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Abstract

In this thesis local and global properties of Jacobi and related geometries are discussed,
which means for us that so-called Dirac-Jacobi bundles are considered. The whole work
is roughly divided in three parts, which are independent of each other up to prelim-
inaries. In the first part local and semi-local properties of Dirac-Jacobi bundles are
considered, in particular it is proven that a Dirac-Jacobi bundle is always of a certain
form close to suitable transversal manifolds. These semi-local structure theorems are
usually refered to as normal form theorems. Using the normal form theorems, we prove
local splitting theorems of Jacobi brackets, generalized contact bundles and homoge-
neous Poisson manifolds. The second part is dedicated to the study of weak dual pairs
in Dirac-Jacobi geometry. It is proven that weak dual pairs give rise to an equiva-
lence relation in the category of Dirac-Jacobi bundles. After that, the similarities of
equivalent Dirac-Jacobi bundles are discussed in detail. The goal of the last part is to
find global obstructions for existence of generalized contact structures. With the main
result of this chapter it is easy to find nontrivial examples of theses structures and two
classes are discussed in detail.






Sommario

Nella presente tesi si discutono proprieta locali e globali delle geometrie di Jacobi. In
particolare, si considerano i cosiddetti fibrati di Dirac-Jacobi. I fibrati di Dirac-Jacobi
sono una immediata generalizzazione delle parentesi di Jacobi, che, in letteratura, sono
anche note come strutture di Kirillov. Il presente lavoro é diviso in tre parti, che sono
indipententi tra di loro tranne per i preliminari. Nella prima parte, si considerano pro-
prieta locali e semi-locali dei fibrati di Dirac-Jacobi. In particolare, si dimostra che i
fibrati di Dirac-Jacobi sono sempre di una determinata forma, simile ad un opportuna
varietd trasversale. I teoremi di struttura semi-locale in genere sono teoremi di forma
normale. Utilizzando questi ultimi, si dimostrano: teoremi locali di splitting delle par-
entesi di Jacobi, fibrati generalizzati di contatto, ’analogo in dimensione dispari dei
risultati sulle varietd complesse generalizzate e le varietad omogenee di Poisson. La sec-
onda parte della tesi é incentrata sullo studio delle coppie deboli duali nella geometria
di Dirac-Jacobi. Si dimostra che le coppie deboli duali danno luogo ad una relazione
di equivalenza nella categoria dei fibrati di Dirac-Jacobi. L’obiettivo dell’ultima parte
della tesi e di trovare ostruzioni globali all’esistenza di strutture generalizzate di con-
tatto non banali. Il risultato principale é la descrizione di due classi di questo tipo di
strutture.
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Introduction

Classical mechanics is considered to be one of the best understood theories in physics,
which also depends on the fact that there are very good mathematical techniques
available to describe mechanical systems. Even though, classical mechanics is not
suitable to describe large-scale physics and and physics on a atomic scale, it is used
in many occasions and is suitable to describe a huge amount of physical phenomena
in daily life. In fact, it was even enough to consider Newtonian Mechanics to fly to
the moon in 1969. From a mathematical point of view, or better said geometric point
of view, the conceptual description of classical mechanics started with the works of
Hamilton and Lagrange in the 17th and 18th century. In the 20th century there was a
Renaissance for classical mechanics in mathematics which started with the works [2], [4]
and [42] in the 60’s.

Many different branches in geometry developed from this considerations, probably
the two most important ones are Geometric Mechanics and Poisson Geometry. Note
that this two subjects do have a more than non-trivial intersection and up to now they
profited a lot from each other. This thesis focuses on the latter and its generaliza-
tions. Let us give a brief introduction to this subject and let us discuss the relation to
mechanics. Let us consider a particle moving in the configuration space R? with coordi-
nates (¢'(t), ¢%(t), ¢>(t)). In order to describe its motion, we need to fix a Hamiltonian
H € €°°(T*R3) = €>(R? x R?). Usually, H is of the form

Ry
=1

for the standard coordinates (g, p) of R3 x R3. In the Hamiltonian formalism of classical
mechanics the motion (¢'(t),¢%(t), ¢3(t)) of the particle is a solution to the ordinary
differential equations

A7) ‘ZZ (a(t),p(t) and i(r) = —gg(q(t),p@))- (++)

dt
If we define the binary operation {—, —}: €°(R3 xR3) x €°(R3 x R?) — ¢ (R3 x R?)
by
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Introduction

then we can write the Equations in the form

dq’

) = 1", HYa(t),p(1)) and L(t) = {pi, HY(alt), (1))

dt

Note that {—, —} is a Lie bracket which is a derivation in both slots, and this is basically
the starting point of Poisson geometry. In fact, to do mechanics, we need to fix three
things:

i.) a phase space, which has sufficiently nice properties, i.e. is a smooth manifold
M,

ii.) a Poisson bracket, i.e. a Lie bracket {—,—}: (M) x €°(M) — €>*(M),
which is a derivation in both slots,

iii.) a energy function H € €°°(M) (the Hamiltonian).

From the geometric point, we forget the chosen energy function and call the pair
(M,{—,—}) a Poisson manifold. Even though, Poisson brackets appeared in the late
19th century in a work by Lie, see [32], and their systematic study began with the
seminal work of Weinstein [51]. Poisson geometry has a lot of intersections to other
fields of mathematics and some can even be seen as a subbranch of Poisson geometry,
such as the theory of Lie algebras (see [51]), deformation theory (see [22]), symplectic
geometry and Jacobi geometry. This thesis is dedicated to the latter, namely Jacobi
geometry, which was first introduced by Kirillov in 28] and independently by Lich-
nerowicz in [31]. Jacobi manifolds can be seen both as generalizations or as specific
cases of Poisson manifolds, see [10]. A Jacobi manifold is a manifold M together with
a line bundle L — M and a Lie bracket

{=,—}: (L) xT'*™°(L) —» T'*°(L)

which is a first order differential operator in both slots. The similarities of Poisson
manifolds and Jacobi manifolds are evident and there are even very classical geometries
which are special cases of Jacobi manifolds, which do not fit into Poisson geometry:
contact and locally conformal symplectic manifolds. Symplectic manifolds can be seen
as non-degenerate Poisson structures (in a suitable sense), a contact manifold on the
other hand is a non-degenerate Jacobi manifold. So, loosely speaking, Jacobi brackets
are in relation to contact structures as Poisson brackets are in relation with symplectic
structures. Note that contact manifolds are always odd dimensional and symplectic
manifolds are always even dimensional, so we refer to contact manifolds as the odd
dimensional analogues of symplectic manifolds.

But there are also purely physical motivations to study Jacobi manifolds, which do
not fit into the framework of classical Poisson geometry, for example thermodynamics
(for a detailed overview see |9] and its references). But also in classical mechanics of a
moving particle contact geometry, and hence Jacobi geometry, plays an important role.
In fact, there are situations where they naturally appear:
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e If one considers a Hamiltonian like , particles move along trajectories of con-
stant energy, so a possibly non-smooth hypersurface such that H = const. Under
some regularity assumptions on the constant, this is actually a smooth manifold,
which admits a contact structure and the motion of a particle on this hypersurface
can be completely encoded by the contact structure.

e If the Hamiltonian is explicitly time-dependent, it is sometimes useful to enlarge
the phase space by R and see the Hamiltonian as a function on it. On this
new phase space classical mechanics is now described by what is called contact
mechanics, see [29] and [9].

Nevertheless Jacobi manifolds are much less studied than Poisson manifolds. Many
recent results in Poisson and/or related geometries have mirror statements in Jacobi
and/or related geometries. This is exactly the aim of this thesis: filling in some gaps
in Jacobi geometry whose analogues have been studied in Poisson geometry. This is
part of a series of a long term project aiming at translating from Poisson to Jacobi
geometry whenever possibe, see e.g. [43|, [46] and references therein.

Before we discuss the content of the single chapters, let us be more precise about
the term related geometries. In this thesis we are discussing the following geometric
structures, which we consider to be related to Jacobi geometry:

Dirac-Jacobi bundles are the Jacobi geometric analogue of Dirac structures in Pois-
son geometry. Dirac structures play an omnipresent role in Poisson geometry,
since they generalize Poisson structures, pre-symplectic forms, complex struc-
tures, etc. For an introduction to Dirac geometry see [11|. Besides the generaliz-
ing aspect, they appear naturally in various situation in Poisson and symplectic
geometry, for instance a coisotropic submanifold of a Poisson (resp. symplectic)
has no Poisson (resp. symplectic) structure, but it has a canonical Dirac struc-
ture which contains all the information needed for coisotropic reduction. On the
other hand Dirac-Jacobi structures have only been considered recently, see [46],
as a generalization of Wade’s £1-Dirac structures [49)].

Generalized contact bundles are the odd dimensional counterpart of generalized
complex manifolds such as contact manifolds are the odd-dimensional analogue
of symplectic manifolds. Generalized complex geometry provides a generalized
framework of symplectic and complex geometry and was first systematically stud-
ied in [26]. Generalized contact bundles were introduced recently in [47] and very
few is known about them and in particular very few (non-trivial) examples are
available. In [47] it is proven that every generalized contact bundle induces
a Jacobi bracket, which puts generalized contact geometry in the framework of
Jacobi geometry and is a common generalization of contact geometry and Atiyah-
complex structures, a slight generalization of normal almost contact structures,
which we disuss in [A3]

Homogeneous Poisson manifolds are Poisson manifolds with a given primitive in
the Poisson complex, see [30]. To be precise this is a pair (m, Z) consisting of a
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Poisson tensor m and a vector field Z, such that £,m = —n. There are a lot of
examples, for example the dual of a Lie algebra with the KKS Poisson structure
together with the Euler vector field as well as the canonical symplectic struc-
ture on cotangent bundles with the Fuler vector field. The question which arises
now is why homogeneous Poisson manifolds are more related to Jacobi geometry
then arbitrary Poisson manifolds? The answer to this gives the homogenization
trick: there is a one-to-one correspondence of Jacobi related geometries and ho-
mogeneous Poisson related geometries on R*-principal fiber bundles. Precise
statements can be found in [10] and references therein as well as Appendix

We proceed as follows: The first chapter is dedicated to fix notation and recall
known facts in the topic, this includes a quick reminder of the D-functor, represen-
tation theory of Lie algebroids, as well as the definitions of Jacobi bundles, Dirac-
Jacobi bundles and generalized contact structures. The second chapter is based on [41]
and [38|, where we follow the lines of [38] in order to provide a normal form theorem for
Dirac-Jacobi bundles and apply it directly to Jacobi structures and to generalized con-
tact structures in order to re-obtain the results from [41] in a slightly more conceptual
way. Moreover, we provide splitting theorems for Jacobi structures, originally obtained
in [17], for generalized contact structures from [41] and finally for homogeneous Poisson
structures also obtained in [17].

The third chapter is the state of the art of an ongoing collaboration with Alfonso
Tortorella [40]. We introduce the notion of (weak) dual pairs in Dirac-Jacobi geometry,
which is a triple of Dirac-Jacobi structures, and deduce some of the first properties,
such as an alternative proof of the normal form theorem for Dirac-Jacobi, the existence
of a so-called self dual pair and probably most importantly, we prove that for two Dirac-
Jacobi structures sitting in a (weak) dual pair the transverse geometry are isomorphic
in a suitable sense. Since dual pairs are deeply connected to Morita equivalence, their
study is supposed to be the beginning of a systematic study of Morita equivalence of
Jacobi manifolds.

In the last chapter, we just concentrate on one specific Jacobi related geometry:
generalized contact bundles. This chapter is based on [39]. After having studied local
and semi-local structure of Jacobi related geometries in the previous chapters, we want
to end this thesis with some global considerations in generalized contact geometry.
The main purpose is to develop an obstruction theory of their existence in a given
framework and apply this theory to obtain examples. And in fact, we can prove
that all five dimensional nilpotent Lie Groups possess an invariant generalized contact
structure and moreover that every contact fiber bundle over a complex base possesses
a canonical generalized contact structure.

How to read this Thesis

This thesis consists basically out of three preprints/publications (see [41], [39] and [38])
and a work in progress (see [40]) which are merged together. This means in particular
that the chapters and {4] can be read independently. Necessary for all of the three
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chapters is Chapter [} in which basic differential geometric are discussed and specific
notations are introduced. Due to the fact that everything is very basic and and known,
we will not refer, for the sake of readability, to all the notions introduced in Chapter
all the time in the following chapters. Moreover, there is an interaction between the
chapters, which can be summarized by:

Chapter

S ETE

\ l

— T

Section Section

The path | Chapter [T]| — | Chapter B]| — |Section R.3]| is possible in principle, but not
J

recommended. Chapter []is a bit remote, since it contains global properties of gener-
alized contact bundles, whereas the remaining chapters treat the local and semi-local
structure of several Jacobi-related geometries.






Chapter 1

Preliminaries

This first chapter is meant to fix the notation and establish the language which allows
us to do Dirac geometry in the category of line bundles. Most of the statements are
known or at least folklore, see [46] and its references. In this spirit, we first take a
closer look to the category of line bundles and afterwards define the analogue in this
category of the tangent bundle, the so-called Atiyah or Gauge algebroid and observe
that it is dual, again in the category of line bundles, to the first jet bundle. These
are exactly the ingredients in order to study Dirac structures on line bundles, which
are Lagrangian subbundles of the so-called omni Lie algebroid, see [14]. After that,
we make a small excursus to the representation theory of Lie algebroids and fit our
framework inside this theory. The next part is dedicated to give motivating examples
of this, what we will call them, Dirac-Jacobi bundles, which include Jacobi brackets,
contact structures and generalized contact structures. As a final section, we add some
properties of the category of Dirac-Jacobi bundles.

1.1 Derivations and the Der-Complex

Even tough derivations on vector bundles and their corresponding de Rham complexes
are very classical topics in differential geometry, we give the basic definitions and
properties, which will be necessary throughout this section. This section is far from
being a complete introduction to this topic. A more detailed discussion can be found
for example in |33] and [36].

1.1.1 The Category of Line Bundles

The category of line bundles should not be seen as a full subcategory of vector bundles,
at least not for our purposes. The reason is that we want to shrink the Hom sets in
order to get a category admitting products and a reasonable amount of pull-backs. So
let us make this precise:

Definition 1.1.1 The category Line consists of smooth line bundles over manifolds as
objects and reqular, i.e. fiber-wise invertible, line bundle morphisms as arrows.
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Chapter 1. Preliminaries

Note that if we allow non-fiberwise invertible line bundle morphisms, we lose one of
the most important properties for our purposes: the pull-back of sections, i.e. for
a fiberwise invertible line bundle morphism ®: L1 — Lo covering the smooth map
¢: My — M>, we can define

'\ € T®(L;) by ®*A(m) := - A(¢(m)) (1.1.1)

for A € I'*°(Ly). As we have announced before, this category has nice properties; in
fact we have

Theorem 1.1.2 The category Line admits products. Moreover, if for two line bundles
P;: (L - M;) — (L — M), the pull-back (i.e. the fibered product)

in the category of manifolds Man, the category of smooth manifolds with smooth maps
as morphisms, exists, then also the pull-back of P;: (L; — M;) — (L — M) in Line
erists.

PRrROOF: First, we prove that £ine admits products. Let us therefore consider two line
bundles L; — M, for i = 1,2 and the set

M* ={¢sy: L1y — Loy | ¢puy is a linear isomorphism}

with the obvious projections p;: M* — M;. Note that M* is a smooth manifold, since
one can realize it as

x _ LI\{0} x L3\{0}
MX = = 2

with the diagonal action of R*, which is clearly free and proper. The next step is to
construct the line bundle L* — M* by

L™ =piLy
together with the regular line bundle morphisms P;: L™ — L; defined by
P L* 3 (¢gy, Az) = A\g € Ly
and
Py: L™ 3 (¢uys Ax) — ¢zy(Ae) € L.

Now we want to prove that L* — M has the universal property of a product. Let
therefore Ly — M3z be a line bundle with regular line bundle morphisms K;: Ls — L;
covering k;: Ls — L;. Then we can define the map

J: L33l (Kopo Ky L Ky (1) € L™,

1,20

It is easy to see that J is the unique regular line bundle morphism making the diagram
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1.1. Derivations and the Der-Complex

ISR

LX4>L1

|

Lo

commute and hence (L* — M*) is the product in Line.
Let us now show that £ine admits a reasonable amount of pull-backs. We consider
the pull-back of principal fiber bundle

M}, ——— M*
M1 X]\/[MQ *>M1XM2

via the map M; Xy Ms — Mj X My, where My xj3; My is a smooth manifold by
assumption. It is easy to see that for a line bundle L — M with two line bundles
L; — L for i =1, 2, that

commutes and is moreover a a pull-back in Line. XEX

1.1.2 The D-Functor

In this subsection we want to treat the D-functor, which is a functor from the category
of vector bundles with fiber-wise invertible vector bundle morphisms Uect into the
category of Lie algebroids £ieQAlg. Even though we are mainly interested in line bundles,
we will treat the D-functor in full generality. Given a vector bundle & — M and a
point p € M, we consider the set

D,E :={6,: I'°(E) — E, | v, € T,M : §,(fs) = vp(f)s+ fép(s)},

for f € €°(M), s € I'*°(E). Note that all , € D,E are local operators and D,FE is
a vector space. Moreover, we have the short exact sequence

0 — End(E,) = D,E = T,M — 0

where the last non-trivial arrow is the assignment 6, — v,, called the symbol and is
denoted by o. The disjoint union

DE:= [[ D,E
peEM

9



Chapter 1. Preliminaries

can be given a unique smooth vector bundle structure, such that
0 — End(E) - DE S TM — 0

is a short exact sequence of vector bundles, the so-called Spencer Sequence. Note that
this implies that

AN = (p = Ap(N) € T(E)

is a smooth section for all A € T'*°(DFE) and X\ € I'*°(FE). Additionally, the sections of
DE — M posses a Lie bracket given by the commutator, which turns DFE, together
with 0: DE — TM, into a Lie algebroid. The sections of DE — M are refered to
as derivations and DE — M is called Atiyah or gauge algebroid. So this gives us an
assignment F — DF, which is exactly the D-functor on objects in Uect. The next step
is to clarify what it does on morphisms. So let ®: £ — E’ be a fiber-wise invertible
vector bundle morphism covering ¢: M — M’ and let 6, € D,E, then we define the
map

D®: DE 5 6, — (A — ®,(6,8*)\)) € DE',

which is a vector bundle map covering ¢: M — M’. Moreover, it is easy to see
that D®: DE — DEFE’ is a Lie algebroid morphism, i.e. D®*: T°(A*(DE')*) —
['>°(A*(DE)*) intertwines the Lie algebroid differentials and ¢’ o D® = T'¢ o o for the
symbols o: DE — TM and ¢': DE' — TM’. The functoriality follows by a simple
computation. Since a section A € I'*°(DFE) can be applied to a section of £ — M, we
have A € Homg(I'®(E),T(E)), in fact we have I'*(DE) C DiffOp!(E, E), the first
differential operators of the sections of the vector bundle FE.

Let us go back to line bundles, since in this case there are simplifications and more
features of the D-functor.

Lemma 1.1.3 Let L — M be a line bundle. Then DiffOp'(L, L) = T*°(DL).

PRroOOF: This is an easy consequence of the fact that, for a line bundle L — M, we
have End(L) = ¢ (M). X=X

Note that the first-order differential operators DiffOp!(L, L) can be understood as
sections of the vector bundle

(J'L)*® L — M,

where we denote by JL the first jet bundle of L. If we denote by jl: (L) —
['°(JLL) the first jet prolongation, the 1 : 1 correspondence of I'**((J'L)* ® L) and
DiffOp!(L, L) is realized by

I°((J'L)*® L) 3 a— (A — a(j'))) € DifOp*(L, L).

10



1.1. Derivations and the Der-Complex

Moreover, the dual of the Spencer sequence, after tensorizing by L, can be written as
0=T"M®L—J'L—L—0.

Now we want to discuss the local structure of DL — M and J'L — M for a line
bundle L — M. Let us choose a local trivialization

Ly =U xR
so we may identify I'*°(Ly) = €°°(U). Let us moreover, assume that U is a chart
domain with coordinates = = (z!,...,2"). The claim is now to show that the maps
0i: € U)> f— == €¢>0)
ox?
together with the identity 1: €*°(U) — ¥°°(U) form a local basis of DLy. Let
A € T°(DLy). Let us denote its symbol by o(A) = X! 827-,. It is easy to see that, first

X5; € T°(DLy) and moreover
(A= X65)(f) = - (A - X°6)(1) = £ - A(1).
Therefore A = X%§; + g - 1 with g = A(1). This allows us to identify
DLy =TU @Ry

locally, where we denote by Ry the trivial line bundle R x U — U. Moreover, this
identification holds true for trivial line bundles Ry; — M globally. Identifying J'L =
(DL)* ® L, we see that locally

JlLU =TU & Ry.

There are many similarities between DL and the tangent bundle. The last similarity
we want to mention is the existence of flows of derivations. The flow of A € I'*°(DL) is
defined as the unique one-parameter family of line bundle automorphism @? € Aut(L),
fulfilling

d e
S| @Rroy=aw,

which is explained in more detail in [46]. Let us now discuss the Atiyah algebroid of
some special line bundles. We start with products in the category of line bundles.

Lemma 1.1.4 Let L; — M; be line bundles for i = 1,2 and denote by P;: L™ — L;
their product covering p;: M* — M;, then

DL* =ker DP; @ ker DP;.

11



Chapter 1. Preliminaries

ProOOF: Note that the map
p: M* — My x My

is a surjective submersion and hence the kernel of its tangent map has dimension one.
But we have ker T'p = ker T'py Nker T'py, which is given by the fundamental vector field
of the principal action

¢: R x M* 3 (a, V) = o tthy, € M*
which is covered by a one-parameter group of regular line bundle morphism
O: R x L 3 (@, Wy, M) = (@ by yy As) € LX.
By the defintion of L*, we have that
Plo®, =P and Po®, = a ' P for all « € R. (1.1.2)
Let us introduce the derivation A € T'*°(DL*) by

d

AN = gl

SN
Using Equations (1.1.2)), we have
DPI(Az/Jz,y) =0 and DPQ(szyy) = ]ly.

Let now OJ € ker DP; Nker D Py, then we have that o(0J) € ker T'p; Nker T'pg and hence
there exist k,l € R, such that 00 = k1 + [A, but then we have that DP;(0) = k1 =0
and hence k = 0. Furthermore, we have that DP5(J) = [1 = 0 and hence [ = 0. This
means that ker DP; Nker DP» = {0} and counting dimensions the claim follows. X=X

Lemma 1.1.5 Let L; — M; be line bundles for i = 1,2 and denote by P;: L* — L;
their product and by p;: M>™ — M; the maps covered by P;. Then

DL* 2 p*(DLy & DLs)
where p: M>* 5 m — (p1(m),pa(m)) € My x Ma.
PROOF: Let us simply write down the map
I: DL* 5 Ay, = (fnys (DPL(Dy, ), DPs(By, ) € p(DLy & DLy),

which is injective by Lemma Comparing the ranks of p*(DL; & DLy) and DL*,
the claim follows. X=X

As a final Corollary, we discuss the canonical splitting of pull-backs

12
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Corollary 1.1.6 Let ®;: L; — L be regular line bundle morphisms covering ¢;: M; —
M, such that the pull-back in Line

P
X 2
LY, —2 Lo

lpl l%

L~

exists, then
DLR} = p*(DLl XDL DLQ),

where p: My, 5 m— (p1(m),p2(m)) € My X Mo.

1.1.3 Representations of Lie Algebroids

In the literature, see for example [15], a Lie algebroid representation of a Lie algebroid
(A— M, pa,|—,—]a)isavector bundle E — M together with a so-called A-connection,
which is flat. An A-connection is a map

V:TA) x I'°(E) — I'*°(E)
which is €°°(M)-linear in the first argument and

Vafe=pala)(f)-e+ f-Vae.

Flatness means in this setting
[Va, V]l = Vg .-

By the very definition of DFE, this notion is equivalent to have a Lie algebroid
morphism

V:A— DE
covering the identity, i.e. its adjoint
V*: T°(A*A*) — T>°(A*DE™)

is a chain map with respect to the de Rham differentials of A and DFE, respectively.
Note that this implies in particular that 0 o V = ps. We will not examine in depth
the theory of representations of Lie algebroids; a much more detailed discussion can
be found in [15]. Let us anyway give two (trivial) examples:

Example 1.1.7 Let L — M be a line bundle, then id: DL — DL is a Lie algeboid
representation of DL on L. In the following, we will refer to this as the tautological
representation.

13
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Example 1.1.8 Let g be a Lie algebra and V be a vector space. We can interpret
them as a Lie algebroid over a point and a vector bundle over a point. Note that for
the Gauge algebroid, we have the exact sequence

0— End(V) - DV = T{x} =0

and hence End(V) = DV. This means that a representation of g on V is a Lie
algebra map V: g — End(V'), which coincides with the usual definition of a Lie algebra
representation.

Even though most of the following constructions works for arbitrary vector bundles,
we limit ourselves to the case of line bundles. The next step is to associate a complex
with a representation, Which generalizes the Chevalley-FEilenberg complex of a Lie
algebra representation.

Definition 1.1.9 Let L — M be a line bundle and let A — M be a Lie algebroid with
a representation V: A — DL. Then Q7, (M) :=T°(A*A* ® L) together with the
differential

dan: QarM) 3 a® A daa @A +e' Aa® Ve () € Q1 (M),

where d4 is the usual Lie algebroid differential of A — M and {e;}icr is a local basis
with dual {e'}icr, is said to be the the de Rham complex of A with coefficients in L.

Note that it is easy to see that, first, d(4 ) is independent of the choice of the local
basis and second that it is in fact a differential. Moreover, by definition we can see
that the de Rham complex with coefficients is a graded module for the usual de Rham
complex, i.e. we can multiply

TOAPA") x Qi (M) 3 (, @A) »a-(BRA) i=aAfR e Q{%)(M)

and, additionally, we have
diaryla-B) =da(a) B+ (-1)°la-d4 B

for « € '°(A®A) and B € Qs n (M). Before we consider examples, we briefly discuss
morphisms. So let L; — M; be two line bundles and let V;: A; — DL; be two
flat connections. A morphism between the triples (L; — M;, A;,V;) is a pair (P, )
consisting of a Lie algebroid morphism P: A; — A and a regular line bundle morphism
®: L1 — Lo covering the same map ¢: M; — My, such that

A —L 5 4,
lVi lvg (1.1.3)

DL, 2%, DL,

14
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commutes. We can define the (pull-back) map
(K, @)% Oy, 1,)(M2) = QU4 1) (M)
by
((K, @)*a)p(al, ce ,ak) = @;1a¢(p)(Ka1, ce ,Kak)

for a € Q€A27L2)(M2) and ai,...,a; € A1,. One can show that for o € I'°(A*A5) and
A € I'™°(Ly), we have that

(K, )" (a® X)) = K'a® %\, (1.1.4)

where K*: I'>°(Ay) — I'>°(A;) is the usual pull-back of sections of vector bundles and
®* is the pull-back of sections of a line bundle along a regular line bundle morphism,
see Equation ([1.1.1)).

Lemma 1.1.10 Let L; — M; be two line bundles and let V;: A; — DL; be two flat
connections. Then

dia,,y) 0 (K, @)" = (K, ®)" od(4,,1,)
PRrROOF: This is a consequence of Equation ((1.1.4]). XEX

The next two examples and their interaction are crucial throughout the whole thesis,
so we will discuss them in quite some detail.

Example 1.1.11 (Tautological Representation) Let L — M be a line bundle.
Let us denote the de Rham complex of DL with coefficients in L by (Q2r(M),dr).
Throughout this thesis we refer to elements of Qr (M) as Atiyah forms. In this partic-
ular case, we are able to compute its cohomology: if we denote by 1: I'*°(L) — I'*°(L)
the identity operator, it is easy to show that

dre1 +ev1dp = id (1.1.5)

and hence the cohomology of dy, is tivial. Moreover, for a regular line bundle morphism
®: Ly — Ly between two line bundles L; — M;, (D®, ®) is a morphism between the
tautological representations. Moreover, every morphism of triples (L; — M;, DL;,id)
is of the form (D®, ®) for a regular line bundle morphism ®: L1 — Ly. In the rest of
the thesis, we will denote

(D®, B)* = d*.
Having a (local) trivialization Ly = U x R, we have seen in Subsection [1.1.2] that

(J'Ly)* ® Ly = DLy = TU & Ry

15
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and moreover that
J'Ly = (DLy)* ® Ly 2 T*U @ Ry.

Hence, we have that A*(DLy)*® Ly =2 A*(T*U @Ry) = A*T*U @ A*~'T*U. Through-
out this thesis, we will write this splitting as

a=o1+1"Aas,

for a € A¥(DLy)*® Ly and (a1, az) € AMT*U @ AF=1T*U, where 1* € T>(T*U ®Ry)
is the canonical generator of the second factor. In this trivialization the differential dp,
can be simply written as

dL(Ozl +1*A O(Q) =dag + 1" A (051 — dOéQ),

for oy + 1* AN g € Qp,,(U) and for the usual de Rham differential d: T*°(A*T*M) —
(AT M),

The next example, which will occur in this thesis are flat connections on line bundles.

Example 1.1.12 (Flat TM-Connection) Let L; — M; be two line bundles and let
Vi: TM; — DL; be flat connections. First, we note that in this case we have that
0;0V; = idryy;, for the symbol maps o;: DL; — T'M;. Now let us consider a morphism
(P, (19) between (Ll — Ml,TMl,Vl) and (L2 — MQ,TMQ,VQ) covering qf): Ml — MQ.
We conclude

P:O'QOVQOP:O'QOD(I)OV1
=T¢oo10V;
=To,

so a morphism of two flat connections on line bundles is completely determined by a
regular line bundle morphism. In the case of a flat connection V: TM — L, we denote
the de Rham complex with values in L by

(Qv(M),dV).

Moreover, there is an interplay between Example(l.1.11]and the connection differential.
Let us denote by 1* € T'*°((DL)*) the section which is defined by

1"(1)=1 and 1*(Vx)=0VX eTM,

which is well defined since DL = im(V) & (1). Note that this coincides with the 1*
defined above for the trivial line bundle. Let us moreover use the symbolo: DL — TM,
in order to define

(M) 3y = oY =1o(0®...00) e Q(M).
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Note that this map is not a chain map, since Voo # id and thus the diagram (1.1.3) does
not commute. But we have that for all « € QF (M), there exist unique oy € Q& (M)
and ag € Q%_I(M), such that

a=oca1 + 1" ANo*as,
which are defined by
a1(Xi,...,Xg) =a(Vx,,...,Vx,)
and
a2(X1,. ., Xg—1) =a(1,Vx,,...,Vx,_,)
for X; € TM,v=1,..., k. Moreover, the differential dj, can be computed by
dra=dp(c a1 + 1" Ao ag) = a*(dval) + 1" ANo" (g — dVOQ).

Now the local structure of Example|1.1.11|shines in a new light. By identifying ¢°°(U)
with FOO(L’U) we already have chosen the canonical connection which makes the trivi-
alizing section flat and the connection differential is just the de Rham differential.

Note that a lot of different geometric structures can be understood via the de Rham
complex with coefficients in a representation. This includes locally conformal symplec-
tic structures and contact bundles, which we discuss at a later stage of this chapter.
The de Rham complex of a Lie algbroid with coefficients in a line bundle is a modifica-
tion of the usual de Rham complex of a Lie algebroid. In classical differential geometry,
the de Rham complex structure on I'*°(A® A*) is equivalent to have a Gerstenhaber-like
structure on I'°(A®A), i.e. a bracket

[—,—]: T®(A®A) x T°(A®A) — T°(A*T*"1A)
which fulfills for homogeneous elements a; with degree |a;|:
i.) lay,ag] = —(=1)Uarl=Dlazl=D1q, q,]
i.) [a1, a9 A as] = [a1, az) A ag + (—1){Ial=Dlezlgy A [a), as)
ii.) (a1, az, as]] = [[a1, az), as] + (~1)(41=D0e2"V]ay, (a1, as]]

We want to follow now [43] and mimic this construction for the de Rham complex with
coefficients in a line bundle. Let us now introduce the notion of a Gerstenhaber-Jacob:
algebra and see that our case fits into this framework.

