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ABSTRACT 

Marrafino, Francesco, Application of Artificial Neural Networks to the design and 

optimization of superhydrophobic coatings, Ph.D. program in Drug Discovery and 

Development, 2021, University of Salerno. 

 

Recently, considerable attention has been devoted to developing superhydrophobic 

surfaces due to their advantageous antimicrobial and self-cleaning properties. While 

significant effort has been devoted to their fabrication, very few polymeric 

superhydrophobic surfaces can be considered durable against externally imposed stresses. 

This work focuses on developing a coating with strong superhydrophobic properties and 

abrasion resistance, using a simple and scalable preparation process. Pyrogenic hydrophobic 

silica nanoparticles were used to confer superhydrophobic properties to the coatings. 450 

samples were prepared using a layer-by-layer approach, deposing an epoxy resin or PDMS 

layer as adhesive on a substrate (PC/ABS), followed by one or more layers of silica 

nanoparticles or silica-resin mixed layers. The coating with the best properties shows a 

contact angle of 157° and a tape peeling grade resistance. The developed preparation method 

involves the spray deposition of a multilayer coating composed of four layers. Layers 1-3 

are 1) silica nanoparticles, 2) epoxy resin, and 3) silica nanoparticles, followed by partial 

curing of the coating (15 minutes, 70°C); another silica layer is then sprayed on the surface 

and is cured for 10 minutes. In the second part of the work, the focus shifts to optimizing the 

coating and preparation process using Artificial Neural Networks. Given the high number of 

parameters involved, process optimization is a complex operation. Artificial Neural 

Networks are the best tool to deal with multivariate analysis problems. For this reason, data 

from all the prepared samples were collected into a dataset used to train a neural network 

capable of predicting the degree of hydrophobicity and abrasion resistance of a silica 

nanoparticles-based coating. The algorithms were used to prepare an optimized coating with 

a contact angle >160° and a high degree of abrasion resistance, currently under patent 

evaluation for potential application in antibacterial surfaces. 

Finally, the application of Artificial Neural Networks to develop two bioinformatics 

predictive tools will be very briefly discussed. 

 

KEYWORDS: Superhydrophobic, Artificial Neural Network, Antimicrobial, Antifouling, 

Self-cleaning, Surfaces.  
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PREFACE 

My three-year Ph.D. course in Drug Discovery and Development at the University of 

Salerno started in November 2017 under the supervision of Prof. Dr. Stefano Piotto as an 

industrial Ph.D. in the framework of "PON - Programma Operativo Nazionale Ricerca e 

Innovazione 2014-2020".  

During the first year, the research mainly focused on developing a durable 

superhydrophobic coating to prepare antimicrobial surfaces. I worked on different 

preparation methods, used several materials, collected data, and built an extensive dataset. 

I spent six months at SmartVASE Srl, a spin-off of the University of Salerno, learning 

the Artificial Intelligence techniques needed to optimize the coatings and the preparation 

processes utilizing the data acquired during the preparation of the coatings. The main 

objectives of the project were achieved ahead of time. A superhydrophobic coating with a 

fair degree of resistance to abrasion, and two predictive algorithms for the optimization of 

the process, were developed by the end of the second year. The algorithms have been used 

to obtain an optimized coating under patent evaluation at the time of writing. The acquired 

techniques were used to develop several projects, particularly for the development of two 

bioinformatics software applications based on Artificial Neural Networks, in collaboration 

with SoftMining Srl. The Artificial Intelligence applications ultimately led to identifying 

two selective antimicrobial peptides, under patent evaluation at the time of writing, which 

could be used as lead compounds for novel, selective antimicrobial drugs. 

At the beginning of the third year of the Ph.D. program, I left for my six months internship 

at Prof. Caflisch's research group, University of Zurich, Department of Biochemistry, to 

further improve the Artificial Intelligence tools under development and to start the 

development of an AI-based software application for small molecules hit discovery and drug 

repurposing, interfacing classical in silico drug discovery methods with Artificial Neural 

Networks. I was at the beginning of my internship in Zurich when the pandemic of COVID-

19 began, forcing a shift in the research efforts. Along with the aforementioned projects, 

which were slowed down due to quarantine and lockdown procedures, I collaborated with 

Prof. Caflisch’s group in a project for the identification of SARS-CoV-2 3CLpro inhibitors, 

the main protease of the novel coronavirus responsible for viral replication. I was in charge 

of the virtual screening of a library of compounds already approved in therapy for other 

diseases. Of the 12 compounds that were ultimately selected, two showed potent inhibition 

of the virus at micromolar concentration.   
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1.1 Superhydrophobic materials 

Nature has always been an inexhaustible source of inspiration for the development of 

science and technology. Many functional biological surfaces in nature, e.g., lotus leaves, 

rose petals, butterfly wings, or water striders, have unique wetting properties1. 

Superhydrophobic (SH) materials draw inspiration from these surfaces. 

Surfaces with unique wetting characteristics, such as lotus leaves (Nelumbo nucifera), 

have attracted significant scientific interest thanks to their peculiar self-cleaning capabilities. 

The properties of lotus leaves are due to their low surface energy and the hierarchical 

roughness granted by micro/nanostructures2 (Figure 1), developed on two overlapping layers 

of the leaf3. The lower layer of the leaf consists of epidermal cells forming papillae or 

protuberances of varying height but similar shape, approximately 10-15 µm apart; the upper 

layer is characterized by nanometer-sized hydrophobic wax protuberances covering the 

lower layer. The surface roughness caused by unique micro/nanostructures and the surface 

chemistry are two significant factors that affect surface wetting properties4. 

 

Figure 1: Scanning electron microscope (SEM) micrographs of Nelumbo nucifera (lotus) leaf surface show 

hierarchical roughness2. 

 

When raindrops fall on lotus leaves, they do not penetrate the roughness but immediately 

behave like spheres that roll rapidly over the surface, picking up dirt and debris (Figure 2) 

and granting lotus leaves their characteristic self-cleaning property. Self-cleaning surfaces 

show non-wetting properties owing to a water contact angle greater than 150° and an 

effortless rolling-off of water droplets. The occurrence of this effect, called the "lotus effect", 

is due to the grooves between the papillae of the leaf surface, which are too small for dirt 

particles to enter, so they allow the dirt to remain suspended on the papillae and, if the surface 

is sloping, sliding off. These grooves give the surface of the lotus leaf a marked roughness, 

and for these characteristics, the lotus leaf is classified as a superhydrophobic surface5. 
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Figure 2: a) Water drops on the surface of a lotus leaf; b) water drop cleaning a surface with self-cleaning 

properties; c) schematic representation of a drop sliding on a dirty, non-rough surface; d) schematic representation of a 

drop sliding on a dirty, rough surface6. 

Lotus leaf with naturally developed superhydrophobic and self-cleaning effects has 

received significant interest from researchers, and led to biomimicking in coatings to develop 

materials with self-cleaning7-13, anti-corrosion14-18, anti-icing10,19-23, anti-fogging7,10,24-28, 

anti-fouling11,22,29-32, and other properties30,33-36. 

In the last 15 years, the interest in SH materials has grown considerably33, and today it is 

an even more interesting topic, with potential application to fight the spread of epidemics 

like COVID-1937-39. A query with the keyword "superhydrophobic" on ScienceDirect would 

give only 38 results in 2005, with the number slowly increasing to less than 300 references 

in 2010. The number of published articles steadily increased, mirroring the continually rising 

interest in the field, with more than two thousand published articles in 2020 only (Figure 3). 

The increasing need for antibacterial materials has focused the attention of biomedical 

research on superhydrophobic surfaces39,40. For SH materials to see a practical application 

in the biomedical sector, however, it is necessary that the main limitations, first of all 

durability, as will be discussed later, are overcome. This work follows this trend, with the 

main objective of obtaining a surface with strong SH characteristics, therefore self-cleaning 

and antibacterial, with increased resistance to external stress for biomedical field 

applications. 
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Figure 3: Number of publications on ScienceDirect for the years 2005-2020 using the keyword "superhydrophobic" 

for the query. 

To be defined as superhydrophobic, a surface must have a water contact angle (CA) 

higher than 150°10. Superhydrophobicity is based on two principles2,41: low surface energy 

of the solid surface and increased surface roughness. 

1.2 Wettability models and contact angle 

A fundamental property of SH surfaces is wettability, i.e., the degree to which a liquid 

placed on a surface can adhere to the surface itself and the surrounding air. Wettability is 

defined as the ability of a liquid to maintain contact with a solid surface42. It mainly depends 

on the terminal groups of the molecules at the interface of the solid and the structuring of the 

surface43 and is controlled by the balance between the intermolecular interactions of the 

adhesive type (liquid to surface) and cohesive type (liquid to liquid) (Figure 4). 

 

Figure 4: Scheme of a liquid droplet showing a contact angle θC. γSV is the solid-gas interfacial tension, γSL is the 

solid-liquid interfacial tension, and γLV is the liquid-gas interfacial tension43. 
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Surfaces can be classified, based on wettability, into hydrophilic or hydrophobic by two 

basic parameters: static contact angle and roll-off angle. 

1.2.1 Static contact angle 

The static contact angle (or contact angle, CA) is defined as the angle between the solid-

liquid tension direction and the liquid-vapor tension direction, tangent to the outer surface 

of the droplet, with the vertex at the three-phase liquid-solid-vapor point (Figure 4). The 

angle is measured immediately after the liquid droplet has been deposited on the substrate 

to be examined, and thermodynamic equilibrium has been reached between the solid, liquid, 

and vapor phases. Therefore, the static contact angle is an effective measure of the 

hydrophilicity or hydrophobicity of any surface: the greater the contact angle, the more 

spherical the droplet, and the more hydrophobic the surface; the smaller the contact angle, 

the more flattened the droplet and the higher the hydrophilicity of the material. 

Surfaces with different wettability levels show different contact angle ranges (Figure 5). 

This angle depends on several factors, including surface energy and surface roughness. If 

the liquid wets the surface (hydrophilic surface), the value of the static contact angle is 0 ⩽ 

θ ⩽ 90°, whereas if the liquid does not wet the surface (hydrophobic surface), the value of 

the contact angle is 90° < θ ⩽ 180°. Surfaces with a contact angle of less than 5° are called 

superhydrophilic, while surfaces with a contact angle between 150° and 180° are called 

superhydrophobic44.  

 

 

Figure 5: Schematic representation of the profile of a water droplet on a surface. Hydrophilic surfaces have contact 

angle θ: 0 ⩽ θ ⩽ 90°; hydrophobic surfaces have contact angle θ: 90° < θ ⩽ 180°. θ = 180° represents a perfectly non-

wettable surface45. 

The contact angle for which the system assumes the absolute minimum of surface free 

energy is called the equilibrium contact angle. Due to the different initial conditions (e.g., 

the way the droplet is deposited or the inclination of the surface), many different metastable 

equilibria arise, to which the droplet shape can remain bound and which correspond to 

different values of contact angles. The highest value is usually referred to as the advancing 
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contact angle and the lowest value as the receding contact angle (dynamic contact angle, 

Figure 6).  

 

Figure 6: Diagram of static contact angle and dynamic contact angle46,47. 

When the value of the recession contact angle is different from the advancing contact 

angle, contact angle hysteresis (CAH) occurs. The latter is a measure of energy dissipation 

during the motion of a droplet along a solid surface. At a low CAH value, droplets can roll 

past the surface, facilitating the removal of contaminant particles. Surfaces with CAH less 

than <10° are called self-cleaning surfaces13,44.  

1.2.2 Roll-off angle 

While the static contact angle provides information about the static equilibrium of the 

surface, it is essential in some situations that the liquid can flow away quickly. The angle at 

which a water drop rolls off a tilted surface is known as the roll-off angle (θR)48,49. The roll-

off angle is the minimum angle to which a surface must be tilted for the droplet to start 

moving. This measurement can also be used to classify surfaces, but the result does not 

necessarily coincide with what is obtained by measuring only the contact angle. SH surfaces 

show a static contact angle ≥ 150° and a roll-off angle ≤ 10°. 

To date, however, there is still no set of requirements that represent the necessary and 

sufficient conditions for a surface to exhibit SH characteristics. Some studies have 

highlighted the main properties that an SH surface should possess to be defined as such. The 

main features are the very high static contact angle and a low CAH22. These characteristics 

would allow the droplet to bounce off the surface and then roll away. Another necessary 

characteristic, as mentioned above, is the presence of hierarchical surface roughness, 

characterized by geometric micro-imperfections intrinsic or consequent to mechanical 
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processing; these can take the form of grooves, scratches, or roughness of variable shape, 

depth, and direction50. 

1.2.3 Young's model 

Young's model is used to describe the wettability of an ideal surface51, assuming it is 

solid, smooth, rigid, chemically homogeneous, insoluble, and nonreactive52 (Figure 8). The 

contact angle (θ between γSL and γLV) can be defined by Young's equation (Equation 1): 

𝒄𝒐𝒔 𝜽 =  
𝜸𝑆𝑉−𝜸𝑆𝐿

𝜸𝐿𝑉
  

Equation 1: Young's model equation. 

Where γSV is the surface tension between the solid and vapor phases, γSL between the 

solid and liquid phases, and γLV between the liquid and vapor phases. γ is also often referred 

to as the surface energy or Gibbs surface free energy, which is the amount of energy useful 

for breaking chemical bonds. Molecules that do not form chemical bonds on the surface tend 

to have a higher surface free energy than those that form chemical bonds more readily either 

with other molecules or with the surface itself.  

For the study of SH surfaces, the surface tension corresponds numerically to the surface 

free energy per unit area under constant pressure and temperature conditions. Furthermore, 

a fundamental requirement for surface tension and surface free energy to be considered 

numerically equivalent is to assume no adsorption at the interfaces. For this reason, as shown 

in Figure 7, solid surfaces with very low surface tension will present a very low degree of 

wettability and consequently can be considered hydrophobic or superhydrophobic 

depending on the contact angle43,44. 
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Figure 7: Correlation between solid surface energy and droplet surface energy resulting in a difference in 

wettability. 

Surface tension is used for liquids, while surface free energy is a more general term for 

solids. Young's equation is mainly used for ideal solid surfaces. For heterogeneous surfaces, 

the three phases at the interface (solid, liquid, and vapor) and the surface roughness should 

be considered. 

1.2.4 Wenzel and Cassie-Baxter models 

As described above, Young's equation applies only to perfectly smooth and rigid surfaces, 

referred to as ideal surfaces. In nature, surfaces are far from this condition, so the Wenzel 

and Cassie-Baxter models describe real systems that are not perfectly smooth and rigid53. 

 

Figure 8: Young's, Wenzel's, and Cassie-Baxter's models representation. Young's model represents the wetting of an 

ideal smooth surface; Wenzel's model represents the homogeneous wetting of a rough surface; Cassie-Baxter's model 

describes the wetting of a heterogeneous rough surface45,53. 
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If a drop is deposited on a rough horizontal surface, it will be necessary to consider the 

unevenness and defects of various types of the surface itself responsible for the different 

degrees of wettability of the surface. Generally, the projected (or apparent, or geometric) 

surface area is defined as the projection of the drop on the geometric plane of the surface, 

i.e., the area that macroscopically appears to be wetted by the drop. On the other hand, the 

true surface area is defined as the surface area wetted by the drop, considering its roughness. 

The parameter describing this system is the ratio between the true and projected surface area, 

denoted by r. According to Wenzel's model (Figure 8), the liquid droplet is in contact with 

all points of the underlying surface, and the true surface area is greater than the apparent 

surface area, i.e., r > 1. The extent of the static contact angle varies according to Wenzel's 

equation (Equation 2): 

𝒄𝒐𝒔 𝜽𝑾 = 𝒓 ∗ 𝒄𝒐𝒔 𝜽 

Equation 2: Wenzel's model equation53. 

