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Chapter 1

Introduction

1.1 Application context

Social robotic systems are electro-mechanical systems whose main
task is the social interaction with their human users. Popular
applications include elderly care [1, 2] and autism treatment [3],
but also provide guidance to visitors in public places [4, 5, 6]. The
proposed robots often include sophisticated perception systems to
achieve a better, more natural interaction.

The authors of [1] developed a robot with the intent of en-
abling independent aging in place. In their project the benefits
provided by the robot are three-fold: decreasing loneliness, sup-
port in household tasks, medical and social assistance through
remote communication. To do that, they build a wheeled robot
and provide it with navigation and mapping capability, human
pose detection based on RGB-D imagery, gesture recognition, ob-
ject recognition and a touch screen and voice interface. The effort
in this work is more oriented to practical considerations such as
help with the mundane tasks and fall detection and prevention
rather than social interaction; even though the participants in the
experimental study appreciate the robot, they confess that they
would prefer being taken care of by a human.

Similar shortcomings are found in different works. The Hector
robot [7] (Figure 1.2) aims to support mildly cognitively impaired
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Figure 1.1: A social robot greets participants to a conference

Figure 1.2: The Hector robot supporting an elder couple
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Figure 1.3: The Care-O-Bot robot displaying its manipulation ca-
pabilities

people and help them, rather than with physical manipulation,
providing social and cognitive support. The robot talks to the
user, shows initiative, and has a certain personality. They con-
ducted a short user trial (2 days per user) and found out that
the ability of the robot to show initiative is a key factor in the
perceived acceptance and improve the enjoyability, while technical
insufficiencies (i.e. imprecise perception) hinder the naturalness of
the experience, to the point that interaction through a graphical
interface is preferred to speech.

Care-O-Bot [8] (Figure 1.3) can navigate indoor, execute ma-
nipulation tasks and act as a walking support. The earlier versions
of the platform include a touch screen for interaction as well as
regular voice commands. In their 4th iteration [9] the authors rec-
ognized that more attention should be devoted to the robot capa-
bility to generate empathy through the pursuit of human likeliness;
they aim to achieve this through improved multimodal feedback
as well as better understanding of the context.

RHINO [10] (Figure 1.4) guides visitors through a museum.
It is an early implementation of such application and is not very
focused on natural interfacing. MiviaBot [6] (Figure 1.1) imple-
ments the same task 20 years later with increased attention to the
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Figure 1.4: The RHINO robot in action

interactive aspect; it integrates multiple visual cues such as gen-
der and age for determining the best way to address people and
provide a personalized interaction.

iSocioBot [5] (Figure 1.5 was designed for public events and
interacts through a series of predefined questions and replies. It
is designed for shorter interactions than a companion robot is,
and integrates limited context awareness, i.e. face recognition and
tracking, using eye contact to establish a minimal degree of em-
pathy. The authors conclude that the next iteration of the robot
should make the dialog more personal by taking into consideration
the identity of its interlocutor.

SPENCER [4] aims to guide passengers through airports. The
focus of the work is on social aware navigation rather than ver-
bal interaction. Nevertheless, the system employs multiple visual
cues such as body posture, gender, age, head pose, spokesperson
detection and object detection. Some of those clues are used to
apply culturally dependent social rules and so they are critical for
a correct social interaction, such as appropriate approaching speed
and direction (according to proxemics) and appropriate address-
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Figure 1.5: The iSocioBot robot in two different design iteration

ing of people in a group. In a crowded settings the authors find
that audio is unreliable so this intensifies the importance of visual
clues to obviate.

Popular commercial robotic platforms, such as the Pepper
Robot are being employed in shops, expositions, hotels. This and
other similar platforms, though, are not able to be completely au-
tonomous in their interaction since they fail to completely gain
the trust of their interlocutor. This limits them to be only used as
an initial introductory step and the intervention of a human clerk
is needed to help the customer with their requests.

The bottleneck of the communication capabilities of those so-
cial robots used to be comprehension of the natural language or the
ability to understand spoken words. In the latest years commercial
systems have been able to achieve stunning results in challenging
environments, and this is especially true for commercial applica-
tions, where companies have access to a huge amount of private
data [11, 12].

While there is still work to be done in this area, the bottleneck
is shifting: even with near-perfect transcription of speech and rea-
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sonably reliable interpretation of intents, the interaction fails to
feel natural [13]. Research in the field of psychological and an-
thropological aspects of human-robot interaction shows that the
acceptance of a robotic interlocutor by a human subject requires
the robot to provoke the same emphatic responses that are ob-
served in human-to-human interaction [14]. To elicit those re-
sponses it is observed that the robot needs to exhibit human-like
behaviors. Coarse physical resemblance is preferred over more
accurate reproduction of human physiognomy, and the more sim-
ilar the looks are, the more accurate the behavior needs to be
[15]. As testified indirectly by the user trials that accompany the
implementations described above, and direcly by numerous other
studies [16], achieving human acceptance in social robotics is much
more a matter of similarity in behavior than of physical similar-
ity. It emerges that correctly answering to questions is not enough
anymore: effective social robotics require a coordinated applica-
tion of different disciplines, including electro-mechanics, computer
science, psychology and neuroscience, supported by a robust per-
ception of both intents and other contextual cues.

Human behavior indeed relies on the exploitation of social cues
such as posture, gait, facial expression, personal characteristics
such as gender and age of the interlocutor, and in general the
perception of the context. The integration of all those cues into
the reasoning and dialog capabilities of the robot would enable
the unit to be perceived as a peer by a human interlocutor [17],
thus to be trusted as unique interface, thus eliminating the need
of additional human operators.

To use different words: the road to truly autonomous social
robots passes through perception of contextual clues and correct
integration of those into the behavioral routines. The reliability of
those clues is then one of the keys towards a successful, natural,
social interaction.
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Knowledge base
Intelligent perception Social control

Sensors Actuators

Intelligent social controller

Robot hardware and low level control

Face detection

Soft biometrics

Object detection

Gaze analysis

Goal setting

Reasoning

Planning

NLP, Dialog

Figure 1.6: General architecture of a social robot. A non-
exhaustive list of tasks is reported for each subsystem as an ex-
ample.

1.1.1 Architecture of a social robot

In the control of a social robot, the role of intelligent perception is
to feed a knowledge base from which information is then sourced
to guide the interaction. Such an ”intelligent social controller”
operates at a higher level with respect to the traditional robot
control as shown in Figure 1.6.

The decoupling between the two modules of perception and
control is obtained through the use of the knowledge base. This
decoupling is important since not all the available data is utilized
at all times. Rather, the module that implements socially-aware
robot control determines the relevance of each piece of information
as it queries the base.

Several implementations have been proposed concerning the
robot control algorithm. One central concept is the mental state
of the robot, which includes its motives, beliefs, desires and inten-
tions [18]. Sociality is focused around interaction: this means that
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the robot must be able to understand the mental state of others
as well as its own. The control algorithm keeps track of the state
of mind of the robot and of the one of other individuals in its en-
vironment, and sets its goals consequently. Goals guide planning
thus actuation of the output behaviour.

In OpenPsi[19] a similar framework is described and imple-
mented, where the robot state of mind is focused around the
concept of demands, which are the ultimate desires of the robot.
Those demands include for example integrity, i.e. avoidance of
pain or even affiliation, the acceptance of the robot by its social
group. An urge arises when any of this demand is not fulfilled,
and this sets the goal for the robot planning and action. Their
framework is based on Dietrich Dorner’s Psi-Theory about human
cognitive processes, emotion and motivation that guide intentions
and behaviours.

OpenPsi is developed as an evolution of the OpenCogPrime
(OCP) framework [20], which implements a cognitive architecture
for a social robot. The framework uses a graph database as its
knowledge base and integrates a reasoning engine in its social con-
trol module. The OCP framework also integrates subsystems for
natural language processing (NLP), one for understanding (input
NLP) and for communicating (output NLP)

One example application of this framework is learning new
behaviours by imitation and reinforcement, which emerge natu-
rally thanks to the acquisition of positive and negative feedback
from other agents combined with the nature of the demands of
the robot. This application has been experimented in the project
known as OpenPetBrain [21], which features a pet dog as a virtual
simulated agent which interacts with simulated people.

This kind of control technology can be ported from the virtual
world to physical robotic platforms only if there are adequate per-
ception systems capable of populating the knowledge base reliably
with information from the real world. For example, a robot which
is supposed to learn behaviours by imitation and reinforcement
must be capable of reliably determining the emotional reaction of
people around, in order to derive its feedback.
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The aim of the thesis is indeed to develop perceptive algorithms
able to support a cognitive architecture for a social robot deployed
in a realistic situation.

The presence of NLP in this kind of framework is extremely
beneficial when our agent is supposed to support an android robot
rather than a simulated pet. A social agent is considered so if ca-
pable of interactive, communicative behaviour [18], and the verbal
channel definitely conveys a significant part of the information in
an human-to-human interaction. Therefore dialogue represents an
important means through which the robot communicates. In the
context of Figure 1.6, dialog takes place in the social control mod-
ule, and may be guided by the same motivations described above.

The dialog system may be quite complex itself. Part of the
dialog can be generated automatically following the social rules of
conversation. According to literature [22], when the robot assumes
the role of listener, several types of responses can be automatically
generated, drawing from predefined categories (backchannels, re-
peats, elaborating questions and so on) and implementing the so
called ”attentive listening” where the main objective is show in-
terest and empathy and encouraging the user to keep talking. If
the robot is required to talk about specific topics, for example,
to give information, those interactions will be scripted separately
with an approach derived from the chatbot literature [23].

Whether the dialog is scripted or automatically generated, the
robot should be able to personalize its answers based on what
is stored in the knowledge base: for example having emotional
information about the interlocutor available is very beneficial in
order to correctly show empathy; [24] design a dialog model for
a social robot and highlight the importance of perceiving social
cues such as gaze and gesture to be integrated into their dialog:
understanding deictic gestures such as pointing heavily relies on
the availability of contextual information, for example if the inter-
locutor is pointing at something or referring to ”this or that”, the
dialog module should be able to resolve the reference by looking
up where the user is pointing, and what object is there, or what
is the hands of the user when he talks about ”this object”.
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1.1.2 Facial soft biometrics for social robotics

While classical biometry aims to establish the identity of an indi-
vidual in a natural and reliable way [25], the term soft biometrics
was coined to describe those characteristics that only provide some
information about the subject, but are not able to individually au-
thenticate the person, due to lack of distinctiveness or permanence
[26]. This kind of information includes gender, age, facial expres-
sion, presence of a beard, weight, height, color of the clothes, and
much more. Their utility, beside being a quick and dirty way of
identifying people in the short term [27], or a way to improve the
reliability of identity recognition [28], lies in the fact that soft bio-
metric traits are established and time-proven by humans: they are
created in a natural way by humans with the aim of distinguishing
their peers. For this reason they represent a fundamental asset to
artificial intelligence systems whose target is to blend with people
imitating their behaviour.

A significant fraction of the soft biometric traits that we listed
so far as examples have something in common: they can be ex-
tracted by the analysis of the face alone. Arguably, the face con-
tains the most information about an individual, that is why we
have our face in our passport photos and driving licenses, that is
why we refer to ”that person” by mentioning their gender, their
age and color of their hair.

A verbal interaction system integrated in a social robot as de-
scribed in the previous paragraph will use soft biometric informa-
tion to contextualize its speech and its understanding.

For instance, age is crucial to understand how a person should
be addressed: we may be used at being addressed by automated
systems in a random way, sometimes too formal, sometimes not
enough. A robot that tries to blend in human society would cre-
ate a cognitive dissonance if it were to address a younger person
in a formal way, or an older person in an informal way, so this
information shall be taken in consideration, when available.

In addition to formality, children shall be addressed in a com-
pletely different way: children have scarce knowledge of the world
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and its facts and conventions; interaction with a little child will not
reference any complex information that the child may not know
about, or include adult content that the child will not appreci-
ate. Talking to elders may also require a different approach than
talking to younger people; for example, few elders are interested
in the latest trends of technology or make use extensive use of
social networks. Would you reference memes from the internet to
a stranger older fellow? Would you talk technobabble to them,
unless they do it first? A robot should use the same heuristics,
and age recognition allows them to.

Those are only a couple examples of how the presence of age
in the knowledge base of the robot can benefit the naturalness
of the social verbal interaction. Additional decision making pro-
cesses will benefit by it: as seen in previous work for instance,
the use of age allows to understand which members of the group
should be addressed. If a family approaches the robot in a public
environment, appropriate interaction requires the understanding
of the family roles, distinguishing for example the parents from
the children. A waiter-robot should not hand the bill to the chil-
dren. A robot programmed to offer guidance, should only give
complex directions to the adults of the family, since they are the
ones supposed to lead the group.

Additionally, soft biometrics are always needed for understand-
ing deictic speech: for example, when its interlocutor references
”her”, the robot should be able to link the pronoun to the identity,
and doing that requires that it knows the gender of the people in
its environment.

The gender of the interlocutor is also needed for correct con-
jugation of words in languages such as Italian, French or German,
that have specific rules concerning this topic.

Finally, understanding facial expressions unlocks a whole other
non-verbal communication channel to the use of the robot. The
main ingenuity that is attributed to robots is their incapacity to
understand emotions. A robot that is capable of reading facial
expression can understand the subtext of any spoken utterance.
A simple utterance such as ”I’m fine” can have multiple meanings
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Figure 1.7: A face from the yalefaces dataset [30] (left) and one
from the more recent VGGFace2 dataset [32] (right)

depending on the underlying emotion. Talking about macabre
topics may be part of a joke or may be the tale of a tragic event: a
social robot should definitely be able to distinguish the two cases,
in order to react appropriately.

1.1.3 Application constraints

Automatic systems for extracting soft biometrics have come a long
way. From the early proposed methods [29, 30] to the more sophis-
ticated recent approaches [31] machine learning algorithms have
been applied to problem of extracting information from a face im-
age, with a varying degree of success on the different tasks that
belong to the category facial soft biometric applications.

One aspect that guided the evolution of those method is the
possibilty of working in unconstraned settings. Early methods, in
fact, could only operate in controlled conditions, where the back-
ground is neutral, the face is still and in sharp focus, the lighting
is appropriate and there is no occlusion. In those conditions they
were able to perform very well on the standard benchmarks from
their time. While those conditions were reasonable to expect in a
collaborative setting, such as a face-based authentication system,
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the methods from the early times were not expected to work in
uncollaborative scenarios, where there is severe variability in pose
and lighting, where occlusions may happen and the image could
be affected by different kinds of corruptions. Such methods would
not be applicable, for instance, to a setting such as social robotics,
where naturalness is key, where the information must be extracted
from the face in a transparent way, and the user is expected to be
in an unknown environment, in an unknown pose, and the image is
acquired with whatever camera is available. Fortunately methods
got better while and benchmarks got more complicated to measure
the accuracy of those methods in more realistic conditions; in Fig-
ure 1.7 two images from two different benchmark are compared
that are about 20 years apart from each other: the image from
the older dataset features a white background, soft lighting and
frontal pose, while the image chosen from the more recent dataset
shows significant occlusion, noise and partially lateral pose. Those
are fairly extreme examples in both ways, but they convey how
the practices in collection datasets have changed to accomodate
the robustness requirement of new applications. It turns out that
deep convolutional neural networks (DCNNs) are fairly good at
dealing with all this variability, definitely better that older meth-
ods, but there is still work to do in this area, as it will be shown
in the following of the thesis.

Aside for accuracy-related concerns, one aspect of interest is
the amount of resource needed for performing each task. Social
robots are often mobile platform, implying that they are battery
powered and equipped with embedded computing devices. Those
devices must perform all the computation needed for the robot to
work, including the extraction of contextual information such as
soft biometrics through the methods that will be described in this
work. This means that the processing power available is limited
and so is memory. Furthermore, in an interactive setting such
as social robotics, latency time is crucial. In a dyadic conver-
sation the typical silence time between utterances is 100 to 300
milliseconds [33]; having longer processing times would make the
conversation awkward before saying the first word, frustrating the
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effort and voiding the motivation for doing the prediction in the
first place. For this reason, prediction must happen in short times,
despite the limited availability of power. One alternative approach
would be to offload computation to an external device, reached via
network, for example in a ”cloud” configuration. Such a solution
has been used in the past and is viable in certain conditions but it
causes a robustness tradeoff in many others: wireless connections
work reliably in nominal conditions, but in a crowded place their
speed plummets or they cease working altogether due to electro-
magnetic interference. This is not a rare occurrence, it happens
consistently in application environments of our interests, such as
museums and expositions. For this reason, in this work we neglect
this setup and study the behaviour of our proposed systems in the
embedded scenario.

One disadvantage of DCNNs is that they tend to be resource-
hungry. For example, VGG-16 [34], the most commonly used ar-
chitecture for face-related tasks, requires 527 MB for the storage
and more than 13 billion operations to process one input image.
Embedded systems are slowly catching up, but still today with
cutting edge technology, such a load is non-trivial for an embed-
ded device that needs to run with strict constraints in terms of
power consumption, heat dissipation, space occupation and man-
ufacturing cost. The allowed timespan of 100 300 is not at all
minuscule by modern computing standard, but it should be con-
sidered that in that timespan more than one single task must take
place. For this reason and the ones listed before, it is crucial to
research ways to produce DCNNs that are fast and slim, but that
retain the reliability and accuracy that made large networks so
useful in the first place.

1.2 Motivation and thesis overview

This thesis aims to design and evaluate vision based methods for
efficient and reliable soft facial biometrics in the context of social
robotics: we addresses the concerns listed, researching the features
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and allowing for the development of a facial soft biometrics sub-
module for a social robot, aware of the constraints of the specific
application, namely the need for running in real time on an em-
bedded system, with limited resources and limited latency time
and the need of the system to be resilient to all kinds of natu-
ral disturbances that will occur in an unconstrained environment
while interacting with uncontrained interlocutor.

The work is organized as follows: in Section 1.3 we discuss the
state of the art for facial soft biometrics, at first in general and
then in particular, addressing each task of interest for this work,
with its peculiarities and solutions, surveying the methods and the
datasets. Then we survey the efforts made towards the solution
of the two peculiar issues that we identified, namely resource ef-
ficiency for embedded applications and robustness to corruptions
and perturbations from the real world.

In Chapter 2 we discuss design principles that allow for faster
network architecture and propose a novel architecture to efficiently
predict gender from faces. In Chapter 3 we discuss the challenges
related to the task of ethnicity recognition and evaluate the ac-
curacy of different network architectures on a novel dataset that
suits the constraints of our problem In Chapter 4 we discuss in
detail the image corruptions that occur in realistic scenarios as
well as the perturbations that may affect the appearance of a face
in a sequence of frames and analyze their effect on the network
accuracy, while proposing possible solutions. In Chapter 5 we dis-
cuss the challenges that need to be faced when developing an age
predictor and we propose a training methodology that is able to
achieve state-of-the-art results on a realistic images while retaining
reasonable computational complexity.

In Chapter 6 we draw our conclusions and sketch some propos-
als from future research directions.
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Figure 1.8: Functional processing pipeline of a typical system that
performs face analyisis.

1.3 State of the art

1.3.1 Facial soft biometrics

The typical pipeline for a face analysis system is shown in Figure
1.8 and consists of the following logical steps: (1) face detection;
(2) face normalization/alignment; (3) feature extraction and clas-
sification. The framework is generic and shared among all the
tasks concerning face analysis, with minimal differences.

In the first step, the position of the face in the image is identi-
fied with model based approaches, such as [35], [36] and [37]; more
recent approaches exploit one-shot cnn-based detector [38, 39].
The chosen algorithm must be accurate and efficient, since search-
ing for a small face in a large image can be computationally taxing.
Missing or significant imprecision in the detection and localization
of the face will obviously mislead every subsequent processing step,
hence the method needs to be accurate. While early methods such
as [35] were only able to detect frontal faces, modern detectors will
return faces in a variety of poses. The use of a dataset with sig-
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nificant pose variability will require to use an unconstrained face
detector; processing steps downstream must be able to deal with
faces in such unconstrained poses.

In the second step, the face image is processed in order to
achieve a canonical representation of the face in terms of position
and appearance; having a canonical representation of the face re-
duces the amount of variability which is irrelevant to classification.
This step is crucial when the downstream step (feature extraction)
is not particularly effective in dealing with changes in illumination,
pose, occlusions and so on; having such variability reduced, signif-
icantly improves the discrimination capability of the feature, thus
improving the final classification performance. On the contrary, if
the feature extractor is particularly robust, the normalization step
can be omitted or reduced to a few simple operations; reducing
the complexity of the normalization step is helpful since complex
normalization algorithm can be slow and/or error-prone: if feature
extraction relies heavily of the correct operation of normalization,
errors in this phase will almost certainly lead to randomness in
the classification result.

In order to compensate for pose variability, the face pose must
be first established: to that aim, a suitable detection algorithm
is used to locate the facial landmarks inside the face region. The
facial landmarks are known points in the face that are easy to
identify for a human: the tip of the nose and the centers of the
eyes have a major role in determining the pose, but are not the
only ones. Once the facial landmarks are identified, the image can
be scaled and rotated to match a predefined template: an affine
transformation is computed to bring the eyes and the nose in fixed
locations. This kind of normalization can fully compensate for in-
plane rotation of the face while other kinds of rotations of the head
are preserved in the image (Figure 1.9 top). More sophisticated
methods may exploit more landmarks to perform more radical
transformations; full frontalization approaches [40] will distort the
image in an effort to bring the face in a frontal pose. The differ-
ence between the two solutions can be appreciated in Figure 1.9.
However, frontalization methods have two main drawbacks: they
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Figure 1.9: Affine transformation (top) compared to full face
frontalization (bottom) 1.

can be extremely slow and they introduce a consistent deforma-
tion of the face, possibly corrupting the characteristics of interest
in the face. For this reason, most proposed methodologies for soft
biometric extraction implement either no pose normalization or
a simple solution based on affine-transformation; they typically
neglect face frontalization, leaving the burden of dealing with off-
plane rotations to the feature extractor.

Common approaches for compensating variability in illumina-
tion include histogram equalization [41], contrast stretching[42],
plane fitting [43].

In the third and fourth step, the actual classification takes
place; the feature extraction step aims to produce a representation
of the face with lower dimensionality. All the irrelevant variability
in the input image should be discarded in this phase, while the
most representative features to the task at hand must be encoded
in the resulting feature vector.

Three main strategies may be identified for feature extraction:
(1) handcrafted features, (2) trainable features or (3) a combina-
tion of them.

Handcrafted features are carefully designed by humans explic-

1Image courtesy of github.com/dougsouza/face-frontalization

github.com/dougsouza/face-frontalization
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itly for the specific problem, while trainable features are general
purpose meta-descriptors with a large number of parameters that
can be tuned automatically from examples. Trainable features in-
clude all the techniques related to deep convolutional neural net-
works, that employ stacks of convolution operations using filters
which are learned from the data.

Finally, the classification step employs machine learning tech-
niques to extract the target biometrics from the feature vectors.
Support Vector Machines (SVM) and its variations have been the
most commonly used classification methods for a long time. More
recently Neural Network based classifiers are most commonly used
because they can be trained jointly with CNN feature extractor
[31].

In the subsequent paragraphs we will survey the literature for
each specific biometric task covered in this thesis.

1.3.1.1 Gender recognition

Gender recognition from faces is one of the basic capabilities of the
human beings. Extending this capability to machines is of great
interest in many application areas, beside social robotics and con-
versational agents. Digital signage is becoming more and more
established as an application; in this scenario a digital billboard
is used in place of a static one, to show dynamic advertisements,
customized depending on the characteristics of the person looking
at the monitor itself. Gender recognition can be profitably used in
this area, since it allows to boost the effectiveness of the advertise-
ment campaigns. Being digital signage an older application than
social robotics, we appreciate that the push for developing efficient
and effective gender recognition algorithms has been around for a
long time [44].

Traditionally, handcrafted features have been used for distin-
guishing men and women. Researchers were able to identify ob-
vious clues that can effectively distinguish gender in many situa-
tions, such as beard for man and long hair for women, even though
they do not realize a perfect separation. Following this observa-
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tion methods have been proposed that exploit features such as
color [45] and texture [46] or a combination of the two [47]. This
methods are typically fast but they are not robust in that they
are only effective in simpler cases and they are confused by more
challenging examples.

There is neurophysiological evidence that the shape of the jaws
and cheekbones is the main feature that human use to recognize
the gender of their peers [48]. Indeed, it is known that estrogen
allow fat to be developed in the region around the cheeks, making
the facial traits of a woman rounder and softer while those of a
men are typically harder. Based on this consideration, methods
were proposed to exploit shape information, for example through
the HOG descriptor [49], or fusing shape information with different
kinds of features [47, 50].

[51] is one of the last methods to use handcrafted features (Lo-
cal Binary Patterns, LBP) and it achieved 96.86% accuracy on the
challenging Labeled Faces in the Wild (LFW) dataset, 2% more
than previous attempts thanks to the ”unreasonable effectiveness
of data”[52]; they used in fact a huge automatically annotated
dataset of 4 million instances to train a linear Support Vector
Machine (SVM).

The real turning point for accurate gender recognition though
was the introduction of automatic feature learning. This kind of
systems in fact are much more flexible with much more parameters,
thus they are able to better exploid said unreasonable effectivenes
of data. Trainable COSFIRE filters [53] employ a bank of Gabor
filters with learnable parameters, allowing the msot discriminant
filters to be learnt from data. The filters are tuned on a small set
and then used to train a classifier (typically SVM). Gabor filters,
that are not cheap to compute. The general trend in fact is that
trainable features tend to be more accurate than handcrafted ones,
but less efficient.

CNNs were the final evolution of the trainable methods taking
full advantage from large datasets: they have a massive amount of
parameters to be configured (millions) and require huge datasets
to reach a good level of generalization. It is known in fact that
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the more parameters a learnable system has, the more data is
needed to avoid overfitting (curse of dimensionality). [54] use a
CNN with three convolutional layers and two fully connected lay-
ers. [55] use a deeper CNN with five convolutional layers and
three fully connected layer, achieving an accuracy of 97.1% on the
FERET dataset. Unfortunately none of them reports results on
the LFW dataset, but the FERET dataset is considered to be
equally challenging as the LFW dataset.

