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Abbreviations: ALT: Alanine aminotransferase (ALT); ANOVA: analysis of variance; AST: Aspartate 

aminotransferase; BMI: body mass index; CAP: Continuous Attenuation Parameter; GC-MS: gas 

chromatography-mass spectrometry; GGT: Gamma-glutamyl transferase (GGT); GLP-1r: receptor of 

Glucagon Like Peptide-1; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; HDL: High Density 

Lipoprotein (HDL); HOMA: homeostasis model of assessment; NAFL: non-alcoholic fatty liver; NAFLD: 

non-alcoholic fatty liver disease; NASH: non-alcoholic steato-hepatitis; PLS-DA: partial least square 

discriminantt analysis; ROS: Reactive Oxygen Species; TCA: tricarboxylic acid; VIP: variable importance in 

projection. 
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ABSTRACT 

Introduction: Non-Alcoholic Fatty Liver Disease encompasses a spectrum of diseases ranging from simple 

steatosis to steatohepatitis (or NASH), up to cirrhosis and hepatocellular carcinoma(HCC). The challenge is 

to recognize the more severe and/or progressive pathology. A reliable non-invasive method does not exist. 

Untargeted metabolomics is a novel method to discover biomarkers and give insights on diseases 

pathophysiology. Objectives: we applied metabolomics to understand if simple steatosis, steatohepatitis and 

cirrhosis in NAFLD patients have peculiar metabolites profiles that can differentiate them among each-others 

and from controls. Methods: Metabolomics signatures were obtained from 307 subjects from two separated 

enrollments. The first collected samples from 69 controls and 144 patients (78 steatosis, 23 NASH, 15 NASH-

cirrhosis, 8 HCV-cirrhosis, 20 cryptogenic cirrhosis). The second, used as validation-set, enrolled 44 controls 

and 50 patients (34 steatosis, 10 NASH and 6 NASH-cirrhosis). The “Partial-Least-Square Discriminant-

Analysis” (PLS-DA) was used to reveal class separation in metabolomics profiles between patients and 

controls and among each class of patients, and to reveal the metabolites contributing to class differentiation. 

Results: Several metabolites were selected as relevant, in particular: Glycocholic acid, Taurocholic acid, 

Phenylalanine, branched-chain amino acids increased at the increase of the severity of the disease from 

steatosis to NASH, NASH-cirrhosis, while glutathione decreased (p<0.001 for each). Moreover, an ensemble 

machine learning (EML) model was built using 10 different classification models. EML showed 

accuracy>80% in NAFLD evolution steps prediction. Conclusions: Metabolomics profiles of NAFLD patients 

could be a useful tool to non-invasively diagnose NAFLD and discriminate among the various stages of the 

disease, giving insights into its pathophysiology. 
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INTRODUCTION 

Non-Alcoholic Fatty Liver Disease (NAFLD) is becoming an increasingly frequent finding in Hepatology 

ambulatories and clinics in the last decade. This condition is defined by the presence of any significant (>5% 

of hepatocytes) amount of fat accumulation in the liver in the absence of an "unsafe" quantity of alcohol 

consumption and any other cause of liver diseases(1). This term includes at least two different clinical entities: 

a form that represents only the accumulation of fat in the liver (also named steatosis or Non-Alcoholic Fatty 

Liver - NAFL), and the Non-Alcoholic Steato-Hepatitis (NASH) which is characterized by steatosis along 

with necroinflammation and fibrosis. This latter entity is considered a "progressive" form that has histological 

features that make it hardly distinguishable from alcoholic liver disease. Accordingly, liver histology is 

characterized by the presence of hepatocytes ballooning, lobular inflammation, perisinusoidal and perivenular 

fibrosis(2, 3).  Even if these two entities always go under the same definition of NAFLD, they don't share the 

same natural history: the first being a “benign” presentation with no (or very rare) progression, the second 

being responsible of liver cirrhosis, Hepatocellular Carcinoma (HCC) and liver-related deaths(4). 