Where θ is Young's angle (defined by Young's equation, Equation 1) and θW is Wenzel's 

angle (or apparent angle). Wenzel's model describes the homogeneous wetting of a surface. 

 In Cassie-Baxter's model (Figure 8), on the other hand, the droplet of liquid does not wet 

the entire underlying surface but settles only on the peaks of the surface roughness, leaving 

trapped air between them. The surface behaves as a heterogeneous surface composed of its 

material and air. Cassie-Baxter's model holds true even for heterogeneous surfaces 

composed of multiple materials. The static contact angle for Cassie-Baxter's equation is 

(Equation 3): 

𝒄𝒐𝒔 𝜽𝑪 =  𝒇𝟏 ∗ 𝒄𝒐𝒔 𝜽𝟏  + 𝒇𝟐 𝒄𝒐𝒔 𝜽𝟐  

Equation 3: Cassie-Baxter's model equation53. 

Where θC is the static contact angle of the liquid on the heterogeneous surface composed 

of the fraction f1 of one chemical group and f2 of the other, f1 + f2 = 1, while θ1 and θ2 are 

the static contact angles of the liquid on pure and homogeneous portions of 1 and 2, 

respectively54. Cassie-Baxter's model represents SH materials wetting and is defined as 

"fakir" state. 
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1.2.5 Cassie-Wenzel transition (wetting transition) 

Energy barriers play a crucial role in both chemistry and physics, including the phase 

transition. It is because of an energy change that a fundamental transition for the wettability 

of a surface can occur: the transition from the Cassie-Baxter wettability state to the Wenzel 

wettability state55 (Figure 9). 

 

Figure 9: Transition from the Cassie-Baxter state to the Wenzel state on rough surfaces56. 

Typically, in the Cassie-Baxter state, the air is trapped between the grooves or scratches 

in the surface, resulting in a greater contact angle; conversely, in the Wenzel state, liquid 

enters the grooves resulting in greater wettability of the surface due to the increased contact 

area. The Cassie-Baxter is a metastable state that competes energetically with the Wenzel 

state57. To lock a surface into the Cassie-Baxter state, the energy barrier should be high 

enough to slow down the transition from the metastable state to the Wenzel state. An 

irreversible transition toward the more stable Wenzel state may occur. External stimuli such 

as mechanical impact, compression, or thermal perturbation trigger this transition. It has 

been shown that this transition occurs when the energy barrier of the Cassie-Baxter state is 

of the same order of magnitude as the external forces applied to the surface, especially 

pressure55. This transition is significant for SH materials. As this transition occurs, SH 

surfaces gradually lose their extreme water repellency features, eventually leading to the loss 

of the hydrophobic features and thus increasing the wettability of the material56. Aging and 

external stimuli can induce this transition in SH materials, posing a significant limit for the 

development of these surfaces.  

1.3 Preparation methods 

A vast array of techniques has been used to fabricate SH surfaces, such as lithographic 

processes, sol-gel methods, solvent casting, chemical vapor deposition (CVD), chemical 
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etching, electrospinning, dip-coating, and templating. These techniques show many 

drawbacks arising from complex and time-consuming planning procedures and costly 

facilities that prohibit such strategies from being implemented on a wide scale. Low-cost, 

easy-to-use methods for comprehensive applications are therefore required. Brush-coating, 

dip-coating, and spray-coating could meet the specifications. However, the mechanical 

softness of the surface microstructures restricts the application of SH coatings58. The major 

challenge is the design of a simple, scalable method leading to mechanically robust and 

chemically inert layers, and an even more significant challenge is the design of mechanically 

and thermodynamically durable, defect-tolerant SH surfaces10,33,59. 

Numerous scientific literature reviews describe the many preparation methods used to 

prepare SH coatings10,20,22,33,34,57,60-62, and countless examples could be reported. Preparation 

methods are broadly divided into two main categories: top-down and bottom-up methods. 

Top-down methods employ nanofabrication tools controlled by external experimental 

parameters to create nanoscale devices with desired shapes and characteristics starting from 

larger dimensions and reducing them to the values required to structure the material. These 

methods include but are not limited to plasma or chemical etching, laser patterning, 

templating, photo- and soft lithography techniques61. The main advantage of top-down 

methods is that they allow the preparation of surfaces with exact topography, resulting in 

excellent SH properties. These methods, however, are costly, the surfaces have little 

resistance to mechanical stress, and cannot be applied on a large scale. 

The bottom-up approach aims to create complex, multilevel structures at the nanoscale 

through molecular or atomic components. Various materials can be deposited with this 

approach, including electrospinning techniques, sol-gel processes, and layer-by-layer 

deposition61,63. Bottom-up methods produce surfaces with good roughness, although not as 

precise as top-down methods, with the advantage that they are generally inexpensive, allow 

the preparation of more resistant surfaces, and are more easily scalable at the industrial level. 

Specifically, for the purpose of this work, i.e., the preparation of a durable SH coating using 

inexpensive and easily industrially scalable methods, layer-by-layer deposition methods will 

be used. These techniques have been widely employed to fabricate SH surfaces60. Several 

nano/micro-structures can be prepared using layer-by-layer techniques, a fundamental 

feature for SH coatings. Many raw materials can be used to fabricate multilayer assemblies: 

water-soluble polyelectrolytes, polymers and copolymers, and bio-macromolecules63,64. 

Layer-by-layer methods include dip-, spin- and spray-coating techniques. 
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1.4 Applications in the biomedical field 

Thanks to their water-repellent and self-cleaning properties, superhydrophobic surfaces 

have a high potential for application in life sciences10. The possibilities are plenty, and a vast 

range of scientific papers describing possible uses of SH in the biomedical field are available. 

Falde et al.52 investigated the performance of SH surfaces in protein adsorption, blood 

compatibility, and bacterial interaction for diagnostic applications, drug delivery, and 

antibacterial surfaces. Ciasca, G. et al.57 focused on applications involving extremely small 

quantities of molecules for high throughput cell and biomaterial screening. SH surfaces have 

great potential for application in microfluidics, microarrays, and micro-analytical devices, 

as discussed by Gogolides et al.65. Lima, A. C., and Mano, J. F. extensively described how 

SH surfaces interact with proteins and cells45,66. The application of advanced materials with 

antibacterial properties has also been studied extensively, and the design and preparation of 

effective antibacterial surfaces is still a very high priority22,29,40,67. 

As already mentioned, SH materials showed excellent self-cleaning68, anti-biofilm, and 

anti-fouling properties69-71, preventing protein adsorption, eukaryotic cellular adhesion and 

proliferation, platelet adhesion/activation, and blood coagulation45,66, showing a high 

potential for application in many industrial fields and life sciences. SH materials would find 

possible use in developing antibacterial surfaces, diagnostic supports, textiles and 

nonwovens, antibacterial and anti-clogging implantable biomedical devices, and several 

other additional prospective uses. However, the effective application of SH surfaces in the 

biomedical field depends on enhancing existing surfaces to make them more robust and 

stable. 

1.4.1 Antibacterial surfaces 

Among the many possibilities, perhaps the one of greatest interest is the development of 

antibacterial surfaces29,44,72. Pathogenic bacteria can cause severe infections and failure of 

biomedical or prosthetic devices. The growing use of antibiotics has turned infectious agents 

immune to medications, and new approaches to deal with them need to be developed73,74. 

Interest in antibacterial surfaces grew further following the outbreak of the COVID-19 

pandemic, which greatly increased awareness of the need to prevent the spread of 

microorganisms39. The bacteria adhesion and proliferation on surfaces and the subsequent 

biofilm formation pose challenges in healthcare and industrial applications, such as medical 



Introduction 

 

12 

   

implants, petroleum pipelines, aquatic flow systems, textiles, food industry machinery44,75,76, 

and public health.  

There are two approaches to developing a bactericidal or bacteriostatic surface: the 

introduction of biocidal substances on the polymer surface or the development of a material 

unsuitable for the growth of microorganisms67. The former type materials are the most 

widespread76-81 and require extreme caution to prevent the release of biocides into the 

environment. On the other hand, SH surfaces could offer an excellent solution to the limits 

of these methods, falling in the second category.  

Classically, bacterial cells are treated as inert particles, and it is assumed that bacterial 

adhesion to a flat surface is determined by van der Waals interactions and repulsive 

interactions with the electrical bilayer of the cell and the surface. However, the interactions 

between cells and materials are much more complex, involving highly dynamic cells, an 

environment with many variables, and material surfaces affected by many different 

properties.  

The formation of a mature biofilm caused by bacteria adhesion is generally divided into 

two stages (Figure 10). During Stage I, bacteria establish the first interactions with the 

surface materials; this Stage is rapid and reversible. Stage II involves specific and 

nonspecific interactions between the proteins on bacterial surface structures (pili or fimbriae) 

and the surface molecules; this Stage is generally considered irreversible. 

 

Figure 10: Schematic representation of the two stages of bacterial biofilm formation67. 



Introduction 

 

13 

   

Bacterial adhesion to hydrophobic surfaces has been extensively studied and extended to 

superhydrophobic surfaces. Several researchers have investigated the possibility of using 

superhydrophobic surfaces to reduce bacterial adhesion10,22,29,44,52,71,72,82. 

The adhesion of bacteria to surfaces with different surface free energies has been 

extensively studied, and it has been shown that surface free energy can significantly affect 

the adhesion of bacteria. Surfaces with low surface energy have been shown to prevent 

bacterial adhesion effectively83-85.  

Several studies have also investigated surface wettability on bacterial adhesion, showing 

a good relationship between the two phenomena and that bacteria are attracted to hydrophilic 

surfaces with a contact angle of 40°-70°86-90. Low surface energy and very low wettability 

of SH surfaces are the main features that prevent bacterial adhesion.  

Reduced protein adsorption also plays a role in antibacterial activity. Bacterial adhesion 

is established by different interactions, which can be nonspecific or specific, e.g., adsorbed 

protein membrane29. The formation of protective layers can promote bacterial adhesion and 

biofilm formation. It is generally believed that proteins adsorb more favorably on surfaces 

with a contact angle of 60-90° and hydrophobic surfaces91. On the other hand, 

superhydrophobic surfaces show low protein adsorption and easy protein removal, resulting 

in low bacterial adhesion92-96. 

1.5 Limitations of superhydrophobic materials 

At the time of writing, the durability of most superhydrophobic surfaces still poses a great 

limit in their development. SH materials with poor durability tend to lose their extreme 

water-repellency properties even upon application of small stress. Faulty durability is due to 

either topography failure, failure of the low-surface energy coating, or failure of both10. The 

loss of SH features is described by the Cassie-Wenzel transition, as previously discussed. 

SH surfaces are found in very a limited range of applications, and their use for surface 

development has been significantly slowed down due to short lifespans, low mechanical 

strength, inability to maintain surface properties under extreme environmental conditions, 

and due to difficult manufacturing processes involving the use of harmful chemicals, high 

costs, and long processing times33, regardless of the high potential of application.  

For these reasons, the research and production of surfaces with SH features and the 

improvement of the currently existing techniques are attracting great interest from the 

scientific community. The use of organic solvents and fluorochemicals or low volatile 

organic compounds should be minimized to avoid any possible environmental health 
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hazards. Novel preparation methods with cost-effective and high quality must be a 

continuous target for researchers and industry. However, the durability of superhydrophobic 

surfaces is considered the most important aspect that should be further strengthened in future 

works in this field. The short lifespan of these materials prevents any practical use, both in 

industrial and biomedical fields10,33. Finally, there are still no clear criteria for defining SH 

materials durability. For this reason, and thanks to the ever-growing attention that these 

materials are gathering from the scientific community, future research efforts from academia 

and industry will surely focus on the comprehension of all mechanisms involved and the 

testing methods in order to establish specific characterization standards10,97. 

To tackle all these issues, the main objective of this work is to obtain a durable 

superhydrophobic coating with self-cleaning and antibacterial properties for biomedical 

applications and an efficient, low-cost, easy-to-apply, and industrially scalable preparation 

method. 
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CHAPTER 2 

Artificial Neural Networks 
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2.1 Machine Learning and Artificial Neural Networks: an overview 

The concepts of Artificial Intelligence (AI), Machine Learning (ML), and Artificial 

Neural Networks (ANNs) are now known to the general public thanks to the attention that 

these methods have received in recent years. As technology has advanced ever faster, interest 

in and use of these methods has grown exponentially, and they are now applied in a wide 

range of fields, including speech and facial recognition, self-driving cars, email spam 

filtering, optical character recognition, weather and finance forecasts, smart houses, medical 

imaging and diagnosis, drug discovery and bioinformatics, and even creative arts98. The 

great success of these methods and their application in many areas of science is also linked 

to the availability of effective and easy-to-use software, which does not require in-depth 

knowledge of programming languages to train a neural network and obtain valid results. The 

growth of these methods is closely related to the increasing availability of big data and the 

ever-growing ability to organize and manage large datasets, all thanks to the increasing 

performance of computers, both in home-computing and high-performance computing. A 

plethora of articles, books, and courses are available in the literature that analyzes and 

deepens all aspects of this vast Computer Sciences branch. In this chapter, a brief overview 

of the main concepts related to Artificial Neural Networks is given. Artificial Intelligence 

methods were used in this work for the optimization of superhydrophobic coatings and the 

development of AI-based software for drug discovery. 

2.2 Machine Learning 

Machine Learning (ML) is a branch of Artificial Intelligence (AI), which studies 

computer algorithms that auto-improve by learning from experience99. Arthur Samuel, a 

pioneer in AI and computer gaming, coined the term machine learning in 1959100. 

In general, machine learning aims to understand the structure of data and fit that data into 

a model that can be understood and used. Machine learning algorithms create models based 

on sample data, known as training data, making forecasts and decisions without being 

specifically programmed. ML can also be defined as the process of solving a practical 

problem by collecting a data set and algorithmically building a statistical model from that 

data set to solve a practical problem. Therefore, ML involves computers learning from data 

provided so that they carry out certain tasks. 

In computer programming, it is possible to program algorithms defining all the steps 

required that the machine should execute to perform a problem-solving task. In traditional 
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computing, the programming can be carried out entirely by humans, and no learning is 

required from the machine. For more advanced tasks, however, the creation of all the needed 

algorithms can be extremely challenging. In these cases, it can be more effective to guide 

the machine to develop its algorithms, rather than programming every step that the 

computers should perform. ML facilitates computers in building models from sample data 

in order to automate decision-making processes101. 

ML is a rapidly evolving science and has entered almost every technology field. Some of 

its applications are facial recognition software, optical character recognition (OCR), 

recommendation engines, or self-driving vehicles. ML methods have also been widely used 

in life sciences, medical imaging102-104, electronic health records (EHR) for personalized 

medicine105-107, drug design and bioinformatics108-113, neuroscience114, medical devices115, 

and diagnosis116. 

2.2.1 Machine Learning Methods 

In ML, learning tasks are generally divided into three broad categories: supervised, 

unsupervised, and reinforcement learning. These categories are based on how the learning 

signal is received or how feedback is given to the system. 

• In supervised learning, example input and output data are appropriately labeled 

by humans and are used to train the machine to learn a general rule that maps 

inputs to outputs.  

• In unsupervised learning, the learning algorithm does not have access to labeled 

data. With this method, the algorithms have to find structure within input data by 

themselves. Unsupervised learning could be used as a tool for solving a problem 

or discovering hidden patterns in data. 

• In reinforcement learning, a software application has to perform a given goal by 

interacting with a dynamic environment. Performance feedback is given as the 

algorithms navigate the problem space, maximizing the rewards received when a 

correct operation is performed.  

ML approaches are in continuous development and improvement. Some of the most used 

methods are k-Nearest Neighbor, Decision Trees, Linear and Logistic Regression, Naive 

Bayes, Support Vector Machine, Artificial Neural Networks, and Deep Learning. 

