3) and MSS7341-502 (IUT #4), under the operating
conditions provided in Section 4.1.2 (Vin = 5V, Vout = 3.3V, fs =
465kHz, Ta = 23.5°C), for two different output current values: Iout
= 1.5A (heavy load) and Iout = 0.3A (light load). The resulting
winding and core losses of the inductors under test have been
evaluated by using formulas (4.2)-(4.3) and FPIs data provided in
Table 4.2, such as the nominal and equivalent inductance, the DC
winding resistance and core loss coefficients {K1, K2, X, Y }. The
experimental results and the SSO-analysis algorithm predictions
are summarized in Table 4.3. For all the investigated FPIs, the
power loss and temperature rise estimation are in good agreement
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Table 4.2: FPIs data for winding and core loss evaluation

IUT
#

Lnom
[µH]

Leq
@1.5A
[µH]

Leq
@0.3A
[µH]

Rdc

[mΩ]
K1 K2 X Y

1 4.7 3.4 4.4 31.1 8.65e-5 8.18e-1 1.21 2.01
2 5.6 3.1 5.4 34.6 8.65e-5 8.96e-1 1.21 2.01
3 4.7 4.2 4.3 34.8 1.75e-4 5.39e-1 1.21 2.01
4 5.0 5.1 5.2 15.7 2.77e-4 5.89e-1 1.21 2.01

Table 4.3: MADMIX experimental measurements and SSO-
analysis algorithm simulation results

Iout = 1.5A (heavy load)

IUT
#

Rth

(exp.)
[°C/W]

Pcore
(sim.)
[mW ]

Pwind
(sim.)
[mW ]

Ptot
(sim.)
[mW ]

Ptot
(exp.)
[mW ]

Ptot
error
[%]

T∆

(sim.)
[°C]

T∆

(exp.)
[°C]

1 52.7 23.3 71.1 94.4 95.8 -1.5 5.0 5.0
2 43.5 19.7 79.2 98.9 105.7 -6.4 4.6 4.3
3 45.5 20.4 79.2 99.6 101.0 -1.4 4.6 4.5
4 40.2 34.1 35.6 69.7 65.3 6.7 2.6 2.8

Iout = 0.3A (light load)

IUT
#

Rth

(exp.)
[°C/W]

Pcore
(sim.)
[mW ]

Pwind
(sim.)
[mW ]

Ptot
(sim.)
[mW ]

Ptot
(exp.)
[mW ]

Ptot
error
[%]

T∆

(sim.)
[°C]

T∆

(exp.)
[°C]

1 100.0 23.3 3.5 26.8 23.8 12.6 2.4 2.7
2 93.6 19.7 3.6 23.3 23.4 -0.4 2.2 2.2
3 95.5 20.4 3.9 24.3 25.2 -3.6 1.9 2.3
4 62.6 34.1 1.7 35.8 32.0 11.9 2.0 2.2
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with the MADMIX experimental results. In particular, the power
loss percent errors are typically lower than 10% in heavy load
conditions and 15% in light load conditions. Such errors are within
the typical tolerance range of FPIs parameters.

Efficiency Measurements

Additional experimental tests have been realized by using the
Texas Instruments TPS54160EVM-230 peak-current-mode control
buck board [25], operating with Vin = 5V, Vout = 3.3V, Iout = 1.5A,
fs = 465kHz. The experimental measurements set-up included a
LeCroy WaveRunner 44Xi oscilloscope, a Tektronix TCP 305 50A
current probe with Tektronix TCP A300 amplifier, a H&H ZS 1880
electronic load 800V/15A/1800W, a TTi EX354RD power supply
300W/2x35V/4A, a Fluke 179 digital multimeter with a type K
thermocouple and a Yokogawa WT3000 power analyzer, as shown
in Fig. 4.7. Measurements of the inductor current iL, voltage vL
and temperature T have been performed in heavy load condition
(Iout = 1.5A) for the four inductors under investigation, namely
the MSS5131-472, MSS5131-562, MSS6132-472 and MSS7341-502,
at the ambient temperature Ta = 22.5°C. For each inductor, the
voltage vL has been obtained by subtracting the voltages vLp and
vLm measured at the two inductor terminals.

Figure 4.7: Measurement set-up.
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Fig. 4.8 shows a summary of measurement results, including
experimental inductor waveforms (oscilloscope screenshots) and
converter efficiency measurements (power analyzer screenshots).
In particular, the experimental current waveforms in Fig. 4.8 cor-
respond to the simulated waveforms for the respective inductors,
given in Fig. 4.5(a) and Fig. 4.6(a). The experimental measure-
ments confirm that the MSS5131-472 and MSS5131-562 inductors
are SSO-compliant for the given application. Indeed, the peak-
current controlled buck regulator ensures a 3.3V output voltage
at 1.5A load current, regardless of the inductor saturation (see
Udc2 and Idc2 in the power analyzer screenshots).

Eventually, measurements of the buck converter efficiency have
been performed on the entire output current range, from the light
load condition (Iout = 0.3A) to the high load condition (Iout =
1.5A). Fig. 4.9 summarizes the experimental converter efficiency
vs the load current, with the L vs iL curves relevant to the ana-
lyzed FPIs provided in Fig. 4.10. It can be observed that the
smallest-core inductors MSS5131-472 and MSS5131-562 determine
about 0.7% and 1.2% efficiency decrease at heavy load compared
to the biggest-core MSS7341-502 part, due to their higher satura-
tion degree, peak-to-peak current ripple and power loss. However,
the MSS5131-562 improves the efficiency at light load, outperform-
ing all the other inductors. Such improvement is due to the fact
that the MSS5131-562 part de-saturates at light load current, with
the equivalent inductance approaching its nominal value (5.6µH),
thus resulting in lower peak-to-peak current ripple and power loss.
As a result, the overall converter efficiency increases. Another in-
ductor has been added to the comparison and included in Fig. 4.9
and Fig. 4.10, namely the MSS5131-332, which has the same size
of the other MSS5131 parts and a nominal inductance of 3.3µH,
close to the equivalent inductances of the saturated inductors
MSS5131-472 (Leq = 3.4µH) and MSS5131-562 (Leq = 3.1µH).
The MSS5131-332 produces substantial efficiency degradation at
light load, without any significant efficiency improvement at heavy
load. In fact, the MSS5131-332 has an equivalent inductance of
Leq = 2.7µH in this application, since the increase of its saturation
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(a) MSS5131-472

(b) MSS5131-562

(c) MSS6132-472

(d) MSS7341-502

Figure 4.8: Left: oscilloscope screenshots with C1 (magenta) =
vLp, C2 (blue) = vLm, C3 (green) = iL(x5). Right: power analyzer
screenshots with Udc1 =Vin, Idc1 =Iin, P1 =Pin=VinIin, Udc2 =Vout,
Idc2 =Iout, P2 =Pout=VoutIout, η1 =Pout/Pin.
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Figure 4.9: Converter efficiency vs load current.
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Figure 4.10: L vs iL curves of the analyzed inductors.

current determined by the lower number of turns is not sufficient
to keep the inductance at 3.3µH in the current range of opera-
tion. A 3.3µH inductor with a bigger core is required to keep the
inductance within the weak-saturation region.

The SSO-compliant inductor solutions validated in this Section
have been identified by means of the previously discussed SSO-
analysis algorithm of Fig. 4.2. However, for quicker and simpler
selection of FPIs in SSO, an alternative approach can be adopted,
not requiring any iterative procedures and based on the linearized
model of the L vs iL curve in the roll-off region presented next.
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4.2 SSO-Compliance Validation

This Section discusses a method allowing quick and straightfor-
ward validation of SSO-compliance for FPIs. A simplified induc-
tance model is proposed linearizing the FPI saturation character-
istic in the roll-off region. Based on such a linearized model, an
analytical procedure is developed providing practical design guide-
lines to quickly identify SSO-compliant inductors for given SMPS
specifications.

4.2.1 Linearized Inductance Model

The Sustainable Saturation Operation of FPIs can be validated by
means of the simplified model linearizing the inductance vs cur-
rent characteristic in the roll-off region, as depicted in Fig. 4.11.
The first step is to consider a FPI such that the maximum aver-
age inductor current IL required by the application falls between
the saturation current values I10% and I90%, corresponding to the
10% and 90% drop of inductance with respect to the nominal in-
ductance value Lnom. Based on such data, the simplified model
linearizing the L vs iL curve in the roll-off region can be consid-
ered:

L [iL(t)] = L0 − k · iL(t) (4.12)
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Figure 4.11: L vs iL curve linearization in the roll-off region.
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In (4.12) the slope, k, and the y-axis intercept, L0, of the secant
of the L vs iL curve in the roll-off region are given by (4.13):

k =

∣∣∣∣L10% − L90%

I10% − I90%

∣∣∣∣ (4.13a)

L0 = L10% + k · I10% (4.13b)

Based on (4.12), the inductor voltage is given by (4.14):

vL(t) = L [iL (t)]
diL(t)

dt
= L0

diL(t)

dt
− k · iL(t)

diL(t)

dt
(4.14)

Integrating (4.14) between 0 and t, where 0 is the time instant
corresponding to the inductor valley current value Ivl and t is a
generic time instant within the rise-time interval Tr = [0, DTs] of
the inductor current, yields (4.15):

VLr · t = L0 [iL(t)− Ivl]−
k

2

[
i2L(t)− I2

vl

]
(4.15)

Evaluating (4.15) in t = DTs yields (4.16):

λ = L0 [Ipk − Ivl]−
k

2

[
I2
pk − I2

vl

]
(4.16)

where λ=VLrDTs is the volt-second product applied to the induc-
tor during the rise-time interval Tr, and Ipk is the inductor peak
current value in t=DTs. Equation (4.15) can also be integrated
and averaged over Tr, resulting in (4.17):

λ

2
=

1

DTs

∫ DTs

0

VLr · tdt = ...

=L0

[
1

DTs

∫ DTs

0

iL(t)dt−Ivl
]
− k

2

[
1

DTs

∫ DTs

0

i2L(t)dt−I2
vl

]
=

= L0 (IL − Ivl)−
k

2

(
I2
Lrms − I2

vl

)
(4.17)

Given the average inductor current IL and volt-second inte-
gral λ, (4.16) and (4.17) represent a system of two equations in
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two variables, Ivl and Ipk, the solution of which yields the pre-
diction of the inductor current ripple in the roll-off region, as
∆iLpp = Ipk − Ivl. In particular, let us assume ILrms ≈ IL. This
is a good approximation for ripple ratios ∆iLpp/IL < 1: it results
ILrms/IL = 1.02 when ∆iLpp/IL = 0.5, and ILrms/IL = 1.08 when
∆iLpp/IL = 1. Thus, the solution of equations (4.16) and (4.17)
provides the simplified formulas for the evaluation of Ipk and Ivl,
given in (4.18):

Ipk =
1

k

[
L0 −

√
(L0 − kIL)2 − kλ

]
(4.18a)

Ivl =
1

k

[
L0 −

√
(L0 − kIL)2 + kλ

]
(4.18b)

The values of Ipk and Ivl provided by (4.18) allow to calculate
the peak-to-peak current ripple ∆iLpp and the equivalent induc-
tance Leq of the device, defined as the current-averaged inductance
over the peak-to-peak current ripple range [Ivl, Ipk]:

Leq =
1

Ipk − Ivl

∫ Ipk

Ivl

(L0 − kiL) di = L0 −
k

2
(Ipk + Ivl) (4.19)

which is related to ∆iLpp and λ according to (4.20):

Leq =
λ

∆iLpp
(4.20)

Equation (4.20) expresses the key concept underlying the use of
ferrite inductors in partial saturation: the inductor has to be se-
lected so that its equivalent inductance Leq in the roll-off region is
greater than or equal to the inductance needed to obtain a ripple
of maximum allowable magnitude ∆iLpp,MAX , under the applied
volt-second product λ. To verify if the inductor current fulfills
the constraint Ipk − Ivl ≤ ∆iLpp,MAX , we can merge (4.18a) and
(4.18b), resulting in (4.21):√

(L0 − kIL)2 + kλ−
√

(L0 − kIL)2 − kλ ≤ k∆iLpp,MAX (4.21)
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Solving (4.21) yields (4.22):

Lav = L0−kIL ≥

√
λ2

∆i2Lpp,MAX

+
∆i2Lpp,MAX

4
k2 = Lav,MIN (4.22)

where Lav is the value of the inductance at the average current
IL, and Lav,MIN is the minimum value required to comply with
the maximum ripple specification. It is worth noting that, when
the inductor operates in the roll-off region, it results: Lav>Leq =
λ/∆iLpp. Given the average inductor current IL and the volt-
second product λ, the inductor fulfills the maximum ripple con-
straint ∆iLpp ≤∆iLpp,MAX if the parameters k and L0 of its lin-
earized L vs iL curve in the roll-off region fulfill the constraint
(4.22).

Equations (4.18) and (4.22) provide reliable results if the in-
ductor current ripple falls entirely within the roll-off region. Con-
sidering that Ipk > Ivl, this happens when the values Ipk and Ivl
predicted with (4.18) jointly fulfill the conditions: Ipk<I90% and
Ivl > I10%. The relevant inductance values Lpk and Lvl can be
evaluated as:

Lpk = L0 − kIpk =
√
L2
av − kλ (4.23a)

Lvl = L0 − kIvl =
√
L2
av + kλ (4.23b)

Since Lvl > Lpk, the ripple falls entirely within the roll-off region if
the values given by (4.23) jointly satisfy the conditions: Lpk>L90%

and Lvl < L10%. As a result, the following constraints can be
formulated:

Lav,LB =
√
L2

90% + kλ ≤ Lav ≤
√
L2

10% − kλ = Lav,UB (4.24)

where Lav,LB and Lav,UB represent the Lower Bound (LB) and
the Upper Bound (UB) for Lav. Conditions (4.22) and (4.24), if
fulfilled, provide quick and effective SSO-compliance assessment
for FPIs operating in the roll-off region.
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4.2.2 Case Studies and Model Validation

The linearized inductance model (4.12) has been validated over
a large set of examples by comparing its results with the predic-
tions of the generalized algorithm for inductor current reconstruc-
tion discussed in Chapter 1 and shown in Fig. 1.12. Both meth-
ods for current ripple prediction have been applied to four Coil-
craft ferrite inductors, namely the MSS1246-223 (Lnom = 22µH),
MSS1246-273 (Lnom = 27µH), MSS1260-273 (Lnom = 27µH) and
MSS1260-333 (Lnom = 33µH). Their datasheet L vs iL curves,
relative to temperature T = 25°C, are depicted in Fig. 4.12. For
each part, the secant of the respective curve in the roll-off region
has been determined, by using the {I10%, L10%} and {I90%, L90%}
operating points. Such points and relevant parameters of the ob-
tained linearized models are listed in Table 4.4. On their basis,
the estimation of inductor current ripple has been performed by
means of (4.18), for the operating conditions relative to a buck
converter with Vin = 36V, Vout = 12V, fs = 450kHz, λ = 7.8V·s,
at two different output current values Iout = IL = {4.0, 5.0}A.
Fig.s 4.13-4.16 show the comparison between the current ripple
predictions obtained by using the linearized model (4.12) and the
inductor current reconstruction algorithm of Fig. 1.12, where the
plots have been denoted as case #1 - case #8. Each plot depicts
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Figure 4.12: Datasheet L vs iL curves of the investigated induc-
tors.
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the datasheet L vs iL curve (gray line) and the linearized model for
the roll-off region (black line). The portions of the curves covered
by the swing of the inductor current ripple during the switching
period are also highlighted (green and red portions, respectively).

Table 4.4: Parameters of linearized models for MSS inductors.

Part Number
L10%

[µH]
L90%

[µH]
I10%

[A]
I90%

[A]
L0

[µH]
k

[µH/A]

MSS1246-223 20.5 7.9 3.7 5.9 42.1 5.8
MSS1246-273 25.4 9.8 3.3 5.3 51.6 7.9
MSS1260-273 24.7 5.9 3.6 6.4 48.7 6.7
MSS1260-333 30.8 7.2 3.3 5.7 63.3 9.8
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Figure 4.13: Inductor current ripple predictions for MSS1246-223.
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Figure 4.14: Inductor current ripple predictions for MSS1246-273.
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Figure 4.15: Inductor current ripple predictions for MSS1260-273.
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Figure 4.16: Inductor current ripple predictions for MSS1260-333.