Nevertheless, these two conditions seem to share the same risk factors(5). NAFLD is a unique "challenge" for 

the hepatologists who are called to discriminate between patients with a non-progressive disease (namely 

“good storers”) and potentially progressive ones (“bad storers”)(6). Moreover, due to the to changes in dietary 

habits and increased sedentary lifestyle, has seen a worldwide increment in the last years, making it one of the 

most frequent liver diseases in the world(7). It is generally considered a “benign disease” with low rates of 

progression to fibrosis, cirrhosis and HCC(4). Nevertheless, due to the high number of affected patients, the 

prevalence of related cirrhosis increased overtime, and actually it represents the third cause of liver 

transplantation in the USA(8). Finally, even if the incidence of HCC in NAFLD patients is lower than that in 

HCV/HBV cirrhotic patients, the absolute burden of NASH-related HCC is higher, due to the higher number 

of patients with NAFLD in respect to HCV infected ones(9). It is very likely that the importance of this disease 

will continue to increase in the future, when the new therapies and prevention programs for hepatitis C and B 

are further reducing the size of viral infections of the liver. For these reasons, it is very important to recognize 

the mechanisms underlying its onset and progression in the liver. Even if many insights on this topic were 

made in the last years, various aspects of the pathophysiological mechanisms underlying this disease remain 

to be explored. 
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In this setting, it would be very useful to individuate one, or more, specific biomarkers, to differentiate NAFLD 

patients from general population and, between NAFLD presentations, simple steatosis (NAFL) from 

steatohepatitis (NASH) and, NASH related cirrhosis (NASH-Cirrhosis). 

Metabolomics technique has the advantage to evaluate more accurately the “phenotype” of a disease, in respect 

to genes, transcripts and proteins, which very likely undergo to epigenetic, transcriptional and pre- and post- 

translational modifications (10). 

In the field of NAFLD some studies on humans, have recently sketched partial metabolomics profiles of such 

disease mostly on lipidomics, or targeted metabolomics profiles(11-16). For this reason, it is of high interest 

to further evaluate the plasma metabolomics profile of a cohort of biopsy proven NAFLD patients in order to 

find one, or more, specific biomarkers capable to differentiate them from healthy controls and, between 

NAFLD patients, to discriminate progressive forms (NASH), and eventually NAFLD-cirrhosis, from non-

progressive liver steatosis (NAFL), with the mean of untargeted metabolomics. Finally, in this study we have 

compared the untargeted metabolomics profiles of three different kind of cirrhosis (cryptogenic, NASH-related 

and HCV-related), in order to find any measurable difference in the metabolomic profile of such diseases. 

Materials and Methods 

Population and study design  

Two separate enrollments were performed, one to build the classification models and one to test them. The 

first was a cohort of biopsy proven NAFLD patients and sex- and age-matched controls. One hundred and 

forty-four patients, and 69 controls, were enrolled and stratified for age, sex and BMI. NAFLD patients were 

divided on the basis of the histological presence of steatosis or steatohepatitis diagnosed by the Kleiner and 

Brunt criteria(3, 17). Patients were divided in three groups: Non-alcoholic fatty liver (NAFL, or Simple 

steatosis) n: 78; Non-alcoholic Steatohepatitis (NASH) n:23; Non-alcoholic steatohepatitis associated 

Cirrhosis (NASH-Cirrhosis) n:43. Controls were enrolled from a cohort of age and sex-matched healthy 

subjects (without any evidence of Metabolic Syndrome, diabetes and/or NAFLD) afferent to the transfusion 

center of the University of Salerno. Among the NASH-Cirrhosis patients, 8 had advanced hepatic disease 

related to hepatitis C virus (HCV) and 20 had “cryptogenic” cirrhosis (defined as patients without any medical 

history of the NAFLD associated presentations such as Metabolic Syndrome, Type 2 diabetes mellitus and 
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obesity)(18). These patients were also enrolled and used to compare the several cirrhosis types. Second cohort 

was composed from 94 subjects (44 CTRL, 34 NAFL, 10 NASH, 6 NASH-cirrhosis). This second, 

independent enrollment followed the same criteria and inclusion/exclusion criteria of the first enrollment. 

Supplementary Figure S1 reports a schematic representation of the study flow-chart. Data analyst researchers 

were single blinded about the NAFLD related diagnosis of the second enrollment subjects. 