Definition 1.1.13 ( [43, Def. 1.9] ) A Gerstenhaber-Jacobi algebra is given by a
graded commutative unital algebra & and a graded < -module £ together with a graded
Lie bracket [—,—]: £ x L — £ and an action by derivations, A — X of £ on o,
such that

(N ap] = Xa(a)p + (—1)Aa[x, ]

for homogeneous a € &/ and \,p € L.

17
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Our case is a special case of a Gerstenhaber-Jacobi algebra. Let us from now on
denote Ap := A® L* for a Lie alebroid A and a line bundle L.

Lemma 1.1.14 ( [23, Thm. 5] ) Let L — M be a line bundle and let A — M be a
Lie algebroid with a representation V: A — DL. Then there is a graded Lie bracket
[— =la,r)y on T°(A* AL ® L) uniquely determined by

i) I\l = 0 for A e (D)
#.) [0, Na,r) = VoA for A€ (L) and O € T'*(A) =T*(A® L*® L)
i1.) [A,O)ary = [A,0] for A,00€T(A)
Moreover, the pair T°°(A*AL) and I*°(A*AL® L) forms a Gerstenhaber-Jacobi algebra.

For our purposes, we shall mention the case of the tautological representation from
Example [1.1.7 In this case, using DL, = DL ® L* = (J'L)*, we get a Gerstenhaber-
Jacobi structure on

I*°(A*(J'L)* @ L),

where we will denote the Gerstenhaber-Jacobi bracket simply by [—, —]z. This is the
Gerstenhaber-Jacobi algebra of first order multidifferential operators and [—, —]z is
given by the usual Gerstenhaber formula.

1.2 Jacobi Related Geometries

The framework for generalized geometry in odd dimensions is the so-called omni-Lie
algebroid of a line bundle L — M and a specific type of subbundles of them, so-called
Dirac-Jacobi bundles.

They were introduced in [46] by Vitagliano and are a slight generalization of Wade’s
EY(M)-Dirac structures (see [49]). Moreover, these bundles are a straightforward Dirac
theoretic generalization of Jacobi bundles, as usual Dirac structures are for Poisson
manifolds. The aim of this section is to, first, define the omni-Lie algebroid and
afterwards discuss Dirac-Jacobi bundles and their characteristic foliation.

1.2.1 The Omni-Lie Algebroid of a Line Bundle and its Automor-
phisms

The omni-Lie algebroid was first introduced in [14] in order to connect Dirac-like sub-
bundles to Lie algebroids. Our aim is a little bit different, since we are interested in
the Dirac analogue in Jacobi geometry, which are not Lie algebroids. Nevertheless, we
adapt the notion of Chen and Liu from [14] and combine them with notions coming
from Dirac geometry. This sections follows exactly the same lines as [38§].

Definition 1.2.1 Let L — M be a line bundle and let H € Q3 (M) be closed. The
vector bundle DL := DL @ J'L together with

18
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i.) the (Dorfman-like, H-twisted) bracket
[(Ar,901), (A2, 92)[ 5 = ([Ar, Do, Laythe — ta, ALty + ta,ea, H)
ii.) the non-degenerate L-valued pairing

((A1,1), (A2, )} := 1 (A2) + o (A1)

i11.) the canonical projection prp: DL — DL
is called the H-twisted omni-Lie algebroid of L — M.

We collect now some of the main properties of the defining structures of the Courant-
Jacobi algebroid.

Lemma 1.2.2 Let L — M be a line bundle and let H € Q3 (M) be closed. Then
i.) {(—, =) is an L-valued bilinear form of split signature (dim(M) + 1,dim(M) + 1)

ii.) prp[(A, 1), (Az,2)]i = [A1, Ag] for (A1) € T°(DL)

=

PROOF: These are straightforward computations using the very definitions of {—, —
and [—, —]. X=

™

Remark 1.2.3 If H = 0, we will refer to (DL, [—, —], {(—,—)) as the omni-Lie alge-
broid.

Remark 1.2.4 Identifying J'L = (DL)* ® L, we can see the omni-Lie algebroid as a
special case of

A® (A" ® L)

for a Lie algebroid A and a representation V: A — DL and the obvious adaptions of its
Cartan calculus. In a later stage, we will discuss also the case A = T'M, nevertheless
we prefer not to discuss these objects in general, since we are not going to use it in its
full generality.

Let us now discuss (auto-)morphisms of the omni-Lie algebroid.

Definition 1.2.5 Let L — M be a line bundle and let H € Q3 (M) be closed. A pair
(F,®) € Aut(DL) x Aut(L) is called a (H-twisted) Courant-Jacobi automorphism, if

i.) D®: prp=prpoF
ii.) @, —) = (F—, F-)
iii.) F*[—, =g = [F*—, F*—]u
The group of H-twisted Courant-Jacobi automorphism is denoted by Auth(L).
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It is easy to see that an automorphism ® € Aut(L) defines an automorphism of the
omni-Lie algebroid by

D®: DL 3 (A, ) — (D®(A), (DPH*a) € DL.

This might fail for the H-twisted omni-Lie algebroid for an arbitrary H. In fact the it
is an H-twisted Courant-Jacobi automorphism if and only if ®*H = H.
The 2-form B € Q2 (M) defines the map

exp(B): DL 5 (A,a) — (A,a+aB) € DL,

which also fulfills conditions ¢.) and 4i.) in Definition and fulfills condition 44i.) if
and only if d; B = 0. In this case, we refer to B as a B-field.

The semi-direct product of these special kind of automorphisms span all the Courant-
Jacobi automorphism group:

Lemma 1.2.6 Let L — M be a line bundle and let H € Q3 (M) be closed. Then
Iu: Z3(M) x Aut(L) 5 (B,®) = (exp(B + t1(H — ®,H)) o D®, ®) € Autd (L)
is an ismorphism of groups.

PROOF: The proofs are a straightforward verification using the deifintion of Courant-
Jacobi automorphism. Moreover, it can be found in [41]. XEY

Let us now focus on infinitesimal automorphisms of the omni-Lie algebroid.

Definition 1.2.7 Let L — M be line bundle and let H € Q3 (M) be closed. A pair
(D,A) € T°°(DDL) x I'*°(DL) is called infinitesimal (H-twisted) Courant-Jacobi auto-
morphism, if

i.) [A;prp(e)] = prp(D(e))
i) Afe; x) = (D(e), &) + (e, D))

ii.) D([e, x]m) = [D(€), xlu + [e; DO)]u

for all e,x € T°°(DL). The Lie algebra of infinitesimal (H-twisted) Courant-Jacobi
automorphisms is denoted by autd (L).

It is not very surprising that we can also find here an easy description of them.

Lemma 1.2.8 Let L — M be line bundle and let H € Q3 (M) be closed. Then the
map

ig: Z3(M) x T°(DL) — autZ (L)
with
(B,A) = ((0,8) = ([A,06, ZaB + wa(B — Lan H)))

1s an isomorphism of Lie algebras.
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PRrROOF: Similarly to Lemma [1.2.6] the proof can be found in [41]. XEXY

If (A,a) € T°°(DL) then we see that the map [(A, ), —]x is an infinitesimal (H-
twisted) Courant-Jacobi automorphism. Applying the inverse of the isomorphism from
Lemma to this element, we find

iH(dL(LALﬂ}I - a)v A) = [[(A) a)’ _]]H

The term "infinitesimal automorphisms" suggests that they integrate to automor-
phisms. In fact we can compute the flow of an infinitesimal automorphism fairly
explicit which is discussed in the following

Lemma 1.2.9 Let L — M be line bundle and let H € Q3 (M) be closed. Let addition-
ally (a,A) € Z3(M) x T°°(DL). The flow of ig(B,A) is given by

Tt ) =T~ [ (02, Bar.0p )
= exp < — /Ot(cbﬂ)*(B) dr + 1y (H — (@fﬁH)) o DPA,

PROOF: The proof of this Lemma is an obvious adaption of the corresponding state-
ment for Courant automorphisms in |12 or equivalently an easy computation just by
deriving both sides of the equation by ¢. XEX

Corollary 1.2.10 Let L — M be a line bundle and let H € Q3 (M) be closed. For
every (A, a) € I'°(DL) the flow of [(A,a), —]m is given by

t
exp (/ (®2,)"(dpa + taH) d7> o DL,
0

1.2.2 Dirac-Jacobi bundles and their characteristic Foliation

Let us now discuss the subbundles of the omni-Lie algebroid we are interested in: the
so-called Dirac-Jacobi bundles. They are, roughly speaking, Dirac-like subbundles of
the omni-Lie algebroid and they were also introduced in [14]. The first time Dirac-
like structures appeared in order to model the Dirac analogue in Jacobi geometry was
in [49], which were called £'(M)-Dirac structures. Note that these bundles are special
cases of the Dirac-Jacobi bundles we will define, if the line bundle of the omni-Lie
algebroid is trivial.

Dirac-Jacobi Bundles

Definition 1.2.11 Let L — M be a line bundle and let H € Q3 (M) be closed. A
subbundle L C DL is called a (H-twisted) Dirac-Jacobi structure, if

i.) L is involutive with respect to [—, —]m,
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ii.) L is maximally isotropic with respect to {—,—).
Moreover, if H =0, we will call L stmply Dirac-Jacobi structure.

Remark 1.2.12 We call a line bundle equipped with a Dirac-Jacobi structure simply
Dirac-Jacobi bundle.

The isotropy condition in the definition of Dirac-Jacobi structures makes sense, be-
cause the pairing (—, —) has split signature. Moreover, the involutivity of a maximally
isotropic subbundle L is equivalent to the vanishing of the tensor field

Ng: AL — L,
which is defined by
Ne (X, Y, Z) = (X, [Y, Z] ). (1.2.1)

Example 1.2.13 Let L — M be a line bundle and w € Q2 (M) be an Atiyah 2-form.
Then L, := {(A,iaw) € DL | A € DL} is a maximally isotropic subbundle, which is
involutive if and only if dpw = 0. Moreover, a Dirac-Jacobi structure £ is the graph of
a 2-form if and only if J'L N L = {0}. We omit the proof of this statement here and
refer to the proof of the upcoming Lemma [I.2.35] which is in the same spirit.

Example 1.2.14 Let L — M be a line bundle and let K C DL be an involutive
subbundle, i.e. for all A;00 € I'°(K) the commutator [A,J] is a section of K. The
subbundle

K @ Ann(K) C DL
for Ann(K) := {a € J'L | a(K) = 0} is a Dirac-Jacobi structure.

We shall now focus on morphisms between Dirac-Jacobi bundles. As in the Dirac
case there are two different kinds

Definition 1.2.15 Let L; — M; be line bundles for i = 1,2 and let L£L; € DL; be
H,;-twisted Dirac-Jacobi bundles. A regular line bundle morphism ®: Ly — Lo is called

i.) a forward Dirac-Jacobi map, if
Fa(L1) = {(DP(A),9) € DLy | (A, DY) € L1} = Lal )
and Hi = ®*H,.
ii.) a backward Dirac-Jacobi map, if
Bo(L2) :={(A,DP™)) € DLy | (DP(A),¢) € Lo} = L4
and Hy = ®*H>.
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It is worth mentioning that with both morphisms Dirac-Jacobi bundels become a cat-
egory. The morphisms which are more interesting for us are the backward maps. So
let us discuss them in some detail. For a regular line bundle morphism ®: L; — Lo
(L;i — M;) and a Ha-twisted Dirac-Jacobi structure Lo C DLy the family of vector
spaces, one may define

£1 = %@(ﬁg)

If £;isa @{{ -twisted Dirac-Jacobi structure, then ® is clearly a backwards map. But
L1 is not necessarily a Driac-Jacobi structure:

Lemma 1.2.16 Let L; — M; be line bundles for i = 1,2 and let L € DLs be an H-
twisted Dirac-Jacobi structure. Then the family of vector spaces Bg (L) is mazimally
1sotropic and if it is a subbundle, then it is a ®* H-twisted Dirac-Jacobi structure.

PROOF: The isotropy is a pointwise condition and is fulfilled, which can be seen by an
elementary computation. The proof of the involutivity follows the same lines as the
proof in the Dirac case (see e.g. |11, Section 5.2.1]). XEY

From now on we will refer to B¢ (L) as the backward transform of the Dirac-Jacobi
structure £. Let us examine under which circumstances the backward transform of a
Dirac-Jacobi bundle is a subbundle. A very useful tool is the following

Theorem 1.2.17 40, Prop. 8.4] Let ®: L1 — Lo be a regular line bundle morphism
over ¢ : My — Mo and let L € DLy be a Dirac-Jacobi bundle. If ker D®* N ¢*L has
constant rank, then Be (L) is a Dirac-Jacobi bundle.

Let us deduce a very useful corollary from this theorem

Corollary 1.2.18 Let (L — M, L) be a Dirac-Jacobi bundle and let ®: Ly — L be a
reqular line bundle morphism covering a smooth map ¢: N — M, such that

D®(DLy) + prpl = DL]¢(N).
Then By (L) C DLy is a Dirac-Jacobi structure.

PROOF: Let (n, (0,a)) € ker D®*N¢*L, thus (0,a) € Ly, and a(im D®) = 0. Using
LN J'L = Ann(prpL), which is a consequence of £ being maximally isotropic, we see
that a(im(D®) + prpL) = 0 . By the condition

D®(DLy) +prpLl = DL‘¢>(N)

we conclude a = 0 and hence ker D®* N ¢*L = {0}. By Thereom |1.2.17| the claim
follows. X=X
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Remark 1.2.19 For a Dirac-Jacobi bundle (L — M, L) and a regular line bundle
morphism ®: Ly — L covering a smooth map ¢: M — N, such that

D®(DLy) + prpl = DL\¢(N),

we will say ® is transversal to £. If N — M is a submanifold, we say that N is a
transversal.

Corollary [1.2.18] implies for example that the backwards transform for a submersion
is always a Dirac-Jacobi structure. Note that we have in special cases that backward
and forward transforms are inverse to each other, which will be useful throughout this
thesis.

Corollary 1.2.20 Let L; — M; be line bundles for i =1,2, let Lo C DLy be a Dirac-
Jacobi bundle and let ®: L1 — Lo be a regular line bundle morphism. If ® covers a
surjective submersion, then

Fo(Ba(L2)) = L2
Let us now discuss the relation of a Courant-Jacobi automorphims of the form
D®: DL — DL
to backward transforms. For a Dirac-Jacobi structure £ C DL, we obtain that
DO(L) = By 1 (L)

which is a Dirac-Jacobi structure again. Moreover, given a closed 2-form B € Q%(M ),
we get that

LB = exp(B)L

is again a Dirac-Jacobi structure, which can be shown by an easy computation.

The characteristic Foliation of a Dirac-Jacobi Bundle

For a Dirac-Jacobi structure £ C DL on L — M, we define
Kp =o0(prp(L)) CTM.

Since both maps, 0: DL — TM and prp: £ — DL, are Lie algebroid maps, we see
that K is a singular involutive distribution.

Lemma 1.2.21 ( [46, Chapt. 5] ) Let L — M be a line bundle and let L C DL be
a Dirac-Jacobi structure. Then the singular involutive distribution Dy is integrable in
the sense of Stefan-Sussmann.
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ProOF: 1t is easy to show that o o prp turns £ into a Lie algebroid. But the charac-
teristic distribution of a Lie algebroid is always integrable, see e.g. [19)]. XEY

The leaves of K, assemble what will be referred to as the characteristic foliation
of L.

For a give leaf S < M of the foliation of a Dirac-Jacobi structure £, we define the
pull-back line bundle Lg — S via the diagram

Ls —1 5 L

I

S —— M

The map I: Lg — L is clearly a regular line bundle morphism, which allows us to
consider the backward transform of the Dirac-Jacobi structure L.

Lemma 1.2.22 Let L — M be a line bundle, let L C DL be a Dirac-Jacobi structure
and let 1: S < M be one of its leaves. Then the backwards transform B1(L) is a
subbundle and hence a Dirac-Jacobi structure.

Proor: We want to make use of Theorem [1.2.17, We have that the ker(DI*) C
Ann(im(DI)) C J'L and moreover, using the maximal isotropy of £, we get J'LNL =
Ann(prp(£) and hence

ker(DI*)N E‘S = Ann(im(DI)) N Ann(prp(Ls)) = Ann(im(DI) + prD(E‘S)).

But since S is a leaf, we have that U(prD(E‘N)) = T(TS) and thus prD(LZ’N) C
im(DI). Therefore, we have

ker(DI*) N L”S = Ann(im(DI))
and the intersection has constant rank. X=Y

Since the symbol map has a one dimensional kernel, we can distinguish two kinds of
leaves:

Definition 1.2.23 Let L — M be a line bundle, let L C DL be a Dirac-Jacobi struc-
ture and v : S — M be a leaf. Then S is said to be

i.) pre-contact, if rank(prp(B7(£))) = dim(S) + 1.
ii.) locally conformal pre-symplectic, if rank(prp (B (L))) = dim(S).

Note that this distinction is the first and probably the most significant conceptual
difference between Dirac-Jacobi structures and classical Dirac structures. Before we
explain the names of the different leaves, we want to ensure that this definition makes
sense at all, i.e. if prp(B;(L)) is constant along the leaves. Let us choose a point

25



Chapter 1. Preliminaries

sp € S and an arbitrary vector field X € I'*°(T'S). Since S is a leaf, we have that
a(prD(E)’S) = T'S and hence there is a section (A, a) € I'*°(L) such that U(A)|S = X.

Moreover, since (A, «) is a section of L, its flow exp(v) o ]DXIDtA preserves L, but this
means

PED(Lyx (1)) = Prp(exp(y) DBA(L], ) = DB (prpL], ).

where we denote by ¢ the flow of X. Since ® is an automorphism also D®# is.
Thus the rank of pr DE‘SO gets preserved along the flowlines of X, but X was arbitrary
and the claim follows by the connectedness of S.

Remark 1.2.24 For a Dirac-Jacobi bundle (L — M, L), we can distinguish two kinds
of points:

i.) p € M is called pre-contact point, if 1, € prp(L).
i.) p € M is called locally conformal pre-symplectic point, if 1,, ¢ prp(L).

Moreover, every point in M is either pre-contact or locally conformal pre-symplectic.

In Dirac geometry the leaves have an induced pre- symplectic form, which is induced
via the backward transform of the Dirac structure via the inclusion. In the case of Dirac-
Jacobi bundles it is a bit different, since they admit two different kind of leaves which
have different induced structures. Let us start with pre-contact leaves, which are very
similar to pre-symplectic leaves in Dirac geometry.

Lemma 1.2.25 Let L — M be a line bundle and let L C DL be an H-twisted Dirac
structure, such that prp(L) = DL. Then there exists a unique 2-form w € Q2 (M),
such that

L={(Ataw) eDL | Aec DL}
and dpw = H.

PROOF: We only prove the existence of such an w, since dpw = H follows by involutiv-
ity. Since we have rank(£) = rank(DL) = dim(M) + 1, we see that prD}E: L — DL is
an isomorphism, hence there exists a unique inverse 7: DL — L. We define the map
J: DL — J'L by

J=prppor.

Note that this means 7(A) = (A, J(A)), since for Ay, Ay € DL, we have, using the
isotropy,

0= ((A1,J(A1)), (A2, J(A2))) = J(A1)(A2) + J(A2)(A1)
and hence
w(Al, Ag) = J(Al)(Ag)

is a well-defined Atiyah 2-form and the claim follows. X=Y
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We can apply Lemma directly to the case of pre-contact leaves, since (by
their very definition) they are equipped with Dirac-Jacobi structures of this kind. We
will call the corresponding 2-form a pre-contact form and we will see later why. Let
us now turn to locally conformal pre-symplectic leaves. The following lemma can be

found in [46] for H = 0.

Lemma 1.2.26 Let L — M be a line bundle and let L C DL be an H-twisted Dirac
structure, such that o: prp(L) — T'M is an isomorphism. Then there exists a canonical
flat connection V: TM — DL and a L-valued 2-form w € T (A2TM ® L), such that

L={Vx,(txw)oo+a€DL | X € TM and o € Ann(im(V))}
and d¥w(X1, X2, X3) = H(Vy,,Vx,,Vx,) for all X; € TM.

PROOF: As in Lemma we just prove the existence of w and the additional
properties follow immediately from the maximal isotropy and the involutivity. Since
O-}prD(E) : prp(L) — TM is an isomorphism, it has an inverse V: TM — prp(L£) C DL.
This is in fact a connection by definition, we just have to show that it is flat. Let
X,Y € I*(TM), then we consider Vx,Vy, V(xy] € I*°(prp(£)). We have, since o
invertsV,

o(Vixy) = [X, Y] = [0(Vx),0(Vy)] = o([Vx, Vy]).

Using that T'*°(prp (L)) is closed under the commutator, we can conclude that V is
flat. We claim now that for each X € TM there is a unique J(X) € J'L such that
(Vx,J(X)) € £ and J(X)(1) = 0. First we recall that a connection always induces a
splitting DL = im(V) @ (1). Let us define the element 1* € T'*°((DL)*) by

1*(1) =1 and 1*(im(V)) = 0.

We consider X € TM and choose a ¢ € J'L such that (Vx,v) € L. It is easy to see,
using the maximal isotropy of £, that (0, 1* ® ¢(1)) € £, which means that

(Vx,p = 1" ®@1(1)) € L.

It is easy to see that J(X) := ¢ — 1* ® ¢ (1) is independent of the choice of ¥ and
hence unique, moreover it vanishes clearly on 1. We can prove, using isotropy again,
that J(X)(Vy) = —J(Y)(Vx). Defining w € T*®(A2T*M ® L) by

w(X,Y) = J(X)(Vy),
the claim follows. XEY

A locally conformal pre-symplectic leaf is clearly equipped with one of these Dirac-
Jacbobi structures and hence in the form of Lemma [[.L2.26l Let us summarize the
previous results and discussions in the following
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Corollary 1.2.27 Let L — M be line bundle, let L C DL be a H-twisted Dirac-Jacobs
bundle and let v: S — M be a leaf of its characteristic foliation. If S is a

i.) pre-contact leaf, then there exists a unique w € QQLS(S), such that
%[(ﬁ) = {(A, LAw) € DLg ’ A€ DLs}
and dpw = ®*H.

ii.) locally conformal pre-symplectic leaf, then there exists a flat connection V: T'S —
DLs and a unique Lg-valued 2-form w € T°(A?T'S ® Lg), such that

Br(L)={Vx,0"(txw)+a€DLs | X € TS and a € Ann(im(V))}
and dVw(X1, X9, X3) = I"H(Vx,, Vx,, Vxs)-

Remark 1.2.28 For a Dirac-Jacobi bundle (L — M, £) the manifold M is a disjoint
union of two sets: the set of pre-contact points, i.e. points which are contained in
a pre-contact leaf, and the set of locally conformal presymplectic points, i.e. points
which are contained in a locally conformal presymplectic leaf.

The locally conformal pre-symplectic leaves differ from the pre-contact leaves a
lot. Let us introduce a notion, or generalization, of Dirac structures where they fit
in and behave similarly to pre-contact leaves. Consider a line bundle L. — M, a flat
connection V: TM — DL and a dV-closed 3-form H. With this we can consider
TYM :=TM @ (T*M ® L) and equip it, similarly as the omni-Lie algebroid, with:

i.) the non-degenerate L-valued pairing ((X, @), (Y, 8)) = a(X) + B(Y)
i.) the map pry: TVM — TM
ii.) the bracket [(X,a), (Y,8)]g = (X, Y], Z¥B — 1y dVa) + ixty H)
Similarly to Dirac-Jacobi bundles, we can define

Definition 1.2.29 Let L — M be a line bundle and let V: TM — DL be a flat
connection. A subbundle D C TYM is said to be a H-twisted locally conformal Dirac
structure, if D

i.) is involutive with respect to [—, —]u
#.) 1is mazimally isotropic with respect to {—, —)

Example 1.2.30 Let L — M be a line bundle, V : TM — DL be a flat connection,
H € I®°(A3TM ® L) be a dV-closed and let w be L-valued 2-form such that dVw = H.
Then

D, = {(X,ixw) € T*M | X € TM}

is an H-twisted locally conformal Dirac structure.
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Out of a H-twisted locally conformal Dirac structure D on (TEM, V) we can cook
up a K-twisted Dirac-Jacobi structure if H is exact with primitive o and K :=dpo*«
by

Lp={(Vx,0"a+p)eDL | (X,a) €D, 8 € Ann(im(V))}. (1.2.2)

In fact, it is easy to check that Lp is a K-twisted Dirac-Jacobi structure. We get
immediatly

Lemma 1.2.31 Let L — M be a line bundle and let V: TM — DL be a flat connec-
tion. If L C DL is a Dirac-Jacobi structure such that prpL C im(V), then

L=Lp

for a unique locally conformal Dirac-Jacobi structure D C TEVM.

1.2.3 Jacobi Brackets and Contact Structures

In this section we want to discuss a certain kind of Dirac-Jacobi bundles, the so-called
Jacobi bundles. They play the same role as Poisson manifolds in Dirac geometry and
have been introduced first by Kirillov as a special kind of local Lie algebra, see |28]. They
are also called Kirillov manifolds in the literature, see for instance [10]. Afterwards
we put Jacobi structures in the framework of Dirac-Jacobi geometry and discuss their
characteristic foliation. As a last part, we will discuss contact geometry in the Jacobi
framework. This is very similar to the study of symplectic structures in the Poisson
setting. At this moment it is worth mentioning that, historically speaking, Jacobi
structures where introduced earlier than Dirac-Jacobi structures and hence our proofs
in this section, which usually use Dirac-Jacobi techniques, are non-standard. Never-
theless, most of the results which just concern Jacobi structures can already be found
in [28]. For the results which concerns the interaction of Dirac-Jacobi structures and
Jacobi bracket we refer to [46].

Definition 1.2.32 Let L — M be a line bundle. A Jacobi bracket on L is a R-bilinear
operation

{=,—}: (L) x I'*°(L) = I'*°(L), such that
i.) {—,—}: (L) x (L) — I'*°(L) is a Lie bracket
ii.) {\,—}: T°°(L) — I'*°(L) is a section of DL for all A € T*°(L)

For two Jacobi brackets {—,—}; on L; — M; for i = 1,2, we call a reqular line bundle
morphism ®: Ly — Lo a Jacobi map, if

O, ppa = {P°A, @7}y

Remark 1.2.33 We use the words Jacobs bracket and Jacobi structure synonymously.
Moreover, a Jacobi bundle is a pair consisting of a line bundle and a Jacobi bracket on
its sections.
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For a Jacobi bracket {—, —}, we can define the bundle map
JH J'L 3 jix = {\,—}, € DL.

Of course, we have to show that this map is well defined, i.e. if there are A1, Ay € I'*°(L),
such that jjA1 = ji)a, then J4(j A1) = Jﬂ(jl)\g) But this follows immediatly, since
{—,—} is a derivation in both slots. We refer to the tensor J as the Jacobi tensor.
Note that not every section of I'*°(A?(J'L)* ® L) induces a Jacobi bracket by

{\ud = IG5 ),

in fact axiom (i7) of Definition is always fulfilled, while the defined bracket
needs not to be a Lie bracket, since the Jacobi identity might fail to hold in general.
Using the definition of the Gerstenhaber-Jacobi bracket [—, —]] FOO(Ai(JlL)* ® L) x

I (A(JIL)*®@ L) — T®(AH =Y JL)*® L) from Subsection | the Jacobi identity
is equivalent to

[J,J]L = 0.

Nevertheless, we want to go in another direction: having a tensor field J € T'*°(A?(J'L)*®
L), we can define

Ly:={(J*¥),$) eDL | ¢ € J'L}, (1.2.3)
which is always a maximally isotropic subbundle.

Lemma 1.2.34 Let L — M be a line bundle and let J € T°(A?(J'L)* ® L). Then
Ly is involutive if and only if the bracket {—,—}: T°°(L) x T'*°(L) — I'*°(L) defined
by

{Auy=J0G"N 5 )
is a Jacobi bracket.

PrOOF: Note that from the above discussion it is clear that the only thing to show for
the bracket to be Jacobi is the Jacobi identity. We know that involutivity is equivalent
to the vanishing of the tensor field defined in (1.2.1)). Let us compute
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= [J5(j ), TGN + {A v}y
= {1 Av, A} = {w {w, A +{A {3}

A\ p,v € I'(L). Since N, is a tensor field, it uniquely determined by values on
generators of I'°°(L;) such as (J(j'\), 51 N). X=X

We can give an easy characterization of Dirac-Jacobi structures, that are induced
by a Jacobi tensor in the sense of [1.2.3]

Lemma 1.2.35 Let L — M be a line bundle and let L C DL be a Dirac-Jacobi
structure. Then L is induced by a Jacobi tensor in the sense of [I.2.3, if and only if

LN DL = {0}.
PRrOOF: We just have to prove that a Dirac-Jacobi structure £ fulfilling
LN DL = {0}.

is induced by a tensor field J € T°°(A%(J'L)* ® L) since then J automatically a Jacobi
tensor by the previous lemma. We claim first that the map prJlL‘L: DL — J'L is
bijective. Let (A, v) € kerprji;, N L, then ¢ = 0, but by the hypothesis of the lemma
then also A = 0 and hence prJ1L‘£: L — J'L is injective. By dimensional reasons it
is also bijectve and hence an ismorphism of vector bundles covering the identity. Let
us denote by 7: J'L — L its (smooth) inverse. As in the proof of Lemma we
define

J(¥,x) = x(prp7(¥))

for 4, x € J'L and the claim follows. XEXY

Now we want to encode also the morphisms of Jacobi structures in the language of
Dirac-Jacobi structures

Lemma 1.2.36 Let (L; — M;,{—,—}i) be Jacobi bundles for i =1,2. A regular line
bundle map ®: L1 — Lo is a Jacobi map if and only if it is a forward Dirac-Jacobs
map of the corresponding Dirac-Jacobi structures.

PROOF: Let us denote by J; the Jacobi tensors corresponding to the brackets {—, —};
and let us choose an arbitrary section A € I'*°(Ls), then (Jij (FL@*N), j1O*N) € T°(L ).
Assuming that ® is a forward Dirac-Jacobi map, we have that

(DO(JF (G 2" N)), Gy ) € Lo

which means that Jg(j;)\) = D@(Jf(j;q)*)\)). A short computation shows that this is
equivalent to ® being a Jacobi map. X=X
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Let us now focus on the characteristic foliation of a Jacobi structure. Since it is
a special kind of Dirac-Jacobi structure the definition is straight-forward, but in this
case the leaves have more structures. But before talking about the leaves give a

Definition 1.2.37 Let (L — M,{—,—}) be a line bundle equipped with a Jacobi
bracket. The characteristic foliation of the corresponding Dirac-Jacobi structure is
called characteristic foliation of the Jacobi structure.

Lemma 1.2.38 Let (L — M,{—,—}) be a Jacobi bundle and let .: S — M be a leaf
of its characteristic foliation. Then for the Dirac-Jacobi structure Ly corresponding to
the Jacobi bracket

Br(L;)NDLg = {0}
holds.

Proor: Let (A,0) € B;(Ly), then there exists 1 € J'L, such that DI(A) = J*(v)
and DI*y = 0. But since S is a leaf, we have that im(J*) C im(DI), but this implies
for xy € J'L that

X(JH W) = =(J*(x))

which vanishes since 1 vanishes on the image of DI and thus J%(¢) = 0 and finally,
since DI is injective, A = 0. XEXY

So on the leaves there are induced Jacobi structures, which is the mirror statement
to the one in Poisson geometry, but there the leaves have more structure than just
Poisson, they are symplectic. In our case we have two different kind of leaves, which
carry two different kinds of structures.