The current ripple values obtained by means of the linearized
model (∆iLpp,LIN) and the arctangent-based model (1.6) fitting the
datasheet L vs iL curve (∆iLpp,DAT ) are summarized in Table 4.5,
with the relevant percent error (∆iLpp,LIN−∆iLpp,DAT )/∆iLpp,DAT .
It can be observed that the error is positive for all the considered
inductors and case studies. This means that the current ripple
obtained with the linearized model overestimates the real ripple.
Therefore, the linearized model provides a worst-case prediction of
inductor current ripple, which can be used for a conservative choice
of inductors adopted to operate in the roll-off region. For the
inductors under study, Table 4.5 summarizes the SSO-compliance
validation data {Lav, Lav,MIN , Lav,LB, Lav,UB}, obtained by using
Eq.s (4.22) and (4.24) and assuming ∆iLpp,MAX = 50%IL. In most
of the examined cases, the SSO-compliance conditions are verified,
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so that the inductor current ripple satisfies the constraint ∆iLpp ≤
∆iLpp,MAX and stays entirely within the roll-off region. In some
cases, like case #1, case #4 and case #8, the conditions (4.22)
and/or (4.24) are not satisfied. Among them, it is possible to
discern cases like case #1 and case #8 (see Fig. 4.13 and Fig.
4.16), for which the condition (4.22) is verified, so that the current
ripple satisfies the maximum ripple constraint, while the condition
(4.24) is slightly violated, which means that the current ripple goes
outside the roll-off region and the linearized model may become
inaccurate. However, such cases could still be considered SSO-
compliant, since the violation of condition (4.24) is very slight.
Conversely, for case #4 (see Fig. 4.14) both conditions (4.22) and
(4.24) are violated. As a result, the linearized model cannot be
used to predict the SSO-compliance, since the inductor current
ripple goes far beyond the I90% saturation current and the model
becomes inaccurate.

Table 4.5: Current ripple and SSO-compliance validation data.
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[A] [A] [%] [µH] [µH] [µH] [µH]

#1 0.954 0.898 6.2 18.8 10.6 12.9 17.8
#2 1.441 1.378 4.6 13.0 10.2 12.9 17.8
#3 0.906 0.815 11.2 19.9 11.9 15.4 22.5
#4 1.884 1.524 23.6 12.0 12.2 15.4 22.5
#5 0.815 0.764 6.7 22.0 11.1 12.4 22.2
#6 1.203 1.201 0.2 15.3 11.0 12.4 22.2
#7 0.748 0.660 13.3 24.1 13.2 15.1 27.8
#8 1.437 1.434 0.2 14.2 14.2 15.1 27.8
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Temperature Impact

In the previous discussion, the L vs iL curves at 25°C have been
considered for all the analyzed inductors to predict their induc-
tor current ripple values and provide the SSO-compliance assess-
ment. However, the L vs iL curves drift left-side with increasing
temperature, thus resulting in the inductance decrease at a given
current of interest. To ensure that an inductor is SSO-compliant
despite its possible temperature increase, the analysis should be
performed in the worst-case temperature condition. For example,
let us assume that the MSS1260-273 inductor is adopted in the
application having the same operating conditions of the case #5,
for which the inductor temperature does not exceed 75°C. Two L
vs iL curves of the part, at 25°C and 75°C, should be considered
for the SSO-compliance assessment, by linearization in the respec-
tive roll-off regions and evaluation of the resulting current ripple.
Fig. 4.17 shows the trace of inductor current ripple estimated at
two different temperatures by means of (4.18). As expected, the
ripple is bigger at higher temperature (1.0A at 75°C vs 0.8A at
25°C). If the worst case ripple satisfies the maximum current rip-
ple constraint (herein, ∆iLpp,MAX = 50%IL = 2A), the selected
inductor can be considered SSO-compliant.
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Figure 4.17: L vs iL curves linearization for MSS1260-273 inductor
and current ripple predictions at 25°C (blue) and 75°C (green).
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Experimental Verification

The linearized model (4.12) has been validated experimentally, by
comparing its current ripple prediction with the measured current
ripple of the MSS1260-273 part, operating under the same condi-
tions of the previous case study, namely Vin = 36V, Vout = 12V,
fs = 450kHz, Iout = 4A. The experimental inductor temperature
Texp = 59°C has been measured and used to get the datasheet L
vs iL curve of the part relative to Texp. Fig. 4.18 shows the mea-
sured current waveform (green) and the current ripple evaluated
by using (4.18) (red). The linearized model predicts 0.98A ripple,
while the experimental value is 0.89A, which proves the reliability
of the proposed SSO-compliance validation method.

 

 

Figure 4.18: L vs iL curve linearization for MSS1260-273 and cur-
rent ripple prediction (red) vs experimental current ripple (green).
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Final Remarks

It is worth noting that the core losses of ferrite inductors analyzed
in this Chapter have been estimated using the manufacturer’s core
loss formula (4.3) and relevant coefficients, by modifying the coef-
ficient K∗2 according to the saturation degree of each inductor (see
Subsection 4.1.1). In scientific literature, enhanced core loss for-
mulations have been proposed including the DC bias dependence
and thus taking into account a possible magnetic core saturation.
A detailed overview of such models is presented in Chapter 5, and
their relevant drawbacks are highlighted. The alternative induc-
tor AC loss model is specifically proposed in this dissertation to
overcome the limitations of the classical core loss formulas, which
can be used in combination with the DC loss model to evaluate
the inductor total power losses, as discussed in the next Chapter.

The main outcome of the research activity presented in this
Chapter resulted in the publication of the scientific papers:

� G. Di Capua, N. Femia, K. Stoyka, ”Switching Power Sup-
plies with Ferrite Inductors in Sustainable Saturation Oper-
ation”, International Journal of Electrical Power & Energy
Systems, vol. 93, pp. 494-505, Dec. 2017.

� G. Di Capua, N. Femia, K. Stoyka, ”Validation of induc-
tors Sustainable-Saturation-Operation in Switching Power
Supplies Design,” 2017 IEEE International Conference on
Industrial Technology (ICIT), March 2017.

� Giulia Di Capua, Nicola Femia, Kateryna Stoyka, ”Power
Magnetics Volume and Weight Reduction in Aerospace Power
Supply Units”, 17th Workshop on Control and Modeling for
Power Electronics (COMPEL), June 2016.





Chapter 5

Power Loss Behavioral
Modeling of Ferrite
Inductors

This chapter discusses power loss behavioral modeling of FPIs in
SMPS applications, including the effects of saturation. FPIs total
power losses are determined by winding losses and magnetic core
losses. However, the core and winding losses cannot be easily
measured as separate contributions in SMPS applications. FPIs
total power losses can be alternatively evaluated as the sum of a
DC term and an AC term. Since the DC losses can be easily
estimated from the DC winding resistance and the DC current
flowing through the winding, the major challenge still remains how
to determine the AC losses of FPIs. The first part of this chapter
discusses the modeling of the total power losses for FPIs, followed
by the modeling of the sole AC loss contribution. Both approaches
are based on the use of a Genetic Programming (GP) algorithm,
by means of which the model structure and relevant parameters
are identified, starting from a set of experimental power loss data.
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5.1 Inductor Power Loss Models:

State-of-the-Art

The inductor average total power losses Ptot are by definition the
mean value of the instant power absorbed by the device over the
switching period Ts = 1/fs:

Ptot = fs

∫ Ts

0

vL (t) · iL (t) dt (5.1)

where vL(t) and iL(t) are the inductor voltage and current wave-
forms, respectively. Total power losses Ptot are determined by
magnetic core losses and winding losses, which depend on:

- core volume and geometry, characterized by sharp edges and
not allowing easy analytical modeling;

- core materials, whose characteristics are not disclosed by
inductors manufacturers;

- winding arrangement, where skin and proximity effects can
occur since Litz wires are not usually adopted for commercial
parts.

The total power losses Ptot can be separated in two contributions
in two different ways: winding and core losses (Subsection 5.1.1),
or DC and AC losses (Subsection 5.1.2).

5.1.1 Winding and Core Losses

The total inductor power losses can be split as shown in (5.2):

Ptot = Pwind + Pcore (5.2)

Winding losses Pwind can be seen as the sum of DC and AC wind-
ing losses:

Pwind,dc = Rdc · I2
L (5.3)

Pwind,ac = Rac · I2
ac,rms (5.4)
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where Rdc is the DC winding resistance, Rac is the AC winding
resistance including high-frequency effects, IL and Iac,rms are the
average and rms values of the DC and AC inductor current com-
ponents, respectively. The DC losses can be easily evaluated from
the DC winding resistance. The high-frequency winding losses
can be predicted by using several methods [36–41], if the winding
cross-sectional area and the layers distribution are known. Un-
fortunately, the manufacturers of commercial components do not
disclose winding geometry data. The datasheets only provide the
nominal value of Rdc resistance, obtained in DC test conditions.
Therefore, since the exact Rac resistance value is not available, the
use of the Rdc resistance value to estimate the high-frequency AC
winding losses can result in poor accuracy in the calculation of the
total inductor losses.

Core losses Pcore modeling has been investigated in several
studies by considering the separation of hysteresis, eddy-currents
and excess loss contributions [42–44]. Unfortunately, the param-
eters of such models are not easy to obtain, since sophisticated
experimental measurements are needed to evaluate separately the
different loss terms. The Steinmetz Equation (SE), introduced
in [45] and given in (5.5), represents de facto the empirical behav-
ioral core loss formula mostly used in SMPS design:

Pcore,SE = Cmf
α
s B

β
ac(Aele) (5.5)

where fs is the excitation frequency, Bac is the AC magnetic flux
density magnitude, and Ae and le are the equivalent cross-sectional
area and magnetic path length of the magnetic core. The coeffi-
cients Cm, α and β depend on core material, magnetic induction
and switching frequency operating range, and are usually given in
the datasheets of magnetic cores [46, 47]. Since the peak-to-peak
current ripple ∆iLpp is easier to measure than the AC magnetic
flux density Bac, the SE can be re-formulated as a function of
∆iLpp:

Pcore,SE = K1f
X
s (K2∆iLpp)

Y (5.6)

where the coefficients K1, K2, X and Y depend on material and
switching frequency range. K1 also depends on the core volume.
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Some power inductors manufacturers adopt the formulation given
in (5.6) and provide relevant core loss coefficients [48]. Both mod-
els (5.5) and (5.6) are given for sinusoidal operating conditions.
More details on how to get coefficients {K1, K2, X, Y } from coef-
ficients {Cm, α, β} are provided in Appendix A.

Several papers show how to extend the validity of the SE to
non-sinusoidal conditions. In [49–53] enhanced versions of the
SE have been proposed, namely the Modified Steinmetz Equation
(MSE), the Generalized Steinmetz Equation (GSE), the improved
Generalized Steinmetz Equation (i -GSE), the Natural Steinmetz
Extension (NSE) and the Improved Steinmetz Equation (ISE),
valid for both sinusoidal and non-sinusoidal operating conditions
and requiring no more parameters than the basic SE. In partic-
ular, Appendix A also describes how the i -GSE formula can be
used for core loss calculation, given inductor voltage, duty-cycle,
frequency and manufacturer’s core loss coefficients. However, all
these formulations neglect the dependence of core losses on DC
bias, thus yielding inaccurate core loss estimation in saturation.
In [54], a DC bias-dependent loss map has been created by mea-
suring the dynamic minor loop areas traced on the magnetic flux
density B versus the magnetic field H (or B −H) plane of mag-
netic material. Minor loop areas, which are proportional to the
core losses, have been measured in different conditions of applied
DC bias magnetic filed HDC , by fixing the peak-to-peak magni-
tude of either the magnetic flux density (∆B) or the magnetic field
(∆H), as shown in Fig. 5.1. It has been experimentally verified
that, with increasing bias, core losses may either increase if ∆B
value is maintained constant, or decrease if ∆H value is fixed.

Enhanced discussions on magnetic core loss models account-
ing for DC bias have been specifically proposed. In [55], Muh-
lethaler et al. have presented a study about the influence of pre-
magnetization on magnetic material power losses. However, no
analytical formulations have been given to model the SE parame-
ters dependence on DC bias. In [56], Kosai et al. have proposed a
correction to the SE for operating conditions involving saturation,
based on a multiplicative exponential term of the ratio µnom/µ
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Figure 5.1: Dynamic minor loops and loss map [54].

representing the saturation level of the core material:

Pcore = Cmf
α
s B

β
ac(Aele) · exp [a (µnom/µ− 1)] (5.7)

where µnom is the nominal magnetic permeability of material at
zero bias, µ is the effective magnetic permeability in saturation,
and a is an additional model parameter. However, neither µnom
nor µ are easily measurable quantities for commercial magnetic
devices. In [57], a core loss model has been proposed based on
the use of a multiplicative bias factor as a function of the DC
magnetic field HDC . A quadratic term and a square root term
of HDC have been introduced to model the DC bias dependence
for different magnetic materials. In [58], an FEA approach has
been proposed to calculate the magnetic core losses and their dis-
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tribution for a planar inductor in the presence of DC current. A
polynomial curve-fitting model given in (5.8) has been proposed
for the calculation of core losses:

Pcore = Cmf
α
s B

β
ac(Aele) ·

7∑
i=0

aiH
i
DC (5.8)

However, only sinusoidal excitations have been analyzed. Finally,
in [59] Sokalski et al. have suggested that the core loss function
obeys the scaling law. On the basis of such assumption, a compli-
cated expression has been proposed, including the DC bias HDC

influence on core losses:

Pcore = ∆Bβ

{
4∑
i=1

Γi

(
fs

∆Bα

)i(1−x)

+ ...

+
2∑
i=1

[
Γi+5

(
fs

∆Bα

)(i+y)(1−x)

tanh(HDCci+1 − ri+1)

]} (5.9)

where {Γi, ci, ri, α, β, x, y} represent the model parameters, and
∆B = 2Bac is the peak-to-peak AC magnetic flux density magni-
tude. Compared to (5.7) and (5.8), such formulation can be more
accurate yet too complicated for SMPS designers, as it involves a
high number of model parameters not provided by magnetic parts
manufacturers, and requires magnetic quantities measurements,
like the AC magnetic flux density Bac and the DC magnetic field
HDC .

The main limitation of core loss models [55–57, 59] lies in the
use of the magnetic quantities like magnetic flux density and mag-
netic field, which are not easy to measure for commercial induc-
tors operated in SMPS. In principle, such quantities can be es-
timated starting from the inductor voltage and current measure-
ments, if the inductor winding turn number, magnetic path length
and cross-sectional area are known. Unfortunately, such data are
not disclosed by inductors manufacturers in their datasheets. For
this reason, it is impossible to determine the parameters of said
models by applying curve fitting techniques to the experimental
core losses.
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5.1.2 DC and AC losses

The total inductor power losses can also be split as shown in (5.10):

Ptot = Pdc + Pac (5.10)

The DC losses Pdc depend on the DC components of inductor
voltage VL and current IL, and can be evaluated as given in (5.11):

Pdc = VL · IL = Rdc · I2
L = Pwind,dc (5.11)

which corresponds to (5.3). The AC losses Pac depend on the AC
components of the inductor voltage vL,ac(t) and current iL,ac(t),
and is given by (5.12):

Pac = fs

∫ Ts

0

vL,ac (t) · iL,ac (t) dt = Pcore + Pwind,ac (5.12)

where Pcore corresponds to the magnetic core losses provided in
(5.5) and (5.6), and Pwind,ac is the AC winding loss contribution
given in (5.4). This power loss separation (5.10) has the advan-
tage of allowing the direct measurement of the two contributions
(5.11) and (5.12), starting from the experimental waveforms of in-
ductor voltage and current. In fact, the DC components of the
measured waveforms provide the DC losses Pdc (5.11), while their
AC components provide the AC losses Pac (5.12).

5.2 Loss Measurement Techniques

5.2.1 Core Loss Measurements

Several literature contributions have been presented on core loss
measurement techniques for magnetic components [60–66]. In the
classical four-wire two-winding method, the core under test is
wound as a transformer [60] [61]: excitation is inserted on the
core through one winding, and voltage is measured on the other
sensing winding, as shown in Figure 5.2. The core losses are then
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Figure 5.2: Two-winding method for core loss measurements.

evaluated by integrating the product of the voltage on sensing
winding and the current through the excitation winding:

Pcore =
1

TsRref

∫ Ts

0

v2vRdt (5.13)

where Rref is the current sensing resistance, and Ts is the period
of the excitation frequency. A third winding can be possibly con-
sidered to test a given DC pre-magnetization condition [62].