Of every patient were recorded: clinical history with alcohol consumption and smoking habits registration, 

physical examination with waist circumference and body mass index (BMI) evaluation, blood glucose and 

insulin, HOMA score, total and fractioned cholesterol, triglycerides, alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), ferritin, blood count, metabolic syndrome 

evaluation by NCEP-ATPIII criteria. Moreover, in patients, abdomen ultrasonography with the evaluation of 

the bright liver echo pattern presence and grade(19) and liver Stiffness measurement with transient 

elastography (Echosense Fibroscan® device, model 502; EchoSense, Paris, France; equipped with an M probe) 

by a skilled hepatologist (MP and MM) were performed. Liver tissue samples were collected by performing a 

hepatic percutaneous biopsy with Surecut 17G needles, via the intercostal route, using an echo-guided or echo-

assisted method. Liver specimens were used for histological examination if they were at least 1.5-cm long and 

contained >5 portal spaces. Biopsies will be evaluated with the Kleiner score(17) for necroinflammation 

grading and fibrosis staging, and by the Brunt score(2) for the presence and extent of steatosis by a skilled 

pathologist. Each patient was included in the study after giving an informed consent. Patients with 

clinical/ultrasonographical signs of cirrhosis (esophageal varices, spleen enlargement, low platelet count, 

caudate lobe hypertrophy at ultrasound examination) did not undergo to liver biopsy and were classified on 

the basis of the abovementioned diagnostic criteria in NASH-associated, cryptogenic or, when HCV-Ab 

positive, in HCV-related cirrhosis. The study was approved by the local ethical committee (CEI Campania Sud 

IRB n.8/2018). 

Samples collection 

Human tissue collection strictly adhered to the guidelines outlined in the Declaration of Helsinki IV 

edition(20).  Blood samples were collected at enrollment from controls and at enrollment and three months 

after the treatment for cases, using a BD vacutainer (Becton Dickinson, Oxfordshire, UK) blood collection red 
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tube (with no additives). After centrifugation, the sample was immediately frozen to -80 °C until the time of 

analysis. All patients were asked to respect a 12-hour fast before blood collection. 

Metabolomics analysis  

Metabolite extraction and derivatization 

Metabolome extraction, purification and derivatization was carried out with the MetaboPrep GC kit (Theoreo 

srl, Montecorvino Pugliano [SA], Italy) according to the manufacturer’s instructions. 

GC-MS analysis 

GC-MS analysis was conducted according to Troisi et al.. Briefly, two µL samples of the derivatized solution 

were injected into the GC-MS system (GC-2010 Plus gas chromatograph coupled to a 2010 Plus single 

quadrupole mass spectrometer; Shimadzu Corp., Kyoto, Japan). Chromatographic separation was achieved 

with a 30 m 0.25 mm CP-Sil 8 CB fused silica capillary GC column with 1.00 µm film thickness (Agilent, 

J&W Scientific, Folsom, CA, USA), with helium as carrier gas. Untargeted metabolites were identified by 

comparing the mass spectrum of each chromatographic peak with the NIST library collection (NIST, 

Gaithersburg, MD, USA) (minimum overlap 85%), also using the Kovats’ index (max tolerance 10%).. 

Metabolites emerged as relevant (see below) were further structural confirmed by means of analytical external 

standard according to the level 1 MSI (21). 

 

Statistical analysis 

Anthropometric parameters 

Data are reported as meanstandard deviation for continuous variables and number (percentage) for categorical 

variables. Statistical analysis was performed using Statistica software (StatSoft, Oklahoma, USA) and Minitab 

(Minitab Inc, Pennsylvania, USA). Normal distribution of data was verified using the Shapiro-Wilks test. Since 

the data were normally distributed, we used one-way ANOVA with the Tukey post hoc test for inter-group 

comparisons. The alpha (α) value was set to 0.05. Pearson's chi-squared test was used to determine differences 

among groups for the categorical variables.  
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Classification models building  

The chromatographic data were tabulated with one sample per row and one variable (metabolite) per column. 

Data pre-treatment consisted of normalizing each metabolite peak area to that of the internal standard followed 

by generalized log transformation and data scaling by autoscaling (mean-centered and divided by standard 

deviation of each variable).  Three different ensemble machine learning (EML) models, based on a voting 

scheme statistically weighted by the individual classification accuracy of ten different classification models 

(decision tree [DT], partial least square discriminant analysis [PLS-DA], naïve Bayes [NB], random forest 

[RF], k-nearest neighbor [k-NN], artificial neuronal network [a-NN], support-vector machines [SVM], linear 

discriminant analysis [LDA], logistic regression [LR] and deep learning [DL]) was built according to Troisi et 

al.(22-24), using R and RapidMiner Studio version 9.5 (RapidMiner, Boston, MA, USA). Samples collected 

in the first enrollment were used for the purpose of training the ten individual models and using those results 

to generate the EML model. Application of the EML model using the metabolomic profile of blood samples 

from the subjects of the second enrollment constitutes the independent validation of the proposed models. 

