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Abstract

The relentless quest for unraveling the true mechanisms that govern the Nature we

observe and are part of have led physicists to rely on the adoption of fundamental

principles. These assumptions have acted as a guiding light for the development of

both theory and experiments since the moment in which Physics was born. There-

fore, in order to further broaden the knowledge of the Universe surrounding us, it

is natural to still have faith in the implications that a rational (though most of the

times unexplainable) insight entails.

The aim of this thesis is to provide a self-contained analysis centered around some

of the most important physical principles we currently have at our disposal: general

covariance, equivalence principle and Heisenberg uncertainty relations. However,

the attention is not exclusively focused on the relevant consequences of the afore-

mentioned concepts, as we also insist on the possibility of going beyond them, thus

allowing for the existence of a novel phenomenology which can only be unfolded by

means of new physics. In this direction, we prove that intriguing perspectives for

future investigations can be achieved in several ways. In particular, we show that:

• the requirement of general covariance ful�llment unambiguously leads to a the-

oretical check of the Unruh e�ect and to peculiar properties associated with

the mixed nature of neutrinos in connection with the Unruh radiation;

• equivalence principle violation is a viable outcome both in the quantum realm

and at �nite temperature, thus showing that it might not be always valid at

all regimes and regardless of the interaction of the studied system;

• Heisenberg uncertainty relations are not exact in the presence of a gravitational

�eld, which induces modi�cations that become relevant at the Planck scale

and that might in principle be revealed also at current energies.

Furthermore, we also remark that tests involving the Casimir e�ect are particularly

sensitive and hence useful in the above frameworks, in that the measurable quantities

related to it acquire a contribution that accounts for any violation/generalization of

the aforementioned principles.
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Conventions and abbreviations

Units and metric notation

Throughout the thesis, we set

~ = c = kB = 1 , (1)

unless explicitly stated otherwise. We work in 1 + 3-dimensions, and we adopt the

mostly negative signature for the metric

(+ − −−) . (2)

Riemann and Ricci curvature tensors are expressed as follows:

Rρ
σµν = ∂µΓρνσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (3)

Rµν = Rρ
σρν (4)

where the Christo�el symbols are de�ned in terms of the metric tensor gµν assuming

metric compatibility and vanishing torsion

Γρνσ =
1

2
gρλ (∂σgλν + ∂νgλσ − ∂λgνσ) . (5)

Moreover, the usual Minkowski metric is denoted as ηµν to distinguish it from the

non-�at case.

Special characters and abbreviations

The following special characters and abbreviations are employed:

Character Meaning

* complex conjugate

Continued on next page
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Continuing from previous page

† or h.c. Hermitian conjugate
− Dirac adjoint
∂
∂xµ

or ∂µ partial derivative

∇µ covariant derivative

Re (Im) real (imaginary) part

tr trace

ln natural logarithm

Γ Gamma function

Kα(x) K-Bessel function of

order α and argument

x

[A,B] AB −BA
{A,B} AB +BA

≡ de�ned to be equal to

∝ proportional to

:: normal ordering

QM Quantum Mechanics

SR Special Relativity

GR General Relativity

QFT Quantum Field Theory

QFTCS Quantum Field Theory

in Curved Spacetime

SM Standard Model

SME Standard Model

Extension

QG Quantum Gravity

GC General Covariance

LI Lorentz Invariance

LLI Local Lorentz

Invariance

LIV Lorentz Invariance

Violation

EP Equivalence Principle

HUP Heisenberg Uncertainty

Principle

Continued on next page
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PPN Parametrized post-

Newtonian

GUP Generalized Uncertainty

Principle

CG Corpuscular Gravity

IR Infrared

UV Ultraviolet

We use greek letters for 4-dimensional spacetime indices ranging from 0 to 3,

whereas latin letters are reserved for 3-dimensional spatial indices running from 1 to

3. Moreover, when vierbein formalism is employed, latin letters with a hat denote

locally �at indices belonging to the local tangent bundle of the Riemannian manifold.





Introduction

In the yesteryear of Physics, the adoption of fundamental principles has turned out

to be an unprecedented information carrier. The application of such guiding no-

tions represents an important step towards the understanding of the mechanisms

with which Nature explains itself through any physical manifestation. Although in-

timately related to the phenomenological realm from which they stem, once elevated

to the status of postulates, physical principles act as a lighthouse for the development

of a consistent theoretical apparatus. History is crawling with illustrious examples

in support of the aforementioned statement.

A paradigmatic episode in this direction can be recognized in the birth of classical

mechanics itself. Indeed, in 1630 Galileo Galilei published one of his most signi�cant

work, titled �Dialogo sopra i due massimi sistemi del mondo�. In this book, relevant

physical concepts are exhibited and explained by means of clever gedanken exper-

iments, the most famous of which is related to the principle of relativity. Galilei

imagined an observer to be locked within the innermost cabin of a huge vessel that

�oats on an ideal calm sea. In similar conditions, he realized that it is impossible to

distinguish whether the vessel is sailing in absence of waves and with uniform speed

or it is at rest at the harbor:

fate muover la nave con quanta si voglia velocità; ché (pur che il moto

sia uniforme e non �uttuante in qua e in là) voi non riconoscerete una

minima mutazione in tutti li nominati e�etti, né da alcuno di quelli

potrete comprender se la nave cammina o pure sta ferma [. . . ]

Several years later, the principle of relativity and all concepts contained in the

works of Galilei and other philosophers and mathematicians (Copernicus, Descartes,

etc.) inspired the mind and researches of Sir Isaac Newton, who laid the foundations

of classical mechanics with his groundbreaking book �PhilosophiæNaturalis Principia

Mathematica�. The game-changing impact of this opus on the scienti�c community

of that time can be summarized in the words of the French mathematical physicist

Alexis Clairaut:

xix
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The famous book of Mathematical Principles of Natural Philosophymarked

the epoch of a great revolution in physics. The method followed by its

illustrious author Sir Newton [. . . ] spread the light of mathematics on

a science which up to then had remained in the darkness of conjectures

and hypotheses.

Moreover, the e�orts of Newton are deemed to be the �rst great uni�cation, in

that he was able to formulate a single description for phenomena occurring both at

the �human� and at the astronomical scale (Kepler's laws of planetary motion). The

recurrent idea of uni�cation is at the basis of the modern prospect of having a theory

of everything, which encodes and perfectly depicts all aspects of the Universe, from

the quantum realm up to the cosmological domain.

In such an extended journey across radically di�erent energy scales and phe-

nomenology, it is reasonable to rely on some fundamental principles that can guide

wit to overcome problems and di�culties throughout the uphill path. This is ex-

actly what happened in the development of the two theories that have become the

cornerstone of modern physics in the early twentieth century: quantum mechanics

and special relativity.

The harbingers of the �rst theory were introduced in the attempt of �nding a

motivation for the �awed spectral radiance of black bodies as a function of wave-

length. Classical calculations performed by Lord Rayleigh and Sir James Jeans

showed that the radiation emitted by a blackbody increases as the frequency grows,

thus resulting in an inconsistency between theoretical prediction and experiments.

Such a problem is nowadays addressed as ultraviolet catastrophe (coined by Paul

Ehrenfest in 1911), and it was brilliantly solved by Max Planck [1] by assuming the

existence of energy quanta. Borrowing Poincaré's words, we can brie�y say that:

Planck [. . . ] devised his quanta theory, according to which the exchange

of energy between the matter and the ether�or rather between ordinary

matter and the small resonators whose vibrations furnish the light of

incandescent matter�can take place only intermittently. A resonator can

not gain energy or lose it in a continuous manner. It can not gain a

fraction of a quantum; it must acquire a whole quantum or none at all.

This working hypothesis shed light on a series of rather obscure phenomena

which can only be explained by taking Planck's postulate for granted. For instance,

the �rst application of the principle of quantized energy is the model associated to

the well-known photoelectric e�ect devised by Albert Einstein [2], which earned him

the Nobel Prize in 1921.
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On the other hand, a similar course of events led to the formulation of special

relativity. Before its advent, it was believed that light waves propagate into a lu-

miniferous aether, and several methods were conceived with the aim of detecting it

by using the relative motion of matter through the aether. Among the proposals,

the most renowned experiment is attributable to Michelson and Morley [3]. How-

ever, according to the acquired data, the speed of light seemed to be a constant

quantity, and this was in con�ict with the existence of a medium in which light

waves spread. A �ne quote to express the inadequacy of the aether is attributable

to Hendrik Lorentz:

The impressions received by the two observers A0 and A would be alike

in all respects. It would be impossible to decide which of them moves or

stands still with respect to the ether, and there would be no reason for

preferring the times and lengths measured by the one to those determined

by the other, nor for saying that either of them is in possession of the

�true� times or the �true� lengths.

Such a crucial outcome enshrined the failure of the luminiferous aether conjec-

ture, which was superseded by the principles of special relativity, that made their

appearance in literature for the �rst time in 1905 [4].

The aforementioned examples are only the most emblematic ones that convey

the relevant role covered by the adoption of principles in Physics. From Newton to

Einstein, from classical mechanics to QFT and GR, fundamental postulates have

been established for the edi�cation of solid and well-grounded theories. The worth

of a new theory is measured with its capability of recovering successful predictions

of old models in a suitable limit and at the same time going further for the descrip-

tion of still inexplicable phenomena. In both cases, reasonable physical principles

may potentially open a window for the re�nement of actual theoretical models and

for the foundation of new ones. In this perspective, we want to stress that the

above-mentioned view is recently impinging on quantum gravity domain. Indeed,

it is common knowledge that GR exhibits severe incompatibilities when it comes

to connect its regime of validity with the realm of QM. The hope is to formulate

a consistent QG theory, so that it would be feasible to investigate the behavior of

any interaction including gravity even when quantum e�ects are not negligible. In

current literature, many sharp proposals can be found (string theory, loop quantum

gravity, asymptotic safety in QG, causal set theory, etc.), but the sensation is that

there is still a great amount of conceptual issues and drawbacks to deal with. In

spite of this, all the candidates possess a discrete number of underlying similarities,
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namely supposed properties that should become manifest at the QG scale, which is

of the order of the Planck scale mp ∼ 1019 GeV. By virtue of this fact, the scien-

ti�c community advocates the possibility of providing QG with a set of principles

that any would-be model should satisfy [5]. Such a requirement restricts the list of

possible candidates, thus narrowing the circle of potential theories that rigorously

describe quantum and gravitational e�ects altogether.

The aim of this thesis consists in the analysis of selected physical principles of

major importance in the contemporary scienti�c landscape. However, this study is

not only focused on their theoretical aspects and/or their mathematical formulation,

but it also comprises a broader scenario. Indeed, in the next Chapters we will

discuss phenomenological implications and important predictions associated to the

investigated postulates. Moreover, we explore the possibility of coping with eventual

violations/generalizations of some of them, together with a discussion revolving

around immediate consequences and potential experimental windows in which detect

tiny deviations from the standard framework. In view of the aforesaid concepts, the

essay is organized as follows:

− Chapter 1 deals with the introduction and the description of the selected

fundamental principles. In particular, we present the main topics with a high degree

of accuracy and we discuss about each one of them separately. The treatment is

intended to be self-consistent, but not complete; for further details, the reader is

invited to consult the quoted references.

− Chapter 2 is devoted to the investigation centered around the Casimir e�ect.

After a brief overview of the phenomenon, we then shift the focus on its application

in di�erent contexts. The purpose of this action lies in the opportunity to evaluate

the tiny deviation from the usual measurable results that is directly related to the

violation of the principles presented in the �rst Chapter. In so doing, we also

emphasize the sensitivity of the Casimir experiment to new physics phenomenology.

− Chapter 3 addresses fundamental claims related to the possibility of identifying

the decay of an accelerated proton as a �theoretical check� of the Unruh e�ect. The

existence of a similar phenomenon is due to the requirement of general covariance in

QFT computations; therefore, the ful�llment of a fundamental principle necessarily

entails the occurrence of a physical manifestation not yet spotted. The intriguing

line of research developed after this idea is riddled with controversies when neutrino

mixing is taken into account. However, by still relying on general covariance, we

prove that a plausible solution to the dispute does exist.

− Chapter 4 tackles one of the cornerstones of GR, namely the equivalence

principle. Indeed, we point out di�erent contexts in which classical EP appears
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to be violated. Among other things, we encompass the case in which a charged

point particle object is freely falling within a region with non-vanishing tempera-

ture. Moreover, we explore the intertwining between neutrinos and EP violation,

which is already an existing topic in literature. This analysis involves some remarks

on the non-relativistic behavior of neutrinos as well as �avor transitions occurring

throughout a free propagation on a curved background.

− Chapter 5 investigates the consequences of generalizing the usual Heisenberg

uncertainty relations to the case in which gravitational e�ects cannot be neglected.

Such a scenario sinks its roots into quantum gravity; several QG models predict the

existence of a minimum length at Planck scale, which should be envisaged by suitably

modifying HUP. By resorting to the so-called generalized uncertainty principle, it

is intriguing to check how physical quantities associated to a given quantum e�ect

vary in response to the changes made to the standard HUP. In addition, such a

procedure may also be employed to compare predictions of di�erent QG candidates,

thus getting closer to a satisfactory framework in which it is possible to handle both

gravity and quantum mechanics.

− Chapter 6 contains conclusions and future perspective associated to possible

implementations of the arguments treated in the current work.





Chapter 1

A �rst glance at the selected

principles in Physics

In this Chapter, we introduce the physical principles under examination. A metic-

ulous concern is devoted to the presentation of the chosen topics so as to render

them self-consistent. Moreover, the analysis not only concentrates on the illustra-

tion of the treated arguments, but also endeavors to go beyond a mere overview of

them. Indeed, for all the investigated principles, we mention some considerations

about eventual generalizations and/or violations, both from a theoretical and an

experimental perspective. Such a scenario should be neither underestimated nor

ignored, since it conceals the possibility of encountering unexpected signatures of

new physics. Therefore, the thorough study and the continuous questioning of the

available physical postulates may be regarded as a valuable probe for predictions

and phenomenological implications that cannot be deduced from the current theo-

retical models. A more detailed analysis of such setting will be tackled in the next

Chapters.

On the other hand, an accurate research on this topic is also a bearer of cues

related to the contingency of a �dismissal� of one or more adopted principles. As a

matter of fact, it is not always indispensable to come up with novel proposals which

are added to the already existing ones; in some cases, it su�ces to give up on some

postulates to attain a workable model. Along this line, remarkable examples in the

list of QG candidates are given by the departure from the perturbative renormaliz-

ability of GR (�rstly explored in Refs. [6]) which led to the concept of asymptotic

safety [7] and the requirement of non-locality that fostered the advent of in�nite

derivative gravity models [8].

In the next Sections, we analyze the following physical arguments with the en-

suing order: general covariance, equivalence principle and Heisenberg uncertainty

1
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relations. Such a sequence does not suggest the relevance of one topic over the others,

but it has been chosen this way for the sake of convenience. All the aforementioned

principles have a huge impact on the modern setting of theoretical physics, and all

of them deserve the same prominent role they factually occupy.

1.1 General covariance

The principle of general covariance is one of the essential building blocks that led

Einstein to the implementation of general relativity [9]. In its most famous formula-

tion (cf. Ref. [10]), GC states that all physical laws retain the same form under any

arbitrary di�erentiable coordinate transformation (di�eomorphisms). On the other

hand, it can also be found within a di�erent shape, as it is demonstrated by the

expression reported in the book by Wald [11]:

The principle of general covariance [. . . ] states that the metric of space

is the only quantity pertaining to space that can appear in the laws of

physics.

This concept has represented a constant guide for Einstein throughout the devel-

opment of GR, even though he himself was on the verge of discarding it for a short

period of time. A similar occurrence is due to the fact that, although straightforward

in its statement, the magnitude of GC advent is not completely evident. Indeed, as

claimed in Ref. [10], the revolutionary implications withheld by GC fathered half a

century of confusion. A well-known case in this direction is due to Kretschmann [12],

who recognized no physical motivations behind the adoption of general covariance,

which in his opinion can be introduced ad hoc in any theory.

Moreover, the requirement of having the mathematical apparatus imposed by GC

has been object of a plethora of discussions also in more recent years. For instance, in

Ref. [13] it is argued that GC needs to be revisited and reformulated in a proper way

so as to clarify and to better expound the issues raised against it in the last century.

A more radical point of view is contemplated by the authors of Ref. [14], in which GC

is addressed as a �dogma� that should be reconsidered. According to their reasoning,

in all the works appeared in literature after the emergence of GR, physicists have

always preferred a given coordinate system instead of other ones with the purpose

of both de�ning quantities of physical interest and simplifying calculations. Such

a tendency suggests the possibility that GC can either be overcome in favor of a

di�erent principle or be regarded as a totally negligible requisite. In this sense, we

believe the authors of Ref. [14] are tackling the matter in an improper way. The
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message of their paper is the same expressed in the remarkable works [15] in which

Weinberg introduced the unitary gauge. In a nutshell, in particle physics and in

the context of spontaneous symmetry breaking, the aforesaid choice of gauge �xing

allows for the true degrees of freedom to become manifest in the Lagrangian, thus

ruling Goldstone bosons out of the analysis. In the framework of GR, we have the

�classical� counterpart of the above phenomenon, since GC implies that the set of

chosen coordinates are nothing but gauge functions.

As a clarifying introduction to the concepts treated up to now, it is worth con-

cisely recalling the steps taken by Einstein for the development of GR. In doing so,

we mainly follow the path traced in Refs. [16, 17].

1.1.1 The advent of general covariance

In 1912, Einstein moved to Zurich and started his collaboration with Marcel Gross-

mann, who introduced him to the mathematical developments in the �eld of absolute

di�erential calculus accomplished by Ricci and Levi-Civita. In these years, the sem-

inal papers aiming at the emergence of a general theory of relativity were published.

In similar circumstances, the guiding light of GC was brighter than ever, since sev-

eral works contain hints in the direction of a set of equations for the gravitational

�eld of the kind

Gµν

(
g, ∂g, ∂2g

)
= k Tµν , (1.1)

in which Tµν is the stress-energy tensor of the source of gravity, whereas Gµν is a

function of the metric tensor and its �eld derivatives only1.

Although the physical intuition was �awless, Einstein believed that Gµν = Rµν .

However, such a choice would not return the experimentally successful Newtonian

limit, and this occurrence was seen as the �rst signal of a premature reappraisal of

GC role. Moreover, the requirement that the same metric solution of (1.1) is still a

solution after a change of coordinates, namely

g′µν(y) =
∂xα

∂yµ
∂xβ

∂yν
gαβ(x) , (1.2)

led Einstein to further question the requirement of a generally covariant theory [18].

The idea underlying the previous hypothesis can be summarized in the hole argu-

ment2.
1As well-known, later on the above quantity was discovered to be the Einstein tensor we are

familiar with.
2For a pedagogical explanation involving the Schwarzschild solution explicitly, see Ref. [19].
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The hole argument

Suppose to consider a portion of spacetime where there is no matter (i.e. Tµν = 0),

which will be labeled as �hole�. The solution of the �eld equations (1.1) provides us

with a metric tensor gµν(x) that de�nes the gravitational �eld in a given coordinate

system. For the sake of transparency, we can focus the attention on two points

belonging to the hole, A and B, and suppose that the former is located in a �at

region whereas the latter is not (see Fig. 1.1, left part).

Figure 1.1: In this picture, the grey portion is where the stress-energy tensor is non-
vanishing, whilst no matter is present in the white part. The straight lines
specify a �at region of spacetime while the wiggly ones denote the presence of
curvature.

Let us now perform a change of coordinate system xµ → yµ(x), which means

that gµν(x)→ g′µν(y) with the transformation law exhibited in (1.2). In performing

such step, we demand yµ(x) to be made in such a way that xµ = yµ outside the

hole while smoothly changing inside of it. In particular, we want to exchange the

positions of the points A and B introduced before. Then, we de�ne a new metric

g′µν(x), which is the starting metric g written in the new coordinate system yµ, but

expressed by employing the old coordinates xµ instead of yµ. By so doing, we now

have two distinct gravitational �elds expressed in the same coordinate system. At

this point, GC tells us that g′µν(x) is still a solution for (1.1), but as such it produces

a radically di�erent interpretation. Indeed, because of the choice made for the set

of yµ, we know for sure that inside the hole there are two solutions of the same �eld

equations that behave di�erently. To ensure this, we note that, according to the

setting given by g′µν(x), the �at region is now occupied by the point B whilst A is
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placed in the curved one (see Fig. 1.1, right part).

The above outcome conveys that (1.1) is not capable of describing physics at

the spacetime points A and B, thus lacking determinism. Actually, there are two

conclusions one can come up with after having analyzed the hole argument:

• general covariance is not a necessary principle for the theory;

• points belonging to the spacetime manifold have no physical meaning.

Point-coincidence argument

The key to solve the dichotomy lies in the second option: the spacetime manifold

has no per se physical interpretation. In the complete formulation of GR, regarding

this point Einstein wrote [9]:

That this requirement of general covariance, which takes away from space

and time the last remnant of physical objectivity, is a natural one, will

be seen from the following re�exion. All our space-time veri�cations

invariably amount to a determination of spacetime coincidences.

Such a statement �nally settles the misunderstanding revolving around the cru-

cial role played by GC in the construction of general relativity. It is often addressed

to as the spacetime coincidence argument [17], but also as point-coincidence argu-

ment [16, 20]. The concept behind these names is simple but at the same time

astonishing, and in order to e�ectively illustrate it we refer to the con�guration

already used for the hole argument.

As shown before, we have realized that the points A and B on the spacetime

manifold do not cover a relevant role from a physical perspective; equivalently, we

can say that they are not associated to any observable quantity. Suppose now to

introduce two point-like test particles3 inside the hole whose world lines intersect in

the point B in the reference frame where the metric tensor is gµν(x) (see Fig. 1.2,

left part). Such intersection may represent some sort of interaction that takes place

in B, and therefore it is an event which can be detected. Then, if we perform the

same description according to the metric tensor g′µν(x), we note that the interaction

between particles does not occur in B anymore, but rather in A (see Fig. 1.2, right

part)! In light of this, it is now meaningful to ask whether the gravitational �eld

is vanishing or not in the spacetime point where the test particles interact. The

answer is identical both for gµν(x) and g′µν(x), which implies that determinism is

3By test particle we mean a physical entity whose presence does not alter the environment in
which its motion takes place.
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left untouched. In order to achieve this result, we have had to require background

independence, which can be loosely explained by saying that the spacetime structure

has a relevance only when dynamical entities (physical �elds) are present [17].

Figure 1.2: The di�erence between this �gure and Fig. 1.1 consists in the world lines of
point-like test particles appearing here and sketched in red. Scribbles denote
interactions between particles.

We then conclude that both gµν(x) and g′µν(x) describe the same �eld, as it

should correctly be. Another rephrasing to express the aforesaid concept conveys

that the localization on the manifold is simply a gauge, thus being not relevant at

all. A di�eomorphism acting on a �eld simply changes its position on the spacetime

manifold (i.e. the rede�nition of the metric tensor in the previous example), but such

a freedom is harmless, since the physical properties and events whose description

should remain invariant for any observer (i.e. the interaction of the test particles in

Fig. 1.2) are �dragged� along. Therefore, in Rovelli's words [17]:

A state of the universe does not correspond to a con�guration of �elds on

M (spacetime manifold). It corresponds to an equivalence class of �eld

con�gurations under active di�eomorphisms.

With the aforementioned considerations, we stop the overview of general covari-

ance; for further details, we remand the reader to Refs. [16, 17, 20] and references

therein. However, before moving on with the next principle, we must introduce an-

other concept that is strictly related to GC, namely Lorentz invariance, which will

also be taken into account in the next Chapters.
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1.1.2 Lorentz invariance

In order to verify the relation between GC and LI, it is opportune to resort to

another �representation� of general relativity, which is based on the notion of vierbein

�elds (also known as tetrads) rather than the metric tensor. Such a description

immediately stems from another principle Einstein relied upon for the development

of GR, namely the equivalence principle, but its meaning will be thoroughly tackled

in the next Section. For our purpose, all we need to know here is that, by virtue

of EP, the e�ects of a gravitational �eld are always locally removable. By this

de�nition, we learn that it is possible to eliminate the impact of gravity in a small

neighborhood Ix of a given point x belonging to the spacetime manifold M . Such a

procedure entails that in Ix we are allowed to approximate the region of M with its

projection on the �at tangent space in x, denoted as TM(x) (see Fig. 1.3).

Figure 1.3: This �gure depicts a streamlined view of a generic spacetime manifold M and
its tangent space TM (x) in x. An arbitrary neighborhood of x is indicated as
Ix.

To achieve such a goal, we de�ne a set of four covariant vectors called vierbein,

eâµ(x), a = 0, . . . , 3, which are an orthonormal basis for TM(x). Therefore, they are

orthonormal with respect to the metric of the tangent space [10, 11, 21], that is ηâb̂

gµν eâµ e
b̂
ν = ηâb̂ . (1.3)

From the above expression, one can derive also the dual basis eµâ , which clearly
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satis�es the conditions

gµν e
µ
â e

ν
b̂

= ηâb̂ , eâµ e
µ

b̂
= δâ

b̂
. (1.4)

With the aid of vierbein, the metric tensor gµν is locally determined by the �elds eâµ
up to an arbitrariness due to local Lorentz transformations. Indeed, if Λ is a generic

Lorentz group transformation4, which thus leaves η invariant, then ẽâµ = Λâ
b̂
eb̂µ and

hence

g̃µν = eĉµ Λâ
ĉ ηâb̂ Λb̂

d̂
ed̂ν = eĉµ e

d̂
ν ηĉd̂ = gµν . (1.5)

The description according to either g or e is completely equivalent, but with the

employment of vierbein we are able to project every tensorial quantity from the

manifold to the tangent space and vice-versa. In fact, given a generic (m,n) tensor

on M , say T µ1...µmν1...νn
, which under an arbitrary di�eomorphism transforms as

T̃
µ′1...µ

′
m

ν′1...ν
′
n

(y) =
∂yµ

′
1

∂xµ1
· · · ∂y

µ′m

∂xµm
∂xν1

∂yν
′
1
· · · ∂x

νn

∂yν′n
T µ1...µmν1...νn

(x) , (1.6)

and we let tetrads act on it as

T â1...âm
b̂1...b̂n

= eâ1µ1 . . . e
âm
µm e

ν1
b̂1
. . . eνn

b̂n
T µ1...µmν1...νn

, (1.7)

we are left with an object which transforms as a (m,n) tensor under the local Lorentz

group

T̃
â′1...â

′
m

b̂′1...b̂
′
n

= Λ
â′1
â1
. . .Λ

â′m
âm

Λb̂1
b̂′1
. . .Λb̂n

b̂′n
T â1...âm
b̂1...b̂n

, (1.8)

but as a scalar under di�eomorphisms.

For what concerns vierbein, instead, they transform as vectors both under dif-

feomorphisms and under local Lorentz transformations

ẽâµ(y) = Λâ
b̂

∂xν

∂yµ
eb̂ν(x) . (1.9)

The sti� thread that connects GC and LI is bonded to the work made by e, which

links with a one-to-one correspondence geometric elements from the curved space-

time manifold to the �at tangent space. Indeed, the principle of general covariance

onM �nds its �counterpart� in the local Lorentz invariance on the �at tangent space.

Evidently, should M be �at everywhere, we talk of global Lorentz invariance, thus

recovering special relativity. In this perspective, LI and LLI are to be understood
4Since the transformation is local, in the following Λ must be regarded as Λ(x), but for notational

simplicity we omit the spacetime dependence.
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as one of the multiple facets with which GC manifests itself in general relativity.

Lorentz violation

Although beautifully embedded in the GR framework, in recent years LI (but equiv-

alently also LLI) has been challenged both theoretically and experimentally (for a

complete survey, see Ref. [22]). As a matter of fact, several QG theories predict

the existence of Lorentz invariance violation at all energy scales, even though for

current feasible laboratory tests such breaking is expected to be extremely small.

In this direction, the most famous model that accounts for LIV is represented by

the �Standard Model Extension�, arising from investigations in the context of co-

variant string �eld theory [23]. In few words, SME5 is built by obtaining scalars

from the contraction of SM and gravitational �eld with opportune coe�cients that

induce Lorentz (and CPT) violation [25, 26]. As expected, such coe�cients turn out

to be heavily suppressed, and thus assumed extremely tiny if analyzed at current

scales. However, many focused experiments have been performed with the purpose

of establishing constraints on their values and to gather precious information on

them [27].

The academic appeal stirred up by SME opened the doors for novel generaliza-

tions of LI so as to include the energy scale at which QG e�ects are believed to be

relevant, namely the Planck length `p ' 10−35m. For instance, an interesting model

that extends the results of SR in order to render `p invariant as well as the speed of

light c is the so-called DSR, which stands for �Doubly special relativity� [28]. After

the �rst works on this issue, other papers have approached the same idea but with

other Planck units, as the Planck mass mp ' 10−8Kg [29] and the Planck energy

Ep ' 109 J [30]. Although the theoretical apparatus su�ers from several problems

that still need to �nd a de�nite answer [31], the phenomenological implications of

DSR prove to be extremely helpful in constraining Lorentz violation [22]. This holds

true since DSR does not contain any preferred reference frame, as it instead occurs

for other LIV models. In this connection, it is worth emphasizing that all our study

is intended to be performed at zero temperature, T = 0; if we had T 6= 0, then

LIV would automatically become manifest. A similar consideration is easily sup-

ported by recalling that the presence of a thermal bath naturally induces spatial

anisotropies, and the emergence of a preferred reference frame (i.e. the one in which

the thermal bath is at rest) immediately breaks LI. An interesting derivation of LIV

at �nite temperature in the context of QFT can be found in Ref. [32].

