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Introduction

Risk can be referred as the chances of having an unexpected or negative
outcome. Any action or activity that leads to loss of any type can be termed
as risk. Financial institutions such as banks hold typically thousands of
�nancial positions. In addition to the aggregated market and credit risk
of these positions, an institution is exposed to other risks which must be
measured and managed. Widely, risks can be classi�ed into three types:

1. Business Risk: These types of risks are taken by business enterprises
themselves in order to maximize shareholder value and pro�ts. As for
example: Companies undertake high cost risks in marketing to launch
new product in order to gain higher sales;

2. Non-Business Risk: These types of risks are not under the control of
�rms. Risks that arise out of political and economic imbalances can be
termed as non-business risk;

3. Financial Risk: Financial Risk as the term suggests is the risk that
involves �nancial loss to �rms. Financial risk generally arises due to
instability and losses in the �nancial market caused by movements in
stock prices, currencies, interest rates and more.

Financial risk is one of the high-priority risk types for every business. Fi-
nancial risk involves �nancial transactions such us company loans, and its
exposure to loan default. The term is typically used to reect an investor's
uncertainty of collecting returns and the potential for monetary loss. For
example a business takes a �nancial risk when it provides �nancing of pur-
chases to its customers, due to the possibility that a customer may default
on payment.

v



Chapter 1

Introduction to Risk

1.1 Multiple perspectives of Risk

Within risk categories shown in the introduction paragraph a bunch of dif-
ferent risks can be identi�ed:

� Credit risk. Credit risk is the risk associated with a borrower going into
default. In other words the borrower is not respecting the repayment
schedule. Investor losses include lost principal and interest, decreased
cash ow, and increased collection costs. A company must handle its
own credit obligations by ensuring that it always has su�cient cash
ow to meet the repayment schedule. Otherwise, suppliers may either
stop extending credit to the company, or even stop doing business
with it. Losses can arise in a number of di�erent circumstances:

- A company does not pay an employee's earned wages when due;

- A consumer may fail to make a payment due on a mortgage loan,
credit card, line of credit, or other loan;

- A company or government bond issuer does not make a payment
on a coupon or principal payment when due;

- An insolvent bank won't return funds to a depositor.

From these examples, it is easy to identify the main sub-components
of the credit risk:

a. Country Risk. Country risk refers to the risk that a country
won't be able to honor its �nancial commitments. When a coun-
try defaults on its obligations, this can harm the performance of

1



CHAPTER 1. INTRODUCTION TO RISK 2

all other �nancial instruments in that country as well as other
countries it has relations with. Country risk applies to stocks,
bonds, mutual funds, options and futures that are issued within
a particular country. This type of risk is most often seen in
emerging markets or countries which have a severe de�cit in the
legal environment, high levels of corruption, and a low score for
most of the socioeconomic variables such as income disparity;

b. Sovereign Risk. Many analysts use sovereign debt ratings as a
proxy for country risk despite the fact that credit rating agencies
do not intend their sovereign debt ratings to speak to country risk
because these two risk sources are conceptually distinct. Indeed
the sovereign ratings capture the risk of a country defaulting on
its commercial debt obligations while the country risk takes also
in account the downside of a country's business environment;

c. Counterparty Credit Risk. Last but not least, counterparty
risk is the risk to each party of a contract that the counterparty
will not live up to its contractual obligations. Counterparty risk
is a risk to both parties and should be considered when evaluating
a contract.

� Market risk. Market risk can be de�ned as the risk of losses in on and
o�-balance sheet positions arising from adverse movements in market
prices.
This kind of risk is also known as Systematic or un-diversi�able risk
because the uncertainty inherent to the entire market or entire market
segment.
Interest rates, recession and wars all represent sources of systematic
risk because they a�ect the entire market and cannot be avoided
through diversi�cation. Systematic risk can be mitigated only by be-
ing hedged.
For a bond for example, market risk arises from the variability of in-
terest rates, this variability is referred to as volatility.
Volatility is a measure of risk because it refers to the behavior of the
investment rather than the reason for this behavior. Market move-
ments enable people to make money from stocks, volatility is essential
for returns, and the more unstable the investment the more chance
there is that it will experience a dramatic change in either direction.
� is a measure of the volatility [66], or systematic risk, of a security or
a portfolio in comparison to the market as a whole. In other words, �
gives a sense of a stock's market risk compared to the greater market
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and enables to compare a stock's market risk to that of other stocks.
This measure of the volatility is used in the capital asset pricing model
(CAPM) introduced by Sharpe in [66].
� is calculated using regression analysis, and you can think of beta as
the tendency of a security's returns to respond to swings in the market.
� can be interpreted according to the following line of thinking:

1. � > 1. The security's price will be more volatile than the market,
i.e. if a stock's � is 1:2, then, theoretically, the security's price is
20% more volatile than the market;

2. � = 1. It indicates that the security's price will move with the
market;

3. � < 1. It means that the security will be less volatile than the
market;

4. � = 0. Basically, cash has a � of 0. In other words, regard-
less of which way the market moves, the value of cash remains
unchanged under the assumption of absent ination;

5. � is negative. A � less than 0 indicates an inverse relation to
the market which is possible but highly unlikely. Some investors
used to believe that gold and gold stocks should have negative �
because they tended to do better when the stock market declined.

From a regulatory perspective, market risk stems from all the posi-
tions included in banks' trading book as well as from commodity and
foreign exchange risk positions in the whole balance sheet. Tradition-
ally, trading book portfolios consisted of liquid positions easy to trade
or hedge. However, developments in banks' portfolios have led to an
increase in the presence of credit risk and illiquid positions not suited
to the original market capital framework.
Market risk can be broken down as follow:

a. Equity risk. Equity risk covers the risk involved in the volatile
price changes of shares of stock. This risk can be de�ned as the
�nancial risk involved in holding equity in a particular invest-
ment. Besides, equity risk premium is the excess return that
an individual stock or the overall stock market provides over a
risk-free rate. This excess compensates investors for taking on
the relatively higher risk of the equity market. The size of the
premium can vary as the risk in the stock, or just the stock mar-
ket in general, increases. For example, higher risks have a higher
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premium. The concept of this is to entice investors to take on
riskier investments;

b. Interest rate risk. Interest rate risk is the risk that an invest-
ment's value will change as a result of a change in interest rates.
This risk a�ects the value of bonds more directly than stocks.
In other words, this risk arises for bond owners from uctuating
interest rates. How much interest rate risk a bond has depends
on how sensitive its price is to interest rate changes in the mar-
ket. The sensitivity depends on two things, the bond's time to
maturity, and the coupon rate of the bond;

c. Currency risk. Currency risk is the risk that foreign exchange
rates or the implied volatility will change, which a�ects, for ex-
ample, the value of an asset held in that currency. When invest-
ing in foreign countries you must consider the fact that currency
exchange rates can change the price of the asset as well. Foreign-
exchange risk applies to all �nancial instruments that are in a
currency other than your domestic currency;

d. Commodity risk. Commodity risk is the risk that commodity
prices (e.g. corn, copper, crude oil) or implied volatility will
change.

� Liquidity risk. Liquidity risk refers to the inability to adjust positions
at current market rates or increased funding costs. In other words,
it relates to the ability of an economic agent to exchange his or her
existing wealth for goods and services or for other assets. Liquidity
should be understood in terms of ows (as opposed to stocks), where
liquidity refers to the ability of realizing these ows. Inability of doing
so would render the �nancial entity illiquid. The three main types of
liquidity risk are well explained by Nikolaou in [59]:

a. Central bank liquidity risk. Central bank liquidity is the
ability of the central bank to supply the liquidity needed to the
�nancial system. It is typically measured as the liquidity supplied
to the economy by the central bank, i.e. the ow of monetary
base from the central bank to the �nancial system.
Nevertheless the central bank liquidity risk should not be non-
existent, as the central bank is always able to supply base money
and, therefore, can never be illiquid. Typically the central bank,
being the monopoly provider of liquidity, i.e. the originator of
the monetary base, can dispense liquidity as and when it deems
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needed, so as to satisfy the equilibrium demand for liquidity in
the banking system (avoiding cases of excess liquidity or liquidity
de�cits).
A central bank can only be illiquid to the extent that there is no
demand for domestic currency, and therefore the supply of base
money from the central bank could not materialize. This could
happen in cases of hyperination or an exchange rate crisis;

b. Funding liquidity risk. The Basel Committee of Banking su-
pervision de�nes funding liquidity risk as the ability of banks
to meet their liabilities, unwind or settle their positions as they
come due [5]. However, references to funding liquidity have also
been made from the point of view of traders i.e. Brunnemeier
and Pedersen in [19] or investors i.e. Strahan in [68], where fund-
ing liquidity relates to their ability to raise funding (capital or
cash) in short notice. Namely, an entity is liquid as long as in-
ows are bigger or at least equal to outows. Measuring funding
liquidity risk is not trivial. In most cases practitioners construct
various funding liquidity ratios, which reveal di�erent aspects of
the availability of funds within a certain time horizon ahead and
use them as proxies for funding liquidity risk. Such measures
can be produced either by static balance sheet analysis or by
dynamic stress testing techniques and scenario analysis. The lat-
ter is more cumbersome to calculate if only because it relies on
complicated calculations and a wider set of information and hy-
potheses. Drehmann and Nikolaou in [27] suggest a simple and
more straightforward proxy, based on the role of the central bank
as a potential funding liquidity source. They argue that bidding
behavior in central bank auctions can reveal the funding liquidity
risk of banks over a one week horizon and construct proxies of
funding liquidity risk from bidding data;

c. Market liquidity risk. The notion of market liquidity has been
introduced by Keynes in [48]. A number of more recent studies
de�ne market liquidity as the ability to trade an asset at short
notice, at low cost and with little impact on its price. Start-
ing with the liquidity-based asset pricing model of Holmstro and
Tirole showed in [46], asset pricing models typically measure liq-
uidity risk as the covariance (commonality) between a measure
of liquidity (innovations) and market returns.
Brunnemeier and Pedersen in [19] explain that liquidity risk is in
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most cases low and stable, it assumes a rare and episodic nature
which result from downward liquidity spirals due to mutually
reinforcing funding and market illiquidity. In other words the
related literature suggests that asset prices reect liquidity costs,
which are linked to the existence of liquidity risk which means
that is also possible to predict future returns based on current
liquidity risk estimates.
Notably, liquidity risk can lead to �nancial crises, which damage
�nancial stability, disrupt the allocation of resources and ulti-
mately, a�ect the real economy. Given the importance of market
liquidity risk (i.e. systemic risk) to �nancial stability, it is the
type of liquidity risk that immediately alerts policy makers.

� Operational risk. Operational risk corresponds to the possibility of mis-
takes or technical problems in trading or risk management operations.
This includes the mis-understanding of involved risks, the mis-pricing
of instruments, fraud, or system failure; In other words, it represents
the probability that the value of a �nancial asset is inuenced by
unpredictable factors resulting from a company's ordinary business
activities.
For example a bank employee can incur into calculation errors, or
into procedural blocks that could temporarily prevent the correct ex-
ecution of �nancial transactions. As well as of market risk, a proper
evaluation of operational risk is provided by advanced statistical mod-
els. Among others, the Advanced Measurement Approaches (AMA)
has to be mentioned and it is the most di�used model type and bases
on the modelling of all the events from which operational risks derive.
This is built by collecting frequency data and by considering variables
with a predictive power in terms of future incident occurrence. The
idea behind is to evaluate the operational risks and include this esti-
mation into the risk weighted asset calculation.
Operational risk categories includes:

a. Legal risk. This kind of operational risk arises out of legal
constraints such as lawsuits. Whenever a company needs to face
�nancial loses out of legal proceedings, it is legal risk;

b. Fraud Risk. Fraud Risk identi�es and addresses an organiza-
tion's vulnerability to both internal and external fraud.
Fraud, by de�nition, entails intentional misconduct, designed to
evade detection. As such, the fraud risk assessment should an-
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ticipate the behavior of a potential fraud perpetrator. A correct
assessment of the potential fraud ensure organization's ability to
maintain operations and reputation.
Therefore, control activities should always consider both the fraud
scheme and the individuals within and outside the organization
who could be the perpetrators of each scheme. If the scheme is
collusive, preventive controls should be augmented by detective
controls, as collusion negates the control e�ectiveness of segrega-
tion of duties;

c. Model Risk. Model risk is considered a subset of operational
risk, as model risk mostly a�ects the �rm that creates and uses
the model. Rebonato in [63] de�nes model risk as the risk of
occurrence of a signi�cant di�erence between the mark-to-model
value of a complex and/or illiquid instrument, and the price at
which the same instrument is revealed to have traded in the mar-
ket.

1.2 Regulatory Capital and Basel Accords

Over the past 30 years, �nancial institutions, under the pressure and en-
couragement of the regulators, have developed advanced models in order to
better face further �nancial crisis and correctly allocate the economic capi-
tal.
These models should help banks in managing and quantifying risk across
geographical and product lines.
In particular, as a result of the economic crisis of 2007, the regulators have
increased their interest regarding to the credit risk. The reason behind is
that either an insu�cient amount of capital reserves or an excessive exposure
on speci�c asset classes can inuence the solvency of a �nancial institution
which, as result, can even led to an increase of the systematic risk.
Indeed, the strong connections among the �nancial institutions could bring
the entire system to a unstable level. Often this is consequence is also known
as "domino e�ect".
Those reasonable worries have triggered the authorities in accelerating the
regulation processes that have taken form into a further regulatory devel-
opments. Nowadays, several indicators are used in order to help the banks
in assessing the credit risk.
In 1983 the banking supervision authorities of the main industrialized coun-
tries (G7) agreed on rules for banking regulation, which should be incorpo-
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rated into national regulation laws. In this sense a key role has been played
by Basel Committee on Banking Supervision (BCBS) which was founded
in 1974 as an international forum where members could cooperate on bank-
ing supervision matters. The BCBS objective, thanks to the introduction
of a new set of rules known as accords, is to ensure the �nancial stability
by improving the quality of banking supervision. Last 30 years has been
characterized by 4 Basel accords:

1. Basel I [76]. The �rst accord has been signed in 1988 and intro-
duced a a set of international banking regulations which established
the minimum capital requirements of �nancial institutions with the
aim of minimizing credit risk. The most famous rule introduced by
Basel I is called the 8% rule. According to this rule, all banks that net
international transactions have to reserve a minimum capital equal to
the 8% of its RWA calculated for all balance sheet positions.

2. Basel II [4]. In 2004, following the implementation of the �rst in-
ternational regulatory accord, Basel II introduced additional rules for
minimum capital requirements, provided framework for regulatory re-
view including how to face various types of risks (systematic risk,
liquidity risk and legal risks), as well as set disclosure requirements
for assessment of capital adequacy of banks and market discipline.
A key change into the Basel II accord was the incorporation of credit
risk of assets held by �nancial institutions for calculating regulatory
capital ratios. Those ratios divide the eligible regulatory capital of a
bank into three tiers. The higher the tier, the less subordinated secu-
rities a bank is allowed to include in it. Each tier must be of certain
minimum percentage of the total regulatory capital and is used as a
numerator in the calculation of regulatory capital ratios.
Tier 1 capital is the most strict de�nition of regulatory capital that is
subordinate to all other capital instruments, and includes sharehold-
ers' equity, disclosed reserves and retained earnings.
Tier 2 is Tier 1 capital plus various other bank reserves, hybrid in-
struments, and medium-long term subordinated loans.
Tier 3 consists of Tier 2 plus short-term subordinated loans.
Basel II has rede�ned the de�nition of risk-weighted assets, which
are used as a denominator in regulatory capital ratios, and are calcu-
lated by using the sum of assets that are multiplied by respective risk
weights for each asset type. The idea behind the risk-weighted assets
calculation is to punish banks which have risky positions, which sig-
ni�cantly increases risk-weighted assets and lowers regulatory capital
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ratios.
The regulatory capital ratios results to be more accurate in compar-
ison to Basel I because the RWA calculation takes into account the
credit rating of assets in determining risk weights. Greater will be the
creditworthiness of the client, lower will be risk weight.
Besides, in the second international regulatory accord standardized
approach (well known as SA approach) and internal model approach
for market risk have been introduced. In this sense, Basel II played a
relevant role in harmonizing the regulation going on among the di�er-
ent countries and alleviating anxiety over regulatory competitiveness
and di�erent national capital requirements for banks.

3. Basel III [8]. The third installment of the Basel Accords has been
published as �rst version in late 2009, giving banks till 2015 for the
implementation of all requirements at �rst glance.
This accord came out mostly in response to the de�ciencies in �nan-
cial regulation revealed by the �nancial crisis of 2007-2008, in order
to increase the banking sector's ability to deal with �nancial stress,
improve risk management, and strengthen the banks' transparency.
Basel III is intended to strengthen bank capital requirements by in-
creasing bank liquidity and decreasing bank leverage:

a. Basel III left the guidelines for risk-weighted assets largely un-
changed from Basel II. Nevertheless, in comparison to Basel II,
Basel III strengthened regulatory capital ratios, which are com-
puted as a percent of risk-weighted assets.
In particular, Basel III increased minimum Common Equity Tier
1 capital from 4% to 4:5%, and minimum Tier 1 capital from 4%
to 6% where Common Equity Tier 1 capital includes equity instru-
ments that have discretionary dividends and no maturity, while
additional Tier 1 capital comprises securities that are subordinated
to most subordinated debt, have no maturity, and their dividends
can be cancelled at any time.
The overall regulatory capital was left unchanged at 8%;

b. The third installment of the Basel Accords introduced new require-
ments with respect to regulatory capital for large banks to cushion
against cyclical changes on their balance sheets.
In other words, banks have to reserve additional capital during
period of credit expansion in order to be ready during the credit
contraction where they are allowed to loosen the capital require-
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ments.
Besides, banks are grouped according to their size, complexity and
importance to the overall economy for facing the systemic risk. In-
deed, big banks can have a large impact on the �nancial system
causing a domino e�ect, so those banks are subject to higher capi-
tal requirements;

c. One of the objectives of Basel III is decreasing bank leverage and
increasing liquidity requirements to safeguard against excessive bor-
rowings and ensure that banks have su�cient liquidity during �-
nancial stress.
In particular, the leverage ratio, computed as Tier 1 capital divided
by the total of on and o�-balance assets less intangible assets, was
capped at 3%.

4. Basel IV. Last Basel accord complements the initial phase of the
Basel III reforms announced in 2010.
The 2017 reforms seek to restore credibility in the calculation of risk-
weighted assets (RWAs) and improve the comparability of banks' cap-
ital ratios. Actually, Basel IV is a contested term, indeed most of the
regulators believe that these changes are simply completing the Basel
III reforms.
On the other hands, because this reform introduce a signi�cant in-
crease in capital requirements, it should be treated as a distinct round
of reforms. Basel IV will be one of the major challenges for the �nan-
cial markets in the next �ve years, because it will strongly impact the
calculation of risk weighted assets and capital ratios of all banks and
therefore will a�ect the banks' strategies.
The main items covered by this reform are:

a. Reforms of the Standardized Approach for credit risk. In particular,
low risk mortgage loans will face a reduction of the risk weighted
factors;

b. In the IRB-approach will be introduced a standardized oor, fol-
lowing the SA approach, equal to 72:5%, which will increase the
capital requirements and will reduce the bene�t for a bank to use
the IRB approach to a maximum of 27:5%;

c. Shift to the Foundation internal ratings-based (F-IRB) approach
for speci�c asset classes treated under IRB in the past;

d. Quanti�cation of CVA risk;
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e. Operational risk approaches;

f. A higher leverage ratio for Global Systemically Important Banks
(G-SIBs), with the increase equal to 50% of the risk adjusted capital
ratio.

1.3 Introduction to Credit Risk Metrics

Credit risk models, as underlined from Basel accords [4], [8], are not a simple
extension of the market risk models for two main reasons:

1. Data limitations. Data limitations is a key impediment for imple-
menting credit risk models. Most credit instruments are not marked
to market, and the predictive nature of a credit risk model does not
derive from a statistical projection of future prices based on a com-
prehensive record of historical prices.
The scarcity of the data required to estimate credit risk models also
stems from the infrequent nature of default events and the longer-term
time horizons used in measuring credit risk;

2. Model validation. The validation of credit risk models is fundamen-
tally more di�cult than the backtesting of market risk models. Dif-
ferently from market risk models where the time horizon is few days,
credit risk models generally rely on a time frame of one year or more.
The longer holding period, coupled with the higher con�dence inter-
vals used in credit risk models, presents problems to model-builders
in assessing the accuracy of their models.
In other words, for assessing the accuracy of the credit risk models are
required several years of data, spread over multiple credit cycles.