A genetic algorithm (GA) was also built to selects a subset of relevant metabolites. This was selected as the 

subset able to train a classification model with classification performance close to the one archivable from a 

model built on the whole metabolites set. GA mimics Darwinian forces of natural selection to optimize values 

of a function(25). An initial set of potential solutions were built, and their corresponding “fitness” values was 

calculated. Using the evolutive analogy, each solution represents an individual and the whole set were 

considered as a population.  

The individuals with the best fitness values were randomly combined to produce offspring which will structure 

the next population. To do so, individuals were selected and undergo cross-over (mimicking genetic 

reproduction) and were also subjected to random mutations. This process was repeated several times producing 

many generations that created even better solutions. 

For metabolites selection, the individuals were subsets of predictors that are encoded as binary; metabolites 

were either included or not in the subset. The fitness values were the measure of model performance 

(classification accuracy). The genetic algorithm was built using RapidMiner studio version 9.5 (RapidMiner, 

Boston, MA). Model’s details were reported in Troisi et al.(22) The metabolites selected by means of GA were 

used to build ah heatmap representation of the metabolites’ concentration change trough the disease evolution.  
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The metabolic pathway was constructed using MetScape application(26) of the software Cytoscape(27).  

 

NAFLD evolution classification model building 

To build the EML models able to discriminate among the several NAFLD stage we first divide the multi class 

problem in several dichotomic problems. We built 3 different EML models, one able to discriminate healthy 

subject from NAFLD affected ones (model 1), one to discriminate subjects with simple steatosis (NAFL) from 

patients with steatohepatitis or cirrhosis (model 2), one to discriminate NASH patients NASH-cirrhosis (model 

3).  

 

NAFLD Metabolomic Score (NAFLD-EML-Score) 

For each classification model the cross-validation accuracy was evaluated. For each sample and for each 

classification the classification confidence was also evaluated. From these parameters a model score was 

evaluated multiplying the classification accuracy and the classification confidence. For the subjects classified 

as NAFLD (or as a next-stage disease), these scores were considered as is, while for each CTRL (or for subject 

considered in the less evolved NAFLD stage), the scores were multiplied by -1. A NAFLD-EML-score was 

calculated for each sample summing all the classification scores.  

The area under receiver operating characteristic (ROC) curves was calculated to evaluate the ability of the 

NAFLD-EML-score to predict the NAFLD presence or stage. Cutoff points were proposed after calculation 

for each NAFLD-EML-score (from minimum to maximum estimated values) the Youden’s Index 

(sensitivity+specificity-1). DeLong et al.(28) non-parametric approach was used to compare the areas under 

the ROC curves. 

 

Classification performance evaluation 

Subjects from second enrollment were tested by means of the dichotomic models to predict the disease stage. 

The classification performances of the proposed dichotomic EML models were investigated in terms of 
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Sensitivity (SN), Specificity (SP), Positive Predictive Value (PPV), Negative Predictive Value (NPV), Positive 

Likelihood Ratio (PLR), Negative Likelihood Ratio (NLR) and Accuracy (A). Cumulative accuracies (Ac) 

were also evaluated as the global accuracy considering the accuracies of the previous steps. Table S1 

(Supplementary information) reports the formulas described above.  

RESULTS 

The demographic and clinical–biochemical characteristics of NAFLD patients are reported in Table 1.  

Table 1.  Demographical and laboratory characteristics of the study population by liver Histology presentation (HCV and 

cryptogenic cirrhosis were not presented separately).   

 Overall NAFL 

p 

NAFL vs NASH 

NASH 

p 

NASH vs 

NASH-Cirrhosis 

NASH-Cirrhosis 

Total Number 194 112 - 33 - 21 

Age (years±SD) 60.85±16.0 57.7±17.8 0.95 57.5±14.7 0.01 65.8±10.1 

Male Sex (%)  111 (57.2%) 66 (58.9%) 0.67 18 (54.5%) 0.66 11 (52.4%) 