After those early results, CNNs developed to an extraordinary
extent. The main application for CNN has been object recogni-
tion, in fact the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [56] has pushed the development of more and
more powerful architectures. Those architectures have been ported
to different problems such as, indeed, gender recognition.

In a recent work [57], the authors were able train the very deep
an powerful ResNet-50 CNN and obtain an accuracy of 99.3% on
the LFW benchmark proving the extraordinary effectiveness of
CNNs for the problem at hand;

However, this and other very accurate methods need gigabytes
of RAM and storage, and billions of floating point operations for a
single prediction. Typical processing units available for a reason-
able cost on robots and smart cameras are become quite powerful,
but not nearly as powerful as those methods would need them to
be; From these considerations, it emerges a clear need for a gender
recognition method which is both accurate in the wild and able
to run in real time on embedded devices. If those two constraints
are met, such a method would be applicable in the most common
real-world applications.

The authors of [58] propose an ensemble of CNN models: with
reference to the VGG architectural principles, they specifically ad-
dress the problem of reducing the computational load; they find
an optimal architecture in terms of depth, number of feature maps
and input size, then they train the best architecture three times
and combine them in an ensamble to reach 97.31% performance
on the LFW dataset whle significantly reducing processing time.
VGG architecture has been also used in [59], where the authors
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compare MobileNet and VGG in the field of social robotic, also
considering the computational burden. Those and other works
testify the attention that is being devoted to porting powerful
methods in constrained applications such as social robotics and
akin interactive, human-centered fields, such as autonomous driv-
ing [60], that require careful design of a real-time capable network
architecture [61, 62].

Within this context, in Section 1.3.2.1 we survey previous re-
search in the field of efficient neural network design, while in
Chapter 2 we specifically proposed an optimal DCNN architec-
ture specifically tuned for gender recognition.

1.3.1.2 Age estimation

Age recognition is definitely trickier with respect to gender. For
starters, age recognition can be hardly considered a classification
problem: age is a real number, and so its estimation it may be
better suited as a regression task. Also it is not trivial to uniquely
identify age from a face image, even for an human observer: one
would need to know the date of birth of the person to know the
exact age; alternatively the apparent age can be estimated by the
looks, yielding an approach known as apparent age; while apparent
gender rarely differs from actual gender, the apparent age will
contain intrinsic error.

Secondly, correctness of the estimated age is hard to evaluate:
is saying that a 80-year old is 79 an error? Is it an error say-
ing that he is 75? Is it an error saying that a 11 year old is 16?
It appears that there is no universally agreeable answer to that.
For this reason, different evaluation protocols exist for different
benchmarks in literature. Some will just evaluate the Mean Ab-
solute Error (MAE) as the mean of absolute differences between
estimated and actual age; this will mean that mistaking a 80 year
old for a 75 years old will have the same weight as mistaking an
11 years old for a 16 years old, that is probably an undesired ef-
fect, since that is not an equally severe error according to human
perception [31]. Some datasets may measure the accuracy, divid-
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ing faces in classes by age, where each class includes ages from
a certain range (e.g. 3-6, 7-12, 13-16, 17-20, and so on); this
approach allows to create groups according to what human per-
ception may consider to be equivalent ages. Arguably the most
agreeable evaluation system is proposed by the ChaLearn Looking
at People (LAP) benchmark[63]: the LAP dataset has every image
annotated by multiple people with the apparent age and, for every
image, the mean and variance of the annotation is computed. Er-
rors are weighted by the variance in the annotation so that errors
on samples that have higher variability in the annotation itself will
be weighted less and vice-versa;

More precise explaination of all the protocols will be given
in the following, since our experimentation we will evaluate our
results according to all those different protocols.

We will now describe the methods and datasets from literature:
like for gender, the first efforts to tackle the task of age estima-
tion relied on hand crafted features [64]; however, these techniques
were able to achieve reasonable accuracy only in controlled condi-
tions (e.g. frontal pose, high quality, high resolution), while their
accuracy dropped when exposed to the variations in lighting and
pose happening in real environments [31]. The advent of deep
learning greatly allowed for age estimation methods that are sig-
nificantly more reliable in simple scenarios, and vastly superior in
challenging conditions, making possible the design of algorithms
sufficiently accurate for real applications [31] [65] [66].

Although very effective, the methodologies based on convolu-
tional neural networks, again, are often slow and resource demand-
ing. Efficient network architectures targeted at biometric analysis
exist [58], but they often require a sacrifice in accuracy, while the
most accurate methodologies can be extremely bulky and slow [57],
namely unusable for practical applications despite their reliability.

A second problem that hinders researchers in the field of age
estimation is the absence of a large, reliably annotated dataset.
This problem is due to the cost and difficulty of annotating a
wide dataset. The one proposed during the LAP challenge 2016
[63], also known as APPA-REAL, is very reliable, being each face
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annotated by multiple people as described before; the process is
accurate but costly and, in fact, the dataset includes only 7,591
images; for this reason, it is insufficient to train a deep network on
its own, and it is only used for fine tuning after the mandatory step
of pre-training on a large-scale dataset [31]. The largest dataset
for age estimation available in the literature is IMDB-Wiki [67],
whose authors adopted a different approach for age labelling. They
tapped from the profiles of famous people available into the public
image databases of Wikipedia and the Internet Movie Database
and automatically annotated more than 500, 000 images obtain-
ing the age from the birth date of the person and the date of the
picture; of course, this procedure does not ensure the reliability of
the annotations, so much that the authors themselves recommend
using the dataset with caution as there are several errors. Simi-
lar considerations apply for Cross-Age Celebrity Dataset (CACD)
[68], which include around 163, 000 images annotated with the
same protocol adopted for IMDB-Wiki.

In absence of better alternatives, IMDB-Wiki is the current
standard for pre-training convolutional neural networks for age
estimation. However, to obtain state of the art performance, it
is necessary to carefully ”clean” the dataset in order to consider
only the correctly labelled images requiring some labor and getting
varying results depending on the exact method chosen for clean-
ing. The authors of [57], winner of the LAP 2016 competition,
applied a combination of automatic and manual filtering strate-
gies to discard almost half of the images and to obtain a cleaner
version they call IMDB-Wiki-cleaned, unfortunately not publicly
available. Therefore, a significant effort is required to design and
implement an effective training procedure of convolutional neural
networks for age estimation.

In this work, the use of knowledge distillation is proposed to
overcome these limitations. Knowledge distillation [69] is a tech-
nique used to train small, efficient convolutional neural networks
with reduced need of resources and improved accuracy. More infor-
mation on this technique will be described in Chapter 5, alongside
the details of the proposed method and its results.
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Figure 1.10: Faces of different ethnicities (from left to right:
African American, East Asian, Caucasian Latin, Asian Indian)

1.3.1.3 Ethnicity recognition

Ethnicity recognition is a growing topic in the community, as tes-
tified by the new datasets and methods [70, 71, 72, 73] that are
regularly published in recent times.

Methods are proposed as support for other soft biometrics
in applications where variations in ethnicity affects performance
(gender recognition, age estimation, identitication) or in foren-
sics applications (ethnicity based subject identification for public
safety).

Nevertheless, in a recent comprehensive survey [74] the authors
notice that the lack of ethnicity data is one of the main obstacles
to the further development of the topic: in the era of deep learning
a large amount of data is necessary to train an effective method.
The datasets that are currently available have insufficient size,
when compared to the ones available for the other facial soft bio-
metrics [75]. As a consequence of this, it has been recently shown
[73] that the CNNs trained for ethnicity recognition on the cur-
rently available datasets have a limited generalization capability
on different test sets.

The lack of ethnicity data can be attributed to the fact that
the concept of ethnicity is controversial. It can be defined qualita-
tively and not quantitatively. Identifying universal distinguishing
features is harder than it is for other kinds of biometrics, such as
gender: ”ethnicity”, as intended by humans, has no biological va-



28 1. Introduction

Table 1.1: Public datasets of faces annotated with ethnicity
groups.

Dataset Images (Subjects) Ethnicity groups
FERET [77] 14,126 (1,199) Caucasian, Asian, Oriental

African
JAFFE [78] 2,130 (10) Japanese
IFDB [79] 3,600 (616) Iranian
CASPEAL [80] 30,900 (1,040) Chinese
MORPH-II [81] 55,134 (13,618) African, European, Asian, His-

panic, Others
FEI [82] 2,800 (200) Brazilian
PubFig [83] 58,797 (200) Asian, Caucasian, African

American, Indian
CUN [84] 112,000 (1,120) Chinese
HUDA [85] N/A Saudi Arabia
EGA [86] 72,266 (469) African American, Asian, Cau-

casian, Indian, Latin
CAFE [87] 1,192 (154) Caucasian, East Asians, Pacific

Region
LFWA+ [88] 13,233 (5,749) White, Black, Asian
UTKFace [72] 20,000 (N/A) White, Black, Asian, Indian,

Others
FairFace [73] 108,192 (N/A) White, Black, East Asian,

Southeast Asian, Indian, Mid-
dle Eastern, Latin

lidity, since there are no genetic characteristics that allow individu-
als to be grouped according to the well distinguished ”ethnicities”
[76], such as the ones shown in Figure 1.10. For example, ethnic-
ity cannot be automatically inferred knowing the place of birth:
being the categorization a human construct, it takes humans to
manually annotate the categories. Additionally perception of the
ethnicity is not universal and different people may not agree on
the ethnicity of a person from their looks; they may not even agree
on how many ethnicity are there to be distinguished.

We summarize public datasets available for this task in Table
1.1. Those datasets have three main drawbacks.

To begin with, different dataset define different categories. A
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standard categorization does not exist, due to the subjectiveness
of ethnicity perception; furthermore some datasets are devoted to
specific application contexts, for example containing faces from a
single macro-ethnicity (e.g. Chinese, Brazilian, Japanese, Iranian,
Saudi Arabia); these data cannot be used for the task on their own
but they get often integrated into larger datasets. Other datasets
have different ethnicities in them, CAFE, FERET, PubFig, EGA,
LFWA+, UTKFace and FairFace but they still are inconsistent
with each other. This landscape also complicates comparison be-
tween methods, rendering some results not reproducible.

A second issue is that the datasets are not very large, having
thousands of images at best and typically not well balanced among
the different ethnicities (i.e. some ethnicities contain thousands of
samples while other only a few hundreds). As said before, deep
networks benefit from huge quantities of data in their training pro-
cess. FERET [77] dataset has been used very often for ethnicity
recognition; unfortunalety it does not have an official division be-
tween training and test set, rendering results not reproducible nor
comparable. MORPH-II contains many samples of European and
Asian people, while the other classes only amount to the 4% of the
whole dataset. EGA [86] merges 6 pre-existing datasets (includ-
ing FERET); its main drawback is that it contains few subjects
per ethnicity, which is not ideal for training, however it includes
more than 70, 000 samples and it is used very often as a bench-
mark. In deep learning applications, LFWA+ and UTKFace have
known the best success; they use fairly common labels (White,
Black, Asian) and only contain a few thousands images. Cross-
dataset experiments demonstrated that the deep networks trained
on those datasets are not able to generalize on different test sets
[73]. FairFace is definitely the largest, most complete dataset cur-
rently available for ethnicity recognition, since it is composed by
108, 192 images, with a clear, official division in training and test
set. Furthermore it is balanced, having the samples almost equally
distributed among 7 different classes. The authors of the dataset
show the superior generalization capability achieved by training
on FairFace rather than on LFWA+ and UTKFace [73].
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Finally, to the best of our knowledge, none of the existing
datasets is annotated by people of different ethnicities. Involving
people of different ethnicities in the annotation procedure allows
to minimize the effect of the ”race bias”, where people’s perception
of the ethnicity depends on their own belonging [74].

The brief survey of the dataset literature exposes the neces-
sity of collecting a large large and heterogeneous dataset, that is
annotated for ethnicity recognition in a reliable manner, taking
into account the race bias defining and annotating the ethnicity
groups.

Due to the lack of data, Ethnicity recognition literature is more
skewed towards handcrafted features than it is for the other soft
biometrics, since such systems do not rely as heavily on data.
Common traits that are considered in designing such features in-
clude the color of the skin, the shape of the eyes, the position
of the facial landmarks. Most recent methods however are based
on automatic representation learning, mainly through CNNs and
they manage to obtain the best results.

Among the handcrafted features, the skin color is the most
often used; [89] trains an SVM classifier using color values and
color histograms and obtains a result of 78.5% on the FERET
dataset, using the classes Black, White and Asian. The method
from [83] performs prediction of multiple attributes including eth-
nicity on their own PubFig dataset using color as a feature. Other
methods use feature selection with algorithms like KCFA [90] or
Adaboost [91]. However, color features are not invariant to illu-
mination, rendering them not robust in real environments. Other
approaches use texture and shape descriptors, or a combination of
them, relying on features that do not depend on skin color. The
authors of [92] use Haar features and Adaboost and measure their
performance on a private dataset with 3 classes. Gabor features
are used in two other works [93, 94] using Adaboost for feature
selection and SVM for classification. The methods in [95] and [96]
feed LBP histograms to a KNN classifier; the first uses PCA to
select the most discriminant LBP and Haar features, while the sec-
ond uses the Weber Local Descriptor (WLD) [97]. Many of these
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works collect their own datasets to overcome to the drawbacks of
the existing ones.

In [98] the authors successfully train a CNN for different face-
related tasks, including ethnicity recognition. To overcome the
drawbacks of the dataset, they make abundant use of data aug-
mentation techniques. Their accuracy on on the FERET dataset
with 3 classes (White, Asian, Other) is 93.9% . A more recent
work [70] achieves a result of 98.9% on the same dataset using a
fine-tuned VGG-Face architecture as a feature extractor which is
appliend on a aligned version of the face; SVM in used for classi-
fication.

On the MORPH-II dataset Yi et al. [99] achieve 99.11% accu-
racy. They apply 23 different shallow multi-task CNNs to classify
patches taken from the aligned face image at 4 different scales.
They fuse the decision in the output layer, which provides both
the ethnicity group and the age estimation. The authors only use
Black and White as classes and ignore Asian, Hispanic and Other
since the first two classes alone represent the 96% of the dataset.
Hu et al. [71] obtain 98.6% accuracy using a multi-task version of
the AlexNet architecture. The LFW+ dataset is annotated with
different facial attributes, including ethnicity and used for train-
ing.

In Guo et al. [100] also realize a multi-task classifier: the faces
are detected and aligned, cropped and resized to 60x60 then used
in grayscale to extract using ”BIF” features, that are biologically
inspired. Exploiting a feature selection approach, they can distin-
guish Black from White people with 99% accuracy. Karkkainen
et al. [73] use different datasets to train a ResNet-34 model. The
evaluate the accuracy on different test sets to assess the gener-
alization capabilities deriving from the use of each training set.
The results show FairFace allows significantly higher generaliza-
tion than UTKFace and LFWA+, so demonstrating the impor-
tance of correctly designing the training set.

From the analysis of the state of the art we draw three main
conclusions:

• in recent literature, ethnicity recognition typically repre-
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sents only one part of a multi-task system where multiple
attributes are estimated, or is used as an ancillary task to a
different soft biometric tasks such as gender recognition and
age estimation;

• modern methods, including CNN architectures, saturated
the capabilities of the datasets that are acquired in controlled
laboratory conditions such as FERET and MORPH-II;

• most currently available datasets, cannot provide the net-
work models with generalization capabilities; FairFace is by
far the best dataset.

For all these considerations it emerges a need for a public large
and challenging ”in the wild” dataset, which is realiably anno-
tated with the most common ethnicities, that allows to train and
benchmark the new approaches. In Chapter 3 we design such a
dataset and then we use it for training and comparing different ar-
chitectures; we show that the accuracy is improved over the state
of the art, when compared on our benchmark and third party
benchmarks.

1.3.1.4 Emotion recognition

Emotion recognition arguably is the most representative applica-
tion in human-centric computing. It plays a crucial role in social
robotics, allowing for an better understanding of the social sub-
text during conversations, thus being the central information in a
dialog system that aims for improving empathy.

Different methods and datasets have been proposed for emo-
tional applications throughout the years; recent research even fo-
cuses on the fusion of different data modalities, such as video,
audio and text, even though video data is found to contain the
largest amount of emotional information [101]. At the same time,
the fundamental analysis of face images has been considering more
and more complex scenarios [102, 103]. The publication of ‘in the
wild’ data sets acquired in challenging conditions and methods
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Figure 1.11: Emotional Images from RAF-DB (neutral, happy,
sad, angry, surprise, fear, disgust)

that tackle the challenges of those new data sets witness an in-
terest in improving existing approaches [104]. To fulfil the needs
of Deep Learning based methods, datasets need to be both rep-
resentative of real conditions and increasingly large. With such
constraints, the design and efficient gathering of such datasets be-
comes a challenge itself [105].

[106] created the FER-2013 data set, which contains more than
28k grayscale images (of size 48× 48 pixels) from Google Search.
Later, [107] made available AffectNet, which was collected with a
similar approach, with almost 1 million images. AffectNet is auto-
matically annotated in part, with about 60% annotator agreement
only, making it unreliable for thorough evaluation of classification
methods. In general, face emotion recognition data sets have noisy
labels, due to the subjective nature of emotion perception. Sub-
sequent works aimed at reliably labeling data sets with redundant
information coming from multiple annotators. [108] developed the
FERPlus data set including the same images from the FER-2013
data set with annotation improved by crowd-sourcing. Each image
is tagged by ten different annotators. [109] obtained the RAF-DB
data set (Figure 1.11 by adopting the same approach to annotate
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30k facial images from the internet, with 40 annotations per image
on average; their effort produced a very reliable dataset despite the
subjective nature of the task.

Many techniques were proposed throughout the years to im-
prove facial expression recognition methods. If we consider the
RAF-DB benchmark, we observe a trend of improvement in the
state-of-the-art approaches. The authors of the RAF-DB data set
themselves proposed a method based on Deep Locality-Preserving
(DLP) learning; in this method the loss function explicitly ad-
dresses the intra-class variance [109] encouraging the activation of
the last hidden layer for samples of the same class to have a com-
mon centroid in the feature space. They reached an accuracy of
74.2%. [110] trained a ‘contrastive’ encoder in a double encoder-
decoder setting. The learned features are used for generating two
images, the original one and a version with neutral-expression.
The encoder trained in this setting is used as input for a fully con-
nected classifier. [111] proposed a Multi-region Ensemble CNN
(MRE-CNN). Three significant sub-regions are cropped from the
face (the left eye, the nose and the mouth) and each is given as in-
put to a double-input network, alongside with the full face image.
Their final result is an accuracy of 76.7% using a VGG-16 back-
bone. [112] designed a neural network trained using Global-Local
Attention (gACNN) and a VGG-16 backbone. Facial landmarks
were used to compute local attention from patches, then the infor-
mation was integrated with global attention. The use of attention
makes this method particularly robust to occlusions, obtaining an
overall 85.1% accuracy. [113] reported an accuracy equal to 87%
using covariance pooling, based on the intuition that second order
statistics better model the face changes that represent an emotion
rather than max or average pooling. SPDNet layers were used to
reduce the dimensionality of covariance matrices while preserving
the spatial structure. The center loss function, a simplified ver-
sion of DLP, was used for training. [114] used 3D reconstruction
as a method for face frontalization to reduce the variability of the
pose of the faces in the images fed to the classifier. An Inception-
ResnetV1 architecture pretrained on the VGG-Face2 data set was
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then fine-tuned on the RAF-DB data set, achieving 85.1% accu-
racy.

Many efforts were made to collect in-the-wild data sets, with
a high degree of variability and a reliable annotation. Progress
were also made to craft methods that achieve higher and higher
recognition accuracy. Despite the efforts, the data sets always con-
sist of photographs from the web: they surely portrait a ”wild”
condition, with a wide variety of poses, conditions, occlusions and
backgrounds, but they fail to accurately reproduce typical corrup-
tions that happen on a typical real world setup, such as camera
noise, motion blur and so on. No method is currently supported
by an analysis of the robustness to such corruptions; this repre-
sents an element of uncertainty on the performance to be expected
when deploying such systems.

In Chapter 4 we choose 4 CNN architectures with different
characteristics and verify their robustness to different kinds of
corruptions of the input images; furthermore we propose two ap-
proaches to improve the robustness and evaluate their effective-
ness.

Additionally, we observe that a sequence of frames acquired
from real scenarios will have slight perturbation from one frame
to the next, such as adjusting the focus, movements or rotation
of the face or just random noise: it is desirable for the prediction
to be stable through those perturbations, i.e. the perturbations
should not cause the CNN output to change. In Chapter 4 we
evaluate the stability of all the proposed methods.

1.3.2 Network optimization for social robotics

1.3.2.1 Efficient CNNs

Convolutional Neural Network have revolutionized the field of
computer vision with their superior accuracy, ease of use and ex-
treme flexibility. Since AlexNet improved state of art accuracy in
image recognition by 10% in 2012 [115], one research trend has
been to design more and more accurate architectures. The im-
provement in accuracy often comes with significantly more com-
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plex structures, typically deeper [34] (i.e. with more cascaded
layers) and with more parameters, to the point that a separation
emerged in the state of the art between methods that can be used
in practice and methods that cannot [116].

Starting on this observation a new research trend developed
where proposed methods are evaluated based on different param-
eters aside from their absolute accuracy on the ImageNet bench-
mark: main parameters have been identified to be memory foot-
print, parameters, operations count, inference time and power con-
sumption [116]. Different design considerations affect many of
those at once, but each one has its unique effect on the capability
of a network to be run in an application setting. For instance,
we already highlighted how inference time is a crucial parameter
to keep into consideration in the interactive environment of so-
cial robotics, because reaction to stimuli must happen in a timely
manner; it has been observed and experimentally confirmed that
operations count (i.e. the number of multiply-adds needed for ev-
ery forward pass) is a proxy for inference time. This is not the
whole story, though, since modern hardware heavily relies on par-
allelization capabilities, so the inference time will be determined
by the relationship between the way those operation are organized
and the organization of the specific hardware [117, 118, 119].

Approaches such as Network Pruning and Deep Compression
[120] have been proposed to reduce the storage size required to
hold the network parameters with negligible accuracy loss. The
authors observe that such a feature allows for significant savings in
bandwidth for remotely updating a deployed device. SqueezeNet
[121] is a re-designed architecture that stems from AlexNet. It
preserves most of its original accuracy while further reducing the
storage space by a 510x factor. Incidentally the more efficient
design also improves other aspects such as inference time..

MobileNets [122] introduce the depthwise-separable convolu-
tion: rather than having all the input channels involved in the
convolution operation with all the learned filters, the authors em-
ploy a sequence of depthwise convolution (a novel operator) and
pointwise convolution (a standard 1x1 convolution). The depth-
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wise convolution applies one filter to each input channel, while
the pointwise convolution merges the intermediate results pixel
by pixel across all channels. With this approach the number of
operations is reduced by about 9 times, while the representative
power of the network is largely preserved, allowing to achieve high
accuracies with fast inference times even on mobile CPUs. Using
the depthwise-separable convolution the authors design a family
of network architectures called MobileNets that achieve different
tradeoffs in terms of accuracy and inference times.

SqueezeNext [123] improves on the MobileNet concept by
proposing an hardware-aware design: they observe that depthwise-
separable convolution are inefficient on neural network accelerators
with a large number of processing elements (PEs) and design an
architecture that does not rely on them, taking better advantage
on hardware parallelism, raising hardware utilization by 20%.

ShuffleNet [118] introduces channel shuffle for group convolu-
tion: building on the concept of pointwise convolution, that are
the most computationally expensive operation in Mobilenets, the
authors observe that they can be made more efficient if we sepa-
rately combine a subset of the channels. This idea, introduced by
AlexNet [115], appears to defeat the purpose of pointwise convolu-
tion, that is to contaminate information between all channels; the
authors fix this by introducing a channel shuffle layer that gives
the network its name: by shuffling channels they ensure that, in a
stack of layers, the information flows efficiently between all chan-
nels. Using an ARM cpu, the authors prove ShuffleNet-0.5 to be
13x faster than AlexNet with comparable accuracy, better than
previous attempts

On top of their efficient architecture, the authors of MobileNets
and ShuffleNet suggest the possibility of applying quantization to
obtain further advantages on common processing platforms. Inte-
ger operation are much faster and require much less transistors to
be executed than floating point operations, resulting in reduced
manufacturing cost and power consumption. On top of that it has
been proved that, while gradient propagation benefits from larger
representations (to alleviate the problem of vanishing gradients),
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Figure 1.12: Google Tensor Processing Unit 3.0 (250 W power con-
sumption, 32 GB memory, 90 TOPS). Image courtesy of Zinskauf,
CC BY-SA 4.0, via Wikimedia Commons

precision as low as 16 or 8 bits is enough for accurate inference.
For this reason many approaches have been proposed to quan-
tize the weights and the activations of neural networks [124, 125].
XNOR-net [126] goes as far as only using just 1 bit for weights
and activations. To minimize accuracy loss, an established method
consists in training the network with full accuracy (32 or 64 bit
float), then fine tuning it with weights and activation quantized
and artificially constrained to lower accuracy (e.g. 8 bits integer
values); the procedure is called quantization-aware training [127].

Manifacturers are taking advantage of these considerations, de-
signing integer-only neural network accelerators. This includes
Tensor Processing Units (TPUs) by Google (see Figure 1.12), Myr-
iad X from Intel and many others.

Successive versions of ShuffleNet [117] and MobileNets [128,
129] improve the state of the art efficiency by updating the pre-
vious version of each architecture with modern features from the
state of the art. MobileNetV2 introduces the inverted residual
bottleneck layer: a linear bottleneck embeds the information in a
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representation with smaller dimensionality (fewer channels); being
it linear, the information loss is limited. Bottlenecks are connected
though shortcuts, to improve gradient propagation as shown in
ResNet [130]. In a residual architecture, the memory is domi-
nated by the input and output size of the residual blocks, i.e. the
size of the layers that have skip connections, which need to be kept
in memory for long term. The architecture is particularly memory
efficient, since only the small bottleneck layers participate in skip
connections, and their size is limited. Squeezenet V2 improves in
its predecessors by acknowledging that the number of operations
is not sufficient to accurately predict the inference time and in-
troducing hardware-related considerations in the design process,
such as minimizing the number of memory access operations; the
authors use those considerations to design a network architecture
that is significantly faster than Mobilenetv2 on their benchmark
GPU and ARM cpu. They do so by giving up group convolutions
that are not memory-access efficient and introducing the channel
split layer instead, to only process part of the channels in each
block; the addition operation at the end of the block is removed
and replaced with concatenation of the processed channels with
the not processed ones; the number of input and output and out-
put channels for each convolution are kept equal.