A question that spontaneously arises at this point is: what about general co-
5For a pedagogical introduction on this topic, see Ref. [24].
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variance? At the end of Sec. 1.1.2 we have said that LLI is an aspect that can be

directly related to GC, which means that an hypothetical LIV could in principle

interfere with general covariance implications. However, this is not the case, since

GC can still be preserved in a Lorentz-violating theory [22]. On the other hand, as

suggested in Ref. [22], should Lorentz-violating �elds not be treated as dynamical

entities, LIV would be at odds with lack of prior geometry [25, 26, 33]. Addition-

ally, LIV also implies a violation of the equivalence principle, in that it induces a

mass-dependent acceleration that contradicts one of EP formulations. In order to

better elucidate the meaning of the last statement, we now turn the attention on

another fundamental postulate which is counted within GR building blocks.

1.2 Equivalence principle

As already anticipated at some point in the previous Section, we have given a def-

inition for the equivalence principle. For the sake of completeness, we recall the

formulation stated before: �the e�ects of a gravitational �eld are always locally re-

movable� [10, 11, 34]. Subsequently, we have partially clari�ed what is meant for the

word �locally�, which is a crucial aspect that should not be underestimated. Here,

we expand the discussion centered around the above concept and try to carry out an

exhaustive survey on EP, which was addressed by Einstein as �the happiest thought

of my life�.

To begin with this topic, it must be said that the message of the equivalence

principle was disclosed long before the advent of GR. Indeed, it was Galilei who

�rst observed that the acceleration of a test body attributable to gravity is mass-

independent. Later on, also Kepler (in his work �Astronomia Nova�) and Newton

(with his �Principia�) dealt with several implications related to the implementation

of EP. However, only in 1907 such principle was actually spread and explicitly tackled

by Einstein; in its �rst form, EP can be summarized by the words of Einstein (1907):

we [. . . ] assume the complete physical equivalence of a gravitational �eld

and a corresponding acceleration of the reference system.

To put it di�erently, there is no way an observer closed in a room with no windows

and openings can discriminate between the presence of a gravitational �eld and a

uniformly accelerated motion in absence of gravity. This holds true since it is always

possible to simulate the e�ects of gravity by introducing an ad hoc magnitude for

the acceleration. In particular, if with φ we denote the gravitational potential, we

immediately guess that

a = −∇φ , (1.10)
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is the exact acceleration a system should possess so as to mimic the presence of

gravity (see Fig. 1.4). Note that, in writing down (1.10), we have tacitly assumed

the equality between the inertial mass mi and the gravitational mass mg. Such an

enforcement is another convenient formulation to regard the equivalence principle.

Figure 1.4: Spiderman swinging in a closed room cannot distinguish whether he is in
a region of spacetime where the gravitational �eld produces an acceleration
equal to g or in a rocket with an unchanging rate of acceleration a if |g| = |a|.

As a further remark related to the above arguments, we underline that, should

the previous observer freely fall together with the room and all pieces of furniture,

he/she would experience no e�ects that can be associated to a gravitational �eld.

Such an occurrence is traceable to the universality of the gravitational interaction,

which renders it radically di�erent from the other fundamental interactions. Ad-

ditionally, the universality of free-fall implies that, in these conditions, there is no

such thing as acceleration, and hence it is as if no forces are detectable. In this

sense, a freely-falling reference frame is comparable to a local inertial frame, which

thus legitimates the notion of LLI introduced in the previous Section. Along this

line, another powerful proposition of the equivalence principle claims that in any

local inertial (Lorentz) frame, all the laws of physics must reduce to the description

predicted by special relativity [10, 35]. The strength of the last rephrasing of EP lies

in the opportunity to suitably extend all the known physical laws of SR according

to the minimal coupling principle [34]. In practice, by virtue of EP, we know how to

properly generalize a SR framework to the case in which gravitational e�ects are no

longer negligible6. A remarkable result that stems from this correspondence can be
6For instance, the �comma-goes-to-semicolon� rule [10] is a consequence of that.
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recognized with QFT in curved spacetime, which essentially resorts to the aforesaid

procedure to account for the presence of gravity in quantum �eld theoretical pro-

cesses. Such a conceptually simple extension of QFT is of crucial importance, since

it is thought that the analysis of quantum phenomena on curved background repre-

sents a semi-classical limit of a complete quantum gravity theory, thereby binding

all QG predictions to be consistent with QFTCS under certain circumstances.

At this stage, there is still one point that needs to be clari�ed, namely the rel-

evance of the adjective �local� within our statements concerning EP. As a matter

of fact, the equality between an inertial and a freely-falling system has only a local

signi�cance. No sooner do we deal with a wider portion of spacetime than all impli-

cations of EP fail to apply. This conclusion is attributable to the fact that gravity

is curvature of spacetime. In order to show it, let us recall that a freely-propagating

test body in presence of a gravitational �eld moves along a given geodesic, which

(geometrically speaking) is the curve that minimizes the distance between two points

on a manifold. Obviously, in absence of gravity, geodesics are mere straight lines.

However, when the spacetime manifold is curved due to the presence of a gravita-

tional source, geodesics follow the background curvature, thus bending themselves

in return [10, 34]. Therefore, it should be clear by now that the locality of the

equivalence principle is related to the fact that only in a small portion of spacetime

geodesics can be approximated by the straight lines tangent to the manifold. Such

an idea is easily conveyed by means of a gedanken experiment7: suppose to have two

objects ��oating� (i.e. no forces are present) in an elevator whose relative distance

at a given time t is d(t). To achieve the desired outcome, we have to require that

all relative gravitational interactions are totally negligible. If the system is glob-

ally inertial, at a later time t′ > t an observer inside the elevator would measure

the same distance d(t′) = d(t) between the objects (see Fig. 1.5, right part). On

the other hand, if the system is only locally inertial and the initial condition are

identical to the previous setting, after a su�cient time t′ > t an observer comoving

with the freely-falling objects and elevator would measure d(t′) < d(t) (see Fig. 1.5,

left part). Indeed, if the considered region of spacetime is su�ciently large, the

gap among geodesics followed by the test bodies starts narrowing, thus allowing the

objects to come closer throughout the free-fall.

If we want to highlight this aspect even more, we can rely on the existence of the

so-called Riemann normal coordinates, which can be used to cast the metric tensor

in a form that resembles Minkowski metric. Without entering the geometric details
7For a more rigorous derivation of this concept, see Appendix A.
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Figure 1.5: The relative distance between two apples is not the same if they are freely
falling under the in�uence of an external gravitational �eld. Note that the
height of the apples with respect to the �oor is constant for an observer inside
the elevator. Therefore, the lines that go down should be regarded as the
temporal evolution of the system, and not as an actual fall.

(see Ref. [10]), one can prove that in such coordinate system gµν is denoted by [36]

gµν = ηµν +
1

3
Rµανβ x

α xβ + O
(
x3
)
. (1.11)

From the above expression, one can comprehend that locality is a necessary requisite

to treat any freely-falling reference frame as an inertial frame. The second term of

the r.h.s. is the error committed in performing such an approximation, and as long

as spacetime is curved the Riemann tensor is always non-vanishing.

1.2.1 Di�erent formulations

As we have already seen so far, there is a plethora of ways with which to refer to

EP: although several rephrasing are completely equivalent, some of them are more

general than others. In what follows, we try to succinctly give a panorama of all

the currently a�ordable formulations. To this aim, we essentially follow the scheme

adopted in Refs. [37, 38], in such a manner to avoid the confusion persisting in

literature about the di�erent statements to indicate EP.

Newton Equivalence Principle (NEP): This principle has already been tackled

in the comment after (1.10). As a matter of fact, this axiom a�rms that, in

the Newtonian limit, mi = mg. An equivalent expression to say it consists in
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recalling once again the universality of gravity, which operates indiscriminately

on any form of matter and energy.

Weak Equivalence Principle (WEP): In a gravitational �eld, the motion of test

particles with negligible self-gravity does not depend on their physical features.

In order to quantify self-gravity, we can duly introduce the dimensionless pa-

rameter

λ =
Gm

rc2
, (1.12)

with G being the Newton constant, c the speed of light, m the mass of the test

body and r its linear size. Equation (1.12) is the ratio between the gravita-

tional and the rest energy provided that NEP holds. Therefore, we can assert

that as long as λ� 1 self-gravity can be safely neglected.

Roughly speaking, this notion can be easily visualized by imagining that, if

two test particles have the same initial conditions, they travel along the same

geodesic, regardless of their properties (i.e. mass, charge, etc.).

Gravitational Weak Equivalence Principle (GWEP): In a gravitational �eld

and in vacuum, the motion of test particles does not depend on their physical

features. Di�erently from the previous statement, we have relaxed the condi-

tion on self-gravity, which implies that GWEP → WEP as λ → 0. However,

such modi�cation entails a further requirement, namely the presence of vac-

uum. This is crucial, otherwise gravitational �eld of test bodies interacts with

the physical environment in which they propagate. In so doing, due to the

action-reaction principle, they would feel a net force that would jeopardize the

universality of the gravitational interaction, since the aforementioned force

would be a function of the particles' properties.

Einstein Equivalence Principle (EEP): The presence of a gravitational �eld does

not a�ect fundamental non-gravitational physical tests locally and in any point

of spacetime. At this point, it is worth stressing the relevance of some expres-

sions contained in the previous sentence. By �fundamental physical tests� we

refer to experiments that probe the validity of equations describing the be-

havior of single particles, thereby undermining the ones which can be deduced

by them. For instance, the rules that govern the motion of composite systems

are not contemplated by EEP, since for such systems local gravitational e�ects

may be detected via experimental tests. The term �locally� should be clear by

now and it is manifestly related to LLI. Finally, with the line �in any point

of spacetime� we intend that there are no privileged points on the spacetime
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manifold. Consequently, it is unimportant to know where and when in the

universe the experiment is conducted, since the outcome shall not depend on

it. A similar idea is often reported as local position invariance [35].

In light of this, we observe that EEP is the simultaneous requirement of weak

equivalence principle, local Lorentz invariance and local position invariance [35,

37].

Strong Equivalence Principle (SEP): The presence of a gravitational �eld does

not a�ect all fundamental physical tests (including gravitational physics) locally

and in any point of spacetime. Insofar, from its de�nition it should be clear

that SEP is the simultaneous requirement of gravitational weak equivalence

principle, local Lorentz invariance and local position invariance. Hence, from

the perspective of such principle, it is possible to perform even gravitational

local experiments in presence of an external gravitational �eld, with the results

not being invalidated by that.

For a more detailed reading on this topic and on the interplay between the above

non-equivalent EPs, see Refs. [35, 37, 38].

1.2.2 Parametrized post-Newtonian formalism

As predictable, the equivalence principle is the protagonist of a vast variety of lab-

oratory tests. For its easiest form, namely mi = mg, many experiments have been

developed throughout the years. It is su�cient to mention that Newton himself was

the �rst one to indirectly verify the assumption of equal inertial and gravitational

mass by evaluating the period of a pendulum with a test body attached to its free

end. Later on, the tests were re�ned by Loránd Eötvös through the adoption of a

torsion balance, which sharply increased the accuracy of the data acquirement. Af-

ter his pioneering works, several upgrades have been performed to the experimental

setting, thus resulting in a net improvement of the sensitivity of the instruments.

However, for the purpose of the current essay, the relevant theoretical tool to

be discussed is represented by the post-Newtonian formalism [35, 37, 39]. Such an

approximation is applicable to a system of slowly-moving particles8 which are tied

together by gravitational interactions. For this reason, it is typically confused with

the weak-�eld limit, which instead is a completely di�erent analysis. In order to

tackle the above topic, we can assume the typical values of mass, mutual distance

among two bodies and velocity of the particles composing the studied system to be
8Here, by particles we can generally denote also extended objects.
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m, r and v, respectively. In classical mechanics, it is well-known that, if the kinetic

and the gravitational energy are of the same magnitude, then

v2 ∼ Gm

r
. (1.13)

To go beyond Newtonian mechanics, we must require higher powers in the small

parameter v2 or equivalently Gm/r. In this sense, by post-Newtonian approximation

we basically mean an expansion of the metric tensor around the parameter v2,

which is dimensionless9. The details of calculations involving such expansion are

beautifully covered in Ref. [39], and do not play an important aspect to approach

here.

On the other hand, what we need to emphasize is that the aforesaid procedure

may be applied to verify eventual predictions of extended theories of gravity by

means of simple tests which do not require experiments in the relativistic and in the

strong gravity regime. Indeed, there exists a classi�cation of gravitational theories

based on the introduction of ad hoc coe�cients that are model-dependent. A similar

di�erentiation is encountered within the so-called parametrized post-Newtonian for-

malism, which juxtaposes the metric potentials arising from the post-Newtonian ex-

pansion with distinct parameters, each of them having a precise signi�cance [35, 37].

According to the PPN method, there are currently ten available parameters used

to catalogue a given gravitational model [35]; their meaning and values for GR are

displayed in Table 1.1.

Table 1.1: The ten PPN parameters

Parameter Meaning Value in GR
γ Space curvature produced by unit rest mass 1
β Nonlinearity e�ects for gravity 1
ξ Preferred-location e�ects 0
α1 0
α2 Preferred-frame e�ects 0
α3 0
α3 0
ζ1 0
ζ2 Violation of total momentum conservation 0
ζ3 0
ζ4 0

In the following Chapters, we will be mainly concerned with the parameters γ
9Recall that we have set c = 1, which implies that the expansion parameter is actually v2/c2.
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and β, also known as Eddington-Robertson-Schi� parameters. They are the only

non-vanishing parameters both in GR and in scalar-tensor theories of gravity.

In particular, γ and β will be employed to properly quantify the violation of SEP.

In this direction, it is conventional to introduce the so-called Nordtvedt parameter

η [40, 41], de�ned as

η = 4 (β − 1)− (γ − 1) . (1.14)

Strong equivalence principle is violated as long as η 6= 0 [41]. In reporting the expres-

sion (1.14), we have tacitly required the absence of anisotropies and preferred-frame

e�ects [35, 37, 39], which should have been described by other PPN parameters that

will be set to zero in all the upcoming considerations (see Ref. [41] for more pieces

of information). Furthermore, we will assume that nonlinear e�ects are essentially

described by the contributions coming from GR, thus yielding β = 1 (see Table 1.1),

which in turn entails

η = 1− γ . (1.15)

With this �nal remark, we have concluded the preparatory dissertation on EP by

studying all of its possible aspects and rephrasing. Further comments and observa-

tions on such a fundamental principle of theoretical physics are retained for later.

We now turn the attention on the last principle left to take into account.

1.3 Heisenberg uncertainty principle

Let us now move the focus from GR aspects to a completely di�erent scenario

involving features of quantum mechanics. As well-known, one of the cornerstones

of QM is represented by Heisenberg uncertainty relations, which were heuristically

deduced for the �rst time in 1927 [42]. In a nutshell, the message hidden in this

principle is plainly summarized in few words [42]:

The more precisely the position is determined, the less precisely the mo-

mentum is known in this instant, and vice-versa.

The impact of such a simple observation is ground-breaking; it is impossible to

exactly learn at the same time both the position and the momentum of a particle. In

some sense, such an awareness totally dismantles determinism as long as the analysis

is carried out in the quantum regime. A similar �epiphany� �nds its inspiration

from several considerations regarding the wave-particle duality. The aforementioned

concept was �rstly introduced by Louis de Broglie, who claimed that all matter

possesses a wave-like behavior, which can be manifest up to some opportune scale.
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The core assumption for this strong statement consists in relating the momentum p

of an arbitrary object with the corresponding wavelength λ of the associated wave

as

λ =
h

p
, (1.16)

where h is the Planck constant.

After few years, de Broglie's hypothesis received separate experimental con�rma-

tions [43, 44] which exhibited electron di�raction, thus proving the wave-like nature

of an elementary particle. The laboratory tests that coped with this kind of phe-

nomenon resorted to the double-slit experiment performed by Thomas Young in

1801. In order to grasp its connection with HUP, it is worth brie�y addressing this

argument before moving on.

1.3.1 Double-slit experiment

Suppose to have an apparatus that generates electron beams having nearly the same

energy and di�used in a su�ciently large solid angle. Not distant from the source,

let us place a wall made up of some material that absorbs all the incoming electrons,

and having two narrow slits10 which allow for the passage of the elementary particles.

Finally, locate a screen that is capable of revealing particles just behind the electron

absorber (see Fig. 1.6).

Figure 1.6: In this �gure, the experimental setup for the double-slit experiment is
sketched.

At the beginning, only few particles are visible on the screen, and their distri-
10Such that only few electrons at a time are permitted to go through.
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bution appears to be completely random. However, as the screen starts enriching

with more and more electrons, the typical fringes of wave interference make their

appearance on the detecting surface. Particles tend to �ll the sector where the in-

terference is constructive, while leaving the area of destructive interference empty

(see Fig. 1.7).

Figure 1.7: As the number of electrons captured by the screen increases, the interference
pattern becomes manifest. This picture is taken from Ref. [45].

Therefore, we observe that the �nal pattern is not just the superposition of

the two patterns we would have obtained by considering the passage of electrons

through each single slit; in a similar situation, no interference fringes should have

become manifest on the screen. In fact, particles crossing one slit should in prin-

ciple follow their own path without being a�ected by particles traversing the other

slit [46]. Such is the �classical� explanation one may expect before looking at the

outcome of the experiment, but this is not the case. The occurrence of a wave-like

behavior acknowledges the impossibility of talking about the notion of a trajectory

for particles. We cannot tell whether an electron has passed through one slit or

another, because we simply cannot regard the electron as a classical object with a

well-de�ned trajectory.

However, it would be feasible to perform a laboratory test analogous to the one

presented before with the addition of a device that is able to tell which particle

crosses which slit (for more details, see for example Ref. [47]). Within these con-

ditions, the outcome of the experiment would not return the interference fringes

on the screen, but rather a distribution which complies with the aforesaid classical

superposition! What happens here is that the detection of the electrons before they

reach the screen has introduced an interaction between the particles and the device,

thus altering the properties of the analyzed entities. Consequently, this phenomenon

(and many others in this direction) leads us to the ensuing conclusion: any mea-

surement of a physical system incontrovertibly perturbs its state. Until the �rst tests

were performed at a microscopic scale, no one could have ever been aware of that,

since in the classical realm perturbations induced by observations are always negli-

gible. On the other hand, when it comes to the quantum regime, this aspect cannot

be overlooked anymore, and the experience currently treated is a straightforward
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indication of such concept.

In view of the above remarks, the link between HUP and the fundamental tests

tackling electron di�raction via double-slit experiments should now be apparent.

Both the failure in leaving a physical system unperturbed after a measurement and

the absence of a proper notion of a well-de�ned trajectory entail the requirement

of recognizing some fundamental restriction imposed by Nature itself. A similar

unbreakable bound can be identi�ed with the Heisenberg uncertainty principle.

So far, we still have not exhibited a proper formulation to give mathematical sig-

ni�cance to HUP. Heisenberg himself was not capable of including in his article [42]

a rigorous expression that can formally accommodate the content of the principle

he developed. In what follows, we will �ll this gap by relying on the operational

de�nition of Howard Percy Robertson [48], who generalized the earlier works by

Earle Hesse Kennard [49] and Erwin Schrödinger [50].

1.3.2 Mathematical formulation

Let us consider a generic Hermitian operator O; we de�ne the associated standard

deviation as

σO =
√
〈O2〉 − 〈O〉2 , (1.17)

with 〈. . . 〉 denoting the expectation value of the operator on a generic state |Ψ〉
belonging to a given Hilbert space. We can then take two such operators A and B

and examine the product of their respective variance, that is

σ2
A σ

2
B =

(
〈A2〉 − 〈A〉2

) (
〈B2〉 − 〈B〉2

)
. (1.18)

By invoking Chauchy-Schwarz inequality, one can verify that

σ2
A σ

2
B ≥

∣∣∣〈Ψ| (A− 〈A〉) (B − 〈B〉) |Ψ〉
∣∣∣2 . (1.19)

At this point, simple mathematical manipulations allow us to deduce the following

inequality, also known as Schrödinger uncertainty relation [50]:

σA σB ≥

√(
1

2
〈{A,B}〉 − 〈A〉〈B〉

)2

+

(
1

2 i
〈[A,B]〉

)2

. (1.20)

Starting from (1.20), it is a straightforward task to check that also Robertson un-

certainty relation

σA σB ≥

√(
1

2 i
〈[A,B]〉

)2

, (1.21)
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holds. However, it must be said that, for the above inequalities to be reliable, there

are some conditions the domain of the operators A and B must satisfy, but we are

not going to discuss them here. For more information on these technical issues, we

remand the reader to Ref. [51].

In order to recover Kennard result [49], we have to assume our generic operators

to be the momentum and position operators, and thus make the identi�cation A = x

and B = px. With such a choice, by recalling that the canonical commutation

relation for the above quantities is [x, px] = i~, we obtain the well-known inequality

that encompasses HUP

σx σpx ≥
~
2
. (1.22)

Equation (1.22) implies the existence of a region σx σpx of size ~ in the phase space in
which physical predictions cannot be tested. On the other hand, if taken separately,

there is no limit to precise measurements of either position or momentum; to put

it di�erently, arbitrarily short distances may in principle be detected via arbitrarily

high energy probes, and vice�versa. Despite this, we would like to stress one more

time that a similar characteristic does not involve the accuracy of current tests and

technology, but it rather expresses an intrinsic property of any quantum system.

Generalized uncertainty principle

The distinctive features and information contained in (1.22) are drastically modi�ed

if gravity is taken into account. Indeed, several QG models support the presence of

a minimum length at the Planck scale [52], thus ending up in a limited resolution

of spacetime, which would no longer appear smooth beyond the threshold `p due to

quantum �uctuations [53]. In light of these �ndings, it is natural to conclude that

HUP is not suitable for the description of a physical system at the QG scale.

In this regard, many studies (for instance, Refs. [54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82] and

references therein) have converged on the idea that the HUP should be properly

modi�ed to �t in a consistent QG picture, so as to account for the existence of a

fundamental minimum length. In this sense, one of the most adopted generalizations

of the uncertainty principle (GUP) is given by

σx σpx ≥
~
2
± 2|β|~

σ2
px

m2
p c

2
, (1.23)

where the sign ± refers to positive/negative values of the dimensionless deformation

parameter β, which is assumed to be of order unity in some QG models, and in
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particular in string theory [58, 60].

Figure 1.8: In this �gure, the qualitative di�erence between HUP and GUP is displayed
when inequalities (1.22) and (1.23) are saturated. For simplicity, we have set
~ = c = G = 1.

Although seminal papers on this topic always assumed β to be a positive number,

several claims in literature [78, 79, 80, 82, 83] a�rm that it might come with a

minus sign in (1.23). If such an outcome is taken to be valid, then there exists a

maximal value for σpx around the Planck scale for which σx σpx ≥ 0, thus implying

a �classical� behavior of physical phenomena for energetic regimes close to mp. The

scenario depicted so far is not entirely surprising; as a matter of fact, the intertwining

between classical and quantum physics has already been discussed by Gerardus 't

Hooft [84] by introducing the so-called �cellular automaton interpretation� of QM.

Before ending the current Chapter, we remark that, starting from (1.23), one can

go back to the commutator between the momentum and position operators, thus

obtaining the deformed canonical commutation relation

[x, p] = i~
(

1± |β| p2

m2
p c

2

)
, (1.24)

which is exact for mirror-symmetric states (i.e. 〈p〉 = 0). By means of (1.24), it is

possible to study in detail the quantum mechanical structure underlying GUP [85].

As a �nal interesting observation, we would like to stress that the existence of

modi�cations to (1.22) can be found in the context of quantum mechanics without
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invoking the presence of gravity. In this perspective, it is worth mentioning the

so-called Ozawa uncertainty relations [86], and in particular their extension to the

framework of noncommutative QM [87], which possess several contact points with

QG models.





Chapter 2

Casimir e�ect as a probe for new

physics

In the previous Chapter, the dissertation was exclusively centered around the intro-

duction of the physical principles the current essay deals with. In passing, we have

also mentioned several hypotheses and scenarios that may jeopardize the validity of

the aforesaid principles. However, only accurate laboratory tests and observations

have the last word on such issues, since the worth of a brand-new theoretical model

is enshrined by its predictive power. Therefore, in order to render our discussion

quantitatively meaningful, it is convenient to identify an e�cient probe that is able

to detect tiny deviations from standard outcomes so as to describe small signatures

of new physics. In this direction, the Casimir e�ect [88] proves to be a valuable tool

for the cause. This physical phenomenon is extremely important, because it can be

regarded as the �rst-ever manifestation of the zero-point energy.

The Casimir e�ect occurs whenever a quantum �eld is con�ned in a small region

of space. The con�nement gives rise to a net attractive force between the binding

objects, whose intensity depends not only on the geometry of the volume in which the

�eld is bound, but also on its nature (i.e. scalar, fermion, etc.) and on the spacetime

in which the experiment takes place (for a complete overview, see Ref. [89]). Indeed,

a rich literature can be found in connection with the Casimir e�ect in �at spacetime

and with di�erent geometrical settings (i.e. Refs. [90] and references therein) as well

as for the cases in which the background is curved by the presence of gravity (i.e.

Refs. [91, 92, 93, 94] and references there contained). In light of the aforementioned

�ndings, it is not hard to guess that the properties of an external gravitational �eld

are closely intertwined with the outcome of an experiment involving the Casimir

apparatus. Therefore, according to the theoretical model with which gravity is

described, we expect the observable quantities to change their usual behavior due

25
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to the existence of tiny corrections that can in principle be detected.

In the next Sections, we exhibit how the Casimir e�ect can be employed to test

the range of validity and the generalization of the physical principles presented in

the previous Chapter. In particular, we will show:

• the interplay between the Casimir e�ect and the gravitational sector of SME by

imposing an upper bound for one of the free parameters of the model;

• how to properly quantify the violation of EP for several quadratic theories of

gravity;

• the modi�cation of the standard outcomes related to the measurable quantities

of the Casimir e�ect when HUP is superseded by GUP.

Before thoroughly tackling the above points, it is worth brie�y recalling the key

aspects of the Casimir e�ect with a proper introduction to the subject. To this aim,

we �rst review the essence of the studied phenomenon by following Ref. [95], where

the authors investigate a con�ned two-dimensional massless scalar �eld on a �at

spacetime.

2.1 A quick glimpse at the Casimir e�ect

Let us then assume to have the aforesaid scalar �eld ψ(x, t) which satis�es the

boundary conditions

ψ(0, t) = ψ(D, t) = 0 , (2.1)

where D de�nes the distance between the two binding objects.

By virtue of the Klein-Gordon equation (∂2
t − ∂2

x)ψ = 0, the complete expansion

that accounts for (2.1) is [95]

ψ(x, t) =

√
1

D

∞∑
n=1

(
an e

−iωnt + a†n e
iωnt
) sin (ωn x)
√
ωn

, ωn =
|n|π
D

. (2.2)

Consequently, the zero-point energy per unit length between the plates can be writ-

ten as

ε0 =
1

D
〈0|H|0〉 =

π

2D2

∞∑
n=1

n , (2.3)

where H is the Hamiltonian operator of the free scalar �eld.

Equation (2.3) clearly yields an in�nite quantity which needs to be renormalized.

For this speci�c situation, the easiest method to get rid of the divergence is the
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Riemann zeta function regularization, which relies on the use of the same-named

special function de�ned as

ζ(x) =
∞∑
n=1

n−x . (2.4)

At this point, one recognizes the divergent part of (2.3) with the zeta function ζ(−1),

which converges at −1/12 [96], thus giving

ε0 = − π

24D2
. (2.5)

However, the energy per unit length does not represent a measurable quantity, which

means that there is still some e�ort to be done. As a matter of fact, starting from

ε0, one can compute the strength between the binding objects, which is simply

F = − d

dD
(D ε0) = − π

24D2
. (2.6)

The minus sign reminds us that there is a faint attraction between the con�ning

object which scales as the inverse of the square of their relative distance. It is

worth emphasizing that such behavior strictly depends on the dimensionality of the

spacetime; for instance, should the same analysis be carried out in four dimensions,

the resulting attractive strength per unit area would be

f = − π2

240D4
. (2.7)

We are now ready to delve into the core of the current Chapter. As already an-

ticipated, we will start with the connection between the Casimir e�ect and the

gravitational sector of SME.

2.2 Casimir e�ect in Post-Newtonian gravity with

Lorentz-violation

The most general Lagrangian density for the SME gravitational sector of Ref. [26]

contains both a Lorentz-invariant and a Lorentz-violating term. The background

is represented by a Riemann-Cartan spacetime, but for our purposes we take the

limit of vanishing torsion, in such a way that the Lorentz-invariant part is the usual

Einstein-Hilbert contribution. The e�ective action in which we consider only the
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leading-order Lorentz-violating terms is thus given by

S = SEH + SLV + Sm, (2.8)

where

SEH =
1

2κ

∫
d4x
√
−gR, (2.9)

is the aforementioned Einstein-Hilbert action, with κ = 8πG, Sm the matter action

and SLV the Lorentz-violating term [97]

SLV =
1

2κ

∫
d4x
√
−g
(
−uR + sµν RT

µν + tρλµν Cρλµν
)
. (2.10)

Here, R is the Ricci scalar, RT
µν the trace-free Ricci tensor, Cρλµν the Weyl conformal

tensor and all other terms contain the information of Lorentz violation. Of course,

they must depend on spacetime position and have to be treated as dynamical �elds,

in order to be compatible with lack of prior geometry, a typical feature of GR1.

Since the �elds u, sµν and tρλµν in (2.10) are the ones responsible for Lorentz

violation, they acquire a vacuum expectation value, so that it is possible to write

�uctuations around them as

u = ū+ ũ , sµν = s̄µν + s̃µν , tρλµν = t̄ρλµν + t̃ρλµν . (2.11)

Furthermore, we require that each �rst element of the r.h.s. of (2.11) is constant

in asymptotically inertial Cartesian coordinates [97]. However, the fundamental as-

sumption is that, when dealing with Lorentz violation, one always takes into account

only the vacuum expectation values of (2.11), completely neglecting �uctuations.

This ansatz is reasonable, because we expect to have extremely small deviations

from Lorentz symmetry realized in nature.