Lemma 1.2.39 Let (L — M,{—,—}) be a line bundle equipped with a Jacobi bracket,
let v: S — M be a leaf of its characteristic foliation and let Lj be the corresponding
Dirac-Jacobi structure. If S is

i.) a pre-contact leaf, then there exists a unique w € Q%S(S), such that
’B](ﬁj) = {(A,LAL«)) € DLg ’ Ae DLS}

with drw = 0 and w is non-degenerate, i.e. w’: DL — J'L is invertible.

ii.) alocally conformal pre-symplectic leaf, then there exists a flat connection V: T'S —
DLg and a unique Ls-valued 2-form Q € T*(A?T*S ® Lg), such that

Br(Ly) ={(Vx,0"(txQ)+a)eDLs | X € TS and « € Ann(im(V))}
with dVw = 0 and w is non-degenerate, i.e. W' : TM — T*M ® L is invertible.
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PRrROOF: First we note that, besides the non-degeneracy of the forms, everything is
proven already in Corollary The proof of the non-degeneracy is in both cases
the same, so we just do it for pre-contact leaves. Assume that there is A € DLg, such
that taow = 0. Then we have

(A,O) = (A, LAw) c %[(ﬁJ)
using Lemma [[.2.38] we get that A = 0 and the claim follows. XEXY

Corollary 1.2.40 Let L — M be a line bundle and let J: T°(A%(J'L)* ® L) be a
Jacobi tensor. Then its

i.) pre-contact leaves are odd dimensional.

ii.) locally conformal pre-symplectic leaves are even dimensional.

PRrROOF: This follows immediately from the non-degeneracy of the induced 2-forms on
the leaves. X=Y

In fact the leaves carry very classical geometries, which we will recall now: contact
structures and locally conformal symplectic structures. This geometries are interesting
in themselves and are not just studied in the context of Jacobi manifolds. See for
example [16] for the contact case and for the locally conformal symplectic case we refer
to [45]. Let us recall both of these geometries. We start with contact structures:

Remark 1.2.41 (Contact Geometry) A contact structure on a manifold M is a
codimension one subbundle H C T'M, such that for the projection ©: TM — L :=
TM/H, the tensor field

C:HxH-— L,

which is defined on vector fields X,Y € I'°(H) by C(X,Y) = ©([X,Y]), is non-
degenerate. (It is easy to check that C is indeed a tensor field). The condition that
C' is non-degenerate is called mazimal non-integrable, which makes sense since the
vanishing of C' is equivalent to the integrability of H. Now we consider

w=drc*O

where o* is the pull-back with the symbol and we claim that w is non-degenerate.

Indeed, let A € DL, such that tow = 0. By equation , we have that (qw = c*0©
and hence 0 = w(1,0(A)) = 0*O(A) and thus o(A) € H. For two elements A,[0 € DL
with 0(A),o(0) € H, we have w(A,0) = C(o(A),o(0)), therefore, using the non-
degeneracy of C, o(A) = 0. Thus A = k1 for k € R, but then 0 = 1ow = ko*© and
thus k = 0 and the claim follows. In fact, one can cook up, for a non-degenerate closed
two form w € Q% (M), a contact structure H C TM by putting

H = o(ker(1jw)).
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These two constructions are inverse to each other, so contact structures identify with
non-degenerate closed Atiyah 2-forms. From now on, we will use this identification and
if we are considering contact structures on M, we always refer to a line bundle L — M
together with a non-degenerate closed 2-form w € Q2% (M).

We have seen that one kind of leaf of a Jacobi manifold has the structure of a
contact manifold, but according to Lemma [1.2.38| it carries a structure of a Jacobi
manifold. This is not a coincidence:

Lemma 1.2.42 Let (L — M, w) be a contact manifold. Then J € T*(A%(J'L)*® L),
which is defined via its sharp map by

JE= ()7
15 a Jacobi tensor.

ProOF: 1t is easy to see that the Dirac-Jacobi structure of J and w coincide. Hence,
since the Dirac-Jacobi structure induced by w is involutive, the one induced by J also
is. Using Lemma [1.2.34] we get the claim. X=X

So it follows that Jacobi brackets generalize contact structure, the same way Pois-
son brackets generalize symplectic structures. Contact structures are themselves an
active field of research, since their application to (mathematical) physics are hard to
overestimate. For a later use we want to discuss at least one specific example of a
contact structure: the first jet of a line bundle.

Example 1.2.43 (Canonical Contact Structure) First, we would like to mention
that this is not the standard approach, i.e. using the Cartan distribution, to obtain the
closed Atiyah 2-form on the first jet bundle of a line bundle, instead we use techniques
from symplectic geometry. Let us consider a line bundle L — M and its pullback

oL L

L]

JIL T M
together with the canonical Acan € I'°(J'7*L) defined by
Acan: DT*L > Aq, = (ap, ap(DII(Ay,))) € T L.
Note that this section has a similar universal property as the Liouville 1-form on the
cotangent bundle: given a ¢ € ['°(J'L), we can define a canonical regular line bundle

morphism

®y: L3N, ((p), Ay) € 7L,
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which fulfills I o ®,, = id. Moreover, Acan has the universal property that for all
Y € T°(J'L), we have

CP:LACan = w
Moreover, interpreting Acan as a contact version of the Liouville 1-form it is not sur-
prising that
Wean = — dp L Acan € Q2.7 (J'L)

is a contact structure. Furthermore, an easy computation shows that it agrees with
the well-known contact structure on the first jet of a line bundle.

Let us now turn towards the locally conformal pre-symplectic leaves of a Jacobi
manifold. The structure on its leaves is given by a flat connection and a non-degenerate
line bundle valued 2-form which is closed with respect to the connection differential.
This structures are known as locally conformal symplectic structures, see e.g. [45]. Note
however, that this is not the standard approach to locally conformal contact structures.
They always induce a Jacobi structure:

Lemma 1.2.44 Let L — M be a line bundle and let (V,w) be a locally conformal
symplectic structure on L. Then

L:={(Vx,0"(txw)+a) €DL | X € TM and o € Ann(im(Vx))}
15 a Dirac-Jacobi structure which is induced by a Jacobt tensor.

PrOOF: The subbundle is obviously isotropic and rank(£) = dim(M) + 1 and hence
also maximal. The ivolutivity follows from the closedness of w. Moreover, the non-
degeneracy of w implies that

DLN L = {0}. XEY

At this point, we shall introduce the notion of locally conformal Poisson structures,
since they will come across this thesis several times. Roughly speaking they are the
Poisson version of locally conformal symplectic structures.

Definition 1.2.45 Let L — M be a line bundle with a flat connection V: TM — DL.
An element 1 € T®(A2(TM ® L*) ® L) is said to be a locally conformal Poisson
structure, if

[7, 7l (rar,L) = 0.

Note that, by definition, a locally conformal symplectic structures w € I'°(A2T* M®
L) is non- degenerate and hence

Wi TM = T*M® L

is invertible and one can show that its inverse is sharp map of a locally conformal
Poisson tensor. As one may expect, a locally conformal Poisson structure also induces
a Jacobi bracket. Let us make this precise.
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Corollary 1.2.46 Let (L — M,V) be a line bundle with a flat connection and let
T € T®°(A%(TM ® L*) ® L) be a locally conformal Poisson tensor. Then

{\ p} = m(dVAdVp)
for A, u € T°°(L) defines a Jacobi bracket.

ProoF: This is an easy computation, which is paralleling the computation in Pois-
son geometry, using the properties of the bracket [—,—](ras,r) and the fact that 7
commutes with itself. X=X

Now we want to translate locally conformal Poisson in (locally conformal) Dirac
language, as we did for Jacobi bundles. It is easy to show that

D, = {(n*(a),a) e T!M | a € T*M ® L}

is a maximally isotropic subbundle for an element 7 € T*°(A?2(TM®L*)®L). Moreover,
it is involutive if and only if 7 is a locally conformal Poisson structure. So D, is a
locally conformal Dirac structure in the sense of Definition [I.2.29] Furthermore, one
can show that the induced Dirac-Jacobi structure from Equation [1.2.2]

Lp ={(Vs(a)o*a+B) |a € T"M ® L, B € Ann(im(V))}
comes from a Jacobi bracket, which is exactly the one constructed in Corollary

Remark 1.2.47 From now on we refer to the pre-contact leaves (resp. locally confor-
mal pre-symplectic leaves) as the contact leaves (respectively locally conformal sym-
plectic leaves) of a Jacobi bundle. Note that this justifies also the name we gave the
leaves in the Dirac-Jacobi setting, in fact the names are inspired by the pre-symplectic
foliation in Dirac geometry, i.e. a pre-contact structure on a line bundle is a closed
Atiyah 2-form and a locally conformal pre-symplectic structure is a flat connection and
a closed (with respect to the connection) line bundle valued two form.

If L is the trivial line bundle, then the notion of Jacobi bracket boils down to that
of Jacobi pair, which was first introduced in [31].

Remark 1.2.48 (Trivial Line bundle) Let Ry; — M be the trivial line bundle and
let J be a Jacobi tensor on it. Note that from the discussion in Subsection we
have DL =2 TM @& Rj; and

J'Ry = (DRy)* @ Ryr = T*M @ Ry
With this splitting, we see that
J=A+1AFE

for some (A, E) € I°(A2TM @ TM) and the canonical section 1 = (0,1) € I'>*(TM &
Rar). The Jacobi identity is equivalent to [A,A] + EAA = 0 and ZgA = 0. The
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pair (A, E) is often referred to as Jacobi pair, see |31]. Moreover, if we denote by
1* € T°°(J'Rys) the canonical section then we can write any ¢ € J'Ry as ¢ =
a+rl* € T°(J'Ryy), for some a € T*M and r € R. We obtain

JHa+7r1*) = A¥(a) + rE — a(E)1.

A change of the basis of the line bundle by a non-vanishing function f € (M),
seen as a line bundle automorphism by multiplication, induces a different Jacobi pair
(Af, ET) which is connected to the first one by (A, Ef) = (fA,E — AYdf)). In
the literature (see [17]) this is referred to as conformally equivalent Jacobi pairs. A
more detailed discussion about Jacobi structures on trivial line bundles can be found
in |43, Chapter 2].

1.2.4 Generalized Contact Bundles

Generalized contact bundles were introduced recently in [47], as a slight generalization
of generalized almost contact structures from Wade and Iglesias in [27], and so far very
little is known about them. They basically mimic the notion of generalized complex
structures, see [26], in the framework of Dirac-Jacobi bundles. They are moreover
deeply connected to generalized complex manifolds via the homogenezation, see |10]
or Appendix [A.2] Additionally, they are modeled to be the analogue to generalized
complex structures in odd dimensions. Moreover, their characteristic foliation provides
submanifolds of generalized contact bundles, which are (local) generalized complex
manifolds.

Definition 1.2.49 Let L — M be a line bundle. A subbundle L C DcL :=DL ® C is
called generalized contact structure on L, if

i.) L is a (complex) Dirac-Jacobi structure and
i.) LN L ={0}.

A line bundle equipped with a generalized contact structure is called generalized contact

bundle.

Remark 1.2.50 In Definition [1.2.49] all the structures of the omni-Lie algebroid are
extended C-linearly, in particular this holds for the non-degenerate pairing {(—, —), so
it is not C-antilinear in one of its arguments.

Equivalently, generalized contact structures can be described by an endomorphism
of DL squaring to minus the identity, paralleling the generalized complex case.

Lemma 1.2.51 Let (L — M, L) be a generalized contact bundle, then it is the +i-
eigenbundle of o unique endmorphism K: DL — DL, fulfilling

i.) K2 =—id
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ii.) (K—,K-) = (-, —)

ii.) 0 = Ng(A,B) := [KA,KB] — K[KA, B] — K[A,KB] — [A, B] for all A,B €
I'*°(DL)

Conversely, the +i-Eigenbundle of an endomorphism fulfilling i.)-iii.) is a generalized
contact bundle.

PROOF: Given a generalized contact structure, we define

K|, =1-id and K|z =—1-id.

L
Note that this definition implies immediately that K = K and hence that K is a com-
plexification of a real endomorphism. The claim follows immediately by the isotropy
and involutivity. X=X

Remark 1.2.52 If we use a local trivialization of the line bundle L — M around a
point p, we can identify V := D, L = T,M &R, V* := JUL = TyM @ R and K, as
an endomorphism End(V @ V*). We see that K fulfills all the axioms of being a linear
generalized complex structure in the sense of [26, Section 1]. This means in particular,
that V is even dimensional and hence M is odd dimensional.

From now on, we will refer frequently to the endomorphism as the generalized
contact structure, if we need to. The endomorphism K splits canonically according to
the splitting of DL = DL & J'L and its components have interesting properties.

Lemma 1.2.53 Let L — M be a line bundle and let K € End(DL) be a generalized

contact structure. Then
Jt
o —o*

for an endomorphism ¢ € End(DL), a tensor field J € T>°(A%2(J'L)* ® L) and an
Atiyah 2-form o € Qp(M), where ¢* € End(J'L) is the adjoint of ¢ with respect to the
L-valued pairing of J'L and DL. Moreover, the tensor field J is a Jacobi tensor.

PROOF: Note that this proof originally appeared in [47] and is identical to the analo-
gous statement in generalized complex geometry. The only things to prove for the first
statement are that the off-diagonal maps are skew-symmetric and that the diagonal
maps are adjoint to each other, but both facts follow from condition #i.) from Lemma
Let us now prove that J is a Jacobi tensor. To do so we exploit the equation
0 = Nk ((0,51X), (0,5'p)) for A\, u € T°°(L), which reads

0= NI((Oajl)‘)v (O7j1/1'))
= ([*G'"N), TG )] = TN Ly ayd ' w), ¥)
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= (A G'N), G )] = TG TGN G ), )

where 1 is the element such that the above equality holds (we are just interested in the
D L-component of the above element). Let us apply the identity [J#(j')\), J8(j1p)] =
JEGYT (5N, 5 ) to a third v € T*°(L) as in the following:
Mus v}y = A0} = PG, TG )] (v)

= TG IGIN G ) ()

= JGH{A )W)

— {0 uh ) X=%
This means, roughly speaking, that a generalized contact structure always induces a
Jacobi bracket. The question of when a Jacobi structure induces a generalized contact

structure is in turn very hard to answer, but partial results can be found in Chapter
Before we go on, let us comment on the previous Lemma in order to avoid confusion.

Remark 1.2.54 The components of the endomorphism K fulfill many more algebraic
and differential compatibilities, but for us at this moment this is not particularly in-
teresting. The complete list of relations of ¢, J, « can be found in [47, Section 3.

The next thing to do is to look for examples. Fortunately, we already came across
one of them in this chapter.

Example 1.2.55 Let L — M be a line bundle and let w € Q2 (M) be a contact 2-form.
Then

L= {(A,ibAw) € DcL | A€ DcL}

is a generalized contact structure. The corresponding endomorphism K € I'>*(End DL)

is given by
0 J*
K - ( b ) 7
—w’ 0

Example 1.2.56 Let L — M be a line bundle and let ¢ € I'*°(End DL) be a complex
structure, i.e. an almost complex structure whose Nijenhuis torsion with respect to
the Lie algebroid bracket vanishes. If we denote by DL1? its +i-eigenbundle of
¢: DcL — D¢, then

where J is the Jacobi tensor of w.

£=DLMYY ¢ Ann(DLMD)

is a generalized contact structure with corresponding endomorphism K € I'*°(End DL)

given by
K= <¢ 0 )
0 —¢°

In the following, we will refer to ¢ as an Atiyah complex structure on L.
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In the rest of this thesis we call the last two examples, i.e. contact structures and
Atiyah complex structures, the extreme cases of generalized contact structures. Note
that in generalized complex geometry the extreme cases are complex structures and
symplectic structures. Before we turn towards the characteristic foliation, we want to
drop a word on morphisms of generalized contact bundles. This is a non-trivial issue,
but for most of our purposes isomorphisms of line bundles will be enough.

Corollary 1.2.57 Let L — M be a line bundle and let L C DcL be a generalized
contact structure. Then for a closed real B € Qr(M) the (complex) Dirac-Jacobi
structure LB is a generalized contact structure, which has the same induced Jacobi
structure as L.

PROOF: This is an easy verification using the endomorphism K corresponding to £
and show that the endomorphism K’ corresponding to £¥ is given by

K’ = exp(w)K exp(—w). XEY

Let us now turn to the characteristic foliation of generalized contact bundles. Since
they are a particular kind of complex Dirac-Jacobi bundles, they of course induce
an integrable distribution in the complexified tangent bundle. But this is not what
we want: we want an integrable distribution of the real tangent bundle of the base
manifold. For a generalized contact structure £ C DL we have now two canonical
choices: The symbols of

i.) Re(prpLNprpL) and

ii.) prp(Ly), where J is the Jacobi tensor induced by the generalized contact struc-
ture

The following Lemma shows that they coincide.

Lemma 1.2.58 Let (L — M, L) be a generalized contact bundle. Then

Re(prpLNprpL) = prp(Ly),

where J is the Jacobi tensor induced by the generalized contact structure.

Proor: This is an easy consequence of the fact that £ is the +i-Eigenbundle of the

unique endomorphism
Jt
o —oF

which is ensured by Lemma |1.2.53] X

[1]
™
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From now on, we will refer to the foliation integrating o(prpL N prpL) as the char-
acteristic foliation of the generalized contact structure £ C D¢ L. If we examine the
leaves, we immediately realize, that some of them may be odd and some may be even
dimensional according to Corollary [1.2.40] since it is the foliation induced by a Jacobi
structure. But from Remark [[.2.52] we know that the base manifold of a generalized
contact structure is always odd dimensional. This means that a locally conformal
symplectic leaf, the kind of leaf which is even-dimensional, of the generalized contact
structure cannot carry the structure of a generalized contact structure. But let us
start with the contact leaves, which indeed carry the structure of a generalized contact
structure.

Lemma 1.2.59 Let L — M be a line bundle, let L C DcL be a generalized contact
structure and let 1: S — M be a contact leaf of its characteristic foliation. Then

Br(L) CDcLs

is a generalized contact structure. Moreover, there exists a unique closed B € Q%S (S),
such that B1(L) = Liy+p, where w € Q%S(S) s the contact structure on the leaf
induced by the Jacobi structure induced by L.

PROOF: Note that we have to prove also the smoothness of B;(L), since it is not
covered by Lemma as we are not considering the distribution o(prp(L)), nev-
ertheless we make use of Theorem For a leaf t: S < M, we have that TS =
o(prp(L) Nprp (Z))‘S and since S is a contact leaf, we even have prp (L) Npry(L) =
im(DI)c. The complexified version of Theorem reads: If (ker D®*)c N ¢*L has
constant rank, then B¢ (L) is a Dirac-Jacobi bundle. As in the proof of Lemma [1.2.22]
this happens if and only if

Ann(im(DI)c) N Ann(prp (L) |S)
has constant rank. But we have
Ann(im(DI)c) N Ann(prD(£|S)) = Ann(im(DI)c + prD(ﬁ‘S))
= Ann(prp(£))|g).
So we have to show that prp (L"S) has constant rank. But this follows from prp, (£|S) N
prD(Z‘S) = im(DI)¢ and prp(L|g) + prD(Z|S) = DcL, this is canonically fulfilled.
Let us now make use of Example [1.2.13} let (A, ) € B;(L) NB;(L)) be real, then

there exists a ¢ € JéL, such that (DI(A),v) € £ and DI*¢ = «. This allows us to
define y € J(éL by

X pepoy = ¥ and x|,y = ¥

Prp

Note that this element is well-defined, since w‘ rAE = m g Which follows from
DI*) = a and by a being real. We want to show that (DI(A),x) € LN L. Let
(O, B) € L, then

((D1(A),x), (@, 8)) = B(DIA) + x(O) = S(DIA) + (D) = 0,
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where we used X‘prD(E) =1 and that (DI(A),) € L. This means in particular that

((DI(A),x),L) = 0 and hence, by the maximal isotropy of L, that (DI(A),x) €
L. With the same argument, we can show that (DI(A),x) € £. We conclude that
(DI(A),x) € LNL = {0} and in particular (A, «) = 0 and thus B;(L£)NB;(L) = {0}.

In a similar way we can show that B;(£) N JiLg = {0}. As a consequence, we
have that B;(L) = L for Q € Q%C(M) and the last thing to show is that Im(Q) = w,
where w is the contact structure induced by J. Let us therefore, consider the unique

endomorphism
Jt
()
o —o*

defining £ and let us choose an arbitrary real 1) € JlL‘S. Note that (J#(v)), i) —¢*y)) €
L and since im(ﬂ)(c‘s = prD(E}S) N prD(Z‘S) = im(DI)c, there is a unique real
A € DLg, such that DI(A) = J%(+)). Hence, we conclude that

(A, DI*(iy — ¢™)) € By(L) = Laq,

which implies tAlm(Q) = DI*(¢)). The exact same computation can be done for L
and we get taw = DI* and the claim follows by defining Re(Q2) = B. XEY

Let us discuss locally conformal symplectic leaves of the Jacobi structure of a gen-
eralized contact structure. But before, in order to capture the full information on the
leaf, we shall discuss the generalized complex analogue in the conformal setting, simi-
larly as we discussed the locally conformal Dirac setting at the end of Subsection [I.2.2]
and locally conformal Poisson at the end of Subsection [[.2.3] These objects have been
considered for the trivial line bundle case in [44].

Definition 1.2.60 Let L — M be a line bundle and let V: TM — DL be a flat
connection. A subbundle D C TéM 1s said to be locally conformal generalized compler,
if D

i.) is a locally conformal Dirac-structure

ii.) is complex, i.e. D& D =TEM

We will be very sloppy with the definitions and proofs in this setting, since the results,
at least the ones we need, are very similar to the ones in generalized contact and/or
generalized complex geometry. Anyway, let us discuss the two most obvious examples
first.

Example 1.2.61 Let L — M be a line bundle and let (V,w) be a locally conformal
symplectic structure. Then

D, = {(X,itxw) € TEM | X € Tc M}

is a locally conformal generalized complex structure.
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1.2. Jacobi Related Geometries

Example 1.2.62 Let L — M be a line bundle, let V: TM — DL be a flat con-
nection and let ¢ € End(T'M) be a complex structure with holomorphic (resp. anti-
holomorphic) tangent bundle T M (resp. T(OY M), then

D:=TWOM g (TOYM* o L
is a locally conformal generalized complex manifold.

As for generalized contact structures a locally conformal generalized complex struc-
tures can be defined via an appropriate endomorphism

Lemma 1.2.63 Let L — M be a line bundle with a flat connection V: TM — DL
and let D C T(LjM be a locally conformal generalized complex structure. Then D it is
the +i-Figenbundle of a unique endmorphism 1: TéM — TéM, fulfilling

i) 12 = —id
ii.) (I=1-) = (-, =)
ifi.) 0= Ni(A, B) := [IA,1B] —I[IA, B] —I[A,1B] — [A, B] for all A, B € T>(TE M)

Moreover, the +i-Eigenbundle of an endmorphism fulfilling i.)-iii.) is a locally confor-
mal generalized complex structure.

Using the splitting TEM = TM & (T*M ® L), we can write

=3 %)
o’ —¢F

for ¢ € End(TM), 7 € T®(A*>(TM ® L*) ® L) and ¢ € T'*°*(A2T*M ® L). Moreover,
we can show that 7 is a locally conformal Poisson structure.

The Dirac-Jacobi structure induced by a locally conformal Dirac structure as in
Equation [1.2.2] if the input is a locally conformal generalized complex structure, can
never be generalized contact, simply because of dimensional reasons. Nevertheless, we
have

Lemma 1.2.64 Let L — M be a line bundle, let L C DcL be a generalized contact
structure and let 12 S — M be a locally conformal symplectic leaf. Then

Br(L)=Lp

for D = {(X,ux(iw+B)) € TES | X € TcS}, where w is the locally conformal structure
corresponding to £ and B € T®(A?T*S ® Lg) is dY -closed.

PROOF: The proof of the smoothness of B;(L) follows the same lines as the proof
of Lemma [1.2.59] Let us denote by (w, V) the locally conformal symplectic structure
induced by the Jacobi tensor which corresponds to the generalized contact structure.
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It is easy to see that prp(B;(L)) = im(V)c. By the very same argument as in the
proof of Lemma [1.2.26] we see that

Br(L)={(Vx,0"(txQ)+a) € DcLs | X € TS and o € Ann(im(V)¢)}

for a for a Lg-valued 2-form © with dVQ = 0. Applying the same argument as in
Lemma [1.2.59] we get the claim. X=X

1.3 Products of Dirac-Jacobi Bundles

Unlike in Dirac Geometry, the products of Dirac-Jacobi bundles are rather involved,
they involve the product construction of Subsection [I.1.]

Let L — M be a line bundle and let £1, Lo C DL be Dirac-Jacobi structures on L.
Put

L1x Lo := {(A,@Z)l +1/)2) : (Aﬂﬁl) € L;,i= 172} C DL

Lemma 1.3.1 If £1 x Lo C DL is smooth, then it is a Dirac-Jacobi structure (called
the sum of £ and Ls).

PROOF: See [34]. The isotropy of L1 x Lo C DL is clear by definition. The product
fits in the following (pointwise) exact sequence

0 — Ann(prp(£1) Nprp(L2)) — L1 % Lo — prp(L1) Nprp(L2) — 0,

where we used that prp(L£1xL2) = prp(L£1)Nprp(L2). We conclude that rk(LixL2) =
n + 1 and hence it is maximal isotropic. For the involutivity we first choose a point
p € M. Let (Ap,¢p) +42) € L1 * Lo, be arbitrary. We see that A, € prp(£1) N
prp(L2) = prp(L1 * L£2) which is smooth. Therefore there exists a (local) section
A € T°(prp(£L1) Nprp(Le), such that A(p) = A,. Since in particular AT (prpL;|,;)
for an open subset U containing p, we can find 1 € I'*°(€ J'L;|yy), such that (A, \Y) €
Do (L) and ¥ (p) = v,

So we found a section (A, ! +1?) € T°°(L; % L2) which is evaluated at p given by
(A, 1/}11) + wg). The proof that the tensor N, vanishes at p is now an easy computation
using this kind of sections. X=X

Corollary 1.3.2 Let £L; C DL, for ¢ = 1,2, be two Dirac-Jacobi structures. If
rk(prp(L1) + prp(L2)) is constant, then L1 x Ly is a Dirac-Jacobi structure.

PrOOF: We introduce the map
K:Li&®Ly> ((A,a), (D,ﬂ)) — A —0 € prp(Ly) + prp(L2).

Since rk(prp(L1) + prp(£L2)) is constant and K is surjective, D is a regular vector
bundle morphism and its kernel is therefore a smooth subbundle. We consider the
map

S: ker(K) 2 ((A,a), (A, B)) — (A, + B) € L1 %Ly
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Since S is a surjective bundle morphism, £; x L9 is smooth and by Lemma [[.3.1] a
Dirac-Jacobi structure. X=X

Remark 1.3.3 In fact the previous lemma is just a special case of the fact that £1xLo
is smooth if and only if prp Ly NprpLs is, which can be seen by elementary techniques.
Namely, let us assume that prpL; N prpLs is smooth and let (8,9 + ?) € L1 x Lo.
Then we find a smooth section A € I'*(prpLy N prpLs), such that A, = 6. Thus
we can find two sections ¢ € I'°(JL) for i = 1,2, such that (A, ¥%) € I'°(L;) and
\I/; =", Hence, (A, ¥! + ¥?) is a smooth section and coincides with (8, 1" + ¢?).

Lemma 1.3.4 Let (M;, L;, L;) ¢ = 1,2 be two Dirac-Jacobi bundles and let L™ — M*
be the product of L1 and Lo in Line . The subbundle L1 x' Lo := Bp (L1)*Bp, (L2) C
DL* is smooth and therefore a Dirac-Jacobi structure, moreover the the morphisms
P;: L* — L; are forward Dirac-Jacobi maps.

PROOF: By the definition of the backwards transforms, we have that ker DP;, C
Bp,(L;) and hence we have prpBp, (L1) + prp(Bp,(L2)) D ker DP; + ker DP,, but
from Lemma we know that ker DP; @& ker DP, = DL*. Applying now Corollary
[1.3.2] we see that Bp, (L1) x Bp, (L) is smooth. Now we want to prove

S'Pi(%Pl ('Cl) * %PQ (‘62)) = L;.

Let (Ap (@) O (z)) € Lip,(x) be arbitrary. Using again Lemma , we find A, €
ker DP,| , such that DPi(A;) = Ay (;) and therefore (A, Dpjay, o) € By, (L1)-
Since A, € ker Dpa, we also have (A;, DPfay,, (1)) € Bp, (L1) * By, (L£1)

We see therefore, that (A (), 4, () = (DP1(A,), p,(z)) €SP, (Bp (L1)xBp,(L2))

and hence

Sp (Bp (L1) *Bp,(L2)) 2 L;.

For dimensional reasons we conclude equality. XEX

Remark 1.3.5 For two Dirac-Jacobi bundles (L; — M;, £;)) the Dirac-Jacobi bundle
L1 %' Ly is actually a product in the category of Drac-Jacobi bundles with forward Dirac-
Jacobi maps as morphisms. This is easy to verify using the fat that the underlying
line bundle is a product in the category of line bundles, see . We refer to (L* —
M*, L*) as the product of (L; — My, L1)) and (Ly — Ma, L9).

We now want to explore how this construction behaves, when the Dirac-Jacobi
bundles are actually Jacobi structures.

Lemma 1.3.6 Let (L; — M;, L;) be two Dirac-Jacobi bundles coming from two Jacobi
tensors J;. Then L1 %' Ly is a Dirac-Jacobi structure coming from a Jacobi structure.
Moreover, if the two Jacobi structures are contact also their product is.
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ProoF: We are going to use Lemma so we just have to show that (£; x'
Lo) N DL* = {0}, since the product is a Dirac- Jacobi structure be the previous
considerations. Let (A,0) € £ x' La. So, using that the P;’s are forward Dirac-Jacobi,
we have that

(DFi(A),0) € Li.

But since by assumption the £;’s come from Jacobi tensors, we can use Lemma [1.2.35
to obtain DP;(A) = 0. Thus A = 0, which holds, because DL* = ker DP; @ ker DP;.
The proof of the last claim follows the same lines. X=X

Remark 1.3.7 By the previous Lemma it is clear that the product of Dirac-Jacobi
bundles is also a product of Jacobi bundles. Nevertheless, it is not a product in
the category of contact bundles, since a Jacobi map between contact bundles is not
necessarily a contact map. A similar phenomenon occurs in the Poisson setting with
symplectic structures.

Now we want to introduce pull-back diagrams of Dirac-Jacobi bundles, note that pull-
backs do not always exist in the category of line bundles.

Corollary 1.3.8 Let ®;: L; — L be regular line bundle morphisms covering ¢;: M; —
M andlet L; CDL; and L C DL Dirac-Jacobi structures, such that the ®;’s are forward
Dirac-Jacobi maps. If the pull-back

P
X 2
LY, —2 Lo

lpl l@z

L~

exists, then Bp, (L1), Bp,(L2) and Bp, (L1)*Bp,(L2) are Dirac-Jacobi structures and
moreover the P;’s are forward Dirac-Jacobi maps.

PrOOF: The proof follows from Lemma and Corollary [1.1.6] X=X

Let us now discuss some properties of the product with respect to backwards and
forward Dirac-Jacobi maps. There are many compatibilities wetween them, but we
will just discuss the ones which we are going to use throughout this thesis.

Lemma 1.3.9 Let (L; — M;, L;) be two Dirac-Jacobi bundles for i = 1,2 and let
®: Ly, = L; be two regular line bundle morphisms covering ¢;: N; — M;, such that
B, (L) are Dirac-Jacobi bundles. Then

B, w1p, (L1 X' L2) = Ba, (L1) x' Ba, (La).