MnasNet introduces a search algorithm for identifying the best
tradeoff parameters of a given network architecture on a given
hardware platform.

MobileNetV3[129] uses the hardware-aware Network Architec-
ture Search (NAS) algorithm described above [119], combining it
with design principles taken from novel architecture advances.

A relatively recent survey [131] measures and compares the ef-
ficiency of different architectures that are commonly used in terms
of inference time, number of operations, number of parameters and
accuracy. Their work is a useful reference for choosing a neural
network for practical application from the existing architectures.

[58] specifically design a shallower version of the VGG16 archi-
tecture [132] for the task of gender recognition, using an ensemble
to improve recognition accuracy. Their work shows that the net-
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works designed for Image Recognition are a good starting point for
transfer-learning to other application domains, but specific efforts
for designing a task-specific architecture may be done to push the
state of the art further again.

1.3.2.2 Robustness to corruptions and perturbations

Convolutional Neural Networks (CNNs) are very effective in solv-
ing computer vision tasks, with deeper and more complex architec-
tures scoring very high accuracy on publicly available benchmarks.
However, huge network architectures are sensitive to slight varia-
tions of the input data. [133] showed one aspect of this problem
in the form of adversarial attacks: images can be slightly modified
with tailor-made noise, such that they remain visually identical
for a human eye but strongly affect the response of neurons in a
neural network.

The robustness problems of neural networks are also revealed
when recognition methods are deployed in real scenarios [134].
Variations such as small changes in the framing of the shot, mo-
tion blur, focus or the amount of Gaussian noise do not typically
affect a human observer but may jeopardize the performance of
CNNs [135]. [136] demonstrated that even a moderate blur can
severely affect the reliability of object recognition systems, when
the architecture is trained on a data set of generally sharp images.
[134] explored the instability of the learned representations with
respect to distortions such as JPEG compression, image scaling
and cropping. [137] showed how image degradations reduce the
performance of the trained models. Recently, the AutoAugment
strategy for data augmentation was proposed, which consists of
a set of policies optimized on the data set at hand [138]. It was
demonstrated to improve the robustness of image classification
models [139]. On a different line, architectural modifications to
existing models were proposed to improve their robustness to cor-
ruptions and perturbations. An anti-aliasing filter was deployed
before sub-sampling operations by [140], and a new push-pull layer
was proposed by [141] to learn feature extractors in CNNs that are
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intrinsically more robust to noise and corruptions.

Applications like cognitive robotics and intelligent surveillance
require to process face images acquired in unconstrained condi-
tions, where many of the mentioned corruptions may occur and
affect the performance of the recognition methods. For example,
the CMOS sensors deployed in embedded cameras produce noise
that can be modeled as the combination of Gaussian noise and
shot noise, the former being mainly due to the sensor temperature
and the latter being more prominent with high exposure. The
limited dynamic range of these sensors produces images with low
useful contrast when the scene includes bright and dark parts. In
such conditions, the acquired faces look very dark, e.g. when the
shot is taken in back-light. Furthermore, memory and bandwidth
constraints may require the use of image compression algorithms
(e.g. JPEG) that may in turn include artifacts in the images. The
limitations of the acquisition devices lead to blurred images due
to poor focus and to motion blur artefacts caused by the move-
ment of the subject or the camera itself. The image may present
occlusions caused by dirt or water on the camera lens, such as in
video surveillance images.

Further challenges come from the variations that occur in im-
age sequences. In real-world applications, recognition methods
analyze continuous streams of video data. Each frame usually ex-
hibits coherent content but has slight differences with respect to
the previous frame. This is peculiar for face analysis: the ap-
pearance of a face can have slight variations (e.g. small pose or
expression changes) that, independently of other types of corrup-
tions, represent a challenge and require the learning of robust fea-
tures to perform consistent analyses. While humans are generally
non-sensitive to these variations, neural networks may exhibit in-
stability: from one frame to the next, the subject or the framing
may move, the face may slightly change pose, rotating in plane
or appearing skewed to the camera. When dealing with videos,
one would expect the CNN output to be stable from one frame to
the next, while it has been observed that variations such as im-
age shifts severely affect classification performance of current deep
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network models [140].
The analysis of slight variations in facial expressions is a chal-

lenging problem under controlled conditions, eventually compli-
cated by network robustness issues in real scenarios. The perfor-
mance of existing emotion recognition methods reported in the
literature is often computed on benchmark data sets, with limited
or absent consideration of corruptions and perturbations that can
occur in the real-world. This type of analysis, although important
for the design of improved methods and the progress of the field,
does not allow to assess the performance of the developed methods
when deployed in practice. We show that the classification error
of SOTA methods for emotion recognition easily increases of more
than 70% when input data is subjected to corruptions and pertur-
bations. Robustness-by-design is thus required for engineering AI
systems to reliably work in their deployment environments.
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Based on:

A Convolutional Neural Network for Gender Recognition Optimizing the Ac-

curacy/Speed Tradeoff

A Greco, A Saggese, M Vento, V Vigilante - IEEE Access, 2020

2.1 Background

In this chapter, we aim to design a very efficient CNN architecture
for the task of gender recognition.

We first select a known architecture that leverages the latest
devices from the state of the art of deep learning; we then show dif-
ferent variants of the chosen architecture to study the effect of the
variation on both classification accuracy and prediction latency.
To this aim, we choose MobileNets v2 as reference architecture,
since it demonstrated remarkable accuracy in image classification,
of which gender recognition is clearly a subdomain. The specific
application to gender classification, though, gives us the possibil-
ity to explicitly rearrange the building blocks in a way that yields
the best tradeoff for the problem at hand. In particular, starting
from the consideration that the extraction of soft biometrics from
faces does not rely on image resolution like the general problem of
image classification does, we hypothesize that a reduction of the
input size of the network does not significantly affect the accuracy.
In addition, since the classification is limited to a single domain,
namely the faces, we can reduce the number of feature maps and
the number of layers to realize networks that are not so deep, but
still achieving excellent performance, comparable to the state of
the art, and a better tradeoff with respect to the naive application
of the original versions of MobileNets. We find that, as opposed
to the general trend in deep learning, a smaller network is able to
achieve a notable gender recognition performance without loosing
in terms of accuracy.

In addition, since our application requires a neural network
that is robust in real world conditions, we train it on a very large
dataset that presents significant face variability and we measure
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our performance on the well known LFW+ benchmark, which is
acquired ”in the wild”. We compare our network with other meth-
ods in the state of the art, to show that the proposed system has
comparable or better accuracy but much lower computational de-
mand.

We benchmark our proposed architecture on a low-end em-
bedded device which is widely used for robotic applications. We
compare the measured latency and accuracy with the ones of ex-
isting optimized architectures, namely Xception [142], Squeezenet
[121] and Shufflenet [117]; the experimental evaluation demon-
strates the superiority of our solution, which is able to run in real
time and to achieve high accuracy in real conditions, with a better
trade-off with respect to all the other architectures.

2.2 Methodology

Our proposed feature extracture is based on the design of the
multi-purpose neural network family named MobileNets [122][128].
The main reason behind this choice is that the architecture is very
suited for applications which require a trade off between accuracy
and processing speed on mobile or embedded platforms. Indeed,
the authors discovered that a convolutional layer can be split in a
”depthwise” operation followed by a ”pointwise” operation while
still retaining much of the representative power of the network.
The combination of the two operation (called depthwise-separable
convolution) is functionally equivalent to a 3x3 convolution while
requiring 8 to 9 times less operations, with a consequent reduction
in the number of parameters and inference time [122]. In [128], the
linear bottleneck layers are built out of the separable ones: when
such layers are stacked, a separable convolution is forerun by an
additional pointwise layer with linear activation, to form a ”bot-
tleneck”, where the number of feature maps is increased (expan-
sion) and then decreased (projection): the data are scattered in
a higher-dimensional space so that the non-linear power of ReLU
activation can be exploited without information loss. In addition,
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Figure 2.1: The original MobileNets v2 architecture (width mul-
tiplier = 0.5, input size = 128).

Table 2.1: Different variables of the architecture experimented in
this work.

Change Experimented values
Input resolution 224x, 160x, 128x, 96x, 64x, 48x, 32x
Width multiplier 1.0, 0.75, 0.5, 0.35
Number of layers 17 (full), 8, 6, 4 blocks

the residual connection from [130] are added to ease backpropa-
gation, but they are also useful to improve the automatic opti-
mization of the computation graph when executed: the presence
of skip connections forces a particular order of execution where the
memory requirement is dominated by the size of the input and of
the output tensors of each residual block (much smaller than the
expanded tensors that are treated between the bottlenecks).

2.2.1 Minimization

In this chapter, we experiment different variants of that architec-
ture (depicted in Figure 2.1) to find out how the performance is
affected. The variables that we consider, as reported in Table 2.1,
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are the input resolution, the width multiplier, namely the ratio
of the number of feature maps will be in each convolutional layer
with respect to the original network, and the number of layers that
compose the architecture.

Starting from the assumption that the gender recognition from
faces does not require a huge resolution in most of the cases, the
first variant we consider is the input size. Since smaller tensors
will save precious memory and improve caching, also requiring less
computation, we reduce the input size until we find that further
reduction harms the recognition accuracy. We will test various
input resolutions (from 224×224 to 32×32) for each width multi-
plier to find the optimal pair of values. The authors of MobileNet
do not use sizes smaller than 96 × 96 since a smaller size is less
convenient when the application concerns object recognition or
detection, because the recognition becomes difficult even for hu-
man eyes. Since our architecture is tailored on gender recognition,
this limit does not apply for us: we can empirically evaluate that
32 × 32 pixels are enough for a human to distinguish males from
females. We show in our experiments that this statement is more
or less valid also for neural networks; indeed, a good performance
is also achieved with faces of 64× 64 pixels.

As for the width multiplier, we will experiment the same val-
ues as the original authors of MobileNets, namely 1.0, 0.75, 0.5
and 0.35. Reducing the number of feature maps will strongly re-
duce the computational load, since the aggregation of the different
channels is the most costly operation in an architecture based on
separable convolutions [122]. Furthermore, the reduction of the
number of feature maps will significantly reduce the memory foot-
print of the network and the number of parameters.

As a third way to optimize the network we will exploit that,
for gender recognition, it has been shown that a very deep net-
work may be overkill; the authors in [58] used a VGG-inspired
architecture and showed that very few layers could achieve a very
good result. As shown in that work, the gender recognition CNNs
do not take advantage using a very deep hierarchy of features,
maybe due to the simplicity of the problem with respect to tasks
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such as face recognition, age estimation, object detection, where
deeper networks generally achieve better performance [31]. Fol-
lowing this intuition, we will experiment how the reduction of the
number of layers affects the performance. The rationale is that,
starting with a network with minimal input size, width multiplier
and number of layers, we will obtain an optimized architecture re-
moving groups of adjacent layers that all have the same number of
feature maps (same number of output channels). In Section 2.3.4
we will remove one, two or three groups of layers, showing that the
impact on the performance is limited. The resulting architectures
are described in Table 2.2.

2.2.2 Training

All the network architectures are trained from scratch. The Xavier
Uniform method [143] is used for parameter initialization, which
has been proven to allow neural networks to achieve quick con-
vergence and high accuracy in several computer vision tasks; we
did not use experiment different initialization methods, since this
experimental analysis is focused on the efficiency of the method.
For the same reason, we set the batch size to 64 and perform 100
epochs of 400,000 samples each.

We use data augmentation to improve the training effective-
ness: each loaded image is randomly modified in one or more of
the following ways:

1. Random crop, to model the effects of imprecise unaligned
face detection

2. Horizontal flip

3. Image resampling, to simulate low resolution

4. Brightness change

5. Addition of gaussian noise, to simulate noisy images

The learning rate is initially set to 0.005 and it is halved every
20 epochs. The Adam optimizer is used with parameters b1=0.9,
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Table 2.2: Reduction of the depth in successive steps. The left-
most column shows the number of feature maps (”width”) for each
residual block in the original network; m represents the width mul-
tiplier. Successive reductions collapse adjacent blocks with the
same ”width”, starting from 17 of the original neural network ar-
chitecture.

Original (17) Half net (8) Smaller (6) Smallest (4)
16*m 16*m 16*m 16*m
24*m 24*m 24*m 24*m
24*m 32*m 32*m 32*m
32*m 32*m 32*m 64*m
32*m 64*m 64*m 1280
32*m 64*m 64*m avg
64*m 64*m 1280 2
64*m 64*m avg
64*m 1280 2
64*m avg
96*m 2
96*m
96*m
160*m
160*m
160*m
320*m
1280
avg
2
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b2=0.999, decay=5e-5. Inspiring to related literature, we inserted
a dropout layer between the last convolutional layer and the last
fully connected layer. The dropout rate is set to 0.2.

2.2.3 Preprocessing

As described in Section 1.3.1, a method is composed of different
steps. In this chapter we focus on improving the efficiency of the
combined implementation of steps 3 and 4, feature extraction and
classification; however in this paragraph we describe the rest of
the method used in our experimental setup since, as previously
described, preprocessing steps affect the overall result in a signifi-
cant manner.

As for the detection step, we adopt the well-known Viola Jones
face detector [35], which is quite reliable when applied to frontal
faces but it is still very fast when compared to modern alterna-
tives. We do not use any face alignment in our pipeline; the main
reason is two-fold: the face detector is only trained on frontal faces,
so the variability seen by the feature extractor is already limited;
furthermore we aim to design a very efficient system and so we as-
sume not to have enough computational power to run an accurate
feature extractor. Since the downsides outweight the benefits we
decided to drop the normalization step altogether and to only rely
on the discriminant power of the neural network to deal with all
the variations.

The detected face is cropped and then resampled with bilin-
ear interpolation to match the input size of the network. This
resampling method has been preferred to Nearest-Neighbour be-
cause NN produces significant artifacts on the images with lower
resolution and negatively affects accuracy; more complex methods
such as Bicubic resampling produce similar results in the spatial
and frequency domain but with increased complexity.
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2.3 Results

We perform a comprehensive experimental analysis on several pub-
lic datasets; we describe them in Section 2.3.1, while in Section
2.3.2 we give details about our experimental procedure, to make
it reproducible. Then we report the results of all our experiments
in the following Subsections. In Subsection 2.3.3 we describe, at
various input resolutions, the effect of decreasing the number of
feature maps; in Subsection 2.3.4 we evaluate how the reduction of
the number of layers affects the performance and we show how the
accuracy is traded with speed in the proposed variants of the basic
architecture. In Subsection 2.3.5 we compare our proposed solu-
tion with other architectures on the considered datasets. Finally,
in Subsection 2.3.6 we analyze the results in real environments and
show how our approach is able to succeed in the target applications
while different solutions fail.

2.3.1 Datasets

In this section we are going to introduce the datasets used in our
experiments.

2.3.1.1 VGGFace

The VGGFace dataset [144] was built to train Deep Neural Net-
works on the problem of face recognition, where no existing public
dataset were large enough to effectively train DNNs. The dataset
is gathered in an inexpensive way, using services such as Google
Search to obtain a huge quantity of weakly annotated images.
Such images were then filtered and the annotations fixed and ver-
ified manually through a fast inexact process to achieve a certain
dataset purity, less than 100% but vastly sufficient to be used for
training purposes.

The second version of the VGGFace [32], namely VGGFace2,
was gathered in a similar way but contains a larger quantity of sub-
jects (9,131), images (3.31 millions) and variations in pose, age,
illumination, ethnicity and context. This dataset was originally
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gathered for face recognition, but it is also annotated with gender,
so it is suitable for our aim. The dataset is already partitioned in
training and test set. From the training set we extracted 2 millions
of images for training and we kept 200.000 more images for valida-
tion. The partition was performed on a subject-independent basis,
i.e. no subject identities in the training set are in the validation
set. The validation set is perfectly balanced (100.000 males and
100.000 females) while the training set is slightly unbalanced (57%
males, 43% females). The test set was used as it is for testing, as
intended.

2.3.1.2 LFW dataset

The LFW dataset [145] is the most popular benchmark for gen-
der recognition, even though it was originally created for uncon-
strained face recognition. It contains 13,233 images of 5749 unique
subjects, with a significant imbalance between males (77%) and
females (23%). Since LFW is a standard for gender recognition,
we have used it as reference for our experimental analysis; for a
fair performance comparison, we used the same test set proposed
in [51], [58] and [57].

2.3.1.3 MIVIA-Gender dataset

The MIVIA-Gender dataset [146] has been acquired in real sce-
narios and it is particularly suited for evaluating the performance
in unconstrained environments. In fact, it contains face images
captured in extreme lighting conditions, with motion blur, differ-
ent poses and expressions, low resolution and low quality. The
dataset is composed by almost 6,000 face images and it is par-
titioned in three subsets, namely UNISA-1, that is acquired in
more controlled situations, UNISA-2 and SM, that are very chal-
lenging and have been acquired in different scenarios. We used
this dataset for testing the capabilities of the CNNs to generalize
in real environments.
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2.3.1.4 IMDB-WIKI dataset

The IMDB-WIKI dataset [147] consists of images of celebrities
collected from the famous IMDB website and from Wikipedia.
The total number of images of the two partitions, namely IMDB
and WIKI, is 523, 051. The faces are automatically annotated
with gender and age labels, but the authors themselves declare
that they can not vouch for the accuracy of the annotations. In
fact, they assume that all the images with a single face belong
to the celebrity and automatically annotate them with the gender
declared in the profile; this assumption results in several errors
in the IMDB partition. Consequently, it is recommended to use
the WIKI partition, that is more accurate, for testing purposes;
in spite of this, we used both the partitions for our experimental
analysis, in order to increase the size of the test set.

2.3.1.5 Adience dataset

The Adience dataset [148] consists of 26,580 images of 2,284 dif-
ferent subjects. It is commonly used for gender recognition and
age group classification. It has an extreme variety in terms of age,
including a large quantity of children and includes a lot of im-
ages with very low quality and resolution. Therefore, it is a good
dataset for testing the gender recognition capabilities in very chal-
lenging conditions.

2.3.2 Experimental protocol

All the architectures were trained with Tensorflow and Keras on
a Titan Xp GPU. The latency is measured on a CPU-only setup,
without any GPU acceleration and on batches of size 1. The re-
ported latency is computed as an average of 100 executions, where
the neural network is loaded once and 100 different batches of 1
image each are fed into it consecutively. The measured time does
not include the time for loading/acquiring the image nor the time
for finding the face into the image (i.e. detection).
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Specifically, we used an embedded platform for testing, namely
an ARM Cortex A53 (ARMv8) clocked at 1.2GHz, on board of a
Raspberry Pi 3 Model B, with 1GB ram. The setup is meant
to simulate real use conditions in absence of dedicated hardware,
that is still a common case nowadays. Many mid-high end embed-
ded devices such as smart cameras use ARMv7 or ARMv8 chips,
where Cortex-A7 and Cortex-A53 are common choices and achieve
similar performance.

In the first evaluation on the LFW dataset we include two com-
parable results from the state of the art: the first (hereinafter SoA
Fast) is the network ensemble presented in [58], specifically de-
signed to be lightweight and fast; the second is at the best of our
knowledge the most accurate architecture on the target dataset
available in the literature [57] (hereinafter SoA Best). The ex-
periments in these two papers are performed on the same set of
data, the LFW test set, with the same experimental protocol: all
the evaluation is performed in a cross-dataset fashion, without fine
tuning on the target dataset. Such experimental protocol allows to
obtain a more reliable, pessimistic, estimate of the network gener-
alization capabilities when the system is deployed in real scenarios,
that is one of our purposes. Furthermore, we also considered for
comparison purposes other networks widely used in other image
classification tasks: Xception, Shufflenet and Squeezenet.

According to the same rationale, we perform a more exten-
sive evaluation on all the considered datasets by using the same
cross-dataset evaluation on all the considered datasets, namely
the VGGFace2 test set, LFW, MIVIA-Gender, IMDB-WIKI and
Adience.

2.3.3 Input size and number of feature maps

In the first experiment we evaluate the performance of the pro-
posed method on the LFW dataset by varying both the input
size and the width multiplier, namely the fraction of the original
feature maps. The results are shown in Figure 2.2. For this eval-
uation, we will adopt the notation x y, where x is the input size
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Figure 2.2: Classification accuracy vs.input size (224, 160, ...)
and width multiplier (1.0, 0.75, ...) on the LFW dataset. On the
chart we also display two main results of the state of the art for
comparison, namely SoA Fast [58] and SoA Best [57]. More details
are reported in Section 2.3.3.

and y is the width multiplier. The original MobileNet v2 network
architecture is marked with the label 224 1.0; this is the largest,
most complex model that we experiment and compare with the op-
timized versions. The most noteworthy consideration is the fact
that the original version does not obtain the best performance.
Indeed, the best accuracy of 98.73% is achieved with the network
160 0.75. This difference may be interpreted as an effect of over-
fitting or by considering that the average size of the face images
available in the VGGFace2 is significantly smaller than 224× 224.
In any case, the performance is quite stable with respect to the
input size and a bit more sensitive according to the width multi-
plier, with a reduction of the performance when this parameter is
set to 32. However, even in this case the performance are never
before 96.5%, while being more stable in the other cases in the
range 97.7%− 98.6%.

We also notice that somehow a larger input size can compen-
sate for a lower width multiplier and viceversa: the architectures
128 1.0, 160 0.75 and 224 0.5 achieve almost the same accuracy. It
means that the variability of the results among different versions
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is mainly due to the quantity of parameters and so to the general
representative power of the network rather than to one specific
variation of the architecture.

The performance is significantly reduced when the input size
drops below 64 × 64. This may be due to the fact that, even if
32× 32 is typically enough for a human to distinguish gender, the
proposed network architecture applies a double strided convolution
in the first hidden layers, and much information are discarded from
the 32× 32 image starting from the second layer.

2.3.4 Network depth

In this second experiment we verify how and whether the reduction
of the number of layers affects the performance. We choose two
configurations for the input size and the width multiplier and use
those parameter to train optimized architectures. We use 96 0.75
and 64 0.5 that are two mid-low sized configurations that still yield
a good accuracy, and 160 0.75 that is a bigger configuration that
achieves our best result on this dataset, as shown in the previous
Subsection.

In Figure 2.3 we compare the full-size network (17 residual
blocks) with some reduced versions (8, 6 and 4 blocks). Many
aspects emerge from these results. We can see that even if the
depth of the network is severely reduced along with the latency,
the classification accuracy is pretty consistent. In particular, we
clearly see that it is much more convenient to reduce the depth of
96 0.75 to 8 or even to 6 instead of moving to the 64 0.5 configu-
ration. With respect to the 160 0.75 architecture, it is clear that
a great performance drop occurs reducing the depth. A cause is
probably the overfitting: too many parameters have to be learned,
but the structure of the network is too shallow to construct an ad-
equate feature hierarchy, so the performance is noticeably affected
with respect to equivalent architectures with less parameters (i.e.
96 0.75 and 64 0.5). The adoption of dropout, as described in
Section 2.2.2, is not sufficient to avoid that. Another cause may
be the fact that, having a larger input resolution, the last convo-
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Figure 2.3: Scatter plot of latency versus accuracy on the LFW
dataset. For our proposed architectures (circles), each line repre-
sents a different combination between input size and width multi-
plier and every point indicates a different number of blocks. The
other points (crosses) represent variants of different architectures
we compare with.

lutional layer produces larger feature maps, that are less suited
for gender classification with respect to the smaller ones, where
the information is condensed. Finally, we observe that difference
between shallow and deep network is less pronouced with smaller
resolutions (i.e. 64 0.5). With such a small resolution, the full
size network would have very small feature maps as output of the
last convolutional layer (up to 1× 1 if the input is 32× 32), while
shallower networks alleviate this problem, providing the fully con-
nected layer with enough spatial granularity.
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2.3.5 Comparison with other architectures

In this section we compare our proposed solutions with other ar-
chitectures on all the considered datasets. Hereinafter, we will use
the notation x y z, where x and y are still the input size and the
width multiplier, while z is the number of blocks.

In addition to SoA Fast [58] and SoA Best [57], whose re-
sults are available only for the LFW dataset, we include three
more architectures that have been proven effective and efficient
for the generic task of object recognition training them for gender
recognition. In particular we experiment the architecture named
Xception [142] that improves over the popular Inception archi-
tecture using depthwise convolution, like in our proposed archi-
tecture. Then, we experiment the Squeezenet architecture [121],
that is thought for embedded systems, even though it does not
directly optimize the processing speed with respect to the classi-
fication accuracy. Finally we experiment ShufflenetV2 [117], that
is a very efficient architecture optimized with special reference to
the hardware that we target to obtain the best results with the
minimum possible processing time. For each of the considered net-
works we considered different input sizes that make sense to the
specific architecture and are comparable to our proposed network.
Since Shufflenet comes in two different versions, with full feature
maps (ShufflenetV2-1) and half feature maps (ShufflenetV2-.5), we
experiment both the variants.

Looking at Figure 2.3 we can note that the accuracy achieved
by the smallest proposed network, namely 64 0.5 4, is still higher
than the one reached by SoA Fast (97.69% vs 97.31%), even
achieving lower latency (38 ms vs 122 ms). Compared to SoA
Best [57], the proposed architecture yields an arguably similar ac-
curacy (only 0.57% lower) but it is significantly faster, since all our
proposed architectures require between 40 ms and 340 ms while
SoA Best is more than 6 times slower). It is also worth point-
ing out the differences in the training procedure with respect to
the one applied in SoA Best [57], in order to explain the perfor-
mance gap on the LFW dataset. In our case no pretraining is
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performed, while the authors of [57] prove that a face recognition
pretraining significantly improves classification of accuracy of the
final model. Then, we use VGGFace2 as training dataset, while
[57] used the IMDB-WIKI cleaned. Our training dataset is bigger
(2 million images versus 250.000) and and this is an advantage, but
the IMDB-Wiki dataset contains 50% of the identities contained
in the LFW test set. Finally, we use a different type of data aug-
mentation and a different optimisation algorithm, that we think
is more suitable for our architecture as explained in Section 2.2.2.
The difference is confirmed by the fact that when we train the ar-
chitectures from [57] on the VGGFace2 dataset, we obtain 98.75%
performance, even with face recognition pretraining, that is lower
than the one that the original authors obtain (99.30%). We think
that the 0.5% difference is due to the identity overlap: in the
hardest cases, for people whose face does not express their gender
in a clear way, estimating gender is easier when the classifier has
already seen samples for the same person.

