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A B S T R A C T

To identify a person by means of fully automatic systems is still
an open problem and a matter of social concern. Many of the
approaches coping with this problem are based on the combina-
tion of biometrics and computer vision techniques. In particular,
biometrics was born in the wake of the wider field of pattern
recognition, as that discipline analyses the characteristics of spe-
cific individuals with the aim to link their identity to what they
are, rather than to what they know or possess. Although much
progress has been made in this area, there are still many open
problems, which limit its application in daily life at a very large
scale. As with many problems in the field of pattern recognition,
also for biometrics, the availability of annotated and structured
data necessary for designing and validating systems represents
a crucial aspect. This theme becomes even more central when
systems under consideration show a complex architecture and
involve advanced technology such as drones. An in-depth study
of the state of the art in this direction has allowed us to identify
the most interesting datasets that are currently available. The first
goal of this work was to design, acquire, and annotate a large
collection of data from different fixed and mobile devices. Data
were collected by means of mobile devices such as commercial
drones and smartphones, in combination with fixed cameras
usually adopted in controlled environments. This type of archi-
tecture allows for greater versatility in capturing subjects such
as shooting from multiple angles, extreme framing, and using
different devices at the same time. Moreover, the characteristics
and potential use of this new dataset are drawn. Secondly, we
proceeded to design and develop biometric solutions that could
demonstrate new integrated approaches of people face trait acqui-
sition. In more details to demonstrate the applicability of drones
in a real environment, an acquisition system via a monocular
camera installed on-board of a drone has been proposed. This
system shows the peculiarity that the drone moves autonomously
without a pilot around a cooperative subject (autonomous un-
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manned drone). The fusion of data acquired by the camera from
various perspectives allows us to obtain high-quality aggregate
data, useful to be compared with other data obtained from ac-
quisitions made with other devices and protocols. At the end
of the acquisition, a 3D face model is obtained by a completely
automatic data processing pipeline. A further example of the
effectiveness of drones in the biometric field is provided. It is ex-
plained the architecture and the results that can be obtained by a
drone in building a 3D face model showing a quality comparable
to that obtained with a smartphone. Current trends, implications,
solutions, and main shortcomings of biometric data protection
are discusses. Additionally, a sample study conducted on the
combined use of biometrics and cryptography to secure biometric
entities is explained and demonstrated. The potential use of these
results is addressed, and discusses new advanced methods and
applications of biometrics in virtual environments. Finally, the
potential uses of these results are addressed, and new advanced
methods and applications of biometrics in virtual environments
are discussed. Conclusions are dealt with and summarized in
the main contributions of the work and provides an insight on
future trends in the use of drones in the field of biometrics and
in the new era.

A B S T R A C T I N I TA L I A N O

L’identificazione di una persona mediante sistemi completamente
automatici rappresenta ancora un problema aperto ed è questio-
ne di interesse sociale. Molti degli approcci per affrontare questo
problema si basano sulla combinazione di biometria e tecniche di
visione artificiale. In particolare, la Biometria nasce sulla scia del-
l’ampio campo del riconoscimento di pattern, ed è una disciplina
che analizza le caratteristiche di un individuo con l’obiettivo di
legare la sua identità a ciò che è, piuttosto che a ciò che conosce
o possiede. Sebbene siano stati fatti, molti progressi in questo
settore, ci sono ancora molti problemi da risolvere, che limitano
le sue applicazioni nella vita quotidiana su più ampia scala. Co-
me per molti problemi nel campo del riconoscimento di pattern,
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anche per la biometria, la disponibilità di dati annotati e strut-
turati necessari per progettare e validare i sistemi rappresenta
un aspetto cruciale. Questo tema diventa ancora più centrale
quando i sistemi in esame mostrano un’architettura complessa
e coinvolgono tecnologie avanzate come i droni. Uno studio ap-
profondito dello stato dell’arte in questa direzione ha permesso
di individuare i dataset più interessanti attualmente disponibili.
Il primo obiettivo di questo lavoro è stato progettare, acquisire
e annotare un ampio corpo di dati provenienti da diversi dispo-
sitivi fissi e mobili. I dati sono stati raccolti tramite dispositivi
mobili come droni commerciali e smartphone, in combinazione
con telecamere fisse solitamente adottate in ambienti controllati.
Questo tipo di architettura consente una maggiore versatilità
nell’acquisizione di soggetti come riprese da più angolazioni,
inquadrature estreme e utilizzo simultaneo di dispositivi diversi.
Inoltre, vengono tracciate le caratteristiche e il potenziale utilizzo
di questo nuovo set di dati. In secondo luogo, abbiamo procedu-
to alla progettazione e allo sviluppo di soluzioni biometriche in
grado di dimostrare nuovi approcci integrati per l’acquisizione
dei tratti del volto delle persone. Più in dettaglio per dimostrare
l’applicabilità dei droni in un ambiente reale, è stato proposto
un sistema di acquisizione tramite una telecamera monoculare
installata a bordo di un drone. Questo sistema mostra la par-
ticolarità che il drone si muove autonomamente senza pilota
attorno a un soggetto cooperativo. La fusione dei dati acquisiti
dalla telecamera da diverse prospettive permette di ottenere dati
aggregati di alta qualità, utili per essere confrontati con altri dati
ottenuti da acquisizioni effettuate con altri dispositivi e protocolli.
Al termine dell’acquisizione, si ottiene un modello di volto 3D
tramite un processo di elaborazione dati completamente automa-
tico. Viene fornito un ulteriore esempio dell’efficacia dei droni in
campo biometrico. Viene spiegata l’architettura e i risultati che si
possono ottenere da un drone nella costruzione di un modello di
volto 3D che mostri una qualità paragonabile a quella ottenuta
con uno smartphone. Vengono discusse le tendenze attuali, le
implicazioni, le soluzioni e le principali carenze della protezio-
ne dei dati biometrici. Inoltre, viene spiegato e dimostrato un
esempio di studio condotto sull’uso combinato della biometria e
della crittografia per proteggere le entità biometriche. Viene esa-
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minato il potenziale utilizzo di questi risultati e vengono discussi
nuovi metodi avanzati e applicazioni della biometria in ambienti
virtuali. Le conclusioni sono trattate e riassunte nei principali
contributi del lavoro e forniscono uno spaccato sulle tendenze
future nell’uso dei droni nel campo della biometria e nella nuova
era.
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1
I N T R O D U C T I O N

When we come into the world, to recognize our mother is among
the first things we do. Unconsciously, a recognition operation
is performed but, perhaps, it already starts in the belly. Human
being has an innate ability to distinguish faces, sounds, and
flavours. Biometrics is a branch of science that analyzes individ-
ual differences and the techniques that can be used to measure
them.

Day by day, biometrics increasingly fit into various facets of
daily life depending on cultural, economic, and social influ-
ences [108]. This has happened since ancient times when the
first evidence can be found, handprints in the prehistoric period
on the wall of a cave 31,000 years ago, fingerprints on clay tablets
from Babylonia 500 B.C., and so on until today.

Even if its primordial nature is owing to guarantee the identity
of a person, at present, the biometric component is found in
activities linked to free time, security, mobility, and recently in
medicine. It is also found in more specific scopes such as law en-
forcement and public security, military activities, investigations,
driving, marketing, etc. Iris scanning prevents people from ac-
cessing a restricted area if not authorized (security). Fingerprints
found on the weapon certify who used it (investigation). A facial
expression indicates the degree of satisfaction with the sight of a
commercial product (marketing). Innovative applications avail-
able in complex biometric systems as well as in commercial-grade
mobile devices leverage data from all possible sensors. Sensors,
pre-installed on devices or externally connected, continuously
measure what a person, or a group of them is or is doing at
that moment. New opportunities for shooting from different an-
gles and heights are made available using drones and robots
equipped with on board sensors.

The measurements are grouped and classified in a broader
context that sees their analysis also developed in the long term,
both for physical and behavioral aspects. New devices and new
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4 introduction

problems introduce new challenges in this research field that
require new application methodologies. This is what has been
studied and implemented during the three years of Ph.D. and is
presented in this work.

1.1 biometrics

Not everyone knew the meaning of the term Biometrics until ten
years ago. Nowadays, its use is more widespread in everyday
contexts, even in movies that often show its use. It is a very old
term, derived from the Greek words “bìos” and “métron”, life and
measure. It is the term to indicate a measurable physical aspect
or psychological condition of a person, in addition to several
purposes, usually to detect, identify, and recognize subjects. Bio-
metrics, in general, is everything that can be measured of human
beings [65].

Precisely, we can take the so-called hard biometrics, citing
some such as face, iris, and measure their appearance, or soft
biometrics such as emotion, voice, handwriting, keystroke, and
walk and define their status. Some of these are complex traits and
are believed to the uniqueness be a affected by environmental
factors during pregnancy (e.g. iris and fingerprints) [71, 72].

