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Abstract

In this thesis local and global properties of Jacobi and related geometries are discussed,
which means for us that so-called Dirac-Jacobi bundles are considered. The whole work
is roughly divided in three parts, which are independent of each other up to prelim-
inaries. In the �rst part local and semi-local properties of Dirac-Jacobi bundles are
considered, in particular it is proven that a Dirac-Jacobi bundle is always of a certain
form close to suitable transversal manifolds. These semi-local structure theorems are
usually refered to as normal form theorems. Using the normal form theorems, we prove
local splitting theorems of Jacobi brackets, generalized contact bundles and homoge-
neous Poisson manifolds. The second part is dedicated to the study of weak dual pairs
in Dirac-Jacobi geometry. It is proven that weak dual pairs give rise to an equiva-
lence relation in the category of Dirac-Jacobi bundles. After that, the similarities of
equivalent Dirac-Jacobi bundles are discussed in detail. The goal of the last part is to
�nd global obstructions for existence of generalized contact structures. With the main
result of this chapter it is easy to �nd nontrivial examples of theses structures and two
classes are discussed in detail.





Sommario

Nella presente tesi si discutono proprietà locali e globali delle geometrie di Jacobi. In
particolare, si considerano i cosiddetti �brati di Dirac-Jacobi. I �brati di Dirac-Jacobi
sono una immediata generalizzazione delle parentesi di Jacobi, che, in letteratura, sono
anche note come strutture di Kirillov. Il presente lavoro è diviso in tre parti, che sono
indipententi tra di loro tranne per i preliminari. Nella prima parte, si considerano pro-
prietà locali e semi-locali dei �brati di Dirac-Jacobi. In particolare, si dimostra che i
�brati di Dirac-Jacobi sono sempre di una determinata forma, simile ad un opportuna
varietà trasversale. I teoremi di struttura semi-locale in genere sono teoremi di forma
normale. Utilizzando questi ultimi, si dimostrano: teoremi locali di splitting delle par-
entesi di Jacobi, �brati generalizzati di contatto, l'analogo in dimensione dispari dei
risultati sulle varietà complesse generalizzate e le varietà omogenee di Poisson. La sec-
onda parte della tesi è incentrata sullo studio delle coppie deboli duali nella geometria
di Dirac-Jacobi. Si dimostra che le coppie deboli duali danno luogo ad una relazione
di equivalenza nella categoria dei �brati di Dirac-Jacobi. L'obiettivo dell'ultima parte
della tesi è di trovare ostruzioni globali all'esistenza di strutture generalizzate di con-
tatto non banali. Il risultato principale è la descrizione di due classi di questo tipo di
strutture.
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Introduction

Classical mechanics is considered to be one of the best understood theories in physics,
which also depends on the fact that there are very good mathematical techniques
available to describe mechanical systems. Even though, classical mechanics is not
suitable to describe large-scale physics and and physics on a atomic scale, it is used
in many occasions and is suitable to describe a huge amount of physical phenomena
in daily life. In fact, it was even enough to consider Newtonian Mechanics to �y to
the moon in 1969. From a mathematical point of view, or better said geometric point
of view, the conceptual description of classical mechanics started with the works of
Hamilton and Lagrange in the 17th and 18th century. In the 20th century there was a
Renaissance for classical mechanics in mathematics which started with the works [2], [4]
and [42] in the 60's.

Many di�erent branches in geometry developed from this considerations, probably
the two most important ones are Geometric Mechanics and Poisson Geometry. Note
that this two subjects do have a more than non-trivial intersection and up to now they
pro�ted a lot from each other. This thesis focuses on the latter and its generaliza-
tions. Let us give a brief introduction to this subject and let us discuss the relation to
mechanics. Let us consider a particle moving in the con�guration space R3 with coordi-
nates (q1(t), q2(t), q3(t)). In order to describe its motion, we need to �x a Hamiltonian
H ∈ C∞(T ∗R3) = C∞(R3 × R3). Usually, H is of the form

H =

3∑
i=1

p2
i

2m
+ V (q) (∗)

for the standard coordinates (q, p) of R3×R3. In the Hamiltonian formalism of classical
mechanics the motion (q1(t), q2(t), q3(t)) of the particle is a solution to the ordinary
di�erential equations

dqi

dt
(t) =

∂H

∂pi
(q(t), p(t)) and

dpi
dt

(t) = −∂H
∂qi

(q(t), p(t)). (∗∗)

If we de�ne the binary operation {−,−} : C∞(R3×R3)×C∞(R3×R3)→ C∞(R3×R3)
by

{f, g} =

3∑
i=1

∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
,
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Introduction

then we can write the Equations (∗∗) in the form

dqi

dt
(t) = {qi, H}(q(t), p(t)) and

dpi
dt

(t) = {pi, H}(q(t), p(t)).

Note that {−,−} is a Lie bracket which is a derivation in both slots, and this is basically
the starting point of Poisson geometry. In fact, to do mechanics, we need to �x three
things:

i.) a phase space, which has su�ciently nice properties, i.e. is a smooth manifold
M ,

ii.) a Poisson bracket, i.e. a Lie bracket {−,−} : C∞(M) × C∞(M) → C∞(M),
which is a derivation in both slots,

iii.) a energy function H ∈ C∞(M) (the Hamiltonian).

From the geometric point, we forget the chosen energy function and call the pair
(M, {−,−}) a Poisson manifold. Even though, Poisson brackets appeared in the late
19th century in a work by Lie, see [32], and their systematic study began with the
seminal work of Weinstein [51]. Poisson geometry has a lot of intersections to other
�elds of mathematics and some can even be seen as a subbranch of Poisson geometry,
such as the theory of Lie algebras (see [51]), deformation theory (see [22]), symplectic
geometry and Jacobi geometry. This thesis is dedicated to the latter, namely Jacobi
geometry, which was �rst introduced by Kirillov in [28] and independently by Lich-
nerowicz in [31]. Jacobi manifolds can be seen both as generalizations or as speci�c
cases of Poisson manifolds, see [10]. A Jacobi manifold is a manifold M together with
a line bundle L→M and a Lie bracket

{−,−} : Γ∞(L)× Γ∞(L)→ Γ∞(L)

which is a �rst order di�erential operator in both slots. The similarities of Poisson
manifolds and Jacobi manifolds are evident and there are even very classical geometries
which are special cases of Jacobi manifolds, which do not �t into Poisson geometry:
contact and locally conformal symplectic manifolds. Symplectic manifolds can be seen
as non-degenerate Poisson structures (in a suitable sense), a contact manifold on the
other hand is a non-degenerate Jacobi manifold. So, loosely speaking, Jacobi brackets
are in relation to contact structures as Poisson brackets are in relation with symplectic
structures. Note that contact manifolds are always odd dimensional and symplectic
manifolds are always even dimensional, so we refer to contact manifolds as the odd
dimensional analogues of symplectic manifolds.

But there are also purely physical motivations to study Jacobi manifolds, which do
not �t into the framework of classical Poisson geometry, for example thermodynamics
(for a detailed overview see [9] and its references). But also in classical mechanics of a
moving particle contact geometry, and hence Jacobi geometry, plays an important role.
In fact, there are situations where they naturally appear:
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• If one considers a Hamiltonian like (∗), particles move along trajectories of con-
stant energy, so a possibly non-smooth hypersurface such that H = const . Under
some regularity assumptions on the constant, this is actually a smooth manifold,
which admits a contact structure and the motion of a particle on this hypersurface
can be completely encoded by the contact structure.

• If the Hamiltonian is explicitly time-dependent, it is sometimes useful to enlarge
the phase space by R and see the Hamiltonian as a function on it. On this
new phase space classical mechanics is now described by what is called contact
mechanics, see [29] and [9].

Nevertheless Jacobi manifolds are much less studied than Poisson manifolds. Many
recent results in Poisson and/or related geometries have mirror statements in Jacobi
and/or related geometries. This is exactly the aim of this thesis: �lling in some gaps
in Jacobi geometry whose analogues have been studied in Poisson geometry. This is
part of a series of a long term project aiming at translating from Poisson to Jacobi
geometry whenever possibe, see e.g. [43], [46] and references therein.

Before we discuss the content of the single chapters, let us be more precise about
the term related geometries. In this thesis we are discussing the following geometric
structures, which we consider to be related to Jacobi geometry:

Dirac-Jacobi bundles are the Jacobi geometric analogue of Dirac structures in Pois-
son geometry. Dirac structures play an omnipresent role in Poisson geometry,
since they generalize Poisson structures, pre-symplectic forms, complex struc-
tures, etc. For an introduction to Dirac geometry see [11]. Besides the generaliz-
ing aspect, they appear naturally in various situation in Poisson and symplectic
geometry, for instance a coisotropic submanifold of a Poisson (resp. symplectic)
has no Poisson (resp. symplectic) structure, but it has a canonical Dirac struc-
ture which contains all the information needed for coisotropic reduction. On the
other hand Dirac-Jacobi structures have only been considered recently, see [46],
as a generalization of Wade's E1-Dirac structures [49].

Generalized contact bundles are the odd dimensional counterpart of generalized
complex manifolds such as contact manifolds are the odd-dimensional analogue
of symplectic manifolds. Generalized complex geometry provides a generalized
framework of symplectic and complex geometry and was �rst systematically stud-
ied in [26]. Generalized contact bundles were introduced recently in [47] and very
few is known about them and in particular very few (non-trivial) examples are
available. In [47] it is proven that every generalized contact bundle induces
a Jacobi bracket, which puts generalized contact geometry in the framework of
Jacobi geometry and is a common generalization of contact geometry and Atiyah-
complex structures, a slight generalization of normal almost contact structures,
which we disuss in A.3.

Homogeneous Poisson manifolds are Poisson manifolds with a given primitive in
the Poisson complex, see [30]. To be precise this is a pair (π, Z) consisting of a
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Poisson tensor π and a vector �eld Z, such that LZπ = −π. There are a lot of
examples, for example the dual of a Lie algebra with the KKS Poisson structure
together with the Euler vector �eld as well as the canonical symplectic struc-
ture on cotangent bundles with the Euler vector �eld. The question which arises
now is why homogeneous Poisson manifolds are more related to Jacobi geometry
then arbitrary Poisson manifolds? The answer to this gives the homogenization
trick: there is a one-to-one correspondence of Jacobi related geometries and ho-
mogeneous Poisson related geometries on R×-principal �ber bundles. Precise
statements can be found in [10] and references therein as well as Appendix A.2.

We proceed as follows: The �rst chapter is dedicated to �x notation and recall
known facts in the topic, this includes a quick reminder of the D-functor, represen-
tation theory of Lie algebroids, as well as the de�nitions of Jacobi bundles, Dirac-
Jacobi bundles and generalized contact structures. The second chapter is based on [41]
and [38], where we follow the lines of [38] in order to provide a normal form theorem for
Dirac-Jacobi bundles and apply it directly to Jacobi structures and to generalized con-
tact structures in order to re-obtain the results from [41] in a slightly more conceptual
way. Moreover, we provide splitting theorems for Jacobi structures, originally obtained
in [17], for generalized contact structures from [41] and �nally for homogeneous Poisson
structures also obtained in [17].

The third chapter is the state of the art of an ongoing collaboration with Alfonso
Tortorella [40]. We introduce the notion of (weak) dual pairs in Dirac-Jacobi geometry,
which is a triple of Dirac-Jacobi structures, and deduce some of the �rst properties,
such as an alternative proof of the normal form theorem for Dirac-Jacobi, the existence
of a so-called self dual pair and probably most importantly, we prove that for two Dirac-
Jacobi structures sitting in a (weak) dual pair the transverse geometry are isomorphic
in a suitable sense. Since dual pairs are deeply connected to Morita equivalence, their
study is supposed to be the beginning of a systematic study of Morita equivalence of
Jacobi manifolds.

In the last chapter, we just concentrate on one speci�c Jacobi related geometry:
generalized contact bundles. This chapter is based on [39]. After having studied local
and semi-local structure of Jacobi related geometries in the previous chapters, we want
to end this thesis with some global considerations in generalized contact geometry.
The main purpose is to develop an obstruction theory of their existence in a given
framework and apply this theory to obtain examples. And in fact, we can prove
that all �ve dimensional nilpotent Lie Groups possess an invariant generalized contact
structure and moreover that every contact �ber bundle over a complex base possesses
a canonical generalized contact structure.

How to read this Thesis

This thesis consists basically out of three preprints/publications (see [41], [39] and [38])
and a work in progress (see [40]) which are merged together. This means in particular
that the chapters 2, 3 and 4 can be read independently. Necessary for all of the three
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chapters is Chapter 1, in which basic di�erential geometric are discussed and speci�c
notations are introduced. Due to the fact that everything is very basic and and known,
we will not refer, for the sake of readability, to all the notions introduced in Chapter
1 all the time in the following chapters. Moreover, there is an interaction between the
chapters, which can be summarized by:

Chapter 1

Sections 2.1, 2.2 Chapter 3 Chapter 4

Section 2.3

Section 2.4 Section 2.5

The path Chapter 1 → Chapter 3 → Section 2.3 is possible in principle, but not
recommended. Chapter 4 is a bit remote, since it contains global properties of gener-
alized contact bundles, whereas the remaining chapters treat the local and semi-local
structure of several Jacobi-related geometries.

5





Chapter 1

Preliminaries

This �rst chapter is meant to �x the notation and establish the language which allows
us to do Dirac geometry in the category of line bundles. Most of the statements are
known or at least folklore, see [46] and its references. In this spirit, we �rst take a
closer look to the category of line bundles and afterwards de�ne the analogue in this
category of the tangent bundle, the so-called Atiyah or Gauge algebroid and observe
that it is dual, again in the category of line bundles, to the �rst jet bundle. These
are exactly the ingredients in order to study Dirac structures on line bundles, which
are Lagrangian subbundles of the so-called omni Lie algebroid, see [14]. After that,
we make a small excursus to the representation theory of Lie algebroids and �t our
framework inside this theory. The next part is dedicated to give motivating examples
of this, what we will call them, Dirac-Jacobi bundles, which include Jacobi brackets,
contact structures and generalized contact structures. As a �nal section, we add some
properties of the category of Dirac-Jacobi bundles.

1.1 Derivations and the Der-Complex

Even tough derivations on vector bundles and their corresponding de Rham complexes
are very classical topics in di�erential geometry, we give the basic de�nitions and
properties, which will be necessary throughout this section. This section is far from
being a complete introduction to this topic. A more detailed discussion can be found
for example in [33] and [36].

1.1.1 The Category of Line Bundles

The category of line bundles should not be seen as a full subcategory of vector bundles,
at least not for our purposes. The reason is that we want to shrink the Hom sets in
order to get a category admitting products and a reasonable amount of pull-backs. So
let us make this precise:

De�nition 1.1.1 The category Line consists of smooth line bundles over manifolds as
objects and regular, i.e. �ber-wise invertible, line bundle morphisms as arrows.

7



Chapter 1. Preliminaries

Note that if we allow non-�berwise invertible line bundle morphisms, we lose one of
the most important properties for our purposes: the pull-back of sections, i.e. for
a �berwise invertible line bundle morphism Φ: L1 → L2 covering the smooth map
φ : M1 →M2, we can de�ne

Φ∗λ ∈ Γ∞(L1) by Φ∗λ(m) := Φ−1
m λ(φ(m)) (1.1.1)

for λ ∈ Γ∞(L2). As we have announced before, this category has nice properties; in
fact we have

Theorem 1.1.2 The category Line admits products. Moreover, if for two line bundles
Pi : (Li →Mi)→ (L→M), the pull-back (i.e. the �bered product)

M1 ×M M2 M1

M2 M

in the category of manifolds Man, the category of smooth manifolds with smooth maps
as morphisms, exists, then also the pull-back of Pi : (Li → Mi) → (L → M) in Line
exists.

Proof: First, we prove that Line admits products. Let us therefore consider two line
bundles Li →Mi for i = 1, 2 and the set

M× = {φx,y : L1,x → L2,y | φx,y is a linear isomorphism}

with the obvious projections pi : M
× →Mi. Note thatM

× is a smooth manifold, since
one can realize it as

M× =
L∗1\{0} × L∗2\{0}

R×

with the diagonal action of R×, which is clearly free and proper. The next step is to
construct the line bundle L× →M× by

L× = p∗1L1

together with the regular line bundle morphisms Pi : L
× → Li de�ned by

P1 : L× 3 (φx,y, λx) 7→ λx ∈ L1

and

P2 : L× 3 (φx,y, λx) 7→ φx,y(λx) ∈ L1.

Now we want to prove that L× → M has the universal property of a product. Let
therefore L3 →M3 be a line bundle with regular line bundle morphisms Ki : L3 → Li
covering ki : L3 → Li. Then we can de�ne the map

J : L3 3 lx 7→ (K2,x ◦K−1
1,x,K1,x(lx)) ∈ L×.

It is easy to see that J is the unique regular line bundle morphism making the diagram

8



1.1. Derivations and the Der-Complex

L3

L× L1

L2

commute and hence (L× →M×) is the product in Line.
Let us now show that Line admits a reasonable amount of pull-backs. We consider

the pull-back of principal �ber bundle

M×M M×

M1 ×M M2 M1 ×M2

via the map M1 ×M M2 → M1 × M2, where M1 ×M M2 is a smooth manifold by
assumption. It is easy to see that for a line bundle L → M with two line bundles
Li → L for i = 1, 2, that

(L×M →M×M ) (L1 →M1)

(L2 →M2) (L→M)

commutes and is moreover a a pull-back in Line. XΞΣ

1.1.2 The D-Functor

In this subsection we want to treat the D-functor, which is a functor from the category
of vector bundles with �ber-wise invertible vector bundle morphisms Vect into the
category of Lie algebroids LieAlg. Even though we are mainly interested in line bundles,
we will treat the D-functor in full generality. Given a vector bundle E → M and a
point p ∈M , we consider the set

DpE := {δp : Γ∞(E)→ Ep | ∃!vp ∈ TpM : δp(fs) = vp(f)s+ fδp(s)},

for f ∈ C∞(M), s ∈ Γ∞(E). Note that all δp ∈ DpE are local operators and DpE is
a vector space. Moreover, we have the short exact sequence

0→ End(Ep)→ DpE → TpM → 0

where the last non-trivial arrow is the assignment δp 7→ vp, called the symbol and is
denoted by σ. The disjoint union

DE :=
∐
p∈M

DpE

9
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can be given a unique smooth vector bundle structure, such that

0→ End(E)→ DE
σ→ TM → 0

is a short exact sequence of vector bundles, the so-called Spencer Sequence. Note that
this implies that

∆(λ) := (p→ ∆p(λ)) ∈ Γ(E)

is a smooth section for all ∆ ∈ Γ∞(DE) and λ ∈ Γ∞(E). Additionally, the sections of
DE → M posses a Lie bracket given by the commutator, which turns DE, together
with σ : DE → TM , into a Lie algebroid. The sections of DE → M are refered to
as derivations and DE → M is called Atiyah or gauge algebroid. So this gives us an
assignment E → DE, which is exactly the D-functor on objects in Vect. The next step
is to clarify what it does on morphisms. So let Φ: E → E′ be a �ber-wise invertible
vector bundle morphism covering φ : M → M ′ and let δp ∈ DpE, then we de�ne the
map

DΦ: DE 3 δp 7→ (λ 7→ Φp(δpΦ
∗λ)) ∈ DE′,

which is a vector bundle map covering φ : M → M ′. Moreover, it is easy to see
that DΦ: DE → DE′ is a Lie algebroid morphism, i.e. DΦ∗ : Γ∞(Λ•(DE′)∗) →
Γ∞(Λ•(DE)∗) intertwines the Lie algebroid di�erentials and σ′ ◦DΦ = Tφ ◦ σ for the
symbols σ : DE → TM and σ′ : DE′ → TM ′. The functoriality follows by a simple
computation. Since a section ∆ ∈ Γ∞(DE) can be applied to a section of E →M , we
have ∆ ∈ HomR(Γ∞(E),Γ∞(E)), in fact we have Γ∞(DE) ⊆ DiffOp1(E,E), the �rst
di�erential operators of the sections of the vector bundle E.

Let us go back to line bundles, since in this case there are simpli�cations and more
features of the D-functor.

Lemma 1.1.3 Let L→M be a line bundle. Then DiffOp1(L,L) = Γ∞(DL).

Proof: This is an easy consequence of the fact that, for a line bundle L → M , we
have End(L) ∼= C∞(M). XΞΣ

Note that the �rst-order di�erential operators DiffOp1(L,L) can be understood as
sections of the vector bundle

(J1L)∗ ⊗ L→M,

where we denote by J1L the �rst jet bundle of L. If we denote by j1 : Γ∞(L) →
Γ∞(J1L) the �rst jet prolongation, the 1 : 1 correspondence of Γ∞((J1L)∗ ⊗ L) and
DiffOp1(L,L) is realized by

Γ∞((J1L)∗ ⊗ L) 3 α 7→ (λ 7→ α(j1λ)) ∈ DiffOp1(L,L).

10



1.1. Derivations and the Der-Complex

Moreover, the dual of the Spencer sequence, after tensorizing by L, can be written as

0→ T ∗M ⊗ L→ J1L→ L→ 0.

Now we want to discuss the local structure of DL → M and J1L → M for a line
bundle L→M . Let us choose a local trivialization

LU ∼= U × R

so we may identify Γ∞(LU ) ∼= C∞(U). Let us moreover, assume that U is a chart
domain with coordinates x = (x1, . . . , xn). The claim is now to show that the maps

δi : C∞(U) 3 f → ∂f

∂xi
∈ C∞(U)

together with the identity 1 : C∞(U) → C∞(U) form a local basis of DLU . Let
∆ ∈ Γ∞(DLU ). Let us denote its symbol by σ(∆) = Xi ∂

∂xi
. It is easy to see that, �rst

Xiδi ∈ Γ∞(DLU ) and moreover

(∆−Xiδi)(f) = f · (∆−Xiδi)(1) = f ·∆(1).

Therefore ∆ = Xiδi + g · 1 with g = ∆(1). This allows us to identify

DLU ∼= TU ⊕ RU

locally, where we denote by RU the trivial line bundle R × U → U . Moreover, this
identi�cation holds true for trivial line bundles RM → M globally. Identifying J1L =
(DL)∗ ⊗ L, we see that locally

J1LU ∼= T ∗U ⊕ RU .

There are many similarities between DL and the tangent bundle. The last similarity
we want to mention is the existence of �ows of derivations. The �ow of ∆ ∈ Γ∞(DL) is
de�ned as the unique one-parameter family of line bundle automorphism Φ∆

t ∈ Aut(L),
ful�lling

d

dt

∣∣∣
t=0

(Φ∆
t )∗(λ) = ∆(λ),

which is explained in more detail in [46]. Let us now discuss the Atiyah algebroid of
some special line bundles. We start with products in the category of line bundles.

Lemma 1.1.4 Let Li → Mi be line bundles for i = 1, 2 and denote by Pi : L
× → Li

their product covering pi : M
× →Mi, then

DL× = kerDP1 ⊕ kerDP2.

11
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Proof: Note that the map

p : M× →M1 ×M2

is a surjective submersion and hence the kernel of its tangent map has dimension one.
But we have kerTp = kerTp1∩kerTp2, which is given by the fundamental vector �eld
of the principal action

φ : R× ×M× 3 (α,ψx,y) 7→ α−1ψx,y ∈M×

which is covered by a one-parameter group of regular line bundle morphism

Φ: R× × L× 3 (α, (ψx,y, λx)) 7→ (α−1ψx,y, λx) ∈ L×.

By the de�ntion of L×, we have that

P1 ◦ Φα = P1 and P1 ◦ Φα = α−1P1 for all α ∈ R×. (1.1.2)

Let us introduce the derivation ∆ ∈ Γ∞(DL×) by

∆(λ) =
d

dt

∣∣∣
t=0

Φ∗exp(t)λ.

Using Equations (1.1.2), we have

DP1(∆ψx,y) = 0 and DP2(∆ψx,y) = 1y.

Let now � ∈ kerDP1∩kerDP2, then we have that σ(�) ∈ kerTp1∩kerTp2 and hence
there exist k, l ∈ R, such that � = k1+ l∆, but then we have that DP1(�) = k1 = 0
and hence k = 0. Furthermore, we have that DP2(�) = l1 = 0 and hence l = 0. This
means that kerDP1 ∩ kerDP2 = {0} and counting dimensions the claim follows. XΞΣ

Lemma 1.1.5 Let Li → Mi be line bundles for i = 1, 2 and denote by Pi : L
× → Li

their product and by pi : M
× →Mi the maps covered by Pi. Then

DL× ∼= p∗(DL1 ⊕DL2)

where p : M× 3 m 7→ (p1(m), p2(m)) ∈M1 ×M2.

Proof: Let us simply write down the map

I : DL× 3 ∆φx,y 7→ (φx,y, (DP1(∆φx,y), DP2(∆φx,y))) ∈ p∗(DL1 ⊕DL2),

which is injective by Lemma 1.1.4. Comparing the ranks of p∗(DL1⊕DL2) and DL×,
the claim follows. XΞΣ

As a �nal Corollary, we discuss the canonical splitting of pull-backs

12
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Corollary 1.1.6 Let Φi : Li → L be regular line bundle morphisms covering φi : Mi →
M , such that the pull-back in Line

L×M L2

L1 L

P2

P1 Φ2

Φ1

exists, then

DL×M
∼= p∗(DL1 ×DL DL2),

where p : M×M 3 m 7→ (p1(m), p2(m)) ∈M1 ×M M2.

1.1.3 Representations of Lie Algebroids

In the literature, see for example [15], a Lie algebroid representation of a Lie algebroid
(A→M,ρA, [−,−]A) is a vector bundle E →M together with a so-called A-connection,
which is �at. An A-connection is a map

∇ : Γ∞(A)× Γ∞(E)→ Γ∞(E)

which is C∞(M)-linear in the �rst argument and

∇afe = ρA(a)(f) · e+ f · ∇ae.

Flatness means in this setting

[∇a,∇b] = ∇[a,b]A .

By the very de�nition of DE, this notion is equivalent to have a Lie algebroid
morphism

∇ : A→ DE

covering the identity, i.e. its adjoint

∇∗ : Γ∞(Λ•A∗)→ Γ∞(Λ•DE∗)

is a chain map with respect to the de Rham di�erentials of A and DE, respectively.
Note that this implies in particular that σ ◦ ∇ = ρA. We will not examine in depth
the theory of representations of Lie algebroids; a much more detailed discussion can
be found in [15]. Let us anyway give two (trivial) examples:

Example 1.1.7 Let L → M be a line bundle, then id : DL → DL is a Lie algeboid
representation of DL on L. In the following, we will refer to this as the tautological
representation.

13
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Example 1.1.8 Let g be a Lie algebra and V be a vector space. We can interpret
them as a Lie algebroid over a point and a vector bundle over a point. Note that for
the Gauge algebroid, we have the exact sequence

0→ End(V )→ DV → T{∗} = 0

and hence End(V ) = DV . This means that a representation of g on V is a Lie
algebra map ∇ : g→ End(V ), which coincides with the usual de�nition of a Lie algebra
representation.

Even though most of the following constructions works for arbitrary vector bundles,
we limit ourselves to the case of line bundles. The next step is to associate a complex
with a representation, Which generalizes the Chevalley-Eilenberg complex of a Lie
algebra representation.

De�nition 1.1.9 Let L→M be a line bundle and let A→M be a Lie algebroid with
a representation ∇ : A → DL. Then Ω•(A,L)(M) := Γ∞(Λ•A∗ ⊗ L) together with the
di�erential

d(A,L) : Ω•(A,L)(M) 3 α⊗ λ 7→ dAα⊗ λ+ ei ∧ α⊗ ∇ei(λ) ∈ Ω•+1
(A,L)(M),

where dA is the usual Lie algebroid di�erential of A → M and {ei}i∈I is a local basis
with dual {ei}i∈I , is said to be the the de Rham complex of A with coe�cients in L.

Note that it is easy to see that, �rst, d(A,L) is independent of the choice of the local
basis and second that it is in fact a di�erential. Moreover, by de�nition we can see
that the de Rham complex with coe�cients is a graded module for the usual de Rham
complex, i.e. we can multiply

Γ∞(ΛkA∗)× Ω`
(A,L)(M) 3 (α, β ⊗ λ) 7→ α · (β ⊗ λ) := α ∧ β ⊗ λ ∈ Ωk+`

(A,L)(M)

and, additionally, we have

d(A,L)(α ·B) = dA(α) ·B + (−1)|α|α · d(A,L)B

for α ∈ Γ∞(Λ•A) and B ∈ Ω•(A,L)(M). Before we consider examples, we brie�y discuss
morphisms. So let Li → Mi be two line bundles and let ∇i : Ai → DLi be two
�at connections. A morphism between the triples (Li → Mi, Ai,∇i) is a pair (P,Φ)
consisting of a Lie algebroid morphism P : A1 → A2 and a regular line bundle morphism
Φ: L1 → L2 covering the same map φ : M1 →M2, such that

A1 A2

DL1 DL2

P

∇i ∇2

DΦ

(1.1.3)

14
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commutes. We can de�ne the (pull-back) map

(K,Φ)∗ : Ω•(A2,L2)(M2)→ Ω•(A1,L1)(M1)

by

((K,Φ)∗α)p(a1, . . . , ak) = Φ−1
p αφ(p)(Ka1, . . . ,Kak)

for α ∈ Ωk
(A2,L2)(M2) and a1, . . . , ak ∈ A1,p. One can show that for α ∈ Γ∞(ΛkA2) and

λ ∈ Γ∞(L2), we have that

(K,Φ)∗(α⊗ λ) = K∗α⊗ Φ∗λ, (1.1.4)

where K∗ : Γ∞(A2)→ Γ∞(A1) is the usual pull-back of sections of vector bundles and
Φ∗ is the pull-back of sections of a line bundle along a regular line bundle morphism,
see Equation (1.1.1).

Lemma 1.1.10 Let Li → Mi be two line bundles and let ∇i : Ai → DLi be two �at
connections. Then

d(A1,L1) ◦ (K,Φ)∗ = (K,Φ)∗ ◦ d(A2,L2)

Proof: This is a consequence of Equation (1.1.4). XΞΣ

The next two examples and their interaction are crucial throughout the whole thesis,
so we will discuss them in quite some detail.

Example 1.1.11 (Tautological Representation) Let L → M be a line bundle.
Let us denote the de Rham complex of DL with coe�cients in L by (ΩL(M),dL).
Throughout this thesis we refer to elements of ΩL(M) as Atiyah forms. In this partic-
ular case, we are able to compute its cohomology: if we denote by 1 : Γ∞(L)→ Γ∞(L)
the identity operator, it is easy to show that

dLι1 + ι1 dL = id (1.1.5)

and hence the cohomology of dL is tivial. Moreover, for a regular line bundle morphism
Φ: L1 → L2 between two line bundles Li → Mi, (DΦ,Φ) is a morphism between the
tautological representations. Moreover, every morphism of triples (Li → Mi, DLi, id)
is of the form (DΦ,Φ) for a regular line bundle morphism Φ: L1 → L2. In the rest of
the thesis, we will denote

(DΦ,Φ)∗ := Φ∗.

Having a (local) trivialization LU ∼= U × R, we have seen in Subsection 1.1.2, that

(J1LU )∗ ⊗ LU ∼= DLU ∼= TU ⊕ RU

15
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and moreover that

J1LU ∼= (DLU )∗ ⊗ LU ∼= T ∗U ⊕ RU .

Hence, we have that Λ•(DLU )∗⊗LU ∼= Λ•(T ∗U⊕RU ) ∼= Λ•T ∗U⊕Λ•−1T ∗U . Through-
out this thesis, we will write this splitting as

α = α1 + 1∗ ∧ α2,

for α ∈ Λk(DLU )∗⊗LU and (α1, α2) ∈ ΛkT ∗U⊕Λk−1T ∗U , where 1∗ ∈ Γ∞(T ∗U⊕RU )
is the canonical generator of the second factor. In this trivialization the di�erential dL
can be simply written as

dL(α1 + 1∗ ∧ α2) = dα1 + 1∗ ∧ (α1 − dα2),

for α1 + 1∗ ∧ α2 ∈ ΩLU (U) and for the usual de Rham di�erential d: Γ∞(Λ•T ∗M)→
Γ∞(Λ•+1T ∗M).

The next example, which will occur in this thesis are �at connections on line bundles.

Example 1.1.12 (Flat TM-Connection) Let Li →Mi be two line bundles and let
∇i : TMi → DLi be �at connections. First, we note that in this case we have that
σi ◦∇i = idTMi for the symbol maps σi : DLi → TMi. Now let us consider a morphism
(P,Φ) between (L1 →M1, TM1,∇1) and (L2 →M2, TM2,∇2) covering φ : M1 →M2.
We conclude

P = σ2 ◦ ∇2 ◦ P = σ2 ◦DΦ ◦ ∇1

= Tφ ◦ σ1 ◦ ∇1

= Tφ,

so a morphism of two �at connections on line bundles is completely determined by a
regular line bundle morphism. In the case of a �at connection ∇ : TM → L, we denote
the de Rham complex with values in L by

(Ω∇(M), d∇).

Moreover, there is an interplay between Example 1.1.11 and the connection di�erential.
Let us denote by 1∗ ∈ Γ∞((DL)∗) the section which is de�ned by

1
∗(1) = 1 and 1

∗(∇X) = 0 ∀X ∈ TM,

which is well de�ned since DL = im(∇) ⊕ 〈1〉. Note that this coincides with the 1∗

de�ned above for the trivial line bundle. Let us moreover use the symbol σ : DL→ TM ,
in order to de�ne

σ∗ : Ωk
∇(M) 3 ψ 7→ σ∗ψ = ψ ◦ (σ ⊗ . . .⊗ σ) ∈ Ωk

L(M).

16



1.1. Derivations and the Der-Complex

Note that this map is not a chain map, since∇◦σ 6= id and thus the diagram (1.1.3) does
not commute. But we have that for all α ∈ Ωk

L(M), there exist unique α1 ∈ Ωk
∇(M)

and α2 ∈ Ωk−1
∇ (M), such that

α = σ∗α1 + 1∗ ∧ σ∗α2,

which are de�ned by

α1(X1, . . . , Xk) := α(∇X1 , . . . ,∇Xk)

and

α2(X1, . . . , Xk−1) = α(1,∇X1 , . . . ,∇Xk−1
)

for Xi ∈ TM , i = 1, . . . , k. Moreover, the di�erential dL can be computed by

dLα = dL(σ∗α1 + 1∗ ∧ σ∗α2) = σ∗(d∇α1) + 1∗ ∧ σ∗(α1 − d∇α2).

Now the local structure of Example 1.1.11 shines in a new light. By identifying C∞(U)
with Γ∞(L

∣∣
U

) we already have chosen the canonical connection which makes the trivi-
alizing section �at and the connection di�erential is just the de Rham di�erential.

Note that a lot of di�erent geometric structures can be understood via the de Rham
complex with coe�cients in a representation. This includes locally conformal symplec-
tic structures and contact bundles, which we discuss at a later stage of this chapter.
The de Rham complex of a Lie algbroid with coe�cients in a line bundle is a modi�ca-
tion of the usual de Rham complex of a Lie algebroid. In classical di�erential geometry,
the de Rham complex structure on Γ∞(Λ•A∗) is equivalent to have a Gerstenhaber-like
structure on Γ∞(Λ•A), i.e. a bracket

[−,−] : Γ∞(Λ•A)× Γ∞(Λ•A)→ Γ∞(Λ•+•−1A)

which ful�lls for homogeneous elements ai with degree |ai|:

i.) [a1, a2] = −(−1)(|a1|−1)(|a2|−1)[a2, a1]

ii.) [a1, a2 ∧ a3] = [a1, a2] ∧ a3 + (−1)(|a1|−1)|a2|a2 ∧ [a1, a3]

iii.) [a1, [a2, a3]] = [[a1, a2], a3] + (−1)(|a1|−1)(|a2|−1)[a2, [a1, a3]]

We want to follow now [43] and mimic this construction for the de Rham complex with
coe�cients in a line bundle. Let us now introduce the notion of a Gerstenhaber-Jacobi
algebra and see that our case �ts into this framework.

De�nition 1.1.13 ( [43, Def. 1.9] ) A Gerstenhaber-Jacobi algebra is given by a
graded commutative unital algebra A and a graded A -module L together with a graded
Lie bracket [−,−] : L ×L → L and an action by derivations, λ 7→ Xλ of L on A ,
such that

[λ, aµ] = Xλ(a)µ+ (−1)|λ||a|a[λ, µ]

for homogeneous a ∈ A and λ, µ ∈ L .

17
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Our case is a special case of a Gerstenhaber-Jacobi algebra. Let us from now on
denote AL := A⊗ L∗ for a Lie alebroid A and a line bundle L.

Lemma 1.1.14 ( [23, Thm. 5] ) Let L→ M be a line bundle and let A→ M be a
Lie algebroid with a representation ∇ : A → DL. Then there is a graded Lie bracket
[−,−](A,L) on Γ∞(Λ•AL ⊗ L) uniquely determined by

i.) [λ, µ](A,L) = 0 for λ, µ ∈ Γ∞(L)

ii.) [�, λ](A,L) = ∇�λ for λ ∈ Γ∞(L) and � ∈ Γ∞(A) = Γ∞(A⊗ L∗ ⊗ L)

iii.) [∆,�](A,L) = [∆,�] for ∆,� ∈ Γ∞(A)

Moreover, the pair Γ∞(Λ•AL) and Γ∞(Λ•AL⊗L) forms a Gerstenhaber-Jacobi algebra.