BMI (Kg/m2) 29.6±4.3 29.6±4.0 0.17 30.8±4.5 0.8 31.1±5.1 

AST (U/L) 37.12±28.8 33.0±32.7 0.32 43.5±56.1 0.55 40.6±19.8 

ALT (U/L) 44.9±45.86 43.5±56.1 0.25 53.6±39.9 0.62 49.2±29.7 

Diabetes (%) 50 (25.8%) 27 (24.1%) 0.008 16 (48.8%) 0.148 12 (57.1%) 

Glycaemia 111.5±38.2 108.0±39.9 0.56 111.4±24.5 0.44 118.0±36.4 

Serum Insulin 19.8±15.6 15.3±12.3 0.005 28.6±18.8 0.85 30.4±20.1 

HOMA 5.3±5.1 3.9±3.4 0.001 8.0±7.3 0.84 7.3±6.7 

Hypertension (%) 75 (38.6%) 58 (51.8%) 0.011 25 (75.8%) 0.964 21 (58.3%) 

HDL Cholesterol (mg/dL) 44.7±12.9 45.1±12.7 0.88 45.4±11.7 0.39 45.4±11.7 

Total Cholesterol 

(mg/dL) 
177.8±42.9 183.2±39.9 0.16 194.5±40.7 0.015 166.4±39.3 

Triglycerides 

(mg/dL) 

140.2±72.4 144.5±75.3 0.20 163.1±66.7 0.22 137.3±79.4 

Metabolic 

Syndrome (%) 

103 (53.1%) 62 (55.3%) 0.00001 29 (87.9%) 0.81 17 (80.9%) 

GGT (U/L) 71.2±81.6 52.1±72.1 0.10 77.5.1±82.4 0.33 103.2±108.3 

Ferritin (μg/L) 178.7±208.2 221.9±214.0 0.53 185.0±225.5 0.57 137.3±235.6 

Liver Stiffness - 5.73±2.8 0.006 16.1±15.4 - - 
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No differences in term of age, sex ratio, body mass index, serum cholesterol concentration (both HDL an 

LDL), triglycerides, ferritin and GGT resulted among the patients. Blood insulin concentration, homeostatic 

model assessment (HOMA), prevalence of hypertension, type 2 diabetes mellitus, metabolic syndrome and 

mean liver stiffness were significantly higher in NASH compared with NAFL patients.  

Within one TIC chromatogram, over 250 signals were detected in a single specimen and some of these peaks 

were not investigated further as they were not consistently found in other sets of samples, too low in 

concentration, or of poor spectral quality to be confirmed as metabolites. A total of 228 endogenous 

metabolites were detected consistently. As shown in Figure 1, the PLS-DA score plots clearly differentiated 

controls and NAFLD patients (Figure 1A) and among NAFLD: NAFL, NASH (Figure 1B) and NASH-

Cirrhosis ones (Figure 1C). The 15 highest scoring VIP variables (VIP score > 1.5) identified by PLS-DA are 

shown in Figure 1D as box and whisker plot.  

The metabolite concentration variations induced by the liver disease progression allowed to divide the 

metabolites into three classes: those with lower concentrations in the controls and which increased in disease 

progression (isocitric acid, isoleucine and a not structural identified metabolite), those which have higher 

concentrations in the controls and whose concentration decrease in disease progression (xanthine, glutathione 

and glycolic acid) and those which concentration distribution is not strictly related to the disease progression 

(valine, asparagine, 4-deoxy erythronic acid, propanoic acid, palmitic acid, butanoic acid, stearic acid, 

phenylalanine and taurocholic acid). 
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Figure 1: (A) Partial least square discriminant analysis (PLS-DA) models to discriminate Controls (CTRL, 

triangles) and Non-alcoholic Fatty Liver Disease (NAFLD, crosses); (B) Simple Steatosis (NAFL, triangles) 

and Non-alcoholic Steatohepatitis (NASH, crosses); (C) NASH (triangles) and NASH related cirrhosis 

(crosses). The explained variance of each component is shown in parentheses on the corresponding axis. (C) 

Box and Whisker plot representation of the 15 top-scoring VIP metabolites (VIP-score ≥1.5) 

 

Figure 2 reports a model similar to the one reported in Figure 1, in which cirrhosis patients were stratified 

according to their cirrhosis etiology as cirrhosis due to hepatic C virus (HCV) infection, cirrhosis on NASH 

and cryptogenic cirrhosis. Fifteen metabolites showed a VIP score higher that 1.5 in this PLS-DA model 

(Figure 2B):  Galactose, Uric acid, Ribitol, Glyceric acid, Butanoic acid, Histidine, Phenylalanine, Stearic 

acid, Threonine, Palmitic acid which concentration was higher in NASH related cirrhosis patients. N-acetyl 

glucosamine and isoleucine with a higher concentration in HCV related cirrhosis and Eicosanoic, 5-

hydroxyindolacetic and Aspartic acid that showed a high concentration in cryptogenic cirrhosis.  

Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2: (A) Two dimensional representations of the Partial least square discriminant analysis (PLS-DA) 

models to discriminate the three forms of Cirrhosis: Cryptogenic (triangles), HCV-related, (crosses) and 

NASH-related (X). The explained variance of each component is shown in parentheses on the corresponding 

axis. (B) The 15 top-scoring VIP metabolites (VIP-score≥1.5) are shown. The boxes on the right indicate the 

relative amount of the corresponding metabolite in each group under study.  
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Metabolites selected as the most relevant by means of GA, were used to build the heatmap reported in figure 

3. Cluster analysis performed on these data highlight the presence of three groups of metabolites: one which 

concentration constantly decrease from controls versus disease progression (fig. 3A), one which concentration 

constantly increase (fig. 3B) and one which concentration follow a more complex route (decreased in early 

disease stage and increased in advanced ones compared to controls), (see fig. 3C).  
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Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Heatmap representation of the genetic algorithm selected metabolites trough the NAFLD evolution 

stages. Metabolites shown 3 different behaviors:  

(A) especially composed of fatty acids related metabolites decreased from the healthy subjects to the NASH-

Cirrhosis ones.  

(B) accounted from amino acid and amino acid related metabolites and gut microbiota related metabolites 

decrease in the first steps of the NAFLD (NAFL and NASH) while increase in the lasts (NASH-related 

Cirrhosis).  
(C) composed especially from sugars constantly increase during the NAFLD evolution.  
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Selected metabolites ontology was reported in table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The metabolic pathway analysis of the metabolites selected (VIP-score > 1.5 in the PLS-DA model built on 

Control, NAFLD, NASH and NASH-Cirrhosis patient) is summarized in the metabolic systems map shown in 

Figure 4.  

Table 2   

Metabolite Selection Criteria HMDB ID 

Isoleucine 

VIP-score >1.5 NAFLD Vs CTRL 

HMDB0000172 

Isocitric acid HMDB0000193 

Valine HMDB0000883 

Asparagine HMDB0000168 

4-Deoxyerythronic acid HMDB0000498 

Propanoic acid HMDB0000237 

Palmitic acid HMDB0000220 

Butanoic acid HMDB0000039 

Stearic acid HMDB0000827 

Phenylalanine HMDB0000159 

Taurocholic acid HMDB0000036 

Xanthine HMDB0000292 

Glutathione HMDB0000125 

Glycolic acid HMDB0000115 

Galactose 

VIP-score >1.5 Cirrhosis etiology 

HMDB0000143 

Acetyl glucosamine HMDB0000803 

Eicosanoic acid HMDB0002212 

Uric acid HMDB0000289 

Ribitol HMDB0000508 

Isoleucine HMDB0000172 

Glyceric acid HMDB0000139 

Butanoic acid HMDB0000039 

Histidine HMDB0000177 

Indolacetic acid HMDB0000197 

Stearic acid HMDB0000827 

Threonine HMDB0000167 

Aspartic acid HMDB0000191 
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Figure 4. Metabolic systems map summarizing the shortest route that may explain the interactions among the 

15 selected metabolites. There is a clear interplay of several pathways involving: De novo fatty acid 

biosynthesis; Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine; Biopterin 

metabolism; Bile acid biosynthesis; Butanoate metabolism Tyrosine metabolism; Glycolysis and 

gluconeogenesis; Purine metabolism; TCA cycle. 

 

There is a definite interaction of several pathways involving de novo fatty acid biosynthesis; Urea cycle and 

metabolism of arginine, proline, glutamate, aspartate and asparagine; Biopterin metabolism; Bile acid 

biosynthesis; Butanoate metabolism Tyrosine metabolism; Glycolysis and gluconeogenesis; Purine 

metabolism; TCA cycle. 

Classification performance evaluated on test set were summarized in table 3.  

Table 3. Classification models performance. Values are reported as result ± standard error. Cumulative accuracies were reported in 

brackets. 