Three types of origin for biometric traits are distinguished
[19]: genotypic traits are those defined by an individual’s genetic
constitution, randotypic traits are those generated early in the
embryo’s development, and behavioral characteristics that a per-
son acquires as a result of learning in the environment while
growing up. These characteristics are spread randomly through-
out the population and randotypic traits are usually considered
the most valuable features for biometric applications due to the
requirement of absolute uniqueness feature sets per subject. Ta-
ble 1.1 show all three factors contribute to a biometric trait. The
uniqueness of biometrics is often inversely related to the ease of
acquisition. Fig.1.1 shows some biometrics from left to right in
ascending order according to uniqueness.

Biometrics traits are used to measure what a person is at a
given instant of time in appearance or emotional state. Recently,
attention has also been given to the short-term dynamics of
the measurements. Depending on how they evolve during an
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 1.1: The most widely studied biometrics:(a) Hand, (b) Face, (c)
Fingerprint, (d) Hear, (e) Iris,(f) Retina, (g) DNA, (h) Emo-
tion, (i) Body Pose, (j) Gait, (k) Keystroke frequency, (l) ECG
signal, (m) Handwriting, (n) Voice signal. In first row are
the physiological and in the second the behavioral.

Table 1.1: Relative importance of each factor ( ■ is low, ■■■ is high).
Origin factors

Biometric trait Genotypic Randotypic Behavioral

Fingerprint (only minutia) ■ ■■ ■

Signature (dynamic) ■■ ■ ■■■

Facial geometry ■■■ ■ ■

Iris pattern ■ ■■■ ■

Retina (Vein structure) ■ ■■■ ■

Hand geometry ■■■ ■ ■

Finger geometry ■■■ ■ ■

Hand (Vein structure) ■ ■■■ ■

Ear form ■■■ ■ ■

Voice (Tone) ■■■ ■ ■■

DNA ■■■ ■ ■

Odor ■■■ ■ ■

Keyboard Strokes ■ ■ ■■■

Gaze (movements) ■■ ■ ■■■

individual’s growth or aging, some biometrics are persistent,
and others are not. They can also be defined as deep and non-
deep based on their informative details and classified uniqueness
with respect to the entire population, such as the DNA is deep,



6 introduction

due to the pathology indiscretions it can be contains. However,
all of them fall under the protection law of privacy and their
measurement requires the owner’s consent or else privacy is
violated. A broader discussion of biometrics can be found in the
book "Moderne tecniche di elaborazione diimmagini e biometria" [95].
With that being said, we can give an overview of biometrics.

1.1.1 Biometric and biometric traits

Deoxyribonucleic Acid (DNA) may be considered the representative
par excellence of biometrics. It is a very intimate photograph of an
individual. It retains accurate information on how an individual
is physically like, and some research investigates something
about behavior [52, 61]. It is present in blood traces, hair, skin
pieces, saliva, in short in all what is a biological piece of an
individual. It is also unique among homozygous twins. It is
immutable during growth, and it does not wear out over life
unless smoking and alcohol abuse. On the other hand, it is
difficult to pick up and process quickly, the amount of analysis
on a sample is limited, and laboratory equipment is needed.
Therefore, it limits its use to cases where a high level of accuracy
is required, such as in forensics field.

Citing biometrics Iris, has a good level of uniqueness, they are
different even in the eyes of the same individual [34]. Iris traits
are less hard to obtain and to handle then the DNA, with good
results even via commercial devices like smartphones. However,
acquiring an iris is not easy, the muscles around the iris change
shape continuously, it is full of reflections, and from afar sophis-
ticated high-resolution cameras are needed. Capturing a photo
of an iris from an uncooperative subject could be invasive and
unsafe. It is not widely used because its use is limited by privacy
laws which require higher levels of data protection.

The Retina trait has a high level of uniqueness in each indi-
vidual and each eye. Its measurement is the image of the vein
pattern beneath its surface in eye. The retinal vasculature is stable,
unique, and not easy to change or replicate, thus being claimed
to be the most secure biometric. A factor deterring public ac-
ceptance is that the image acquisition entails contact with the
eyepiece. It can reveal some health conditions (e.g., hypertension
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or diabetes), which is deterring the public acceptance. It is diffi-
cult to measure if the subject is non-cooperative, and the users
perceive the technology as high intrusive.

The Face is the more familiar biometrics. It is a good compro-
mise for easy capture and computation, and subjects undergoing
measurements often are agreed. It can be captured using pro-
fessional cameras or mobile devices. The level of uniqueness is
not extremely great; there are people that share facial features,
such as relatives or homozygous twins, and it can be difficult
to tell their apart. In many circumstances, however, it is still a
valuable biometric feature. As for the challenges given by the
”recognition at your fingertips" in market for financial transactions,
see smartphone applications, they pulled the best methodologies
applied for the face to an accuracy close to perfection, in ideal
condition [56].

The Ear trait is in many ways comparable with face trait [124],
and often used in the absence of valid fingerprint for identifica-
tion [76]. It has a uniform colour distribution, low changes over
the lifetime, and low variability with expression as advantages.
The pinna has a structure of cartilaginous tissue distinguishable
and the ear shape is distinctive. The measurement includes tak-
ing a photo, taking a thermogram picture, and taking earmarks
where are found sufficient distinction to be used for biometric
purposes. For acceptable measurements, the requirement of users’
cooperation is implied due it could be completely or partially
covered by hair or ear muffles, as discussed by [5].

The most common biometric for identification purposes is Fin-
gerprint. The same person has a different one for each finger, and
it is so for the same finger of identical twins [68]. A fingerprint is
a pattern on the surface of a fingertip consisting of alternating
skin ridges and grooves. Achieved accuracy, proved to be very
high [86], is adequate for authentication of a few hundred users.
Using all fingers of the hand, additional information is provided,
and a large-scale identification is possible, millions of identities
can be involved. Undergoes change over time due to wear, fre-
quently there are significant cuts and abrasions that keep adding
due to manual work or accidents. Genetic factors, aging, and the
environment can also be problems.
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Hand Geometry biometrics is most commonly used in military
field. It is based on measurements of traits of the human hand,
such as the shape, size of the palm, lengths, and widths of the fin-
gers. It has been scientifically studied for some time. Studies on
the geometry of the hand have given good results on classification
and verification. Results indicate that it can be considered useful
for identification purposes in medium / high security environ-
ments [112]. It cannot help in systems that require identification
of an individual on a large scale as in a population.

Analysis of the Facial expressions, body poses, and gait provide
information about a person’s physiology structure, even if more
interesting about the emotionally state and intentions. Knowing
the emotion of an individual is useful in many contexts such as
marketing, security, medicine, human-computer interaction, and
automotive [14]. Initially, seven are the basic emotions on which
studies have focused: anger, contempt, disgust, fear, sadness, happy,
surprise [43], and later neutral was added. Body pose estimation
methodologies have achieved excellent levels of precision, even
without using specific sensors, simply using a photo (e.g. Open-
Pose) [26]. Gait analysis studies the systematic human motion
style and pace during walking to help athletes in sports, to iden-
tify posture disease in medicine, to locate people on the run and
to recognize person for forensic use [17].

Different dynamic styles of keystroke to send dash and dot
signals of Morse code, identify different telegraph operators.
This feature allowed to authenticate messages received during
the second World War [21]. It is even more accurate if a keyboard
with letters and numbers is used [88]. The definitions of a precise
personality attributable to a specific identity are in handwriting
and signature behavioral biometrics. Handwriting and signature
are behavioral biometrics and are influenced by the physical and
emotional conditions of writers and signatories. They are used
in the courts for calligraphic studies and investigations even for
texts written in Chinese [132]. Further, professional counterfeiters
may be able to reproduce them to deceive the system.

The Voice is behavioral biometrics due to physiological factors.
It is based on physical structure of the nasal cavities, vocal tracts,
mouth, and lips. necessary for the synthesis of sounds. Recogniz-
ing a voice mean recognizing a speaker [23]. The Voice timbre
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changes over time in the growth phase, due to emotional state,
medical condition, etc. Is not appropriate for a large-scale identi-
fication of a speaker in text-independent systems, less difficult
for a text-dependent system.

The Gaze is never really fixed. It is characterized by micro
movements of the eye, called saccadic movements, which are
imperceptible to the human eye. The dynamics of these action
have origin factor both physical and behavioural. In many cases,
they draw out the psychology trait or the pathological state of
a person. Often, they are often distinctive to the individual or
relative to what one is looking at. The study on gaze analysis
carried out in [24] showed that a person’s way of observing a
known face is different in the case of an unknown face. Recent
studies have shown that it can be a distinctive trait for contactless
authentication methods, [100].

Table 1.2 lists the basic features and characteristics of the
biometrics traits discussed [33].

Figure 1.2: The details of eye’s anatomy.