Banks and regulators are highly investing in credit risk models for avoiding
a further �nancial crisis. Indeed, credit risk models o�er the opportunity to
analyze in a timely manner, centralizing data on global exposures and have
a deep look into marginal and absolute contributions to risk.
This means that credit risk models providing estimates of credit risk measure
(such as unexpected loss) would be informative tool for risk management.
On the other hand, trying to reach more accurate estimates a lot of e�ort
has been put in designing and building credit risk models. This can be seen
as a starting point for improving systems and data collection infrastructure
which will reect in a better data quality and in more accurate output of
the models.
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Besides, better estimates will may contribute to a more transparent decision-
making process and a more consistent basis for economic capital allocation.
Hence, credit risk models may contribute to an improvement in a bank's
overall ability to identify, measure and manage risk. The key role of the
credit risk management in the banking sector can be easily clari�ed by an
example.
Let us assume that a company which produces 3D printers is asking its
house bank for a loan in the size of 100 million Euro. The bank has a credit
department which has to decide if the credit request will be accepted or
rejected.
Let us further assume that the analyst, who is taking care of the credit
request, knows that the bank's chief credit o�cer has known the chief exec-
utive o�cer of the printer company for many years, and to make things even
more complicated, the credit analyst knows from recent default studies that
the 3D printers sector is under hard pressure and that the bank-internal
rating of this particular company is slightly lower than investment grade
(low credit quality).
Given the described situation, the analyst should reject the credit request
and do not proceed with the deal.
An alternative would be to grant the loan to the customer and insure the
potential loss through a credit risk management instruments. For reduc-
ing the lender's credit risk, the lender may perform a credit check on the
prospective borrower, may require the borrower to take out appropriate in-
surance, such as mortgage insurance, or seek security over some assets of
the borrower or a guarantee from a third party. The lender can also take
out insurance against the risk or on-sell the debt to another company. In
general, the higher the risk, the higher will be the interest rate that the
debtor will be asked to pay on the debt. Credit risk mainly arises when
borrowers are unable to pay due willingly or unwillingly.
A di�erent example can be a bond issued by a corporation or sovereign gov-
ernment. In this case the credit risk might be viewed as part of market risk
and one could argue to apply methods well known in market risk modeling
also to credit risks.
There are multiple reasons which do not enable to apply the market risk
mitigation techniques to credit risk. Firstly, this is related to the illiquidity
of the credit-risky positions, for example bank loans, whose market prices
are not readily determined. Second of all, default is a rare event, then his-
torical default data is relatively sparse, compared to market prices and rates.
Besides, the information needed for credit risk analysis is mainly contract-
speci�c while prices and rates apply market-wide. Given these reasons,
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credit risk techniques must di�er from those speci�c to market risk analy-
sis.

1.4 Risk Weighted Assets (RWAs)

Risk Weighed Assets (RWAs) are an important measure in the current credit
risk environment.
Indeed, they represent an aggregated measure of di�erent risk factors af-
fecting the evaluation of �nancial products. In the RWA calculation several
risk components are considered together to 'correct' the nominal value of
�nancial assets. In this way, a proper measure of the extent to which the
underlying risk is increasing or decreasing the accounting value of �nancial
assets is generated.
This assessment attributes a high weight-coe�cient to high-risk �nancial as-
sets, and a low-weight coe�cient to low-risk ones. A bank's assets typically
include cash, securities and loans made to individuals, businesses, other
banks, and governments.
Each asset have di�erent risk characteristics to which is assigned a risk
weighted factor (RWF) as indication of the risk taken by the bank in hold-
ing the asset and of how much capital banks should maintain to guard
against unexpected losses.
In other words, banks need less capital to cover exposures to low risk assets
and more capital for the riskier ones.
As the Basel Committee points out, RWAs play a very important role in the
banking sector, helping banks monitoring their e�orts in achieving capital
adequacy goals.
As understandable from [1.2], the calculation of the amount of RWAs de-
pends on which revision of the Basel Accords is considered.
In 1997 the Basel Committee on Banking Supervision allowed the banks to
use so-called speci�c risk models, and the eligible instruments no longer fell
under the 8%-rule. Hence, the standard risk weight factor under Basel I was
100%, which led to a regulatory capital of:

[risk weight]� [solvability coefficiet] = 100%� 8% = 8%

Nevertheless, banks already introduced complicated internal models to han-
dle the credit risk for their balance sheet positions with an emphasis on
default risk.
This rule implied that the capital basis for banks was mainly driven by the
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exposure of the loans to their customers. The main weakness of this cap-
ital accord was that it made no distinction between obligors with di�erent
creditworthiness, in other words the RWAs were not risk sensitive.
However, in 2004 the second Basel accords, which switched live in most
banks worldwide on January 1st, 2007, did not allow the use of internal
credit risk models for the calculation of regulatory capital.
Instead, they use a more complicated risk-weighting scheme for bank's credit
risk positions. As underlined in [1.2], Basel III did not revolution the RWAs
calculation, so for having a better understanding a good starting point is to
show how calculation are intended according Basel II accords.
One of the biggest improvements of the second installment of the Basel Ac-
cords is a di�erent parameterizations for di�erent asset classes. For further
details on the bucketing of the risk weighted factor is good to look at the
guidelines given by the regulation in [4]. In the second Basel accord the
RWAs assume much more sense, because they become risk sensitive weight-
ing positions with reference to their credit risk.
In this context the most sophisticated approach which can be implemented
by a bank is called internal ratings-based approach (IRB) and it is presented
below according to the standard corporate loan guidelines:

RWA = 12:5� EAD � LGD �K(PD)�M(PD;MAT )

where

K(PD) = N

"
N�1[PD] +

p
�(PD)q99:9%(Y )p

1� �(PD)

#
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and �(PD) can be de�ned as:

�(PD) = 0:12�
1� e�50�PD

1� e�50
+ 0:24�
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1� e�50�PD

1� e�50

!
:

The meaning of the parameters in the formula is as follows:

- M(PD;MAT ) is an adjustment factor depending on the e�ective maturity
(MAT) of the asset and its PD;

- N [�] is the standard normal distribution function and N�1[�] is its inverse;

- The quantity q99:9%(Y ) is the 99:9%-quantile of a standard normal random
variable Y;

- The quantity � has the meaning of a correlation parameter;
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- The formula for the correlation parameter � is an interpolation between
12% and 24% quantifying the systematic risk (R2).

A Clear strength of Basel II accords is that IRB-banks can use their internal
ratings, LGDs and EADs as an input into the RWAs function.
This is a huge progress in Basel II compared to Basel I.
It basically means that regulatory and economic approaches exhibit high
convergence for single-name risks.
On the other hand, it still presents weakness related to the diversi�cation
because it does not take in account either the concentration or diversi�cation
of the portfolio.
This cons becomes even more dramatic when related to the securitization
because it completely ignore the e�ects and risks of such these so-called
correlation products.
What comes next? Basel accords are in continuous development and the
Basel IV accord published late 2017 promise to keep the banks busy at least
for the next 4 years. Indeed, the implementation of the last Basel accord
should be completed by the beginning of 2022 and should highly impact the
RWAs as explained [1.2].

1.5 Expected Loss (EL)

Historical data shows that even good customers, who had always respected
the repayment schedule, have a probability to unmeet their �nancial obli-
gations.
Hence, the entire portfolio, and not only the high risk part, should be in-
sured against potential loss.
This mechanism reects the insurance structure common in other insurance
sectors (car, health, etc..) and it will create a capital cushion for covering
losses arising from defaulted loans charging an appropriate risk premium for
every loan.
In other words, banks start to reserve money for �xing the roof before that
the storm comes.

Definition 1 The loss of any obligor can be formally de�ned by a loss
variable: eL = EAD � LGD � L (1.1)

where EAD represents the exposure at default which could be lost in a
speci�c time frame, LGD stands for the loss given default and describes
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the fraction of the loan's exposure expected to be lost in case of default
and with:

L = 1D;P(D) = PD

where D denotes the event that the obligor defaults in a certain period
of time (often one year), and P(D) denotes the probability of D.
In other words the bank assigns a probability of default at each customer

The constituents of formula [1.1] are random variables which exist in a
probability space (
,F ,P), consisting of a sample space 
, a �-Algebra F,
and a probability measure P.
The elements of F are the measurable events of the model, and intuitively
it makes sense to claim that the event of default should be measurable in a
a speci�ed time horizon.

Definition 2 The expected loss (EL) of any customer can be de�ned as
the expected value of [1.1]

EL = E[eL]

which is called the expected loss of the underlying credit-risky asset.

Under the assumption that PD, EAD and LGD are independent in [1.1],
the expected loss can be reformulated as follow:

EL = E[EAD]� E[LGD]� PD (1.2)

However, if EAD and LGD are constant values, then [1.2] can be written
as

EL = EAD � LGD � PD (1.3)

where the expectation of the Bernoulli random variable  L is its event prob-
ability.
If the three variables in [1.1] are independent the expectation of their prod-
uct is the product of their expectation.
Nevertheless, in realistic situations EAD is not constant and it has to be
modeled as a random variable due to uncertainties in payment pro�les which
are driving the exposure.
In [1.3], it is also assumed that all components (PD, EAD and LGD) are
independent. Unfortunately, this assumption helps in the calculation but it
is not veri�ed in real life.
The lack of this assumption can be easily shown recalling the recent sub-
prime mortgage crisis in the US. Due to a recession period the probability
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of late payments increase; This situation generates an higher number of de-
faults. Most of the times the loans, mortgages in our example, are covered
by collaterals, residential units, which banks can use for recovering their
exposures. Moreover, in a recession scenario, there will be an over-supply
of residential apartments put which will automatically lead to a price drop
of the collateral.
In other words, banks will not be able to recover the expected amount by
selling collateral.
This example shows how PD and LGD are positively related, indeed the
number of defaults, strictly link to the increase of the probability of default
given the recession scenario, cause an increase of the LGD due to the inca-
pacity of banks in recovering the collateral value. Altman et al. in [2] give
further details on this relations.
The EAD can be also considered dependent from PD because in times of
�nancial distress �rms tend to draw on their open credit lines and it cause
an increase of the exposures when default rates are systematically going
higher.

1.6 Probability of Default (PD)

The probabilities of default are a key topic for a credit risk analytics team
which has to properly set the PD either for asking the correct risk prime to
the client or booking the right amount of provisions.
Indeed, the correct assignment of default probabilities could be straight-
forward in some cases while in other situations seems almost impossible to
derive a reasonable approach. It is important to underline that the default
probabilities do not refer to a single point in time, but the entire term
structure is needed:

(pt)t � 0

where t denotes time and for each point t in time pt is the default probability
of the considered asset or client with reference to the time interval [0; t].
Note that in the literature PD term structures are often called credit curves.
For simplifying this introduction will focus on a �xed time horizon which is
assumed to be one year.
As highlighted for calculating the probability of default in accurate way, it
is relevant to estimate the creditworthiness of a client or asset. Financial
institutions and external rating agencies measure the creditworthiness of
those assigning a rating.
Nevertheless, rating estimation assume a di�erent role between banks and
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external rating agencies, the latter assign rating only for creating an ordinary
scale of the credit quality. For example according to Moody's, one of the
most important external rating agencies (other well-known rating scales are
developed by the rating agencies Standard & Poor's and Fitch), a sovereign
bond with 10 years maturity issued by the Netherlands is rated Aaa while
the same kind of bond issued by Spain is rated Baa.
Moody's rating scale uses Aaa, Aa, A, Baa, Ba, B, Caa, etc. as values
where the movement thought the alphabet letters denotes a decreasing of
credit quality.
Each of the rating agencies has a �ner rating scale in place to allow for a �ner
distinction of credit quality among obligors. From the �gure [1] is clear that

Figure 1: External Ratings

the sovereign bonds issued by the Netherlands are safer than the Spanish
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ones. In other words, according to Moody's, even if a probability of default
is not assigned to each rating, Spanish bonds have an higher probability of
default of the Dutch ones.
Although, the higher risk of Spanish bonds will be compensated by an higher
interest rate.
In the meanwhile banks associate to a rating a determinate probability of
default. For example, if we assume a rating scale from 1 to 20, where 1
refers to a top client while 20 to a defaulted customer, all customers rated
as 1 will have a probability of default equal to 0:01 while the ones in the
bucket 20 will have probability of default equal to 1.
It is relevant to keep in mind that this �gure is a over-sempli�cation of the
PD/rating scenarios. Indeed, banks associate di�erent models to di�erent
exposure classes, in other words the probability of default assigned to a large
corporate, rated as 3, will be di�erent from a small enterprise with the same
rating, because the di�erent customers will fall in di�erent rating models
which will calculate the probability of default.
A rating system can be thought of as a discretization of PDs on an ordinal
scale which is called the rating scale. Discretization of a continuous metric
quantity like a PD to an ordinal scale makes life in large organizations easier
although one could argue that discretization introduces unnecessary jumps
in pricing grids.
The procedure of discretization of PDs, namely the assignment of a PD to
every rating grade in the given rating scale is called a rating calibration;
The latter is a relevant process which deserves few lines for showing, in a
simpli�ed way, how it works.
Given:

R : PD(R)! [0; 1] (1.4)

such that to every rating R a certain default probability PD(R) is assigned.
Being in a probabilistic environment the calibration function is always in
the interval [0, 1] and at each range of the probability of default is assigned
a rating.
As described the rating allocation is a complex process which can be ex-
ecuted in multiple ways. A brief overview, following the schema given by
Bluhm et al. in [10], about the main four rating systems will be shoved
below:

1. Causal Rating Systems. As well described by Bluhm et al. in [10],
Casual Rating Systems is considered a superior to all other approaches.
Whenever possible, this should be the way to proceed. As the name
indicates, causal rating systems rely in their mechanism on a causal
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relationship between underlying credit risk drivers and the default
event of an asset or borrower. To mention an example as explained
by Bluhm et al. in [9], ratings assigned to tranches in collateralized
debt obligations (CDO) typically are of causal type because the CDO
model derives scenarios where the considered tranche is hit by a loss
as well as the loss severity of the tranche as a direct consequence of
"turbulences" in the underlying reference portfolio of credit-risky in-
struments.
The model-derived hitting probability, for instance, can then be mapped
onto a rating scale such that, for instance, a tranche with low hitting
probability might have a letter combination like AAA or AA whereas
a tranche with a low capital cushion below might get a rating letter
combination of B or even in the C-range.
Why causal rating models are considered the best way to think about
ratings?
The reason is that a causal model approach forces the modeler to
extensively analyze, understand and model the "true" mechanism of
default. This is under all circumstances the best a modeler can do.
For instance, a CDO model requires a fully-edged model for both the
cash ow structure of the CDO as well as the credit risk of the under-
lying reference portfolio. Causal models force the modeling team to
really understand how defaults can happen and how losses will accu-
mulate under certain circumstances.
The most representative of this type of rating systems is the concept
of Expected Default Frequencies (EDF) from Moody's KMV [21].

2. Balance Sheet Scorings. In some cases the above mentioned causal
approach is rather di�cult or even impossible to apply because the
default mechanism cannot be modelled. In such cases one can switch
to scoring systems which are a good choice and well-established in
rating units in banks across the globe.
For instance, whereas for stock exchange-listed corporate clients a
causal modeling of PDs is market standard as mentioned before, it
is hardly thinkable to follow a causal approach for private corporates.
Moreover, there are many companies which do not have a so-called ex-
ternal rating, which is a rating assigned by the afore-mentioned rating
agencies.
In such cases, a balance sheet scoring model is the usual approach to
assign a bank-internal rating to such companies.
In general, banks always should base the decision about creditwor-
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thiness on their bank-internal rating systems. As a main reason one
could argue that banks know their customers best.
Moreover, it is well known that external ratings do not react quickly
enough to changes in the economic health of a company. Banks should
be able to do it better based on their long-term relationship with their
customers.This is typically done by the credit analysts of the bank
based on the rating tools developed by the rating quant team.
For rating assignment the credit analysts consider various di�erent
quantitative and qualitative drivers of the considered �rm's economic
future like, for instance:

(a) Future earnings and cashows;

(b) Debt, short and long-term liabilities, and �nancial obligations;

(c) Capital structure (i.e., leverage);

(d) Liquidity of the �rm's assets;

(e) Situation (i.e., political, social, etc.) of the �rm's home;

(f) Situation of the market (i.e., industry), in which the company
has its main activities;

(g) Management quality, company structure, etc.

From this list, it can be understood that rating drivers can be quan-
titative as well as qualitative.
To mention another important example, succession planning can be
important for smaller �rms but can not be captured as a solid quan-
titative �gure like, for instance, a debt-equity relation.
It is best practice in banking that ratings as an outcome of a statisti-
cal tool are always re-evaluated by the credit analyst who makes the
credit decision which leads to 'approved' or 'rejected'. Credit analysts
typically have, in line with their credit decision competence, the right
to overrule or override the calculated rating. In most of the cases this
will be an override to a better or worse rating grade by not more than
one or two notches.
The overruling quote which measures the relation of overruled ratings
compared to overall assigned ratings is a good measure of the accep-
tance of a rating system by the practitioners in the credit unit, namely,
the credit analysts who distinguish themselves from the rating quants
who developed the rating system. More information related to the
internal rating system are showed by Fritz et al. in [37].
Overruling competence is crucial because especially for smaller �rms
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one can expect that certain aspects driving the ability to pay of the
client might not be captured by a standardized statistical tool.
The afore-mentioned quantitative drivers of the rating are taken from
the balance sheet and annual report of the borrowing company. These
sources of information are important for the lending credit institute
because it is pretty much all one can get if a company is not listed at
an exchange and has no public debt outstanding. The afore-mentioned
rating drivers are then grouped and set in relation to form a list of
balance sheet ratios which are mapped into so-called scores as a metric-
scale measure of default remoteness. The total score of a client is then
based on a weighted sum of ratio transformation functions, often in-
volving a lot of regression analysis in the development process. The
score of a client is then calibrated to a PD based on the history of
default frequencies:

PDclient =
1

1 + exp(�SCOREclient)
(1.5)

where SCOREclient represents the �nal score based on the afore-
mentioned sum of transformed ratios.
The PDclient showed in [1.5] is representative of the class of so-called
logit calibration functions which is a common transformation approach
to get PDs out of scores in balance sheet scorings.
An industry example for an o�-the-shelf model to obtain ratings for
private companies is the RiskCalc model by Moody's KMV showed
in [29].

3. Private Client Scorings. In the same way as one can build scoring
systems for private companies one can derive scoring systems for pri-
vate individuals, for instance, for clients which borrow money in the
context of a residential mortgage.
The basic mechanism is exactly the same but the rating score drivers
are di�erent.
For instance, personal wealth, income situation, family context, etc.
are typical drivers for a private client scoring.
Moreover, practitioners know that the main drivers for default in a res-
idential mortgage lending context and, more general, in any lending
to private individuals are unemployment, divorce, and poor health.

4. Expert Rating Systems. There are portfolios where over many
years hardly any default occurred.
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For example, municipalities in Switzerland can be grouped into a port-
folio where almost no defaults occurred.
In such situations it is di�cult to work with balance sheet scorings
because the number of defaults in the portfolio is too low for deriving
statistically sound conclusions.
This kind of portfolios where a default event barely occur are de�ned
as low default portfolios and how to approach to those is well explained
by Wilde and Jackson in [75].
A common approach then is to overcome the problem of missing de-
faults by involving groups of experts in the considered segment in the
bank to assign manual ratings to test cases.
These kind of portfolios where it is di�cult to use time series analysis
for default estimates are under the radar of the regulators and �nan-
cial supervisors. Indeed, i.e. Basel IV accords are imposing to the
banks to move portfolio composed by Institutions under the F-IRB
approach which means that banks cannot use own LGD's estimates,
but a pre-de�ned value �xed at 45%.

It is important to note that the rating type categories are not fully disjoint.
In many cases a rating system has a main avor but it is combined with
technology from some other rating model types.
For instance, a rating model could be causal in principal but also use ele-
ments from scoring theory and regression [6].

1.7 Exposure At Default (EAD)

As de�ned in (1.1) the EL is the product of three variables and Exposure
at Default (EAD) is one of those.
Hence, the EAD quanti�es the amount that has been borrowed and not
repaid yet at which the bank will be exposed in case of default. A company
either for investing or keeping the activity going on could decide to �nance
itself with a bank loan, once the loan is approved, a credit line will be opened
for that company.
This credit line represents the maximum amount which can be drawn by the
company. At this stage, it is important to introduce the concepts of sub-
limits and outstandings for having a better clue about the credit structure.
Let us assume that a company has a credit line of EUR 10Mio, also called
cross facility or cross limit which can be divided in sub-limits/sub-facilities.
Keeping the structure simple, we make the assumption that the cross credit
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limit of EUR 10Mio has been divided in two sub-limits, then the credit
situation could be rewritten in the following way:

1. Sub-Limit. The borrower can draw EUR 6Mio as cash;

2. Sub-Limit. The rest of the credit line (EUR 4Mio) for so-called
contingent liabilities, i.e., guarantees or comparable credit constructs
but not for cash.