PROOF: Let us first discuss what we mean by the map ®; x' ®5: Ly — L*: it is the
unique arrow making
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X 2
LY Ly,
-
2 lq)z
\\A .,
Py, L —25 Ly

I
(3]
LN1 — L1
commute. Mote that we cannot use the universal property of the product in the
category of Dirac-Jacobi bundles, since backward Dirac-Jacobi maps are not morphisms
in this category. So let (A, D(®1 x' ®9)*¢)) € By, x1,(L1 x' L2) then we know that
(D(®; x' ®3)(A),¥)) € L1 x' Lo. On the other hand, this implies that there are
i € J'L;, such that ¢ = DPj4py + DPytby and (D(®1 x' ®2)(A), DPf;) € Bp, (L;).
Summarizing, we get
(A, D(®1 X" ®9)") = (A, D(®1 x' D2)*(DP{¢h1 + DPyejn))
— (A, DP} i1 + DP}, ).

Now we have that (A, DPy ;) € Bpy (Ba,(Li)) by construction and hence B, 14, (L1 X!
L) € By, (L£1) x B, (L2). Both bundles are maximally isotropic and thus equal. XZX

Remark 1.3.10 Note that we actually proved that, for two Dirac-Jacobi structures
L; CDLy i =1,2 and a regular line bundle morphism P: Ly — Lo,

‘Bp(ﬁl *Ez) = %p([:l) * %p(ﬁg)
holds.

The next lemma shows the interplay between forward Dirac-Jacobi maps, backward
Dirac-Jacobi maps and (fibered) products.

Lemma 1.3.11 Let (L; — M;, L;) be two Dirac-Jacobi bundles, let ®: Ly — Lo be a
forward Dirac-Jacobi map covering ¢: My — My and let V: Ly — Lo be a reqular line
bundle morphism covering ¥: N — My transverse to Lo. Then the pull-back

exists and Py is a forward Dirac-Jacobi map for the Dirac-Jacobi structures Bp,,(L1)
and By (L).

PRrROOF: Recall that ¥: Ly — Lo is called transverse to Lo C DLo, if

DU(DLy) + prp(£2) = DLl
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and after applying the anchor we get in particular:

TY(TN) + o(prp(L2)) = TMa| .

Let us first prove that the pull-back exists, but using Theorem we just have to
show that the product

exists in Man. A sufficient criterion for the existence, is that

TH(TM) +T¢Y(TN) = TMQ]QS(MlW(N)
Since ® is a forward map, we have that D®(DLy) D prpLs. Moreover, since U is
transversal, we have

DL, — prpL + DU(DLy) € D®(DLy) + D¥(DLy)

}¢(M1)W/)(N )
and hence equality. Applying the symbol o: DLy — T My we get the required equality
To(TMy)+TyY(TN) = TM2}¢(Ml)mw(N)‘ It is easy to show that P/ is transverse to

L, and hence B p,, (L) is a Dirac-Jacobi structure by Corollary [1.2.18] The property
that Py is a forward Dirac-Jacobi map follows by direct computation and the interplay
of the D-functor and the products, see(l.1.5 XEX
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Chapter 2

Normal Form Theorems

Since the work of Weinstein 51|, in which he proved his famous local splitting theorem
for Poisson manifolds, many works appeared concerning different viewpoints on the
proof and even give more general statements, namely normal form theorems. Frejlich
and Marcut proved a normal form theorem around Poisson (cosymplectic) transversals
of Poisson manifolds in [20]. In [21] they used the techniques of Dual Pairs to prove
a similar statement for Dirac structures. And finally, there is a unified approach by
Bursztyn, Lima and Meinrenken in [12] to prove normal forms for Poisson related
structures.

This chapter reformulates these techniques and results in the Jacobi setting in order
discuss a proof of normal forms in Jacobi geometry, i.e. for Dirac-Jacobi bundles, Jacobi
structures and generalized contact bundles. We follow [12] as a guideline throughout
this chapter. This Chapter is based on [38] and generalizes [41].

2.1 Submanifolds and Euler-like Vector Fields

In this subsection we want to discuss Euler-like vector fields with respect to submani-
folds. These vector fields, in particular, induce a homogeneity structure on the manifold
around the given submanifold, which is equivalent, under some additional conditions,
that the manifold is total space of a vector bundle, see e.g. [24]. This total space turns
out to be the normal bundle of the submanifold. Nevertheless, we will not go more
in details with these features, since we work directly with tubular neighborhoods. We
will begin collecting facts about tubular neighborhoods, submanifolds, corresponding
mappings and describe afterwards the notion of Fuler-like vector fields and extend this
notion the derivations of a line bundle.

2.1.1 Normal Bundles and tubular Neighborhoods

The notations and results throughout this section are taken from [12].
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Chapter 2. Normal Form Theorems

For a pair of manifolds (M, N), i.e. a submanifold N < M, we denote

TM|N

v(M,N) = TN

the normal bundle. If it is clear what is the ambient space, we will just write vy
instead. Given a map of pairs

®: (M,N)— (M',N'),
ie. amap ®: M — M, such that ®(N) C N’, we denote by
v(®): v(M,N) — v(M',N")

the induced map between the normal bundles. For a vector field X on M tangent to
N, we have that the flow ®X is a map of pairs from (M, N) to itself. Hence we define

Tv(X v(®;X) € I°°(Tvy).

=il

Moreover, for a vector bundle E — M and o € I'*°(FE), such that U‘N = 0 for a
submanifold N — M, we denote by

dVo: UN — E‘N
the map which is v(o), for o seen as a map o: (M,N) — (E, M), followed by the

canonical identification v(E, M) = E, given by

tvp) s € V(E, M).

d
CEI E> Up — [a’t_o

The inverse C’El is given by

C (] o = tim 2. .11

for a curve v: I — E defined in an open interval I containing 0, such that (0) = 0,
forpe M.

Remark 2.1.1 For a pair of manifolds (M, N), a vector bundle E — M and a vector
bundle morphism A: vy — E‘N, one can always find a section o € I'*°(FE), such that

i.) oly =0
i.) dNo = A.

This follows locally by elementary techniques and one can extend it via a partition of
unity.
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2.1. Submanifolds and Euler-like Vector Fields

Proposition 2.1.2 Let E; — M; be vector bundles for i = 1,2 and let ®: £ — F»
be a vector bundle morphism. Then, for ®: (Ey, My) — (E2, M3),

0]521 ov(®)oCpg = &.

PROOF: Let v, € Fq, then

(Cplov(®) 0 Cpy)(vy) = (Crl o v()) dt‘ toplran)

— Ol T(I)dt‘ top)ra,)

= OIS, 1))
= D(vp) XEY

Proposition 2.1.3 Let E; — M be vector bundles,i = 1,2, let ®: By — FEs be a
vector bundle morphism covering the identity and let (M,N) be a pair of manifolds.
Then, for every section o € I'°(FEy), such that O"N =0,

dVo (o) = o(dVo)
holds.
ProoF: Consider the map ®(o): (M, N) — (E2, M), then we have

CE; ov(®(0)) = CEQI ov(®)ov(o)
— €}l ow(®) 0 C, 0 Ot o (o)
=do Cgll ov(o)

and the claim follows restricting these maps to N. X=X

Proposition 2.1.4 Let (M, N) be a pair of manifolds and let X € T°°(TM) be a
vector field, such that X‘N =0. Then

ToX ‘N = exp(tDx)

for a unique Dx € FOO(End(TM‘N)), moreover TN C ker(Dx) and

T 2 Tl
|
VN

commutes.
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PROOF: Since X‘N = 0, its flow fixes all elements of N. This means
T : T,M — T,M
for all t € R and p € N. Moreover, it fulfills the property,
TOX o TOY = TP,
and T <I>é( = id and hence the claim follows. XEX

Definition 2.1.5 Let (M, N) be a pair of manifolds. A tubular neighborhood of N is
an open subset U C M containing N, together with a diffeomorphism

Vv:vy = U,
such that w}N: N — N s the identity and for ¢: (v, N) — (M, N) the map

v(): v(vn, N) = v
is the inverse of Cy : vy — v(vn, N).

Remark 2.1.6 Definition is not the only definition of tubular neighborhood. In
fact, the condition

v(Y): v(vn,N) = vn

is usually not considered.

2.1.2 Euler-like Vector Fields and Derivations

In this part, we recall the notion of Euler-like vector fields from [12] and extend this
notion to derivations of a line bundle.

Definition 2.1.7 Let (M, N) be a pair of manifolds. A vector field X € T>°(TM) is
called Euler-like, if

i.) X|y =0,

ii.) X is complete (i.e. the flow of X is defined for all t € R),
iii.) Tv(X) = €,
where & 1s the Euler vector field on vy — N.

Proposition 2.1.8 Let (M, N) be a pair of manifolds, then there exists an Euler-like
vector field around N.
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2.1. Submanifolds and Euler-like Vector Fields

PROOF: Let us choose a tubular neighborhood
vy — U

For the vector field X = 1.& multiplied by a suitable bump function which is 1 in a
neighborhood of N, we have

d d
X)=— o) = — df ogp7!
TV( ) dt t:()y( t ) dt t:OV(wo t Ow )
d _
= 2| v on(@f)owy)
d
=—| ¥ =¢.
dtle=o ! €
We used Proposition and the fact that v(y) = C, 1. XEXY

Lemma 2.1.9 Let M be a manifold, N — M a submanifold and X € T°°(TM) be a
Euler-like vector field. Then there exists a unique tubular neighborhood embedding

Vv:vy — U,
such that Y* X = £.
PRrROOF: The proof can be found in [12]. XEY

Proposition 2.1.10 Let (M, N) be a pair of manifolds and let X € T°°(TM) be a
complete vector field such that X‘N = 0. Then X is BEuler-like, if and only if AN X
followed by the projection TM|N — vy s the identity.

PROOF: Let X € I'°(T'M) be given as in the statement. According to Proposition
there exists a unique Dx € FOO(End(TM}N)), such that T<I>tX‘N = exp(tDx).
Let [X,] € vy be an equivalence class of tangent vectors, then

v(®7)([Xp]) = [T97' (X,)] = [exp(tDx)(X,)].

This is nothing but the flow of the Euler vector field, as if pr,, o Dx(X,) = [X,].
Using Proposition [2.1.4] we have d¥ X ([X,]) = Dx (X)) for all [X,] € vy and hence
the claim. XEY

Note that, for a pair of manifolds (M, N) and a Euler like vector field X € I'*°(T'M),
the set

{p eM| tl}r_noo ®;* (p) exists and lies in N}

is an open subset in M containing N, and stable under the flow of X. In fact, by
Lemma the unique tubular neighborhood v¢: vy — U with ¢¥*X = &, satisfies

U={peM| tii{noo @ (p) exists and lies in N}.
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Let us denote A\; = @fgg(s)‘w which is smooth for all s € RT and can be smoothly
extended to s = 0. Moreover, we have that

hoks=As01, (2.1.2)

where we denote by ks: vy — vy the map [X,] — [sX,]. Note that ko: vyn — N
coincides with the bundle projection. To be more precise kg = pr, 0j, where pr,: vy —
N is the bundle projection and the 0 section j: N — vy.

Let us add now the line bundle case

Definition 2.1.11 Let (M, N) be pair of manifolds and let L — M be a line bundle.
A derivation A € I'°°(DL) is called Euler-like, if

i.) Aly =0,
ii.) o(A) is an Buler-like vector field.

This definition turns out to be the correct one for our purposes, since with that we can
prove the analogues of basically all results available for Euler-like vector fields. Let us
start collecting such analogues.

Proposition 2.1.12 Let (M, N) be a pair of manifolds, let L — M be a line bundle
and let A € T(DL) be an Euler-like derivation. Then the flow ®8 € Aut(L) of A
induces the map

A, = d2

which, restricted to U = {p € M | lim;_o q)f(X)(p) exists and lies in N}, can be
extended smoothly to s = 0. Moreover, the map

Aoi LU — Ly
is a regular line bundle morphism.

Proor: The proof is an easy verification using a tubular neighborhood ¢: vy — U,
such that ¥*o(A) = €. XEY

Definition 2.1.13 Let (M, N) be a pair of manifolds and let L — M be a line bundle.
A fat tubular neighborhood is a reqular line bundle morphism

v: L, — Ly,
where the line bundle L, is given by the pull-back

LV*>LN

|1

vy —— N
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2.1. Submanifolds and Euler-like Vector Fields

covering o tubular neighborhood : vy — U, such that \II}N: Ly — Ly is the identity.

Lemma 2.1.14 Let (M, N) be a pair of manifolds, let L — M be a line bundle and
let ¥: vy — U be a tubular neighborhood. Then there exists a fat tubular neighborhood
covering 1.

PrOOF: The proof is an adaption of the proof in [43| Chapter 3]. First we notice
that L, = (¢ o p,)*L for the canonical inclusion ¢: N < M and the bundle projection
pr,: v — N. Moreover, if we consider the the pullback bundle

Y* Ly v, Ly

LT

vy — U

we see that the multiplication by ¢ € [0, 1], denoted by k;: vny — vy induces a smooth
homotopy H: [0,1] x vy — M between 1 and pr, o ¢ via

H(t,—):qbomt.

For pull-back bundles of homotopic maps there exists a (non-canonical) vector bundle
isomorphism covering the identity. The claim follows by choosing an isomorphism
®: L, — ¢*L covering the identity and concatenate it with ¥ and hence

Ly \If:\ifo? LU

[

UN L U
is a fat tubular neighborhood. X=X

For a line bundle L —+ N and a vector bundle p: £ — N there is always a canonical
derivation Ag € I'*°(DLg) where we denote by Lp = p*L, such that o(Ag) = &
constructed as follows: Consider the map

LEL

;

iv

and the corresponding map DP: Ly — Ly. We have that canonically ker(DP)
Ver(FE) for the Vertical bundle Ver(E) of E — M, which induces a flat (partial) con-
nection V: Ver(E) — DL,. Since the Euler vector field is vertical, we can define
Ag = Vg.

N
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Proposition 2.1.15 Let L — N be a line bundle and let E — N be a vector bundle.
Then the flow ®; of Ag € I°(DLEg) is given by

D (vp, lp) = (" Up, lp)
for all (vp,1,) € Lg.

PrOOF: The derivation V¢ is by definition in the kernel of DP, it is related to the 0
derivation on L — M and hence we have for its flow

Pod, =P
Since Ly = E X s L, we have that

i (vp, lp) = (de(vyp), p)

where ¢; is the flow of the symbol of Vg, which is by construction the Euler vector
field and hence the claim follows. X=X

Note that for the flow ®; of the canonical Euler-like derivation Ag € I'*°(DLg),
we have that

P = (I)log(s): Lg — Lg (2.1.3)

is defined for all s > 0 and can be extended smoothly to s = 0, moreover Py coincides
with the canonical projection P: Ly — L followed by the canonical inclusion J: L —
Lg.

Lemma 2.1.16 Let (M, N) be a pair of manifolds, let L — M be a line bundle let A €
['>°(DL) be an Euler-like derivation. Then there is a unique fat tubular neighborhood
W: L, — Ly, such that V*A = Ag.

ProorF: First, we want to prove existence. It is clear that any such ¥ has to cover the
unique tubular neighborhood v¥: vy — U, such that ¢*c(A) = €. So let us choose a
fat tubular neighborhood ¥: L, — Ly covering 1. We consider U*A € T°(DL,). We
have o(U*A) = ¢*0(A) = £. Hence o(Ag) = o(¥*A). Consider now the derivation
0= Ag — U*A and
1 *
0, = —gcblog(t)D,

where ®; is the flow of Ag. Note that [J; can be smoothly extended to ¢ = 0, since
D‘N = 0. Let us denote the flow of O; by ¢;. Note that it is complete, since o((J;) = 0,
indeed there is even a explicit formula for it, which we do not use. Note however, that
¢¢ € Aut(L,) covers the identity for all ¢ € R. Let us compute

d ., . d
a@ (Ag +t0;) = o3 ([Os, Ag] + atmt)
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2.2. Normal Forms of Dirac-Jacobi Bundles

* d *
= ¢y ([Dtv Af] - a log(t)lj)

* 1 *
= ¢t ([Dtv AS] - ;[Ag, (I)log(t)lj])

= ¢; ([0, Ag] + [Ag, T])
=0.

Hence Ag = ¢5(Ag) = ¢1(Ag + 0;) = ¢F(U*A). Therefore, we have that the map
U = ¥ o ¢ will do the job, since obviously ¢, ‘N =id.

Let us now assume that we have Uy, Wy: L, — L7, such that ¥JA = USA = Ag.
Since both have to cover the unique ¢: vy — U, the target Ly is the same for both.
Let us consider = := \Ill_1 oWsy: L, = L,, which covers the identity, which implies that
there is a nowhere vanishing function f € ¥°*°(vy), such that Z(I,) = f(p){, for all
l, € L,. Moreover, we have that E‘N =idg, |y, hence f(0,) =1 for all n € N, and
=*Ag = Ag. We consider now an arbitrary section A € I'*°(L,) and compute

= ?(As(f A)
&
= ﬁ)\ + Ag(N)
f
Hence £(f) = 0, which means that f = pr}g for some function g € ¥°°(N), but since
1= f(0,) = g(n) for all n € N, we have that = =idg, . X=X

For a pair of manifolds (M, N), a line bundle L — M and an Euler-like derivation
A € I'*°(DL), we have that

Ay = @ﬁg(s): Ly — Ly (2.1.4)

is well defined for s > 0 and can be extended smoothly to s = 0, where Ly is the target
of the unique fat tubular neighborhood ¥: L, — Ly, such that ¥*A = Ag¢. Moreover,
we have that

Ao =To Py (2.1.5)
for all s > 0. Note that if we project this equation to the manifold level, this simply
gives Eq.

2.2 Normal Forms of Dirac-Jacobi Bundles

Using the techniques of Euler-like derivations, we want to prove a normal form the-
orem for Dirac-Jacobi bundles around transversals. Roughly speaking, this means in
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our case classifying all the possible Dirac-Jacobi structures which coincide on a given
submanifold and moreover finding a particularly simple representative in this class. We
will be more precise, what we exactly mean in the corresponding subsections. In fact,
a transversal NV allows us to find special Euler like derivations which are, in some sense,
controlling the behaviour of the Dirac-Jacobi bundles near N. The aim is now to prove
the existence of this special kind of Euler-like derivations and afterwards, we will be
able to prove a normal form theorem and derive some corolloraries from it.

Definition 2.2.1 Let L — M be a line bundle, let H € Q3 (M) be a closed Atiyah
3-form and let L C DL be a H-twisted Dirac-Jacobi structure. A submanifold N — M
18 called transversal, if the inclusion map I: Ly — L is transversal to L, i.e.

DLy +prpL|y = (DL)| -
Moreover, N is called minimal transversal at a point p € M, if
T,N @ o(prpL) =T, M.

Remark 2.2.2 In Definition [2.2.1] we required for a minimal transversal N to a Dirac-
Jacobi structure £ C DL not explicitly, that it is a transversal. Nevertheless, this is
an immediate consequence of the equation

T,N @ o(prpL) =T, M.

Proposition 2.2.3 Let L — M be a line bundle, let H € Q%(M) be closed, let L C DL
be a H-twisted Dirac-Jacobi bundle and let N — M be a transversal. Then

B1(L) == {(Ap, (D)) € DLy | (DI(Ap), ag(p)) € L}
18 an I* H-twisted Dirac-Jacobi bundle, where I: Ly — L is the canonical inclusion.
PROOF: This is an easy consequence of Theorem [1.2.17] XEXY

Lemma 2.2.4 Let L — M be a line bundle, let H € Q3 (M) be closed, let £ C DL be
an H-twisted Dirac-Jacobi structure and let 1: N — M be a transversal. The backwards
transformation B1(L) is canonically isomorphic (as vector bundles over N) to the
fibered product I' L uniquely determined by

I'c ——

L b

DLy 2L DL
ProOOF: We consider the linear map

=: I!ﬁp > (Ap, (Db(p),og(p))) — (Ap,Df*aL(p)) S %](2),
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which is well-defined since DI(A,) = O, ;). We claim now that this map is injective.
So let us consider (Ap, ([,p), y(p))) € ker(Z). It follows immediately, that A, = 0

and hence 0,y = 0. If (0, o)) € £ then «,, € Ann(prpL). Since DI*a, ) = 0, we
have that a,(,) € Ann(DLy), hence «,(,) = 0 and the claim follows.
For dimensional reasons we have that = is an isomorphism. XEX

Proposition 2.2.5 Let L — M be a line bundle, let H € Q3 (M) be closed, let L C DL
be an H-twisted Dirac-Jacobi structure and let N — M be a transversal. Then there
exists € € I'°(L), such that 6|N =0 and prp(e) is Euler-like.

PrOOF: The proof follows the same lines as [12]. We consider the exact sequence
0—B(8) = L]y = vy —0,

where the first arrow is given by the identification B;(£) = I'L from Lemma fol-
lowed by the canonical map I'L — £. The second arrow is the projection prp,: E‘N —
DL}, followed by the symbol map o: DL’N — TM‘N and the projection to the nor-
mal bundle pr, : TM’N — vy. Let us choose a section € € I'°(L£) with 5’N = 0, such

that dVe: vy — E‘N, which we always can do according to Remark . So € defines
a splitting of the sequence. We consider now the diagram

0 I'c L]y UN 0
0 TN TM|, VN 0

and obtain that if dVe splits the upper sequence then (o o prp)d~e splits the lower
sequence. Using Proposition we see that (o oprp)dVe = dV((o o prp)(e)) and
by Proposition 2.1.10] we see that Tv(o o prp)(e) = £. Multiplying € by a suitable
bump function we may arrange that (o o prp)(e) is complete and hence an Euler-like
vector field. By definition prp(e) is hence an Euler-like derivation. XEX

Let us fix now an H-twisted Dirac-Jacobi structure £ C DL on a line bundle
L — M. Additionally, we consider a transversal t: N < M and a section ¢ = (A, a) €
['°°(L), such that €|, = 0 and A is an Euler-like derivation. Due to Lemma we
find a unique fat tubular neighborhood

L, Y5 Ly

|, |

vy — U

such that U*A = Ag. We have now two ways to construct a Dirac-Jacobi structure
on L, — vy. Namely we can take the backward transformation By (Ly) and, if we
consider the diagram

59



Chapter 2. Normal Form Theorems

we can take the backward transformation B.p(L) = Bp(B(L)), note that this is a
Dirac-Jacobi bundle, since (1) B(L is a Driac-Jacobi bundle by Corollary [1.2.18] be-
cause N is a transversal and (2) and thus Bp(5;(L)) is a Dirac-Jacobi bundle, because
P: L, — Ly is covering a surjective submersion, so P is in particular transversal. Our
aim is to compare Bop(L) and By (Ly). Let us consider the flow of the derivation
[(A, &), =] i of DL, which is given by

(9, ") € Z (M) > Aut(L),
where ®2 is the flow of A and v; = fg(fl)éT)*(dLa + 1A H)dr like in Of course,
the action of (y;, @) preserves £: explicitly
exp(1) 0 DOA(L) = L.
This leads us to the following

Theorem 2.2.6 (Normal form for Dirac-Jacobi bundles) Let L — M be a line
bundle, let H € Q%(M) be closed, let L C DL be a H-twisted Dirac-Jacobi structure
and let N — M be a transversal. Then there exists an open neighborhood U C M of
N and fat tubular neighborhood V: L, — Ly, such that

By (L|,) = (Bror(L))”
Jor an w € QF (vy), such that dpw = W*H — (I o P)*H.
PRrROOF: According to Proposition [2.2.5] we can find (A, a) € T°°(L), such that A is
Euler-like. Then there is a unique fat tubular neighborhood ¥: L, — Ly, such that
U*A = Ag, due to Lemma [2.1.16] Let us denote by (v, ®2) € Z2(M) x Aut(L) the

flow of [(A, ), —]g. We know that (v, @) preserves £ for all + € R and so will
(V= 1og(s)> @élog(s)) for all s > 0. Let us take a closer look at

—log(s)
T—log(s) = /0 (‘I)éT)*(dLOé +aH)dr

—log(s)
_ / (@2 )" (dpa + ia H) dr
—log(1)

1
1 *
_ / S(@8,)" (dpa+ ia ) dt

which is is smoothly extendable to s = 0, since (A, a)‘N = 0. Let us denote by ' the
limit s — 0 and put w = ¥*w’. We have, using the defining equations and
and the relation [2.1.5),

SB\I;(ﬁ‘U) = %q;(eXp(’)/_ 1og(s)) 0 ]D)q)élog(s) (E))
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= SB‘I’(eXp(FV— log(s))%@A (ﬁ))

log(s)

= (By (B, (L)Y 7102
= (Bp,ow (L)Y - 108
= (Buop, (L)) - 105,

which holds for all s > 0. For s = 0 we have, using that for the canonical inclusion
J: Ly — L, we have that Py =J o P and Vo J =1, that

By (L|,;) = (Bror(L))”. XEY

Recall that there are two kinds of leaves in Dirac-Jacobi geometry, see[L.2.2] so there
are also two kinds of transversals, which are even more interesting in the Jacobi setting.
In the Dirac-Jacobi setting the differences between these two kinds of transversals are
not very significant, nevertheless we discuss them here.

Definition 2.2.7 (Cosymplectic Transversal) Let L — M be a line bundle and let
L C DL be a Dirac-Jacobi structure. A transversal 1: N — M 1is called cosymplectic,

if
DLy NB;(L) = {0}.

Remark 2.2.8 The terminology cosymplectic comes originally from Poisson geometry,
namely a transversal N to a symplectic leaf of a Poisson structure is called cosymplectic,
since the associated normal bundle is a symplectic vector bundle, i.e. a vector bundle
E — N with a non-degenerate 2-form w € T°™°(A%2E). In Dirac geometry, the normal
bundle of the transversal carries only a pre-symplectic vector bundle, but we prefer
not to give them a special name. In the literature cosymplectic manifolds are usually
defined differently, see e.g. [13|, but throughout this thesis a cosymplectic transversal
is always in the sense of Definition [2.2.7]

Remark 2.2.9 Note that a cosymplectic transversal always inherts a Dirac-Jacobi
bundle coming from a Jacobi tensor by Proposition |[1.2.35] So let us denote L;, =
B;(L£) S DLy.

Cosymplectic transversals naturally appear as minimal transversal to locally con-
formal pre-symplectic leaves:

Lemma 2.2.10 Let (L — M, L) be a Dirac-Jacobi bundle and let po € M be a locally
conformal pre-symplectic point. Then every minimal transversal ot pg is a cosymplectic
transversal in o neighborhood of pg.

PROOF: Let N be a minimal transversal, then we have by definition that

T,N & o(prpL) =T, M.
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Now let us assume that A € (DLy N %1(5))‘%. So in particular, we have that

A € (DLy NprpB(L))]

Ppo

and hence 0(A) € T,N No(prpL) = {0}. Hence A = k1, but since pg is a locally
conformal presymplectic point we have that 1 ¢ prp(£) and thus & = 0. This means
that (DLx N %[(/J))}po = {0}, which has to hold in an open neighborhood of pg.XEX

Corollary 2.2.11 Let (L — M, L) be a Dirac-Jacobi bundle and let v: N — M be
a minimal transversal to L at a locally conformal pre-symplectic point pg. Assume
moreover that vy =V x N 1is trivial. Then locally around po there is a trivialization
of L, and a fat tubular neighborhood V: L, — Ly, such that:

By(L|,) = (Liy ®TV)”
where Jy s the Jacobi structure on the transversal. where we see
Ly €DL,
via the canonical identifications DL, =TV & DLy and J'L, = T*V & J'Ly.

The other kind of leaves of a Dirac-Jacobi structure are the so-called pre-contact
leaves. Their minimal transversal possess the following structure :

Definition 2.2.12 (Cocontact Transversal) Let L — M be a line bundle and let
L € DL be a Dirac-Jacobi structure. A transversal 1: N — M is called cocontact, if

rank(DLy NB(L)) = 1.

Lemma 2.2.13 Let L — M be a line bundle, let L C DL be a Dirac-Jacobi structure
and let v: N < M be a minimal transversal to L al a pre-contact point py. Then N is
minimal transversal in a neighborhood of py.

PrOOF: Recall that a minimal transversal at pg is a transversal of minimal dimension,
which in particular implies that

o(prp(L))],, & Tpo N = Ty M.
It is easy to see that
(DLn NB1(L))],, = (Lps),

which follows because N is minimal and py is a pre-contact point, i.e. 1,, € prpL. To
be more precise, by using the pre-contact property of py and the minimality of N, we
see (prDLODLN)’po = (1,,) and hence there is a € JI}OL, such that (1,,,«) € L. Let

us define 5 € JI}OL by
B(A) =0 for A € prpL
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and
B(A) = a(A) for A € DLy.

Then 3 is well-defined, since prpLN DLy = 1 and a(1) = 0 and moreover (0,3) € L,
since ((0, 8), L) = 0 and £ is maximal isotropic. We consider now the element (1,,, «—
B) € L, thus (1,,, DI*(a — B)) = (1;,,0) € B(L). Moreover, since prpLN DLy = 1,
we conclude DLy NB1(L) = (1p,) and hence rank(DLy N ‘B[(ﬁ))‘po =1.

Now we want to argue why this holds in a whole neighborhood. Let us therefore
consider the sum DLy + B;(L£) € DL and a (local) section a € Q} (M) such that
a(]l)‘p0 #0. Let (0,8) € (DLy+B(L))| N (Oz>‘p0, then there exists A € Dy, L such

Po
that (A, 3) € B(L), but since (1,0) € B;(L), we have using the isotropy of B (L),

0= ((A,5),(1,0)) = 5(1),

but 8 = ka for k € R, we conclude £ = 0 and thus 8 = 0 and therefore (DLN +
%I(E))|p0 N (a)‘po = {0}. For dimensional reasons we conclude ]D)L‘po = (DLy +

B I(E))‘po ® <a>|p0. Therefore this equality holds in a whole neighborhood of po,

so rank(DLy + B7(L)) = 2n + 1 in this neighborhood, which implies rank(DLy N
B(L)) =1 around py. X=X

Definition 2.2.14 Let L — M be a line bundle and let L € DL be a Dirac-Jacobi
structure. A homogeneous cocontact transversal v: N — M is a cocontact transversal
together with a flat connection V: TN — DLy, such that

1m(V) & (DLN N %](ﬁ)) = DLy.

Remark 2.2.15 The definition of a homogeneous cocontact transversal seems a bit
strange, since it includes a connection. This fact can be explained quite easily using the
homogenezation described in [46], which turns a Dirac-Jacobi structure on a line bundle
L — M into a Dirac structure on L := L*\{0y;} which is homogeneous (in the sense
of [41]) with respect to the restricted Euler vector field £ on L*. The pre-symplectic
leaves of this Dirac structure have the additional property that £ is either tangential
to it or transversal. If £ is tangential, then the leaf corresponds to a pre-contact leaf
on the base M. Hence a minimal transversal N to it is transversal to the FEuler vector
field and defines therefore a horizontal bundle on L:‘)r( N) and hence a connection.

One may wonder what kind of (not so classical) geometric structure a homogeneous
cocontact transversal inherits. The answer is given by the following

Lemma 2.2.16 Let (L — M, L) be a Dirac-Jacobi bundle and let V: TM — DL be
a flat connection, such that

im(V) @ (DLN L) = DL.

Then there exists a locally conformal Poisson structure 7 € T®°(A2(TM ® L*)® L) and
a vector field Z € T°°(TM), such that

63



Chapter 2. Normal Form Theorems

i.) 7, Z)¢ra,n) = 7 (homogeneous locally conformal Poisson)
ii.) L= Lz = {(M1-Vz)+Via,0*a+1*®a(Z)) € DL |a € T*M®L, h € R}

where we denote 1* is the unique element in DL* such that ﬂ*‘im(V) =0and1*(1) = 1.