The two-winding methods have no significant drawbacks in
principle. They allow to measure the core losses and exclude the
winding losses, but are sensitive to phase discrepancy mainly due
to current sensing, probe mismatch and oscilloscope time resolu-
tion limit. New compensation methods consider capacitive cancel-
lation for core loss measurement at very high frequencies [63] [64].
A capacitor is connected in series with the inductor of the core
under test and finely tuned to resonate with it at the test fre-
quency. The core losses can be measured after compensating the
parasitic resistances. These compensation methods automatically
exclude the losses of the excitation winding and greatly reduce
the sensitivity to phase discrepancy. However, in certain condi-
tions, it could be difficult to realize an exact compensation at the
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excitation frequency: the value of the cancellation capacitor is
quite critical, and a small variation can induce a big measurement
error [65]. Lastly, enhanced compensation methods rely on an
inductive cancellation approach [66], to further reduce the phase
sensitivity problem. It also enables accurate core loss measure-
ment for arbitrary waveform excitation without the requirement
to fine-tune the cancellation component value.

All the aforementioned studies usually consider experimental
test conditions performed on laboratory magnetic component pro-
totypes, built or modified according to established measurement
procedures. In principle, methods like [64] [66] are applicable also
for inductor total loss measurement. However, for commercial
pre-assembled shielded core power inductors in real-world switch-
ing operating conditions, it could be more difficult to separate core
and winding losses, mainly because the windings arrangement of
commercial inductors can be quite irregular and error sources can-
not be prevented or attenuated [65]. Direct measurements of the
DC and AC loss contributions for commercial power inductors is
definitely more straightforward than the measurement of separate
contributions for core and winding losses.

5.2.2 DC and AC Loss Measurements

Separate measurement of the DC and AC loss contributions can
be realized by means of the MADMIX system [67] shown in Figure
5.3. Such automated measurement setup is able to measure the
performance of power inductors under hard-switched conditions,
reproducing exactly a real SMPS operation. In particular, the
MADMIX emulates the operation of an open-loop DC-DC buck
converter: given the input voltage VIN , the duty-cycle D, the
switching frequency fs and the output current IOUT , the power
inductor is subjected to a DC current IL = IOUT , a positive volt-
age VLr = VIN(1−D) during the rise-time interval, and a negative
voltage VLf = −VIND during the fall-time interval. Among all
the possible features, the MADMIX allows setting desired SMPS-
based operating conditions and makes high-speed measurements of
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(a)

(b)

(c)

Figure 5.3: MADMIX: (a) front panel, (b) top panel and (c) device
under test

the inductor voltage and current. Moreover, it can perform user-
programmed tests over wide operating ranges and collect large se-
ries of measurement results, including DC and AC inductor power
losses, evaluated starting from the measured inductor voltage and
current waveforms according to (5.11) and (5.12). As an example,
voltage and current waveforms of a 10µH Coilcraft MSS1260-103
inductor measured by the MADMIX are shown in Figure 5.4 (a).
The datasheet L vs iL curve of the inductor is shown in Figure
5.4 (b). The operating conditions adopted for the test are VIN =
12 V, duty-cycle D = 0.5, switching frequency fs = 200 kHz and
average load current Iout = 7.25A, involving the operation in the
roll-off region (red portion of the curve given in Figure 5.4(b)). For
this test example, the MADMIX measured an average inductance
of 4.5 µH, a peak-to-peak current ripple of 3.34 A, DC losses of
1.22 W (0.05% standard deviation), AC losses of 175mW (1.7%
standard deviation), inductor and ambient temperatures of 71◦C
and 26◦C, respectively.
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current; (b) L vs iL curve with relevant operating region

An alternative acquisition method for on-line FPIs characteri-
zation has been recently proposed in [31], which is based on sam-
pling of the voltage and current waveforms of power inductor oper-
ated in SMPS, and allows for the estimation of the resulting power
losses.

5.3 Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm intro-
duced by Koza in [68], able to identify models and functions from
observed data. The GP is a population-based algorithm, where the
population is composed of models. The GP models are generally
represented by means of tree structures, as shown in Figure 5.5.
To construct such trees, the GP algorithm makes use of a given
set of elementary functions, constant coefficients and independent
variables or model inputs. By definition, the group of independent
variables and constant coefficients composes the terminal set, and
the group of elementary functions represents the non-terminal set
the GP algorithm works with.

Similarly to other evolutionary algorithms, for the GP algo-
rithm the individuals in the initial population are randomly gen-
erated. During its evolution, the GP algorithm transforms the
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Figure 5.5: Tree representation of a typical GP program

current population of models into a new population of models, by
applying classical genetic operators, such as crossover, mutation,
elitism, etc. At the end of its evolution, the algorithm finds a
model with the best-so-far fitness value.

Genetic operators are applied to individuals that are proba-
bilistically selected based on their fitness. That is, better individ-
uals are more likely to be selected and used for offspring models
generation than worse individuals. The most commonly employed
method for selecting individuals in GP is the tournament selec-
tion, for which a fixed number of individuals is randomly chosen
from the current population, and the best of them is selected as a
parent for offspring generation.

The crossover operation consists in the creation of one or
two offspring models by recombining randomly chosen parts from
two selected parent models. The most commonly used form of
crossover is subtree crossover. Given two parents, subtree crossover
randomly selects a crossover point in each parent tree. Then,
it creates the offspring by replacing the subtree rooted at the
crossover point in a copy of the first parent with a copy of the
subtree rooted at the crossover point in the second parent, as il-
lustrated in Figure 5.6.

The mutation operation consists in the creation of one new
offspring model by randomly altering a randomly chosen part of
one selected parent model. The most commonly used form of
mutation is subtree mutation, which randomly selects a mutation
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Figure 5.7: Subtree mutation

point in a tree and substitutes the subtree rooted there with a
randomly generated subtree, as illustrated in Figure 5.7. Another
common form of mutation is point mutation, in which a random
node is selected and the function stored there is replaced with
a different randomly selected function (having the same number
of inputs as the original function). The choice of which of the
operators described above should be used to create an offspring
is probabilistic. Typically, crossover is applied with the highest
probability, whereas the mutation rate is usually smaller.



128 5. Power Loss Behavioral Modeling of Ferrite Inductors

5.4 Behavioral Modeling of Inductor

Total Power Losses

This Section discusses an analytical behavioral modeling of the
total power losses for FPIs used in SMPS applications, including
possible operation of inductors in saturation. The model identifi-
cation procedure starts from the assumption that the main quan-
tities influencing the inductor total power losses Ptot are:

- the rms inductor current ILrms;

- the average inductor current IL;

- the switching frequency fs;

- the peak-to-peak inductor current ripple ∆iLpp;

- the volt-second product λ = VLrDTs of the inductor voltage
VLr applied during the rise-time interval Tr = [0, DTs].

Among such quantities, ILrms is expected to influence the winding
losses, fs could be present in both winding and core loss terms, and
IL is likely to influence the core losses representing their depen-
dence on the DC bias. The remaining quantities ∆iLpp and λ are
expected to have major influence on the core losses, since they de-
termine the dimensions of the minor hysteresis loop area in terms
of ∆H and ∆B, respectively. This is particularly important for
inductor operation in saturation, as the shape and dimensions of
the traced minor hysteresis loop change, thus causing variations in
power losses. Under this condition, the magnetic permeability of
the material changes, and the relationship existing between ∆iLpp
and λ becomes highly non-linear. The quantities {fs, ∆iLpp, λ, IL,
ILrms} have been herein used as the input variables of the total
loss model to be determined. In principle, such set of input vari-
ables can be redundant for the purposes of power loss modeling,
since some of the considered quantities could be obtained starting
from the others (e.g., ILrms could be reconstructed from IL and
∆iLpp values). Whatever choice of input variables is adopted, the
GP algorithm will find the main quantities whose influence on the
total power losses is dominant with respect to the other quantities.
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5.4.1 Identification of Total Power Loss
Model by GP

The GP algorithm has been herein adopted to identify a total
power loss model generalized for different FPIs, working in a wide
range of SMPS operating conditions. In particular, m differ-
ent Inductors Under Test (IUTs) have been considered for the
analysis, with a set of n test conditions for each device. For
each i-th test condition, a data vector has been created consisting
of 5 independent variables xi = (fsi,∆iLppi, λi, ILi, ILrmsi), with
i = 1, ..., n, representing the inputs to the power loss model, and
one output variable equal to the experimental total power losses
yij = Ptot,exp(xi), where j = 1, ...,m indicates the j-th analyzed in-
ductor. The resulting n×m data vectors (xi, yij), with i = 1, ..., n
and j = 1, ...,m, composed a training data set T the GP algorithm
works with, shown in Table 5.1.

The GP algorithm has been set to identify a global behavioral
model (5.14):

Ptot,bhv = F (fs,∆iLpp, λ, IL, ILrms,p) (5.14)

such that the value of the function F computed for each test
condition xi of the training data set T is as close as possible
to the corresponding experimental value yij, ∀i ∈ {1, ..., n} and
∀j ∈ {1, ...,m}. The structure of the behavioral power loss func-
tion F in (5.14) is the same for all the analyzed devices, while the
coefficients vector p changes from one inductor to the other.

Table 5.1: Data set T of the GP algorithm

Test condition IUT #1 IUT #2 ... IUT #m

x1 (x1, y11) (x1, y12) ... (x1, y1m)
x2 (x2, y21) (x2, y22) ... (x2, y2m)
... ... ... ... ...
xn (xn, yn1) (xn, yn2) ... (xn, ynm)
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To determine the values of the coefficients vector pj for the
j-th device, a Non-Linear Least Squares (NLLS) method has been
used. In particular, a Levenberg-Marquardt least square optimiza-
tion method has been adopted [69]. Such algorithm starts from
the model structure provided by the GP algorithm and finds the
best coefficients values pj for each inductor. The χ-squared error
criterion has been applied to the experimental losses yij and the
GP-predicted losses F (xi,pj) for i = 1, ..., n, as given in (5.15):

χ2
j =

1

n

n∑
i=1

{
F (xi,pj)− yij

}2

(5.15)

The values of coefficients pj for the j-th inductor have been deter-
mined by minimizing χ2

j .

Fitness Evaluation

To estimate the global accuracy of the GP-based model over the
whole training data set, the Root Mean Square Error (RMSE)
between the experimental and GP-predicted losses has been esti-
mated by means of (5.16), thus taking into account the χ2

j errors
relative to the m analyzed inductors:

RMSE =

√√√√ 1

m

m∑
j=1

χ2
j (5.16)

One common problem with evolving tree-structured individu-
als is that, as the evolution progresses, the individuals may become
complex in structure or length, without any significant reduction
of the relevant RMSE. To prevent this effect, the following fitness
function has been adopted:

Fitness = a ·RMSE + b · Fcomplexity + c ·Nα (5.17)

where a, b and c are balancing coefficients of the fitness function,
Fcomplexity is the metrics expressing the GP model complexity, and
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Nα is the total number of non-linear sub-trees composing a tree-
structured program, i.e. sub-trees having a non-linear function
as a root node. The terms b · Fcomplexity and c · Nα control the
model complexity and expansion, thus avoiding not intelligible
expressions.

A Single-Objective Optimization (SOO) approach has been
herein adopted to discover the total power loss behavioral model
Ptot,bhv minimizing the Fitness value, thus jointly limiting the
model fitting error, complexity and expansion.

Complexity Evaluation

Table 5.2 shows the elements of the terminal and non-terminal sets
used by the GP algorithm for models generation. Such elements
have been assigned different complexity factors, and on their basis
the global complexity Fcomplexity of each constructed GP model
has been estimated. Each element of the terminal set has been
assigned a unit complexity factor, whereas each element of the
non-terminal set has been assigned a complexity factor equal or
greater than one.

To quantify the global complexity of each GP model, the term
Fcomplexity has been introduced, based on the complexity values
given in Table 5.2, and calculated in the following way:

- if a function (non-terminal element) is the argument of an-
other function, the complexity factors of the two functions
are multiplied;

- if two functions are multiplied or summed, their complex-
ity factors are summed and subsequently multiplied by the
complexity factor of a sum or a product, respectively.

In the first case, a vertical development of the models (i.e., in-
volved functions of functions) is prevented, especially for the func-
tions with great complexity. In the second case, a horizontal devel-
opment of the models is prevented, i.e., models composed of many
simple functions multiplied or summed among them, when a single
more complicated function (e.g., exponential or power function)
could be sufficient to model the quantity of interest.
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Table 5.2: Non-terminal and terminal sets

Non-terminal set

Description Expression Complexity
sum f + g 1.5

multiplication f · g 1.0
division f/g 1.5

logarithm log(f) 2.0
natural exp. exp(f) 2.0

power fα 2.0
exponential αf 2.0
square root

√
f 2.0

reciprocal 1/f 1.5

Terminal set

Description Expression Complexity

input
x =

{fs,∆iLpp, λ, IL, ILrms}
1.0

coefficient p 1.0

GP Settings

Table 5.3 summarizes the adopted GP settings and main param-
eters values. In order to find the best set-up for the balancing
coefficients a, b and c of the Fitness function, a preliminary tun-
ing has been executed, based on a maximum complexity threshold.
The obtained values of such coefficients are given in Table 5.3.

5.4.2 Case Studies

The discussion is herein referred to power inductors with ferrite
magnetic cores. Two inductors have been considered for the inves-
tigation: the Coilcraft 18 µH MSS7341-183 (IUT # 1) and 15 µH
MSS7341-153 (IUT # 2), both assembled with shielded cores of
the same ferrite material, but having different winding turn num-
ber. The main characteristics of these FPIs are listed in Table
5.4.
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Table 5.3: GP algorithm settings and parameters

Description Value

Population size 50
Generation number 200
Maximum tree size 50 nodes
Selection operator tournament
Crossover operator subtree crossover
Mutation operator subtree mutation

Elite size 5
Tournament selection size 10

Crossover probability 0.65
Mutation probability 0.30

Direct copy probability 0.05

Fitness coefficients
a = 10
b = 1
c = 5

Table 5.4: Investigated inductors and their main characteristics

Part Number
Dimensions

[mm3]
Lnom
[µH]

DCR
[mΩ]

Isat[A]
30%

drop

Irms[A]
40◦C

rise

MSS7341-183 7.3x7.3x4.1 18 75 1.62 2.65
MSS7341-153 7.3x7.3x4.1 15 55 1.78 3.00

Experimental data of the training data set T have been col-
lected by using the MADMIX system described in Subsection
5.2.2. For both IUTs, the operating conditions given in Table
5.5 have been fixed by means of the MADMIX system. All the
possible combinations of such values have been tested, resulting in
a training data set composed of n ×m = 378 experimental data
vectors. All the quantities of interest, such as IL, ILrms, ∆iLpp,
λ and Ptot, have been measured for each tested condition. Both
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Table 5.5: Training and validation set operating conditions

Quantity Units Training set Validation set

fs kHz [250, 350, 450] [300, 400, 500]
VIN V [8, 12, 16] [6, 10, 14]
D − [0.3, 0.4, 0.5] [0.2, 0.6, 0.7]

Iout A
[1.2, 1.4, 1.6, 1.8,

2.0, 2.2, 2.4]
[1.2, 1.6, 2.0, 2.4]

IUTs have been tested in a wide range of inductor current, in
order to cover both weak-saturation and roll-off region of the rel-
ative L vs iL curves shown in Fig. 5.8, and guarantee power loss
characterization also in operating conditions involving saturation.
Eventually, to check the GP models predictions capability, a val-
idation set has been created, based on the operating conditions
given in Table 5.5.
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Figure 5.8: Inductors L vs iL curves and maximum tested inductor
current IL,max

5.4.3 Resulting GP-based Models

The GP-SOO approach has been applied to the composed training
data set: 15 independent GP algorithm runs have been executed
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to discover the models minimizing the Fitness function given in
Eq. (5.17) and having the most intelligible expressions. The best
GP models − in terms of the RMSE calculated on the validation
set − are given in Eqs. (5.18)-(5.20), whose respective RMSE
values are of 5.65 mW, 4.40 mW and 4.76 mW. The values of the
coefficients {p0, ..., p5} are shown in Table 5.6 for the two IUTs.