For our purposes, we shall mention the case of the tautological representation from
Example 1.1.7. In this case, using DLL = DL⊗ L∗ = (J1L)∗, we get a Gerstenhaber-
Jacobi structure on

Γ∞(Λ•(J1L)∗ ⊗ L),

where we will denote the Gerstenhaber-Jacobi bracket simply by [[−,−]]L. This is the
Gerstenhaber-Jacobi algebra of �rst order multidi�erential operators and [[−,−]]L is
given by the usual Gerstenhaber formula.

1.2 Jacobi Related Geometries

The framework for generalized geometry in odd dimensions is the so-called omni-Lie
algebroid of a line bundle L→M and a speci�c type of subbundles of them, so-called
Dirac-Jacobi bundles.

They were introduced in [46] by Vitagliano and are a slight generalization of Wade's
E1(M)-Dirac structures (see [49]). Moreover, these bundles are a straightforward Dirac
theoretic generalization of Jacobi bundles, as usual Dirac structures are for Poisson
manifolds. The aim of this section is to, �rst, de�ne the omni-Lie algebroid and
afterwards discuss Dirac-Jacobi bundles and their characteristic foliation.

1.2.1 The Omni-Lie Algebroid of a Line Bundle and its Automor-
phisms

The omni-Lie algebroid was �rst introduced in [14] in order to connect Dirac-like sub-
bundles to Lie algebroids. Our aim is a little bit di�erent, since we are interested in
the Dirac analogue in Jacobi geometry, which are not Lie algebroids. Nevertheless, we
adapt the notion of Chen and Liu from [14] and combine them with notions coming
from Dirac geometry. This sections follows exactly the same lines as [38].

De�nition 1.2.1 Let L → M be a line bundle and let H ∈ Ω3
L(M) be closed. The

vector bundle DL := DL⊕ J1L together with

18
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i.) the (Dorfman-like, H-twisted) bracket

[[(∆1, ψ1), (∆2, ψ2)]]H = ([∆1,∆2],L∆1ψ2 − ι∆2 dLψ1 + ι∆1ι∆2H)

ii.) the non-degenerate L-valued pairing

〈〈(∆1, ψ1), (∆2, ψ2)〉〉 := ψ1(∆2) + ψ2(∆1)

iii.) the canonical projection prD : DL→ DL

is called the H-twisted omni-Lie algebroid of L→M .

We collect now some of the main properties of the de�ning structures of the Courant-
Jacobi algebroid.

Lemma 1.2.2 Let L→M be a line bundle and let H ∈ Ω3
L(M) be closed. Then

i.) 〈〈−,−〉〉 is an L-valued bilinear form of split signature (dim(M) + 1,dim(M) + 1)

ii.) prD[[(∆1, ψ1), (∆2, ψ2)]]H = [∆1,∆2] for (∆i, ψi) ∈ Γ∞(DL)

Proof: These are straightforward computations using the very de�nitions of 〈〈−,−〉〉
and [[−,−]]. XΞΣ

Remark 1.2.3 If H = 0, we will refer to (DL, [[−,−]], 〈〈−,−〉〉) as the omni-Lie alge-
broid.

Remark 1.2.4 Identifying J1L = (DL)∗ ⊗ L, we can see the omni-Lie algebroid as a
special case of

A⊕ (A∗ ⊗ L)

for a Lie algebroid A and a representation ∇ : A→ DL and the obvious adaptions of its
Cartan calculus. In a later stage, we will discuss also the case A = TM , nevertheless
we prefer not to discuss these objects in general, since we are not going to use it in its
full generality.

Let us now discuss (auto-)morphisms of the omni-Lie algebroid.

De�nition 1.2.5 Let L → M be a line bundle and let H ∈ Ω3
L(M) be closed. A pair

(F,Φ) ∈ Aut(DL)× Aut(L) is called a (H-twisted) Courant-Jacobi automorphism, if

i.) DΦ: prD = prD ◦ F

ii.) Φ∗〈〈−,−〉〉 = 〈〈F−, F−〉〉

iii.) F ∗[[−,−]]H = [[F ∗−, F ∗−]]H

The group of H-twisted Courant-Jacobi automorphism is denoted by AutHCJ(L).
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It is easy to see that an automorphism Φ ∈ Aut(L) de�nes an automorphism of the
omni-Lie algebroid by

DΦ: DL 3 (∆, α) 7→ (DΦ(∆), (DΦ−1)∗α) ∈ DL.

This might fail for the H-twisted omni-Lie algebroid for an arbitrary H. In fact the it
is an H-twisted Courant-Jacobi automorphism if and only if Φ∗H = H.

The 2-form B ∈ Ω2
L(M) de�nes the map

exp(B) : DL 3 (∆, α) 7→ (∆, α+ ι∆B) ∈ DL,

which also ful�lls conditions i.) and ii.) in De�nition 1.2.5 and ful�lls condition iii.) if
and only if dLB = 0. In this case, we refer to B as a B-�eld.

The semi-direct product of these special kind of automorphisms span all the Courant-
Jacobi automorphism group:

Lemma 1.2.6 Let L→M be a line bundle and let H ∈ Ω3
L(M) be closed. Then

IH : Z2
L(M)o Aut(L) 3 (B,Φ) 7→ (exp(B + ι1(H − Φ∗H)) ◦ DΦ,Φ) ∈ AutHCJ(L)

is an ismorphism of groups.

Proof: The proofs are a straightforward veri�cation using the dei�ntion of Courant-
Jacobi automorphism. Moreover, it can be found in [41]. XΞΣ

Let us now focus on in�nitesimal automorphisms of the omni-Lie algebroid.

De�nition 1.2.7 Let L → M be line bundle and let H ∈ Ω3
L(M) be closed. A pair

(D,∆) ∈ Γ∞(DDL)×Γ∞(DL) is called in�nitesimal (H-twisted) Courant-Jacobi auto-
morphism, if

i.) [∆, prD(ε)] = prD(D(ε))

ii.) ∆〈〈ε, χ〉〉 = 〈〈D(ε), ξ〉〉+ 〈〈ε,D(χ)〉〉

iii.) D([[ε, χ]]H) = [[D(ε), χ]]H + [[ε,D(χ)]]H

for all ε, χ ∈ Γ∞(DL). The Lie algebra of in�nitesimal (H-twisted) Courant-Jacobi
automorphisms is denoted by autHCJ(L).

It is not very surprising that we can also �nd here an easy description of them.

Lemma 1.2.8 Let L → M be line bundle and let H ∈ Ω3
L(M) be closed. Then the

map

iH : Z2
L(M)o Γ∞(DL)→ autHCJ(L)

with

(B,∆)→ ((�, β) 7→ ([∆,�],L∆β + ι�(B −L∆ι1H)))

is an isomorphism of Lie algebras.
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Proof: Similarly to Lemma 1.2.6, the proof can be found in [41]. XΞΣ

If (∆, α) ∈ Γ∞(DL) then we see that the map [[(∆, α),−]]H is an in�nitesimal (H-
twisted) Courant-Jacobi automorphism. Applying the inverse of the isomorphism from
Lemma 1.2.9 to this element, we �nd

iH(dL(ι∆ι1H − α),∆) = [[(∆, α),−]]H

The term "in�nitesimal automorphisms" suggests that they integrate to automor-
phisms. In fact we can compute the �ow of an in�nitesimal automorphism fairly
explicit which is discussed in the following

Lemma 1.2.9 Let L→M be line bundle and let H ∈ Ω3
L(M) be closed. Let addition-

ally (α,∆) ∈ Z2
L(M)o Γ∞(DL). The �ow of iH(B,∆) is given by

IH(γt,Φ
∆
t ) = IH

(
−
∫ t

0
(Φ∆
−τ )∗B dτ,Φ∆

t

)
= exp

(
−
∫ t

0
(Φ∆
−τ )∗(B) dτ + ι1(H − (Φ∆

t )∗H)

)
◦ DΦ∆

t .

Proof: The proof of this Lemma is an obvious adaption of the corresponding state-
ment for Courant automorphisms in [12] or equivalently an easy computation just by
deriving both sides of the equation by t. XΞΣ

Corollary 1.2.10 Let L → M be a line bundle and let H ∈ Ω3
L(M) be closed. For

every (∆, α) ∈ Γ∞(DL) the �ow of [[(∆, α),−]]H is given by

exp

(∫ t

0
(Φ∆
−τ )∗(dLα+ ι∆H) dτ

)
◦ DΦ∆

t .

1.2.2 Dirac-Jacobi bundles and their characteristic Foliation

Let us now discuss the subbundles of the omni-Lie algebroid we are interested in: the
so-called Dirac-Jacobi bundles. They are, roughly speaking, Dirac-like subbundles of
the omni-Lie algebroid and they were also introduced in [14]. The �rst time Dirac-
like structures appeared in order to model the Dirac analogue in Jacobi geometry was
in [49], which were called E1(M)-Dirac structures. Note that these bundles are special
cases of the Dirac-Jacobi bundles we will de�ne, if the line bundle of the omni-Lie
algebroid is trivial.

Dirac-Jacobi Bundles

De�nition 1.2.11 Let L → M be a line bundle and let H ∈ Ω3
L(M) be closed. A

subbundle L ⊆ DL is called a (H-twisted) Dirac-Jacobi structure, if

i.) L is involutive with respect to [[−,−]]H ,
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ii.) L is maximally isotropic with respect to 〈〈−,−〉〉.

Moreover, if H = 0, we will call L simply Dirac-Jacobi structure.

Remark 1.2.12 We call a line bundle equipped with a Dirac-Jacobi structure simply
Dirac-Jacobi bundle.

The isotropy condition in the de�nition of Dirac-Jacobi structures makes sense, be-
cause the pairing 〈〈−,−〉〉 has split signature. Moreover, the involutivity of a maximally
isotropic subbundle L is equivalent to the vanishing of the tensor �eld

NL : Λ3L → L,

which is de�ned by

NL(X,Y, Z) = 〈X, [[Y, Z]]H〉. (1.2.1)

Example 1.2.13 Let L→ M be a line bundle and ω ∈ Ω2
L(M) be an Atiyah 2-form.

Then Lω := {(∆, ι∆ω) ∈ DL | ∆ ∈ DL} is a maximally isotropic subbundle, which is
involutive if and only if dLω = 0. Moreover, a Dirac-Jacobi structure L is the graph of
a 2-form if and only if J1L ∩ L = {0}. We omit the proof of this statement here and
refer to the proof of the upcoming Lemma 1.2.35, which is in the same spirit.

Example 1.2.14 Let L → M be a line bundle and let K ⊆ DL be an involutive
subbundle, i.e. for all ∆,� ∈ Γ∞(K) the commutator [∆,�] is a section of K. The
subbundle

K ⊕Ann(K) ⊆ DL

for Ann(K) := {α ∈ J1L | α(K) = 0} is a Dirac-Jacobi structure.

We shall now focus on morphisms between Dirac-Jacobi bundles. As in the Dirac
case there are two di�erent kinds

De�nition 1.2.15 Let Li → Mi be line bundles for i = 1, 2 and let Li ∈ DLi be
Hi-twisted Dirac-Jacobi bundles. A regular line bundle morphism Φ: L1 → L2 is called

i.) a forward Dirac-Jacobi map, if

FΦ(L1) := {(DΦ(∆), ψ) ∈ DL2 | (∆, DΦ∗ψ) ∈ L1} = L2

∣∣
φ(M1)

and H1 = Φ∗H2.

ii.) a backward Dirac-Jacobi map, if

BΦ(L2) := {(∆, DΦ∗ψ) ∈ DL1 | (DΦ(∆), ψ) ∈ L2} = L1

and H1 = Φ∗H2.
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It is worth mentioning that with both morphisms Dirac-Jacobi bundels become a cat-
egory. The morphisms which are more interesting for us are the backward maps. So
let us discuss them in some detail. For a regular line bundle morphism Φ: L1 → L2

(Li → Mi) and a H2-twisted Dirac-Jacobi structure L2 ⊆ DL2 the family of vector
spaces, one may de�ne

L1 := BΦ(L2).

If L1 is a ΦH
1 -twisted Dirac-Jacobi structure, then Φ is clearly a backwards map. But

L1 is not necessarily a Driac-Jacobi structure:

Lemma 1.2.16 Let Li → Mi be line bundles for i = 1, 2 and let L ∈ DL2 be an H-
twisted Dirac-Jacobi structure. Then the family of vector spaces BΦ(L) is maximally
isotropic and if it is a subbundle, then it is a Φ∗H-twisted Dirac-Jacobi structure.

Proof: The isotropy is a pointwise condition and is ful�lled, which can be seen by an
elementary computation. The proof of the involutivity follows the same lines as the
proof in the Dirac case (see e.g. [11, Section 5.2.1]). XΞΣ

From now on we will refer to BΦ(L) as the backward transform of the Dirac-Jacobi
structure L. Let us examine under which circumstances the backward transform of a
Dirac-Jacobi bundle is a subbundle. A very useful tool is the following

Theorem 1.2.17 [46, Prop. 8.4] Let Φ: L1 → L2 be a regular line bundle morphism
over φ : M1 → M2 and let L ∈ DL2 be a Dirac-Jacobi bundle. If kerDΦ∗ ∩ φ∗L has
constant rank, then BΦ(L) is a Dirac-Jacobi bundle.

Let us deduce a very useful corollary from this theorem

Corollary 1.2.18 Let (L→M,L) be a Dirac-Jacobi bundle and let Φ: LN → L be a
regular line bundle morphism covering a smooth map φ : N →M , such that

DΦ(DLN ) + prDL = DL
∣∣
φ(N)

.

Then BΦ(L) ⊆ DLN is a Dirac-Jacobi structure.

Proof: Let (n, (0, α)) ∈ kerDΦ∗∩φ∗L, thus (0, α) ∈ Lφ(n) and α(imDΦ) = 0. Using
L∩ J1L = Ann(prDL), which is a consequence of L being maximally isotropic, we see
that α(im(DΦ) + prDL) = 0 . By the condition

DΦ(DLN ) + prDL = DL
∣∣
φ(N)

we conclude α = 0 and hence kerDΦ∗ ∩ φ∗L = {0}. By Thereom 1.2.17 the claim
follows. XΞΣ
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Remark 1.2.19 For a Dirac-Jacobi bundle (L → M,L) and a regular line bundle
morphism Φ: LN → L covering a smooth map φ : M → N , such that

DΦ(DLN ) + prDL = DL
∣∣
φ(N)

,

we will say Φ is transversal to L. If N ↪→ M is a submanifold, we say that N is a
transversal.

Corollary 1.2.18 implies for example that the backwards transform for a submersion
is always a Dirac-Jacobi structure. Note that we have in special cases that backward
and forward transforms are inverse to each other, which will be useful throughout this
thesis.

Corollary 1.2.20 Let Li →Mi be line bundles for i = 1, 2, let L2 ⊆ DL2 be a Dirac-
Jacobi bundle and let Φ: L1 → L2 be a regular line bundle morphism. If Φ covers a
surjective submersion, then

FΦ(BΦ(L2)) = L2

Let us now discuss the relation of a Courant-Jacobi automorphims of the form

DΦ: DL→ DL

to backward transforms. For a Dirac-Jacobi structure L ⊆ DL, we obtain that

DΦ(L) = BΦ−1(L)

which is a Dirac-Jacobi structure again. Moreover, given a closed 2-form B ∈ Ω2
L(M),

we get that

LB := exp(B)L

is again a Dirac-Jacobi structure, which can be shown by an easy computation.

The characteristic Foliation of a Dirac-Jacobi Bundle

For a Dirac-Jacobi structure L ⊆ DL on L→M , we de�ne

KL = σ(prD(L)) ⊆ TM.

Since both maps, σ : DL → TM and prD : L → DL, are Lie algebroid maps, we see
that KL is a singular involutive distribution.

Lemma 1.2.21 ( [46, Chapt. 5] ) Let L → M be a line bundle and let L ⊆ DL be
a Dirac-Jacobi structure. Then the singular involutive distribution DL is integrable in
the sense of Stefan-Sussmann.
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Proof: It is easy to show that σ ◦ prD turns L into a Lie algebroid. But the charac-
teristic distribution of a Lie algebroid is always integrable, see e.g. [19]. XΞΣ

The leaves of KL assemble what will be referred to as the characteristic foliation
of L.

For a give leaf S ↪→M of the foliation of a Dirac-Jacobi structure L, we de�ne the
pull-back line bundle LS → S via the diagram

LS L

S M

I

.

The map I : LS → L is clearly a regular line bundle morphism, which allows us to
consider the backward transform of the Dirac-Jacobi structure L.

Lemma 1.2.22 Let L→M be a line bundle, let L ⊆ DL be a Dirac-Jacobi structure
and let ι : S ↪→ M be one of its leaves. Then the backwards transform BI(L) is a
subbundle and hence a Dirac-Jacobi structure.

Proof: We want to make use of Theorem 1.2.17. We have that the ker(DI∗) ⊆
Ann(im(DI)) ⊆ J1L and moreover, using the maximal isotropy of L, we get J1L∩L =
Ann(prD(L) and hence

ker(DI∗) ∩ L
∣∣
S

= Ann(im(DI)) ∩Ann(prD(LS)) = Ann(im(DI) + prD(L
∣∣
S

)).

But since S is a leaf, we have that σ(prD(L
∣∣
N

)) = Tι(TS) and thus prD(L
∣∣
N

) ⊆
im(DI). Therefore, we have

ker(DI∗) ∩ L
∣∣
S

= Ann(im(DI))

and the intersection has constant rank. XΞΣ

Since the symbol map has a one dimensional kernel, we can distinguish two kinds of
leaves:

De�nition 1.2.23 Let L → M be a line bundle, let L ⊆ DL be a Dirac-Jacobi struc-
ture and ι : S ↪→M be a leaf. Then S is said to be

i.) pre-contact, if rank(prD(BI(L))) = dim(S) + 1.

ii.) locally conformal pre-symplectic, if rank(prD(BI(L))) = dim(S).

Note that this distinction is the �rst and probably the most signi�cant conceptual
di�erence between Dirac-Jacobi structures and classical Dirac structures. Before we
explain the names of the di�erent leaves, we want to ensure that this de�nition makes
sense at all, i.e. if prD(BI(L)) is constant along the leaves. Let us choose a point
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s0 ∈ S and an arbitrary vector �eld X ∈ Γ∞(TS). Since S is a leaf, we have that
σ(prD(L)

∣∣
S

) = TS and hence there is a section (∆, α) ∈ Γ∞(L) such that σ(∆)
∣∣
S

= X.

Moreover, since (∆, α) is a section of L, its �ow exp(γt) ◦ DΦ∆
t preserves L, but this

means

prD(LφXt (s0)) = prD(exp(γt)(DΦ∆
t (L

∣∣
s0

))) = DΦ∆
t (prDL

∣∣
s0

),

where we denote by φXt the �ow of X. Since Φ∆
t is an automorphism also DΦ∆

t is.
Thus the rank of prDL

∣∣
s0
gets preserved along the �owlines of X, but X was arbitrary

and the claim follows by the connectedness of S.

Remark 1.2.24 For a Dirac-Jacobi bundle (L→M,L), we can distinguish two kinds
of points:

i.) p ∈M is called pre-contact point, if 1p ∈ prD(L).

ii.) p ∈M is called locally conformal pre-symplectic point, if 1p /∈ prD(L).

Moreover, every point in M is either pre-contact or locally conformal pre-symplectic.

In Dirac geometry the leaves have an induced pre- symplectic form, which is induced
via the backward transform of the Dirac structure via the inclusion. In the case of Dirac-
Jacobi bundles it is a bit di�erent, since they admit two di�erent kind of leaves which
have di�erent induced structures. Let us start with pre-contact leaves, which are very
similar to pre-symplectic leaves in Dirac geometry.

Lemma 1.2.25 Let L → M be a line bundle and let L ⊆ DL be an H-twisted Dirac
structure, such that prD(L) = DL. Then there exists a unique 2-form ω ∈ Ω2

L(M),
such that

L = {(∆, ι∆ω) ∈ DL | ∆ ∈ DL}

and dLω = H.

Proof: We only prove the existence of such an ω, since dLω = H follows by involutiv-
ity. Since we have rank(L) = rank(DL) = dim(M) + 1, we see that prD

∣∣
L : L → DL is

an isomorphism, hence there exists a unique inverse τ : DL → L. We de�ne the map
J : DL→ J1L by

J = prJ1L ◦ τ.

Note that this means τ(∆) = (∆, J(∆)), since for ∆1,∆2 ∈ DL, we have, using the
isotropy,

0 = 〈(∆1, J(∆1)), (∆2, J(∆2))〉 = J(∆1)(∆2) + J(∆2)(∆1)

and hence

ω(∆1,∆2) := J(∆1)(∆2)

is a well-de�ned Atiyah 2-form and the claim follows. XΞΣ
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We can apply Lemma 1.2.25 directly to the case of pre-contact leaves, since (by
their very de�nition) they are equipped with Dirac-Jacobi structures of this kind. We
will call the corresponding 2-form a pre-contact form and we will see later why. Let
us now turn to locally conformal pre-symplectic leaves. The following lemma can be
found in [46] for H = 0.

Lemma 1.2.26 Let L → M be a line bundle and let L ⊆ DL be an H-twisted Dirac
structure, such that σ : prD(L)→ TM is an isomorphism. Then there exists a canonical
�at connection ∇ : TM → DL and a L-valued 2-form ω ∈ Γ∞(Λ2TM ⊗ L), such that

L = {∇X , (ιXω) ◦ σ + α ∈ DL | X ∈ TM and α ∈ Ann(im(∇))}

and d∇ω(X1, X2, X3) = H(∇X1 ,∇X2 ,∇X3) for all Xi ∈ TM .

Proof: As in Lemma 1.2.25, we just prove the existence of ω and the additional
properties follow immediately from the maximal isotropy and the involutivity. Since
σ
∣∣
prD(L)

: prD(L)→ TM is an isomorphism, it has an inverse ∇ : TM → prD(L) ⊆ DL.
This is in fact a connection by de�nition, we just have to show that it is �at. Let
X,Y ∈ Γ∞(TM), then we consider ∇X ,∇Y ,∇[X,Y ] ∈ Γ∞(prD(L)). We have, since σ
inverts∇,

σ(∇[X,Y ]) = [X,Y ] = [σ(∇X), σ(∇Y )] = σ([∇X ,∇Y ]).

Using that Γ∞(prD(L)) is closed under the commutator, we can conclude that ∇ is
�at. We claim now that for each X ∈ TM there is a unique J(X) ∈ J1L such that
(∇X , J(X)) ∈ L and J(X)(1) = 0. First we recall that a connection always induces a
splitting DL = im(∇)⊕ 〈1〉. Let us de�ne the element 1∗ ∈ Γ∞((DL)∗) by

1
∗(1) = 1 and 1∗(im(∇)) = 0.

We consider X ∈ TM and choose a ψ ∈ J1L such that (∇X , ψ) ∈ L. It is easy to see,
using the maximal isotropy of L, that (0,1∗ ⊗ ψ(1)) ∈ L, which means that

(∇X , ψ − 1∗ ⊗ ψ(1)) ∈ L.

It is easy to see that J(X) := ψ − 1∗ ⊗ ψ(1) is independent of the choice of ψ and
hence unique, moreover it vanishes clearly on 1. We can prove, using isotropy again,
that J(X)(∇Y ) = −J(Y )(∇X). De�ning ω ∈ Γ∞(Λ2T ∗M ⊗ L) by

ω(X,Y ) = J(X)(∇Y ),

the claim follows. XΞΣ

A locally conformal pre-symplectic leaf is clearly equipped with one of these Dirac-
Jacbobi structures and hence in the form of Lemma 1.2.26. Let us summarize the
previous results and discussions in the following
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Corollary 1.2.27 Let L→M be line bundle, let L ⊆ DL be a H-twisted Dirac-Jacobi
bundle and let ι : S ↪→M be a leaf of its characteristic foliation. If S is a

i.) pre-contact leaf, then there exists a unique ω ∈ Ω2
LS

(S), such that

BI(L) = {(∆, ι∆ω) ∈ DLS | ∆ ∈ DLS}

and dLSω = Φ∗H.

ii.) locally conformal pre-symplectic leaf, then there exists a �at connection ∇ : TS →
DLS and a unique LS-valued 2-form ω ∈ Γ∞(Λ2TS ⊗ LS), such that

BI(L) = {∇X , σ∗(ιXω) + α ∈ DLS | X ∈ TS and α ∈ Ann(im(∇))}

and d∇ω(X1, X2, X3) = I∗H(∇X1 ,∇X2 ,∇X3).

Remark 1.2.28 For a Dirac-Jacobi bundle (L→ M,L) the manifold M is a disjoint
union of two sets: the set of pre-contact points, i.e. points which are contained in
a pre-contact leaf, and the set of locally conformal presymplectic points, i.e. points
which are contained in a locally conformal presymplectic leaf.

The locally conformal pre-symplectic leaves di�er from the pre-contact leaves a
lot. Let us introduce a notion, or generalization, of Dirac structures where they �t
in and behave similarly to pre-contact leaves. Consider a line bundle L → M , a �at
connection ∇ : TM → DL and a d∇-closed 3-form H. With this we can consider
TLM := TM ⊕ (T ∗M ⊗ L) and equip it, similarly as the omni-Lie algebroid, with:

i.) the non-degenerate L-valued pairing 〈〈(X,α), (Y, β)〉〉 = α(X) + β(Y )

ii.) the map prT : TLM → TM

iii.) the bracket [[(X,α), (Y, β)]]H = ([X,Y ],L∇
X β − ιY d∇α) + ιXιYH)

Similarly to Dirac-Jacobi bundles, we can de�ne

De�nition 1.2.29 Let L → M be a line bundle and let ∇ : TM → DL be a �at
connection. A subbundle D ⊆ TLM is said to be a H-twisted locally conformal Dirac
structure, if D

i.) is involutive with respect to [[−,−]]H

ii.) is maximally isotropic with respect to 〈〈−,−〉〉

Example 1.2.30 Let L → M be a line bundle, ∇ : TM → DL be a �at connection,
H ∈ Γ∞(Λ3TM ⊗L) be a d∇-closed and let ω be L-valued 2-form such that d∇ω = H.
Then

Dω = {(X, ιXω) ∈ TLM | X ∈ TM}

is an H-twisted locally conformal Dirac structure.
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Out of a H-twisted locally conformal Dirac structure D on (TLCM,∇) we can cook
up a K-twisted Dirac-Jacobi structure if H is exact with primitive α and K := dLσ

∗α
by

LD = {(∇X , σ∗α+ β) ∈ DL | (X,α) ∈ D, β ∈ Ann(im(∇))}. (1.2.2)

In fact, it is easy to check that LD is a K-twisted Dirac-Jacobi structure. We get
immediatly

Lemma 1.2.31 Let L→M be a line bundle and let ∇ : TM → DL be a �at connec-
tion. If L ⊆ DL is a Dirac-Jacobi structure such that prDL ⊆ im(∇), then

L = LD

for a unique locally conformal Dirac-Jacobi structure D ⊆ TLM .

1.2.3 Jacobi Brackets and Contact Structures

In this section we want to discuss a certain kind of Dirac-Jacobi bundles, the so-called
Jacobi bundles. They play the same role as Poisson manifolds in Dirac geometry and
have been introduced �rst by Kirillov as a special kind of local Lie algebra, see [28].They
are also called Kirillov manifolds in the literature, see for instance [10]. Afterwards
we put Jacobi structures in the framework of Dirac-Jacobi geometry and discuss their
characteristic foliation. As a last part, we will discuss contact geometry in the Jacobi
framework. This is very similar to the study of symplectic structures in the Poisson
setting. At this moment it is worth mentioning that, historically speaking, Jacobi
structures where introduced earlier than Dirac-Jacobi structures and hence our proofs
in this section, which usually use Dirac-Jacobi techniques, are non-standard. Never-
theless, most of the results which just concern Jacobi structures can already be found
in [28]. For the results which concerns the interaction of Dirac-Jacobi structures and
Jacobi bracket we refer to [46].

De�nition 1.2.32 Let L→M be a line bundle. A Jacobi bracket on L is a R-bilinear
operation
{−,−} : Γ∞(L)× Γ∞(L)→ Γ∞(L), such that

i.) {−,−} : Γ∞(L)× Γ∞(L)→ Γ∞(L) is a Lie bracket

ii.) {λ,−} : Γ∞(L)→ Γ∞(L) is a section of DL for all λ ∈ Γ∞(L)

For two Jacobi brackets {−,−}i on Li →Mi for i = 1, 2, we call a regular line bundle
morphism Φ: L1 → L2 a Jacobi map, if

Φ∗{λ, µ}2 = {Φ∗λ,Φ∗µ}1.

Remark 1.2.33 We use the words Jacobi bracket and Jacobi structure synonymously.
Moreover, a Jacobi bundle is a pair consisting of a line bundle and a Jacobi bracket on
its sections.
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For a Jacobi bracket {−,−}, we can de�ne the bundle map

J ] : J1L 3 j1
pλ 7→ {λ,−}p ∈ DL.

Of course, we have to show that this map is well de�ned, i.e. if there are λ1, λ2 ∈ Γ∞(L),
such that j1

pλ1 = j1
pλ2, then J

](j1
pλ1) = J ](j1

pλ2). But this follows immediatly, since
{−,−} is a derivation in both slots. We refer to the tensor J as the Jacobi tensor.
Note that not every section of Γ∞(Λ2(J1L)∗ ⊗ L) induces a Jacobi bracket by

{λ, µ} := J(j1λ, j1µ),

in fact axiom (ii) of De�nition 1.2.32 is always ful�lled, while the de�ned bracket
needs not to be a Lie bracket, since the Jacobi identity might fail to hold in general.
Using the de�nition of the Gerstenhaber-Jacobi bracket [[−,−]]L : Γ∞(Λi(J1L)∗⊗L)×
Γ∞(Λj(J1L)∗⊗L)→ Γ∞(Λi+j−1(J1L)∗⊗L) from Subsection 1.1.3, the Jacobi identity
is equivalent to

[[J, J ]]L = 0.

Nevertheless, we want to go in another direction: having a tensor �eld J ∈ Γ∞(Λ2(J1L)∗⊗
L), we can de�ne

LJ := {(J ](ψ), ψ) ∈ DL | ψ ∈ J1L}, (1.2.3)

which is always a maximally isotropic subbundle.

Lemma 1.2.34 Let L → M be a line bundle and let J ∈ Γ∞(Λ2(J1L)∗ ⊗ L). Then
LJ is involutive if and only if the bracket {−,−} : Γ∞(L) × Γ∞(L) → Γ∞(L) de�ned
by

{λ, µ} = J(j1λ, j1µ)

is a Jacobi bracket.

Proof: Note that from the above discussion it is clear that the only thing to show for
the bracket to be Jacobi is the Jacobi identity. We know that involutivity is equivalent
to the vanishing of the tensor �eld de�ned in (1.2.1). Let us compute

NLJ

(
(J ](j1λ),j1λ), (J ](j1µ), j1µ), (J ](j1ν), j1ν)

)
=

= 〈(J ](j1λ), j1λ), [[(J ](j1µ), j1µ), (J ](j1ν), j1ν)]]〉
= 〈(J ](j1λ), j1λ), ([J ](j1µ), J ](j1ν)],LJ](j1µ)j

1ν − ιJ](j1ν) dLj
1µ)〉

= 〈(J ](j1λ), j1λ), ([J ](j1µ), J ](j1ν)], j1ιJ](j1µ)j
1ν〉

= 〈(J ](j1λ), j1λ), ([J ](j1µ), J ](j1ν)], j1{µ, ν})〉
= j1λ([J ](j1µ), J ](j1ν)]) + j1{µ, ν}(J ](j1λ))
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= [J ](j1µ), J ](j1ν)](λ) + {λ, {µ, ν}}
= {µ, {ν, λ}} − {ν, {µ, λ}}+ {λ, {µ, ν}}

λ, µ, ν ∈ Γ∞(L). Since NLJ is a tensor �eld, it uniquely determined by values on
generators of Γ∞(LJ) such as (J ](j1λ), j1λ). XΞΣ

We can give an easy characterization of Dirac-Jacobi structures, that are induced
by a Jacobi tensor in the sense of 1.2.3.

Lemma 1.2.35 Let L → M be a line bundle and let L ⊆ DL be a Dirac-Jacobi
structure. Then L is induced by a Jacobi tensor in the sense of 1.2.3, if and only if

L ∩DL = {0}.

Proof: We just have to prove that a Dirac-Jacobi structure L ful�lling

L ∩DL = {0}.

is induced by a tensor �eld J ∈ Γ∞(Λ2(J1L)∗⊗L) since then J automatically a Jacobi
tensor by the previous lemma. We claim �rst that the map prJ1L

∣∣
L : DL → J1L is

bijective. Let (λ, ψ) ∈ ker prJ1L ∩ L, then ψ = 0, but by the hypothesis of the lemma
then also ∆ = 0 and hence prJ1L

∣∣
L : L → J1L is injective. By dimensional reasons it

is also bijectve and hence an ismorphism of vector bundles covering the identity. Let
us denote by τ : J1L → L its (smooth) inverse. As in the proof of Lemma 1.2.25, we
de�ne

J(ψ, χ) = χ(prDτ(ψ))

for ψ, χ ∈ J1L and the claim follows. XΞΣ

Now we want to encode also the morphisms of Jacobi structures in the language of
Dirac-Jacobi structures

Lemma 1.2.36 Let (Li →Mi, {−,−}i) be Jacobi bundles for i = 1, 2. A regular line
bundle map Φ: L1 → L2 is a Jacobi map if and only if it is a forward Dirac-Jacobi
map of the corresponding Dirac-Jacobi structures.

Proof: Let us denote by Ji the Jacobi tensors corresponding to the brackets {−,−}i
and let us choose an arbitrary section λ ∈ Γ∞(L2), then (J ]1(j1Φ∗λ), j1Φ∗λ) ∈ Γ∞(LJ1).
Assuming that Φ is a forward Dirac-Jacobi map, we have that

(DΦ(J ]1(j1
pΦ∗λ)), j1

φ(p)λ) ∈ LJ2 ,

which means that J ]2(j1
pλ) = DΦ(J ]1(j1

pΦ∗λ)). A short computation shows that this is
equivalent to Φ being a Jacobi map. XΞΣ
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Let us now focus on the characteristic foliation of a Jacobi structure. Since it is
a special kind of Dirac-Jacobi structure the de�nition is straight-forward, but in this
case the leaves have more structures. But before talking about the leaves give a

De�nition 1.2.37 Let (L → M, {−,−}) be a line bundle equipped with a Jacobi
bracket. The characteristic foliation of the corresponding Dirac-Jacobi structure is
called characteristic foliation of the Jacobi structure.

Lemma 1.2.38 Let (L→ M, {−,−}) be a Jacobi bundle and let ι : S ↪→ M be a leaf
of its characteristic foliation. Then for the Dirac-Jacobi structure LJ corresponding to
the Jacobi bracket

BI(LJ) ∩DLS = {0}

holds.

Proof: Let (∆, 0) ∈ BI(LJ), then there exists ψ ∈ J1L, such that DI(∆) = J ](ψ)
and DI∗ψ = 0. But since S is a leaf, we have that im(J ]) ⊆ im(DI), but this implies
for χ ∈ J1L that

χ(J ](ψ)) = −ψ(J ](χ))

which vanishes since ψ vanishes on the image of DI and thus J ](ψ) = 0 and �nally,
since DI is injective, ∆ = 0. XΞΣ

So on the leaves there are induced Jacobi structures, which is the mirror statement
to the one in Poisson geometry, but there the leaves have more structure than just
Poisson, they are symplectic. In our case we have two di�erent kind of leaves, which
carry two di�erent kinds of structures.

Lemma 1.2.39 Let (L→M, {−,−}) be a line bundle equipped with a Jacobi bracket,
let ι : S ↪→ M be a leaf of its characteristic foliation and let LJ be the corresponding
Dirac-Jacobi structure. If S is

i.) a pre-contact leaf, then there exists a unique ω ∈ Ω2
LS

(S), such that

BI(LJ) = {(∆, ι∆ω) ∈ DLS | ∆ ∈ DLS}

with dLω = 0 and ω is non-degenerate, i.e. ω[ : DL→ J1L is invertible.

ii.) a locally conformal pre-symplectic leaf, then there exists a �at connection ∇ : TS →
DLS and a unique LS-valued 2-form Ω ∈ Γ∞(Λ2T ∗S ⊗ LS), such that

BI(LJ) = {(∇X , σ∗(ιXΩ) + α) ∈ DLS | X ∈ TS and α ∈ Ann(im(∇))}

with d∇ω = 0 and ω is non-degenerate, i.e. ω[ : TM → T ∗M ⊗ L is invertible.
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Proof: First we note that, besides the non-degeneracy of the forms, everything is
proven already in Corollary 1.2.27. The proof of the non-degeneracy is in both cases
the same, so we just do it for pre-contact leaves. Assume that there is ∆ ∈ DLS , such
that ι∆ω = 0. Then we have

(∆, 0) = (∆, ι∆ω) ∈ BI(LJ)

using Lemma 1.2.38, we get that ∆ = 0 and the claim follows. XΞΣ

Corollary 1.2.40 Let L → M be a line bundle and let J : Γ∞(Λ2(J1L)∗ ⊗ L) be a
Jacobi tensor. Then its

i.) pre-contact leaves are odd dimensional.

ii.) locally conformal pre-symplectic leaves are even dimensional.