Clearly, each biometric trait can be considered as a different
component to give rise to new types of measurements. In hand
biometric, vein lines can be observed, for example. It is possible
to consider one biometric as part of another or as a subgroup,
generally. To explain, reflect on the face and its components, eyes,
nose, mouth, skin, and so on for the eyes, sclera, iris, and retina
Fig. 1.2. The vastness of the elements in the set of biometrics as
a whole, sensors useful for the acquisition, scientific methodolo-
gies for their treatment, and fields of application can be easily
understood. There is an entire category of biometrics that arises
from signals transmitted by the human body. Recently, some of
these have also been made acquirable by wearable devices. These
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Table 1.2: Summary of the biometrics mentioned and their basic fea-
tures and characteristics.

Features and Characteristics

Biometrics Principal details Trait Applications

DNA High accuracy, Low in-
vasive, unfalsifiable, im-
mutable (in limits)

Physical Law Enforcement Forensics,
Medicine

Retina Low errors, unfalsifiable,
more invasive, immutable
(in limits)

Physical Law Enforcement Forensics,
Medicine

Iris High accuracy and predic-
tiveness, immutable, high
randomness

Physical Identification as Aadhaar
card in India, national border,
restricted access areas, air-
ports and seaports, Medicine,
Banking systems

Face Contactless, easy stor-
age,convenient,process
fast,light and illumination
conditioned, mutable over
the time

Physical Access Control Verification,
Human Computer Interac-
tion, Criminal Identification,
Surveillance, Gaming

Fingerprint Secure, reliable, high
accuracy,process fast, low
memory consumption,
mutable by, by contact
wear

Physical Driver Authentication, Law
Enforcement Forensics, Li-
cense and Visa Authentica-
tion, Access control, Passport

Hand Ge-
ometry

by contact, perishable,
small template, fast pro-
cessing

Physical Military access control, Com-
mercial authentication

Facial ex-
pression

emotion conditions, non-
invasive, contactless, fast
processing

Both Marketing, Medicine, Hu-
man Computer Interaction,
Forensics

Body Pose non-invasive, computa-
tional expensive, low
accuracy

Behavioral Law Enforcement Forensics
Medicine

Gait non-invasive, computa-
tional expensive, low
accuracy

Both Medical diagnose, Osteo-
pathic and Chiropractic,
Comparative biomechanics

Keystroke non-invasive, emotional
condition, small template,
no interface, by contact

Behavioral Law Enforcement Forensics
Medicine

Handwriting high accuracy, by contact Behavioral Law Enforcement Forensics
Medicine

Signature high accuracy, by contact Behavioral Banking system, Online au-
thentication

Voice Contactless, non-
invasive,easy capture,
no interface,

Both Web based transactions,
Voice Response based health
and banking systems.

Gaze move-
ment

Medium accuracy, Low in-
vasive, unfalsifiable, muta-
ble due to age

Both Medicine, Recognition, Psy-
chology
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signals have long been studied from a clinical point of view but
have been found to be useful for identification purposes alone or
in combination with other biometric data. Electrocardiography
(EKG), electroencephalogram (EEG), heart rate, dental prints are
just few examples. Others come from the use of medical devices
such as X-rays, tomography, and ultrasound scans. Others are
strange things like skin dermis, forehead wrinkles, and hand hair.
Therefore, the decision to use one instead of another should be
made according to the intended and expected result. A market-
ing study projected to 2027 makes predictions on the most used
biometric traits, as shown in Fig. 1.3.

Figure 1.3: Use of biometric traits marketing study by emergenre-
search.com.

1.1.2 Biometrics classes

The first possible subdivision of the biometric set is the physio-
logical and behavioral one:

• Physiological Biometrics are those retaining biological char-
acteristics of an individual. Among these are found DNA,
retina, iris, hear, fingerprint, facial patterns, finger, and
hand and palm geometry, voice, finger and palm vein, odor,
ECG. and others. Look at the first row of Fig. 1.1 to see
some. Some are stiff, others are elastic because the muscles
of the body can change shape or trim, see the lips [36].
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• Behavioral traits describe the behavior and psychological
state of an individual, e.g., emotion, keystroke, signature,
gait, body pose, handwriting, speech, and still others. Many
of these are physiologically elastic, and are analyzed from
the point of view of dynamics, you see the dynamics of the
lips in speaking. An example of behavioral biometrics is
the pattern by which a person looks at a face, as studied
in [24]. Fixation points over time allow one to discriminate
a subject from another. Some of behavioral biometrics are
shown in Fig. 1.1 at second row.

Physical and behavioral biometrics can be combined to build
multiple biometric systems able to prevent access to restricted
areas or to protect private data in a more secure way. Ideal
biometric trait characteristics are: the Universality, that is the trait
should occur in every person or in many people as possible (Do
all people have it?); the Distinctiveness/Uniqueness, that measures
the degree of the trait uniqueness and ensure the dissimilarity
between individuals (Can people be distinguished based on
it?); the Permanence, meaning the feature should be reasonably
immutable over lifetime, in order to remain meaningful (How
permanent is it); the Collectability/Measurability intended as the
easiness degree in acquisition or measurement of the trait (How
well can it be captured and quantified?); the Performance, as
the trait must provide adequate precision, speed and robustness
with the right technology (Is the matching fast and accurate?); the
Acceptability/Intrusiveness, ensuring that the relevant population
and law well accept capture and storage of that trait (Do people
accept it?); finally, the Circumvention/Resistance, that measures
how it hard to imitate the trait with an artifact or substitute (Is
it fool proof?). Usually, no argument is found but we consider
it useful for this discussion to add factors: Elasticity: the trait
changes shape through the muscles and at the and we have
a new trait, such as iris and face expression (Is it mutable?);
Dynamicity: the trait is a dynamic mutation in limited time frame,
such as lip motion and saccadic eye movements. The trait is the
way the transformation took place (Does it have a dynamic?).

Table 1.3 summarizes the qualitative analysis of various bio-
metric traits considering the seven basic factors on our experience
and perception. The attributes considered are acceptability, per-
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Table 1.3: Summary of the biometrics mentioned and their basic fea-
tures and characteristics. Absence, Low, Medium, and H are
denoted by A, L, M, and H, respectively.

Biometric traits U
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DNA H H H L H L L A A

Retina H H M L H L L A A

Iris H H H M L M M M A

Face H L M H L H H H M

Ear M M H M M H M A A

Fingerprint M H H M H M M A A

Hand Geometry M M M H M M L M H

Facial expression H H L H M H L H L

Body Pose M L L H L H H H H

Gait M L L H L H M H H

Keystroke L L L M L M M H H

Handwriting L L L H L H H H H

Signature L L L H L H H H H

Voice M L L M L H H H H
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formance, universal, distinct, permanence and collectability. H,
M, and L denote High, Medium, and Low values, respectively,
while A denotes absence. The deep analysis performed by Jain
(Jain et al., 2000) and Proença (Proença, 2007) is in line with
that presented here. Table 1.3 also shows the most challenging
biometrics in terms of attacks, security, complexity, distinction,
and so on.

1.1.3 Biometric traits processing techniques

Whatever the type of biometric trait used, it must be captured,
acquired, processed, and converted into a mathematical model to
be then registered and protected in turn. And it is precisely the
template, together with the real fingerprint, that is all context the
main player in the recognition process of an individual. The gen-
erated template becomes the data on which operating through
two possible procedures: verification and identification. In the veri-
fication, the person declares their identity by typing a personal
reference code or by presenting a card in which the template was
previously registered while the system compares the bleed print
with the corresponding model stored in the database or in the
card in a previous enrollment procedure. However, for the iden-
tification, the comparison takes place between the live template
and all templates in the system database. More details of these
procedures are in Section 1.2. The treatment of a biometric trait
can be schematized in two main operations: detection and features
extraction, regardless of the purpose, as shown in Fig. 1.4.

Figure 1.4: Trait processing schema.

Detection is the operation in which the information relating
to a biometric trait is selected with respect to all information re-
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turned by a sensor. In a photo, Region of interest (ROI) containing
the face, for example, is selected. The most common method-
ologies used for detection are: Support Vector Machine (SVM)
[97], Cascade [125], Scale-invariant Features (SIFT) [84], Random
Decision Forest [59], and Convolutional Neural Network (CNN)
[80]. More insights can be found in [81].

The extraction of the characteristics is operation that extracts
salient and comparable information, for the purpose of recogni-
tion or verification, among those belonging to the biometric trait
identified in the detection. For the treatment of signals and, in
particular, the images, we find: Local Binary Pattern (LBP) [115],
Gabor wavelets [12], Principal Component’s analysis (PCA)[6,
69], Local Directional Number pattern (LDN)[103], Histograms of
Oriented Gradients (HOG) [32], or in the world of Deep Neural
Networks the CNN [39]. Some methods use the resulting new tex-
ture and leave the total interpretation of the data to the classifier.
Others stack the features of salient areas or points in a vector
to classify them. In both operations there is always a prepro-
cessing pre-phase aimed at improving information and results
(denoising, sharpness, and others).