Ptot = p0I
p1
Lrms + p2fs∆iLppλ exp(p3ILrms) (5.18)

Ptot = p0I
p1
Lrms + fs(p2∆iLppλ+ p3λ

2)Ip4Lrms (5.19)

Ptot = p0I
p1
Lrms + p2fs∆i

p3
LppI

p4
Lrmsλ

p5 (5.20)

All the models (5.18)-(5.20) include two loss terms. The first
one clearly represents the winding losses. It is approximately
proportional to the square of the rms inductor current (p1 ≈ 2)
through the multiplicative coefficient p0, representing an estimate
of the winding resistance DCR (expressed in mΩ). The second
term, instead, represents the core losses. It is proportional to the
switching frequency and depends jointly on the inductor current

Table 5.6: GP models coefficients

Coefficients p0 p1 p2 p3 p4 p5

Model (5.18)
IUT #1 52.9 2.1 0.084 -0.44 − −
IUT #2 48.8 1.9 0.095 -0.47 − −

Model (5.19)
IUT #1 52.5 2.1 0.029 0.0014 -0.301 −
IUT #2 44.2 2.0 0.018 0.0023 -0.094 −

Model (5.20)
IUT #1 51.2 2.1 0.033 0.78 -0.45 1.18
IUT #2 44.2 2.0 0.016 0.54 -0.22 1.46
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ripple and the volt-second product (expressed in V µs), as well as
on the rms inductor current, representing the DC-bias contribu-
tion. It should be noted that both average and rms currents have
been used as inputs to the GP algorithm. However, for all the
considered case studies, such currents are only slightly different
(the average and maximum differences are about 1% and 7%, re-
spectively). This is the reason why the models generated by the
GP use ILrms as bias term, instead of IL. It is interesting to note
that the term containing ∆iLpp and λ is proportional to the hys-
teresis loop area. As the current increases, the saturation region
is approached and the hysteresis loop flattens, thus causing a de-
crease in the resultant core losses. This phenomenon is modeled
through the multiplicative bias term, which decreases with induc-
tor current. In fact, p3 < 0 in Eq. (5.18) and p4 < 0 in Eq. (5.19)
and Eq. (5.20). Among the others, model (5.19) has the lowest
error on the validation data set. Conversely, model (5.20) has the
optimal trade-off between accuracy and complexity, and has been
therefore selected as a behavioral total power loss model identified
by the GP algorithm:

Ptot,bhv = p0I
p1
Lrms + p2fs∆i

p3
LppI

p4
Lrmsλ

p5 (5.21)

5.4.4 Experimental Validation

The total power losses of the two analyzed inductors have been
simulated by computing the model (5.21) on the validation data
set given in Table 5.5. Fig.s 5.9(a) and 5.10(a) show the power
loss predictions (red circles) for IUT #1 and IUT #2, respectively.
Fig.s 5.9(b) and 5.10(b) show the power loss predictions obtained
by using classical formulas for winding and core loss evaluation
(green circles), such as Eq.s (5.3), (5.4) and (5.6). In the same
plots, the relevant experimental total power losses (blue circles)
are also shown. All such figures show the total power losses for 108
samples, relative to all the conditions included in the validation
dataset and given in the ascending order of the average load cur-
rent. The coefficients {K1, K2, X, Y }, adopted in classical core loss
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formula (5.6), have been estimated by means of the NLLS curve
fitting of the experimental AC power losses in weak-saturation re-
gion, as discussed in Appendix A. It can be observed that good
fittings can still be obtained by using classical approaches, but only
at low power loss levels, corresponding to low average current val-
ues in weak-saturation region (in Fig.s 5.9(b) and 5.10(b), first 54
samples relative to Iout={1.2, 1.6}A). As expected, when the sat-
uration is approached, such models don’t assure a reliable power
loss prediction. Strong overestimation of power losses has been
in fact obtained, with predicted losses being about three times
the experimental one in the worst-case condition (in Fig.s 5.9(b)
and 5.10(b), sample #101). As discussed in [54], if ∆iLpp value is
maintained constant, the hysteresis loop area is expected to de-
crease with increasing current, as well as the resulting core losses.
However, formula (5.6) doesn’t include the DC bias dependence
and thus overestimates the core losses.

The relative percent errors obtained by using the GP-based
behavioral model (5.21) and the classical approach based on Eq.s
(5.3), (5.4) and (5.6) are eventually shown in Fig.s 5.9(c)-(d) and
5.10(c)-(d) for IUT #1 and IUT #2, respectively. A quite good
fitting of power losses is ensured for all the analyzed operating
conditions by using the GP-based model. The error is quite small,
even if the frequency, the duty-cycle and the input voltage con-
ditions of the adopted validation dataset are different from those
of the training dataset used to identify the GP-based model. In
particular, the error is limited in a range of about ±5%, which is
a much better result than the predictions of the classical formulas
for winding and core loss estimation, having maximum errors of
about 180% and 230% for IUT #1 and IUT #2, respectively. The
GP approach results thus in a viable mean to overcome the lim-
itations of the classical SE-based loss formulas, by modeling the
inductor saturation and avoiding power loss overestimation.
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Figure 5.9: Total power losses and relative errors for MSS7341-
183. (a) Ptot,bhv losses (red) vs experimental losses (blue); (b)
classical model losses (green) vs experimental losses (blue); (c)
relative errors of Ptot,bhv; (d) relative errors of classical model.
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Figure 5.10: Total power losses and relative errors for MSS7341-
153. (a) Ptot,bhv losses (red) vs experimental losses (blue); (b)
classical model losses (green) vs experimental losses (blue); (c)
relative errors of Ptot,bhv; (d) relative errors of classical model.
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5.5 Behavioral Modeling of Inductor

AC Power Losses

In the previous Section, behavioral modeling of the total power
losses for FPIs has been discussed, including both DC and AC
loss contributions. The inductor peak-to-peak current ripple and
rms current have been considered as the input variables of the total
power loss model, together with the switching frequency, average
inductor current and volt-second product. However, while the fre-
quency, the average current (depending on the load) and the volt-
second product may be considered as primary variables directly
imposed by the SMPS operation to the inductor, the peak-to-peak
ripple and rms current (depending on the ripple) are rather a re-
sponse of the inductor to the applied primary variables, greatly
depending on the saturation degree of the device. Hence, to es-
timate the inductor total power losses by means of the identified
behavioral model (5.21), the inductor peak-to-peak ripple and rms
current must be first simulated or measured experimentally, to be
subsequently used as the inputs of the loss equation. This could be
a limitation during SMPS design phase, when a quick preselection
of the feasible saturated FPIs may be needed, without performing
experimental tests or simulations based on the use of the enhanced
non-linear saturation models of the inductors.

Since the DC losses can be easily estimated from the DC wind-
ing resistance and average inductor current, the major challenge
still remains how to model the AC losses of FPIs. This Section
presents a behavioral modeling of the AC power losses for FPIs as
a function of the main operating conditions directly imposed by
the SMPS application, including possible operation of inductors
in saturation. The model identification procedure starts from the
following assumptions:

- the AC loss equation is expressed as a function of the switch-
ing frequency fs, the average current IL and the equivalent
voltage Veq = DVLr evaluated over the rise-time interval Tr;
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- fs and Veq are the input variables of the AC loss equation,
whereas IL is an input parameter determining the value of
the numeric coefficients of the loss equation.

The use of the equivalent voltage Veq reflects the fact that the
inductor AC power losses are only dependent on the volt-seconds
applied to it, regardless of the SMPS topology.

5.5.1 Identification of AC Power Loss Model
by GP

In this Section, a Multi-Objective Optimization (MOO) approach
has been adopted in combination with the GP algorithm, to iden-
tify a new AC power loss model for FPIs, offering an optimal
trade-off between accuracy and complexity. For a given FPI, a
set of m average current conditions ILj has been considered for
the analysis, with j = 1, ...,m. For each current value, n cou-
ples of frequency and voltage conditions xi = (fsi, Veqi) have been
adopted, with i = 1, ..., n. For each of the n×m test conditions, a
data vector has been created, including the test values xi and the
resulting experimental AC power losses yij = Pac,exp(fsi, Veqi, ILj).
The resulting training data set T is shown in Table 5.7.

The GP algorithm has been set to identify a global behavioral
model (5.22):

Pac,bhv = F (fs, Veq,p(IL)) (5.22)

Table 5.7: Data set T of the GP algorithm

Test condition IL1 IL2 ... ILm

x1 (x1, y11) (x1, y12) ... (x1, y1m)
x2 (x2, y21) (x2, y22) ... (x2, y2m)
... ... ... ... ...
xn (xn, yn1) (xn, yn2) ... (xn, ynm)
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such that the value of the function F computed for each test con-
dition of the training data set T is as close as possible to the
corresponding experimental value yij, ∀i ∈ {1, ..., n} and ∀j ∈
{1, ...,m}. The structure of the behavioral power loss function F
in (5.22) is the same for all the average current conditions, while
the coefficients p are functions of IL.

To determine the coefficients p of the GP-based model (5.22)
for each average inductor current ILj (j = 1, ...,m), a NLLS
method has been applied to the n experimental data vectors rel-
ative to ILj. In particular, a Levenberg-Marquardt least square
optimization method has been adopted [69]. Such algorithm starts
from the model structure provided by the GP algorithm and finds
the best coefficients values p for each average current. The χ-
squared error criterion has been applied to the experimental losses
yij and the GP-predicted losses F (fsi, Veqi,p (ILj)), as given in
(5.23):

χ2
j =

1

n

n∑
i=1

{
F (fsi, Veqi,p (ILj))− yij

}2

(5.23)

The values of coefficients p for each average current ILj have been
determined by minimizing χ2

j . Then, the interpolating functions
p(IL) have been determined, as discussed hereafter.

To estimate the global accuracy of the GP-based model over
the whole training data set, the RMSE between the experimental
and GP-predicted losses has been estimated by means of (5.24),
thus taking into account the χ2

j errors relative to the m analyzed
average current conditions:

RMSE =

√√√√ 1

m

m∑
j=1

χ2
j (5.24)
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GP Settings

Table 5.8 shows the elements of the terminal and non-terminal sets
used by the GP algorithm for models generation. Each element
of the terminal set has been assigned a complexity factor equal or
lower than one, whereas each element of the non-terminal set has
been assigned a complexity factor equal or greater than one. The
input variables x = {fs, Veq} have been assigned a unit complex-
ity factor, except for the multiplication operations between such
variables, for which a complexity factor of 0.6 has been attributed
to each input, in order to prevent an excessive penalization of
quadratic and cubic terms, like f 2

s , V 3
eq, fs · Veq, etc. Table 5.9

summarizes the adopted GP settings and main parameters values.

Table 5.8: Non-terminal and terminal sets

Non-terminal set

Description Expression Complexity
sum f + g 1.0

multiplication f · g 1.0
power f g 1.5

division f/g 1.5
logarithm log(f) 1.5

natural exp. exp(f) 1.5
power fα 1.5

exponential αf 1.5
square root

√
f 1.5

hyperbolic tangent tanh(f) 1.5
inverse tangent tan−1(f) 1.5

reciprocal 1/f 1.5

Terminal set

Description Expression Complexity

input x = {fs, Veq}
0.6 (for multiplications)
1.0 (for other operations)

coefficient p 1.0
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Table 5.9: GP algorithm settings and parameters

Description Value

Population size 500
Generation number 300
Maximum tree size 50 nodes
Selection operator binary tournament
Crossover operator subtree crossover
Mutation operator subtree & node mutation

Crossover probability 0.80
Subtree mutation probability 0.18
Node mutation probability 0.02

GP-MOO Approach

The elements used by the GP algorithm to evaluate and select the
AC loss models are:

- the accuracy, quantified by means of the global error term
RMSE, given in Eq. (5.24);

- the complexity, quantified by means of the global complexity
term Fcomplexity, described in Subsection 5.4.1.

An elitist Non-dominated Sorting Genetic Algorithm (NSGA-
II) [70] has been used to discover the behavioral power loss model
(5.22) offering a trade-off between the RMSE and the Fcomplexity
values over the whole training data set. Such well-known MOO
approach returns a Pareto front containing the non-dominated so-
lutions present in the population, i.e., the solutions outperform-
ing the other elements of the front in at least one objective, being
worse in some other objectives. Herein, RMSE and Fcomplexity
have been considered as objective functions for minimization by
the proposed GP-MOO algorithm. A detailed description of the
MOO approach and of the NSGA-II algorithm is provided in Ap-
pendix B.
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5.5.2 Case Studies

The discussion is herein referred to power inductors with fer-
rite magnetic core. Inductors of different ferrite materials and
core types have been considered for the investigation, with both
shielded and unshielded magnetic cores, to obtain a generalized
AC loss model valid for different FPIs. In particular, four induc-
tors have been analyzed: the Coilcraft MSS1260-103 (Lnom = 10
µH), MSS1260-473 (Lnom = 47 µH) and MSS1038-273 (Lnom = 27
µH), all assembled with shielded cores of same ferrite material, and
the Coilcraft DO3316T-103 (Lnom = 10 µH), assembled with an
unshielded core of a different ferrite material. The main datasheet
characteristics of these FPIs are listed in Table 5.10. Experimen-
tal data of the training data set T have been collected by using
the MADMIX system described in Subsection 5.2.2. Each compo-
nent has been tested in a wide range of inductor current, in order
to cover both weak-saturation and roll-off region of the relative
L vs iL curve and guarantee power loss characterization also in
saturation. Maximum inductance de-rating of about 50% with re-
spect to the nominal inductance Lnom has been achieved for each
inductor. The following subsections discuss the application of the
GP-MOO approach to the MSS1260-103 and MSS1260-473 induc-
tors, followed by the validation of the identified AC loss model on
the MSS1038-273 and DO3316T-103 parts.

Table 5.10: Investigated inductors and their main characteristics

Part Number
Dimensions

[mm3]
Lnom
[µH]

DCR
[mΩ]

Isat[A]
30%

drop

Irms[A]
40◦C

rise

MSS1260-103 12x12x6 10 24 7.40 4.00
MSS1260-473 12x12x6 47 82 3.30 2.50
MSS1038-273 10.2x10x3.8 27 89 2.84 2.35
DO3316T-103 13.2x9.9x6.4 10 34 3.80 3.90
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Case Study #1: MSS1260-103 inductor

To assemble the training data set for the MSS1260-103 inductor,
the operating conditions given in Table 5.11 have been fixed by
means of the MADMIX system. All the possible combinations
of such values have been tested, with m = 13 average current
values and n = 80 operating conditions in terms of fs and Veq =
VIN × D × (1 − D) for each current, resulting in a training data
set composed of n × m = 1040 experimental data vectors. In
particular, an inductance de-rating of 50% is obtained at IL =
7.25A.

All the experimental measurements took about 35 hours. Then,
the GP-MOO approach has been applied to the composed training
data set: 30 independent GP algorithm runs have been executed
to verify the repeatability of the obtained models, lasting about 15
hours. Only the non-dominated Pareto-optimal solutions with the
repeatability of at least 8 runs have been selected for a futher com-
parison. Such solutions are shown as blue markers in Figure 5.11.
The two objective functions used during the GP-MOO routine –
namely, the RMSE evaluated over the training data set and the
corresponding global complexity factor Fcomplexity – are shown on
the x and y axes, respectively. The solutions at the bottom-right
side of this plot are characterized by very simple structures and
very high errors with respect to experimental AC losses. Con-
versely, the solutions at the top-left side of the plot present the
lowest errors and most complicated structures.

Table 5.11: Training set operating conditions for MSS1260-103.

Quantity Units Values

fs kHz [200, 300, 400, 500]
VIN V [6, 8, 10, 12]
D − [0.2, 0.35, 0.5, 0.65, 0.8]

Iout A
[3, 3.5, 4, 4.5, 5, 5.5, 5.75,
6, 6.25, 6.5, 6.75, 7, 7.25]
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Figure 5.11: Repeatable Pareto-optimal solutions for MSS1260-
103 inductor

In order to select an optimal AC loss model among all the
obtained Pareto-optimal solutions, several metrics have been con-
sidered to classify each model:

- Nrun: number of GP runs during which the algorithm has
discovered the model (only models having Nrun ≥ 8 are
shown in Figure 5.11);

- Ngen: average number of generations during which the model
exists within the population (averaging done over Nrun);
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- µerr: mean value of the percent error distribution of the
model over the training data set;

- σerr: standard deviation of the percent error distribution of
the model over the training data set;

- errmax: maximum percent error of the model over the train-
ing data set;

- Nmon: average number of intervals over which the model
coefficients change their monotonicity with respect to the
DC current IL.