Without entering the details of calculation2, it is possible to derive the most

general linearized metric tensor for a point-like source of gravity, whose non-null

components are given by

g00 = 1− GM

r

(
2 + 3 s̄ 00

)
, gij =

[
−1− GM

r

(
2− s̄ 00

)]
δij . (2.12)

1See Ref. [22] for a detailed explanation of this concept.
2See Appendix B for a complete treatment.
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2.2.1 Dynamics of a massless scalar �eld

Let us now consider a conventional massless scalar �eld ψ (x, t) in curved background

(i.e. we consider the SME parameters are only into gravity sector). In general, the

s̄µν parameters can be moved from the gravity sector into the scalar sector using

a coordinate choice [98]. The choice does not change the physics, so although the

calculation looks di�erent it must give the same result.

In our analysis, the Klein-Gordon equation reads [99]

(�+ ζ R)ψ (x, t) = 0, (2.13)

where � is the d'Alembert operator in curved space and ζ is the coupling parameter

between geometry and matter.

Figure 2.1: The Casimir-like system in a gravitational �eld is represented above. Here, D
denotes the distance between the plates, S their surface and R the distance
from the source of gravity of mass M , with D <

√
S � R.

As it can be seen in Fig. (2.1), the con�guration is simple: the plates are set in

such a way that the one nearer to the source of gravity is distant R from it, and

hence we can choose Cartesian coordinates so that r = R + z, where the variable z

is free to vary in the interval [0, D], if we denote with D the separation between the

plates. Clearly, the relation D � R holds.

A further simpli�cation comes from the fact that the only Cartesian coordinate

explicitly present in the quantities appearing in (2.13) is z. In fact, denoting φ =
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−GM/R and recalling that z/R� 1, the metric tensor becomes

g00 ' 1− φ
(

1− z

R

) (
2 + 3 s̄ 00

)
, gij '

[
−1− φ

(
1− z

R

) (
2− s̄ 00

)]
δij , (2.14)

with the scalar curvature that assumes the form3 R ≡ R1 + zR2.

At this point, it is clear that the interest is focused on the variation of the

�eld along the radial direction (namely, along the z-axis). Because there is no

explicit dependence on other coordinates, one can think of a solution of the form

ψ (x, t) = N e[i(ω t−k⊥·x⊥)]ϕ (z), where k⊥ = (kx, ky), x⊥ = (x, y) and N is the

normalization factor.

The �eld equation can thus be rewritten as

∂2
z ϕ+ C1 ∂z ϕ+ C2 ϕ = 0 , (2.15)

where

C1 = −2
φ

R
s̄ 00, C2 = a+ b z , (2.16)

with

a = ω2
[
1− 2φ

(
s̄ 00 + 2

)]
+ ζ

φ

R2

(
4− 10 s̄ 00

)
− | k⊥ |2, b = 4

φ

R

(
ω2 − 3

ζ

R2

)
.

(2.17)

The solution of this di�erential equation is a linear combination of Airy functions of

the �rst and of the second kind, with argument x (z) = [(C2
1 − 4 a) /4− b z] (−b)−2/3 .

In the considered approximation, the solution can be written as

ϕ (z) = k1 Ai

(
−a− b z

(−b)
2
3

)
+ k2 Bi

(
−a− b z

(−b)
2
3

)
. (2.18)

Airy functions can be expressed in terms of Bessel functions [100]. Due to the

form of a and b, it is clear that the argument of the Bessel functions η(z) ≡
[a+ bz] (−b)−2/3 � 1, and hence their asymptotic behavior yields

ϕ (z) '
√

3

π
√
η(z)

sin

[
2

3
η

3
2 (z) + τ

]
. (2.19)

If we impose the Dirichlet boundary conditions on the plates for the �eld ϕ(z), that

is ϕ(0) = ϕ(D) = 0, we get the relation 2/3
[
η3/2(0)− η3/2(L)

]
= nπ, where n is an

3The presence of Lorentz-violating terms allows for a non-vanishing scalar curvature. However,
details of its form will not be necessary in the next steps, since it contributes to the mean vacuum
energy density only at higher orders.
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integer. From these boundary conditions, we �nd the energy spectrum

ω2
n =

[
1− 2φ (s̄ 00 + 2) + 4

φ

R
D
][
k2
⊥ +

(
nπ

D

)2]
+
ζ φ

R

[
10 s̄ 00 − 4 +

6D

R

]
.(2.20)

Finally, using the scalar product de�ned for quantum �elds in curved spacetimes

[99], one derives the normalization constant

N2
n =

a

3S b
1
3ωn n

[
1− φ

(
1 + 3

2
s̄ 00
) ] , (2.21)

with S being the surface of the plates.

2.2.2 Mean vacuum energy density and pressure

In order to calculate the mean vacuum energy density ε between the plates, we use

the general relation [99]

ε =
1

Vp

∑
n

∫
d2 k⊥

∫
dx dy dz

√
−gΣ

(
g00

)−1
T00 , (2.22)

where T00 ≡ T00

(
ψn, ψ

∗
n

)
is a component of the energy-momentum tensor

Tµν = ∂µ ψ ∂ν ψ −
1

2
gµνg

αβ∂α ψ ∂β ψ ,

and

Vp =

∫
dx dy dz

√
−gΣ

is the proper volume; gΣ is the determinant of the induced metric on a spacelike

Cauchy hypersurface Σ. Using the Schwinger proper-time representation and zeta

function regularization, we �nd the mean vacuum energy density

ε = ε0 + εGR + εLV , (2.23)

with

ε0 = − π2

1440D4
p

, εGR = −φDp

R
ε0 , εLV = −6φ s̄ 00 ε0 , (2.24)

where ε0 is the standard term of Casimir e�ect, εGR is the contribution due to GR

and εLV is the Lorentz-violating term, with Dp =
∫
dz
√
−g33 being the proper

length of the cavity. Note that we have neglected higher-order contributions in our

analysis.

Equation (2.23) gives us the expression of Casimir vacuum energy density at the



2.2 Casimir e�ect in Post-Newtonian gravity with Lorentz-violation 32

second order O(R−2) in the framework of SME. We note that the part related to GR

does not have contributions at the �rst order in O(R−1), but only at higher orders,

such as O(R−2). The Lorentz-violating sector, instead, exhibits a �rst order factor

in O(R−1) connected to s̄ 00.

To obtain a plausible bound on s̄ 00, we make the assumption |εLV | . |εGR|. This
agrees with several considerations and results expressed in Refs. [23, 26, 97] and en-

sures the fact that Lorentz-violating manifestations are small, as widely employed

in Lorentz violation phenomenology [97]. However, the reasonableness of the con-

straint we derive cannot be directly tested, since ε is still an unmeasurable quantity.

This is why we need to compare the heuristic constraint with a physical one, which

can only be calculated using the pressure.

Apart from the previous comment, considering the case of the Earth and requir-

ing Dp ∼ 10−7 m (a typical choice for the proper length in standard literature) for

the plausible assumption exhibited above, we get [93]

s̄ 00 .
Dp

6R⊕
. 10−14, (2.25)

where R⊕ ∼ 6.4× 106 m.

It must be pointed out that recent developments in nanotechnology can further

strengthen the above bound by one or two orders of magnitude. In fact, in the

near future, the value of Dp could reach scales even smaller than nanometers (as

already contemplated, for example, in Ref. [101]), thus transforming (2.25) into a

more stringent constraint, s̄ 00 . 10−15.

Let us now turn the attention to the pressure. The attractive force observed

between the cavity plates is obtained by the relation F = −∂E/∂Dp, where E = ε VP

is the Casimir vacuum energy. Then, the pressure is simply given by P = F/Sp,

where Sp =
∫
dx dy

√
g11 g22 is the proper area. Hence, we get

P = P0 + PGR + PLV , (2.26)

with

P0 = − π2

480D4
p

, PGR = −2

3

φDp

R
P0 , PLV = −6φ s̄ 00 P0 , (2.27)

where P0 is the pressure in the �at case, while PGR is the pressure in GR and PLV
is the contribution connected to Lorentz-violation.

Note that the result (2.25) is achievable also if we require the inequality |PLV | .
|PGR| to hold. Indeed, we obtain exactly the same order of magnitude for the upper

bound of s̄ 00, even when the heuristic approach carried out for the mean vacuum
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energy density applies to the pressure. However, the above consideration on the

elusive manifestation of Lorentz violation acquires a substantial meaning for the

case of P , since such a quantity is measurable. In this perspective, the expression

of PGR and PLV for the contribution to the pressure of GR and SME, respectively,

further strengthen our plausible constraint on the Lorentz-violating factor.

We now want to test the compatibility of SME with the experimental data to

check how much a concrete bound di�ers from the heuristic one obtained in (2.25).

This can be achieved by using the pressure as a measurable physical quantity. In

fact, imposing the constraint |PLV | . δP , where δP is the experimental error, we

obtain the following relation:

s̄ 00 .
δP

P0

1

6φ
=

1

3

δP

P0

R

RS

, (2.28)

where RS is Schwarzschild radius.

The total absolute experimental error of the measured Casimir pressure [102] is

0.2% (δP/P0 ' 0.002). Typical values of the ratio R/RS in the Solar System are

included between 107 ÷ 1010. In particular, for the Earth we have 7.2× 108, which

means that the term on the r.h.s. of (2.28) is of order 106. The comparison of such

a result with (2.25) clearly shows that we still cannot use4 the Casimir experiment

to measure the pressure in order to signi�cantly constrain the parameter s̄ 00. To do

this, we need to enhance the experimental sensitivity on Earth by at least six order

of magnitude, in such a way that δP/P . 10−9.

2.3 Casimir e�ect in quadratic theories of gravity

In what follows, we will see that considerations analogous to the ones carried out

in Sec. 2.2.1 can be used in the context of quadratic theories of gravity5 to check

the accordance with EP by means of the PPN formalism introduced in Sec. 1.2.2.

For this purpose, we observe that a generic line element in proximity of a point-like

gravitational source for a given extended model of gravity can be written as

ds2 = [1 + 2Φ(r)] dt2 − [1− 2Ψ(r)] dr · dr , (2.29)

where Φ and Ψ are metric potentials which can in principle be di�erent. By relying

on the same setting, assumptions and terminology contained in Sec. 2.2.1, in the
4Unless we believe the heuristic bound to be true and thus physically consistent.
5See Appendix C for further details.
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linearized approximation it is possible to prove that [92, 94]

g00(r) ' 1 + 2 Φ0 + 2 Φ1 z , gij(r) ' −1 + 2 Ψ0 + 2 Ψ1 z , (2.30)

with

Φ0 = Φ(R), Φ1 =
dΦ(r)

dr

∣∣∣
r=R

, Ψ0 = Ψ(R), Ψ1 =
dΨ(r)

dr

∣∣∣
r=R

. (2.31)

If we retrace the path of Sec. 2.2.1 towards the evaluation of the mean vacuum

energy density due to the presence of a massless scalar �eld bounded between the

plates, we reach the following expression for ε [94]:

ε = −
[
1 + 3

(
Φ0 −Ψ0

)
−
(
2Ψ1 − Φ1

)
Dp

]
π2

1440D4
p

. (2.32)

In the above expression, we clearly identify the �rst term of the r.h.s. with the usual

contribution to the Casimir mean vacuum energy density, whereas the remaining

part is the correction attributable to the e�ects of gravity. From (2.32), we can

compute the Casimir pressure as seen in Sec. 2.2.2, which naturally inherits the

same structure of ε; namely, we have

P = P0 + PG , (2.33)

with

P0 = − π2

480D4
p

, PG =

[
3
(
Φ0 −Ψ0

)
− 2

3
(2Ψ1 − Φ1)Dp

]
P0 . (2.34)

Henceforth, we restrict the attention to the factor PG which is the relevant one

for our goal. Indeed, by recalling the contents of Sec. 1.2.2, we observe that the

parameter γ is de�ned as

γ(r) =
Ψ(r)

Φ(r)
, (2.35)

which in terms of the Nordtvedt parameter η in (1.15) turns out to be

η(r) = 1− γ(r) =
Φ(r)−Ψ(r)

Φ(r)
. (2.36)

Therefore, if we focus only on the gravitational leading-order correction to the �at

case, we notice that PG can be cast in the form

PG = 3 η0 Φ0 P0 , (2.37)



2.3 Casimir e�ect in quadratic theories of gravity 35

with η0 ≡ η(R). In light of the arguments discussed in the previous Chapter,

from (2.37) it is straightforward to deduce that a given gravitational model violates

SEP if it predicts the existence of a non-vanishing lowest-order contribution to the

Casimir pressure. Furthermore, should this term be non-vanishing, we know for sure

that it is by no means related to GR, for which SEP holds and Φ = Ψ.

2.3.1 Applications

For the sake of clarity, we will apply the aforementioned reasoning to several note-

worthy quadratic theories of gravity. Although exempli�ed by a set of plausible

assumptions in Sec. 1.2.2, the analysis we will approach is capable of shedding light

on some fundamental properties of the aforesaid theories. However, we will over-

look most of the features and theoretical implications of such models; the interested

reader can �nd all information in the quoted references.

f(R) gravity

The gravitational models belonging to the f(R) gravity can be deduced from the

action [103]

S =
1

2κ

∫
d4x
√
−g f(R) , (2.38)

with f being a generic function of the Ricci scalar. The most immediate general-

ization of the Einstein-Hilbert action (2.9) is selected by choosing f(R) = R+ αR2.

Under these circumstances, the metric potentials appearing in (2.29) become6

Φ(r) = −Gm
r

(
1 +

1

3
e−m0r

)
, Ψ(r) = −Gm

r

(
1− 1

3
e−m0r

)
, (2.39)

where m0 = 1/
√

3α is the mass of the spin-0 massive degree of freedom coming

from the Ricci scalar squared contribution.

The Eddington-Robertson-Schi� parameter γ for this model turns out to be

γ =
1− 1

3
e−m0r

1 + 1
3
e−m0r

. (2.40)

Therefore, the leading-order expression of PG for the current theory is

PG = 2 e−m0R P0 , (2.41)

which undoubtedly signals the presence of SEP violation.
6For a thorough derivation of metric tensors of di�erent quadratic theories, see Appendix C.
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Fourth order gravity

The action for Stelle's fourth order gravity [104] is given by

S =
1

2κ

∫
d4x
√
−g

[
R +

1

2

(
αR2 + β RµνR

µν
)]

. (2.42)

The metric potentials now read

Φ(r) = −Gm
r

(
1 +

1

3
e−m0r − 4

3
e−m2r

)
, Ψ(r) = −Gm

r

(
1− 1

3
e−m0r − 2

3
e−m2r

)
,

(2.43)

where m0 = 2/
√

12α + β and m2 =
√

2/(−β) correspond to the masses of the

spin-0 and of the spin-2 massive mode, respectively. In order to avoid tachyonic

solutions, we need to require β < 0. In addition to that, the spin-2 mode is a ghost-

like degree of freedom. Such an outcome is not surprising, since it is known that, for

any local higher derivative theory of gravity, ghost-like degrees of freedom always

appear [105].

The factor γ for Stelle's fourth-order gravity is given by

γ =
1− 1

3
e−m0r − 2

3
e−m2r

1 + 1
3
e−m0r − 4

3
e−m2r

. (2.44)

As for the previous case, the limit of large masses m0,m2 → ∞ returns GR. The

SEP-violating correction to the Casimir pressure PG given by this model is

PG = 2
(
e−m0R − e−m2R

)
P0 . (2.45)

Sixth order gravity

Let us now deal with a sixth-order gravity model, which is an example of super-

renormalizable theory [106, 107]. The starting action is

S =
1

2κ

∫
d4x
√
−g

[
R +

1

2
(αR�R + β Rµν �R

µν)

]
. (2.46)
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It is possible to show that the two metric potentials Φ and Ψ assume the following

expressions:

Φ(r) = −Gm
r

(
1 +

1

3
e−m0r cos(m0r)−

4

3
e−m2r cos(m2r)

)
,

Ψ(r) = −Gm
r

(
1− 1

3
e−m0r cos(m0r)−

2

3
e−m2r cos(m2r)

)
,

(2.47)

where the masses of the spin-0 and spin-2 degrees of freedom are now given by

m0 = 2−1/2(−3α− β)−1/4 and m2 = (2 β)−1/4, respectively. Note that, in this case,

tachyonic solutions are avoided for −3α − β > 0, which can be satis�ed by the

requirement α < 0 and −3α > β, with β > 0. The current higher derivative theory

of gravity has no real ghost-modes around the Minkowski background, but a pair of

complex conjugate poles with equal real and imaginary parts [107], and corresponds

to the so-called Lee-Wick gravity [108]. It is worthwhile noting that in this model

the unitarity condition is not violated, since the optical theorem still holds [109].

The parameter γ related to SEP violation now reads

γ =
1− 1

3
e−m0r cos (m0r)− 2

3
e−m2r cos (m2r)

1 + 1
3
e−m0r cos (m0r)− 4

3
e−m2r cos (m2r)

,

which leads to the following correction to the pressure:

PG = 2
[
e−m0R cos (m0R)− e−m2R cos (m2R)

]
P0 . (2.48)

Ghost-free in�nite derivative gravity

We now consider an example of ghost-free non-local theory of gravity (for a complete

literature, see Refs. [8, 110] and references therein). In particular, we analyze the

model that comes from the action

S =
1

2κ

∫
d4x
√
−g

[
R +

1

2

(
R

1− e�/M2
s

2�
R−Rµν

1− e�/M2
s

�
Rµν

)]
, (2.49)

whereMs is the scale at which the non-locality of the gravitational interaction should

become manifest. Note that, for the special ghost-free choice in (2.49), no extra

degrees of freedom other than the massless transverse spin-2 graviton propagate

around the Minkowski background.
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Because of the aforesaid peculiar choice, the metric potentials coincide

Φ(r) = Ψ(r) = −Gm
r

Erf

(
Msr

2

)
, (2.50)

where

Erf(x) =
2√
π

∫ x

0

e−t
2

dt , (2.51)

is the error function [100]. In light of this, it is immediate to conclude that γ = 1 (just

like GR), thus negating the opportunity to evaluate any leading-order correction

to P0. Actually, one can estimate the next-to-leading-order correction, but this

would go against the assumptions of Sec. 1.2.2 upon which the whole treatment is

based. Moreover, in a similar approximation, both GR and gravitational non-local

corrections would arise, hence rendering the latter irrelevant with respect to the

former7.

The example of non-local theories is useful to convey the idea that the current

study needs to be seriously improved in order to get a sharper distinction between

GR predictions and signatures of new physics arising from extended models of grav-

ity.

Non-local gravity

Di�erently from the previous theory that could be seen as a UV-completion of GR,

the last model we describe is rather an infrared extension of it, achievable by means

of non-analytic functions of �. These theories are inspired by quantum corrections

to the e�ective action of quantum gravity [111]. The particular case we deal with is

deducible from the action

S =
1

2κ

∫
d4x
√
−g

(
R +

1

2
R
α

�
R

)
. (2.52)

The two metric potentials are IR modi�cations of the Newtonian one

Φ(r) = −Gm
r

(
4α− 1

3α− 1

)
, Ψ(r) = −Gm

r

(
2α− 1

3α− 1

)
. (2.53)

Since we expect α to be small, we can deduce that the Eddington-Robertson-Schi�

parameter for this model is represented by

γ =
2α− 1

4α− 1
' 1 + 2α . (2.54)

7If we reasonably assume that GR contributes to the Casimir pressure the most.
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Consequently, the SEP-violating contribution to the pressure is given by

PG = 6αP0 . (2.55)

With this �nal result, we have depicted an exhaustive portrait of how the Casimir

e�ect can be employed to detect signals of EP violations, which in turn are open

windows towards novel physical insights. In the next Section, we will see that similar

achievements can also be obtained by merging the Casimir experiment within the

framework of GUP [77].

2.4 Heuristic derivation of the Casimir e�ect from

GUP

In order to depart from the rigorous computation of the important quantities into

play and to shape an intuitive scheme to explain how the Casimir e�ect occurs, here

we adopt a heuristic derivation for the aforementioned phenomenon by relying on

the seminal paper by Giné [112]. In his article, the author starts from HUP and

recovers the usual behavior of the Casimir energy per unit area (2.7) by virtue of

several observations regarding the production and annihilation of photons from the

vacuum. However, the reasoning there contained is rather unclear to some extent;

for this reason, we re�ne the considerations of Ref. [112] according to Ref. [77], in

which the same investigation is then extended to the case of GUP. For the sake of

clarity, we �rst review the case with HUP and after that we turn the attention to

the more general scenario.

2.4.1 Casimir e�ect from Heisenberg uncertainty principle

In Ref. [112], the Casimir e�ect is derived from the idea that the contribution to

the vacuum energy at a point A of a plate is a�ected by the presence of the other

boundary. Speci�cally, the author considers virtual photons produced by vacuum

�uctuations somewhere in the space and arriving at A. In order to compute the

total Casimir energy ∆E, one has to take into account all the points on the surface

S of the plate. Therefore, from HUP

∆x∆E ' 1

2
, (2.56)

(p = E for photons), the total contribution to the energy �uctuation ∆E is given

by those photons in a volume S∆x around the plate, where ∆x is the position
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uncertainty of the single particle. Note that, if we had only one plate, ∆x would

be in�nite, since photons may be created in any point of the space. However, this

is no longer true in the presence of both the boundaries. In that case, indeed,

virtual particles originating from behind the second plate cannot reach A. Thus,

the additional plate acts as a sort of shield.

The above situation can be depicted as follows: consider a sphere of radius R

centered at the point A and enclosing both the plates. In the single-plate con�gu-

ration, the e�ective volume S∆x corresponding to the entire space can be thought

of as the total volume of the sphere VT = 4/3πR3, with R → ∞. Clearly, such

a volume will be reduced by including the second plate: as a result, we can write

S∆x = VT −VC , where VC is the volume shielded by the second plate (see Fig. 2.2).

Figure 2.2: A section of the analyzed system. In particular, we want to put the emphasis
on the spatial displacement of the shielded volume VC , contained within the
surface of the sphere and the right plate.

In the case of in�nite boundaries, or even better when L/(2D) → ∞, one can

show that VC = 2/3πR3, yielding

S∆x ' 2

3
πR3 , (2.57)

(see Ref. [112] for more details).

In the above treatment, no length scale has been considered, hence the volume

S∆x diverges as the radius R increases. To cure such a pathological behavior,
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in Ref. [112] the author introduces a cuto� re representing the e�ective distance

beyond which photons have a negligible probability to reach the plate. In this way,

Eq. (2.57) can be rewritten as

S∆x ' 2

3
πr3

e , (2.58)

which has indeed a �nite value. Combining this relation with the HUP, we then

obtain

|∆E(re)| =
3

4

S

πr3
e

, (2.59)

which implies

re ' D , (2.60)

from comparison with the exact expression

∆E(d) = − π2

720

S

D3
. (2.61)

for the Casimir energy (strictly speaking, we have re = 3
√

540D/π ' 2.6D).

Although the above derivation is straightforward and very intuitive, the discus-

sion on the physical origin of the length cuto� re appears to be rather obscure in

some points. Therefore, in order to clarify the meaning of (2.60), let us focus on the

computation of the Casimir e�ect in a simpli�ed one-dimensional system: similar

reasoning can be promptly extended to three dimensions.

From the Heisenberg uncertainty relation, it is well-known that large energy

�uctuations live for very short time and, thus, hard virtual photons of energy ∆E

can only travel short distances of order 1/∆E. As a consequence, the further these

particles are created from a plate, the more negligible their contribution to the

energy around that plate will be. Let us apply these considerations to the apparatus

in Fig. 2.3.

It is easy to see that virtual photons popping out in the strip of width D on

the right side of the right plate do not contribute to the Casimir e�ect, since their

pressure is balanced by those photons originating between the plates. By contrast,

photons coming from a distance greater than D in the right region do not experience

any compensation, because their symmetric �partners� on the left side are screened

by the �rst plate. The overall result is a net force acting on the right plate from right

to left. Of course, this argument can be symmetrically applied to the left boundary

and provides a qualitative explanation for the origin of the attractive Casimir force.

Now, consider a point at a distance x0 > D from one of the plates, as in Fig. 2.3.

Virtual photons originate from quantum �uctuations in a small region around that
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Figure 2.3: Setup for the heuristic derivation of the Casimir e�ect: two in�nite parallel
plates (bold lines) at distance D. The e�ective radius beyond which the cre-
ation of virtual photons does not give a signi�cant contribution to the Casimir
energy is denoted by re (see text for a more comprehensive explanation).

point. Such a region, however, cannot be smaller than the Compton length of the

electron, λC = 1/me, otherwise the energy amplitude of the �uctuation would exceed

the threshold E ' me for the production of electron-positron pairs. Besides, photons

produced at x0 can impact on the plate (and therefore contribute to the Casimir

force) only if their energy E is such that 0 < E < E0, where E0 = 1/x0. Particles

of higher energy E > E0, indeed, would recombine before reaching the plate, since

the distance they travel is x = 1/E < 1/E0 = x0.

We can now assume that photons coming from x0 originate from �uctuations of

energy E with a probability given by a Boltzmann-like factor f(E) = e−E/me . Thus,

the total linear energy density (i.e. the energy per unit length) arriving on the plate

will be

|∆ε(E0)| =

∫ E0

0

dE

λC

E

me

f(E) =

∫ E0

0

dE E e−
E
me , (2.62)

where, since we are dealing with the electromagnetic �eld, we have introduced the

natural threshold of the electron mass/energy me. In terms of the distance x0, the

above integral becomes

|∆ε(x0)| =

∫ ∞
x0

dx

x3
e−

1
mex . (2.63)

Finally, in order to get the contribution to the Casimir energy from all the photons
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which impact on the plate, we integrate over all the points x0 such thatD < x0 <∞,

obtaining

|∆E(D)| =

∫ ∞
D

dx0 ∆ε(x0) . (2.64)

The integrals in (2.63) and (2.64) can be easily evaluated by observing that, for x

large enough, the Boltzmann factor e−1/(me x) becomes approximately of order unity.

This yields

|∆ε(x0)| ' 1

2x2
0

, (2.65)

and hence

|∆E(D)| ' 1

2D
, (2.66)

which is in good agreement with the QFT prediction (see Sec. 2.1).

The physical relevance of the above discussion becomes clearer if we observe that

probability distributions like those in (2.62) or (2.63) allow us to naturally interpret

the e�ective radius re in (2.58) as the distance from the plate below which the

vast majority of photons contribute to the large part of the Casimir energy. More

rigorously, we can de�ne re > D as the distance within which photons carrying the

fraction γ (0 < γ < 1) of the total Casimir energy are created. In other terms, we

can write
1

2

∫ re

D

dx

x2
= γ∆E(D) , (2.67)

from which

re =
D

1− γ
. (2.68)

Thus, setting re ' 2.6D amounts to consider a fraction γ ' 0.62 of the total energy

responsible for the Casimir e�ect.

The above picture is quite rough, since it relies on the adoption of a Boltzmann-

like distribution for the energy of quantum vacuum �uctuations. As a result, it

underestimates the fraction of photons produced within the distance re from the

plate. Considerable improvements can be achieved by employing more realistic

functions f(E) in (2.62). For further details on this research topic, see Refs. [113]

and therein.

2.4.2 Casimir e�ect from generalized uncertainty principle

Let us now extend the above arguments to the context of the GUP. As in the

previous Subsection, we shall focus for simplicity on the one-dimensional case, since

the analysis in three dimensions proceeds in a very similar fashion.
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Let us start from the modi�ed uncertainty relation (1.23), here recast in the form

∆x∆E ' 1

2

[
1 + β

(
∆E

Ep

)2
]
. (2.69)

If we neglect those photons coming from distance greater than the e�ective radius

re, it is natural to assume the uncertainty position ∆x of the single photon to be

of the order of re and thus of D, according to (2.60). Then, by replacing ∆x ' D

into (2.69), the contribution to the Casimir energy at a given point reads

|∆E(D)| '
E2
pD

β

1−

√
1 − β

(
1

EpD

)2
 . (2.70)

After expanding to the leading order in β, we obtain

|∆E(D)| ' 1

2D

[
1 +

β

4

(
1

EpD

)2
]
, (2.71)

which indeed agrees with the usual result in the limit β → 0, up to a coe�cient. More

precisely, the exact formula for the Casimir energy can be recovered by assuming

∆x = αD (α ∼ O(1)), and then setting α in such a way that the standard outcome

and (2.71) match up for vanishing β.

The above considerations can now be generalized to three dimensions by taking

into account the contribution to the zero-point energy at any point of the plates of

surface area S. In so doing, straightforward calculations lead to [77]

|∆E(D)| ' S

2D3

[
1 +

β

4

(
1

EpD

)2
]
. (2.72)

It must be pointed out that, in spite of our minimal setting, the behavior of the �eld

theoretical GUP correction which can be found in literature [114] is recovered up to

an overall numerical factor.

Concluding remarks

In this Chapter, we have seen how to employ the Casimir e�ect as a valuable probe

to test the implications of GC, EP and HUP not only at a theoretical level, but also

experimentally. Indeed, in all the analyzed cases, we have emphasized how physical

quantities associated with measurable observables acquire an extra term that signals
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the existence of a violation/generalization of the studied fundamental principles. In

what follows, we brie�y review the obtained results.

• In Sec. 2.2, in the context of SME and working in the weak-�eld approximation,

we have studied the dynamics of a massless scalar �eld con�ned between two

nearby parallel plates in a static spacetime background generated by a point-

like source. In order to obtain a reasonable constraint on Lorentz-violating

terms, we have derived the corrections to the �at spacetime Casimir vacuum

energy density (2.23) in the framework of SME. We have found that, both in

the energy density and in the pressure, GR gives us only contributions at the

second order O(R−2), while Lorentz-violating corrections occur at �rst order

O(R−1). After that, we have evaluated the pressure (2.27) to observe how it

changes from the usual expression in �at spacetime, but in the presence of

gravity and with SME coe�cients [93].

By requiring |εLV | . |εGR| but also |PLV | . |PGR|, we have then been able

to �nd a signi�cant bound on the SME coe�cient s̄ 00. Such an assumption

is related to the fact that manifestations of Lorentz violation in nature are

expected to be extremely evanescent. If the above inequality did not hold true,

it would have been possible to detect traces of Lorentz-violating terms in the

tests proposed in Ref. [97] and in other experiments involving the intertwining

between SME and gravity, but this is not the case.