Both supervised and unsupervised learning have their specific uses, varying according to 

the type of data available (discrete or continuous). The most common general applications 

of these two learning methods are generalized in Table 1. 



Introduction 

 

18 

   

 
Supervised 

Learning 

Unsupervised 

Learning 

D
is

cr
et

e 

d
a
ta

 Classification or 

categorization 
Clustering 

C
o
n

ti
n

u
o
u

s 

d
a
ta

 

Regression 
Dimensionality 

reduction 

Table 1: General applications of supervised and unsupervised learning. 

2.2.1.1 Supervised learning 

In supervised learning, the computer is given sample labeled input data with the desired 

output. This method aims to learn by comparing the actual output with the trained data, 

detecting errors, and adjusting the model accordingly. Therefore, in supervised learning, 

patterns are used to predict label values on additional unlabeled data. 

In supervised learning, classification is typically used to assign input-output labels, and 

classification algorithms are used to predict or classify discrete values (e.g., true/false, 

spam/not spam, cat/dog, etc.). On the other hand, regression is used to assign input data to 

continuous output, and regression algorithms are used to predict continuous values (price, 

age, salary, etc.). Because regression statistics can predict the dependent variable when the 

independent variable is known, regression provides forecasting power. 

 

Figure 11: Schematic representation of classification and regression algorithms. Classification is used to classify 

discrete data, while regression is used to predict continuous data. 

Popular supervised learning algorithms are Logistic Regression, Artificial Neural 

Networks, Naive Bayesian, Random Forests, and Support Vector Machines. The aim is to 
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find relationships or structures in the input data to efficiently generate the correct output in 

regression and classification. The training data completely determine the correct output. 

Noise or mislabeling of data reduces the effectiveness of the trained model. 

In supervised learning, model complexity refers to the complexity of the function that the 

machine is trying to learn, similar to the degree of a polynomial. The nature of the training 

data generally determines the appropriate level of model complexity. A low-complexity 

model is preferred if the dataset is small or unevenly distributed across several possible 

scenarios. In this case, a high complexity model will overfit when applied to a small number 

of data points. Overfitting refers to training a feature that fits the training data very well but 

cannot be generalized to other data points. 

2.2.1.2 Unsupervised learning 

In unsupervised learning, the data are unlabeled, so the learning algorithm must find 

matches between input data only. Because unlabeled data is more common than labeled data, 

machine learning techniques that enable unsupervised learning are particularly valuable. 

Unsupervised learning can discover hidden patterns in a data set or can be used for feature 

learning, which allows a computer to automatically discover the representations needed to 

classify raw data. Without getting the right answer, unsupervised learning techniques can 

look at complex, unstructured data to find potential meanings or correlations. Unsupervised 

learning is often used to detect anomalies, such as fraudulent credit card purchases or 

recommendation systems that suggest what products to buy next. A classic example in 

unsupervised learning is feeding unlabeled cat images to an algorithm that finds matches and 

classifies cat images. 

Unsupervised learning is generally used for clustering, representation learning, and 

density estimation. The goal is to learn the inherent structure of the data without explicit 

labeling. Some commonly used algorithms are k-Means Clustering, Principal Component 

Analysis, and Autoencoding. There is no concrete way to compare model performance for 

most unsupervised learning methods since no labels are provided. 

Two popular applications of unsupervised learning are dimensionality reduction and 

exploratory analysis. Dimensionality reduction, a method of representing data with fewer 

columns or features, can be achieved using unsupervised methods. Unsupervised learning is 

very useful in the exploratory analysis because it allows for the automatic determination of 

data structure and can provide initial insights that can then be used to test particular 

hypotheses. 
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2.3 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are ML systems loosely inspired by the biological 

neural networks of animal brains. Such systems learn to perform tasks by providing 

examples, usually without programming task-specific rules. 

An ANN is a model based on a series of interconnected units or nodes, called artificial 

neurons, that loosely mimic the neurons in a biological brain. Each neuron is a node 

connected to other nodes by connections corresponding to biological axon-synapsis-dendrite 

connections. Each connection has a weight that determines the strength of influence of one 

node on another. An artificial neuron receiving a signal can process it and then pass it on to 

other artificial neurons connected to it.  

In general ANN implementations, when artificial neurons are connected, the signal is 

expressed as a real number. Each neuron output is computed as a nonlinear function of the 

sum of its inputs. Artificial neurons are usually assigned weights that are adjusted as learning 

progresses. These weights increase or decrease the strength of the signal when connected. 

Artificial neurons may have a threshold so that a signal is only transmitted if the total signal 

exceeds that threshold.  

Typically, artificial neurons are assembled in layers. Different layers can perform 

different types of transformations on their input data. Signals travel from the input layer to 

the output layer, generally passing through multiple hidden layers (Figure 12). The input 

layer takes the input data, performs computation through its neurons, and then passes the 

output data to the subsequent layers. Neurons are connected in different patterns so that the 

output of some neurons becomes the input of others. The output layer takes as input the data 

passed by the previous layers, performs computation through its neurons, and then computes 

the output. Hidden layers sit between the input layer and the output layer, hence the name. 

For the vast majority of problems, a single hidden layer is sufficient. Typically, each hidden 

layer contains the same number of neurons. The greater the number of hidden layers in a 

neural network, the longer the neural network produces outputs and the more complex 

problems it can solve. 
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Figure 12: Schematic representation of an ANN layout with two hidden layers. 

The ANN approach's original goal was to solve problems in the same way as the human 

brain and perform tasks where traditional algorithms were ineffective. Over time, however, 

the focus shifted to specific tasks, and ANNs quickly turned their attention to improving 

empirical results, largely abandoning attempts to stay true to their biological predecessors. 

Artificial Neural Networks are used for various tasks, including computer vision, speech 

recognition, machine translation, social network filtering, video games, and medical 

diagnostics. 

The number of ANN types available is very high. Each type of ANN uses different 

principles and rules, each with its advantages and disadvantages. The main difference 

between ANN types is the different layout that connects the layers of the system, with 

different rules for learning, error propagation, weights, etc. 

2.3.1 Training and learning 

In this work, ANNs were trained using supervised learning since a labeled dataset 

containing known inputs and outputs was used.  

Learning is the adaptation of a network to solve a problem more efficiently, given 

example observations. ANNs are trained by processing examples, each with known inputs 
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and outputs, and creating probability-weighted associations between them stored in the 

network data structure to increase the accuracy of the results.  

When training the neural network on a given example, the difference between the 

processed output of the network and the target output is typically determined, and this 

difference is stored as an error. During training, the weights are adjusted to minimize the 

observed errors. The network then uses this error value to adjust its weighted associations 

according to the learning rule. Subsequent adjustments cause the neural network to produce 

an output that becomes increasingly similar to the target output. Once a sufficient number of 

such adjustments have been made, criteria-based learning can be discontinued.  

Training is discontinued if learning additional observations do not significantly reduce 

the error rate. Even after training, the error rate usually does not reach 0. If the error rate is 

too high after training, the network usually needs to be redesigned. In practice, this is 

achieved by defining a cost function that is periodically evaluated during training. As long 

as the performance decreases, training is continued. The cost function can only be 

approximated. The output is numerical, so if the error margin is small, the difference between 

the output and the correct answer is small. Training tries to reduce the total difference 

between observations.  

Backpropagation is a widely used algorithm for training ANNs. When adapting a neural 

network, backpropagation computes the gradient of the loss function for the network weights 

for a single input-output point and does so efficiently instead of computing the gradient 

directly for each weight separately. This efficiency allows gradient methods to train 

multilayer networks by updating the weights to minimize loss; gradient descent or variants, 

such as stochastic gradient descent, are often used. The algorithm calculates the gradient of 

the loss function for each weight using a chain rule, computing the gradient layer by layer 

and iterating from the last layer to the last to avoid unnecessary computation of intermediate 

terms in the chain rule. 
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Aim of the work and thesis outline 

The main problems of the superhydrophobic surfaces developed so far are the high costs, 

low stability, the short-lived durability of the nanostructure, and the difficulty of large-scale 

application of the preparation processes. The main objective of the project was to develop 

coatings that met all the necessary standards to be defined as superhydrophobic through a 

simple, reproducible, and scalable approach. The coatings had to overcome the limits set by 

the old development strategies. The ultimate goal of the project was to obtain fluorine-free 

surfaces with antibacterial and antifouling properties for application in biomedical devices 

and antibacterial surfaces. Considering all the characteristics that these surfaces must possess 

and the limitations of the examples reported in the literature, optimizing the coatings was 

not a simple process. To help overcome these challenges, Artificial Neural Networks were 

employed to optimize coatings and preparation processes. 

The project started with the preparation of superhydrophobic surfaces using plastic 

polymers (PLA, PC/ABS, ABS), coated with an adhesive layer of epoxy resin (DGEBA). 

Silica nanoparticles were used to confer the necessary characteristics to the surfaces. These 

nanoparticles can create a compact hydrophobic coating with a uniformly distributed, nano-

structured roughness, thus providing the surface with strong superhydrophobicity. The 

second objective of the project was to build a dataset containing information on materials, 

processes, and operating parameters used to fabricate the coatings. The dataset was used to 

train an Artificial Neural Network, intending to optimize both the surfaces obtained and the 

preparation methods.  

The first part of the work will discuss the design and preparation of the coatings, carried 

out through different procedures, using numerous materials, and varying the operating 

parameters of the preparation process. The materials used and the characterization tests 

performed will be described, and the process by which the coatings were prepared will be 

explained. The characterization of the best coating obtained, with strong superhydrophobic 

characteristics and a contact angle of 157°, will be described, and the possible applications 

of the coating itself will be briefly discussed. 

In the second part of the work, the focus will be on the Artificial Neural Networks training 

process. The construction of the dataset will be outlined, and its structure will be clarified. 

The efficient predictive algorithms obtained, which allow determining the contact angle and 

the possible degree of resistance of a coating using user-defined composition and operational 

parameters, will be discussed. The algorithms were successfully used to prepare an 
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optimized, abrasion-resistant, self-cleaning coating with a contact angle >160°, under patent 

evaluation at the time of writing. 

Finally, two Artificial Neural Networks applications carried out in parallel to the main 

project will be briefly discussed. The first application, a working prototype named NN-AMP, 

is a software application for predicting antimicrobial peptides activity and selectivity. NN-

AMP can also generate new peptides starting from an input sequence, progressively 

increasing the sequence selectivity, and can predict entirely new antimicrobial sequences. 

This tool was used to generate two novel antimicrobial sequences, under patent evaluation 

at the time of writing, which will be used as potential lead compounds to develop selective 

antimicrobial peptides. The second application is an Artificial Intelligence-based tool for 

anti-cancer drug discovery and small molecule repurposing, which is still in the pre-

prototype phase. 
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CHAPTER 3 

Design and preparation of superhydrophobic 

coatings 
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3.1 Design of the superhydrophobic coatings 

As discussed in CHAPTER 1 

Superhydrophobic materials, there are countless examples of SH surfaces preparation by 

different methods in the scientific literature, with the focus often being on obtaining durable 

surfaces, which is still a significant problem10,33,60. Layer-by-layer methods were preferred 

for developing the SH coating of this work, mainly because of their ease of application, cost 

containment, and, most importantly, scalability of processes.  

Moreover, many SH surfaces are prepared using fluorinated reagents. Fluorinated 

compounds with low surface free energy are used to enhance hydrophobic efficiency in the 

preparation of SH surfaces. These compounds, however, are expensive and toxic. 

Economical and environmentally safe fluorine-free materials, such as alkyl-silanes and long-

chain organic compounds, have been used to fabricate water-resistant surfaces58. For this 

reason, in the design phase, in addition to the use of economic and scalable processes, the 

focus was on the use of non-fluorinated materials. The main inspiration for the design of the 

coatings were the works of Yilgor et al.64 and Cholewinski et al.117 

In their work, Yilgor et al. describe a simple and general method for the preparation of 

SH surfaces, using hydrophobic fumed silica and several polymers, including crosslinked 

epoxy resins. The SH surfaces are prepared using a simple, multistep spin-coating procedure. 

The first step is the deposition of a layer of the desired polymer (e.g., epoxy resin), followed 

by the deposition of two layers of hydrophobic fumed silica, using a THF dispersion of silica 

nanoparticles. Cholewinski et al. prepared, using a facile dip-coating process, a robust SH 

bilayer coating, using an epoxy resin adhesive layer as the base, and hydrophobic fumed 

silica to confer nanoscale roughness and thus SH properties to the surface. The coatings 

proposed by Yilgor et al. and Cholewinski et al. are of simple preparation, using low-cost 

and efficient materials and methods. 

The coatings described in this work were prepared via multistep deposition (Figure 13), 

a layer-by-layer process. The coatings were developed according to the general scheme: 1) 

adhesive layer; 2) curing time t; 3) one or multiple silica or mixed layer(s). The first layer is 

the adhesive (epoxy resin), followed by one or more layers with superhydrophobic or 

protective properties. The layers were deposited via spray coating to improve on the works 

that inspired the process. Curing was carried out in a laboratory drying oven at different 

temperatures, based on the coating mixture components and the substrate. 
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Figure 13: Multistep deposition scheme. The first step is the deposition of the adhesive layer, followed by the 

deposition of one or more layers with superhydrophobic properties. 

The design of the SH coatings followed an iterative process. During the design phase, the 

primary focus was to use materials and methods that were inexpensive and easily scalable 

on an industrial level and techniques that could be easily automated. It was decided to apply 

an iterative process for the design of the coatings, i.e., several tests were carried out by 

varying substrates, methods, coating composition, and operating parameters to have 

sufficient data to build a dataset suitable for the training of an Artificial Neural Network, 

which could then be used for the optimization of the processes and the coatings. The general 

workflow for the preparation of coatings is described in Figure 14. 

 

Figure 14: General workflow for the preparation of the coatings. The first step is the preparation of the coating 

mixture, followed by the deposition on the solid substrate. After the curing of the coating, contact angle and mechanical 

resistance tests are carried out. Data are then collected for future use in ANN training. 

More than 450 samples were prepared during the project, varying: 

▪ deposition substrate 

▪ silica layer composition 

▪ crosslinker for epoxy resin  

▪ number of layers 

▪ curing times 

The techniques and materials used during the project are described in 3.2 Materials and 

Methods. The schemes used to prepare the coatings are described in a 3.3 Preparation of an 

abrasion-resistant superhydrophobic coating. 
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3.2 Materials and Methods 

3.2.1 Substrates 

A few polymeric materials, commonly used to produce plastic objects and surfaces, were 

selected for coating deposition. These materials were chosen with biocompatibility in mind. 

Four polymers were initially compared: 

▪ Polylactic Acid (PLA) 

▪ Polystyrene (PS) 

▪ Acrylonitrile Butadiene Styrene (ABS) 

▪ Polycarbonate/Acrylonitrile Butadiene Styrene (PC/ABS). 

PLA was considered for the biodegradability. Given the operating conditions to which 

the samples were subjected, PC/ABS was selected as substrate, as it was the only material 

that did not show signs of degradation to the temperatures and solvents used. Cross-linking 

tests were carried out on all samples with an epoxy resin and a cross-linker, the adhesive 

layer base components. Since the complete cross-linking of the resins requires curing in a 

drying oven at relatively high temperatures (60°-80°C), the best results were obtained using 

the PC/ABS polymeric alloy. PLA, PS, and ABS showed different degrees of deformation 

or degradation when in contact with the solvents used for the resin-crosslinking agent 

mixtures and the silica particle suspensions. The substrate materials were cut into squares of 

20x30x4 mm ca. for all the samples prepared during the project. 