Such metrics are shown in Figure 5.11, next to the respective GP
model expressions, from the more complicated ones (at the top of
the list) to the simplest ones (at the bottom of the list). Among
these solutions, the following model presents an optimal trade-off
among all the six metrics:

Pac,bhv = p0exp (−p1fs)V
p2
eq + p3V

2
eq (5.25)

where the coefficients {p0, ..., p3} are the elements of the vector
p(IL) given in (5.22). The behavioral model (5.25) has a high
repeatability (Nrun = 19) and age (Ngenerations = 186) and shows
excellent performances in terms of the percent fitting errors. It
is characterized by a maximum percent error errmax = 25%, with
a mean percent error µerr = 1% and a standard deviation σerr =
5%. Only few models outperform the selected one in terms of the
maximum percent error. In particular, the two models at the top of
Figure 5.11 have lower percent errors (errmax = 16%), but a more
complicated structure. Also the model described by the metrics
values [10, 227, 2, 7, 22, 1] has a lower percent error (errmax =
22%), but higher mean percent error and standard deviation (µerr
= 2%, σerr = 7%). Moreover, the proposed AC loss model has
monotonous coefficients with the DC current (Nmonotone = 1), thus
resulting easier to be modeled with any curve fitting algorithm.
The coefficients {p0, ..., p3} of the model (5.25) are shown in Figure
5.12 vs the average inductor current IL, and can be modeled by
means of the law (5.26):

p (IL) = a0exp (a1IL) + a2IL + a3 (5.26)
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A NLLS algorithm has been used to determine the vector coef-
ficients {a0, ..., a3}. The resulting fitting curves of the coefficients
p are shown in Figure 5.12, while the relative vector coefficients
{a0, ..., a3} are given in Table 5.12. Figures 5.13 (a)-(f) show the
relative percent errors between the predictions of behavioral model
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Figure 5.12: Behavioral model coefficients (red) and the relative
fitting curves (blue) for MSS1260-103

Table 5.12: Fitting curve parameters of the behavioral model co-
efficients for MSS1260-103.

MSS1260-
103

coefficients
a0 a1 a2 a3

p0 5.76E−04 1.70E+00 -2.71E+00 3.86E+01
p1 2.20E−06 1.23E+00 -4.16E−04 6.78E−03
p2 9.65E−14 4.12E+00 -5.39E−03 2.05E+00
p3 2.36E+01 1.36E−01 -5.23E+00 -1.78E+01
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(5.25) and the experimental AC losses, for the 6 average current
conditions IL ={3, 4, 5, 6, 7, 7.25}A, selected among the overall
13 current values included in the training data set. The red mark-
ers correspond to the errors obtained by using the coefficients p of
the proposed behavioral model, whereas the blue markers depict
the errors obtained by using the NLLS fitting curves (5.26) of such
coefficients. Each subplot shows the percent errors for 80 samples
corresponding to different values of fs and Veq = VIN×D×(1−D),
at a fixed IL value. For all markers, relative power loss error is
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Figure 5.13: Errors of Pac,bhv with the model coefficients (red) and
the relative fitting curves (blue) for MSS1260-103.
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within ±15% in weak-saturation region (IL ≤ 6A), and within
±25% in the roll-off region (IL > 6A).

For both weak-saturation and roll-off region, Figures 5.14 (a)-
(b) compare the AC loss prediction errors of the proposed model
Pac,bhv (red filled markers) with the errors of two benchmark mod-
els, evaluated as:

- benchmark model 1 = AC winding losses + SE-based core
losses (green filled markers);

- benchmark model 2 = AC winding losses + i -GSE-based
core losses (green empty markers).

The AC winding losses have been evaluated as shown in (5.4), by
using measured Rdc and Iac,rms values and taking into account the
thermal effects on the winding resistance [71]. The SE-based core
losses have been evaluated as shown in (5.6). In particular, the
core loss coefficients {K1, K2, X, Y } have been estimated by means
of the NLLS curve fitting of the experimental AC power losses in
weak-saturation region, as discussed in Appendix A. These same
coefficients have also been adopted to evaluate the i -GSE-based
core losses according to its reformulated version as a function of

(a) IL = 3A (b) IL = 7.25A

Figure 5.14: Errors of Pac,bhv (red filled) vs benchmark model
1 (green filled) vs benchmark model 2 (green empty) in weak-
saturation (a) and roll-off (b) for MSS1260-103.
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the applied inductor voltage, duty-cycle and frequency, and man-
ufacturer’s core loss coefficients {K1,K2,X,Y }, discussed in detail
in Appendix A. The two benchmark models provide similar re-
sults in weak-saturation region (Figure 5.14(a)). On the contrary,
in roll-off region the benchmark model 2 underestimates the AC
power losses, whereas the benchmark model 1 hugely overestimates
it (Figure 5.14(b)). Indeed, none of the two models include the de-
pendence of core losses on DC bias. As discussed in [54], if ∆iLpp
value is maintained constant, the hysteresis loop area is expected
to decrease with increasing current, as well as the resulting core
losses. The benchmark model 1 does not include such core loss cor-
rection for DC bias and, as a result, overestimates the AC power
losses. Conversely, if ∆B value is kept constant, the hysteresis
loop area is expected to increase with the current, as well as the
core losses. The benchmark model #2 does not include such DC
bias dependence and underestimates the core losses. The results
of Figure 5.14 highlight that the proposed behavioral model (5.25)
provides reliable AC loss estimation both in weak-saturation and
in roll-off region.

Case Study #2: MSS1260-473 inductor

In this second case study, the Coilcraft inductor MSS1260-473 of
nominal inductance Lnom = 47µH has been analyzed, having the
same magnetic core of MSS1260-103, but different winding turn
number. In order to reduce both measurement and execution times
needed for the AC loss model identification, such inductor has
been tested on the reduced set of 162 operating conditions given
in Table 5.13, including m = 6 average current values and n = 27
operating conditions in terms of fs and Veq = VIN ×D × (1−D)
for each current. In particular, an inductance de-rating of about
40% is obtained at IL = 3.1A. The experimental measurements of
such a reduced training data set took about 6 hours, whereas the
30 runs of the GP algorithm lasted about 2 hours.

Figure 5.15 shows the identified non-dominated Pareto-optimal
solutions having a repeatability of at least 8 runs. The GP-MOO



5.5. Behavioral Modeling of Inductor AC Power Losses 153

0 5 10 15 20 25 30 35
RMSE [mW]

1

2

3

4

5

6

F
co

m
pl

ex
ity

[14, 126, 0, 4, 10, 2] -p
0
exp(-p

1
f
s
)+p

2
(V

eq
(exp(-p

3
f
s
)))(V

eq
p

4)+p
5
V

eq
2

[9, 66, 0, 4, 14, 2] p
0
(exp(-p

1
f
s
))(V

eq
p

2)+p
3
V

eq
2 -p

4
exp(p

5
V

eq
)

[9, 117, 0, 4, 13, 2] p
0
(exp(-p

1
f
s
))(V

eq
p

2)+p
3
V

eq
2 -p

4

[8, 148, 2, 5, 20, 1] p
0
(exp(-p

1
f
s
))(V

eq
p

2)+p
3
V

eq
2

[15, 168, 1, 5, 17, 2] p
0
V

eq
p

1+p
2
(V

eq
(exp(-p

3
f
s
)))V

eq
[13, 230, 2, 6, 27, 1] p

0
V

eq
((f

s
/V

eq
)-p

1)-p
2
V

eq
f
s

[17, 209, 2, 7, 44, 1] -p
0
V

eq
+p

1
(V

eq
2 )/f

s
-p

2
f
s
2

[18, 170, 2, 6, 15, 1] p
0
(exp(p

1
f
s
))((f

s
/V

eq
)-p

2)

[10, 252, 1, 6, 26, 1] p
0
(f

s
/(V

eq
2 ))-p

1-p
2
V

eq
[14, 212, 3, 7, 23, 1] p

0
(f

s
/V

eq
)-p

1+p
2
V

eq
2

[17, 185, 1, 5, 18, 2] p
0
(V

eq
p

1)((V
eq

f
s
)-p

2)

[10, 236, 1, 6, 18, 2] p
0
(f

s
(V

eq
-p

1))-p
2

[21, 232, 1, 6, 18, 2] p
0
(f

s
-p

1)(V
eq
p

2)

[25, 248, 1, 6, 23, 2] p
0
V

eq
((f

s
/V

eq
)-p

1)

[25, 253, 1, 6, 18, 3] p
0
(f

s
/(V

eq
2 ))-p

1

[30, 233, 3, 7, 21, 2] p
0
(V

eq
p

1)/f
s

[10, 274, 7, 9, 45, 1] p
0
(V

eq
/f

s
)V

eq

[30, 266, 7, 9, 45, 1] p
0
(V

eq
2 )/f

s

[30, 278, 35, 49, 151, 1] p
0
V

eq
/f

s

[30, 280, 16, 35, 78, 1] p
0
V

eq
2

[30, 293, 46, 69, 224, 1] p
0
V

eq

[N
run

, N
gen

, 
err

, 
err

, err
max

, N
mon

]

Figure 5.15: Repeatable Pareto-optimal solutions for MSS1260-
473 inductor.

algorithm has discovered the model (5.25) also for the MSS1260-
473 inductor, even though the dimensions of the training data set
have been greatly reduced compared to the MSS1260-103 induc-
tor (case study #1). Such model has a repeatability of 8 runs
and persists in the population during 148 generations, presents an
average error µerr = 2%, a standard deviation σerr = 5% and a
maximum error errmax = 20% over the training data set, and its
parameters are monotonic with the current IL.
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Table 5.13: Training set operating conditions for MSS1260-473.

Quantity Units Values

fs kHz [200, 300, 400]
VIN V [12, 18, 24]
D − [0.3, 0.5, 0.7]
Iout A [1, 1.5, 2, 2.5, 2.8, 3.1]

The coefficients p of the model (5.25) for the MSS1260-473
inductor are shown in Figure 5.16, together with their NLLS fitting
curves. The values of the vector coefficients {a0, ..., a3} of the
fitting curves are given in Table 5.14. Figures 5.17 (a)-(b) compare
the AC loss prediction errors of the proposed model Pac,bhv with
the errors of the two benchmark models, for weak-saturation and
roll-off region respectively. Also for the MSS1260-473 inductor,
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Figure 5.16: Behavioral model coefficients (red) and the relative
fitting curves (blue) for MSS1260-473.
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the core loss coefficients {K1, K2, X, Y } have been estimated by
means of the NLLS curve fitting of the experimental AC power
losses in weak-saturation region, as discussed in Appendix A. As
expected, the benchmark model 2 underestimates the AC losses
in roll-off region, whereas the benchmark model 1 overestimates
it.

Table 5.14: Fitting curves parameters of the behavioral model
coefficients for MSS1260-473.

MSS1260-
473

coefficients
a0 a1 a2 a3

p0 1.63E−08 6.64E+00 -1.15E−01 4.58E+00
p1 1.89E−08 4.35E+00 8.57E−04 4.62E−03
p2 4.10E−11 7.57E+00 7.28E−02 1.99E+00
p3 1.45E−03 1.95E+00 1.44E−01 1.07E−01

(a) IL = 1A (b) IL = 3.1A

Figure 5.17: Errors of Pac,bhv (red filled) vs benchmark model
1 (green filled) vs benchmark model 2 (green empty) in weak-
saturation (a) and roll-off (b) for MSS1260-473.
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Case Study #3: MSS1038-273 inductor

The GP-MOO approach applied in the previous two case studies
has led to the same AC power loss model for two inductors of the
same family (same magnetic core). In this Section, it is shown
that the same model is valid for the devices of a different induc-
tor family. In particular, the inductor MSS1038-273 of nominal
inductance Lnom = 27µH has been considered, whose core has the
same magnetic material but different size compared to the compo-
nents of the MSS1260 family (see Table 5.10). The 162 operating
conditions given in Table 5.15 have been considered, covering m
= 6 average current values and n = 27 combinations of fs and
Veq = VIN × D × (1 − D) for each current. In particular, an
inductance de-rating of about 50% is obtained at IL = 2.9A.

The AC loss formula has been kept unchanged for the Coil-
craft MSS1038-273 part: in fact, the identification of the power
loss model coefficients has been performed starting directly from
the model structure (5.25), by applying NLLS algorithm to the
training set data of Table 5.15. The resulting coefficients p are
shown in Figure 5.18, together with the NLLS fitting curves (5.26),
whose parameters are given in Table 5.16. The proposed behav-
ioral model is characterized by a maximum percent error errmax
= 19%, with a mean percent error µerr = 3% and a standard
deviation σerr = 6% over the training data set.

Figures 5.19 (a)-(b) compare the AC loss prediction errors of
the model (5.25) with the errors of the two benchmark models, for
weak-saturation and roll-off region respectively. The {K1, K2, X, Y }

Table 5.15: Training set operating conditions for MSS1038-273.

Quantity Units Values

fs kHz [200, 300, 400]
VIN V [8, 12, 16]
D − [0.3, 0.5, 0.7]
Iout A [0.9, 1.3, 1.7, 2.1, 2.5, 2.9]
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coefficients have been estimated as discussed for the previous case
studies. As expected, the behavioral model (5.25) outperforms the
two benchmark models, especially in operating conditions involv-
ing saturation.
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Figure 5.18: Behavioral model coefficients (red) and the relative
fitting curves (blue) for MSS1038-273.

Table 5.16: Fitting curves parameters of the behavioral model
coefficients for MSS1038-273.

MSS1038-
273

coefficients
a0 a1 a2 a3

p0 8.45E+00 3.77E−01 -4.96E+00 2.51E−14
p1 1.75E−12 6.58E+00 1.88E−04 4.61E−03
p2 4.30E−12 8.13E+00 5.72E−02 2.09E+00
p3 4.81E−03 1.58E+00 7.85E−02 7.48E−01
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(a) IL = 0.9A (b) IL = 2.9A

Figure 5.19: Errors of Pac,bhv (red filled) vs benchmark model
1 (green filled) vs benchmark model 2 (green empty) in weak-
saturation (a) and roll-off (b) for MSS1038-273.

Case Study #4: DO3316T-103 inductor

In this last case study, it is shown that the findings relevant to the
identification of the AC power loss model have general validity. In
fact, the AC power loss model has also been applied to inductors
with different ferrite material, dimensions and type of the magnetic
core. In particular, the Coilcraft inductor DO3316T-103 (Lnom
= 10µH) has been considered. This part is assembled with an
unshielded core of different ferrite material and size (see Table
5.10). The 405 operating conditions given in Table 5.17 have been
considered, covering m = 9 average current values and n = 45
combinations of fs and Veq = VIN ×D× (1−D) for each current.
In particular, an inductance de-rating of about 50% is obtained at
IL = 4 A.

The identification of the power loss model coefficients for the
Coilcraft DO3316T part started directly from the model structure
(5.25). The resulting coefficients p are shown in Figure 5.20, to-
gether with the NLLS fitting curves, whose parameters are given
in Table 5.18. The proposed behavioral model is characterized
by a maximum percent error errmax = 20%, with a mean per-
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Table 5.17: Training set operating conditions for DO3316T-103.

Quantity Units Values

fs kHz [300, 400, 500]
VIN V [8, 10, 12]
D − [0.2, 0.35, 0.5, 0.65, 0.8]
Iout A [2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4]

cent error µerr = 1% and a standard deviation σerr = 3% over
the training data set. Figures 5.21 (a)-(b) compare the AC loss
prediction errors of the proposed model Pac,bhv with the errors of
the two benchmark models, for weak-saturation and roll-off region
respectively. The {K1, K2, X, Y } coefficients have been estimated
as discussed for the previous case studies. The behavioral model
(5.25) outperforms the two benchmark models, especially in oper-
ating conditions involving saturation.
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Figure 5.20: Behavioral model coefficients (red) and the relative
fitting curves (blue) for DO3316T-103.
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Table 5.18: Fitting curves parameters of the behavioral model
coefficients for DO3316T-103.

DO3316T-
103

coefficients
a0 a1 a2 a3

p0 2.00E−08 5.59E+00 -6.21E+00 8.28E+01
p1 1.61E−09 3.75E+00 -4.39E−04 6.32E−03
p2 4.09E−11 5.94E+00 -1.04E−02 1.88E+00
p3 4.33E−07 4.02E+00 -2.63E−01 4.72E+00

(a) IL = 2A (b) IL = 4A

Figure 5.21: Errors of Pac,bhv (red filled) vs benchmark model
1 (green filled) vs benchmark model 2 (green empty) in weak-
saturation (a) and roll-off (b) for DO3316T-103.