• By resorting to the same setting introduced above and to PPN formalism, in

Sec. 2.3 we have seen how the Casimir pressure gains an additional term due

to the employment of quadratic models of gravity (2.37); it has then been

shown that such contribution arises whenever SEP violation occurs. Therefore,

SEP is directly linked to a phenomenological manifestation that is in principle

observable even with current laboratory tests. However, due to the smallness of

the aforementioned corrections, the only feasible perspective with the available

experimental sensitivity consists in putting a somewhat stringent bound on the

free parameters of the extended theories under examination [94].

These achievements have been attainable despite our exemplifying approxima-

tions concerning the weak-�eld regime and the negligence of non-linear e�ects

which could have been described by means of several PPN parameters other

than γ. For such a reason, not all of the discussed quadratic models have pro-

vided us with a clear outcome (i.e. in�nite derivative gravity), which suggests

that a more rigorous treatment on the topic can lead to further intriguing

developments.
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• Finally, in Sec. 2.4 we have evaluated the Casimir energy when HUP is replaced

by GUP, thus investigating how the standard result changes in response to the

generalization of the uncertainty relations underlying QM. Di�erently from

the previous cases, we have made use of a heuristic approach to derive the

main outcome [77], in order to disclose a pictorial representation that clari-

�es the role of the zero-point energy in the analyzed framework. The same

considerations have been carried out both for the case of HUP and GUP.

Unfortunately, as for the above scenarios, direct observations of GUP e�ects

on the Casimir force are extremely challenging. However, current experi-

ments [115] might enable us to �x an upper bound on the parameter β. For

the sake of completeness, it must be said that the value of such constraints

is still far from the ones that can be put by means of a thorough theoretical

reasoning. A more accurate esteem that conveys the aforesaid concept will be

tackled in Chapter 5.





Chapter 3

General covariance implications: the

case of the inverse β-decay

In the �rst Chapter and in particular in Sec. 1.1, we have discussed about the

outstanding achievement represented by the establishment of general covariance.

Furthermore, we have investigated all the issues Einstein had to face to embed

such principle into the theory of general relativity. However, this is not the end of

the story, since general covariance ful�llment encloses the possibility to theoretically

prove debated features related to QFTCS. In order to clarify the previous statement,

it is opportune to chronicle a series of crucial results recently appeared in literature.

First and foremost, we start from a beautiful work by Muller [116] which ex-

plores the decay properties of particles that are constantly accelerating due to the

presence of an external source (i.e. an electric �eld for charged particles). In his

simpli�ed analysis, the author transparently shows that the decay rate of several

physical processes acquires a dependence on the acceleration the particle is subject

to. Speci�cally, the last treated example is extremely illustrative, since it exhibits

that also a supposedly stable particle such as the proton may decay via a channel

that is typically addressed as inverse β-decay, for which p → n + e− + ν̄e, with n

being the neutron, e− the electron and ν̄e the electron antineutrino. Finally, the

author claims that such processes may share a profound connection with the Unruh

e�ect [117], which in a nutshell states that an accelerated observer experiences a

thermal radiation when moving through the inertial vacuum1.

In view of the aforesaid brilliant intuition, several remarkable papers [118] have

demonstrated Muller's hypothesis to hold true. Indeed, by means of a thorough

study centered around the inverse β-decay in two dimensions with massless neutrinos

and by enforcing general covariance, the authors of Refs. [118] have explicitly proven

1More details on this topic can be found in Chapter 5

48
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the absolute need of the Unruh e�ect for the internal consistency of QFTCS. Such a

relevant result not only confers a crucial role to the Unruh radiation (whose existence

is still questioned, as for instance in Refs. [119]), but it also opens new perspectives

towards the �theoretical check� of formal aspects of modern physics. For instance,

the reasoning carried out here for accelerated protons can be employed to explain

some quantum �eld theoretical features related to bremsstrahlung [120].

In what follows, we review the formalism upon which the whole analysis of the

inverse β-decay is based. To this aim, we follow Ref. [121], which extends the

treatment of Refs. [118] to four dimensions and provides neutrino �eld with a non-

vanishing mass. Subsequently, we extend the whole argument to the case with

neutrino mixing, which is useful to derive a preliminary result on the properties of

particles belonging to the Unruh radiation. Note that such an apparently harm-

less generalization is the main source of disagreement between di�erent approaches

present in literature. As a matter of fact, we would like to stress that the study of

the accelerated proton decay with neutrino mixing has been tackled in a couple of

papers [122] in which the authors encounter several theoretical di�culties. Later on,

such complications have been cured with distinct methods in Refs. [123] and [124].

However, in the next Sections we will only look at the approach contemplated in

Refs. [123], with a brief mention to the other one. For a detailed comment on the

inconsistencies of the latter approach, see Ref. [125].

3.1 A formal investigation of the inverse β-decay

In this Section, we discuss the decay of accelerated protons both in the laboratory

and comoving frame. By virtue of general covariance, we expect the mean proper

lifetime of the proton (or its inverse, namely the decay rate) to be equal in all refer-

ence frames. However, we will observe that a similar requirement entails profound

implications at a theoretical level which are closely related to the Unruh e�ect, as

already anticipated.

Throughout the whole analysis, neutron |n〉 and proton |p〉 are considered as

excited and unexcited states of the nucleon, respectively. Moreover, we assume that

they are energetic enough to have a well-de�ned trajectory. As a consequence, the

current-current interaction of Fermi theory can be treated with a classical hadronic

current Ĵµ` Ĵh,µ → Ĵµ` Ĵ
(cl)
h,µ , where

Ĵ
(cl)
h,µ = q̂(τ)uµδ(x)δ(y)δ(u− a−1) . (3.1)

Here u = a−1 = const is the spatial Rindler coordinate describing the world line
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of the uniformly accelerated nucleon with proper acceleration a, and τ = v/a is its

proper time, with v being the Rindler time coordinate. The nucleon four-velocity

uµ is given by

uµ = (a, 0, 0, 0), uµ = (
√
a2t2 + 1, 0, 0, at) , (3.2)

in Rindler and Minkowski coordinates, respectively2. According to Refs. [99, 118],

the Hermitian monopole q̂(τ) is de�ned as

q̂(τ) ≡ eiĤτ q̂0e
−iĤτ , (3.3)

where Ĥ is the nucleon Hamiltonian and q̂0 is related to the Fermi constant GF by

GF ≡ 〈p|q̂0 |n〉. (3.4)

Next, the minimal coupling of the electron Ψ̂e and neutrino Ψ̂νe �elds to the nucleon

current Ĵ (cl)
h,µ can be expressed through the Fermi action

ŜI =

∫
d4x
√
−gĴ (cl)

h,µ

(
Ψ̂νeγ

µΨ̂e + Ψ̂eγ
µΨ̂νe

)
, (3.5)

where g ≡ det(gµν) and γµ are the gamma matrices in Dirac representation (see,

e.g., Ref. [126]).

3.1.1 Inertial frame

Let us �rstly analyze the decay process in the inertial frame. In this case, the proton

is accelerated by an external �eld and converts into a neutron by emitting a positron

and a neutrino, according to (see Fig. 3.1 below)

p → n + e+ + νe . (3.6)

In order to calculate the transition rate, we quantize fermionic �elds in the usual

way [118, 126]

Ψ̂(t,x) =
∑
σ=±

∫
d3k

[
b̂kσψ

(+ω)
kσ (t,x) + d̂†kσψ

(−ω)
−k−σ(t,x)

]
, (3.7)

2We assume that the proton is accelerated along the z-direction. Hence, the Rindler coordinates
(v, x, y, u) are related with the Minkowski coordinates (t, x, y, z) by: t = u sinh v, z = u cosh v, with
x and y left unchanged.
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Figure 3.1: A pictorial representation of the decay process in the laboratory frame.

where x ≡ (x, y, z). Here we have denoted by b̂kσ (d̂kσ) the canonical annihilation

operators of fermions (antifermions) with momentum k ≡ (kx, ky, kz), polarization

σ = ± and frequency ω =
√
k2 +m2 > 0, m being the mass of the �eld. The

modes ψ(±ω)
kσ are positive and negative energy solutions of the Dirac equation in

Minkowski spacetime (
iγµ∂µ − m

)
ψ

(±ω)
kσ (t,x) = 0. (3.8)

In the adopted representation of γ matrices, they take the form [118]

ψ
(±ω)
kσ (t,x) =

ei(∓ωt+k·x)

22π
3
2

u(±ω)
σ (k), (3.9)

where

u
(±ω)
+ (k) =

1√
ω(ω ±m)


m ± ω

0

kz

kx + iky

 , u
(±ω)
− (k) =

1√
ω(ω ±m)


0

m ± ω

kx − iky

−kz

 .

(3.10)

It is easy to show that the modes (3.9) are orthonormal with respect to the inner

product〈
ψ

(±ω)
kσ , ψ

(±ω′)
k
′σ′

〉
=

∫
Σ

dΣµ ψ
(±ω)

kσ γµψ
(±ω′)
k
′σ′

= δσσ′δ
3(k− k′)δ±ω±ω′ , (3.11)
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where ψ = ψ†γ0, dΣµ = nµdΣ, with nµ being a unit vector orthogonal to the

arbitrary spacelike hypersurface Σ and pointing to the future.

Next, by using the de�nition (3.5) of the Fermi action and expanding leptonic

�elds according to (3.7), we obtain the following expression for the tree-level tran-

sition amplitude:

A
p→n
in ≡ 〈n| ⊗ 〈e+

keσe
, νkνσν |ŜI |0〉 ⊗ |p〉 =

GF

24π3
Iσνσe(ων , ωe), (3.12)

where

Iσνσe(ων , ωe) =

∫ +∞

−∞
dτ ei

[
∆mτ + a−1(ων +ωe) sinh aτ − a−1(kzν + kze ) cosh aτ

]
uµ

[
ū(+ων)
σν γµu

(−ωe)
−σe

]
.

(3.13)

Here ∆m is the di�erence between the nucleon masses. By de�ning the di�erential

transition rate as

d6P
p→n
in

d3kν d3ke
≡
∑
σν ,σe

|Ap→n
in |

2

=
G2
F

28π6

∫ +∞

−∞
dτ1dτ2uµuν

∑
σν ,σe

[
ū(+ων)
σν γµu

(−ωe)
−σe

] [
ū(+ων)
σν γνu

(−ωe)
−σe

]∗
× ei

[
∆m(τ1−τ2)+a−1(ων+ωe)(sinh aτ1−sinh aτ2)−a−1(kzν+kze)(cosh aτ1−cosh aτ2)

]
, (3.14)

the total transition rate is simply given by

Γp→nin = P
p→n
in /T , (3.15)

where T =
∫ +∞
−∞ ds is the nucleon proper time. The above integrals can be solved

by introducing the new variables

τ1 = s + ξ/2, τ2 = s − ξ/2 , (3.16)

and using the spin sum

uµuν
∑
σν ,σe

[
ū(+ων)
σν γµu

(−ωe)
−σe

] [
ū(+ων)
σν γνu

(−ωe)
−σe

]∗
=

22

ωνωe

[(
ωνωe + kzνk

z
e

)
cosh 2as −

(
ωνk

z
e + ωek

z
ν

)
sinh 2as

+
(
kxνk

x
e + kyνk

y
e − mνme

)
cosh aξ

]
. (3.17)
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By explicit calculation, we obtain

Γp→nin =
G2
F

a π6eπ∆m/a

∫
d3kνd

3ke

[
K2i∆m/a

(
2(ων + ωe)

a

)
+

mνme

ωνωe
Re

{
K2i∆m/a+2

(
2(ων + ωe)

a

)}]
. (3.18)

The analytic evaluation of the integral (3.18) can be found in Ref. [121].

3.1.2 Comoving frame

We now analyze the same decay process in the proton comoving frame. As well-

known, the natural manifold to describe phenomena for uniformly accelerated ob-

servers is the Rindler wedge, i.e., the Minkowski spacetime region de�ned by z > |t|.
Within such a manifold, fermionic �elds are expanded in terms of the positive and

negative frequency solutions of the Dirac equation with respect to the boost Killing

vector ∂/∂v [121]

Ψ̂(v,x) =
∑
σ=±

∫ +∞

0

dω d2k
[
b̂wσψ

(+ω)
wσ (v,x) + d̂†

wσψ
(−ω)
w−σ(v,x)

]
, (3.19)

where now x ≡ (x, y, u) and w ≡ (ω, kx, ky). We recall that the Rindler frequency

ω may assume arbitrary positive real values. In particular, unlike the inertial case,

there are massive Rindler particles with zero frequency.

The modes ψ(±ω)
kσ in (3.19) are positive and negative energy solutions of the Dirac

equation in Rindler spacetime

(iγµR∇̃µ − m)ψ(ω)
wσ(v,x) = 0, (3.20)

where

γµR ≡ eµâγ
â, eµ

0̂
= u−1δµ0 , eµ

î
= δµi , ∇̃µ ≡ ∂µ +

1

8

[
γâ, γ b̂

]
eâ
λ∇µeb̂λ.

(3.21)

By virtue of these relations and using the Rindler coordinates, Eq. (3.20) becomes3

i
∂ψ

(ω)
wσ(v,x)

∂v
=

(
γ0mu − iα3

2
− iuαi∂i

)
ψ(ω)
wσ(v,x), αi = γ0γi, i = 1, 2, 3

(3.22)

3For notational simplicity, the Dirac matrices with curved indexes will be labeled with a sub-
script R. Therefore, the ones without it are to be intended as the �at ones.
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whose solutions can be written in the form [121]

ψ(ω)
wσ(v,x) =

ei(−ωv/a+ kαxα)

(2π)
3
2

u(ω)
σ (u,w), α = 1, 2, (3.23)

with

u
(ω)
+ (u,w) = N



ilKiω/a−1/2(ul) + mKiω/a+1/2(ul)

−(kx + iky)Kiω/a+1/2(ul)

ilKiω/a−1/2(ul) − mKiω/a+ 1/2(ul)

−(kx + iky)Kiω/a+1/2(ul)


,

u
(ω)
− (u,w) = N



(kx − iky)Kiω+1/2(ul)

ilKiω/a−1/2(ul) + mKiω/a+1/2(ul)

−(kx − iky)Kiω+1/2(ul)

−ilKiω/a−1/2(ul) + mKiω/a+1/2(ul)


. (3.24)

Here we have denoted by Kiω/a+1/2(ul) the modi�ed Bessel function of the second

kind with complex order, N =
√
a cosh(πω/a)/πl and l =

√
m2 + (kx)2 + (ky)2.

Again, one can verify that the modes in (3.23) are normalized with respect to the

inner product (3.11) expressed in Rindler coordinates.

As it will be shown, in the comoving frame the proton decay is represented as the

combination of the following three processes in terms of the Rindler particles [118]

(see Fig. 3.2 below):

(i) p+ + e− → n+ νe, (ii) p+ + νe → n+ e+, (iii) p+ + e−+ νe → n.

(3.25)

These processes are characterized by the conversion of protons in neutrons due

to the absorption of e− and ν̄e, and emission of e+ and ν̄e from and to the Unruh

thermal bath [117]. Since the strategy for calculating the transition amplitude is the

same for each of these processes, by way of illustration we shall focus on the �rst.

By exploiting the Rindler expansion (3.19) for the electron and neutrino �elds,

it can be shown that

A
p→n
(i) ≡ 〈n| ⊗ 〈νων σν |ŜI |e−ωe− σe− 〉 ⊗ |p〉 =

GF

(2π)2
Jσνσe(ων , ωe), (3.26)
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Figure 3.2: A pictorial representation of the decay processes in the comoving frame.

where ŜI is given by (3.5) with γµ replaced by the Rindler gamma matrices γµR
de�ned in (3.21) and

Jσνσe(ων , ωe) = δ
(
ωe − ων −∆m

)
ū(ων)
σν γ0u(ωe)

σe . (3.27)

Now, bearing in mind that the probability for the proton to absorb (emit) a par-

ticle of frequency ω from (to) the thermal bath is nF (ω) = 1/(e2πω/a + 1)
(
1 −

nF (ω)
)
[118], the di�erential transition rate per unit time for the process (i) can be

readily evaluated, thus leading to

1

T

d6P
p→n
(i)

dωνdωed2kνd2ke
≡ 1

T

∑
σν ,σe

∣∣Ap→n
(i)

∣∣2nF (ωe)
[
1 − nF (ων)

]
(3.28)

=
G2
F

27π5

∑
σν ,σe

∣∣ū(ων)
σν γ0u

(ωe)
σe

∣∣2δ (ωe − ων −∆m)

eπ∆m/a cosh(πων/a) cosh(πωe/a)
,

where T = 2πδ(0) is the total proper time of the proton. In order to �nalize the

evaluation of the transition rate, we observe that

∑
σν ,σe

∣∣ū(ων)
σν γ0u(ωe)

σe

∣∣2 =
24

(a π)2
cosh(πων/a) cosh(πωe/a) (3.29)

×
[
lνle

∣∣∣Kiων/a+1/2

(
lν
a

)
Kiωe/a+1/2

(
le
a

)∣∣∣2 +
(
kxνk

x
e

+ kyνk
y
e + mνme

)
Re

{
K2
iων/a−1/2

(
lν
a

)
K2
iωe/a+1/2

(
le
a

)}]
.
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Using this equation, the di�erential transition rate for the process (i) takes the form

1

T

d6P
p→n
(i)

dωνdωed2kνd2ke
≡ G2

F

23 a2 π7 eπ∆m/a
δ (ωe − ων −∆m)

×
[
lνle

∣∣∣Kiων/a+1/2

(
lν
a

)
Kiωe/a+1/2

(
le
a

)∣∣∣2 + mνme

× Re

{
K2
iων/a−1/2

(
lν
a

)
K2
iωe/a+1/2

(
le
a

)}]
. (3.30)

Next, by performing similar calculation for the processes (ii) and (iii) and adding

up the three contributions, we end up with the following integral expression for the

total decay rate in the comoving frame:

Γp→nacc ≡ Γp→n(i) + Γp→n(ii) + Γp→n(iii) =
2G2

F

a2π7eπ∆m/a

∫ +∞

−∞
dωR(ω), (3.31)

where

R(ω) =

∫
d2kνd

2ke lν le

∣∣∣Ki(ω−∆m)/a+1/2

(
lν
a

)∣∣∣2 ∣∣∣Kiω/a+1/2

(
le
a

)∣∣∣2 (3.32)

+ mνmeRe

{∫
d2kνd

2keK
2
i(ω−∆m)/a−1/2

(
lν
a

)
K2
iω/a+1/2

(
le
a

)}
.

The analytic resolution of the integral (3.31) is performed in Ref. [121]. Comparing

this result to the one in the inertial frame (Eq. (3.18)), it is possible to show that

the resulting expressions for the decay rates perfectly agree with each other, thus

corroborating the necessity of the Unruh e�ect for the consistency of QFTCS. As

a matter of fact, such an achievement is made possible by requiring general covari-

ance to hold. Indeed, the same decay rate has been evaluated by using two di�erent

sets of coordinates (namely, Minkowski and Rindler ones), but since the choice of

a coordinate system is nothing but a gauge �xing (see Sec. 1.1) both calculations

must converge at the same result. The sole method to allow this is to unambigu-

ously demand the Unruh radiation to be a real physical occurrence. Therefore, we

have proven the necessity of the existence of the Unruh e�ect without invoking any

experimental argument.

However, this is not the end of the story, since general covariance ful�llment

is still capable of unraveling novel features. In this perspective, it is intriguing

to extend the discussion of the current Section to the case in which neutrino �eld

exhibits a mixed nature, as a plethora of recent tests con�rms.
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3.2 The inverse β-decay with neutrino mixing

So far, in the evaluation of the transition amplitude, we have treated the electron

neutrino as a particle with de�nite mass mν . However, it is well-known that neu-

trinos exhibit �avor mixing4: in a simpli�ed two-�avor model, by denoting with θ

the mixing angle, the transformations relating the �avor eigenstates |ν`〉 (` = e, µ)

and mass eigenstates |νi〉 (i = 1, 2) are determined by the well-known Pontecorvo

unitary mixing matrix5 [127](
|νe〉
|νµ〉

)
=

(
cos θ sin θ

− sin θ cos θ

)(
|ν1〉
|ν2〉

)
. (3.33)

Along the line of Refs. [122], the question thus arises whether such a transformation

is consistent with the framework of Sec. 3.1. Clearly, since general covariance must

hold, we are already aware of the fact that the results of the analysis in the laboratory

and in the comoving frame must necessarily be consistent. The search for a similar

compatibility is the main task of the current Section. To this aim, we essentially

follow the approach of Refs. [123]

3.2.1 Inertial frame

Let us then implement the Pontecorvo rotation (3.33) on both the neutrino �elds

and states appearing in (3.12). Note that in Refs. [122] this step is missing in the

inertial frame calculation since Ψ̂νe is treated as a free-�eld even when taking into

account �avor mixing, and indeed the same result as in the case of unmixed �elds

is obtained. We explicitly show that the decay rate exhibits a dependence on θ in

the inertial frame, a feature which is not present in the analysis of Refs. [122].

By assuming equal momenta and polarizations for the two neutrino mass eigen-

states, the transition amplitude (3.12) now becomes

A
p→n
in =

GF

24π3

[
cos2 θ Iσνσe(ων1 , ωe) + sin2 θ Iσνσe(ων2 , ωe)

]
, (3.34)

where Iσνσe(ωνj , ωe), j = 1, 2, is de�ned as in (3.13) for each of the two mass

eigenstates, and we have rotated the electron neutrino �eld according to

Ψ̂νe(t,x) = cos θ Ψ̂ν1(t,x) + sin θ Ψ̂ν2(t,x). (3.35)

4For more pieces of information, see Appendix D.
5Note that the number of neutrino generations does not a�ect the results of our analysis.
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Using (3.14), the di�erential transition rate takes the form

d6P
p→n
in

d3kνd3ke
=

∑
σν ,σe

GF
2

28π6

{
cos4 θ

∣∣Iσνσe(ων1 , ωe)∣∣2 + sin4 θ
∣∣Iσνσe(ων2 , ωe)∣∣2

+ cos2 θ sin2 θ
[
Iσνσe(ων1 , ωe) I

∗
σνσe(ων2 , ωe) + c.c.

]}
. (3.36)

The total decay rate Γp→nin is obtained after inserting this equation into the de�ni-

tion (3.15)

Γp→nin = cos4 θ Γp→n1 + sin4 θ Γp→n2 + cos2 θ sin2 θ Γp→n12 , (3.37)

where we have introduced the shorthand notation

Γp→nj ≡ 1

T

∑
σν ,σe

GF
2

28π6

∫
d3kνd

3ke
∣∣Iσνσe(ωνj , ωe)∣∣2, j = 1, 2, (3.38)

and

Γp→n12 ≡ 1

T

∑
σν ,σe

GF
2

28π6

∫
d3kνd

3ke

[
Iσνσe(ων1 , ωe) I

∗
σνσe(ων2 , ωe) + c.c.

]
. (3.39)

We observe that, for θ → 0, the obtained result correctly reduces to (3.18), as it

should be in absence of mixing. Unfortunately, due to technical di�culties in the

evaluation of the integral (3.39), at this stage we are not able to give the exact expres-

sion of the inertial decay rate (3.37). A preliminary result, however, can be obtained

in the limit of small neutrino mass di�erence δm/mν1 ≡ (mν2 − mν1)/mν1 � 1.

In this case, indeed, we can expand Γp→n12 according to

Γp→n12 = 2Γp→n1 +
δm

mν1

Γ(1) + O

(
δm2

m2
ν1

)
, (3.40)

where Γp→n1 is de�ned as in (3.38) and we have denoted by Γ(1) the �rst-order term

of the Taylor expansion. The explicit expression of Γ(1) is rather awkward to exhibit.

Nevertheless, for mν1 → 0, it can be substantially simpli�ed, thus giving

Γ(1)

mν1

=
1

T

GF
2me

27π6

∫
d3kν
|kν |

d3ke
ωe

∫ +∞

−∞
ds dξ cosh aξ

×
[
ei
{

∆mξ+
2 sinh aξ/2

a

[
(|kν |+ωe) cosh as−(kzν+kze ) sinh as

]}
+ c.c.

]
,

(3.41)
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where s and ξ are de�ned in (3.16). Note that such a �limit� has a purely mathe-

matical sense. It is the most suitable scenario to have an easy-to-handle esteem for

the studied quantity.

By performing a boost along the z-direction

k′
x
` = kx` , k′

y
` = ky` , k′

z
` = −ω` sinh as + kz` cosh as, ` = ν1, e,

(3.42)

equation (3.41) can be cast in the form

Γ(1)

mν1

= lim
ε→0

2G2
F me

a π6 eπ∆m/a

∫
d3kν
ωε

d3ke
ωe

Re

{
K2i∆m/a+2

(
2(ωε + ωe)

a

)}
, (3.43)

where ωε =
√
k2
ν + ε2, with ε acting as a regulator. In order to perform k-

integration, we use the following representation of the modi�ed Bessel function:

Kµ(z) =
1

2

∫
C1

ds

2πi
Γ(−s)Γ(−s− µ)

(z
2

)2s+µ

, (3.44)

where Γ is the Euler's Gamma function. C1 is the path in the complex plane

including all the poles of Γ(−s) and Γ(−s − µ), chosen in such a way that the

integration with respect to the momentum variables does not diverge [121].

Using spherical coordinates, Eq. (3.43) becomes

Γ(1)

mν1

= lim
ε→0

23G2
F me

a π4 eπ∆m/a

∫ +∞

0

dkνdke
k2
ν

ωε

k2
e

ωe

∫
Cs

ds

2πi

(
ωε + ωe

a

)2s [
Γ

(
−s +

i∆m

a
+ 1

)
× Γ

(
−s − i∆m

a
− 1

)
+ Γ

(
−s +

i∆m

a
− 1

)
Γ

(
−s − i∆m

a
+ 1

)]
. (3.45)

Let us observe at this point that [121](
ωε + ωe

a

)2s

=

∫
C2

dt

2πi

Γ(−t)Γ(t − 2s)

Γ(−2s)

(ωε
a

)−t+2s (ωe
a

)t
, (3.46)

where C2 is the contour in the complex plane separating the poles of Γ(−t) from the

ones of Γ(t − 2s). Exploiting this relation and properly rede�ning the integration
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variables, we �nally obtain

Γ(1)

mν1

= lim
ε→0

G2
F me a

3

π3 eπ∆m/a

∫
Cs

ds

2πi

∫
Ct

dt

2πi

(ε
a

)2s+2 (me

a

)2t+2

× Γ(−2s)Γ(−2t)Γ(−t − 1)Γ(−s − 1)

Γ(−s + 1
2
)Γ(−t + 1

2
)Γ(−2s − 2t)

×
[
Γ

(
−s − t + 1 + i

∆m

a

)
Γ

(
−s − t − 1 − i

∆m

a

)
+ Γ

(
−s − t + 1 − i

∆m

a

)
Γ

(
−s − t − 1 + i

∆m

a

)]
. (3.47)

where the contour Cs(t) includes all poles of gamma functions in s (t) complex plane.

From (3.40) and (3.47), we thus infer that the o�-diagonal term Γp→n12 is non-

vanishing, thereby leading to a structure of the inertial decay rate (3.37) that is

di�erent from the corresponding one in Refs. [122].

3.2.2 Comoving frame

Let us now extend the above discussion to the proton comoving frame. As done in

the inertial case, we require the asymptotic neutrino states to be �avor eigenstates

(the choice of mass eigenstates would inevitably lead to a contradiction). Note that

the same assumption is contemplated also in Refs. [122]. In spite of this, those

authors exclude such an alternative on the basis of the KMS condition, claiming

that the accelerated neutrino vacuum must be a thermal state of neutrinos with

de�nite masses rather than de�nite �avors. Actually, this argument does not apply,

at least within the �rst-order approximation we are dealing with (see (3.40)). Indeed,

as shown in Refs. [128], non-thermal corrections to the Unruh spectrum for �avor

(mixed) neutrinos only appear at orders higher than O (δm/m).

Relying on these considerations, let us evaluate the decay rate in the comov-

ing frame. A straightforward calculation leads to the following expression for the

transition amplitude (3.26):

A
p→n
(i) =

GF

(2π)2

[
cos2 θJ(1)

σνσe(ων , ωe) + sin2 θJ(2)
σνσe(ων , ωe)

]
, (3.48)

where J
(j)
σνσe(ων , ωe), j = 1, 2, is de�ned as in (3.27) for each of the two neutrino
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mass eigenstates. The di�erential transition rate per unit time thus reads

1

T

d6P
p→n
(i)

dωνdωed2kνd2ke
=

1

T

G2
F

26π4

1

eπ∆m/a cosh(πων/a) cosh(πωe/a)
(3.49)

×
∑
σν ,σe

{
cos4 θ

∣∣J(1)
σνσe(ων , ωe)

∣∣2 + sin4 θ
∣∣J(2)
σνσe(ων , ωe)

∣∣2
+ cos2 θ sin2 θ

[
J(1)
σνσe(ων , ωe) J

(2)∗
σνσe(ων , ωe) + c.c.

]}
.

The spin sum for the process (i) is given by

1

T

∑
σν ,σe

[
J(1)
σνσe(ων , ωe) J

(2)∗
σνσe(ων , ωe) + c.c.

]
=

23 δ(ωe − ων −∆m)

a2 π3
√
lν1lν2

× cosh (πω/a) cosh (πωe/a)

[
le
(
κ2
ν + mν1mν2 + lν1lν2

) ∣∣∣Kiωe/a+1/2

(
le
a

)∣∣∣2
×Re

{
Kiων/a+1/2

(
lν1
a

)
Kiων/a−1/2

(
lν2
a

)}
+
[

(kxνk
x
e + kyνk

y
e ) (lν1 + lν2)

+me (lν1mν2 + lν2mν1)
]
Re

{
K2
iωe/a+1/2

(
le
a

)
Kiων/a+1/2

(
lν1
a

)

×Kiων/a+1/2

(
lν2
a

)}]
, (3.50)

where κν ≡ (kxν , k
y
ν).