Once the company receives all approvals from the bank for opening the
credit line, it can start to draw from it.
The drawn amount is called outstanding, while the remaining part of the
credit lines represents the commitments that the bank has towards the bor-
rower.
Let us assume that the borrower draws EUR 5Mio from the �rst sub-limit
then this amount will represent the outstandings while the remaining part
(EUR 1Mio) is seen as a commitments for the bank because the borrower
can decide to draw it at anytime.
In other words, the outstandings refer to the portion of the overall client ex-
posure that the obligor is already using. There is not randomness involved,
drawn is drawn, and if the obligor defaults then the outstandings are subject
to recovery and in a worst case situation could potentially be total lost.
On the other hand, to evaluate at priori the exposure of the bank on the
remaining EUR 5Mio, the commitments, is tricky. The most accurate way,
and most probably the only one, for considering the exposure arising from
the open part of the credit line is a random variable. In conclusion, the two
parts of the open line address di�erent random e�ects.
The EUR 1Mio which can be drawn as cash are driven by the likelihood
that the borrower draws on them as well as by the fraction quantifying how
much of the 1Mio he draws.
Bringing this concept to a more formal environment, it could be explained
by the following expression:

EADcash = 1D �X � [1Mio](EUR) (1.6)

for the random exposure adding to current outstandings.
Here, D describes the event (in the �-�eld F ) that the obligor draws on the
open cash credit line and X is a random variable de�ned on the underlying
probability space (
, F , P) with X (!) 2 [0, 1] for each 
 2 ! quantifying
the random fraction describing how much of the open EUR 1Mio line is
drawn.
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The remaining EUR 4Mio which can be used for contingent liabilities are
also subject to various random e�ects.
First of all, there are again one or more indicator variables reecting the
optionality of usage of free parts of the second sub-limit. Second, there is
randomness in the fact that contingent liabilities not necessarily lead to cash
exposure. A guarantee has no real exposure as of today but might converge
into exposure in the future. Such random e�ects are typically treated by
so-called conversion factors.
One common exposure parameter is the so-called draw-down factor (DDF).
In our example it could be the case that the bank is able to say that the
given type of obligor tends to draw on the free part of the credit line (EUR
1Mio) in 80% of the cases and on average uses 60% of the available cash.
In other words, based on historic experience the bank obtains parameters
in [1.6] like

P(D) = 80% and E[X] = 60%

Assuming that 1D?X, this leads to an expected cash exposure for the un-
used part of the cash credit line of:

E[EADcash] = P(D)� E[X]� [1Mio](EUR) = 48%� [1Mio](EUR)

The 48% would then be used as the DDF for this particular situation. Note
that the DDF is one particular common example for conversion factors.
For the contingent liability part of the credit line we assume again the
existence of a rich database which allows for the calibration of a DDF of, say,
40% for the contingent liability part and a so-called cash equivalent exposure
factor (CEEF) of 80% which is another conversion factor quantifying the
conversion of the speci�c contingent liability, say, a guarantee, into a cash
exposure.
Altogether, we obtain, under the independence assumption, the following
representation for the EAD:

E[EAD] = [5Mio] + 48%� [1Mio] + 32%� [4Mio](EUR)

which end up in:

[5Mio+ 0:48Mio+ 1:28Mio](EUR) = [6:76Mio](EUR)

where
32% = 40%� 80%:

So altogether our (expected) EAD is between the already utilized 5Mio
and the overall committed 10Mio but higher than the committed cash line



CHAPTER 1. INTRODUCTION TO RISK 26

of 6Mio.
Our example provides an idea on how complicated EAD calculations can
be, in practice, in the real life, it is even more complex.
For example, commitments of banks to clients often include various so-called
covenants, which are embedded options which, for example, may force an
obligor in times of �nancial distress to provide more collateral or to renego-
tiate the terms of the loan.
A problem is that often the obligor has some informational advantage in
that the bank recognizes �nancial distress of its borrowers with some delay.
In case of covenants allowing the bank to close committed lines triggered by
some early default indication. This is a matter of timing, the bank has to
pick such indications early enough to react before the customer has drawn
on his committed lines.
Bankers here often speak of a race to default which addresses the problem
that distressed clients tend to exhaust their lines just before they default as
much as possible.
The Basel Committee on Banking Supervision in [23] provides conversion
factors for banks who are unable or not allowed by their regulator to cali-
brate their own internal conversion factors like DDFs and CEEFs.

1.8 Loss Given Default (LGD)

Di�erently from EAD, the LGD is commonly expressed in percentage.
Hence, the loss which occurs in case of default will be denoted as $LGD.
Let us assume that a client has m credit products with the bank and pledged
n collateral securities to the bank which can in case of default be used for
recovery purposes in order to mitigate the realized loss arising from the
client's default.
As described in [1.7], once the bank open a credit line it gets an exposure;
most probably the cross facility is split in several sub facilities which refers
to m credit products.
In other words we can say that the bank get EAD1,� � � , EADm for each of
the m products.
In some cases the bank can ask to have some guarantees from the customer
which can be sold in case of default.
The easiest example is the mortgage where the house represents a guarantees
itself. Leaving the residential mortgages �eld, and extending our example
to a company we can expect a recovery which proceeds from the n collateral
securities.
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The recovery proceeds can be denoted $REC1,� � � , $RECn.
This is a m to n situation, indeed the several exposures can be covered
from one single collateral which creates tricky to build an interdependence
between products and collateral, especially in cases where we have to deal
with dedicated collateral which can be used for certain purposes and only
under certain circumstances.
Under a simplistic approach, it can be assumed that only "good cash" (re-
covery proceeds) and "bad cash" (loss exposure) can be gathered. So, we
have two separate buckets which we then compare to obtain our net balance
with the defaulted client:

$LGD = max
�
0; (EAD1 + � � �+EADm)� ($REC1 + � � �+ $RECn)

�
(1.7)

which leads to a percentage LGD of

LGD =
$LGD

EAD1 + � � �+ EADm

(1.8)

The m to n relation between recoveries and exposures is not the only com-
plexity that we have to highlight in the LGD calculation.
Indeed, the $RECi quantities are not easy to derive given the complexity
and granularity of the data required.
Besides, the time value of money is another known issues, due to the kind of
guarantee the recovery proceeds coming later in time respect to the default,
so it could not reect the time value of money and an appropriate discount
rate has to be estimated.
In other words, LGD calibration is a long story and far from being trivial. In
this sense, the current regulatory framework is taking into account the di�-
culties which banks are facing in estimating the LGD and it is forcing them
to treat some asset classes under the F-IRB instead of A-IRB approach.

1.9 Unexpected Loss

In the previous sections, most of the Credit Risk metrics such as RWA
in [1.4], EL in [1.5], PD in [1.6], EAD in [1.7], LGD in [1.8] have been
introduced.
Nevertheless, as well explained by Bluhm et al. in [10], it is possible to look
at the the credit risk from a di�erent perspective.
Indeed, Credit Risk can be generalized with the following equation:

CreditRisk = max(ActualLoss� ExpectedLoss; 0)
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where the actual loss is the observed �nancial loss. Hence, credit risk is the
risk that the actual loss is larger than the expected loss.
Expected loss (EL) is an estimate and it has been previously introduced
[1.5] as an insurance or loss reserve in order to cover losses the bank expects
from historical default experience.
But a focus on expected losses is not enough, because actual loss could be
considerably larger the the expected loss.
In fact, the bank should in addition to the expected loss also make sure that
they have a good understanding on how much money would be necessary for
covering unexpected losses where 'unexpected' stands for losses exceeding
the historic average observed in the past.
As a measure for the magnitude of the deviation of losses from the EL, the
standard deviation of the loss variable eL as in [1:1] could be a good starting
point.
Hence, the unexpected loss unexpected loss of the underlying loan or asset
is de�ned as:

UL =
q
V[eL] =

q
V[EAD � LGD � L] (1.9)

Following the formula shown in [1:9] and under the assumption that EAD
is deterministic and that LGD and the default event D are independent,
the unexpected loss can be re-written as:

UL = EAD �
q
V[LGD]� PD + E[LGD]2 � PD(1� PD) (1.10)

Nevertheless, banks struggle with calculating the UL of huge portfolios
which contain many di�erent products with di�erent risk characteristics.
Hence, starting from a family of m loans the eLi of the i asset with i=1, 2,
� � � ,m is given by eLi = EADi � LGDi � Li (1.11)

with
Li = 1Di

and P(Di) = PDi

The loss of the whole portfolio eLPF , containing homogeneous assets, can be
de�ned as a collection of eLi loss variables stated in [1:11].
Hence, the portfolio loss is then de�ned as the following random variable:

eLPF =
mX
i=1

eLi =
mX
i=1

EADi � LGDi � Li (1.12)

Given a portfolio of m loss variables de�ned in [1:11], the expected and
unexpected loss of the entire portfolio can be written as:

ELPF = E[eLPF ] and ULPF =
q
V[eLPF ] (1.13)
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Nevertheless, the loss variables within the ULPF are correlated and this
correlations between single assets play a fundamental role.
Given a portfolio of m loss variables as in [1:11] with deterministic EAD's,
the portfolio UL is given by

ULPF =

vuut mX
i=1

mX
j=1

EADi � EADj � Cov[LGDi � Li; LGDj � Lj ] (1.14)

If we assume the LGDs are also deterministic and de�ning Cov[Li; Lj ]:

Cov[Li; Lj ] =
q
V[Li]V[Lj ]Corr[Li; Lj ]

and
V[Li] = PDi(1� PDi) for each i = 1; : : : ;m

The previous formula [1:14] can be rewritten as:

UL2PF =
mX
i=1

mX
j=1

EADi � EADj � LGDi � LGDj �
q
PDi(1� PDi)PDj(1� PDj)�ij

where the default correlation between the i and j counterparties is denoted
by �ij = Corr[Li; Lj ].
It is relevant to understand how correlation can be interpreted in the 'real
world'.
Let us consider a portfolio consisting of two loans with LGD = 100% and
EAD = 1.
We then only deal with Li for i = 1; 2 and we set � = Corr[L1; L2] and
pi=PDi.
Then, UL2PF is given by:

UL2PF = p1(1� p1) + p2(1� p2) + 2�p1(1� p1)p2(1� p2) (1.15)

Let us focus on the extreme values which can be assumed by the default
correlation �:

1. � = 0. In this case, the third term in [1:15] disappear.
This kind of situation means that the two loans composing the portfo-
lio are not linearly related. Financially speaking, � = 0 stands for the
achievement of the optimal diversi�cation.
The concept of diversi�cation is well known and easy to explain.
If we consider to give two loans to two di�erent companies, in two di�er-
ent sectors which are in two di�erent countries where the companies, the
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countries and the sectors are not related to each other, if one of the two
company goes in default, there is no reason to suppose that the other
company is going to default as well.
Obviously, nowadays, to have two loans perfectly unrelated seems to be
only a theoretical situation.
Using the ULPF in [1:15] as estimate of the portfolio risk, � = 0 repre-
sents a situation which minimize risk of joint defaults.

2. � = 1. This is a case of perfect correlation where the default of one
obligor makes the other obligor defaulting almost surely.
� = 1 essentially meaning that our portfolio contains the risk of only one
obligor but with double intensity the so-called concentration risk.
Which formally means that [1:15] can be re-written as follow:

ULPF = 2
q
p(1� p)

Cases less extreme are represented from 0 < � < 1 where the two coun-
terparties borrowing money are positively correlated and the default of
one counterparty will increase the probability that the other counterparty
will default as well.

3. � = �1. This is the inverse situation of the case � = 1.
In this case, it makes much more sense to talk about the market value of
the assets composing the portfolio.
In this context, a marginal increase in market value of one of the loans
immediately would imply a decrease in market value of the other loan.
From [1:15], it follows that ULPF completely vanishes (ULPF = 0).



Chapter 2

Machine Learning
Techniques

As seen in the previous chapter [1.9], either for regulatory or business pur-
poses, the credit risk management is mainly based on credit risk models.
These models help in judging the creditworthiness of a client, in measuring
the exposures which the bank has to face in case of the client's default and
the assets that the bank has to reserve for tackling a default event.
By de�nition a model is an approximation of the reality; in a �nancial envi-
ronment there is a recurring question related to the accuracy and reliability
of these models.
How far are they from the reality?
However, the output of these models do not have dependencies only from
the model structure. Indeed, the models' outcome is a result of several cal-
culations, under some assumptions, based on several input.
In other words, a model is able to "reproduce" the reality if it can rely on
proper foundations, where for the latter we intend the input data.
The credit risk model accuracy, as all models, does not depend only on the
e�ectiveness, parametrization and complexity of the model but from the
data which are inputed. In a pragmatic language, this situation would be
summarized as "Garbage IN is equal to Garbage OUT".
In the �nancial environment, a proper estimation of the risks is crucial for a
safe activity of the bank and for the �nancial system itself, given the strong
interdependencies. Hence, one of the common goals for the banks which
want to run an healthy business is to increase the knowledge of the own
data and retrieve some insights out of those, which can be transformed in
added value.

31
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It is important to highlight that over the past 5 years, the amount of data
is exponentially increased, either due to the digitalization process or to the
increasing regulatory requests. The latter, for some of the main European
players, could be exempli�ed with an huge growth of the delivered data
points to the regulators which raised from 2000 in 2012 to 200000 in 2017
(info to be double checked).
Most of the times, this hunger of data have brought banks in collecting
more and more information without building a proper infrastructure which
enables to check the authenticity of the data.
In this context, where the data quality is not fully ensured during the col-
lection of those, it becomes relevant to use a model for pointing out the data
issues.

Definition 3 The knowledge acquisition process within data is well known
as Knowledge Discovery in Databases (KDD).
This is a framework which has been de�ned in [32] as:

The non trivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data.

This is an interactive and iterative process involving several steps: selection,
processing, transformation, Data Mining, interpretation/evaluation.
As well explained in [49], KDD tasks can be classi�ed into four general
categories:

a. dependency detection;

b. class identi�cation;

c. class description;

d. exception/outlier detection.

Most of the works related to KDD (i.e. [28], [40], [55], [54], [77]) have focused
the attention on the �rst three categories, which consists in �nding "large
patterns" in data, or in other words, in identifying characteristics of the
data that are representative of a signi�cant portion of the dataset.
The outliers identi�cation is part of the KDD, the fourth category, and it
will be the focal point of this thesis. This category focus on the data points
that are not falling into the "large patterns" or outliers. In general, these
are often ignored or discarded as noise.
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2.1 An Introduction to the Anomalies Detection

Anomalies are data patterns that have di�erent data characteristics from
'normal' instances.
The techniques used to identify unusual patterns that do not conform to
expected behavior are known as anomaly detection techniques.
In other words, these techniques highlight small patters which deviate from
the large ones. The identi�ed data points through these techniques are
called outliers.
Nevertheless, these small patters contain useful information and cannot be
simply discarded.
As pointed out by Knorr and Ng in [49]: "One person's noise is another
person's signal".
In other words, outliers are part of the data collection and they can provide
useful insights.
Mining for outliers has several applications in di�erent �elds: telecom, credit
card fraud, loan approval, pharmaceutical research, weather prediction, �-
nancial applications, marketing, customer segmentation, data cleaning, etc.
Before to further proceed is good to mention some of the statistical de�ni-
tions of outliers found in literature:

a. An outlier in a set of data, is an observation or a point that is considerably
dissimilar or inconsistent with the remainder of the data [62];

b. An outlier is an observation that deviates so much from other observa-
tions as to arouse suspicions that it was generated by a di�erent mecha-
nism [44];

c. An outlier is a data point that deviates by a certain standard deviation
from the mean [30];

d. Observations are called outliers when their number is signi�cantly smaller
than the proportion of nominal cases, typically lower than 5% [25].

According to the di�erent anomaly detection techniques an outlier de�ni-
tion can be generated.
As pointed out by Domingues et al. in [25], outlier detection is a notoriously
hard task which become even trickier when, for example, an input dataset
contaminated by outliers may degrade the �nal model if the training algo-
rithm lacks robustness.
From a broaden point of view, the anomalies, which are the detected through
data anomalies techniques, as explained in [20] can be categorized as:
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a. Point anomalies. A single instance of data is anomalous if it's too far
o� from the rest. Business use case: Detecting credit card fraud based
on "amount spent."

b. Contextual anomalies The abnormality is context speci�c. This type
of anomaly is common in time-series data. Business use case: Spending
100 on food every day during the holiday season is normal, but may be
odd otherwise.

c. Collective anomalies. A set of data instances collectively helps in
detecting anomalies. Business use case: Someone is trying to copy data
form a remote machine to a local host unexpectedly, an anomaly that
would be agged as a potential cyber attack.

The simplest approach for identifying irregularities in data is to ag the data
points that deviate from common statistical properties of a distribution,
including mean, median, mode, and quantiles.
Starting from one of the de�nitions mentioned in [2.1] an outlier can be
considered a data point that deviates by a certain standard deviation from
the mean.
Traversing mean over time-series data isn't exactly trivial, as it's not static.
You would need a rolling window to compute the average across the data
points.
Technically, this is called a rolling average or a moving average, and it's
intended to smooth short-term uctuations and highlight long-term ones.
Mathematically, an n-period simple moving average is de�ned as a low pass
�lter which is a less sophisticated version of the Kalman �lter. The main
short-comes of this approach are:

1. The data contains noise which might be similar to abnormal behavior,
because the boundary between normal and abnormal behavior is not
well de�ned;

2. The de�nition of abnormal or normal may frequently change, as mali-
cious adversaries constantly adapt themselves. Therefore, the thresh-
old based on moving average may not always apply;

3. The pattern is based on seasonality. This involves more sophisticated
methods, such as decomposing the data into multiple trends in order
to identify the change in seasonality.

However, the ability to detect anomalies has signi�cant relevance, and anoma-
lies often provides critical and actionable information in various application
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domains.
At this stage is important to understand how the anomaly detection tech-
niques can be applied in di�erent situations of the banking environment:

a. Improving the data collection process within banks. According to
the kind of client, the data collection process can have a di�erent upload
schedule (daily, weekly, monthly, etc..). Most of the big banks have a
data collection process which locally gather data and deliver them to the
central system.
Let us say that an Italian bank called Ait opens a credit facility to the
brewery B, which has residence in the Netherlands, through the Dutch
branch of the bank called Anl.
All customer information will be gathered by Anl and sent to the head-
quarter Ait which has the central data system where data of all local
branches are collected.
This data collection can include some noise, in other words, some data
can be wrongly delivered to the central system.
Once these anomalies have been identi�ed, they cannot be simply deleted
because they contain useful information for some speci�c clients, but a
proper process for data correction has to be put in place.
Why noise cannot be simply cleaned?
In this context, a trivial example is provided by monitoring reports on
RWAs movements overtime which banks have to provide to the regulator.
Looking at the monthly time series of the risk weighted assets (RWAs)
for the brewery B, it can be observed that the level of the RWAs for the
past 10months is around 1Bio and in the current month is 10Bio.
This shift can suggest a data quality issue, but it can, partially, depends
on business reason (a new credit facility, acquisition by a bigger brewery,
change in the creditworthiness, etc..).
Hence, it is fundamental to identify which portion of this shift is due to
anomalies into the data collection process and which part is driven by
change in the business;
This record regarding the brewery is part of the data collection and it
has to be delivered to the regulator as in the past months, it cannot be
simply cleaned up.

b. Credit card fraud detection. A relevant anomalies detection appli-
cation is related to the credit card frauds which mostly raise from the
illegal use of lost or stolen credit cards.
Since credit card companies assume liability for unauthorized expenses
on lost or stolen cards, identifying and preventing illegal use become cru-
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cial for running a pro�table and safe business.
In this context the contraposition between large patterns, credit card us-
age prior to being stolen, and small patterns, the new usage allows to
detect the credit card fraud.

Most of the studies in anomalies detection consider being an outlier as a
binary property.
Nevertheless, for many applications, the situation is more complex and it
becomes more meaningful to assign to each object a degree of being an
outlier. To tackle this short coming the local outlier technique (LOF) has
been introduced [18] which assign for each object in the dataset a degree of
outlierness.
In other words this algorithm also quanti�es how outlying an object is. The
outlier factor is local in the sense that only a restricted neighborhood of each
object is taken into account which di�ers from clustering which consider the
global picture.
Besides, these techniques are computationally ine�cient so classi�cation al-
gorithms are taken as a valid alternative [12].
However, clustering algorithms play a role in the outliers detection where
outliers are de�ned as objects not located in clusters of a dataset, usually
called noise [45].
The set of noise produced by a clustering algorithm, however, is highly de-
pendent on the particular algorithm and on its clustering parameters. In
other words they focus on the large patterns and only a few approaches
are directly concerned with outlier detection. Furthermore, based on these
clustering algorithms, the property of being an outlier is again binary.
Di�erent and quite new approach to the anomaly detection is provided by
by Liu et al. in [51] and [52]. According to this technique the anomalies are
susceptible to a mechanism called isolation which enables isolation trees to
exploit subsampling to an extent that is not feasible in existing methods.
In conclusion we can say that anomalies detection techniques can be classi-
�ed as:

a. Statistical Methods;

b. Density-Based Anomaly Detection;

c. Clustering-Based Anomaly Detection;

d. Classi�cation-Based Anomaly Detection1;

1Among these models, we �nd the Support Machine-Based Anomaly detection which
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e. New Anomaly Detection techniques such as Isolation Forest;

Given the huge number of techniques per each class of anomaly detection
approach, we will focus only on some those.

2.2 Density-Based Anomaly Detection

In literature anomaly detection has been extensively studied [3] and [44],
they provide a good wrap up of the all statistical methods available.
Nevertheless, these techniques are not the focal point of this thesis.
Following [3], it can be deducted that these techniques require a-priori
knowledge based on:

a. Data distribution;

b. Whether or not the distribution parameters (e.g., mean and variance) are
known;

c. Number of expected outliers;

d. Types of expected outliers (e.g., upper or lower outliers in an ordered
sample) .

which the user may not have.
In density-based anomaly detection, as explained by Tan in [69] anomalies
are de�ned data points that belong to regions of low density and measured
as:

a. The reciprocal of the average distance to the k-nearest neighbours;

b. The count of points within a given �xed radius.