3.2.1.1 Polylactic Acid 

Polylactic acid (PLA)118,119, or polylactide, is a polymer of lactic acid. It is a thermoplastic 

aliphatic polyester produced by fermentation of non-toxic, renewable raw materials, natural 

organic acids, or sugars derived from renewable resources such as sugar cane. PLA is a 

biodegradable polymer under high humidity conditions (>20%) and temperatures above 

60°C. The mechanical properties of PLA vary from those of an amorphous polymer to those 

of a semi-crystalline polymer. The glass transition temperature is higher than room 

temperature; transparent materials are obtained. PLA becomes biodegradable upon 

hydrolysis at temperatures greater than 60°C and humidity greater than 20%. The general 

operating temperatures of PLA are between -20° and 60°C.  
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Figure 15: Polylactic Acid polymer structure. 

A solid surface of PLA 4030D was used, on which wettability test and CA measurement 

were performed. The surface was found to be wettable with a measured static CA of 

approximately 45°. PLA was discarded from sample preparation because it underwent 

deformation at operating temperatures and surface degradation using solvents. 

3.2.1.2 Polystyrene 

Polystyrene is a polymer of styrene120,121. It is a thermoplastic aromatic polymer with a 

linear structure. At room temperature, it is a glassy solid; above its glass transition 

temperature, about 100 °C, it acquires plasticity; it begins to decompose at a temperature of 

270 °C. Expanded polystyrene comes in the form of a very light white foam, often shaped 

into spheres or chips, and is used for packaging and insulation. It is chemically inert and is 

soluble in chlorinated organic solvents (dichloromethane and chloroform), acetone, and 

some aromatic solvents such as benzene and toluene.  

 

Figure 16: Styrene polymerization scheme. 

A solid surface of PS was used, on which wettability test and CA measurement were 

performed. The surface was found to be wettable with a measured static CA of 

approximately 32°. Notably, the polymer showed significant degradation using organic 

solvents required to prepare the epoxy resin mixtures and the silica nanoparticles suspension. 

3.2.1.3 Acrylonitrile-Butadiene-Styrene 

Acrylonitrile-Butadiene-Styrene122-124 is a common thermoplastic copolymer derived from 

styrene polymerized together with acrylonitrile in the presence of polybutadiene. Its most 

important mechanical properties are impact resistance and hardness. Several modifications 
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can be made to the polymer to improve impact resistance, hardness, and heat resistance. 

Impact strength, for example, can be expanded by increasing the amount of polybutadiene 

over styrene and acrylonitrile. Generally, ABS operating temperatures range between -20° 

and 80°C. ABS is resistant to solvents, alkalis, concentrated hydrochloric and phosphoric 

acids, alcohol, and oils. It is soluble in esters, ketones, 1,2-dichloroethane, and acetone. 

 

Figure 17: ABS structure. 

An ABS solid surface was used, on which wettability test and CA measurement were 

performed. The surface was found to be wettable at a measured static CA of approximately 

62°. The ABS showed slight deformation at operating temperatures. 

3.2.1.4 Polycarbonate/Acrylonitrile-Butadiene-Styrene 

Polycarbonate/Acrylonitrile-Butadiene-Styrene122 resins are amorphous resins produced 

by mixing PC and ABS. The combination of the two polymers enhances most of the desirable 

properties of both resins: the excellent processability of ABS125 and the excellent mechanical 

and thermal properties of PC126. Operating temperatures range from -30°C to 80-90°, and 

heat resistance can reach 140°C. The ratio of polymers determines its final characteristics. It 

is resistant to solvents, alkalis, concentrated hydrochloric and phosphoric acid, alcohol, and 

oils. It is soluble in esters, ketones, 1,2-dichloroethane, and acetone. 
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Figure 18: ABS structure (above) and PC structure (below). 

A PC/ABS solid surface was used, on which wettability test and CA measurement were 

performed. The surface was found to be wettable at a measured static CA of approximately 

62°. PC/ABS is the only polymer that did not show degradation or deformation at the 

operating conditions. 

3.2.2 Coating materials 

The coatings prepared during the project consist of three main components: an epoxy 

resin, which acts as an adhesive and provides resistance to abrasion; a cross-linking agent to 

ensure the proper curing of the epoxy resin; silica nanoparticles, to give SH properties to the 

coatings. The principal materials tested during the project are outlined below. 

3.2.2.1 Epoxy resin 

Epoxy resins represent a versatile class of thermosetting polymers, widely used in various 

industry sectors, from aerospace to sports goods. Epoxy resins are reactive intermediates, 

crosslinked using hardeners (curing agents) like polyamines, aminoamides, and phenolic 

compounds. Epoxy resins present one or more epoxy groups in their structure. The epoxy 

group is a three-membered cyclic ether group, also referred to as 1,2-epoxide or oxirane. 

These functional groups are characterized by a high ring tension and consequently react 

easily with nucleophilic agents127-129. 

The most used epoxy resins are diglycidyl ethers of bisphenol A (DGEBA), produced by 

condensation of epichlorohydrin and bisphenol-A (IUPAC name: 2-[[4-[2-[4-(Oxiran-2-

ylmethoxy)phenyl]propan-2-yl]phenoxy]methyl]oxirane) in an alkaline environment. This 

reaction (Figure 19) is still the most common method for their production127,128,130,131.  
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Figure 19: Production of epoxy resins from bisphenol-A and epichlorohydrin in alkaline environment127,129. 

DGEBA is a colorless solid that melts slightly above room temperature. Bisphenol-A 

moiety confers excellent characteristics to DGEBA (toughness, rigidity, and high-

temperature performance), while the ether linkages confer chemical resistance, and the 

hydroxyl and epoxy groups confer adhesive properties. A parameter of interest for epoxy 

resins is the epoxide content, handy to calculate the mass of needed cross-linking agents. It 

is expressed as the Epoxy Equivalent Weight (EEW), which is the weight of resin in grams 

that contain the one-gram equivalent of epoxy (g/eq)132, or as the equivalent weight, which 

is the weight in grams of resin containing 1 mole equivalent of epoxide (g/mol)127,133. 

DGEBA has been used as the adhesive layer of the coatings, thanks to its advantageous 

properties. The product used is Araldite GY2600 (Huntsman), an unmodified, high-viscosity 

epoxy resin based on bisphenol-A with extremely low chlorine content and excellent 

mechanical and chemical resistance in solvent-free coatings. EEW of Araldite GY2600 is 

184-190 g/eq. 

3.2.2.2 Cross-linking agents 

Epoxy resins alone generate brittle films, so it is necessary for the epoxy monomer to 

react with a cross-linking agent, called a curing agent or hardener. The curing agent affects 

the viscosity, the reactivity of the mixture, and the type of bonds formed and allows to obtain 

structures with a high degree of cross-linking. Epoxy resins contain two chemically reactive 

functional groups: epoxy and hydroxyl groups. Cross-linking process involves the epoxide 

group reaction with cross-linking agents such as aliphatic or aromatic amines, anhydrides, 

carboxylic acids, and polyamides. Generally, electron-withdrawing groups near the epoxy 
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ring increase the resin reactivity for nucleophilic reagents, while for electrophilic ones, there 

is a decrease in the crosslinking rate127-129,134. 

The most used hardeners are aliphatic and aromatic amines. Primary amines, having two 

hydrogen atoms available, can react with two epoxy groups, while secondary amines can 

react only with a single epoxy group. Tertiary amines cannot react with the epoxy group but 

can act as catalysts130,134. Figure 20 shows the general reaction scheme between a primary 

or secondary amine and the resin epoxy group. 

 

Figure 20: General reaction scheme between primary amines and epoxy group (above) and secondary amines and 

epoxy group (below)127,129. 

Primary amines react faster than secondary amines135. The epoxy group reaction with a 

primary amine initially produces a secondary alcohol and a secondary amine, which can 

react with another epoxy group to give a tertiary amine and two secondary hydroxyl 

groups136. The reaction proceeds through the formation of a trimolecular activated complex 

(Figure 21). 

 

Figure 21: Chemical structure of the activated trimolecular complex formed during the opening reaction of an epoxy 

ring by an amine136. 

Electrons from the diamine attach the carbon atom near the epoxy oxygen, providing a 

negative charge to the oxygen and a positive charge to the nitrogen. If the epoxy monomer 
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and the amine are multifunctional, the resulting product possesses a three-dimensional 

lattice. 

 

Figure 22: Representation of the three-dimensional lattice of an epoxy resin136. 

The amine hydrogen equivalent weight (AHEW) is the weight of amine in grams that 

contain the one-gram equivalent of active hydrogens (g/eq) and represents the hydrogen 

content of a cross-linking agent. It is used to calculate the mass of amine needed for complete 

epoxy curing. 

During the project, three different cross-linking agents were used: Jeffamine D230, 

Jeffamine D400, and Jeffamine EDR148 (Huntsman). Jeffamine D series products (D230 

and D400) are amine-terminated polyoxypropylene glycols (Figure 23). The amines have 

low viscosity, color, and vapor pressure and are miscible with various solvents. Table 2 

shows the main properties of Jeffamine D230 and D400. 

 

Figure 23: Jeffamine D series products general structure. 
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 AHEW 

(g/eq) 

Molecular weight 

(MW) 

x 

(repeated unities) 

Curing time and 

temperature 

D 230 60 230 ~2,5 60° - 40min 

D 400 115 430 ~6,1 75° - 24h 

Table 2: Jeffamine D230 and D400 properties. 

Jeffamine EDR series products (EDR148) are more reactive than other Jeffamine 

diamines and triamines due to their linear PEG-based structure (Figure 24). 

Jeffamine EDR148 polyetheramine has been formulated to cure at room temperature with 

long times and rapidly complete curing at medium temperatures. It has, besides, excellent 

resistance to thermal shock. 

 

Figure 24: Jeffamine EDR series products general structure. 

 AHEW 

(g/eq) 

Molecular weight 

(MW) 

x 

(repeated unities) 

Curing time and 

temperature 

EDR148 37 148 2 55/60° - 20min 

Table 3: Jeffamine EDR148 properties. 

Accelerator 400 (Huntsman) curing promoter was tested during the project. Accelerator 

400 comprises 1-(2-Aminoethyl)piperazine (Figure 25) and is an epoxy curing promoter 

designed for use with amine hardeners. The product was developed specifically for use with 

Jeffamine curing agents, but it is compatible with most amine-cured epoxy systems. Table 4 

shows the main properties of Accelerator 400. 

 

Figure 25: Accelerator 400 structure. 

 AHEW 

(g/eq) 

Molecular weight 

(MW) 

Accelerator 400 145 192 

Table 4: Accelerator 400 properties. 
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Formulation of epoxy resins with amine cross-linking agents is calculated using parts per 

hundred of resin (phr) values. This value represents the curing agent parts needed to cure 

100 parts of epoxy resin for a 1:1 stoichiometric ratio. Phr is calculated as follows, based on 

a resin quantity of 100 grams: 

𝑝ℎ𝑟 =  
𝐴𝐻𝐸𝑊 𝑜𝑓 𝑐𝑢𝑟𝑖𝑛𝑔 𝑎𝑔𝑒𝑛𝑡

𝐸𝐸𝑊 𝑜𝑓 𝑒𝑝𝑜𝑥𝑦 𝑟𝑒𝑠𝑖𝑛
 𝑥 100 

To calculate the accelerator mass, it is convenient to estimate the accelerator usage in phr 

and then calculate the amount of amine hardener needed to attain a 1:1 stoichiometric ratio. 

The calculation is done as follows, based on a resin quantity of 100 grams: 

𝐺𝑟𝑎𝑚𝑠 𝑜𝑓 𝑐𝑢𝑟𝑖𝑛𝑔 𝑎𝑔𝑒𝑛𝑡 =  {
100𝑔 𝑜𝑓 𝑒𝑝𝑜𝑥𝑦 𝑟𝑒𝑠𝑖𝑛

𝐸𝐸𝑊 𝑜𝑓 𝑒𝑝𝑜𝑥𝑦 𝑟𝑒𝑠𝑖𝑛
−

𝑝ℎ𝑟 𝑜𝑓 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 400

𝐴𝐻𝐸𝑊 𝑜𝑓 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 400
}  𝑥 𝐴𝐻𝐸𝑊 𝑜𝑓 𝑐𝑢𝑟𝑖𝑛𝑔 𝑎𝑔𝑒𝑛𝑡 

Different coating preparation schemes were applied during the project. At the same time, 

various cross-linking tests were performed at different temperatures, using the reported 

hardeners. As a result of the analyses, it was decided to use Jeffamine EDR148 to prepare 

the coatings due to the advantageous curing temperature and the shorter curing time 

compared to the other two Jeffamine products. Jeffamine D400 was excluded because the 

high temperatures and long curing times caused deformation of the PC/ABS substrate, while 

Jeffamine D230 was excluded because it required much longer curing times than EDR148.  

Finally, blends of hardeners + Accelerator 400 were also tested. The curing acceleration 

effect is remarkable in the blends D230/D400 + Accelerator 400, although it did not result 

in times comparable to curing with EDR148 alone. On the other hand, for the mixture with 

EDR148, no increase in curing times was observed to justify the use of Accelerator 400, 

which was ultimately discarded from the preparation of the final coating. 

3.2.2.3 Hydrophobic silica nanoparticles 

Silica (silicon dioxide, SiO2) is a silicon oxide that, due to its characteristics, is suitable 

for the synthesis of nanoparticles. Mesoporous Silica Nanoparticles (SNPs) have pores 

ranging from 2 to 50 nm and have several applications, including drug encapsulation, 

controlled drug release137-140, can be used as insulators, as a refractory or reinforcing 

material141, or as UV protective material142. SNPs main advantages are the low production 

cost, ultra-high specific surface area, good dispersal ability, strong adsorption, high chemical 

purity, and excellent stability143. 
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Hydrophobic SNPs have been widely used to prepare superhydrophobic surfaces for 

various applications (e.g., antifouling, anti-icing, drag reduction, bacteriostatic coatings) 

thanks to their potential to create hydrophobic surfaces with uniformly distributed 

roughness20,22,30,33,64,117,144. Two commercial pyrogenic silica were used for the coatings 

prepared during the project: Aerosil R202 (Evonik), nanoparticles diameter approx. 11 nm, 

and Aerosil R504 (Evonik), amine-modified surface, nanoparticle diameter approx. 9 nm. 

Aerosil R202 fumed silica (Figure 26) is composed of SNPs (11 nm diameter) treated 

with polydimethylsiloxane (PDMS). The silicone oil treatment guarantees marked 

hydrophobia of the product. It is highly efficient in the thickening of complex polar liquids, 

such as those based on epoxy or polyurethane, it improves the water-resistance of moisture-

sensitive formulations, such as cosmetic preparations, the anti-sedimentation behavior of 

pigments and resistance in epoxy coatings, improves the fluidity of powders and slows down 

corrosion processes. The high hydrophobicity of these PDMS-treated SNPs makes them 

particularly useful in achieving good flowability. 

 

Figure 26: Aerosil R202 NPs surface. 

Aerosil R504 fumed silica consists of high purity hydrophobic SNPs (9 nm diameter) 

treated with hexamethyldisilazane and aminosilane to functionalize it with organic amino 

groups (Figure 27). 

 

Figure 27: Aerosil R504 NPs functionalized surface. 

Both R202 and R504 gave excellent results in terms of SH properties, resulting in surfaces 

with very high CAs (>150°). SNPs can reach extremely high CAs when deposited on a clean 

substrate; however, the layer has no resistance by itself and can be removed easily with a 

finger swipe since there is no adhesion on the substrate. Amino-functionalized Aerosil R504 

was used to test the possibility of having a covalent bond between the nanoparticles and the 

underlying adhesive to improve coating resistance since epoxy resin readily reacts with 

amino groups (Figure 21). However, the amino group of R504 seems to have little to no 
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influence on resistance (i.e., there should be no covalent bonding) while resulting in slightly 

lower CAs compared to R202, as outlined in 3.3 Preparation of an abrasion-resistant 

superhydrophobic coating. 