Model Discussion and Final Considerations

The behavioral model (5.25) is the sum of two terms: p0 exp(−p1fs) ·
·V p2
eq and p3V

2
eq. The first term contains a power law dependence on

the applied voltage Veq, which reflects the dependence of Pcore on
the magnetic flux density magnitude Bac, Veq being proportional to
Bac. The second term contains a square law dependence on the ap-
plied voltage Veq, which reflects the dependence of Pwind,ac on the
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peak-to-peak current ripple magnitude ∆iLpp, Veq being propor-
tional to ∆iLpp. Such result is in agreement with the expected loss
trend, since the AC winding losses are proportional to the square
of the rms AC current Iac,rms, which can be well represented by the
square of ∆iLpp in case of triangular or cusp-like inductor current
waveform. The proposed model (5.25) also shows an exponential
decay of the AC power losses with the increasing switching fre-
quency, which can be explained as follows. For a fixed Veq value,
the peak-to-peak current ripple decreases while the frequency in-
creases, resulting in lower Iac,rms value. However, the winding
resistance Rac value increases at higher frequency, due to the skin
and proximity effects. Thus, the AC winding losses Pwind,ac can
increase or decrease with the frequency, depending on the winding
arrangement. As for the core losses Pcore, the smaller peak-to-peak
current ripple at higher frequencies involves a smaller Bac magni-
tude and, consequently, a smaller area of the B −H loop, which
yields a loss reduction. However, the higher frequency involves
that the B − H loop is repeated more frequently, thus causing a
consequent loss increase. As a result, the core losses could as in-
crease as decrease with the frequency, depending on the inductor
characteristics. For the components analyzed in this study, the
model (5.25) reveals that a frequency increase results in an AC
power loss decrease.

Both the proposed AC loss model and the adopted benchmark
models require experimental measurements data for model coeffi-
cients extraction. In particular, the GP-MOO algorithm adopted
for the identification of model (5.25) also requires some extra com-
putation time, when the behavioral models are generated for the
first time. The amount of this additional time mainly depends on
the experimental data used for models identification: the higher
the number of the experimental test conditions, the greater the
execution time required. However, the major benefit descending
from the adoption of the GP-MOO algorithm is that it allows for
the identification of a generalized loss model, valid for families of
ferrite inductors with different materials and/or core types and
size, as proved by the four presented case studies. The identified
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model remains unchanged and always valid, independently of the
operating conditions the inductor is working in. Conversely, the
suggested benchmark models are conservative and can yield in-
accurate core loss estimation, especially in operating conditions
involving saturation. Once the AC loss model has been identi-
fied, only the execution time for the curve-fitting NLLS algorithm
is needed to extract the model coefficient values. This time is
comparable to that one needed for the extraction of any other
benchmark models’ coefficients. Hence, the computation time of
the GP-MOO algorithm execution is the unique extra time con-
tribution for the proposed model.

Temperature Impact

Temperature is an important factor influencing the inductor power
losses. The core loss density is sometimes modeled as a polyno-
mial function of temperature in magnetic cores datasheets [46,47].
Unfortunately, few literature studies have investigated the depen-
dence of the core losses on temperature. In [55], Muhlethaler et
al. have introduced Steinmetz premagnetization graphs providing
information about the dependence of the Steinmetz parameters on
the DC bias for two different temperatures. Herein, the impact of
the ambient temperature Ta on the coefficients of the proposed be-
havioral model (5.25) has been investigated for the MSS1260-473
inductor (case study #2). Experimental measurements of the AC
power losses have been performed at Ta = 25◦C and Ta = 37◦C.
The higher ambient temperature has been obtained by incapsulat-
ing the inductor into a heated chamber. The TDK B57550G502F
5kΩ±1% NTC thermistor has been used for the experimental mea-
surements. For the two ambient temperature conditions, the co-
efficients of the behavioral model (5.25) have been identified by
means of the NLLS technique, as shown in Figure 5.22. It can
be observed that, with the temperature increase, all the coeffi-
cients decrease in weak-saturation region (at low inductor currents
IL < 2.5A) and increase in roll-off region (beyond 2.5A inductor
current). Indeed, while the ambient temperature increases, the
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inductance in weak-saturation region typically increases, thus re-
sulting in the lower inductor current ripple and AC power losses.
In roll-off region, instead, the inductance decreases with the tem-
perature, thus resulting in higher current ripple and losses [72].
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Figure 5.22: Behavioral model coefficients at Ta=25◦C (red) and
Ta=37◦C (green) for MSS1260-473.
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Chapter 6

Power-Loss-Dependent
Inductance Modeling

This chapter discusses behavioral modeling of the saturation char-
acteristic of FPIs as a function of the inductor total power losses.
A novel power-loss-dependent saturation model provides the in-
ductance as a function of the inductor current, parameterized with
respect to total power losses. Such model has been identified start-
ing from easily measurable electrical quantities, such as inductor
voltage and current, unlike conventional thermal-based modeling
approaches requiring information on the core temperature. The
proposed approach starts from the assertion that the core temper-
ature is not an input variable in the inductor model, but rather
an output, depending on the ambient temperature, inductor total
power losses and equivalent thermal resistance.

6.1 Inductance Model

The buck converter has been herein adopted as a reference case
study, but the findings relative to FPIs modeling have general con-
ceptual validity, and can be applied to whatever converter topol-
ogy. Let w = [Vin, Iout, fs, D] be the vector of parameters deter-
mining the SMPS operating condition of the power converter. As
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the switching period Ts is normally much smaller than the inductor
thermal time constant, the inductor operating temperature can be
assumed constant during Ts and equal to an average steady-state
temperature T :

T = Ta + PtotRth (6.1)

depending on the ambient temperature Ta, inductor total power
losses Ptot and equivalent thermal resistance Rth. As shown here-
inafter, the value of thermal resistance Rth under SMPS operating
conditions can be determined by means of the experimental data
utilized to obtain the proposed power-loss-dependent inductance
model.

At a given ambient temperature, the flux linkage Ψ (i.e., mag-
netic flux linked to all turns) depends on inductor current iL and
temperature T , as shown in Fig. 6.1, where the Ψ versus iL curves
at steady-state correspond to different temperatures T2 > T1. Un-
fortunately, the core temperature T is not easy to measure. Given
the ambient temperature Ta, different SMPS operating conditions
generating the same inductor total power losses Ptot lead to the
same core temperature. Unlike the temperature, Ptot can be esti-
mated starting from easily measurable electrical quantities, such as
inductor voltage and current. Therefore, the inductor total power
losses Ptot is considered as input of the proposed saturation model,

 i
L

 
 (

i L
)

T
1

T
2

Figure 6.1: Ψ vs iL hysteretic curves measured for the same in-
ductor at two different temperatures T2 > T1.
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instead of temperature T . Accordingly, the inductor voltage vL is
related to the flux linkage Ψ as:

vL(t) =
∂

∂t
Ψ(t, Ptot) (6.2)

In commercial FPIs, gapped cores determine a flattening of
hysteresis loops. For this reason, the hysteresis is not taken into
account in the proposed inductance model. At steady-state, Eq.
(6.2) can be recast as:

vL(t) =
∂

∂iL
Ψ(iL, Ptot)

diL
dt

= L(iL, Ptot)
diL
dt

(6.3)

where L(iL, Ptot) = ∂
∂iL

Ψ(iL, Ptot) is the dynamic inductance (in
the following, simply referred to as inductance) for the steady-
state solution related to w. The plots in Fig. 6.1 show that the
slope of Ψ(iL) is approximately constant for low current values.
As iL increases, the curves exhibit a knee and become again ap-
proximately linear, with a lower slope. This behavior is due to
magnetic saturation, which is taken into account in the proposed
inductance model.

6.2 Power-Loss-Dependent

Inductance Model

As described in Section 1.3, the dynamic inductance of FPIs can
be modeled by means of an arctangent function of the current iL.
The parameters Lhigh, Llow, σ and I∗L of such a function depend
on the inductor temperature T . The experimental L versus iL
curves provided by inductors manufacturers at different temper-
atures highlight a high temperature sensitivity of the parameter
I∗L, whereas Lhigh, Llow and σ show a quite weak sensitivity. As an
example, Fig. 6.2 shows the experimental curves of the Coilcraft
MSS1260-103 inductor for different temperatures [17].

Since inductor temperature and total power losses are linearly
related to each other (through Eq. (6.1)), the following power-
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Figure 6.2: L vs iL experimental curves of Coilcraft MSS1260-103
inductor.

loss-dependent saturation model has been herein proposed:

L(iL, Ptot) = Llow(Ptot) +
Lhigh(Ptot)− Llow(Ptot)

2
×

×
{

1− 2

π
atan {σ(Ptot) [iL − I∗L(Ptot)]}

} (6.4)

Let us note that, unlike the arctangent model (1.6) discussed in
Section 1.3, in model (6.4) the absolute value of inductor current
has been omitted, since only positive current values have been
considered for power-loss-dependent inductor modeling. Once the
L vs iL curve is determined for positive current values, it can be
symmetrically reconstructed also for negative current values. The
parameters of model (6.4) can be expressed as a function of Ptot
according to (6.5): 

Lhigh = x1

Llow = x2

σ = x3

I∗L = x4Ptot + x5

(6.5)

where x = [x1 x2 x3 x4 x5]T is a vector of fitting coefficients to be
determined. Given an operating condition w and a time interval
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[t0, t], from (6.3) it follows:

Ψ(t0) +

∫ t

t0

vL(τ)dτ︸ ︷︷ ︸
Ψ(t)

= Ψ(t0) +

∫ iL(t)

iL(t0)

L(i′L, Ptot)di
′
L︸ ︷︷ ︸

Ψ̂(iL(t),Ptot)

(6.6)

where Ψ(t0) is the flux linkage in t = t0. The experimental flux
linkage Ψ(t) in Eq. (6.6) can be computed using the measure-
ments of the inductor voltage, whereas the analytical flux linkage
Ψ̂(iL(t), Ptot) can be computed by integrating Eq. (6.4), thus ob-
taining:

Ψ̂(iL(t), Ptot) = Ψ(t0) +

∫ iL(t)

iL(t0)

L(i′L, Ptot)di
′
L =

=

{
Lhigh + Llow

2
iL +

Lhigh − Llow

2πσ
log
[
1 + σ2(iL − I∗L)2

]
+

+
Llow − Lhigh

π
(iL − I∗L)atan [σ(iL − I∗L)]

}∣∣∣∣iL=iL(t)

iL=iL(t0)

(6.7)

Given K different operating conditions wk (k = 1, . . . , K), let
vL,k(t), iL,k(t), ΨL,k(t) and Ptot,k be the steady-state inductor volt-
age, current, flux linkage and power losses related to the k-th op-
erating condition, respectively. If vL,k and iL,k are measured in N
time instants tn (n = 1, . . . , N), the optimal coefficient vector x∗

can be obtained by solving the following nonlinear optimization
problem:

x∗ = arg min
x

K∑
k=1

N∑
n=1

[
Ψk(tn)− Ψ̂(iL,k(tn), Ptot,k)

]2

(6.8)

where Ψk(tn) = Ψk(t0) +
∫ tn
t0
vL,k(τ)dτ , Ψ̂(ik(tn), Ptot,k) is given

by Eq. (6.7), and the inductance parameters Lhigh, Llow, σ and
I∗L are given by Eq. (6.5). The power losses Ptot,k can be either
measured or estimated by using behavioral models described in
Chapter 5. Herein, total inductor power losses have been obtained
by summing the DC and AC loss contributions, estimated by
means of Eq.s (5.11) and (5.25), respectively.
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6.2.1 Model Implementation

Given a set of experimental measurements, the optimization prob-
lem (6.8) can be solved and the resulting optimal vector x∗ used
to compute the arctangent model parameters (6.5). Then, the in-
ductance L(iL, Ptot) can be evaluated for any value of iL and Ptot,
through Eq. (6.4). From Eq. (6.3), integrating numerically the
ratio v̂L,k(t)/L(̂iL,k(t), Ptot,k) over the time interval [t0, tn] provides
the inductor current value îL,k(tn) at the time instant tn, under
the k-th operating condition:

îL,k(tn) = îL,k(t0) +

∫ tn

t0

v̂L,k(t)

L(̂iL,k(t), Ptot,k)
dt (6.9)

The estimated initial inductor current îL,k(t0) has been assumed
equal to the corresponding experimental initial inductor current
iL,k(t0). The function v̂L,k(t) can be obtained through a piecewise-
affine interpolation of samples vL,k(tn). For the k-th operating con-

dition, the estimated current ripple can be obtained as ∆̂iLpp,k =
maxj îL,k(tj)−minj îL,k(tj) (for k = 1, . . . , K).

Eventually, the fitting accuracy of the proposed model can be
evaluated by means of three percent errors EΨ

k , EI
k and E∆

k , defined
as follows:

EΨ
k = 100

√√√√ 1

N

N∑
n=1

[
Ψk(tn)− Ψ̂(iL,k(tn), Ptot,k)

rΨ
k

]2

(6.10)

EI
k = 100

√√√√ 1

N

N∑
n=1

[
iL,k(tn)− îL,k(tn)

rIk

]2

(6.11)

E∆
k = 100

|∆iLpp,k − ∆̂iLpp,k|
∆iLpp,k

(6.12)

where
rΨ
k = max

n
Ψk(tn)−min

n
Ψk(tn) (6.13)

rIk = max
n

iL,k(tn)−min
n
iL,k(tn) (6.14)
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For each dataset, the errors (6.10)-(6.12) can be calculated over
the K operating conditions, and the relevant mean value Ē{Ψ,I,∆},
standard deviation σ{Ψ,I,∆} and maximum value E

{Ψ,I,∆}
M can be

subsequently evaluated to characterize the errors distribution.

6.3 Case Studies

The discussion is herein referred to commercial power inductors
with different ferrite materials and core types. In particular, two
Coilcraft FPIs have been considered: a 10µH shielded MSS1260-
103 (IUT #1) and a 10µH unshielded DO3316T-103 (IUT #2).
The main characteristics of these inductors are listed in Table 6.1.
The coefficients {b0, ..., b3} of the AC loss model (5.25) for such
inductors have been provided in Tables 5.12 and 5.18.

For each inductor, the experimental dataset including inductor
current iL,k(t), voltage vL,k(t) and power losses Ptot,k (k = 1, ..., K)
has been collected by means of the MADMIX system described in
Subsection 5.2.2. Two datasets have been constructed for IUT #1
and #2, labeled as S11 and S12 respectively, consisting of K = 880
different operating conditions, corresponding to all the combina-
tions of parameters fs, Vin, D and Iout listed in the upper part of
Table 6.2. For each condition, N = 200 samples of voltage and
current waveforms have been acquired per period, thus obtaining
values vL,k(tn) and iL,k(tn), with n = 1, . . . , N , and the total power
losses Ptot,k have been experimentally measured by the MADMIX
system. The experimental datasets covered the following ranges of

Table 6.1: Investigated inductors and their main characteristics

Part Number
Dimensions

[mm3]
L

[µH]
DCR
[mΩ]

Isat[A]
30%

drop

Irms[A]
40◦C

rise

MSS1260-103 12x12x6 10 24 7.40 4.00
DO3316T-103 13.2x9.9x6.4 10 34 3.80 3.90
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Table 6.2: Operating conditions used in datasets S11, S12, S21, S22.

Dataset S11 (IUT #1) S12 (IUT #2)

fs [kHz] {200, 300, 400, 500} {200, 300, 400, 500}
VIN [V] {6, 8, 10, 12} {6, 8, 10, 12}
D [−] {0.2, 0.35, 0.5, 0.65, 0.8} {0.2, 0.35, 0.5, 0.65, 0.8}

Iout [A]
{3, 3.5, 4, 4.5, 5, 5.5,

6, 6.5, 7, 7.5, 8}
{2, 2.25, 2.5, 2.75, 3, 3.25,

3.5, 3.75, 4, 4.25, 4.5}
Subset S21 (IUT #1) S22 (IUT #2)

fs [kHz] {200, 300} {200, 300}
VIN [V] {8, 12} {8, 12}
D [−] 0.5 0.5
Iout [A] {5.5, 6, 6.5, 7, 7.5, 8} {3.25, 3.5, 3.75, 4, 4.25, 4.5}

total power losses Ptot,k and peak-to-peak current ripple ∆iLpp,k:

- IUT #1: Ptot,k ∈ [0.18, 1.89]W, ∆iLpp,k ∈ [0.20, 6.61]A;

- IUT #2: Ptot,k ∈ [0.12, 1.52]W, ∆iLpp,k ∈ [0.23, 6.13]A.