PROOF: It is an easy computation that £ has to be of the above form. The fact that
7 and Z fulfill condition i.) as well as that 7 is locally conformal Poisson follow from
the involutivity on L. XEX

Corollary 2.2.17 Let L — M be a line bundle, let L C DL be a Dirac-Jacobi structure
and let 12 N — M be a minimal transversal to L at a pre-contact point pg. Then every
flat connection V gives N locally the structure of a homogeneous cocontact transversal.

PRrROOF: In the proof of Lemma [2.2.13] we have seen that

(DLy N %I(ﬁ))}po = (1)

and hence for every flat connection V, we have that im(V)‘po @ (DLy N %ﬂﬁ))’po =

DLy and hence this decomposition holds in a whole neighborhood of py. X=X

Remark 2.2.18 Note that this implies that every minimal transversal to a pre-contact
leaf has an induced homogeneous locally conformal Poisson structure. Moreover, it is
easy to show that

Corollary 2.2.19 Let L — M be a line bundle, let L C DL be a Dirac-Jacobi structure
and let t: N — M be a minimal transversal to a contact point po. If vy =2V X N,
then there exists a local trivialization of L, and a fat tubular neighborhood V: L,, — Ly
such that,

Bu(L]) = (Liny.zy) @ TV)",

where (mn, Zn) is the homogeneous Poisson structure on the transversal from Lemma
[2.2.16. Here we see

[,( cDhL,

TN, ZN) =

via the canonical identifications DL,, =TV & DLy and JIL, =TV & J'Ly.

Corollaries|2.2.11}and [2.2.19|can be seen as the Jacobi-geometric analogue of the results
obtained by Blohmann in [§].
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2.3 Normal Forms and Splitting Theorems of Jacobi Bun-
dles

As explained in Example [[.2.35] Jacobi bundles are a special kind of Dirac-Jacobi
bundles. In addition, we have that Jacobi isomorphism induces an isomorphism of
the corresponding Dirac structures (this holds even for morphisms if one considers
forward maps of Dirac-Jacobi structures which we will not explain here, see [46]).But
the converse is not true: if the Dirac-Jacobi structures of two Jacobi structures are
isomorphic, it does not follow in general that the Jacobi structures are isomorphic.
What is not "allowed" in Jacobi geometry are B-field transformations. Nevertheless,
we can keep track of them, if we make further assumptions on the transversals.

2.3.1 Cosymplectic Transversals

In this section, we use the notion of cosymplectic transversals as explained in the
previous section.

Lemma 2.3.1 Let L — M be a line bundle, J € T>(A%(J'L)* ® L) be a Jacobi
tensor with corresponding Dirac-Jacobi structure L5 € DL and let 12 N — M be a
cosymplectic transversal. Then

JY(Ann(DLy)) & DLy = DL| .

PrOOF: First we prove that Jﬁ}Ann(DLN) is injective. Solet @ € Ann(DLy ), such that
J¥(@) = 0. Then for an arbitrary 8 € J'L, we have that

a(JH(B)) = =B(J*(a)) = 0.

Hence a = Ann(DLy) N Ann(im(J%)) = Ann(DLy + im(J*)) = {0}, and Jﬁ’Ann(DLN)
is injective. Let A € DLyNJ*(Ann(DLy)), then there exists an o € Ann(DLy), such
that J¥(a) = A. Thus we have that (A, a) € £; and moreover (A, DI*a) € B1(Ly).
But, since @« € Ann(DLy), we have that DI*o = 0 and hence A = 0, since N is
cosymplectic. The claim follows by counting dimensions. XEXY

Let us from now on fix a Jacobi bundle (L — M,{—, —}) with Jacobi tensor J and
corresponding Dirac-Jacobi structure L. Suppose that ¢: N — M is a cosymplectic
transversal, then we have that

pr,ocoJ': Ann(DLy) = vy

is an isomorphism. Let us choose a € I'*(J'L), such that a}N = 0 and such that
dVa: vy — Ann(DLy) C JlL‘N is a right-inverse to pr, oo o J¥. Note that this does
always exist due to Lemma [2.1.1} Then we have

pr, (Vo (J4(a))) = pr, (o(JH(dVa))) = idyy
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and hence Tv(o(J*(a))) = €. Multiplying a by a bump-function which is 1 near N,
we may arrange that o(J%(a)) is complete and hence J#(a) is an Euler-like derivation.
By Theorem [2.2.6 we have that

By(Ly) =Bp(Liy)",

where w = U* 01 %(Cbi{)’gg;»*(dLQ) dt and ¥: L, — Ly is the unique tubular neighbor-

hood, such that U*(J%(a)) = Ag.
Proposition 2.3.2 The 2-form w € Q%D<VN) restricted to N has kernel DLy .
PROOF: One can show, in local coordinates, that dNa([a(D)‘N]TN) = (.,S”Doz)}N for

all O € T'°°(DL). Hence we have trivially an’N = 0 for A € I'*°(DL), such that
Al €T(DLy). Let now A,0 € I'*°(DL), such that A|,, € I*°(DLy), then

dra(A,0)] y = —(dreaa)(0)]y = —0(a(d)]
= —(Za)(A)]y — ([T, A))] = —(Zha)| (D)
= dVa([o(D)[,)(A)

=0,

where the last equality follows since d¥a takes values in Ann(DLy). Hence we have
that ker((d;«)?) D DLy, in particular this is true for %(@ﬁg(t))*(d,;a), since @joq(s) ‘N
is a gauge transformation fixing DLy. Thus it is true also for w, since D\I'|DLN =id.

Equality follows from the fact that dV« is choosen to be injective, since it has a left-
inverse. X=X

We want to describe the structure of w at N. Note that for a cosymplectic transversal
N, the normal bundle vy always comes together with a canonical symplectic (i.e. non-
degenerate) Ly-valued 2-form © € I'*°(A%v% @ Ly) defined by

O(X,Y) = (pr, 000 JH, py ) HX)(Y)

Lemma 2.3.3 The 2-form w € Q%V(VN) coincides, shrinked to vy C DL, , with ©.
PRroOOF: Note that for a cosymplectic transversal, we have

DL|, = DLy & J*(Ann(DLy)) = DLy @ vy

Where we used the canonical identification

J*(Ann(DLy)) = Din UN.
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Moreover, we have
DL,|y = DLy @ vy,

where we include vy by the following map:

dt ¢

for Py: Ly, 3 (v, ln) — (tun,ln) € Ly,. It is clear that DV fixes DLy, since ¥|, : Ly —
Ly is identity. We want to show that DU (vy) C J4(Ann(DLy)). One can show that
by an elementary calculation, that

d
ver. VN D Up — ()\ — 7‘ _Opopt*(/\)(vp>> e D,L,

t—0 t
using Equation [2.1.5] But by defintion, we have that

0 A(on) = lim D)
" t—0 t

hence DU o (-)'" = dNVA = J#odVa, but « was chosen in such a way that dVa takes
values in Ann(DLy). Thus D\Il’N(An, vp) = (Deltay, J*(dVa(v,)) and thus respects
the splittings DL, |, = DLy @ vy and DL| = DLy & J*(Ann(DLy)). Using

By(Ly) =Bp(Ly)",

ker(wb)’N = DLy and the definition of ©, we see that along N w and Theta have to
coincide. XEY

This leads us to the first normal form theorem for Jacobi manifolds.

Theorem 2.3.4 (Normal Form for Jacobi Bundles I) Let (L — M, J) be a Ja-
cobi bundle, let N — M be a cosymplectic transversal. For every closed w € Q%V(I/N),

such that ker(wb)‘N = DLy and w coincides with © at vy C DL, the following holds:
i.) Bp(Lyy)? is the graph of a Jacobi structure near N.

ii.) there exists a fat tubular neighborhood V: L, — Ly which is a Jacobi map near
the zero section.

PrOOF: We have proven this theorem for the special w given by

1
1 Jta)\«
w:/o Z((I)log(t)) dpadt.

Let w’ be a second Atiyah 2-form fulfilling the requirements of the theorem, then
op = tw —w)
is a (time-dependent) Atiyah 2-form such that o9 = 0 and moreover O't‘ y = 0. Thus,
(Bp(Lyy)¥) = Bp(Ly) T
is a Jacobi structure near N. Now use Appendix to get the result. X=X
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An immediaty consequence of Theorem is the Splitting for Jacobi manifolds
around a locally conformal symplectic leaf, proven by Dazord, Lichnerowicz and Marle
in [17].

Theorem 2.3.5 Let L — M be a line bundle, let J € T*°(A*(J'L)* ® L) be a Jacobi
tensor and let pg € M be a locally conformal symplectic point such that the leaf through
po has dimension 2k. Then there are a line bundle trivialization Ly = Ry around pg
and a cosymplectic transversal N — U, such that U =2 Usp, X N for an open subset
0 € Uy, C R?*, such that corresponding Jacobi pair (A, E) is transformed (via this
trivialization) to

(A,E) = (Wcan + Ay +EN A annaEN)-

(AN, EN) is the induced Jacobi pair on the transversal N and the canonical stuctures
on the Uy, are given by (Tean, Zean) = (8(2” A 8‘37;,]91' a‘zi).

PROOF: As the statement is local, we can assume that the line bundle is trivial. Let
us choose an arbitrary minimal transversal N at pg, such that vy = R?* x N and

(DLn NB1(Ly)) = {0}
holds in an open neighborhood of pg. Using Corollary 2.2.11] we find
Bu(L|,) = (Ly ® TR*)~.
Since the line bundle and the normal bundle are trivial, we can identify I'*°(A%v* ® L,)

by I'*°(R2¥). And thus © is a symplectic structure on the vector bundle R2¥ — N and
hence we can find a Darboux frame {e;, fj}m:lw,q C FOO(R?\’;), ie.

q
O=> ¢ nf;
i=1
for the dual basis {e?, fitij=1,. 2k We define
Wean = dg’ Adp; + 1* Ap;dg’ € Qg (U),
where the ¢’s (resp. p;’s) are the canonical coordinates on R?* x N induced by the
e;’s (resp. fi’s). By definition, we have that ker(wzanﬂN = DLy, w coincides with ©
at vy € DL, and weay is closed. Using Theorem we have that
(L ® TR )wean 2 1

near N. An easy computation shows that the Jacobi structure, inducing the Dirac-
Jacobi structure on the right, is exactly the one from the theorem. XEX
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2.3.2 Cocontact Transversals

The second kind of transversals we want to discuss in the context of Jacobi geometry are
cocontact transversals, which were also introduced before in Definition In fact
this notion is not enough for our purposes and we need to assume more information on
the structure of the transversal, which is precisely the notion of homogeneous cocontact
transversal from Definition 2.2.12]

Lemma 2.3.6 Let L — M be a line bundle, J € T°(A%(J'L)* ® L) be a Jacobi
tensor with corresponding Dirac- Jacobi structure L; € DL and let v: N — M be a
homogeneous cocontact transversal with connection V: TN — DLy. Then

J*(Ann(im(V))) @ im(V) = DL| .

Moreover, J”Ann(' : Ann(im(V)) — DL‘N is injective.

im(V))

PRroOF: The proof follows the same lines as that of Lemma [2.3.1] XEY
Now we pick as in the cosymplectic case, an o € I°(J'L), such that a‘N =0 and
dVa: vy — Ann(im(V)) C J'L|

defines a splitting of I'L — E‘N — vy, i.e. pr,oooJfod¥a =id,,. Hence we
have that Jﬁ(oc), multiplied by a suitable bump function which is 1 close to IV, is an
Euler-like derivation. By Theorem [2.2.6] we have that

By (L) =Bp(B1(£)),
%(fbizg)))*(dLoe) dt and ¥: L, — Ly is the unique tubular neighbor-
hood, such that U*(J%(a)) = Ag. We can prove, as before, the following

1
where w = U* 0

Proposition 2.3.7 The Atiyah 2-form w € Q%U (vn) restricted to N has kernel im(V).
PrOOF: This proof follows the same lines as the proof of Proposition [2.3.2] X=X
As in the cosymplectic transversal case, we can define a skew symmetric 2-form
0 € I*®(A%2J*(Ann(im(V)) ® Ly)

by

O(X,Y) = )~HX)(Y)

(Jﬁ ‘ Ann(im(V))

since Jﬁ‘Ann(im(v)) : Ann(im(V)) — J¥(Ann(im(V)) is a bijection. Tt is easy to see that

O is non-degenerate. Moreover, we have

Lemma 2.3.8 The 2-form w € Q%V(VN), restricted to vy @ K C DL, concides with
©, where we denote K := (DLy NB1(Ly)).
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ProOOF: Using the ideas of the proof of Lemma we can show that the fat tubular
neighborhood transports J*(Ann(im(V)) to vx @K, hence the proof is an easy adaption
of the proof of Lemma [2.3.3 XEXY

Theorem 2.3.9 (Normal Form for Jacobi bundles II) Let L — M be a line bun-
dle, let J be a Jacobi structure and let N — M be a homogeneous cocontact transversal
with connection V: TN — DLy. For every closed 2-form w € Q%V(VN), such that
ker(wb){N = im(V) and w coincides with © at vy & (Br(Ly) N DLy) C DL, the
following holds

i.) Bp(Lyy )Y is the graph of a Jacobi structure near N.

ii.) there exists a fat tubular neighborhood V: L, — Ly which is a Jacobi map near
the zero section.

PrOOF: The proof follows the lines of Theorem with the obvious adaptions. XEX

Now we want to prove the second splitting Theorem of Dazord and Lichnerowicz
and Marle in [17], namely the splitting of Jacobi manifolds around contact leaves.

Theorem 2.3.10 Let L — M be a line bundle, let J € T®(A?(J'L)* ® L) be a
Jacobi tensor and let pg € M be a contact point, such that the leaf through pg has
rank 2k + 1. Then there are a line bundle trivialization Ly = U x R around py and
a homogeneous cocontact transversal N — U, such that U = Usri1 X N for an open
subset 0 € Ugp1 € R and the corresponding Jacobi pair (A, E) is transformed (via
this trivialization) to

(Aa E) = (Acan + 7N + Ecan N ZN, Ecan)a

where (T, ZN) is the induced homogeneous Poisson structure on the transversal N and

the contact structure on the Usgyq s given by (Acan, Fean) = ((6‘; —i—pi%) A a%i, a%) )

PROOF: Let pg € M be a contact point and let N C M be a transversal, such that
o(im JH)| ® TpoN = Ty, M.

We can again assume that the line bundle L — M is trivial, since we want to prove
a local statement. In a possibly smaller neighborhood, we can assume that vy =
V x N — N. We want to show that there is a trivialization of vy, such that © looks
trivial, where we specialize along the way through the proof what we mean by trivial.
So let us denote by A the local trivializing section of Ly, thus we can write

O(A,0) = Q(A,0) - A

for A, € vy @ K, for a unique QI'°(A%(vy @ K)*). Since Ly — N is trivial, we
identify DLy = TN @& Ry and choose the trivial connection V. Hence, we can find a
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(local) nowhere vanishing section of K of the form 1—Z for a unique Z € Secin fty(TN).
Let us now shrink

@‘VN: UN X UN — LN.

Since vy has odd dimensional rank and © is skew-symmetric, locally we can find a
local non-vanishing X € I'*°(vy), such that ©(X,-) = 0, moreover, since © is non-
degenerate, we can choose X so that

Q1 -2, X) = 1.

It is now easy to see that the symplectic complement S := (I — Z, X)*« C vy. Finally,
we find a trivialization of S such that Q|S is the trivial symplectic form with Darboux
frame {eg, ex12,...}. Hence, by extending this trivialization to vy =V x N by using
the section X as b, we find that {b,1 — Z, ey, f!,ea, f2,...} is a Darboux frame of Q in
this trivialization. Using the dual basis {b*, ¢’, f;} to the Darboux frame we get (linear)
funtions on vy denoted by (u, ¢*,p;). With the decomposition DL, = TV@®TN &R,
we can choose

W= —(dqi Adp; + 1% A (du—pz-dqi))

which coincides with © on vy @& K and is dp-closed. By applying Theorem [2.3.9] since
N together with V is a homogeneous cocontact transversal, we find a Jacobi morphism

Bp(Ly)” = L.

An easy computation shows that Bp(Ly)“ is the graph of (Acan + ™8 + Fean A
Zx+ Eean). XER

2.4 Generalized Contact Bundles

The last two sections gave us the methods to attack the local structure of generalized
contact bundles. But as for Jacobi structures and Dirac-Jacobi bundles, we need to
discuss transversals of generalized contact structures.

Definition 2.4.1 Let L — M be a line bundle and let L C DcL be a generalized
contact structure. A submanifold N C M is called transversal, if it is a transversal of
the corresponding Jacobi tensor.

As in the Jacobi setting, this isnot enough to ensure a reasonable structure induced on
the transversal, but nevertheless we have

Lemma 2.4.2 Let (L — M, L) be a generalized contact bundle and let o: N C M be
a transversal. Then

B(L) C DLy
is a (complex) Dirac-Jacobi bundle.

Let us distinguish the same cases as in the previous sections.
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2.4.1 Cosymplectic Transversals

Lemma 2.4.3 Let L — M be a line bundle, let L C DcL be a generalized contact
structure and let submanifold v: N — M be a cosymplectic transversal to the corre-
sponding Jacobi tensor J. Then

B(L) € DcLy

is a generalized contact structure. Moreover, its Jacobi tensor agrees with the Jacobi
tensor induced by J.

ProOF: Recall from Lemma that a cosymplectic transversal to a Jacobi structure
always fulfills

J*(Ann(DLy)) & DLy = DL|

and Jﬁ\Ann(DLN): Ann(DLy) — DLy is injective. Let (A, 1)) € B1(L) NB;(L) be
real. Then there exists y € JLL, such that (A,x) € £. If we denote by ¢, J,« the
components of the endomorphism K inducing £,

(74 (Imx), ~67Imx) = K(0, Imy) = 2 K((A,x) ~ (B,%))

_ %(m, X) +i(&,%))
= (A, Rex)

and we conclude (A, x) = (J*(Imy),ilmx — ¢*Imx). On the other hand we have that

X‘DLN = 1) and hence it is real, which means that Imy € Ann(DLy). Now we use that

N is a cosymplectic transversal: J¥(Imy) € DLy if and only if Imy = 0. This means
that (A, x) € £ is real and hence has to be zero, which implies also (A, ) = 0. We
can also use the above computation to show that for ¢ € J'L, such that J%(v)) € DLy,
we have J8(v) = J?V(@Z)‘DLN), where we denote by Jy the Jacobi structure induced
by B;(L). This property is also shared by the Jacobi tensor induced by J on N and
determines it completely. X=X

Now, we want to show that a generalized contact structure is uniquely determined
by its backwards transform on a cosymplectic transversal, up to a B-field transforma-
tion. For the following Theorem, we use the notation of the previous section, more
precisely Subsection 2.3.1]

Theorem 2.4.4 (Normal Forms for Generalized Contact Bundles I) Let (L —
M, L) be a generalized contact bundle and let .2 N — M be a cosymplectic transversal.
Then for every closed w' € Q2 (M), such that ker((w’)b)’N = DLy and W' coincides
with © at vy C DL, the complex Dirac-Jacobi structure

%P(EN)M/
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15 a generalized contact structure near the zero section and there exists a fal tubular
neighborhood U : L, — Ly which is an isomorphism of generalized contact bundles near
the zero section (up to a B-field transformation).

PrOOF: We follow the lines of the proof of Theorem [2.3.4 “ Let us choose a € Q1 (M),
such that J*(a) is Euler-like (we denote by J the Jacobi structure of the generalized
contact structure). Since (J#(a),ia — ¢*a) € T*°(L), we can apply Theorem to
get that

E‘U %IOP(E))iw+B

for the unique tubular neighborhood W: L, — Ly, such that U*(J%a) = Ag, where
iw+B = f i{)g(%ai (dr(ic—®*ar)) dt. So the claim is proven for w. Using Appendix

[A.1] we can argue e in Theorem [2.3.4] to get the claim. XEX

Of course we can use this normal form theorem together with the normal form
theorem for Jacobi structures to give a local structure result for generalized
contact bundles as well.

Theorem 2.4.5 (Splitting Theorem for Generalized Contact Bundles I)

Let (L — M, L) be a generalized contact bundle and let pg € M be a locally conformal
symplectic point to its Jacobi structure. Then there are a line bundle trivialization
Ly =2 U x R around py and a minimal cosymplectic transversal N — U, such that
U = Uy, x N for an open subset 0 € Uy, C R?* with coordinates {q*,p1,...,q", i},
such that £|U is giwen by the endomorphism K on

DLy
——
DRy, xn =TUy ®TN @ Ry,, N,

given by its entries
i.) ¢ = (id—Zean ® 1%) 0 N
i.) J = Tean + AN + (1 — Zean) N En
i) a = —dat Adp; + 1% Ap;da’ + an

for the structures ¢, JN = (AN, En) and an inducing the generalized contact bundle
on N and (Tcan, Zean) = ( < - A dmngp )-

PRrROOF: Using the the Theorems 2.4.4] and 2.3.5] as well as Corollary 2.2.11] we can
see that, up to a B-field,

L|, = (TcUw ® Ln)*

for w = da’ Adp; — 1* Ap; dz*. The rest is just a computation using that (T@Uzk ®Ly)W
is the i-eigenbundle of K. XEX
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The exact same result is proved in [41], using different notation and slightly different
techniques.

As a final remark of this subsection, we want to mention that there is a refinement
of Theorem [2.4.5] if the Jacobi structure is locally regular around a locally conformal
symplectic point p, i.e. its foliation is locally regular around p. In this case the
transversal can be described in a better way:

Lemma 2.4.6 Let (L — M,L C DcL) a generalized contact bundle and let 1: N <
M be a minimal transversal through the regular locally conformal symplectic point
po € M. Then the induced generalized contact structure on N is (locally) a B-field
transformation of a complex structure on DLy .

PRrOOF: If the foliation induced by the Jacobi structure is regular around pq it is easy
to see that the Jacobi structure on a minimal transversal is trivial and hence using
Lemma we conclude that B;(L) is induced by an endomorphism of the form

(o)
o —o*

for a gauge complex structure ¢ € I'*°(End(DL)) and 8 € Q% (M). From now on, we
use the notation and results from Appendix . Recall that DLy = DL%’O)GBDLES’I),
where DLg\l,’O) (resp. DLg\(;’l)) is the +i-Eigenbundle (resp. —i) of ¢. Define v € Q2 (M)
by

1
7(A,0) = Za(A,0) for A D€ DL and 4*(DLYY) = 0.

Hence we have that + € Q(L2’0)(M), furthermore, one can show that for A € DLE\}’O),

we have that (A,iav) € Br(L), which implies that 9y = 0. Shrinking to a small
enough open neighborhood U, where the Atiyah-Dolbeault cohomology is trivial, we

can find p € Q(Ll’o)(M), such that v = 0r,p. Choosing the B-field

B =Re(y+ drp)

(1]
™

the claim is just a computation. X

2.4.2 Cocontact Transversals

Lemma 2.4.7 Let (L — M,L C DcL) be a generalized contact structure and let
t: N —= M be a cocontact transversal for its Jacobi structure J. Then

i.) rank(B(L) N B (L)) =1
i.) prpB1(L) +prpB(L) = DL

iii.) prp(Br(L)NB (L)) = DLy Nprp(B(Ly)).
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ProOF: Recall that a cocontact transversal for a Jacobi structure J is a transversal
N such that

rank(DLy N*B(Ly)) = 1.

Let us choose 0 # (A,0) € DLy NB;(L), this means we can find o € T*°(J'L), such
that (J¥(a),a) = (A, ) € Ly, such that DI*a = 0. Moreover, we have

(J¥(a),ia — ¢*a) € L

where L is realized as the +i-eigenbundle of

¢ Jt

B =)
In conclusion, (J%(a), —DI*¢*a) € B(L) NB(L), since it is real. In the same way,
one can show that B;(£) N B (L) has rank 1 and hence every element has to be of
that form. Point 4i.) now follows by counting dimensions.

Let us prove that prp: B (L) NB(L) — DcL is injective. Let (0,a) € B (L) N
B;(L) be real, then there exist (0,3) € L, such that DI*8 = «. This further means
that 3 € Ann(prp(£)) € Ann(prp (L) Nprp(£)) = Ann(im(J*)¢). But this implies
that f is real, because N is a transversal of J, i.e. DcLy + im Jic = DcL and
DI*p = a. Every real element in £ vanishes identically and thus § = 0. Let (A, «a) €
prp(B7(L) N B;(L)), then by i.) there exists B € Ann(DLy), such that (J*(B),iB —
¢*B) € L) with J¥(8) = A. So we conclude A € DLy Nim(J%). X=X

In Section we discussed homogeneous cocontact trasnversals, i.e. cocontact
transversals with a special connection (see in order to obtain a homogeneous
locally conformal Poisson structure on the transversal. In the case of generalized
contact structures we obtain something very similar.

Lemma 2.4.8 Let L — M be a line bundle, let L C DcL be a complex Dirac-Jacobi
structure and let V: TM — DL be a flat connection, such that

i.) prpLl +prpL = DcL
i.) rank(L N L) =1
ii.) im(V)c @ prp(LN L) = DcL

Then there exists a locally conformal generalized complex structure D C ']I‘éM and a
section (Z,¢) € T°(TFM), such that

i.) (X,a) eI®(D) = ([Z,X],a - ZLYa+1xdV() € (D)

ii.) L={(Vx,0"a+1*"® (a(Z) — ((X))) € TEM | (X,a) € D} &
(I =Vz,0"(+1" @ ((2)))c
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PRrROOF: It is an easy verification that £ looks like in #i.) for a subbundle D C TEM.
The rest follows by the involutivity of L. XEX

Corollary 2.4.9 Let L — M be a line bundle, let L C DcL be a generalized contact
structure and let t: N — M be a homogeneous cocontact transversal with flat connec-
tion V: TN — DLy for the induced Jacobi structure J. Then there exists a locally
conformal generalized complex structure D C TéNN and a section (Z,() € (TN N),
such that

i.) (X,0) eT®(D) = ([Z,X],a - ZLYa+1xdV() € (D)

ii.) L={(Vx,0*a+1*® (a(Z) — ((X))) € TE'N | (X,a) € D} &
(1 =Vz,0*C+1*®((Z)))c-

Moreover, the homogeneous locally conformal Poisson structure induced by D coincides

with the one induced by J (as in Definition |2.2.14| and Lemma .

PRrROOF: The existence of D and the form of £ is an easy consequence of Lemmas
and [2.4.8] And the fact that the induced homogeneous locally conformal Poisson
structures coincide follows the same lines as Lemma Note that condition i.)
implies that the induced locally conformal Poisson structure is indeed homogeneous
with respect to Z. X=X

We can again collect the results of all the consideration in Jacobi and related
geometries to get, using the notation of Section

Theorem 2.4.10 (Normal Forms for Generalized Contact Bundles IT)

Let (L — M, L) be a generalized contact bundle and let N — M be a homogeneous
cocontact transversal with connection V: TN — DLy. For every closed Atiyah 2-
Jorm ' € QF (vn), such that ker((w’)b)‘N =im(V) and W' coincides with © at v @
(%[(,CJ) N DLN) cDhL,,

%P(‘CN)M/

1s a generalized contact structure near the zero section and there exists a fat tubular
neighborhood V: L, — Ly, which is an isomorphism of generalized contact bundles
near the zero section (up to a B-field transformation).

PROOF: The proof follows the same lines of Theorem and the techniques of
Theorem [2.3.9) and by using Lemma [2.4.7] XEX

As a last step of this chapter, we give now a local splitting for generalized contact
structures, which is just a corollary of the previous considerations.

Theorem 2.4.11 (Splitting Theorem for Generalized Contact Bundles IT)
Let (L — M, L) be a generalized contact structure and let pg € M be a contact point.
Then there are a line bundle trivialization Ly = U x R around py and a minimal
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homogeneous cocontact transversal N — U, such that U = Uy X N for an open subset
0 € Uppy1 C R+ Additionally there are coordinates {u,q',p1,...,q"%, pr}, such that
["U 15 gwen by the endomorphism K on
DLy
DRy, xN ETUy @ TN @ Ry, xNs

given by its entries
i.) ¢ =N + (n(Zx) = Th (En) + En(ZN) 4) @ 1" + & @ &N
i.) J = Aean + 78 + (1 — ZN) A Ecan
iii.) & = Qean + an — 1* A (1zyan — o3éN)

for the structures ¢y, wn and ay inducing the generalized complex structure on N
together wjth the section (ZN,§N) and (Acan, Fcan) = ((8?11' +pi(%) A %’%) and
Qecan = dg' Adp; + 1 A (du — p; dg*).

As aresult this is contained already in [41], but obtained, again, by slightly different
techniques. The last part is dedicated to a special case of the Theorems and
[2.4.10] As in the previous subsection, we want to discuss the structure of a transversal
to a regular contact point.

Lemma 2.4.12 Let L — M be a line bundle,let L C DcL be a generalized contact
structure and let pg € M be a reqular contact point. For a minimal homogeneous co-
contact transversal 12 N — M at p, the locally conformal generalized complex structure
on N is a B-field transformation of a complex structure.

PRrROOF: 1t is easy to see that, if the Jacobi structure is regular around p, then the
induced homogeneous locally conformal Poisson structure induced by it is vanishing
and also the homogeneity vector field Z. So the endomorphism I realizing the locally
conformal generalized complex structure is of the form

=2 °
(> )

for a complex structure ¢ € I'°°(End(TM)) and 8 € T*°*(A?T*M ® L). Not that, due
to Corollary we have that there is a ( € I'°(T*M ® L), such that

(X,a) eT®(D) = (0,a + 1x dV{).
Note that this implies, shown by an easy computation, that 8 = 14 dV¢ for
1AV ¢(X,Y) = dV¢(¢(X),Y) +dY¢(X, ¢(Y)).
Now we apply the B-field —dV( to the endomorphism and see that

exp(—dVO)lexp(dV¢) = <§ _(;*> X=X
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Thus is the case of a regular foliation also the transversal inherts an extreme case
as a structure and by Theorem [2.4.11] the generalized contact structure looks locally
like a "product" of a contact structure and a complex structure.

Remark 2.4.13 Theorems [2.4.9] and [2.4.11] can be seen as the generalized contact
bundle analogue of the Abouzaid-Boyarchenko splitting theorem for generalized com-
plex manifolds (see [1]). Note that, eventhough we are obtaining the analogue of their
result, we are not using their techniques. Instead, as mentioned before, we are using
the techniques of [12].

2.5 Application: Splitting Theorem for homogeneous Pois-
son Structures

Using the homogenezation scheme from [10], see also Appendix one can see that
Jacobi bundles are nothing else but special kinds of homogeneous Poisson manifolds.
Moreover, the two most important examples of Poisson manifolds are of this kind:
the cotangent bundle and the dual of a Lie algebra. Using this insight, it is easy
to see that proving something for Jacobi structures gives a proof for something in
homogeneous Poisson Geometry. We want to apply this philosophy to give a splitting
theorem for homogeneous Poisson manifolds. The first appearance of such a theorem
was |17, Theorem 5.5] in order to prove the local splitting of Jacobi pairs. Here we want
to attack the problem from the other side: we use the splitting of Jacobi manifolds
to prove the splitting of homogeneous Poisson structures. Recall that a homogeneous
Poisson structure is a pair (7, Z) € T*°(A?2T'M @ TM) for some manifolds, such that
7 is a Poisson tensor and

Lo = —m.

Note that the leaves of m have the property, that Z is either tangential or transversal
to a whole leaf.

Theorem 2.5.1 Let (7, Z) be a homogeneous Poisson structure on a manifold M and
let po € M be a point such that Z,, # 0 and rank(w) = 2k. Then there ezist an
open neighborhood U of po, an open neighborhood Usy, of 0 € R?* | a manifold N with a
homogeneous Poisson structure (wx, Zn) with WN‘pO = 0 and a diffeomorphism ¥ : U —
Usp X N, such that

0 0
N— +7mN.