Proof: This follows immediately from the non-degeneracy of the induced 2-forms on
the leaves. XΞΣ

In fact the leaves carry very classical geometries, which we will recall now: contact
structures and locally conformal symplectic structures. This geometries are interesting
in themselves and are not just studied in the context of Jacobi manifolds. See for
example [16] for the contact case and for the locally conformal symplectic case we refer
to [45]. Let us recall both of these geometries. We start with contact structures:

Remark 1.2.41 (Contact Geometry) A contact structure on a manifold M is a
codimension one subbundle H ⊆ TM , such that for the projection Θ: TM → L :=
TM/H, the tensor �eld

C : H ×H → L,

which is de�ned on vector �elds X,Y ∈ Γ∞(H) by C(X,Y ) = Θ([X,Y ]), is non-
degenerate. (It is easy to check that C is indeed a tensor �eld). The condition that
C is non-degenerate is called maximal non-integrable, which makes sense since the
vanishing of C is equivalent to the integrability of H. Now we consider

ω = dLσ
∗Θ

where σ∗ is the pull-back with the symbol and we claim that ω is non-degenerate.
Indeed, let ∆ ∈ DL, such that ι∆ω = 0. By equation (1.1.5), we have that ι1ω = σ∗Θ
and hence 0 = ω(1, σ(∆)) = σ∗Θ(∆) and thus σ(∆) ∈ H. For two elements ∆,� ∈ DL
with σ(∆), σ(�) ∈ H, we have ω(∆,�) = C(σ(∆), σ(�)), therefore, using the non-
degeneracy of C, σ(∆) = 0. Thus ∆ = k1 for k ∈ R, but then 0 = ι∆ω = kσ∗Θ and
thus k = 0 and the claim follows. In fact, one can cook up, for a non-degenerate closed
two form ω ∈ Ω2

L(M), a contact structure H ⊆ TM by putting

H := σ(ker(ι1ω)).
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These two constructions are inverse to each other, so contact structures identify with
non-degenerate closed Atiyah 2-forms. From now on, we will use this identi�cation and
if we are considering contact structures onM , we always refer to a line bundle L→M
together with a non-degenerate closed 2-form ω ∈ Ω2

L(M).

We have seen that one kind of leaf of a Jacobi manifold has the structure of a
contact manifold, but according to Lemma 1.2.38 it carries a structure of a Jacobi
manifold. This is not a coincidence:

Lemma 1.2.42 Let (L→M,ω) be a contact manifold. Then J ∈ Γ∞(Λ2(J1L)∗⊗L),
which is de�ned via its sharp map by

J ] = (ω[)−1,

is a Jacobi tensor.

Proof: It is easy to see that the Dirac-Jacobi structure of J and ω coincide. Hence,
since the Dirac-Jacobi structure induced by ω is involutive, the one induced by J also
is. Using Lemma 1.2.34, we get the claim. XΞΣ

So it follows that Jacobi brackets generalize contact structure, the same way Pois-
son brackets generalize symplectic structures. Contact structures are themselves an
active �eld of research, since their application to (mathematical) physics are hard to
overestimate. For a later use we want to discuss at least one speci�c example of a
contact structure: the �rst jet of a line bundle.

Example 1.2.43 (Canonical Contact Structure) First, we would like to mention
that this is not the standard approach, i.e. using the Cartan distribution, to obtain the
closed Atiyah 2-form on the �rst jet bundle of a line bundle, instead we use techniques
from symplectic geometry. Let us consider a line bundle L→M and its pullback

π∗L L

J1L M

Π

π

together with the canonical λcan ∈ Γ∞(J1π∗L) de�ned by

λcan : Dπ∗L 3 ∆αp 7→ (αp, αp(DΠ(∆αp))) ∈ π∗L.

Note that this section has a similar universal property as the Liouville 1-form on the
cotangent bundle: given a ψ ∈ Γ∞(J1L), we can de�ne a canonical regular line bundle
morphism

Φψ : L 3 λp 7→ (ψ(p), λp) ∈ π∗L,

34



1.2. Jacobi Related Geometries

which ful�lls Π ◦ Φψ = id. Moreover, λcan has the universal property that for all
ψ ∈ Γ∞(J1L), we have

Φ∗ψλcan = ψ.

Moreover, interpreting λcan as a contact version of the Liouville 1-form it is not sur-
prising that

ωcan := −dp∗Lλcan ∈ Ω2
π∗L(J1L)

is a contact structure. Furthermore, an easy computation shows that it agrees with
the well-known contact structure on the �rst jet of a line bundle.

Let us now turn towards the locally conformal pre-symplectic leaves of a Jacobi
manifold. The structure on its leaves is given by a �at connection and a non-degenerate
line bundle valued 2-form which is closed with respect to the connection di�erential.
This structures are known as locally conformal symplectic structures, see e.g. [45]. Note
however, that this is not the standard approach to locally conformal contact structures.
They always induce a Jacobi structure:

Lemma 1.2.44 Let L → M be a line bundle and let (∇, ω) be a locally conformal
symplectic structure on L. Then

L := {(∇X , σ∗(ιXω) + α) ∈ DL | X ∈ TM and α ∈ Ann(im(∇X))}

is a Dirac-Jacobi structure which is induced by a Jacobi tensor.

Proof: The subbundle is obviously isotropic and rank(L) = dim(M) + 1 and hence
also maximal. The ivolutivity follows from the closedness of ω. Moreover, the non-
degeneracy of ω implies that

DL ∩ L = {0}. XΞΣ

At this point, we shall introduce the notion of locally conformal Poisson structures,
since they will come across this thesis several times. Roughly speaking they are the
Poisson version of locally conformal symplectic structures.

De�nition 1.2.45 Let L→M be a line bundle with a �at connection ∇ : TM → DL.
An element π ∈ Γ∞(Λ2(TM ⊗ L∗) ⊗ L) is said to be a locally conformal Poisson
structure, if

[[π, π]](TM,L) = 0.

Note that, by de�nition, a locally conformal symplectic structures ω ∈ Γ∞(Λ2T ∗M⊗
L) is non- degenerate and hence

ω[ : TM → T ∗M ⊗ L

is invertible and one can show that its inverse is sharp map of a locally conformal
Poisson tensor. As one may expect, a locally conformal Poisson structure also induces
a Jacobi bracket. Let us make this precise.
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Corollary 1.2.46 Let (L → M,∇) be a line bundle with a �at connection and let
π ∈ Γ∞(Λ2(TM ⊗ L∗)⊗ L) be a locally conformal Poisson tensor. Then

{λ, µ} := π(d∇λ, d∇µ)

for λ, µ ∈ Γ∞(L) de�nes a Jacobi bracket.

Proof: This is an easy computation, which is paralleling the computation in Pois-
son geometry, using the properties of the bracket [[−,−]](TM,L) and the fact that π
commutes with itself. XΞΣ

Now we want to translate locally conformal Poisson in (locally conformal) Dirac
language, as we did for Jacobi bundles. It is easy to show that

Dπ = {(π](α), α) ∈ TLM | α ∈ T ∗M ⊗ L}

is a maximally isotropic subbundle for an element π ∈ Γ∞(Λ2(TM⊗L∗)⊗L). Moreover,
it is involutive if and only if π is a locally conformal Poisson structure. So Dπ is a
locally conformal Dirac structure in the sense of De�nition 1.2.29. Furthermore, one
can show that the induced Dirac-Jacobi structure from Equation 1.2.2

LD = {(∇π](α), σ
∗α+ β) | α ∈ T ∗M ⊗ L, β ∈ Ann(im(∇))}

comes from a Jacobi bracket, which is exactly the one constructed in Corollary 1.2.46.

Remark 1.2.47 From now on we refer to the pre-contact leaves (resp. locally confor-
mal pre-symplectic leaves) as the contact leaves (respectively locally conformal sym-
plectic leaves) of a Jacobi bundle. Note that this justi�es also the name we gave the
leaves in the Dirac-Jacobi setting, in fact the names are inspired by the pre-symplectic
foliation in Dirac geometry, i.e. a pre-contact structure on a line bundle is a closed
Atiyah 2-form and a locally conformal pre-symplectic structure is a �at connection and
a closed (with respect to the connection) line bundle valued two form.

If L is the trivial line bundle, then the notion of Jacobi bracket boils down to that
of Jacobi pair, which was �rst introduced in [31].

Remark 1.2.48 (Trivial Line bundle) Let RM →M be the trivial line bundle and
let J be a Jacobi tensor on it. Note that from the discussion in Subsection 1.1.2, we
have DL ∼= TM ⊕ RM and

J1RM = (DRM )∗ ⊗ RM = T ∗M ⊕ RM .

With this splitting, we see that

J = Λ + 1 ∧ E

for some (Λ, E) ∈ Γ∞(Λ2TM ⊕TM) and the canonical section 1 = (0, 1) ∈ Γ∞(TM ⊕
RM ). The Jacobi identity is equivalent to [Λ,Λ] + E ∧ Λ = 0 and LEΛ = 0. The
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pair (Λ, E) is often referred to as Jacobi pair, see [31]. Moreover, if we denote by
1∗ ∈ Γ∞(J1RM ) the canonical section then we can write any ψ ∈ J1RM as ψ =
α+ r1∗ ∈ Γ∞(J1RM ), for some α ∈ T ∗M and r ∈ R. We obtain

J ](α+ r1∗) = Λ](α) + rE − α(E)1.

A change of the basis of the line bundle by a non-vanishing function f ∈ C∞(M),
seen as a line bundle automorphism by multiplication, induces a di�erent Jacobi pair
(Λf , Ef ) which is connected to the �rst one by (Λf , Ef ) = (fΛ, E − Λ](df)). In
the literature (see [17]) this is referred to as conformally equivalent Jacobi pairs. A
more detailed discussion about Jacobi structures on trivial line bundles can be found
in [43, Chapter 2].

1.2.4 Generalized Contact Bundles

Generalized contact bundles were introduced recently in [47], as a slight generalization
of generalized almost contact structures from Wade and Iglesias in [27], and so far very
little is known about them. They basically mimic the notion of generalized complex
structures, see [26], in the framework of Dirac-Jacobi bundles. They are moreover
deeply connected to generalized complex manifolds via the homogenezation, see [10]
or Appendix A.2. Additionally, they are modeled to be the analogue to generalized
complex structures in odd dimensions. Moreover, their characteristic foliation provides
submanifolds of generalized contact bundles, which are (local) generalized complex
manifolds.

De�nition 1.2.49 Let L→M be a line bundle. A subbundle L ⊆ DCL := DL⊗ C is
called generalized contact structure on L, if

i.) L is a (complex) Dirac-Jacobi structure and

ii.) L ∩ L = {0}.

A line bundle equipped with a generalized contact structure is called generalized contact
bundle.

Remark 1.2.50 In De�nition 1.2.49 all the structures of the omni-Lie algebroid are
extended C-linearly, in particular this holds for the non-degenerate pairing 〈〈−,−〉〉, so
it is not C-antilinear in one of its arguments.

Equivalently, generalized contact structures can be described by an endomorphism
of DL squaring to minus the identity, paralleling the generalized complex case.

Lemma 1.2.51 Let (L → M,L) be a generalized contact bundle, then it is the +i-
eigenbundle of a unique endmorphism K : DL→ DL, ful�lling

i.) K2 = − id
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ii.) 〈〈K−,K−〉〉 = 〈〈−,−〉〉

iii.) 0 = NK(A,B) := [[KA,KB]] − K[[KA,B]] − K[[A,KB]] − [[A,B]] for all A,B ∈
Γ∞(DL)

Conversely, the +i-Eigenbundle of an endomorphism ful�lling i.)-iii.) is a generalized
contact bundle.

Proof: Given a generalized contact structure, we de�ne

K
∣∣
L = i · id and K

∣∣
L = −i · id .

Note that this de�nition implies immediately that K = K and hence that K is a com-
plexi�cation of a real endomorphism. The claim follows immediately by the isotropy
and involutivity. XΞΣ

Remark 1.2.52 If we use a local trivialization of the line bundle L → M around a
point p, we can identify V := DpL ∼= TpM ⊕ R, V ∗ := J1L ∼= T ∗pM ⊕ R and Kp as
an endomorphism End(V ⊕ V ∗). We see that K ful�lls all the axioms of being a linear
generalized complex structure in the sense of [26, Section 1]. This means in particular,
that V is even dimensional and hence M is odd dimensional.

From now on, we will refer frequently to the endomorphism as the generalized
contact structure, if we need to. The endomorphism K splits canonically according to
the splitting of DL = DL⊕ J1L and its components have interesting properties.

Lemma 1.2.53 Let L → M be a line bundle and let K ∈ End(DL) be a generalized
contact structure. Then

K =

(
φ J ]

α[ −φ∗

)

for an endomorphism φ ∈ End(DL), a tensor �eld J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) and an
Atiyah 2-form α ∈ ΩL(M), where φ∗ ∈ End(J1L) is the adjoint of φ with respect to the
L-valued pairing of J1L and DL. Moreover, the tensor �eld J is a Jacobi tensor.

Proof: Note that this proof originally appeared in [47] and is identical to the analo-
gous statement in generalized complex geometry. The only things to prove for the �rst
statement are that the o�-diagonal maps are skew-symmetric and that the diagonal
maps are adjoint to each other, but both facts follow from condition ii.) from Lemma
1.2.51. Let us now prove that J is a Jacobi tensor. To do so we exploit the equation
0 = NK((0, j1λ), (0, j1µ)) for λ, µ ∈ Γ∞(L), which reads

0 = NI((0, j1λ), (0, j1µ))

=
(
[J ](j1λ), J ](j1µ)]− J ](LJ](j1λ)j

1µ), ψ
)
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=
(
[J ](j1λ), J ](j1µ)]− J ](j1J(j1λ, j1µ)), ψ

)
where ψ is the element such that the above equality holds (we are just interested in the
DL-component of the above element). Let us apply the identity [J ](j1λ), J ](j1µ)] =
J ](j1J(j1λ, j1µ)) to a third ν ∈ Γ∞(L) as in the following:

{λ{µ, ν}} − {µ, {λ, ν}} = [J ](j1λ), J ](j1µ)](ν)

= J ](j1J(j1λ, j1µ))(ν)

= J ](j1{λ, µ})(ν)

= {{λ, µ}, ν}. XΞΣ

This means, roughly speaking, that a generalized contact structure always induces a
Jacobi bracket. The question of when a Jacobi structure induces a generalized contact
structure is in turn very hard to answer, but partial results can be found in Chapter 4
Before we go on, let us comment on the previous Lemma in order to avoid confusion.

Remark 1.2.54 The components of the endomorphism K ful�ll many more algebraic
and di�erential compatibilities, but for us at this moment this is not particularly in-
teresting. The complete list of relations of φ, J, α can be found in [47, Section 3].

The next thing to do is to look for examples. Fortunately, we already came across
one of them in this chapter.

Example 1.2.55 Let L→M be a line bundle and let ω ∈ Ω2
L(M) be a contact 2-form.

Then

L = {(∆, iι∆ω) ∈ DCL | ∆ ∈ DCL}

is a generalized contact structure. The corresponding endomorphism K ∈ Γ∞(EndDL)
is given by

K =

(
0 J ]

−ω[ 0

)
,

where J is the Jacobi tensor of ω.

Example 1.2.56 Let L→M be a line bundle and let φ ∈ Γ∞(EndDL) be a complex
structure, i.e. an almost complex structure whose Nijenhuis torsion with respect to
the Lie algebroid bracket vanishes. If we denote by DL(1,0) its +i-eigenbundle of
φ : DCL→ DCL, then

L = DL(1,0) ⊕Ann(DL(1,0))

is a generalized contact structure with corresponding endomorphism K ∈ Γ∞(EndDL)
given by

K =

(
φ 0

0 −φ∗

)
.

In the following, we will refer to φ as an Atiyah complex structure on L.
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In the rest of this thesis we call the last two examples, i.e. contact structures and
Atiyah complex structures, the extreme cases of generalized contact structures. Note
that in generalized complex geometry the extreme cases are complex structures and
symplectic structures. Before we turn towards the characteristic foliation, we want to
drop a word on morphisms of generalized contact bundles. This is a non-trivial issue,
but for most of our purposes isomorphisms of line bundles will be enough.

Corollary 1.2.57 Let L → M be a line bundle and let L ⊆ DCL be a generalized
contact structure. Then for a closed real B ∈ ΩL(M) the (complex) Dirac-Jacobi
structure LB is a generalized contact structure, which has the same induced Jacobi
structure as L.

Proof: This is an easy veri�cation using the endomorphism K corresponding to L
and show that the endomorphism K′ corresponding to Lω is given by

K′ = exp(ω)K exp(−ω). XΞΣ

Let us now turn to the characteristic foliation of generalized contact bundles. Since
they are a particular kind of complex Dirac-Jacobi bundles, they of course induce
an integrable distribution in the complexi�ed tangent bundle. But this is not what
we want: we want an integrable distribution of the real tangent bundle of the base
manifold. For a generalized contact structure L ⊆ DL we have now two canonical
choices: The symbols of

i.) Re(prDL ∩ prDL) and

ii.) prD(LJ), where J is the Jacobi tensor induced by the generalized contact struc-
ture

The following Lemma shows that they coincide.

Lemma 1.2.58 Let (L→M,L) be a generalized contact bundle. Then

Re(prDL ∩ prDL) = prD(LJ),

where J is the Jacobi tensor induced by the generalized contact structure.

Proof: This is an easy consequence of the fact that L is the +i-Eigenbundle of the
unique endomorphism

K =

(
φ J ]

α[ −φ∗

)
,

which is ensured by Lemma 1.2.53. XΞΣ
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From now on, we will refer to the foliation integrating σ(prDL ∩ prDL) as the char-
acteristic foliation of the generalized contact structure L ⊆ DCL. If we examine the
leaves, we immediately realize, that some of them may be odd and some may be even
dimensional according to Corollary 1.2.40, since it is the foliation induced by a Jacobi
structure. But from Remark 1.2.52, we know that the base manifold of a generalized
contact structure is always odd dimensional. This means that a locally conformal
symplectic leaf, the kind of leaf which is even-dimensional, of the generalized contact
structure cannot carry the structure of a generalized contact structure. But let us
start with the contact leaves, which indeed carry the structure of a generalized contact
structure.

Lemma 1.2.59 Let L → M be a line bundle, let L ⊆ DCL be a generalized contact
structure and let ι : S ↪→M be a contact leaf of its characteristic foliation. Then

BI(L) ⊆ DCLS

is a generalized contact structure. Moreover, there exists a unique closed B ∈ Ω2
LS

(S),

such that BI(L) = Liω+B, where ω ∈ Ω2
LS

(S) is the contact structure on the leaf
induced by the Jacobi structure induced by L.

Proof: Note that we have to prove also the smoothness of BI(L), since it is not
covered by Lemma 1.2.22 as we are not considering the distribution σ(prD(L)), nev-
ertheless we make use of Theorem 1.2.17. For a leaf ι : S ↪→ M , we have that TCS =
σ(prD(L) ∩ prD(L))

∣∣
S
and since S is a contact leaf, we even have prD(L) ∩ prD(L) =

im(DI)C. The complexi�ed version of Theorem 1.2.17 reads: If (kerDΦ∗)C ∩ φ∗L has
constant rank, then BΦ(L) is a Dirac-Jacobi bundle. As in the proof of Lemma 1.2.22,
this happens if and only if

Ann(im(DI)C) ∩Ann(prD(L)
∣∣
S

)

has constant rank. But we have

Ann(im(DI)C) ∩Ann(prD(L
∣∣
S

)) = Ann(im(DI)C + prD(L
∣∣
S

))

= Ann(prD(L))
∣∣
S

).

So we have to show that prD(L
∣∣
S

) has constant rank. But this follows from prD(L
∣∣
S

)∩
prD(L

∣∣
S

) = im(DI)C and prD(L
∣∣
S

) + prD(L
∣∣
S

) = DCL, this is canonically ful�lled.

Let us now make use of Example 1.2.13: let (∆, α) ∈ BI(L) ∩BI(L)) be real, then
there exists a ψ ∈ J1

CL, such that (DI(∆), ψ) ∈ L and DI∗ψ = α. This allows us to
de�ne χ ∈ J1

CL by

χ
∣∣
prD(L)

= ψ and χ
∣∣
prD(L)

= ψ.

Note that this element is well-de�ned, since ψ
∣∣
L∩L = ψ

∣∣
L∩L, which follows from

DI∗ψ = α and by α being real. We want to show that (DI(∆), χ) ∈ L ∩ L. Let
(�, β) ∈ L, then

〈〈(DI(∆), χ), (�, β)〉〉 = β(DI∆) + χ(�) = β(DI∆) + ψ(�) = 0,
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where we used χ
∣∣
prD(L)

= ψ and that (DI(∆), ψ) ∈ L. This means in particular that

〈〈(DI(∆), χ),L〉〉 = 0 and hence, by the maximal isotropy of L, that (DI(∆), χ) ∈
L. With the same argument, we can show that (DI(∆), χ) ∈ L. We conclude that
(DI(∆), χ) ∈ L∩L = {0} and in particular (∆, α) = 0 and thus BI(L)∩BI(L) = {0}.

In a similar way we can show that BI(L) ∩ J1
CLS = {0}. As a consequence, we

have that BI(L) = LΩ for Ω ∈ Ω2
LC

(M) and the last thing to show is that Im(Ω) = ω,
where ω is the contact structure induced by J . Let us therefore, consider the unique
endomorphism

K =

(
φ J ]

α[ −φ∗

)

de�ning L and let us choose an arbitrary real ψ ∈ J1L
∣∣
S
. Note that (J ](ψ), iψ−φ∗ψ) ∈

L and since im(J ])C

∣∣∣
S

= prD(L
∣∣
S

) ∩ prD(L
∣∣
S

) = im(DI)C, there is a unique real

∆ ∈ DLS , such that DI(∆) = J ](ψ). Hence, we conclude that

(∆, DI∗(iψ − φ∗ψ)) ∈ BI(L) = LΩ,

which implies ι∆Im(Ω) = DI∗(ψ). The exact same computation can be done for LJ
and we get ι∆ω = DI∗ψ and the claim follows by de�ning Re(Ω) = B. XΞΣ

Let us discuss locally conformal symplectic leaves of the Jacobi structure of a gen-
eralized contact structure. But before, in order to capture the full information on the
leaf, we shall discuss the generalized complex analogue in the conformal setting, simi-
larly as we discussed the locally conformal Dirac setting at the end of Subsection 1.2.2
and locally conformal Poisson at the end of Subsection 1.2.3. These objects have been
considered for the trivial line bundle case in [44].

De�nition 1.2.60 Let L → M be a line bundle and let ∇ : TM → DL be a �at
connection. A subbundle D ⊆ TLCM is said to be locally conformal generalized complex,
if D

i.) is a locally conformal Dirac-structure

ii.) is complex, i.e. D ⊕D = TLCM

We will be very sloppy with the de�nitions and proofs in this setting, since the results,
at least the ones we need, are very similar to the ones in generalized contact and/or
generalized complex geometry. Anyway, let us discuss the two most obvious examples
�rst.

Example 1.2.61 Let L → M be a line bundle and let (∇, ω) be a locally conformal
symplectic structure. Then

Dω = {(X, iιXω) ∈ TLCM | X ∈ TCM}

is a locally conformal generalized complex structure.
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Example 1.2.62 Let L → M be a line bundle, let ∇ : TM → DL be a �at con-
nection and let φ ∈ End(TM) be a complex structure with holomorphic (resp. anti-
holomorphic) tangent bundle T (1,0)M (resp. T (0,1)M), then

D := T (1,0)M ⊕ (T (0,1)M)∗ ⊗ L

is a locally conformal generalized complex manifold.

As for generalized contact structures a locally conformal generalized complex struc-
tures can be de�ned via an appropriate endomorphism

Lemma 1.2.63 Let L → M be a line bundle with a �at connection ∇ : TM → DL
and let D ⊆ TLCM be a locally conformal generalized complex structure. Then D it is
the +i-Eigenbundle of a unique endmorphism I : TLCM → TLCM , ful�lling

i.) I2 = − id

ii.) 〈〈I−, I−〉〉 = 〈〈−,−〉〉

iii.) 0 = NI(A,B) := [[IA, IB]]− I[[IA,B]]− I[[A, IB]]− [[A,B]] for all A,B ∈ Γ∞(TLM)

Moreover, the +i-Eigenbundle of an endmorphism ful�lling i.)-iii.) is a locally confor-
mal generalized complex structure.

Using the splitting TLCM = TM ⊕ (T ∗M ⊗ L), we can write

I =

(
φ π]

σ[ −φ∗

)

for φ ∈ End(TM), π ∈ Γ∞(Λ2(TM ⊗ L∗) ⊗ L) and σ ∈ Γ∞(Λ2T ∗M ⊗ L). Moreover,
we can show that π is a locally conformal Poisson structure.

The Dirac-Jacobi structure induced by a locally conformal Dirac structure as in
Equation 1.2.2, if the input is a locally conformal generalized complex structure, can
never be generalized contact, simply because of dimensional reasons. Nevertheless, we
have

Lemma 1.2.64 Let L → M be a line bundle, let L ⊆ DCL be a generalized contact
structure and let ι : S ↪→M be a locally conformal symplectic leaf. Then

BI(L) = LD

for D = {(X, ιX(iω+B)) ∈ TLCS | X ∈ TCS}, where ω is the locally conformal structure
corresponding to L and B ∈ Γ∞(Λ2T ∗S ⊗ LS) is d∇-closed.

Proof: The proof of the smoothness of BI(L) follows the same lines as the proof
of Lemma 1.2.59. Let us denote by (ω,∇) the locally conformal symplectic structure
induced by the Jacobi tensor which corresponds to the generalized contact structure.
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It is easy to see that prD(BI(L)) = im(∇)C. By the very same argument as in the
proof of Lemma 1.2.26, we see that

BI(L) = {(∇X , σ∗(ιXΩ) + α) ∈ DCLS | X ∈ TCS and α ∈ Ann(im(∇)C)}

for a for a LS-valued 2-form Ω with d∇Ω = 0. Applying the same argument as in
Lemma 1.2.59, we get the claim. XΞΣ

1.3 Products of Dirac-Jacobi Bundles

Unlike in Dirac Geometry, the products of Dirac-Jacobi bundles are rather involved,
they involve the product construction of Subsection 1.1.1.

Let L→M be a line bundle and let L1,L2 ⊂ DL be Dirac-Jacobi structures on L.
Put

L1 ? L2 := {(∆, ψ1 + ψ2) : (∆, ψi) ∈ Li, i = 1, 2} ⊂ DL

Lemma 1.3.1 If L1 ? L2 ⊂ DL is smooth, then it is a Dirac-Jacobi structure (called
the sum of L1 and L2).

Proof: See [34]. The isotropy of L1 ? L2 ⊂ DL is clear by de�nition. The product
�ts in the following (pointwise) exact sequence

0 −→ Ann(prD(L1) ∩ prD(L2)) −→ L1 ? L2 −→ prD(L1) ∩ prD(L2) −→ 0,

where we used that prD(L1?L2) = prD(L1)∩prD(L2). We conclude that rk(L1?L2) =
n + 1 and hence it is maximal isotropic. For the involutivity we �rst choose a point
p ∈ M . Let (∆p, ψ

1
p + ψ2

p) ∈ L1 ? L2|p be arbitrary. We see that ∆p ∈ prD(L1) ∩
prD(L2) = prD(L1 ? L2) which is smooth. Therefore there exists a (local) section
∆ ∈ Γ∞(prD(L1) ∩ prD(L2), such that ∆(p) = ∆p. Since in particular ∆Γ∞(prDLi

∣∣
U

)
for an open subset U containing p, we can �nd ψi ∈ Γ∞(∈ J1Li|U ), such that (∆, λi) ∈
Γ∞(Li|U ) and ψi(p) = ψip.

So we found a section (∆, ψ1 +ψ2) ∈ Γ∞(L1 ?L2) which is evaluated at p given by
(∆p, ψ

1
p +ψ2

p). The proof that the tensor NL vanishes at p is now an easy computation
using this kind of sections. XΞΣ

Corollary 1.3.2 Let Li ⊆ DL, for i = 1, 2, be two Dirac-Jacobi structures. If
rk
(
prD(L1) + prD(L2)

)
is constant, then L1 ? L2 is a Dirac-Jacobi structure.

Proof: We introduce the map

K : L1 ⊕ L2 3
(
(∆, α), (�, β)

)
7→ ∆−� ∈ prD(L1) + prD(L2).

Since rk(prD(L1) + prD(L2)) is constant and K is surjective, D is a regular vector
bundle morphism and its kernel is therefore a smooth subbundle. We consider the
map

S : ker(K) 3
(
(∆, α), (∆, β)) 7→ (∆, α+ β) ∈ L1 ? L2
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Since S is a surjective bundle morphism, L1 ? L2 is smooth and by Lemma 1.3.1 a
Dirac-Jacobi structure. XΞΣ

Remark 1.3.3 In fact the previous lemma is just a special case of the fact that L1?L2

is smooth if and only if prDL1∩prDL2 is, which can be seen by elementary techniques.
Namely, let us assume that prDL1 ∩ prDL2 is smooth and let (δ, ψ1 + ψ2) ∈ L1 ? L2.
Then we �nd a smooth section ∆ ∈ Γ∞(prDL1 ∩ prDL2), such that ∆p = δ. Thus
we can �nd two sections Ψi ∈ Γ∞(J1L) for i = 1, 2, such that (∆,Ψi) ∈ Γ∞(Li) and
Ψi
p = ψi. Hence, (∆,Ψ1 + Ψ2) is a smooth section and coincides with (δ, ψ1 + ψ2).

Lemma 1.3.4 Let (Mi, Li,Li) i = 1, 2 be two Dirac-Jacobi bundles and let L× →M×

be the product of L1 and L2 in Line . The subbundle L1×!L2 := BP1(L1) ?BP1(L2) ⊆
DL× is smooth and therefore a Dirac-Jacobi structure, moreover the the morphisms
Pi : L

× → Li are forward Dirac-Jacobi maps.

Proof: By the de�nition of the backwards transforms, we have that kerDPi ⊆
BPi(Li) and hence we have prDBP1(L1) + prD(BP2(L2)) ⊇ kerDP1 + kerDP2, but
from Lemma 1.1.4 we know that kerDP1 ⊕ kerDP2 = DL×. Applying now Corollary
1.3.2, we see that BP1(L1) ?BP2(L2) is smooth. Now we want to prove

FPi(BP1(L1) ?BP2(L2)) = Li.

Let (∆p1(x), αp1(x)) ∈ L1,p1(x) be arbitrary. Using again Lemma 1.1.4, we �nd ∆̃x ∈
kerDP2

∣∣
x
, such that DP1(∆̃x) = ∆p1(x) and therefore (∆̃x, Dp

∗
1αp1(x)) ∈ Bp1(L1).

Since ∆̃x ∈ kerDp2, we also have (∆̃x, DP
∗
1αp1(x)) ∈ Bp1(L1) ?Bp1(L1)

We see therefore, that (∆p1(x), αp1(x)) = (DP1(∆̃x), αp1(x)) ∈ FPi(BP1(L1)?BP2(L2))
and hence

FPi(BP1(L1) ?BP2(L2)) ⊇ Li.

For dimensional reasons we conclude equality. XΞΣ

Remark 1.3.5 For two Dirac-Jacobi bundles (Li →Mi,Li)) the Dirac-Jacobi bundle
L1×!L2 is actually a product in the category of Drac-Jacobi bundles with forward Dirac-
Jacobi maps as morphisms. This is easy to verify using the fat that the underlying
line bundle is a product in the category of line bundles, see 1.1.1. We refer to (L× →
M×,L×) as the product of (L1 →M1,L1)) and (L2 →M2,L2).

We now want to explore how this construction behaves, when the Dirac-Jacobi
bundles are actually Jacobi structures.

Lemma 1.3.6 Let (Li →Mi,Li) be two Dirac-Jacobi bundles coming from two Jacobi
tensors Ji. Then L1 ×! L2 is a Dirac-Jacobi structure coming from a Jacobi structure.
Moreover, if the two Jacobi structures are contact also their product is.
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Proof: We are going to use Lemma 1.2.35, so we just have to show that (L1 ×!

L2) ∩ DL× = {0}, since the product is a Dirac- Jacobi structure be the previous
considerations. Let (∆, 0) ∈ L1×!L2. So, using that the Pi's are forward Dirac-Jacobi,
we have that

(DPi(∆), 0) ∈ Li.

But since by assumption the Li's come from Jacobi tensors, we can use Lemma 1.2.35
to obtain DPi(∆) = 0. Thus ∆ = 0, which holds, because DL× = kerDP1 ⊕ kerDP2.
The proof of the last claim follows the same lines. XΞΣ

Remark 1.3.7 By the previous Lemma it is clear that the product of Dirac-Jacobi
bundles is also a product of Jacobi bundles. Nevertheless, it is not a product in
the category of contact bundles, since a Jacobi map between contact bundles is not
necessarily a contact map. A similar phenomenon occurs in the Poisson setting with
symplectic structures.

Now we want to introduce pull-back diagrams of Dirac-Jacobi bundles, note that pull-
backs do not always exist in the category of line bundles.

Corollary 1.3.8 Let Φi : Li → L be regular line bundle morphisms covering φi : Mi →
M and let Li ⊆ DLi and L ⊆ DL Dirac-Jacobi structures, such that the Φi's are forward
Dirac-Jacobi maps. If the pull-back

L×M L2

L1 L

P2

P1 Φ2

Φ1

exists, then BP1(L1), BP2(L2) and BP1(L1)?BP2(L2) are Dirac-Jacobi structures and
moreover the Pi's are forward Dirac-Jacobi maps.

Proof: The proof follows from Lemma 1.3.4 and Corollary 1.1.6. XΞΣ

Let us now discuss some properties of the product with respect to backwards and
forward Dirac-Jacobi maps. There are many compatibilities wetween them, but we
will just discuss the ones which we are going to use throughout this thesis.

Lemma 1.3.9 Let (Li → Mi,Li) be two Dirac-Jacobi bundles for i = 1, 2 and let
Φ: LNi → Li be two regular line bundle morphisms covering φi : Ni → Mi, such that
BΦi(L) are Dirac-Jacobi bundles. Then

BΦ1×!Φ2
(L1 ×! L2) = BΦ1(L1)×! BΦ2(L2).

Proof: Let us �rst discuss what we mean by the map Φ1 ×! Φ2 : L×N → L×: it is the
unique arrow making
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1.3. Products of Dirac-Jacobi Bundles

L×N LN2

L× L2

LN1 L1

PN1

PN2

∃!
Φ2

P2

P1

Φ1

commute. Mote that we cannot use the universal property of the product in the
category of Dirac-Jacobi bundles, since backward Dirac-Jacobi maps are not morphisms
in this category. So let (∆, D(Φ1 ×! Φ2)∗ψ) ∈ BΦ1×!Φ2

(L1 ×! L2) then we know that
(D(Φ1 ×! Φ2)(∆), ψ) ∈ L1 ×! L2. On the other hand, this implies that there are
ψi ∈ J1Li, such that ψ = DP ∗1ψ1 +DP ∗2ψ2 and (D(Φ1 ×! Φ2)(∆), DP ∗i ψi) ∈ BPi(Li).
Summarizing, we get

(∆, D(Φ1 ×! Φ2)∗ψ) = (∆, D(Φ1 ×! Φ2)∗(DP ∗1ψ1 +DP ∗2ψ2))

= (∆, DP ∗N1
ψ1 +DP ∗N2

ψ2).

Now we have that (∆, DP ∗Niψi) ∈ BPNi
(BΦi(Li)) by construction and henceBΦ1×!Φ2

(L1×!

L2) ⊆ BΦ1(L1)×!BΦ2(L2). Both bundles are maximally isotropic and thus equal.XΞΣ

Remark 1.3.10 Note that we actually proved that, for two Dirac-Jacobi structures
Li ⊆ DL2 i = 1, 2 and a regular line bundle morphism P : L1 → L2,

BP (L1 ? L2) = BP (L1) ?BP (L2)

holds.

The next lemma shows the interplay between forward Dirac-Jacobi maps, backward
Dirac-Jacobi maps and (�bered) products.

Lemma 1.3.11 Let (Li → Mi,Li) be two Dirac-Jacobi bundles, let Φ: L1 → L2 be a
forward Dirac-Jacobi map covering φ : M1 →M2 and let Ψ: LN → L2 be a regular line
bundle morphism covering ψ : N →M2 transverse to L2. Then the pull-back

L× LN

L1 L2

PN

PM Ψ

Φ

exists and PN is a forward Dirac-Jacobi map for the Dirac-Jacobi structures BPM (L1)
and BΨ(L).

Proof: Recall that Ψ: LN → L2 is called transverse to L2 ⊆ DL2, if

DΨ(DLN ) + prD(L2) = DL2

∣∣
ψ(N)
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and after applying the anchor we get in particular:

Tψ(TN) + σ(prD(L2)) = TM2

∣∣
ψ(N)

.