Next, by performing similar calculations for the other two processes and adding

up the three contributions, we �nally obtain the total transition rate in the comoving

frame

Γp→nacc = cos4 θ Γ̃p→n1 + sin4 θ Γ̃p→n2 + cos2 θ sin2 θ Γ̃p→n12 , (3.51)

where Γ̃p→nj , j = 1, 2, is de�ned as

Γ̃p→nj ≡ 2G2
F

a2 π7 eπ∆m/a

∫ +∞

−∞
dωRj(ω), j = 1, 2, (3.52)

with Rj(ω) being de�ned as in (3.32) for each of the two neutrino mass eigenstates,
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and

Γ̃p→n12 =
2G2

F

a2 π7 eπ∆m/a

∫ +∞

−∞

dω√
lν1lν2

{∫
d2ked

2kν le

∣∣∣Kiω/a+1/2

(
le
a

)∣∣∣2
×

(
κ2
ν + mν1mν2 + lν1lν2

)
Re

{
Ki(ω−∆m)/a+1/2

(
lν1
a

)
× Ki(ω−∆m)/a−1/2

(
lν2
a

)}
+ me

∫
d2ked

2kν
(
lν1mν2 + lν2mν1

)
× Re

{
K2
iω/a+1/2

(
le
a

)
Ki(ω−∆m)/a−1/2

(
lν1
a

)

× Ki(ω−∆m)/a−1/2

(
lν2
a

)}}
. (3.53)

It is now possible to verify that

Γp→nj = Γ̃p→nj j = 1, 2. (3.54)

By comparing (3.37) and (3.51) and using the above equality, we thus realize that

inertial and comoving calculations would match, provided that the integrals (3.39)

and (3.53) coincide. As in the inertial case, however, the treatment of the Γ̃p→n12 is

absolutely nontrivial. A clue to a preliminary solution can be found by expanding

Γ̃p→n12 in the limit of small neutrino mass di�erence, as in Sec. 3.2.1

Γ̃p→n12 = 2Γ̃p→n1 +
δm

mν1

Γ̃(1) + O

(
δm2

m2
ν1

)
, (3.55)

where Γ̃p→n1 is de�ned in (3.52) and we have denoted by Γ̃(1) the �rst-order term of

the expansion. For mν1 → 0, it is possible to show that

Γ̃(1)

mν1

= lim
ε→0

22G2
F me

a2 π7 eπ∆m/a

∫ +∞

−∞
dωRe

{∫
d2kνd

2keK
2
i(ω−∆m)/a−1/2

(
lε
a

)
K2
iω/a+1/2

(
le
a

)}
,

(3.56)

where lε =
√

(kxν )2 + (kyν)2 + ε2, with ε acting as a regulator.

Equation (3.56) can be now further manipulated by introducing the following
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relation involving Meijer G-function (see, e.g., Ref. [100]):

xσKν(x)Kµ(x) =

√
π

2
(3.57)

×G40
24

(
x2

∣∣∣∣∣
1
2
σ, 1

2
σ + 1

2

1
2
(ν + µ + σ), 1

2
(ν − µ + σ), 1

2
(−ν + µ + σ), 1

2
(−ν − µ + σ)

)
.

A somewhat laborious calculation then leads to

Γ̃(1)

mν1

= lim
ε→0

2G2
F me

a2 π4 eπ∆m/a

∫ +∞

−∞
dω

∫
Cs

ds

2πi

∫
Ct

dt

2πi

∫ +∞

0

dkνdke kν l
2s
ε ke l

2t
e

×

[
Γ (−s) Γ (−t) Γ

(
iω
a

+ 1
2
− t
)

Γ
(
− iω

a
− 1

2
− t
)

Γ
(
−s + 1

2

)
Γ
(
−t + 1

2

)
× Γ

(
i(ω − ∆m)

a
− 1

2
− s

)
Γ

(
−i(ω − ∆m)

a
+

1

2
− s

)

+
Γ (−s) Γ (−t) Γ

(
iω
a
− 1

2
− t
)

Γ
(
− iω

a
+ 1

2
− t
)

Γ
(
−s + 1

2

)
Γ
(
−t + 1

2

)
× Γ

(
i(ω − ∆m)

a
+

1

2
− s

)
Γ

(
−i(ω − ∆m)

a
− 1

2
− s

)]
. (3.58)

In order to perform the integration with respect to ω, let us use the �rst Barnes

lemma, according to which [100]∫ +i∞

−i∞
dω Γ(a+ω)Γ(b+ω)Γ(c−ω)Γ(d−ω) = 2πi

Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
.

(3.59)

Inserting this relation into (3.58), it follows that

Γ̃(1)

mν1

= lim
ε→0

G2
F me a

3

π3 eπ∆m/a

∫
Cs

ds

2πi

∫
Ct

dt

2πi

(ε
a

)2s+2 (me

a

)2t+2

× Γ(−2s)Γ(−2t)Γ(−t − 1)Γ(−s − 1)

Γ(−s + 1
2
)Γ(−t + 1

2
)Γ(−2s − 2t)

×
[
Γ

(
−s − t + 1 + i

∆m

a

)
Γ

(
−s − t − 1 − i

∆m

a

)
+ Γ

(
−s − t + 1 − i

∆m

a

)
Γ

(
−s − t − 1 + i

∆m

a

)]
. (3.60)

which is exactly the same expression obtained in the inertial frame (3.47).
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So far, we have seen the motivations for which it is mandatory to require the

existence of the Unruh e�ect by relying on the generally covariant formulation of

QFTCS. Moreover, we have shown how such an accomplishment does not depend

on the mixed nature of the emitted (for the inertial observer) or absorbed (for

the comoving observer) neutrino. However, there are still further considerations to

be performed that are directly related to the occurrence of neutrino �avor transi-

tions [123]. In the following Section, we will see that investigations in this direction

shed light on a crucial aspect of neutrinos belonging to the Unruh radiation.

3.3 Inverse β-decay with oscillating neutrinos

In Sec. 3.2.2, we have demonstrated general covariance to imply Unruh e�ect even

when neutrino is regarded as a mixed �eld. Furthermore, due to their intrinsic

nature, we know that �avor transitions take place throughout the propagation of the

particle [127]. Therefore, it is licit to assume that the emitted neutrino can change

its �avor after its production via inverse β-decay. Indeed, it must be emphasized that

in the above calculations of Sec 3.2.1 an in�nite proper time interval is considered,

which allows for the electron neutrino produced in the proton decay to oscillate.

Thus, we should take into account not only the process contemplated in (3.6), but

also the following one:

p → n + e+ + νµ . (3.61)

The above relation must be intended in the sense of Fig. 3.3: although it is true

that the lepton charge must necessarily be conserved in the vertex (at tree-level), as

soon as the outgoing neutrino is produced, �avor oscillations will inevitably occur.

The transition amplitude for such process is non-vanishing

A(νµ) = 〈n| ⊗ 〈e+, νµ|ŜI |0〉 ⊗ |p〉

=− GF

24π3
cos θ sin θ

[
Iσνσe(ων1 , ωe)− Iσνσe(ων2 , ωe)

]
. (3.62)

In terms of Γ, the quantity A(νµ) of (3.62) associated to the process (3.61) leads to

the following transition rate:

Γ
(νµ)
in = cos2 θ sin2 θ (Γ1 + Γ2 − Γ12) , (3.63)

where all the contributions in the r.h.s. of the above expression have already been

introduced in (3.38) and (3.39). We notice that the above transition rate is propor-

tional to sin2 2θ, thus showing that it is originated by interference.
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Figure 3.3: Decay process in the inertial frame that accounts for �avor transitions.

Finally, observe that

Γin ≡ Γ
(νe)
in + Γ

(νµ)
in = cos2 θ Γ1 + sin2 θ Γ2 . (3.64)

As it should be plain by now, due to the general covariance of QFTCS an outcome

similar to the one expressed in (3.64) must be manifest also in the comoving frame.

In Sec. 3.2.2 it was shown that, by taking into account the three interactions in (3.25)

of the proton with the particles of the thermal bath, the quantity Γ
(νe)
acc matches the

corresponding decay rate Γ
(νe)
in evaluated in the inertial frame. In particular, in

Sec. 3.2.2 it has been possible to exhibit that Γi = Γ̃i for i = 1, 2, whereas Γ12

and Γ̃12 are equal to each other only up to a �rst-order expansion in the parameter

δm ≡ mν2 −mν1 .

On the other hand, we have seen above that an additional contribution to the

proton decay rate has to be considered, which in the inertial frame is represented

by the process in Fig. 3.3. Guided by the principle of general covariance, we now

seek the corresponding processes in the comoving frame which should lead to the

same result. To this aim, we consider the three following contributions as potential

candidates for the non-inertial counterpart of the decay (3.61):

(i) p+ + e− → n+ νµ, (ii) p+ + νµ → n+ e+, (iii) p+ + e− + νµ → n, (3.65)

which are depicted in Fig. 3.4. Note that, whilst the �rst process (3.65) is of the same

type of (3.61) since it entails an oscillation of the emitted (electron) neutrino, the
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other processes (3.65) are essentially due to the oscillation of an (muon) antineutrino

that is already present in the Unruh thermal bath.

Figure 3.4: Decay processes in the accelerated frame. Oscillations of neutrinos in the
Unruh thermal bath are considered in the last two diagrams.

In order to legitimate the validity of our assumption, we need to perform the

same calculations that lead to the decay rate (3.51). The outcome of this procedure

turns out to be

Γ(νµ)
acc = cos2 θ sin2 θ

(
Γ̃1 + Γ̃2 − Γ̃12

)
. (3.66)

By virtue of the aforesaid observations contained in detail in Sec. 3.2 which allow

us to state that Γ
(νe)
in = Γ

(νe)
acc , it is possible to infer that such an equivalence holds

also between the decay rates of (3.63) and (3.66).

Moreover, if we compute the total comoving decay rate which includes neutrino

oscillations, we deduce that

Γacc = Γ(νe)
acc + Γ(νµ)

acc = cos2 θ Γ̃1 + sin2 θ Γ̃2 . (3.67)

By comparing this with the total inertial decay rate (3.64), we �nd that

Γin = Γacc , (3.68)

which means that such a result does not depend on the quantities Γ12 and Γ̃12, whose

treatment would require additional computational e�ort [123], as we have already

shown before.

Remarkably, Eq. (3.68) not only involves a generalization of the analysis of the

accelerated proton decay to the case in which the produced neutrino oscillates, but

it also unambiguously corroborates our guess of selecting the processes (3.65) as the



3.3 Inverse β-decay with oscillating neutrinos 67

counterpart for the decay (3.6) in the inertial frame. Hence, the requirement of the

principle of general covariance clearly results in the necessity of having an Unruh

thermal bath containing �avor neutrinos which do oscillate.

This represents another achievement which has been obtained by resorting to

the underlying general covariance of QFTCS. Although at �rst it may appear pre-

dictable, it is by no means evident that particles should retain their properties when

they are taken to be the constituents of the Unruh radiation. Therefore, the current

description is the �rst proof along such an intriguing path, which can potentially

lead to considerable theoretical attainments. As a matter of fact, the literature

based on the ideas discussed in this Chapter has had a remarkable impact on the

scienti�c community.

A �nal interesting observation that can be deduced from our analysis is related

to the identities (3.64) and (3.67) that are true for the inertial and the comoving

frame, respectively. For this purpose, we recall that the decay rates appearing in

the aforementioned equations have been computed by employing neutrino �avor

states as asymptotic states. However, we note that similar relations also hold for

the quantities Γ(ν1) and Γ(ν2) calculated in Ref. [124] using neutrino mass eigenstates

as fundamental objects. We then have

Γ(ν1) + Γ(ν2) = Γ(νe) + Γ(νµ) , (3.69)

where Γ(ν1) and Γ(ν2) are inclusive of the elements of Pontecorvo matrix. The above

equality has to be regarded both in the inertial and the comoving frames. Such an

equation constitutes a consistency check for the correctness of the calculations in

Refs. [123] and [124]. The physical meaning of (3.69) can be understood by consid-

ering the charges for mixed neutrino �elds as derived from Noether's theorem [129].

Indeed, by denoting with

Qi =

∫
d3xΨ†νi(x)Ψνi(x) , i = 1, 2, (3.70)

the conserved charges for the neutrino �elds with de�nite masses and with

Qα(t) =

∫
d3xΨ†να(x)Ψνα(x) , α = e, µ, (3.71)

the (time-dependent) �avor charges, one can see that

Q =
∑
i

Qi =
∑
α

Qα(t) , (3.72)



3.3 Inverse β-decay with oscillating neutrinos 68

where Q represents the total charge [129]. The above relation can be interpreted as

the conservation of the total lepton number. On the one hand, this can be viewed

as the sum of two separately conserved family lepton numbers, when no mixing is

present; on the other hand, the same conserved number is obtained by the sum of

non-conserved �avor charges, which are associated to oscillations.

Concluding remarks

In the present Chapter, we have discussed the decay of uniformly accelerated pro-

tons. Following the line of reasoning of Refs. [118, 121], we have reviewed the

calculation of the total decay rate both in the laboratory and comoving frame in

Sec. 3.1, highlighting the incompatibility between the two results when taking into

account neutrino �avor mixing [122]. Such an inconsistency would not be striking

if the underlying theory were not generally covariant, but this is not the case, since

the fundamental ingredients for analyzing the process, namely the SM and QFT

in curved space-time, are by construction generally covariant. On the other hand,

the authors of Ref. [122] argue their result claiming that mixed neutrinos are not

representations of the Lorentz group with a well-de�ned invariant p2, and that the

mathematical origin of the disagreement arises from the noncommutativity of weak

and energy-momentum currents. Furthermore, they propose the experimental inves-

tigation as the only way to resolve such a controversial issue. Even assuming there

are no �aws in this reasoning, we believe the last statement to be basically incor-

rect: an experiment, indeed, should not be used as a tool for checking the internal

consistency of theory against a theoretical paradox.

Led by these considerations, we have thus revised calculations of Ref. [122] mod-

ifying some of the key assumptions of that work. In particular, in Sec. 3.2 we

have required the asymptotic neutrino states to be �avor rather than mass eigen-

states. Within this framework, by comparing the obtained expressions for the two

decay rates, it has been shown that they would coincide [123], provided that the o�-

diagonal terms (3.39) and (3.53) are equal to each other. In order to check whether

this is the case, we have performed the reasonable approximation of small neutrino

mass di�erence, pushing our analysis up to the �rst order in δm/mν . However,

due to computational di�culties, the further assumption of vanishing neutrino mass

mν1 → 0 has proved to be necessary for getting information about these terms. In

such a regime, we have found that (3.47) and (3.60) are perfectly in agreement, thus

removing the aforementioned ambiguity at a purely theoretical level.

Subsequently, in Sec. 3.3 we have seen that the above technical di�culties can be
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solved by extending the study of the inverse β-decay to the case in which neutrino

oscillations are taken into account. Once again, on the basis of the requirement of

general covariance of QFT, we have shown that the Unruh radiation �seen� by the

accelerated proton must necessarily be made up of oscillating neutrinos [123]. This

is a novel feature which had been surprisingly neglected in the previous literature

on this topic but that should emerge in a very natural way.

As a �nal remark, we stress that in the current work we have made use of the

simplest framework of neutrino mixing among two generations. The extension to

three �avors is in principle straightforward and represents one of the future directions

of our investigation. We envisage that the presence of CP violation may introduce

interesting additional features which would enrich the non-trivial structure of the

Unruh radiation.





Chapter 4

An insight on equivalence principle

violation

In light of the arguments contained in Sec. 1.2, we are aware that the equivalence

principle has played a crucial role for the development of GR. Together with gen-

eral covariance, EP has led Einstein to the realization of one of the most elegant

and experimentally successful theoretical apparatuses. Nevertheless, GR is still not

capable of describing all observed phenomena and acquired data related to gravity,

thus leaving an opening for novel physical models. Inevitably, most of such gravita-

tional theories try to overcome the aforesaid shortcomings by relaxing one or more

hypotheses on which GR is �rmly grounded. If this is the case for EP, a series of

examples in this direction can be found in Sec. 2.3, where we have seen that several

quadratic models of gravity allow for the emergence of a measurable quantity related

to SEP violation in the context of the Casimir e�ect.

Apart from the previous scenario, there is also another remark that must be done,

and it concerns the interplay between GR and QM. Indeed, it is by no means obvious

that such principles as EP which hold at macroscopic scales should be regarded as

fundamental also in the quantum domain. For instance, a noteworthy elaboration

that tackles a similar topic is Ref. [130], where the EEP is questioned for quantum

systems. In this perspective, we stress that many theoretical and experimental

works have identi�ed neutrinos with a potential probe to test the validity of EP, in

particular WEP [131]. Therefore, it appears that EP formulation should be properly

modi�ed to �t in a quantum mechanical framework.

Furthermore, in connection with WEP, if the analysis of a given physical system

is performed at �nite temperature T , we have also to account for the �thermal�

contribution to the inertial and gravitational masses separately. In fact, in principle

it is impossible to state whether the two types of mass would receive the same amount

71
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of energy coming from the interaction with the thermal bath or not. Actually, a

thorough QFT investigation can prove that for T 6= 0 WEP is explicitly violated;

this has been demonstrated for the �rst time in Refs. [132] by studying an electron

in equilibrium with a photon heat bath.

Since we have already treated the case of SEP violation in connection with

quadratic theories of gravity, in the current Chapter we will be mainly interested in

presenting the ways in which WEP violation is viable. For this purpose, we essen-

tially deepen two aspects that have already been mentioned in the above paragraphs.

In particular:

• inspired by Ref. [130], we will resort to a novel derivation of the non-relativistic

limit for �avor neutrinos showing that it naturally leads to WEP violation;

• we will follow the reasoning of Refs. [132] by relying on a simpli�ed approach that

can be found in Ref. [133]. We then apply the same method to the case of

Brans-Dicke theory [134].

4.1 Non-relativistic neutrinos and WEP violation

The subject of non-relativistic neutrinos is per se an intriguing one. For instance,

neutrinos that constitute the so-called cosmic neutrino background (CNB), also

known as relic neutrinos, may open new scenarios in our understanding of the early

universe [135]; in fact, it is estimated that the CNB decoupled from matter few

seconds after the Big Bang [136]. In this sense, the CNB contains more information

on the primordial characteristics of the universe than the photon-based cosmic mi-

crowave background radiation. Since the temperature of the CNB is estimated [136]

to be T ' 2K, it is reasonable to think of relic neutrinos as non-relativistic particles.

Bearing these concepts in mind, we start our analysis from the non-relativistic

limit of the Dirac equation for �avor neutrinos. A similar choice �nds its justi�cation

in Sec. 3.3, in which we have seen an interesting example that shows why �avor

basis better �ts the description of neutrino phenomenology. Along this line, there

is a vast literature that supports the employment of �avor basis as the fundamental

description for neutrinos (see for instance Refs. [129, 137]), but this issue will not

be tackled in the current essay.



4.1 Non-relativistic neutrinos and WEP violation 73

4.1.1 Non-relativistic neutrinos without external �eld

Let us consider the Dirac equation associated with �avor neutrinos νe and νµ. In

the simplest case of a two-�avor model and no external �eld, it reads

(iγα∂α − M) Ψ = 0 . (4.1)

Here, γα is implicitly meant to be the 8 × 8 matrix I2×2 ⊗ γα and M is the 8 × 8

(non-diagonal) mass matrix, which in the 4× 4 block formalism reads

M =

(
me meµ

meµ mµ

)
. (4.2)

The wave-function Ψ contains the bispinors related both to νe and νµ

Ψ =

(
ψe

ψµ

)
. (4.3)

If we explicitly write the two Dirac equations, we get

(iγα∂α −me)ψe = meµψµ , (4.4)

(iγα∂α −mµ)ψµ = meµψe . (4.5)

Unless stated otherwise, we will focus only on (4.4), since the ensuing results for

the muon neutrino are easily obtained by exchanging the subscripts e ↔ µ. In

addition, with foresight of a non-relativistic treatment of (4.1) we will employ the

standard Dirac representation of γ matrices. Consequently, the positive-energy wave

functions satisfy algebraic equations

(i∂0 −me)ϕe + iσ ·∇χe = meµϕµ ,

−iσ ·∇ϕe − (i∂0 +me)χe = meµχµ . (4.6)

Here, ϕe,µ and χe,µ denote the �large� (upper) and �small� (lower) spin components

of respective bispinors. At this point, we can perform the non-relativistic limit, by

assuming that the dominant contribution to the energy comes from the rest mass.

Hence, in (4.6) we can assume the kinetic energy to be much smaller than the rest

mass. One can thus pull out from the bispinor the fast oscillating factor e−imσt (for
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the positive energy solutions), so that

ψσ = e−imσtψ̃σ , σ = e, µ , (4.7)

with the �eld ψ̃σ oscillating much slower than e−imσt in time. Then, one drops

the term ∂0ψ̃σ as small compared to −2imσψ̃σ (more speci�cally, one assumes that

|∂0ψ̃σ| � |2mσψ̃σ|). In light of this, Eqs. (4.6) reduce to

i∂0ϕ̃e + iσ ·∇χ̃e = meµe
i(me−mµ)tϕ̃µ , (4.8)

−iσ ·∇ϕ̃e − 2meχ̃e = meµe
i(me−mµ)tχ̃µ . (4.9)

Analogous relations hold for νµ. In what follows, for notational simplicity we remove

the tilde from the components of Dirac bispinors, but it should not be forgotten that

henceforth we deal with non-relativistic quantities.

Note that, in the usual non-mixing case, the small spin component is much

smaller than the large one. In presence of mixing, however, the small component χµ
can be in the non-relativistic limit of the same order as ϕe providedmeµ is su�ciently

small (namely, when meµ ≈ |σ ·p| = |p|). This should be contrasted with the ultra-

relativistic limit, where for small meµ the component ϕe can substantially dominate

over χµ. We shall see shortly that these observations have interesting and non-trivial

implications.

Let us now plug χe in the expression for ϕe. We get

i∂0 ϕe = − ∇
2

2me

ϕe + ei(me−mµ)t

[
meµϕµ +

imeµ

2me

(σ ·∇) χµ

]
. (4.10)

As expected, the �rst term on the r.h.s. of (4.10) represents the kinetic part, whereas

the information about mixing is imprinted in two remaining terms.

One can push the above analysis beyond (4.10) by employing the ensuing non-

relativistic relation for χµ stemming from (4.5). Indeed, by using the fact that

χµ = −iσ ·∇
2mµ

ϕµ − ei(mµ−me)t
meµ

2mµ

χe ,

and inserting it into (4.10), we obtain

i∂0 ϕe = − ∇
2

2me

ϕe + ei(me−mµ)t
[
meµϕµ +

meµ

2me

∇2

2mµ

ϕµ

]
−

im2
eµ

4memµ

(σ ·∇)χe .(4.11)

It is clear that we can continue this iteration procedure inde�nitely. If the corre-
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sponding in�nite sum converges, we can get rid of the small spin components in both

ψe and ψµ and obtain two coupled �eld equations for ϕe and ϕµ only � as it could

be expect from the non-relativistic limit, where only (equal parity) large bispinor

components (Pauli spinors) appear.

The aforesaid iterative procedure brings (4.11) to the form

i∂0 ϕe = −A(M)
∇2

2me

ϕe + ei(me−mµ)t B(M)ϕµ , (4.12)

where

A(M) =
∞∑
n=0

(
m2
eµ

4memµ

)n
, (4.13)

and

B(M) = meµ +
meµ

2me

A(M)
∇2

2mµ

. (4.14)

Since for two �avors the relations between me, mµ, meµ and the mass parameters

m1 and m2 are known to be [138]

me = m1 cos2θ + m2 sin2θ ,

mµ = m1 sin2θ + m2 cos2θ ,

meµ = (m2 −m1) sinθ cosθ , (4.15)

one might easily check that m2
eµ < memµ. For future convenience, let us denote the

expansion parameter m2
eµ/(4memµ) as ω. Because ω < 1, the geometric series A(M)

converges and it sums up to

A(M) =
1

1− ω
. (4.16)

With this, we obtain the equation for the Pauli spinors (large bispinor components)

in the Schrödinger form

i∂0ϕe = −
(

1

1− ω

)
∇2

2me

ϕe + meµ e
i(me−mµ)t

{
1 +

∇2

4memµ (1− ω)

}
ϕµ . (4.17)

Equation (4.17) is the sought non-relativistic limit of the Dirac equation for an

electron neutrino. As already stressed, when we exchange e ↔ µ we obtain the

corresponding equation for ϕµ.

By looking at the formula (4.17), we can immediately draw two important con-

clusions. First, in order to have the standard kinetic contribution in (4.17), the

would-be inertial mass me should be modi�ed. In fact, we should require that the

inertial mass is meff
e = me (1− ω). A similar rede�nition must be performed also for
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mµ. The existence of meff
e 6= me might be at �rst surprising, since it is not clear why

mixing should a�ect the inertial masses related to �avor states. In this connection,

it is worth noting that the presence of the correction term A(M) is due to the fact

that Dirac equation (4.6) simultaneously deals with large and small bispinor com-

ponents (ϕe and χµ), that in the case of mixing are comparably important. In fact,

to reach (4.17) one has to work interchangeably with small and large components

because these are interlocked at all energy scales. Should the same analysis were

performed with the Klein�Gordon equation for mixed �elds (i.e., the ones describ-

ing mixed composite particles with spin 0, such as K0, D0 or B0 mesons [139]), an

analogous rede�nition of the inertial mass would be found.

Second, the part related to ϕµ characterizes the oscillation phenomenon. Note

that the factor inside {. . .} in (4.17) is the same as for the ϕµ apart for the time-

dependent phase factor. When {. . .} were zero (i.e. when meµ = 0), these two

equations would just describe two uncoupled equations for free electron and muon

neutrinos, with masses me = m1 and mµ = m2, respectively. However, there is

coupling between the two �avor neutrinos by the amplitude {. . .}, thus implying

that there may be �leakage� from one �avor to the other. This is nothing but

the ��ip-�op� amplitude of a two-state system [47]. Note also that its modulus is

manifestly invariant under the exchange of �avors e ↔ µ which re�ects detailed

balance of the oscillation phenomena.

4.1.2 Non-relativistic neutrinos in gravitational �eld

Let us now focus the attention on what happens if we switch a gravitational potential

on. It is not a priori evident that the e�ective inertial masses meff
e and meff

µ will also

couple to the gravitational potential. To explore this point, we will restrict our

attention to a metric in the post-Newtonian approximation that goes up to the

order O (c−2). Moreover, without loss of generality, we will consider the isotropic

reference frame, so that for the gravitational potential we consider φ (~x) ≡ φ (|~x|).
The ensuing line element reads [130]

ds2 = (1 + 2φ ) dt2 − (1− 2φ)
(
dx2 + dy2 + dz2

)
. (4.18)

In order to couple gravity with the Dirac equation (4.1), we use the conventional

spin connection formalism. In particular, we should substitute Feynman's Dirac

operator /∂ with γµ∇̃µ, where γµ = eµâγ
â and ∇̃µ = ∂µ + Γµ, as seen in Sec. 3.1.2,
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see (3.21). Γµ is the Fock�Kondratenko connection

Γµ = − i
4
σâb̂ ωµâb̂ =

1

8

[
γâ, γ b̂

]
eλâ∇µeb̂λ . (4.19)

Here, σâb̂ = i/2
[
γâ, γ b̂

]
are generators of the bi-spinorial representation of Lorentz

group, ωµâb̂ = eλâ∇µeb̂λ are the spin connection components, γâ represent the gamma

matrices in �at spacetime, ∇µ is the usual covariant derivative and e
µ
â is the vierbein

�eld.

Because in our case both gµν and ηâb̂ are diagonal, it is simple to evaluate the

non-vanishing components of the vierbein �elds. By using the relation

gµν = eµâ e
ν
b̂
ηâb̂ ,

which is the same one introduced in (1.4), we obtain

e0
0̂

= 1− φ , exx̂ = eyŷ = ezẑ = 1 + φ , (4.20)

and the ensuing Fock�Kondratenko connection

Γµ =
1

8

[
γâ, γ b̂

]
eλâ
(
ηµλ∂ρφ− ηµρ∂λφ

)
eρ
b̂
. (4.21)

Let us discuss the modi�cations of (4.17) that are induced by the presence of a weak

gravitational �eld. Using the fact that (4.1) is now replaced by(
iγα∇̃α −M

)
Ψ = 0 , (4.22)

we obtain the equations for electron neutrino in the form

(i∂0 −me − iφ ∂0)ϕe + i(σ ·∇)χe = meµϕµ ,

−i(σ ·∇)ϕe − (i∂0 +me − iφ ∂0)χe = meµχµ . (4.23)

The assumption at the basis of (4.23) is that we consider only a weak gravitation

�eld, and hence the gravitational potential is slowly varying (as on the Earth sur-

face). In particular, we consider that ∂iφ ≈ 0, ∀i, and so φ enters in (4.23) only via

vierbeins in γα matrices. Despite this, the subsequent conclusions would still remain

qualitatively correct.
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At this point, we can take the non-relativistic limit in (4.23). This yields

i∂0ϕe = meφϕe + ei(me−mµ)t meµϕµ − i (σ ·∇) χe ,

χe = −iσ ·∇
2me

ϕe − ei(me−mµ)t meµ

2me

χµ . (4.24)

By following the same procedure which we already adopted in the previous Sec-

tion, one arrives at the non-relativistic Dirac equation in the presence of a weak

gravitational �eld in the form

i∂0ϕe =

(
− ∇

2

2meff
e

+me φ

)
ϕe + ei(me−mµ)t

[
meµ

2me

(
2me +

∇2

2meff
µ

)]
ϕµ . (4.25)

As expected, for the electron neutrino we recover the sum of the kinetic and the

potential contribution, but also the same ��ip-�op� amplitude as in (4.17) (at least

in the lowest non-trivial order considered here). However, note that whilst the

inertial mass undergoes the same rede�nition as in the free-�eld case (4.17), the

gravitational mass remains me. This might be seen as a straightforward example of

the violation of WEP for �avor neutrinos, since meff = mi 6= mg.