Yo = opi  0q'

Additionally,
i.) if Zp, € im(r%), then .7 = pig + 5= + I
ii.) if Zy, ¢ im(r¥), then . Z = piz2- + Zn.
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ProoF: Note that since Z,, # 0, we find coordinates {u,z!,... 2%} with py =
(1,0,...,0), such that Z = u%. In this chart, we have, using Zym = —,

0

for unique A € T*°(A2TM) and E € T°°(T M) which do not depend on u. It is easy
to see, that we have

[A,A] = —EAA and ZgA =0,

which means that (A, E) is a Jacobi pair. This allows us to use Theorem and
Theorem to prove the result. We will do it just for the case where pg is a
contact point, which means, translated to Jacobi pairs, that FEj, is transversal to
im(Aﬁ)‘pO and thus Z,, € im(n*), since the other case is very similar. Note that,

we can apply Theorem [2.3.10} there exists coordinates {z,¢’,p;,%’} and a local non-
vanishing function a € ¥°°(M) (which is basically the line bundle trivialization), such
that

1 1
A =~ (Acan + 7N + Bean A Zn) and B = =(Eean + A¥(da)),

where (Acan, Ecan) = ((8q + p; au) A ap , 8u) and (¢n, Zn) is a homogeneous Poisson
structure just depending on y’-coordinates.
1

Applying the diffeomorphism (u,z!,...,29) + (a-u,z',...,29), we have

1 0
= *(Acan + 7N+ Eean N ZN + u— A Ecan)~
U ou

A (quite) long and not very insightful computation shows that the diffeomorphism

1 Z FEcan 1
S(u,z, ..., 2% = (u (I)log(u)(q)—log(u) (z7,...,z9))),

where <I>tZN (resp. Q)Ewr‘) is the flow uf Zy (resp. Ecan), gives us

1,0 0 0 0 0 0
=— N—)+——N—=— dZ= i ZN.
ap N og) T ou N g TN A Z =g i AN
Renaming coordinates of m we get the result. X=X

This Application shows us that, eventhough we can see Poisson structures as Jacobi
manifolds, which suggests that they are more general objects than Poisson structures,
the splitting theorems (of Jacobi pairs) are a refinement of the known splitting theorems
for Poisson structures.
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Chapter 3

Dual Pairs in Dirac-Jacobi
Geometry

The concept of dual pairs in Poisson Geometry was introduced in [51] and is deeply
connected to the concepts of symplectic realizations, symplectic groupoids [51] and
Morita equivalence [52]. Recently, dual pairs have also been considered in Jacobi
geometry [6]. The aim of this chapter is to introduce the Dirac-Jacobi analogue of
them and discuss some properties. The main part of this chapter is the proof of the
existence of self-dual pairs and an alternative proof of the normal form theorems from
Chapter[2] This whole chapter uses techniques from [21], where one can find the mirror
results in Dirac geometry. Throughout this chapter we use the notation

LOPP = {(Aa —1?) e DL ‘ (Aaw) = E}

for the opposite Dirac-Jacobi structure of £ C DL.

3.1 Dual Pairs and weak Dual Pairs

Let us begin this section by simply giving the definition of a weak dual pair.

Definition 3.1.1 A weak dual pair is a triplet of Dirac-Jacobi bundles (Lo — My, Lo),
(Ly — My, Ly) and (L — M, L) together with forward Dirac-Jacobi maps S, T covering
surjective submersions

(Lo — Mo, Lo) & (L — M, L) 55 (Ly — My, L),
such that L = L, for a closed Atiyah 2-form w € Q3 (M). Additionally:
i.) w(ker DS, ker DT) =0
ii.) rank(ker DS Nker DT Nkerw”) = dim(M) — dim(Mp) — dim(M;) — 1
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If dim(M) = dim(Mp) + dim(My) + 1, then we say that

(Lo — Mo, Lo) < (L — M, £) 5> (Ly — My, £5P)

is a dual pair. In both cases we call (Ly — My, Lo) and (L1 — My, L1) the legs of the
dual pair.

Remark 3.1.2 If we consider a dual pair, such that both of the legs are Jacobi struc-
tures, it is easy to see that the Atiyah 2-form has to be non-degenerate and hence has
to be a contact 2-form. In this case we talk about contact dual pairs, see 6] for more
details.

A first consequence of the definition of contact dual pairs is

Corollary 3.1.3 Let
(Lo — Mo, Lo) < (L — M, £) 5> (Ly — My, £5PP)
be a weak dual pair. Then ker DS Nker DT Nkerw” is a smooth subbundle.

PROOF: Define the map
K: ker DS @ ker DT > (A,0) = (A+ 0, tqw) € ker DS + ker DT* C DL.

Note that we wrote ker DT := exp(w) ker DT, even though ker DT“ is not a Dirac-
Jacobi bundle. Because of the rank condition, we have

rank(ker DS + ker DT*) = rank(ker DS) + rank(ker DT") — rank(ker D.S Nker DT*)
= rank(ker DS) + rank(ker DT')

— rank(ker DS M ker DT Nker w”)

= const.
and hence the target of K is constant. Moreover we can interpret

ker DS Nker DT Nker w’ 2 ker K. X=Y

Note that not every two Dirac-Jacobi bundles admit a (weak) dual pair between
them, later on we will find consequences of the the existence of a weak dual pair between
two Dirac-Jacobi bundles which makes it easy to construct examples of Dirac-Jacobi
bundles which cannot appear as the legs of a weak dual pair. Nevertheless, we want
show that two Dirac-Jacobi bundles which are graphs of Atiyah 2-forms always admit
a dual pair, and hence a weak dual pair, between them.

Corollary 3.1.4 Let (L; — M;, L) be Dirac-Jacobi bundles for i = 1,2 coming from
two closed Atiyah 2-forms w; € Q%Z(Ml) Then the product of (L1 — My, L,,) and
(Ly — My, L_,,,) in the sense of Section 15 a dual pair.
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Let us now continue examining the structures of weak dual pairs and give some
equivalent descriptions. We start with a general statement about Dirac-Jacobi struc-
tures and maps covering surjective submersions.

Lemma 3.1.5 Let (L — M, L,) be a Dirac bundle induced by a closed 2-form w €
Q%(M) and let P: L — Lg be a regular line bundle covering a surjective submersion
p: M — My. Then

Bp(Fp(L)) = ker DP + (ker(DP)>+)*
and it is smooth if and only if §p(L) is smooth.

PROOF: The proof of the first part of the statement is an easy computation and can
be found in the Dirac case in [21]. The smoothness equivalence follows from the fact
that P covers a surjective submersion and Theorem [1.2.17 XEXY

The next statement is a tool in order to prove certain properties of (weak) dual pairs.
The exact same statement, with some obvious replacements, can be found in [21, Prop.
6].

Lemma 3.1.6 Let (L — M,L,), (Li = M;, L;) be Dirac-Jacobi bundles for i = 0,1
and w € Q%(M) closed, together with reqular line bundle morphisms S: L — Lo and
T: L — Ly, then the following statements are equivalent:

i.) (Lo — Mo, Lo) & (L — M,L,) 4 (L1 — My, L) is a weak dual pair.
ZZ) SBS([*O) = %T(ﬁl)w and
rank(ker DS Nker DT Nkerw’) = dim(M) — dim(Mp) — dim(M;) — 1
ii.) S x'T: (L — M,L) — (L* — M*, Ly x' LP) is a forward Dirac-Jacobi map
and one of the following properties hold:

o w(ker DS, ker DT') =0
e rank(ker DS Nker DT Nkerw’) = dim(M) — dim(Mp) — dim(M;) — 1
w.) Bs(Lo) = Br(L1) and S x' T: (L — M, L) — (L — M*, Ly x' LTP) is a

forward Dirac-Jacobi map

PROOF: Before we start we want to mention, that rank(ker DS N ker DT Nkerw”) =
rank(ker DS N ker DT¥) by an easy computation. In the following we will use this
observation usually without further comment. Let us start with ¢.) = 4i.). Since S
is a forward Dirac map, we have

Bs(Ly) = Bs(Fs(Lw))
= ker DS + (ker DS++)*

83



Chapter 3. Dual Pairs in Dirac-Jacobi Geometry

by Lemma Since ker DT C ker DS+« we conclude that
Bs(Ly) 2 ker DS + (ker DT)*.

Using that ker DS Nker DT Nkerw” = ker DS N (ker DT)%, we deduce the equality by
the condition on the rank ker DS Nker DT Nkerw” = dim M — dim M; — dim My — 1
of a dual pair. Since T is also a forward map one can show, using the same argument,
that

Br(L1) = ker DT + (ker DS)™%,

and hence the claim follows. Let us now assume #i.) and let A € ker DS, then we have
that A € Bg(Ly) = Br(L1)“, so there is an element a € J' Ly, such that (A, DT*a) €
Br(Ly) with (A, DT*a + 1aw) = (A,0). Therefore, we have that iaw = —DT*a €
Ann(ker DT') and hence w(ker DS, ker DT') = 0. Note that having Bs(Lo) = Br(L1)“,
implies

ker(DS) + ker DT* C ker DS + (ker(DS)1)¥ = B5(Fs(Ly)) € Bs(Lo)

and by the rank condition ker DS Nker DT Nkerw” = dim M — dim M; — dim M, — 1,
we even have a series of equalities. Therefore,

where we used that, for a regular line bundle morphism S covering a surjective submer-
sion, we have the identity £ = Fs(Bs(L)) for every Dirac-Jacobi structure £ . The
same arguments can be used to obtain that T is also a forward map and i.) follows.
As a next step, we want to show that S x' T': L — L* being a forward Dirac-Jacobi
map is equivalent to the inclusions

Bs(Loy) Cker DS +ker DT  and Bp(Ly1) C ker DT + ker DS™“. (3.1.1)

Recall that the product of Ly and L; is defined in Subsection [I.1.1} where also the
notation
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is introduced. We first assume that S x' T is a forward Dirac-Jacobi map. So let
(A,DS*) € Bs(Ly). Then (DS(A),) € Lo and, using the splitting from Lemma

L34
DL* = ker DPy @ ker DP,

Hence there is a unique A € ker DP; with DPy(A) = DS(A) and (A, DPiy) €
Lo x' LSPP. Since S x' T is a forward Dirac-Jacobi map, we find a 0 € DL, such that
(0,DS*y) = (O, D(S x' T)*DP{v) € L, which means that DS*i = tqw. Note that
we have 0 = ker DT, since DT(0J) = DP;(D(S x'T)(0)) = DP;(A) = 0 and similarly
A — 0O € ker DS. We conclude that

(A, DS*) = (A —0,0) + (0, 1ow) € ker DS + ker DT

The second inclusion can be obtained in the exact same way and the reverse implica-
tion is an easy computation. Now let us assume that 4i.) holds. Then, by the same
arguments, we have of ii.) = 1.), we conclude

Bs(Ly) = ker DS + ker DT and B (L) = ker DT + ker DS

and w(ker DS, ker DT) = 0. By the previous consideration, this implies that S x' T is
a forward Dirac-Jacobi map and hence we have 7ii.).

Now we assume 74i.) and notice that the rank condition, together with S x' T being
a forward map, implies equality in the inequalities and hence

Bg(Lo) = ker DS + ker DT = Bp(L£1)¥,

which implies iv.). Moreover, w(ker DS, ker DT) = 0 implies that both ker DS +
ker DT* and ker DT + ker DS~ are isotropic and hence their rank has to be <
rank(Lw), wich also implies equality in and thus also iv.).

The last step is to assume iv.). From Bg(Ly) = Br(L1)Y, we get w(ker DS, ker DT) =
0 and hence by the same argument as before Bg(Ly) = ker DS + ker DT*, which im-
plies immediately

rank(ker DS Nker DT Nkerw’) = dim(M) — dim(Mp) — dim(M;) — 1
and hence 7i.). XEY

The relation "being connected by a dual pair" does not form an equivalence in the
category of Dirac-Jacobi bundles. This is actually the reason to introduce weak dual
pairs, since the relation "being connected by a weak dual pair" is an equivalence. The
idea and the proofs of this claim can be found in [21] in the Dirac geometric setting. We
want to start proving transitivity. (Note that symmetry is obvious). In Subsection (3.3}
we will discuss reflexivity. Before we start, we want to stress that, what we claimed
before, transitivity does not work with dual pairs, but reflexivity does (consistently
with what we claimed).
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Lemma 3.1.7 (Transitivity) Lel

(LO — Mg,ﬁo) & (Lgl — M()l,[,wm) & (L1 — lectl)pp)
and
(L1 — Ml,ﬁl) & (L12 — M127£w12) & (LQ — Mg,ﬁgpp)

be weak dual pairs. Then also (Ly — My, L) and (Lo — M, L9) fit into a weak dual
pair.

PROOF: Let us consider the pull-back (in Line, see Corollary |1.3.8)

P
Loo —— L12

n s

T
Loy —> Ly

the 2-form w2 = Pj'wo1 + Pywi2 and the maps Spa = Sp1 0 P as well as Ty = Tha0 Ps.
Pictorially, we have

Lo
N
Lo L2
2N A NG
T01 312
Lo L Ly

The fact that Tp; and Sis covering surjective submersions implies that so do P; and
P,. Moreover, so do Sgo and Tpe and in addition they are forward Dirac-Jacobi maps
as a concatenation of forward Dirac-Jacobi maps. Additionally, we have

= %Toz (EQ)WOQ .

Thus by Lemma part 7v.), we get that

S T
(Lo — Mg, Eo) & (L02 — M02,£w02) % <L2 — MQ, Egpp)

(1]
\g|

is a weak dual pair. X
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We discuss next operations with (weak) dual pairs. Again transversals play an im-
portant role, namely there is a notion of "pulling back" (weak) dual pairs to transver-
sals.

Lemma 3.1.8 Let
(Lo — My, Lo) < (L — M, L) 5 (Ly — My, £3%)

be a (weak) dual pair and let ®;: Ly, — L; be transversals to L;. Then

(Lny = No,Bay(£0)) <= (Ly = 3, Lug) —2 (L, = N1, Ba, (L1))
is a (weak) dual pair if and only if S, and Tx, are surjective, where
i.) ¥ = No xXpy M Xpr, Nvand Py: Ly, = pral — L
#.) Loy = Lpyw = Bp,(Lu)
ii.) Sx: Ly 3 ((xo,m, x1), Am) — (20, S(Am)) € o5L
w.) Tx: Ly 3 ((zo, m, 21), Am) = (21, T(Am)) € ¢7L

PrOOF: Note that Ly fits in the following diagram

Ly —25 LY

lPQ Lbox!@l (3.1.2)

Sx!'T
L 222, L%

with

®((ng,m,n1), A\pm) = (<I>_1

1,n1

0Ty o S;Ll 0 Do g, ‘1’5,7110 (S(Am)))

and one can show that diagram (3.1.2)) is a pull-back diagram in £ine as in Subsection
. Thus ®: Ly, — L}, is a forward Dirac-Jacobi map for the Dirac-Jacobi structures
Loy, and By, 1e, (Lo X' L1) = Bay(Lo) x' B, (L1) by Lemma

Note that we have the following commutative diagram of regular line bundle mor-
phisms

Ly
|
Sy I T
% R«
<I>0 CI>1
LNO —_— LQ L1 — LN1
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and hence we can compute

Bsy, (Ba,(Lo)) = Bagoss (Lo) = Bsor,(Lo)
=Bp,(Bs(Lo)) = Bp,(Br(L1)”)
= Brop,(L£1)72Y = By, on, (£1)12%

= %Tz (%iﬁ (ﬁl))Png
where we used basic properties of the backwards transform and the fact that
(Lo = My, Lo) & (L — M, L,) 5 (L — My, £5PP)

is a (weak) dual pair. By part iv.) of Lemma we get the claim. X

(1]
™

3.2 Why Dual Pairs?

After having discussed the main properties of (weak) dual pairs, we want to discuss
what kind of impact their existence has.

Let us start with a first lemma concering the relation between the characteristic
foliation of a Dirac-Jacobi structure and its backwards transform.

Lemma 3.2.1 Let P: Ly — L be a regular line bundle morphism covering a surjective
submersion p: My — My with connected fibers and let L C DLy be a Dirac-Jacobi
structure. Then the pre-image of p establishes a one-to-one between the characteristic
leaves of L and of Bp(L). Moreover, this correspondence respects the type of the
leaves, i.e. a locally conformal pre-symplectic leaves correspond to locally conformal
pre-symplectic leaves and pre-contact leaves correspond to pre-contact leaves.

PROOF: First of all, let us prove that if C < M is a characteristic leaf of £, then p~!(C)
is a characteristic leaf of Bp(L). Clearly p~!(C) is a connected submanifold. Let v,, €
a(prD%p(L))‘p_l(C), then there exists a (A, DP*y) € Bp(L), such that o(A) = vy,.
This implies that (DP(A),) € £ and hence Tp(vy,) = o(DP(A)) € o(prDﬁ)‘p(m) =
Tyy(m)C, which shows that v, € Tp~!(C) and thus a(prD%p(ﬁ))’p_l(C) C Tp~H(C).
With a similar argument, starting with a vector v,, € p~1(C), we see that Tp(v,,) €
Tp(m)C and hence there exists a (A, ) € £, such that o(A) = Tp(vy,). Let us choose
O € DLy, such that o(0) = v, and DP(0) = A. This implies that (O, DP*y) €
Bp(L) and hence vy, € o(prpBp(L)),s0 the equality U(DTD%P(E))‘p_l(C) =Tp1(C)
holds. This proves that p~!(C) is a integral submanifold of the characteristic distribu-
tion. One can show, in a similar way, that a leaf of Bp(L) projects via p to a leaf of L,
since for a leaf C' — M; we have that ker(TP)}C C TC. Now we discuss why this cor-
respondence respects the type of the leaves. So consider a pre-contact leaf ¢: C' — M.
This means by definition that rank(prD‘BI(ﬁ)’C) = dim C' + 1, which is if and only if
the case if 1 € prp®B(L). Hence there exists a 1) € J'L, such that (1, DI*y) € B (L
and hence (1,v) € E}C. Thus we have also (1, DP*Y) € ‘Bp(ﬁ)‘p_l(c), which implies
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that prD(%p(Eﬂp,l(C)) and hence p~!(C) is a pre-contact leaf. Moreover, one can

prove, in the similar way, that a locally conformal pre-symplectic leaf in My corre-
sponds to a locally conformal pre-symplectic leaf in M;. Since we only have these two
kinds of leaves, we get the claim. X=Y

Using Lemma we want to prove a correspondence of the leaves of the legs of
a weak dual pair.

Theorem 3.2.2 Let
(Lo = My, Lo) < (L — M, L) = (Ly — My, £L3P)

be a weak dual pair, then there is a one-to-one correspondence between the leaves of Lo
and L1 given by My D C — t(s~1(C)) € My. This correspondence respects the type of
the leaves. Moreover, we have that if we have two leaves 1g: Cy — My and v: Cy — My,
which are in correspondence via the leaf 12 C — M, i.e. s71(Cp) = C =t"(Cy), then
C is a characteristic leaf of the Dirac Jacobi structure Bg(Lo) * Br(LPY), which is
given by

Bs(Lo) * Br(LPP) = ((ker DS + ker DT) & Ann(ker DS + ker DT'))*.
Moreover, its induced structure can be computed by
B (Bs(Lo) * Br(LP))) = B (Ley) * Bry (LX) (3.2.1)
and all the involved bundles and products are smooth Dirac-Jacobt bundles.

ProOOF: Note that by Lemma the only thing we have to prove for the first part
of the statement is the equality

Bs(Lo) * Br(LPP) = ((ker DS + ker DT') & Ann(ker DS + ker DT'))*

and that its characteristic foliation is give by pre-images of leaves of the legs. Using

Lemma we see that
Bs(Ly) = ker DS + ker DT* = Br(L)“,
since we have a dual pair. This implies that
prpBs(Lo) = prpBr(Ly),

and hence the characteristic distributions of Bg(Ly) and By (L) coincide and thus
also the characteristic distribution of Bg(Lo) * B (L") since

prp(Bs(Lo) * Br(LT)) = prp(Bs(Lo) N Br(LF)).
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Using now Lemma we get the claim and moreover we see that the correspondence
respects the type of the leaves. Let us now prove Equation [3.2.1] Let us first remark,
that

Bs(Lo) x Br(LIP)
is smooth since we have from our previous considerations
prpBs(Lo) = prpBr(L)
and we can use Remark [1.3.3] Moreover, we have that
Bs(Lo) * Br(LPP) = ((ker DS + ker DT') & Ann(ker DS + ker DT'))*
using the equations
Bs(Ly) = ker DS + ker DT = Bp(L)Y,

and the fact that w(ker DS, ker DT') = 0.
The second part is now just a matter of computation, using the diagram

L¢
lf
Sc I Tc ,
N
Iy Iy
LC() ? LO Ll < L01

where we used the subscripts S¢, T as a short notation for To =T } Lo and S¢ = S ‘ Lo
Namely

B1(Bs(Lo) x Br(LY™)) = Br(Bs(Lo)) * Br(Br(L7™))
= iBSoI(EO) * SBTo[ (ﬁtl)pp)
= Byosc(Lo) * Brore (L77)
=B, (‘CCO) * B (‘nglip)a
where we used Remark [1.3.10]in the second step and By,(L;) = L, by definition. XEX
From Theorem we can conclude for a weak dual pair

Lo — Mo, Lo) < (L — M, L) 5 (Ly — My, £5P)

we can consider the Dirac-Jacobi structure Bg(Lo) » Br(LPP), whose characteristic

leaves are in one-to-one correspondence with the leaves of Ly and with the leaves of
L1, but also the induced structures on all the leaves can be compared, which we can
see in the following
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Proposition 3.2.3 Let (Ly — Mo, Lo) < (L — M, L) 5 (Ly — My, L) be a
weak dual pair and let s71(Cy) = C =t71(C1) be in correspondence. If

i.) Co and Cy are pre-contact leaves with pre-contact forms w; € Qr,(M;) fori = 0,1,
then

I'w = Stwi — Twe.
ii.) Co and C1 are locally conformal pre-symplectic leaves with locally conformal pre-
symplectic forms w; € T°(A*T*C; ® L¢,) and connections V°, then

(a) DSoV =V 0Ts and DT oV =V oTt

(b) wo = SEwr — TEwo

for the connection V: TC — DL¢c on the locally conformal presymplectic leaf C
with 2 form we € T®(A*T*C ® L), which is given by

WC'(X7Y) = I*w(va VY)

PROOF: Let us first prove property i.). So let Cp, and hence C; and C, be pre-contact
leaves. We have by defintion of a contact leaf that By, (L£;) = Ly, for i = 0,1 and the
pre-contact forms on Lo, — C;. More over we have that

DL = prp(((ker DS + ker DT) & Ann(ker DS + ker DT))”)|, = (ker DS + ker DT,
and thus

B (((ker DS + ker DT') & Ann(ker DS + ker DT))) = L. (%)
Using Theorem and Equation () , we get

EI*w = %SC (ﬁwo) * %TC ('C—wl)

= L8zwo—Trwn

where the last step involves a small and straightforward computation.

Now let us in order to prove ii.). So assume that Cp, C and C are locally conformal
pre-symplectic leaves. Note that by assumption C' is a locally conformal pre-symplectic
leaf of Bg(Lo) * Br (L) Let us first prove point (a). Recall that the connection on
a locally conformal pre-symplectic leaf is defined as the unique inverse of

U‘prD%Ii(Lci): prpBr; (‘CCz) = TC;
for the locally conformal pre-symplectic leaves C; of £; and

Bs(Lo) * Br(LPP) = ((ker DS + ker DT) & Ann(ker DS + ker DT'))*,
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respectively. Let v, € T,,,C, then we have that
7(DS(Vy,)) = Ts(vm) = 0(Vig,)-

and thus since V and V° are the unique inverses of the symbol maps o we get
DS(V,,, )= VOTS(Um). Similarly we obtain DT o V = V! o Tt.

Let us now stick to point (b). It is easy to see that the locally conformal pre-
symplectic structure on

B (((ker DS + ker DT') & Ann(ker DS + ker DT))“)

is given by we. So let us compute the left-hand side. From Theorem [3.2.2] we know
that

B (((ker DS + ker DT) & Ann(ker DS + ker DT))” = By, (L) * B (LED)
Notice that w; is uniquely determined by
wiX,Y) = 9i(Vy)
for (Vx,¢i) € Lo, and Y € TC; and similarly for we. Let us choose
(Vx,, DS™tho + DT*41) € B (Lc,) * Bre (LED)
and let Y, € T'C. Then

we(Xp, Yp) = DS™o(Vy,) + DT"¢1(Vy,)
= S, "o(DS(Vy,)) + T, '41(DT(Vy,))
= 8, "0 (Visy,y) + Ty "1 (Vi)

moreover, we have that (V%S(Xp),¢o) € L¢, and hence wo(V%S(Yp)) =wo(T's(Xp), Ts(Yp))
and similarly wl(VOTt(Yp)) = —w1(Tt(X,), Tt(Yy)). Continuing the computation we get

wo(Xp, Yp) = 8, wo(Ts(X,), Ts(Yy)) — T, twi (THXp), THY,)) = Sgwr — Tewa(X,, Yp)
and the claim follows. X=Y

Let us now pass to the transverse geometry,i.e. the structures on transversals, in fact
we have seen that there is a leaf correspondence, but leaves need not to be isomorphic.
Minimal transversals on the other hand are locally isomorphic as Dirac-Jacobi bundles:

Proposition 3.2.4 Let
(Lo — My, Lo) < (L — M, L.,) = (Ly — My, L3)

be a weak dual pair, let m € M and let 1;: N; — M; minimal transversals at s(m) and
t(m) respectively. Then By, (Loy) is locally isomorphic to By, (L1) (up to a B-field).
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PRrROOF: First, we remark that the dimensions of the minimal transversals always co-
incide. Indeed, let Cpy, C; and C corresponding leaves at s(m) and t(m) respectively,
i.e. s71(Cy) = C =t71(C1). Then we have

dim(M) — dim(Np) + dim(Cp) = dim(M) — dim(Ny) + dim(Ch).

which means that Cy and C7 have the same codimension and hence the dimensions of
Ny and Np coincide. We use the pull-back construction of Lemma in order to
consider of the weak dual pair

(LNO — No,%[o(ﬁo)) <S—N (LN — N, ﬁwN) T—N> (LN1 — Nl,%h([’l)opp)

and notice that sy (m) is a leaf of B, (Ly) and tx(m) is a leaf of B, (L£1)°PP, since they
are minimal transversals. Additionally, the maps Sy and T are always surjetive, since
N; are actual submanifolds and not just images of transverse maps as in Lemma [3.2.1
Using the the correspondence of leaves from Theorem we see that sy'(sy(m))
is a leaf of Bg(Lo) * Br(LPP) as well as ty' (ty(m)), but they both contain m and
hence they have to coincide, i.e. sy'(sn(m)) =ty (tx(m)). Let us now choose a local
right-inverse ®: Ly, — Ly of Sy covering ¢: Ny — N such that ¢(sy(m)) = m. Now
we want to prove that

k: =to¢: Ny — Ny

is a local diffeomorphism. Let v, () € ker Tk, which is eqivalent to T'¢(sy(m)) €
Tty (tn(m)), but we have that sy'(sn(m)) = t5' (tn(m)) and hence TP(vsy(m)) €
kerT's, 50 0 = T's(Tp(vgy(m))) = T(50 @) (Vsy(m)) = Vsy(m)- Thus, since dim Ny =
dim N1, we get that k is a local diffeomorphism. So let us choose open neighborhoods
of syy(m) and tx(m), such that k is actually a diffeomorphism. Note that k is covered
by K =T o ® and we have

B (L1) = Broo(L1) = Bo(Br(L1))
= Bo(Bs(Lo) ™) = Bsoa(Lo) ™™

—d*w
= £0 s

where the third equality uses the fact that we have a dual pair and the last equality
that S o ® = id. X=Xy

3.3 Existence of a Self Dual Pair

The aim of this section is to prove that for every Dirac-Jacobi structure (Lo — My, Lo),
there is a line bundle (L — M, £,,) with a closed w € Q2 (M), together with regular
line bundle morphisms S,7": L — Lg, such that

(Lo = Mo, Lo) < (L = M, L) 5> (Lo — My, L5PP)
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Chapter 3. Dual Pairs in Dirac-Jacobi Geometry

is a dual pair, which we call self dual pair. Again, this part is a translation of the
mirror statement in Poisson geometry from [21]. Let us collect the missing ingredients
in order to prove this claim. We start by discussing Dirac-Jacobi sprays.

Definition 3.3.1 Let (L — M, L) be a Dirac-Jacobi bundle and let p*L — L be the
pull-back line bundle given by the diagram

[y
L
L—L M
A derivation X2 € T'°°(Dp*L) is said to be Dirac-Jacobi spray, if
i.) DP(3(a)) = A
ii.) MfS =1t% fort >0
Where M;: p*L 3 ((A,a),\) = (L(A,a),\) € p*L.
Note that for the flow ®> of a Dirac-Jacobi spray ¥, we have necessarily
o My = M, o 7 (3.3.1)
As a consequence the equality
¢F omy = my o b, (3.3.2)
where ¢> is the map covered by ®F and m; is the map covered by M;.

Remark 3.3.2 Note that a Dirac-Jacobi spray for a Dirac-Jacobi bundle (L — M, L)
can be constructed as follows: since the bundle projection p: £ — M, the kernel of the
map

DP: Dp*L — DL

is a regular subbundle of Dp*L. Let us choose a splitting Dp*L = ker(DP) @& p*DL
and define

S: L3 (A a) = ((A,@),A) € p*DL
and extend it trivially to Dp*L. X is by construction a Dirac-Jacobi spray.

For a Dirac-Jacobi structure £ C DL, we use the following notation for maps:

T

p*L L

L
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The rest of this section is dedicated to the proof of the following

Theorem 3.3.3 Let (L — M, L) be a Dirac-Jacobi structure and let ¥ € I'°°(Dp*L)
be a Dirac-Jacobi spray. Then there is a open neighborhood U C L containing the zero
section, such that

1
w= / (®7)* Pjwean dt
0
s well-defined and S := P: L, — L and T := P o <I>12: L, — LOPP define a dual-pair
(L = M, Lo) < (p°L — U, L) = (L — M, L°PP).

In order to prove this theorem, we proceed as in [21] and prove first a partial result.
Let us use the same map as in Section defined by

Ve LS e ( dt‘t Mo(M; A(ep))) € Do,y L

in order to identify Dp*L|, = DL & L.

Lemma 3.3.4 Let (L — M, L) be a Dirac-Jacobi bundle and let ¥ € T°°(Dp*L) be a
Dirac-Jacobi spray. Then

i.) DO Dp*L‘M — Dp*L‘M is given by (Ap, ep) — (Ap + eprplep), ep)
ii.) (ker DS Nker DT N kerw")‘M = {0}

PRrROOF: Let e, € £ and let p € I'°°(L), then we have
DP(D®(e;™))(1) = D(P o ®F)(ex™) (1) = P o @ (e (P o @) 1)

— Pod¥ Mo (M (P o ®F)*u(es)))

e

% > *
_ &L:op 0 ®Z(My((P o % o My)* i(es))

((Po @) ules))

(5], @8 Prutea)
— P )0
= eprp(es) ().