3.2.3 Coating preparation methods 

As already mentioned, layer-by-layer methods were selected for coating preparation, 

given the ease of application and cost-effectiveness of these processes. In particular, spray-, 

spin-, and dip-coating techniques were tested. After carrying out tests on several samples 

using the three deposition techniques, it was decided to adopt the spray-coating method as 

the standard procedure. 

Indeed, spray-coating has proved to be the best method to prepare homogeneous and 

compact coating surfaces or films on the entire surface of the samples (Figure 28a). 

Moreover, spray-coating resulted as the most suitable of the three tested methods to be 

applied on large surfaces, thus allowing for easier industrial-level scalability. Using spin-

coating (Figure 28b), it was impossible to obtain complete surface coating since the mixture 

was distributed only near the center of the sample and in the areas surrounding the deposition 

point. The dip-coating technique (Figure 28c), on the other hand, coated the surface entirely, 

but the layers were excessively thick (causing incomplete curing) and not homogeneous due 

to the formation of air bubbles during the extraction of the samples from the solution/mix.  

 

 

Figure 28: a) Spray-coated ABS-PC sample; b) spin-coated ABS-PC sample; c) dip-coated ABS-PC sample. 

A commercial airbrush was used to coat the samples. The samples were clamped under a 

fume hood at 15 cm distance from the airbrush. Each layer was deposited with a single spray 

from the airbrush, performing a hand motion at standard speed from right to left. Naturally, 

the manual nature of the process involves a certain degree of variation, but a standard speed 

of deposition on the sample was maintained as far as possible to keep this variation at a 

minimum and to avoid the deposition of excessively thick layers.  
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3.2.3.1 Spin-coating method 

Spin coating is a process used to apply a uniform thin film to a flat solid substrate145. An 

excess amount of a very dilute solution of the coating materials, such as a polymer or silica 

mixture, is deposited on the substrate, which is then set into rapid rotation by a special rotor 

to distribute the solution over the substrate by centrifugal force uniformly. The solvents used 

are usually very volatile, so the film thins during the process also due to the evaporation of 

the solvent. The spin is stopped as soon as the desired thickness is reached, which can be 

below 10 nm. The spin coating process is generally divided into three main steps (Figure 

29): 

1) Deposition of the solution on the substrate. 

2) Acceleration of the substrate up to the chosen spin speed. 

3) Rotation of the substrate at constant speed and evaporation. 

Spin-coating generally allows obtaining homogenous coatings with variable thickness. 

The control of film thickness can be achieved by altering spinning speed and time, while the 

spinning device restricts the size of the substrate. The method is low cost but cannot be scaled 

given the limitation imposed by the spinning device146. 

 

Figure 29: Spin-coating method steps147. 

3.2.3.2 Dip-coating method 

Dip-coating is a method used to deposit thin film onto a solid surface by dipping the 

substrate in a tank containing a solution of the coating to be deposited, followed by induced 

drying or baking. The dip-coating process can be accomplished in four steps (Figure 30): 

1) Preparation of the precursor solution. The solution is mixed in a tank of 

appropriate dimensions. 

2) Immersion. The substrate is immersed in a solution containing the substance to be 

deposited at a steady speed, preventing rapid agitation. 
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3) Time in contact with the solution. The layer stays fully submerged in order to 

allow the coating substance to be deposited. 

4) Removal of the sample. The substrate is drained from the solvent at a steady pace, 

preventing rapid agitation, and is left to dry. 

The method is easy to apply and allows the control of the thickness of the coating by 

varying the viscosity of the solution. Coating thickness, however, can vary at different 

sections of the surface, and the distribution of the layers can be uneven146,148. The process 

can be automated, is fast, and low-cost. However, scaling the method up for large surfaces 

could prove difficult due to the intrinsic limits of the method, requiring specific dipping 

speeds and tanks. 

 

Figure 30: Sequential steps of the dip-coating method149. 

3.2.3.3 Spray-coating method 

Spray-coating is a process used for the deposition of materials in solution on suitably 

prepared substrates. In general, during spray processes, particles typically between 1 - 100 

µm in diameter, contained in special tanks, are sprayed onto the substrate by a flow of gas 

(usually air or nitrogen) with suitable pressure and velocity. These particles are deposited on 

the surface of the substrate through a nozzle of variable size. Upon impact, each droplet is 

distributed over the substrate and rapidly solidifies to form a lamella. The materials used are 

polymers and composites. Deposited film thicknesses vary from about 20 μm to several mm 

depending on the spray process and the characteristics of the raw material used, whether in 

powder or solution form. High cooling rates cause a single flake to solidify before a 

subsequent flake impacts the substrate at the same point. The random succession of particle 

adhesion to the substrate leads to the formation of the typical lamellar microstructure of 

coatings. The main feature of sprayed coatings is the creation of rough and irregular surfaces 

on a micrometer scale. Spray-coating strategies have the advantages of easy application, 
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scalability, speed, low cost, and are compatible with many type substrates,  facilitating large-

scale fabrication147. 

3.2.4 Surface characterization methods 

During the project, various characterization tests were carried out on the used materials 

and prepared coatings to test their structural behavior, performance, and characteristics, 

verify the desired properties (high CA, abrasion resistance), and define their usability 

limits150,151. 

3.2.4.1 Contact angle 

The evaluation of the wettability of the surfaces was carried out by measuring the static 

contact angle of a sessile drop through an optical tensiometer152. To measure the CA of a 

drop, the optical tensiometer records the images of the drop, placed on an appropriate plain 

surface, and automatically analyzes the shape of the drop. Modern optical tensiometers use 

digital cameras and automatically send the snapshots to the connected computer hardware. 

The captured image is analyzed with a drop profile fitting method to determine the CA, using 

the Young-Laplace equation, with the tangent line drawn from the baseline to the edge of 

the drop153,154. The surface tension of the liquid, gravity, and the solid substrate properties 

influence the drop shape. The tensiometer syringe dispenses a given volume of water on the 

surface, and after a brief, gentle contact between the tip of the needle and the surface of the 

sample, the syringe tip is pulled away, leaving the drop on the surface. Contact angle 

measurements were carried out by dropping a 10.0 µl water droplet on the samples, 

adequately placed on a flat surface. All CA values reported in this work are the average of 

five measurements. 

As reported in 3.2.1 Substrates, the CA analysis was performed on the substrate polymers. 

Figure 31 shows a clean PC/ABS sample with a contact angle of approximately 62°.  
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Figure 31: Snapshot of a sessile drop on a PC/ABS surface, taken with an optical tensiometer. 

Substrates wettability was tested after the deposition of a single layer of cross-linked 

epoxy resin. Since the other substrates were discarded, only PC/ABS CA measurement is 

reported. Figure 32 shows the CA measurement of a PC/ABS sample coated with a single 

layer of Araldite GY2600 epoxy resin, cross-linked with Jeffamine EDR148. The CA of the 

coated polymer is approximately 86°, showing a CA increase of around 24° compared to the 

clean PC/ABS surface. 

 

Figure 32: Snapshot of a sessile drop on a PC/ABS surface coated with a single layer of Araldite GY2600 crosslinked 

with Jeffamine EDR148, taken with an optical tensiometer. 

The described procedure has been applied to measure the CA of the numerous samples 

prepared during the project. The use of a layer of pyrogenic silica involves a significant 
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increase in CA compared to epoxy resin alone, with values generally never below 140° 

(Figure 37). 

3.2.4.2 Surface roughness 

As described in CHAPTER 1 

Superhydrophobic materials, the presence of micro/nanoscale roughness is paramount for a 

surface to exhibit SH properties62. Scanning Electron Microscopy (SEM) is a type of electron 

microscopy that does not use light as a source of radiation but a beam of focused, high-

energy primary electrons that strike the sample and can be used to observe a surface at the 

microscale155. The beam is generated by a tungsten electron source, which emits a stream of 

primary electrons. When the electron beam strikes the sample surface, it penetrates the 

sample to a depth of several microns, depending on the accelerating voltage and the density 

of the sample, producing secondary electrons and characteristic X-rays. One or more 

detectors collect these signals to form images that are then displayed on a computer screen. 

Although not capable of providing atomic resolution, some scanning electron microscopes 

can achieve a resolution of less than 1 nm. Typically, modern full-size SEMs offer a 

resolution between 1 and 20 nm, while desktop systems can provide a resolution of 20 nm 

or higher. This technique is a powerful tool to investigate inhomogeneous solids at the 

microscopic scale156. 

SEM analysis has been performed on several of the developed superhydrophobic samples 

and on the PC/ABS substrate to inspect the surface roughness. PC/ABS SEM images at 

20µm, 10µm, and 2µm magnifications are shown in Figure 33, Figure 34, and Figure 35, 

respectively. SEM images show that the tested PC/ABS surface has some minor roughness 

and imperfections. However, it lacks the micro/nanoscale roughness and hierarchical 

structures necessary to ensure high CAs to a surface, which can be observed in Figure 38 

and Figure 39 for the S0189 sample, coated with a SH coating. 
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Figure 33: SEM image of a PC/ABS clean sample at 20µm resolution. 

 

Figure 34: SEM image of a PC/ABS clean sample at 10µm resolution. 
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Figure 35: SEM image of a PC/ABS clean sample at 2µm resolution. 

3.2.5 Coating abrasion resistance tests 

The abrasion resistance of SH coatings, as previously discussed, is one of the most critical 

aspects of these materials. The preparation of multiple samples, aimed at collecting data for 

preparing a training set to be submitted to ANN, required the use of rapid and practical tests 

to evaluate mechanical strength to cut the time and costs associated with the preparation of 

each sample. The tests selected for the samples prepared during the project were finger 

scratch and tape peeling tests. These techniques are widely used for the assessment of 

abrasion resistance of SH coatings. 

3.2.5.1 Finger scratching test 

A scratch is a sliding indentation on the surface of a material. The scratch phenomenon 

has many facets to its nature and requires a great deal of attention regarding testing and 

evaluation. This becomes especially important when a scratch behavior on a polymer or 

polymer-coated surface is considered, as in the present work157,158. 

The scratch test was introduced by Heavens159 in the 1950s as a qualitative method for 

evaluating the adhesion and mechanical resistance of a coating and has been developed and 

automated over the years. Today, the test is widely used in academic and industrial settings 

as a measurement tool and in Quality Control160. 
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The finger scratch test is a simplified variation of the scratch test and consists of 

scratching the surface with a finger to see whether the coating adheres to the underlying 

surface. The finger scratch test was used as a first quick test to verify the resistance of the 

samples prepared during the project. This extremely rapid test allowed to evaluate the 

abrasion resistance of the samples with immediacy, allowing them to quickly classify the 

non-resistant samples in the preparation of the dataset to be submitted to ANN and drastically 

cutting the time needed to perform mechanical stress tests. 

3.2.5.2 Tape peeling test 

The tape peeling test is used to evaluate the adhesion of a coating to a substrate117. The 

main application strategy exploits repeated peeling on the same area of a surface to highlight 

the possible detachment of the coating layers of the evaluated material. The procedure is the 

following: 

1. adhesive tape is applied to an area of the coating 

2. the tape is pressed onto the surface and left to adhere 

3. the tape is removed from the surface 

The test is successful if the coating is not removed by tape when it is peeled away from 

the surface. However, data reported in the literature have indicated that the results are highly 

dependent on the quality of the adhesive tape, the roughness of the tested surface, the rigidity 

of the tape, and, to a lesser extent, the attachment pressure and the speed of removal of the 

tape161,162. 

The tape peeling test was used on all samples that responded positively to the finger 

scratching test, evaluating the CA variation at each subsequent tape peeling cycle. The most 

stable coatings prepared during the project do not show significant changes in CA and 

therefore in SH properties after 8+ cycles of tape peeling. 

3.3 Preparation of an abrasion-resistant superhydrophobic coating 

Several procedures were developed during the project, following different preparation 

schemes and using various materials. The processes were designed incrementally, targeting 

the detected problems to improve the coating properties continually and iteratively, to have 

a range of materials and operating parameters useful to build a solid dataset. All tested 

mixtures were prepared in triplicate samples (and in five replicates for the more durable 

coatings) to ensure that the results were reproducible. 
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The first procedure designed for coating preparation, Procedure A, is represented by the 

scheme: 1) adhesive layer; 2) curing time t; 3) silica or mixed layer. The general composition 

of the layers is reported in Table 5. 

  

Substrate PLA, PS, ABS, or PC/ABS; dimensions: 20x30x4mm 

Adhesive layer GY2600 + hardener (1:1)  

Curing time t 1, 2, 4, 6, 8, 10, 16, or 18 hours 

Silica layer solvent + Aerosil R504 or R202 (2.5% wt) 

Mixed layer [solvent + Aerosil R504 or R202 (2.5% wt)] +  

[GY2600 + hardener (0.25% wt of the total mass)] 

Table 5: Layer compositions and curing times for the coatings prepared according to Procedure A. 

In the first batch of tests, the coatings were deposited on various substrates, as described 

in 3.2.1 Substrates. PLA, PS, and ABS underwent deformation and degradation with high 

temperatures, making the polymers unsuitable for coating deposition. For this reason, 

PC/ABS was used as substrate. Various samples were prepared by spin-coating and dip-

coating. Surface cracking and non-uniformity of the layers were evident; therefore, spray-

coating was selected as the reference method. 

As previously mentioned, Aerosil R504 was used to test the possibility of having a 

covalent bond between the amino groups on the surface of the SNPs and the underlying 

adhesive to confer abrasion resistance to the coating. R504 and R202 SNPs were dissolved 

in various solvents (THF, DCM, DMAC, CHCl3, n-hexane, and cyclohexane), then sprayed 

on PC/ABS samples with and without the adhesive layer. The solvents were selected for 

their characteristics of organic solvents, capable of dissolving hydrophobic SNPs. 

Cyclohexane and n-hexane SNPs suspensions resulted in uniform and superhydrophobic 

coatings, while other solvents showed surface cracking and non-uniform distribution on the 

surface; n-hexane was selected as silica solvent for all the tests (interchangeable with 

cyclohexane).  

Epoxy resin curing was performed in a drying oven at 70°C using Jeffamine D400 as the 

hardener. The deposition of the resin layer was difficult due to the absence of solvents. To 

summarize, approximately eighty samples were prepared to test the following mixtures: 

▪ R202 or R504 in THF, DCM, DMAC, CHCl3, n-hexane, or cyclohexane (2.5% 

wt) 

▪ R202 or R504 in THF, DCM, DMAC, CHCl3, n-hexane, or cyclohexane (2.5% 

wt) 
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▪ GY2600 + Jeffamine D400 

The samples did not have superhydrophobic properties, with CAs ranging from 62° to 

96°. Several problems have been observed, including non-uniform curing of the adhesive 

layer and a recurring coating surface cracking phenomenon, mainly attributed to the slow 

curing of the resin (Figure 36). 

 

Figure 36: Evident surface cracking on a sample prepared according to procedure A. The first layer is 

GY2600+D400; the second layer is R202 in n-hexane. 

In the second batch of tests, several GY2600 crosslinking agents were evaluated 

(Jeffamine D230 and D400, Jeffamine EDR148, Accelerator 400). Dissolution and spray 

coating tests were then carried out on GY2600 mixed with cross-linking agents to facilitate 

spray-coating deposition. DCM showed relatively fast evaporation in drying oven without 

surface cracking; this problem was still evident, if not exacerbated when using other 

solvents. EDR148 showed the most uniform curing and the shortest curing times among the 

tested agents, fully curing epoxy resin in 20 minutes in drying oven at 70°C, as mentioned 

in 3.2.2.2 Cross-linking agents. According to Procedure A, approximately eighty more 

samples were prepared, testing the following mixtures: 

▪ R202 or R504 in cyclohexane (2.5% wt) 

▪ R202 or R504 in n-hexane (2.5% wt) 

▪ GY2600 (5% wt) + D230 (1:1) in THF, DCM, DMAC or CHCl3 

▪ GY2600 (5% wt) + EDR148 (1:1) in THF, DCM, DMAC or CHCl3 

▪ GY2600 (5% wt) + hexamethylenediamine (1:1) in THF, DCM or DMAC 

▪ GY2600 (5% wt) + D230 + Accelerator 400 in DCM 

▪ GY2600 (5% wt) + EDR148 + Accelerator 400 in DCM 

PC/ABS was used as a substrate; CAs ranged between 61° and 140° (nearly SH). The 

highest CAs were observed on samples prepared by deposing an adhesive layer of 
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GY2600+EDR148, followed by a layer of R202/R504 in n-hexane. Epoxy resin was partially 

cured for 15 minutes at 70°C; partial curing was necessary to allow the SNPs layer to sink 

into the underlying layer, to improve coating resistance. Resistance, however, was mediocre 

and still needed improvement. 