 Sensitivity (%) Specificity (%) PLR NLR PPV (%) NPV (%) Accuracy (%) 

Model 1 (Ctrl Vs NAFLD) 96.0±2.8 97.7±2.2 42.24 0.041 98.0±2.0 95.6±3.1 96.8±2.1 

(---) 

Model 2 (NAFL Vs NASH 

& NASH-Cirrhosis) 

94.1±4.0 93.8.3±6.1 15.06 0.063 97.0±3.0 94.0±4.2 94.0±4.2 

(91.0±2.1) 

Model 3 (NASH Vs NASH-

Cirrhosis) 

80.0±12.6 83.3±15.2 4.80 0.240 88.9±10.5 71.4±17.1 81.3±12.2 

(73.9±9.7) 

PLR: positive likelihood ratio; NLR: negative likelihood ratio; PPV: positive prognostic value; NPV: negative prognostic value. 

 

Blind analysis using the subjects of the second enrollment shown an accuracy for NAFLD identification 

(model 1) of 96.8% (91/94 correctly identified), 94.0% for NAFL identification (model 2, 47/50 correctly 

identified). Cumulative accuracy for model 2 was 91.0%.  NASH identification (model 3) accuracy was 81.3 

% (13/16 correctly identified) while cumulative accuracy was 73.9%.  

 

DISCUSSION 

Here we report the serum metabolomic analysis results to obtain a comprehensive view of changes in several 

metabolite and metabolic pathways in patients with NAFLD, in order to identify disease related patterns and 

to identify biochemical perturbations. The data revealed significant changes in certain key pathways, 
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specifically bile acids, lipid and amino acid metabolism. Metabolomic changes due to NAFLD were already 

reported both in adults(13) and in pediatric studies(29).  

In our NAFLD metabolomic signature isoleucine, valine and asparagine have showed a great relevance. Amino 

acids involvement in NAFLD was already been reported (13, 29). The increase in essential amino acids 

suggests a higher rate of protein turnover. In addition, the incremental amino acids values in the disease 

progression suggests that changes in protein turnover may be a late event in the progression of steatosis to 

NASH, and may be modulated by other factors such as cytokines and inflammation, in addition to insulin 

resistance(30, 31). Moreover, branched-chain amino acids and, in particular, isoleucine have been associated 

with gluconeogenesis, insulin resistance and increased risk of type 2 diabetes development, as well as 

cardiometabolic risk(32-34). In our study we observed a significant increase in isoleucine in our patients 

according to the NAFLD presentation (from simple steatosis to cirrhosis), whereas valine and asparagine, even 

if increased in respect to healthy controls, showed an opposite trend, in the same way as it has been described 

by other authors(35). 

Kalhan et al.(13) reported that the changes in non-essential amino acids, aspartate and glutamate, may be due 

to increased anaplerosis of amino acids into the TCA cycle, resulting in an increased cataplerosis to insure the 

required removal of the resulting carbon skeletons of these amino acids from the cycle. Moreover, it has been 

demonstrated in a murine model of glutathione deficiency, that aspartate and glutamate increase in response 

of GSH deficiency as a metabolic adaptation for the maintenance of the redox and metabolic homeostasis of 

the liver(36). In this way, the higher levels of asparagine in our NAFLD cohort compared to controls subjects, 

in addition to higher glutathione turnover, could also be due to increased transamination of amino acids being 

degraded in the liver and skeletal muscle. Moreover, during the evolution of the inflammation/fibrosis process, 

intermediate metabolites of the tricarboxylic acid cycle, branched chain amino acids and fatty acids are 

accumulated in the sera of affected individuals. These results were recently confirmed also on a murine model 

of fibrosis induced by CCl4 (37). BCAA were also correlated with insulin resistance and cardiometabolic risk 

in NAFLD patients(34). Finally, Isoleucine and citric acid were also reported as potential biomarker for 

NAFLD in an untargeted metabolomic study on an Egyptian cohort (38).  

Our results showed a reduction of xanthine amount in patients’ serums during the NAFLD progression. 

Xanthine oxidation is a rate-limiting reaction in the uric acid production and is already been reported as a 

valeriorosato
Barra
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candidate link between NAFLD and hyperuricemia(39). Xanthine is physiologically oxidated to urate and 

hydrogen peroxide (40), allowing the production of Reactive Oxygen Species (ROS). Low xanthine serum 

level can be reasonably associated with high ROS levels (39). This result is also in line with the coexisting 

reduction in the glutathione levels in the disease progression.  