Let us �rst prove that the pull-back exists, but using Theorem 1.1.2 we just have to
show that the product

M1 ×M2 N N

M1 M2

pr2

pr1 ψ

φ

exists in Man. A su�cient criterion for the existence, is that

Tφ(TM1) + Tψ(TN) = TM2

∣∣
φ(M1)∩ψ(N)

Since Φ is a forward map, we have that DΦ(DL1) ⊃ prDL2. Moreover, since Ψ is
transversal, we have

DL2

∣∣
φ(M1)∩ψ(N)

= prDL+DΨ(DLN ) ⊆ DΦ(DL1) +DΨ(DLN )

and hence equality. Applying the symbol σ : DL2 → TM2 we get the required equality
Tφ(TM1) + Tψ(TN) = TM2

∣∣
φ(M1)∩ψ(N)

. It is easy to show that PM is transverse to

L1 and hence BPM (L1) is a Dirac-Jacobi structure by Corollary 1.2.18. The property
that PN is a forward Dirac-Jacobi map follows by direct computation and the interplay
of the D-functor and the products, see 1.1.5. XΞΣ
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Normal Form Theorems

Since the work of Weinstein [51], in which he proved his famous local splitting theorem
for Poisson manifolds, many works appeared concerning di�erent viewpoints on the
proof and even give more general statements, namely normal form theorems. Frejlich
and M rcut

,
proved a normal form theorem around Poisson (cosymplectic) transversals

of Poisson manifolds in [20]. In [21] they used the techniques of Dual Pairs to prove
a similar statement for Dirac structures. And �nally, there is a uni�ed approach by
Bursztyn, Lima and Meinrenken in [12] to prove normal forms for Poisson related
structures.

This chapter reformulates these techniques and results in the Jacobi setting in order
discuss a proof of normal forms in Jacobi geometry, i.e. for Dirac-Jacobi bundles, Jacobi
structures and generalized contact bundles. We follow [12] as a guideline throughout
this chapter. This Chapter is based on [38] and generalizes [41].

2.1 Submanifolds and Euler-like Vector Fields

In this subsection we want to discuss Euler-like vector �elds with respect to submani-
folds. These vector �elds, in particular, induce a homogeneity structure on the manifold
around the given submanifold, which is equivalent, under some additional conditions,
that the manifold is total space of a vector bundle, see e.g. [24]. This total space turns
out to be the normal bundle of the submanifold. Nevertheless, we will not go more
in details with these features, since we work directly with tubular neighborhoods. We
will begin collecting facts about tubular neighborhoods, submanifolds, corresponding
mappings and describe afterwards the notion of Euler-like vector �elds and extend this
notion the derivations of a line bundle.

2.1.1 Normal Bundles and tubular Neighborhoods

The notations and results throughout this section are taken from [12].
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For a pair of manifolds (M,N), i.e. a submanifold N ↪→M , we denote

ν(M,N) =
TM

∣∣
N

TN

the normal bundle. If it is clear what is the ambient space, we will just write νN
instead. Given a map of pairs

Φ: (M,N)→ (M ′, N ′),

i.e. a map Φ: M →M , such that Φ(N) ⊆ N ′, we denote by

ν(Φ): ν(M,N)→ ν(M ′, N ′)

the induced map between the normal bundles. For a vector �eld X on M tangent to
N , we have that the �ow ΦX

t is a map of pairs from (M,N) to itself. Hence we de�ne

Tν(X) =
d

dt

∣∣∣
t=0

ν(ΦX
t ) ∈ Γ∞(TνN ).

Moreover, for a vector bundle E → M and σ ∈ Γ∞(E), such that σ
∣∣
N

= 0 for a
submanifold N ↪→M , we denote by

dNσ : νN → E
∣∣
N

the map which is ν(σ), for σ seen as a map σ : (M,N) → (E,M), followed by the
canonical identi�cation ν(E,M) = E, given by

CE : E 3 vp →
[ d

dt

∣∣∣
t=0

tvp
]
TM
∈ ν(E,M).

The inverse C−1
E is given by

C−1
E ([

d

dt

∣∣∣
t=0

γ(t)]) = lim
t→0

γ(t)

t
. (2.1.1)

for a curve γ : I → E de�ned in an open interval I containing 0, such that γ(0) = 0p
for p ∈M .

Remark 2.1.1 For a pair of manifolds (M,N), a vector bundle E →M and a vector
bundle morphism A : νN → E

∣∣
N
, one can always �nd a section σ ∈ Γ∞(E), such that

i.) σ
∣∣
N

= 0

ii.) dNσ = A.

This follows locally by elementary techniques and one can extend it via a partition of
unity.
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Proposition 2.1.2 Let Ei → Mi be vector bundles for i = 1, 2 and let Φ: E1 → E2

be a vector bundle morphism. Then, for Φ: (E1,M1)→ (E2,M2),

C−1
E2
◦ ν(Φ) ◦ CE1 = Φ.

Proof: Let vp ∈ E1, then

(C−1
E2
◦ ν(Φ) ◦ CE1)(vp) = (C−1

E2
◦ ν(Φ))([

d

dt

∣∣∣
t=0

tvp]TM1)

= C−1
E2

([TΦ
d

dt

∣∣∣
t=0

tvp]TM2)

= C−1
E2

([
d

dt

∣∣∣
t=0

tΦ(vp)]TM2)

= Φ(vp) XΞΣ

Proposition 2.1.3 Let Ei → M be vector bundles,i = 1, 2, let Φ: E1 → E2 be a
vector bundle morphism covering the identity and let (M,N) be a pair of manifolds.
Then, for every section σ ∈ Γ∞(E1), such that σ

∣∣
N

= 0,

dNΦ(σ) = Φ(dNσ)

holds.

Proof: Consider the map Φ(σ) : (M,N)→ (E2,M), then we have

C−1
E2
◦ ν(Φ(σ)) = C−1

E2
◦ ν(Φ) ◦ ν(σ)

= C−1
E2
◦ ν(Φ) ◦ CE1 ◦ C−1

E1
◦ ν(σ)

= Φ ◦ C−1
E1
◦ ν(σ)

and the claim follows restricting these maps to N . XΞΣ

Proposition 2.1.4 Let (M,N) be a pair of manifolds and let X ∈ Γ∞(TM) be a
vector �eld, such that X

∣∣
N

= 0. Then

TΦX
t

∣∣
N

= exp(tDX)

for a unique DX ∈ Γ∞(End(TM
∣∣
N

)), moreover TN ⊆ ker(DX) and

TM
∣∣
N

TM
∣∣
N

νN

DX

dNX

commutes.
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Proof: Since X
∣∣
N

= 0, its �ow �xes all elements of N . This means

TΦX
t : TpM → TpM

for all t ∈ R and p ∈ N . Moreover, it ful�lls the property,

TΦX
t ◦ TΦX

s = TΦX
t+s

and TΦX
0 = id and hence the claim follows. XΞΣ

De�nition 2.1.5 Let (M,N) be a pair of manifolds. A tubular neighborhood of N is
an open subset U ⊆M containing N , together with a di�eomorphism

ψ : νN → U,

such that ψ
∣∣
N

: N → N is the identity and for ψ : (νN , N)→ (M,N) the map

ν(ψ) : ν(νN , N)→ νN

is the inverse of CνN : νN → ν(νN , N).

Remark 2.1.6 De�nition 2.1.5 is not the only de�nition of tubular neighborhood. In
fact, the condition

ν(ψ) : ν(νN , N)→ νN

is usually not considered.

2.1.2 Euler-like Vector Fields and Derivations

In this part, we recall the notion of Euler-like vector �elds from [12] and extend this
notion to derivations of a line bundle.

De�nition 2.1.7 Let (M,N) be a pair of manifolds. A vector �eld X ∈ Γ∞(TM) is
called Euler-like, if

i.) X
∣∣
N

= 0,

ii.) X is complete (i.e. the �ow of X is de�ned for all t ∈ R),

iii.) Tν(X) = E,

where E is the Euler vector �eld on νN → N .

Proposition 2.1.8 Let (M,N) be a pair of manifolds, then there exists an Euler-like
vector �eld around N.
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Proof: Let us choose a tubular neighborhood

ψ : νN → U.

For the vector �eld X = ψ∗E multiplied by a suitable bump function which is 1 in a
neighborhood of N , we have

Tν(X) =
d

dt

∣∣∣
t=0

ν(ΦX
t ) =

d

dt

∣∣∣
t=0

ν(ψ ◦ ΦEt ◦ ψ−1)

=
d

dt

∣∣∣
t=0

ν(ψ) ◦ ν(ΦEt ) ◦ ν(ψ−1)

=
d

dt

∣∣∣
t=0

ΦEt = E .

We used Proposition 2.1.2 and the fact that ν(ψ) = C−1
νN

. XΞΣ

Lemma 2.1.9 Let M be a manifold, N ↪→ M a submanifold and X ∈ Γ∞(TM) be a
Euler-like vector �eld. Then there exists a unique tubular neighborhood embedding

ψ : νN → U,

such that ψ∗X = E.

Proof: The proof can be found in [12]. XΞΣ

Proposition 2.1.10 Let (M,N) be a pair of manifolds and let X ∈ Γ∞(TM) be a
complete vector �eld such that X

∣∣
N

= 0. Then X is Euler-like, if and only if dNX

followed by the projection TM
∣∣
N
→ νN is the identity.

Proof: Let X ∈ Γ∞(TM) be given as in the statement. According to Proposition
2.1.4, there exists a unique DX ∈ Γ∞(End(TM

∣∣
N

)), such that TΦX
t

∣∣
N

= exp(tDX).
Let [Xp] ∈ νN be an equivalence class of tangent vectors, then

ν(Φx
t )([Xp]) = [TΦX

t (Xp)] = [exp(tDX)(Xp)].

This is nothing but the �ow of the Euler vector �eld, as if prνN ◦ DX(Xp) = [Xp].
Using Proposition 2.1.4, we have dNX([Xp]) = DX(Xp) for all [Xp] ∈ νN and hence
the claim. XΞΣ

Note that, for a pair of manifolds (M,N) and a Euler like vector �eldX ∈ Γ∞(TM),
the set {

p ∈M | lim
t→−∞

ΦX
t (p) exists and lies in N

}
is an open subset in M containing N , and stable under the �ow of X. In fact, by
Lemma 2.1.9, the unique tubular neighborhood ψ : νN → U with ψ∗X = E , satis�es

U = {p ∈M | lim
t→−∞

ΦX
t (p) exists and lies in N}.
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Let us denote λs = ΦX
log(s)

∣∣
U
, which is smooth for all s ∈ R+ and can be smoothly

extended to s = 0. Moreover, we have that

ψ ◦ κs = λs ◦ ψ, (2.1.2)

where we denote by κs : νN → νN the map [Xp] 7→ [sXp]. Note that κ0 : νN → N
coincides with the bundle projection. To be more precise κ0 = prν ◦j, where prν : νN →
N is the bundle projection and the 0 section j : N → νN .

Let us add now the line bundle case

De�nition 2.1.11 Let (M,N) be pair of manifolds and let L → M be a line bundle.
A derivation ∆ ∈ Γ∞(DL) is called Euler-like, if

i.) ∆
∣∣
N

= 0,

ii.) σ(∆) is an Euler-like vector �eld.

This de�nition turns out to be the correct one for our purposes, since with that we can
prove the analogues of basically all results available for Euler-like vector �elds. Let us
start collecting such analogues.

Proposition 2.1.12 Let (M,N) be a pair of manifolds, let L → M be a line bundle
and let ∆ ∈ Γ∞(DL) be an Euler-like derivation. Then the �ow Φ∆

t ∈ Aut(L) of ∆
induces the map

Λs = Φ∆
log(s),

which, restricted to U = {p ∈ M | limt→−∞Φ
σ(X)
t (p) exists and lies in N}, can be

extended smoothly to s = 0. Moreover, the map

Λ0 : LU → LN

is a regular line bundle morphism.

Proof: The proof is an easy veri�cation using a tubular neighborhood ψ : νN → U ,
such that ψ∗σ(∆) = E . XΞΣ

De�nition 2.1.13 Let (M,N) be a pair of manifolds and let L→M be a line bundle.
A fat tubular neighborhood is a regular line bundle morphism

Ψ: Lν → LU ,

where the line bundle Lν is given by the pull-back

Lν LN

νN N

,
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covering a tubular neighborhood ψ : νN → U , such that Ψ
∣∣
N

: LN → LN is the identity.

Lemma 2.1.14 Let (M,N) be a pair of manifolds, let L → M be a line bundle and
let ψ : νN → U be a tubular neighborhood. Then there exists a fat tubular neighborhood
covering ψ.

Proof: The proof is an adaption of the proof in [43, Chapter 3]. First we notice
that Lν = (ι ◦ pν)∗L for the canonical inclusion ι : N ↪→M and the bundle projection
prν : νN → N . Moreover, if we consider the the pullback bundle

ψ∗LU LU

νN U

Ψ̃

ψ

,

we see that the multiplication by t ∈ [0, 1], denoted by κt : νN → νN induces a smooth
homotopy H : [0, 1]× νN →M between ψ and prν ◦ ι via

H(t,−) = ψ ◦ κt.

For pull-back bundles of homotopic maps there exists a (non-canonical) vector bundle
isomorphism covering the identity. The claim follows by choosing an isomorphism
Φ: Lν → ψ∗L covering the identity and concatenate it with Ψ̃ and hence

Lν LU

νN U

Ψ=Ψ̃◦Φ

ψ

,

is a fat tubular neighborhood. XΞΣ

For a line bundle L→ N and a vector bundle p : E → N there is always a canonical
derivation ∆E ∈ Γ∞(DLE) where we denote by LE = p∗L, such that σ(∆E) = E
constructed as follows: Consider the map

LE L

E N

P

p

and the corresponding map DP : LE → LN . We have that canonically ker(DP ) ∼=
Ver(E) for the Vertical bundle Ver(E) of E → M , which induces a �at (partial) con-
nection ∇ : Ver(E) → DLν . Since the Euler vector �eld is vertical, we can de�ne
∆E = ∇E .
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Proposition 2.1.15 Let L → N be a line bundle and let E → N be a vector bundle.
Then the �ow Φt of ∆E ∈ Γ∞(DLE) is given by

Φt(vp, lp) = (et · vp, lp)

for all (vp, lp) ∈ LE.

Proof: The derivation ∇E is by de�nition in the kernel of DP , it is related to the 0
derivation on L→M and hence we have for its �ow

P ◦ Φt = P.

Since LE = E ×M L, we have that

Φt(vp, lp) = (φt(vp), lp)

where φt is the �ow of the symbol of ∇E , which is by construction the Euler vector
�eld and hence the claim follows. XΞΣ

Note that for the �ow Φt of the canonical Euler-like derivation ∆E ∈ Γ∞(DLE),
we have that

Ps = Φlog(s) : LE → LE (2.1.3)

is de�ned for all s > 0 and can be extended smoothly to s = 0, moreover P0 coincides
with the canonical projection P : LE → L followed by the canonical inclusion J : L→
LE .

Lemma 2.1.16 Let (M,N) be a pair of manifolds, let L→M be a line bundle let ∆ ∈
Γ∞(DL) be an Euler-like derivation. Then there is a unique fat tubular neighborhood
Ψ: Lν → LU , such that Ψ∗∆ = ∆E .

Proof: First, we want to prove existence. It is clear that any such Ψ has to cover the
unique tubular neighborhood ψ : νN → U , such that ψ∗σ(∆) = E . So let us choose a
fat tubular neighborhood Ψ̃ : Lν → LU covering ψ. We consider Ψ̃∗∆ ∈ Γ∞(DLν). We
have σ(Ψ̃∗∆) = ψ∗σ(∆) = E . Hence σ(∆E) = σ(Ψ̃∗∆). Consider now the derivation
� = ∆E − Ψ̃∗∆ and

�t = −1

t
Φ∗log(t)�,

where Φt is the �ow of ∆E . Note that �t can be smoothly extended to t = 0, since
�
∣∣
N

= 0. Let us denote the �ow of �t by φt. Note that it is complete, since σ(�t) = 0,
indeed there is even a explicit formula for it, which we do not use. Note however, that
φt ∈ Aut(Lν) covers the identity for all t ∈ R. Let us compute

d

dt
φ∗t (∆E + t�t) = φ∗t ([�t,∆E ] +

d

dt
t�t)
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= φ∗t ([�t,∆E ]−
d

dt
Φ∗log(t)�)

= φ∗t ([�t,∆E ]−
1

t
[∆E ,Φ

∗
log(t)�])

= φ∗t ([�t,∆E ] + [∆E ,�t])

= 0.

Hence ∆E = φ∗0(∆E) = φ∗1(∆E + �1) = φ∗1(Ψ̃∗∆). Therefore, we have that the map
Ψ = Ψ̃ ◦ φ1 will do the job, since obviously φ1

∣∣
N

= id.
Let us now assume that we have Ψ1,Ψ2 : Lν → LU , such that Ψ∗1∆ = Ψ∗2∆ = ∆E .

Since both have to cover the unique ψ : νN → U , the target LU is the same for both.
Let us consider Ξ := Ψ−1

1 ◦Ψ2 : Lν → Lν , which covers the identity, which implies that
there is a nowhere vanishing function f ∈ C∞(νN ), such that Ξ(lp) = f(p)lp for all
lp ∈ Lν . Moreover, we have that Ξ

∣∣
N

= idLν
∣∣
N
, hence f(0n) = 1 for all n ∈ N , and

Ξ∗∆E = ∆E . We consider now an arbitrary section λ ∈ Γ∞(Lν) and compute

∆E(λ) = (Ξ∗∆E)(λ)

= Ξ∗(∆E(Ξ∗λ))

=
1

f
(∆E(fλ))

=
E(f)

f
λ+ ∆E(λ).

Hence E(f) = 0, which means that f = pr∗νg for some function g ∈ C∞(N), but since
1 = f(0n) = g(n) for all n ∈ N , we have that Ξ = idLν . XΞΣ

For a pair of manifolds (M,N), a line bundle L→M and an Euler-like derivation
∆ ∈ Γ∞(DL), we have that

Λs := Φ∆
log(s) : LU → LU (2.1.4)

is well de�ned for s > 0 and can be extended smoothly to s = 0, where LU is the target
of the unique fat tubular neighborhood Ψ: Lν → LU , such that Ψ∗∆ = ∆E . Moreover,
we have that

Λs ◦Ψ = Ψ ◦ Ps (2.1.5)

for all s ≥ 0. Note that if we project this equation to the manifold level, this simply
gives Eq. 2.1.2.

2.2 Normal Forms of Dirac-Jacobi Bundles

Using the techniques of Euler-like derivations, we want to prove a normal form the-
orem for Dirac-Jacobi bundles around transversals. Roughly speaking, this means in
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our case classifying all the possible Dirac-Jacobi structures which coincide on a given
submanifold and moreover �nding a particularly simple representative in this class. We
will be more precise, what we exactly mean in the corresponding subsections. In fact,
a transversal N allows us to �nd special Euler like derivations which are, in some sense,
controlling the behaviour of the Dirac-Jacobi bundles near N . The aim is now to prove
the existence of this special kind of Euler-like derivations and afterwards, we will be
able to prove a normal form theorem and derive some corolloraries from it.

De�nition 2.2.1 Let L → M be a line bundle, let H ∈ Ω3
L(M) be a closed Atiyah

3-form and let L ⊆ DL be a H-twisted Dirac-Jacobi structure. A submanifold N ↪→M
is called transversal, if the inclusion map I : LN → L is transversal to L, i.e.

DLN + prDL
∣∣
N

= (DL)
∣∣
N
.

Moreover, N is called minimal transversal at a point p ∈M , if

TpN ⊕ σ(prDL) = TpM.

Remark 2.2.2 In De�nition 2.2.1, we required for a minimal transversal N to a Dirac-
Jacobi structure L ⊆ DL not explicitly, that it is a transversal. Nevertheless, this is
an immediate consequence of the equation

TpN ⊕ σ(prDL) = TpM.

Proposition 2.2.3 Let L→M be a line bundle, let H ∈ Ω3
L(M) be closed, let L ⊆ DL

be a H-twisted Dirac-Jacobi bundle and let N ↪→M be a transversal. Then

BI(L) := {(∆p, (DI)∗αι(p)) ∈ DLN | (DI(∆p), αφ(p)) ∈ L}

is an I∗H-twisted Dirac-Jacobi bundle, where I : LN → L is the canonical inclusion.

Proof: This is an easy consequence of Theorem 1.2.17. XΞΣ

Lemma 2.2.4 Let L→M be a line bundle, let H ∈ Ω3
L(M) be closed, let L ⊆ DL be

an H-twisted Dirac-Jacobi structure and let ι : N ↪→M be a transversal. The backwards
transformation BI(L) is canonically isomorphic (as vector bundles over N) to the
�bered product I !L uniquely determined by

I !L L

DLN DL

prD

DI

.

Proof: We consider the linear map

Ξ: I !Lp 3 (∆p, (�ι(p), αι(p))) 7→ (∆p, DI
∗αι(p)) ∈ BI(L),
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which is well-de�ned since DI(∆p) = �ι(p). We claim now that this map is injective.
So let us consider (∆p, (�ι(p), αι(p))) ∈ ker(Ξ). It follows immediately, that ∆p = 0
and hence �ι(p) = 0. If (0, αι(p)) ∈ L then αιp ∈ Ann(prDL). Since DI∗αι(p) = 0, we
have that αι(p) ∈ Ann(DLN ), hence αι(p) = 0 and the claim follows.

For dimensional reasons we have that Ξ is an isomorphism. XΞΣ

Proposition 2.2.5 Let L→M be a line bundle, let H ∈ Ω3
L(M) be closed, let L ⊆ DL

be an H-twisted Dirac-Jacobi structure and let N ↪→ M be a transversal. Then there
exists ε ∈ Γ∞(L), such that ε

∣∣
N

= 0 and prD(ε) is Euler-like.

Proof: The proof follows the same lines as [12]. We consider the exact sequence

0→ BI(L)→ L
∣∣
N
→ νN → 0,

where the �rst arrow is given by the identi�cation BI(L) ∼= I !L from Lemma 2.2.4 fol-
lowed by the canonical map I !L → L. The second arrow is the projection prD : L

∣∣
N
→

DL
∣∣
N
followed by the symbol map σ : DL

∣∣
N
→ TM

∣∣
N
and the projection to the nor-

mal bundle prνN : TM
∣∣
N
→ νN . Let us choose a section ε ∈ Γ∞(L) with ε

∣∣
N

= 0, such

that dNε : νN → L
∣∣
N
, which we always can do according to Remark 2.1.1. So ε de�nes

a splitting of the sequence. We consider now the diagram

0 I !L L
∣∣
N

νN 0

0 TN TM
∣∣
N

νN 0

and obtain that if dNε splits the upper sequence then (σ ◦ prD) dNε splits the lower
sequence. Using Proposition 2.1.3, we see that (σ ◦ prD) dNε = dN ((σ ◦ prD)(ε)) and
by Proposition 2.1.10, we see that Tν(σ ◦ prD)(ε) = E . Multiplying ε by a suitable
bump function we may arrange that (σ ◦ prD)(ε) is complete and hence an Euler-like
vector �eld. By de�nition prD(ε) is hence an Euler-like derivation. XΞΣ

Let us �x now an H-twisted Dirac-Jacobi structure L ⊆ DL on a line bundle
L→M . Additionally, we consider a transversal ι : N ↪→M and a section ε = (∆, α) ∈
Γ∞(L), such that ε

∣∣
N

= 0 and ∆ is an Euler-like derivation. Due to Lemma 2.1.16, we
�nd a unique fat tubular neighborhood

Lν LU

νN U

Ψ

ψ

such that Ψ∗∆ = ∆E . We have now two ways to construct a Dirac-Jacobi structure
on Lν → νN . Namely we can take the backward transformation BΨ(LU ) and, if we
consider the diagram
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Lν LN L

νN N M

P I

,

we can take the backward transformation BI◦P (L) = BP (BI(L)), note that this is a
Dirac-Jacobi bundle, since (1) BI(L is a Driac-Jacobi bundle by Corollary 1.2.18, be-
cause N is a transversal and (2) and thusBP (BI(L)) is a Dirac-Jacobi bundle, because
P : Lν → LN is covering a surjective submersion, so P is in particular transversal. Our
aim is to compare BI◦P (L) and BΨ(LU ). Let us consider the �ow of the derivation
[[(∆, α),−]]H of DL, which is given by

(γt,Φ
∆
t ) ∈ Z2

L(M)o Aut(L),

where Φ∆
t is the �ow of ∆ and γt =

∫ t
0 (Φ∆

−τ )∗(dLα+ ι∆H) dτ like in 1.2.9. Of course,
the action of (γt,Φ

∆
t ) preserves L: explicitly

exp(γt) ◦ DΦ∆
t (L) = L.

This leads us to the following

Theorem 2.2.6 (Normal form for Dirac-Jacobi bundles) Let L → M be a line
bundle, let H ∈ Ω3

L(M) be closed, let L ⊆ DL be a H-twisted Dirac-Jacobi structure
and let N ↪→ M be a transversal. Then there exists an open neighborhood U ⊆ M of
N and fat tubular neighborhood Ψ: Lν → LU , such that

BΨ(L
∣∣
U

) = (BI◦P (L))ω

for an ω ∈ Ω2
Lν

(νN ), such that dLω = Ψ∗H − (I ◦ P )∗H.

Proof: According to Proposition 2.2.5, we can �nd (∆, α) ∈ Γ∞(L), such that ∆ is
Euler-like. Then there is a unique fat tubular neighborhood Ψ: Lν → LU , such that
Ψ∗∆ = ∆E , due to Lemma 2.1.16. Let us denote by (γt,Φ

∆
t ) ∈ Z2

L(M) o Aut(L) the
�ow of [[(∆, α),−]]H . We know that (γt,Φ

∆
t ) preserves L for all t ∈ R and so will

(γ− log(s),Φ
∆
− log(s)) for all s > 0. Let us take a closer look at

γ− log(s) =

∫ − log(s)

0
(Φ∆
−τ )∗(dLα+ ι∆H) dτ

=

∫ − log(s)

− log(1)
(Φ∆
−τ )∗(dLα+ ι∆H) dτ

=

∫ 1

s

1

t
(Φ∆

log(t))
∗(dLα+ ι∆H) dt

which is is smoothly extendable to s = 0, since (∆, α)
∣∣
N

= 0. Let us denote by ω′ the
limit s → 0 and put ω = Ψ∗ω′. We have, using the de�ning equations 2.1.3 and 2.1.4
and the relation 2.1.5,

BΨ(L
∣∣
U

) = BΨ(exp(γ− log(s)) ◦ DΦ∆
− log(s)(L))
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= BΨ(exp(γ− log(s))BΦ∆
log(s)

(L))

= (BΨ(BΛs(L))Ψ∗γ− log(s)

= (BΛs◦Ψ(L))Ψ∗γ− log(s)

= (BΨ◦Ps(L))Ψ∗γ− log(s) .

which holds for all s ≥ 0. For s = 0 we have, using that for the canonical inclusion
J : LN → Lν we have that P0 = J ◦ P and Ψ ◦ J = I, that

BΨ(L
∣∣
U

) = (BI◦P (L))ω. XΞΣ

Recall that there are two kinds of leaves in Dirac-Jacobi geometry, see 1.2.2, so there
are also two kinds of transversals, which are even more interesting in the Jacobi setting.
In the Dirac-Jacobi setting the di�erences between these two kinds of transversals are
not very signi�cant, nevertheless we discuss them here.

De�nition 2.2.7 (Cosymplectic Transversal) Let L→M be a line bundle and let
L ⊆ DL be a Dirac-Jacobi structure. A transversal ι : N ↪→ M is called cosymplectic,
if

DLN ∩BI(L) = {0}.

Remark 2.2.8 The terminology cosymplectic comes originally from Poisson geometry,
namely a transversalN to a symplectic leaf of a Poisson structure is called cosymplectic,
since the associated normal bundle is a symplectic vector bundle, i.e. a vector bundle
E → N with a non-degenerate 2-form ω ∈ Γ∞(Λ2E). In Dirac geometry, the normal
bundle of the transversal carries only a pre-symplectic vector bundle, but we prefer
not to give them a special name. In the literature cosymplectic manifolds are usually
de�ned di�erently, see e.g. [13], but throughout this thesis a cosymplectic transversal
is always in the sense of De�nition 2.2.7.

Remark 2.2.9 Note that a cosymplectic transversal always inherts a Dirac-Jacobi
bundle coming from a Jacobi tensor by Proposition 1.2.35. So let us denote LJN =
BI(L) ⊆ DLN .

Cosymplectic transversals naturally appear as minimal transversal to locally con-
formal pre-symplectic leaves:

Lemma 2.2.10 Let (L→M,L) be a Dirac-Jacobi bundle and let p0 ∈M be a locally
conformal pre-symplectic point. Then every minimal transversal at p0 is a cosymplectic
transversal in a neighborhood of p0.

Proof: Let N be a minimal transversal, then we have by de�nition that

TpN ⊕ σ(prDL) = TpM.
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Now let us assume that ∆ ∈ (DLN ∩BI(L))
∣∣
p0
. So in particular, we have that

∆ ∈ (DLN ∩ prDBI(L))
∣∣
p0

and hence σ(∆) ∈ TpN ∩ σ(prDL) = {0}. Hence ∆ = k1, but since p0 is a locally
conformal presymplectic point we have that 1 /∈ prD(L) and thus k = 0. This means
that (DLN ∩BI(L))

∣∣
p0

= {0}, which has to hold in an open neighborhood of p0.XΞΣ

Corollary 2.2.11 Let (L → M,L) be a Dirac-Jacobi bundle and let ι : N ↪→ M be
a minimal transversal to L at a locally conformal pre-symplectic point p0. Assume
moreover that νN ∼= V × N is trivial. Then locally around p0 there is a trivialization
of Lν and a fat tubular neighborhood Ψ: Lν → LU , such that:

BΨ(L
∣∣
U

) =
(
LJN ⊕ TV )ω

where JN is the Jacobi structure on the transversal. where we see

LJN ⊆ DLν

via the canonical identi�cations DLν = TV ⊕DLN and J1Lν = T ∗V ⊕ J1LN .

The other kind of leaves of a Dirac-Jacobi structure are the so-called pre-contact
leaves. Their minimal transversal possess the following structure :

De�nition 2.2.12 (Cocontact Transversal) Let L → M be a line bundle and let
L ∈ DL be a Dirac-Jacobi structure. A transversal ι : N ↪→M is called cocontact, if

rank(DLN ∩BI(L)) = 1.

Lemma 2.2.13 Let L→M be a line bundle, let L ⊆ DL be a Dirac-Jacobi structure
and let ι : N ↪→M be a minimal transversal to L at a pre-contact point p0. Then N is
minimal transversal in a neighborhood of p0.

Proof: Recall that a minimal transversal at p0 is a transversal of minimal dimension,
which in particular implies that

σ(prD(L))
∣∣
p0
⊕ Tp0N = Tp0M.

It is easy to see that

(DLN ∩BI(L))
∣∣
p0

= 〈1p0〉,

which follows because N is minimal and p0 is a pre-contact point, i.e. 1p0 ∈ prDL. To
be more precise, by using the pre-contact property of p0 and the minimality of N , we
see (prDL∩DLN )

∣∣
p0

= 〈1p0〉 and hence there is α ∈ J1
p0
L, such that (1p0 , α) ∈ L. Let

us de�ne β ∈ J1
p0
L by

β(∆) = 0 for ∆ ∈ prDL
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and

β(∆) = α(∆) for ∆ ∈ DLN .

Then β is well-de�ned, since prDL ∩DLN = 1 and α(1) = 0 and moreover (0, β) ∈ L,
since 〈〈(0, β),L〉〉 = 0 and L is maximal isotropic. We consider now the element (1p0 , α−
β) ∈ L, thus (1p0 , DI

∗(α− β)) = (1p0 , 0) ∈ BI(L). Moreover, since prDL∩DLN = 1,
we conclude DLN ∩BI(L) = 〈1p0〉 and hence rank(DLN ∩BI(L))

∣∣
p0

= 1.
Now we want to argue why this holds in a whole neighborhood. Let us therefore

consider the sum DLN + BI(L) ⊆ DL and a (local) section α ∈ Ω1
L(M) such that

α(1)
∣∣
p0
6= 0. Let (0, β) ∈

(
DLN +BI(L)

)∣∣
p0
∩〈α〉

∣∣
p0
, then there exists ∆ ∈ Dp0L such

that (∆, β) ∈ BI(L), but since (1, 0) ∈ BI(L), we have using the isotropy of BI(L),

0 = 〈〈(∆, β), (1, 0)〉〉 = β(1),

but β = kα for k ∈ R, we conclude k = 0 and thus β = 0 and therefore
(
DLN +

BI(L)
)∣∣
p0
∩ 〈α〉

∣∣
p0

= {0}. For dimensional reasons we conclude DL
∣∣
p0

= (DLN +

BI(L))
∣∣
p0
⊕ 〈α〉

∣∣
p0
. Therefore this equality holds in a whole neighborhood of p0,

so rank(DLN + BI(L)) = 2n + 1 in this neighborhood, which implies rank(DLN ∩
BI(L)) = 1 around p0. XΞΣ

De�nition 2.2.14 Let L → M be a line bundle and let L ∈ DL be a Dirac-Jacobi
structure. A homogeneous cocontact transversal ι : N ↪→ M is a cocontact transversal
together with a �at connection ∇ : TN → DLN , such that

im(∇)⊕ (DLN ∩BI(L)) = DLN .

Remark 2.2.15 The de�nition of a homogeneous cocontact transversal seems a bit
strange, since it includes a connection. This fact can be explained quite easily using the
homogenezation described in [46], which turns a Dirac-Jacobi structure on a line bundle
L → M into a Dirac structure on L̃ := L∗\{0M} which is homogeneous (in the sense
of [41]) with respect to the restricted Euler vector �eld E on L∗. The pre-symplectic
leaves of this Dirac structure have the additional property that E is either tangential
to it or transversal. If E is tangential, then the leaf corresponds to a pre-contact leaf
on the base M . Hence a minimal transversal N to it is transversal to the Euler vector
�eld and de�nes therefore a horizontal bundle on L∗pr(N) and hence a connection.

One may wonder what kind of (not so classical) geometric structure a homogeneous
cocontact transversal inherits. The answer is given by the following

Lemma 2.2.16 Let (L → M,L) be a Dirac-Jacobi bundle and let ∇ : TM → DL be
a �at connection, such that

im(∇)⊕ (DL ∩ L) = DL.

Then there exists a locally conformal Poisson structure π ∈ Γ∞(Λ2(TM ⊗L∗)⊗L) and
a vector �eld Z ∈ Γ∞(TM), such that
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i.) [[π, Z]](TM,L) = π (homogeneous locally conformal Poisson)

ii.) L = L(π,Z) := {
(
h(1−∇Z)+∇π]α, σ∗α+1∗⊗α(Z)

)
∈ DL | α ∈ T ∗M⊗L, h ∈ R}

where we denote 1∗ is the unique element in DL∗ such that 1∗
∣∣
im(∇)

= 0 and 1∗(1) = 1.

Proof: It is an easy computation that L has to be of the above form. The fact that
π and Z ful�ll condition i.) as well as that π is locally conformal Poisson follow from
the involutivity on L. XΞΣ

Corollary 2.2.17 Let L→M be a line bundle, let L ⊆ DL be a Dirac-Jacobi structure
and let ι : N ↪→M be a minimal transversal to L at a pre-contact point p0. Then every
�at connection ∇ gives N locally the structure of a homogeneous cocontact transversal.

Proof: In the proof of Lemma 2.2.13, we have seen that

(DLN ∩BI(L))
∣∣
p0

= 〈1〉

and hence for every �at connection ∇, we have that im(∇)
∣∣
p0
⊕ (DLN ∩BI(L))

∣∣
p0

=
DLN and hence this decomposition holds in a whole neighborhood of p0. XΞΣ

Remark 2.2.18 Note that this implies that every minimal transversal to a pre-contact
leaf has an induced homogeneous locally conformal Poisson structure. Moreover, it is
easy to show that

Corollary 2.2.19 Let L→M be a line bundle, let L ⊆ DL be a Dirac-Jacobi structure
and let ι : N ↪→ M be a minimal transversal to a contact point p0. If νN ∼= V × N ,
then there exists a local trivialization of Lν and a fat tubular neighborhood Ψ: Lν → LU
such that,

BΨ(L
∣∣
U

) =
(
L(πN ,ZN ) ⊕ TV

)ω
,

where (πN , ZN ) is the homogeneous Poisson structure on the transversal from Lemma
2.2.16. Here we see

L(πN ,ZN ) ⊆ DLν

via the canonical identi�cations DLνN = TV ⊕DLN and J1Lν = T ∗V ⊕ J1LN .

Corollaries 2.2.11 and 2.2.19 can be seen as the Jacobi-geometric analogue of the results
obtained by Blohmann in [8].
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2.3. Normal Forms and Splitting Theorems of Jacobi Bundles

2.3 Normal Forms and Splitting Theorems of Jacobi Bun-

dles

As explained in Example 1.2.35, Jacobi bundles are a special kind of Dirac-Jacobi
bundles. In addition, we have that Jacobi isomorphism induces an isomorphism of
the corresponding Dirac structures (this holds even for morphisms if one considers
forward maps of Dirac-Jacobi structures which we will not explain here, see [46]).But
the converse is not true: if the Dirac-Jacobi structures of two Jacobi structures are
isomorphic, it does not follow in general that the Jacobi structures are isomorphic.
What is not "allowed" in Jacobi geometry are B-�eld transformations. Nevertheless,
we can keep track of them, if we make further assumptions on the transversals.