Hence in these kind of data anomaly techniques a standard distribution (e.g.
Normal, Poisson, etc.) is used to �t the data, the outliers are de�ned based
on the probability distribution.
As showed in [3] over one hundred tests of this category, called discordancy
tests, have been developed for di�erent scenarios.
Beyond the lack of the knowledge of the data distribution, a main problem
is linked to the number of attributes. Indeed, most of these tests are uni-
variate which make them unsuitable for multidimensional datasets and to

in the middle of 1990's gave an applicative boost to the Statistical learning theory which
was mostly used for theoretical analysis. A good overview of the Statistical Learning
theory is given by Vapnik and Chervonenkis in [74], Vapnik in [72] and [73].
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the assumptions on the data distribution.
In order to overcome the above-mentioned problems described as distri-
bution �tting and univariate constrain, some computational methods have
been developed, which can be best described as depth-based.
These methods are well presented in [61], [64] and based on some de�nition
of depth, where data objects are organized in layers of the data space, with
the expectation that shallow layers are more likely to contain outlying data
objects than the deep layers.
However, in practice, the computation of k-dimensional layers relies on the
computation of k-dimensional convex hulls where the lower bound complex-

ity of those is 
 of order N [ k
2
] , which means that depth-based methods are

not expected to be practical for more than 4 dimensions for large datasets.
In fact, as showed in [64], the existing depth-based methods only give ac-
ceptable performance for k�2.
More details on the depth de�nition are provided, in the univariate case, by
Tukey in [71] and, in the multivariate case, by Donoho and Gasko in [26].
This notion of outliers is di�erent either from the above-mentioned statis-
tical de�nitions [2.1] of outliers or from the notion of outliers considered
in [49] which associates a notion of distance and similarity measure between
objects:

Definition 4 An object O in a dataset T is a DB(p;D)-outlier if at
least fraction p of the objects in T lies greater than distance D from O.

The term DB(p;D)-outlier stands for a Distance-Based outlier. This de�-
nition is aligned with the one provided by Hawkins in [44].
Besides, it tackles some of the issues faced by the statistical approaches
in [3] given that the assumption on the distribution is not needed and it
overcomes the computational problems faced by the depth-based methods
which are constrained by a small values of k dimensional layers.
Indeed, depth-based methods rely on the computation of layers in the data
space while DB-outliers do not take in consideration the data space and rely
on the computation values based on a metric distance function.
In distance based anomaly detection, anomalies are de�ned to be data points
which are distant from all other points.
As showed by Tan in [69], two common ways to de�ne distance-based anomaly
score are:

a. The distance to k-th nearest neighbour;

b. The average distance to k-nearest neighbours.
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In [49], the adopted metric distance function is (weighted) Euclidean.

Definition 5 Let N be the number of objects in dataset T , and let F
be the underlying distance function that gives the distance between any
pair of objects in T . For an object O, the D-neighborhood of O contains
the set of objects Q2T that are within distance D of O:

Q 2 T jF (O;Q) � D (2.1)

The fraction p is the minimum fraction of objects in T that must be
outside the D-neighborhood of an outlier. For simplicity of discussion,
let M be the maximum number of objects within the D-neighborhood of
an outlier, i.e., M=N(1-P ).

In other words given p and D, the problem of �nding all DB(p;D)-outliers
can be solved by �nding a nearest neighbor or range query centered at each
object O. More speci�cally, based on a standard multidimensional indexing
structure, we execute a range search with radius D for each object 0.
As soon as (M+1) neighbors are found in the D-neighborhood, the search
stops, and O is declared a non-outlier; otherwise, O is an outlier.

The lower bound complexity for a range search is 
 of order N [ 1�1
k

] , where
k is the number of dimensions or attributes and N is the number of data
objects.
As k increases, a range search quickly reduces the order to N , giving at best
a constant time improvement reecting sequential search. This is de�ned as
index based procedure for �nding all DB(p;D)-outliers and it has a worst
case complexity of order (kN2).
This index-based algorithm scales much better with dimensionality com-
pared to the depth-based one, which have a lower bound complexity of 
 of

order N [ k
2
] that means that the DB-outliers is applicable and computation-

ally feasible for datasets that have many attributes, i.e., k�5.
As described in [64], this is a signi�cative improvement with respect to the
existing methods which can only deal with k�2.
Nevertheless, the index-based procedure for �nding all DB(p;D)-outliers
only considers search time which is a strong assumption that the right in-
dex exists.
In other words, the index-based algorithms are uncompetitive because it
requires to build an index for �nding all DB(p;D)-outliers. A valid alter-
native is provided by a block-oriented, nested-loop (NL) design presented
by Knorr and Ng in [49].
The algorithm divides the dataset in two halves called �rst and second ar-
rays. It reads the dataset into the arrays, and directly computes the distance
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between each pair of object.
For each object t in the �rst array, a count of its D-neighbors is maintained.
Counting stops for a particular object whenever the number of D-neighbors
exceeds M . The algorithm is showed in the appendix [A].
Algorithm NL avoids the explicit construction of any indexing structure,
and its complexity is of order (kN2).
Compared to a tuple-by-tuple brute force algorithm that pays no attention
to I=O0s, Algorithm NL is superior because it tries to minimize I=O0s.
One of the weaknesses in these density and distance measures is their in-
ability to handle data sets with regions of di�erent densities. Also, for these
methods to detect dense anomaly clusters, k has to be larger than the size
of the largest anomaly cluster.
This creates a problem in de�ning the appropriate k to use, keeping in
consideration that a large k increases the computation substantially.

2.3 Classification Methods

The Density-Based Anomaly Detection approaches have several short-comings.
Abe et al. in [1] point out two main drawbacks:

a. Do not provide a semantic explanation of why a particular instance has
been agged as an outlier;

b. Relatively high computational requirement, since nearest-neighbor meth-
ods need to store all or a large part of the past examples for e�ective
classi�cation of future examples.

These are potential obstacles in the implementation of this anomaly detec-
tion methods to real datasets.
Hence, an alternative approach to the anomaly detection is the classi�cation
based.
It is important to give some background about the classi�cation methods
which are then used in the Classi�cation-Based Anomaly Detection.

2.3.1 Introduction to Classification Methods

Interesting applications of the classi�cation methods in this �eld are pro-
vided by Abe et al. in [1] and by Breiman in [16].
The latter author has also worked on several books related to the classi�ca-
tion methods of which propose a simple example in [12]:
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Example 1 The San Diego Medical Center measures 19 variables (blood
pressure, age, weight, etc: : : ) within the �rst 24 hours when a new pa-
tient with heart problems is admitted. The idea behind is to create
a method which predicts, with high probability, who will not survive at
least 30 days based on the data retrieved in the �rst 24 hours. This clas-
si�cation rule is summarized by the Figure [2] published by Breiman et
al. in [17]:

Figure 2: Classi�cation Rule

where F means not high risk and G means high risk.
This rule classi�es incoming patients as F or G depending on the yes-
no answers to at most three questions. Given a set of measurements
on a case or object, �nd a systematic way of predicting what class it is
in.

In any problem, a classi�er or a classi�cation rule is a systematic way of
predicting in which class a case will be.
To give a more precise formulation, arrange the set of measurement on a case
in a preassigned order; i.e., take the measurement to be x1,x2,: : : xn where
x1 is age, x2 is blood pressure, etc: : : . De�ne the measurements (x1,x2,: : : ,
xn) made on a case as the measurement vector x corresponding to the case.
Take the measurement space � to be de�ned as containing all possible mea-
surement vectors.
In the heart attack study presented in [1], � is a 19-dimensional space such
as that the �rst coordinate x1 (age) ranges, say, over all integer values from
0 to 200; the second coordinate, blood pressure, might be de�ned as contin-
uously ranging from 50 to 150.
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Multiple de�nitions of � can be described, but any de�nition of the measure-
ment space has the property that x, the measurement vector, corresponding
to a point in �.
Suppose that the cases or objects fall into J classes, with classes 1,2,: : : , J
and let � be the set of classes; that is �=(1,: : : , d). Then, a systematic way
of predicting class membership is a rule that assigns a class membership in
� to every measurement vector x in �.
Given any x2�, the rule assigns one of the classes (1,: : : ,J) to x. This can
be summarized in the following de�nitions:

Definition 6 A classi�er or classi�cation rule is a function d(x) de�ned
on � so that for every x, d(x) is equal to one of the numbers 1,2,: : : ,J.

or in other words:

Definition 7 A classi�er is a partition of � into J disjoint subsets
A1,: : : , Aj, �=[jAj such that for every x2Aj the predicted class is j.

Classi�ers are built following a logic. Indeed, in systematic classi�er con-
struction, past experience is summarized by a learning sample which consists
of the N cases observed in the past together with their classi�cation.

Definition 8 A learning sample consists of data (xi; j1); : : : ; (xn; jn) on
N cases where xn 2 � and jn 2 f1; : : : ; jg, n = 1; : : : ; N .
The learning sample is denoted by �; i.e.:

� = f(xi; j1); : : : ; (xn; jn)g (2.2)

Breiman in [12] distinguish two general types of variables that can appear
in measurement vector:

Definition 9 A variable is called ordered or numerical if its measured
values are real numbers. A variable is categorical if it takes values in
a �nite set not having any natural ordering.

A categorical variable, for instance, could take values in the set fred, blue,
greeng. On the other hand, the medical data for a hospitalized patient such
as blood pressure and age are ordered variables. The latter is a typical
example where the data structure is standard as a �xed set of variables is
measured in each case (or day).

Definition 10 If all measurement vectors xn are of �xed dimensional-
ity, we say that the data have standard structure.
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Depending on the problem, the basic purpose of a classi�cation study can be
either to produce an accurate classi�er or to uncover the predictive structure
of the problem.
In the �rst case, to determine if an object is in one class rather than another.
In the second case, the �nal goal is to understand what variables drive a
speci�c phenomena. These two goals are not mutually exclusive.
Hence, an important criterion for a good classi�cation procedure is not only
related to the production of accurate classi�ers, but it is also to provide
insights and understanding about the predictive structure of the data.
The major guide that has been used in the construction of classi�ers is the
concept of the Bayes' rule.
This rule can be de�ned as follow:

Definition 11 dB(x) is a Bayes rule if for any other classi�er d(x),

P (dB(�) 6= Y ) � P (d(�) 6= Y ) (2.3)

where P (A; j) is the probability distribution followed by the data. Then
the Bayes misclassi�cation rate is

RB = P (dB(�) 6= Y ) (2.4)

If a prior class probabilities �j with j = 1; : : : ; J is de�ned as

�j = P (Y = j) (2.5)

and the probabiity distribution of the jth class measurement vectors by

P (Ajj) =
P (A; j)

�j
(2.6)

under the assumption that � is a M-dimensional euclidean space and
for every j, P (Ajj) has the probability density fj(x);

P (Ajj) =

Z
A
fj(x)dx: (2.7)

Then, the Bayes rule can be written as:

dB(x) = fx; fj(x)�(J) = max
i
fi(x)�(i)g (2.8)

and the Bayes misclassi�cation rate is:

RB = 1�
Z

max
j

[fj(x)�(j)]dx (2.9)
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2.3.2 Different methods for applying Classification

Among the classi�cation methods, the three most commonly used proce-
dures are:

a. Discriminant analysis [38];

b. Kernel density estimation [41];

c. K-th nearest neighbor [33].

attempt, in di�erent ways, to approximate the Bayes' rule by using the
learning sample � to get estimates of fj(x).
A stepwise version of linear discrimination is the most widely used method.
It is not constrained by the normality assumption and provides enough in-
sights into the data structure. Nevertheless, the form of classi�er for the J
class problem is di�cult to interpret.
The kernal density estimation and kth nearest neighbor methods make min-
imal assumptions about the form of the underlying distribution. But there
are common drawbacks:

a. There is not simple way to handle categorical variables and missing data;

b. They are computationally expensive as classi�ers; � must be stored, the
interpoint distances and d(x) recomputed for each new point x;

c. They do not give enough information about the data structure.

These problems that could not be handled in an easy way by any of the
above-mentioned methods have alimented the experimentation of new meth-
ods. The use of classi�cation trees is one of those.
Binary tree structured classi�ers, are constructed by repeated splits of sub-
sets of � into two descendant subsets, beginning with � itself.
This process, for a hypothetical six-class tree, is showed by the �gure [3]:
�2 and �3 are disjoint, with � = �2 [ �3. The same is valid for �4, �5 and
so on.
The subsets which are not split are in a rectangular box and are called ter-
minal nodes.
Each of those is designated by a class label and two or more terminal nodes
could have the same class label. The partition corresponding to the classi-
�er is got by putting together all terminal nodes corresponding to the same
class.
For example: A4 = �6

S
�17.

The entire construction of a tree depends on three elements:
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Figure 3: Classi�cation Tree

a. The selection of the splits;

b. The decisions when to declare a node terminal or not;

c. The assignment of each terminal node to a class.

These items are well, extensively (and formally) explained by Breiman in
[12].

2.3.3 Classification-Based Anomaly Detection

The classi�cation methods briey introduced in [2.3.2], have been exten-
sively used in anomaly detection.
Among the others interesting application of the Classi�cation-Based Anomaly
Detection are showed in [1] and [16].
In [1], the authors reduce the outlier detection to classi�cation and invoke
the technique of active learning to the reduced classi�cation problem. This
approach has two bene�ts:

a. Selective sampling based on active learning is able to provide improved
accuracy for outlier detection;

b. The use of selective sampling provides the data scalability that is needed
for typical applications of outlier detection. This makes possible to han-
dle very large data sets with low computational requirements.

They show how this approach outperforms either other methods based
on the reduction to classi�cation but using standard classi�cation meth-
ods, such as bagging and boosting respectively well illustrated in [24], [13]
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and [35] [36] [34] [65], or LOF shown in [18] which has been extensively
studied as a method for outlier detection.
Several machine learning methods are suitable for anomaly detection. How-
ever, supervised algorithms are more constraining than unsupervised meth-
ods as they need to be provided with a labeled dataset which can also a�ect
the e�ciency of supervised algorithms [47].
On the other side, unsupervised algorithms make use of unlabeled data to
assign a score to each sample, representing the observation normality. Bi-
nary segmentations can be further made by thresholding the scores [25].
The presented model utilizes a non-standard unsupervised learning method.
Assuming that data are drawn from some probability distribution U on an
instance space �.
The goal in this model is to choose a good partition � of the space �. The
partition � divides the space � into two subspaces which are called, � and
�� �.
A 'good' partition � contains 'most' of the points while minimizing the size
of �.
The error of the unsupervised learning is de�ned as:

eU;B(�) =
1

2

�
Prx�U (x 62 �) + Prx�B(x 2 �)

�
(2.10)

taking into account that B has been used to denote the 'background' distri-
bution over X, the goal is to �nd a 'small' (B) set � which contains 'most'
of the data (U).
A supervised learning model, using classi�cation, is connected to the above-
mentioned structure without any assumptions on the target concept.
Assuming a distribution D over the input space � and the binary output
space Y=f0; 1g, then a classi�er h : X ! Y with a small true error rate can
be �nd as follow:

eD(h) � Prx;y�D(h(x) 6= y) (2.11)

This connection enable to transfer much of the classi�cation theory to this
unsupervised learning model. In particular, deciding whether a point is
drawn from a distribution B or U becomes a classi�cation problem. Once
the models are linked, a selective sampling mechanism, which normally suits
only supervised learning problems(such as classi�cation), based on a partic-
ular type of active learning methodology developed in [53] is applied.
This approach can be called as ensemble-based minimum margin active
learning. The approach to outlier detection developed in [1] works itera-
tively, yielding a classi�er in each iteration by feeding a sub-sample of the
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input data set obtained by selective sampling to the given classi�cation
learner. This process is well explained by the �gure [4] in [1].

Figure 4: Outlier detection method using active learning [1]

The main challenges in the generation of this algorithm are generated by:

a. The choice of the underlying distribution B, or how to generate the
synthetic sample Ssyn. They choose two alternatives the uniform dis-
tribution within a bounded sub-space and product distribution of the
marginals;

b. The de�nition of margin. Which is de�ned as:

margin(F; x)
X
f̂2F

f̂(1jx)
X
f̂2F

f̂(0jx); (2.12)
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c. The choice of ensemble weights �i. Where they adopt the weighting
scheme of AdaBoost developed in [35];

d. Normalizing constant for sampling probability. When rejection sampling
results too small in sample sizes the sampling probability wi, in each
iteration, is multiplied by a normalizing constant r

wi
where r is a pre-

speci�ed fraction. In this way the same fraction of examples is expected
in each iteration.

The datasets used by Lazarevic and Kumar in [50] allow to compare their
method either against other methods that are also based on the reduction
to classi�cation such as bagging and boosting, or against well-known outlier
detection methods (density-based) such as LOF method [18] and Feature
Bagging [50].
Abe et al. in [1] highlight how Active-Outlier is performing consistently
close to best in all cases.
Nevertheless, most of the times the best is achieved by bagging, while Boost-
ing, given the context, does not work well. The latter example con�rms what
is already known literature, in fact, Boosting tends to put too much weight
on the incorrectly labeled examples in case of high noise.
This noise is generated during the reduction to classi�cation problem where
arti�cial samples are introuced.
Looking at the comparison with the outlier detection methods, LOF and
Feature Bagging, the Outlier Detection by Active Learning achieves an AUC
that is either equivalent or signi�cantly better than the Feature Bagging,
and outperforms LOF with a signi�cant margin in all cases.
A di�erent application of the classi�cation methods in the anomalies detec-
tion is provided by Breiman in [16].
He explains how bagging, random split selection and adaptive bagging have
inducted to signi�cant improvements in classi�cation accuracy:

a. Bagging in [13], where to grow each tree a random selection (without
replacement) is made from the examples in the training set;

b. Random split selection in [24], where at each node the split is selected
at random from among the K-best splits;

c. Adaptive bagging in [15], where generates new training sets by ran-
domizing the outputs in the original training set.

In all of these procedures the k� th tree, a random vector �k is generated,
independent of the past random vectors �1; : : : ;�k�1, but with the same
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distribution; and a tree is grown using the training set and �k, resulting in
a classi�er h(x;�k) where x is an input vector.
The nature and the dimensionality of � depends on how the tree is con-
structed (bagging, random split selection, etc: : : ).
This procedure where ensembles of trees are generated and the most popular
class is voted is called random forest and can be de�ned as follow:

Definition 12 A random forest is a classi�er consisting of a collection
of tree-structured classi�ers fh(x,�k), k = 1,: : : g where the f�kg are
independent identically distributed random vectors and each tree casts
a unit vote for the most popular class at input x.

As highlighted by Biau and Scornet in [7], the popularity of the random
forests derives from the fact that they can be applied to a wide range of
prediction problems and have few parameters to tune. Aside from being
simple to use, the method is generally recognized for its accuracy and its
ability to deal with small sample sizes and high-dimensional feature spaces.
For having a better understanding of the random forest is good to have a
deeper view in their properties:

a. As the number of trees increases, for almost surely all sequences �1,: : : ,PE
�

converges to:

PX;Y (P�(h(X;�) = Y )�max
j 6=Y

P�(h(X;�) = j) < 0): (2.13)

where PE� represents the generalization error and it is equal:

PE� = PX;Y (mg(X; Y ) < 0) (2.14)

where mg(X,Y) is margin function which measures the extent to which
the average number of votes at X,Y for the right class exceeds the average
vote for any other class. The larger the margin, higher is the con�dence
in the classi�cation.

b. Strength and correlation. For random forests, an upper bound can
be derived for the generalization error in terms of two parameters that
are measures of how accurate the individual classi�ers are and of the
dependence between them. The upper bound for the generalization error
is given by:

PE� �
��(1� s2)

s2
(2.15)
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where �� is the mean value of the correlation and s represents the strength
of the set of classi�ers fh(x;�)g which can be written as:

s = EX;Ymr(X; Y ) (2.16)

Putting c = ��(1� s2), a new ratio is obtained c
s2

.
As it represents the upper bound for the error, a smaller ratio, between
average of the correlation and strength, will reect in a better accuracy
of the classi�er.
This theorem is formally showed in [16].

In the latter article, Breiman explains as for improving accuracy, the ran-
domness injected has to minimize the correlation, ��, while maintaining
strength.
He introduces forests which randomly selected inputs or combinations of in-
puts at each node to grow each tree which have the following characteristics:

a. Its accuracy is as good as Adaboost and sometimes better, which are
considered the most accurate;

b. It is relatively robust to outliers and noise 2;

c. It is faster than bagging or boosting;

d. It gives useful internal estimates of error, strength, correlation and vari-
able importance;

e. It is simple and easily parallelized.

Besides, in Adaboost selects the distributions of the weights on the training
set while in the usual random forest, the distribution of the random vectors
does not depend on the training set
In his algorithm, he uses bagging in tandem with random feature selection
where each new training set is drawn, with replacement, from the original
training set. Then a tree is grown on the new training set using random
feature selection. The trees grown are not pruned.
The reason behind the use of the bagging are the following:

a. To enhance accuracy when random features are used;

2Dietterich [24] shows that when a fraction of the output labels in the training set are
randomly altered, the accuracy of Adaboost degenerates, while bagging and random split
selection are more immune to the noise.
Since some noise in the outputs is often present, robustness with respect to noise is a
desirable property.
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b. To give ongoing estimates of the generalization error of the combined
ensemble of trees(PE*), strength and correlation. These estimates are
done out-of-bag3 as explained in [70] and [14].