Let us �nally stress that, should we have performed an analogous treatment

in the mass basis, we would not have found any distinction between inertial and

gravitational masses. This holds true because electron and muon state vectors are

in such a case completely decoupled and the absence of o�-diagonal mass terms

leads to meff
j = mji = mjg with j = 1, 2. Such an unexpected occurrence is the

starting point for a deeper investigation concerning the nature of neutrinos, but for

the present goal it can be neglected.

To summarize, in the non-relativistic regime we have seen how everything works

as if mixing can be reinterpreted as a sort of �interaction� which does not contribute

with the same weight to the inertial and the gravitational mass. It can be proven

that the same happenstance is encountered when dealing with a quantum system

at �nite temperature, in conjunction with what has been done in Refs. [132]. This

subject will be the central topic of the next Section [134].

4.2 WEP violation at �nite temperature

As already anticipated at the beginning of the Chapter, two approaches can be

used to prove that WEP is violated at �nite temperature: the �rst one involves a

thorough QFT analysis, whereas the second one is based on a modi�cation of the

geodesic equation which accounts for the fact that T 6= 0. The former will be brie�y
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sketched; for further details, the interested reader can consult Refs. [132]. On the

other hand, the latter will be better developed, since it will be applied also to the

case of Brans-Dicke model.

4.2.1 WEP violation via quantum �eld theory

There exists an extremely elegant way to treat EP violation in a QFT and GR

framework [132] (for modi�ed gravity, see for example Refs. [140] and Ref. [72] for

the generalized uncertainty principle). The system we want to study consists of an

electron with mass m0 (the renormalized mass of the particle when the temperature

is zero) in thermal equilibrium with a photon heat bath. The aim of the analysis is

the evaluation of electron's gravitational and inertial mass in the low-temperature

limit (namely, T � m0). We remark that the presence of a non-zero temperature is

fundamental, since calculations clearly show that mg = mi for T = 0.

The gravitational and inertial masses are derived by adopting a Foldy�Wouthuysen

transformation [141] on the Dirac equation. Such a procedure gives the opportunity

to study the non-relativistic limit of particles with spin-1/2 (i.e. electrons). In other

words, it is possible to derive a Schrödinger equation in which the expression for the

mass is easily recognizable.

In order to �nd a proper expression for mi, one can imagine to switch an electric

�eld on, so that the Dirac equation which includes the electromagnetic interaction

turns out to be [132] (
/p−m0 −

α

4π2
/I
)
ψ = eΥµA

µψ. (4.26)

In (4.26), α is the �ne-structure constant, as usual /p = γµpµ, with γµ being the Dirac

matrices, Aµ is the electromagnetic four-potential, namely Aµ = (φ,A), where φ is

the scalar potential and A the vector potential and the quantity Iµ is de�ned as

Iµ = 2

∫
d3k

nB (k)

k0

kµ
ωpk0 − p · k

, (4.27)

with kµ = (k0,k) and where ωp and p are connected by

ωp =
√
m2

0 + |p|2. (4.28)

In (4.27), nB(k) represents the Bose-Einstein distribution

nB(k) =
1

eβk − 1
, (4.29)
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where β = 1/kBT , with kB being the Boltzmann constant. Finally, Υµ is

Υµ = γµ

(
1− α

4π2

I0

E

)
+

α

4π2
Iµ. (4.30)

At this point, a Foldy�Wouthuysen transformation converts (4.26) into a Schrödinger

equation, which reads

i
∂ψs
∂t

=

m0 +
απT 2

3m0

+
|p|2

2
(
m0 + απT 2

3m0

) + eφ+
p ·A + A · p

2
(
m0 + απT 2

3m0

) + . . .

ψs, (4.31)

from which one extracts the inertial mass

mi = m0 +
απT 2

3m0

. (4.32)

We immediately notice that the di�erence between the inertial mass of an electron

at �nite temperature and m0 is due exclusively to the thermal radiative correction

of (4.32).

An analogous reasoning can be performed also for the gravitational mass, which

can be derived in the same way, but starting from a di�erent Dirac equation that

takes into account the gravitational interaction. In a similar circumstance, one can

write [132] (
/p−m0 −

α

4π2
/I
)
ψ =

1

2
hµντ

µνψ, (4.33)

where a weak gravitational �eld is considered (the �uctuation with respect to the

background metric are de�ned by hµν) and with τµν being the renormalized stress-

energy tensor. In the previous expression, following Refs. [132], it is assumed

hµν = 2φg diag (1, 1, 1, 1), where φg is a gravitational potential.

Once again, a Foldy�Wouthuysen transformation yields another Schrödinger

equation

i
∂ψs
∂t

=

m0 +
απT 2

3m0

+
|p|2

2
(
m0 + απT 2

3m0

) +

(
m0 −

απT 2

3m0

)
φg

ψs, (4.34)

from which the identi�cation of the gravitational mass is an easy task

mg =

(
m0 −

απT 2

3m0

)
. (4.35)

Such an outcome implies that there is no di�erence at all between mg and mi at
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zero temperature, because they both equal the renormalized mass. This means that

only radiative corrections render the violation of the equivalence principle feasible.

At this point, it is straightforward to check that (4.32) and (4.35) entail

mg

mi

= 1− 2απT 2

3m2
0

, (4.36)

in the �rst-order approximation in T 2, legitimated by the choice of evaluating the

low-temperature limit of the analyzed quantum system. The last expression is a

direct consequence of the fact that Lorentz invariance of the �nite-temperature vac-

uum is broken, which means that it is possible to de�ne an absolute motion through

the vacuum (i.e. the one at rest with the heat bath).

Equation (4.36) is the core of our argumentation that will be developed below.

The central result is the violation of EP, achievable by means of QFT at �nite

temperature. Regarding this point, the question arises whether T can be inserted

into GR with the aim to reproduce the same outcome bypassing radiative correction

computations. If this proposal is viable, it should be possible to develop similar

calculations for several physical frames describing di�erent spacetimes.

4.2.2 WEP violation via modi�ed geodesic equation

The opportunity to check whether (4.36) can be derived involving exclusively GR

properties is the goal of this Section. The derivation exhibited below closely follows

the original one contained in Ref. [133].

Let us then study the aforementioned procedure to reach (4.36) once again, but

from a di�erent path. The starting point is the analysis of a charged test particle

of renormalized mass at zero temperature m0 in thermal equilibrium with a photon

heat bath in the low-temperature limit T � m0. Hence, the dispersion relation is

modi�ed by an additional term [132]

E =

√
m2

0 + |p|2 +
2

3
απT 2, (4.37)

which can be easily identi�ed with the �rst-order correction in T 2 that descends

from the �nite-temperature analysis.

Now, let us introduce the stress-energy tensor T µν related to the test particle,

whose world line can be contained in a narrow �world tube� in which T µν is non-

vanishing. The conservation equation for the stress-energy tensor can be integrated
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over a three-dimensional hypersurface Σ and de�ned as∫
Σ

d3x′
√
−g T µν (x′) =

pµpν

E
, (4.38)

where pµ is the four-momentum and E = p0 the energy given by

E =

∫
Σ

d3x′
√
−g T 00 (x′) . (4.39)

These equations hold in the limit for the world tube radius going to zero [142].

A more accurate study [132] gives the term that should be viewed as the source

of gravity at �nite temperature and in weak-�eld approximation, which in the rest

frame of the heat bath turns out to be

Ξµν = T µν − 2

3
απ

T 2

E2
δµ0 δ

ν
0T

00, (4.40)

where Ξµν contains not only the information on the Einstein tensor Gµν , but also

thermal corrections to it.

Equation (4.40) is explicitly derived after the choice of the privileged reference

frame at rest with the heat bath, and this fact produces a Lorentz invariance viola-

tion of the �nite-temperature vacuum. In fact, in the �at tangent space, one cannot

consider a Minkowski vacuum anymore, since it is substituted by a thermal bath.

For this reason, Lorentz group is no longer the symmetry group of the local tan-

gent space to the Riemannian manifold, even though general covariance still holds

there (recall the arguments of Sec. 1.1). The last consideration allows us to proceed

with the awareness that the current situation is slightly di�erent from the usual GR

scheme.

However, since the analyzed case deals with weak-�eld approximation and quadratic

thermal corrections in low-temperature limit, the generalization of (4.40) to curved

spacetime can be

Ξµν = T µν − 2

3
απ

T 2

E2
eµ

0̂
eν

0̂
T 0̂0̂, (4.41)

where eµ
0̂
denotes the vierbein �eld.

Another fundamental assumption has be made to proceed further: e�ects of

temperature on geometry have not to be taken into account [133]. If the last assertion

holds, it is possible to write the Einstein �eld equations as

Gµν = Ξµν , (4.42)

otherwise several contributions would arise from a relativistic investigation on tem-
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perature (because also T would have an in�uence on spacetime structure), but for

our purposes they can be safely neglected.

If now we employ the Bianchi identity (namely, ∇νG
µν = 0), it is straightforward

to check that

∇νT
µν = ∇ν

(
2

3
απ

T 2

E2
eµ

0̂
eν

0̂
T 0̂0̂

)
, (4.43)

which can be rewritten as

∂ν
(√
−g T µν

)
+ Γµνα

√
−g Tαν = ∂ν

(√
−g 2

3
απ

T 2

E2
eµ

0̂
eν

0̂
T 0̂0̂

)
+

2

3
απΓµνα

√
−g T

2

E2
eµ

0̂
eν

0̂
T 0̂0̂. (4.44)

By denoting
.
x
µ ≡ dxµ/ds, it can be shown [133] that (4.44) is equal to

..
x
µ

+ Γµαν
.
x
α .
x
ν

=
d

ds

(
2

3
απ

T 2

mE
eµ

0̂

)
+

2

3
απ

T 2

m2
Γµανe

α
0̂
eν

0̂
, (4.45)

which can be cast into another form by using the fact that

E = m
.
x

0̂
= m

.
x
ρ
e0̂
ρ. (4.46)

This substitution �nally gives

..
x
µ

+ Γµαν
.
x
α .
x
ν

=
2

3
απT 2

 .
x
ν
∂νe

µ

0̂

mE
−
eµ

0̂

(
..
x
ν
e0̂
ν +

.
x
ν .
x
β
∂βe

0̂
ν

)
E2

+
Γµανe

α
0̂
eν

0̂

m2

 . (4.47)

Equation (4.47) represents a generalization of the geodesic equation to the case in

which the temperature is non-vanishing.

Application to Schwarzschild solution

We are ready to analyze (4.47) in the context of the Schwarzschild solution. To this

aim, we can write the metric tensor as1

gµν = diag
(
eν ,−eλ,−r2,−r2sin2θ

)
, eν = e−λ = 1− 2φ = 1− 2M

r
. (4.48)

1In the following, not only we use natural units, but we also set G = 1.
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Moreover, let us recall that ∂tφ = 0 and let us assume that only radial motion is

considered (
.

ϑ =
.
ϕ = 0). The vierbeins for the metric (4.48) are

e0
0̂

= e−
ν
2 ; e1

1̂
= e−

λ
2 . (4.49)

In addition, we report the expression of the non-vanishing Christo�el symbols

Γ0
00 = 0; Γ0

01 =
ν ′

2
; Γ0

11 = 0; Γ1
00 =

ν ′

2
e2ν ; Γ1

01 = 0; Γ1
11 = −ν

′

2
, (4.50)

where ν = ln (1− 2φ) and ν ′ = dν/dr. The geodesic equation for µ = 0 is

..
t + ν ′

.
r
.
t = −2

3
απT 2

[
.
rν ′

2mE
+

..
t +

.
r
.
tν′

2

E2
e
ν
2

]
e−

ν
2 , (4.51)

but if one recalls that E = m
.
x

0̂
= m

.
x
α
e0̂
α = m

.
t eν/2, Eq. (4.51) can be once again

manipulated to obtain

..
t + ν ′

.
r
.
t = −2απT 2

3E2

(..
t + ν ′

.
r
.
t
)
, (4.52)

and since
.
ν = ν ′

.
r, the �nal relation for the temporal part will be(

1 +
2απT 2

3E2

)(..
t +

.
ν
.
t
)

= 0. (4.53)

The radial contribution can be computed involving (4.47) for µ = 1

..
r +

ν ′

2

( .
t
2
e2ν − .

r
2
)

=
2απT 2

3m2

eνν ′

2
, (4.54)

which can be reformulated in a di�erent fashion

..
r +

ν ′

2

(
.
t
2
eν−λ − .

r
2 − 2απT 2

3m2
e−λ
)

= 0. (4.55)

Equations (4.53) and (4.55) constitute a coupled system of di�erential equations,

which, in general, can be quite di�cult to solve. In this case, however, simple

calculations lead to a handy relation between
.
t
2
and

.
r

2 which can be adopted to

�nd the desired outcome.

In fact, Eq. (4.55) can be cast in the form

2
..
r − .

r
2
ν ′ +

.
t
2
ν ′e2ν − 2απT 2

3m2
ν ′eν = 0. (4.56)
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The previous expression can be written as

eν
d

dr

(
eλ

.
r

2 − eν
.
t
2
− 2απT 2

3m2
ν

)
= 0, (4.57)

which implies

eλ
.
r

2 − eν
.
t
2
− 2απT 2

3m2
ν = const. (4.58)

The constant can be determined from the condition of normalization on four-velocity

in the limit φ → 0. Such a requirement is possible due to the hypothesis made

above, namely the independence of the geometric structure on temperature. Hence,

normalization of
.
x
µ implies

.
x
µ .
xµ = gµν

.
x
µ .
x
ν

= 1, (4.59)

or explicitly

eλ
.
r

2 − eν
.
t
2

= −1, (4.60)

because angles are �xed quantities.

In the limit of vanishing gravitational �eld (namely, ν, λ → 0 as r → ∞),

Eq. (4.60) reduces to
.
r

2
∞ −

.
t
2

∞ = −1. (4.61)

Such an expression clearly �ts also (4.58), and thus we have

eλ
.
r

2 − eν
.
t
2
− 2απT 2

3m2
ν = −1. (4.62)

At this point, let us invoke the weak-�eld approximation. Within this regime and

by virtue of (4.62), it is immediate to �nd that (4.55) gets modi�ed as

..
r = −M

r2

(
1− 2απT 2

3m2

)
, (4.63)

and if one considers the �rst-order approximation in T 2 just like in QFT considera-

tions, the outcome is
mg

mi

= 1− 2απT 2

3m2
0

,

which is exactly equal to (4.36).

With the last result, the equivalence between the QFT approach and the one

formulated in Ref. [133] has been clari�ed, even though they di�er in some as-

pects. However, both of the two investigations base their development on a �nite-
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temperature analysis, that enables the emergence of the radiative correction in the

ratio mg/mi.

At this point, it is reasonable to guess that the aforementioned apparatus can be

promptly extended to any scenario involving extended theories of gravity. However,

since quadratic theories have already been analyzed in Chapter 2, here we will deal

with Brans-Dicke model [143], which is the most famous example of scalar-tensor

theories [144].

Application to Brans-Dicke model

The information we need is the expression of the metric tensor. If a static and

isotropic solution is sought, it is possible to �nd an expression for the line ele-

ment [143]

ds2 = evdt2 − eu
[
dr2 + r2

(
dϑ2 + sin2 ϑdΦ2

)]
, (4.64)

where

ev = e2α0

(
1− B

r

1 + B
r

) 2
λ

, eu = e2β0

(
1 +

B

r

)4
(

1− B
r

1 + B
r

) 2(λ−C−1)
λ

, (4.65)

with α0, β0, B, C and λ being constants that can be connected to the free parameter

of the theory2 ω. Since it is a scalar-tensor theory, a solution for ϕ must also be

found; in the considered case, the outcome turns out to be

ϕ = ϕ0

(
1− B

r

1 + B
r

)−C
λ

, (4.66)

where ϕ0 is another constant.

The desired physical quantities are the Christo�el symbols and the tetrads, which

once again are easy to calculate since gµν is diagonal

e0
0̂

= e−
v
2 ; e1

1̂
= e−

u
2 , (4.67)

Γ0
00 = 0; Γ0

01 =
v′

2
; Γ0

11 = 0; Γ1
00 =

v′

2
ev−u; Γ1

01 = 0; Γ1
11 = −u

′

2
. (4.68)

2See Appendix E for further details.
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Explicit formulas for u and v are

v = 2α0 +
2

λ
ln

(
1− B

r

1 + B
r

)
, u = 2β0 + 4 ln

(
1 +

B

r

)
+

2

λ
(λ− C − 1) ln

(
1− B

r

1 + B
r

)
,

(4.69)

where it is clear that the information related to ω is hidden in the constants, whereas

the mass of the gravitational source is contained in the parameter B.

After this digression, it is possible to evaluate the temporal di�erential equation

..
t +

.
r
.
tv′ =

2

3
απT 2

[
−

.
rv′e−

v
2

2mE
+

..
t +

.
r
.
tv
′

2

E2

]
. (4.70)

Being E = m
.
t ev/2, the previous relation can be reformulated as[

1 +
2απT 2

3E2

](..
t +

.
v
.
t
)

= 0, (4.71)

which is formally equal to the expression obtained for Schwarzschild, but in this case

v has a di�erent meaning.

The radial equation is similar to (4.55), namely

..
r +

.
r

2u′

2
+

.
t
2v′ev−u

2
=

2απT 2

3m2

v′e−u

2
, (4.72)

or equivalently
..
r +

v′

2

[
.
t
2
ev−u +

.
r

2u′

v′
− 2απT 2

3m2
e−u
]

= 0. (4.73)

If u′ = −v′ one exactly obtains the above results of the Schwarzschild solution.

However, this is not the �nal expression for the Brans-Dicke case. In fact,

Eq. (4.73) can be further simpli�ed adopting the same method that leads to (4.62)

in the previous section. Here, the situation is similar, and thus

.
r

2
eu −

.
t
2
ev − 2απT 2

3m2
v = −1. (4.74)

Neglecting higher-order terms with respect to ϕ would exclude interesting contribu-

tions to the ratio mg/mi. Hence, another way to simplify (4.73) must be found. In

order to do that,
.
t and

.
r are the quantities that should be explicitly expressed, since

their evolution has not been determined yet. However, this turns out to be easy by
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virtue of (4.71) and (4.74). Indeed, the �rst one tells that

..
t
.
t

= − d

ds
v, (4.75)

but it is evident that
..
t/

.
t = d/ds

[
ln

.
t
]
, and for this reason the di�erential equation

can be immediately solved
.
t = e−v. (4.76)

Thanks to (4.76), it is possible to �nd an expression also for
.
r

2

.
r

2
=

(
e−v +

2απT 2

3m2
v − 1

)
e−u, (4.77)

and with these two expressions, Eq. (4.73) can be rewritten as

..
r = −v

′

2

[
e−v
(

1 +
u′

v′

)
− u′

v′
− 2απT 2

3m2

(
1− u′

v′
v

)]
e−u. (4.78)

Nevertheless, the above-mentioned quantities are not so easy to handle within this

framework, since their expression is rather convoluted. However, a further step can

link u′ with v′ starting from (4.69). One then has

v′ = −4B

λ

(
1

B2 − r2

)
, u′ = −4B

λ

(
λB
r
− C − 1

B2 − r2

)
. (4.79)

With these de�nitions, the Brans-Dicke constants appear in (4.78). Such a statement

is non-trivial, because the shift between gravitational and inertial mass will depend

on ω.

Apart from the previous prediction, it can be easily observed that

u′

v′
=
λB

r
− C − 1, (4.80)

and as a consequence

..
r = −v

′

2

{
1 +

(
e−v − 1

)(λB
r
− C

)
− 2απT 2

3m2

[
1 + v −

(
λB

r
− C

)
v

]}
e−u.

(4.81)

By looking at (4.81), one can observe that there is not only the radiative correc-

tion to the ratio mg/mi, but also another contribution which exclusively depends

on ω and that correctly vanishes in the limit ω → ∞, that is when GR is re-

covered. Moreover, the evaluation of the second quantity of (4.81) represents an
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important opportunity to put a lower bound to the parameter of the Brans-Dicke

theory. In fact, if one imposes that |(mg −mi)/mi| < 10−14 [145] and studies the

factor (e−v − 1) (λB/r − C) in the �rst-order approximation in φg casting radiative

corrections aside momentarily, it is possible to easily constrain ω. In order to per-

form that, we need the quantities of the Brans-Dicke theory to be written in terms

of the free parameter of the model and in the weak-�eld limit [146]

α0 = β0 = 0; C = − 1

2 + ω
; B =

GMλ

2
; λ =

√
2ω + 3

2ω + 4
. (4.82)

It is easy to put B in terms of φg

B =
λrφg

2
, (4.83)

and to expand the function e−v

e−v =

(
1− λφg

2

1 + λφg
2

)− 2
λ

∼ 1 + 2φg. (4.84)

Since we neglect higher-order terms of φg, the examined factor is simply

2φg
2 + ω

, (4.85)

and thus from 2φg/(2 + ω) < 10−14, we get

ω >
2GM

r
· 1014, (4.86)

which is the �nal expression for the lower bound of the Brans-Dicke parameter in

the weak-�eld approximation.

A similar result is easy to achieve only if weak-�eld approximation is performed,

otherwise the complete dependence of constants λ and C with respect to ω would

have been more di�cult to handle. For instance, let us consider the gravitational

�eld of the Earth by recalling that M⊕ = 5.97 · 1024 Kg; R⊕ = 6.37 · 106 m. It is

immediate to achieve

ω > 1.40 · 105, (4.87)

that is similar to a bound recently obtained by experiments [147], which gives ω >

3 · 105. For the sake of completeness, it is useful to look at a table that contains a

prediction of the most reliable bounds for ω [148].



4.2 WEP violation at �nite temperature 90

Detector System Speci�cation Expected bound on ω

aLIGO (1.4 + 5)M� 100 Mpc ∼ 100

ET (1.4 + 5)M� 100 Mpc ∼ 105

ET (1.4 + 2)M� 100 Mpc ∼ 104

eLISA (1.4 + 400)M� SNR=10 ∼ 104

LISA (1.4 + 400)M� SNR=10 ∼ 105

DECIGO (1.4 + 10)M� SNR=10 ∼ 106

Cassini Solar System ∼ 104

Table 4.1: This table includes expected outcomes of experimental observations, in addition
to a known bound deduced by the probe Cassini through the analysis of the
Solar System.

Therefore, the case of the Brans-Dicke model is particularly interesting, since

it exhibits a temperature-independent contribution that violates WEP. In view of

such a result, it is straightforward to deduce that the same line of reasoning can be

carried out for a generic extended theory of gravity in order to check the extent of

EP violation, both the one with a thermal nature and the non-thermal one.

Concluding remarks

The equivalence principle has been analyzed from various standpoints, and in all

cases we have encountered a violation of EP in its easiest formulation, namely WEP.

We have investigated the crucial reasons behind the disagreement of the inertial

and gravitational mass of totally di�erent systems, and for the sake of clarity it is

opportune to brie�y summarize the work performed up to this point.

• In Sec. 4.1, we have analyzed the non-relativistic limit of the Dirac equation for

mixed neutrinos both in the absence and presence of an external gravitational

�eld. In its absence, we have shown that the small components of the �avor

bispinor wave functions inevitably induce a rede�nition of the inertial mass.

This rather unexpected behavior is a consequence of the fact that, when mixing

is present, in the Dirac equation one simultaneously deals with large and small

bispinor components that are comparably important in the non-relativistic

approximation.

Furthermore, when an external gravitational �eld is considered in the weak-

�eld limit, we have observed that the gravitational mass does not undergo the

same rede�nition as the inertial mass, and hence a violation of WEP arises.
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Accordingly, a non-relativistic regime appears to be a suitable playground for

testing the violation of the equivalence principle in neutrino physics. Among

other things, this may become of relevant interest for the case of relic neutrinos

in the CNB, which may be experimentally detectable in the not-so-distant

future [149].

• In Sec. 4.2, we have analyzed EP violation triggered by the presence of a non-

vanishing temperature. We have brie�y summarized the procedure that �rstly

led to such an outcome by adopting QFT techniques. After that, we have

shown how the same result can be achieved without relying on loop compu-

tations, but rather focusing the attention on the modi�cation of the geodesic

equation for T 6= 0. With this simpli�ed treatment, it is possible to study not

only the space-time described by the Schwarzschild solution in GR, but also

other physical environments, even the ones arising from extended theories of

gravity. In this perspective, the Brans-Dicke theory has been examined, and

we have highlighted the possibility to put a constraint on the free parameter

of this model by resorting to the current data related to EP.

In particular, we want to recall the result (4.87), which directly depends on

the ratio of the gravitational and inertial mass, as it could be seen in (4.86),

where the factor 1014 is an immediate consequence of |(mg −mi)/mi| < 10−14.

If experiments were able to reach an even higher precision, i.e. 10−17 [150],

one would have ω > 2φg · 1017, instead of (4.86). As a consequence, the lower

bound on ω for the Earth would be ω > 1.40 · 108, which far exceeds the

expected outcomes exposed in Table 4.1.





Chapter 5

Novel perspectives from generalized

uncertainty principle

In Sec. 1.3, we have explored the most important features related to HUP. Further-

more, we have seen what happens when the presence of gravity cannot be regarded

as negligible, which hence leads to a modi�cation of the quantum uncertainty rela-

tion that is typically addressed as GUP. As we have already mentioned, a similar

generalization has a signi�cant impact on all aspects of quantum mechanics [85].

However, as Sec. 2.4.2 attests, it is licit to expect profound di�erences with respect

to the usual scenario also for what concerns quantum �eld theory. In this sense,

GUP may be viewed as a valuable probe to verify a �rst and non-trivial interplay

between gravitational and quantum e�ects. For this reason, after the seminal work

of Refs. [58, 59, 60, 61] based on gedanken experiments from string theory, GUP

acquired a primary role in QG investigations.

The purpose of the current Chapter is to investigate the implications of GUP in

the context of well-established theoretical results, such as the Hawking [151] and the

Unruh [117] e�ect. As a matter of fact, both these two physical manifestations are

genuinely quantum, which thus naturally entails a close correlation between their

derivation and the uncertainty relations. Therefore, it is immediate to foresee the

existence of corrections to the standard formulations of the aforementioned phenom-

ena that are attributable to the implementation of GUP. In the following, the �rst

Section is entirely dedicated to this analysis.

In addition to the above prospect, we will also compare several results com-

ing from GUP and from other theoretical models that try to formalize QG fea-

tures. In particular, we will verify the similarities between the predictions of GUP

with the ones arising from corpuscular gravity picture for black holes (i.e. see

Refs. [152, 153, 154, 155] and references therein) and with the �ndings belonging to

93
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the model of maximal acceleration (see Refs. [156, 157]). In both frameworks, the

focus will be dedicated to the deformation parameter β introduced in Sec. 1.3, which

will play a crucial part for the establishment of a solid consistency between these

theoretical models. An intriguing aspect that will be pointed out is centered around

the sign of β; indeed, the two di�erent approaches imply the same magnitude for

the deformation parameter, but opposite signs.

Before we proceed, it is opportune to recall that for the sake of conciseness we

will adopt natural units together with kB = 1. Therefore, Eqs. (1.22) and (1.23)

shall be rewritten as

δx δp ≥ 1

2
, (5.1)

and

δx δp ≥ 1

2
± 2|β| δp

2

m2
p

, (5.2)

respectively.

5.1 GUP corrections to Hawking and Unruh e�ect

In this Section, we will see how the formalism underlying the Hawking and the Unruh

e�ect is modi�ed by the presence of GUP instead of HUP. In so doing, in light of

Refs. [63, 64, 69, 75, 76, 83] we resort to a heuristic treatment which is useful to

better �gure out the essence of the analyzed physical manifestations. Furthermore,

we will perform these considerations both for HUP and GUP.

5.1.1 Hawking e�ect

In a nutshell, the Hawking e�ect [151] is the physical phenomenon according to

which a black hole �evaporates� by emitting blackbody radiation. The source of

a similar occurrence is purely quantum. As a matter of fact, there is no classical

calculation that is capable of explaining the Hawking radiation; only a full-�edged

QFT computation can shed light on the peculiar features of this e�ect. However,

there are several heuristic arguments which can be carried out that help the visual-

ization of such phenomenon and at the same time recover the standard behavior of

the radiation's temperature as a function of the black hole mass. In what follows, we

will assume that the black hole radiates only photons, but our working hypothesis

does not harm the generality of the outcome.

In light of the previous remarks, in order to tackle the analysis of the Hawking

e�ect, we can consider for simplicity a spherically symmetric black hole with mass

M and Schwarzschild radius rs = 2MG. Let us observe that, just outside the event
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horizon, the position uncertainty of photons emitted by the black hole is of the order

of its Schwarzschild radius, i.e. δx ' µrs, where the constant µ is of order of unity

and will be �xed below. From (5.1), the corresponding momentum uncertainty is

given by

δp ' 1

4µMG
, (5.3)

which also represents the characteristic energy of the emitted photons, since δp '
p = E. According to the equipartition theorem, this can be now identi�ed with the

temperature T of the ensemble of photons,

E = T ' 1

4µMG
=

m2
p

4µM
, (5.4)

which agrees with the Hawking temperature,

TH =
1

8πMG
≡

m2
p

8πM
, (5.5)

provided that µ = 2π.

Therefore, on the basis of the HUP and thermodynamic consistency, we have

recovered the standard Hawking formula (5.5) for the temperature of the radiation

emitted by the black hole.

Now, it is well known that black holes with temperature greater than the back-

ground temperature (about 2.7 K for the present universe) shrink over time by radi-

ating energy in the form of photons and other ordinary particles. In certain condi-

tions [158], however, it is reasonable to assume that the evaporation is dominated by

photon emission. In this case, we can exploit the Stefan�Boltzmann law to estimate

the radiated power P as

P = Asεσ T
4 ' Asσ T

4, (5.6)

where As = 4πr2
s is the black hole sphere surface area at Schwarzschild radius rs,

σ = π2/60~3 is the Stefan�Boltzmann constant, and we have assumed for simplicity

the black hole to be a perfect blackbody, i.e. ε ' 1.