1.2 biometric systems

Biometric systems are hardware and software architectures that
use biometrics to verify and identify people in order to guar-
antee identity. Basically, it compares a pattern presented with
one declared Verification or associates it with one present in a
larger set Identification. More clearly verification is a one-to-one
matching of a given biometrics to a known identity, for answer-
ing the question: "is this the claimed person?". The verification
aims to prevent multiple people from presenting the same iden-
tity. Examples are bank applications, computer logon, private
data security, ATMs, physical access control, cellular phones, etc.
Otherwise, identification is a one-to-many matching of a given
biometrics against a database of known identities, for answering
the question: "who is this person?". The identification purpose is
to prevent a single person from using multiple identities. Typical
examples are criminal investigations, missing people, driver’s
license, etc.
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Figure 1.5: Operating modes basic diagram of a biometric system.

There is another modality, in which the biometric system can
operate the screening: "is this a wanted person?". The screening
software determines whether a person is on a person watch list.
Airport security, access to public events, and other surveillance
solutions are examples of screening applications. A moderate
number of identities are on the screening watchlist (e.g., a few
hundred). In Fig. 1.5 the basic modalities schema of a system is
shown graphically, with respect to biometric fingerprints.

The identities are represented through a template that pre-
serves the distinctive characteristics of the biometrics used. The
template is obtained in a preacquisition phase called enrollment
and is encoded in a digital sequence named biometric key. Enroll-
ment is the phase where the acquisition and processing of the
user’s biometric data is carried out. These data will be used by the
system in subsequent authentication/identification operations.

The verification criterion may be expressed as in Equation 1.1.
Given an input vector XQ of biometrics features and I a claimed
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identity, assess if the claim identity is True (I, XQ) is in the
class w1 (a genuine user), else is in w2 (an impostor). XI is the
vector corresponding to user I and is compared with (I, XQ) to
determine its category.

(I, XQ) ∈
{

. w1, i f S(XQ, XI) ≥ t

w2, otherwise
(1.1)

The similarity or matching score S(XQ, XI) is termed between
feature vectors XQ and XI and measured by the function S, and
t is the set threshold. The threshold t is necessary because the
biometric measurements of the same individual are almost never
identical, taken at different times.

XQ ∈

 Ik, i f max
k

S(XQ, XIk) ≥ t, k = 1, 2, ..., N

In+1, otherwise
(1.2)

Otherwise, the identification problem is formalized by Equa-
tion1.2. Given the biometric template XQ, determine the identity
Ik,k ∈ {= 1, 2, 3..., N, N + 1}. Here, I1, I2, ..., IN are the identi-
ties enrolled in the system and IN+1 indicates the reject case. The
vector XIk corresponding to identity Ik, and t is a predefined
threshold.

A biometric system is susceptible to many types of attack
that can undermine system security, resulting in system failure.
All attacks depicted can be divided into two categories. i) Zero-
effort attacks: An opportunistic intruder’s biometric features may
be sufficiently similar to those of a properly enrolled individ-
ual, resulting in a False Match and a system security breach.
This occurrence is linked to the likelihood of discovering a de-
gree of similarity between templates originating from various
sources through coincidence. i) Adversary attacks: This refers to
the prospect that a determined impostor could impersonate a
registered user by employing a lawfully enrolled user’s physical
or digital artifacts. An individual can also intentionally modify
a biometric feature to avoid being detected by an automated
biometric system [66] [65].

In the below Section 1.2.1 are discussed the metrics to evaluate
the biometric system performances (FAR/FRR/EER/ROC).
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1.2.1 Performance of a biometric system

(a) (b)

Figure 1.6: Performances curves of biometric systems.

The metrics for evaluating the performance of a biometric
system are due to two factors:

1. True Recognition happens when a person is recognized cor-
rectly or is actually an impostor.

2. False Recognition represents the case in which the system
fails, so recognize a false identity or not recognizing a true
identity.

It followed the evaluation of two errors in false recognition:

• False Rejection Rate (FRR) is the number of false rejects in
percentage. Authorized users are rejected incorrectly.

• False Acceptance Rate (FAR) is the number of false accep-
tances. Users unauthorized are accepted erroneously.

FAR and FRR are two strictly inversely correlated quantities.
The sensitivity of the system is established by regulating the
relationship FRR/FAR.

Denoting by FRR(t) a decreasing monotonic function and by
FAR(t) an increasing monotonic function, where t is the degree
of tolerance and quality of the system, Fig. 1.6a. If t is low,
we have a high number of false rejects, if t is high, we have
a low number of false acceptances. At the intersection of the
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two curves, we find the Equal Error Rate (ERR), point of balance,
where FRR(t∗)/FAR(t∗) = 1 with t∗ is the tolerance at that point.
Therefore, if t > t∗ the ERR decreasing for t < t∗ ERR increasing.
Through t the response of the system can be regulated, as shown
in Fig. 1.6b. For some types of application, it can be convenient to
have false acceptances or other false refusals, such as a turnstile
in the first case to speed up the entrance or for a bank in the
second case to be sure of the person entering.

(a)

Figure 1.7: ROC curve for different biometric techniques [60]

Receiver Operating Characteristic (ROC), showed in Fig. 1.7, is
the curve that expresses the trade off between the FAR and FRR
relating in various thresholds. The ROC curve is a widely used
metric in expressing 1:1 matcher performance.

Figure 1.8: Cumulative matching characteristics (CMC) curve for sub-
ject retrieval.
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The Cumulative Match Curve (CMC) is a metric that represents
the performance of biometric identification systems that provide
ranked lists of candidates in 1:m search engines, see Fig. 1.8.. It
assesses an identifying system’s ranking skills. To evaluate the
CMC, the match scores between the request template and their
biometric samples in the database are sorted. Lower is the rank
of the genuine matching biometric in the enrollment database,
better is the 1:m identification system.

Moreover, in [105] the author demonstrated a contradiction to
previous concepts, that there is a relationship between the ROC
and the CMC. They show that the CMC is also related to the
FAR and FRR of a 1:1 matcher, i.e., the matcher that is used to
rank the candidates. Therefore, the CMC provides no additional
information other than the FAR and FRR curves. CMC is another
way to display data and can be calculated from FAR and FRR.

1.2.2 Open-set and closed-set identification

Biometric recognition can be tested in closed-set or open-set sce-
narios, depending on the testing technique. All testing identities
are predefined in the training set for the closed-set protocol. It is
only reasonable to assign identities to test biometric templates.
The verification is the same as conducting identification for a pair
of the biometric trait in this circumstance. As a result, closed-set
FR can be effectively addressed as a classification problem with
separable features. The testing identities are frequently discon-
nected from the training set in open-set protocols, making FR
more demanding while remaining near to practice. We must map
the biometric trait to a discriminative feature space because it
is impossible to classify biometric traits to known identities in
the training set. The verification between the probing biometric
trait and every identity in the gallery might be seen as biometric
trait identification in this case. The key to learning discrimina-
tive large-margin features in open-set FR is to think of it as a
metric learning problem. Under a given metric space, desired
features for open-set FR should satisfy the requirement that the
greatest intra-class distance is smaller than the minimal inter-
class distance. If we want to obtain perfect accuracy using the
nearest neighbor, this condition is required. Due to the intrin-



1.2 biometric systems 21

sically great intra-class variance and high interclass similarity
that faces exhibit, learning features with this criterion is often
difficult ([83]).

1.2.3 Limits of Unimodal Biometric Systems

A biometric system that operates using a single biometric feature
is called a unimodal system and has the following limitations:

i) Noise in sensed data. The recorded data may be noisy or dis-
torted. Examples of noisy data include scarred fingerprints and
cold-changed voices. Noisy data can also be the result of sensor
defects or improper maintenance (such as the accumulation of
dirt on the fingerprint sensor) or poor environmental conditions
(such as poor lighting of the user’s face in a facial recognition
system). Noisy biometric data may be mistakenly matched to
templates in the database (see Noisy biometric data can be mis-
takenly compared to the database template, resulting in the user
being mistakenly rejected.

ii) Intra-class variations. The biometric data collected from an
individual during authentication can be significantly different
from the data used to create the template during registration and
will affect the matching process. This variation usually occurs
when the user changes the sensor or changes settings improperly
during the validation phase. As another example, different psy-
chological conditions of individuals at different times can lead to
very different behavioral traits.

ii) Inter-class similarity. Biometric traits are believed to vary
widely from person to person, but there can be significant sim-
ilarities between the classes of features used to represent those
traits. This limitation limits the identity provided by the biomet-
rics feature, due to low distinctiveness. Therefore, all biometric
functions have a theoretical upper limit on their ability to distin-
guish themselves.

iV) Non universality. While each user is expected to own the
biometric trait being acquired, in reality, they may not have it.
Fingerprints can be deteriorated or absent after the enrollment
phase occurred a long time before. It is possible of a subset of
users to not own a particular biometric.
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v) Spoof attacks. Fraudsters may attempt to forge the biometric
properties of legitimate registered users to bypass the system. A
relevant example is when we make use of behavioral traits such
as voice and signature. However, physical properties are also
susceptible to spoofing. For example, it is possible to generate an
artificial finger or fingerprint.