2.3.1 Cosymplectic Transversals

In this section, we use the notion of cosymplectic transversals as explained in the
previous section.

Lemma 2.3.1 Let L → M be a line bundle, J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) be a Jacobi
tensor with corresponding Dirac-Jacobi structure LJ ∈ DL and let ι : N ↪→ M be a
cosymplectic transversal. Then

J ](Ann(DLN ))⊕DLN = DL
∣∣
N
.

Proof: First we prove that J ]
∣∣
Ann(DLN )

is injective. So let α ∈ Ann(DLN ), such that

J ](α) = 0. Then for an arbitrary β ∈ J1L, we have that

α(J ](β)) = −β(J ](α)) = 0.

Hence α = Ann(DLN ) ∩Ann(im(J ])) = Ann(DLN + im(J ])) = {0}, and J ]
∣∣
Ann(DLN )

is injective. Let ∆ ∈ DLN ∩J ](Ann(DLN )), then there exists an α ∈ Ann(DLN ), such
that J ](α) = ∆. Thus we have that (∆, α) ∈ LJ and moreover (∆, DI∗α) ∈ BI(LJ).
But, since α ∈ Ann(DLN ), we have that DI∗α = 0 and hence ∆ = 0, since N is
cosymplectic. The claim follows by counting dimensions. XΞΣ

Let us from now on �x a Jacobi bundle (L→M, {−,−}) with Jacobi tensor J and
corresponding Dirac-Jacobi structure LJ . Suppose that ι : N ↪→ M is a cosymplectic
transversal, then we have that

prν ◦ σ ◦ J ] : Ann(DLN )→ νN

is an isomorphism. Let us choose α ∈ Γ∞(J1L), such that α
∣∣
N

= 0 and such that

dNα : νN → Ann(DLN ) ⊆ J1L
∣∣
N
is a right-inverse to prν ◦ σ ◦ J ]. Note that this does

always exist due to Lemma 2.1.1. Then we have

prν(dNσ(J ](α))) = prν(σ(J ](dNα))) = idνN
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and hence Tν(σ(J ](α))) = E . Multiplying α by a bump-function which is 1 near N ,
we may arrange that σ(J ](α)) is complete and hence J ](α) is an Euler-like derivation.
By Theorem 2.2.6, we have that

BΨ(LJ) = BP (LJN )ω,

where ω = Ψ∗
∫ 1

0
1
t (Φ

J](α)
log(t)))

∗(dLα) dt and Ψ: Lν → LU is the unique tubular neighbor-

hood, such that Ψ∗(J ](α)) = ∆E .

Proposition 2.3.2 The 2-form ω ∈ Ω2
Lν

(νN ) restricted to N has kernel DLN .

Proof: One can show, in local coordinates, that dNα([σ(�)
∣∣
N

]TN ) = (L�α)
∣∣
N

for

all � ∈ Γ∞(DL). Hence we have trivially L∆α
∣∣
N

= 0 for ∆ ∈ Γ∞(DL), such that

∆
∣∣
N
∈ Γ∞(DLN ). Let now ∆,� ∈ Γ∞(DL), such that ∆

∣∣
N
∈ Γ∞(DLN ), then

dLα(∆,�)
∣∣
N

= −(dLι∆α)(�)
∣∣
N

= −�(α(∆))
∣∣
N

= −(L�α)(∆)
∣∣
N
− α([�,∆])

∣∣
N

= −(L�α)
∣∣
N

(∆)

= dNα([σ(�)
∣∣
N

])(∆)

= 0,

where the last equality follows since dNα takes values in Ann(DLN ). Hence we have
that ker((dLα)[) ⊇ DLN , in particular this is true for 1

t (Φ
∆
log(t))

∗(dLα), since Φlog(s)

∣∣
N

is a gauge transformation �xing DLN . Thus it is true also for ω, since DΨ
∣∣
DLN

= id.

Equality follows from the fact that dNα is choosen to be injective, since it has a left-
inverse. XΞΣ

We want to describe the structure of ω at N . Note that for a cosymplectic transversal
N , the normal bundle νN always comes together with a canonical symplectic (i.e. non-
degenerate) LN -valued 2-form Θ ∈ Γ∞(Λ2ν∗N ⊗ LN ) de�ned by

Θ(X,Y ) = (prν ◦ σ ◦ J ]
∣∣
Ann(DLN )

)−1(X)(Y )

Lemma 2.3.3 The 2-form ω ∈ Ω2
Lν

(νN ) coincides, shrinked to νN ⊆ DLνN , with Θ.

Proof: Note that for a cosymplectic transversal, we have

DL
∣∣
N

= DLN ⊕ J ](Ann(DLN )) = DLN ⊕ νN

Where we used the canonical identi�cation

J ](Ann(DLN )) =
DL
∣∣
N

DLN
= νN .
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2.3. Normal Forms and Splitting Theorems of Jacobi Bundles

Moreover, we have

DLν
∣∣
N

= DLN ⊕ νN ,

where we include νN by the following map:

·ver : νN 3 vn →
(
λ→ d

dt

∣∣∣
t=0

P0P
∗
t (λ)(vp)

)
∈ DnLν

for Pt : Lν 3 (vn, ln) 7→ (tvn, ln) ∈ Lν . It is clear thatDΨ �xesDLN , since Ψ
∣∣
N

: LN →
LN is identity. We want to show that DΨ(νN ) ⊆ J ](Ann(DLN )). One can show that
by an elementary calculation, that

DΨ(vver
n ) = lim

t→0

∆λt(ψ(vn))

t

using Equation 2.1.5. But by de�ntion, we have that

dN∆(vn) = lim
t→0

∆λt(ψ(vn))

t

hence DΨ ◦ (·)ver = dN∆ = J ] ◦ dNα, but α was chosen in such a way that dNα takes
values in Ann(DLN ). Thus DΨ

∣∣
N

(∆n, vn) = (Deltan, J
](dNα(vn)) and thus respects

the splittings DLv
∣∣
N

= DLN ⊕ νN and DL
∣∣
N

= DLN ⊕ J ](Ann(DLN )). Using

BΨ(LJ) = BP (LJN )ω,

ker(ω[)
∣∣
N

= DLN and the de�nition of Θ, we see that along N ω and Theta have to
coincide. XΞΣ

This leads us to the �rst normal form theorem for Jacobi manifolds.

Theorem 2.3.4 (Normal Form for Jacobi Bundles I) Let (L → M,J) be a Ja-
cobi bundle, let N ↪→M be a cosymplectic transversal. For every closed ω ∈ Ω2

Lν
(νN ),

such that ker(ω[)
∣∣
N

= DLN and ω coincides with Θ at νN ⊆ DLν , the following holds:

i.) BP (LJN )ω is the graph of a Jacobi structure near N .

ii.) there exists a fat tubular neighborhood Ψ: Lν → LU which is a Jacobi map near
the zero section.

Proof: We have proven this theorem for the special ω given by

ω =

∫ 1

0

1

t
(Φ

J](α)
log(t))

∗ dLα dt.

Let ω′ be a second Atiyah 2-form ful�lling the requirements of the theorem, then

σt := t(ω′ − ω)

is a (time-dependent) Atiyah 2-form such that σ0 = 0 and moreover σt
∣∣
N

= 0. Thus,

(BP (LJN )ω)σt = BP (LJN )ω+σt

is a Jacobi structure near N . Now use Appendix A.1 to get the result. XΞΣ
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An immediaty consequence of Theorem 2.3.4 is the Splitting for Jacobi manifolds
around a locally conformal symplectic leaf, proven by Dazord, Lichnerowicz and Marle
in [17].

Theorem 2.3.5 Let L→M be a line bundle, let J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) be a Jacobi
tensor and let p0 ∈M be a locally conformal symplectic point such that the leaf through
p0 has dimension 2k. Then there are a line bundle trivialization LU ∼= RU around p0

and a cosymplectic transversal N ↪→ U , such that U ∼= U2k × N for an open subset
0 ∈ U2k ⊆ R2k, such that corresponding Jacobi pair (Λ, E) is transformed (via this
trivialization) to

(Λ, E) = (πcan + ΛN + EN ∧ Zcan, EN ).

(ΛN , EN ) is the induced Jacobi pair on the transversal N and the canonical stuctures
on the U2k are given by (πcan, Zcan) = ( ∂

∂pi
∧ ∂
∂qi
, pi

∂
∂pi

).

Proof: As the statement is local, we can assume that the line bundle is trivial. Let
us choose an arbitrary minimal transversal N at p0, such that νN ∼= R2k ×N and

(DLN ∩BI(LJ)) = {0}

holds in an open neighborhood of p0. Using Corollary 2.2.11, we �nd

BΨ(L
∣∣
U

) =
(
LJN ⊕ TR

2k)ω.

Since the line bundle and the normal bundle are trivial, we can identify Γ∞(Λ2ν∗⊗Lν)
by Γ∞(R2k

N ). And thus Θ is a symplectic structure on the vector bundle R2k
N → N and

hence we can �nd a Darboux frame {ei, f j}i,j=1,...,q ⊆ Γ∞(R2k
N ), i.e.

Θ =

q∑
i=1

ei ∧ fi

for the dual basis {ei, fj}i,j=1,...,2k. We de�ne

ωcan = dqi ∧ dpi + 1∗ ∧ pi dqi ∈ ΩRU (U),

where the qi's (resp. pi's) are the canonical coordinates on R2k × N induced by the
ei's (resp. fi's). By de�nition, we have that ker(ω[can)

∣∣
N

= DLN , ω coincides with Θ
at νN ⊆ DLν and ωcan is closed. Using Theorem 2.3.4, we have that(

LJN ⊕ TR
2k)ωcan ∼= LJ

near N . An easy computation shows that the Jacobi structure, inducing the Dirac-
Jacobi structure on the right, is exactly the one from the theorem. XΞΣ
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2.3. Normal Forms and Splitting Theorems of Jacobi Bundles

2.3.2 Cocontact Transversals

The second kind of transversals we want to discuss in the context of Jacobi geometry are
cocontact transversals, which were also introduced before in De�nition 2.2.12. In fact
this notion is not enough for our purposes and we need to assume more information on
the structure of the transversal, which is precisely the notion of homogeneous cocontact
transversal from De�nition 2.2.12.

Lemma 2.3.6 Let L → M be a line bundle, J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) be a Jacobi
tensor with corresponding Dirac- Jacobi structure LJ ∈ DL and let ι : N ↪→ M be a
homogeneous cocontact transversal with connection ∇ : TN → DLN . Then

J ](Ann(im(∇)))⊕ im(∇) = DL
∣∣
N
.

Moreover, J ]
∣∣
Ann(im(∇))

: Ann(im(∇))→ DL
∣∣
N

is injective.

Proof: The proof follows the same lines as that of Lemma 2.3.1. XΞΣ

Now we pick as in the cosymplectic case, an α ∈ Γ∞(J1L), such that α
∣∣
N

= 0 and

dNα : νN → Ann(im(∇)) ⊆ J1L
∣∣
N

de�nes a splitting of I !L → L
∣∣
N
→ νN , i.e. prν ◦ σ ◦ J ] ◦ dNα = idνN . Hence we

have that J ](α), multiplied by a suitable bump function which is 1 close to N , is an
Euler-like derivation. By Theorem 2.2.6, we have that

BΨ(LJ) = BP (BI(L))ω,

where ω = Ψ∗
∫ 1

0
1
t (Φ

J](α)
log(t))

∗(dLα) dt and Ψ: Lν → LU is the unique tubular neighbor-

hood, such that Ψ∗(J ](α)) = ∆E . We can prove, as before, the following

Proposition 2.3.7 The Atiyah 2-form ω ∈ Ω2
Lν

(νN ) restricted to N has kernel im(∇).

Proof: This proof follows the same lines as the proof of Proposition 2.3.2. XΞΣ

As in the cosymplectic transversal case, we can de�ne a skew symmetric 2-form

Θ ∈ Γ∞(Λ2J ](Ann(im(∇))⊗ LN )

by

Θ(X,Y ) = (J ]
∣∣
Ann(im(∇))

)−1(X)(Y )

since J ]
∣∣
Ann(im(∇))

: Ann(im(∇))→ J ](Ann(im(∇)) is a bijection. It is easy to see that

Θ is non-degenerate. Moreover, we have

Lemma 2.3.8 The 2-form ω ∈ Ω2
Lν

(νN ), restricted to νN ⊕K ⊆ DLνN , concides with
Θ, where we denote K := (DLN ∩BI(LJ)).
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Chapter 2. Normal Form Theorems

Proof: Using the ideas of the proof of Lemma 2.3.3, we can show that the fat tubular
neighborhood transports J ](Ann(im(∇)) to νN⊕K, hence the proof is an easy adaption
of the proof of Lemma 2.3.3. XΞΣ

Theorem 2.3.9 (Normal Form for Jacobi bundles II) Let L→M be a line bun-
dle, let J be a Jacobi structure and let N →M be a homogeneous cocontact transversal
with connection ∇ : TN → DLN . For every closed 2-form ω ∈ Ω2

Lν
(νN ), such that

ker(ω[)
∣∣
N

= im(∇) and ω coincides with Θ at νN ⊕ (BI(LJ) ∩ DLN ) ⊆ DLν the
following holds

i.) BP (LJN )ω is the graph of a Jacobi structure near N .

ii.) there exists a fat tubular neighborhood Ψ: Lν → LU which is a Jacobi map near
the zero section.

Proof: The proof follows the lines of Theorem 2.3.4 with the obvious adaptions.XΞΣ

Now we want to prove the second splitting Theorem of Dazord and Lichnerowicz
and Marle in [17], namely the splitting of Jacobi manifolds around contact leaves.

Theorem 2.3.10 Let L → M be a line bundle, let J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) be a
Jacobi tensor and let p0 ∈ M be a contact point, such that the leaf through p0 has
rank 2k + 1. Then there are a line bundle trivialization LU ∼= U × R around p0 and
a homogeneous cocontact transversal N ↪→ U , such that U ∼= U2k+1 × N for an open
subset 0 ∈ U2k+1 ⊆ R2k+1 and the corresponding Jacobi pair (Λ, E) is transformed (via
this trivialization) to

(Λ, E) = (Λcan + πN + Ecan ∧ ZN , Ecan),

where (πN , ZN ) is the induced homogeneous Poisson structure on the transversal N and
the contact structure on the U2k+1 is given by (Λcan, Ecan) = (( ∂

∂qi
+ pi

∂
∂u) ∧ ∂

∂pi
, ∂∂u) .

Proof: Let p0 ∈M be a contact point and let N ⊆M be a transversal, such that

σ(im J ])
∣∣
p0
⊕ Tp0N = Tp0M.

We can again assume that the line bundle L → M is trivial, since we want to prove
a local statement. In a possibly smaller neighborhood, we can assume that νN =
V ×N → N . We want to show that there is a trivialization of νN , such that Θ looks
trivial, where we specialize along the way through the proof what we mean by trivial.
So let us denote by λ the local trivializing section of LN , thus we can write

Θ(∆,�) = Ω(∆,�) · λ

for ∆,� ∈ νN ⊕ K, for a unique ΩΓ∞(Λ2(νN ⊕ K)∗). Since LN → N is trivial, we
identify DLN = TN ⊕ RN and choose the trivial connection ∇. Hence, we can �nd a
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(local) nowhere vanishing section ofK of the form 1−Z for a unique Z ∈ Secinfty(TN).
Let us now shrink

Θ
∣∣
νN

: νN × νN → LN .

Since νN has odd dimensional rank and Θ is skew-symmetric, locally we can �nd a
local non-vanishing X ∈ Γ∞(νN ), such that Θ(X, ·) = 0, moreover, since Θ is non-
degenerate, we can choose X so that

Ω(1− Z,X) = 1.

It is now easy to see that the symplectic complement S := 〈1−Z,X〉⊥ω ⊆ νN . Finally,
we �nd a trivialization of S such that Ω

∣∣
S
is the trivial symplectic form with Darboux

frame {e2, ek+2, . . . }. Hence, by extending this trivialization to νN = V ×N by using
the section X as b, we �nd that {b,1−Z, e1, f

1, e2, f
2, . . . } is a Darboux frame of Ω in

this trivialization. Using the dual basis {b∗, ei, fj} to the Darboux frame we get (linear)
funtions on νN denoted by (u, qi, pj). With the decomposition DLν = TV ⊕TN⊕RνN
we can choose

ω = −
(

dqi ∧ dpi + 1∗ ∧ (du− pi dqi)
)

which coincides with Θ on νN ⊕K and is dL-closed. By applying Theorem 2.3.9, since
N together with ∇ is a homogeneous cocontact transversal, we �nd a Jacobi morphism

BP (LN )ω ∼= LJ .

An easy computation shows that BP (LN )ω is the graph of (Λcan + πN + Ecan ∧
ZN , Ecan). XΞΣ

2.4 Generalized Contact Bundles

The last two sections gave us the methods to attack the local structure of generalized
contact bundles. But as for Jacobi structures and Dirac-Jacobi bundles, we need to
discuss transversals of generalized contact structures.

De�nition 2.4.1 Let L → M be a line bundle and let L ⊆ DCL be a generalized
contact structure. A submanifold N ⊆ M is called transversal, if it is a transversal of
the corresponding Jacobi tensor.

As in the Jacobi setting, this isnot enough to ensure a reasonable structure induced on
the transversal, but nevertheless we have

Lemma 2.4.2 Let (L → M,L) be a generalized contact bundle and let ι : N ⊆ M be
a transversal. Then

BI(L) ⊆ DCLN

is a (complex) Dirac-Jacobi bundle.

Let us distinguish the same cases as in the previous sections.
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2.4.1 Cosymplectic Transversals

Lemma 2.4.3 Let L → M be a line bundle, let L ⊆ DCL be a generalized contact
structure and let submanifold ι : N ↪→ M be a cosymplectic transversal to the corre-
sponding Jacobi tensor J . Then

BI(L) ⊆ DCLN

is a generalized contact structure. Moreover, its Jacobi tensor agrees with the Jacobi
tensor induced by J .

Proof: Recall from Lemma 2.3.1 that a cosymplectic transversal to a Jacobi structure
always ful�lls

J ](Ann(DLN ))⊕DLN = DL
∣∣
N

and J ]
∣∣
Ann(DLN )

: Ann(DLN ) → DLN is injective. Let (∆, ψ) ∈ BI(L) ∩ BI(L) be

real. Then there exists χ ∈ J1
CL, such that (∆, χ) ∈ L. If we denote by φ, J, α the

components of the endomorphism K inducing L,

(J ](Imχ),−φ∗Imχ) = K(0, Imχ) =
1

2i
K((∆, χ)− (∆, χ))

=
1

2i
(i(∆, χ) + i(∆, χ))

= (∆,Reχ)

and we conclude (∆, χ) = (J ](Imχ), iImχ − φ∗Imχ). On the other hand we have that
χ
∣∣
DLN

= ψ and hence it is real, which means that Imχ ∈ Ann(DLN ). Now we use that

N is a cosymplectic transversal: J ](Imχ) ∈ DLN if and only if Imχ = 0. This means
that (∆, χ) ∈ L is real and hence has to be zero, which implies also (∆, ψ) = 0. We
can also use the above computation to show that for ψ ∈ J1L, such that J ](ψ) ∈ DLN ,
we have J ](ψ) = J ]N (ψ

∣∣
DLN

), where we denote by JN the Jacobi structure induced

by BI(L). This property is also shared by the Jacobi tensor induced by J on N and
determines it completely. XΞΣ

Now, we want to show that a generalized contact structure is uniquely determined
by its backwards transform on a cosymplectic transversal, up to a B-�eld transforma-
tion. For the following Theorem, we use the notation of the previous section, more
precisely Subsection 2.3.1.

Theorem 2.4.4 (Normal Forms for Generalized Contact Bundles I) Let (L→
M,L) be a generalized contact bundle and let ι : N ↪→M be a cosymplectic transversal.
Then for every closed ω′ ∈ Ω2

L(M), such that ker((ω′)[)
∣∣
N

= DLN and ω′ coincides
with Θ at νN ⊆ DLν , the complex Dirac-Jacobi structure

BP (LN )iω′
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is a generalized contact structure near the zero section and there exists a fat tubular
neighborhood Ψ: Lν → LU which is an isomorphism of generalized contact bundles near
the zero section (up to a B-�eld transformation).

Proof: We follow the lines of the proof of Theorem 2.3.4. Let us choose α ∈ Ω1
L(M),

such that J ](α) is Euler-like (we denote by J the Jacobi structure of the generalized
contact structure). Since (J ](α), iα − φ∗α) ∈ Γ∞(L), we can apply Theorem 2.2.6 to
get that

BΨ(L
∣∣
U

) = (BI◦P (L))iω+B

for the unique tubular neighborhood Ψ: Lν → LU , such that Ψ∗(J ]α) = ∆E , where

iω+B =
∫ 1

0
1
t (Φ

J](α)
log(t))

∗(dL(iα−Φ∗α)) dt. So the claim is proven for ω. Using Appendix
A.1, we can argue like in Theorem 2.3.4 to get the claim. XΞΣ

Of course we can use this normal form theorem together with the normal form
theorem for Jacobi structures 2.3.4 to give a local structure result for generalized
contact bundles as well.

Theorem 2.4.5 (Splitting Theorem for Generalized Contact Bundles I)
Let (L→M,L) be a generalized contact bundle and let p0 ∈M be a locally conformal
symplectic point to its Jacobi structure. Then there are a line bundle trivialization
LU ∼= U × R around p0 and a minimal cosymplectic transversal N ↪→ U , such that
U ∼= U2k × N for an open subset 0 ∈ U2k ⊆ R2k with coordinates {q1, p1, . . . , q

k, pk},
such that L

∣∣
U
is given by the endomorphism K on

DRU2k×N
∼= TU2k ⊕

DLN︷ ︸︸ ︷
TN ⊕ RU2k×N ,

given by its entries

i.) φ = (id−Zcan ⊗ 1∗) ◦ φN

ii.) J = πcan + ΛN + (1− Zcan) ∧ EN

iii.) α = −dxi ∧ dpi + 1∗ ∧ pi dxi + αN

for the structures φN , JN = (ΛN , EN ) and αN inducing the generalized contact bundle
on N and (πcan, Zcan) = ( ∂

∂pi
∧ ∂
∂qi
, pi

∂
∂pi

).

Proof: Using the the Theorems 2.4.4 and 2.3.5 as well as Corollary 2.2.11, we can
see that, up to a B-�eld,

L
∣∣
U

=
(
TCU2k ⊕ LN )iω

for ω = dxi∧dpi−1∗∧pi dxi. The rest is just a computation using that
(
TCU2k⊕LN )iω

is the i-eigenbundle of K. XΞΣ
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The exact same result is proved in [41], using di�erent notation and slightly di�erent
techniques.

As a �nal remark of this subsection, we want to mention that there is a re�nement
of Theorem 2.4.5, if the Jacobi structure is locally regular around a locally conformal
symplectic point p, i.e. its foliation is locally regular around p. In this case the
transversal can be described in a better way:

Lemma 2.4.6 Let (L → M,L ⊆ DCL) a generalized contact bundle and let ι : N ↪→
M be a minimal transversal through the regular locally conformal symplectic point
p0 ∈ M . Then the induced generalized contact structure on N is (locally) a B-�eld
transformation of a complex structure on DLN .

Proof: If the foliation induced by the Jacobi structure is regular around p0 it is easy
to see that the Jacobi structure on a minimal transversal is trivial and hence using
Lemma 2.4.3, we conclude that BI(L) is induced by an endomorphism of the form

K =

(
φ 0

α[ −φ∗

)

for a gauge complex structure φ ∈ Γ∞(End(DL)) and β ∈ Ω2
L(M). From now on, we

use the notation and results from Appendix A.3. Recall thatDCLN = DL
(1,0)
N ⊕DL(0,1)

N ,

where DL
(1,0)
N (resp. DL

(0,1)
N ) is the +i-Eigenbundle (resp. −i) of φ. De�ne γ ∈ Ω2

L(M)
by

γ(∆,�) =
1

2i
α(∆,�) for ∆,� ∈ DL(1,0)

N and γ[(DL
(0,1)
N ) = 0.

Hence we have that γ ∈ Ω
(2,0)
L (M), furthermore, one can show that for ∆ ∈ DL(1,0)

N ,
we have that (∆, ι∆γ) ∈ BI(L), which implies that ∂Lγ = 0. Shrinking to a small
enough open neighborhood U , where the Atiyah-Dolbeault cohomology is trivial, we

can �nd ρ ∈ Ω
(1,0)
L (M), such that γ = ∂Lρ. Choosing the B-�eld

B = Re(γ + ∂Lρ)

the claim is just a computation. XΞΣ

2.4.2 Cocontact Transversals

Lemma 2.4.7 Let (L → M,L ⊆ DCL) be a generalized contact structure and let
ι : N ↪→M be a cocontact transversal for its Jacobi structure J . Then

i.) rank(BI(L) ∩BI(L)) = 1

ii.) prDBI(L) + prDBI(L) = DCL

iii.) prD(BI(L) ∩BI(L)) = DLN ∩ prD(BI(LJ)).
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Proof: Recall that a cocontact transversal for a Jacobi structure J is a transversal
N such that

rank(DLN ∩BI(LJ)) = 1.

Let us choose 0 6= (∆, 0) ∈ DLN ∩BI(LJ), this means we can �nd α ∈ Γ∞(J1L), such
that (J ](α), α) = (∆, α) ∈ LJ , such that DI∗α = 0. Moreover, we have

(J ](α), iα− φ∗α) ∈ L

where L is realized as the +i-eigenbundle of(
φ J ]

β[ −φ∗

)
.

In conclusion, (J ](α),−DI∗φ∗α) ∈ BI(L) ∩BI(L), since it is real. In the same way,
one can show that BI(L) ∩BI(L) has rank 1 and hence every element has to be of
that form. Point ii.) now follows by counting dimensions.

Let us prove that prD : BI(L) ∩BI(L) → DCL is injective. Let (0, α) ∈ BI(L) ∩
BI(L) be real, then there exist (0, β) ∈ L, such that DI∗β = α. This further means
that β ∈ Ann(prD(L)) ⊆ Ann(prD(L) ∩ prD(L)) = Ann(im(J ])C). But this implies
that β is real, because N is a transversal of J , i.e. DCLN + im J ]C = DCL and
DI∗β = α. Every real element in L vanishes identically and thus β = 0. Let (∆, α) ∈
prD(BI(L) ∩BI(L)), then by i.) there exists β ∈ Ann(DLN ), such that (J ](β), iβ −
φ∗β) ∈ L) with J ](β) = ∆. So we conclude ∆ ∈ DLN ∩ im(J ]). XΞΣ

In Section 2.3, we discussed homogeneous cocontact trasnversals, i.e. cocontact
transversals with a special connection (see 2.2.14) in order to obtain a homogeneous
locally conformal Poisson structure on the transversal. In the case of generalized
contact structures we obtain something very similar.

Lemma 2.4.8 Let L → M be a line bundle, let L ⊆ DCL be a complex Dirac-Jacobi
structure and let ∇ : TM → DL be a �at connection, such that

i.) prDL+ prDL = DCL

ii.) rank(L ∩ L) = 1

iii.) im(∇)C ⊕ prD(L ∩ L) = DCL

Then there exists a locally conformal generalized complex structure D ⊆ TLCM and a
section (Z, ζ) ∈ Γ∞(TLM), such that

i.) (X,α) ∈ Γ∞(D) =⇒ ([Z,X], α−L∇
X α+ ιX d∇ζ) ∈ Γ∞(D)

ii.) L = {
(
∇X , σ∗α+ 1∗ ⊗ (α(Z)− ζ(X))

)
∈ TLCM | (X,α) ∈ D} ⊕

〈(1−∇Z , σ∗ζ + 1∗ ⊗ ζ(Z))〉C
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Proof: It is an easy veri�cation that L looks like in ii.) for a subbundle D ⊂ TLCM .
The rest follows by the involutivity of L. XΞΣ

Corollary 2.4.9 Let L → M be a line bundle, let L ⊆ DCL be a generalized contact
structure and let ι : N ↪→ M be a homogeneous cocontact transversal with �at connec-
tion ∇ : TN → DLN for the induced Jacobi structure J . Then there exists a locally
conformal generalized complex structure D ⊆ TLNC N and a section (Z, ζ) ∈ Γ∞(TLNN),
such that

i.) (X,α) ∈ Γ∞(D) =⇒ ([Z,X], α−L∇
X α+ ιX d∇ζ) ∈ Γ∞(D)

ii.) L = {
(
∇X , σ∗α+ 1∗ ⊗ (α(Z)− ζ(X))

)
∈ TLNC N | (X,α) ∈ D} ⊕

〈(1−∇Z , σ∗ζ + 1∗ ⊗ ζ(Z))〉C.

Moreover, the homogeneous locally conformal Poisson structure induced by D coincides
with the one induced by J (as in De�nition 2.2.14 and Lemma 2.2.16).

Proof: The existence of D and the form of L is an easy consequence of Lemmas
2.4.7 and 2.4.8. And the fact that the induced homogeneous locally conformal Poisson
structures coincide follows the same lines as Lemma 2.4.3. Note that condition i.)
implies that the induced locally conformal Poisson structure is indeed homogeneous
with respect to Z. XΞΣ

We can again collect the results of all the consideration in Jacobi and related
geometries to get, using the notation of Section 2.3,

Theorem 2.4.10 (Normal Forms for Generalized Contact Bundles II)
Let (L → M,L) be a generalized contact bundle and let N → M be a homogeneous
cocontact transversal with connection ∇ : TN → DLN . For every closed Atiyah 2-
form ω′ ∈ Ω2

Lν
(νN ), such that ker((ω′)[)

∣∣
N

= im(∇) and ω′ coincides with Θ at νN ⊕
(BI(LJ) ∩DLN ) ⊆ DLν ,

BP (LN )iω′

is a generalized contact structure near the zero section and there exists a fat tubular
neighborhood Ψ: Lν → LU , which is an isomorphism of generalized contact bundles
near the zero section (up to a B-�eld transformation).

Proof: The proof follows the same lines of Theorem 2.4.4 and the techniques of
Theorem 2.3.9 and by using Lemma 2.4.7. XΞΣ

As a last step of this chapter, we give now a local splitting for generalized contact
structures, which is just a corollary of the previous considerations.

Theorem 2.4.11 (Splitting Theorem for Generalized Contact Bundles II)
Let (L → M,L) be a generalized contact structure and let p0 ∈ M be a contact point.
Then there are a line bundle trivialization LU ∼= U × R around p0 and a minimal
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homogeneous cocontact transversal N ↪→ U , such that U ∼= U2k ×N for an open subset
0 ∈ U2k+1 ⊆ R2k+1. Additionally there are coordinates {u, q1, p1, . . . , q

k, pk}, such that
L
∣∣
U
is given by the endomorphism K on

DRU2k+1×N
∼= TU2k ⊕

DLN︷ ︸︸ ︷
TN ⊕ RU2k+1×N ,

given by its entries

i.) φ = φN +
(
φN (ZN )− π]N (ξN ) + ξN (ZN ) ∂

∂u

)
⊗ 1∗ + ∂

∂u ⊗ ξN

ii.) J = Λcan + πN + (1− ZN ) ∧ Ecan

iii.) α = Ωcan + αN − 1∗ ∧ (ιZNαN − φ∗NξN )

for the structures φN , πN and αN inducing the generalized complex structure on N
together with the section (ZN , ξN ) and (Λcan, Ecan) = (( ∂

∂qi
+ pi

∂
∂u) ∧ ∂

∂pi
, ∂∂u) and

Ωcan = dqi ∧ dpi + 1 ∧ (du− pi dqi).

As a result this is contained already in [41], but obtained, again, by slightly di�erent
techniques. The last part is dedicated to a special case of the Theorems 2.4.11 and
2.4.10. As in the previous subsection, we want to discuss the structure of a transversal
to a regular contact point.

Lemma 2.4.12 Let L → M be a line bundle,let L ⊆ DCL be a generalized contact
structure and let p0 ∈ M be a regular contact point. For a minimal homogeneous co-
contact transversal ι : N ↪→M at p, the locally conformal generalized complex structure
on N is a B-�eld transformation of a complex structure.

Proof: It is easy to see that, if the Jacobi structure is regular around p, then the
induced homogeneous locally conformal Poisson structure induced by it is vanishing
and also the homogeneity vector �eld Z. So the endomorphism I realizing the locally
conformal generalized complex structure is of the form

I =

(
φ 0

β[ −φ∗

)
for a complex structure φ ∈ Γ∞(End(TM)) and β ∈ Γ∞(Λ2T ∗M ⊗ L). Not that, due
to Corollary 2.4.9, we have that there is a ζ ∈ Γ∞(T ∗M ⊗ L), such that

(X,α) ∈ Γ∞(D) =⇒ (0, α+ ιX d∇ζ).

Note that this implies, shown by an easy computation, that β = ιφ d∇ζ for

ιφ d∇ζ(X,Y ) = d∇ζ(φ(X), Y ) + d∇ζ(X,φ(Y )).

Now we apply the B-�eld −d∇ζ to the endomorphism and see that

exp(−d∇ζ)I exp(d∇ζ) =

(
φ 0

0 −φ∗

)
. XΞΣ
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Thus is the case of a regular foliation also the transversal inherts an extreme case
as a structure and by Theorem 2.4.11, the generalized contact structure looks locally
like a "product" of a contact structure and a complex structure.

Remark 2.4.13 Theorems 2.4.5 and 2.4.11 can be seen as the generalized contact
bundle analogue of the Abouzaid-Boyarchenko splitting theorem for generalized com-
plex manifolds (see [1]). Note that, eventhough we are obtaining the analogue of their
result, we are not using their techniques. Instead, as mentioned before, we are using
the techniques of [12].

2.5 Application: Splitting Theorem for homogeneous Pois-

son Structures

Using the homogenezation scheme from [10], see also Appendix A.2, one can see that
Jacobi bundles are nothing else but special kinds of homogeneous Poisson manifolds.
Moreover, the two most important examples of Poisson manifolds are of this kind:
the cotangent bundle and the dual of a Lie algebra. Using this insight, it is easy
to see that proving something for Jacobi structures gives a proof for something in
homogeneous Poisson Geometry. We want to apply this philosophy to give a splitting
theorem for homogeneous Poisson manifolds. The �rst appearance of such a theorem
was [17, Theorem 5.5] in order to prove the local splitting of Jacobi pairs. Here we want
to attack the problem from the other side: we use the splitting of Jacobi manifolds
to prove the splitting of homogeneous Poisson structures. Recall that a homogeneous
Poisson structure is a pair (π, Z) ∈ Γ∞(Λ2TM ⊕ TM) for some manifolds, such that
π is a Poisson tensor and

LZπ = −π.

Note that the leaves of π have the property, that Z is either tangential or transversal
to a whole leaf.

Theorem 2.5.1 Let (π, Z) be a homogeneous Poisson structure on a manifold M and
let p0 ∈ M be a point such that Zp0 6= 0 and rank(π) = 2k. Then there exist an
open neighborhood U of p0, an open neighborhood U2k of 0 ∈ R2k, a manifold N with a
homogeneous Poisson structure (πN , ZN ) with πN

∣∣
p0

= 0 and a di�eomorphism ψ : U →
U2k ×N , such that

ψ∗π =
∂

∂pi
∧ ∂

∂qi
+ πN .

Additionally,

i.) if Zp0 ∈ im(π]), then ψ∗Z = pi
∂
∂pi

+ ∂
∂pk

+ ZN .

ii.) if Zp0 /∈ im(π]), then ψ∗Z = pi
∂
∂pi

+ ZN .
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Proof: Note that since Zp0 6= 0, we �nd coordinates {u, x1, . . . , xq} with p0 =
(1, 0, . . . , 0), such that Z = u ∂

∂u . In this chart, we have, using LZπ = −π,

π =
1

u
(Λ + u

∂

∂u
∧ E)

for unique Λ ∈ Γ∞(Λ2TM) and E ∈ Γ∞(TM) which do not depend on u. It is easy
to see, that we have

[Λ,Λ] = −E ∧ Λ and LEΛ = 0,

which means that (Λ, E) is a Jacobi pair. This allows us to use Theorem 2.3.5 and
Theorem 2.3.10 to prove the result. We will do it just for the case where p0 is a
contact point, which means, translated to Jacobi pairs, that Ep0 is transversal to
im(Λ])

∣∣
p0

and thus Zp0 ∈ im(π]), since the other case is very similar. Note that,

we can apply Theorem 2.3.10: there exists coordinates {x, qi, pi, yj} and a local non-
vanishing function a ∈ C∞(M) (which is basically the line bundle trivialization), such
that

Λ =
1

a
(Λcan + πN + Ecan ∧ ZN ) and E =

1

a
(Ecan + Λ](da)),

where (Λcan, Ecan) = (( ∂
∂qi

+ pi
∂
∂u) ∧ ∂

∂pi
, ∂∂u) and (φN , ZN ) is a homogeneous Poisson

structure just depending on yj-coordinates.
Applying the di�eomorphism (u, x1, . . . , xq) 7→ (a · u, x1, . . . , xq), we have

π =
1

u
(Λcan + πN + Ecan ∧ ZN + u

∂

∂u
∧ Ecan).