As for the other architectures, from the results reported in Ta-
ble 2.3, we can note that Xception obtains the best performance,
but it is significantly slower than the others; it requires too much
processing time (1363 ms), so it is not suited for our purposes. The
second best is Shufflenet, but the accuracy significantly decreases
when we reduce its input size. With the same input size, our pro-
posed version 64 0.5 8, for example, is 50% faster with comparable
or better accuracy (between 0.05% and 1.50% of improvement on
the considered datasets). Larger versions of the architecture take
much more time to process with respect to our proposed equiv-
alent. The performance of Squeezenet is lower than the other
networks when the full input size is used, but reducing this pa-
rameter the architecture retains most of its accuracy greatly im-
proving the processing speed. However, fixed the processing time,
our network achieves a comparable (64 0.5 4 vs squeezenet-64)
or higher (64 0.5 6 or 64 0.5 8 vs squeezenet-112) accuracy than
Squeezenet.

The experimental results demonstrate that crafting a specially
tailored network is worthwhile to obtain the best efficiency in a
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specific problem such as gender recognition. In fact, our proposed
architecture was explicitly tailored for gender recognition in terms
of input size, number of feature maps and number of layers, while
the other architectures are designed with reference to object clas-
sification. Such task based optimization allows to find the best
trade-off between accuracy and processing time and to achieve
our goals.

Another trend that we can note analyzing the results reported
in Table 2.3, is that the relative accuracy is consistent among dif-
ferent datasets, i.e. the architectures that perform better on the
reference LFW benchmark, still perform better than others on
all the considered datasets. As expected, we can observe a fluc-
tuation of the performance on the different datasets, according to
their intrinsic challenges: the results on LFW, VGG-Face DS 2 and
WIKI are typically higher, while UNISA-2+SM is lower and Adi-
ence is the lowest together with IMDB. In fact, UNISA-2 and SM
are very challenging partitions of the MIVIA-Gender dataset, ac-
quired from surveillance cameras with extreme lighting conditions,
face poses and low quality and resolution. Adience is mainly used
for age estimation and contains a huge number of newborns, in-
fants and toddler, where even human performance is near-random
trying to guess gender from the face. IMDB dataset notoriously
includes very noisy annotation of identity, due to the presence of
images with multiple people in them, so it is not commonly used
as a benchmark for evaluation, but more often for training. In all
the cases, our proposed architecture is always able to achieve very
high accuracy, even requiring significantly less processing time.

2.3.6 Practical considerations

To confirm that our proposed models can be effectively used in
real environments we can do some additional measures to estimate
the time constraints more precisely. Cascade detection algorithms
such as the one from Viola and Jones that we adopt, have different
running times depending on how much face-like configurations are
seen in the frame. We measure that on the target platform, the
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detection algorithm will take less than 100 ms to run in typical
worst case conditions (where many faces are present). We consider
a reasonable worst case of 3 faces per frame, and we consider
acceptable the whole system to run at 3 fps. This processing
speed is to be considered perfectly acceptable for applications such
as digital signage, automatized social interaction and statistics.

With those constraints a time of 70ms or lower is acceptable.
We can use our optimized models for the target application, for
example 64 0.5 8, since an accuracy of about 98% can be consid-
ered enough in the wild for the target applications. The accuracy
can also be slightly improved through ensembling classification on
successive frames. Squeezenet also makes a suitable architecture
for such an application, but only if we use a reduced input size.
SoA Best would not be able to run in real time on the considered
platform, having a time of 2 seconds per face that would be un-
acceptable for those applications requiring a strict real time; the
same considerations can be done for Xception and Shufflenet. Fur-
thermore SoA Best (which uses ResNet-50) and Xception, have to
rely on 1GB additional swap space on flash memory, since they do
not fit in the available RAM.

To finally assess that the 98% accuracy is reasonable for our
model, in Figure 2.4 we show some of the samples for which our
system gets an error. They are mainly due to non-evident gender
features on the face, or to the variability in gender and ethnicity:
since the training dataset is not balanced with respect to them,
we expect that the accuracy drop classifying children, elders and
Asians, since most people in the training set are caucasian adults.
This shows that the network, even in its simplified more efficient
form, successfully learned how to classify gender from faces.
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Figure 2.4: Samples of misclassifications on the LFW test set.
Faces in the first row were miclassified as males, while the ones in
the second row were mistaken for females. Most of the few errors
concern children, elders, Asians and objectively difficult samples.
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Based on:

Benchmarking deep network architectures for ethnicity recognition using a

new large face dataset

A Greco, G Percannella, M Vento, V Vigilante - Machine Vision and Appli-

cations, 2020

3.1 Background

In this chapter we aim to develop a reliable neural network for
ethnicity recognition. As discussed in Section 1.3.1.3, we believe
that the key to developing such a reliable network does not lie in
specific architectural features, bur rather in the use of a suitable
dataset, which appears to not exist in literature yet.

For that reason, we used an efficient procedure to annotate
more than 3 millions images, leveraging the 9,129 identities avail-
able in the publicly available VGGFace2 dataset [32]. The anno-
tation distinguishes 4 ethnicity groups, namely African American
(AA), East Asian (EA), Caucasian Latin (CL) and Asian Indian
(AI). To avoid the bias possibly introduced by the other race ef-
fect, the annotation is done by three people belonging to different
ethnicities, one African American, one Caucasian Latin and one
Asian Indian, choosing the final ethnicity group through a major-
ity voting. The opinion of a fourth annotator has been required
in case of a tie.

In the following of this chapter, we use this dataset for training
modern deep network architectures, such as ResNet-50, VGG-16,
VGG-Face and the efficient architecture MobileNet v2 which we
used in the previous chapter, obtaining more than 94% of accuracy
on the test set. In addition, following on the experiments carried
out in [73], we perform a cross dataset evaluation demonstrat-
ing that neural networks (ResNet-34 and VGG-Face) trained with
VMER are able to better generalize on a different test set (UTK-
Face) with respect to the same networks trained with FairFace, so
confirming the effectiveness of the new set of labels. Finally, we
visualize the features learned by a CNN trained with VMER to
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demonstrate how effectively they encode distinctive facial traits,
recognizable by humans.

We find that using this dataset for training convolutional neu-
ral networks allows to obtain better accuracy that existing results
in the state of the art; we consider our results as a baseline of
the performance achievable with the modern deep network archi-
tectures and assume that this contribution can pave the way for
future experiments and applications in this research field.

For this reason, we make the whole benchmark publicly
available with the name VGGFace2 Mivia Ethnicity Recognition
(VMER) dataset. The utility for the scientific research is at least
threefold: i) the high number of samples available in the dataset al-
lows the training of CNN networks, including larger architectures,
that are more prone to overfitting; ii) the annotation protocol, de-
signed for reducing the own race bias, ensures the accuracy of the
ethnicity labels; iii) the availability of other annotations for the
same images, namely identity and gender, makes the dataset par-
ticularly suited for future advanced analyses, such as multi-task
learning or forensics applications.

The chapter is organized as follows: in Section 3.2 we describe
the dataset, giving details about the available face images and the
characteristics of the considered ethnicity categories; in Section
3.3 we describe the experimental setup, including all the details to
make our experimentation reproducible; in section 3.4 we report
and comment the results of our experimental analysis;

3.2 Dataset

3.2.1 Description

The proposed VMER dataset is composed by images collected
from the original VGGFace2 [32], which is so far the largest face
dataset in the world including more than 3.3 millions face images,
with an average of about 362 samples per subject (minimum 87
images per subject). It also includes gender labels and consists of
62% males and 38% females.
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Figure 3.1: Samples of African American, East Asian, Caucasian
Latin and Asian Indian people available in the VMER dataset.

Table 3.1: Number of images and subjects for each ethnicity avail-
able in the VMER dataset, divided in training and test set.

Ethnicity
Number of samples (subjects) Percentage of samples

Training Test Training Test

African American 242,783 (712) 10,373 (34) 7.7 6.1
East Asian 187,893 (533) 18,750 (62) 6.0 11.1

Caucasian Latin 2,507,837 (6854) 130,900 (380) 79.9 77.4
Asian Indian 202,205 (530) 9,001 (24) 6.4 5.3

Total 3,140,718 (8,629) 169,024 (500) 3,309,742 (9,129)
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The images in the dataset have been acquired in different light-
ing and occlusion conditions and the faces of the subjects are char-
acterized by different pose, age, ethnicity and size. In particular,
more than 75% of the faces have a resolution between 50 × 50
and 200 × 200 pixels, which is less than the input size of most of
the popular CNNs. It is important to take into account this as-
pect when dealing with these face images, as we will show in our
experimental analysis.

3.2.2 Ethnicity annotation

The categorization of the ethnicity is a task anything but sim-
ple even for a human, as witnessed by the scientific literature in
this field [74]; imagine how complex this classification can be for a
computer vision algorithm, which can only make use of color, tex-
ture, morphological features and craniofacial measurements that
can be automatically extracted from a face image. As extensively
discussed in Section 1.3.1.3, the ethnicity annotation requires a
manual procedure that takes into account the somatic facial fea-
tures which a human uses to distinguish the ethnicity categories.

According to the most recent trends, we choose to divide our
dataset into the following four categories:

• African American (AA): the individuals of this ethnicity
group typically have African, North American or South
American origins and are characterized by dark skin color,
full lips and wide nose.

• East Asian (EA): people belonging to this group have Chi-
nese or other East and South East Asian origins. Their color
skin is light, with shades from white to yellowish, and small
nose, but the most distinctive feature is the almond shape
of the eyes and the inclination between the medial and the
lateral canthus, which make the eye look narrower.

• Caucasian Latin (CL): humans of such ethnicity have Euro-
pean, South American, Western Asian and North African
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origins and are characterized by a white or tanned skin,
medium nose and lips and horizontally aligned eyes.

• Asian Indian (AI): folk belonging to this ethnicity group
have Indian, South Asian or Pacific Island origins. They
have characteristics in common with EAs and CLs, but we
can distinguish them by noting very slight differences. They
have a slightly darker skin color and eyes with more defined
features with respect to EAs and CLs.

Examples of face images belonging to the four ethnicity cate-
gories are depicted in Figure 1.

In order to avoid the other race effect, we asked three people
belonging to different ethnicities, namely one African American,
one Caucasian Latin and one Asian Indian, to annotate each iden-
tity with an ethnicity label among the considered four.

The results of the annotations fully confirm the importance
of consulting multiple annotators. In fact, the three people fully
agreed on only 85% of the dataset (7, 779 identities); in 14% of
the cases (1, 278 identities), only two of the annotators gave unan-
imous labels, while in the remaining 1% (74 identities) they all
provided conflicting opinions. The inter-rater agreement, com-
puted with the Cohen’s Kappa [149], is equal to 0.74 and confirms
our hypotheses. This value confirms a good agreement between
the annotators, but it also shows the necessity of averaging the
annotations in order to avoid the other race effect.

To obtain the final annotations we applied a majority voting
rule, which allowed to determine the ethnicity label for 99% of the
face images in the dataset; as for the remaining 1%, we employed
a tie-break rule, by asking a fourth annotator the opinion about
the ethnicity. Such annotator, unlike the others, was allowed to
gather information about the identities (known the name and sur-
name of the celebrity, it was possible to determine the birth place
and so on) and the opinions of the other annotators, in order to
take more into consideration the opinion of the person of the same
ethnicity group, according to the ORE concept; despite this ap-
parent advantage, the role of the latter was anything but simple,
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because the remaining 74 identities had characteristics common to
different ethnicity groups, so confirming the difficulty of this task
even for a human.

3.2.3 Dataset statistics

The face images have been then divided in training and test
set, by preserving the identity partition provided by the original
VGGFace2 authors. The training and the test set are already
splitted and the ethnicity labels are available upon request at
https://mivia.unisa.it. The downloadable package also con-
tains the different annotation files produced by the three annota-
tors.

The final VMER dataset, whose detailed statistics are reported
in Table 3.1, consists of 3,309,742 face images of 9,129 identities.
There is no subject overlap between the training and the test sets,
namely the samples of the subjects used for training the networks
are not included in the test set. In face analysis, this separation
is very important for evaluating the generalization capabilities of
the neural networks.

The training and the test set are unbalanced, since around 80%
of the images belong to the Caucasian Latin category; this is not
representative of the real distribution of ethnicities in the world.
Nevertheless we argue that the available samples are sufficient for
obtaining a wide training set in which all the ethnicity categories
are equally represented. The less represented class in the train-
ing set, namely the East Asian, includes 187, 893 samples; if we
randomly select 187, 893 samples from each of the 4 classes, it is
possible to obtain a balanced training set with more than 750.000
face images, that is by far the largest existing balanced training
set for ethnicity recognition. In 3.4 we demostrate how this pro-
cedure allows the convolutional neural networks to learn a set of
features not specialized on the most represented ethnicities.

In the following of the chapter, we perform different experi-
ments with the original training and the balanced one in order to
evaluate the impact of this aspect on the overall performance.

https://mivia.unisa.it
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3.3 Experimental setup

In this section we describe the considered CNNs and the protocol
adopted for our experimental analysis. We analyze the results
from different points of view, evaluating the effect of the data
augmentation, the possibility to balance the per-class error, the
impact of the input size, the generalization capability and the
learned features.

3.3.1 Deep network architectures

For our experimental analysis we have chosen the CNNs that we
consider the most promising and interesting among the modern
deep network architectures, namely VGG-16, VGG-Face, ResNet-
50 and MobileNet v2.

VGG-16 [132] is one of the most experimented CNN architec-
tures for facial soft biometrics analysis. It achieved a significant
success thanks to its shallow architecture (around 130K param-
eters, 13 convolutional layers and 3 fully connected layers), that
allows to better generalize even in presence of small training sets.
It achieves state of the art age estimation accuracy [150] and it
is not a case, since there are not very large datasets for training
deep networks for age estimation. Being one of the most popular
CNNs, we include it in our performance analysis. As evident from
the name, it consists of 16 layers. The typical input size used is
224× 224 pixels.

VGG-Face [144] is VGG-16 trained from scratch for face recog-
nition on almost 1,000,000 images. This CNN is probably the most
adopted architecture for facial soft biometrics analysis. Indeed, the
availability of weights pre-trained on a very large number of face
images and not for general image classification task (ImageNet)
makes it very suited for transfer learning. VGG-Face achieved an
impressive accuracy in face recognition [144] and age estimation
[150] and it has been successfully experimented also for gender
recognition [59]; for this reason, we believe it can be effective also
for ethnicity recognition purposes.
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ResNet-50 is one of the residual networks [130] proposed by
the Microsoft research group, which won the ILSVRC and COCO
2015 competitions. The most important feature of such architec-
ture is the introduction of the residual blocks, which allow ResNet
to require less processing time for training and less extra parame-
ters for increasing the depth of the network. Consequently, various
versions of ResNet have been proposed with increasing number of
layers (18, 34, 50, 101, 152). However, it has been demonstrated
that ResNet-50 is very effective for other facial soft biometrics
analysis, namely age group classification [150] and emotion recog-
nition [151]. For this reason, in this paper we use its version with
50 layers, which takes as input an image of 224× 224 pixels.

MobileNet v2 is one of the MobileNets architectures [122], very
suited for mobile and embedded vision applications; think, as an
example, to a cognitive robot or a smart camera that is able to
perform face analysis in real-time with a good accuracy even using
normal CPUs [59]. The software optimization which allows this
network to significantly reduce the processing time is the trans-
formation of the convolutional layers in depthwise and pointwise
operations, without paying a lot in terms of accuracy. In our opin-
ion, this network architecture can be useful for real-time ethnicity
recognition applications running on low cost devices. In this pa-
per, we use the most popular v2 version, which consists of 17 layers
and that, in its original version trained with ImageNet, requires
an input of 224× 224 pixels.

3.3.2 Experimental protocol

For each considered CNN we apply the same experimental proto-
col. First of all, we start from the models and the weights already
available for all the networks; in particular, we use the implemen-
tations of the CNNs already available in Keras with Tensorflow
backend. Then, we train them by starting from the pre-trained
weights, performing a fine tuning of all the layers.

We use the Adam optimizer and start from a learning rate
equal to 0.0005, applying a learning rate decay of 0.5 every 6
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epochs; moreover, we setup a weight decay equal to 5e-5. We
impose a batch size equal to 64 and build the batch in order to
preserve the a priori distribution of the training set. In more de-
tails, since the training set (see Table 3.1) includes 7.7% of African
American, 6.0% of East Asian, 79.9% of Caucasian Latin and 6.4%
of Asian Indian face images, we build each batch with 5 African
American, 4 East Asian, 51 Caucasian Latin and 4 Asian Indian
faces.

We fix the maximum number of training epochs to 20 and im-
plement an early stopping mechanism: if the accuracy on the vali-
dation set does not improve for 3 consecutive epochs, the training
is stopped.

3.4 Results

The results achieved by the considered convolutional neural net-
works, trained with the above mentioned protocol, are reported in
Figure 3.2. As noticed in other face analysis tasks [150], VGG-Face
is the most effective CNN also on the VMER dataset, obtaining
94.1% of accuracy. However, the gap with the other networks is
not so wide, being all able to achieve an accuracy greater than
93% (MobileNet v2 94.0%, VGG-16 93.7%, ResNet-50 93.1%).

Such results suggest that the proposed dataset allows to effec-
tively train CNN architectures for ethnicity recognition. However,
it is worth to deepen the analysis by applying data augmentation
or specific design choices for balancing the errors and optimizing
the processing time, in order to evaluate the impact of these fac-
tors.

3.4.1 Effect of data augmentation

Data augmentation on the training set is a strategy which demon-
strated to be very effective for improving the generalization capa-
bilities of the neural networks; this is definitely true for face analy-
sis, since the possible face variations in terms of pose, orientation,
resolution, image quality and occlusions, require the adoption of
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Figure 3.2: Ethnicity recognition accuracy (%) of the considered
CNNs on the VMER dataset. In this experiment, the CNNs are
trained without data augmentation.
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Figure 3.3: Ethnicity recognition accuracy (%) of the considered
CNNs without and with data augmentation on the VMER dataset.
The positive effect of the data augmentation is evident for all the
CNNs.
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techniques for making the training set more representative of the
real facial variability.

Therefore, we performed a new training of the considered
CNNs by applying data augmentation. To make a fair comparison,
we have not increased the number of training samples, but we de-
fined a pseudo-random procedure to synthetically add variations
to the available face images. In particular, we randomly applied
the following data augmentation techniques: gaussian noise ad-
dition, brightness change, image rescaling and random flip. It is
worth mentioning that these operations are not mutually exclu-
sive, since we randomly combined also 2 or more augmentation
strategies.

To reproduce the effect of motion blur or low image quality,
we add gaussian noise, produced with a zero-mean gaussian dis-
tribution, by fixing sigma = 12. To complete the transformation,
we normalize the image to have values between 0 and 255.

To simulate overexposure and underexposure, which can be
present depending on how the camera is installed with respect
to the light source, we randomly add or subtract brightness to
the original image. In particular, we subtract 30% of the pixel
intensity values to reduce the brightness of the original image,
while doing the opposite to reproduce the overexposure. Also in
this case, we finally normalize the image to have values in the
range [0, 255].

In real environments the distance between the face and the
camera is always variable; if the person is far from the camera,
the resulting face image can have a very low resolution. To re-
produce this effect, we randomly subsample the original image
by resizing it with a random scaling factor of 2 or 4. Of course,
this transformation is applied before rescaling the face image to
224× 224 pixels, namely the size required by the target CNNs.

Finally, we further augment the dataset by randomly flipping
the original image in the horizontal direction.

The results of this experiment, shown in Figure 3.3, demon-
strate the effectiveness of the data augmentation, since all the
CNNs benefit from the application of this strategy. VGG-Face and
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Table 3.2: Per-class and overall ethnicity recognition accuracy
achieved by the considered network architectures, when trained
with balanced and unbalanced data. The last columns reports the
arithmetic mean of the accuracy, and its standard deviation.

CNN
Balanced Accuracy (%)
training AA EA CL AI Overall Mean Std

VGG-Face No 79.2 90.3 97.8 71.9 94.4 84.8 10.0
VGG-Face Yes 82.7 93.0 96.7 77.4 94.4 87.5 7.7
VGG-16 No 80.0 91.0 97.8 69.2 94.4 84.5 10.9
VGG-16 Yes 84.8 92.9 96.0 78.9 94.1 88.2 6.7

MobileNetV2 No 80.9 87.6 97.8 71.2 94.2 84.4 9.7
MobileNetV2 Yes 89.3 93.7 94.1 83.2 93.2 90.1 4.4

ResNet-50 No 80.5 88.0 97.7 66.4 93.9 83.2 11.4
ResNet-50 Yes 87.9 93.1 93.7 82.2 92.7 89.2 4.6

VGG-16 achieve an accuracy of 94.4%, while MobileNet v2 and
ResNet-50 94.2% and 93.9%, respectively. Among them, ResNet-
50 and VGG-16 obtain a more relevant performance improvement
(0.8% and 0.7%), while VGG-Face and MobileNet v2 achieve a
smaller increase (0.4% and 0.2%), probably because they start
from a higher accuracy.

It is important to clarify that we applied the data augmenta-
tion only on the training set and not on the test set, to make a
fair comparison; thus, the performance improvement is even more
significant and the augmentation techniques demonstrated their
effectiveness also on the original (non-synthetic) samples.

Considering the improvement achieved with data augmenta-
tion, the other two experiments reported in the following are car-
ried out by applying this technique.

3.4.2 Effect of data balancing

As evident from the results reported in Table 3.2, the CNNs are
more specialized in the recognition of Caucasian Latin individuals.
This accuracy imbalance is probably due to the different number
of samples available for the various ethnicity groups, which implies
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an unbalanced prior distribution of the training set and a special-
ization of the neural networks in the classification of the most rep-
resented classes. Performance imbalance is not necessarily a neg-
ative factor, since some real problems have intrinsic imbalance; in
fact, the ability to recognize more effectively the most representa-
tive categories could be a desired behavior. Think, as an example,
to a self-service petrol station, which must automatically recog-
nize each type of banknote; the ability to recognize more reliably
small denominations, which are presented with higher probability
by the customers, is certainly a desired feature.

Nevertheless, especially when the dataset is not balanced due
to lack of samples and not for a choice, it might be interest-
ing to balance the accuracy on each class and reduce the imbal-
ance introduced by the a priori distribution of the dataset. To
this aim, we investigate this aspect performing a new experiment
with a balanced version of the dataset, which consists of around
750, 000 samples. In particular, we train all the CNNs by using a
batch composed by the same number of samples for every ethnic-
ity group. In this way, for each epoch the neural networks do not
perceive the imbalance and do not rely on the a priori distribution.
The results of this experiment are reported in Table 3.2.

When training with this data balancing technique, we expect
a more constant accuracy across the different classes, with a pos-
sibly smaller overall accuracy, and this is the result indeed, as it
can be observed in Figure 3.4. All the architectures achieve higher
mean accuracy. From Table 3.2 we also notice that the standard
deviation is significantly lower with respect to their non-balanced
couterpart: as expected all classes are recognized with similar ac-
curacy.

When using data balancing, MobileNet v2 and ResNet-50 expe-
rience a significant drop in their overall accuracy (93.2% vs 94.2%
and 92.7% vs 93.9%), while VGG-16 and VGG-Face have a smaller
decrease in accuracy; in particular, VGG-Face retains its original
94.4% overall accuracy. However the increment in per-class accu-
racy is more modest.

This experiments shows the robustness of the VGG-Face ar-
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Figure 3.4: Accuracy of our ethnicity recognition models when
trained with or without data balancing. On the left we graph the
overall accuracy (more represented classes are weighted more); on
the right we graph the arithmetic mean of the per-class accuracies.

chitecture as well as the efficacy of balanced training.

3.4.3 Impact of the input size

All the considered networks require an input size of 224 × 224,
while the size of more than 85% of the face images available in
the dataset is less than 200× 200 pixels. Considering this aspect,
we hypothesize that a reduction of the input size should not sig-
nificantly affect the ethnicity recognition accuracy; on the other
hand, it surely implies a gain in terms of training and inference
time due to the reduction of parameters and operations.

To this aim, we modify all the considered CNNs to accept an
input size equal to 96× 96, that is the average size of all the face
images in the dataset. Then, we re-train them by applying the
same experimental protocol described in Section 3.3.2 with data
augmentation.

The results of this experiment are reported in Figure 3.5 and
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Figure 3.5: Ethnicity recognition accuracy (%) of the considered
CNNs by varying the input size (96 × 96 and 224 × 224) on the
VMER dataset. A significant performance decrease affects only
MobileNet v2, while the others are more or less independent on
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Figure 3.6: Processing time (ms) for a batch of 64 images of the
considered CNNs by varying the input size (96×96 and 224×224)
on a NVIDIA Titan Xp GPU. The processing time is reduced for
all the CNNs of a factor between 3 and 5.



3.4. Results 81

Table 3.3: Per-class and overall ethnicity recognition accuracy
achieved by ResNet-34 and VGG-Face on the test sets of VMER,
FairFace and UTKFace, by varying the training set. The networks
trained with the proposed dataset achieves the best performance
over the UTKFace test set, demonstrating that VMER allows to
improve the generalization capability.