Breiman presents two procedures, Forest-RI and Forest-RC, and compare
them with Adaboost.
The so-called Forest-RI is a procedure where a random forest with random
features are formed by selecting at random, at each node, a small group of
input variables to split on.
The size of the group (number of features) is �xed at priori and it is denoted
by F , while the number of input is denoted by M .
He compared this procedure with Adaboost and formulates the following
considerations:

a. Growing 100 trees in random forests is many times faster than growing
50 trees based Adaboost given the huge set of inputs needed in this
procedure;

b. The error rates using random input selection compare favorably with
Adaboost.

Nevertheless, when we have few inputs, or in other words M is small, and
F 'M , then the results could be a�ected by high correlation.
The so-called Forest-RC procedures consists of de�ning more features by
taking random linear combinations of a number of the input variables. This
linear combination are de�ned by L which represents the number of vari-
ables to be combined.
At a given node, L variables are randomly selected and added together with
coe�cients that are uniform random numbers on [1; 1].
F linear combinations are generated, and then a search is made over these
for the best split.
Overall the generalization error compares more favorably to Adaboost than
Forest-RI.
Besides, it is relevant to look at the e�ect of strength and correlation on the
generalization error.
Breiman in [16] shows that for small datasets, past a small value of F (around
4), adding more inputs or features does not help because the strength re-
mains constant and the correlation continues to increase.

3In each bootstrap training set, about one-third of the instances are left out.
Therefore, the out-of-bag estimates are based on combining only about one-third as many
classi�ers as in the ongoing main combination
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In other words, since the correlations are slowly but steadily increasing, the
lowest error occurs when only a few inputs are utilized.
On the other hand, he highlights that for large datasets, either the correla-
tion or the strength have a small but steady increase while the error rates
show a slight decrease.
Hence, in presence of more complex data sets, the strength continues to
increase longer before it is atten out.
These results indicate that better random forests, which present a lower
generalization error, have lower correlation between classi�ers and higher
strength.

2.4 Clustering-Based Anomaly Detection

He at al. present in [45] a di�erent approach to the outlier detection called
Clustering-Based Anomaly Detection.
As we did in this thesis, they start from the classical de�nition of outliers
and they use the one proposed by Hawkins in [44]:

Definition 13 An outlier is an observation that deviates so much from
other observations as to arouse suspicions that it was generated by a
di�erent mechanism.

The motivation of their work was driven by two reasons:

a. Existing algorithms, as for example the ones showed in [49], [62] and
[18], for outlier detection involve high computation costs which is a big
limitation in the era of the high dimensions;

b. Clustering algorithms, as ROCK in [39], C2P in [58] and DBSCAN in
[28], have focused on the large patterns without speci�cally paying their
attention on outlier detection, in fact the anomalies are seen as noise.

Hence, beyond to try to cover one of the aspects that has been always
criticized in literature to the application of clustering-based methods in
anomaly detection, because focused on large patterns instead of small ones
where anomalies should be found, they introduce Clustering-Based Anomaly
Detection which has the clear advantage of using one process for identifying
large patterns and outliers in one go, without implement multiple processes
and algorithms for di�erent data mining tasks.
Nevertheless, as underlined in [2.1], di�erent approaches to the anomaly
detection can bring to a di�erent outliers de�nition. In this case, He at al.
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in [45] present a novel de�nition of outlier such as the cluster-based local
outlier:

Definition 14 Let A1; : : : ; Am be a set of attributes with domains D1; : : : ; Dm

respectively. Let the dataset D be a set of records where each record
t : t 2 D1 � � � � � Dm. The results of a clustering algorithm exe-
cuted on D is denoted as: CfC1;C2; : : : ;Ckg where Ci \ Cj = ;; and
C1 [ C2 : : : Ck = D.The number of clusters is k.

Leaving free the possibility to chose a clustering algorithm for partitioning
the dataset into disjoint sets of records, they identify if a cluster is large or
small in the following way:

Definition 15 Suppose C = fC1;C2; : : : ;Ckg is the set of clusters in the
sequence that kC1k � kC2k � � � � � kCkk.
Given two numeric parameters � and �, we de�ne b as the boundary
of large and small cluster if one of the following formulas holds:

(kC1k+ kC2k+ � � �+ kCbk) � kDk
��; (2.17)

kCbk

kCb+1k
� �: (2.18)

Then, the set of large cluster is de�ned as:

LC = fCiji � bg (2.19)

and the small cluster as:

SC = fCj jj � bg (2.20)

4

Finally at this stage, Cluster-based local outlier factor (CBLOF) can be
de�ned.

4Equations [2.17] and [2.18] give quantitative measure to distinguish large and small
clusters. As showed in [45], formula [2.17] considers the fact that most data points in
the data set are not outliers. Therefore, clusters that hold a large portion of data points
should be taken as large clusters. For example, if � is set to 90%, we intend to regard
clusters contain 90% of data points as large clusters. Formula [2.18] considers the fact
that large and small clusters should have signi�cant di�erences in size. For instance, it is
easy to get that, if we set � to 5, the size of any cluster in LC is at least �ve times of the
size of the cluster in SC.
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Definition 16 Suppose C = fC1;C2; : : : ;Ckg is the set of clusters in the
sequence that kC1k � kC2k � � � � � kCkk. For any record t:

CBLOF (t) =

8>>><>>>:
kCik

�min(distance(t; Cj))
where t 2 Ci; Ci 2 SC and Cj 2 LC for j = 1 to b
kCik

� distance(t; Ci))
where t 2 Ci and Ci 2 LC

As result, Cluster-based local outlier factor of a record is determined by
the size of its cluster, and the distance between the record and its closest
cluster, either small or large, which provides importance to the local data
behavior.
He at al. in [45] propose two algorithms for the computation of distance
between the record and the cluster which can determine the degree of a
record's deviation.
The Squeezer and the FindCBLOF algorithms are respectively described in
the appendix [B] and [C].

2.5 Isolation-based Anomaly Detection

Isolation-based Anomaly Detection presented by Liu et al. in [51] and [52]
is a newer approach, and less explored in literature, to the anomaly detec-
tion with respect to Density-Based Anomaly Detection, Classi�cation-Based
Anomaly Detection and Clustering-Based Anomaly Detection.
Once again the de�nition of outliers plays a key role, in fact, starting from
the concept that anomalies are data points that are few and di�erent, they
are susceptible to a mechanism called isolation where the term isolation
stands for 'separating an instance from the rest of the instances'.
In general, an isolation-based method measures individual instances' sus-
ceptibility to be isolated; and anomalies are those that have the highest
susceptibility.
They propose a method called Isolation Forest (iForest) which has several
properties:

a. The characteristic of isolation trees enables them to exploit subsampling
to an extent that is not feasible in existing methods. This property helps
in achieving a low linear time-complexity and in dealing with the e�ects
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of swamping5 and masking6;

b. Does not utilize distance or density measures to detect anomalies. This
tackles a major computational cost of distance calculation which is pe-
nalizing the distance-based and density-based methods;

c. Linear time complexity with a small constant and a minimal memory
requirement; it is an algorithm with constant training time and space
complexities;

d. The capacity to scale up to handle extremely large data size and high-
dimensional problems with a large number of irrelevant attributes .

This methods only requires a small subsampling size to achieve high detec-
tion accuracy with high e�ciency where the di�erent height limits are used
to cater for anomaly clusters of di�erent density.
Besides, they empirically show that iForest outperforms ORCA, one-class
SVM , LOF and RandomForests in terms of AUC, processing time, and
it is robust against masking and swamping e�ects7 which break down many
anomaly detectors.
Indeed, iForest is able to build a model by using multiple sub-samples which
reduce those e�ects and these small size sub-samples build better iTrees than
from the entire data set, they have fewer normal points 'interfering' with
anomalies which makes anomalies easier to isolate.
Furthermore, iForest does not present issues with an increasing value of k,
indeed it also works well in high dimensional problems containing a large
number of irrelevant attributes, and when anomalies are not available in the
training sample.
Most of the anomaly detection approaches, including density-based meth-
ods, their generalization called distance-based, provided by Knorr and Ng
in [49], classi�cation-based methods and clustering-based ones, construct a
pro�le of normal instances, then identify anomalies as those that do not
conform to the normal pro�le.
Mostly for classi�cation and clustering techniques, the anomaly detection
capabilities are a 'side-e�ect', in other words these algorithms are originally

5Swamping refers to situations where normal instances are wrongly identifying as
anomalies. It happens when the number of normal instances increases or they become
more scattered.

6Masking is the existence of too many anomalies concealing their own presence. It
happens when anomaly clusters become large and dense.

7The problems of swamping and masking have been studied extensively in anomaly
detection, i.e Murphy in [57]
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designed for identifying the large patterns instead of the small patters or
outliers. Exceptions to this general statement are provided in [2.3.2] and
[2.4].
This leads to two major short-comings:

a. In general, these approaches underperform because they are not designed
for detecting anomalies. The outcome shows too many false alarms,
where we intend normal instances identi�ed as anomalies, or too few
anomalies being detected;

b. Many existing methods work well with low dimensional data and small
because of the legacy of their original algorithms.

The approach proposed by Liu et al. in [51], [52] detects anomalies purely
based on the concept of isolation without employing any distance or density
measure.
The iForest algorithm takes advantage of two quantitative properties of
anomalies:

a. They are the minority, consisting of few instances;

b. They have attribute-values that are very di�erent from those of normal
instances.

In other words, anomalies are few and di�erent.
Besides, for implementing the isolation, a binary tree structure, called iso-
lation tree (iTree), which can be e�ectively constructed to isolate instances
has been used.

Definition 17 Isolation Tree. Let T be a node of an isolation tree. T
is either an external-node with no child, or an internal-node with one
test and exactly two daughter nodes (Tl, Tr). A test at node T consists
of an attribute q and a split value p such that the test q < p determines
the traversal of a data point to either Tl or Tr.
Let X = fx1; : : : ; xng be the given data set of a d-variate distribution. A
sample of  instances X 0 � X is used to build an isolation tree (iTree).
We recursively divide X 0 by randomly selecting an attribute q and a
spit value p, until either the node has only one instance or all data at
the node have the same values.
An iTree is a proper binary tree, where each node in the tree has exactly
zero or two daughter nodes. Assuming all instances are distinct, each
instance is isolated to an external node when an iTree is fully grown,
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in which case the number of external nodes is  and the number of
internal nodes is  �1; the total number of nodes of an iTrees is 2 �1;
and thus the memory requirement is bounded and only grows linearly
with  .

In this tree structure, the instances are recursively partitioned, these trees
produce noticeable shorter paths for anomalies since:

a. In the regions occupied by anomalies, less anomalies result in a smaller
number of partitions;

b. Instances with distinguishable attribute-values are most likely separated
early in the partitioning process.

Since recursive partitioning can be represented by a random tree structure,
the number of partitions required to isolate a point is equivalent to the
traversal of path length from the root node to a terminating node. Path
length can be de�ned as follow:

Definition 18 Path Length. h(x) of a point x is measured by the num-
ber of edges x traverses an iTree from the root node until the traversal
is terminated at an external node.

Hence, given the susceptibility to isolation, anomalies are most likely iso-
lated closer to the root of an iTree which means that they have short average
path lengths on the iTrees.
In other words, when a forest of random trees collectively produce shorter
path lengths for some particular points, they are highly likely to be anoma-
lies.
On the other hand, normal points are most likely isolated at the deeper end
of an iTree.
The task of anomaly detection is to provide a ranking that reects the de-
gree of anomaly. Using iTrees, the way to detect anomalies is to sort data
points according to their average path lengths; and anomalies are points
that are ranked at the top of the list.
This concept of path, helps in building path-length-based isolation approach
which di�ers from density and distance based ones.
Besides, Liu et al. in [51] and [52] highlight that the isolation approach
tackles some of the short-comings of density-based and distance-based ap-
proaches.
For example in the density-based is assumed that "Normal points occur in
dense regions, while anomalies occur in sparse regions", nevertheless high
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density do not always imply normal instances as well as low density do not
always imply anomalies.
One of the most used density-based approach such as LOF, showed in [18],
for solving some issues utilize a concept of local, nevertheless points with
high density could be anomalies in the global context of the entire data set.
From an helicopter view, the isolation method is similar to a density mea-
sure or a distance measure, in fact isolation ranks scattered outlying points
higher than normal ones.
However, path-length-based approach grows tree in an adaptive context
where each partitioning is di�erent, from the �rst partition (the root node)
to the last partition (the leaf node), where the approach take into account
the di�erent context, respectively the entire data set and local data-points.
On the other hand, the most common density (k�nn) and distance (kthnn)
approaches only concern the local context taking care of the k-neighbors and
failing the analysis of the entire data (global perspective).
In other words, comparing path, density and distance approaches highlights
how path-length-based is able to detect either clustered or scattered anoma-
lies while the other approaches can only capture the latter.
The path-length-based isolation anomaly detection approach has two-stage
process:

1. A training stage which builds isolation trees using sub-samples of the
given training set

2. An evaluation stage which tests instances through isolation trees to ob-
tain an anomaly score for each instance.

In practice, the iForest algorithm builds an ensemble of iTrees for a given
data set; This algorithm has two training parameters:

a. Number of trees to build (t);

b. Subsampling size ( ).

and one evaluation parameter which is the tree height limit during evalua-
tion.
In the �rst stage, the training one, iTrees are constructed by recursively
partitioning the sub-sample X 0 until all instances are isolated. Each iTree is
constructed using a sub-sample X 0 randomly selected without replacement
from X, where X 0 � X.
The subsamplig size,  , controls the training size. Starting from the as-
sumption of anomalies given in [52] the anomalies are 'few' and 'di�erent',



CHAPTER 2. MACHINE LEARNING TECHNIQUES 59

so a small subsampling size is enough for iForest to distinguish anomalies
from normal points. This means that once the  desired value is reached, a
further increase of  is not needed because it increases the processing time
and memory size without any further gain in detection accuracy.
In their empirical studies they observe that  = 256 is enough to perform
anomaly detection.
With regard to the Number of trees (t), it controls the ensemble size. In
this case, the empirical work shows that the path lengths usually converge
well before t = 100.
The evaluation stage derives a single path length h(x) by counting the
number of edges e from the root note to an external node instance x tra-
verses through an iTree.
When the traversal reaches the threshold height value (hlim), then the re-
turn value is e plus an adjustment c(Size). This adjustment accounts for
estimating an average path length of a random sub-tree which could be con-
structed using data of Size beyond the tree height limit.
At the end, when h(x) is computed for each tree of the ensemble, an anomaly
score is calculated.
In isolated-based anomaly detection context, it has to be decided if an iso-
lated data cluster is abnormal or not.
iForest is able to detect in either case by changing the tree height limit
parameter at the evaluation stage. Note that adjusting the height limit at
evaluation stage does not alter the trained model and it does not require a
re-training of the model.
In the normal usage of iForest, the default value of evaluation height limit
is set to maximum, i.e.  � 1, so that the anomaly score has the highest
granularity.
Either for comparison or visualization purpose, this anomaly score has to
be normalized. Otherwise, the path lengths from models of di�erent sub-
sampling sizes cannot be directly compared.
Starting from an article of Preiss and R [60] and their analysis on the Binary
Search Tree (BST) and highlighting that iTrees have an equivalent structure
of the BST, Liu et al. in [52] estimate the average path length of iTree as:

c( ) =

8><>:
2H( � 1)� 2( �1)

n
for  > 2;

1 for  = 2;
0 otherwise:

where H(i) is the harmonic number and it can be estimated by ln(i) +
0:5772156649 (Euler's constant). As c( ) is the average of h(x) given  , it
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can be used to normalize h(x).
The anomaly score s of an instance x can de�ned as:

s(x;  ) = 2�
E(h(x))

c( )
(2.21)

where E(h(x)) is the average of h(x) from a collection of iTrees,
Three special cases of the anomaly score are enumerated below:

a. if E(h(x))! 0, s! 1;

b. if E(h(x))!  , s! 0;

c. if E(h(x))! c( ), s! 0:5.

The relationship of expected path length E(h(x)) and anomaly score s is
illustrated in the following �gure [5].
Using s as anomaly score the following statements can be made:

a. when s is very close to 1, then the instances are de�nitely anomalies;

b. when s is much smaller than 0.5, most probably these are normal in-
stances;

c. when all the instances return s � 0:5, then the entire sample does not
have any anomalies.

The �gure [6] produced by Liu et al. in [52] clearly visualize the above-
mentioned process: Using the contour, the potential anomalies are clearly
visualized for s > 0:6.
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Figure 5: The relationship of expected path length E(h(x)) and anomaly
score s

.
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Figure 6: Anomaly score contour of iForest



Chapter 3

Testing algorithms on
artificial sample data

3.1 Testing algorithms on random sample data

Using as starting point this literature state of the art seen in [2.5], we want
to test these algorithms on arti�cial sample datasets, understand their prop-
erties and �nally, in the chapter [4], apply those on real credit risk dataset.
Among the methods and algorithms shown in [2.5], Domingues et al. under-
lines in [25] that Local Outlier Factor (LOF) outperforms several algorithms
when applied on real-world datasets for outlier detection, which makes it a
good candidate for this analysis.
On the other hand, Isolation Forest, previously seen in [2.5], introduced by
Liu et al. in [51] and [52], which uses random forests to compute an isola-
tion score for each data point, is granted by the authors to provide linear
time complexity and, at the same time, they demonstrate that the Isola-
tion Forest outlier detection performance is signi�cantly better than LOF
on real-world datasets.
This introduction makes clear our candidates for the testing purpose.
Indeed the test on the anomaly detection will be conducted using and com-
paring mainly 2 algorithms:

1. Distance-Based algorithm: Local Outlier Factor (LOF);

2. Isolation-Based algorithm: Isolation Forest (IF).

63
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3.1.1 Introduction to the algorithms comparison

Always bene�cial to quickly recall the given de�nitions of the algorithms
enumerated in [3.2.1]:

1. The Local Outlier Factor (LOF) algorithms are well-known in liter-
ature as part of the Distance-Based family. These algorithms have been
showed by Hawkins in [44] and de�ned in [4] as follow:

(a) An object O in a dataset T is a DB(p;D)-outlier if at least fraction
p of the objects in T lies greater than distance D from O The term
DB(p;D)-outlier stands for a Distance-Based outlier.

Nevertheless, for many applications, the situation is more complex and
it becomes more meaningful to assign to each object a degree of being
an outlier.
To tackle this short coming the local outlier technique (LOF) has been
introduced by Breunig et al. in [18] which computes a score (called local
outlier factor) reecting the degree of abnormality of the observations.
This detects the local density deviation of a given data point with respect
to its neighbors, spotting the samples that have a substantially lower
density than their neighbors.
The LOF score of an observation is equal to the ratio of the average local
density of his k-nearest neighbors, and its own local density.
In other words, a 'normal' instance is expected to have a local density
similar to that of its neighbors, while 'abnormal' data are expected to
have much smaller local density.
In conclusion, LOF performs quite well even in datasets where abnormal
samples have di�erent underlying densities, since it does not try to answer
the question how isolated the sample is, but it focuses on how isolated
the sample is with respect to the surrounding neighborhood.
Hence the following de�nition can be introduced:

Definition 19 For a given data point x, LOF computes its degree
dk(x) of being an outlier based on the Euclidean distance d between
x and its kth closest neighbor nk, which gives dk(x)=d(x; nk). The
scoring of x also takes into account for each of its neighbors ni, the
maximum between dk(ni) and d(x; ni).

2. The Isolation Forest (IF) is one of the most e�cient way of performing
outlier detection in high-dimensional datasets.
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This algorithm leverages on the mechanism of isolation and on one of
the most popular classi�cation methods, Random Forest, introduced by
Breiman in [16].
The Isolation Forest algorithm described in [2.5] can be summarized and
de�ned with the following:

Definition 20 The Isolation Forest (IF) algorithm 'isolates' obser-
vations by randomly selecting a feature and then randomly selecting a
split value between the maximum and minimum values of the selected
feature. Hence, it performs a recursive random splits on attribute
values, generating trees able to isolate any data point from the rest
of the data.
The score of a point is then the average path length from the root of
the tree to the node containing the single point, a short path denoting
a point easy to isolate due to attribute values signi�cantly di�erent
from nominal values.
In other words, the path length, averaged over a forest of such ran-
dom trees is a measure of normality and our decision function, when
a forest of random trees collectively produce shorter path lengths for
particular samples, they have high probabilities to be anomalies.

3.2 Comparison of the Data Anomalies Detection
algorithms

The ideal situation, in order to challenge the state of the art, we should
be in the position to apply, test and compare these algorithms on a real
dataset.
Nevertheless, we have 2 main problems which are stopping us from it:

1. Computational problems for K > 2;

2. Backtesting of the algorithms.

where K is the number of the futures that the algorithm has to take into
account. In fact, high dimensional problems can be memory expensive.

3.2.1 Python settings for Local Outlier Factor algorithm

One of the key elements in the LOF algorithm is to choose the number
of the k neighbors to consider which is one of the parameters to set in
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the algorithm. In general, in order to choose this parameter, the below
mentioned rules are followed:

1. k is greater than the minimum number of objects that a cluster has to
contain, so that other objects can be local outliers relative to this cluster;

2. k is smaller than the maximum number of close by objects that can
potentially be local outliers.