1.2.4 Multi-modal and Multi-biometric Systems.

In a complex biometric system, different biometric traits, behav-
ioral or physiological, can be used in a combined way to improve
the system performance, but at the expense of computational
weight. This category of systems is called Multimodal Systems.
Using multiple biometric modalities, some of the limitations
imposed by unimodal biometric systems can be overcome. For
example, using multiple fingers of the same person or face and a
single fingerprint. Such a system, known as a multimodal biomet-
ric system, is expected to be more reliable due to the presence of
multiple independent evidence. These systems can also meet the
high-performance requirements of various applications. The mul-
timodal biometric system addresses the issue of non-universality
as several features ensure proper population coverage. In addi-
tion, the multimodal biometric system provides anti-spoofing
measures by making it difficult for an intruder to forge multiple
biometric properties of a legitimate user at the same time (see
the five fingerprints). The system ensures that the "living" user
actually exists at the time of data acquisition by asking the user to
present a random subset of biometric entities (such as the index
on the right hand and face). A multimodal biometric system can
operate in one of three different modes: serial mode, parallel mode,
or hierarchical mode.

Serial mode operations typically use the biometric output to
narrow down the number of possible identities before using the
next feature. It acts as an index scheme for the identification
system. For example, a multimodal biometric system that uses
the face and fingerprint can first use face information to get
some matches and then use fingerprint information to converge
to a single identity, a hierarchic sequence. This contrasts with
the parallel operation mode, which uses information from mul-
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tiple features at the same time to perform the discovery. This
difference is essential, in the parallel mode of operation, it is not
necessary to process different biometric functions at the same
time. You can also make decisions without getting all the features.
This reduces the overall recognition time. Hierarchical schemes
combine individual classifiers into a tree-like structure [66] [65].

The fusion of biometrics data can be done at different levels
in the process of verification/identification: Feature level, Match
score level, Rank level, Decision level in-depth is dedicated in the
next Sub-Section 1.2.5.

1.2.5 Data fusion in biometrics

Usage of multiple biometrics does not always imply high system
performance of using one. A poorly designed multiple biometrics
system can reduce performance compared to a single biometrics
system, increase operating costs, and cause inconvenience in
management. To use more biometric traits, typically no more
than two or three, in the same biometric system, architecture
and methodologies of the single trait are integrated, Fig. 1.9. The
resulting system can be operating in three modes: serial, parallel
or hierarchical. The resulting information will be filtered, merged,
or both, respectively, by mode, to produce a unique result.

In a multi-biometric system, it is necessary to decide at what
level of the process the fusion of data results is to be carried
out [110]. The levels of fusion can be distinguished in: Sensor
level, Feature level, Match score level, Rank level, Decision level.

Sensor level: raw data collected by multiple sensors can be pro-
cessed and integrated to generate new data from which features
can be extracted. For example, in the case of face biometrics,
multiple 2D textures obtained from different sensor are fused to
generate 3D depth for feature extraction and matching.

Feature level: feature sets extracted from multiple data sources
can be merged to create a new feature set that represents an indi-
vidual. For example, you can augment the hand geometry with
facial eigen-coefficients to build a new high-dimensional feature
vector. You can use feature selection / transformation procedures
to get a minimal set of features from a high-dimensional feature
vector.



24 introduction

Figure 1.9: Multi-modal biometric system [101].

Match score level: In this case, multiple classifiers output a set of
matching scores, and they are merged to produce a single scalar
score. For example, you can combine the match scores generated
by the user’s face and hand modality through a simple sum rule
to get a new match score and use it to make the final decision.

Rank level: this type of fusion is related to an identification
system where each classifier assigns a rank to each registered ID
(the higher the rank, the better the match). Therefore, a merger
involves integrating multiple ranks associated with an identity
and determining a new rank that will help make the final deci-
sion. You can make the final decision using techniques such as
Borda count [45].

Decision level: if each matcher issues its own class label (i.e.,
approve or reject in the validation system, or the user’s ID in the
identification system), simply use a technique such as majority
voting. You can get one class label. Decision making, action,
knowledge space, etc

At which stage of the biometric system to use information
fusion, depends on many factors and some considerations need
to be made. Merging the information coming from different
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sensors, Sensor level, is not always simple, as they represent
different phenomena, they are organized differently and merged
can not always help, on the other hand, when possible, the
amount of information obtained is consistent. The compromise
of fusion at the Feature level is that if on the one hand we obtain
a lot of information, on the other hand it is difficult to carry
out, practically impossible if very different characteristics are
used. At Match score level, we have scalar values that are simple
to manage but sufficiently rich in information, while on the
other hand we need to normalize the distributions of scores
from different systems. The merging of multiple ranks for the
same identity is simple Rank level, but if one of the systems is
not performing, it can greatly compromise the final result. At
Decision level, the fusion is simple to implement (answers 0/1),
but little information is available.
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2
A N E W M U LT I - B I O M E T R I C S D ATA S E T,
M U B I D U S - I

The widest possible and realistic database is the basic element for
designing and perfecting biometric measurement and compari-
son methods. The creation of new sensors and sensing devices
enables to open new research fields and consequently rises needs
for new datasets specifically designed for the applications they
give birth to. Collecting and annotating new datasets is an impor-
tant contribution in this regard. In this case, the first goal of this
work is to collect multi-biometric/multimodal data aimed to re-
duce the gap between indoor and outdoor acquisition, biometric
matching of features acquired by different devices like cameras,
smartphones, and a drone. With the availability of these new
data, a beneficial contribution to the state of the art is given by
making new experiments feasible under more realistic conditions
in terms of subject posture, light exposure, and camera framing.
In this chapter, we explain in detail how the new dataset was
structured and what equipment was used to obtain it, MUlti-
BIometric and multipurpose Dataset developed at University of
Salerno (MUBIDUS-I) [35].

2.1 datasets available in the literature

In the literature, there are many datasets with the most disparate
characteristics and purposes, collected over the years. It is impos-
sible to list them and discuss them all. Below are some collections
with similarities or something in common with the one presented
in this study.

Many datasets are on individual biometrics, some of which
have analogies with the proposed one. One of these datasets is
MUCT [89]. It contains 3755 images of human faces, of which 76

landmarks have been located. The dataset provides information
such as lighting, age, and ethnicity. The protocol used by MUCT
is as follows: Each subject was photographed with five front-

29
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facing webcams using ten different lighting systems. 2/3 of the
resulting photographs were used for each subject.

Since our dataset contains iris details for many of the subjects,
we decided to analyze some public eye imaging dataset (iris).
VISOB is a public data set of eye images taken by 550 volunteers,
[106]. Three different mobile devices were used as capture tools:
iPhone 5, Samsung Note 4, and Oppo N1. The subjects made
their own images autonomously. In VISOB, multiple images
were recorded under four lighting conditions for each recording
session: normal light, office light, low light, and daylight.

MICHE-I is another data collection consisting of 3732 eye
images, [37]. Subjects were asked to take self-photographs of
their own irises. Four photos were taken for each device and
each recording mode (indoor and outdoor). Indoor shooting
mode uses artificial light sources, sometimes combined with other
daylight, while natural sunlight is used for shooting outdoors.
Three different device types were used in MICHE-I: iPhone 5,
Samsung Galaxy IV, and Galaxy Tablet IV.

COMPACT Is a database for facial recognition studies of
subjects less collaborative [127]. The dataset consists of high-
resolution images of 108 subjects taken while passing through
a fully automatic detection lock. This ensures that the data col-
lected is consistent with traditional real-life problems in terms
of different distances, representations, occlusions, pose changes,
and motion blur. To capture multiple positions on the subject’s
face, the author used a rotating platform.

The data set proposed in [107], that is EGA, aims to overcome
some of the main limitations of the previous data set of faces.
In this dataset, facial images are organized according to certain
categories, such as ethnicity, gender, and age. In particular, the
faces were grouped into homogeneous and balanced categories.
Another purpose of the dataset is to support studies on the
benefits that soft biometric information, such as gender, can
provide to a facial recognition system.

A data record for ear recognition is UBEAR. Photographs are
taken with moving objects, in dynamic lighting conditions, and
without special attention from subjects concerning the ear closure
and pose [104]. A sample of 126 subjects was obtained, 44.62%
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are men and 55.38% are women: a total of 252 ears by a single
camera with a resolution of 1280 × 960.