We used Equations (3.3.1) and (3.3.2]), as well as P o M; = P for every t. Finally
the last equation is property i.) of Dirac-Jacobi sprays. Since 3 vanishes at the zero
section M, we conclude that its flow is identity applying to DL C Dp*L‘ 1+ The last
non-trivial point to show for part i.) is that

= s
— DP(

prﬁDq)eE(Ap, ep) = ep
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for p € M and the identification Dp*L‘M = DL & L. This can be achieved by writing
down the projection to £ and apply Equation (3.3.1). Let us now prove part ii.). A
computation in local coordinates shows that Pjwean can be expressed at M by

Piwean((A1, (O1,91)), (A2, (O2,12))) = ¥2(A1) — ¥1(A2),

where we used again the splitting Dp*L} y = DL ® L. By using i.) and integrating,
we get

(A1, (O 90)), (B, (T,42))) = (At + 501) = 1 (A + 50).
Now, let (A, (0O,%)) € (ker DS Nker DT N kerwb)’M. Note that, since we have
DS(A,(O,9)) =A and  DT(A,(0,)) = DT(DIY(A, (0,))) = A + 0,
it follows A = [0 = 0. Moreover, we have
0=w((A, ([E,9)),(D,0)) = =¢1(D),
for all D € DL and hence also ¥ = 0 and the claim is proven. XEXY

Now we have the tools to prove Theorem [3.3.3]

PRrOOF (OF THEOREM [3.3.3)): Since X|,, = 0 we can find an open neighbourhood of
M such that the flow of ¥ exists for ¢t € [—1,1]. In a possibly smaller neighborhood we
can also assume that ker DS Nker DT Nkerw’ = {0} by Lemma Let us call this
neighborhood M C U C £ and denote by A = PJAcan, where Acap is the canonical 1-jet
from Example [1.2.41] We want to show that (X,\) € I*°(Bg(L)). So let (A, ) € L.
From the universal property of Acan, we get

Aaw) = DP*y

and hence we have that (XA ¢y, Aa ) = (E(a,4), DP*Y) and moreover, since X is a
Dirac-Jacobi spray, we get that DP(X(a ) = A. Hence (3,)) € T*(Bs(L)). This
means that the flow of (X, \), which is given by

t
exp (/ (®%,)*d A dr) o DOF,
0
preserves Bg(L) whenever it exists. So we have by choosing t = —1, that
-1 1
/ (®F ) dpdr = / (@) dpAdr
0 0

1
:/ (BX)* Phwean dT
0

:w’
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where we used dzA = dp PjAcan = —PjWean- Thus

Bs(L) = (DDZ(Bs(L)))”
= Bgr(Bs(L))”
=B (L)

and by point 7i.) of Lemma we fianlly get that
(L — M, Lo) & (0" L = U, L) 5 (L — M, LPP)
is a dual pair. X=X

As a consequence of the previous Theorem, also a Jacobi bundle, seen as a Dirac-
Jacobi bundle, fits into a dual pair. This dual pair has an additional feature: the closed
two form is actually non-degenerate and thus contact.

Corollary 3.3.5 Let L — M be a line bundle and let J € T°(A%(J'L)* ® L) be a
Jacobi tensor. Then the self dual pair

(L— M, L)) < (0°L — U, L) = (I — M, LFP).

constructed in Theorem [3.3.9 can be shrinked to U' C U such that w is non-degenerate
and hence it is a contact 2-form.

PROOF: The claim follows from the fact that in the case of a Jacobi structure Py: L5 —
J'L is an isomorphism and hence w is non-degenerate at the zero section and by upper
semi-continuity in a whole neighborhood of it. X=Y

3.4 Application: Normal Form Theorems

We conclude this chapter, discussing an application of Theorem [3.3.3}] we are able to
rediscover a variation of the normal form theorems from Chapter 2Jup to some technical
details. We use the same exact notation as in Subsection R.1.11

Theorem 3.4.1 Let (L — M,L) be a Dirac-Jacobi bundle and v: N — M be a
transversal. Then there exist an open meighborhood U C vy of the zero section, a
reqular line bundle morphism W LV‘U — L covering a local diffeomorphism and an
closed Atiyah 2-form o € Q%V(U), such that

By (L) =DBrop(L)".
PROOF: Let us denote by

(L — M, Lo) < (0 — P, L) 5 (L — M, £LoPP),
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the self dual pair constructed in Theorem We denote its pull-back (Lemma|3.1.8])
along ¢t: N — M by

(Ly — N, B(L£) <X (Ux — Py, Loy) 25 (L — M, LOPP) (3.4.1)
with
Py = s_l(N), N zﬁ‘PN, WN :w‘PN, Sy = S}PN and Ty :T}PN.

Note that Sy covers a surjective submersion by construction. Moreover, Ty is a
submersion, by Lemma|3.1.8] and its image contains N by construction of the self-dual
pair. So we may replace M by tn(Py), which is an open subset of M containing N.

Thus (3.4.1)) is a dual pair by Lemma [3.1.8] By the proof of Proposition [2.2.5 we have

an exact sequence, this time together with suitable line bundles,

0 K PL L, 0
0 —— i*L Ly VN 0

where K is the suitable pull-back line bundle. Let us choose a splitting =: L, —
p*L‘ Ly of this sequence covering a splitting &: vy — E’  of the lower sequence.
By Lemma [3.3.4], we have that

DTy: DLy ® L3 (A,a) = A+prp(a) € DL| .
and hence there exists an open neighborhood U C vy of the zero section, such that
¢: U — M with ¢ =to€

is an embedding covering ® = T o =Z. Moreover, we have that Sy o = = P and thus

Brop(L) = %losNo_(ﬁ) B=(Bsy (Br(£)))
B=(Bry (L))
= %(ﬁ)i wN
which proves the claim. X=X

Remark 3.4.2 Note that up to some technical details Theorem and Theorem
3.4.1] coincide. But both of them required a non-trivial choice: for Theorem we
choose a Fuler-like derivation and for Theorem we choose a Dirac-Jacobi spray.
It is not clear to the author, how these choices interact with each other.
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Chapter 4

Jacob1l Structures and Generalized
Contact Bundles

After having studied the the local properties of generalized contact bundles in Section
2.4 this chapter is dedicated to the description of their global properties of them. In
particular, if the Jacobi bracket of a generalized contact structure is weakly reqular, a
notion we explain throughout this chapter, the generalized contact structure induces
a so-called transversally complez bundle. It turns out that existence of a given weakly
regular Jacobi structure together with a transversally complex bundle is just necessary
but not sufficient to construct a generalized contact structure out of. The aim of
this chapter is hence to find the precise obstructions on the Jacobi bracket and the
transversally complex bundle to be able to find a generalized contact structure.

This chapter is divided as follows: first we introduce weakly regular Jacobi struc-
tures and transversally complex bundles, then we discuss a spectral sequence we can
attach to these data and show that the obstruction of the existence of a generalized con-
tact structure lives in suitable terms of this spectral sequence. In the section afterwards,
we make use of this in order to produce examples: we prove that every 5-dimensional
nilpotent Lie group posses an invariant generalized contact bundle. The last part is
meant to show that the obstructions might not vanish, i.e. we find a manifold together
with a Jacobi structure and a transversally complex bundle, which does not admit a
generalized contact bundle.

In [5] the author provides a mirror statement for generalized complex structure
with regular Poisson bivectors. There are two main differences of 5] and the following
statement, which become clearer throughout the chapter:

i.) In generalized complex geometry the author finds obstructions to the existence of
twisted generalized complex structures. This is in principle also possible in gener-
alized contact geometry, but does not make too much sense, since the obstructions
are exactly the same, which is not true in generalized complex geometry. This is
a consequence of the fact that the complex of Atiyah forms is acyclic.

ii.) In [5] the author uses complementary bundles, where we prefer to use spectral

99



Chapter 4. Jacobi Structures and Generalized Contact Bundles

sequences. The advantage of our approach is that it is more obvious that the
obstructions are canonical, i.e. not dependent on a choice. In fact, our techniques
can be applied to the generalized complex case as well in order to find the same
exact obstructions as in [5].

Both of the above points are discussed in more detail in the corresponding parts of this
chapter.
This chapter is based on [39)].

4.1 Tranversally Complex Jacobi Structures

Unlike in Poisson geometry, a Jacobi structure J may also have odd dimensional char-
acteristic leaves, which we discussed already in Chapter This comes from the fact
that for a Jacobi tensor J, the characteristic foliation are the integral manifolds of the
singular distribution im(o o J#). Note that the image of the Jacobi tensor is an even
dimensional subbundle of DL, but the symbol ¢ has a one dimensional kernel. There-
fore, it seems reasonable to distinguish between regular Jacobi structures, i.e. Jacobi
structure inducing a regular distribution, and

Definition 4.1.1 Let L — M be a line bundle. A Jacobi tensor J € T*(A?(J'L)*®L)
is said to be weakly regular, if im(J¥) C DL is a reqular subbundle.

Remark 4.1.2 To the author’s knowledge Definition does not appear anywhere
in the literature, but seems to be very natural. Besides the appearance in generalized
contact geometry, these Jacobi structures are interesting objects by themselves and we
plan to study them in a separate project.

Remark 4.1.3 A Jacobi structure which is weakly regular is not always regular.
To illustrate this, we take for example the canonical Jacobi pair (defined in 2.3.10))
(Acan, Bean) € T®(A2TR?*+1 @ TR2%*1) coming from the contact structure and con-
sider Z € T'°(TR) given by Z = xa%. Then (A = Acan + Ecan N Z, Ecan) defines
a weakly regular Jacobi structure on R?**! x R where the set of contact points is
{(v,0) € R%*+! x R}.

Remark 4.1.4 Let L — M be a line bundle and let J € I'°(A?(J'L)* ® L) be a
weakly regular Jacobi structure. Then by definition S := im(J*) C DL is a regular
subbundle. Moreover, one can prove that it is in fact a subalgebroid and there is a
canonical form w € T*°(A25* ® L) defined by

w(J* (), JH(B)) = a(J*(B))

for o, B € J'L. Additionally, d(s,ryw = 0 and , where dg 1 is the de Rham differential
with coefficients in the tautological representation im(J*) — DL.
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We have seen in Lemma [1.2.53] that a generalized contact bundle always comes
together with a canonical Jacobi bundle. Assuming that this Jacobi bracket is weakly
regular, another structure appears: transversally complexr subbundles.

Definition 4.1.5 A transversally complex subbundle on L — M is a pair (S, K) con-
sisting of two involutive subbundles S C DL and K C D¢L , such that

i) K + K = Dc¢L,
ZZ) KQF:SC.

Remark 4.1.6 The name transversally complex subbundle comes from the fact, that
the decomposition

K
(P9)e = (s @ (Vse)
defines an almost complex structure on D L/ g

We are mainly interested in transversally complex structures with an additional Jacobi
structure. So let us be precise in the following

Definition 4.1.7 Let L — M be a line bundle. A transversally complex Jacobi struc-
ture is a pair (J, K) consisting of a weakly reqular Jacobi structure J € T>°(A?(J'L)* ®
L) and an involutive subbundle K C DcL, such that (im(J%), K) is transversally com-
plex subbundle.

This kind of structure appear naturally in generalized contact geometry if one
assumes some regularity conditions, to be seen in the next

Proposition 4.1.8 Let (L — M, L) be a generalized contact bundle, whose correspond-
ing Jacobi structure J is weakly regular. Then (J,prpL) is a transversally complex
Jacobi structure.

PrOOF: Let us define K := prp(£). Having in mind that im(J*)¢c = prp(£) Nprp (L)
and that prp(£) is involutive (due to Lemma [1.2.58)), we get the result.

It is now natural to ask which transversally complex Jacobi structure can be induced
by a generalized contact structure. To formalize the term "induced by", we use the

proof of the Proposition [4.1.8]

Definition 4.1.9 Let L — M be a line bundle, let L C DcL be a a generalized contact
structure, and (J, K) be a transversally complex Jacobi structure. We say L induces
(J,K), if J is the Jacobi structure of L and K = prpL.

Let us give a first necessary condition of a transversally complex Jacobi structure
induced by a generalized contact structure.
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Lemma 4.1.10 Let L — M be a line bundle and let (J, K) be transversally complex
Jacobi structure induced by the generalized contact structure £L C DcL. Then

i.) for any w, which is the inverse of J restricted to prp(L), there exists a real
B € O3 (M), such that

dL(iw + B)(Al,AQ,Ag) =0 VA, eK.
ii.) L= (K @ Ann(K))«t+B

PROOF: Every generalized contact structure £ can be written by a two form &: A%prpL —
L¢ by

L={(Aa) €DcL | O“prp/i - LAé‘]DYD/:}’

such that Im(é)‘AQS = (J‘S)*1 for the Jacobi structure J of the generalized contact
structure, so in our case with the given weakly regular one. The proof of this can
be found in |41, Section 2.2.3]. If the generalized contact structure induces the given
transversally complex Jacobi structure, then we have prp(£) = K. Let us now consider
an extension of the inverse of J and denote it by w. Since K is regular, we extend &
to a Atiyah 2-form €, such that Im(¢e) = w and get

L = (prp(£) & Ann(prp(£)))°
_ (K @ Ann(K))Re(a)—&-iIm(a)’

which is the first statement, since Im(e) extends the inverse of .J. The second statement
follows directly from the integrability of L. XEX

To conclude this section, we collect all the previous results in the following

Corollary 4.1.11 Let L — M be a line bundle and let (J, K) be a transversally com-
plex Jacobi structure. These data come from a generalized contact structure, if and
only if there exists a real extension w of the inverse of J and a real B € Q%(M), such
that

dL(iUJ + B)(Al,AQ, Ag) =0 VAz € K.

The condition of Corollary does not seem to be very easy to handle and also involves
all extensions of the inverse of the Jacobi structure and the existence of a 2-form B,
whcih in practice can be very to check. We will see in the following that the of w and
B existence can be encoded in some properties of J.
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4.2 The Spectral Sequence of a Transversally Complex
Subbundle

We have seen that every generalized contact structure with weakly regular Jacobi
structure induces a transversally complex Jacobi structure. The latter is special case
of a transversally complex subbundles. We want to explore these subbundles by means
of a canonical spectral sequence attached to them. It turns out that that the existence
of a transversally complex Jacobi structure is a necessary (but insufficient) condition
for the existence of a generalized contact structure inducing these structures.

Throughout this subsection we will assume the following data: a line bundle L —
M and the subalgebroids S € DL and K C DcL, such that K + K = DcL and
KN K = Sg, in other words we want to fix a transversally complex subbundle (S, K).
Moreover, if not stated otherwise, we see every Atiyah form as complex.

4.2.1 General Statements and Preliminaries

This part is not only meant to fix notation and give a quick reminder on spectral se-
quences, but also to give a splitting of the zeroth and first page of the spectral sequence
induced by a transversally complex subbundle (S, K). Let us begin by showing that
(S, K) induces two filtrations of the complex Qr (M).

Lemma 4.2.1 The subspaces

Fm={a e QM) | ixa=0VX € A" "Sc} and
G :={ac QP(M) | tya =0VX € A" " TIKY
fulfill the following properties
i) QPM)=FrOF" 2 ... and QP (M) =G 2G" D ...,
i.) dp(F™) C EmLoand d (G™) € G L.
Moreover, we have the following relations between them.:
(M G C Fp
(II) G" NG, CF,
(1) (G T} Yiggmn = B
(1V) G7 NG N (G NG )isjmnGiyten) + Filen) © Fli i
(V) Fin NG NG = (GTy NG kyi=n

PRrOOF: The proof is an easy verification exploiting the involutivity of S and K and
the relations K + K = DcL and K N K = Sc. X=X
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The properties 4.) and #.) in the previous Lemma show that the subspaces F"* and
G7' induce filtrations of the Der-complex. Note that we did not explicitly introduce
the spaces é;n, but from the notation it should be clear that we mean the complex
conjugation of the spaces GI"" or equivalently the filtered complex with respect to K.
Properties (1)-(V) will give us a canonical splitting of the spectral sequence and its
differentials.

Let us briefly recall the definition of a spectral sequence

Definition 4.2.2 A spectral sequence is a sequence of bigraded vector spaces { Ey'*}r>o,
and a sequence of maps {d,: Ep* — E,'-M"H_T}Qo, the differentials, such that

i) (d,)2 =0

. o0 otr—1l,e—r+4+2

”) £ o~ ker(d,—1: E})5 —E "] )
. T - . 1. o—r+1l,0—2+4r o0

im(dm—1: B> —E>°)

There is a canonical way to associate a spectral sequence to a filtered complex. We

will define it for the filtered complex Q7'(M) = Fy* O F[™ O .... We consider the
quotients
+ +p+l
B — {ac B | dpa e BT}
= 1
' FET +dp (BT

together with the maps

dr: BP9 5 o+ FIP + dp(Fpa—y) & dpa+ FEPH + dp(FITPH) € Brematir,
(4.2.1)

Lemma 4.2.3 The maps {d,},>0 from Equation are well-defined and
{(Er*,d,)}r>0 is a spectral sequence.

PROOF: The proof is a easy exercise, but can be found in every book treating spectral
sequences of filtered complexes, see e.g. [50]. X=X

In our case, we do not have only one filtered complex, but two more filtered complexes
QM) =G 2 G O ... and its complex conjugate. Actually, there is a relation
with Q7' (M) = Fj* 2 F{" D ..., to see this we consider

q+itj ~ AgTitd q+i+i+1
{a €G] NG, | dpeve FL)

+itj +itj—1 +itj ~ atity
(FL + de(FLHZ) NG n Gy

Eff"j)’q —

Lemma 4.2.4 Let s = 0,1, then the canonical maps

are injective and moreover EPY = &b Egi’j)’q for all p,q.

i+j=p
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PrOOF: Injectivity is straightforward. Let us start with s = 0. We have

q+it+j ~ A9Tits

pa_ G5 NG _

0 Fatiti A qatiti 4 gatitd’
i+j+1 j i

By (1II) of Lemma , we immediately get E5Y = (E(()i’j)’q%ﬂ:p. Let us now prove
that the sum is direct. We consider w;; € G?Hﬂ N @gﬂﬂ for ¢ + j = p, such that

. q+p
g wij € Fp+1'
i+j=p

We have that

—a+ —a+
wi € GIP NG N (<G§+p NG P himn, i) 0) + Fﬁf)

for every choice of k +1 =i+ j and hence, using (IV) of Lemma@7 Wi € ng:f. So
wi; = 0 on the level of equivalence classes for all k,l and we get the result for s = 0.

Let us pass to s = 1 and let w € Fi[‘fjﬂ such that dpw € F;fjif“. Since

FEHH = (GG ) sy, we can find wy € GIPHNGE ™ for k1 = i+,

i+
w = E Wil -

such that
k+l=itj

i+7 —q+it+j+1 . . .
We have that drwy € G?+Z+J+1 NGL 7" similarly as in case s = 0, we can prove

F-‘I+Z+J+1, using drw € FOHH+ Ty

that actually drwy € £ 1 i1

+itj ~ Fatits +itj+1
we <{aeGZ NG | dra € FT }>
k+l=i+j

and hence Eiﬂ’q = <E§k"l)"q>k+l:i+j. Let now wy; € G?H:Jrj N ézﬁﬁ for k+1=1i+j,
such that dywy € FLH and D htimitj Whi € FOHH 4 dp (FI~Y ) Therefore

Pyt i+ i+j

~ +itj— +itj s

there exists o € FA7™/ 7", such that 37, .\, o +dra € FT. Splitting o =
qtitj—1 ~ Aatiti—1

Zk+l=i+j ay for some oy € GIT T NG , we get that

g+i+j
§ wit +drom € FiL
k=it j
q+itj ~ ATt
Gt A Gl

Additionally we have wg; + dpag € . Applying the same argument

as in the case s = 0, we get wy; + dpag € qu:ﬁ“f for all kK +1 =i+ j. Passing to
equivalence classes, we get the result for s = 1. X=X

We consider the differentials on the zeroth and first page and use this splitting to
decompose them.
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Proposition 4.2.5 For the differentials dg: E5? — Eé”qﬂ and di: E? — E§+1’q,
the following hold

i) dO(E((]i’j)’q) C E(()Z'J)7q+1
i.) di(EW0) ¢ pitha g pliitha

Hence there is a canonical splitting di = 01 + 01, where 81(E§i’j)’q) - Ei”l’j)’q and
BBy € BTV Binally, (9,) = (81)% = 810, + 010, = 0.

ProoOF: We start with the zeroth page. Let w + F;fj:f e FEU3)4 such that w €
G NG then

gFitiy _ qitj+1
do(w + Fi500) = dow + LT

We have that djw € G’;HHH NG and hence do(w + E(fj:f) c E0)at+] | For
the first page let us choose w4+ FLT"H 4+ dp (FITH ™ with w € Gg““ mé?““ and

) i+j+1 i+J
q+itj+
drw € Fi+j+1 . Then

qtiti+1 ~ AL+l griti+l _ gtiti+l o Aatititl qitj+l o Fatititl

and the claim follows by (V) of Lemma [1.2.1] XEX

4.2.2 The Obstruction Class of Transversally Complex Subalgebroids

In Section we have seen that a transversally complex Jacobi structure (J, K) comes
from a generalized contact structure, if and only if there exists an extension of the
inverse of J, w € Q2 (M), and a real 2-form B € Q2 (M), such that

dL(iw—i-B)(Al,AQ,A?,):OVAi € K. (*)

We want to apply the techniques from the previous subsection to obtain a cohomological
obstruction for this condition to hold.

Using the formalism of Subsection and using the notation im(J¥) = S, we see
that is equivalent to

dp(iw+B) € G2 =G3nG,.

Using the non-degeneracy of w on S, we have that w € FO2 and w ¢ F2. Thus,

iw+ B € G2 méﬁ and diw,d;B € F}. Hence both forms define classes in € E((]O’O)’z7
denoted by [w]o and [B]o. Note that for two real extensions w,w’ of the inverse of J~1
we have that [w]p = [w']o. So the class [w]o only depends on J. Therefore, we write

J e Eéo,om without further comment.
Moreover, [w]o and [B]y are do-closed and hence they define iterated classes in

E%O’O)’Q, denoted by [[w]o]1 = [J']1 and [[B]o]i.
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Corollary 4.2.6 The condition dy,(iw + B) € G3 = G3 ﬁég is equivalent to
Or(i[[w]olr + [[Bo]1) = 0.

PROOF: We have that dj(iw + B) € G3 ﬁég, which implies
di(iw + B+ FZ +dp(Fy)) = dp(iw + B) + F3 + d(FE) € G NGy + F3 + di(FP)

Hence d; (i[[w]o]1 +[[Blo)1) € E§0’1)’2. Using the splitting of the differential d; = 01401,
)

we get that 01 (i[[w]o]1 + [[B]o]1) = 0. The converse works by reading the equation from
the bottom to the top. X=X

We want to go a step further and ask for which w can we find a B, such that
dr(iw+ B) € G3n 63. The answer is contained in the following

Lemma 4.2.7 Let w € Q%(M) be real, such that dpw € FJ. Then there exists a
B € O (M), such that d.(iw + B) € G} = G3 ﬂég if and only if

Z) 8151[[&)]0]1 =0
ZZ) 51[[&)]0]1 - 31[[&)]0]1 18 dl—ea:act,

Remark 4.2.8 Note that ii.) can only be fulfilled, if i.) is fulfilled, since i.) just
ensures that 01 [[w]o]1 — O1[[w]o]1 is di-closed.

PROOF (OF LEMMA [£.2.7): Let us first assume, that dz(iw + B) € G$ = G3 ﬂég for
a real B, which is equivalent to 9y (i[[w]o]1 + [[Bo]1) = 0 by Proposition Hence
we have

and hence 01 [[w]o]1 —01[[w]o]1 is di-exact. Assuming, on the other hand, that i(d1[[w]o]1—
O1[[w]o]1) = di1[B]1. Note that i(d1[[w]o]1 — A [[w]o]1) is real and thus we can choose
a real representant B of [[B]o]1, then it is easy to see that 0;[[iw + B]o]1 = 0 and the
claim follows. XEY

Let us conclude this section with the main theorem of this chapter, which is basically
just a summary of the previous results. Afterwards we will discuss the connection to
generalized complex structures.

Theorem 4.2.9 Let L — M be a line bundle and let (J, K) be a transversally complex
Jacobi structure on L. These data are induced by a generalized contact structure, if
and only if
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i.) 8151[J71]1 =0
i.) O1[J 1 — O [J 1]y is dl-exact,

where we interpret J~' as an element in E(()O’O)’Q. Moreover, the generalized contact

structure inducing the data is of the form
L= (K®Am(K))«ts

for any choice of w € J~1 real and any real B € Q3 (M) such that [Bo is closed and
di[[Blo)1 = i(01[J 1 — 01 [T~ ).

Corollary 4.2.10 Let L — M be a line bundle and let (J, K) be a transversally com-
plex Jacobi structure. If [J~']y = 0, then the data comes from a generalized contact
structure of the form

L= (K®Ann(K))“,
where w € J 1.

Remark 4.2.11 (Generalized Complex Geometry) Let us recall the mirror re-
sult in generalized complex geometry. In [5] the author obtains similar results, given
a regular Poisson structure 7 € T°°(A2T'M) and a transversally complex distribution,
i.e. an involutive subbundle K C TeM such that S¢ := im(7%)c = KNK. Now S and
K induce filtrations of the de Rham complex and hence give rise to spectral sequences
which are very similar to the ones obtained in Subsection All the proofs of the
splitting of the spectral sequence and the differentials can be obtained in the same
exact way as in Subsection [£.2.1] Adapting the notations, we find that the data comes
from a generalized complex structure, if and only if

Z) 8151[71'_1]1 =0
ZZ) 51 {7‘('_1]1 -0 {77_1]1 is di-exact.

These obstructions differ quite a lot from those found in [b]. The reason for this
is that in [5| the author searches for H-generalized complex structures which is a
generalization of generalized complex structure, while our approach gives obstructions
to find an honest generalized complex structures. This is not a difference in the case
of generalized contact geometry, but in fact it is in generalized complex geometry. It
is an easy exercise to see that there is an H-generalized complex structure inducing
(m, K), if and only if

Z) dl(gl[ﬂflh — 81[7r*1]1) =0
ZZ) d2[51[7r*1h — 81[7r*1}1]2 =0
’LZZ) dg[[gl[ﬂ’_l]l — @1[7'(_1]1}2]3 =0.
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To be more precise 4.) is only well-defined, if 4.) is fulfilled and 4ii.) is only well-
defined, if #i.) is fulfilled. These obstructions are equivalent to the ones found in [5]. It
is a bit of a computational effort to prove this, since the author used a transversal to
im(7%) to obtain his results. We want to stress that, as we work completely within the
spectral sequence, this is not really necessary and we prefer not to make this arbitrary
choice.

4.3 Examples I: five dimensional Nilmanifolds

Weakly regular Jacobi structures appear as invariant Jacobi structures on Lie groups,
which are even canonically regular. We begin this section defining invariant Jacobi
structures and invariant generalized contact structures. Afterwards, we will formulate
everything at the level of Lie algebras.

Definition 4.3.1 Let L — G be a line bundle over a Lie group G and let &: G —
Aut(L) be a smooth Lie group action covering the left multiplication. A Jacobi bracket
{=,=}:T°(L) x I'*°(L) — I'*°(L) is said to be invariant, if

Do{A put ={ @A, Qyu} VA peT™(L), Vg€ G.

Let us put invariant Jacobi structures in the context of invariant generalized contact
bundles. Qur arena is the omni-Lie algebroid DL & J'L for a line bundle L — G over
a Lie group. For a Lie group action ®: G — Aut(L) covering the left multiplication,
we have the the canonical action

DP,: DL 3 (A, ) — (DBy(A), (D,1)*4h) € DL.

Definition 4.3.2 Let L — G be a line bundle over a Lie group G and let ®: G —
Aut(L) be a Lie group action covering the left multiplication. A generalized contact
structure £ C Dc L is said to be G-invariant, if and only if D®¢(L) = L for all g € G.

Proposition 4.3.3 Let L — G be a line bundle over a Lie group G, let &: G — Aut(L)
be a Lie group action covering the left multiplication and let L C D¢ L be a G-invariant
generalized contact structure, then its Jacobi-structure is G-invariant.

A Lie group action ®: G — Aut(L) allows us to trivialize the line bundle itself, its
derivations and its first jet. Similarly to the tangent bundle of a Lie group, we have

L=2Gx/?

where £ = I'°(L)%. Note that ¢ is a 1-dimensional vector space over R. Moreover, in
this trivialization the action of G looks like

®,(h,1) = (gh,1) V(1) € G x ¢, VgeQG.
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Additionally the Atiyah algebroid is also a trivial vector bundle by
DL =G x T*®(DL)¢,

where I'°(DL)% is a (dim(G) + 1)-dimensional vector space over R. Moreover, since
the symbol maps invariant derivations to left-invariant vector fields, we have the G-
invariant Spencer sequence for Lie(G) = g

0—=R—=TIT>(DL)Y - g—0,

by using the fact that G-invariant endomorphisms are just multiplications by constants.
This sequence splits canonically, since, we have I'*°(L) = ¢*°(M) ®g ¢. Thus

I°(DL)" ~ g® R,
with bracket
[(€,7), (n, k)] = ([€,1],0) V(& 7), (0, k) cg DR
Similarly, using J'L = (DL)* ® L, plus the choice of a basis of ¢, we get
r(J1L)Y = g* o R.
The differential dj, reduces to
drp(a+ k1*) = dcpa+ 1" A a,

where o € g* and 1% is again the projection to the R-component. These are all the
ingredients, we need to describe G-invariant generalized contact structures via their
infinitesimal data, i.e. in terms of the Lie algebra g = Lie(G). Using the trivialization,
we see immediately that for two invariant sections (4;,1;) € T*°(DL)%

[(A1, 1), (As,2)] € T°(DL)Y

by naturality of the Dorfman-bracket. It is easy to see that the bracket has the form
of the bracket of the following

Definition 4.3.4 Let g be a Lie algebra with the abelian extension gr := g ® R, where
we denote by 1 and 1* the canonical elements in gr and gy, respectively. The omni-Lie
algebra of g is the vector space gr @ g together with

i.) the (Dorfman-like) bracket
[(X1,901), (X2, 92)] = ([X1, Xo], Zx, ¥2 — vx, dyhn)
#.) the non-degenerate pairing
((X1,91), (Xa,¥2)) := P1(Xo) + ¢2(X1)
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iti.) the canonical projection prp: gr @ gg — Or
Here the differential is given by
d(a+ 1" A B) = dcpa + 1" A (o — dcef)
for a, B € g* and Lx = [vx,d].

Proposition 4.3.5 Let L — G be a line bundle over a Lie group G and let ®: G —
Aut(L) be a Lie group action. A G-invariant generalized contact structure L C DcL is
equivalently described by a subspace L8 C [(g @ R) @ (g* @ R)|c defined by its invariant
sections, which is mazimally isotropic, fulfills L8N L9 and is involutive with respect to
the Dorfman-bracket.

PROOF: The proof is based on the fact that an invariant generalized contact structure
is completely characterized by its invariant sections. X=X

The idea is now to forget about the Lie group and perform every construction
directly on the Lie algebra, having in mind, of course, that we can reconstruct a
generalized contact structure on the Lie group by translating. Being a bit more precise,
we give the following

Definition 4.3.6 Let g be a Lie algebra. A generalized contact structure on g is a
subbundle L € (gr D g )c, which is involutive, mazimally isotropic and fulfills LN L =

{0}.

From the above discussion, we can immediatly obtain

Lemma 4.3.7 Let G be a Lie group with Lie algebra g. The left translations establish
a 1 : 1-correspondence between generalized contact structures on g and left-invariant
generalized contact structures on G x R — G.

As in the geometric setting we have extreme cases

Example 4.3.8 Let (g,0) be a (2n + 1)-dimensional contact Lie algebra, i.e. © € g*,
such that © A (dcg®)™ # 0, then we denote by Q2 = p*© for the projection p: gr — g
and get that

L={(X,ixdQ) € (gr ® gr)c | X € (gr)c}
gives g the structure of a generalized contact Lie algebra.
Example 4.3.9 Let g be a Lie algebra and ¢ € End(gr) be a complex structure, then
1,0 1,0
£=gt"” @ Ann(gy"”)

gives g the structure of a generalized contact Lie algebra, where gI(R1 9 is the +i-

Eigenbundle of ¢c: (gr)c — (gr)cC-
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Now, we restrict ourselves to the case of 5-dimensional nilpotent Lie algebras, since
we are able to use already existing classification results, which are not available in more
general classes of Lie algebras, in order to prove the following

Theorem 4.3.10 Every five dimensional nilpotent Lie algebra possesses a generalized
contact structure.