Glycolic acid showed a decrease trend during the disease progression. It has been reported to be higher in 

small intestine bacterial overgrowth children (29). At the same time our results showed a significant role (even 

if the serum concentration is not directly linked to the disease progression) of two important short chain fatty 

acids that are mainly produced from the gut microbiota (propanoic and butyric acid). Short chain fatty acids, 

and in particular propionate and butyrate, have been demonstrated to exert an important protective role in 

NAFLD onset and progression, through the modulation of the inflammation and the insulin resistance via the 

activation of the receptor of Glucagon Like Peptide-1 (GLP1r) in the liver (41). Several studies in which the 

gut microbiota was manipulated, and observational studies in patients with NAFLD, have provided evidence 

that dysbiosis contributes to the pathogenesis of NAFLD (41, 42). Dysbiosis increases gut permeability to 

bacterial products and increases hepatic exposure to injurious substances that increase hepatic inflammation 

and fibrosis (43). Taurocholic and fatty acids as palmitic or stearic were also reported altered in NAFLD (31, 

44, 45) coherently with our finding. The increase in oxidative stress in the progression of NAFLD is 

demonstrated by the reduction of serum Glutathione levels. This evidence has been repeatedly reported in the 

literature (34, 46). 

Nowadays to differentiate the presence of a simple, non-evolutive, liver steatosis (NAFL) from a potentially 

worsening steatohepatitis still represents a diagnostic issue. In fact, the definitive differential diagnosis 

between these two entities still relay on a such invasive technique as liver biopsy, which, in the clinical practice, 

is difficult to propose to a large number of patients, of whom only a minority is potentially affected by the 

evolutionary form of the disease (NASH) (7). To address this issue, various clinical scores have been proposed 

for the use in NAFLD patients, such as “Fatty Liver Index”, “NAFLD Fibrosis Score”, and analogues(47, 48). 

Even if an approach of this type has the advantage of being a non-invasive method for discriminating between 

potentially benign and evolutionary diseases, it has various limitations, based primarily on the lack of 

validation on large cohorts and different populations, and on the scarce power to evaluate “intermediate 

presentations”. These methods have, in fact, a large “grey zone” in which they fail to address the real risk of 

the patients. Other non-invasive methods relay on imaging techniques (such as Fibroscan, Continuous 
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Attenuation Parameter – CAP, Ultrasonography and Magnetic Resonance) that can, at their best, quantify the 

liver fat content rather than differentiate between simple steatosis and steatohepatitis. In this way, other more 

precise non-invasive approaches to differentiate the various clinical expressions of NAFLD are desirable. Our 

results indicated the serum metabolomics signature can aid the NAFLD identification and its evolution stage. 

This approach showed, even on a small validation size cohort, good performance of each classification models, 

although the cumulative accuracy rapidly decreases with the increase of classification steps. This is a weakness 

inherent in our approach, but it can be minimized with larger validation chords. 

In summary, our analysis of the metabolomic profiles of NAFL, NASH and NASH-cirrhosis patients showed 

a significant separation between these groups at the PLS-DA analysis, suggesting that metabolomic profiles, 

with the above mentioned metabolites identified as “VIP”, can differentiate the patients on the basis of the 

severity of their liver disease (Figure 3). Finally, the analysis of metabolomic profiles of cirrhotic patients of 

different etiologies (HCV-associated, cryptogenic and NASH-associated cirrhosis) also showed a peculiar and 

significantly different metabolomic profile of 15 VIP metabolites, suggesting that these conditions can be 

discriminated by performing a targeted metabolomic profile on these patients. This is of particular interest for 

the differential diagnosis of cryptogenic- and NASH-related cirrhosis that often represents a challenge in the 

clinical practice.  

A limitation of our study is the not prospective study design. The disease progression was evaluated among 

different subject at different disease stages. To follow the same patients during the disease progression (or not 

progression) can highlight clearly the mechanism involved in these events. NAFLD disease progression is a 

very slow process and can be completed in several decades. So, this kind of study will take a very long time 

 

CONCLUSION 

Our results indicated, even if in a preliminary way, that the untargeted metabolomic can represent an 

appropriate and useful tool for the diagnosis and the assessment of the different forms of NAFLD and to 

understand the mechanisms involved in its progression. 
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