Multi-modal/Multi-biometrics datasets are a form of biometric
dataset that has gotten a lot of interest throughout the research
phase. This type of dataset contains different biometrics of the
same individual gathered at various periods. These datasets
have the potential to increase the precision and accuracy and
reduce time complexity in biometric systems using data fusion
techniques at the score level to be applied and deployed. For
example, QUIS-CAMPI is a dataset that comprises both full body
video sequences and high-resolution head samples of people in
a parking lot with a biometric recognition system that operates
outside in completely unconstrained and covert conditions [96].

One of the first multimodal databases was BIOMET [50]. It was
created by the Multimodal Biometric Identity Verification project
and compiled with five modalities and temporal variability. The
database was created at three different sessions three and five
months apart and contains samples of faces, voices, fingerprints,
hand shapes, and handwritten signatures.

Collecting a database that had characteristics in terms of num-
ber of subjects, number of biometric traits, and number of tem-
porarily separate acquisitions was the goal of BiosecureID [47].
The database was collected at six different locations in an uncon-
trolled environment that simulated a realistic scenario in which
8 different biometrics traits of 400 subjects such as speech, fin-
gerprints, iris, hand, face, writing, signature, keystroking, were
recorded in 4 sessions.

A multi-modal database containing biometrics of subjects from
various countries is MobBIO [114]. It contains biometric data
from 105 volunteers. Each person provided samples of their face,
iris, and voice. The nationalities of the volunteers were mainly
Portuguese, but volunteers from Great Britain, Romania, and
Iran also attended.

A database that belongs to this category, but with the particular-
ity of the type of uniqueness of the subjects under consideration,
is the Multi-modal Biometric Recognition for Toddlers and Pre-
School Children [13]. Here of over 100 children (age range of
18 months to 4 years), face, fingerprint, and iris modalities were
collected during six months in two separate sessions. A Cross-
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Match scanner1 for the iris, a Slap Crossmatch LScan scanners2

for the fingerprint and a Nikon D90 DSLR camera3 for the face
were used.

Regarding the use of drones in a biometrics context, there are a
variety of datasets available, some with specific purposes, others
with a more general one. Through the use of a drone, the goal is
to collect data from the above, at various angles, without causing
any discomfort to the person being observed.

An example is the MiniDrone dataset, which provides flights
worth of data recorded in outdoor environment during a parking
area monitoring [16]. The objective is to keep an eye on the area,
assisting in managing of parking spaces, crowd control and re-
porting relevant information such as mis-parked cars, dangerous
manoeuvres, number of free parking spots, suspicious behaviors,
etc. The information is categorized into three categories: normal,
suspicious, and illicit behaviors.

For re-identifying people purposes, the MRP Drone dataset
was collected [78]. Its aim is to maintain the consistent iden-
tity of human detection recordings during flight. The data is
acquired from multiple flights in both an indoor and an outdoor
environment that is both unrestricted and densely populated.

In order to simulate in the wild scenarios for face recognition,
the DroneSURF dataset contains 200 videos of 58 participants
caught by the camera aboard a drone [74]. Each video contains a
group of individuals with differences across use case, geography,
and acquisition time.

In the year 2018 Kalka et al. [73] collected the IJB-S dataset
which features a component for face recognition of 10 UAV based
videos. The dataset includes a wide range of campus scenarios
for simulating real-world use cases.

The DroneFace dataset contains a series of facial images of
11 subjects, 7 males and 4 females, collected in an uncontrolled
outdoor environment with varying fixed distances and heights
[62]. The UAV used is equipped with a fixed sports camera,
which is pointed parallel to the aircraft’s motion. A fixed sports

1 http://www.crossmatch.com/i-scan-2/
2 http://www.crossmatch.com/Guardian-USB/
3 https://www.nikon.it/it_IT/product/discontinued/digital-

cameras/2015/d90
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camera is mounted on the UAV, which is pointed parallel to the
aircraft’s motion.

Acquiring either top-view or oblique data are also the charac-
teristics of a recent dataset P-DESTRE, collected in 2020, purely
for Pedestrian Detection, the Tracking and Re-Identification [75].
It helps research efforts in these subareas to search new methods
able to work in real-world conditions with crowded scenes based
on very low resolution and partially obscured data.

The dataset presented in Section 2.3, was created with the
intention of contributing to the state of the art in this field and
providing researchers with new challenges to problems using
modern detection devices precisely Mubidus-I.

2.2 limits of the existing datasets

Being able to build an ideal dataset is very difficult and the
evolution of devices and sensors would always lead to new
needs and additions. However, it is possible from time to time to
integrate with new acquisition methods and collect new datasets.

It is easy to understand that using a drone, it is likely that the
quality of the video is not optimal because it is subject to factors
such as height and speed of flight, viewing distance, unfavorable
observation points, and environmental conditions. Otherwise,
the new quality parameters in the construction of these aircraft,
see flight controllers, gimbals for cameras, and SDK available,
allow to partially overcome these types of problem.

The identification of a subject by means of drones is very
demanding and it is more and more if the system operators are
influenced by the operating environment, as analysed in [48].

Algorithms trained on datasets present in the literature or on
specific ones collected for the occasion do not work well in some
situations present in the presented dataset. As a demonstration of
what has been said, we show in the following Fig. 2.1 some frames
of the Mubidus-I processed with the OpenPose method [26].
Given a frame that contains the image of a person, this method is
able to calculate the pose of the body parts, such as torso, head,
limbs and others. As we can see, while for frame a) the calculation
returns precise results, in the case of frames b), c), and d), there
are some inaccuracies. For frame b), a pose is attributed to the
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left leg of the subject, even if it is not present in the image. For
frame c), the left arm of the subject is indicated, even if covered
by the torso. In case d), viewed from above by the drone, the
algorithm fails completely without being able to predict any pose.
This is a proof of the problems introduced by the new dataset
that will be present in many real world cases.

(a) (b)

(c) (d)

Figure 2.1: Some frames were processed by openPose algorithm.

2.3 mubidus-i

Mubidus-I is a MUlti-BIometric and multipurpose Dataset de-
veloped at University of Salerno, as contributed to the state of
the art. The dataset is very heterogeneous in terms of acquired
biometric traits, acquisition protocol, devices used, pose of sub-
jects, and lighting of the environments. It is Multi-biometrics, as
it collects various captured and measurable biometric data, such
as eyes, nose, mouth, ears, and periocular area. It is Multi-sensor,
as different devices were used to capture the experimental data,
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such as TLC, Smartphone, Drone, Macro Lens. The data was
collected at different times and therefore is also Multi-session.
It is Multi-protocol because there are different types of acqui-
sitions exactly Up/Down, Face Details, Hallway, Drone protocols.
The participants are all collaborative but acquired in different
pose angles and in a controlled and uncontrolled way, precisely
Multi-pose and Multi-mode. It is Multi-environment, the data
acquisitions were made both indoors and outdoors. In the indoor
case, data was recorded with cameras and mobile devices. In
the outdoor, camera, phone, and included a drone all together
recording. Another important feature that differentiates it is that,
in certain acquisition sessions, the biometrics are acquired si-
multaneously from different devices, as in the case of the Drone
session detailed below.

The original idea was to create a dataset containing video se-
quences of moving objects, which was made with the drone in
an external environment and previously recorded in an internal
environment. This idea later evolved into creating indoor photos
and video sequences created with cameras and two mobile de-
vices. The dataset contains biometric data from 80 people who
work or study at the University of Salerno, 13 women, and 67

men. The age ranged from 22 to 28 years, and all subjects were
of Caucasian ethnicity.

Within the dataset, there are video sequences that contain mov-
ing subjects. These recordings are indoors and under controlled
conditions. Each subject has an average of 135 shots between
indoors and outdoors. Indoor shots include those taken in the
BipLab laboratory and those taken in the hallway with three
bullet-type cameras. The outdoor acquisitions were made in the
courtyard using cameras, drones, and smartphones.

Not all subjects have data collected through all protocols. Ta-
ble 2.1 shows the number of acquired test subjects, categorized
according to the protocol.

Unlike the data sets discussed above, Mubidus-I consists of
images and videos in controlled and uncontrolled environments.
In addition, recordings were made with the drone. Differently
from MUCT, the facial images were recorded by 3 cameras that
were oriented at different angles, even slightly from behind and
from above as in a real world scenario, to record biometric char-



36 a new multi-biometrics dataset, mubidus-i

Table 2.1: Number of subjects acquired per protocol.

Up/Down Face Details Hallway Drone
Different
subjects

60 52 14 36 80

acteristics such as the ear, which were later also recorded by
a drone and a stationary external camera. For each spectacle
wearer, recordings were made with and without glasses. The
laboratory artificial light was used as the lighting system.