Procedure B was then designed to improve on Procedure A, according to the following 

scheme: 1) silica layer; 2) epoxy resin layer; 3) silica layer; 4) curing time t; 5) silica layer; 

6) curing time t’. The composition of the layers is reported in Table 6. The curing 

temperature is 70°C. 

  

Substrate PC/ABS; dimensions: 20x30x4mm 

Adhesive layer GY2600 (5% wt) + EDR148 (1:1) in DCM 

Curing time t, t’ 5, 10, 15, or 20 minutes 

Silica layer n-hexane + Aerosil R504 or R202 (2.5% wt) 

Table 6: Layer compositions and curing times for the coatings prepared according to Procedure B. 

Sixty samples were prepared according to Procedure B. CAs and resistance were 

measured. The coatings with curing time t = 15 minutes and t’ = 10 minutes gave the best 

results. The difference in CAs between the R202 and R504 was minor and favored the former 

type of silica. Table 7 shows the CAs of two samples, S0189, and S0207, prepared according 

to Procedure B and curing times t = 15 min, t’ = 10 min. S0189 was prepared with R202 

silica, while S0207 was prepared with R504 silica. The coatings are resistant to finger 

scratching, with no variation in CA after applying the procedure. CAs were measured before 

and after 1, 2, 3, and 5 cycles of tape peeling. The amino group of R504 seems to have little 

to no influence on resistance; resistance is attributed to silica sinking into the epoxy layer. 

Silica excess allows keeping exposed nanoparticles, avoiding epoxy resin to completely 

cover the surface, thus depriving it of SH properties while maintaining a reasonable 

resistance level. As previously mentioned, a curing time of 15 minutes at 70°C allows only 

for partial curing (almost complete) of the epoxy layer. Non-complete curing ensures that 

the SNPs layer can partially sink into the underlying epoxy layer, improving coating 

resistance while maintaining sufficient SNPs exposure. The coating shows a significant 

increase in CA compared to the PC/ABS substrate alone (CA = 62°) and epoxy resin coating 

(CA = 96°) and shows mechanical strength compared to a layer of SNPs only deposited 

directly on the sample. 
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 S0189 (R202) S0207 (R504) 

CA 157° 151° 

TP x1 CA 157° 147° 

TP x2 CA 152° 146° 

TP x3 CA 151° 145° 

TP x5 CA 148° 141° 

Table 7: Contact angle before and after tape peeling (TP) cycles for samples S0189 (R202) and S0207 (R504). 

Additional procedures were designed in order to include more data in the ANN dataset. 

Several samples were prepared using a fast-curing commercial PDMS (Sylgard 184) as 

adhesive. PDMS has been previously used to prepare SH coatings, thanks to its hydrophobic 

and adhesive properties, mechanical flexibility, biocompatibility, and thermal/chemical 

stability16,18,35,163,164. Samples were spray-coated according to Procedure C: 1) R202 layer; 

2) PDMS layer; 3) R202 layer; 4) curing 15 min; 5) R202 layer; 6) curing 10min. The scheme 

was designed starting from Procedure B by replacing the epoxy adhesive layer with PDMS. 

R202 (2.5% wt) was suspended in n-hexane. Sylgard 184, composed of part A (PDMS) and 

part B (hardener), was tested with THF, DCM, DMAC and CHCl3 using several 

concentrations (0.25%, 0.5%, 2.5%, 5.0%, 10.0% wt). The coatings prepared according to 

Procedure C were superhydrophobic but not resistant. The procedure was replicated with 

R504, giving similar results. CAs ranged from 147° to 152° for each type of SNPs. As an 

additional test, a thin protective layer of PDMS (5% wt) in DCM was deposed on R202 and 

R504 samples to improve resistance. Such layer, however, leads to a loss of 

superhydrophobicity without appreciably modifying resistance. 

Procedure D was designed to expand the dataset and was based on Procedure A. Samples 

were spray-coated according to the scheme: 1) PDMS 5% wt or 20% wt layer; 2) curing time 

t = 15 min; 3) silica 2.5%wt layer. PDMS was mixed in DCM, and R202/R504 were 

suspended in n-hexane. The samples did not show SH properties (CAs < 130°) and had 

mediocre abrasion resistance once wholly cured. 

Finally, Procedure E was designed to test the effect of multiple PDMS layers. Several 

samples were prepared according to the scheme: 1) 1-4 layers of PDMS 5% wt or 10% wt; 

2) curing time t = 15 min; 3) silica 5% wt layer; 4) curing time t’ = 10 min. The samples 

were prepared using spray- and dip-coating techniques. Samples showed high CAs (148°-

152°) and SH properties but did not show an acceptable abrasion resistance degree. The lack 

of mechanical resistance was attributed to SNPs preventing PDMS proper curing by sinking 

in the adhesive layer. 
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3.3.1 Analysis and characterization of the obtained coating 

Throughout the project, more than 550 samples were prepared using the described 

procedures. Many samples were not used in the dataset construction, particularly those 

prepared on substrates other than PC/ABS, as they did not provide useful information for 

ANN training purposes, reducing the number of samples in the dataset to 450. Analyzing the 

results obtained using the different procedures described, it can be observed that Procedure 

B provides the best results in terms of superhydrophobic properties, CA, and strength. More 

specifically, the samples yielding the best results were prepared via spray-coating on 

PC/ABS substrate according to the following scheme: 1) n-hexane + Aerosil R202 (2.5% 

wt) layer; 2) GY2600 (5% wt) + EDR148 (1:1) in DCM layer; 3) n-hexane + Aerosil R202 

(2.5% wt) layer; 4) curing time t = 15 min; 5) n-hexane + Aerosil R202 (2.5% wt) layer; 6) 

curing time t’ = 10 min. The curing temperature is 70°C. The coating is composed of four 

layers in total. 

The procedure was initially replicated on five samples, all of which yielded remarkably 

similar results, with a variation in CA of ±1°. As already discussed, the coatings were 

resistant to finger scratching, with no variation in CA after applying the procedure. 

Moreover, the coating showed an adequate level of abrasion resistance, as shown in Table 7 

for the sample S0189, with a relatively small CA degradation before and after 1, 2, 3, and 5 

cycles of tape peeling. CAs were measured using an optical tensiometer on a sessile drop. 

Figure 37A shows the snapshot for sample S0189 before tape peeling, while Figure 37B 

shows a snapshot captured after five tape peeling cycles. It can be observed that the water 

droplet maintains a spherical profile, typical behavior in SH surfaces. 

 

Figure 37: Snapshot captured with an optical tensiometer for sample S0189 before (A) and after (B) five tape peeling 

cycles. 
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SEM analysis for sample S0189 showed microscale spherical structures, which confirmed 

the presence of exposed silica nanoparticles and hierarchical roughness. SEM images show 

how the surface appears irregular, with a uniformly distributed roughness, a fundamental 

element in obtaining SH surfaces. Figure 38 and Figure 39 show magnifications at 2µm and 

1µm, respectively. By observing SEM micrographs, the surfaces show a hierarchically 

distributed roughness at the micro- and nanoscale, which is more homogeneous and dense 

than the roughness displayed by lotus leaves SEM images that inspired SH surfaces (Figure 

1). 

 

Figure 38: SEM image at 2µm magnification for sample S0189. 

 

Figure 39: SEM image at 1µm magnification for sample S0189. 
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Figure 40: digital surface reconstruction of S0189 sample. 

Figure 40 shows the 3D digital reconstruction of the S0189 surface in MATLAB. The 

surface roughness is homogeneously distributed on the surface of the sample, granting SH 

properties to the coating. Digital reconstruction of the surface at 200nm highlights the 

distribution of SNPs. The nanoscale size of the SNPs, and the presence of microscale 

aggregates, effectively reproduces the hierarchical roughness required to achieve a 

superhydrophobic surface.  

Figure 41 shows the behavior of a water drop on the surface of sample S0189, obtained 

by capturing frame-by-frame the drop movement using a digital camera. It can be observed 

how the drop is immediately repulsed from the surface and does not leave any trace of water 

on it. 
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Figure 41: Frame-by-frame capture of a water drop impacting on S0189 sample surface. 

To summarize, using Procedure B and R202 silica, it was possible to obtain a coating 

with excellent SH properties and a fair degree of mechanical resistance to abrasion. The 

coating shows promising features, which allow it to be applied in various settings. However, 

the limited degree of resistance means that the coating has to be further optimized. 

The coating and the preparation process were further improved using the algorithms 

described in 4.1 Artificial Neural Network training and superhydrophobic coating prediction 

algorithm, focusing on enhancing coating resistance to mechanical solicitations. A new 

coating scheme was prepared, and a modified multistep method was devised using the 

trained algorithms. The new coating shows excellent SH and self-cleaning properties, with 

a CA > 160° and no degradation in the CA after 8+ cycles of tape peeling. CA measurements 

and SEM analysis results of the optimized coating are very similar to the results showed for 

S0189; the main difference is the increased tape peeling/abrasion resistance. Table 8 shows 

the average CA of five samples prepared according to the optimized scheme (OPT1-039). 
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 OPT1-039 

CA 163°±2° 

TP x1 CA 163°±2° 

TP x2 CA 163°±2° 

TP x3 CA 163°±2° 

TP x5 CA 163°±2° 

TP x8 CA 162°±2° 

TP x10 CA 158°±1° 

Table 8: Contact angle before and after tape peeling (TP) cycles for OPT1-039 procedure. 

The coating and the preparation process are being evaluated for possible patentability, 

and no further data can be disclosed at the time of writing. Obtaining a surface with 

outstanding SH characteristics and a high level of abrasion resistance and designing a 

deposition method that is easy to apply and cost-effective mark the achievement of the main 

objectives of the project. Future perspectives involve the scaling up and design of aseptic 

surfaces in a large-scale industrial setting. 

3.3.2 Potential market and application of the developed coatings 

In 2015, the hydrophobic coating market global size was EUR 1.10 billion and was 

projected to see substantial growth due to its rising area of use in the automotive, aerospace, 

biomedical, and construction industries165. Besides, the advancements of technology for 

applying nanoparticles in superhydrophobic coatings were expected to open new avenues 

for the industry growth. SH surfaces have potential application in the fields of anti-

corrosion14-18, anti-icing10,19-23, anti-fogging7,10,24-28, self-cleaning7-13, anti-fouling11,22,29-32, 

and other sectors30,33-36, with a noticeable forecast increase in the market volume request for 

the anti-corrosion and antimicrobial sectors165 (Figure 42). 
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Figure 42: Market report for SH coatings, updated to 2016 and projected to 2025165. 

This project was developed to obtain a surface with strong superhydrophobic properties 

and an easy, cost-effective, and scalable preparation process for application in antimicrobial 

surfaces and biomedical devices. The demand for durable, effective anti-microbial coatings 

is high, and it is expected to grow even more with the outbreak of the COVID-19 

pandemic39,40,166,167. SH surfaces could even find potential application in preventing the 

spread of COVID-19 thanks to the self-cleaning properties37,38. As already discussed, SH 

surfaces can prevent the growth of microbial substrates and can find wide application in the 

production of aseptic surfaces, nonwovens such as gowns & gloves, surgical tools, coronary 

stents, and catheters, or orthopedic implants. The rising demand for antimicrobial coatings 

in catheters, implantable, and surgical instruments as they are biocompatible, non-toxic, and 

biostable will promote industrial development in the next years167. Thanks to the excellent 

SH properties, the coatings developed in this project framework can be applied to develop 

antibacterial surfaces. The few limitations of the coatings do not allow their use in internal 

medical devices or surgical instruments. An interesting use could be the application of the 

coating to the surfaces of operating rooms, thus including all the necessary instrumentation 

and furniture in an instrument where sterility is a fundamental requirement (operatory tables, 

trays, faucets, sinks, etc.). The coatings could be applied to everyday/public-use surfaces, 

which act as potential carriers of pathogenic bacteria, for example in a hospital environment. 

The developed coatings could, for example, be applied to bedrails, handrails, over-bed 

tables, sinks, faucets, doorknobs, or toilet hardware in hospitals; could find application in 

elevators, shopping cart handles, kitchen surfaces in public facilities, or even in handrails, 

grab bars, or seats in mass transportation.  
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CHAPTER 4 

Application of Artificial Neural Networks 
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4.1 Artificial Neural Network training and superhydrophobic coating prediction 

algorithm 

Coating and process optimization has many parameters to consider. It is an example of 

multivariate analysis, not treatable with conventional methods. For this reason, the use of 

advanced computational tools such as ANN and DL methods24 proved to be essential. Using 

ANNs, indeed, it is possible to tackle problems that are generally impossible or difficult to 

solve by human or statistical standards. Moreover, ANNs have self-learning capabilities that 

allow them to deliver better outcomes as more data becomes available. 

Using data collected from the SH coatings preparation, an extensive dataset was collected, 

containing information about the materials used, the operating parameters, and the developed 

coatings main features (SH and non-SH). This dataset was used to train an ANN, obtaining 

two algorithms that, combined, predict the CA and abrasion resistance degree of a coating. 

The algorithms were used to design a durable, highly SH coating and to optimize the 

preparation method. The design of the computational experiments, the Artificial Neural 

Networks training, and the development of the algorithms and methods were conducted in 

collaboration with SmartVASE Srl, a spin-off of the University of Salerno active on 

biomaterials and superhydrophobic coatings168. 

4.1.1 Dataset preparation 

Data collected from the prepared samples (e.g., reagents, concentrations, number of 

layers, curing time, resistance) have been used to build an extensive dataset structured as a 

matrix. The matrix was used to train an ANN, aimed at optimizing the coating itself. The 

matrix was prepared to make it readable by the ANN. For the proper training of a neural 

network, it is necessary that data are formatted and labeled appropriately. The used algorithm 

is based on supervised learning, i.e., learning that provides the network with a set of labeled 

inputs to which correspond known outputs169. Labeled data implies that inputs and outputs 

have known values. Using ANNs, it is possible to find the relationship between inputs and 

outputs, obtaining a mathematical model or algorithm. The objective is to predict the output 

given a new input once the model has been trained. On the contrary, unsupervised learning 

is used when data are not labeled and outputs are unknown. 

The dataset was prepared in successive steps, editing and optimizing the labeling and 

organization following several ANN training iterations. The final dataset structure is based 

on Procedure B and involves four possible layers in the preparation process, including data 
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from Procedures A-E. Each row of the dataset contains the data of a sample. Columns 

contain the following data:  

1) Sample ID 

2) Composition of layer 1  

3) Composition of layer 2  

4) Composition of layer 3  

5) Composition of layer 4  

6) Contact angle 

7) Resistance level 

The complete structure of the dataset is outlined later in this subsection. Each layer 

composition is divided into several columns, one for each used material, e.g., a column for 

the epoxy resin, one for hardener D400, one for EDR148, one for R202 silica, etc. 

Moreover, for each layer composition, a column for the curing time and another for the 

number of repeated layers are reported. Each layer, therefore, includes every used material. 