From this theorem, we can immediately conclude

Corollary 4.3.11 Fuvery five dimensional nilmanifold possesses an invariant general-
1zed contact structure.

To prove Theorem [4.3.10] we will use Section [£.2.2] to be more precise, we will make
use of Theorem In particular, we will find a generalized contact structure on a
given Lie algebra by looking for a transversally complex Jacobi structure. Afterwards,
we use Theorem to prove the existence of a generalized contact structure. Note
that we did not prove the invariant analogue of Theorem [1.2.9] but as the proof of
Theorem [.2.9] can be performed also in the invariant setting.

A big help in proving Theorem is the classification of five dimensional nilpo-
tent Lie algebras provided in [18]. In that work the author proved that there are exactly
nine (isomorphism classes of) five dimensional nilpotent Lie algebras. Since we want to
prove that there are generalized contact structures on all of them, it seems convenient
to test first the extreme examples, i.e. integrable complex structures on gg (Example
on the one hand and contact structures on the other hand (Example §.3.8)). For
the complex structures we can can use the work of Salamon in |37], where he classi-
fied all the complex nilpotent Lie algebras of six dimensions. Of course not every six
dimensional nilpotent Lie algebra arises as an abelian extension of a five dimensional
one.

In the following, we denote by {e1,...,e5} a given basis of a five dimensional vector
space g. The only 5-dimensional nilpotent Lie algebras, such that gg admits a complex
structure are (we use the notation of [18| for the description of 5-dimesional nilpotent
Lie algebras):

i.) £5,1 (abelian)
ii.) L52: le1,e2] =e3
iii.) L54: le1,e2] =es, [e3,e4] = €5
iv.) L5 [e1,e2] =e3, [e1,e3] =es, [e2,e4] = €5
v.) L58: [e1,e2] =eq, [e1,€3] =e5
vi.) L59: [e1,e2] = e3, [e1,e3] =eq, [e2,e3] = €5

We have to check that the remaining 5-dimensional nilpotent Lie algebras £5 3, £56
and £5 7 are also generalized contact. Let us denote by {el,...,e%} the dual basis of

{61, ce ,65}.
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4.3.1 2573 : [61,62] = €3, [61,63] = €4
It is easy to see that J =e3 Ae; + 1 A ey is a Jacobi structure. Additionally
K = <]la 617 637 647 €2 — i€5>

is a subalgebra of (gr)c and that (J, K) is a transversally complex Jacobi structure.
Moreover, w = e! Ae? — 1* Ae? is an extension of the inverse of J and we obtain that
dw = dgpw + 1* Aw = 0, which implies that [J7!]; = [[w]o]1 = 0. Using Corollary
we see that there is a generalized contact structure inducing this data, an explicit
example is given by

(K @ Ann(K))™.

4.3.2 £56: [e1, 2] =es3, [e1,e3] = €4, [e1,e4] = €5, [e2,e3] = €5

This Lie algebra is actually a contact Lie algebra with contact 1-form © = €5.

4.3.3 L57: [e1, 2] =e3, [e1,e3] =e4, [e1,e4] = €5
It is easy to see that J = e Aeg+eg A (1 + e5) is a Jacobi structure. Let us define
K :=(1+e5,e1,e3,e4, 1 +1ieg).

We have [gr, gr] C im(J*) and hence K is integrable. Moreover, we have that w =
—(e'Aed+ et Aed)+ (1 —ed) Aet is an extension of J~! and dw = 0. Using Corollary
4.2.10] we find a generalized contact structure given by

(K ® Ann(K))“

We have already seen that the Lie algebras £53, £56 and £57 do not admit a
complex structure on their one dimensional abelian extension. Moreover, £5¢ is a
contact Lie algebra. In the following we want to show that £53 and £57 do not admit
a contact structure, so that there are generalized contact structures on them but not
of the extreme types. Let us first collect some basic properties of contact Lie algebras

Theorem 4.3.12 Let g be a nilpotent Lie algebra and © € g* be a contact form. Then
the center Z(g) has dimension one.

A reference for Theorem 4.3.12{ and its proof is [35]. As a first consequence is

Corollary 4.3.13 The Lie algebra £53 is not contact.

The only Lie algebra, which is left over is £57. Here we do not have a general
statement about contact Lie algebras that we can use, nevertheless we have
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Lemma 4.3.14 The Lie algebra £57 1s not contact.

ProOOF: From the commutation relation in Subsection it 1s clear that we have
Sce(A®g*) C e! A A®g*. Hence we have that for all a € g* dcpa = e! A 8 for some
B € g*. As a consequence a A (§cpa)? = 0 for all a € g*, and hence the Lie algebra
can not be contact. X=X

Remark 4.3.15 To prove that £51, £52, £58 and £59 are not contact one can use
Theorem 4.3.12] Finally, for the remaining ones the contact structures are given by e°.

As a summary we have the following table

‘ contact ‘ gr-complex | generalized contact

L5.1 X v v
L5 X v v
£53 X X v
L5.4 v v v
5.5 v v v
£5.6 v X v
L57 X X v
£58 X v v
£5.9 X v v

We used the term ggr-complex short for gr admits a complex structure.

4.4 Examples II: Contact Fiber Bundles

The next class of examples are contact fiber bundles over a complex base manifold. We
begin explaining what we mean by contact fiber bundle. Similarly to symplectic fiber
bundles, there is a contact structure on the vertical bundle

Very(P) = o~ !(Ver(P)) C DL,
for a line bundle L — P, such that P — M is a fiber bundle. More precisely:

Definition 4.4.1 Let w: P — M be a fiber bundle and let L — P by a line bundle. A
smooth family of contact manifolds is the data of L — P together with o closed non-
degenerate 2-form w € T°°(A%(Verr,(P))* ® L). If additionally the contact structures
(L‘Pm — Pm’w’D(LIPm)) are contactomorphic, we say that L — P is a contact fiber

bundle.
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Before we come to examples, we want to make some general remarks on smooth
families of contact structures and contact fiber bundles, which are more or less known.

Remark 4.4.2 Let (m: P — M,w) be a smooth family of contact structures. If the
fiber is compact and connected and the base is connected, then the data automatically
define a contact fiber bundle. This follows from the stability theorem of Gray in [25],
which states that two contact forms which are connected by a smooth path of contact
structures are contactomorphic.

Remark 4.4.3 As in the setting of symplectic fiber bundles, we can express the data
in local terms, namely: the datum of a contact fiber bundle over a manifold M with
typical fiber F' is equivalent to:

i.) a line bundle Ly — F and a contact 2-form w € I'°(A?(DL)* ® L)
i1.) an open cover {U, }ier

#4i.) smooth transition maps Tj;: U; N U; — Aut(Ly) which are point-wise contacto-
morphisms

Remark 4.4.4 Obviously, one can define smooth families of contact structures as a
Jacobi structure of contact type, such that the characteristic distribution of it is the
vertical bundle of a fiber bundle.

Using this remarks, we can show that under certain assumptions on the base, a
smooth family of contact structures always induces a generalized contact structure on
the total space.

Lemma 4.4.5 Let m: P — M be a fiber bundle with typical fiber F over a complex
base M, let L — M by a line bundle and let J € T(A?(J'L)* @ L) be a Jacobi
structure giving P the structure of a smooth family of contact manifolds as in Remark
[4.4.4] Then P possesses a generalized contact structure with Jacobi structure J.

PRrOOF: First of all, we notice that the Jacobi structure is weakly regular, since
im(J*) = Very(P). The only thing what we have to show is that the data induce
a transversally complex Jacobi structure, since we have that the inverse of the Jacobi
structure is leaf-wise exact with canonical primitive tyw, which implies that [J~!]; =0
by Corollary Let us denote by T M C Te M the holomorphic tangent bundle
induced by the complex structure on M. With this we define

K :=(coTn) {(TMOM) C DcL.

It is an easy consequence of the definitions of the bundles that (J, K) is a transversally
complex Jacobi structure. This concludes the proof. X=X

We see that in this case the existence of a generalized contact structure is unob-
structed. Let us show that smooth families of contact structure over a complex base
do actually exist.
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Example 4.4.6 (Projectivized Vertical Bundle) Let 7: P — M be a fiber bun-
dle with typical fiber F' over a complex base M. Given a set of local trivializations

(Ui, Ti)ier

P

U, i Ul x F
Ui

with transition functions 7;;: U; N U; — Diffeo(F) . Let us denote by Ty7i;: U; N
U; — Diffeo(T*F') there cotangent lifts, which fulfil also the cocycle condition for
transition functions and hence they induce a fiber bundle V. — M (actually this is
Ver*(P)) with local trivializations (U;, ¢;)icr, such that the transition functions fulfil
¢ij = Tv7j. We consider now the canonical symplectic form weq, € I (A2T*(T*F))
on T"F, note that the functions T\ 7;; are obviously symplectomorphisms. The next
step is to consider the fiber bundle V' — M with typical fiber T*F \ O, which we get
by the obvious restrictions. Note that on T*F \ O we have a canonical R*-action
which is free and proper and the for restricted symplectic form weq, we have that
ZL(1) e pWean = Wean- Using the results from [10], we conclude that the associated line

bundle L — RT*F := T*Igi;op carries a contact structure and the transitions functions,
which are obviously commuting with the R*-action, act as line bundle automorphisms
preserving the contact structure. This is exactly the data we need to cook up a contact
fiber bundle and hence its total space possess a generalized contact structure,
due to Lemma Note that here the input was a generic fiber bundle over a complex
base and the output is a generalized contact bundle. Moreover, if both the base and
the fiber are compact, then the output is also compact. We hence proved the existence

of compact examples.

Example 4.4.7 (Principal fiber Bundles) Let g be a Lie algebra with a contact
1-form © € g*. Let us consider a Lie group G integrating g and a manifold M with
a complex structure. Additionally, let P — M be a G-principal fiber bundle and let
Rp — P be the trivial line bundle, where we denote by 1p the generating section.
Recall that here the gauge algebroid splits canonically as DRp = TP & Rp. Moreover,
we have that Verg,(P) = Ver(P) @ Rp. Thus, a generic derivation A, € Verg, (P) is
of the form A = (£p(p), k) € Ver(P) ® Rp, where p is the fundamental vector field of
a unique £ € g and p € P. We define w € T™°(A%(Verg, (P))* ® Rp) by

w((&p(p), k). (np(p). 7)) = ((6cE®)(&,n) +kO(n) — rO(E)) - 1p(p).

It is easy to check that w gives P — M the structure of a contact fiber bundle. Since M
was assumed to be complex, we can apply Lemma[4.4.5]to obtain a generalized contact
bundle on P. Note that this notion includes S'-principal fiber bundles over a complex
manifold. Moreover, contact Lie algebras are an active field of research and there are
many examples around and even a classification of nilpotent contact Lie algebras in [3].
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4.5 A Counterexample

In this last section, we want to construct a transversally complex Jacobi structure which
cannot be induced by a generalized contact structure. The remarkable feature of this
counterexample is, that it is, as manifolds, a global product of a (locally conformal)
symplectic manifold and an Atiyah-complex manifold. Note that in [41] it was proven
that every generalized contact bundle is locally isomorphic to a product, however not
all generalized contact bundles arise in this way globally.

Let us consider the 2-sphere S? and its symplectic form w € T>°(A2T*S?). Tts
inverse m € I'°(A2T'M) is a Poisson structure and hence 7 + 1 A 0 = 7 is a Jacobi
structure on the trivial line bundle.

The second manifold which is involved is the circle S'. Our counterexample will
live on the trivial line bundle over the product

R]V[ — M = S2 X Sl.
Using Remark [1.2.48] we see that
DRy =TM &Ry =TS*@TS' @ Ry

and we can define a Jacobi structure J =7+ 1 A0 = 7 on it by "pulling back" the bi
vector 7 by setting it to be constant in S' direction. We see that im(J*) = TS? C DRyy.

The next step is to choose an everywhere non-vanishing vector field e € T'°°(TS?!)
and define

K :=TcS?* @ (1 — ie) € DcRyy.
Note that we have
DcRys = TeS? @ (1 — ie) @ (1 + ie). (4.5.1)

An easy computation shows that (J, K) is a transversally complex Jacobi structure.
Our claim is now that (J, K) can not be induced by a generalized contact structure.
To see this, let us examine the Der-complex a bit closer. We have that

A DRy @ Ryp = AR(TM* & Ryy).

Recall the notation of Remark|1.2.48f we obtain that an Atiyah form + € I (A¥(TM*®
Ry/)) can be uniquely written as ¢ = a + 1* A B for some (a, 3) € T®(A*T*M @
AF=1T*M). Moreover, we have

dr, (@ +1*AB) =da+ 1" A (o —dp)

where d is the usual de Rham differential. Now we want to pass to the spectral sequence,
therefore we split the Der-complex according to the splitting of Equation (4.5.1), we
have

QLI = PO (AIT*S? @ AT + o) @ M (1% — ia)),

Ras
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where o € T°(TS!) such that a(e) = 1. Note that here we have the canonical
identification DRy; 2 Ann(TS?) = T*S! @ Ry, which allows us to identify

E(()Z'v.j)vq — Q(iv‘j)vq‘

- Ry

In case of a cartesian product, the differential dg,, splits canonically with respect to
the bi-grading into

dRM - dO +61 +517

Where d(] . Q]gguj)vq — Q]g’j)7q+17 al . Q]&év]):q — Q]gé""lv])vq and 51 . Qﬁé:])aq — Q]ggvj+l)’q
L. M M . M . M . M ]'M .
Additionally, all three maps are differentials themselves and anticommute pairwise.

Now we want to consider the inverse of J, which is the pullback of w with respect to
the canonical projection S? x S! — S?. With a tiny abuse of notation we will see w as

an element of T (A2T*S?) C E(()O’O)’Q. A long and not very enlightening computation
shows that

011w = %((n* —ia) A (1% +ia) Aw)
Hence, we have for the cohomology class
0101[[wlo]1 = [[(1* —ia) A (1* + ia) A w]o]s.
But this cannot vanish, since a dg-primitive ¥ has to be of the form
= 1" —ia) A(1" +ia) A S

for B € T°°(T*S?). This implies that d3 = w, which is an absurd because the symplectic
form on the sphere is not exact.
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Appendices

This Appendices contain three topics which are relevant for some proofs of this thesis,
but are not relevant for the core of it: Jacobi related geometries.

In the first section, we give a proof of a Moser-like trick, which allows us to con-
struct isomorphisms of Dirac-Jacobi bundles. The second section discusses the so-call
homogenization trick, which establishes, roughly speaking, a one-to-one correspondence
between "Jacobi related geometries" and "homogeneous Poisson related geometries".
Even though, this trick is very important for the whole theory of Jacobi related ge-
ometries, we prefer to shift it to the Appendix, since we want to stress that almost
everything in the whole thesis does not use the one-to-one correspondence. The last
section discusses Atiyah complex structures, which appear as one of the extreme cases
in generalized contact geometry. Since they have not been considered so far in liter-
ature, the last section can be seen as a short introduction to the geometry of Atiyah
complex structures.

A.1 The Moser Trick for Dirac-Jacobi Structures

Let J € T*°(A%(J1L)* ® L) be a Jacobi structure on a line bundle L — M. Moreover,
we assume we have a smooth family of closed Atiyah 2-forms oy, such that op = 0 and
L5 is a Jacobi structure for all ¢, denoted by J;. For

0
Q= —ELBO}
the equation
0
520t~ droy
holds. We define the Moser-derivation by
Ap = —JHay)
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and its flow by ®; € Aut(L), where we assume it exists for on open subset containing
[0,1]. Let us compute

d * * d
&q)t Ji = @} <[At, Ji] + dtJt>
% d
=& < — [T (an), J] + dtJt) (A.1.1)

. d
= P <Jf(— droy) + dtJt>.

It is easy to see that
JH=Jto (id 402 0 JH)!

and hence we can compute

d d . _
an = &Jﬁ o (id+o? o JH!
d
= —Jo(id+oloJ) o <dt(id +o7 0 Jﬁ)> o (id+0) o J#)7!
d
= —Jfo(id+oy o) Lo <dt(id +07 o Jﬁ)> o (id+o? o JH)7!
o b
= —Jf o <6tat> o Jf
o #
= (-J} <at0t)>
_(7H #
= (Ji(draw))’,
and hence %Jt = Jf(dLat). If we use this equality in Equation we find
d ..
a@tl}t == O,

so we finally have J = ®{jJy = ®]J; and hence the two Jacobi structures Jy, J; are
isomorphic. We want to show that this well-known trick is just a special instance of
a Moser-like trick for Dirac-Jacobi structures, which we need in order to discuss the
semi-local structure of generalized contact bundles. We assume we have a Dirac-Jacobi
structure £ C DL and a smooth family of closed 2-forms oy, such that g = 0. Moreover,
we assume there exists a time-dependent derivation Ay, such that (As, o — ta,0¢) €
I'*>°(L) for all ¢, where
0

A 1= —ab]lgt.

The flow of (A, oy — ta,0¢) is given by

exp(;) o DPy,
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where ®; is the flow of A; and

W= (D) /0 (®7)"(dL(ar — ta,07)) d7

= (<I>t)*/0 (q)T)*(—%UT — LN o7)dr
= (@), [ —-@) o ar

= —0y
Since (A¢, ar — ta,0¢) € I'°°(L), this flow preserves £ and hence
exp(—oy) o DP (L) = L
which implies
Dey(L) = L7,

showing that £ and L7 are isomoprhic for all ¢.

A.2 Homogenization of Jacobi related Geometries

Homogenization means in the context of Jacobi related geometries, roughly speaking,
a functor from a suitable category of Jacobi related geometries, for example Jacobi
bundles to a suitable category of homogeneous Poisson related geometries, for example
homogeneous Poisson manifolds.

Even though, the homogenization is not needed in this thesis besides Appendix[A.3]
it provides a powerful tool in order to understand some instances in Jacobi geometry
and can even give much simpler proofs, but in all of presented results in this thesis
the homogenization did not provide a good framework for the proofs. It first appeared
as the so- called symplectization trick in contact geometry, see for example [29] and
its references. A unified approach for homogenization is presented in [10| including
non-coorientable contact structures and Jacobi brackets, see also [48]. We will recall in
a very vague way [10] in order to present the homogenization, but using our notation.
Note that this appendix is not meant to present every proof in detail, it is more intended
to give a global idea of the homogenization construction. .

Let us start considering a line bundle L — M. Its co-frame bundle p: M :=
L*\0ps — M is a R*-principal fiber bundle with principal action

P:R* x M > (T,QP)HTQPEM.

Note that sections of L — M can be canonically identified with homogeneous functions
on M with respect to the principal action by

TiT®(L) 3 A A= (ap = ap(A())) € EF(M).
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We have for every p € M
Ty M = {dA\% | A e (L)},

which can be shown easily in local coordinates. This allows us to define

TITRARJIL)*® L) 3 A ((Xl, k) = AGIA . ,le@)) e T°(AFTM).
(%)

for all £ > 0. Note that this map is injective and moreover the image are exactly the
multi-vector fields X € ['*°(A*T'M), fulfilling

PrX =ik x,

which span the tangent space at each point (which again can be shown easily in coor-
dinates). It is worth mentioning at this moment that

~ d

]]_ — aMEXp(t) — g
is the Euler vector field of L* — M restricted to M. The map defined in Equation is
by definition also compatible with the Gerstenhaber-Jacobi bracket and the Schouten
bracket, i.e. we have

[[A, D]]L = [87 E’]
for all A,0 € T*°(A*(J'L)* ® L). This means, in particular, that having a Jacobi
structure J € I°(A%(J'L)*® L), its homogenization J is a Poisson structure( J being
Jacobi is equivalent to [J, J]. = 0).
Let us now discuss the dual picture. The complex relevant for us is the de Rham

complex of DL with coefficients in L, denoted by Q3 (M). We define now

—_~—

TOEM) s (Ar, ., Ar) = (A, Ay)) € TO(ART* M),

which is a cochain map intertwining dz, and and the usual de Rham differential d. Note
that we have here

Prj=ri
for w € QF (M). We can now even introduce the map
TiT(A(J'L)* @ A*(DL)* @ L)

in a similar fashion, i.e. defining them on the image of -. Moreover, we have that
P AUV N =r"FA® PN

for ( A@ ¢y ® ) € T®(A*(J'L)* @ A*(DL)* ® L).
And one can show that almost all the structures appearing in this thesis can be
mapped via this map into more classical structure, i.e.
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i.) A Jacobi tensor J gets mapped in a Poisson structure J fulfilling Pﬁj =r~LJ.

ii.) A pre-contact structure w, i.e. w € E%(M) and closed, gets mapped into a

presymplectic structure @ € T*°(A2T*M) fulfilling P& = r@. Moreover, if w is
non-degenerate, i.e. contact, then @ is symplectic.

i11.) An Atiyah complex structure ¢ € I'*°(End(DL)) gets mapped into a complex
structure ¢ fulfilling PFo = ¢.

iv.) For a Dirac-Jacobi structure £ C DL, the subset (A, 1) € T°(TM & T*M) for
(A1) € I'*°(L) generates a Dirac structure D fulfilling: (X,«) € I'*°(D) =
(PrX,1Pra) e T(D).

v.) A generalized contact structure

k—(?
ﬁb _SO*

gets mapped into a generalized complex structure

]K = f JAﬂ, s
ﬁb _()0*

such that P*@ = &, P*J = r~1J and P:g: rB.

T

We refer to all the structures in i.) — v.) on M as homogeneous. Moreover, it is clear
that having a homogeneous structure on M with the indicated properties, they are
actually coming from their "Jacobi"-version, for example for a Poisson structure 7 on
M fulfilling P'm = r~ 17 there is a unique Jacobi structure J such that = = J.

Let us now talk about morphisms. In £ine morphisms areregular line bundle mor-
phisms ®: Ly — Ly. Let us denote by ¢: My — msy the map & is covering. We can
define

<I>:J\719apr—>apo<1>;1€]\72.

Note that ® intertwines the principal actions and is hence a morphism of R*-principal
fiber bundles. This makes - a functor Line into the category of R*-principal fiber
bundles.

This functor provides an equivalence of categories. To see this we consider a R*-
principal fiber bundle P — M, where we denote the principal action by P: R*x P — P.
The associated line bundle is the quotient

L:=Rp/R* - P/R* =M
with the action given by
R* x Rp 3 (r, (p, k) — (rp,r1k) € Rp.

It is now easy to show that L*\Op; = P, this can be found in every classical book
treating principal fiber bundles, or equivalently [10].
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A.3 Atiyah Complex Structures and their Dolbeault Co-
homologies

Complex structures on the Gauge algebroid of a line bundle have not been studied so far,
in fact the author is just aware of the references [27] and [41], where this appendix also
appeared. Following the homogenezation scheme from Appendix Atiyah complex
structures seem to be natural objects and in the opinion of the author it provides the
right framework of complex geometry in odd dimension. Moreover, it includes what is
known as normal almost contact structures (see below).

A.3.1 Complex Structures on the Gauge Algebroid

Let L — M be a line bundle. In this appendix we study the local properties of a
generalized contact structure of complex type, i.e. a generalized contact structure K on

L, of the form
0
K = (*0 ) (A.3.1)
0 —p*

In this case ¢: DL — DL is a(n integrable) complex structure on the gauge algebroid
DL, ie.

i.) @ is almost compler, i.e. p? = —id,
i.) @ is integrable, i.e. its Lie algebroid Nijenhuis torsion N, vanishes.

Here N, € I°°(A?(DL) x ® DL) is the skew-symmetric bilinear map defined by
N%’(Aa D) = [QOA’ QOD] - SO(ROA? D]) + @([Aa SOD]) - [Aa D]7 Aa U € F(DL)

Conversely, given a complex structure on DL, (A.3.1) defines a generalized contact
structure.

Example A.3.1 Consider the cylinder R x C™ over the standard complex space C™.
Let u be the standard real coordinate on the first factor, and let 2* = 2’ 4 iy?, i =
1,...,n, be the standard complex coordinates on the second factor. There is a canonical
integrable complex structure ¢.., on the gauge algebroid of the trivial line bundle

RRr«xon defined by
0 0

and @Can% = ayl .

0

Peanl = ou’

Example A.3.2 (Normal Almost Contact Structures) Our main reference for this
example is [27], where the reader will find basically all the proofs. We will see in this
example and Lemma that almost contact structures (resp. normal almost con-
tact structures) are locally the same as almost complex structures (resp. integrable
almost complex structures) on the gauge algebroid of a trivial line bundle Ry, — M.
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Recall that an almost contact structure on a manifold M is a triple (®,&,n), where
&: TM — TM is a (1, 1)-tensor, £ is a vector field, and 7 is a 1-form on M such that

®? = —id+n@¢ P(E) =0, no®=0, and n()=1.

See, e.g., [7] for more details. The idea behind this definition is that an almost con-
tact structure is the odd-dimensional analogue of an almost complex structure. We
believe that the use of line bundles and their gauge algebroids makes the analogy much
more transparent. Namely, recall that the gauge algebroid of the trivial line bundle is
DRy 2 TM @ Rys. Now take a triple (P, &, 1) consisting of an (1, 1)-tensor, a vector
field and a 1-form on M, and let ¢: DRy; — DR be the endomorphism given by

p(X,r) = ((X) — rE,n(X)) (A.3.2)

Then (®,£,7) is an almost contact structure if and only if p? = —id is a complex
structure, i.e. ¢ = —id. Additionally, ¢ is integrable if and only if

No+dn®€&=0, dn(®—,—)+dn(—,®—)=0, LP=0, and Len=0, (A3.3)

where Ng is the Nijenhuis torsion of ® [27]. One can actually show that the first condi-
tion in implies the other ones |7, Section 6.1] (see also [27]). An almost contact
structure (®,&,n) such that Ng + dn ® £ = 0 is called normal [7]. So normal almost
contact structures provide examples of complex structures on the Atiyah algebroid (of
the trivial line bundle), and, in turn, of generalized contact structures of complex type.
It turns out that, locally, every generalized contact structure of complex type is of this

form (see Lemma below).
Example is special in view of the following

Lemma A.3.3 Let L — M be a line bundle and let o: DL — DL be an integrable
complex structure. Then, around every point of M, there is a trivialization L = Ry,
identifying ¢ with a complex structure of the form for some normal almost
contact structure (®,£,1n).

PrOOF: Without loss of generality, we can assume L = Ry, so that DL =2 TM ®Ryy;.
It is clear that, under this identification, ¢ is necessarily of the form

p(X,r) = (®(X) —r§,n(X) + gr) (A.3.4)

for some quadruple (®,&,n,9), where ® is a (1,1)-tensor, £ is a vector field, n is a
1-form, and g is a smooth function on M. Locally, we can achieve g = 0 as follows.
First of all, let f € C°°(M). A straightforward computation shows that, under the
line bundle automorphism Ry; — Ryy, (x,7) — (x,ef@)r), the quadruple (®,¢,1,9)
changes into

(@+df @€, & n+df o®+ (E(f) — 9)df, g —&(F))

Now, from ¢? = —id, we easily find that £ is everywhere non-zero. Hence, locally,
around every point, there exists a function f such that £(f) = g. This concludes the
proof. X=X
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Remark A.3.4 Not all integrable complex structures on DL are globally of the form
(A.3.2), in general, not even when L = Ry is the trivial line bundle. To see this,
let M be a manifold such that Hig (M) # 0, and let (®',¢&,7') be a normal almost
contact structure on M (such manifolds exist, and the 1-dimensional sphere provides
the simplest possible example). Now, pick a closed, but not exact, 1-form o on M, and
put

d=0 +awd, £=¢ n=i+ac¥+al)a, g=-al).  (A35)

Then the endomorphism ¢: DRy — DRjs given by (|A.3.4) is an integrable complex
structure that cannot be put in the form (A.3.2)) by a global line bundle automorphism
Ry — Ry

A.3.2 Local normal Form

Theorem A.3.5 Let L — M be a line bundle equipped with a complex structure
p: DL — DL on the gauge algebroid. Then, locally, around every point of M, there
are

i.) coordinates (u,z', ..., 2" y' ... y") on M, and

ii.) a flat connection V in L, such that
pl = Va/au, and ¢V8/axi = Va/ayi. (A.3.6)

In other words, locally, around every point of M, there is trivialization L = Rrxcn
identifying ¢ with ©ean from Example[A.3.1]

Proor: Let ¢ : DL — DL be an integrable complex structure. Consider its homoge-
nization @ (see Appendix as a complex structure on M. As € is nowhere vanishing,
it can be locally completed to a holonomic complex frame, i.e. locally, around every
point of M, there are coordinates (T,U, X',..., X", Y1 ... Y") such that

0 0 0 0

:a—T, p€ = —, and SO@Xi:(?Y’"

¢ ou’

As all coordinate vector fields commute with £, they all come from (commuting) deriva-
tions of L. In particular

i.) (U, XY ..., X" Y ..., Y™), are pull-backs via projection M — M of uniquely
defined coordinates (u,z',..., 2" y',...,y™) on M, and

i1.) there exists a unique flat connection V in L such that

0 0 0
Therefore, the coordinates (u,z!,..., 2" y',...,y") on M and flat connection V pos-
sess all the required properties. X=X
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As an immediate corollary of Theorem and Lemma we get a local

normal form for normal almost contact structures.

Corollary A.3.6 Let (9,£,n) be a normal almost contact structure on a manifold M.
Then, around every point, there exist local coordinates (u,z*,y') and a local function f,
such that:

i) €= g

ii.) n=du+ g}ﬁdmi - gxf;dyi,

A.3.3 Dolbeault-Atiyah Cohomology

Let L — M be a line bundle, and let ¢: DL — DL be an integrable complex structure
on the gauge algebroid of L. Similarly as in the case of a complex manifold, there is
a cohomology theory attached to ¢. Namely, consider DL¢c® of the gauge algebroid
and denote by DO L and DOV the +i and the —i-eigenbundles of ¢ respectively,
so that

DcL = DUO L g DOV,

and complex Atiyah forms Q7 (M) splits as

M) =@y ),

where we denoted by Qg’é)(M ) the sections of (complex) vector bundle

A" (DO LY @ AS(DOV LY @ L
de Rham differential dj, splits, in the obvious way, as d;, = 01, + 91, where

ap: QM) — QUEN (M), and Bp: QP (M) - QY (),
and the integrability of ¢ is equivalent to
02 =83 = 90y, + 0,01, = 0.

We call cohomology of 97, the Dolbeault-Atiyah cohomology.
Theorem A.3.7 The Dolbeault-Atiyah cohomology vanishes locally.

PROOF: In view of Theorem [A.3.5] it is enough to work in the case when M = R x C".
Let uw be the standard (real) coordinate on the first factor and let 2 = z' 4 iy,
i =1,...,n, be the standard complex coordinates on the second factor. We can also
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assume that L = Ry is the trivial line bundle and (A.3.6) holds with V being the
canonical flat connection on Ryy. In this case D0 L is spanned by complex derivations

1 : 1 ) ,
O:= 5(]1 —iVy/ou), and V;= i(vtg/(in - 1V6/3y1:), i=1,...,n. (A.3.7)

Let w € QiM@(M) be arbitrary. Using Subsection we can write
w=uwy+1*Aw;

where wp,w; are standard complex forms on M. A long but straightforward computa-

tion exploiting (A.3.7)), shows that
Orw = 0wy + 1* A (wo + Lywy — Bwl)
where .
io
20u’
and 9 is the standard Dolbeault differential on C" (acting on forms on R x C™ in the
obvious way). So w is dp-closed iff

Y =0 =

gwg =wy+ Lywy — 5&11 = 0.

In this case, use the vanishing of standard Dolbeault cohomology (with a real parameter
u), to choose a form pg such that dpy = wp. As the Lie derivative along Y commutes
with 0 we find

d(wr — po — Lypo) =0,

and we can choose p1 such that dp; = —(w1 — po + Ly po). It is now easy to see that
gL(,Oo + 1" A pl) = w.

This concludes the proof. XEX

Remark A.3.8 It immediately follows from Theorem that the cohomology of
01, does also vanish locally.
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