In practice, such information is generally not available.
On the other hand, n neighbors = 20 appears to work well as proxy.
The LOF algorithm can be called in Python using the LocalOutlierFactor
procedure.
Unfortunately, Python does not o�er standard functions to predict and score
results for the LOF algorithm as for Isolation Forest (e.g. decision function
and score samples).
Nevertheless, the results of the prediction can be achieved using a function
such as fit predictmethod, while the abnormality scores of the training
samples can be obtained through the negative outlier factor attribute.
The anomaly score of each sample is called Local Outlier Factor and it
measures the local deviation of density of a given sample with respect to its
neighbors.
In the LOF context, each sample is de�ned as 'local' with respect to the
k-nearest neighbors 1 and the anomaly score depends on how isolated, or
in other words how distant, the object is with respect to the surrounding
neighborhood.
The samples considered as outliers result to have a local density substantially
lower than the local densities of their neighbors.

3.2.2 Python settings for Isolation Forest algorithm

As already underlined in [3.1.1], one e�cient way of performing outlier de-
tection in high-dimensional datasets is to use Isolation Forests.
This algorithm can be called in Python using the procedure IsolationForest.
This procedure contains a huge variety of parameters to set. In our case we
have worked with the following:

1. n estimators represents the number of base estimators in the ensemble;

1This gives some insights on how to use the parameter n neighbors = 20 and how
changing it will impact the results of the algorithm
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Figure 7: Local Outlier Factor

2. contamination is the amount of contamination of the data set used
when �tting to de�ne the threshold on the decision function, in other
words the proportion of outliers expected in the data set;

3. n jobs indicates the number of jobs to run in parallel for both �t and
predict;

4. max samples indicates the number of samples to draw from X to train
each base estimator. When the parameter max samples is bigger than
the number of samples provided then all samples available will be used
for building the trees which means that there will not be any sampling;

5. max features is the number of features to draw from X to train each
base estimator;

6. behavior is a parameter of the decision function which can be set ei-
ther as 'old' or 'new'. Setting this parameter as 'new' makes the deci-
sion function change to match other anomaly detection algorithm API
which will be the default behavior in the future;

7. random state is the seed used by the random number generator.

It is interesting to understand how some speci�c attributes or methods works
in this algorithm.
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Regarding the attributes, it is interesting to shed more light on the attribute
offset which is used to de�ne the decision function from the raw scores.
Starting from the de�nition of the decision function for the IF algorithm
in Python:

decision function = score samples� offset (3.1)

we observe that when the behavior parameter is set to 'new' the decision function
becomes dependent on the contamination parameter and, in this case, the
o�set is de�ned in such a way that the expected number of outliers is ob-
tained.
In other words, 0 becomes the natural threshold to detect outliers in the
training set, where scores lower than 0 are labelled as outliers.
On the other hand when the contamination parameter is set to 'auto', the
o�set is equal to �0:5 as the scores of inliers are close to 0 and the scores
of outliers are close to �1.
In conclusion, if the behavior parameter is set to 'old' the o�set parameter
is always equal to �0:5 and decision function becomes independent from
the contamination parameter.
Among the possible methods to set in the IF algorithms in Python, we have
some interesting such as:

1. decision function(X) which shows the average anomaly score of X of
the base classi�ers.
The anomaly score of an input sample is computed as the mean anomaly
score of the trees in the forest.
In this case, the measure of 'normality' of an observation given a tree is
the depth of the leaf containing this observation, which is equivalent to
the number of splittings required to isolate this speci�c point.
The rule to follow when applying this method is that lower is the score
more 'abnormal' is the observation.
In more detail, the negative scores represent outliers while the positive
ones represent the inliers;

2. fit predict(X, y=None) method performs the �t on X and returns
labels for it.
In this case, in order to facilitate the decision, the method gives back �1
for outlier observations and 1 for inliers ones.
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3.2.3 Local Outlier Factor vs. Isolation Forest

The �gure [8] shows the properties of the LOF and IF algorithms on 2D
datasets.
In order to obtain these graphical results, the Python code is built according
to the following steps:

1. De�ne the dimension of the sample;

2. De�ne a contamination factor. In other words, the percentage of data
anomalies;

3. De�ne the outlier detection methods to use for the comparison;

4. Build clusters in the dataset using the function make blobs;

5. Generate outliers and add them to the dataset;

6. Apply the algorithms;

7. Plot the results.

The length of our samples is equal to 30000 data points randomly generated
where the noise is obtained through a uniform random variable.
The contamination of each dataset is 10%, which means that 3000 observa-
tions out of 30000 are anomalies.
The datasets are created in Python using one of the available techniques
for random sample generation of arti�cial datasets with controlled size and
complexity.
This function, for dataset creation called make blobs, creates multi-class
datasets by allocating to each class one or more normally-distributed clus-
ters of points.
make blobs allows to have a great control regarding the centers 2, standard
deviations of each cluster and the number of features to take into account
per each sample, indeed these parameters can be easily set in the the func-
tion.
In our case, the created datasets contain 1 or 2 regions of high density which
helps in showing the properties of the algorithms when they have to cope
with multimodal data.
In the �rst line of the graph [8], we have created a random dataset with a
single center or in other words with an unique cluster.

2This represents the number of clusters.



CHAPTER 3. TESTING ALGORITHMS ON ARTIFICIAL SAMPLE DATA70

It is already clear how better IF performs compared with the LOF algo-
rithm since points which are not part of the cluster are wrongly identi�ed
as inliers.
The other 2 rows of the graph [8], represent a multimodal datasets which
have 2 modes. In the third line of the graph [8], performance of the algo-
rithms are quite uncertain.
While LOF continues to consider as inliers points which are out of the main
clusters, the IF algorithm does not create a separation between the 2 clus-
ters which may raise the suspect that the algorithm is not performing well
for the points which are in the middle of the 2 centers3.
Hence we have a training set which is not contaminated by outliers without
any assumptions on the distribution of the inlying data.
Isolation Forest algorithm displays the decision thresholds (or boundaries)
between inliers and outliers in black.
On the other hand, LOF does not have a predictive method, as mentioned
in [3.2.1], in case of new data, so the decision boundary is not shown.
In this test, either IF or LOF perform well in presence of multi-modal
datasets.
In particular, LOF performs well in these cases by design (or by de�nition),
indeed the Local Outlier Factor algorithms only compares the score of ab-
normality of one point with the scores of its k-neighbors. In this case k has
been set equal to 20.
This comparison is happening in a simplistic context, since the algorithms
are applied on labelled data which creates a supervised learning problem
where the model parameters, in this case, have been handpicked.
In absence of labelled data, the problem becomes unsupervised so model
calibration can become an interesting challenge.
The main observation from the graph comparison is related to the high-
lighted4 outliers.
Indeed, in the Isolation Forest graphs the demarcation seems to be much
more clear, while in LOF some points have been identi�ed as inliers even if
they are outside of the main clusters.

3In the case of the third line of the graph [8], the function make blobs is creating 2
random datasets with centers located in (2; 2) and (�2;�2)

4Please note that the outliers are shown in blue while the inliers are in orange.
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Figure 8: Isolation Forest vs. Local Outlier Factor

3.3 Information Criteria

While comparing di�erent algorithms, it becomes relevant to understand
the performance of those and understand how to measure their application
on data.
In a binary decision problem, a classi�er label is either positive or negative.
In our application �eld, it is either an outlier or an inlier.
The detailed data produced by a classi�cation method during the testing
are counts of the correct and incorrect classi�cations from each class. The
table which show the di�erences between the true and the predicted classes
is called confusion matrix.
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Hence the confusion matrix has 4 categories:

1. True Positives (TP): examples correctly labeled as positives;

2. False Positives (FP): correspond to negative examples incorrectly labeled
as positive;

3. True Negatives (TN): refer to negatives correctly labeled as negative;

4. False Negative (FN) are positive examples incorrectly labeled as negative.

The table 3.1 shows an example of confusion matrix.

Actual Positive Actual Negative

Predicted Positive TP FP

Predicted Negative FN TN

Table 3.1: Confusion Matrix

Among the most used instruments in literature are known the Receiver
Operating Characteristic (ROC) curve and the Precision-Recall (PR) curve
which are graphical plots that illustrate the diagnostic ability of a binary
classi�er at various threshold settings.
In order to build and plot these curves, it is important to understand their
components.
The ROC space plots on the x-axis the False Positive Rate (FPR) and on
the y-axis the True Positive Rate (TPR).
In other words, ROC curve explain the trade-o�s between true positive
(bene�ts) and false positive (costs).
Trying to formalize the ROC curve, the FPR measures the fraction of
negative examples that are misclassi�ed as positive:

FPR(i) =
FP(i)

TotalNegatives
(3.2)

and TPR measures the fraction of positive examples that are correctly la-
beled:

TPR(i) =
TP(i)

TotalPositives
(3.3)

On the other hand, in the PR space, it has been plotted the Recall on the
x-axis and Precision on the y-axis. If Recall is just a synonymous of the
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TPR, the Precision measures that fraction of examples classi�ed as positive
that are truly positive:

PRECISION(i) =
TP(i)

FP (i) + TP (i)
(3.4)

3.3.1 The Precision-Recall curve

As explained by Davis and Goadrich in [22], for problems with heavily im-
balanced class distributions where the positive class is more interesting than
the negative class, since the negative class is the majority, the PR curves
are particularly useful.
Indeed, the use of precision strongly penalizes methods raising FP even if
those represent only a small proportion of the negative samples.
As underlined in [3.3], the PR curves show the tradeo� between precision
and recall for di�erent threshold.
This means that higher is the area under the curve higher will be the pre-
cision and recall, where high precision relates to a low FP , and high recall
relates to a low FN .
Hence, a classi�er with high scores is returning accurate results (high P )
and it is capturing the majority of all positive results (high R).
In other words, if our algorithm shows high recall but low precision, it is an
algorithm which returns many results, but most of its predicted labels are
incorrect when compared to the training labels.
On the other hand, if the algorithm returns high precision but low recall,
this turns out in very few results, but most of its predicted labels are correct
when compared to the training labels.
In conclusion, the ideal algorithm has high precision and high recall, since
it will return many results which are all labeled correctly.
Now, it is also important to understand what will inuence P and R and
how they are related between them.
Starting from the formula of P [3.5], shows that a lower classi�er threshold
may increase the denominator, since the number of results returned will be
higher. This might turn out in a decreasing precision, since a lower thresh-
old could increase FP .
Regarding R [3.3], this is not inuenced by the classi�er threshold.
This means that lowering the classi�er threshold may increase R, by in-
creasing the number of TP results, but it could also leave the R unchanged,
while the P uctuates.
Looking at these measures in the PR curve context, it means that a small



CHAPTER 3. TESTING ALGORITHMS ON ARTIFICIAL SAMPLE DATA74

threshold reduction might considerably reduces precision with only a minor
gain in recall.

3.3.2 The Receiver Operating Characteristic (ROC) curve

Spackman and Kent in [67] introduced the ROC curves in machine learning
techniques evaluating di�erent classi�cation algorithms with those curves.
In order to draw a ROC curve, the measures introduced in [3.3] as TPR
and FPR are needed.
The availability of these variables could be a problem on the real data ap-
plication since in order to de�ne those values the outliers must be known a
priori.
TPR is also called sensitivity while FPR is equal to 1�specificity, hence
the ROC plot is sometimes called the sensitivity vs (1 - speci�city) graph.
Then the ROC space is composed by all prediction result or instance of the
confusion matrix.
In the �gure [9], the left upper corner of the ROC space will contain the best
possible prediction method, since that area of the ROC space represents the
100% sensitivity (absence of false negative) and the 100% of speci�city (no
false positives).
This is the reason why all the predictions falling at the coordinate (0,1) are
results of a perfect classi�cation.
Nevertheless, the ideal situation of a perfect classi�cation is not often veri-
�ed, so it becomes relevant to understand how to interpret the entire ROC
space.
The diagonal line going from left bottom to the top rights corners is called
line of no-discrimination and it represents all point given by a random guess
(e.g. ipping the coins ).
Indeed for a large sample size, a random classi�er's ROC instance tends to
the point (0.5,0.5) in case of a balanced coin. In other words, the diagonal
divide good classi�cation results (above the diagonal) from bad classi�cation
results (below the diagonal).

3.3.3 ROC vs. PR: Analysis and Interpretation of the Infor-
mation Criteria

Several ways to summarize a precision-recall (PR) and ROC curves are
known. These methods might lead to di�erent results.
In this case the comparison of the ROC and PR curves are based on the
area under the curve (AUC) of both metrics, respectively the ROC AUC
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Figure 9: Representation of the ROC space

and the average precision (AP).
The most common metric for measuring the PR curve is the Average Pre-
cision (AP) as the weighted mean of precisions achieved at each threshold,
with the increase in recall from the previous threshold used as the weight:

AP =
X
n

(Rn �Rn�1)Pn (3.5)

where Pn and Rn are respectively the precision and recall at the nth thresh-
old. A pair (Rk; Pk) is referred to as an operating point.
In other words, the AP is the trapezoidal area under the operating points.
Regarding to the ROC curve we have to further formalize the TPR and
FPR in order to understand how to use the ROC curve for measuring the
performances of a classi�er algorithm.
The outlier detection is a binary classi�cation problem. In these cases, the
class prediction for each instance is often made based on a continuous ran-
dom variable X, which represents a "score". This score is calculated per
each instance and compared with a threshold parameter T :

If X > T then positive with a density probability f1(x)

else negative with a density probability f0(x):
(3.6)
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Hence, we can re-write TPR and FPR as follow:

TPR(T ) =

Z 1

T
f1(x)dx (3.7)

and

FPR(T ) =

Z 1

T
f0(x)dx (3.8)

where T represents a varying parameter.
As explained by [31], the area under the ROC curve (or AUC) is equal to the
probability that a classi�er will rank a randomly chosen positive instance
higher than a randomly chosen negative one.
As showed by Brandley in [11], Hanley and McNeil in [43], to compare
classi�ers the ROC performance should be reduced to a single scalar value
representing expected performance.
In other words, the area under the ROC curve is a common method to
calculate the performances of a classi�er.
Given X1 as score for the positive instance and X0 the negative ones, then:

AUC =

Z 1

x=0
TPR(FPR�1(x))dx =

Z 1

�1
TPR(T )FPR0(T )dT =

=

Z 1

�1

Z 1

�1
I(T 0 > T )f1(T

0)f0(T )dT 0dT = P (X1 > X0)

(3.9)

In conclusion, the AUC is related to the Gini coe�cient by the following
formula:

G1 = 2AUC � 1 (3.10)

where G1 represents the Gini coe�cient and it is calculated as:

G1 = 1�
nX
k=1

(Xk �Xk�1)(Yk � Yk�1) (3.11)

Hence, following Hand et. al in [42], the AUC can be calculated as an
average of a number of trapezoidal approximations.

3.4 Sensitivity analysis on algorithms’ properties
in literature

Additional details on the comparison of machine learning algorithms for
outliers detection are provided by Domingues et al. who conduct a very



CHAPTER 3. TESTING ALGORITHMS ON ARTIFICIAL SAMPLE DATA77

exhaustive and insightful analysis in [25] where they analyze 14 di�erent
machine learning techniques.
Amongst those techniques, the LOF and IF are included.
They study di�erent properties such as robustness, complexity and memory
usage of the algorithms on arti�cial datasets.
It is important to notice that this kind of tests were possible thanks to high
computing power 5.
The mainstream is that IF over-performs all the other algorithms, including
the LOF .
In more detail:

1. Robustness: They test the resistance of each algorithm to the curse
of dimensionality where a �xed level of background noise is kept while
increasing the dataset dimensionality.
LOF does not perform well in noisy environments while good average
results have been observed for IF ;

2. Complexity: They focus on the computation and prediction time re-
quired by the di�erent methods when increasing the dataset size and
dimensionality.
Increasing the number of features either IF or LOF show a stable train-
ing time and a good prediction time evolution.
Hence, high dimensionality do not strongly a�ect these algorithms.
On the other hand the number of samples has a strong impact on the
training and prediction time of LOF which scale very poorly.
LOF, together with other 4 algorithms, reaches the set timeout6 of 24h
for less than one million samples;

3. Memory usage: They measure the memory used by the correspond-
ing running process before starting the algorithm and subtract it to the
memory peak observed while running it.
In order to do it they use the memory profiler library for Python. For
LOF and IF the memory does not increase for an increasing number of
dimensions.
The constant memory usage stays below 1MB. Di�erent story is the in-
creasing number of samples which has a much higher impact on the RAM
consumption, mostly for LOF .

5The authors underline that the experiments were performed on virtual platform pow-
ered by an Intel CPU with 10 cores at 2.6 GHz and 256GB RAM

6The authors allowed till to 24h for training or prediction steps and they gave a timeout
after this period of time
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Indeed, LOF run out of memory for 193000 samples with a memory us-
age of 118GB.
IF scales much better to a higher numbers of samples since it stops at
10Million with a memory usage of 60GB RAM.
The huge amount of memory for LOF is mostly mostly caused by the
use of a pairwise distance matrix which requires 76GB of RAM per each
100000 samples using 8 bytes per double precision distance.



Chapter 4

Application to Credit Risk
Data

4.1 Data and Creation of the Samples

The importance of data in the past ten years is increased in an incredible
way. Governments, Companies, Researchers and common people are trying
to get more and more insights out of data.
The Data Scientist job title who is the person supposed to work with data
combining business, IT and statistical knowledge has been de�ned as the
sexiest job of the 21st century and hundreds job positions related to it are
popping up every day.
In a statistical environment, data represents a key role since it is the source
that allows to develop, test and publish, either models or algorithms. The
latter have the function to produce insights out of the data.
To give more background, will help to clarify the idea behind this research
and to understand how data has been approached.
Firstly, the data sample will be extracted from the data warehouse. Then
we have a data exploration step where we learn more about the attribute
that we want to study (RWAs1).
Afterwards a di�erent data sample2, on which the models will be applied,
is created.
Last but not least, the comparison of the Isolation Forest with other algo-

1RWAs have been taken as a key measure since they represent an aggregated measure
of di�erent risk factors. An overview of RWAs has been provided in [1.4].

2 More details on the reason behind we use a di�erent data sample will be given in
4.1.1.

79
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rithms seen in the chapter [2.5].

4.1.1 The Data Samples

In order to assess the own risks and how they evolves over time the banks
have to monitor their credit risk measures. Among those, the RWAs, cover
a big chunk and every month this measure is analyzed.
In more detail, the delta between the current month end and the previous
one is taken into account. Indeed, at the beginning of each month a moni-
toring report is created which analyzes the delta RWAs between 2 months
end.
We want to understand which of these deltas are driven by business changes
and which ones are anomalies that will give wrong information to the Risk
Management inuencing their decision making process.
Following this premise, we have created 2 data samples which are subsets of
the data warehouse of worldwide company and they contain credit risk data
where attributes such as RWAs, EAD, LGD, outstanding, etc. are selected.
In other words, all credit risk attributes which could have a potential impact
on the RWAs have been selected.
Nevertheless, in order to keep the process fast enough several �lters have
been applied on the row dimension of the dataset.
The reason behind the creation of 2 data samples is driven by the kind
of analysis that will be performed. The �rst data sample will contain a
monthly time series for around 142 distinct reporting dates3of 12631 dis-
tinct customers and it will be used for the time series analysis and data
exploration which will help to understand the kind of phenomena that we
want to study.
The second data sample is created for highlighting the data quality anoma-
lies in the delta RWAs month end report.
The latter contains a much bigger amount of customers, 3008484, but only
2 reporting dates.
These samples contains the same kind of information, we can imagine them
as 2 di�erent slices of the same cake which is represented by the data ware-
house.

3From March 2007 to December 2018.
4In this step, it could be possible to get insights on the real portfolio composition of

the company since not many �lters have been applied. Hence, a randomization algorithm
has been applied in order to mask the data. To safeguard the outcome of this thesis, it is
ensured that at least 50000 rows are taken into account for the algorithm.
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4.1.2 Extraction, cleaning and preparation of data

As seen in 4.1.1, we will use a speci�c data sample for the data exploration
which is the starting step for all time series analysis, since it gives relevant
information to understand what are the characteristics of the data that we
are going to study.
During this exploration, most probably some transformations will be applied
in order to create a workable dataset.
The extraction to create, clean and prepare the data sample is performed
by SAS.
First of all, we have to understand how data looks like in the data warehouse
and in our data sample, what kind of granularity and aggregation level has
the sample and last but not least which slice of the data warehouse is going
to be extracted for the data exploration step.
The Data Exploration step will mostly focus on the time series of the RWAs
which is the phenomena that we want to study, so details about all other
attributes which will be used in the modeling step are not analyzed. This
analysis data extraction and exploration is performed by SAS Enterprise
Guide.
As starting point, below are enumerated the �lters that have been applied
to the data warehouse for achieving the �nal data sample which is used for
the data exploration step:

1. Select all active customers for all reporting dates available in the data
warehouse;

2. Of which: customers treated under AIRB;

3. Of which: customers with customer type equal to 'Corporate';

4. Of which: customers within a single business unit;

5. Of which: customers have been part of the portfolio between 31stMarch
2007 and 31stDecember 2018;

6. Of which: customers with data available, in the selected dates, for at
least 120 reporting dates out of the 142.

Selecting a particular customer type ('Corporate'), we exclude all records
(customers) related to Governments, Individuals, Institutions, etc. This
choice derives from the following reasons which in general apply to corpo-
rates:
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1. They have much more dynamic business which will give some volatility
to the RWAs. The continuous change of the RWAs has more probability
to generate data anomalies;

2. Governments and Financial institutions run a less risky business than
corporates. This is the reason why they have to be accurately monitored.