Test set CNN
Training Accuracy (%)

set AA EA CL AI Overall

VMER

ResNet-34 VMER 76.6 87.9 97.8 59.8 93.4
ResNet-34 FairFace 69.3 55.1 96.7 11.5 85.9
VGG-Face VMER 79.2 90.3 97.8 71.9 94.4
VGG-Face1 FairFace 67.9 83.0 84.1 50.7 81.3

FairFace

ResNet-34 VMER 87.5 81.3 85.0 55.3 80.2
ResNet-34 FairFace 81.9 88.9 89.9 59.7 84.3
VGG-Face VMER 86.1 81.5 83.1 56.5 79.4
VGG-Face2 FairFace 81.1 85.0 83.3 43.3 77.6

UTKFace

ResNet-34 VMER 82.7 90.3 96.7 64.3 89.5
ResNet-34 FairFace 69.9 90.2 96.9 31.4 83.5
VGG-Face VMER 81.7 90.2 96.4 64.8 89.3
VGG-Face3 FairFace 50.0 73.5 88.7 29.1 75.0
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confirm our hypotheses. In fact, only MobileNet v2 has a signif-
icant drop of the performance with respect to the original CNN
(92.5% vs 94.2%), while ResNet-50, VGG-16 and VGG-Face have
a drop of less than 0.5%. On the other hand, such design choice
allows to reduce the processing time by a factor between 3 and 5,
as shown in Figure 3.6.

Hence, the idea of reducing the input size of the CNNs, adapt-
ing the whole architecture to this choice, can be useful whether
there are strict constraints in terms of processing time and mem-
ory.

3.4.4 Generalization capability

In this Section we perform a cross-dataset experiment to verify
whether the proposed VMER allows to improve the generalization
capability of the convolutional neural networks trained with its
images and labels.

To this aim, we follow the experimental protocol described in
[73]. We train the same network architecture with two training
sets, namely VMER and FairFace, and evaluate its performance
on a third test set, e.g. UTKFace. As done in [73], we use an
ImageNet pretrained version of ResNet-34 and run the training
procedure with an Adam optimizer and a learning rate of 0.0001
for 100 epochs, until the validation accuracy stops improving. In
addition, we perform a similar experiment with VGG-Face, by
comparing the performance of the network trained on VMER with
the same architecture trained by using FairFace3.

Since FairFace includes seven ethnicity categories, we follow
the instructions given in [73] for reducing the classes to the same
four available in VMER. In particular, they propose the follow-
ing mapping: Indian and Black are trivially mapped on Asian
Indian and African American, East Asian and Southeast Asian
are grouped in the East Asian class and the remaining categories

3We used the VGG-Face model fine tuned on FairFace available in the
DeepFace library: https://github.com/serengil/deepface.

https://github.com/serengil/deepface
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(Middle Eastern, White and Latino) are considered Caucasian
Latin.

The results of this experiment are summarized in Table 3.3.
The ResNet-34 and the VGG-Face networks trained on VMER
achieve on UTKFace an overall accuracy of 89.5% and 89.3%, re-
spectively; the corresponding CNNs trained on FairFace obtain a
substantially lower performance, namely 83.5% and 75.0%. This
result shows that the networks trained on VMER have a greater
generalization capability, while those trained with FairFace are
more specialized on their training set.

In fact, ResNet-34 trained on FairFace achieves on the test set
of the same dataset the best accuracy (84.3%), but the perfor-
mance is significantly lower than the one obtained by the corre-
sponding CNN trained with VMER on the other test sets. Looking
at Table 3.3, we notice that VMER allows to better generalize on
the Asian Indian samples, while the ResNet-34 trained with Fair-
Face have a dramatic decrease of the accuracy on this category
(31.4% for UTKFace, 11.5% for VMER). This difference is prob-
ably due to the greater number of samples available in VMER for
each category and to the high accuracy of the ethnicity annota-
tions.

3.4.5 Feature visualization

The last experiment we present has the aim of visualizing the
discriminative features learned by a CNN trained with VMER.
To achieve this goal, we firstly compute the class activation maps
[152] to determine the regions in the image which are relevant for
recognizing a specific ethnicity category. A class activation map
is a heat map computed for each pixel of the input image; its
pixels with red color gradations correspond to the regions of the
image most used by the neural network to recognize the specific
class to which the sample belongs. Since this technique is designed
for network architectures having an average pooling and a linear
dense layer after the final convolutional layer, we applied it on
VGG-Face by using the tool available in keras-vis4.
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Figure 3.7: Average face images and class activation maps ob-
tained by applying our VGG-Face trained on VMER over all the
African American (first row), East Asian (second row), Caucasian
Latin (third row) and Asian Indian (fourth row) samples. The
parts in red correspond to the face regions more relevant for de-
termining the ethnicity.
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Figure 3.8: Result of the Activation Maximization applied on four
output neurons of the original VGG-Face trained for face recogni-
tion (first column) and of the one fine-tuned for ethnicity recog-
nition (second column). The neurons of the original CNN are
sensitive to the whole face image, while the ones belonging to our
version are activated by specific parts of the face.
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Figure 3.7 shows the average class activation maps obtained
when VGG-Face is applied on African American, East Asian, Cau-
casian Latin and Asian Indian samples. It is evident that the
considered CNN recognizes the African American samples by ana-
lyzing the region of the lips and the nose, which are discriminative
features for this ethnicity. The neuron that recognizes East Asian
faces focuses its attention on the region including the eyes and the
nose, whose particular shape and size are distinctive facial traits.
As evident in Figure 3.7, the average images of Caucasian Latins
and Asian Indians are quite similar and the distinction between
the two ethnicity categories is harder. The average class activation
maps show that the CNN focus its attention on the lower part of
the face for Caucasian Latins, while for the Asian Indians is ar-
guably more sparse, including the forehead and the cheekbones.

To find deeper insights about the features learned with our
procedure, we apply the Activation Maximization (AM) method
[153] over the four neurons in the output layer of our VGG-Face
network fine tuned on the VMER dataset, and over four neurons
of the last layer of the original one pre-trained for face recognition.
This method allows to iteratively generate the image patterns that
maximize the activation of the considered neuron; therefore, we
can infer the distinctive facial traits for each ethnicity and the
differences with respect to the original features.

Figure 3.8 shows the results of the Activation Maximization.
We can note that the image patterns which maximize the activa-
tion of the output neurons of the original VGG-Face, optimized
for face recognition, include more or less the whole face. On the
other hand, the output neurons of the VGG-Face fine-tuned for
ethnicity recognition are sensitive to more specific facial traits,
consistently with respect to the class activation maps.

In particular, the output neuron responsible for the classifica-
tion of African Americans is activated by full lips and wide noses,
while the one that recognizes East Asians is sensitive to almond
eyes and small noses. The output neuron specialized in the Cau-
casian Latin category uses thin lips and particular shapes of the
nose and of the eyes to recognize face images belonging to this
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category. Finally, we are not able to find distinctive facial traits
which activate the output neuron responsible for Asian Indians;
the lack of focus on specific image patterns partially explains the
difficulties of the CNN in recognizing samples of this class. We
believe that the recognition of this particular ethnicity deserves
further future investigations.

4https://github.com/raghakot/keras-vis
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4.1 Background

In this chapter we focus on the task of emotion recognition. As an-
ticipated in Section 1.3.2.2, we recognize that real-world imagery
from application scenarios presents numerous challenges that do
not appear in standard benchmarks, namely corruption of sin-
gle images and perturbation across a sequence of images. For this
reason, we aim to evaluate CNN-based methods for emotion recog-
nition from faces with respect to common image corruptions and
perturbations.

Following on the work of [135], we define a set of image cor-
ruptions typical for the application at hand, and a set of per-
turbations on subsequent frames of a video sequence. We eval-
uate the effect of architectural and data-related changes on the
robustness of the methods, namely the use of an anti-aliasing fil-
ter before down-sampling operations [134] and the AutoAugment
policies [138] for augmenting training data, respectively. We con-
structed a new benchmark data set by modifying the RAF-DB
data set with custom corruptions and perturbations of different
intensity. We generated a new validation set for each corruption
(18 corruption times 5 intensity levels) and for each perturbation
type (10 sets).

We benchmark the performance of networks that ranked
among the best performing models on the RAF-DB data set,
namely SENet, Xception and DenseNet, when the input images
are subjected to corruptions and perturbations. We use the VGG
architecture as the baseline network for our evaluation, since it
has been widely used for face analysis [132]. We also evaluate
an handcrafted feature-based methods, namely LBP histograms
with a Support Vector Machine classifier [154], which achieved the
state-of-the-art performance before deep networks became the de-
facto standard for many computer vision applications, including
facial expression recognition [155].

Furthermore we study the impact of two different improve-
ments: a technique concerning training data augmentation (i.e.
AutoAugment), and one architectural modification, the use of an-
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tialiasing in down-sampling operations.
The code, the data set, the trained network models and the

AutoAugment policies for the considered application are made
publicly available.

The chapter is structured as follows: in Section 4.2, we de-
scribe the experimental framework, data and evaluation metrics,
the considered methods and the training hyper-parameters, and
the modifications we deployed to improve the robustness of exist-
ing models. In Section 4.3 we report and discuss the results that
we achieved.

4.2 Experimental framework

We defined a benchmark framework for evaluation of classifier ro-
bustness, based on the approach proposed in [135]. We trained
several methods on the images of the original training set of the
RAF-DB data set and tested on several corrupted and perturbed
versions of the test set. The benchmark does not involve training
on a corrupted or perturbed version of the training set.

We designed the corruptions and perturbations of the test im-
ages to simulate out-of-distribution samples that occur in real ap-
plications of emotion recognition. We call RAF-DB-C and RAF-
DB-P the corrupted and perturbed test sets, respectively.

We trained enhanced methods for increased robustness. On
one hand we studied the effects of architectural changes in the
network design and on the other hand, we evaluated the modifica-
tion of the training data by means of specific data augmentation
policies.

In the rest of the section, we provide details about the exper-
imental framework, namely the data, the methods and the evalu-
ation protocol that we adopted.

4.2.1 Data set and evaluation metrics

The RAF-DB data set is one of the most popular benchmarks for
emotion recognition [109]. It consists of 29,672 face images, of
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which 15,339 are annotated with the six basic emotions theorized
by [156], plus a neutral class that represents the absence of emo-
tion. The images are divided in a training (12,271 instances) and
a test set (3,068 instances); we used the detected, cropped and
aligned faces, according to the indications of the authors.

The data set is widely used because of its reliable ground truth:
each image is annotated by 40 different individuals and the multi-
label annotation is available as a seven dimensional vector, in
which the number of votes for each class are provided. This allows
the training procedure to take advantage of the intrinsic ambiguity
of emotion evaluation.

In the training phase we discarded the samples with ambigu-
ous annotation, according to the criteria described by [108], and
computed the class probability distribution removing the outlier
votes. In detail:

• the votes of the classes with less than 10% of the total votes
is set to zero;

• the samples as no face or unknown are discarded;

• the samples with more than two classes with equal votes are
discarded;

• the samples for which the winner class has less than 50% of
the votes are discarded;

• the label vector is normalized to length 1.

4.2.1.1 RAF-DB-C

We created the RAF-DB-C data set by applying to the images
contained in the RAF-DB test set 18 corruptions from a set C
that we will describe in this paragraph. We extended the corrup-
tions proposed by [135] with five others that are common in face
analysis problems. Each type of corruption c ∈ C is applied to the
original images with five different levels of severity s ∈ S, where
S = {1, 2, 3, 4, 5}.
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We grouped the corruptions in four categories, namely blur,
noise, digital and mixed ; details about their implementation and
the values of the used parameters1 In Fig. 4.1, we show some ex-
amples of the considered corruptions (rows) with different severity
(columns).

The people framed in real environments are typically not aware
of the presence of the camera. Therefore, the movement of their
faces, often very sudden, can cause blur on the acquired image. In
addition, manual blur can be added in the face pre-processing to
improve the image given as input to a neural network. To take into
account these possible corruptions, we consider the blur category,
including Gaussian blur, defocus blur, zoom blur and motion blur.
The Gaussian blur is deliberately applied as a pre-processing step
on the acquired image to mitigate the effect of acquisition noise
and to enhance the image patterns at different scales. The defocus
blur occurs when using cameras with limited depth of field (DoF)
deployed in scenarios with large DoF. Zoom blur appears when a
person moves towards the camera rapidly, so increasing the size
of the face captured by the sensor. Motion blur occurs when a
subject suddenly moves, quickly changing his face pose.

Image noise is a corruption due to the electronic noise produced
by the image sensor at high temperatures or with long exposure; it
appears as random speckles that can substantially degrade the im-
age quality. In particular, the noise corruptions include Gaussian
noise and shot noise. The first corruption increases proportion-
ally with the temperature of the CMOS sensor; considering that
in real environments the camera is always active and the sensor
works perpetually at high temperatures, this source of noise is very
common. The shot noise is a corruption occurring in case of high
exposure, that is typical for installations in shop windows or for
cameras pointing to the store entrance.

Other corruptions very relevant in real environments are due
to manual camera settings, image compression and image trans-
formation. To improve the image rendering, the automatic gain

1The code is available at https://github.com/MiviaLab/

emotion-robustness are reported in Table 4.1.

https://github.com/MiviaLab/emotion-robustness
https://github.com/MiviaLab/emotion-robustness
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Figure 4.1: Examples of corruptions. The first column contains
images from the original RAF-DB test set, while the others depict
the versions obtained by applying the considered corruptions with
increasing value of severity (from 1 to 5).
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Table 4.1: Details and parameters for the implementation of the
corruptions at different severity. I(x, y, d) refers at the original
image and Ic(x, y, d) at the corrupted image, while d ∈ {R,G,B}
indicates the channel in the RGB space. Mixed corruptions are
obtained as a combination of basic corruptions.

Corruption Param.
Value (per severity)

Description
s = 1 s = 2 s = 3 s = 4 s = 5

Gaussian blur
σ 1 1.8 2.6 3.4 4 Ic(x, y, d) = I(x, y, d) ∗Gσ(x, y), ∀d

where Gσ(x, y) = e(x
2+y2)/2σ2

Defocus blur
r 1.5 2 2 2.5 3 Ic(x, y, d) = I(x, y, d)∗(Dr(x, y)∗Gσ(x, y)),

being Dr a disc shaped kernel2 with radius
rσ 0.1 0.2 0.3 0.4 0.4

Zoom blur

z 1.11 1.18 1.26 1.32 1.4
Ic(x, y, d) = 1

|T |
∑
t zoomt(I(x, y, d)),

t ∈ T = {t = 1 + nε, t ≤ z, ∀n ∈ N}
zoomt(I) enlarges the image I by a factor t

using linear interpolation3.

ε 0.01 0.01 0.02 0.02 0.03

Motion blur
r 3.3 5 5 5 6.7 Implementation from the ImageMagick

library4, with random angle2.σ 1 1.7 2.7 4 5

Gaussian noise σ 0.08 0.12 0.18 0.24 0.3 Ic(x, y, d) = I(x, y, d) + N(0, σ2)

Shot noise q 60 29 15 8 5 Ic(x, y, d) = Poisson(I(x, y, d) ∗ q)/q

Contrast incr. q 1.5 1.9 2.6 3.3 5 Ic(x, y, d) = (I(x, y, d)− µd) ∗ q + µd,
where µd is the average value of the
original image I over the channel d.Contrast decr. q 0.4 0.33 0.24 0.16 0.1

Brightness incr. q 0.1 0.2 0.3 0.4 0.5 Ic(x, y, v) = I(x, y, v) + q, ∀x, y, where v
is the v channel in hsv image representationBrightness decr. q −0.1 −0.2 −0.3 −0.4 −0.5

Spatter

c0 0.65 0.65 0.65 0.65 0.67

Implementation by [135].

c1 0.3 0.3 0.3 0.3 0.4

c2 4 3 2 1 1

c3 0.69 0.68 0.68 0.65 0.65

c4 0 0 0 1 1

JPEG compr. quality 25 18 15 10 7 Implementation from the Pillow library5.

Pixelation q 0.6 0.5 0.41 0.3 0.25 Ic(x, y, d) = I(bxfc/q, byfc/q, d),
Mixed 1
brightness incr.
+ contrast decr.

sb 1 2 2 2 3 I1 = BrightnessIncrease(I, sb)
Ic = ContrastDecrease(I1, sc)sc 1 1 2 3 4

Mixed 2
brightness decr.
+ contrast decr.

sb 1 2 2 2 3 I1 = BrightnessDecrease(I, sb)
Ic = ContrastDecrease(I1, sc)sc 1 1 2 3 4

Mixed 3
gaussian noise +
brightness decr.
+ contrast decr.

sg 1 2 2 3 3
I1 = GaussianNoise(I, sm)
I2 = BrightnessDecrease(I1, sb)
Ic = ContrastDecrease(I2, sc)

sb 1 2 2 2 2

sc 1 1 2 3 4

Mixed 4
motion blur +
contrast decr. +
brightness decr.

sm 2 3 4 5 5
I1 = MotionBlur(I, sm)
I2 = BrightnessDecrease(I1, sb)
Ic = ContrastDecrease(I2, sc)

sb 1 1 2 2 2

sc 1 1 2 1 3

Mixed 5
pixelation +
contrast decr. +
brightness decr.

sp 1 2 3 4 4
I1 = Pixelation(I, sp)
I2 = BrightnessDecrease(I1, sb)
Ic = ContrastDecrease(I2, sc)

sb 1 2 2 2 3

sc 1 1 2 1 3
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control (AGC) and the digital wide dynamic range (DWDR, also
called Dynamic Contrast) dynamically modify the brightness and
the contrast of the acquired image according to the environmental
conditions. Often, the image processing is performed on an ex-
ternal server, acquiring the frames in motion JPEG (MJPEG) to
reduce the required bandwidth; of course, the compressed image
may lose quality and details. Furthermore, the faces are subjected
to rescaling for adapting them to the input size of the neural net-
work adopted for emotion recognition. We group all these cor-
ruptions in the digital category. Therefore, the digital corruptions
include contrast increase, contrast decrease, brightness increase,
brightness decrease, spatter, JPEG compression and pixelation.

2 3 4 5

Contrast and brightness are variations of the image due to the
lighting conditions or to specific camera settings. Brightness varia-
tions occur outdoor with daylight, while in indoor environments it
depends on the artificial illumination. Contrast corruptions occur
when the difference between the brightest and the darkest pixels
in the image (dynamic range) is high. The spatter consists of ran-
dom patterns of obstructions on the camera lens. We simulate
this effect by adding bright occlusions for low corruption severity
and dark patterns for higher corruption severity. JPEG compres-
sion is often used to reduce the amount of data transferred on
networks to an external server for the real-time processing of the
images and can introduce compression artifacts. We reproduce its
destructive effects by gradually decreasing the quality of the com-
pression. Image pixelation happens when an image is scaled from
a lower resolution to a higher one. It is typical for face analysis in
real environments, since the faces have a smaller resolution than

2 The r and σ parameter value are expressed in pixels and referred to a
48×48 image. The value of the parameter is scaled proportionally with larger
images.

3Implementation from the SciPy library: https://docs.scipy.org/doc/
scipy/reference/generated/scipy.ndimage.zoom.html

4https://imagemagick.org/api/effect.php#MotionBlurImage
5https://pillow.readthedocs.io/en/3.1.x/handbook/

image-file-formats.html#jpeg

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html
https://imagemagick.org/api/effect.php##MotionBlurImage
https://pillow.readthedocs.io/en/3.1.x/handbook/image-file-formats.html##jpeg
https://pillow.readthedocs.io/en/3.1.x/handbook/image-file-formats.html##jpeg
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the input size of the neural networks used for facial soft biometrics
recognition.

The mixed corruptions, that we added to those proposed
by [135], consist of combinations of single corruption types that
simulate other challenging real-world scenarios. We create five
mixed corruptions. We combine the contrast decrease with bright-
ness increase and brightness decrease, which occur when the au-
tomatic exposure control of the cameras targets different elements
in the scene and the resulting dynamic range of the images is
compressed. In environments with low illumination, contrast and
brightness decrease together: we combined it with added Gaussian
noise, to simulate high gain on the camera sensor, and with mo-
tion blur, usually caused by long shutter times. We also combined
contrast and brightness decrease with pixelation, to simulate faces
at low resolution in dark environments.

For the evaluation, we adopted the experimental protocol pro-
posed by [135]. Let Ed indicate the classification error on a data
set d, computed as the ratio between the number of wrongly clas-
sified images and the total number of images. Therefore, we use
Eo to indicate the classification error on the original RAF-DB test
set, and Ec for the classification error obtained on a set of images
with corruption type c ∈ C. Since the images with corruption c are
provided with different levels of corruption severity, we compute
the classification error Ec as the average of the errors obtained for
each severity:

Ec =
1

|S|
∑
s∈S

Ec,s (4.1)

where Ec,s is the classification error on samples with corruption
type c and severity level s.

Then, we compute the corruption error Ẽc as the classification
error Ec normalized by the error Eb

c obtained by another classifier
taken as the baseline:

Ẽc =
Ec
Eb
c

(4.2)
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Finally, we compute the mean corruption error E as the aver-
age of the Ẽc over all the corruptions c ∈ C:

E =
1

|C|
∑
c∈C

Ẽc (4.3)

where |C| is the cardinality of the set C. The smaller the value
of E, the better the robustness of the method with respect to the
corruptions.

In addition to the absolute error, we compute the relative cor-
ruption error R̃Ec as the gap between the classification error on
the original test set Eo and that on the corrupted sets Ec, normal-
ized with respect to the error gap achieved by the baseline. For a
specific corruption type c, it is defined as:

R̃E c =
Ec − Eo
Eb
c − Eb

o

(4.4)

Finally, we compute the mean relative corruption error RE, i.e.
the average of the R̃E achieved for all the considered corruptions.

RE =
1

|C|
∑
c∈C

R̃Ec (4.5)

4.2.1.2 RAF-DB-P

We created the RAF-DB-P test set by applying 10 types of per-
turbation to the images of the RAF-DB test set. In contrast to
the corruptions, a perturbation concerns a sequence of frames: it
consists of a small corruption incrementally applied to subsequent
frames. Its temporal character determines substantial appearance
changes between the first and last frame of a sequence. The per-
turbations challenge the performance of the recognition methods
when they are applied in real scenarios and have to perform anal-
yses over time.

We selected a set P of perturbations that typically occur when
dealing with faces in real scenarios. For each perturbation p ∈ P ,
an image in the RAF-DB test set is replicated into a sequence of 30
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Figure 4.2: Examples of perturbations. Each row contains a per-
turbation type, whose temporal sequence is represented from left
to right (one every three frames is shown).

frames, each with slight changes with respect to the previous one.
In Fig. 4.2, we show few examples of perturbed image sequences.

We group the perturbations in four classes, namely blur, noise,
digital and transformation. To implement the first category, a
different noise pattern is applied to the original images, indepen-
dent among different frames of the sequence. For all the other
perturbations, the modifications are applied to each frame of the
sequence in an incremental way.

The blur category includes Gaussian blur and motion blur.
Perturbed sequences with Gaussian blur are generated by apply-
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ing a Gaussian blur corruption incrementally frame after frame:
the standard deviation of the Gaussian blur for the j-th frame is
σj = 0.25 + 0.035i, where j ∈ [0, 29]. Similarly, sequences with
motion blur are generated applying a motion blur corruption with
r = 10 and σ = 3 and motion angle θj that increases for consecu-
tive frames as θj = (4 · j)◦, where j ∈ [0, 29].

Noise perturbations include Gaussian noise and shot noise.
The perturbed sequences are generated applying the correspond-
ing Gaussian and shot noise corruption with the severity s = 2
repeatedly to the original image, as the noise has no inter-frame
dependency.

The digital perturbations are spatter and brightness increase.
For the spatter perturbation, a pattern of translucent water
droplets is created and superimposed to the first frame causing
occlusions. For subsequent frames, the droplet pattern is incre-
mentally blurred and shifted downwards on the image. The im-
plementation and the parameters are those used by [135]. In the
case of brightness perturbations, subsequent frames of a sequence
are modified by applying an incremental brightness increase cor-
ruption to the previous frame: at the j-th frame, the control pa-
rameter qj has value qj = j−15

50
, with j ∈ [0, 29].

Finally, the transformation category includes translation, rota-
tion, scale and shear perturbations. Translation consists in shift-
ing the image for one pixel to the right with respect to the previous
frame. Rotation is implemented by rotating the face image one
degree counterclockwise at every consecutive frame in the range
[−15; 15] degrees. The scale transformation is obtained as follows.
We define a region of interest around the face in an image of the
RAF-DB test set of size w×w and centered at location (x, y). We
change the size of the region in the j-th frame of the perturbed se-
quence to wj×wj, where wj = w ·(0.79+ 29−j

29
0.51) with j ∈ [0, 29],

and keep its center location fixed in (x, y). This results in a loose
face crop in frame 0 and increasingly tighter crops in subsequent
frames.

These three transformations are experienced in real-world ap-
plications due to the imprecision of face detection and face align-
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ment algorithms. Typically, smoothing algorithms such as the
Kalman filter are used to track a face producing a delay, which
causes slight but continuous variations of position, rotation and
scale. The shear transformation simulates a change of perspective
of the face by bending the image according to the affine transfor-
mation

(
x′

y′
)

=
(

1 α
α 1

)(
x
y

)
, where the parameter α ∈ [−0.15; 0.15]

is increased in steps of 0.01.

To evaluate the stability of classification on perturbed im-
age sequences, we compute the flip probability (F). It measures
the likelihood that the predicted class changes across consecutive
frames of a sequence of N frames x = {x1, x2, . . . , xN |xi ∈ X}.
Given a classification method f : X→ {1, 2, . . . ,M}, which as-
signs one of M classes to images xi ∈ X, the flip probability for the
sequence x is computed as the average of the number of changes
of the classification output across consecutive frame. It is defined
as:

F (x) =
1

N − 1

N∑
j=2

[1− δ(f(xj), f(xj−1))] (4.6)

where δ(·, ·) is the Kronecker delta function; note that the function
1 − δ(f(xj), f(xj−1)) assumes value equal to 0 if the method f
predicts the same class for the frames xj−1 and xj, 1 otherwise.

Let us consider a perturbation type p from the set P . We com-
pute the flip probability for the set of sequences with perturbation
p as the average of the flip probability computed for each sequence
x ∈ p:

Fp =
1

|p|
∑
x∈p

F (x) (4.7)

As the Fp may assume values in different ranges for different
perturbations p ∈ P , we normalize its value by the correspond-
ing flip probability F b

p achieved by another classifier taken as the
baseline. The normalized flip probability is computed as:
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F̃p =
Fp
F b
p

(4.8)

The overall measure of the flip rate for all perturbation types in
the set P is the average of the flip rate of the single perturbations
F̃p and is called mean Flip Rate and is defined as:

F =
1

|P |
∑
p∈P

F̃p (4.9)

The smaller this value, the better the stability of the method
against perturbations.