Using (5.5) and (5.6), the black hole energy loss can be easily evaluated as a

function of time, yielding

dM

dt
= −P ' − 1

60(16)2π
√
G

m3
p

M2
= − 1

60(16)2π

m4
p

M2
. (5.7)

Therefore, the evaporation process leads black holes to vanish entirely with both the

temperature (5.4) and emission rate (5.7) blowing up as the mass decreases.
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The above results have been derived starting from HUP (5.1). Let us now per-

form similar calculations by resorting to the GUP in (5.2), so as to realize to what

extent GUP a�ects the black hole thermodynamics. In this case, solving (5.2) with

respect to the momentum uncertainty δp and setting again δx of the order of the

Schwarzschild radius, we obtain the following expression for the modi�ed Hawking

temperature

TGUP = ± M

4π|β|

(
1 ±

√
1 ∓ |β|

m2
p

M2

)
. (5.8)

In the semiclassical limit
√
|β|mp/M � 1, this agrees with the standard Hawking

result in (5.4), provided that the negative sign in front of the square root is chosen,

whereas the positive sign has no physical meaning. Similarly, the emission rate

in (5.7) is modi�ed as

(
dM

dt

)
GUP

' −1

60 (16)π

M6

|β|4m4
p

(
1−

√
1∓ |β|

m2
p

M2

)4

. (5.9)

In what follows, the implications of (5.8) and (5.9) will be discussed separately for

the cases of β > 0 and β < 0.

GUP with β > 0

Let us start by analyzing the most common setting of GUP with positive deformation

parameter. In this case, from (5.8) it is easy to see that the GUP naturally introduces

a minimum size allowed for black holes: for M <
√
β mp (i.e. rs < 2

√
β `p), indeed,

the temperature would become complex, in contrast with predictions of ordinary

black hole thermodynamics. Remarkably, one can verify that the evaporation pro-

cess should stop atM ∼
√
β mp by observing that the speci�c heat of the black hole

dM/dT is negative under GUP modi�cation and it vanishes as M →
√
β mp [159],

thus leading to an inert remnant with �nite temperature and size. On the other

hand, di�erent models predict a change of sign in the speci�c heat as the mass is

wiped out; in that case, black hole remnants may undergo a phase transition which

renders them unstable. Notice also that the idea of black hole remnants dates back

to Aharonov�Casher�Nussinov, who �rst addressed the issue in the context of the

black hole unitarity puzzle [160].

Similarly, concerning the modi�ed emission rate (5.9), we �nd that it is �nite

at the endpoint of black hole evaporation M ∼
√
β mp, whereas the corresponding

HUP result (5.7) diverges at the endpoint when M = 0.



5.1 GUP corrections to Hawking and Unruh e�ect 97

GUP with β < 0

Although the GUP with β > 0 cures the undesired in�nite �nal temperature pre-

dicted by Hawking's formula (5.5), it would create several complications, such as the

entropy/information problem [161], or the removal of the Chandrasekhar limit [80].

The latter prediction, in particular, would allow white dwarfs to be arbitrarily large,

a result that is at odds with astrophysical observations. An elegant way to overcome

these ambiguities was proposed in Ref. [80], where it was shown that both the in-

�nities in black hole and white dwarf physics can be avoided by choosing a negative

deformation parameter in (5.2). A similar scenario had previously been encountered

in Ref. [79] in the context of GUP in a crystal-like universe with lattice spacing of

the order of Planck length.

Let us then consider the case β < 0. With this setting, from (5.8) and (5.9)

we obtain that both the modi�ed temperature and emission rate are well-de�ned

even for M <
√
|β|mp. For a su�ciently small M , in particular, the modi�ed

temperature in (5.8) can be approximated as

TGUP '
mp

4π
√
|β|

<∞. (5.10)

Even though no lower bound on the black hole size arises in this framework, the

Hawking temperature remains �nite as the black hole evaporates to zero mass.

From (5.10) we also deduce that the bound on the Hawking temperature is in-

dependent of the initial black hole mass.

5.1.2 Unruh e�ect

Together with the Hawking e�ect, the Unruh e�ect [117] is one of the most outstand-

ing manifestations of the non-trivial nature of quantum vacuum. Indeed, its impli-

cation is that the zero-particle state for an inertial observer in Minkowski spacetime

looks like a thermal state for a uniformly accelerating observer, with a temperature

given by

TU =
a

2π
, (5.11)

where a is the magnitude of the acceleration.

The above relation can be rigorously derived within the framework of quantum

�eld theory [117]. Following Refs. [75, 76], however, here we review a heuristic

calculation based exclusively on the HUP. This procedure will be the starting point

to compute GUP corrections to the Unruh temperature (5.11). Now, consider a gas

of relativistic particles at rest in a uniformly accelerated frame. Assuming that the
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frame moves a distance δx, the kinetic energy acquired by each of these particles is

Ek = maδx , (5.12)

where m is the mass of the particles and a the acceleration of the frame. Suppose

this energy is barely enough to create N particle-antiparticle pairs from the quantum

vacuum, i.e. Ek ' 2Nm. Using (5.12), it follows that the minimal distance along

which each particle must be accelerated reads

δx ' 2N

a
. (5.13)

Now, since the whole system is localized inside a spatial region of width δx, the

energy �uctuation of each single particle can be estimated from the HUP as

δE ' 1

2 δx
, (5.14)

where we have assumed δE ' δp. This gives

δE ' a

4N
. (5.15)

If we interpret this �uctuation as a thermal agitation e�ect, from the equipartition

theorem we have
3

2
T ' δE ' a

4N
, (5.16)

which can be easily inverted for T , yielding

T =
a

6N
. (5.17)

Comparison with the Unruh temperature (5.11) allows us to set an e�ective number

of pairs N = π/3 ' 1.

Let us now repeat similar calculations in the context of the GUP. From the uncer-

tainty relation (5.2), we �rst note that the GUP version of the standard Heisenberg

formula (5.14) is

δx ' 1

2 δE
+ 2β `2

pδE . (5.18)

Upon replacing (5.13) into (5.18), and using the same thermodynamic argument as

in (5.16) for δE, we obtain

2N

a
' 1

3T
+ 3β `2

p T . (5.19)
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Once again, by requiring that T equals the Unruh temperature (5.11) for β → 0, we

can �x N = π/3, so that
2π

a
' 1

T
+ 9β `2

p T . (5.20)

Solving for T , we obtain the the following expression for the modi�ed Unruh tem-

perature:

T =
π

9β `2
pa

(
1 ±

√
1− 9β `2

p

a2

π2

)
, (5.21)

which agrees with the standard result (5.11) in the semiclassical limit β `2
p a

2 � 1,

provided that the negative sign is chosen, whereas the positive sign has no evident

physical meaning.

At this point, as already highlighted in Sec. 1.3 and as we will see below, it

is worth emphasizing that the magnitude of β is typically assumed to be of order

unity, i.e. β ' O(1), and from a theoretical perspective this has been demonstrated

in several papers [58, 60, 72, 76, 78]. However, we should also note that the current

experimental constraints on β are by far less stringent than the order of magnitude

exhibited here. For instance, gravitational tests give β < 1078 from light de�ection

experiments [162], β < 1060 from the spectrum of GW 150914 [163], and β < 1021

from violation of equivalence principle on Earth [164]. Likewise, tests which do not

involve the gravitational interaction lead to β < 1039 from 87Rb cold-atom-recoil

experiments [165], β < 1034 from electroweak measurement [166], β < 1020 from

Lamb shift experiments [166], and β < 1018 from the evolution of micro and nano

mechanical oscillators at Planck mass [167].

5.2 GUP and corpuscular gravity

In what follows, we will theoretically evaluate the magnitude of β by comparing GUP

predictions of Sec. 5.1.1 with the ones deduced by the corpuscular picture of black

holes, a model conceived for the �rst time in Ref. [152]. Clearly, before introducing

the discussion, it is opportune to recall the main aspects of the aforesaid model.

5.2.1 Corpuscular gravity: an overview

In the corpuscular gravity picture black holes can be conceived as Bose�Einstein

condensates of N interacting and non�propagating longitudinal gravitons, and thus

as intrinsically quantum objects. Let us then consider a Bose�Einstein condensate

of total mass M and radius R, which is made up of N weakly interacting gravitons.

At low energy, we can de�ne a quantum gravitational self�coupling for each single
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graviton of wavelength λ as follows [152]

αg ≡
G

λ2
=
`2
p

λ2
. (5.22)

One of the main features of a Bose�Einstein condensate is that, due to the inter-

action, its constituents acquire a collective behavior, so that their wavelengths get

increasingly larger and their masses smaller; strictly speaking, the constituents be-

come softer bosons. In particular, most of the gravitons composing the gravitational

system will have a wavelength of the order λ ∼ R, namely of the order of the size

of the system itself. Hence, similarly to (5.22), it is possible to de�ne a collective

quantum coupling as

Nαg ≡ N
G

λ2
' N

`2
p

R2
. (5.23)

We now seek the relation that links the total mass of a Bose�Einstein condensate

and its radius to the number N of quanta composing the system. By performing

a standard computation, one can show that the gravitational binding energy of the

system is given by

Eg '
GM2

R
. (5.24)

On the other hand, from a purely quantum point of view, the binding energy can

be expressed as the sum of the energies associated to each single graviton, that is

Eg ' N
1

λ
' N

1

R
. (5.25)

Therefore, by comparing (5.24) and (5.25), we obtain

M '
√
Nmp, (5.26)

which also implies for the Schwarzschild radius

rs '
√
N`p. (5.27)

By assuming that the size of the condensate is R ∼ rs (i.e. the overall gravitational

system is a black hole) and using the expression in (5.27) for the Schwarzschild

radius, we notice that the collective quantum coupling de�ned in (5.23) is always of

order unity in the case of a black hole

Nαg ' 1. (5.28)
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In condensed matter physics, it is well known that the inequality Nαg < 1 cor-

responds to a phase in which a Bose�Einstein condensate is weakly interacting.

On the other hand, the equality Nαg = 1 represents a critical point at which a

phase transition occurs, thus letting the condensate become strongly interacting,

whereas for Nαg > 1 it is possible to observe only a strongly interacting phase [168].

Thus, in this quantum corpuscular picture, a black hole can be de�ned as a Bose�

Einstein condensate of gravitons stuck at the critical point of a quantum phase

transition [153].

Thermodynamic properties of corpuscular black holes

We now analyze some thermodynamic aspects of quantum corpuscular black holes,

and in particular we show that gravitons can escape from the considered system.

Such a phenomenon represents the corpuscular counterpart of the black hole radia-

tion emission [152].

First of all, we need to compute the probability for a graviton to escape from a

gravitational bound state, namely we have to determine the so�called escape energy

and escape wavelength of a single graviton. To this aim, observe that, for N weakly

interacting quanta composing a condensate of radius R and mass M , a quantum

gravitational interaction strength can be de�ned as [152]

~Nαg ≡ N
L2
p

λ2
, (5.29)

so that each graviton is subject to the following binding potential

Eesc =
Nαg
R

, (5.30)

which is the threshold to exceed in order to escape. The corresponding escape

wavelength is de�ned as

λesc =
1

Eesc

. (5.31)

If we now employ (5.27) and (5.28) for the case of a black hole, we obtain

Eesc '
1√
N`p

, λesc '
√
N`p . (5.32)

This means that, although N gravitons of wavelength λ ∼
√
N`p can form a gravita-

tional bound state, at the same time a depletion process is present, which is traduced

in a leakage of the constituents of the condensate for any N . Clearly, this is related

to the fact that λesc coincides with the wavelength of each graviton belonging to the
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condensate, that is,
√
N`p.

In terms of scattering amplitudes, the above picture can be regarded as a 2→ 2

scattering process, in which one of the two gravitons is energetic enough to be able

to exceed the threshold given by Eesc. We can also obtain an estimation for the

depletion rate Γ of such a process. As usual, this should be given by a product

involving the squared coupling constant α2
g, the characteristic energy scale of the

process Eesc and a combinatoric factor N(N − 1), which can be approximated by

N2 for a very large number of constituents [152]

Γ ' α2
gN

2Eesc '
1√
N`p

. (5.33)

From the above relation, we can easily obtain the corresponding time scale of the

considered process, which is given by ∆t = 1/Γ '
√
N`p.

On the other hand, Eq. (5.33) allows us to infer the mass decrease over time of

the condensate
dM

dt
= − Γ

λesc

' − 1

N`2
p

' −
m4
p

M2
, (5.34)

which can be cast in terms of the rate of emitted gravitons by use of (5.26),

dN

dt
' − 1√

N`p
. (5.35)

We stress that, up to the factor 1/[60(16)2π], Eq. (5.34) reproduces the thermal

evaporation rate of a black hole in (5.7), assuming the Hawking temperature in the

corpuscular model to be given by [152]

TH '
1√
N`p

'
m2
p

M
. (5.36)

We have seen that the black hole quantum N -portrait manages to reproduce the

semiclassical result, according to which a black hole emits a thermal radiation with

temperature given by the Hawking formula (5.5). However, from a more scrupulous

investigation, one can see that such a result holds true only to the leading order,

since in general there will be higher-order corrections which scale as negative powers

of the number of gravitons [152, 153].

In this connection, notice that, in the computation of the depletion rate Γ (5.33),

we have only considered the simplest kind of interaction (i.e. a tree-level scattering

diagram with two vertices); nevertheless, one expects that even higher-order pro-

cesses provide Γ with contributions that induce gravitons to escape. For instance,
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the next relevant 2 → 2 scattering process would possess three vertices, thus con-

tributing with terms proportional to α3
g. Therefore, up to �rst-order corrections, the

depletion rate would take the form

Γ ' α2
gN

2Eesc + O
(
α3
gN

2Eesc

)
' 1√

N`p
+ O

(
1

`p

1

N3/2

)
. (5.37)

As for the zeroth-order in (5.34), the mass decrease of the black hole can be now

estimated from the modi�ed depletion rate (5.37), yielding [153]

dM

dt
' −

m4
p

M2
+ O

(
m6
p

M4

)
. (5.38)

We emphasize that such a result only describes the qualitative behavior of the evap-

oration rate in the CG framework. In the next Section, we shall consider the exact

expression of dM/dt in order to make a quantitative comparison with the corre-

sponding GUP result.

5.2.2 GUP and corpuscular gravity: a quantitative compari-

son

In the previous Sections, the evaporation rate of a black hole has been computed

within both the GUP and CG frameworks. Here, we compare the two expressions:

as it will be shown, this allows us to set the value of the GUP deformation parameter

β for which the GUP and CG treatments are consistent [83].

For this purpose, let us consider the GUP�modi�ed expressions of the emission

rate (5.9) expanded up to the order O(1/M4) and the CG outcome (5.38). We have(
dM

dt

)
GUP

' −1

60(16)2π

(
m4
p

M2
± |β|

m6
p

M4

)
, (5.39)

and (
dM

dt

)
CG

' −1

60(16)2π

[
m4
p

M2
+ O

(
m6
p

M4

)]
, (5.40)

where we recall that the sign ± in (5.39) corresponds to a positive/negative value of

the deformation parameter β. Note that in (5.40) the correct numerical factor has

been restored by requiring that the Hawking formula (5.7) is consistently recovered

to the zeroth order.

By comparing (5.39) and (5.40), it follows that, at least up to the �rst-order,

the GUP- and CG-induced corrections exhibit the same functional dependence on

the black hole mass. Furthermore, since the coe�cient in front of the correction
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in (5.40) is predicted to be of order unity [152, 153], numerical consistency between

the two expressions automatically leads to

|β| ∼ O(1), (5.41)

which is in agreement with the predictions of other models of quantum gravity.

Therefore, in spite of their completely di�erent underlying backgrounds, the GUP

and CG approaches are found to be compatible with each other.

However, the result (5.41) does not give any speci�c information about the sign

of β. Since a full-�edged analytic derivation of (5.40) including also higher-order

scattering processes is still lacking, a de�nitive conclusion on this issue cannot be

reached. On the one hand, relying on basic considerations on the nature of the

scattering amplitudes, we would naively expect the correction in (5.40) to contribute

with the same sign as the zeroth-order term, since we are only adding higher-order

diagrams describing the probability for a graviton to escape from the condensate.

This would yield a positive value for the deformation parameter.

On the other hand, there are di�erent claims which assert that the above correc-

tion should be opposite to the zeroth-order term, in such a way to slightly decrease

the evaporation rate of the black hole. This was shown, for example, within the

framework of Horizon QuantumMechanics [169], where the depletion rate reads [170]

Γ ' 1√
N`p

− 3γ2N2
H

`pN3/2

(
6 ζ(3)− π4

15

)
, (5.42)

which would imply the following formula for the evaporation rate(
dM

dt

)
CG

' −1

60(16)2π

[
m4
p

M2
− 3 γ2N2

H

(
6 ζ(3)− π4

15

)
m6
p

M4

]
, (5.43)

where NH ≡
√

3/
√
π2 − 6ζ(3) ' 1.06 and ζ(x) is the Riemann zeta function. Note

also that the constant factor in (5.43) is given by 3γ2N2
H (6ζ(3)− π4/15) ' 2.4γ2

and γ may be of order one [170]. With such a setting, the comparison of (5.39)

and (5.43) would further con�rm the result of (5.41), since

|β| ' 2.4 , (5.44)

but it would lead to a negative value for the deformation parameter,

β < 0 . (5.45)
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Moreover, we remark that positive corrections to the evaporation rate of a black

hole are required by the principle of energy conservation [171], thus enforcing the

validity of (5.45).

However, as already mentioned before, there is still an ongoing debate in litera-

ture on the sign of the deformation parameter β. As a matter of fact, the upcoming

analysis involving the maximal acceleration model [156] will agree on the magnitude

of β, but it will predict a di�erent sign for the deformation parameter of GUP.

5.3 GUP and maximal acceleration

Since the modi�cation to the Unruh temperature due to GUP has already been

discussed in Sec. 5.1.2, here we summarize how to obtain the corrections to TU

in (5.11) attributable to the maximal acceleration theory and then compare the two

outcomes. To this aim, we �rst sketch the main features of the maximal acceleration

model as conceived in Refs. [156].

5.3.1 Maximal acceleration theory

In a series of works [156] it has been shown that the one-particle quantum mechanics

acquires a geometric interpretation if one incorporates quantum aspects into the

geometric structure of spacetime. Such an outcome is achieved by treating the

momentum and position operators as covariant derivatives with a proper connection

in an eight-dimensional manifold. As a result, the usual quantization procedure can

be viewed as the curvature of the phase space.

The above geometric picture allows for the emergence of a maximal acceleration

A that massive particles can undergo [156]. In principle, this new parameter should

be regarded as a mass-dependent quantity, since it varies according to

A =
2mc3

~
≡ 2m, (5.46)

where m is the rest mass of the particle. On the other side, however, some authors

interpret A as a universal constant [157, 172]. In particular, this would happen at

energies of the order of Planck scale, where the de�nition (5.46) is usually rewritten

in terms of the Planck mass as [157, 172]

A =
mpc

3

~
≡ mp. (5.47)

In order to build the aforementioned eight-dimensional manifold, we basically start
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from the four-dimensional spacetimeM on which the metric tensor gµν is de�ned and

then enlarge it with the tangent bundle, so that M8 = M⊗ TM. After performing

this, the line element on M8 becomes

dτ 2 = gABdξ
AdξB, A,B = 1, . . . , 8, (5.48)

where the coordinates and the metric in the above equation can be expressed in

terms of the corresponding four-dimensional ones by [157]

ξA =

(
xµ,

ẋµ

A

)
, gAB = gµν ⊗ gµν , µ, ν = 1, . . . , 4. (5.49)

Here, the dot represents a derivative with respect to the proper time s de�ned on

M.

From the above considerations, it is straightforward to check that

dτ 2 =

(
1− |ẍ

µẍµ|
A2

)
ds2 ≡

(
1− a2

A2

)
ds2, (5.50)

with a being the squared length of the spacelike four-acceleration.

With the aid of (5.50), in what follows we derive the modi�cation to the Unruh

temperature due to the presence of an upper limit for the acceleration. For this

purpose, we employ the Unruh-DeWitt particle detector method as explained in

Ref. [99].

5.3.2 Unruh temperature from Maximal Acceleration

Consider a massless scalar �eld φ interacting with a particle detector with internal

energy levels by means of a monopole interaction. The Lagrangian related to this

process can be sketched as [99]

Lint = χM(s)φ(x(s)), (5.51)

where χ is a small coupling constant and M is the monopole moment operator of

the detector, which travels along a world line with proper time s. Let us further

assume that the scalar �eld is initially in the Minkowski vacuum |0M〉 ≡ |0〉 and the

detector in its ground state with energy E0. Since we do not impose any restriction

to the detector's trajectory, it is possible that these initial conditions vary along the

world line due to the interaction, thus allowing the scalar �eld to reach an excited

state |λ〉 and the detector to undergo a transition to an energy level E > E0.
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By resorting to a �rst order perturbation theory, the transition amplitude for

the process |E0, 0〉 → |E, λ〉 reads [99]

A = iχ〈E, λ|

(∫
M(s)φ(x(s))ds

)
|E0, 0〉, (5.52)

or

A = iχ〈E|M(0)|E0〉
∫
ei(E−E0)s〈λ|φ(x(s))|0〉ds. (5.53)

where the integral extends over all the real axis.

We stress that the equality between the above relations is guaranteed by the

time evolution equation of the operator M(s). By squaring the modulus of A and

summing over all the complete set of values for E and λ, we obtain the transition

probability P related to any possible excitation of the analyzed system. In the case

of a trajectory lying on Minkowski background, it is possible to write the transition

probability per unit proper time, Γ ≡ P/T , as follows

Γ = −χ
2
∑

E |〈E|M(0)|E0〉|2

4π2

∫
e−i(E−E0)∆s d(∆s)

(t− t′ − iε)2 − |x− x′|2
. (5.54)

At this point, we must select the parametrization for the trajectory we mean to study.

In order to derive the modi�ed expression of the Unruh temperature, we require

the particle detector to move along a hyperbola in the (t, x) plane. This indeed

corresponds to the characteristic worldline of a relativistic uniformly accelerated

(Rindler) motion with proper acceleration a. Such a trajectory can be parametrized

as1

t = 1/a sinh (as) , (5.55)

x = 1/a cosh (as) . (5.56)

Using (5.50), we can now rewrite the above relations in terms of the parameter τ ,

so as to make the dependence on the maximal acceleration A manifest. We then

obtain

t = 1/a sinh (aγτ) , (5.57)

x = 1/a cosh (aγτ) , (5.58)

where we have de�ned γ ≡ 1/
√

1− a2/A2 .

1For simplicity, we assume that the acceleration is directed along the x-axis.
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With the above setting, one can check that (5.54) takes the form

Γ = γχ2
∑
E

|〈E|M(0)|E0〉|2
∫
e−iγ(E−E0)∆τ W (∆τ) d(∆τ) , (5.59)

where ∆τ ≡ τ − τ ′ > 0, and

W = −
{

16π2

a2

[
sinh2

(
a
γ∆τ

2

)
− iεa sinh

(
a
γ∆τ

2

)]}−1

= −
[

16π2

a2
sinh2

(
a
γ∆τ − 2iε

2

)]−1

, (5.60)

is the positive-frequency Wightman Green function [99]

W (s, s′) = 〈0|φ(x(s))φ(x(s′))|0〉 . (5.61)

Note that, in the second step of (5.60), we have rede�ned ε by extracting the positive

function 2 cosh (aγ∆τ/2). We further emphasize that the particular dependence of

W on ∆τ (rather than τ and τ ′ separately) re�ects the fact that our system is

invariant under time translations in the reference frame of the detector2.

Now, using for W (∆τ) the identity

cosec2(πx) = π−2

∞∑
k=−∞

(x− k)2 , (5.62)

and replacing into (5.59), we obtain

Γ =
χ2

2π

∑
Ẽ

(
Ẽ − Ẽ0

) ∣∣∣〈Ẽ|M(0)|Ẽ0〉
∣∣∣2

e2π(Ẽ−Ẽ0)/aγ − 1
, (5.63)

where the Fourier transform has been performed by means of a contour integral [99].

Moreover, we have absorbed a factor γ into the de�nition of ε introduced in (5.60)

and Ẽ ≡ γE is the energy de�ned with respect to the detector proper time τ .

Because of the appearance of the Planck factor in (5.63), the rate of absorption

of the accelerated detector due to the interaction with the �eld in its ground state

is the same as the one we would obtain if the detector were static, but immersed in
2In other terms, we can say that the detector is in equilibrium with the �eld φ, so that the rate

of absorbed quanta is constant.
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a thermal bath at the temperature

T =
aγ

2π
≡ TU

(
1− a2

A2

)−1/2

. (5.64)

We remark that this result is in agreement with the one of Ref. [99], where the

correction induced by the existence of a maximal acceleration has been derived by

employing the time-dependent Doppler e�ect approach proposed in Ref. [173].

5.3.3 GUP and maximal acceleration: a quantitative com-

parison

In Ref. [157], it was argued that the geometrical interpretation of QM through a

quantization model that implies the existence of a maximal acceleration naturally

leads to a generalization of the uncertainty principle similar to the one in (5.2).

Thus, one may wonder which is the value of the parameter β that allows the GUP-

deformed and the metric-deformed Unruh temperatures in (5.21) and (5.64) to coin-

cide. Clearly, given that the regime of validity of (5.2) is at Planck scale, we should

consider the maximal acceleration A as depending on the quantity mp (see (5.47))

in order to compare the two expressions.

Since we are only interested in small (i.e. linear in β) corrections to the Unruh

temperature, we can expand (5.21) as

T ' TU

(
1 +

9 β

4

`2
p a

2

π2

)
, (5.65)

which obviously recovers the standard Unruh result (5.11) for β → 0.

Likewise, for realistic values of the acceleration, we have a << A ∼ 1051m/s2, so

that (5.64) becomes (to the leading order)

T ≈ TU

(
1 +

1

2

a2

A2

)
= TU

(
1 + 2 `2

p a
2
)
, (5.66)

where we have used the de�nition (5.47) of the maximal acceleration. By requiring

the GUP-deformed Unruh temperature to be equal to the corresponding geometric-

corrected formula, we then obtain

β =
8π2

9
, (5.67)

which is of the order of unity, in agreement with the general belief and with several
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models of string theory. We stress that such a result is perfectly consistent with

the outcome of Ref. [157], where it has been shown that the generalized uncertainty

principle of string theory is recovered (up to a free parameter) by taking into account

the existence of an upper limit on the acceleration.

Concluding remarks

This Chapter has dealt with the consequences of working with a generalized version

of the Heisenberg uncertainty relations that account for the presence of gravity.

By means of heuristic considerations, in Sec. 5.1 we have shown how to properly

consider the implications of GUP in the context of the Hawking and the Unruh

e�ect. This has represented the starting point for the subsequent investigations

that have aimed at illustrating the consistency between GUP predictions and other

models that merge quantum and gravitational e�ects.

• In Sec. 5.2, we have analyzed to what extent black hole thermodynamics gets

modi�ed both in the presence of a generalized uncertainty principle and in the

corpuscular gravity theory. In particular, we have focused on the computation

of the temperature and the evaporation rate of a black hole. By comparing

the expressions derived within the two frameworks, we have �nally managed

to estimate the GUP deformation parameter β. The obtained result shows

that, in order for the GUP and CG predictions to be consistent, β must be of

order unity.

Furthermore, we have speculated on the sign of β. Although on this matter

we are still far from the de�nitive solution, a preliminary analytic evaluation

of the evaporation rate within the framework of Horizon Quantum Mechanics

and some considerations related to the conservation of energy, suggest that

the most plausible picture is the one with a negative deformation parameter,

β < 0. In this connection, we emphasize that a similar result would not be

surprising in the context of a corpuscular (i.e discrete) description of black

holes; in Ref. [79], indeed, it was shown that a GUP with β < 0 can be derived

assuming that the universe has an underlying crystal lattice-like structure.

• In Sec. 5.3, we have precisely calculated the deformation parameter β appearing

in the GUP. A speci�c numerical value has been obtained by computing the

Unruh temperature for a uniformly accelerated observer in two di�erent ways.

In the �rst case, the GUP (instead of the usual HUP) has been used to derive

the Unruh formula. The resulting temperature (5.65) exhibits a (�rst-order)
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correction that explicitly depends on β. The second calculation has been

performed within the framework of Caianiello's quantum geometry model. By

rewriting the line element of a uniformly accelerated observer in such a way

to include an upper limit on the acceleration, the Unruh temperature turns

out to be accordingly modi�ed (see (5.64)). Then, if we demand the GUP-

deformed and the metric-deformed Unruh temperatures to be equal, we obtain

the numerical value β = 8π2/9 for the GUP parameter.

In this connection, we emphasize that, although a variety of experiments have

been proposed to test GUP e�ects in laboratory, to the best of our knowl-

edge there are only few theoretical studies which aim to �x the deformation

parameter β in contexts other than string theory. In this regard, the pioneer-

ing analysis has been carried out in Ref. [72], where the conjecture that the

GUP-deformed temperature of a Schwarzschild black hole coincides with the

modi�ed Hawking temperature of a quantum-corrected Schwarzschild black

hole yields β = 82π/5. Developments of this result have been obtained in

Ref. [174], where the parameter α0 appearing in the GUP with both a linear

and quadratic term in momentum has been expressed in terms of the dimen-

sionless ratio mp/M , with M being the mass of the considered black hole.

Along this line, in Ref. [78] a possible link between the GUP parameter β

and the deformation parameter Υ arising in the framework of noncommuta-

tive geometry has been discussed in Schwarzschild spacetime. In particular,

it has been argued that setting Υ of the order of Planck scale would lead to

|β| = 7π2/2.





Chapter 6

Conclusions and future perspectives

The previous Chapters have o�ered an overview on how to rely on fundamental

principles in Physics. Indeed, we have �rst pedagogically discussed the signi�cance

of general covariance, equivalence principle and Heisenberg uncertainty relations in

Chapter 1. Therefore, we have investigated a viable way to probe several implica-

tions of the aforementioned principles by means of the Casimir e�ect in Chapter 2.

After this, Chapter 3 has been devoted to illustrate the perspectives that general

covariance ful�llment entail by studying the properties of the decay of an acceler-

ated proton. Then, Chapter 4 has explored some conditions under which the weak

equivalence principle is violated. Finally, the generalization of Heisenberg uncer-

tainty relations that takes into account gravitational e�ects and its consequences

have been tackled in Chapter 5.