The value is generally set at their wt% for the given layer. The value for a material not used 

in a specific layer is set to 0. Solvents are set to 1 if present in the given layer or 0 if not 

present.  

Contact angle and resistance columns were set as the output for the training of the ANN. 

The training, however, requires numerical data only since ANNs cannot process structured 

language per se, e.g., the network could not process the resistance feature if it were set to 

“yes” or “no”. For this reason, while CAs were reported in degrees, a workaround was 

applied to resistance values. Expressly, inspired by binary programming, for abrasion-

resistant samples, the resistance value was set to 1, while for non-resistant samples, it was 

set to 0. Adapting the values to the need, for the samples that showed intermediate resistance 

but not enough for coating development, the value was set to 0.5. 

The final dataset was stored in comma-separated values format (CSV). It is composed of 

83 columns and 450 rows plus headers. The dataset headers, which reflect the dataset 

structure, are the following (in CSV): 

Sample; epoxy_1; D320_1; D400_1; accelerator400_1; EDR148_1; PDMS_1; 

THF_1; DCM_1; DMAC_1; CHCl3_1; C-silica_1; N-silica_1; nHEX_1; cHEX_1; 

THF_1; DCM_1; DMAC_1; CHCl3_1; layers_1; curing_1; epoxy_2; D320_2; D400_2; 

accelerator400_2; EDR148_2; PDMS_2; THF_2; DCM_2; DMAC_2; CHCl3_2; C-

silica_2; N-silica_2; nHEX_2; cHEX_2; THF_2; DCM_2; DMAC_2; CHCl3_2; 

layers_2; curing_2; epoxy_3; D320_3; D400_3; accelerator400_3; EDR148_3; 

PDMS_3; THF_3; DCM_3; DMAC_3; CHCl3_3; C-silica_3; N-silica_3; nHEX_3; 

cHEX_3; THF_3; DCM_3; DMAC_3; CHCl3_3; layers_3; curing_3; epoxy_4; D320_4; 

D400_4; accelerator400_4; EDR148_4; PDMS_4; THF_4; DCM_4; DMAC_4; CHCl3_4; 
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C-silica_4; N-silica_4; nHEX_4; cHEX_4; THF_4; DCM_4; DMAC_4; CHCl3_4; 

layers_4; curing_4; CA; resistance. 

A number represents each layer of a given coating. The first layer materials will have a 

“_1” in the headers. For the second layer, the headers will have the material denomination 

followed by “_2” and so forth for the third and fourth layers. Table 9 shows an excerpt of 

the dataset structure. For example, S0189 sample first layer is composed of R202 2.5% wt 

in n-hexane. Therefore, the value of R202_1 is set at 2.5 in the table, while n-hexane is set 

as 1 (similar to “yes” for binary language). A single layer of R202 is deposited, and layers_1 

value is set at 1, while curing is set at 0 (minutes) since the first layer does not involve curing. 

All the other values are set at 0.  

  
STEP_1 

STEP_2-

4 

OUTPU

T 

Sampl

e 

epoxy_

1 

EDR148_

1 

PDMS_

1 

DCM_

1 

R202_

1 

R504_

1 

nHEX_

1 

layers_

1 

curing_

1 
(…) CA Res 

S0175 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 10.0 (…) 126 0 

S0176 12.5 0.0 0.0 1.0 0.0 3.5 0.0 0.0 6.0 (…) 80 1 

S0177 12.5 0.0 0.0 1.0 0.0 3.5 0.0 0.0 8.0 (…) 84 1 

S0178 12.5 0.0 0.0 1.0 0.0 3.5 0.0 0.0 10.0 (…) 100 1 

S0179 12.5 0.0 0.0 1.0 3.5 0.0 0.0 0.0 6.0 (…) 88 1 

S0180 12.5 0.0 0.0 1.0 3.5 0.0 0.0 0.0 8.0 (…) 84 1 

S0181 12.5 0.0 0.0 1.0 3.5 0.0 0.0 0.0 10.0 (…) 121 1 

S0182 12.5 3.5 0.0 1.0 3.5 0.0 0.0 5.0 20.0 (…) 90 1 

S0183 12.5 3.5 0.0 1.0 3.5 0.0 0.0 4.0 20.0 (…) 90 1 

S0184 12.5 3.5 0.0 1.0 3.5 0.0 0.0 2.0 20.0 (…) 79 1 

S0185 12.5 3.5 0.0 1.0 3.5 0.0 0.0 2.0 20.0 (…) 76 1 

S0186 12.5 3.5 0.0 1.0 3.5 0.0 0.0 5.0 0.0 (…) 102 1 

S0187 12.5 3.5 0.0 1.0 3.5 0.0 0.0 2.0 0.0 (…) 78 1 

S0188 1.0 1.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 (…) 102 1 

S0189 0.0 0.0 0.0 0.0 2.5 0.0 1.0 1.0 0.0 (…) 157 1 

S0190 0.0 0.0 0.0 0.0 2.5 0.0 1.0 1.0 0.0 (…) 148 1 

S0191 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 (…) 128 1 

S0192 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 (…) 133 1 

S0193 0.0 0.0 0.0 0.0 2.5 0.0 1.0 1.0 0.0 (…) 148 0.5 

S0194 0.0 0.0 0.0 0.0 2.5 0.0 1.0 1.0 0.0 (…) 146 0.5 

Table 9: Superhydrophobic coatings dataset excerpt. The reported excerpt is only representative of the final dataset, 

as it can be seen from the missing data and the hidden columns; it was reported with the sole purpose of exemplifying the 

structure of the dataset. Step 1 is missing several columns containing different materials, while steps 2, 3, and 4 are hidden. 

Only 20 of 450 rows are reported. 

4.1.2 Artificial Neural Network training and prediction algorithms 

As discussed in CHAPTER 2 

Artificial Neural Networks, ANNs are calculation systems that learn to execute commands 

without being programmed. An ANN is based on a set of connected artificial neurons. Each 
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connection can transmit a signal to other neurons. An artificial neuron that receives a signal 

processes it and can send it to the connected neurons. In the present work, the initial inputs 

are the operating parameters (STEP1 to STEP4 of the dataset), the targets are the contact 

angle and resistance, and the final output is equations for the optimization of the used 

parameters, which provide the best composition to prepare a coating that is both resistant 

and superhydrophobic.  

The used algorithm is based on supervised learning169. By analyzing the data provided, 

the network predicts the possible link between data points and, in this way, learns to calculate 

correct associations between the input data provided. As the network processes data, it 

applies corrections to improve the outputs, increasing the weight of the parameters that 

determine the correct outputs and decreasing those that generate invalid values. The 

supervised learning mechanism, therefore, employs error backpropagation170.  

The network training has been carried out considering all the operational parameters 

involved in preparing the samples. The matrix initially used was composed of 250 samples, 

of which 80% was selected randomly as the training set, while the remaining 20% was used 

as the validation set. The training set is used for the actual learning phase of the ANN, while 

the validation set is necessary to ensure that the algorithm is capable of performing the 

correct predictions. As previously discussed, the output parameters on which attention has 

been focused are two: contact angle and coating resistance. The first attempts to train the 

network were poorly precise due to the gaps in the initial dataset. Therefore, it was necessary 

to fill in missing data by preparing new samples to obtain a complete matrix. Several iterative 

training steps of the ANN were performed, using the feedback to evaluate the new samples 

needed to optimize the dataset. It was a long and time-consuming process since the 

preparation of the sample was performed manually on a small scale; automation of the 

preparation process could significantly improve the efficiency of the workflow. 

The final dataset, which was used to train the working algorithms, comprises 450 samples 

and is described in the previous subsection. For the training, the dataset was split into 80% 

training set and 20% validation set. The software used for training automatically generates 

n models for each target. The models are ranked according to their performance, and the 

most accurate model is selected. Two different predictive algorithms were obtained, one to 

predict the contact angle of compositions, the other to evaluate its resistance. 

Table 10 summarizes the principal values of the network accuracy with CA as the target, 

while Table 11 summarizes the data for resistance as the target. The values reported in the 

Model Fit column are relative to the training set, while the Predictions column refers to the 
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validation set. The Number of observations row shows the number of elements on which the 

analysis is performed. As already discussed, the dataset consists of 450 samples; 360 

represents the number of samples used in training (80%), while 90 observations correspond 

to 20% of the total dataset, used as the validation set. 

Contact Angle Model Fit Predictions 

Number of observations 360 90 

Mean absolute error (MAE) 9.63 8.13 

Coefficient of determination (R2) 0.80 0.83 

Correlation (Pearson) 0.89 0.92 

Table 10: Prediction accuracy of the trained ANN with Contact Angle as the target. 

Resistance Model Fit Predictions 

Number of observations 360 90 

Mean absolute error 0.032 0.053 

Coefficient of determination (R2) 0.88 0.75 

Correlation (Pearson) 0.94 0.87 

Table 11: Prediction accuracy of the trained ANN with Resistance as the target. 

Mean absolute error, Coefficient of determination, and Correlation are accuracy 

measures used to evaluate the trained ANN performance. Mean absolute error (MAE) is a 

good measure of errors between paired observations171. MAE uses the same scale as the data 

being measured; therefore, MAE cannot compare series using different scales. It can be 

observed that MAE has different values for the two obtained algorithms; this is due to the 

different scales used for the two target parameters (CA and resistance). For CA, which ranges 

from 62° to 157°, the MAE is ~9% of the total, resulting in a sufficiently low error, indicating 

good accuracy of the algorithm. The trained algorithm for resistance shows an even lower 

MAE, approximately 4% of the total since resistance values range from 0.0 to 1.0. The 

coefficient of determination (R2) is a widely used accuracy measure, representing the 

variance in the dependent variable that is predictable from the independent variable(s). R2 

provides a measure of how well observed outcomes are replicated by the model, based on 

the proportion of total variation of outcomes explained by the model172,173, and is a statistical 

measure of how well the predictions approximate the real data points. R2 values range 

between 0 and 1, and an R2 of 1 means that the predictions perfectly fit data. Both trained 

algorithms show relatively high (>0.75) R2 values, confirming the models excellent accuracy 

level. The correlation coefficient represents the statistical relationship between real and 
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predicted values, with 1 being the most robust possible agreement between the values; 

Pearson correlation is reported for the trained algorithms. Pearson correlation measures the 

strength and direction of linear relationships between pairs of continuous variables and 

evaluates whether there is statistical evidence for a linear relationship among the same pairs 

of variables in the population174. The correlation values obtained for the algorithms at issue 

are indicative of an adequate level of accuracy. 

The predictive models are complex equations consisting of several sub-equations that 

correlate the parameters of the dataset. The algorithms can predict the CA and resistance 

level of a coating by analyzing input data, i.e., user-defined material quantities and operating 

parameters. Equation 4 and Equation 5 describe the predictive models for CA and resistance 

forecasting, respectively. Only the main equation is reported, but not all of the sub-equations, 

for copyright reasons. Each N in the equations represents a sub-equation, which in turn is 

composed of several sub-equations. 

Y1 = -27.4944 + N784*0.892439 - N784*N18*0.00957053 + 

N18*0.674638 + N18^2*0.00655458 

Equation 4: Predictive model for contact angle forecast. 

Y2 = 0.00223978 - N821*4.49856 - N821*N24*5.57253 + 

N821^2*5.564 + N24*5.42902 + N24^2*0.0757837 

Equation 5: Predictive model for resistance forecast. 

The algorithms were successfully applied for the design of an optimized coating. After 

several tests, a coating with a CA > 160° with excellent self-cleaning properties was 

prepared, based on an optimized coating predicted by the algorithms. The preparation 

required a slightly modified multistep deposition scheme suggested by the prediction. The 

resulting coating also showed a high degree of abrasion resistance, with no CA degradation 

after 8+ cycles of tape peeling. The new preparation scheme, the modified multistep 

deposition method, and the coating composition are under patent evaluation at the time of 

writing, and no further data can be disclosed.  

4.2 Computational methods 

The Artificial Neural Network was trained using the GMDH Shell DS 3.8.9175 software 

application, selecting a regression forecasting model. The used core learning algorithm was 

the GMDH-type Neural Network (Group Method of Data Handling)176,177. GMDH Neural 

Networks, also known as polynomial Neural Networks, are Feedforward Multilayer 
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Perceptron networks that use the combinatorial algorithm to improve neuronal connection178. 

The selected internal function for neurons was the quadratic polynomial function, and the 

upper limit for the number of network layers created by the algorithm was set at 33. GMDH-

type networks generate many layers, and an upper limit of 33 layers was set to reduce the 

quickly growing computer memory and time consumption while maintaining good 

predictive accuracy. The reordering of rows, used to achieve uniform statistical 

characteristics of training and testing samples and to make them equally informative, was 

performed with the odd/even method, which places all even instances after odd instances. 

The selected validation strategy was the k-fold validation (2 folds): the dataset is split k parts, 

and then a model is trained for k times, using k-1 parts. The performance of the model was 

measured at each training using a new remaining part. The selected validation criterion for 

both the core algorithm and variables ranking was the RMSE (Root-Mean-Squared Error). 

The variables were ranked by correlation, and only the 20 top-ranked variables were 

considered for model evaluation; the reduction of variables was necessary for quicker 

processing of the high-dimensional dataset. GMDH-type networks have been successfully 

used for numerous applications in the past176-183. GMDH Shell DS 3.8.9 software application 

was selected for its relative ease of use. It does not require extensive knowledge of 

programming languages and can train ANNs quickly and effectively, without losing quality 

compared to other software applications and ANN frameworks. 

4.3 Other applications of ANNs in parallel to the thesis project 

Artificial Neural Network techniques have a vast range of applications. Since the project 

main objectives were achieved ahead of schedule, and because of the delays and the shift in 

research caused by the COVID-19 pandemic outbreak, new computational projects were 

carried out in parallel with the development of SH surfaces and optimization algorithms.  

The acquired techniques were used to develop an ANN-based tool for the identification, 

activity prediction, and optimization of antimicrobial peptides (AMPs), currently a working 

prototype. Two AMPs were predicted using the tool and synthesized, showing antibacterial 

activity against Staphylococcus aureus from preliminary tests. 

In collaboration with the research group of Professor Amedeo Caflisch, Biochemistry 

Department of the University of Zurich, a project for the development of an ANN-based 

software application for anticancer drug design has been started. This project is still in the 

pre-prototype phase but has shown promising potential. One of the project aims is to 
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interface classical computational docking techniques to ANN methods, to develop a fast and 

efficient in silico drug discovery tool. 

4.3.1 NN-AMP: a tool for the design of new Antimicrobial Peptides 

During the Ph.D. program, in parallel with the work on SH surfaces, an ANN-based 

prototype software application to predict and optimize antimicrobial peptides was developed 

in collaboration with SoftMining Srl184, specialized in the application of Artificial 

Intelligence methods to drug discovery and life sciences. 

Antimicrobial resistance is an ever-growing concern and poses a severe threat to global 

public health. Resistant pathogens are on the rise, and the geographic areas affected are 

expanding. Pathogens that were under drug control have become resistant to treatments, and 

this has begun to occur, especially in hospitals where antibiotic use was initially 

widespread73,74. Antimicrobial peptides (AMPs) are oligopeptides with a variable number of 

amino acids (from 5 to 100) whose targets are microorganisms, from viruses to parasites. 

AMPs are biosynthesized by microbes, plants, and animals from diverse taxonomical 

hierarchy. These are the first line of host defense peptides, present across all kingdoms. 

Antimicrobial peptides are particularly interesting because they are less prone to generate 

microbial resistance, offering a potential solution to the long-standing antibiotics resistance 

problem185-188. 

Currently a working prototype, NN-AMP is a software application for predicting 

antimicrobial peptides activity and new antimicrobial sequences. The tool can discover 

entirely new sequences, obtain new, more active sequences starting from known AMPs, and 

evaluate the obtained sequences patentability. The tool can help discover new drugs to fight 

multi-drug resistant bacterial strains while shortening the discovery and development 

process. The tool is oriented to the generation of highly specific peptides, thus aiming at 

selectivity rather than potency. 