A (quite) long and not very insightful computation shows that the di�eomorphism

Φ(u, x1, . . . , xq) = (u,ΦZN
log(u)(Φ

Ecan

−log(u)(x
1, . . . , xq))),

where ΦZN
t (resp. ΦEcan

t ) is the �ow uf ZN (resp. Ecan), gives us

π =
1

u
(
∂

∂pi
∧ ∂

∂qi
) +

∂

∂u
∧ ∂

∂x
+ πN and Z = u

∂

∂u
+ pi

∂

∂pi
+ ZN .

Renaming coordinates of π we get the result. XΞΣ

This Application shows us that, eventhough we can see Poisson structures as Jacobi
manifolds, which suggests that they are more general objects than Poisson structures,
the splitting theorems (of Jacobi pairs) are a re�nement of the known splitting theorems
for Poisson structures.
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Chapter 3

Dual Pairs in Dirac-Jacobi

Geometry

The concept of dual pairs in Poisson Geometry was introduced in [51] and is deeply
connected to the concepts of symplectic realizations, symplectic groupoids [51] and
Morita equivalence [52]. Recently, dual pairs have also been considered in Jacobi
geometry [6]. The aim of this chapter is to introduce the Dirac-Jacobi analogue of
them and discuss some properties. The main part of this chapter is the proof of the
existence of self-dual pairs and an alternative proof of the normal form theorems from
Chapter 2. This whole chapter uses techniques from [21], where one can �nd the mirror
results in Dirac geometry. Throughout this chapter we use the notation

Lopp := {(∆,−ψ) ∈ DL | (∆, ψ) ∈ L}

for the opposite Dirac-Jacobi structure of L ⊆ DL.

3.1 Dual Pairs and weak Dual Pairs

Let us begin this section by simply giving the de�nition of a weak dual pair.

De�nition 3.1.1 A weak dual pair is a triplet of Dirac-Jacobi bundles (L0 →M0,L0),
(L1 →M1,L1) and (L→M,L) together with forward Dirac-Jacobi maps S, T covering
surjective submersions

(L0 →M0,L0)
S←− (L→M,L)

T−→ (L1 →M1,Lopp
1 ),

such that L = Lω for a closed Atiyah 2-form ω ∈ Ω2
L(M). Additionally:

i.) ω(kerDS, kerDT ) = 0

ii.) rank(kerDS ∩ kerDT ∩ kerω[) = dim(M)− dim(M0)− dim(M1)− 1
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If dim(M) = dim(M0) + dim(M1) + 1, then we say that

(L0 →M0,L0)
S←− (L→M,L)

T−→ (L1 →M1,Lopp
1 )

is a dual pair. In both cases we call (L0 →M0,L0) and (L1 →M1,L1) the legs of the
dual pair.

Remark 3.1.2 If we consider a dual pair, such that both of the legs are Jacobi struc-
tures, it is easy to see that the Atiyah 2-form has to be non-degenerate and hence has
to be a contact 2-form. In this case we talk about contact dual pairs, see [6] for more
details.

A �rst consequence of the de�nition of contact dual pairs is

Corollary 3.1.3 Let

(L0 →M0,L0)
S←− (L→M,L)

T−→ (L1 →M1,Lopp
1 )

be a weak dual pair. Then kerDS ∩ kerDT ∩ kerω[ is a smooth subbundle.

Proof: De�ne the map

K : kerDS ⊕ kerDT 3 (∆,�) 7→ (∆ +�, ι�ω) ∈ kerDS + kerDTω ⊆ DL.

Note that we wrote kerDTω := exp(ω) kerDT , even though kerDTω is not a Dirac-
Jacobi bundle. Because of the rank condition, we have

rank(kerDS + kerDTω) = rank(kerDS) + rank(kerDT )− rank(kerDS ∩ kerDTω)

= rank(kerDS) + rank(kerDT )

− rank(kerDS ∩ kerDT ∩ kerω[)

= const.

and hence the target of K is constant. Moreover we can interpret

kerDS ∩ kerDT ∩ kerω[ ∼= kerK. XΞΣ

Note that not every two Dirac-Jacobi bundles admit a (weak) dual pair between
them, later on we will �nd consequences of the the existence of a weak dual pair between
two Dirac-Jacobi bundles which makes it easy to construct examples of Dirac-Jacobi
bundles which cannot appear as the legs of a weak dual pair. Nevertheless, we want
show that two Dirac-Jacobi bundles which are graphs of Atiyah 2-forms always admit
a dual pair, and hence a weak dual pair, between them.

Corollary 3.1.4 Let (Li →Mi,Lωi) be Dirac-Jacobi bundles for i = 1, 2 coming from
two closed Atiyah 2-forms ωi ∈ Ω2

Li
(Mi). Then the product of (L1 → M1,Lω1) and

(L2 →M2,L−ω2) in the sense of Section 1.3 is a dual pair.
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Let us now continue examining the structures of weak dual pairs and give some
equivalent descriptions. We start with a general statement about Dirac-Jacobi struc-
tures and maps covering surjective submersions.

Lemma 3.1.5 Let (L → M,Lω) be a Dirac bundle induced by a closed 2-form ω ∈
Ω2
L(M) and let P : L → L0 be a regular line bundle covering a surjective submersion

p : M →M0. Then

BP (FP (L)) = kerDP + (ker(DP )⊥ω)ω

and it is smooth if and only if FP (L) is smooth.

Proof: The proof of the �rst part of the statement is an easy computation and can
be found in the Dirac case in [21]. The smoothness equivalence follows from the fact
that P covers a surjective submersion and Theorem 1.2.17. XΞΣ

The next statement is a tool in order to prove certain properties of (weak) dual pairs.
The exact same statement, with some obvious replacements, can be found in [21, Prop.
6].

Lemma 3.1.6 Let (L → M,Lω), (Li → Mi,Li) be Dirac-Jacobi bundles for i = 0, 1
and ω ∈ Ω2

L(M) closed, together with regular line bundle morphisms S : L → L0 and
T : L→ L1, then the following statements are equivalent:

i.) (L0 →M0,L0)
S←− (L→M,Lω)

T−→ (L1 →M1,Lopp
1 ) is a weak dual pair.

ii.) BS(L0) = BT (L1)ω and

rank(kerDS ∩ kerDT ∩ kerω[) = dim(M)− dim(M0)− dim(M1)− 1

iii.) S ×! T : (L→M,L)→ (L× →M×,L0 ×! Lopp
1 ) is a forward Dirac-Jacobi map

and one of the following properties hold:

• ω(kerDS, kerDT ) = 0

• rank(kerDS ∩ kerDT ∩ kerω[) = dim(M)− dim(M0)− dim(M1)− 1

iv.) BS(L0) = BT (L1)ω and S ×! T : (L → M,L) → (L× → M×,L0 ×! Lopp
1 ) is a

forward Dirac-Jacobi map

Proof: Before we start we want to mention, that rank(kerDS ∩ kerDT ∩ kerω[) =
rank(kerDS ∩ kerDTω) by an easy computation. In the following we will use this
observation usually without further comment. Let us start with i.) =⇒ ii.). Since S
is a forward Dirac map, we have

BS(L0) = BS(FS(Lω))

= kerDS + (kerDS⊥ω)ω
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by Lemma 3.1.5. Since kerDT ⊆ kerDS⊥ω , we conclude that

BS(L0) ⊇ kerDS + (kerDT )ω.

Using that kerDS ∩ kerDT ∩ kerω[ = kerDS ∩ (kerDT )ω, we deduce the equality by
the condition on the rank kerDS ∩ kerDT ∩ kerω[ = dimM − dimM1 − dimM2 − 1
of a dual pair. Since T is also a forward map one can show, using the same argument,
that

BT (L1) = kerDT + (kerDS)−ω,

and hence the claim follows. Let us now assume ii.) and let ∆ ∈ kerDS, then we have
that ∆ ∈ BS(L0) = BT (L1)ω, so there is an element α ∈ J1L1, such that (∆, DT ∗α) ∈
BT (L1) with (∆, DT ∗α + ι∆ω) = (∆, 0). Therefore, we have that ι∆ω = −DT ∗α ∈
Ann(kerDT ) and hence ω(kerDS, kerDT ) = 0. Note that having BS(L0) = BT (L1)ω,
implies

ker(DS) + kerDTω ⊆ kerDS + (ker(DS)⊥ω)ω = BS(FS(Lω)) ⊆ BS(L0)

and by the rank condition kerDS ∩ kerDT ∩ kerω[ = dimM − dimM1 − dimM2 − 1,
we even have a series of equalities. Therefore,

L0 = FS(BS(L0))

= FS(BS(FS(Lω)))

= FS(Lω),

where we used that, for a regular line bundle morphism S covering a surjective submer-
sion, we have the identity L = FS(BS(L)) for every Dirac-Jacobi structure L . The
same arguments can be used to obtain that T is also a forward map and i.) follows.
As a next step, we want to show that S ×! T : L → L× being a forward Dirac-Jacobi
map is equivalent to the inclusions

BS(L0) ⊆ kerDS + kerDTω and BT (L1) ⊆ kerDT + kerDS−ω. (3.1.1)

Recall that the product of L0 and L1 is de�ned in Subsection 1.1.1, where also the
notation

L

L× L1

L0

S×!T

S

T

P1

P0
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is introduced. We �rst assume that S ×! T is a forward Dirac-Jacobi map. So let
(∆, DS∗ψ) ∈ BS(L0). Then (DS(∆), ψ) ∈ L0 and, using the splitting from Lemma
1.3.4,

DL× = kerDP0 ⊕ kerDP1,

Hence there is a unique ∆̃ ∈ kerDP1 with DP0(∆̃) = DS(∆) and (∆̃, DP ∗0ψ) ∈
L0 ×! Lopp

1 . Since S ×! T is a forward Dirac-Jacobi map, we �nd a � ∈ DL, such that
(�, DS∗ψ) = (�, D(S ×! T )∗DP ∗0ψ) ∈ Lω, which means that DS∗ψ = ι�ω. Note that
we have � = kerDT , since DT (�) = DP1(D(S×!T )(�)) = DP1(∆̃) = 0 and similarly
∆−� ∈ kerDS. We conclude that

(∆, DS∗ψ) = (∆−�, 0) + (�, ι�ω) ∈ kerDS + kerDTω.

The second inclusion can be obtained in the exact same way and the reverse implica-
tion is an easy computation. Now let us assume that ii.) holds. Then, by the same
arguments, we have of ii.) =⇒ i.), we conclude

BS(L0) = kerDS + kerDTω and BT (L1) = kerDT + kerDS−ω

and ω(kerDS, kerDT ) = 0. By the previous consideration, this implies that S ×! T is
a forward Dirac-Jacobi map and hence we have iii.).

Now we assume iii.) and notice that the rank condition, together with S×!T being
a forward map, implies equality in the inequalities 3.1.1 and hence

BS(L0) = kerDS + kerDTω = BT (L1)ω,

which implies iv.). Moreover, ω(kerDS, kerDT ) = 0 implies that both kerDS +
kerDTω and kerDT + kerDS−ω are isotropic and hence their rank has to be ≤
rank(Lω), wich also implies equality in 3.1.1 and thus also iv.).

The last step is to assume iv.). FromBS(L0) = BT (L1)ω, we get ω(kerDS, kerDT ) =
0 and hence by the same argument as before BS(L0) = kerDS + kerDTω, which im-
plies immediately

rank(kerDS ∩ kerDT ∩ kerω[) = dim(M)− dim(M0)− dim(M1)− 1

and hence ii.). XΞΣ

The relation "being connected by a dual pair" does not form an equivalence in the
category of Dirac-Jacobi bundles. This is actually the reason to introduce weak dual
pairs, since the relation "being connected by a weak dual pair" is an equivalence. The
idea and the proofs of this claim can be found in [21] in the Dirac geometric setting. We
want to start proving transitivity. (Note that symmetry is obvious). In Subsection 3.3,
we will discuss re�exivity. Before we start, we want to stress that, what we claimed
before, transitivity does not work with dual pairs, but re�exivity does (consistently
with what we claimed).
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Lemma 3.1.7 (Transitivity) Let

(L0 →M0,L0)
S01←−− (L01 →M01,Lω01)

T01−−→ (L1 →M1,Lopp
1 )

and

(L1 →M1,L1)
S12←−− (L12 →M12,Lω12)

T12−−→ (L2 →M2,Lopp
2 )

be weak dual pairs. Then also (L0 → M0,L0) and (L2 → M2,L2) �t into a weak dual
pair.

Proof: Let us consider the pull-back (in Line, see Corollary 1.3.8)

L02 L12

L01 L1

P1

P2

S12

T01

the 2-form ω02 = P ∗1ω01 +P ∗2ω12 and the maps S02 = S01 ◦P1 as well as T02 = T12 ◦P2.
Pictorially, we have

L02

L01 L12

L0 L1 L2

P1 P2

S01

T01 S12

T12

The fact that T01 and S12 covering surjective submersions implies that so do P1 and
P2. Moreover, so do S02 and T02 and in addition they are forward Dirac-Jacobi maps
as a concatenation of forward Dirac-Jacobi maps. Additionally, we have

BS02(L0) = BP1(BS01(L0))

= BP1(BT01(L1)ω01)

= BP1(BT01(L1))P
∗
1 ω01

= BP2(BS12(L1))P
∗
1 ω01

= BP2(BT12(L2)ω12)P
∗
1 ω01

= BP2(BT12(L2))P
∗
1 ω01+ω12

= BT02(L2)ω02 .

Thus by Lemma 3.1.6 part iv.), we get that

(L0 →M0,L0)
S02←−− (L02 →M02,Lω02)

T02−−→ (L2 →M2,Lopp
2 )

is a weak dual pair. XΞΣ

86



3.1. Dual Pairs and weak Dual Pairs

We discuss next operations with (weak) dual pairs. Again transversals play an im-
portant role, namely there is a notion of "pulling back" (weak) dual pairs to transver-
sals.

Lemma 3.1.8 Let

(L0 →M0,L0)
S←− (L→M,Lω)

T−→ (L1 →M1,Lopp
1 )

be a (weak) dual pair and let Φi : LNi ↪→ Li be transversals to Li. Then

(LN0 → N0,BΦ0(L0))
SΣ←−− (LΣ → Σ,LωΣ)

TΣ−−→ (LN1 → N1,BΦ1(L1))

is a (weak) dual pair if and only if SΣ and TΣ are surjective, where

i.) Σ = N0 ×M0 M ×M1 N1 and P2 : LΣ = pr∗2L→ L

ii.) LωΣ = LP ∗2 ω = BP2(Lω)

iii.) SΣ : LΣ 3 ((x0,m, x1), λm) 7→ (x0, S(λm)) ∈ φ∗0L

iv.) TΣ : LΣ 3 ((x0,m, x1), λm) 7→ (x1, T (λm)) ∈ φ∗1L

Proof: Note that LΣ �ts in the following diagram

LΣ L×N

L L×

Φ

P2 Φ0×!Φ1

S×!T

(3.1.2)

with

Φ((n0,m, n1), λm) = (Φ−1
1,n1
◦ Tm ◦ S−1

m ◦ Φ0,n0 ,Φ
−1
0,n0

(S(λm)))

and one can show that diagram (3.1.2) is a pull-back diagram in Line as in Subsection
1.1.1. Thus Φ: LΣ → L×N is a forward Dirac-Jacobi map for the Dirac-Jacobi structures
LωΣ and BΦ0×!Φ1

(L0 ×! L1) = BΦ0(L0)×! BΦ1(L1) by Lemma 1.3.9.

Note that we have the following commutative diagram of regular line bundle mor-
phisms

LΣ

L

LN0 L0 L1 LN1

P2

SΣ TΣ

TS

Φ0 Φ1
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Chapter 3. Dual Pairs in Dirac-Jacobi Geometry

and hence we can compute

BSΣ
(BΦ0(L0)) = BΦ0◦SΣ

(L0) = BS◦P2(L0)

= BP2(BS(L0)) = BP2(BT (L1)ω)

= BT◦P2(L1)P
∗
2 ω = BΦ1◦TΣ

(L1)P
∗
2 ω

= BTΣ
(BΦ1(L1))P

∗
2 ω,

where we used basic properties of the backwards transform and the fact that

(L0 →M0,L0)
S←− (L→M,Lω)

T−→ (L1 →M1,Lopp
1 )

is a (weak) dual pair. By part iv.) of Lemma 3.1.6 we get the claim. XΞΣ

3.2 Why Dual Pairs?

After having discussed the main properties of (weak) dual pairs, we want to discuss
what kind of impact their existence has.

Let us start with a �rst lemma concering the relation between the characteristic
foliation of a Dirac-Jacobi structure and its backwards transform.

Lemma 3.2.1 Let P : L0 → L1 be a regular line bundle morphism covering a surjective
submersion p : M0 → M1 with connected �bers and let L ⊆ DL1 be a Dirac-Jacobi
structure. Then the pre-image of p establishes a one-to-one between the characteristic
leaves of L and of BP (L). Moreover, this correspondence respects the type of the
leaves, i.e. a locally conformal pre-symplectic leaves correspond to locally conformal
pre-symplectic leaves and pre-contact leaves correspond to pre-contact leaves.

Proof: First of all, let us prove that if C ↪→M is a characteristic leaf of L, then p−1(C)
is a characteristic leaf of BP (L). Clearly p−1(C) is a connected submanifold. Let vm ∈
σ(prDBP (L))

∣∣
p−1(C)

, then there exists a (∆, DP ∗ψ) ∈ BP (L), such that σ(∆) = vm.

This implies that (DP (∆), ψ) ∈ L and hence Tp(vm) = σ(DP (∆)) ∈ σ(prDL)
∣∣
p(m)

=

Tp(m)C, which shows that vm ∈ Tp−1(C) and thus σ(prDBP (L))
∣∣
p−1(C)

⊆ Tp−1(C).

With a similar argument, starting with a vector vm ∈ p−1(C), we see that Tp(vm) ∈
Tp(m)C and hence there exists a (∆, ψ) ∈ L, such that σ(∆) = Tp(vm). Let us choose
� ∈ DL0, such that σ(�) = vm and DP (�) = ∆. This implies that (�, DP ∗ψ) ∈
BP (L) and hence vm ∈ σ(prDBP (L)),so the equality σ(prDBP (L))

∣∣
p−1(C)

= Tp−1(C)

holds. This proves that p−1(C) is a integral submanifold of the characteristic distribu-
tion. One can show, in a similar way, that a leaf of BP (L) projects via p to a leaf of L,
since for a leaf C ↪→M1 we have that ker(TP )

∣∣
C
⊆ TC. Now we discuss why this cor-

respondence respects the type of the leaves. So consider a pre-contact leaf ι : C ↪→M .
This means by de�nition that rank(prDBI(L)

∣∣
C

) = dimC + 1, which is if and only if
the case if 1 ∈ prDBI(L). Hence there exists a ψ ∈ J1L, such that (1, DI∗ψ) ∈ BI(L
and hence (1, ψ) ∈ L

∣∣
C
. Thus we have also (1, DP ∗ψ) ∈ BP (L)

∣∣
p−1(C)

, which implies
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3.2. Why Dual Pairs?

that prD(BP (L)
∣∣
p−1(C)

) and hence p−1(C) is a pre-contact leaf. Moreover, one can

prove, in the similar way, that a locally conformal pre-symplectic leaf in M0 corre-
sponds to a locally conformal pre-symplectic leaf in M1. Since we only have these two
kinds of leaves, we get the claim. XΞΣ

Using Lemma 3.2.1 we want to prove a correspondence of the leaves of the legs of
a weak dual pair.

Theorem 3.2.2 Let

(L0 →M0,L0)
S←− (L→M,Lω)

T−→ (L1 →M1,Lopp
1 )

be a weak dual pair, then there is a one-to-one correspondence between the leaves of L0

and L1 given by M0 ⊇ C → t(s−1(C)) ⊆M1. This correspondence respects the type of
the leaves. Moreover, we have that if we have two leaves ι0 : C0 ↪→M0 and ι : C1 ↪→M1,
which are in correspondence via the leaf ι : C ↪→M , i.e. s−1(C0) = C = t−1(C1), then
C is a characteristic leaf of the Dirac Jacobi structure BS(L0) ? BT (Lopp

1 ), which is
given by

BS(L0) ?BT (Lopp
1 ) =

(
(kerDS + kerDT )⊕Ann(kerDS + kerDT )

)ω
.

Moreover, its induced structure can be computed by

BI(BS(L0) ?BT (Lopp
1 ))) = BSC (LC0) ?BTC (Lopp

C1
) (3.2.1)

and all the involved bundles and products are smooth Dirac-Jacobi bundles.

Proof: Note that by Lemma 3.2.1 the only thing we have to prove for the �rst part
of the statement is the equality

BS(L0) ?BT (Lopp
1 ) =

(
(kerDS + kerDT )⊕Ann(kerDS + kerDT )

)ω
and that its characteristic foliation is give by pre-images of leaves of the legs. Using
Lemma 3.1.6, we see that

BS(L0) = kerDS + kerDTω = BT (L)ω,

since we have a dual pair. This implies that

prDBS(L0) = prDBT (L1),

and hence the characteristic distributions of BS(L0) and BT (L1) coincide and thus
also the characteristic distribution of BS(L0) ?BT (Lopp

1 ) since

prD
(
BS(L0) ?BT (Lopp

1 )
)

= prD
(
BS(L0) ∩BT (Lopp

1 )
)
.
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Using now Lemma 3.2.1, we get the claim and moreover we see that the correspondence
respects the type of the leaves. Let us now prove Equation 3.2.1. Let us �rst remark,
that

BS(L0) ?BT (Lopp
1 )

is smooth since we have from our previous considerations

prDBS(L0) = prDBT (L)

and we can use Remark 1.3.3. Moreover, we have that

BS(L0) ?BT (Lopp
1 ) =

(
(kerDS + kerDT )⊕Ann(kerDS + kerDT )

)ω
using the equations

BS(L0) = kerDS + kerDTω = BT (L)ω,

and the fact that ω(kerDS, kerDT ) = 0.
The second part is now just a matter of computation, using the diagram

LC

L

LC0 L0 L1 LC1

I

SC TC

TS

I0 I1

,

where we used the subscripts SC , TC as a short notation for TC = T
∣∣
LC

and SC = S
∣∣
LC

.
Namely

BI(BS(L0) ?BT (Lopp
1 )) = BI(BS(L0)) ?BI(BT (Lopp

1 ))

= BS◦I(L0) ?BT◦I(Lopp
1 )

= BI0◦SC (L0) ?BI1◦TC (Lopp
1 )

= BSC (LC0) ?BTC (Lopp
C1

),

where we used Remark 1.3.10 in the second step and BIi(Li) = LCi by de�nition.XΞΣ

From Theorem 3.2.2, we can conclude for a weak dual pair

L0 →M0,L0)
S←− (L→M,Lω)

T−→ (L1 →M1,Lopp
1 )

we can consider the Dirac-Jacobi structure BS(L0) ?BT (Lopp
1 ), whose characteristic

leaves are in one-to-one correspondence with the leaves of L0 and with the leaves of
L1, but also the induced structures on all the leaves can be compared, which we can
see in the following
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Proposition 3.2.3 Let (L0 → M0,L0)
S←− (L → M,Lω)

T−→ (L1 → M1,Lopp
1 ) be a

weak dual pair and let s−1(C0) = C = t−1(C1) be in correspondence. If

i.) C0 and C1 are pre-contact leaves with pre-contact forms ωi ∈ ΩLi(Mi) for i = 0, 1,
then

I∗ω = S∗Cω1 − T ∗Cω2.

ii.) C0 and C1 are locally conformal pre-symplectic leaves with locally conformal pre-
symplectic forms ωi ∈ Γ∞(Λ2T ∗Ci ⊗ LCi) and connections ∇i, then

(a) DS ◦ ∇ = ∇0 ◦ Ts and DT ◦ ∇ = ∇1 ◦ Tt
(b) ωC = S∗Cω1 − T ∗Cω2

for the connection ∇ : TC → DLC on the locally conformal presymplectic leaf C
with 2 form ωC ∈ Γ∞(Λ2T ∗C ⊗ LC), which is given by

ωC(X,Y ) = I∗ω(∇X ,∇Y ).

Proof: Let us �rst prove property i.). So let C0, and hence C1 and C, be pre-contact
leaves. We have by de�ntion of a contact leaf that BIi(Li) = Lωi for i = 0, 1 and the
pre-contact forms on LCi → Ci. More over we have that

DLC = prD(
(
(kerDS + kerDT )⊕Ann(kerDS + kerDT )

)ω
)
∣∣
C

= (kerDS + kerDT )
∣∣
C

and thus

BI(
(
(kerDS + kerDT )⊕Ann(kerDS + kerDT )

)ω
) = LI∗ω. (∗)

Using Theorem 3.2.2 and Equation (∗) , we get

LI∗ω = BSC (Lω0) ?BTC (L−ω1)

= LS∗Cω0−T ∗Cω1

where the last step involves a small and straightforward computation.
Now let us in order to prove ii.). So assume that C0, C1 and C are locally conformal

pre-symplectic leaves. Note that by assumption C is a locally conformal pre-symplectic
leaf of BS(L0) ?BT (Lopp

1 ) Let us �rst prove point (a). Recall that the connection on
a locally conformal pre-symplectic leaf is de�ned as the unique inverse of

σ
∣∣
prDBIi (LCi )

: prDBIi(LCi)→ TCi

for the locally conformal pre-symplectic leaves Ci of Li and

BS(L0) ?BT (Lopp
1 ) =

(
(kerDS + kerDT )⊕Ann(kerDS + kerDT )

)ω
,
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respectively. Let vm ∈ TmC, then we have that

σ(DS(∇vm)) = Ts(vm) = σ(∇0
Ts(vm)).

and thus since ∇ and ∇0 are the unique inverses of the symbol maps σ we get
DS(∇vm) = ∇0

Ts(vm). Similarly we obtain DT ◦ ∇ = ∇1 ◦ Tt.
Let us now stick to point (b). It is easy to see that the locally conformal pre-

symplectic structure on

BI(
(
(kerDS + kerDT )⊕Ann(kerDS + kerDT )

)ω
)

is given by ωC . So let us compute the left-hand side. From Theorem 3.2.2, we know
that

BI(
(
(kerDS + kerDT )⊕Ann(kerDS + kerDT )

)ω
= BSC (LC0) ?BTC (Lopp

C1
)

Notice that ωi is uniquely determined by

ωi(X,Y ) = ψi(∇iY )

for (∇X , ψi) ∈ LCi and Y ∈ TCi and similarly for ωC . Let us choose

(∇Xp , DS∗ψ0 +DT ∗ψ1) ∈ BSC (LC0) ?BTC (Lopp
C1

)

and let Yp ∈ TC. Then

ωC(Xp, Yp) = DS∗ψ0(∇Yp) +DT ∗ψ1(∇Yp)
= S−1

p ψ0(DS(∇Yp)) + T−1
p ψ1(DT (∇Yp))

= S−1
p ψ0(∇0

Ts(Yp)) + T−1
p ψ1(∇1

Tt(Yp))

moreover, we have that (∇0
Ts(Xp), ψ0) ∈ LC0 and hence ψ0(∇0

Ts(Yp)) = ω0(Ts(Xp), T s(Yp))

and similarly ψ1(∇0
Tt(Yp)) = −ω1(Tt(Xp), T t(Yp)). Continuing the computation we get

ωC(Xp, Yp) = S−1
p ω0(Ts(Xp), T s(Yp))− T−1

p ω1(Tt(Xp), T t(Yp)) = S∗Cω1 − T ∗Cω2(Xp, Yp)

and the claim follows. XΞΣ

Let us now pass to the transverse geometry,i.e. the structures on transversals, in fact
we have seen that there is a leaf correspondence, but leaves need not to be isomorphic.
Minimal transversals on the other hand are locally isomorphic as Dirac-Jacobi bundles:

Proposition 3.2.4 Let

(L0 →M0,L0)
S←− (L→M,Lω)

T−→ (L1 →M1,Lopp
1 )

be a weak dual pair, let m ∈M and let ιi : Ni ↪→Mi minimal transversals at s(m) and
t(m) respectively. Then BI0(L0) is locally isomorphic to BI1(L1) (up to a B-�eld).
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Proof: First, we remark that the dimensions of the minimal transversals always co-
incide. Indeed, let C0, C1 and C corresponding leaves at s(m) and t(m) respectively,
i.e. s−1(C0) = C = t−1(C1). Then we have

dim(M)− dim(N0) + dim(C0) = dim(M)− dim(N1) + dim(C1).

which means that C0 and C1 have the same codimension and hence the dimensions of
N0 and N1 coincide. We use the pull-back construction of Lemma 3.1.8 in order to
consider of the weak dual pair

(LN0 → N0,BI0(L0))
SN←−− (LN → N,LωN )

TN−−→ (LN1 → N1,BI1(L1)opp)

and notice that sN (m) is a leaf ofBI0(L0) and tN (m) is a leaf ofBI1(L1)opp, since they
are minimal transversals. Additionally, the maps SN and TN are always surjetive, since
Ni are actual submanifolds and not just images of transverse maps as in Lemma 3.2.1.
Using the the correspondence of leaves from Theorem 3.2.2, we see that s−1

N (sN (m))
is a leaf of BS(L0) ?BT (Lopp

1 ) as well as t−1
N (tN (m)), but they both contain m and

hence they have to coincide, i.e. s−1
N (sN (m)) = t−1

N (tN (m)). Let us now choose a local
right-inverse Φ: LN0 → LN of SN covering φ : N0 → N such that φ(sN (m)) = m. Now
we want to prove that

k : = t ◦ φ : N0 → N1

is a local di�eomorphism. Let vsN (m) ∈ kerTk, which is eqivalent to Tφ(sN (m)) ∈
Tt−1

N (tN (m)), but we have that s−1
N (sN (m)) = t−1

N (tN (m)) and hence Tφ(vsN (m)) ∈
kerTs, so 0 = Ts(Tφ(vsN (m))) = T (s ◦ φ)(vsN (m)) = vsN (m). Thus, since dimN0 =
dimN1, we get that k is a local di�eomorphism. So let us choose open neighborhoods
of sN (m) and tN (m), such that k is actually a di�eomorphism. Note that k is covered
by K = T ◦ Φ and we have

BK(L1) = BT◦Φ(L1) = BΦ(BT (L1))

= BΦ(BS(L0)−ω) = BS◦Φ(L0)−Φ∗ω

= L−Φ∗ω
0 ,

where the third equality uses the fact that we have a dual pair and the last equality
that S ◦ Φ = id. XΞΣ

3.3 Existence of a Self Dual Pair

The aim of this section is to prove that for every Dirac-Jacobi structure (L0 →M0,L0),
there is a line bundle (L → M,Lω) with a closed ω ∈ Ω2

L(M), together with regular
line bundle morphisms S, T : L→ L0, such that

(L0 →M0,L0)
S←− (L→M,Lω)

T−→ (L0 →M0,Lopp
0 )
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is a dual pair, which we call self dual pair. Again, this part is a translation of the
mirror statement in Poisson geometry from [21]. Let us collect the missing ingredients
in order to prove this claim. We start by discussing Dirac-Jacobi sprays.

De�nition 3.3.1 Let (L → M,L) be a Dirac-Jacobi bundle and let p∗L → L be the
pull-back line bundle given by the diagram

p∗L L

L M

P

p

.

A derivation Σ ∈ Γ∞(Dp∗L) is said to be Dirac-Jacobi spray, if

i.) DP (Σ(∆,ψ)) = ∆

ii.) M∗t Σ = tΣ for t > 0

Where Mt : p
∗L 3 ((∆, α), λ)→ (t(∆, α), λ) ∈ p∗L.

Note that for the �ow ΦΣ
ε of a Dirac-Jacobi spray Σ, we have necessarily

ΦΣ
ε ◦Mt = Mt ◦ ΦΣ

tε (3.3.1)

As a consequence the equality

φΣ
ε ◦mt = mt ◦ φΣ

tε, (3.3.2)

where φΣ
ε is the map covered by ΦΣ

ε and mt is the map covered by Mt.

Remark 3.3.2 Note that a Dirac-Jacobi spray for a Dirac-Jacobi bundle (L→M,L)
can be constructed as follows: since the bundle projection p : L →M , the kernel of the
map

DP : Dp∗L→ DL

is a regular subbundle of Dp∗L. Let us choose a splitting Dp∗L ∼= ker(DP ) ⊕ p∗DL
and de�ne

Σ: L 3 (∆, α)→
(
(∆, α),∆

)
∈ p∗DL

and extend it trivially to Dp∗L. Σ is by construction a Dirac-Jacobi spray.

For a Dirac-Jacobi structure L ⊆ DL, we use the following notation for maps:

p∗L π∗L L

L J1L M

PJ

P

Π

prJ

p

π

.
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The rest of this section is dedicated to the proof of the following

Theorem 3.3.3 Let (L → M,L) be a Dirac-Jacobi structure and let Σ ∈ Γ∞(Dp∗L)
be a Dirac-Jacobi spray. Then there is a open neighborhood U ⊂ L containing the zero
section, such that

ω =

∫ 1

0
(ΦΣ

t )∗P ∗Jωcan dt

is well-de�ned and S := P : Lω → L and T := P ◦ ΦΣ
1 : Lω → Lopp de�ne a dual-pair

(L→M,L0)
S←− (p∗L→ U,Lω)

T−→ (L→M,Lopp).

In order to prove this theorem, we proceed as in [21] and prove �rst a partial result.
Let us use the same map as in Section 2.3, de�ned by

·ver : L 3 ep 7→
(
λ 7→ d

dt

∣∣∣
t=0

M0(M∗t λ(ep))

)
∈ D0pp

∗L

in order to identify Dp∗L
∣∣
M

= DL⊕ L.

Lemma 3.3.4 Let (L→M,L) be a Dirac-Jacobi bundle and let Σ ∈ Γ∞(Dp∗L) be a
Dirac-Jacobi spray. Then

i.) DΦΣ
ε : Dp∗L

∣∣
M
→ Dp∗L

∣∣
M

is given by (∆p, ep) 7→ (∆p + εprD(ep), ep)

ii.) (kerDS ∩ kerDT ∩ kerω[)
∣∣
M

= {0}

Proof: Let ex ∈ L and let µ ∈ Γ∞(L), then we have

DP (DΦΣ
ε (ever

x ))(µ) = D(P ◦ ΦΣ
ε )(ever

x ))(µ) = P ◦ ΦΣ
ε (ever

x ((P ◦ ΦΣ
ε )∗µ)

= P ◦ ΦΣ
ε (

d

dt

∣∣∣
t=0

M0

(
M∗t (P ◦ ΦΣ

ε )∗µ(ex)
)
)

=
d

dt

∣∣∣
t=0

P ◦ ΦΣ
ε (M0

(
(P ◦ ΦΣ

ε ◦Mt)
∗µ(ex)

)
=

d

dt

∣∣∣
t=0

P
(
(P ◦ ΦΣ

tε)
∗µ(ex)

)
= DP (

d

dt

∣∣∣
t=0

ΦΣ
tε)
∗P ∗µ(ex))

= εDP (Σex)(µ)

= εprD(ex)(µ).

We used Equations (3.3.1) and (3.3.2), as well as P ◦Mt = P for every t. Finally
the last equation is property i.) of Dirac-Jacobi sprays. Since Σ vanishes at the zero
section M , we conclude that its �ow is identity applying to DL ⊆ Dp∗L

∣∣
M
. The last

non-trivial point to show for part i.) is that

prLDΦΣ
ε (∆p, ep) = ep
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for p ∈M and the identi�cation Dp∗L
∣∣
M

= DL⊕L. This can be achieved by writing
down the projection to L and apply Equation (3.3.1). Let us now prove part ii.). A
computation in local coordinates shows that P ∗Jωcan can be expressed at M by

P ∗Jωcan((∆1, (�1, ψ1)), (∆2, (�2, ψ2))) = ψ2(∆1)− ψ1(∆2),

where we used again the splitting Dp∗L
∣∣
M

= DL ⊕ L. By using i.) and integrating,
we get

ω
(
(∆1, (�1, ψ1)), (∆2, (�2, ψ2))

)
= ψ2

(
∆1 +

1

2
�1

)
− ψ1

(
∆2 +

1

2
�2

)
.

Now, let (∆, (�, ψ)) ∈ (kerDS ∩ kerDT ∩ kerω[)
∣∣
M
. Note that, since we have

DS(∆, (�, ψ)) = ∆ and DT (∆, (�, ψ)) = DT
(
DΦΣ

1 (∆, (�, ψ))
)

= ∆ +�,

it follows ∆ = � = 0. Moreover, we have

0 = ω((∆, (�, ψ)), (D, 0)) = −ψ1(D),

for all D ∈ DL and hence also ψ = 0 and the claim is proven. XΞΣ

Now we have the tools to prove Theorem 3.3.3.