For each principle that has been mentioned up to now there is a vast literature,

which thus con�rms the existence of a vibrant interest of the scienti�c community

towards such topics. The content of the present thesis is only a minuscule tile of

the whole puzzle, but we hope to have at least conveyed the importance that the

analysis of fundamental principles in Physics possesses. In this sense, the historical

development of physical models supports the previous statement. As a matter of

fact, a sharp and �ne working hypothesis such as the ones that have been examined

all along may lead to ground-breaking theoretical achievement, as it has been for

the case of GR and QM, which have naturally stemmed from GC, EP and HUP. In

our opinion, a similar path shall guide physicists towards a successful and unique

theory for quantum gravity, as already suggested in the Introduction.

Apart from these considerations which should be clear by now to the reader, it

must be said that there are a plethora of directions one can follow starting from

the arguments contained in the previous Chapters, as there is still a huge amount

of work to be done. To give an insight on the further developments that can be
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performed, we will concisely exhibit some future perspectives related to each topic

separately.

• Chapter 2: as demonstrated with relevant examples, the Casimir e�ect turns out

to be a valuable resource for the detection of new physics phenomenology. For

this reason, it would be natural to try to extend the reasoning of Chapter 2 to

other gravitational models and quantify the corrections that they would add

to the standard results. In principle, this could also lead to the requirement of

strict bounds for the free parameters of such theories, as seen in Sec. 2.2 for the

framework of SME. However, this would necessarily entail an improvement in

the sensitivity of experimental devices. In addition to the above arguments, it

is worthy to stress that one should also perform these computations by taking

into account more realistic physical �elds, thus replacing a massless scalar �eld

with either a massless vector �eld (i.e. photons) or a massive spin-1/2 �eld

(the constituents of matter).

• Chapter 3: although it may appear that the analysis of the inverse β-decay is

completed by the introduction of neutrino oscillations, there are still many

issues yet to be unraveled. In this connection, we would like to recall that all

the outcomes of Refs. [123] have been derived by resorting to a simpli�ed two-

�avor model. By moving on, we believe that general covariance ful�llment for

the case of three �avors could settle the dispute revolving around the correct

description for neutrinos. Unquestionably, this subject requires more attention

and a greater e�ort, but the envisaged goal is extremely crucial for particle

physics and, more speci�cally, for physics beyond the Standard Model. More-

over, the same calculations performed for the case of an accelerated proton can

be extended to a more general scenario in which the particle is non-uniformly

accelerating due to the presence of gravity. For instance, in proximity of a

black hole, the �counterpart� of the Unruh radiation can be identi�ed with

the Hawking radiation, and similar circumstances would inevitably lead to in-

triguing observations (i.e. see Refs. [175] for a preliminary investigation in this

direction).

• Chapter 4: the equation for non-relativistic neutrinos in the �avor basis must be
studied with greater concern. In particular, we shall look at the implications

arising from WEP violation from a quantum mechanical point of view, thus for

instance seeking solutions for (4.25). With that knowledge, it would be possible

to analyze also cosmological consequences, and speci�cally the ones inherent to

relic neutrinos, as argued at the beginning of Sec. 4.1. On the other hand, the
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WEP violation induced by the existence of a thermal bath is an elegant way

to check that EP violation may occur even in a general relativistic framework.

Such a result can be the starting point for several experimental tests aiming

at verifying the tiny deviation from unity of the ratio (4.36). However, this

is still not the end of the story, since the same considerations can be carried

out in the context of extended theories of gravity, as shown in Sec. 4.2.2 with

the Brans-Dicke model. Last but not least, one may also evaluate the error

committed in the derivation of (4.36) by neglecting the in�uence of a non-

vanishing temperature on the background geometry. A similar study can be

useful to �nd a realistic geodesic equation that can be applied in any study

involving the motion of test particles near gravitational sources, given that the

temperature of our universe is about 2.73 K.

• Chapter 5: even though impossible to detect in the next years, GUP implications

are still regarded as one of the most promising candidates for quantum gravity

phenomenology. As a matter of fact, many QG models predict a modi�cation

of HUP that accounts for the presence of gravity. Motivated by such ideas, a

signi�cant number of tests (both gravitational and quantum ones) have tried

to put an upper bound to the deformation parameter β, as argued in Sec. 5.1.2.

Nevertheless, we are still far from achieving an experimental constraint that is

close to the theoretical predictions. Despite this, investigations on GUP still

continue to �ourish, and in light of the contents of Chapter 5 it must be said

that the comparison between di�erent QG models is tracing the path towards

the discovery of the crucial properties a genuine theory of quantum gravity

should own. Therefore, the research on the consequences of GUP must be

enhanced, so that in the (hopefully) not-so-remote future Physics will have all

the indispensable tools to build a solid and consistent theory for the quantum

description of gravity.





Appendix A

Geodesic deviation

In order to convey the concepts related to locality expressed in Sec. 1.2 in a more

rigorous way, we will rely on a pedagogical book on GR [176] and in particular we

will insist on the meaning of geodesic deviation.

With reference to Fig. 1.5, consider that the two apples are moving along di�erent

geodesics parametrized by the proper time τ , namely xµ(τ) and yµ(τ). Suppose that

the deviation between these two geodesics is small, and represented as

yµ(τ)− xµ(τ) = ξµ(τ) . (A.1)

Therefore, the geodesic equations are given by

ẍµ + Γµαβẋ
αẋβ = 0 , (A.2)

ẍµ + ξ̈µ + Γµαβ

(
ẋα + ξ̇α

)(
ẋβ + ξ̇β

)
= 0 . (A.3)

Since ξµ is regarded as an in�nitesimal parameter, we can expand (A.3) up to the �rst

order in ξ. In this view, we point out that in the second equation Γµαβ(y) ≡ Γµαβ(x+ξ),

and hence we can expand also this quantity. After simple computations, we can then

subtract (A.2) from (A.3), thus remaining with

ξ̈µ + 2Γµαβẋ
αξ̇β + ẋαẋβξν∂νΓ

µ
αβ = 0 . (A.4)

At this point, we need to introduce the covariant derivative along a given curve

γµ(τ); for the case of a generic four-vector Aµ, we observe that [176]

DAµ

Dτ
= Ȧµ + ΓµαβA

αẋβ . (A.5)

Starting from (A.5), it is straightforward to deduce that we have to compute the
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second covariant derivative of ξµ along xµ in such a way to evaluate the relative

acceleration between the geodesics yµ and xµ. Should we perform the same analysis

in absence of a gravitational �eld, all Christo�el symbols would be vanishing, thus

ending with no relative departure of the two apples in Fig. 1.5.

Instead, if we perform the aforementioned calculation in the presence of gravity

and we resort to (A.4) we obtain

D2ξµ

Dτ 2
= − ξνRµ

βναẋ
αẋβ , (A.6)

with Rµ
βνα being the Riemann tensor. Clearly, this quantity encloses all the infor-

mation related to the gravitational �eld, and hence it is non-vanishing. However,

as expressed by (1.11), under certain conditions the e�ects of gravity can be locally

�ignored�, in the sense that the relative departure of two close geodesics (A.6) can

be safely neglected to some extent. This is the important consideration underlying

the concept according to which gravitational e�ects can be locally (and only locally)

eliminated.





Appendix B

Linearized gravitational sector of

SME

For the sake of completeness, in this Appendix we show all the conceptual consid-

erations that led us to de�ne the metric (2.12) in Sec. 2.2 by closely following the

arguments contained in Ref. [97]. In so doing, we will investigate the characteristic

features of the gravitational sector of SME in detail.

If we vary the action (2.8) with respect to gµν while keeping the Lorentz-violating

�elds u, sµν and tαβγδ �xed, we obtain the following �eld equations:

Gµν − T µν(LV ) = κT µν(m) , (B.1)

where Gµν is the Einstein tensor, T µν(m) is the usual stress-energy tensor derived from

the matter action, whereas

T µν(LV ) = − 1

2
∇µ∇νu− 1

2
∇ν∇µu+ gµν∇α∇αu+Gµνu

+
1

2
gµνsαβRαβ +

1

2
∇α∇µsαν +

1

2
∇α∇νsαµ

− 1

2
∇α∇αsµν − 1

2
gµν∇α∇βs

αβ +
1

2
tαβγµRαβγ

ν

+
1

2
tαβγνRαβγ

µ +
1

2
gµνtαβγδRαβγδ

− ∇α∇β

(
tµανβ + tναµβ

)
. (B.2)

In the linearization procedure, the authors of Ref. [97] make several assumptions.

The �rst two of them are related to the decomposition of Lorentz-violating �elds as

in (2.11). Indeed, it is claimed that
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1) the vacuum values of the Lorentz-violating terms are constant in asymptoti-

cally inertial Cartesian coordinates;

2) the most relevant contributions of Lorentz violation are linear in the vacuum

values of u, sµν and tαβγδ.

By virtue of these assumptions, it is possible to reformulate (B.1) in terms of lin-

ear combinations of ũ, s̃µν , t̃αβγδ and hµν , where the last quantity represents the

�uctuation around the �at metric ηµν

gµν = ηµν + hµν . (B.3)

The trace-reversed �eld equations derived from (B.1) can then be cast in the form

Rµν = κEµν + Aµν +Bµν , (B.4)

where

Eµν = Tµν −
1

2
ηµνT

α
α , (B.5)

with Tµν being the linearized stress-energy tensor that contains the information on

both the matter and �uctuations, whereas

Aµν = − ∂µ∂ν ũ−
1

2
ηµν�ũ+ ∂α∂(µs̃

α
ν) −

1

2
�s̃µν

+
1

4
ηµν�s̃

α
α − 2∂α∂β t̃µ

α
ν
β + ηµν∂α∂β t̃

αγβ
γ

+ s̄α(µ∂αΓβν)β + s̄αβ∂αΓ(µν)β − s̄α(µ∂
βΓν)βα

+
1

2
ηµν s̄

α
β∂

γΓβγα − 4 t̄(µ
α
ν)
β∂αΓγγβ , (B.6)

and

Bµν = − 1

2
ηµν s̄

αβRαβ + ū Rµν + s̄α(µRν)α

+ 2 t̄αβγ(µRαβγν) −
3

2
ηµν t̄

αβγδRαβγδ

− 2 t̄(µ
α
ν)
βRαβ , (B.7)

with the brackets for indexes denoting a sum over all possible permutations of them.

Clearly, all the quantities related to the metric (such as Christo�el symbols and

curvature tensors) are taken to be linearly expanded in hµν . At this point, the third

assumption of Ref. [97] states that
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3) the �uctuations ũ, s̃µν and t̃αβγδ are not coupled to conventional matter.

Such a choice immediately allows us to write Eµν as

Eµν = E(m)
µν + E(LV )

µν . (B.8)

In order to explicitly provide the latter term in the r.h.s. of the previous equation,

we make use of the contracted Bianchi identity (namely ∇µG
µν = 0), which in the

linearized version yields the following condition:

κ∂µT
µν = −s̄αβ∂βRαν − 2 t̄αβγδ∂

δRαβγν . (B.9)

However, since T µν(m) is separately conserved, Eq. (B.9) is satis�ed if E(LV )
µν is equal

to1

κE(LV )
µν = − 2 s̄α(µRν)α +

1

2
s̄µνR + ηµν s̄

αβRαβ

− 4 t̄αβγ(µRαβγν) + 2 ηµν t̄αβγδR
αβγδ

+ 4 t̄αµ
β
νRαβ . (B.10)

The knowledge of the above term would permit us to analyze (B.4), but let us focus

for a moment on the second term of the r.h.s. of the aforementioned equation,

namely Aµν . Apparently, it seems that �eld equations still show a dependence on

the �uctuations because of the tensor Aµν . Nevertheless, assumption 3 claims that

these �uctuations only couple to gravity, which means that they can be related to

hµν via their equations of motion. In order to have access to the complete picture,

the last assumption plays a crucial role; in fact, it says that

4) the undetermined terms of Aµν are linear combination of two partial derivatives

of hµν and of the vacuum values ηµν , ū, s̄µν and t̄αβγδ.

If we apply this notion together with the di�eomorphism invariance of the ac-

tion (2.8), it is possible to prove that [97]

Aµν = − 2 a ūRµν + s̄αβRα(µν)β − s̄α(µRν)α

− b t̄αµ
β
νRαβ −

1

4
b ηµν t̄αβγδR

αβγδ

− b t̄αβγ(µRν)γαβ , (B.11)

1In this step, we have neglected an assumption of Ref. [97] which is irrelevant for our purposes.
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where a and b are arbitrary scaling factors. From the previous reasoning, we conclude

that �uctuations are completely absent in the linearized regime, and hence the Post-

Newtonian metric only depends on the vacuum values of the Lorentz-violating �elds.

In order to reach the �nal formulation of the trace-reversed �eld equations, we

must plug the expressions of E(LV )
µν , Aµν and Bµν in (B.4). The outcome of this

process gives

Rµν = κE(m)
µν + ū Rµν +

1

2
ηµν s̄αβR

αβ − 2 s̄α(µRαν) +
1

2
s̄µνR + s̄αβRαµνβ . (B.12)

Note that in (B.12) the information related to the vacuum value of tαβγδ vanishes.

This occurrence is also encountered whenever one attempts to study phenomenology

attributable to the gravity sector of SME, and it is addressed as t puzzle in liter-

ature [177]. Moreover, the term related to the vacuum value ū only appears near

the Ricci tensor, which means that, if ū 6= 0, it acts as a mere scaling parameter for

the Post-Newtonian metric we want to derive. For this reason, in accordance with

Ref. [97], it can be safely neglected (namely, we can set ū = 0).

All the observations performed up to now explain why the metric (2.12) does

not exhibit a dependence on the factors ū and t̄αβγδ. On the other hand, our choice

of dealing with a point-like source of gravity further simpli�es calculations, since

among the potentials for a perfect �uid contained in Ref. [97] with which the Post-

Newtonian expansion is carried out, only one is non-vanishing for a non-extended

object, and it is the potential that allows for the appearance of the 00−component

of s̄µν alone.





Appendix C

Quadratic theories of gravity

In order to better describe the features of the quadratic models of gravity presented

in Sec. 2.3, we will resort to a uni�ed treatment already present in literature [94, 110]

To this aim, let us consider the most general gravitational action which is

quadratic in the curvature, parity-invariant and torsion-free [110]

S =
1

2κ2

∫
d4x
√
−g
{
R +

1

2

[
RF1(�)R +RµνF2(�)Rµν +RµνρσF3(�)Rµνρσ

]}
,

(C.1)

where κ :=
√

8πG, � = gµν∇µ∇ν is the d'Alembert operator in curved spacetime

and the form-factors Fi(�) are generic operators of � that can be either local or

non-local

Fi(�) =
N∑
n=0

fi,n�
n, i = 1, 2, 3. (C.2)

In principle, one can deal with both positive and negative powers of the d'Alembertian,

which means that we can consider both ultraviolet and infrared modi�cations of GR.

Note that, if n > 0 and N is �nite (namely, N < ∞), we have a local theory of

gravity of order 2N + 2 in derivatives, whereas if N = ∞ and/or n < 0 we have a

non-local theory of gravity whose form-factors Fi(�) are not polynomials of �.

Since the interest in Sec. 2.3 is devoted to the study of quadratic theories of

gravity in the weak-�eld approximation, we can work with the linearized regime

of (C.1) around the Minkowski background ηµν

gµν = ηµν + κhµν , (C.3)

where hµν is the linearized metric perturbation.

At the linearized level, the relevant contribution coming from the action is of

the order O(h2); in such a regime, the term RµνρσF3(�)Rµνρσ in (C.1) can be safely
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neglected. Indeed, if we do not exceed the aforementioned order of expansion, it is

always possible to rewrite the Riemann squared contribution in terms of Ricci scalar

and Ricci tensor squared by virtue of the following identity:

Rµνρσ�
nRµνρσ = 4Rµν�

nRµν − R�nR + O(R3) + div, (C.4)

where div stands for total derivatives and O(R3) only contributes at order O(h3).

Hence, in the linearized regime we can set F3(�) = 0 without loss of generality.

We now want to linearize the action (C.1) and analyze the corresponding lin-

earized �eld equations. By expanding the spacetime metric around the Minkowski

background as in (C.3), the quadratic gravitational action up to the order O(h2)

reads [110]

S =
1

4

∫
d4x

{
1

2
hµνa(�)�hµν − hσµa(�)∂σ∂νh

µν + hc(�)∂µ∂νh
µν

− 1

2
hc(�)�h+

1

2
hλσ

a(�)− c(�)

�
∂λ∂σ∂µ∂νh

µν

}
, (C.5)

where h ≡ ηµνh
µν and

a(�) = 1 +
1

2
F2(�)� ,

c(�) = 1− 2F1(�)�− 1

2
F2(�)� . (C.6)

The related linearized �eld equations are represented by

2κ2Tµν = f(�)
(
�hµν − ∂σ∂νhσµ − ∂σ∂µhσν

)
+ g(�) (ηµν∂ρ∂σh

ρσ + ∂µ∂νh− ηµν�h)

+
f(�)− g(�)

�
∂µ∂ν∂ρ∂σh

ρσ, (C.7)

where

Tµν = − 2√
−g

δSm
δgµν

, (C.8)

is the stress-energy tensor generating the gravitational �eld, with Sm being the

matter action.

We are interested in �nding the expression for the linearized metric generated



127

by a static point-like source1

ds2 = (1 + 2Φ)dt2 − (1− 2Ψ)(dr2 + r2dΩ2), (C.9)

where Φ and Ψ are the metric potentials generated by

Tµν = mδ0
µδ

0
νδ

(3)(r). (C.10)

By using κh00 = 2Φ, κhij = 2Ψδij, κh = 2(Φ− 3Ψ) and assuming the source to be

static, that is � ' −∇2, T = ηρσT
ρσ ' T00 = ρ , the �eld equations for the two

metric potentials read2

a(a− 3c)

a− 2c
∇2Φ(r) = 8πGρ(r),

a(a− 3c)

c
∇2Ψ(r) = −8πGρ(r), (C.11)

where a ≡ a(∇2), c ≡ c(∇2) and ρ(r) = mδ(3)(r).

We can solve the two di�erential equations (C.11) by employing Fourier trans-

form and then anti-transform to coordinate space. Thus, we obtain

Φ(r) = −8πGm

∫
d3k

(2π)3

1

k2

a− 2c

a(a− 3c)
eik·r = −4Gm

πr

∫ ∞
0

dk
a− 2c

a(a− 3c)

sin(kr)

k
,

Ψ(r) = 8πGm

∫
d3k

(2π)3

1

k2

c

a(a− 3c)
eik·r =

4Gm

πr

∫ ∞
0

dk
c

a(a− 3c)

sin(kr)

k
, (C.12)

where a ≡ a(k2) and c ≡ c(k2).

It is immediate to observe that, if a = c, the two metric potentials coincide,

Φ = Ψ. Therefore, as a special case we recover general relativity

a = c = 1 =⇒ Φ(r) = Ψ(r) = −Gm
r

, (C.13)

as expected.

According to the choice of the form-factors appearing in (C.1), we have di�erent

values for a and c, thus resulting in a precise quadratic model of gravity. In order

to account for all the theories analyzed in Sec. 2.3, in the following table we will

report all the form-factors from which the aforementioned models stem.

1Note that the linearized metric in (C.9) is expressed in isotropic coordinates, where dr2 +
r2dΩ2 = dx2 + dy2 + dz2.

2In order to obtain the di�erential equations (C.11), we have considered and combined the trace
and (00)-component of the �eld equations (C.7).



Table C.1: The form-factors for the considered quadratic theories of gravity.

Model Form-factors
f(R) F1 = α F2 = 0

Fourth order gravity F1 = α F2 = β

Sixth order gravity F1 = α� F2 = β�

In�nite derivative gravity F1 = −F2/2 = (1− e−�/M2
s )/2�

Non-local gravity F1 = α/� F2 = 0



Appendix D

Neutrino mixing and �avor states

In this Appendix, we will elucidate the main aspects related to the standard treat-

ment of neutrino mixing together with its extension in the language of QFT. For the

sake of conciseness, we will deal with a simpli�ed two-�avor model, but an analogous

reasoning holds also in the case of three �avors.

As already discussed in Sec. 3.2, it is well-known that neutrino phenomenol-

ogy can be described with an excellent degree of precision by Pontecorvo �avor

states [127] introduced in (3.33), namely

|νe(x)〉 = cos θ |ν1(x)〉+ sin θ |ν2(x)〉 ,

|νµ(x)〉 = − sin θ |ν1(x)〉+ cos θ |ν2(x)〉 , (D.1)

where |νi(x)〉, i = 1, 2 represent states with de�nite mass, whose evolution is gov-

erned by the usual formula

|νi(x)〉 = e−i(Eit−ki·x)|νi(0)〉 . (D.2)

In the above framework, it is not di�cult to observe that the �avor and mass basis

are not conceptually di�erent, in that they are linked by a mere rotation (see (3.33)).

In other words, this implies that the vacuum states |0〉e,µ and |0〉1,2 are completely

equivalent, |0〉e,µ ≡ |0〉1,2.
With the knowledge of (D.1) and (D.2), one can evaluate the transition proba-

bilities for the �avor conversion. In particular, the probability to pass from an α to

a β �avor neutrino with α, β = e, µ is

Pα→β = |〈νβ(x)|να(0)〉|2 . (D.3)

If we now assume that the distance traveled by the �avor neutrino is L, we set α = µ

129
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and β = e and we require to work in the ultra-relativistic regime, so that

Ei =
√
|ki|2 +m2

i ' |ki|+
m2
i

2|ki|
' E +

m2
i

2E
, (D.4)

with E being the total energy of the particle, Eq. (D.2) can be rephrased as

|νi(x)〉 = e−i
m2
i L

2E |νi(0)〉 . (D.5)

In light of the aforesaid considerations, it is an easy task to prove that

Pµ→e = sin2 (2θ) sin2

(
∆m2L

4E

)
, (D.6)

with ∆m2 = m2
2 −m2

1. The above formula is the renowned �avor oscillation prob-

ability for a two-�avor model. However, for future convenience it is opportune to

evaluate the above probability in the case of equal momenta |k1| = |k2|; such a

procedure yields

Pµ→e = sin2 (2θ) sin2

[
(E2 − E1) t

2

]
, (D.7)

which will be recalled later on.

On the other hand, if we want to tackle neutrino mixing from a �eld theoretical

point of view, we should start from the following Lagrangian for �avor �elds [127,

137]:

L = ψe
(
i/∂ −me

)
ψe + ψµ

(
i/∂ −mµ

)
ψµ −meµ

(
ψeψµ + ψµψe

)
, (D.8)

that can be diagonalized by imposing the same rotation of (D.1), but at the level of

�elds

ψe(x) = cos θ ψ1(x) + sin θ ψ2(x) ,

ψµ(x) = − sin θ ψ1(x) + cos θ ψ2(x) , (D.9)

which thus gives the Lagrangian for two free spinor �elds

L = ψ1

(
i/∂ −m1

)
ψ1 + ψ2

(
i/∂ −m2

)
ψ2 , (D.10)

with the mass terms that can be rewritten as a function of me, mµ and meµ ac-

cording to (4.15). In so doing, it is possible to verify [137] that the �avor and

mass Fock spaces one can build from the respective vacuum states are unitarily in-
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equivalent [178], since |0〉e,µ is indeed a condensate of di�erent fermion-antifermion

pairs

|0〉e,µ =
∏
k,σ

[(
1− sin2 θ|Vk|2

)
− εσ sin θ cos θ Vk (Aσk +Bσ

k )

+ εσ sin2 θ (U∗k C
σ
k − UkDσ

k ) + sin2 θ|Vk|2Aσk Bσ
k

]
|0〉1,2 , (D.11)

where εσ = (−1)σ and

Aσk ≡ bσ †k,1 d
σ †
−k,2, Bσ

k ≡ bσ †k,2 d
σ †
−k,1, Cσ

k ≡ bσ †k,1 d
σ †
−k,1, Dσ

k ≡ bσ †k,2 d
σ †
−k,2, (D.12)

with bσk,j (dσk,j), j = 1, 2 being the annihilators for neutrinos (antineutrinos) of mass

mj, momentum k and polarization σ. These operators are related to the correspond-

ing annihilators for neutrinos (antineutrinos) with de�nite �avor as follows:

bσk,e = cos θ bσk,1 + sin θ
(
U∗k b

σ
k,2 + εσ Vk d

σ †
−k,2

)
,

bσk,µ = cos θ bσk,2 − sin θ
(
Uk b

σ
k,1 − εσ Vk d

σ †
−k,1

)
,

dσ−k,e = cos θ dσ−k,1 + sin θ
(
U∗k d

σ
−k,2 − εσ Vk b

σ †
k,2

)
,

dσ−k,µ = cos θ dσ−k,2 − sin θ
(
Uk d

σ
−k,1 + εσ Vk b

σ †
k,1

)
. (D.13)

The above expressions are the combination of a rotation and a Bogoliubov transfor-

mation. The Bogoliubov coe�cients are de�ned as

Uk = uσ †k,2 u
σ
k,1 = vσ †−k,1v

σ
−k,2, Vk = εσuσ †k,1 v

σ
−k,2 = −εσuσ †k,2 v

σ
−k,1, (D.14)

where uσk,i (v
σ
−k,i) are the �eld modes for fermions (antifermions). By explicit calcu-

lation, one can show that [137]

Uk = |Uk| ei(E2−E1)t, Vk = |Vk| ei(E2+E1)t, (D.15)

with

|Uk| =

(
E1 +m1

2E1

) 1
2
(
E2 +m2

2E2

) 1
2
(

1 +
k2

(E1 +m1)(E2 +m2)

)
, (D.16)

|Vk| =

(
E1 +m1

2E1

) 1
2
(
E2 +m2

2E2

) 1
2
(

k

(E2 +m2)
− k

(E1 +m1)

)
, (D.17)
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and

|Uk|2 + |Vk|2 = 1. (D.18)

In this �eld theoretical context, an accurate analysis of the �avor transition proba-

bility Pµ→e in the limit |k1| = |k2| gives [137]

Pµ→e = sin2 (2θ)

{
|Uk|2 sin2

[
(E2 − E1) t

2

]
+ |Vk|2 sin2

[
(E2 + E1) t

2

]}
. (D.19)

The above expression is the QFT generalization of (D.7), which is recovered in the

ultra-relativistic limit, for which |Uk| → 1 and |Vk| → 0.





Appendix E

Brans-Dicke model

As already anticipated in Sec. 4.2.2, Brans-Dicke model is the most famous scalar-

tensor theory of gravity. In order to properly discuss it, it is opportune to brie�y

introduce the main ideas of the scalar-tensor models.

For this purpose, let us consider the action [144]

SJ =

∫
d4x
√
−g
[
ϕγJ

(
R− ωJ

1

ϕ2
J

gµν∂µϕJ∂νϕJ

)
+ Lmatter (ϕJ , ψ)

]
, (E.1)

where ϕJ is the scalar �eld, γ and ωJ are constants and ψ contains the contribution

of matter �elds. We immediately note that:

· −ωJ ϕ−2
J gµν∂µϕJ∂νϕJ can be correctly interpreted as the kinetic contribution

related to the scalar �eld;

· ϕγJR is a non-minimal coupling term;

· the Lagrangian density Lmatter depends not only on the matter �elds, but in

principle also on the scalar �eld.

The above expression describes a conspicuous number of models, according to the

choice for the free parameters. However, we are mainly concerned with the one

developed by Brans and Dicke [143], which is examined in the following.

Let us introduce the Brans-Dicke action [143], which is similar to the one showed

in (E.1), but with several di�erences

SBD =

∫
d4x
√
−g
(
ϕR− ω 1

ϕ
gµν∂µϕ∂νϕ+ Lmatter (ψ)

)
. (E.2)

In (E.2), the matter Lagrangian density does not depend on the scalar �eld and

γ = 1. This is crucial, because it means that ω is the only parameter of the theory.
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Moreover, it is clear that

ϕ =
1

16πGeff

, (E.3)

and such a result is traduced in the introduction of a new �e�ective� gravitational

constant that has to be identi�ed with the scalar �eld. This consideration requires

some restrictions. In particular, it is essential that ϕ is spatially uniform, and it must

vary slowly with cosmic time. If these characteristics are not possessed by ϕ, the

theory cannot be consistent with experimental data, since they clearly support the

presence of a gravitational constant that enters �eld equations as predicted by GR.

On the other hand, experiments may put a constraint on the only free parameter

of the theory, namely ω. In this sense, the Brans-Dicke gravity can be genuinely

regarded as an extended theory of gravity which generalizes results of GR.

Field equations derived from (E.2) are given by

2ϕGµν = Tµν + Tϕµν − 2 (gµν�−∇µ∇ν)ϕ, (E.4)

that can be obtained by means of a variation with respect to gµν , and

�ϕ = ζ2T, (E.5)

deduced by a variation with respect to ϕ, where ζ−2 = 6 + 4ω and T = gµνTµν .

In (E.4), Tµν and Tϕµν are extracted by varying Lmatter and the kinetic term of SBD,

respectively. As expected, �eld equations for the metric tensor becomes the ones

derived by GR in the limit ϕ = const = 1/16πG.

If a static and isotropic solution is now sought (in order to �t the description of

Sec. 4.2.2), it is possible to �nd an expression for the line element

ds2 = evdt2 − eu
[
dr2 + r2

(
dϑ2 + sin2 ϑdΦ2

)]
, (E.6)

where

ev = e2α0

(
1− B

r

1 + B
r

) 2
λ

, eu = e2β0

(
1 +

B

r

)4
(

1− B
r

1 + B
r

) 2(λ−C−1)
λ

, (E.7)

with α0, β0, B, C and λ being constants that can be connected to the free parameter

of the theory ω. Since it is a scalar-tensor theory, a solution for ϕmust also be found;
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in the considered case, the outcome turns out to be

ϕ = ϕ0

(
1− B

r

1 + B
r

)−C
λ

, (E.8)

where ϕ0 is another constant.
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