In contrast to VISOB and MICHE-I, the latest generation of
mobile devices were used to record iris. IPhone-8 and Samsung
Galaxy-9 with additional macro lenses. To improve the accu-
racy of iris recording, subjects did not autonomously record iris
images. Additionally, all rooms were under the same indoor
lighting conditions. The COMPACT dataset does not include
top-down capture of faces while there are in Mubidus-I. Table 2.2
summarizes the comparison between the datasets mentioned.

Table 2.2: Dataset comparison.

Dataset Subjects Biometrics Environ. Device

MUCT 76 face indoor camera

VISOB 550 multi indoor mobile

MICHE-I 92 iris multi mobile

COMPACT 108 face indoor camera

EGA 469 face indoor camera

UBEAR 126 ear indoor camera

QUIS-CAMPI 320 full body outdoor camera

DroneFace 11 face outdoor camera

MUBIDUS-I 80 multi multi multi
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2.3.1 Methods and Tools

The dataset was created considering the following protocols: Up/-
Down, Face Details, Hallway, Drone. The first three were carried
out indoors, while the third protocol was limited outdoors for
practical reasons. All operate under uncontrolled lighting condi-
tions typical of real environments. The Up/Down and Face Details
were captured in an ideal and controlled context, while the oth-
ers were captured in real and uncontrolled contexts. Tables 2.3
and 2.4 summarize the characteristics of the protocol and the
devices used, respectively. In all protocols, the participants were
aware that they were being recorded and cooperated.

Table 2.3: Protocol characteristics

Mode Environment Data

Up/Down controlled indoor frames

Hallway uncontrolled indoor videos

Face details controlled indoor frames

Drone uncontrolled outdoor videos

Table 2.4: Devices used

TLC Smartphone Drone Macro

Up/Down yes no no no

Hallway yes no no no

Face details yes yes no yes

Drone yes yes yes no

Follow the technical and functional specifications about the
respective equipment. The Fig. 2.2 showing the devices and
Table 2.5 their specifications.
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(a) (b) (c) (d) (e)

Figure 2.2: The devices used in the protocols. From left to right Bullet
camera, iPhone 8, Samsung Galaxy Edge 8, Aukey 3-in-1,
DJI Phantom 4 Pro.

Table 2.5: Devices specifications.

Device/add-on n Specification

Mini Bullet Network Camera 3 8Mp, res. 3840 × 2160

iPhone 8 1 12 Mp, focal F 1.8

Samsung Galaxy Edge 8 1 12 Mp, focal F 1.7, res.
4290 × 2800

DJI Phantom 4 Pro 1 res. full HD, 30fps

Aukey 3-in-1 Phone Lens 1 Macro/Fisheye, 150°
Wide Angle

2.3.2 Up/Down

The Up/Down protocol consists of two acquisition sessions that
differ in the inclination and height of the cameras. In the center of
the scene there is a chair, around which three video cameras are
placed, on which the subject to be recorded sits. Two cameras are
placed on the sides of the tripods, one at the front. The distance
between the center of the side camera tripods and the center of
the chair is 150 cm for all sessions. During the Down sessions, the
cameras are “down”: the lateral cameras are at a height of 116 cm
and 130 cm from the face, as in Fig. 2.3.

During the Up session, the cameras are at 188 cm tall, precisely
are “up”. In these sessions, the camera distances from the face
are approximately 180 cm, and they are directed downward at
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Figure 2.3: Cameras location of the Down session.

an angle of 45◦ to allow the subject to be captured, as depicted
in Fig. 2.4.

Figure 2.4: Cameras location of the Up session.

The protocol begins with the subject sitting in a chair where,
if they have long hair, they are asked to cover their ears. During
the recording, in the case of the Up sessions, they were asked
to look at the camera and stare at it. During the Down sessions,
they were told to look straight ahead. In each session, a sequence
of acquisition actions is performed. First, the subject is asked
to turn the body and head from the left camera and stop at an
intermediate angle of about 45◦ to the right camera and in front
of each camera. This is a controlled mode. After that, they will be
asked to perform the same actions, but to stop freely at random
angles at will. This is an uncontrolled mode. The test person
repeats the same actions with and without glasses.

As mentioned above, software aids were used to capture simul-
taneous frames images from all three cameras. Therefore, in the
case of controlled detection, the camcorders make simultaneous
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recordings of a total of 15 images for each controlled mode for
each rotation made by the subject. In uncontrolled mode, shots
range from 60 to 80, depending on the speed of the subject turn-
ing. In Fig. 2.5 some sample frames recorded during the session
are shown.

(a) Frames of controlled Up session without glasses.

(b) Frames of Down session without glasses in controlled mode.

Figure 2.5: Sample frames of Up and Down sessions

2.3.3 Face Details

Capturing biometrics traits at close range is the objective of the
Face Details mode. Consequently, this modality aims to capture
facial details, such as the nose and mouth, as well as the periocu-
lar area and the iris, at different positions of the eyeball. The task
requires more explains in detail. The main theme of this modality
is the periocular area. Particular attention is paid to the rotation
of the iris. The recording equipment contains a chair in which
the person sits. There are three cameras around the chair. They
measure 116 cm in height and 40 cm from the person’s face. The
protocol is as follows. The subject sits with cameras close to his
face and performs five rotations of the iris, taking three pictures
with cameras at each rotation. When taking the first picture, the
subject looks directly at the center camera. Then, keeping the
face still, the person performs the following iris rotations: up,
down, left, and right. This creates images of the periocular area
viewed from different angles and with different iris directions,
as shown in Fig. 2.6.

The same process is repeated with two mobile devices: an
iPhone 8 and a Samsung Galaxy 8, placed on an easel 30 cm
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Figure 2.6: Zooming of face image from the three cameras.



42 a new multi-biometrics dataset, mubidus-i

from the person’s face, with the camera in a frontal position.
This design decision allowed us to compare the recording quality
at different resolutions and to take recordings from different
devices. An example of such a collection of recordings is shown
in Fig. 2.7.

(a) Samsung Galaxy 8.

(b) iPhone 8.

Figure 2.7: Periocular images obtained via smartphones.

Once the recordings are obtained from these mobile devices,
the iris is recorded using an iPhone 8 and a macro lens mount in-
stalled on the rear view camera. During this phase, some lighting
problems were identified: when using a macro lens, the mobile
device was placed too close to the iris, which affected the lighting:
as in Fig. 2.8 you can see that the iris contains a partial reflection.

Figure 2.8: Images of iPhone 8 with on-board macro lens.
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2.3.4 Hallway

This technique is carried out in a real-life indoor setting. Fourteen
volunteers, all of whom have participated in prior studies and
are aware that they are being tracked in an unrestricted manner,
walk down a corridor following a preset round trip path. Three
cameras are recording them at the same time throughout this
walk. In the hallway, about halfway down the path, there is a
turn. Cameras are positioned in such a way that the subject will
be continuously captured during the trip. The walk is resumed
both on the way out and on the way back in an L-shaped route.
The first camera is set at the beginning, 12 meters distant from
the others, pointing at the midway hallway corner. The other two
cameras are placed at the corner: one is oriented towards the
path start (and the first camera), and the last is positioned such
that it may capture both the route back to the corner and the
arrival (Fig. 2.9).

Figure 2.9: Hallway protocol path way scheme.

All cameras are placed at the same 273 cm high and the same
tilted by 45◦ degrees downward with respect to the horizontal
line, to record the entire body of the subject. The subjects appear
in only one view in some situations, but in others they are visible
back and forth, as seen in Fig. 2.10. The subject’s face is plainly
visible in the full-body photos, which are taken from various
points of view. The artificial light is the hallway’s true lighting.
Simultaneous random frames are taken by three cameras with a
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resolution of 3840 × 2160 for the acquisition. Additionally, each
view’s video is recorded at 10 frames per second with the same
resolution as the still frames.

Figure 2.10: Hallway Protocol cameras frames from points of view.

2.3.5 Drone

This protocol can only be carried out in the open air. The experi-
ment is carried out in natural light. The acquisitions are designed
to mimic a hypothetical path made by free-roaming individuals.
In this case, there was also a staircase on the route. Three cam-
eras are set up in an attempt to duplicate the Hallway protocol’s
conditions: they are angled to point at the subject laterally. The
cameras are 273 cm tall and arranged in a triangle arrangement
to cover as much of the area where the subject would travel as
feasible. A drone and a smartphone, in addition to the cameras,
record the scene, the drone rising from the ground until it reaches
the subject (Fig. 2.11).

Figure 2.11: Drone protocol path way scheme.
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Participants walk a predetermined path from a starting point
to a destination location. They begin to walk down a set of
steps, where the first camera captures them from the side. They
turn left at the bottom of the stairs and walk straight to the
location of the second camera. The second camera first takes a
side view of the subject and then of the one from behind. When
the journey is completed, the subjects begin to turn around. They
turn right in the midst of the journey, and the drone takes off and
begins recording. Another static camera photographs the subject
laterally when the drone reaches the top height.