Besides, there is a �lter applied on the Basel Approach. Indeed, rows where
risk measures are calculated under the Standardized Approach (SA) have
been discarded, in other words only records using internal methods for cal-
culation (AIRB) have been selected.
A �lter has been applied on a single business unit, this will reduce the num-
ber of customers in scope.
Last but not least, the latest 2 selection criteria in [4.1.2] have been applied
in order to create a workable dataset, which exclude heavy data quality is-
sues5 and ensure enough data per each customer time series.
The only attributes considered for the data exploration are enumerated in
table [4.1].

N. Attributes

1 Reporting Date
2 Customer id
3 RWA

Table 4.1: Attributes selected from the data warehouse

The result of this �ltering process is a dataset with 3 columns and 1:949:655
rows.
In the data warehouse, RWAs are available at the lowest level such as out-
standing/cover.
In order to get more insights, we have aggregated6 at customer id level which
is the data level of our analysis.
The �gure [10] shed more light on the granularity and structure of the data
warehouse. Hence, the aggregation is done at the highest level, indeed, the
sample goes from information at outstanding/cover level till to the customer
level. In other words, this means a reduction of the number of rows. For
example a customer which in the data warehouse has 3 rows per each report-
ing date, given his facility, outstanding and cover structure, it will appear

5Data Quality before March 2007 is considered to be really poor.
6less granular level
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Figure 10: Granularity and structure of the data warehouse

as a single record since all information allocated over the structure will be
aggregated at a higher level represented by the customer id [11] . Neverthe-
less, since we want to study the time-series of the RWAs of each customer,
the RWAs information have been transposed and grouped per re- porting
date.
The end result is a table with 142 rows, which represent the distinct report-
ing dates and 12631 columns where each column is a distinct customer id.
In other words, each customer has a time series 142 months.

Figure 11: Aggregation at customer level

Once, the data sample has been extracted and data has been put in the
desired format we can start the data exploration.

4.1.3 Data Exploration

Visualize 12631 time series with a wide range of values is quite a challenge.
The idea is to visualize few of them and run an ACF, PACF and IACF test
on the same. Then, to generalize we automated the procedure and run the
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the test on all customers in scope.
Once, the stationarity analysis has been completed and transformations have
been applied, the Dickey-Fuller test will be performed again in order to
assess that transformed series are stationary.
Hence, 3 random customers have been extracted from our dataset and plot
the RWAs time series. The �gure [12] will give a �rst idea of the behavior.

Figure 12: Customer Time Series Analysis

From a �rst look, all 3 RWAs time series seems to have a non-stationary
behavior. The stationarity of the time series can be veri�ed building the
autocorrelation and partial autocorrelation functions. In order to proceed
with the visualization we have selected the customer A and plotted those
functions in the �gure [13]. These time series are clearly non-stationary and
this can strongly inuence how to approach data in time series analysis as
well explained in [56].
In more detail, the auto-correlation functions (ACFs) are, indeed, useful to
evaluate the non-stationarity of the time series. In practice, for a stationary
time series, we will observe that the ACF will drop to zero relatively quickly,
while the ACF of non-stationary data decreases slowly.
The latter scenario is what we observe in the �gure [13] which con�rms the
�rst hypothesis of a non stationary time series spotted in the �gure [12].
To generalize, the same procedure is run on all customers. The table [4.2]
emphasize that a big part of the data sample is not-stationary.

The customers in the table [4.2] who score with 0 are stationary while
the ones which have 1 as result are non-stationary time series.
The Dickey-Fuller test do not accept the null hypothesis with �=0:05 when
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Figure 13: ACF, PACF and IACF of the RWAs time series of the customer
A

Dickey-Fuller test Number of Customers

0 16%
1 84%

Table 4.2: Dickey-Fuller Test

the p-value is less than �, which means that the time series are stationary.
Hence, since we have concluded that part of our time series are non-stationary,
we have to take some actions in order to transform the data which will allow
us to apply most of the Statistical Techniques.
It is possible to divide this procedure in two steps:

1. Transform the time series, considering their logarithms;

2. Make the �rst di�erence of logarithms provided from the previous step.

Following this procedure, we can build again the ACF, PACF and IACF
functions on the transformed data series. In order to visualize it, as �rst
instance the random customer A is shown in the �gure [14] and then it will
be generalized to the entire data sample.
The �gure [14] shows how the transformed time series have become sta-
tionary. In fact the spikes shown in the Figure [14] are common even in
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Figure 14: Customer A Time Series Analysis

stationary time series. In other words, after these two steps, the time series
that can be analyzed with most of statistical techniques.
A further con�rmation of the stationary series is provided from the plots
of ACF in Figure [14]. It is evident that after �rst di�erence of logarithms
the ACF drops relatively quickly drop to zero such as a cosine function; so
these two transformations solve the non-stationarity problem.
The generalization of this procedure to the entire dataset brings to the re-
sults shown in table [4.3].

Dickey-Fuller test Number of Customers

0 0%
1 100%

Table 4.3: Dickey-Fuller Test on the transformed RWA

After the log transformation and the �rst di�erence, all time series have
become stationary.

4.2 Algorithm: Data, Calibration and Estimation

In 4.1.3, we have seen that in order to apply statistics techniques, transfor-
mation on the time series have to be applied.
Hence, to obtain stationary time series, data will be extracted, and the time
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series will be transformed �rst with logarithms and then with the �rst dif-
ference.
As explained in 4.1.1, a speci�c data sample is used for the calibration of
the algorithm and estimation of the data anomalies points.
Further details on how the sample is created, what data is selected and how
it is aggregated are provided in [4.2.1].
The algorithm calibration and estimation steps do not focus on one single
attribute as in [4.1.2], but they are related to most of the credit risk at-
tributes which may inuence the time series of the RWAs.
The main focus is on the isolation forest algorithm, the idea is to understand
and verify, against reality, data anomalies and the capacity of the algorithm
to detect those.
The extraction to create the data sample is performed by SAS Enterprise
Guide as in [4.1.2], while the algorithm is run in Python.

4.2.1 Extraction, cleaning and preparation of data for algo-
rithms application

As done in the subsection [4.1.2] for the data exploration part, it is practical
to enumerate all steps done to derive the data sample. The steps below
[4.2.1] show all �lters applied to the data warehouse:

1. Select all active customers for 2 reporting dates, 30thNovember 2018 and
31stDecember 2018;

2. Of which: customers treated under AIRB;

3. Of which: customers with customer type equal to 'Corporate'.

The Table [4.4]7 gives a summary of the values in the data warehouse8and
of the subset which will be utilized for this analysis. Hence, the data sample
is a subset of the table [4.4] and the number of records part of it have been
highlighted in bold.
This small summary table already gives some insights on the data sample
and helps in pointing out some choices made in the data selection explained
in [4.4].
One of the �rst considerations should be about the number of rows. From
a quick sum, and keeping in mind that we have only 2 reporting dates in

7The real portfolio composition is masked using a randomization algorithm following
the corporate data governance policy.

8For two reporting dates.
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Date Basel Appr Cust Type N.Cust Delta Cust

30-Nov-2018 AIRB Corporates 300848
31-Dic-2018 AIRB Corporates 296411 -4437
30-Nov-2018 AIRB Governaments 6826
31-Dic-2018 AIRB Governaments 6953 127
30-Nov-2018 AIRB Individuals 4195
31-Dic-2018 AIRB Individuals 4270 -75
30-Nov-2018 AIRB Other Counterparties 9457
31-Dic-2018 AIRB Other Counterparties 9389 -68
30-Nov-2018 SA Corporates 345399
31-Dic-2018 SA Corporates 341390 -4409
30-Nov-2018 SA Governaments 700
31-Dic-2018 SA Governaments 700 0
30-Nov-2018 SA Individuals 39
31-Dic-2018 SA Individuals 38 -1
30-Nov-2018 SA Other Counterparties 256
31-Dic-2018 SA Other Counterparties 247 -9

Table 4.4: Summary of the Data Sample

scope, the dataset reaches over 1; 3Mio rows.
Besides, even if we have a small sample from the reporting dates point of
view9, it is already possible to see some changes in the portfolio composi-
tion10 (e.g. number of corporates decreases of 4437, while the number of
individuals increases of 127). This gives an idea of the volatility of the port-
folio over time.
All the attributes selected are enumerated in table [4.5].
One of discussed problems in chapter [2.5] is related to the number of the
attributes. Indeed, there are several algorithms (e.g. 2.2) which decrease
their performances exponentially when the number of features increase.
In our subsample, we have taken into account 12 attributes11which have an
impact on the RWAs calculation. These attributes should enable the algo-
rithms to achieve the scope of the research, in other words to distinguish

9Potentially, data for more than 15 years on monthly basis at the lowest level is avail-
able. Besides, if the number of rows increase enormously, as understandable from [10], if
a lower data level is considered, e.g. outstanding level.

10The real deltas in the portfolio composition are masked using a randomization algo-
rithm following the corporate data governance policy.

11excluding the RWA
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N. Feature

1 Allocated Limit
2 Capital Requirement
3 EAD
4 LGD
5 Outstanding
6 PD
7 Provision
8 RW
9 RWA
10 Secured Recovery
11 Unsecured Amount
12 Unsecured Recovery
13 Unsecured Recovery Amount Discount

Table 4.5: Attributes selected form the data anomalies detection

between RWAs movements driven by business changes and the ones caused
by anomalies. Most of these attributes have been covered with a brief ex-
planation in Chapter [1.9].
Once the number of rows and columns have been selected, the next step is
to perform the Isolation Forest algorithm.

4.2.2 Calibration of the Isolation Forest algorithm on Credit
Risk Data

Once the data are �ltered as explained in [4.2.1], 2 datasets related to
November 2018 and December 2018 are exported from SAS Enterprise Guide
and imported in Python.
This action helps since in Python, as well explained in [3], it is possible to
call some libraries12 which contain a pre-built Isolation Forest algorithm,
where we have to set some parameters.
As done in [4.1.3], the series have been transformed.
Firstly, the logarithms of all relevant attributes have been calculated and
secondly, the �rst di�erences have been applied.
In this case the �rst di�erence is equal to the delta between December and
November.
In other words, this means that we will have a new dataset containing the

12sklearn.ensemble import IsolationForest
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deltas of the logarithms of all variables and the Isolation Forest algorithm
will be calibrated on top of this new dataset13.
The Isolation Forest algorithm in Python requires some parameters in order
to work.
The model has been de�ned as follow:

1 def init_model(parameters):

2 model = IsolationForest(max_samples=parameters[’max_samples ’],

3 max_features=parameters[’max_features ’],

4 n_estimators=parameters[’n_estimators ’],

5 n_jobs=-1,

6 contamination=parameters[’contamination ’])

7 return model

Listing 4.1: Model De�nition

where max samples, max features, n estimators, n jobs and contamination
have been already described in [3.2.2].
In this case the parameters have been set in the following way:

1. max samples is equal to the 40% of the length of the dataset;

2. max features has been set in a way that the algorithm pick 9 features
of the 12 available;

3. n estimators assumes a value of 64;

4. n jobs has been set equal to �1 which means using all processors avail-
able 14;

5. contamination value is equal to 1:5%.

Besides for prediction of the results, we have used the following code:

1 def prediction(model , data , features):

2 data[’regular ’] = model.predict(data[features ])

3 data[’decision ’] = model.decision_function(data[features ])

4 return data

Listing 4.2: Prediction

where the functions used, such as predict and decision function, have been
well explained in [3.2.2].
The entire code is available in the appendix [E].

13The dataset has been de�ned as diff data in Python
14Parallel processing is helpful at improving runtime. This is usually a good idea to

experiment rather than assuming that increasing the number of jobs is always a good
thing
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4.3 Discussion of the Results

In this paragraph, the main focus will be on the evidence of the results of
the application of the Isolation Forest algorithm on our dataset.
The scope of the research is to spot the anomalies in the delta RWA data.
Hence, as �rst step, we look at the distribution of the suspicious points
which are the outcome of the IF algorithm.
Each observation of the output of the algorithm is labelled with 1 and �1
depending on how the observation are classi�ed (regular vs. suspicious).
An insightful way to look at the distribution of the suspicious observation
is using the violin plot showed in the �gure [15].

Figure 15: Log(RWA) distribution of the anomalous points

Violin plots are a valid alternative to box plots and although they are more
informative they are still much less popular.
While a box plot only shows summary statistics such as median (in some
cases even the mean is included) and interquartile range, the violin plot
shows the full distribution of the data.
Indeed, in the �gure [15], in addition to these summary statistics where the
median of the data and the interquartile range are showed by dashed lines,
the violin plot shows the distribution of quantitative data across several
levels categorical variables such that those distributions can be compared.
Unlike a box plot, in which all of the plot components correspond to actual
data points, the violin plot features a kernel density estimation of the un-
derlying distribution.
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The di�erence is particularly useful when the data distribution is multi-
modal, where the violin plot is able to show the presence of di�erent peaks,
their position and the relative amplitude.
Even if this can be an e�ective way to show multiple distributions at the
same time, it is important to highlight that the estimation procedure is in-
uenced by the sample size. In other words, violin plots for relatively small
samples might look misleadingly smooth.
In this speci�c case, the graph [15] shows a distribution without any partic-
ular sign of asymmetry with a really high density close to zero.
These statements are con�rmed from the descriptive statistics of the delta
of the log RWA.
From the functional point of view, this can be read as cases where the delta
RWA is close to zero even if other variables taken into consideration from
the IF algorithm, such as LGD, EAD, RW are changing over time.
This kind of behavior of the delta RWA is not expected given the relation
among the credit risk variables explained in [1.9] and is agged as suspi-
cious.

Index delta log RRWA

mean -0.028545
std 1.813199
min -7.615207
25% -1.396597
50% 0.000000
75% 1.392855
max 7.239503

Table 4.6: Delta LOG RRWA descriptive statistics

Once the distribution of the anomalous points is discussed is it valuable to
focus on which points within the entire dataset the algorithm is recognizing
as anomalies.
From the �gure [16] is clearly visible how the algorithm is capable to ag as
outliers not only the points that are in the tails, but also some points which
are in the middle of the distribution.
The graph [16] shows the transformed data for the regulatory RWA.
The Python function used in this case is called swarmplot15 where the

15This function is part of the seaborn package.
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Figure 16: Anomalies vs Normal points of the log(RWA) time series

points are adjusted on categorical axis16 so that they do notoverlap and
create a distinction between classes.
In blue, we �nd the points which are considered inliers, while in orange the
ones which have been classi�ed as suspicious, or in other words, as a good
candidates of being outliers.
The graph [16] con�rms one of the strength of the IF algorithm which does
not refer to a speci�c distribution as the density based algorithms showed in
[2.2], so it is able to isolate the anomalies even if they are in a high density
position.
This algorithm's property was not evident from our test on arti�cial samples
in [3.2.3] since the anomalies have been randomly generated outside of the
main clusters.
Hence, in the arti�cial example showed in [3.2.3], points detected as anoma-
lies in the high density clusters, can be identi�ed as false positive.
This has been the case for application of the LOF algorithm showed in [8],
where some anomalies have been detected in the main clusters.
Last but not least, it is interesting to focus, while applying the IF on credit
risk data, on the relation among the RWA and all other features taken into
account.
Recalling the given relation between EAD and RWA showed in [1.4], RWA
is direct function of the EAD and RW.
In other words, we are trying to underline that when RW and EAD are not
changing, but we have a movement in RWA, most probably this will be a

16In our case, the x-axis shows 2 categories, Normal vs. Suspicious.
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suspicious observation.
This assumption is con�rmed by the �gure [17] where it is clearly showed
that Isolation Forest algorithm label most of the suspicious points17 in the
center (coordinate 0,0) where the delta of RW and EAD tend to zero.
Indeed, movements in RWA are not expected if the main drivers are not
changing over time. In order to make this evidence, we have used lmplot18

Figure 17: Anomalies vs Normal points of the log(RW) time series with
respect to log(EAD)

which is a convenient interface to �t regression models across conditional
subsets of a dataset.

4.4 Conclusions and next steps

One of the goal of this thesis was to show the application to credit risk data
of outlier detection algorithms.
In particular, we have focused our attention on Isolation Forest algorithm
and shown how his statistical properties are relevant in big data problems.
Indeed, we have showed that the algorithm is able to work in e�cient way
on huge datasets and it takes into account multiple dimensions or in other
words it works with a number of features (k) much bigger than 2 which is

17In orange as in the graph [16].
18This function is part of the seaborn package.



CHAPTER 4. APPLICATION TO CREDIT RISK DATA 95

in general the bottleneck for several outlier detection algorithms.
Besides, since the algorithm is not based on traditional statistical methods,
it does not require assumptions on the underlying data distribution which
from one side simpli�es the model calibration while from the other allows
the algorithm to label data as outliers independently from the position that
they have within the data distribution (IF does not look only at the tails
of the distribution).
Indeed, the delta RWAs identi�ed as anomalies are not labelled as such be-
cause they are in the tails of the delta RWA distribution, but because these
delta are not aligned with the movements of all other features taken into
consideration from the IF algorithm for this analysis.
This aspect is clearly analyzed and observed in [4.3].
Nevertheless, this thesis is only a starting point of this analysis and much
more can be achieved in order to show the goodness of this process.
In my opinion, the most relevant part, but also the most di�cult to build
and which require some time, is related to the backtest of the algorithm on
the real credit risk dataset.
This would require the building of the information criteria as the ROC and
PR curves described in [3.3].
In order to construct these curves TPR and FPR have to be available. This
is possible only if we have in place a feedback loop mechanism on the algo-
rithm output.
For testing our procedure, we are currently shortlisting 19 and sending the
found anomalies to the local account managers underlining the reasons why
the algorithm have recognized some speci�c observations for speci�c cus-
tomers as data anomalies. In general, local account managers well know
their portfolio and they are able to recognize and eventually amend some
data anomalies. Indeed, in order to avoid that the same data anomaly will

19The IF algorithm used for this thesis requires a contamination parameter. In our
case the contamination parameter has been set to 1; 5%. This parameter describes the
proportion of outliers expected in the data set. This small percentage in a big data
problem can lead to a huge amount of data anomalies which are not manageable by the
local account managers at the month end. Hence, a method to shortlist and prioritize
the �ndings of the algorithm is strictly required. The program automatically sorts by
descending delta RWA aggregated at customer level and send the top ten customers to
the local account managers. The focus of the entire exercise is on delta RWA since this
is one of the most relevant risk measures for all banks which attracts a lot of attention
by bank regulators and supervisors. Given the scope of this project, that introduces and
tests the reliability of data anomalies algorithms in a credit risk environment, we have
decided to limit to a maximum of 10 customers the data anomalies sent to each local
account manager.
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pop up again in the next reporting period20, the local account manager is
asked to further investigate the source of the data anomaly and take actions
if needed.
Most of the times, we have received a positive feedback on the �ndings,
which is an additional reason to believe that the IF is a great method to
detect data anomalies and this does not apply only on arti�cial samples as
showed in [3.2.3] but on real credit risk dataset as well.
The extra step to achieve, in order to have enough data for the construction
of the information criteria, is to build a database on the received feedback.
This will have two big bene�ts for our model:

1. The algorithm will receive a feedback on the results and can learn from
it. This will help in model calibration;

2. We can build the ROC and the PR curves.

In other words, this extra steps will give a much more clear idea on the per-
formance reached by the algorithm and it will help it in future predictions.

20We want to avoid an incorrect population of the monthly reports. Hence, the idea
is to run this process once a month. Alternative scenario is when we want to test the
correct population of the data warehouse which is the source of the monthly reports. With
respect to this scenario, we have to consider that the central data warehouse, on which
we are running the algorithm, is populated daily for retail data and weekly for business.
Since the scope is reduced to the customers with high RWA, we can assume the retail
customers will be excluded a priori. In oder words, in this scenario the most indicated
frequency to run the IF algorithm is weekly.
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Appendix A

Nested-Loop Algorithm for
Density-Based Approach

Algorithm NL

1. Fill the �rst array (of size B
2 % of the dataset) with a block of tuples from

T .

2. For each tuple ti in the �rst array, do:

a. counti  0

b. For each tuple tj in the �rst array, if dist(ti, tj)�D:
Increment counti by 1. If counti>M , mark ti as a non-outlier and
proceed to next ti.

3. While blocks remain to be compared to the �rst array, do:

a. Fill the second array with another block (but save a block which has
never served as the �rst array, for last).

b. For each unmarked tuple ti in the �rst array do:
For each tuple tj in the second array, if dist(ti; tj) � D: Increment
counti by 1. If counti > M , mark ti as a non-outlier and proceed to
next ti.