Two subsets, labeled as S21 and S22, have been then extracted from
the original datasets S11 and S12, with the operating conditions
given by the K = 24 combinations of parameters fs, Vin, D and
Iout given in the lower part of Table 6.2. These combinations
involve the operating conditions with the largest average currents
and peak-to-peak current ripples.

The experimental data acquired by the MADMIX system have
also been used to evaluate the equivalent thermal resistance Rth

of the two inductors. The devices surface temperature has been
measured during the tests by using a TDK B57550G502F 5kΩ±1%
NTC thermistor. Fig. 6.3 shows the plots of experimental tem-
perature rise values T∆ = T − Ta as a function of the total power
losses Ptot (red circle markers), together with linear regression
curves (blue lines), whose slopes provide the values of 35°C/W and
43°C/W for the thermal resistances of MSS1260-103 and DO3316T-
103, respectively.
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Figure 6.3: Inductors temperature rise vs total power losses (red
circles) and relevant linear regression curve (blue line) for IUT #1
(a) and IUT #2 (b).

6.4 Modeling Results

In this Section, the FPIs models obtained with the proposed ap-
proach are presented and discussed. The problem (6.8) has been
solved on datasets S11 and S12 first (case a), and then on subsets
S21 and S22 (case b). In both cases, the error statistics (Ē{Ψ,I,∆},

σ{Ψ,I,∆} and E
{Ψ,I,∆}
M ) have been computed on complete datasets

S11 and S12. The results are shown in Table 6.3. It can be noticed
that the error increase for case b is negligible, even if only K = 24
operating conditions have been used to train the model. This is
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due to the fact that subsets S21 and S22 contain the operating con-
ditions with the largest average currents and peak-to-peak current
ripples, i.e. the conditions wherein the inductor current spans a
wider portion of the arctangent function. This suggests that it
is not necessary to employ operating conditions with low current
values to achieve a good model fitting. From a practical view-
point, this means that only a limited set of proper measurements
are enough to obtain an accurate model.

The resulting coefficient vectors x∗ for IUT #1 and #2 are
shown in Table 6.4. The arctangent parameters Lhigh, Llow, σ and
I∗L can be obtained by substituting x∗ and the measured power

Table 6.3: Statistics of the errors for all performed tests.

IUT #1 (MSS1260-103)

Dataset ĒΨ[%] σΨ[%] EΨ
M [%]

S11 (case a) 1.41 0.29 2.62
S21 (case b) 1.42 0.29 2.53
Dataset ĒI [%] σI [%] EI

M [%]
S11 (case a) 2.07 0.91 7.65
S21 (case b) 2.15 0.92 6.80
Dataset Ē∆[%] σ∆[%] E∆

M [%]
S11 (case a) 2.60 2.36 17.04
S21 (case b) 2.56 2.17 13.36

IUT #2 (DO3316T-103)

Dataset ĒΨ[%] σΨ[%] EΨ
M [%]

S12 (case a) 2.24 0.30 4.20
S22 (case b) 2.33 0.33 4.65
Dataset ĒI [%] σI [%] EI

M [%]
S12 (case a) 3.44 1.41 11.36
S22 (case b) 3.59 1.55 12.13
Dataset Ē∆[%] σ∆[%] E∆

M [%]
S12 (case a) 3.54 3.49 21.73
S22 (case b) 4.02 3.33 20.77
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losses Ptot,k (corresponding to wk) in Eq. (6.5). The resulting arc-
tangent functions for the two inductors are shown in Fig. 6.4, for
all the 880 operating conditions. The shape of the inductance
curve of the two inductors is quite different because of the differ-

Table 6.4: Identified coefficient vectors x∗

IUT x∗

#1 [10.48µH, 1.02µH, 1.54A−1, −1.52AW−1, 8.78A]
#2 [8.93µH, 1.73µH, 6.94A−1, −1.02AW−1, 4.48A]
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Figure 6.4: Family of arctangents for IUT #1 (a) and #2 (b). The
arrows indicate the increasing direction of Ptot.
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ent core. It is worth remarking that the Lnom value declared in
the components datasheet is usually subjected to about 10%-20%
uncertainty. For instance, Fig. 6.4(b) points out that the real in-
ductance of DO3316T-103 inductor for low currents is about 9µH,
whereas the nominal inductance is 10µH.

Fig. 6.5 shows the experimental flux linkage Ψ versus the
current iL (green dashed lines), obtained in the test conditions
summarized in Table 6.5 for the two investigated FPIs. Such tests
include low and high switching frequency values, as well as low and
high output current values. The plots also show the analytical
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Figure 6.5: Experimental flux linkage Ψ vs iL (green dashed lines)
and analytical flux linkage Ψ̂ vs iL (red lines) for IUT #1 (a) and
IUT #2 (b).
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Table 6.5: Test conditions: Vin = 12 V, D = 0.5

IUT #1 (MSS1260-103) IUT #2 (DO3316T-103)

Test
#

fs
[kHz]

Iout
[A]

Test
#

fs
[kHz]

Iout
[A]

1 200 3 5 200 2
2 200 7 6 200 4
3 500 3 7 500 2
4 500 7 8 500 4

flux linkage Ψ̂ versus the current iL (red lines), obtained by using
Eq. (6.7) and the coefficient vectors x∗ given in Table 6.4. For
both experimental and analytical flux linkage, it has been assumed
Ψ(t0) = 0, since the experimental measurements of the flux linkage
have not been carried out, and only inductor voltage and current
measurements have been instead performed. The analytical flux
linkage Ψ̂ fits very well the experimental one for all the analyzed
tests. It is worth noting that the experimental hysteresis loops
are larger for IUT #2 than for IUT #1: this partially justifies the
fact that the model accuracy is lower for IUT #2 than for IUT
#1 (see Table 6.3).

The errors EΨ
k versus power losses Ptot are shown in Fig. 6.6,

for the two analyzed inductors. The results highlight that the
proposed model provides a good fitting accuracy over a wide range
of operating conditions, even by determining the model parameters
(6.5) over a limited set of conditions with large average currents
and peak-to-peak current ripples.

6.4.1 SMPS Circuit Simulations

The results of circuit simulations obtained in PSIM by using the
proposed model have been eventually compared with experimental
measurements, in order to validate the accuracy of the inductance
modeling approach. The open-loop buck topology has been imple-
mented in PSIM. At operating condition wk, the zero-order-hold
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Figure 6.6: Error EΨ
k vs power losses Ptot obtained with the power-

loss-dependent inductance model for IUT #1 (a) and IUT #2 (b).

discretization of Eq. (6.9) yields

îL,k(tn+1) = îL,k(tn) +
(tn+1 − tn)v̂L,k(tn)

L(̂iL,k(tn), Ptot,k)
(6.15)

In particular, the inductor has been implemented in PSIM as a
current-controlled current-source, whose driving signal is the result
of the right-hand-side part of Eq. (6.15), run-time computed by
means of a C-block. The inputs to the C-block are:

- the SMPS operating condition wk = [Vin, Iout, fs, D];

- the optimal coefficient vector x∗ (listed in Table 6.4);
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- the coefficients Rdc and {b0, ..., b3} (listed in Tables 6.1, 5.12
and 5.18);

- the thermal resistance Rth (provided in Section 6.3);

- the samples of the simulated inductor voltage v̂L,k(tn) and
current îL,k(tn).

The C-block estimates the inductor power losses P̂tot,k through
Eq.s (5.11) and (5.25), which is used to compute I∗L through Eq.
(6.5). The inductance is evaluated by means of Eq. (6.4) for
îL,k(tn) and P̂tot,k. Then, the C-block generates the inductor cur-
rent sample îL,k(tn+1) based on Eq. (6.15). Moreover, the tem-

perature rise T̂∆,k is estimated by means of Eq. (6.1), using P̂tot,k
and Rth.

The tests conditions summarized in Table 6.5 have been adopted
in PSIM. The SMPS simulations have been performed with a con-
stant sampling time of 10 ns for both IUT #1 and #2, and vali-
dated by comparison with the experimental inductor current wave-
forms measured by the MADMIX system. For each test, Table 6.6
summarizes the corresponding measured and estimated inductor
power losses and temperature rise, and the errors EI

k , E∆
k , EP

k ,
ET
k , where EP

k and ET
k are the power losses and temperature rise

errors, defined as follows:

EP
k = 100

|P̂tot,k − Ptot,k|
Ptot,k

(6.16)

ET
k = 100

|T̂∆,k − T∆,k|
T∆,k

(6.17)

For the given operating conditions, the adopted loss model is
able to estimate P̂tot,k with the errors EP lower than 1.1% for IUT
#1 and 6% for IUT #2. Also the experimental and estimated
temperature rise values are in good agreement, with errors ET

lower than about 11% and 14%, for IUT #1 and #2 respectively.
For both inductors, the resulting errors on current EI and peak-to-
peak ripple E∆ are generally lower than 5% and 10%, respectively.
A comparison between the measured inductor current waveforms
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Table 6.6: PSIM simulations vs experimental data

IUT #1 (MSS1260-103)

Test
#

Ptot
[W ]

P̂tot
[W ]

T∆

[°C]
T̂∆

[°C]

EP

[%]
ET

[%]
EI

[%]
E∆

[%]

1 0.293 0.296 9.3 10.3 1.1 10.8 2.6 2.5
2 1.103 1.091 38.4 38.2 1.1 0.5 2.9 8.2
3 0.214 0.215 7.4 7.5 0.3 1.4 2.4 0.2
4 1.033 1.031 36.1 36.1 0.3 ∼0 3.1 1.6

IUT #2 (DO3316T-103)

Test
#

Ptot
[W ]

P̂tot
[W ]

T∆

[°C]
T̂∆

[°C]

EP

[%]
ET

[%]
EI

[%]
E∆

[%]

5 0.349 0.341 13.2 14.9 2.1 12.9 3.2 0.4
6 0.920 0.975 37.8 42.5 6.0 12.4 4.6 3.7
7 0.188 0.185 7.1 8.1 1.7 14.1 3.2 5.0
8 0.534 0.527 22.9 23.0 1.3 0.4 3.8 3.4

(green) and PSIM simulations (red) is shown in the left panels of
Figs. 6.7 and 6.8. In the right panels of the same figures, the induc-
tance versus current curves (gray) and the curve portions covered
by the simulations (red) are also plotted. It is worth remarking
that operating conditions leading to an inductance decrease higher
than 50% (e.g., the case shown in Fig. 6.7(d)) have been consid-
ered to highlight the reliability of the modeling approach. In real-
world SPMS applications, such extreme conditions are avoided for
safety and efficiency reasons.

The main outcome of the research activity presented in this
Chapter resulted in the publication of the scientific paper:

� A. Oliveri, G. Di Capua, K. Stoyka, M. Lodi, M. Storace,
N. Femia, ”A Power-Loss-Dependent Inductance Model for
Ferrite-Core Power Inductors in Switch-Mode Power Sup-
plies”, IEEE Transactions on Circuits and Systems I: Regu-
lar Papers, doi: 10.1109/TCSI.2018.2889856.
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Figure 6.7: MSS1260-103 inductor. Left: experimental inductor
current waveforms (green) vs PSIM simulations (red). Right: sim-
ulated inductance vs current curves (gray) and regions covered by
current ripple (red).
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Figure 6.8: DO3316T-103 inductor. Left: experimental inductor
current waveforms (green) vs PSIM simulations (red). Right: sim-
ulated inductance vs current curves (gray) and regions covered by
current ripple (red).



Conclusions and Future
Developments

In this dissertation, a variety of numerical techniques and ad-
vanced algorithms has been investigated and discussed, with the
purpose of bringing innovation in the design of power supply sys-
tems, which are pervasive in all the spheres of everyday life. Thanks
to the use of such innovative techniques, it is possible to reduce
the size of the Switch-Mode Power Supplies (SMPSs) exploiting a
smart use of Ferrite Power Inductors (FPIs) in moderate and con-
trolled saturation. In particular, this dissertation has discussed
innovative solutions to the problems of the high-power-density
SMPS design, including:

a) development of numerical techniques and intelligent algo-
rithms for generation and discovery of behavioral models for
saturation and power losses of FPIs used in SMPS applica-
tions;

b) development of enhanced numerical algorithms, using the
above models, able to reliably predict the FPIs behavior un-
der given SMPS conditions;

c) development of enhanced numerical algorithms able to iden-
tify feasible inductor solutions, possibly operating in satu-
ration, allowing to reduce the inductor size and increase the
converter power density.

The starting point of this dissertation has been to extend the
results of the prior studies which introduced a behavioral arctangent-
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based model of the inductance versus current (L vs iL) charac-
teristic for FPIs and a numerical algorithm for inductor current
reconstruction in Continuous Conduction Mode (CCM). In partic-
ular, the validity of such model and algorithm has been extended
to High Current Ripple (HCR) inductor operation, which may in-
volve negative inductor currents in synchronous-rectification con-
verter topologies and Discontinuous Conduction Mode (DCM) in
diode-rectification topologies. The developed generalized satura-
tion model and numerical algorithm are able to reliably recon-
struct the inductor saturation characteristic and resulting current
wave-shape in whatever operating condition, including saturation,
and can be applied to different conduction modes and converter
topologies. The saturation arctangent model, valid for FPIs with a
fixed air-gap, has also been extended to a double-arctangent model,
which accurately describes the L vs iL characteristic of FPIs with
a stepped air-gap. The inductor current reconstruction algorithm
has been adapted to such extended model, to reliably predict the
magnitude of inductor current ripple of stepped air-gap inductors.

In order to obtain realistic L vs iL data needed for a reliable
inductor current reconstruction in saturation, the Evolutionary
Algorithm-based approach for saturation curves identification has
been proposed in this dissertation, starting from the experimental
measurements of inductor current waveforms and operating tem-
peratures under real SMPS conditions. An alternative approach
has also been presented, based on the local and global approx-
imations of the inductor saturation characteristic, obtained un-
der small-amplitude and large-amplitude current ripple conditions,
respectively. For both approaches, the identified temperature-
dependent L vs iL curves allow achieving much more realistic pre-
dictions of the inductor current ripple compared to the predictions
obtained with the manufacturers’ L vs iL data.

Subsequently, a Sustainable Saturation Operation (SSO) of
FPIs has been investigated. The SSO-analysis algorithm has been
developed, which identifies SSO-compliant FPIs with minimum
size and volume, given the SMPS specifications about the allowed
power losses, temperature rise and peak-to-peak current ripple of
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the inductor. The experimental results have proved that SSO-
compliant inductors allow to increase the SMPS power density
while preserving the overall converter efficiency.

Eventually, behavioral models for the total power losses and
AC power losses of FPIs have been developed by means of a Ge-
netic Programming (GP) algorithm, starting from the experimen-
tal inductor power loss measurements performed on a wide range
of SMPS operating conditions. The identified GP-based models
provide more accurate power loss predictions, especially in satu-
ration, compared to the classical formulas adopted by manufac-
turers. Based on the identified power loss models, a novel power-
loss-dependent saturation model has been proposed, providing the
inductance as an arctangent function of the current, parameter-
ized with respect to the inductor total power losses. This way, the
saturation model does not depend on the inductor temperature,
which cannot be considered as a real model input but rather an
output, representing the response of the device to given ambient
temperature and total power losses.

The developed behavioral models and numerical algorithms
have been successfully applied to several commercial FPIs, char-
acterized by different nominal inductances and dimensions, as well
as different magnetic materials and core types. The future devel-
opments of this dissertation will address:

a) investigation and use of numerical techniques for on-line pa-
rameter tuning of the behavioral saturation and loss models,
in order to take into account the inductor ageing;

b) investigation of inductor saturation impact on current lim-
iting and control techniques;

c) development of behavioral models and numerical algorithms
for the analysis of power inductors realized with different
magnetic core materials (e.g., powdered iron, metal alloys)
and integrated inductors.