The training dataset is a curated set of AMPs data, mainly based on YADAMP, a database 

of antimicrobial sequences developed by Piotto et al.189. Decoy sequences, i.e., inactive 

sequences structurally similar to active AMPs, were also included. The activity prediction 

models were generated by training a neural network. The tool focuses on linear sequences 

because they have a lower computational cost, allowing faster software response times 

compared, for example, to circular AMPs, which require more complex and resource-

intensive tools.  
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The initial training was carried out on a small number of active sequences, to which a 

small number of inactive sequences was added. The initial activity targets were E. coli, P. 

aeruginosa, and S. aureus. These three bacterial strains are among the most common causes 

of antibiotic-resistant infection and are the most represented strains in the dataset (the strains 

on which more data were present). The network underwent progressive training, increasing 

the number of sequences used and exploiting different datasets.  

Nine predictive algorithms have been obtained so far, targeting the three different 

pathogens. Each algorithm is selective for a given pathogen. The nine models show 

consensus in predicting the activity and selectivity of a given sequence. The prediction of 

selectivity is the main target of the algorithms, with the ultimate goal of generating highly 

specific sequences for a given bacterial strain. 

The algorithms have been packaged in a software tool for the activity prediction of an 

input sequence. GMDH-type methods have been used for the training of the ANNs. For the 

training of Neural Networks, numerous parameters have been considered for each sequence 

of the dataset, setting as target the experimental activity data reported in the scientific 

literature. Several physicochemical properties, such as charge, helicity, flexibility, 

isoelectric point, Boman index, and instability index, were calculated in silico. Attention has 

been focused in particular on helicity. The term helicity refers to the tendency of a protein 

to form the α-helix. It plays a crucial role in the specificity and toxicity of antimicrobial 

peptides, and it has been observed that peptides with a high helicity value manifest strong 

antimicrobial activity190. Antimicrobial activity data is reported as Minimal inhibitory 

concentration191 (MIC), defined as the lowest concentration of an antimicrobial substance 

capable of inhibiting a bacterium growth. The training of ANNs has been a very long 

iterative process, with the gradual expansion and adaptation of the dataset. At the time of 

writing, it has not yet been possible to obtain a general-purpose algorithm. However, 

specialized algorithms are particularly advantageous since it is possible to design and 

optimize highly specific peptides active on a specific pathogen strain. 

The tool can also generate new and more active sequences by modifying an initial 

sequence or predicting new sequences. The tool generates all the possible amino acid (aa) 

substitutions (pool of 20 aa) for a random position of an input sequence; addition and 

deletion are also considered. The software application then applies the algorithms obtained 

through ANN to calculate the MIC of the sequence and the reliability of the models (through 

a scoring function). For each generation, the sequence with the best scoring value is selected 

and forwarded to become the next cycle input sequence. The software application is the 
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combination of four different tools, each with a different role. An overview of the application 

workflow is shown in Figure 43. The platform is divided into the following tools: 

▪ pep1: prediction of antimicrobial activity and selectivity of a known sequence. It 

processes user-defined sequences. 

▪ pep2: generation of new active sequences from known sequences (improvement 

of existing sequences). It generates analogue sequences by random substitutions. 

▪ pep3: generation of potentially active random sequences of user-defined length. 

▪ pep_patent: preliminary patent evaluation tool. The pep_patent tool searches for 

the selected peptide in the four most important patent databases, i.e., Korean, 

American, Japanese, and European Patent Offices. This tool searches the selected 

sequence or 8aa-long fragments in the databases to exclude patent-protected 

sequences as a preliminary patentability assessment. 

 

Figure 43: NN-AMP general workflow. 

4.3.1.1 Sequence generation and activity evaluation 

The tool pep1 applies the models obtained from ANN to a list of sequences, thus obtaining 

a MIC value for each model. The first step involves the calculation of over 530 parameters 

using the YADAMP_descriptor tool. These descriptors are the parameters used by the 

mathematical models obtained through Neural Networks. The next step is the MIC 
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calculation. For each sequence, an alignment and a calculation of each model distance from 

the datasets are performed. The alignment (pairwise) uses a BLOSUM50 matrix, while the 

distance is calculated through the alignment score method (see below). The models are 

calibrated on selectivity accuracy more than potency accuracy. This calibration is essential 

to obtain highly selective peptides, leading to the development of targeted AMPs. 

The tool pep2 generates new sequences from a single initial sequence. A random position 

is selected, and twenty changes are performed, i.e., twenty new sequences are generated, 

performing a swap for each amino acid in the initial pool. The positions can also be subject 

to the addition or deletion of amino acids. Once the sequences are generated, descriptors, 

MICs, and distances are calculated by pep1. The sequence with the best scoring value will 

be selected at each cycle, and a new cycle will be performed. The output file will show the 

list of modified sequences, their MICs, distances, scoring values, and the geometric mean of 

the MICs for each sequence and each generation. Example: 

starting sequence:     EPFKISIHL  

I generation selected sequence:   EPFKISICL 

II generation selected sequence:   EPFKISICR 

III generation selected sequence:   CPFKISICR 

n generation selected sequence:   CMFRQSIG_ 

The tool can process a single sequence or a list of sequences. It also allows selecting 

which model to test the peptides (E. coli, P. aeruginosa, S. aureus, or all three).  

The pep3 tool generates completely random sequences of user-defined length; pep1 is 

then applied to these random peptides for MIC calculation. 

4.3.1.2 Scoring function 

The scoring function used to evaluate the generated sequences is the following: 

score = ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑚𝑒𝑎𝑛(∑ (𝑀𝐼𝐶𝑖 ∗ 𝑑𝑖 ∗ 100) + 5𝑖
1 ) 

Where MICi is the MIC calculated from model i and di is the distance from model i. The 

scoring function is the harmonic average of the sum of MIC products and distances. The +5 

is necessary to exclude values equal to 0, which would lead to an error in calculating the 

harmonic mean. The 0 appears if the tested or produced sequence is equal to a sequence 

already present in the initial dataset. The harmonic averaging has been chosen because it 

gives more weight to lower values, giving less importance to higher values; thus, lower MICs 



Results and Discussion 

 

71 

   

are favored. In general, the scoring function is necessary to assess which peptides to accept 

and which to reject. 

4.3.1.3 Alignment score method 

The distance (d) between two sequences (1, 2) is computed from the pairwise alignment 

score between the two sequences (score12), and the pairwise alignment score between each 

sequence and itself (score11, score22) as follows: 

d = (1-score12/score11) * (1-score12/score22) 

Two identical sequences will have d = 0. As d increases, the difference between the two 

sequences increases. 

4.3.1.4 Patentability evaluation 

The databases containing every protein sequence published in patents have been obtained 

from a public repository192 (fasta format). The databases come from the European, Korean, 

Japanese, and US patent offices. A script has been created to sequentially generate eight aa-

long fragments, starting from the first amino acid of the input sequence (e.g., 

ABCDEFGHIJKLMNO; sequence 1: ABCDEFGH; sequence 2: BCDEFGHI). The tool 

automatically searches the entire sequence and the fragments in the databases. The output 

provides the input string its presence or absence within the databases reported as true or 

false. 

4.3.1.5 Applications and future perspectives 

Using NN-AMP, a set of 20 new sequences were generated. The solubility of the peptides 

was calculated, and six water-soluble sequences between 12 and 27 amino acids were 

selected (SM1-SM6). These sequences underwent preliminary antimicrobial tests. SM1 and 

SM3, respectively 12-aa and 14-aa long and which were trained for selectivity on S. aureus, 

actually showed inhibition against S. aureus (ATCC 6538) but did not inhibit the growth of 

P. aeruginosa (ATCC 9027) or E.coli (ATCC 8739). The potency of the peptides is low, but 

the results of the preliminary tests show selectivity towards S. aureus, in accord with the 

predicted selectivity. These sequences are currently under patent evaluation and will be used 

as lead compounds to generate new, more active sequences, potentially active on S. aureus 

and Gram+ pathogens. Future perspectives for the tool are expanding the dataset to include 

a wider range of pathogenic strains, focusing on the most widespread superbugs (i.e., 
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bacteria resistant to most antibiotics188), and optimizing the algorithms to obtain potent and 

selective AMPs. Figure 44 schematizes the optimization process that will be applied. 

 

Figure 44: NN-AMP recursive training scheme. 

A process for the automated rapid synthesis of small amounts of peptides is currently 

under development at SoftMining Srl at the time of writing. This process could be used to 

apply an iterative ANN training protocol. The protocol would involve the synthesis of NN-

AMP-generated sequences and testing for antimicrobial activity. The resulting data would 

be used to improve the accuracy of current predictive algorithms. 

Finally, a very interesting approach, currently in an initiation-stage project, could be the 

development of dual-function antibacterial surfaces72, combining optimized SH surfaces and 

generated AMPs. Surfaces with bacteria-resisting and bacteria-killing features could prove 

particularly useful in the biomedical field to develop surgical tools and implantable devices 

with high antibacterial efficiency. 

4.3.2 Development of an ANN-based tool for anti-cancer drug discovery and 

repurposing 

ANNs are a potent tool. Their multiple advantages have led to their use in a variety of 

biomedical fields, including drug discovery. ANNs have found wide application in this field, 

entering the initial phase of research and development, with the potential to drastically cut 

costs and time needed in the initial phases of drug discovery110,111,113,193-195. Computational 

activity prediction of molecules is a time-consuming and resource-heavy process that uses 

tools and methods as Molecular Docking, Molecular Dynamics, DFT calculations, QSARs 

prediction, etc. Artificial Neural Networks (ANN) are widely used in various biomedical 

fields like bioinformatics, cheminformatics, QSARs, medical imaging, and disease 

prediction. One of the main advantages of using ANN over the classical methods is that they 
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require less computational time and fewer resources, giving the same or higher accuracy 

than the other computational methods. ANNs are widely used with large datasets and 

multivariate problems that cannot be solved using classical methods and linear functions. 

Another significant advantage of ANNs is learning and self-correcting in nonlinear, 

complex, and noisy environments. ANNs can reduce the required times and resource use 

while also dealing with large datasets and nonlinear problems. ANNs have also been applied 

for the development of improved and more efficient computational docking 

methods193,195,196. 

During the Ph.D. program years, a secondary project for developing an ANN-based 

software application for anticancer drug design has been initiated. In the first part of the 

project, a neural network-based tool for small molecule activity prediction was started. A 

relatively small dataset of molecules active on Carbonic Anhydrase, a target for anticancer 

drug development, was initially selected197. Various descriptors have been calculated, such 

as structural, biochemical, biophysical, and electronic properties. The descriptors were 

integrated with docking data to build an extensive dataset, and an ANN was trained to predict 

compounds activity. This approach is interesting because it could be extended to any target 

by training new ANNs. However, the algorithms obtained so far are not accurate, and the 

system still needs to be improved. The project was developed in collaboration with Prof. 

Caflisch's research group at the University of Zurich to implement AI methods to classical 

bioinformatics methods. During the collaboration, the knowledge and methods acquired 

were applied to the development and improvement of the described tool, which still needs 

further improvement. The final goal is to obtain an extensive ANN algorithm for the fast and 

accurate prediction of small molecule activity for hit discovery and drug repurposing. 
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Conclusions 

Superhydrophobic surfaces show excellent self-cleaning, anti-biofilm, and anti-fouling 

properties, with a high potential for application in many industrial fields and biomedical 

devices, especially in developing antimicrobial surfaces for biomedical use. However, these 

surfaces suffer from low mechanical resistance, and the preparation processes are often 

costly and not applicable on a large scale. 

The research work carried out in the frame of the three years Ph.D. in Drug Discovery 

and Development has been focused on the design and development of a resistant 

superhydrophobic surface, using a simple and scalable method, and on the application of 

Artificial Neural Networks to optimize both the coating and the process. In the first part of 

the work, the general process for coating design was outlined. Several preparation methods 

were discussed, finally selecting spray-coating deposition and a multi-step layer-by-layer 

process. This method is the most effective in coating preparation and potentially applicable 

on a large scale. The iterative coating preparation process was then discussed, using five 

different procedures (Procedures A-E), each with a different layer pattern, and using a wide 

range of materials, solvents, and operating parameters. A coating based on silica 

nanoparticles was prepared, with strong superhydrophobic characteristics (contact angle = 

157°) and a reasonable degree of resistance to abrasion. The coating consisted of four 

different layers and was prepared according to the scheme: 

layer 1 Aerosil R202 silica nanoparticles (2.5% wt) in n-hexane  

layer 2 GY2600 epoxy resin (5% wt) + EDR148 hardener (1:1) in DCM 

layer 3 Aerosil R202 silica nanoparticles (2.5% wt) in n-hexane  

 curing time 15 minutes 

layer 4 Aerosil R202 silica nanoparticles (2.5% wt) in n-hexane  

 curing time 10 minutes 

All data regarding the applied schemes, the materials used, and the operational parameters 

were collected to prepare a dataset. This dataset was used for the training of an Artificial 

Neural Network. The structure of the dataset and the training process of the network was 

described. Two accurate algorithms for predicting the contact angle and the degree of 

resistance of silica-based coatings have been obtained. These algorithms have been 

successfully used for the preparation of an optimized superhydrophobic, abrasion-resistant, 

self-cleaning coating. Currently under patent evaluation, the coating shows a CA > 160° and 

no degradation in the CA after 8+ cycles of tape peeling. It has excellent potential for both 
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biomedical and general applications. The materials and preparation process cannot be 

disclosed at the time of writing. The main objective of this work was to obtain an abrasion-

resistant superhydrophobic coating for biomedical and antibacterial applications. Using 

Artificial Neural Networks, it was possible to achieve this. Despite the excellent properties, 

the coatings cannot be used to develop biomedical devices yet, but show promising results 

for the development of external antibacterial surfaces. At the time of writing, there are no 

commercially available superhydrophobic surfaces used in hospital or biomedical settings 

to the author's knowledge. The developed coatings may pave the way for market entry of an 

antibacterial coating or material suitably modified for preparation in an industrial setting. 

Future perspectives are the industrial scaling of the preparation process and the application 

of the coating to fabricate antimicrobial surfaces. 

Finally, two applications of Artificial Neural Networks carried out in parallel to the main 

project were discussed. In particular, promising results have been obtained from the NN-

AMP software to design new antimicrobial peptides. The tool has been used to predict two 

selective sequences with antimicrobial activity against Staphylococcus aureus, currently 

under patent evaluation. The software selectivity prediction was in accord with the 

preliminary tests. The two peptides show low potency, but the showed selectivity is 

promising and prompts further improvements of the software application. The sequences 

will be used as potential lead compounds to develop new peptide antibiotics.  
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aa Amino acid 

ABS Acrylonitrile Butadiene Styrene 

AHEW Amine hydrogen equivalent weight 

AI Artificial Intelligence 

AI Artificial Intelligence 

AMP Antimicrobial peptide 

ANN Artificial Neural Network 

CA Contact Angle 

CSV Comma separated values 

DCM Dichloromethane 

DGEBA Bisphenol-A diglycidyl ether 

DL Deep Learning 

DMAC Dimethylacetamide 

EEW Epoxy equivalent weight 

GMDH Group Method of Data Handling 

MAE Mean absolute error 

MIC Minimal inhibitory concentration 

ML Machine Learning 

PC/ABS Polycarbonate/Acrylonitrile Butadiene Styrene 

PDMS Polydimethylsiloxane 

phr Parts per hundred of resin 

PLA Polylactic Acid 

PS Polystyrene 

R2 Coefficient of determination 

SH Superhydrophobic 

SNPs Silica Nanoparticles 

THF Tetrahydrofuran 

  

 