4. For each unmarked tuple ti in the �rst array, report ti as an outlier.

5. If the second array has served as the �rst array anytime before, stop;
otherwise, swap the names of the �rst and second arrays and goto step
2.
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Squeezer algorithm

Let A1; : : : ; Am be a set of categorical attributes with domains D1; : : : ; Dm

respectively. Let the dataset D be a set of tuples where each tuple t : t 2
D1 � � � � � Dm. Let TID be the set of unique identi�er of every tuple.
For each tid 2 TID, the attribute value for Ai of corresponding tuple is
represented as tid � Ai.
Starting from the concept that a cluster is a subset of TID, then the fol-
lowing de�nitions are important for building the Squeezer algorithm:

Definition 21 Given a cluster C, the set of di�erent attribute value on
Ai with respect to C is de�ned as:

V ALi(C) = ftid � Aijtid 2 Cg (B.1)

where 1 � i � m.

Definition 22 Given a Cluster C, let ai 2 Di, the support of ai in C
with respect to Ai is de�ned as:

Sup(ai) = jftidjtidjAi = ai; tid 2 Cgj (B.2)

Definition 23 Given a Cluster C, the Summary for C is de�ned as:

Summary = fV Sij1 � i �gwhereV Si = f(ai; Sup(ai))jai 2 V ALi(C)g:
(B.3)

In other words, the summary contains m elements, where m is number
of attributes, and gives information about the cluster.

Definition 24 Given a cluster C, the cluster structure (CS) for C is
de�ned as:

CS = fcluster; summaryg: (B.4)
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Definition 25 Given a cluster C and a tuple t with tid 2 TID, the
similarity between C and tid is de�ned as:

Sim(C; tid) =
mX
i=1

(
Sup(ai)P

aj2V ALi(C) Sup(aj)
(B.5)

where ai = tid � Ai

In the Squeezer algorithm, the similarity as de�ned in B.5 is used to deter-
mine whether the tuple should be put into the cluster or not. The Squeezer
algorithm has n tuples as input and produce clusters as �nal results.
For every tuple, by the similarityfunction, the similarity is computed with
all existing clusters and the largest value of similarity is selected out. If it
is larger than the given threshold, the tuple will be inserted into the cluster
that has the largest value of similarity and the CS will be updated. If the
above condition does not hold, a new cluster is created with this tuple. The
algorithm continues until it has traversed all the tuples in the dataset.
As in [45] the Squeezer algorithm can be summarized as follow: The �rst

Algorithm Squeezer (D,s)

1 Begin
2 while (D has unread tuple)f
3 tuple=getCurrentTuple (D)
4 if (tuple.tid ==1) f
5 addNewClusterStructure (tuple.tid)g
6 else f
7 for each existed cluster C
8 simComputation (C, tuple)
9 get the max value of similarity: sim max
10 get the corresponding Cluster Index: index
11 if sim max�s
12 addTupleToCluster (tuple, index)
13 else
14 addNewClusterStructure (tuple.tid)g
15 g
16 outputClusteringResult()
17 End

Table B.1: Squeezer algorithm

tuple is read in, and the sub-function addNewClusterStructure() is used
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to establish a new CS, which includes summary and cluster (Steps 3-4).
Then the similarity between an existed cluster C and each tuple is computed
using sub-function simComputation(). Once the maximal value of similar-
ity is taken(simmax) and the corresponding index of cluster (index)(Steps
6-9).
If the max of the similarity is larger than the input threshold s, then the
sub-function addTupleToCluster() insert the tuple to selected cluster (steps
10-11).
If the previous condition does not hold, the sub-function addNewClusterStructure()
constructs a new CS (Steps 12-13).
As �nal step, the clustering results are labeled on the disk (Step 15).

The Squeezer algorithm is a background clustering algorithm for outlier
detection which own the following characteristics:

a. Achieves both high quality of clustering results and scalability;

b. Ability in handling e�ectively high dimensional data-sets;

c. Does not require the number of desired clusters as an input parameter
and it can produce more natural clusters with signi�cant di�erent sizes.



Appendix C

FindCBLOF algorithm

Figure 18: CBLOF algorithm
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Path-Length-Based Isolation

Following [52], the iForest can be implemented with the following 3 Algo-
rithms:

1. Algorithm for the training stage [D.1];

Algorithm 1: iForest (X, t,  )

1 Inputs: X - input data, t - number of trees,  - subsampling size
2 Output: a set of t iTrees
3 Initialize: Forest
4 for i=1 to t do
5 X 0  sample (X, )
6 Forest  Forest [ iTree (X 0)
7 end for
8 return Forest

Table D.1: iForest and training stage

2. Training and evaluation stage of a single path length h(x) [D.2];

3. The path length algorithm gives additional details of the evaluation stage
[D.3].
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Algorithm 2: iTree(X')

1 Inputs: X' - input data
2 Output: an iTree
3 if X 0 cannot be divided then
4 return exNode f Size  jX 0j g
5 else
6 let Q be a list of attributes in X 0

7 randomly select an attribute q 2 Q
8 randomly select a split point p between the max and the min values of attribute
9 q in X'
10 Xl  �lter(X 0,q < p)
11 Xr  �lter(X 0,q � p)
12 return inNode fLeft  iTree (Xl),
13 Right  iTree (Xr),
14 SplitAtt  q,
15 SplitValue  pg
16 end if

Table D.2: iTree and training stage

Algorithm 3: PathLenght(x, T , hlim, e)

1 Inputs: x - an instance, T - an iTree, hlim - height limit, e - current path length;
2 to be initialized to zero when �rst called
3 Output: path length of x
4 if T is an external node or e�hlim then
5 return e+c(T.size)fc(.) is de�ned in Equation 1g
6 end if
7 a  T.splitAtt
8 if xa < T .splitValue then
9 return PathLength (x, T .left, hlim, e+ 1)
10 else fxa � T .splitValueg
11 return PathLength (x, T .right, hlim, e+ 1)
12 end if

Table D.3: Path Length
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Python Procedures

1 import pandas as pd

2 import numpy as np

3 import io

4 import base64

5 import random

6 from mpl_toolkits.mplot3d import Axes3D

7 import matplotlib.pyplot as plt

8 from matplotlib import cm

9 import seaborn as sns

10 from sklearn.model_selection import train_test_split

11 import time

12 from sklearn import svm

13 from sklearn.datasets import make_moons , make_blobs

14 from sklearn.covariance import EllipticEnvelope

15 from sklearn.ensemble import IsolationForest

16 from sklearn.neighbors import LocalOutlierFactor

17 from sklearn.ensemble import RandomForestClassifier

18 from sklearn.datasets import make_classification

19
20 from itertools import cycle

21 from sklearn import svm , datasets

22 from sklearn.metrics import roc_curve , auc

23 from sklearn.preprocessing import label_binarize

24 from sklearn.multiclass import OneVsRestClassifier

25 from scipy import interp

26
27 def read_file(filename):

28 file_extension = filename.split(".")[-1]

29 if file_extension in [’xls’, ’xlsx’]:

30 excel_file = pd.ExcelFile(filename)

31 data = excel_file.parse(excel_file.sheet_names [0])

32 elif file_extension in [’csv’, ’txt’]:

33 data = pd.read_csv(filename)

34 else:

35 raise (IOError(’File type not supported ’))

36
37 return data
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38
39 plt.rcParams[’contour.negative_linestyle ’] = ’solid ’

40
41 # Example settings

42 n_samples = 30000

43 outliers_fraction = 0.10

44 n_outliers = int(outliers_fraction * n_samples)

45 n_inliers = n_samples - n_outliers

46
47 # define outlier/anomaly detection methods to be compared

48 anomaly_algorithms = [

49 ("Isolation Forest", IsolationForest(behaviour=’new’,

50 contamination=outliers_

fraction ,

51 random_state =42)),

52 ("Local Outlier Factor", LocalOutlierFactor(

53 n_neighbors =35, contamination=outliers_fraction))]

54
55 # Define datasets

56 blobs_params = dict(random_state=0, n_samples=n_inliers , n_features =2)

57 datasets = [

58 make_blobs(centers =[[0, 0], [0, 0]], cluster_std=0.5,

59 **blobs_params)[0],

60 make_blobs(centers =[[2, 2], [-2, -2]], cluster_std =[0.5 , 0.5],

61 **blobs_params)[0],

62 make_blobs(centers =[[2, 2], [-2, -2]], cluster_std =[1.5 , .3],

63 **blobs_params)[0]]

64
65 # Compare given classifiers under given settings

66 xx, yy = np.meshgrid(np.linspace(-7, 7, 150),

67 np.linspace(-7, 7, 150))

68
69 plt.figure(figsize =(len(anomaly_algorithms) * 2 + 3, 12.5))

70 plt.subplots_adjust(left =.02, right =.98, bottom =.001 , top=.96, wspace

=.05,

71 hspace =.01)

72
73 plot_num = 1

74 rng = np.random.RandomState (42)

75
76 for i_dataset , X in enumerate(datasets):

77 # Add outliers

78 X = np.concatenate ([X, rng.uniform(low=-6, high=6,

79 size=(n_outliers , 2))], axis =0)

80
81 for name , algorithm in anomaly_algorithms:

82 t0 = time.time()

83 algorithm.fit(X)

84 t1 = time.time()

85 plt.subplot(len(datasets), len(anomaly_algorithms), plot_num)

86 if i_dataset == 0:

87 plt.title(name , size =18)

88
89 # fit the data and tag outliers

90 if name == "Local Outlier Factor":

91 y_pred = algorithm.fit_predict(X)
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92 else:

93 y_pred = algorithm.fit(X).predict(X)

94
95 # plot the levels lines and the points

96 if name != "Local Outlier Factor": # LOF does not implement

predict

97 Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()])

98 Z = Z.reshape(xx.shape)

99 plt.contour(xx, yy , Z, levels =[0], linewidths =2, colors=’

black’)

100
101 colors = np.array([’#377 eb8’, ’#ff7f00 ’])

102 plt.scatter(X[:, 0], X[:, 1], s=10, color=colors [(y_pred + 1)

// 2])

103
104 plt.xlim(-7, 7)

105 plt.ylim(-7, 7)

106 plt.xticks (())

107 plt.yticks (())

108 plt.text (.99, .01, (’%.2fs’ % (t1 - t0)).lstrip(’0’),

109 transform=plt.gca().transAxes , size=15,

110 horizontalalignment=’right’)

111 plot_num += 1

112
113 plt.show()

114
115 features_code = [’EAD’, ’Provisions ’,

116 ’Outsatnding ’, ’RWA’, ’RW’, ’LGD’, ’PD’,

117 ’Allocation Limit’, ’Capital Requirement ’,

118 ’Secured Recovery ’, ’Unsecured Recovery ’,

119 ’Unsecured Amount ’, ’Unsecured Recovery Amount

Discount ’]

120
121
122 def prepare_data(model_dic):

123 print(’CAL preparing data -’)

124 data_pre = model_dic[’previous ’][( model_dic[’previous ’][’customer_

type_lvl1’]==’Corporates ’) &

125 (model_dic[’previous ’][’approach ’]==’AIRB’)]

126 data_cur = model_dic[’current ’][( model_dic[’current ’][’customer_

type_lvl1’]==’Corporates ’) &

127 (model_dic[’current ’][’approach ’]==’AIRB’)]

128
129 features = [’ead_r’, ’provisions_r’,

130 ’OS_r’, ’RRWA’, ’RW’, ’lgd_r_wa’, ’pd_r_wa’,

131 ’alloc_limit ’, ’capital_requirement ’,

132 ’secured_recovery_amt_disc’,

133 ’unsecured_amount ’, ’unsecured_recovery_amts_di’]

134
135 agg_cols = [’customer_id’, ’committed_ind’, ’product_type_lvl1_

descr’]

136 ead_col = find_ead_col(data_pre.columns , features)

137 if ead_col == ’’:

138 raise ValueError(’EAD columns is not available.’)

139
140 prec_cols = split_prec_scal(data_pre , agg_cols)
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141
142 print(’CAL aggregating data -’)

143 data_pre = aggregate_data(data=data_pre , agg_cols=agg_cols ,

144 ead_col=ead_col , prec_cols=prec_cols)

145 data_cur = aggregate_data(data=data_cur , agg_cols=agg_cols ,

146 ead_col=ead_col , prec_cols=prec_cols)

147
148 model_dic[’data_pre’] = data_pre

149 model_dic[’data_cur’] = data_cur

150
151 print(’CAL adding log columns -’)

152 data_pre = add_log_cols(data=data_pre , features=features , prec_

cols=prec_cols)

153 data_cur = add_log_cols(data=data_cur , features=features , prec_

cols=prec_cols)

154
155 model_dic[’log_cols’] = [’log_’ + col for col in features]

156 print(’CAL creating diff data -’)

157 diff_data = data_cur[model_dic[’log_cols’]] - data_pre[model_dic[’

log_cols’]]

158 diff_data = diff_data.dropna ()

159 model_dic[’diff_data’] = diff_data

160
161 return model_dic[’data_pre’], model_dic[’data_cur’], model_dic[’

diff_data’], model_dic[’log_cols’]

162 def reading_data(data_pre , data_cur):

163 data_dic = {}

164 data_dic[’previous ’] = data_pre

165 data_dic[’current ’] = data_cur

166 return data_dic

167 def generate_diff_data(data_dic):

168 data = data_dic[’current ’] - data_dic[’previous ’]

169 data = data.dropna ()

170 return data

171 def select_scl_cols(data , cols):

172 scl_cols = []

173 prc_cols = []

174
175 for col in cols:

176 if data[col].max() > 1.0:

177 scl_cols.append(col)

178 else:

179 prc_cols.append(col)

180
181 return scl_cols , prc_cols

182
183 def find_ead_col(columns , features):

184 ead_cols = []

185 for item in features:

186 if ’ead’ in item:

187 ead_cols.append(item)

188
189 if len(ead_cols) == 1:

190 return ead_cols [0]

191
192 if len(ead_cols) > 1:
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193 for item in ead_cols:

194 if ’ead_r’ in item:

195 return item

196 return ead_cols [0]

197
198 ead_cols = []

199 for item in columns:

200 if ’ead’ in item:

201 ead_cols.append(item)

202 if len(ead_cols) == 1:

203 return ead_cols [0]

204 elif len(ead_cols) > 1:

205 for item in ead_cols:

206 if ’ead_r’ in item:

207 return item

208 return ead_cols [0]

209
210
211 def split_prec_scal(data , ignore):

212 prec_cols = []

213 numeric_cols = data._get_numeric_data().columns.get_values ()

214 non_index_numeric_cols = [x for x in numeric_cols if x not in

ignore]

215 for ftr in non_index_numeric_cols:

216 if data[ftr].max() < 100.0: # RW could be larger than 1

although it has to be weighted average by EAD

217 prec_cols.append(ftr)

218
219 return prec_cols

220
221
222 def add_log_cols(data , features , prec_cols):

223 for col in features:

224 if col in prec_cols:

225 data[’log_’ + col] = np.log10(data[col] + 1.0e-6)

226 else:

227 data[’log_’ + col] = np.log10(data[col] + 1.0)

228 return data

229
230
231 def aggregation_function(data , non_numeric):

232 return data[non_numeric ][0:1]

233
234
235 def aggregate_data(data , agg_cols , ead_col , prec_cols):

236 data.index.name = ’default_index’

237 new_cols = []

238 for col in prec_cols:

239 new_col_str = ead_col + ’*’ + col

240 new_cols.append(new_col_str)

241 data[new_col_str] = data[ead_col] * data[col]

242
243 agg_cols = [x for x in agg_cols if x != ’’]

244 print(’CAL grouping by data -’)

245 numeric_cols = data._get_numeric_data().columns.get_values ()

246 non_numeric = [x for x in data.columns if x not in numeric_cols]
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247
248 df_num = data.groupby(agg_cols)[numeric_cols].sum()

249 for col in prec_cols:

250 new_col_str = ead_col + ’*’ + col

251 df_num[col] = df_num[new_col_str]/df_num[ead_col]

252
253 df_num = df_num.drop(new_cols , axis =1)

254
255 df_non = data.groupby(agg_cols).apply(aggregation_function , non_

numeric)

256 for col in agg_cols:

257 if col in df_non.columns:

258 df_non = df_non.drop(col , axis =1)

259
260 df_non = df_non.reset_index().set_index(agg_cols)

261 df_non = df_non.drop(’default_index’, axis =1)

262
263 df_final = df_non.join(df_num , how=’left’)

264
265 return df_final

266
267
268 def make_filter(model_dic):

269 filters = {}

270 for flt in model_dic[’filters_cols’]:

271 filters[flt] = model_dic[flt]

272
273 return filters

274
275 def filter_data(data , filters):

276 data_tmp = data

277 for flt in filters.keys():

278 data_tmp = data_tmp[data_tmp[flt] == filters[flt]]

279
280 return data_tmp

281 def calibrate_model(data , cont_factor , features):

282 parameters = {}

283 parameters[’max_samples ’] = 0.4

284 if len(features) > 12:

285 parameters[’max_features ’] = 9

286 else:

287 parameters[’max_features ’] = len(features)

288 parameters[’n_estimators ’] = 64

289 parameters[’n_jobs’] = -1

290 parameters[’contamination ’] = cont_factor

291
292 print(’CAL initializing model -’)

293 model = init_model(parameters=parameters)

294
295 print(’CAL fitting model -’)

296 model = fit_model(model=model ,

297 data=data ,

298 features=features)

299
300 print(’CAL scoring data -’)

301 data = prediction(model=model ,
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302 data=data ,

303 features=features)

304
305 return data , model

306
307
308 def apply_model(model , data , features):

309 print(’CAL scoring data -’)

310 data = dm.prediction(model=model ,

311 data=data ,

312 features=features)

313
314 return data

315
316 def init_model(parameters):

317 model = IsolationForest(max_samples=parameters[’max_samples ’],

318 max_features=parameters[’max_features ’],

319 n_estimators=parameters[’n_estimators ’],

320 n_jobs=-1,

321 contamination=parameters[’contamination ’])

322
323 return model

324
325
326 def fit_model(model , data , features):

327 model.fit(data[features ])

328
329 return model

330
331
332 def prediction(model , data , features):

333 data[’regular ’] = model.predict(data[features ])

334 data[’decision ’] = model.decision_function(data[features ])

335
336 return data

337
338 data_cur = read_file(’FINAL_DATA_RECENT.xlsx’)

339 data_pre = read_file(’FINAL_DATA_PREVIOUS.xlsx’)

340
341 model_dic = reading_data(data_pre ,data_cur)

342
343 model_dic[’data_pre’], model_dic[’data_cur’],model_dic[’diff_data’],

model_dic[’log_cols’] = prepare_data(model_dic)

344
345 model_dic[’diff_data’], model_dic[’model’] =

346 calibrate_model(data=model_dic[’diff_data’],

347 cont_factor =0.015 ,

348 features=model_dic[’log_cols’])

349 model_dic[’diff_data’].sort_values(

350 ’decision ’, ascending=True)

351
352 model_dic[’diff_data’][model_dic[’diff_data’][’regular ’]== -1]. count ()/

model_dic[’diff_data’].count()

353
354
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355 _ = sns.violinplot(y="log_RRWA", hue="regular",data=model_dic[’diff_

data’][model_dic[’diff_data’][’regular ’]==-1], palette="muted",

split=True ,scale="count", inner="quartile")

356 _ = plt.xlabel(’anomalous points ’)

357 _ = plt.ylabel(’log RWA’)

358 plt.show()

359
360 sns.set(style="ticks")

361
362 model_dic[’diff_data’][’log_RRWA’][ model_dic[’diff_data’][’regular ’

]== -1]. describe ()

363
364 for i in range (0,2):

365 df_test = {}

366 df_test = pd.DataFrame(model_dic[’diff_data’][model_dic[’diff_data

’][’regular ’]!= -1]. sample(frac =0.0033 , replace=False ,random_

state=i).append(

367 model_dic[’diff_data’][model_dic[’diff_data’][’regular ’]== -1].

sample(frac =0.02167 , replace=False ,random_state=i)))

368
369 df_test[’class’] = np.where(df_test.regular == 1, ’Normal ’,

370 ’Suspicious ’)

371
372
373 sns.swarmplot(x="class", y =’log_RRWA’, data = df_test ,hue = ’

class’)

374
375 plt.show()

376
377 # fit the model for outlier detection (default)

378 clf = LocalOutlierFactor(n_neighbors =20, contamination =0.015)

379 # use fit_predict to compute the predicted labels of the training

samples

380 # when LOF is used for outlier detection , the estimator has no predict

, decision_function and score_samples methods).

381 y_pred = clf.fit_predict(np.array(data_train [[’log_RRWA’,’log_ead_r’

]]))

382 X_scores = clf.negative_outlier_factor_

383 X=(np.array(data_train[[’log_RRWA’,’log_ead_r’]]))

384
385 plt.title("Local Outlier Factor (LOF)")

386 plt.scatter(X[:, 0], X[:, 1], color=’k’, s=3., label=’Data points ’)

387 # plot circles with radius proportional to the outlier scores

388 radius = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min

())

389 plt.scatter(X[:, 0], X[:, 1], s=2000 * radius , edgecolors=’r’,

390 facecolors=’none’, label=’Outlier scores ’)

391 plt.axis(’tight’)

392 plt.xlim ((-0.01, 0.01))

393 plt.ylim ((-0.01, 0.01))

394 legend = plt.legend(loc=’upper left’)

395 legend.legendHandles [0]._sizes = [10]

396 legend.legendHandles [1]._sizes = [20]

397 plt.show()

Listing E.1: Python Procedures
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