Proof (of Theorem 3.3.3): Since Σ
∣∣
M

= 0 we can �nd an open neighbourhood of
M such that the �ow of Σ exists for t ∈ [−1, 1]. In a possibly smaller neighborhood we
can also assume that kerDS ∩ kerDT ∩ kerω[ = {0} by Lemma 3.3.4. Let us call this
neighborhoodM ⊆ U ⊆ L and denote by λ = P ∗Jλcan, where λcan is the canonical 1-jet
from Example 1.2.41. We want to show that (Σ, λ) ∈ Γ∞(BS(L)). So let (∆, ψ) ∈ L.
From the universal property of λcan, we get

λ(∆,ψ) = DP ∗ψ

and hence we have that (Σ(∆,ψ), λ(∆,ψ)) = (Σ(∆,ψ), DP
∗ψ) and moreover, since Σ is a

Dirac-Jacobi spray, we get that DP (Σ(∆,ψ)) = ∆. Hence (Σ, λ) ∈ Γ∞(BS(L)). This
means that the �ow of (Σ, λ), which is given by

exp
( ∫ t

0
(ΦΣ
−τ )∗ dLλ dτ

)
◦ DΦΣ

t ,

preserves BS(L) whenever it exists. So we have by choosing t = −1, that∫ −1

0
(ΦΣ
−τ )∗ dLλ dτ = −

∫ 1

0
(ΦΣ

τ )∗ dLλ dτ

=

∫ 1

0
(ΦΣ

τ )∗P ∗Jωcan dτ

= ω,
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where we used dLλ = dLP
∗
Jλcan = −P ∗Jωcan. Thus

BS(L) = (DΦΣ
−1(BS(L)))ω

= BΦΣ
1

(BS(L))ω

= BT (L)ω

and by point ii.) of Lemma 3.1.6 we �anlly get that

(L→M,L0)
S←− (p∗L→ U,Lω)

T−→ (L→M,Lopp)

is a dual pair. XΞΣ

As a consequence of the previous Theorem, also a Jacobi bundle, seen as a Dirac-
Jacobi bundle, �ts into a dual pair. This dual pair has an additional feature: the closed
two form is actually non-degenerate and thus contact.

Corollary 3.3.5 Let L → M be a line bundle and let J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) be a
Jacobi tensor. Then the self dual pair

(L→M,LJ)
S←− (p∗L→ U,Lω)

T−→ (L→M,Lopp
J ).

constructed in Theorem 3.3.3 can be shrinked to U ′ ⊆ U such that ω is non-degenerate
and hence it is a contact 2-form.

Proof: The claim follows from the fact that in the case of a Jacobi structure PJ : LJ →
J1L is an isomorphism and hence ω is non-degenerate at the zero section and by upper
semi-continuity in a whole neighborhood of it. XΞΣ

3.4 Application: Normal Form Theorems

We conclude this chapter, discussing an application of Theorem 3.3.3: we are able to
rediscover a variation of the normal form theorems from Chapter 2 up to some technical
details. We use the same exact notation as in Subsection 2.1.1.

Theorem 3.4.1 Let (L → M,L) be a Dirac-Jacobi bundle and ι : N ↪→ M be a
transversal. Then there exist an open neighborhood U ⊆ νN of the zero section, a
regular line bundle morphism Ψ: Lν

∣∣
U
→ L covering a local di�eomorphism and an

closed Atiyah 2-form α ∈ Ω2
Lν

(U), such that

BΨ(L) = BI◦P (L)α.

Proof: Let us denote by

(L→M,L0)
S←− (`→ P,Lω)

T−→ (L→M,Lopp),
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Chapter 3. Dual Pairs in Dirac-Jacobi Geometry

the self dual pair constructed in Theorem 3.3.3. We denote its pull-back (Lemma 3.1.8)
along ι : N ↪→M by

(LN → N,BI(L))
SN←−− (`N → PN ,LωN )

TN−−→ (L→M,Lopp) (3.4.1)

with

PN = s−1(N), `N = `
∣∣
PN
, ωN = ω

∣∣
PN
, SN = S

∣∣
PN

and TN = T
∣∣
PN
.

Note that SN covers a surjective submersion by construction. Moreover, TN is a
submersion, by Lemma 3.1.8, and its image contains N by construction of the self-dual
pair. So we may replace M by tN (PN ), which is an open subset of M containing N .
Thus (3.4.1) is a dual pair by Lemma 3.1.8. By the proof of Proposition 2.2.5, we have
an exact sequence, this time together with suitable line bundles,

0 K p∗L
∣∣
L|N

Lν 0

0 i∗L L
∣∣
N

νN 0

where K is the suitable pull-back line bundle. Let us choose a splitting Ξ: Lν →
p∗L

∣∣
L|N

of this sequence covering a splitting ξ : νN → L
∣∣
N
of the lower sequence.

By Lemma 3.3.4, we have that

DTN : DLN ⊕ L 3 (∆, a) 7→ ∆ + prD(a) ∈ DL
∣∣
N
.

and hence there exists an open neighborhood U ⊆ νN of the zero section, such that

φ : U →M with φ = t ◦ ξ

is an embedding covering Φ = T ◦ Ξ. Moreover, we have that SN ◦ Ξ = P and thus

BI◦P (L) = BI◦SN◦Ξ(L) = BΞ(BSN (BI(L)))

= BΞ(BTN (L)ωN )

= BΦ(L)Ξ∗ωN ,

which proves the claim. XΞΣ

Remark 3.4.2 Note that up to some technical details Theorem 2.2.6 and Theorem
3.4.1 coincide. But both of them required a non-trivial choice: for Theorem 2.2.6 we
choose a Euler-like derivation and for Theorem 3.4.1 we choose a Dirac-Jacobi spray.
It is not clear to the author, how these choices interact with each other.
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Chapter 4

Jacobi Structures and Generalized

Contact Bundles

After having studied the the local properties of generalized contact bundles in Section
2.4, this chapter is dedicated to the description of their global properties of them. In
particular, if the Jacobi bracket of a generalized contact structure is weakly regular, a
notion we explain throughout this chapter, the generalized contact structure induces
a so-called transversally complex bundle. It turns out that existence of a given weakly
regular Jacobi structure together with a transversally complex bundle is just necessary
but not su�cient to construct a generalized contact structure out of. The aim of
this chapter is hence to �nd the precise obstructions on the Jacobi bracket and the
transversally complex bundle to be able to �nd a generalized contact structure.

This chapter is divided as follows: �rst we introduce weakly regular Jacobi struc-
tures and transversally complex bundles, then we discuss a spectral sequence we can
attach to these data and show that the obstruction of the existence of a generalized con-
tact structure lives in suitable terms of this spectral sequence. In the section afterwards,
we make use of this in order to produce examples: we prove that every 5-dimensional
nilpotent Lie group posses an invariant generalized contact bundle. The last part is
meant to show that the obstructions might not vanish, i.e. we �nd a manifold together
with a Jacobi structure and a transversally complex bundle, which does not admit a
generalized contact bundle.

In [5] the author provides a mirror statement for generalized complex structure
with regular Poisson bivectors. There are two main di�erences of [5] and the following
statement, which become clearer throughout the chapter:

i.) In generalized complex geometry the author �nds obstructions to the existence of
twisted generalized complex structures. This is in principle also possible in gener-
alized contact geometry, but does not make too much sense, since the obstructions
are exactly the same, which is not true in generalized complex geometry. This is
a consequence of the fact that the complex of Atiyah forms is acyclic.

ii.) In [5] the author uses complementary bundles, where we prefer to use spectral
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Chapter 4. Jacobi Structures and Generalized Contact Bundles

sequences. The advantage of our approach is that it is more obvious that the
obstructions are canonical, i.e. not dependent on a choice. In fact, our techniques
can be applied to the generalized complex case as well in order to �nd the same
exact obstructions as in [5].

Both of the above points are discussed in more detail in the corresponding parts of this
chapter.

This chapter is based on [39].

4.1 Tranversally Complex Jacobi Structures

Unlike in Poisson geometry, a Jacobi structure J may also have odd dimensional char-
acteristic leaves, which we discussed already in Chapter 1. This comes from the fact
that for a Jacobi tensor J , the characteristic foliation are the integral manifolds of the
singular distribution im(σ ◦ J ]). Note that the image of the Jacobi tensor is an even
dimensional subbundle of DL, but the symbol σ has a one dimensional kernel. There-
fore, it seems reasonable to distinguish between regular Jacobi structures, i.e. Jacobi
structure inducing a regular distribution, and

De�nition 4.1.1 Let L→M be a line bundle. A Jacobi tensor J ∈ Γ∞(Λ2(J1L)∗⊗L)
is said to be weakly regular, if im(J ]) ⊆ DL is a regular subbundle.

Remark 4.1.2 To the author's knowledge De�nition 4.1.1 does not appear anywhere
in the literature, but seems to be very natural. Besides the appearance in generalized
contact geometry, these Jacobi structures are interesting objects by themselves and we
plan to study them in a separate project.

Remark 4.1.3 A Jacobi structure which is weakly regular is not always regular.
To illustrate this, we take for example the canonical Jacobi pair (de�ned in 2.3.10)
(Λcan, Ecan) ∈ Γ∞(Λ2TR2k+1 ⊕ TR2k+1) coming from the contact structure and con-
sider Z ∈ Γ∞(TR) given by Z = x ∂

∂x . Then (Λ = Λcan + Ecan ∧ Z,Ecan) de�nes
a weakly regular Jacobi structure on R2k+1 × R where the set of contact points is
{(v, 0) ∈ R2k+1 × R}.

Remark 4.1.4 Let L → M be a line bundle and let J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) be a
weakly regular Jacobi structure. Then by de�nition S := im(J ]) ⊆ DL is a regular
subbundle. Moreover, one can prove that it is in fact a subalgebroid and there is a
canonical form ω ∈ Γ∞(Λ2S∗ ⊗ L) de�ned by

ω(J ](α), J ](β)) = α(J ](β))

for α, β ∈ J1L. Additionally, d(S,L)ω = 0 and , where d(S,L) is the de Rham di�erential

with coe�cients in the tautological representation im(J ])→ DL.
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We have seen in Lemma 1.2.53, that a generalized contact bundle always comes
together with a canonical Jacobi bundle. Assuming that this Jacobi bracket is weakly
regular, another structure appears: transversally complex subbundles.

De�nition 4.1.5 A transversally complex subbundle on L→M is a pair (S,K) con-
sisting of two involutive subbundles S ⊆ DL and K ⊆ DCL , such that

i.) K +K = DCL,

ii.) K ∩K = SC.

Remark 4.1.6 The name transversally complex subbundle comes from the fact, that
the decomposition (DL�S)C =

(K�SC)⊕ (K�SC)
de�nes an almost complex structure on DL�S.

We are mainly interested in transversally complex structures with an additional Jacobi
structure. So let us be precise in the following

De�nition 4.1.7 Let L→M be a line bundle. A transversally complex Jacobi struc-
ture is a pair (J,K) consisting of a weakly regular Jacobi structure J ∈ Γ∞(Λ2(J1L)∗⊗
L) and an involutive subbundle K ⊂ DCL, such that (im(J ]),K) is transversally com-
plex subbundle.

This kind of structure appear naturally in generalized contact geometry if one
assumes some regularity conditions, to be seen in the next

Proposition 4.1.8 Let (L→M,L) be a generalized contact bundle, whose correspond-
ing Jacobi structure J is weakly regular. Then (J, prDL) is a transversally complex
Jacobi structure.

Proof: Let us de�ne K := prD(L). Having in mind that im(J ])C = prD(L)∩ prD(L)
and that prD(L) is involutive (due to Lemma 1.2.58), we get the result.

It is now natural to ask which transversally complex Jacobi structure can be induced
by a generalized contact structure. To formalize the term "induced by", we use the
proof of the Proposition 4.1.8.

De�nition 4.1.9 Let L→M be a line bundle, let L ⊆ DCL be a a generalized contact
structure, and (J,K) be a transversally complex Jacobi structure. We say L induces
(J,K), if J is the Jacobi structure of L and K = prDL.

Let us give a �rst necessary condition of a transversally complex Jacobi structure
induced by a generalized contact structure.
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Lemma 4.1.10 Let L → M be a line bundle and let (J,K) be transversally complex
Jacobi structure induced by the generalized contact structure L ⊆ DCL. Then

i.) for any ω, which is the inverse of J restricted to prD(L), there exists a real
B ∈ Ω2

L(M), such that

dL(iω +B)(∆1,∆2,∆3) = 0 ∀∆i ∈ K.

ii.) L = (K ⊕Ann(K))iω+B

Proof: Every generalized contact structure L can be written by a two form ε̃ : Λ2prDL →
LC by

L = {(∆, α) ∈ DCL | α
∣∣
prDL

= ι∆ε̃
∣∣
prDL
},

such that Im(ε̃)
∣∣
Λ2S

= (J
∣∣
S

)−1 for the Jacobi structure J of the generalized contact
structure, so in our case with the given weakly regular one. The proof of this can
be found in [41, Section 2.2.3]. If the generalized contact structure induces the given
transversally complex Jacobi structure, then we have prD(L) = K. Let us now consider
an extension of the inverse of J and denote it by ω. Since K is regular, we extend ε̃
to a Atiyah 2-form ε, such that Im(ε) = ω and get

L = (prD(L)⊕Ann(prD(L)))ε

= (K ⊕Ann(K))Re(ε)+iIm(ε),

which is the �rst statement, since Im(ε) extends the inverse of J . The second statement
follows directly from the integrability of L. XΞΣ

To conclude this section, we collect all the previous results in the following

Corollary 4.1.11 Let L→M be a line bundle and let (J,K) be a transversally com-
plex Jacobi structure. These data come from a generalized contact structure, if and
only if there exists a real extension ω of the inverse of J and a real B ∈ Ω2

L(M), such
that

dL(iω +B)(∆1,∆2,∆3) = 0 ∀∆i ∈ K.

The condition of Corollary does not seem to be very easy to handle and also involves
all extensions of the inverse of the Jacobi structure and the existence of a 2-form B,
whcih in practice can be very to check. We will see in the following that the of ω and
B existence can be encoded in some properties of J .
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4.2 The Spectral Sequence of a Transversally Complex

Subbundle

We have seen that every generalized contact structure with weakly regular Jacobi
structure induces a transversally complex Jacobi structure. The latter is special case
of a transversally complex subbundles. We want to explore these subbundles by means
of a canonical spectral sequence attached to them. It turns out that that the existence
of a transversally complex Jacobi structure is a necessary (but insu�cient) condition
for the existence of a generalized contact structure inducing these structures.

Throughout this subsection we will assume the following data: a line bundle L→
M and the subalgebroids S ⊆ DL and K ⊆ DCL, such that K + K = DCL and
K ∩K = SC, in other words we want to �x a transversally complex subbundle (S,K).
Moreover, if not stated otherwise, we see every Atiyah form as complex.

4.2.1 General Statements and Preliminaries

This part is not only meant to �x notation and give a quick reminder on spectral se-
quences, but also to give a splitting of the zeroth and �rst page of the spectral sequence
induced by a transversally complex subbundle (S,K). Let us begin by showing that
(S,K) induces two �ltrations of the complex ΩL(M).

Lemma 4.2.1 The subspaces

Fmn := {α ∈ Ωm
L (M) | ιXα = 0 ∀X ∈ Λm−n+1SC} and

Gmn := {α ∈ Ωm
L (M) | ιXα = 0 ∀X ∈ Λm−n+1K}

ful�ll the following properties

i.) Ωm
L (M) = Fm0 ⊇ Fm1 ⊇ . . . and Ωm

L (M) = Gm0 ⊇ Gm1 ⊇ . . . ,

ii.) dL(Fmn ) ⊆ Fm+1
n and dL(Gmn ) ⊆ Gm+1

n .

Moreover, we have the following relations between them:

(I) Gmn ⊆ Fmn

(II) Gmj ∩G
m
i ⊆ Fmi+j

(III) 〈Gmj ∩G
m
i 〉i+j=n = Fmn

(IV) Gmj ∩G
m
i ∩ (〈Gml ∩G

m
k 〉i+j=n,(i,j)6=(k,l) + Fmi+j+1) ⊆ Fmi+j+1

(V) Fmi+j+n ∩Gmj ∩G
m
i = 〈Gmj+k ∩G

m
i+l〉k+l=n

Proof: The proof is an easy veri�cation exploiting the involutivity of S and K and
the relations K +K = DCL and K ∩K = SC. XΞΣ
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The properties i.) and ii.) in the previous Lemma show that the subspaces Fmn and
Gmn induce �ltrations of the Der-complex. Note that we did not explicitly introduce
the spaces G

m
i , but from the notation it should be clear that we mean the complex

conjugation of the spaces Gmi or equivalently the �ltered complex with respect to K.
Properties (I)-(V) will give us a canonical splitting of the spectral sequence and its
di�erentials.

Let us brie�y recall the de�nition of a spectral sequence

De�nition 4.2.2 A spectral sequence is a sequence of bigraded vector spaces {E•,•r }r≥0,
and a sequence of maps {dr : E•,•r → E•+r,•+1−r

r }r≥0, the di�erentials, such that

i.) (dr)
2 = 0

ii.) E•,•r ∼=
ker(dr−1 : E•,•r−1→E

•+r−1,•−r+2
r−1 )

im(dr−1 : E•−r+1,•−2+r
r−1 →E•,•r−1)

There is a canonical way to associate a spectral sequence to a �ltered complex. We
will de�ne it for the �ltered complex Ωm

L (M) = Fm0 ⊇ Fm1 ⊇ . . . . We consider the
quotients

Ep,qr =
{α ∈ F q+pp | dLα ∈ F q+p+1

p+r }
F q+pp+1 + dL(F q+p−1

p+1−r )

together with the maps

dr : Ep,qr 3 α+ F q+pp+1 + dL(Fp+1−r) 7→ dLα+ F q+p+1
p+r+1 + dL(F q+p+1

p+1 ) ∈ Ep+r,q+1−r
r .

(4.2.1)

Lemma 4.2.3 The maps {dr}r≥0 from Equation 4.2.1 are well-de�ned and
{(E•,•r ,dr)}r≥0 is a spectral sequence.

Proof: The proof is a easy exercise, but can be found in every book treating spectral
sequences of �ltered complexes, see e.g. [50]. XΞΣ

In our case, we do not have only one �ltered complex, but two more �ltered complexes
Ωm
L (M) = Gm0 ⊇ Gm1 ⊇ . . . and its complex conjugate. Actually, there is a relation

with Ωm
L (M) = Fm0 ⊇ Fm1 ⊇ . . . , to see this we consider

E(i,j),q
r =

{α ∈ Gq+i+jj ∩Gq+i+ji | dLα ∈ F q+i+j+1
i+j+r }

(F q+i+ji+j+1 + dL(F q+i+j−1
i+j+1−r )) ∩Gq+i+jj ∩Gq+i+ji

Lemma 4.2.4 Let s = 0, 1, then the canonical maps

E(i,j),q
s → Ei+j,qs

are injective and moreover Ep,qs =
⊕

i+j=pE
(i,j),q
s for all p, q.
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Proof: Injectivity is straightforward. Let us start with s = 0. We have

E
(i,j),q
0 =

Gq+i+jj ∩Gq+i+ji

F q+i+ji+j+1 ∩G
q+i+j
j ∩Gq+i+ji

.

By (III) of Lemma 4.2.1, we immediately get Ep,q0 = 〈E(i,j),q
0 〉i+j=p. Let us now prove

that the sum is direct. We consider ωij ∈ Gq+i+jj ∩Gq+i+ji for i+ j = p, such that∑
i+j=p

ωij ∈ F q+pp+1 .

We have that

ωkl ∈ Gq+pl ∩Gq+pk ∩
(
〈Gq+pj ∩Gq+pi 〉k+l=n,(i,j)6=(k,l) + F q+pp+1

)
for every choice of k+ l = i+ j and hence, using (IV) of Lemma 4.2.1, ωkl ∈ F q+pp+1 . So
ωkl = 0 on the level of equivalence classes for all k, l and we get the result for s = 0.

Let us pass to s = 1 and let ω ∈ F q+i+ji+j such that dLω ∈ F q+i+j+1
i+j+1 . Since

F q+i+ji+j = 〈〈Gq+i+jl ∩Gq+i+jk 〉k+l=i+j , we can �nd ωkl ∈ Gq+i+jl ∩Gq+i+jk for k+l = i+j,
such that

ω =
∑

k+l=i+j

ωkl.

We have that dLωkl ∈ Gq+i+j+1
l ∩ Gq+i+j+1

k similarly as in case s = 0, we can prove

that actually dLωkl ∈ F q+i+j+1
i+j+1 , using dLω ∈ F q+i+j+1

i+j+1 . Thus

ω ∈
〈
{α ∈ Gq+i+jk ∩Gq+i+jl | dLα ∈ F q+i+j+1

i+j+r }
〉
k+l=i+j

and hence Ei+j,q1 = 〈E(k,l),q
1 〉k+l=i+j . Let now ωkl ∈ Gq+i+jl ∩Gq+i+jk for k + l = i+ j,

such that dLωkl ∈ F q+i+ji+j+1 and
∑

k+l=i+j ωkl ∈ F q+i+ji+j+1 + dL(F q+i+j−1
i+j ). Therefore

there exists α ∈ F q+i+j−1
i+j , such that

∑
k+l=i+j ωkl + dLα ∈ F q+i+ji+j+1 . Splitting α =∑

k+l=i+j αkl for some αkl ∈ Gq+i+j−1
k ∩Gq+i+j−1

l , we get that∑
k+l=i+j

ωkl + dLαkl ∈ F q+i+ji+j+1 .

Additionally we have ωkl + dLαkl ∈ Gq+i+jl ∩ Gq+i+jk . Applying the same argument

as in the case s = 0, we get ωkl + dLαkl ∈ F q+i+ji+j+1 for all k + l = i + j. Passing to
equivalence classes, we get the result for s = 1. XΞΣ

We consider the di�erentials on the zeroth and �rst page and use this splitting to
decompose them.
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Proposition 4.2.5 For the di�erentials d0 : Ep,q0 → Ep,q+1
0 and d1 : Ep,q0 → Ep+1,q

0 ,
the following hold

i.) d0(E
(i,j),q
0 ) ⊆ E(i,j),q+1

0

ii.) d1(E
(i,j),q
1 ) ⊆ E(i+1,j),q

1 ⊕ E(i,j+1),q
1

Hence there is a canonical splitting d1 = ∂1 + ∂1, where ∂1(E
(i,j),q
1 ) ⊆ E

(i+1,j),q
1 and

∂1(E
(i,j),q
1 ) ⊆ E(i,j+1),q

1 . Finally, (∂1)2 = (∂1)2 = ∂1∂1 + ∂1∂1 = 0.

Proof: We start with the zeroth page. Let ω + F q+i+ji+j+1 ∈ E(i,j),q, such that ω ∈
Gq+i+jj ∩Gq+i+ji , then

d0(ω + F q+i+ji+j+1 ) = dLω + F q+i+j+1
i+j+1 .

We have that dLω ∈ Gq+i+j+1
j ∩Gq+i+j+1

i and hence d0(ω + F q+i+ji+j+1 ) ∈ E(i,j),q+1. For

the �rst page let us choose ω+F q+i+ji+j+1 + dL(F q+i+j−1
i+j ), with ω ∈ Gq+i+jj ∩Gq+i+ji and

dLω ∈ F q+i+j+1
i+j+1 . Then

dLω ∈ Gq+i+j+1
j ∩Gq+i+j+1

i ∩ F q+i+j+1
i+j+1 = Gq+i+j+1

j+1 ∩Gq+i+j+1
i +Gq+i+j+1

j ∩Gq+i+j+1
i+1

and the claim follows by (V ) of Lemma 4.2.1. XΞΣ

4.2.2 The Obstruction Class of Transversally Complex Subalgebroids

In Section 4.1, we have seen that a transversally complex Jacobi structure (J,K) comes
from a generalized contact structure, if and only if there exists an extension of the
inverse of J , ω ∈ Ω2

L(M), and a real 2-form B ∈ Ω2
L(M), such that

dL(iω +B)(∆1,∆2,∆3) = 0 ∀∆i ∈ K. (∗)

We want to apply the techniques from the previous subsection to obtain a cohomological
obstruction for this condition to hold.

Using the formalism of Subsection 4.2.1 and using the notation im(J ]) = S, we see
that (∗) is equivalent to

dL(iω +B) ∈ G3
1 = G3

1 ∩G
3
0.

Using the non-degeneracy of ω on S, we have that ω ∈ F 2
0 and ω /∈ F 2

1 . Thus,

iω + B ∈ G2
0 ∩ G

2
0 and dLω,dLB ∈ F 3

1 . Hence both forms de�ne classes in ∈ E(0,0),2
0 ,

denoted by [ω]0 and [B]0. Note that for two real extensions ω, ω
′ of the inverse of J−1

we have that [ω]0 = [ω′]0. So the class [ω]0 only depends on J . Therefore, we write

J−1 ∈ E(0,0),2
0 without further comment.

Moreover, [ω]0 and [B]0 are d0-closed and hence they de�ne iterated classes in

E
(0,0),2
1 , denoted by [[ω]0]1 = [J−1]1 and [[B]0]1.
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Corollary 4.2.6 The condition dL(iω +B) ∈ G3
1 = G3

1 ∩G
3
0 is equivalent to

∂1(i[[ω]0]1 + [[B]0]1) = 0.

Proof: We have that dL(iω +B) ∈ G3
1 ∩G

3
0, which implies

d1(iω +B + F 2
1 + dL(F 1

0 )) = dL(iω +B) + F 3
2 + dL(F 2

1 ) ∈ G3
1 ∩G3

0 + F 3
2 + dL(F 2

1 )

Hence d1(i[[ω]0]1+[[B]0]1) ∈ E(0,1),2
1 . Using the splitting of the di�erential d1 = ∂1+∂1,

we get that ∂1(i[[ω]0]1 +[[B]0]1) = 0. The converse works by reading the equation from
the bottom to the top. XΞΣ

We want to go a step further and ask for which ω can we �nd a B, such that

dL(iω +B) ∈ G3
1 ∩G

3
0. The answer is contained in the following

Lemma 4.2.7 Let ω ∈ Ω2
L(M) be real, such that dLω ∈ F 3

1 . Then there exists a

B ∈ Ω2
L(M), such that dL(iω +B) ∈ G3

1 = G3
1 ∩G

3
0 if and only if

i.) ∂1∂1[[ω]0]1 = 0

ii.) ∂1[[ω]0]1 − ∂1[[ω]0]1 is d1-exact.

Remark 4.2.8 Note that ii.) can only be ful�lled, if i.) is ful�lled, since i.) just
ensures that ∂1[[ω]0]1 − ∂1[[ω]0]1 is d1-closed.

Proof (of Lemma 4.2.7): Let us �rst assume, that dL(iω +B) ∈ G3
1 = G3

1 ∩G
3
0 for

a real B, which is equivalent to ∂1(i[[ω]0]1 + [[B]0]1) = 0 by Proposition 4.2.6. Hence
we have

2 d1[[B]0]1 = 2Re(d1[[iω +B]0]1)

= 2Re(∂1[[iω +B]0]1)

= (∂1[[iω +B]0]1 + ∂1[[iω +B]0]1)

= d1[[B]0]1 + i(∂
1
[[ω]0]1 − ∂1[[ω]0]1),

and hence ∂1[[ω]0]1−∂1[[ω]0]1 is d1-exact. Assuming, on the other hand, that i(∂1[[ω]0]1−
∂1[[ω]0]1) = d1[B]1. Note that i(∂1[[ω]0]1 − ∂1[[ω]0]1) is real and thus we can choose
a real representant B of [[B]0]1, then it is easy to see that ∂1[[iω + B]0]1 = 0 and the
claim follows. XΞΣ

Let us conclude this section with the main theorem of this chapter, which is basically
just a summary of the previous results. Afterwards we will discuss the connection to
generalized complex structures.

Theorem 4.2.9 Let L→M be a line bundle and let (J,K) be a transversally complex
Jacobi structure on L. These data are induced by a generalized contact structure, if
and only if
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i.) ∂1∂1[J−1]1 = 0

ii.) ∂1[J−1]1 − ∂1[J−1]1 is d1-exact,

where we interpret J−1 as an element in E
(0,0),2
0 . Moreover, the generalized contact

structure inducing the data is of the form

L = (K ⊕Ann(K))iω+B

for any choice of ω ∈ J−1 real and any real B ∈ Ω2
L(M) such that [B]0 is closed and

d1[[B]0]1 = i(∂1[J−1]1 − ∂1[J−1]1).

Corollary 4.2.10 Let L→M be a line bundle and let (J,K) be a transversally com-
plex Jacobi structure. If [J−1]1 = 0, then the data comes from a generalized contact
structure of the form

L = (K ⊕Ann(K))iω,

where ω ∈ J−1.

Remark 4.2.11 (Generalized Complex Geometry) Let us recall the mirror re-
sult in generalized complex geometry. In [5] the author obtains similar results, given
a regular Poisson structure π ∈ Γ∞(Λ2TM) and a transversally complex distribution,
i.e. an involutive subbundle K ⊆ TCM such that SC := im(π])C = K ∩K. Now S and
K induce �ltrations of the de Rham complex and hence give rise to spectral sequences
which are very similar to the ones obtained in Subsection 4.2.1. All the proofs of the
splitting of the spectral sequence and the di�erentials can be obtained in the same
exact way as in Subsection 4.2.1. Adapting the notations, we �nd that the data comes
from a generalized complex structure, if and only if

i.) ∂1∂1[π−1]1 = 0

ii.) ∂1[π−1]1 − ∂1[π−1]1 is d1-exact.

These obstructions di�er quite a lot from those found in [5]. The reason for this
is that in [5] the author searches for H-generalized complex structures which is a
generalization of generalized complex structure, while our approach gives obstructions
to �nd an honest generalized complex structures. This is not a di�erence in the case
of generalized contact geometry, but in fact it is in generalized complex geometry. It
is an easy exercise to see that there is an H-generalized complex structure inducing
(π,K), if and only if

i.) d1(∂1[π−1]1 − ∂1[π−1]1) = 0

ii.) d2[∂1[π−1]1 − ∂1[π−1]1]2 = 0

iii.) d3[[∂1[π−1]1 − ∂1[π−1]1]2]3 = 0.
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To be more precise ii.) is only well-de�ned, if i.) is ful�lled and iii.) is only well-
de�ned, if ii.) is ful�lled. These obstructions are equivalent to the ones found in [5]. It
is a bit of a computational e�ort to prove this, since the author used a transversal to
im(π]) to obtain his results. We want to stress that, as we work completely within the
spectral sequence, this is not really necessary and we prefer not to make this arbitrary
choice.

4.3 Examples I: �ve dimensional Nilmanifolds

Weakly regular Jacobi structures appear as invariant Jacobi structures on Lie groups,
which are even canonically regular. We begin this section de�ning invariant Jacobi
structures and invariant generalized contact structures. Afterwards, we will formulate
everything at the level of Lie algebras.

De�nition 4.3.1 Let L → G be a line bundle over a Lie group G and let Φ: G →
Aut(L) be a smooth Lie group action covering the left multiplication. A Jacobi bracket
{−,−} : Γ∞(L)× Γ∞(L)→ Γ∞(L) is said to be invariant, if

Φ∗g{λ, µ} = {Φ∗gλ,Φ∗gµ} ∀λ, µ ∈ Γ∞(L), ∀g ∈ G.

Let us put invariant Jacobi structures in the context of invariant generalized contact
bundles. Our arena is the omni-Lie algebroid DL⊕ J1L for a line bundle L→ G over
a Lie group. For a Lie group action Φ: G → Aut(L) covering the left multiplication,
we have the the canonical action

DΦg : DL 3 (∆, ψ) 7→ (DΦg(∆), (DΦg−1)∗ψ) ∈ DL.

De�nition 4.3.2 Let L → G be a line bundle over a Lie group G and let Φ: G →
Aut(L) be a Lie group action covering the left multiplication. A generalized contact
structure L ⊆ DCL is said to be G-invariant, if and only if DΦg(L) = L for all g ∈ G.

Proposition 4.3.3 Let L→ G be a line bundle over a Lie group G, let Φ: G→ Aut(L)
be a Lie group action covering the left multiplication and let L ⊆ DCL be a G-invariant
generalized contact structure, then its Jacobi-structure is G-invariant.

A Lie group action Φ: G→ Aut(L) allows us to trivialize the line bundle itself, its
derivations and its �rst jet. Similarly to the tangent bundle of a Lie group, we have

L ∼= G× `

where ` = Γ∞(L)G. Note that ` is a 1-dimensional vector space over R. Moreover, in
this trivialization the action of G looks like

Φg(h, l) = (gh, l) ∀(h, l) ∈ G× `, ∀g ∈ G.
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Additionally the Atiyah algebroid is also a trivial vector bundle by

DL ∼= G× Γ∞(DL)G,

where Γ∞(DL)G is a (dim(G) + 1)-dimensional vector space over R. Moreover, since
the symbol maps invariant derivations to left-invariant vector �elds, we have the G-
invariant Spencer sequence for Lie(G) = g

0→ R→ Γ∞(DL)G → g→ 0,

by using the fact that G-invariant endomorphisms are just multiplications by constants.
This sequence splits canonically, since, we have Γ∞(L) ∼= C∞(M)⊗R `. Thus

Γ∞(DL)G ∼= g⊕ R,

with bracket

[(ξ, r), (η, k)] = ([ξ, η], 0) ∀(ξ, r), (η, k) ∈ g⊕ R.

Similarly, using J1L = (DL)∗ ⊗ L, plus the choice of a basis of `, we get

Γ∞(J1L)G ∼= g∗ ⊕ R.

The di�erential dL reduces to

dL(α+ k1∗) = δCEα+ 1∗ ∧ α,

where α ∈ g∗ and 1∗ is again the projection to the R-component. These are all the
ingredients, we need to describe G-invariant generalized contact structures via their
in�nitesimal data, i.e. in terms of the Lie algebra g = Lie(G). Using the trivialization,
we see immediately that for two invariant sections (∆i, ψi) ∈ Γ∞(DL)G

[[(∆1, ψ1), (∆2, ψ2)]] ∈ Γ∞(DL)G

by naturality of the Dorfman-bracket. It is easy to see that the bracket has the form
of the bracket of the following

De�nition 4.3.4 Let g be a Lie algebra with the abelian extension gR := g⊕R, where
we denote by 1 and 1∗ the canonical elements in gR and g∗R, respectively. The omni-Lie
algebra of g is the vector space gR ⊕ g∗R together with

i.) the (Dorfman-like) bracket

[[(X1, ψ1), (X2, ψ2)]] = ([X1, X2],LX1ψ2 − ιX2 dψ1)

ii.) the non-degenerate pairing

〈〈(X1, ψ1), (X2, ψ2)〉〉 := ψ1(X2) + ψ2(X1)
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iii.) the canonical projection prD : gR ⊕ g∗R → gR

Here the di�erential is given by

d(α+ 1∗ ∧ β) = δCEα+ 1∗ ∧ (α− δCEβ)

for α, β ∈ g∗ and LX = [ιX ,d].

Proposition 4.3.5 Let L → G be a line bundle over a Lie group G and let Φ: G →
Aut(L) be a Lie group action. A G-invariant generalized contact structure L ⊆ DCL is
equivalently described by a subspace Lg ⊆ [(g⊕R)⊕ (g∗⊕R)]C de�ned by its invariant
sections, which is maximally isotropic, ful�lls Lg ∩ Lg and is involutive with respect to
the Dorfman-bracket.

Proof: The proof is based on the fact that an invariant generalized contact structure
is completely characterized by its invariant sections. XΞΣ

The idea is now to forget about the Lie group and perform every construction
directly on the Lie algebra, having in mind, of course, that we can reconstruct a
generalized contact structure on the Lie group by translating. Being a bit more precise,
we give the following

De�nition 4.3.6 Let g be a Lie algebra. A generalized contact structure on g is a
subbundle L ∈ (gR⊕ g∗R)C, which is involutive, maximally isotropic and ful�lls L∩L =
{0}.

From the above discussion, we can immediatly obtain

Lemma 4.3.7 Let G be a Lie group with Lie algebra g. The left translations establish
a 1 : 1-correspondence between generalized contact structures on g and left-invariant
generalized contact structures on G× R→ G.

As in the geometric setting we have extreme cases

Example 4.3.8 Let (g,Θ) be a (2n+ 1)-dimensional contact Lie algebra, i.e. Θ ∈ g∗,
such that Θ ∧ (δCEΘ)n 6= 0, then we denote by Ω = p∗Θ for the projection p : gR → g
and get that

L = {(X, iιX dΩ) ∈ (gR ⊕ g∗R)C | X ∈ (gR)C}

gives g the structure of a generalized contact Lie algebra.

Example 4.3.9 Let g be a Lie algebra and φ ∈ End(gR) be a complex structure, then

L = g
(1,0)
R ⊕Ann(g

(1,0)
R )

gives g the structure of a generalized contact Lie algebra, where g
(1,0)
R is the +i-

Eigenbundle of φC : (gR)C → (gR)C.
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Now, we restrict ourselves to the case of 5-dimensional nilpotent Lie algebras, since
we are able to use already existing classi�cation results, which are not available in more
general classes of Lie algebras, in order to prove the following

Theorem 4.3.10 Every �ve dimensional nilpotent Lie algebra possesses a generalized
contact structure.

From this theorem, we can immediately conclude

Corollary 4.3.11 Every �ve dimensional nilmanifold possesses an invariant general-
ized contact structure.

To prove Theorem 4.3.10, we will use Section 4.2.2, to be more precise, we will make
use of Theorem 4.2.9. In particular, we will �nd a generalized contact structure on a
given Lie algebra by looking for a transversally complex Jacobi structure. Afterwards,
we use Theorem 4.2.9 to prove the existence of a generalized contact structure. Note
that we did not prove the invariant analogue of Theorem 4.2.9, but as the proof of
Theorem 4.2.9 can be performed also in the invariant setting.