Appendix A

Classical Core Loss Models

A.1 Steinmetz Equation versus

Manufacturer’s Core Loss

Formula

According to the SE, average core loss is given by (5.5). Accord-
ing to the manufacturer’s core loss formula, average core loss can
be expressed as given in (5.6). In order to find the equivalence
relations between the Steinmetz coefficients {Cm, α, β} and the
manufacturer’s coefficients {K1,K2,X,Y }, (A.1) and (A.2) can be
used:

vL(t) = L[iL(t)]
diL(t)

dt
(A.1)

vL(t) = n
dΦ(t)

dt
= nAe

dB(t)

dt
(A.2)

where n is the inductor winding turn number and Φ is the magnetic
flux linked to a single winding turn. From the equality of (A.1)
and (A.2), it follows:

∫ DTs

0

L[iL(t)]
diL(t)

dt
dt =

∫ DTs

0

nAe
dB(t)

dt
dt

⇒
∫ IL,max

IL,min

L(iL)diL =

∫ Bmax

Bmin

nAedB

(A.3)



188 Appendix A. Classical Core Loss Models

where IL,min and IL,max are the minimum and the maximum values
of the inductor current waveform iL(t), whereas Bmin and Bmax are
the minimum and maximum values of the magnetic flux density
waveform B(t). In weak saturation, L(iL) = Lnom. This condi-
tion is normally adopted for core loss modeling by manufacturers.
Thus, (A.3) implies (A.4):

Lnom∆iLpp = 2nAeBac

⇒ Bac =
Lnom
2nAe

∆iLpp = K2∆iLpp
(A.4)

From (5.5), (5.6) and (A.4), the following equivalences can be
eventually derived:

K1 = CmAele, K2 =
Lnom
2nAe

, X = α, Y = β (A.5)

A.1.1 Manufacturer’s Formula Coefficients
Identification

The coefficients of the manufacturer’s core loss formula (5.6) have
been herein estimated by means of the NLLS curve fitting of the
experimental AC power loss in weak-saturation region, by means
of the AC loss model (A.6):

Pac = Rac · I2
ac,rms +K · fXs ∆iYLpp (A.6)

where X, Y and K = K1K
Y
2 have been adopted as unknowns

during the coefficients identification procedure. The AC winding
loss, represented by the first additive term in formula (A.6), has
been evaluated by using measured Rdc and Iac,rms values. The
values of the coefficients {K,X, Y }, obtained for the inductors
investigated in this work, are provided in Table A.1. These same
coefficients have also been adopted to evaluate the i -GSE-based
core loss of the analyzed devices, as discussed in the following
Subsection.
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Table A.1: Identified core loss coefficients for analyzed inductors

Part Number K X Y

MSS7341-183 1.14E-03 0.95 2.23
MSS7341-153 1.28E-03 0.93 2.20
MSS1260-103 8.88E-04 0.77 2.02
MSS1260-473 2.19E-03 0.87 2.11
MSS1038-273 3.50E-04 1.17 2.23
DO3316T-103 6.27E-03 0.50 1.91

A.2 Improved Generalized Steinmetz

Equation (i -GSE)

According to the i -GSE [51], the average core loss is given as:

Pcore,iGSE =
1

Ts

∫ Ts

0

ki

∣∣∣∣dBdt
∣∣∣∣α |∆B|β−α (Aele) dt (A.7)

where ∆B = 2Bac and

ki =
Cm

(2π)α−1 ∫ 2π

0
|cosθ|α2β−αdθ

(A.8)

It can be shown that the integral term in (A.8) can be approxi-
mated as: ∫ 2π

0

|cosθ|αdθ ∼= 4

(
0.2761 +

1.7061

α + 1.354

)
(A.9)

The i -GSE can be re-formulated in terms of the applied inductor
voltage, duty-cycle, frequency and manufacturer’s core loss coeffi-
cients {K1, K2, X, Y }. From (A.2), the following relations can be
obtained:

∆B =

∫ DTs

0

vL(t)

nAe
dt =

VLr
nAe

DTs =
2K2

Lnom
VLrDTs (A.10)
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dB

dt
=
vL (t)

nAe
=

2K2

Lnom
vL (t) (A.11)

where VLr is the constant voltage applied to the inductor during
the rise-time interval of the inductor current. Hence, from (A.7),
(A.10) and (A.11), we have:

Pcore,iGSE =
kv
Ts

∫ Ts

0

∣∣∣∣2K2vL (t)

Lnom

∣∣∣∣X ∣∣∣∣2K2VLrDTs
Lnom

∣∣∣∣Y−X dt (A.12)

where:

kv = ki (Aele) =
K1

(2π)X−1 ∫ 2π

0
|cosθ|X2Y−Xdθ

(A.13)

By means of algebra, we obtain:

Pcore,iGSE = fskv

(
2K2

Lnom

)Y
(VLrDTs)

Y−X
∫ Ts

0

|vL (t)|Xdt=

=kv

(
2K2

Lnom

)Y(
VLrD

fs

)Y−X[
D |VLr|X+(1−D) |VLf |X

] (A.14)

where VLf is the constant voltages applied to the inductor dur-
ing the fall-time interval of the inductor current. In such re-
formulation, the i -GSE jointly depends on the applied inductor
voltages, duty-cycle and frequency, and manufacturer’s core loss
coefficients {K1,K2,X,Y }.

If the coefficients {K,X,Y } are instead available (e.g., from
the identification procedure described in the previous Section),
the i -GSE can be alternatively formulated as follows:

Pcore,iGSE = fsk
∗
v

(
2

Lnom

)Y
(VLrDTs)

Y−X
∫ Ts

0

|vL (t)|Xdt=

=k∗v

(
2

Lnom

)Y(
VLrD

fs

)Y−X[
D |VLr|X+(1−D) |VLf |X

] (A.15)

where:

k∗v = kv ·KY
2 =

K

(2π)X−1 ∫ 2π

0
|cosθ|X2Y−Xdθ

(A.16)



Appendix B

Multi-Objective
Optimization

This Appendix provides a theoretical description of the multi-
objective optimization technique adopted in this dissertation for
the inductor power loss behavioral modeling. Said technique is out
of the scope of this study and only its main theoretical aspects are
herein discussed for the sake of completeness and Reader’s conve-
nience.

B.1 Multi-Objective Optimization

Problem (MOOP)

A Multi-Objective Optimization Problem (MOOP) has a number
of objective functions which are to be maximized or minimized.
Moreover, the MOOP usually contains a number of constraints,
such as equality and inequality constraints and variable bounds,
which must be satisfied by any feasible solution [73]. In general,
the multi-objective optimization problem can be formulated as
given in (B.1).
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Minimize/Maximize fm(x), m = 1, 2, ...,M ;

subject to


gj(x) ≥ 0, j = 1, 2, ..., J ;

hk(x)= 0, k = 1, 2, ..., K;

xLBi ≤ xi ≤ xUBi , i = 1, 2, ..., n.

(B.1)

A solution x is a vector of n decision variables: x = [x1, x2, ..., xn]T .
The last set of constraints in (B.1) are called variable bounds,
restricting each decision variable xi value to be comprised between
a Lower Bound (LB), namely xLBi , and an Upper Bound (UB),
namely xUBi . These bounds delimit a decision variable space D, or
simply the decision space. If any solution x satisfies all constraints
and variable bounds, it is known as a feasible solution. The set
of all feasible solutions is called the feasible region S, sometimes
referred to as simply the search space. The formulation (B.1)
considers M objective functions which can be either minimized
or maximized: f(x) = [f1(x), f2(x), ..., fM(x)]T . In the context
of optimization, a maximization problem can be converted into a
minimization one by multiplying the objective function by -1.

B.2 Pareto-Optimal Front

Let us consider a MOOP with two objectives which are to be
minimized (Objective 1 and Objective 2). Any two solutions can
be taken from the feasible objective space and compared. For some
pairs of solutions, it can be observed that one solution is better
than the other in both objective. For certain other pairs, it can be
observed that one solution is better than the other in one objective,
but is worse in the second objective. Hence, none of these two
solutions can be said to outperform the other with respect to both
objectives. When this happens between two solutions, they are
called non-dominated solutions. Fig. B.1 is drawn with many
such solutions and four of these solutions (marked A to D) are
highlighted. For clarity, all the non-dominated solutions are joined
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Figure B.1: Pareto-optimal front.

with a curve in the figure. All the solutions lying on this curve
are called Pareto-optimal solutions, while the curve itself is known
as a Pareto-optimal front. For problems where all objectives are
to be minimized, this front lies in the bottom-left corner of the
search space.

It is worth noting that the feasible objective space not only
contains Pareto-optimal solutions, but also solutions that are not
optimal. For instance, comparing solution E of Fig. B.1 with solu-
tion C, it can be observed that the latter outperforms the solution
E in both objectives. When this happens, solution E is said to be
dominated by solution C. There exist many such solutions in the
search space, which can be dominated by at least one solution from
the Pareto-optimal set. On the other hand, comparing solutions
D and E, it can be observed that solution D is better in the second
objective but is worse in the first objective compared to solution
E. Thus, in the absence of solutions A, B, C, and any other non-
dominated solution, one would be tempted to put solution E in
the same group with solution D. However, the presence of solution
C establishes the fact that solutions C and D are non-dominated
with respect to each other, while solution E is dominated solution.
Thus, the non-dominated set must be collectively compared with
any solution x for establishing whether the latter solution belongs
to the non-dominated set or not. Specifically, the following two
conditions must be true for a non-dominated set P1:
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1. Any two solutions of P1 must be non-dominated with respect
to each other.

2. Any solution not belonging to P1 is dominated by at least
one member of P1.

So far, for simplicity, a two-objective optimization problem has
been considered (Objective 1 and Objective 2 to be minimized). In
the case of MOOP the concept of domination can be expressed as
follows: a solution x(1) is said to dominate the other solution x(2)

if both conditions 1 and 2 are true:

1. The solution x(1) is no worse than x(2) in all objectives.

2. The solution x(1) is strictly better than x(2) in at least one
objective.

In the presence of multiple Pareto-optimal solutions, it is dif-
ficult to prefer one solution over the other without any further
information about the problem. Accordingly, all Pareto-optimal
solutions are equally important to the user. Hence it is important
to find as many Pareto-optimal solutions as possible. Thus, it is
possible to define two goals in a multi-objective optimization:

1. To find a set of solutions as close as possible to the Pareto-
optimal front.

2. To find a set of solutions as diverse as possible. In addition
to being converged close to the Pareto-optimal front, they
must also be sparsely spaced in the Pareto-optimal region.
Only with a diverse set of solutions, can one be assured of
having a good set of trade-off solutions among objectives.

B.3 Non-Dominated Sorting of a

Population

B.3.1 Finding a Non-Dominated Set

In the context of the multi-objective optimization, many approaches
have been suggested for finding the non-dominated set from a given
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population of solutions. Although many approaches are possible,
they would usually have different computational complexities. The
most computationally efficient method is presented next.

As a first step, the population is sorted according to the de-
scending order of importance to the first objective function value.
Thereafter, the population is recursively halved as top (T ) and
bottom (B) subpopulations. Knowing that the top-half of the
population is better in terms of the first objective function, the
bottom-half is then checked for domination with the top-half. The
solutions of B that are not dominated by any member of T are
combined with members of T to form a merged population. The
merging and the domination check starts with the innermost case
(when there is only one member left in either T or B in recursive
divisions of the population) and then proceeds in the bottom-up
fashion. This approach can be divided in two steps:

1. The initial population is sorted according to the descend-
ing order of importance in the first objective function and
renamed as P of size N .

2. Recursion function: if the size of P is one, the function re-
turns P as the output (it is not possible to halve it anymore
in T and B). Otherwise, the function halves the population
in T and B parts (where T is better than B with respect to
the first objective function, thanks to the sorting performed
at step 1) and recalls the recursive function applied to T
and B population parts. As a result, only non-dominated
solutions of T and B are returned as the outputs of the re-
cursive function. Now, if the i -th non-dominated solution of
B is not dominated by any non dominated-solution of T, the
function creates a merged set M = T ∪ {i}. This check is
then repeated for each non-dominated solution of B. In the
end, the function returns the merged set M as its output.

B.3.2 Non-Dominated Sorting

Most evolutionary multi-objective optimization algorithms require
us to find only the best non-dominated front in a population.



196 Appendix B. Multi-Objective Optimization

These algorithms classify the population into two sets — the non-
dominated set and the remaining dominated set. However, there
exist some algorithms which require the entire population to be
classified into various non-domination levels. In such algorithms,
the population needs to be sorted according to an ascending level
of non-domination. The best non-dominated solutions are called
non-dominated solutions of Level 1. In order to find solutions
for the next level of non-domination, there is a simple procedure
which is usually followed. Once the best non-dominated set is iden-
tified, it is temporarily disregarded from the population. The non-
dominated solutions of the remaining population are then found
and called non-dominated solutions of Level 2. In order to find the
non-dominated solutions of Level 3, all non-dominated solutions
of Level 1 and 2 are disregarded and new non-dominated solu-
tions are found. This procedure is continued until all population
members are classified into a non-domination level.

In order to illustrate a non-dominated sorting of a population,
the case of two objective minimization problem will be referred
to once again (see Fig. B.1). So far only Pareto-optimal front
has been considered (that drawn in the figure), which contains
only the best non-dominated solutions, those of Level 1 of the
non-dominated sorting. In Fig. B.2, together with the Level 1
solutions, the other non-domination levels are shown (Level 2 and
Level 3).
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Figure B.2: Non-dominated sorting of a population.
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B.4 Elitist Non-Dominated Sorting

Genetic Algorithm

An elitist Non-Dominated Sorting Genetic Algorithm (or NSGA-
II) is the most popular MOO algorithm proposed by Kalyanmoy
Deb in 2000. In NSGA-II, initially, a random population P0 of
size N is created. The population is sorted into different non-
domination levels. Each solution is assigned a fitness equal to
its non-domination rank (non-domination level), thus assuming
minimization of the fitness function. Binary tournament selec-
tion, recombination and mutation operators are used to create an
offspring population Q0 of size N . In particular, a crowded tour-
nament selection operator is adopted to determine the best indi-
viduals to become parents for offspring generation. Such operator
compares two randomly selected solutions, i and j, and returns
the winner of the tournament on the basis of two attributes, such
as a non-domination rank (r) and a local crowding distance (d,
defined next) of a solution in the population. A solution i wins a
tournament with a solution j if any of the following conditions is
true:

1. Solution i has a better rank, that is, ri < rj.

2. The two solutions have the same rank but solution i has a
better crowding distance than solution j, that is, ri = rj and
di > dj.

The crowding distance di of a solution i is a measure of the search
space around i which is not occupied by any other solution in the
population. In particular, di is evaluated as the average distance
of two neighboring solutions on the either side of solution i along
each of the objectives. In Fig. B.3, the crowding distance of the
i -th solution is the average side-length of the cuboid (shown by a
dashed box) formed by using the nearest neighbors as vertices. As
to the boundary solutions at the front extremes, their crowding
distance is assumed to be infinite.
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Figure B.3: Crowding distance for i -th solution.

B.4.1 NSGA-II Procedure

At each t-th generation of NSGA-II, once the offspring population
Qt is created by using the parent population Pt (by means of selec-
tion, crossover and mutation operators described earlier), the two
populations are combined together to form Rt of size 2N . Then,
a non-dominated sorting is used to classify the entire population
Rt. Once the non-dominated sorting is over, the new popula-
tion is filled by solutions of different non-dominated fronts, one
at a time. The filling starts with the best non-dominated front
and continues with solutions of the second non-dominated front,
followed by the third non-dominated front, and so on. Since the
overall population size of Rt is 2N , not all fronts can be accommo-
dated in N slots available in the new population. All fronts which
could not be accommodated are simply deleted. When the last
allowed front is being considered, there may exist more solutions
in the last front than the remaining slots in the new population.
This scenario is illustrated in Fig. B.4. Instead of arbitrarily dis-
carding some members from the last front, the strategy is usually
adopted to choose those members of the last front which reside
in the least crowded region in that front. Such strategy does not
affect the proceedings of the algorithms much in the early stages
of evolution. This is because, early on, there exist many fronts in
the combined population. It is likely that solutions of many good
non-dominated fronts are already included in the new population,



B.4. Elitist Non-Dominated Sorting Genetic Algorithm 199

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Level n 

Rejected 

Non-dominated 

sorting 

Crowding distance 

sorting 

Level 1 

Level 2 
tP

1tP+

tQ

tR

Figure B.4: Schematic of the NSGA-II procedure [73].

before they add up to N . It then hardly matters which solution
is included to fill up the population. However, during the latter
stages of the evolution, it is likely that most solutions in the pop-
ulation lie in the best non-dominated front. It is also likely that
in the combined population Rt of size N , the number of solutions
in the first non-dominated front exceeds N . The above algorithm
then ensures that a diverse set of solutions will be chosen from this
set. When the entire population converges to the Pareto-optimal
front, the continuation of this algorithm will ensure a better spread
among the solutions.
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