4.2.2 Methods

We benchmarked the performance of different convolutional net-
work models, namely VGG, SENet, Xception and DenseNet, as
well as that of a method based on Local Binary Patterns (LBP)
and an SVM classifier, that achieved the state-of-the-art perfor-
mance prior to the development of deep-learning models for auto-
matic feature learning. We chose different methods with peculiar
architectures to evaluate the impact of the specific design choices
on the overall network robustness.

VGG. We selected the VGG-Face network as the baseline for
our analysis [144]. It is one of the most widely used networks
for facial soft biometrics analysis, based on the VGG-16 architec-
ture [132], trained for face recognition on about 1M images. VGG-
Face achieved high performance in the face recognition [144] and
age estimation [31] problems. The VGG architecture was shown to
have good generalization capabilities also for small data sets [157].
Its lightweight model has only 130k parameters.

SENet. Designed by [158], it achieved the state-of-the-art per-
formance on emotion recognition [159]. The version that we ap-
ply, namely SENet-50 (i.e. a SENet with 50 layers), is based
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on ResNet-50 [130]. SENet uses Squeeze-and-Excitation mod-
ules, adaptively weighting the input channels when computing
the output feature maps. The intuition to explicitly model the
inter-dependencies between the channels was demonstrated to be
a winning strategy, reducing the error by 25% on the ImageNet
benchmark over its plain ResNet counterpart [158]. The trained
model has about 25M parameters.

DenseNet. The Densely Connected Convolutional Network is
designed to increase the representation capabilities of the under-
lying network model [160]. It adopts a dense connectivity scheme
to improve the information flow between the layers, by forwarding
and concatenating feature maps to subsequent layers and using
a growth rate to establish how much each layer contributes to
the global state. The architecture of DenseNet leverages transi-
tion layers, which do convolution and pooling between connected
dense blocks, to normalize the size of the feature maps computed
by different layers. We used the DenseNet-121-32 network, which
has 121 layers and growth rate k = 32. It obtained a good trade-off
of performance and size on the ImageNet classification challenge.
It has 7M parameters, substantially less than the other architec-
tures with comparable performance. To the best of our knowledge,
the DenseNet architecture has not yet been benchmarked on the
problem of facial expression recognition.

Xception. Proposed by [142], this network architecture inherits
the large use of identity connections of the ResNet architecture
and combines it with inception modules and depth-wise separa-
ble convolutions. Its architecture holds the advantage of factoring
convolutions into different branches and separates the convolutions
in depth-wise and point-wise components, so retaining the perfor-
mance of the network while reducing the number of parameters to
20M.

LBP-SVM. LBP is the acronym for Local Binary Pat-
terns [161], a method for dynamic texture description that
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achieved the state-of-the-art performance in facial expression
recognition before CNNs became popular for image classifica-
tion [154]. The LBP descriptor is invariant to translations and
rotations, and robust to illumination changes. Each pixel is com-
pared to its 8 neighbours: the 8-digit binary code will have a 1
or a 0 in each position according to the pixel being brighter than
its neighbour or not. The extended operator, devised by [162],
considers neighbourhoods of different size. Following the method
proposed by [154], we compute the LBP u2

8,2 by [162], that means
that we consider 8 neighbours, but with a distance of 2 from the
central pixel. Furthermore, we do not consider all the possible 256
patterns as bins for the histogram, but only the 59 uniform ones,
as they are shown to preserve large part of the information while
reducing the dimensionality. We resample the image to 110× 150
pixels, then we divide it in 6×7 blocks and compute the histogram
on each of them. The feature vector is composed of the concate-
nation of the block-wise vectors. As suggested in the reference
method, we use an SVM with a RBF kernel as classifier and we
perform a grid search to select the optimal values for the param-
eters C and γ for the RBF-SVM; selected values are C = 4 and
γ = 3 · 10−6.

4.2.3 Training procedure

The pre-training of a CNN on face recognition demonstrated its
effectiveness for improving the classification performance on tasks
like facial gender recognition and age estimation [57, 31]. Hence,
we start from methods pre-trained on the VGG-Face2 data set.
When available, we used the model weights released by the authors
(e.g. for VGG and SENet). In the case of Xception and DenseNet
we pre-trained the networks ourselves by following the protocol
of [32].

Subsequently, we trained the networks on the RAF-DB data
set for 220 epochs. We used the Stochastic Gradient Descent op-
timizer with a momentum equal to 0.9, a batch size of 64, and an
initial learning rate equal to 0.002 that we halved every 40 epochs.
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We used a cross-entropy loss with a weight decay of 0.005. We re-
sized the input images to native input size of each network, i.e.
299 × 299 for Xception, 224 × 224 for all the others, and zero-
centered every channel by subtracting the mean computed on the
VGGFace2 data set. Training on zero-centered data is very com-
mon and improves the convergence of the loss function.

We applied a standard augmentation commonly used for face
analysis and emotion recognition [163]. The augmentation strat-
egy, that we call hereinafter basic, includes random rotation, shear,
cropping, horizontal flipping and change of brightness and con-
trast. The horizontal flipping is applied with a probability of 0.5,
the random rotation is chosen in a range of ±10 degrees, while
the shear matrix

(
1 α1
α2 1

)
uses two independent values of α1 and

α2 between 0 and 0.1. The contrast can be randomly increased or
decreased by a factor up to 2, and brightness increases or decreases
up to 20% of the maximum value.

4.2.4 Robustness and stability improvement

On one hand, the robustness of convolutional models to corrup-
tions and perturbations is affected by the quality of the training
data. On the other hand, certain architectural components of the
networks may influence the performance when the input data un-
dergoes specific types of transformation. For instance, the max-
pooling (or strided convolution) layers introduce aliasing in the
intermediate feature maps and the networks do not provide stable
predictions on translated inputs.

We evaluated the impact that targeted expansion of the input
data, using the AutoAugment data augmentation technique, and
a modification of the CNN architecture with the use of an anti-
aliasing filter before down-sampling, have on the robustness of
the existing network models. We also evaluated the combined
contribution of data- and architecture-related modifications on the
robustness of SOTA methods.
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4.2.4.1 AutoAugment

AutoAugment is an automated procedure for determining a set
of data augmentation policies for a specific image classification
problem [138]. It searches augmentation policies in a space with
16 basic operations, namely shear, translate, rotate, auto-contrast,
invert, equalize, solarize, posterize, contrast, color balance, bright-
ness, sharpness, cutout, sample pairing. The augmentations are
applied with a certain probability and magnitude, for a total of 15k
policies. The search algorithm, based on Reinforcement Learning,
uses a Recurrent Neural Network as controller and a Proximal Pol-
icy Optimization as training strategy. The result of the training
is a set including the 25 best policies for training a network on
the target data set. The authors demonstrated the improvement
achieved with AutoAugment on four benchmark data sets, namely
CIFAR-10, CIFAR-100, SVHN and ImageNet, and its superiority
w.r.t. other augmentation techniques. A faster policy search al-
gorithm called Fast-AutoAugment was developed by [164], based
on density matching.

We evaluated the contribution that the AutoAugment data
augmentation makes to improve the robustness of the considered
methods to common corruptions and perturbations. We learned
and made available 6 the augmentation policies on the RAF-DB
data set. For searching the augmentation policies, we applied the
Fast-AutoAugment method. We used a reduced version of the
RAF-DB data set that includes 20% of the training data and 40%
of the validation data.

We append the suffix |a to the name of the methods that are
trained with AutoAugment data augmentation, e.g. VGG|a in-
dicates the VGG method trained with AutoAugment. The need
of learning a new set of AutoAugment sub-policies highlights the
fact that data augmentation techniques are dataset-specific and
do not generalize well to different input images.

6The optimized policies are public at
https://github.com/MiviaLab/emotion-robustness.
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4.2.4.2 Anti-aliasing filters

Although the convolution operator is translation-invariant, cur-
rent CNN are not, as shown by [140]. This is caused by local
pooling strategies, which introduce aliasing into intermediate rep-
resentations computed inside the networks. Thus, small transla-
tions can cause dramatic performance drops. [140] demonstrated
that a low-pass filter (LPF) before down-sampling reduces the
aliasing in CNNs, according to the Nyquist-Shannon theorem of
sampling.

We modified existing networks for face analysis and analyzed
the impact that an LPF has on the robustness to several types
of corruption and perturbation. We considered the three LPFs of
different size: 2× 2 is a rectangular filter [1, 1], the 3× 3 triangle
filter is given by the convolution of two box filters [1, 2, 1], and
the 5 × 5 binomial filter is given by the repeated convolution of
rectangular filters [1, 4, 6, 4, 1].

We append the suffix |r, |t and |b to the name of the methods
that use the 2× 2, 3× 3 and 5× 5 LPF, respectively.

4.3 Results

We carried out experiments to evaluate the robustness of SOTA
methods for facial emotion recognition to corruptions and per-
turbations of the input data. In the following of the section, we
report the results that we achieved on the RAF-DB, RAF-DB-C
and RAF-DB-P data sets with the considered existing methods.
We discuss the impact that the AutoAugment data augmentation
and the insertion of anti-aliasing filters within their architecture
have on the performance on corrupted and perturbed data in terms
of robustness, generalization abilities and stability of the classifi-
cation output.
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Table 4.2: Results obtained by the considered methods on the
RAF-DB, RAF-DB-C and RAF-DB-P data sets. We report the
classification error on the original test set (ERAF-DB) and on the
corrupted one (ERAF-DB-C), while E, RE and F are normalized
with respect to the results of VGG.

Network ERAF-DB ERAF-DB-C E RE F

VGG 14.28 26.38 1.000 1.000 1.000

SENet 13.69 27.93 1.033 1.089 1.162

DenseNet 15.91 27.43 1.027 0.863 1.355

Xception 17.35 31.94 1.208 1.179 1.789

LBP-SVM 24.92 43.14 1.364 1.341 2.452

4.3.1 Baseline results

We trained the VGG, SENet, DenseNet, Xception and the LBP-
SVM methods on the RAF-DB original training set and tested on
the RAF-DB, RAF-DB-C and RAF-DB-P test sets. These exper-
iments evaluate the ground capabilities of the considered methods
for facial emotion recognition when input images are subjected to
corruptions and perturbations. Here, we take VGG as the baseline
to compute the values of E, RE and F for other methods. We
report the results in Table 4.2.

SENet achieved the lowest classification error (E = 13.69%) on
the original RAF-DB test set. According to the typical benchmark
evaluations of classification algorithms, SENet would be selected
as the best performing method on the concerned data. However,
the results obtained on the RAF-DB-C and RAF-DB-P test sets
gave contrasting insights. We observed a degradation by more
than 10% of the error for all the considered methods, as seen in
Table 4.2.

On the RAF-DB-C test set, VGG achieved the lowest corrup-
tion error (Ec = 26.38), while SENet performed worse: E = 1.033
and RE = 1.089 indicate that the corruption error and the rel-
ative corruption error are 3.3% and 8.9% higher than that of
VGG. DenseNet, instead, achieved a lower relative corruption er-
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ror (RE = 0.863). As the RE measures the degradation of the
performance of a given method on corrupted input with respect to
its performance on the original input, we interpret this result as an
intrinsic capability of the DenseNet architecture to generalize well
with respect to corruptions. We conjecture that the forward con-
nections within a dense block of the DenseNet architecture allow
to repeatedly compute feature maps that catch highly complex
characteristics of the input and make the network more robust
with respect to local changes in the images.

The baseline VGG method has the highest stability when deal-
ing with perturbations, i.e. it achieved the lowest probability of
flipping its prediction between consecutive perturbed frames. The
normalized flip probability F achieved by the other methods is
higher than that of VGG by 16.2% for SENet, 35.5% for DenseNet
and 78.9% for Xception. Finally, we noted that the method based
on LBP and SVM achieved performance not comparable with the
CNNs.

The controversial results of this first analysis show that cor-
ruptions and perturbations are not negligible aspects and must be
treated carefully when deploying a network for emotion recogni-
tion.

4.3.2 Results with AutoAugment

We analyzed the impact of the AutoAugment data augmentation
strategy on the robustness and stability of the considered meth-
ods. We trained them using a set of data augmentation policies
that we determined for the RAF-DB data set, according to the
procedure proposed by [164]. We compare the results of the con-
sidered methods with those obtained by the corresponding variants
trained with AutoAugment, which we specify by adding the suffix
|a to the mehod name. We computed the E, RE and F using the
original methods as the baseline.

As shown in Fig. 4.3, the AutoAugment policies are effective in
improving the robustness of the networks to image corruptions. All
the considered methods achieved a value of E and RE lower than
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Results of the methods trained with AutoAugment

Figure 4.3: Results achieved by the considered methods trained
with AutoAugment. For each method, the mean error E (left
plot), the relative error RE (middle plot) and the flip rate F (right
plot) are computed using the corresponding method without Au-
toAugment as the baseline, represented as the 1.0 horizontal line.

that of the corresponding baseline. The improvement registered
for VGG|a is relevant. It achieved RE = 0.784, which measures
a reduction of the relative corruption error with respect to the
baseline by 21.6%. SENet|a benefits the most from the use of Au-
toAugment as it achieved E = 0.894 and RE = 0.8. DenseNet|a
and Xception|a achieved lower results, namely E = 0.910 and
RE = 0.921 by the former and E = 0.946 and RE = 0.936 by the
latter. AutoAugment is effective to reduce the impact of corrup-
tions on the performance of the existing methods.

On the RAF-DB-P data set, only SENet|a benefits from the
use of AutoAugment (F = 0.938), while the other methods do not
improve their stability.

4.3.3 Results with anti-aliasing filters

We evaluated the impact that using anti-aliasing filters before
the down-sampling layers has on the robustness of the considered
methods. We computed the E, RE and F for each method using
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Results of the methods that use anti-aliasing filters

Figure 4.4: Results achieved by the considered architectures when
enhanced with anti-aliasing filters. The three bars from each group
bar represent the use of rectangular, triangular and binomial filters
respectively; lower is better. For each method the mean error
E (left plot), the relative error RE (middle plot) and the flip
rate F (right plot) are computed using the corresponding method
without any anti-aliasing filters as baseline, represented as the 1.0
horizontal line
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as the baseline the corresponding original network.
The results that we achieved (see Fig. 4.4) show different effects

on different architectures. DenseNet|r substantially benefits from
the use of anti-aliasing filters. Its robustness to corruptions im-
proved, with a reduction of the E to 0.934 and of the RE to 0.89.
The stability to perturbations is also enhanced, as the F = 0.85
indicates a reduction of the flip probability by 15% with respect
to the baseline. VGG|r achieved F = 0.9, while the results on cor-
ruptions are negligible. For SENet, the impact of the anti-aliasing
filters is limited, while for Xception it is pejorative. It is worth
noting that the size of the filter that contributes to the best im-
provement is not the same for all the methods. The use of the
anti-aliasing filter is an effective strategy for improving the perfor-
mance of DenseNet against corruptions and perturbations, and it
is also an effective technique for increasing the stability of VGG.

4.3.4 Results with combined anti-aliasing fil-
ters and AutoAugment

The results obtained applying AutoAugment and the anti-aliasing
filters showed that these modifications allow to improve the ro-
bustness of the considered methods. AutoAugment improves the
robustness to corruptions, while the anti-aliasing filter is more ef-
fective to achieve better stability against perturbations.

We applied these two techniques together, and computed the
E, RE and F for each method using as the baseline the corre-
sponding method without modifications. In Fig. 4.5, we report
the obtained results.

DenseNet|t,a achieved the best overall performance in terms of
classification error (E = 13.59), as well as robustness and gener-
alization to the corruptions in the RAF-DB-C data set(E = 0.887
and RE = 0.676). Its stability to perturbations also improved
(F = 0.894). Xception|t,a achieved a better classification er-
ror (E = 15.88) and robustness to corruptions (E = 1.062 and
RE = 0.848) with respect to the corresponding baseline. On the
perturbations in the RAF-DB-P data set, instead, the modifica-
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Results of the methods that are trained with AutoAugment
and use anti-aliasing filters

Figure 4.5: Results achieved by the considered architectures when
enhanced with anti-aliasing filters and trained with AutoAugment.
The three bars from each group bar represent the use of rectan-
gular, triangular and binomial filters respectively; lower is better.
For each method the mean error E (left plot), the relative error
RE (middle plot) and the flip rate F (right plot) are computed
using as baseline the corresponding method trained without Au-
toAugment and without any anti-aliasing filters, and represented
as the 1.0 horizontal line.
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tions to the architecture and training data worsen the stability
of the method (F = 1.576). This is attributable to the fact that
this network requires larger input images, leading to sub-optimal
performance for the problem at hand, possibly caused by the need
to scale up the small images from the RAF-DB data set. For
SENet, we measured an improvement of robustness to corruptions
(RE = 0.782 and E = 0.932 achieved by SENet|r,a), but not on
the perturbations. Conversely, VGG benefited from these modifi-
cations and achieved better stability (F = 0.783).

The combined use of AutoAugment and the anti-aliasing filters
allows to improve the robustness of the considered models. It
has a substantial impact on DenseNet, which achieved the best
performance on original and corrupted images, and for on VGG
that showed the best stability with respect to perturbations.

4.3.5 Robustness, generalization and stability

In Fig. 4.6, we show a scatter plot of the mean corruption error E
(x-axis) and the relative corruption error RE (y-axis) achieved by
the considered methods. The axis direction is inverted for visual-
ization purposes. In order to directly compare the performance of
different networks, we normalized the results reported in Fig. 4.6
using as common baseline the results of VGG.

The methods in the top-right quadrant (green region) perform
better than the baseline in terms of robustness (lower E) and gen-
eralization (lower RE) to corruptions. It is worth pointing out
that the generalization is intended as the capability of keeping the
gap between the classification error on original and corrupted data
very small. The points in the top-left and bottom-right quadrants
(yellow regions) correspond to the methods achieving an improve-
ment either of the E or the RE with respect to the baseline. The
bottom-left quadrant (red area), instead, collects the results of the
methods that perform less than the baseline on corrupted data.

The methods based on DenseNet (green markers) achieved the
best performance on the RAF-DB-C data set. SENet (blue mark-
ers) benefits from the use of the AutoAugment augmentation poli-
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cies and anti-aliasing filters in its architecture, and improves on the
performance of its original version. The Xception-based methods
(dark-yellow points) show low robustness to corruptions: their re-
sults are all located in the left quadrants of Fig. 4.6. VGG|a is the
only VGG-based method (red points) that achieved better robust-
ness and generalization to corruptions with respect the baseline.

We compared the performance of the considered methods by
jointly evaluating their robustness to corruptions (i.e. the mean
corruption error E) and stability with respect to perturbations
(i.e. the flip rate F ) and show a scatter plot of the results in
Fig. 4.6.

The points in the upper quadrants (top-left yellow and top-
right green quadrants) correspond to the methods that achieved
a better stability against perturbations than the baseline. The
methods based on VGG (red markers) achieved the best stability
against perturbations, as they are located in the upper quadrants
of the plot; however, they are less robust to corruptions than the
other methods. The methods based on SENet (blue markers) and
DenseNet (green markers) achieved good robustness (E = 0.932
and E = 0.887) to corruptions but are less stable to perturba-
tions (F = 1.055 and F = 1.144, respectively). Xception-based
methods (dark-yellow markers) achieved results worse than those
of the other methods. Their results indeed place in the bottom-left
quadrant of the plot in Fig. 4.6.

The modifications to the training data and the use of anti-
aliasing filters in the network architectures generally contributed
to an increase of robustness to corruptions and stability to per-
turbations of the methods with respect to their original imple-
mentation. However, none of the modified methods achieved at
the same time higher robustness and stability than the VGG, i.e.
there are no points in the green quadrant in Fig.4.6. VGG methods
perform more stable classification over perturbed frame sequences
and also exploit the data- and architecture-related improvements
better than other existing methods.
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Figure 4.6: (a, top) Results of the evaluation of the robustness and gener-
alization of the considered methods with respect to corruptions, in terms of
mean error E and relative error RE.
(b, bottom) Results of the evaluation of the robustness to corruptions and the
stability to perturbations of the considered methods, in terms of mean error
E and flip rate F .
The direction of the axes is inverted so that the points in the top right quad-
rant (green region) correspond to the results of methods that improve their
performance w.r.t. the baseline, namely VGG. Different colors represent dif-
ferent network architectures: red is VGG, blue is SENet, green is DenseNet
and yellow is Xception.
The � marker refers at the original methods. The �, � and � markers indi-
cate the methods with anti-aliasing filters of type rectangular, triangular and
binomial, respectively. The empty markers represent methods trained with
the AutoAugment strategy.
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4.3.6 Robustness to categories of corruption
and perturbation

We carried out an analysis of the performance of the considered
methods on specific categories of corruptions and perturbations.
In Tables 4.3, 4.4 and 4.5, we report the E, RE and F values
achieved for each corruption and perturbation category respec-
tively.

The combination of AutoAugment and anti-aliasing filters im-
proved the robustness of the considered methods to all the cat-
egories of corruptions, except for Xception that obtained results
comparable with those of the VGG baseline. The methods based
on DenseNet achieved a considerable improvement of the corrup-
tion error E and of the relative corruption error RE with respect
to the baseline on all the categories of corruptions. The improve-
ment is, however, less evident on the corruptions of type blur ; we
observed that these corruptions are the most challenging for all the
considered methods. This is attributable to the fact that convolu-
tional networks tend to learn distinctive and discriminant features
at high spatial frequencies, while blur preserves lower frequency
patterns which are less relevant for classification [139].

Furthermore, DenseNet methods achieved the highest results
in terms of stability against noise perturbations, obtaining a re-
duction of the flip rate F up to more than 40% with respect to
the baseline. Most of the improvement is attributable to the use
of the anti-aliasing filters, while training the methods with Au-
toAugment has lower impact. In scenarios in which the recorded
images are affected by noise, the DenseNet network architecture
with anti-aliasing filters can be deployed to ensure robust recog-
nition performance.

The impact of the anti-aliasing filters on the stability of the
VGG methods against perturbations is positive and evident for
the blur, noise and transformation types of perturbation. These
methods achieved a reduction of the flip rate F between about
10% and 25% with respect to the baseline. Digital perturba-
tions, instead, are more challenging. The VGG-based methods
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also achieved good robustness with respect to noise, digital and
mixed corruptions.

The SENet methods benefited the most from the use of Au-
toAugment and the anti-aliasing filters to improve the performance
of the original network model with respect to corruptions of the
type noise. The values of the errors E and RE improved respec-
tively by about 30% and 45% with respect to the baseline. How-
ever, the results of SENet methods are negatively influenced by the
other types of perturbations, while showing slight improvements
of robustness with respect to the other categories of corruption.

For the methods based on Xception, instead, the use of Au-
toAugment and the anti-aliasing filters did not contribute to sub-
stantially improve their robustness to corruptions and perturba-
tions, apart a small reduction of the relative corruption error RE
on the corruptions of type digital.
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Table 4.3: Results on the RAF-DB-C data set in terms of E.
Green color gradients indicate an improvement w.r.t. the baseline,
while yellow and red color gradients indicate comparable or lower
results than the baseline.

n
e
t Models

Corruption net net|r net|t net|b net|a net|r,a net|t,a net|b,a

V
G

G

blur 1.000 1.049 0.998 0.901 1.092 1.248 1.196 1.133

noise 1.000 1.254 1.188 1.189 0.943 1.143 0.938 0.889

digital 1.000 0.999 0.951 1.000 0.875 1.039 1.019 1.015

mixed 1.000 1.083 0.990 1.014 0.916 1.125 1.050 0.956

S
E

N
e
t

blur 1.078 1.151 1.019 1.122 0.932 0.966 1.036 0.951

noise 1.218 1.290 1.273 0.921 0.720 0.725 0.729 0.903

digital 0.967 1.103 0.993 1.178 0.933 0.957 0.929 0.971

mixed 1.017 1.166 0.997 1.033 0.940 0.952 0.963 0.981

D
e
n

se
N

e
t blur 0.933 0.939 0.984 1.012 0.973 1.036 0.996 0.979

noise 1.227 0.975 0.965 1.032 0.909 0.821 0.800 0.867

digital 1.038 0.987 0.942 1.045 0.932 1.017 0.868 0.990

mixed 1.007 0.909 0.936 0.966 0.890 0.940 0.862 0.927

X
c
e
p

ti
o
n blur 1.134 1.157 1.120 1.177 1.076 1.112 1.052 1.140

noise 1.203 1.404 1.234 1.477 1.105 0.962 1.157 1.149

digital 1.173 1.183 1.155 1.250 1.140 1.026 1.032 1.052

mixed 1.318 1.293 1.284 1.264 1.197 1.110 1.089 1.097
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Table 4.4: Results on the RAF-DB-C data set in terms of RE.
Green color gradients indicate an improvement w.r.t. the baseline,
while yellow and red color gradients indicate comparable or lower
results than the baseline.

n
e
t Models

Corruption net net|r net|t net|b net|a net|r,a net|t,a net|b,a

V
G

G

blur 1.000 1.035 1.004 0.795 1.169 1.293 1.186 1.126

noise 1.000 1.352 1.285 1.280 0.906 1.116 0.798 0.766

digital 1.000 0.840 0.841 0.982 0.577 0.702 0.607 0.747

mixed 1.000 1.094 0.950 0.991 0.717 0.970 0.761 0.637

S
E

N
e
t

blur 1.203 1.105 1.040 0.947 0.885 0.890 1.056 0.819

noise 1.348 1.343 1.409 0.735 0.588 0.567 0.584 0.812

digital 0.954 0.892 0.945 0.878 0.837 0.760 0.727 0.731

mixed 1.085 1.149 0.975 0.606 0.882 0.811 0.869 0.822

D
e
n

se
N

e
t blur 0.724 0.785 0.938 0.850 0.904 0.893 1.059 0.808

noise 1.283 0.927 0.935 0.969 0.846 0.650 0.724 0.729

digital 0.844 0.748 0.730 0.757 0.728 0.681 0.705 0.656

mixed 0.832 0.651 0.791 0.658 0.651 0.592 0.708 0.579

X
c
e
p

ti
o
n blur 1.036 1.165 1.061 0.988 0.943 1.068 0.992 1.046

noise 1.197 1.531 1.267 1.543 1.056 0.863 1.180 1.107

digital 1.068 1.244 1.129 1.015 1.041 0.765 0.881 0.672

mixed 1.444 1.507 1.414 1.101 1.174 1.017 1.028 0.834
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Table 4.5: Results on the RAF-DB-P data set in terms of F . Green
color gradients indicate an improvement w.r.t. the baseline, while
yellow and red color gradients indicate comparable or lower results
than the baseline.

n
e
t Models

Perturbation net net|r net|t net|b net|a net|r,a net|t,a net|b,a

V
G

G

blur 1.000 0.845 0.881 0.917 1.107 0.881 0.845 0.881

noise 1.000 1.247 1.186 1.200 0.691 0.595 0.530 0.778

digital 1.000 0.917 0.958 1.000 1.197 1.087 0.981 0.955

transformation 1.000 0.746 0.762 0.806 1.150 0.845 0.779 0.802

S
E

N
e
t

blur 1.036 1.000 1.238 1.310 1.036 1.000 1.238 1.310

noise 1.241 1.381 1.180 1.040 0.854 1.017 0.932 0.938

digital 1.023 1.068 1.155 1.481 1.023 1.068 1.155 1.481

transformation 1.255 1.094 1.177 1.728 1.255 1.094 1.177 1.728

D
e
n

se
N

e
t blur 1.500 1.226 1.226 1.345 1.500 1.226 1.226 1.345

noise 0.577 0.569 0.589 0.572 0.865 0.688 0.714 0.878

digital 1.500 1.330 1.284 1.417 1.500 1.330 1.284 1.417

transformation 1.598 1.252 1.248 1.468 1.598 1.252 1.248 1.468

X
c
e
p

ti
o
n blur 1.810 1.500 1.738 1.845 1.810 1.655 1.571 1.810

noise 0.796 1.687 1.706 1.767 1.345 0.992 1.308 1.224

digital 1.674 1.523 1.477 1.610 1.777 1.496 1.432 1.561

transformation 2.333 1.699 1.775 1.968 2.734 1.868 1.843 2.098
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Chapter 5

A distillation approach for
age estimation
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5.1 Background

As previously discussed in Section 1.3.1.2, we find two main limi-
tations in the state of the art, which are, in a way: the absence of
a large and reliably annotated dataset for age recognition and the
absence of a handy procedure for training effective and efficient
methods for age estimation. In this chapter, we propose the appli-
cation of a tailored knowledge distillation approach to overcome
those limitations.