A big help in proving Theorem 4.3.10 is the classi�cation of �ve dimensional nilpo-
tent Lie algebras provided in [18]. In that work the author proved that there are exactly
nine (isomorphism classes of) �ve dimensional nilpotent Lie algebras. Since we want to
prove that there are generalized contact structures on all of them, it seems convenient
to test �rst the extreme examples, i.e. integrable complex structures on gR (Example
4.3.9) on the one hand and contact structures on the other hand (Example 4.3.8). For
the complex structures we can can use the work of Salamon in [37], where he classi-
�ed all the complex nilpotent Lie algebras of six dimensions. Of course not every six
dimensional nilpotent Lie algebra arises as an abelian extension of a �ve dimensional
one.

In the following, we denote by {e1, . . . , e5} a given basis of a �ve dimensional vector
space g. The only 5-dimensional nilpotent Lie algebras, such that gR admits a complex
structure are (we use the notation of [18] for the description of 5-dimesional nilpotent
Lie algebras):

i.) L5,1 (abelian)

ii.) L5,2 : [e1, e2] = e3

iii.) L5,4 : [e1, e2] = e5, [e3, e4] = e5

iv.) L5,5 : [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5

v.) L5,8 : [e1, e2] = e4, [e1, e3] = e5

vi.) L5,9 : [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5

We have to check that the remaining 5-dimensional nilpotent Lie algebras L5,3, L5,6

and L5,7 are also generalized contact. Let us denote by {e1, . . . , e5} the dual basis of
{e1, . . . , e5}.
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4.3.1 L5,3 : [e1, e2] = e3, [e1, e3] = e4

It is easy to see that J = e3 ∧ e1 + 1 ∧ e4 is a Jacobi structure. Additionally

K := 〈1, e1, e3, e4, e2 − ie5〉

is a subalgebra of (gR)C and that (J,K) is a transversally complex Jacobi structure.
Moreover, ω = e1 ∧ e3 − 1∗ ∧ e4 is an extension of the inverse of J and we obtain that
dω = δCEω + 1∗ ∧ ω = 0, which implies that [J−1]1 = [[ω]0]1 = 0. Using Corollary
4.2.10, we see that there is a generalized contact structure inducing this data, an explicit
example is given by

(K ⊕Ann(K))iω.

4.3.2 L5,6 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5

This Lie algebra is actually a contact Lie algebra with contact 1-form Θ = e5.

4.3.3 L5,7 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5

It is easy to see that J = e1 ∧ e3 + e4 ∧ (1+ e5) is a Jacobi structure. Let us de�ne

K := 〈1+ e5, e1, e3, e4,1+ ie2〉.

We have [gR, gR] ⊆ im(J ]) and hence K is integrable. Moreover, we have that ω =
−(e1 ∧ e3 + e4 ∧ e5) + (1− e5)∧ e4 is an extension of J−1 and dω = 0. Using Corollary
4.2.10, we �nd a generalized contact structure given by

(K ⊕Ann(K))iω

We have already seen that the Lie algebras L5,3, L5,6 and L5,7 do not admit a
complex structure on their one dimensional abelian extension. Moreover, L5,6 is a
contact Lie algebra. In the following we want to show that L5,3 and L5,7 do not admit
a contact structure, so that there are generalized contact structures on them but not
of the extreme types. Let us �rst collect some basic properties of contact Lie algebras

Theorem 4.3.12 Let g be a nilpotent Lie algebra and Θ ∈ g∗ be a contact form. Then
the center Z(g) has dimension one.

A reference for Theorem 4.3.12 and its proof is [35]. As a �rst consequence is

Corollary 4.3.13 The Lie algebra L5,3 is not contact.

The only Lie algebra, which is left over is L5,7. Here we do not have a general
statement about contact Lie algebras that we can use, nevertheless we have
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Lemma 4.3.14 The Lie algebra L5,7 is not contact.

Proof: From the commutation relation in Subsection 4.3.3 it is clear that we have
δCE(Λ•g∗) ⊆ e1 ∧ Λ•g∗. Hence we have that for all α ∈ g∗ δCEα = e1 ∧ β for some
β ∈ g∗. As a consequence α ∧ (δCEα)2 = 0 for all α ∈ g∗, and hence the Lie algebra
can not be contact. XΞΣ

Remark 4.3.15 To prove that L5,1, L5,2, L5,8 and L5,9 are not contact one can use
Theorem 4.3.12. Finally, for the remaining ones the contact structures are given by e5.

As a summary we have the following table

contact gR-complex generalized contact

L5,1 × X X

L5,2 × X X

L5,3 × × X

L5,4 X X X

L5,5 X X X

L5,6 X × X

L5,7 × × X

L5,8 × X X

L5,9 × X X

We used the term gR-complex short for gR admits a complex structure.

4.4 Examples II: Contact Fiber Bundles

The next class of examples are contact �ber bundles over a complex base manifold. We
begin explaining what we mean by contact �ber bundle. Similarly to symplectic �ber
bundles, there is a contact structure on the vertical bundle

VerL(P ) = σ−1(Ver(P )) ⊆ DL,

for a line bundle L→ P , such that P →M is a �ber bundle. More precisely:

De�nition 4.4.1 Let π : P →M be a �ber bundle and let L→ P by a line bundle. A
smooth family of contact manifolds is the data of L → P together with a closed non-
degenerate 2-form ω ∈ Γ∞(Λ2(VerL(P ))∗ ⊗ L). If additionally the contact structures
(L
∣∣
Pm
→ Pm, ω

∣∣
D(L|Pm )

) are contactomorphic, we say that L → P is a contact �ber

bundle.
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Before we come to examples, we want to make some general remarks on smooth
families of contact structures and contact �ber bundles, which are more or less known.

Remark 4.4.2 Let (π : P → M,ω) be a smooth family of contact structures. If the
�ber is compact and connected and the base is connected, then the data automatically
de�ne a contact �ber bundle. This follows from the stability theorem of Gray in [25],
which states that two contact forms which are connected by a smooth path of contact
structures are contactomorphic.

Remark 4.4.3 As in the setting of symplectic �ber bundles, we can express the data
in local terms, namely: the datum of a contact �ber bundle over a manifold M with
typical �ber F is equivalent to:

i.) a line bundle LF → F and a contact 2-form ω ∈ Γ∞(Λ2(DL)∗ ⊗ L)

ii.) an open cover {Ui}i∈I

iii.) smooth transition maps Tij : Ui ∩ Uj → Aut(LF ) which are point-wise contacto-
morphisms

Remark 4.4.4 Obviously, one can de�ne smooth families of contact structures as a
Jacobi structure of contact type, such that the characteristic distribution of it is the
vertical bundle of a �ber bundle.

Using this remarks, we can show that under certain assumptions on the base, a
smooth family of contact structures always induces a generalized contact structure on
the total space.

Lemma 4.4.5 Let π : P → M be a �ber bundle with typical �ber F over a complex
base M , let L → M by a line bundle and let J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) be a Jacobi
structure giving P the structure of a smooth family of contact manifolds as in Remark
4.4.4. Then P possesses a generalized contact structure with Jacobi structure J .

Proof: First of all, we notice that the Jacobi structure is weakly regular, since
im(J ]) = VerL(P ). The only thing what we have to show is that the data induce
a transversally complex Jacobi structure, since we have that the inverse of the Jacobi
structure is leaf-wise exact with canonical primitive ι1ω, which implies that [J−1]1 = 0
by Corollary 4.2.10. Let us denote by T (1,0)M ⊆ TCM the holomorphic tangent bundle
induced by the complex structure on M . With this we de�ne

K := (σ ◦ Tπ)−1(T (1,0)M) ⊆ DCL.

It is an easy consequence of the de�nitions of the bundles that (J,K) is a transversally
complex Jacobi structure. This concludes the proof. XΞΣ

We see that in this case the existence of a generalized contact structure is unob-
structed. Let us show that smooth families of contact structure over a complex base
do actually exist.
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Example 4.4.6 (Projectivized Vertical Bundle) Let π : P → M be a �ber bun-
dle with typical �ber F over a complex base M . Given a set of local trivializations
(Ui, τi)i∈I

P
∣∣
Ui

Ui × F

Ui

τi

π pr1

with transition functions τij : Ui ∩ Uj → Diffeo(F ) . Let us denote by T∗τij : Ui ∩
Uj → Diffeo(T ∗F ) there cotangent lifts, which ful�l also the cocycle condition for
transition functions and hence they induce a �ber bundle Ṽ → M (actually this is
Ver∗(P )) with local trivializations (Ui, φi)i∈I , such that the transition functions ful�l
φij = T∗τij . We consider now the canonical symplectic form ωcan ∈ Γ∞(Λ2T ∗(T ∗F ))
on T ∗F , note that the functions T∗τij are obviously symplectomorphisms. The next
step is to consider the �ber bundle V →M with typical �ber T ∗F r 0F , which we get
by the obvious restrictions. Note that on T ∗F r 0F we have a canonical R×-action
which is free and proper and the for restricted symplectic form ωcan we have that
L(1)T∗Fωcan = ωcan. Using the results from [10], we conclude that the associated line

bundle L→ RT ∗F := T ∗Fr0F
R× carries a contact structure and the transitions functions,

which are obviously commuting with the R×-action, act as line bundle automorphisms
preserving the contact structure. This is exactly the data we need to cook up a contact
�ber bundle (4.4.3) and hence its total space possess a generalized contact structure,
due to Lemma 4.4.5. Note that here the input was a generic �ber bundle over a complex
base and the output is a generalized contact bundle. Moreover, if both the base and
the �ber are compact, then the output is also compact. We hence proved the existence
of compact examples.

Example 4.4.7 (Principal �ber Bundles) Let g be a Lie algebra with a contact
1-form Θ ∈ g∗. Let us consider a Lie group G integrating g and a manifold M with
a complex structure. Additionally, let P → M be a G-principal �ber bundle and let
RP → P be the trivial line bundle, where we denote by 1P the generating section.
Recall that here the gauge algebroid splits canonically as DRP = TP ⊕RP . Moreover,
we have that VerRP (P ) = Ver(P )⊕ RP . Thus, a generic derivation ∆p ∈ VerRP (P ) is
of the form ∆ = (ξP (p), k) ∈ Ver(P )⊕RP , where ξP is the fundamental vector �eld of
a unique ξ ∈ g and p ∈ P . We de�ne ω ∈ Γ∞(Λ2(VerRP (P ))∗ ⊗ RP ) by

ω((ξP (p), k), (ηP (p), r)) =
(
(δCEΘ)(ξ, η) + kΘ(η)− rΘ(ξ)

)
· 1P (p).

It is easy to check that ω gives P →M the structure of a contact �ber bundle. SinceM
was assumed to be complex, we can apply Lemma 4.4.5 to obtain a generalized contact
bundle on P . Note that this notion includes S1-principal �ber bundles over a complex
manifold. Moreover, contact Lie algebras are an active �eld of research and there are
many examples around and even a classi�cation of nilpotent contact Lie algebras in [3].
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4.5 A Counterexample

In this last section, we want to construct a transversally complex Jacobi structure which
cannot be induced by a generalized contact structure. The remarkable feature of this
counterexample is, that it is, as manifolds, a global product of a (locally conformal)
symplectic manifold and an Atiyah-complex manifold. Note that in [41] it was proven
that every generalized contact bundle is locally isomorphic to a product, however not
all generalized contact bundles arise in this way globally.

Let us consider the 2-sphere S2 and its symplectic form ω ∈ Γ∞(Λ2T ∗S2). Its
inverse π ∈ Γ∞(Λ2TM) is a Poisson structure and hence π + 1 ∧ 0 = π is a Jacobi
structure on the trivial line bundle.

The second manifold which is involved is the circle S1. Our counterexample will
live on the trivial line bundle over the product

RM →M := S2 × S1.

Using Remark 1.2.48, we see that

DRM = TM ⊕ RM = TS2 ⊕ TS1 ⊕ RM

and we can de�ne a Jacobi structure J = π + 1 ∧ 0 = π on it by "pulling back" the bi
vector π by setting it to be constant in S1 direction. We see that im(J ]) = TS2 ⊆ DRM .

The next step is to choose an everywhere non-vanishing vector �eld e ∈ Γ∞(TS1)
and de�ne

K := TCS2 ⊕ 〈1− ie〉 ⊆ DCRM .

Note that we have

DCRM = TCS2 ⊕ 〈1− ie〉 ⊕ 〈1+ ie〉. (4.5.1)

An easy computation shows that (J,K) is a transversally complex Jacobi structure.
Our claim is now that (J,K) can not be induced by a generalized contact structure.
To see this, let us examine the Der-complex a bit closer. We have that

Λk(DRM )∗ ⊗ RM = Λk(TM∗ ⊕ RM ).

Recall the notation of Remark 1.2.48: we obtain that an Atiyah form ψ ∈ Γ∞(Λk(TM∗⊕
RM )) can be uniquely written as ψ = α + 1∗ ∧ β for some (α, β) ∈ Γ∞(ΛkT ∗M ⊕
Λk−1T ∗M). Moreover, we have

dRM (α+ 1∗ ∧ β) = dα+ 1∗ ∧ (α− dβ)

where d is the usual de Rham di�erential. Now we want to pass to the spectral sequence,
therefore we split the Der-complex according to the splitting of Equation (4.5.1), we
have

Ω
(i,j),q
RM = Γ∞(ΛqT ∗S2 ⊗ Λi〈1∗ + iα〉 ⊗ Λj〈1∗ − iα〉),
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where α ∈ Γ∞(TS1) such that α(e) = 1. Note that here we have the canonical
identi�cation DRM ⊇ Ann(TS2) = T ∗S1 ⊕ RM , which allows us to identify

E
(i,j),q
0 = Ω

(i,j),q
RM .

In case of a cartesian product, the di�erential dRM splits canonically with respect to
the bi-grading into

dRM = d0 + ∂1 + ∂1,

where d0 : Ω
(i,j),q
RM → Ω

(i,j),q+1
RM , ∂1 : Ω

(i,j),q
RM → Ω

(i+1,j),q
RM and ∂1 : Ω

(i,j),q
RM → Ω

(i,j+1),q
RM .

Additionally, all three maps are di�erentials themselves and anticommute pairwise.
Now we want to consider the inverse of J , which is the pullback of ω with respect to
the canonical projection S2 × S1 → S2. With a tiny abuse of notation we will see ω as

an element of Γ∞(Λ2T ∗S2) ⊆ E
(0,0),2
0 . A long and not very enlightening computation

shows that

∂1∂1ω =
1

4
((1∗ − iα) ∧ (1∗ + iα) ∧ ω)

Hence, we have for the cohomology class

∂1∂1[[ω]0]1 = [[(1∗ − iα) ∧ (1∗ + iα) ∧ ω]0]1.

But this cannot vanish, since a d0-primitive ψ has to be of the form

ψ = (1∗ − iα) ∧ (1∗ + iα) ∧ β

for β ∈ Γ∞(T ∗S2). This implies that dβ = ω, which is an absurd because the symplectic
form on the sphere is not exact.
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Appendices

This Appendices contain three topics which are relevant for some proofs of this thesis,
but are not relevant for the core of it: Jacobi related geometries.

In the �rst section, we give a proof of a Moser -like trick, which allows us to con-
struct isomorphisms of Dirac-Jacobi bundles. The second section discusses the so-call
homogenization trick, which establishes, roughly speaking, a one-to-one correspondence
between "Jacobi related geometries" and "homogeneous Poisson related geometries".
Even though, this trick is very important for the whole theory of Jacobi related ge-
ometries, we prefer to shift it to the Appendix, since we want to stress that almost
everything in the whole thesis does not use the one-to-one correspondence. The last
section discusses Atiyah complex structures, which appear as one of the extreme cases
in generalized contact geometry. Since they have not been considered so far in liter-
ature, the last section can be seen as a short introduction to the geometry of Atiyah
complex structures.

A.1 The Moser Trick for Dirac-Jacobi Structures

Let J ∈ Γ∞(Λ2(J1L)∗ ⊗ L) be a Jacobi structure on a line bundle L→M . Moreover,
we assume we have a smooth family of closed Atiyah 2-forms σt, such that σ0 = 0 and
LσtJ is a Jacobi structure for all t, denoted by Jt. For

αt := − ∂

∂t
ι1σt

the equation

∂

∂t
σt = −dLαt

holds. We de�ne the Moser-derivation by

∆t := −J ]t (αt)
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and its �ow by Φt ∈ Aut(L), where we assume it exists for on open subset containing
[0, 1]. Let us compute

d

dt
Φ∗tJt = Φ∗t

(
[∆t, Jt] +

d

dt
Jt

)
= Φ∗t

(
− [J ]t (αt), Jt] +

d

dt
Jt

)
= Φ∗t

(
J ]t (−dLαt) +

d

dt
Jt

)
.

(A.1.1)

It is easy to see that

J ]t = J ] ◦ (id+σ[t ◦ J ])−1

and hence we can compute

d

dt
J ]t =

d

dt
J ] ◦ (id+σ[t ◦ J ])−1

= −J ] ◦ (id+σ[t ◦ J ])−1 ◦
(

d

dt
(id+σ[t ◦ J ])

)
◦ (id+σ[t ◦ J ])−1

= −J ] ◦ (id+σ[t ◦ J ])−1 ◦
(

d

dt
(id+σ[t ◦ J ])

)
◦ (id+σ[t ◦ J ])−1

= −J ]t ◦
(
∂

∂t
σt

)[
◦ J ]t

= (−J ]t
(
∂

∂t
σt)

)]
=
(
J ]t (dLαt)

)]
,

and hence d
dtJt = J ]t (dLαt). If we use this equality in Equation A.1.1, we �nd

d

dt
Φ∗tJt = 0,

so we �nally have J = Φ∗0J0 = Φ∗1J1 and hence the two Jacobi structures J0, J1 are
isomorphic. We want to show that this well-known trick is just a special instance of
a Moser-like trick for Dirac-Jacobi structures, which we need in order to discuss the
semi-local structure of generalized contact bundles. We assume we have a Dirac-Jacobi
structure L ⊂ DL and a smooth family of closed 2-forms σt, such that σ0 = 0. Moreover,
we assume there exists a time-dependent derivation ∆t, such that (∆t, αt − ι∆tσt) ∈
Γ∞(L) for all t, where

αt := − ∂

∂t
ι1σt.

The �ow of (∆t, αt − ι∆tσt) is given by

exp(γt) ◦ DΦt,
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where Φt is the �ow of ∆t and

γt = (Φt)∗

∫ t

0
(Φτ )∗(dL(ατ − ι∆τστ )) dτ

= (Φt)∗

∫ t

0
(Φτ )∗(− ∂

∂τ
στ −L∆τστ ) dτ

= (Φt)∗

∫ t

0
− d

dτ
(Φτ )∗στ dτ

= −σt

Since (∆t, αt − ι∆tσt) ∈ Γ∞(L), this �ow preserves L and hence

exp(−σt) ◦ DΦt(L) = L

which implies

DΦt(L) = Lσt ,

showing that L and Lσt are isomoprhic for all t.

A.2 Homogenization of Jacobi related Geometries

Homogenization means in the context of Jacobi related geometries, roughly speaking,
a functor from a suitable category of Jacobi related geometries, for example Jacobi
bundles to a suitable category of homogeneous Poisson related geometries, for example
homogeneous Poisson manifolds.

Even though, the homogenization is not needed in this thesis besides Appendix A.3,
it provides a powerful tool in order to understand some instances in Jacobi geometry
and can even give much simpler proofs, but in all of presented results in this thesis
the homogenization did not provide a good framework for the proofs. It �rst appeared
as the so- called symplectization trick in contact geometry, see for example [29] and
its references. A uni�ed approach for homogenization is presented in [10] including
non-coorientable contact structures and Jacobi brackets, see also [48]. We will recall in
a very vague way [10] in order to present the homogenization, but using our notation.
Note that this appendix is not meant to present every proof in detail, it is more intended
to give a global idea of the homogenization construction.

Let us start considering a line bundle L → M . Its co-frame bundle p : M̃ :=
L∗\0M →M is a R×-principal �ber bundle with principal action

P : R× × M̃ 3 (r, αp) 7→ rαp ∈ M̃.

Note that sections of L→M can be canonically identi�ed with homogeneous functions
on M̃ with respect to the principal action by

·̃ : Γ∞(L) 3 λ 7→ λ̃ := (αp 7→ αp(λ(p))) ∈ C∞(M̃).
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We have for every p ∈ M̃

T ∗αpM̃ = {dλ̃
∣∣
αp
| λ ∈ Γ∞(L)},

which can be shown easily in local coordinates. This allows us to de�ne

·̃ : Γ∞(Λk(J1L)∗ ⊗ L) 3 ∆ 7→
(

(λ̃1, . . . , λ̃k) 7→ ˜∆(j1λ1, . . . , j1λk))

)
∈ Γ∞(ΛkTM).

(∗)

for all k ≥ 0. Note that this map is injective and moreover the image are exactly the
multi-vector �elds X ∈ Γ∞(ΛkTM), ful�lling

P ∗rX = r1−kX,

which span the tangent space at each point (which again can be shown easily in coor-
dinates). It is worth mentioning at this moment that

1̃ =
d

dt
Mexp(t) = E .

is the Euler vector �eld of L∗ →M restricted to M̃ . The map de�ned in Equation (∗) is
by de�nition also compatible with the Gerstenhaber-Jacobi bracket and the Schouten
bracket, i.e. we have

˜[[∆,�]]L = [∆̃, �̃]

for all ∆,� ∈ Γ∞(Λ•(J1L)∗ ⊗ L). This means, in particular, that having a Jacobi
structure J ∈ Γ∞(Λ2(J1L)∗⊗L), its homogenization J̃ is a Poisson structure( J being
Jacobi is equivalent to [[J, J ]]L = 0).

Let us now discuss the dual picture. The complex relevant for us is the de Rham
complex of DL with coe�cients in L, denoted by Ω•L(M). We de�ne now

·̃ : Ωk
L(M) 3 ψ 7→

(
(∆̃1, . . . , ∆̃k) 7→ ˜ψ(∆1, . . . ,∆k)

)
∈ Γ∞(ΛkT ∗M),

which is a cochain map intertwining dL and and the usual de Rham di�erential d. Note
that we have here

P ∗r ψ̃ = rψ̃

for ω ∈ Ω•L(M). We can now even introduce the map

·̃ : Γ∞(Λ•(J1L)∗ ⊗ Λ•(DL)∗ ⊗ L)

in a similar fashion, i.e. de�ning them on the image of ·̃. Moreover, we have that

P ∗r
˜(∆⊗ ψ ⊗ λ) = r1−k ˜(∆⊗ ψ ⊗ λ)

for (∆⊗ ψ ⊗ λ) ∈ Γ∞(Λk(J1L)∗ ⊗ Λ•(DL)∗ ⊗ L).
And one can show that almost all the structures appearing in this thesis can be

mapped via this map into more classical structure, i.e.
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i.) A Jacobi tensor J gets mapped in a Poisson structure J̃ ful�lling P ∗r J̃ = r−1J̃ .

ii.) A pre-contact structure ω, i.e. ω ∈ Ω2
L(M) and closed, gets mapped into a

presymplectic structure ω̃ ∈ Γ∞(Λ2T ∗M̃) ful�lling P ∗r ω̃ = rω̃. Moreover, if ω is
non-degenerate, i.e. contact, then ω̃ is symplectic.

iii.) An Atiyah complex structure ϕ ∈ Γ∞(End(DL)) gets mapped into a complex
structure ϕ̃ ful�lling P ∗r ϕ̃ = ϕ̃.

iv.) For a Dirac-Jacobi structure L ⊆ DL, the subset (∆̃, ψ̃) ∈ Γ∞(TM ⊕ T ∗M) for
(∆, ψ) ∈ Γ∞(L) generates a Dirac structure D ful�lling: (X,α) ∈ Γ∞(D) =⇒
(P ∗rX,

1
rP
∗
r α) ∈ Γ∞(D).

v.) A generalized contact structure

K =

(
ϕ J ]

β[ −ϕ∗

)
gets mapped into a generalized complex structure

K̃ =

(
ϕ̃ J̃ ]

β̃[ −ϕ̃∗

)
,

such that P ∗r ϕ̃ = ϕ̃, P ∗r J̃ = r−1J̃ and P ∗r β̃ = rβ̃.

We refer to all the structures in i.) − v.) on M̃ as homogeneous. Moreover, it is clear

that having a homogeneous structure on M̃ with the indicated properties, they are
actually coming from their "Jacobi"-version, for example for a Poisson structure π on
M̃ ful�lling P ∗r π = r−1π there is a unique Jacobi structure J such that π = J̃ .

Let us now talk about morphisms. In Line morphisms areregular line bundle mor-
phisms Φ: L1 → L2. Let us denote by φ : M1 → m2 the map Φ is covering. We can
de�ne

Φ̃ : M̃1 3 αp 7→ αp ◦ Φ−1
p ∈ M̃2.

Note that Φ̃ intertwines the principal actions and is hence a morphism of R×-principal
�ber bundles. This makes ·̃ a functor Line into the category of R×-principal �ber
bundles.

This functor provides an equivalence of categories. To see this we consider a R×-
principal �ber bundle P →M , where we denote the principal action by P : R××P → P .
The associated line bundle is the quotient

L := RP /R× → P/R× = M

with the action given by

R× × RP 3 (r, (p, k)) 7→ (rp, r−1k) ∈ RP .

It is now easy to show that L∗\0M ∼= P , this can be found in every classical book
treating principal �ber bundles, or equivalently [10].
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A.3 Atiyah Complex Structures and their Dolbeault Co-

homologies

Complex structures on the Gauge algebroid of a line bundle have not been studied so far,
in fact the author is just aware of the references [27] and [41], where this appendix also
appeared. Following the homogenezation scheme from Appendix A.2, Atiyah complex
structures seem to be natural objects and in the opinion of the author it provides the
right framework of complex geometry in odd dimension. Moreover, it includes what is
known as normal almost contact structures (see below).

A.3.1 Complex Structures on the Gauge Algebroid

Let L → M be a line bundle. In this appendix we study the local properties of a
generalized contact structure of complex type, i.e. a generalized contact structure K on
L, of the form

K =

(
ϕ 0

0 −ϕ∗

)
. (A.3.1)

In this case ϕ : DL→ DL is a(n integrable) complex structure on the gauge algebroid
DL, i.e.

i.) ϕ is almost complex, i.e. ϕ2 = − id,

ii.) ϕ is integrable, i.e. its Lie algebroid Nijenhuis torsion Nϕ vanishes.

Here Nϕ ∈ Γ∞(Λ2(DL) ∗ ⊗DL) is the skew-symmetric bilinear map de�ned by

Nϕ(∆,�) = [ϕ∆, ϕ�]− ϕ([ϕ∆,�]) + ϕ([∆, ϕ�])− [∆,�], ∆,� ∈ Γ(DL).

Conversely, given a complex structure on DL, (A.3.1) de�nes a generalized contact
structure.

Example A.3.1 Consider the cylinder R×Cn over the standard complex space Cn.
Let u be the standard real coordinate on the �rst factor, and let zi = xi + iyi, i =
1, . . . , n, be the standard complex coordinates on the second factor. There is a canonical
integrable complex structure ϕcan on the gauge algebroid of the trivial line bundle
RR×Cn de�ned by

ϕcan1 =
∂

∂u
, and ϕcan

∂

∂xi
=

∂

∂yi
.

Example A.3.2 (Normal Almost Contact Structures) Our main reference for this
example is [27], where the reader will �nd basically all the proofs. We will see in this
example and Lemma A.3.3 that almost contact structures (resp. normal almost con-
tact structures) are locally the same as almost complex structures (resp. integrable
almost complex structures) on the gauge algebroid of a trivial line bundle RM → M .
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Recall that an almost contact structure on a manifold M is a triple (Φ, ξ, η), where
Φ: TM → TM is a (1, 1)-tensor, ξ is a vector �eld, and η is a 1-form on M such that

Φ2 = −id + η ⊗ ξ, Φ(ξ) = 0, η ◦ Φ = 0, and η(ξ) = 1.

See, e.g., [7] for more details. The idea behind this de�nition is that an almost con-
tact structure is the odd-dimensional analogue of an almost complex structure. We
believe that the use of line bundles and their gauge algebroids makes the analogy much
more transparent. Namely, recall that the gauge algebroid of the trivial line bundle is
DRM

∼= TM ⊕RM . Now take a triple (Φ, ξ, η) consisting of an (1, 1)-tensor, a vector
�eld and a 1-form on M , and let ϕ : DRM → DRM be the endomorphism given by

ϕ(X, r) = (Φ(X)− rξ, η(X)) (A.3.2)

Then (Φ, ξ, η) is an almost contact structure if and only if ϕ2 = − id is a complex
structure, i.e. ϕ2 = −id. Additionally, ϕ is integrable if and only if

NΦ +dη⊗ ξ = 0, dη(Φ−,−)+dη(−,Φ−) = 0, LξΦ = 0, and Lξη = 0, (A.3.3)

where NΦ is the Nijenhuis torsion of Φ [27]. One can actually show that the �rst condi-
tion in (A.3.3) implies the other ones [7, Section 6.1] (see also [27]). An almost contact
structure (Φ, ξ, η) such that NΦ + dη ⊗ ξ = 0 is called normal [7]. So normal almost
contact structures provide examples of complex structures on the Atiyah algebroid (of
the trivial line bundle), and, in turn, of generalized contact structures of complex type.
It turns out that, locally, every generalized contact structure of complex type is of this
form (see Lemma A.3.3 below).

Example A.3.2 is special in view of the following

Lemma A.3.3 Let L → M be a line bundle and let ϕ : DL → DL be an integrable
complex structure. Then, around every point of M , there is a trivialization L ∼= RM

identifying ϕ with a complex structure of the form (A.3.2) for some normal almost
contact structure (Φ, ξ, η).

Proof: Without loss of generality, we can assume L = RM , so that DL ∼= TM ⊕RM .
It is clear that, under this identi�cation, ϕ is necessarily of the form

ϕ(X, r) = (Φ(X)− rξ, η(X) + gr) (A.3.4)

for some quadruple (Φ, ξ, η, g), where Φ is a (1, 1)-tensor, ξ is a vector �eld, η is a
1-form, and g is a smooth function on M . Locally, we can achieve g = 0 as follows.
First of all, let f ∈ C∞(M). A straightforward computation shows that, under the
line bundle automorphism RM → RM , (x, r) 7→ (x, e−f(x)r), the quadruple (Φ, ξ, η, g)
changes into

(Φ + df ⊗ ξ, ξ, η + df ◦ Φ + (ξ(f)− g)df, g − ξ(f))

Now, from ϕ2 = −id, we easily �nd that ξ is everywhere non-zero. Hence, locally,
around every point, there exists a function f such that ξ(f) = g. This concludes the
proof. XΞΣ
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Remark A.3.4 Not all integrable complex structures on DL are globally of the form
(A.3.2), in general, not even when L = RM is the trivial line bundle. To see this,
let M be a manifold such that H1

dR(M) 6= 0, and let (Φ′, ξ′, η′) be a normal almost
contact structure on M (such manifolds exist, and the 1-dimensional sphere provides
the simplest possible example). Now, pick a closed, but not exact, 1-form α onM , and
put

Φ = Φ′ + α⊗ ξ′, ξ = ξ′, η = η′ + α ◦ Φ′ + α(ξ′)α, g = −α(ξ′). (A.3.5)

Then the endomorphism ϕ : DRM → DRM given by (A.3.4) is an integrable complex
structure that cannot be put in the form (A.3.2) by a global line bundle automorphism
RM → RM .

A.3.2 Local normal Form

Theorem A.3.5 Let L → M be a line bundle equipped with a complex structure
ϕ : DL → DL on the gauge algebroid. Then, locally, around every point of M , there
are

i.) coordinates (u, x1, . . . , xn, y1, . . . , yn) on M, and

ii.) a �at connection ∇ in L, such that

ϕ1 = ∇∂/∂u, and ϕ∇∂/∂xi = ∇∂/∂yi . (A.3.6)

In other words, locally, around every point of M , there is trivialization L ∼= RR×Cn

identifying ϕ with ϕcan from Example A.3.1.

Proof: Let ϕ : DL→ DL be an integrable complex structure. Consider its homoge-
nization ϕ̃ (see Appendix A.2) as a complex structure on M̃ . As E is nowhere vanishing,
it can be locally completed to a holonomic complex frame, i.e. locally, around every
point of M̃ , there are coordinates (T,U,X1, . . . , Xn, Y 1, . . . , Y n) such that

E =
∂

∂T
, ϕ̃E =

∂

∂U
, and ϕ̃

∂

∂Xi
=

∂

∂Y i
.

As all coordinate vector �elds commute with E , they all come from (commuting) deriva-
tions of L. In particular

i.) (U,X1, . . . , Xn, Y 1, . . . , Y n), are pull-backs via projection M̃ → M of uniquely
de�ned coordinates (u, x1, . . . , xn, y1, . . . , yn) on M , and

ii.) there exists a unique �at connection ∇ in L such that

∂

∂U
= ∇∂/∂u, . . . ,

∂

∂Xi
= ∇∂/∂xi , . . . ,

∂

∂Y i
= ∇∂/∂yi , . . .

Therefore, the coordinates (u, x1, . . . , xn, y1, . . . , yn) on M and �at connection ∇ pos-
sess all the required properties. XΞΣ
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As an immediate corollary of Theorem A.3.5 and Lemma A.3.3 we get a local
normal form for normal almost contact structures.

Corollary A.3.6 Let (Φ, ξ, η) be a normal almost contact structure on a manifold M .
Then, around every point, there exist local coordinates (u, xi, yi) and a local function f ,
such that:

i.) ξ = ∂
∂u ,

ii.) η = du+ ∂f
∂yi
dxi − ∂f

∂xi
dyi,

iii.) Φ = dxi ⊗ ∂
∂yi
− dyi ⊗ ∂

∂xi
+ df ⊗ ∂

∂u .

A.3.3 Dolbeault-Atiyah Cohomology

Let L→M be a line bundle, and let ϕ : DL→ DL be an integrable complex structure
on the gauge algebroid of L. Similarly as in the case of a complex manifold, there is
a cohomology theory attached to ϕ. Namely, consider DLC⊗ of the gauge algebroid
and denote by D(1,0)L and D(0,1)L the +i and the −i-eigenbundles of ϕ respectively,
so that

DCL = D(1,0)L⊕D(0,1)L,

and complex Atiyah forms Ω•L,C(M) splits as

Ω•L,C(M) =
⊕
r,s

Ω
(r,s)
L,C (M),

where we denoted by Ω
(r,s)
L,C (M) the sections of (complex) vector bundle

Λr(D(1,0)L)∗ ⊗ Λs(D(0,1)L)∗ ⊗ L.

de Rham di�erential dL splits, in the obvious way, as dL = ∂L + ∂L, where

∂L : Ω
(•,•)
L,C (M)→ Ω

(•+1,•)
L,C (M), and ∂L : Ω

(•,•)
L,C (M)→ Ω

(•+1,•)
L,C (M),

and the integrability of ϕ is equivalent to

∂2
L = ∂

2
L = ∂L∂L + ∂L∂L = 0.

We call cohomology of ∂L the Dolbeault-Atiyah cohomology.

Theorem A.3.7 The Dolbeault-Atiyah cohomology vanishes locally.

Proof: In view of Theorem A.3.5, it is enough to work in the case whenM = R×Cn.
Let u be the standard (real) coordinate on the �rst factor and let zi = xi + iyi,
i = 1, . . . , n, be the standard complex coordinates on the second factor. We can also
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assume that L = RM is the trivial line bundle and (A.3.6) holds with ∇ being the
canonical �at connection onRM . In this caseD(1,0)L is spanned by complex derivations

� :=
1

2

(
1− i∇∂/∂u

)
, and ∇i =

1

2

(
∇∂/∂xi − i∇∂/∂yi

)
, i = 1, . . . , n. (A.3.7)

Let ω ∈ Ω2
RM ,C(M) be arbitrary. Using Subsection 1.1.2, we can write

ω = ω0 + 1∗ ∧ ω1

where ω0, ω1 are standard complex forms on M . A long but straightforward computa-
tion exploiting (A.3.7), shows that

∂Lω = ∂ω0 + 1∗ ∧
(
ω0 + LY ω0 − ∂ω1

)
where

Y := σ(�) =
i

2

∂

∂u
,

and ∂ is the standard Dolbeault di�erential on Cn (acting on forms on R×Cn in the
obvious way). So ω is ∂D-closed i�

∂ω0 = ω0 + LY ω0 − ∂ω1 = 0.

In this case, use the vanishing of standard Dolbeault cohomology (with a real parameter
u), to choose a form ρ0 such that ∂ρ0 = ω0. As the Lie derivative along Y commutes
with ∂ we �nd

∂(ω1 − ρ0 − LY ρ0) = 0,

and we can choose ρ1 such that ∂ρ1 = −(ω1 − ρ0 + LY ρ0). It is now easy to see that

∂L(ρ0 + 1∗ ∧ ρ1) = ω.

This concludes the proof. XΞΣ

Remark A.3.8 It immediately follows from Theorem A.3.7 that the cohomology of
∂L does also vanish locally.
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