Knowledge distillation [69] is a technique used to train small,
efficient convolutional neural networks with reduced need of re-
sources (i.e. processing time, memory, and so on) transferring the
knowledge learned by a more complex model. The method, in
its general form, consists in the extraction of the class probabil-
ity vectors produced by a large model, also called teacher, and
the adoption of these vectors as a target for training the smaller
model, known as student. An alternative, naive approach, would
be to train the small network directly on the same dataset that
was used to train the large model; however, it has been demon-
strated that for complex problems the student network can achieve
higher accuracy when trained with knowledge distillation than if
it is directly trained with the labels of the original dataset [165].
The intuition behind distillation, i.e. the supposed advantage, is
that the larger teacher model is able to better fit the dataset and
encode its peculiarity due to its higher representative power, in
a way that the smaller model just could not; the student model
may be however able to leverage the knowledge that has been
pre-digested and encoded into a simpler annotation, namely the
output probability vectors of the teacher.

Recent literature demonstrated the effectiveness of knowledge
distillation in various pattern recognition tasks, even related to
face analysis. In [69] Hinton et al. showed that knowledge distil-
lation allows a 2% accuracy improvement of a student model for
speech recognition with respect to one trained using the original
labels of the dataset; with this technique the simple student model
performs similarly to the much more elaborate teacher model. In
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[166] the authors demonstrated that a network trained with the
distillation approach makes a CNN more robust to perturbations
by a considerable amount; this effect is explained considering that
the student network sees its training input in a clearer way and is
able to organize its weights around a more representative manifold.
In [167] Low et al. applied distillation on selected, most informa-
tive faces, to train a face recognition network that achieves good
performance on images with low resolution. In [168] the authors
trained different convolutional neural networks (CNNs) for facial
expression recognition with incomplete labeling; they find that the
student model often outperforms the teacher on the considered
task.

The method proposed here is a variant of the standard knowl-
edge distillation technique. We apply it to the problem of age
estimation, to address its peculiar limitations, namely the absence
of a large dataset with reliable annotation and the lack of a handy
procedure allowing to train effective and efficient CNNs for age
estimation applicable in real scenarios. We take the popular large
scale dataset VGGFace2 [32], which is not natively annotated with
age labels, and we run the most accurate method in literature,
winner of the LAP 2016 competition; this method consists of a
large and complex ensemble of 14 CNNs that analyze 8 versions
of each input image [57], and is trained on IMDB-Wiki-cleaned.
We use the resulting predictions as target labels to train a variety
of different CNN architectures, requiring about 15 times less op-
erations. Therefore, we obtain the two-fold advantage of having a
large dataset annotated for age estimation enabling the possibil-
ity to perform a standard (and fast) training procedure of smaller
student models.

We show that our approach allows to achieve state-of-the-art
results on multiple relevant public benchmarks (including the LAP
dataset) with much simpler and faster methods composed only by
a single CNN, outperforming other complex methods, that tipi-
cally employ large ensembles. We show that using our own cleaned
version of IMDB-WIKI as training dataset, the accuracies reached
by the same CNNs are much lower, thus proving the effectiveness



126 5. A distillation approach for age estimation

of the proposed approach with respect to the traditional proce-
dure. We also show that the student models are even able to out-
perform the teacher in presence of the strong image corruptions
described in Chapter 4.

5.2 Methodology

Our aim is to train standard and efficient CNNs that are able
to perform accurate age estimation. Reliable datasets for this
task are not big enough to effectively train a deep neural network,
while large datasets such as IMDB-Wiki contain spurious annota-
tion that will cause inefficiencies in the training process [147]. As
described in Section 5.1, previous work focused on mitigating the
effect of annotation errors and getting the most value out of small
datasets with the use of ensembling techniques. However, we aim
to build a dataset that is large, depicting a variety of conditions,
identities and faces, reliably annotated and without requiring ex-
tensive human effort for annotation.

In our approach, we achieve this aim by knowledge distilla-
tion. Indeed, we automatically annotate VGG-Face2 Dataset by
means of a teacher method, namely a pre-trained ensemble of
CNNs for age estimation. We call the dataset VGG-Face2 Mivia
Age (VMAGE). We use this dataset to train a variety of simpler
student models, with the aim to achieve more or less the same ac-
curacy of the teacher model, but with a substantially lower com-
putational burden.

By design, student models will have some advantages over the
teacher, namely smaller size and lower inference time. The authors
of the teacher method report an average execution time of 6.3
seconds per image, while each one of the architectures that we
employ can be executed in a fraction of a second even on embedded
systems with low processing resources [131].

We prove that using the generated VMAGE dataset in the task
of age estimation implies a significant advantage over the baseline
procedure, i.e. training on the standard IMDB-Wiki dataset. The
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experimental analysis of the student models in Section 5.4 reveals
that the proposed procedure allows to achieve state of the art
results for all the most widely used test benchmarks, overcoming
the results of most methods while cutting down on complexity.

The VMAGE dataset provides an estimation of the apparent
age for each face. The teacher method [169] that we used is the
best performing method in the state of the art according to the
ChaLearn LAP 2016 benchmark. We believe that this benchmark
provides an accurate estimation of the performance of different
methods in realistic scenarios due to two main reasons. Firstly,
the annotation is obtained by crowdsourcing, so that an accurate
estimation of the apparent age is used as target rather than the
real age: this is arguably an advantage for developing systems
that aim to replicate the human ability to estimate age from the
appearance. Secondly, the benchmark uses a metric which weights
the errors to match the human perception. We give more detail
about the LAP benchmark and its metrics in Section 5.3.3.

5.2.1 Teacher method

In this section we describe how the teacher method works. More
details can be found on the original paper [169].

The ”Head Hunter” face detector [36] is applied to the input
image to determine the position of the face; it is then aligned using
a similarity transform based on the Multi-view Facial Landmark
Detector [170] and resized to 224x224 pixels. A total of 8 variants
are obtained from each input sample: the original, the horizontal
mirror, two rotated versions (±5◦), two horizontally shifted ver-
sions (±5%) and two scaled versions (±5%). Each of these images
is processed by the classification core of the method.

The classification core is composed by an ensemble of 14 CNN
models; each model is based on the VGG-16 architecture, 3 are
trained to recognize age in children (0-12 years old) while the
others are trained for general age estimation (0-99). Each model
outputs a vector of 100 age probabilities and a soft voting rule is
used to determine the consensus between the 11 generic models
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executed on the 8 variants of the image. If the age is higher than
12, the result is determined by the 11 generic models; otherwise,
the 3 children models are executed on the 8 variants and the 3× 8
vectors of 13 age probabilities are aggregated to produce the final
apparent age estimation.

Each model in the classification core was trained by the authors
in multiple steps using the well-known fine-tuning technique. The
VGG-16 architecture is pre-trained on the VGG-Face dataset for
the task of identity recognition and then it is fine-tuned on the
IMDB-Wiki dataset; each of the 11 general age estimation models
is then fine-tuned again using a different 11-fold partition of the
LAP training set using distribution label encoding as loss func-
tion. The children-specialized models are trained starting from
the IMDB-Wiki model described above, then fine-tuned again on a
children-only private dataset and finally fine-tuned on the children
images from the LAP training and validation set using 0/1 clas-
sification encoding. Three different checkpoints are chosen to be
the 3 members of the children-specialized ensemble. All CNNs are
optimized using gradient descent with momentum 0.9 and batch
size of 32. Each image is repeated 5 times in a data-augmentation
fashion, using horizontal mirroring, random rotation, random shift
and random scale.

The teacher method achieved an impressive 0.2433 ε-error in
the ChaLearn LAP 2016 competition, winning by a large margin
on the second classified. However, its accuracy is payed in terms
of processing time, which is 6.3 seconds for each image.

5.2.2 The VMAGE dataset

The VMAGE dataset is the intermediate product of the proposed
knowledge distillation process. We create it in the first step of our
procedure in order to transfer the knowledge of the teacher to the
student models in the training phase.

The dataset is built upon the image data collected for the task
of image identification in the VGG-Face2 dataset [32]. It includes
9,116 identities among actors, athletes and other public figures
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Table 5.1: Absolute distribution of the samples in VMAGE,
IMDB-Wiki, LFW+, LAP 2016 and Adience within the age groups
0-15, 16-25, 26-35, 36-45, 46-60 and 61-100.

Age
# of samples

VMAGE IMDB-Wiki LFW+ LAP Adience
0-15 18,864 7,813 52 887 6,983
16-25 451,999 50,216 372 1,829 1,655
26-35 1,342,493 103,240 1,855 2,376 4,950
36-45 702,677 86,688 1,822 2,350 2,350
46-60 589,558 58,087 3,661 943 830
61-100 131,401 21,566 2,385 387 875

with a total count of 3.3 million faces.

In Table 5.1 we give details about the composition of the
dataset, while the histogram in Figure 5.1 allows to note that
the distribution of labels by age group is similar to other datasets
from literature. In particular ages in the range 25-35 are the most
represented, while there are few elders (60-100) and even fewer
children (ages 0-15). LAP 2016 and (especially) Adience are ex-
ceptions to this rule since they focus on those less represented
classes; LFW+ is skewed towards older ages, with most faces in
the 45-60 and 60-100 ranges.

We notice that, in absolute numbers, the VMAGE dataset is
larger than every other dataset, and this is still true across every
considered age group, even the least represented one. Due to the
class imbalance, we observe that the VMAGE dataset is most
useful as a pre-training tool, while countermeasures can be taken
if the target application includes children; fine-tuning on a more
balanced dataset is a suitable strategy for fixing the imbalance
problem, as we show in our experimentation.

The VMAGE dataset includes age labels for the images that
were artificially annotated by the teacher ensemble. The imple-
mentation of the teacher method that we used is based on the
Caffe framework [171] and was kindly provided by the authors
under the GNU GPL-3.0 license. The execution took 962 GPU
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Figure 5.1: Relative distribution of the samples in VMAGE,
IMDB-Wiki, LFW+, LAP 2016 and Adience within the age groups
0-15, 16-25, 26-35, 36-45, 46-60 and 61-100.

hours for 3.3 million images and was performed over 2 weeks using
3 NVIDIA Titan X GPUs. We make the labels for the VMAGE
dataset available for research purposes1.

For each face the exact predicted age is given, which is the most
versatile approach. Datasets that are annotated with an age class
(e.g. child, adult, elder) are useful only if the problem is posed
as a classification task, with the exact same class boundaries. We
argue that this position does not fit all the possible applications
and so we report the exact predicted age, allowing for the reuse of
the dataset in different types of contexts as shown in Section 5.3.

We retained the intermediate predictions by the teacher en-
semble; the agreement between ensemble members may be used a
metric of difficulty of each sample, reproducing a multi-annotator
labeling scheme like the one used for the construction of the LAP
dataset, allowing for additional considerations. Although we did
not use those in this work, we believe that this information will
be useful for future work on the topic and make them publicly
available.

1https://mivia.unisa.it/datasets/vmage

https://mivia.unisa.it/datasets/vmage
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5.3 Experimental framework

In order to evaluate the effectiveness of the proposed approach, we
train a number of well known CNN architectures, representative of
different families among the most commonly used for face analysis.
As a baseline for comparison we train the same architectures using
a prominent strategy from the state of the art, namely we apply
a data-cleaning procedure to the large scale dataset IMDB-Wiki
and use the resulting corpus. In Section 5.3.1 we describe the con-
sidered architectures, while in Section 5.4 we show how the CNNs
trained with our knowledge distillation methodology consistently
outperform the corresponding neural networks trained directly on
the IMDB-Wiki cleaned corpus.

In order to compare our results with the ones published in the
literature and the teacher network, we evaluate our method on
the LAP 2016 (a.k.a. APPA-REAL) dataset [63]. In addition, we
evaluate the accuracy of the considered CNNs over LFW+ [172]
and Adience [148]. The datasets have different characteristics in
terms of age distribution, face appearance and a different evalua-
tion protocol. We will describe all these datasets and protocols in
detail in Subsection 5.3.3.

Finally we will evaluate the robustness of our method to cor-
ruptions of the input images: it has been shown that images ac-
quired in real operating environments exhibit a significant amount
of diverse types of corruptions, such as gaussian noise, motion blur,
compression artifacts and so on. We will discuss these corruptions
in Section 5.3.4 and we will show in Section 5.4 that our training
procedure allows the student networks to overcome the accuracy
of the teacher in such challenging conditions.

5.3.1 CNN architectures

In our analysis, we selected 4 different convolutional neural net-
works, widely adopted in several face analysis tasks: VGG, SENet,
DenseNet and MobileNet, each with different characteristics.

VGG, introduced in [132], is the family of CNNs most widely
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used for face analysis tasks, especially for the availability of a
version of VGG-16, namely VGG-Face [144], pre-trained for face
recognition by using the VGG-Face2 dataset. Such network, fine
tuned on specific datasets, achieved state of the art performance
in gender, ethnicity and emotion recognition. The peculiarity of
this CNN architecture is the adoption of 3 × 3 filters to build
larger filters (5 × 5) in order to obtain a more effective receptive
field while reducing the number of weights and the cost of adding
convolutional layers. This choice demonstrated to give VGG the
capability to achieve good generalization even when the dataset
is quite small. In this paper, we use the VGG-16 version, which
consists of 13 convolutional and 3 fully connected layers, resulting
in 138M weights and more than 15G of operations with 224× 224
input size.

SENet, proposed in [158], is based on the well known ResNet-
50 architecture [130], with the addition of the Squeeze and Exci-
tation modules. The ResNet architecture has been designed with
the idea to increase the number of layers for achieving higher accu-
racy. Therefore, a shortcut module learns the residual mapping to
solve the problem of vanishing gradients happening in very deep
networks (especially in the earlier layers during backpropagation).
In addition, it adopts the bottleneck approach by using 1 × 1
filters to capture cross-channel correlation and reduce the num-
ber of weights. The original ResNet-50 consists of 1 convolutional
layer, 16 shortcut modules and 1 fully connected layer, resulting in
25.5M weights and 3.9G operations with 224×224 input size. The
addition of the modern Squeeze and Excitation modules, namely
a particular type of depthwise convolution with dynamic weights,
allows to learn a function for giving more importance to specific
channels of the input feature map by reducing the magnitude of
the activations in the other channels. This choice demonstrated
to increase the accuracy in various computer vision tasks [158].

DenseNet, proposed in [160], is a family of CNNs designed
according to the experimental evidence that a CNN can be more
accurate and efficient to train if it contains direct connections be-
tween input and output layers. In DenseNet, each layer is con-
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nected to every other layer (dense blocks) to favour the propa-
gation and the reuse of the feature maps; this concept, widely
investigated in recent years, is also known as feature map aggrega-
tion. To solve the problem that feature maps with different spa-
tial resolution can not be aggregated, DenseNet complements the
use of dense blocks with the adoption of transition layers, which
normalize the size of the feature maps computed by the different
layers through specific pooling operations. In this paper, we use
the DenseNet-121 version, resulting in 7M weights and about 3G
operations with 224× 224 input size.

MobileNet, described in [173], is a family of CNNs among
the most efficient available in the literature, designed for running
on board of mobile and embedded devices. It includes the more
modern devices for reducing the number of weights and operations
while holding a high accuracy, namely residual blocks, depthwise
convolutions followed by pointwise convolutions and bottleneck
layers. In this paper, we use the newest MobileNet V3 Large and
Small versions [129], which also include squeeze and excitation
modules, swish nonlinearities and hard sigmoid and are globally
optimized through the NetAdapt algorithm. MobileNet-Large re-
quires 5.4M weights and around 219M operations with 224× 224
input size, while MobileNet-Small 2.5M weights and about 54M
operations with 96 × 96 input size. Hereinafter, we will refer to
these CNNs with the names MN3-Large and MN3-Small.

5.3.2 Training

In our experiments, we train all the architectures starting from the
ImageNet pre-trained weights. Using pre-trained weights from a
large-scale generic dataset is a common strategy in many applica-
tions of deep learning, since it allows to alleviate overfitting and
improve convergence [31].

In our training pipeline, as a first step the bounding rectan-
gle of the face is localized; for face detection and localization we
use a lightweight face detector based on the SSD framework [38].
The face rectangle is expanded to have a square aspect ratio and
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Table 5.2: Augmentation policies and parameters used for train-
ing. Parameters are randomly computed using the bounded nor-
mal distribution N, defined as follows
N(µ, σ) = min(µ+ 2σ,max(µ− 2σ,N(µ, σ))).

Policy Parameter Value

Crop ∆x, ∆y, ∆w, ∆h

∆x,∆y ∼ N(− σ
10
, σ)

∆w,∆h ∼ N(σ
4
, 2σ)

Horiz. Flip probability P 0.5

Rotation degrees q ∼ N(0, 5)

Skew sx, sy ∼ |N(0, 0.05)|
Brightness b ∼ N(0, 24)

Contrast c ∼ N(1, 0.5)

the image is cropped and resampled with the bilinear algorithm
to match the input size of the network. As a final step, from each
image we subtract the average value computed separately for each
channel on the VGG-Face dataset by the authors [144]; this step
allows for the input distribution to be 0-centered on average, al-
lowing to take full advantage of the ReLu non linearity and achieve
faster convergence.

During the training process every sample image is perturbed
using one of more random augmentation policies. The policies
include random crop and horizontal flip, rotation, skew, brightness
and contrast. The parameters for these transformations are chosen
randomly according to the distributions reported in Table 5.2; we
chose the parameters empirically, ensuring that the augmented
images are representative for the dataset.

The training is carried out for 70 epochs and the SGD opti-
mizer is used. The learning rate is initialized to 0.005 and reduced
with a factor of 0.2 every 20 epochs. For the VGG-16 network
we use 0.00005 as initial learning rate, since it needs lower learn-
ing rates for ensuring convergence; this is due to the architectural
peculiarities of this network, namely the absence of batch normal-



5.3. Experimental framework 135

ization.
When needed, the CNNs are possibly fine-tuned according to

the official evaluation protocol for each considered benchmark, as
explained in the following Section 5.3.3.

5.3.3 Datasets

LFW+ [172] is the dataset that we chose for testing the perfor-
mance of the student networks in the task of real age estimation.
It consists of 15, 699 face images belonging to 8, 000 different sub-
jects. The dataset is not partitioned in training and test set, so
we decided to use the whole dataset for our experiments without
fine tuning. This procedure of testing without fine tuning has
been used on the same LFW+ dataset in different tasks such as
gender recognition [57, 174]; it is called cross-dataset evaluation
and allows to assess the generalizability of the features that can
be learned through the training dataset.

The evaluation metric we adopt for this dataset is the mean
absolute error (MAE). Let us denote with ai the age predicted on
the i-th sample and with ri the corresponding real label, the MAE
is the average error over the K test samples. Being ei = |ai − ri|
the error on the i-th sample:

MAE =

∑K
i=1 ei
K

(5.1)

Testing without fine tuning allows us to investigate the cross-
dataset generalization capability of the networks.

LAP 2016 a.k.a. APPA-REAL [63] is a dataset for estimating
the apparent age of people, whose age annotations have been col-
lected through crowdsourcing. It contains 7, 591 samples, already
divided in training (4, 113), validation (1, 500) and test (1, 978)
sets. The experimental protocol requires a standard training or
fine tuning of the neural networks by using the proposed parti-
tion. This dataset contains a small number of samples, but it is
considered one of the most challenging in terms of face variations
and reliable regarding the age annotations. To weight differently
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the errors done by the neural networks on images annotated with
difficulties also by humans, the organizers of the Chalearn Look-
ing at People challenge [175, 63] designed a specific metric for
apparent age estimation, namely the ε-error. Being mi and v2i the
mean and the variance of the distribution of the predictions ai
done by the annotators for the i-th sample, the estimation error
εi is computed as:

εi = 1− e−
(ai−mi)

2

2v̇i
2 (5.2)

According to this metric, the error on the i-th sample is nor-
malized by the corresponding variance, in order to penalize less
the errors done on samples with high variance. The ε-error is fi-
nally computed as the mean of the εi over the K samples of the
test set.

Being the dataset already divided in training, validation and
test set, we perform the fine tuning of our CNNs with the same
procedure described in Section 5.3.2, by starting from the weights
pre-trained on VMAGE of IMDB-Wiki.

Adience [148] is a dataset that we use for age group classifica-
tion. It is very challenging, produced by automatically extracting
images from about 200 Flickr albums, thus collected in uncon-
trolled conditions and including variations in pose, lighting and
image quality. The whole dataset is composed by 26, 580 face im-
ages, of which only about one half are almost frontal. A subset of
the face images (17, 643) is annotated with 8 unbalanced age cat-
egories: 0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+. Adience is
probably the dataset containing more children images in percent-
age than the other benchmarks publicly available. The standard
experimental protocol is a 5-fold cross validation, with the folds al-
ready provided by the authors. Being a classification problem, the
performance of the neural networks tested on this dataset are eval-
uated in terms of accuracy, namely the ratio between the number
of correct classifications and the total number of samples. Since
the dataset is very challenging, the protocol requires the compu-
tation of two variants: the top-1 and the 1-off. For computing
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the accuracy top-1, a classification is considered correct whether
it corresponds to the true age group; as for accuracy 1-off, the eval-
uation metric considers correct also the predictions for age groups
which are adjacent to the one in groundtruth.

Since the benchmark protocol recommends fine tuning on pre-
defined folds, we fine tune our networks using the procedure ex-
plained in Section 5.3.2, except that the starting learning rates are
10 times smaller than the ones used for pre-training. To choose
the parameters, we ran a first experiment in which we trained on
3 folds and use the 4th for validation for 70 epochs, while the fifth
was never used in the training procedure and was saved for test-
ing; with this procedure we established that the optimal number
of epochs was about 35 for all the models. Following the approach
taken by our predecessors [176], we train our final fine tuned mod-
els on 4 folds for 35 epochs and test on the fifth. Intuitively, given
the small size of the Adience dataset we may assume that training
on 4 folds will be significantly advantageous over training on 3 folds
and using the fourth for validation. Experimental results confirm
this intuition, so we report in Section 5.4 the results achieved by
the models trained on 4 folds.

Since our networks are pre-trained as regressors, we need a
small architectural adjustment for our fine-tuned networks: we
remove the last fully connected layer with its one neuron that
predict the age and replace it with a fully connected layer with
8 neurons (one for each age group) and add softmax activation.
This means that we explicitly convert the network into a classifier
and optimize that specifically. All the layers of the network are
fine tuned, since we have empirically found this approach to be
more effective with respect to training only the topmost layers.

5.3.4 Corruptions

Recent studies [135] demonstrate that the modern convolutional
neural networks suffer a drop of the accuracy when the input im-
ages are affected by strong corruptions, which are common in real
environments. Applications of age estimation such as digital sig-
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Figure 5.2: A collection of 13 samples from the LFW+C dataset,
each of them perturbed with a different kind of corruption. More
details about the corruption categories, their severity and their
mathematical definition are reported in Section 4.2.1.1.

nage, access control and social robotics require the use of a network
that is robust to these perturbations. In [166] it was shown that
a student network trained with knowledge distillation was more
robust to image corruptions than the teacher; therefore, we aim
to evaluate the performance drop of the CNNs trained with the
proposed approach when applied on corrupted images.

In particular, we reproduce the experimental framework de-
scribed in [135] and apply 13 different types of corruptions with
5 levels of severity on the LFW+ dataset. The resulting test set,
hereinafter LFW+C, is composed of 1, 020, 435 samples. Exam-
ples of images extracted from the dataset are depicted in Figure
5.2, while more detailed information about the implementation of
the image corruptions and the parameters for each severity value
are reported in Section 4.2.1.1. In the following we describe the
considered blur, noise and digital corruptions.

Blur Corruptions. Various types of blur can affect the im-
ages acquired for real applications, especially in social robotics.
Gaussian blur may be artificially applied by modern cameras to
reduce the negative effect of the acquisition noise. Defocus blur
can happen when the environment is characterized by a depth
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of field larger than the limit of the camera. Zoom blur appears
whether a person moves towards the camera; this corruption can
happen in access control applications. Motion blur occurs when a
person suddenly changes the pose of the face; this category of blur
is very common in digital signage and social robotics applications.

Noise Corruptions. Cameras used for surveillance or on
board of a social robot are subjected to overheating, due to 24
hours working or to the external temperature, and may be installed
in places characterized by high exposure. These environmental
issues cause the presence of random speckles on the acquired im-
ages, which can be categorized as two categories of noise. Gaussian
noise happens when the temperature of the sensor increases over a
certain threshold, while shot noise occurs in case of high exposure.

Digital Corruptions. This category incorporates all the dig-
ital modifications that can appear on the acquired image due to
contrast, brightness, occlusions, compression and rescaling. In
particular, contrast increase, contrast decrease, brightness increase
and brightness decrease happen when the modern cameras apply
image corrections such as dynamic contrast and automatic gain
control to improve the quality of the acquired images. Spatter is
instead a corruption introduced to reproduce partial occlusions of
the face, which can be due to scarves, glasses, sunglasses, masks,
parts of the body or other people; this effect is obtained by adding
bright random patterns on the image for low corruption severity
and dark elements for higher corruption severity. JPEG compres-
sion is often applied in real applications running server side to
reduce the bandwidth consumption; this effect is reproduced by
reducing the compression quality with a value inversely propor-
tional to the severity of the corruption. Finally, pixelation is the
corruption introduced to reproduce the effect of upscaling, which
is typically necessary when the input size of the neural network
is higher than the size in pixels of the face image. Considering
that the input size of the adopted convolutional neural network is
224× 224, this corruption can happen very often when the person
is not very close to the camera.
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Table 5.3: MAE achieved by the considered convolutional neural
networks over the test set of VMAGE, IMDB-Wiki and LFW+.
The best results for each dataset are highlighted in bold. The
methods are sorted in ascending order of the MAE over LFW+,
that can be considered an impartial benchmark, since it was not
used for training.

Method Training set
MAE

VMAGE IMDB-Wiki LFW+

SENet VMAGE 1.75 7.20 5.58
VGG VMAGE 1.82 7.20 5.58

MN3-Large VMAGE 1.84 7.23 5.65
MN3-Small VMAGE 2.02 7.27 5.69
DenseNet VMAGE 1.90 7.44 5.89

VGG IMDB-Wiki 5.56 7.14 6.20
MN3-Small IMDB-Wiki 4.84 7.17 6.45
DenseNet IMDB-Wiki 4.82 7.16 6.48

SENet IMDB-Wiki 5.17 7.23 6.88
MN3-Large IMDB-Wiki 5.40 7.11 7.27

5.4 Experimental results

5.4.1 Results on LFW+

As a first experiment we compare the MAE achieved by each ar-
chitecture when trained on the distilled VMAGE dataset and on
the previously described IMDB-Wiki dataset. In Table 5.3 we
present those results sorted in ascending order of the MAE over
the LFW+ dataset, that has not been used for training, thus be-
ing a fair benchmark. The results show the higher generalization
capability obtained by the networks trained with VMAGE; in fact,
they achieve a MAE around 1 year lower than the corresponding
CNNs trained with IMDB-Wiki.

In the same table we also report the results on the VMAGE
test set and on the IMDB-Wiki test set; as expected [31], the trend
is that the performance on the test portion of the dataset used for
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training is better than the one obtained on an external indepen-
dent dataset. This is the main reason why most of the competi-
tions allow for fine-tuning on the target dataset. On the VMAGE
test set, the models trained on VMAGE achieve significantly lower
MAE (up to 3 years) than their IMDB-Wiki-trained rivals, as ex-
pected. On the other hand, the advantage of IMDB-Wiki-trained
architectures is negligible over the IMDB-Wiki test set (less than
0.1 year in every case). This proves the superior representativeness
of the VMAGE dataset with respect to the IMDB-Wiki dataset:
the networks trained with the former are able to provide better
performance on all the datasets, while the networks trained on the
latter are comparable only when tested on the IMDB-Wiki but do
not generalize as well.

This comparison confirms the effectiveness of the proposed
knowledge distillation technique over the naive approach of train-
ing with the standard procedure over the IMDB-Wiki dataset.

Among the different architectures, SENet and the VGG are the
CNNs achieving the best performance over LFW+ (5.58), even if
the former obtains a slightly smaller MAE on VMAGE (1.75 vs
1.82). The two versions of MN3, Large and Small, achieve a similar
MAE (5.65 and 5.69), while DenseNet is at the 5th place (5.89).
We also notice that the ranking of the CNNs trained with the
proposed technique is the same on IMDB-Wiki and LFW+, while
the trend of the others is more random over the different test sets.

5.4.2 Results on LAP 2016

The results achieved in terms of ε-error over the LAP 2016 dataset
are reported in Table 5.4. The student model based on SENet
obtains a notable 0.3033, which is the best performance on this
dataset except for the one obtained by the teacher network during
the competition [169]. This result is even more relevant if we
consider that this CNN overcomes the performance achieved by
complex and bulky CNNs or ensembles of them, such as the ones
described in [177], [178], [179] and [180]. Examples of face images
analyzed by this model are reported in Fig. 5.3.
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Figure 5.3: Examples of LAP 2016 images analyzed by the pro-
posed student model based on SENet. The apparent age in
groundtruth is reported in the black box, while the age estimated
by the CNN is annotated in the red box.

In general, all the CNNs trained with the proposed knowl-
edge distillation technique achieve result very close to the per-
formance obtained by substantially more computationally expen-
sive deep neural networks. VGG and MN3-Large (0.3362 and
0.3404) achieve a performance higher than DenseNet and MN3-
Small (0.3589 and 0.3601), but the gap with respect to SENet is
significant.

The corresponding CNNs trained with IMDB-Wiki achieve a
performance substantially lower. The highest gap can be noted
over SENet (0.3033 vs 0.4351) and VGG (0.3362 vs 0.4543),
but also on MN3-Large (0.3404 vs 0.3944), DenseNet (0.3589 vs
0.4029) and MN3-Small (0.3601 vs 0.4284) and it is substantial.
It is interesting to note that all the CNNs trained with this pro-
cedure are not able to achieve performance comparable with the
ones obtained by the methods who participated in the competition;
this experimental evidence demonstrates that state of the art per-
formance are not easily achievable with standard CNNs through
the standard pre-training procedure with IMDB-Wiki and further
confirms the utility of the proposed technique.
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Table 5.4: ε-error achieved by the considered convolutional neural
networks over LAP 2016. The methods are sorted in descending
order of the ε-error, so that the best result is at the top.

Method Pre-Training ε-error
Antipov et al. [169] IMDB-Wiki+Private 0.2411

SENet VMAGE 0.3033
Tan et al. [177] Augmented IMDB-Wiki 0.3100

Dehghan et al. [178] Private 0.3190
Huo et al. [179] IMDB-Wiki 0.3214

Uricar et al. [180] IMDB-Wiki 0.3361
VGG VMAGE 0.3362

MN3-Large VMAGE 0.3404
DenseNet VMAGE 0.3589

MN3-Small VMAGE 0.3601
Malli et al. [181] IMDB-Wiki 0.3668
Duan et al. [182] IMDB-Wiki 0.3679

Gurpinar et al. [183] VGG-Face 0.3740
MN3-Large IMDB-Wiki 0.3944
DenseNet IMDB-Wiki 0.4029

MN3-Small IMDB-Wiki 0.4284
SENet IMDB-Wiki 0.4351
VGG IMDB-Wiki 0.4543
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5.4.3 Results on Adience

The results analyzed so far demonstrated the capability of the
proposed training procedure to produce effective CNNs for real
and apparent age estimation. In this experiment, whose results
are reported in Table 5.5, we show that the procedure also allows
to achieve remarkable performance in age group classification.

In fact, the proposed student model based on SENet holds the
3rd top rank (top-1 65.0%, 1-off 97.1%), followed closely by MN3-
Large (top-1 64.1%, 1-off 97.0%), VGG (top-1 64.0%, 1-off 96.9%),
DenseNet (top-1 63.5%, 1-off 96.2%) and MN3-Small (top-1 62.5%,
1-off 96.6%). The high accuracy 1-off for all the CNNs pre-trained
with VMAGE demonstrates that these models make a negligible
mistake, confusing the exact age group with an adjacent one in
most cases.

The significant superiority with respect to the corresponding
CNNs pre-trained with IMDB-Wiki is a further confirmation of the
effectiveness of the proposed technique compared to that typically
used in literature. Indeed, it allows to achieve an accuracy higher
or very close to the ones obtained by CNNs more complex, as the
Residual of Residual network (RoR) with 152 layers adopted by
Zhang et al. [184] or the already described ensemble of 20 CNNs
used by Rothe et al. [67], or architectures tailored for the purpose,
such as the VGG-16 modified by Hou et al. [185] with smoothed
adaptive activation functions (SAAF) for reducing the regression
bias.

5.4.4 Robustness to image corruptions

In our last experiment we evaluate the robustness of the considered
models to generalize to the image corruptions described in Section
5.3.4. This experiment allows to estimate the performance of these
models on images acquired in real scenarios and to compare the
robustness of the student models with the one of the teacher.

The results summarized in Fig. 5.4 confirm the experimental
findings reported in [166]. In fact, we notice that three of the stu-
dent models, namely SENet, MN3-Small and VGG (MAE of 7.87,
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Table 5.5: Accuracy top-1 and 1-off achieved by the considered
CNNs over Adience. The methods are sorted in descending order
of the accuracy top-1, so that the best result is at the top.

Method Pre-Training top-1 1-off
Zhang et al. [184] IMDB-Wiki 67.3 97.5
Hou et al. [185] IMDB-Wiki 67.3 97.4

SENet VMAGE 65.0 97.1
MN3-Large VMAGE 64.1 97.0

VGG VMAGE 64.0 96.9
Rothe et al. [67] IMDB-Wiki 64.0 96.6

DenseNet VMAGE 63.5 96.2
Lapuschkin et al. [176] IMDB-Wiki 62.8 95.8

MN3-Small VMAGE 62.5 96.6
DenseNet IMDB-Wiki 61.1 95.5

Hou et al. [186] ImageNet 61.1 94.0
VGG IMDB-Wiki 60.7 94.5

MN3-Large IMDB-Wiki 60.6 94.3
Liu et al. [187] ImageNet 60.2 93.7

SENet IMDB-Wiki 59.9 94.4
Qawaqneh et al. [188] VGG-Face 59.9 90.6

MN3-Small IMDB-Wiki 57.6 92.8
Chen et al. [189] Mixed 52.9 88.4
Levi et al. [190] No 50.7 84.7

Eidinger et al. [148] No 45.1 80.7



146 5. A distillation approach for age estimation

T
ab

le
5.

6:
M

A
E

ac
h
ie

ve
d

b
y

th
e

co
n
si

d
er

ed
C

N
N

s
on

th
e

co
rr

u
p
ti

on
ca

te
go

ri
es

in
L

F
W

+
C

.
T

h
e

co
lu

m
n
s

ar
e

d
iv

id
ed

in
th

re
e

b
lo

ck
s,

on
e

fo
r

ea
ch

co
rr

u
p
ti

on
ca

te
go

ry
(b

lu
r,

n
oi

se
,

d
ig

it
al

).
T

h
e

m
et

h
o
d
s

ar
e

so
rt

ed
in

as
ce

n
d
in

g
or

d
er

of
th

e
M

A
E

ov
er

L
F

W
+

C
,

so
th

at
th

e
b

es
t

re
su

lt
is

at
th

e
to

p
,

w
h
il
e

th
e

b
es

t
M

A
E

fo
r

ea
ch

co
rr

u
p
ti

on
ca

te
go

ry
is

h
ig

h
li
gh

te
d

in
b

ol
d
.

B
lu

r
N

o
is

e
D

ig
it

a
l

M
e
th

o
d

LFW
+C

Ga
uss

ian

De
foc

us

Zo
om

Moti
on

Ga
uss

ian

Sh
ot

Co
nt.

Inc
.

Co
nt.

De
c.

Br
ig.I

nc.

Br
ig.D

ec.

Sp
att

er

JP
EG

Co
mp.

Pix
ela

tio
n

S
E
N
et

7
.8
7

7
.0
5

1
6
.6
3

6
.4

2
1
1
.2
9

6
.8
3

7
.0
8

6
.2

0
5
.9

1
6
.2

3
6
.2

1
1
0
.8
3

5
.7
6

5
.8
2

M
N
3
-S
m
a
ll

7
.9
6

7
.2
3

1
6
.5
4

6
.4
4

1
1
.4
2

7
.4
8

7
.6
9

6
.5
5

6
.3
6

6
.6
7

6
.4
1

8
.9

1
5
.8
9

5
.9
2

V
G
G

8
.0
3

7
.0
4

1
6
.5
8

6
.4

2
1
1
.2

7
7
.0
5

7
.4
5

6
.2
3

5
.9
7

6
.3
8

6
.2
2

1
1
.9
3

5
.9
1

5
.9
5

A
n
ti
p
o
v
et

a
l.

[1
6
9
]

8
.0
7

7
.0

1
1
8
.5
3

6
.4
7

1
1
.4
1

6
.4

0
6
.4

9
6
.9
7

6
.3
1

6
.6
6

6
.3
1

1
1
.2
8

5
.5

0
5
.5

9

D
en

se
N
et

8
.1
9

7
.6
6

1
6
.1

9
7
.0
2

1
2
.4
6

7
.1
1

7
.5
4

6
.5
8

6
.7
6

6
.6
1

6
.7
1

9
.7
0

6
.0
0

6
.1
5

M
N
3
-L

a
rg
e

8
.9
7

7
.6
9

1
9
.2
4

6
.7
2

1
1
.9
2

7
.6
2

8
.2
7

6
.4
2

6
.5
1

6
.6
5

6
.3
0

1
0
.2
9

5
.8
0

5
.8
1



5.4. Experimental results 147

Figure 5.4: MAE achieved by the considered CNNs on the LFW+
dataset (light bar) and its corrupted version LFW+C (dark bar).
We compare the results achieved when the networks are pre-
trained using IMDB-Wiki (orange) and VMAGE (blue).

7.96 and 8.03) are more robust to corruptions than the teacher
(MAE=8.07). In particular, SENet achieves a MAE 0.2 years
lower than the teacher, which in turn obtained a MAE 0.2 years
lower on the original LFW+ dataset; this result demonstrates that
the proposed distillation technique allows to provide some of the
student models with a higher generalization capability than the
teacher over corrupted images. In all the cases, the CNNs trained
with VMAGE achieve lower MAE (around 0.5 years for SENet
and MN3-Large, 1 year for MN3-Small and 0.1 years for VGG)
over LFW+C than the corresponding ones adopting IMDB-Wiki,
except for DenseNet (8.19 vs 8.12). A noteworthy result is that
obtained by MN3, whose Small version achieves a better perfor-
mance than the Large one; this result can be explained by the
fact that a smaller CNN may generalize better over images very
different from the ones used for training.



148 5. A distillation approach for age estimation

The analysis can be further extended by evaluating the MAE
achieved by the considered CNNs over images perturbed with spe-
cific corruption categories; the detailed results of this experiment
are reported in Table 5.6. We can note that the teacher is more
robust to gaussian blur, gaussian and shot noise, JPEG compres-
sion and pixelation, while it suffers in case of brightness and con-
trast variations, spatter (11.28) and, significantly, in case of de-
focus blur (18.53, almost 2 years more than the average of the
student models). SENet achieves very balanced performance over
the different categories and the best MAE when dealing with zoom
blur (6.42, as well as VGG), contrast increase (6.20) and decrease
(5.91), brightness increase (6.23) and decrease (6.21). MN3-Small
is substantially more resilient than other CNNs to spatter (8.91),
while VGG obtains the best MAE over motion blur (11.27) and
DenseNet over defocus blur (16.19).

In general, we can note that spatter, motion blur and defocus
blur are the corruptions causing more problems to the considered
CNNs. This evidence can be explained by the fact that these
corruptions strongly reduce the facial details, substantially more
than the other categories.
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The foundation of this thesis is the observation of the useful-
ness of contextual clues in the context of social robotics: studies
prove that human-like behaviour is key to generate in the inter-
locutor the feeling of empathy that allow him to subconsciously
perceive the robot as his peer. From the analysis of the faces of
the people around, the robot can gather information that allows
to personalize the interaction and enhance the feeling of empa-
thy given by the robot. Such information, including age, gender,
ethnicity, emotion and more is called ”soft biometrics” because
it does not allow unique, perfect, identification of a person, but
it is nevertheless used by humans to distinguish their peers; soft
biometrics is not the only tool a social robot will need to function,
but it is arguably one of the main ones.

We observe that tasks in the domain of facial soft biometrics
are extensively studied in literature but the application to realistic
environments introduces some constraints that require specific at-
tention, namely resource constraints and robustness constraints.
Resource constraints are limitations due to the actual hardware
that runs the prediction systems; such constraints for example re-
quire the memory footprint to be confined to what the hardware
can handle and require the inference time to be limited as well, in
order for the information to be available in good time to be used
in a naturally paced iteration. Robustness concerns the ability of
the system to produce correct predictions based on input images
that are affected by all kinds of corruptions and perturbation that
are present on images acquired in unconstrained conditions using
typical hardware from the considered application; for instance em-
bedded cameras produce noisy images with limited resolution and
dynamic range.

In the thesis we tackle all those themes in the context of Deep
Learning. We design and evaluate efficient and effective CNN-
based methods for the tasks of gender recognition, ethnicity recog-
nition, age estimation and emotion classification.

As a first contribution, we design an efficient CNN architec-
ture for the task of gender recognition. We recognize that all the
CNN architectures that are typically applied to gender recognition
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are designed for the task of recognizing generic objects; we argue
that gender recognition networks need a smaller input size and a
more shallow hierarchy of layers than what is needed for object
recognition. Following the design of the MobileNetV2 architec-
ture, propose an architecture with 3 hyperparameters, namely the
number of feature maps (width), the number of residual blocks
(depth) and the input size. We study the inference time and the
accuracy of the proposed architecture with different values of the
hyperparameters and we find that our proposed architecture is
able to recognize gender with an accuracy of 98.1% in just 56ms
on an embedded device without any neural network acceleration.
We compare our results with the ones publicly available in the
state of the art and we find that our proposed method is up to 1%
more accurate than existing efficient architectures with compara-
ble inference time, proving the effectiveness of our method.

As a second contribution, we observe that the task of Ethnicity
recognition is held back by the absence of a large dataset. We ef-
fectively design a dataset by having people of different ethnicities
annotate the images of 9000 famous people with the ethnicity
they recognize. The resulting dataset, that we call VMER, is
unbiased according to the other race effect thanks to this anno-
tation procedure; it uses our annotated information along with
3.3 million images of the annotated 9000 people taken from the
large scale VGG dataset. We train multiple commonly used neu-
ral network architectures and evaluate them on public independent
benchmarks. The accuracy achieved by the architectures trained
on the VMER dataset is higher than the one achieved by training
the same architectures on different datasets from the literature:
this proves that our proposed dataset is more representative than
others in existing literature. We make our labels publicly available
and we believe that such labels will allow for futher advancement
of the state of the art in automatic ethnicity recognition from face
images.

As a third contribution, we evaluate the robustness of CNNs
to corruptions of the input face images, and the stability of the
predicitons when the input is subject to perturbations. We eval-
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uate 4 CNN architectures (VGG, SENet, DenseNet and Xcep-
tion) and we evaluate the effect of Autoaugment and antialiased
downsampling on those architectures, the first being a technique
for effectively augmenting the training data and the second being
an architectural modification that adds low pass filters inside the
networks wherever a downsampling happen (e.g. max-pooling or
strided convolutions). For our evaluation, we construct a bench-
mark data set on top of the RAF-DB test set that includes images
with corruptions that typically occur when the recognition systems
are deployed in real scenarios. Corruptions include different kinds
of blur (motion blur, lens blur, zoom blur, gaussian blur), of noise
(gaussian noise, shot noise), pixelation, jpeg compression, changes
in brightness and contrast and combination of those. For evalu-
ating the stability of the predictions, we generate the RAF-DB-P
dataset, that includes versions of the testing images where we per-
turb the brightness, the position, the scale, the rotation, the quan-
tity of blur and the pattern of noise. We find that the combined
use of antialiasing and Autoaugment substantially contributes to
the improvement of the robustness to corruptions, especially to
those of the noise and digital type, of SENet and DenseNet. The
VGG architecture instead showed the highest classification stabil-
ity with respect to perturbations that affect subsequent frames of
a sequence, especially when combined with the use anti-aliasing
filters. The Xception methods are not suitable for facial emotion
analysis in the wild since they are expecially affected by corrup-
tions and perturbations. In conclusion our experiments demon-
strated that the common corruptions and perturbations are im-
portant aspects to take into account when evaluating methods to
be deployed in real scenarios. However, none of the existing meth-
ods, which we modified with anti-aliasing filters and trained with
extensive data augmentation, showed robustness to all the con-
sidered corruptions and perturbations, thus this aspect requires
future investigation.

As a fourth contribution, we propose and experiment a simple
procedure to train CNNs for an age estimation method that is
both efficient and accurate. We observe that the training of such



153

a method has been hindered by the absence of a large-scale reli-
ably annotated dataset. The commonly used IMDB-Wiki dataset
in fact is automatically annotated and its annotation is extremely
noisy, while other datasets may be more accurately annotated but
their size is insufficient for the purposes of Deep Learning. Pre-
vious work was able to overcome those limitations by cleaning
the dataset with fairly long and expensive manual procedures (the
results of which are not public) and by implementing large and
slow ensembles of neural networks. We propose to use Knowledge
Distillation to transfer the knowledge from such a large and slow
method (the teacher) to lightweight CNNs (students): we anno-
tate a large scale dataset of face images using the large teacher
method and then we use that dataset to train some commonly
used architectures. We experiment our method on various public
benchmarks, where we find that our student CNNs surpass the
accuracy of most pre-existing methods, even ones that are much
more complex. We prove the effectiveness of our procedure by
training the same architectures on our distilled VMAGE dataset
and on a cleaned version of the IMDB-Wiki dataset from the lit-
erature, proving that using VMAGE is consistently and signifi-
cantly beneficial. We make VMAGE publicly available for other
researchers to use it in their work. The student architectures are
all able to be executed in under 100 milliseconds on embedded
hardware (Nvidia Jetson TX1) while the execution of the teacher
method on a single image takes more than 6 seconds. We finally
find that the student models show comparable or better perfor-
mance with respect to the teacher methods when the input images
subjected to the corruptions described before. This robustness ad-
vantage is an additional proof of the effectiveness of the training
approach proposed.

Overall we were able, for each of the four tasks, gender, age,
ethnicity, emotion, to design a CNN-based system able to achieve
state of art performance while being able to perform in the tar-
get social robotic environment, with limited inference time and
memory requirements and able to work in reasonably ”wild”, un-
controlled settings.
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6.1 Outlook

In this section we aim to give an outlook on what is missing in this
thesis, thus what can be done in future work to further advance the
state of the art concerning facial soft biometrics for social robotic
applications.

We find though that robustness of CNNs to strong corruptions
still needs to be improved, expecially with respect to random noise;
this aspect is relevant because such noise is caused by thermal
effects and it appears strong with small cameras in not well lit
environment. New architectural components or training strategies
that take into account the occurrence of perturbations between
subsequent frames may be designed to reduce the performance
drop of the existing methods when dealing with corruptions and
perturbations.

We found that more mature tasks, such as gender recogni-
tion and age estimation, struggle with children and elders as well
as asians. We believe that such a situation is due to the under-
representation of such categories in the widespread public datasets.
Future work should definitely address the problem from a dataset
design perspective; however, the issue can be mitigated by appro-
priately designing a training procedure to counteract the imbal-
ance, for example via a weighted loss function or a custom sam-
pling of the images that compose each minibatch, making sure
that enough variability is considered into each training iteration.

We found that the data imbalance has non negligible effect on
the behaviour of the trained network. Most literature disregards
this aspect, but we believe that this effect should be better studied
in future work, integrating those considerations into the standard
benchmarks. For example the LFW+ benchmark is imbalanced
with respect to gender, with a prominence of males; this bench-
mark thus provides a skewed representation of neural network per-
formance because a network that is trained to reflect the a-priori
distribution of the benchmark itself will be unfairly judged to be
more accurate while an on-the-field test would show that they
more often mistake females for males than vice-versa. The issue
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is even more strongly felt with emotion recognition, since some
classes are more easily recognizable, thus better represented in
the datasets (namely happy, angry and the catch-all class neutral)
while others are more subtle (for instance sad or disgust).

Concerning the efficiency of network architecture, in this work
we focused on the architectural features, but we are well aware
that the proposed architectures could be further improved by us-
ing techniques such as quantization of weights and activations.
Since different architectures respond to quantization in different
ways, the architectures should be evaluated with respect to this ob-
servation, and design principles should be identified in a way that
minimizes both the performance drop and the time and memory
required at inference time.

A further way to improve effciency is to look at the overall sys-
tem and combine multiple predictors into a multitask system: a
multitask neural network is composed by a shared stack of layers
that extract common low-level features, and distinct classification
branches, where specific features are derived from the low-level
ones and the final predictions are performed. Such networks are
efficient in that they perform multiple tasks at once with a compu-
tational burden that is roughly the same of a single task network.
If they are trained properly, their accuracy is comparable or even
higher than single task equivalents, due to the fact that the neural
network is able to extract more generic features and even to learn
inter-dependencies between Combining such multitask techniques
with the techniques developed in this work would be useful to
the development of the soft biometric subsystem of a social robot,
allowing for better efficiency, thus leaving more space for other
subsystems.

Finally, for emotion recognition in particular, future develop-
ment of this work will definitely include the inclusion of temporal
analysis: facial expressions in fact, happen through time, with a
sequence of phases that represent the onset, peak and offset of the
emotion. Recurrent neural CNNs may be a natural extension of
the forward CNN approach shown in this work, and literature on
their use for the problem at hand has existed for years now. Their
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robustness though is yet to be measured, and different challenges
may arise in their design process.
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