Subjects continue walking until they reach the end of the route
and return back to the starting place. There are two types of
acquisitions that can be made with this modality: single subject
and multiple subjects. A single subject walks a predefined route
in the first condition; numerous subjects are identified in the
second condition to replicate a genuine situation in which more
subjects wander autonomously on their own. In Fig. 2.12, you
can see an example of some frames taken from the drone’s video
streaming. A few frames from a camera video stream recorded
simultaneously with the drone are shown in Fig. 2.13.

2.3.6 Data annotation and organization

Each subject has voluntarily participated in the experiment and
without any compensation. Before carrying out the acquisition
experiments, each participant has been well informed on: pro-
tocols followed, research purposes, which would have been the
acquired biometrics and from which device, who would have
stored data, how data would have been made available. Partic-
ipants have been informed that they could have been deleted
from the database at any time if requested. Each participant has
signed a consent form on the use of personal data. In the first
experiment, each subject has been provided with an identification
number that has not been registered anywhere. The assigned
identification number has been given by the participant each
time. The identification number has only been used to annotate
the recordings, but no connection between the number and the
signed documentation is possible unless expressly required by
the subject itself. Each footage and photogram have been orga-
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Figure 2.12: Some frames of the drone video recording.

Figure 2.13: The frames of the three TLC and of drone recorded simul-
taneously.

nized into folders named with the protocol number to which
they belong. In these folders, there are others named with the
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identification number of the subject to which they belong, those
containing the recordings. The names of the files are made up
of an initial part that contains the identification number. Each
file can be downloaded from the BipLab Unisa website, with a
prior application for authorization from the scientific director
manager.
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3 D FA C E B I O M E T R I C S B A S E D O N M O B I L E
D E V I C E S A N D D R O N E S

New frontiers of computer vision techniques and the computa-
tional speed evolution of computing systems allow addressing
the search for solutions through three-dimensional models also
in the field of biometrics. 3D techniques can support the study
of both soft biometrics, walking, body-pose, and hard biometrics,
face, hands, and others. Classical face recognition issues such
as intraclass variations like facial expressions, illumination, and
pose can be simplified using three-dimensional information. Hav-
ing a 3d model available allows you to check the acquisition of
faces in non frontal poses more accurately. On the other hand,
processing this amount of information is more computationally
expansive. The algorithms that compute the data must be de-
signed for parallel computation1 to have acceptable response
times, although this problem is gradually being simplified due to
the cost of greater accessibility to the use of Graphics Processing
Units (GPUs)2. The study presented in this chapter has focused
on this particular subfield of investigation. An application ex-
ample of 3D face model reconstruction by video recorded via
smartphone versus drone, Section 3.2, and a research approach
for the fast massive elaboration of these models, Section 3.3, are
presented in this chapter.

3.1 3d face background

People’s ability to recognize faces is well known. However, when
recognition is iterated on a large database, fatigue occurs, the
level of attention drops, and the speeds and accuracy perfor-

1 Parallel Computing means the simultaneous execution of one or more programs
on multiple microprocessors or on multiple cores of the same processor for
increasing the computational performance of the processing system.

2 GPU Is an electronic circuit designed to accelerate data elaboration during
manipulation and alteration of graphic memory.

49
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mances are compromised. Under these conditions, it is necessary
to automate the facial biometric recognition process. Several
methods have been developed for two-dimensional facial recog-
nition as reported in the in-depth discussion Face Recognition
Vendor Test (FRVT) [119]. However, several difficulties arise pri-
marily from the significant variability and changes in facial ex-
pression, head pose, lighting conditions, and occlusions [131].
The 3D facial recognition techniques is an alternative solution to
overcome the aforementioned problems above, for more details
take a look in [4]. However, under facial expressions, the 3D
shape of the face will be severely deformed. This distortion could
affect various elastic areas, reducing the similarity between peo-
ple’s faces. Some attempts have been made to solve this problem.
Different matching strategies can be adopted to neutralize the
effect of expressions: rigid matching, non-rigid matching, geometric
form matching, and keypoints detection matching.

Rigid: this category of strategies overcomes the problem con-
sidering only the rigid areas of the face (e.g., eyes, forehead, and
nose). Comparison of the models is made only with the Iterative
Closest Point (ICP) alignment obtained with the non-deformable
points. In Ming [90] the authors, utilize Rigid-area Orthogonal
Spectral Regression (ROSR) to describe and discriminate facial
rigid areas as features

Non-rigid: applying morphing techniques, the facial characteris-
tics are preserved and, at the same time, eliminate the expression
information. [8] presents a strategy of non-rigid approach capa-
ble to morphed out expression deformations using PCA pattern
of similar facial features.

Geometric: curves are considered the geometric features in
the shape analysis. The basic idea is that a finite and indexed
collection of radial curves approximate the facial surface. A radial
curve of face, with the open mouth emanates from the nose,
matching with a radial curve from the same face with closed
mouth, as a combination of stretching and shrinking of similar
points (upper lips, lower lips, etc.) [42].

Keypoints : consider salient facial landmarks of the face scan.
These points are detected in 3D faces by the maximum and
minimum curvatures estimated in the 3D Gaussian scale space,
Lei et al. [79] detected s. Then the three quantities: Histogram
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of the mesh Gradient (HoG), Histogram of the Shape index (HoS),
and Histogram of the Gradient of the Shape index (HoGS) describe
the local region around each prominent landmark.

Rich information from 3D measurements makes it possible to
reconstruct 3D facial shapes. Therefore, they add accuracy to iden-
tification and recognition, but increase the computational work-
load [53]. 3D representation of the face is invariant to changes
in lighting and pose. Nevertheless, 3D facial recognition has not
gained popularity in real-world applications. One reason is that
the scanners employed for 3D face acquisition in earlier studies
are mostly bulky and expensive, and therefore not feasible in real-
world circumstances. Recently, research has increasingly focused
on in-depth facial images. This growth is due to advances in 3D
sensing technology. As the sensor costs decline rapidly, it is pos-
sible to have very affordable depth cameras like Microsoft Kinect,
ifm O3D303, Nerian Scarlet 3D Depth Camera, Intel RealSense,
or even depth cameras in phones (e.g. iPhone X, Samsung Galaxy
S20 Ultra, Huawei P30 Pro, Nokia 7.2 and Xiaomi Poco X2).

With the progress of 3D data acquisition technology, the num-
ber of open 3D databases is increasing day by day. Recent re-
search on 3D face recognition has shown the use of depth or
distance images for 3D face recognition tasks. The most widely
applied to face depth images include the dimensionality reduc-
tion method, the local method, and the deep learning method.
3D face models have depth information absent in the typical
2D models discussed in the face recognition literature. 2D and
3D models can be used in combined approaches, such as the
so-called multimodal algorithms [102]. An example method of
face recognition fusing 2D and 3D models is shown in [82]. Ac-
quisition of a 3D face model usually occurs in controlled systems
designed for this specific purpose, mostly through the use of a
3D scanner. A good example is the system used to collect the
FLORENCE 3D FACE dataset [11].

3.2 a new 3d face reconstruction system

This section presents an implementation of a biometric trait adap-
tive acquisition system that was part of the research pathway [2].
Furthermore, it provides an example of how to use the automatic
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acquisition of 3D facial patterns that can be used for biometric
recognition. The solution is accomplished using a drone and the
results are compared to those achieved with the use of a smart-
phone. The system proposed can be exploited as an acquisition
method for the collection of biometric face datasets with the
added value of 3D information. It can also be used as part of a
gate entry system to large areas with low population density, or
for places with higher population density if fleet management
is integrated. Another possible application used for this tech-
nology could be surveillance in places where environmental or
human security is at risk and / or fixed cameras are vulnerable
to vandalism or theft.

3.2.1 Description of the objective

The objective of this study is to use a 3D representation of the
biometric feature to recreate the subject’s face. This places our ap-
proach in the category of biometric collection systems, and more
specifically, the class of subsystems that deal with the represen-
tation and manipulation of biometric traits. During a biometric
acquisition protocol, the interaction between an individual and
the system should be as noninvasive as possible. The greater
the distance to the acquisition device, the lower the pressure
felt by the subject undergoing an acquisition protocol. Wherever
possible, contactless and unrestricted interfaces are preferred [40].
Minimizing the intervention of a system operator allows for the
massive capture of people and it becomes crucial to automate
this process. That is where the use of a drone becomes useful.
The issue addressed is obtaining a stable and reliable 3D repre-
sentation of a face from a monocular camera onboard the drone.
The higher the reconstruction quality, the better the performance
of a face recognizer based on it is projected to be.

3.2.1.1 Drones in biometric system

Unmanned Aerial Vehicles (UAVs), commonly known as drones,
have recently emerged as a potential biometric purpose tool.
UAVs are able to replace camera grid systems, allowing large
areas to be monitored without the usage of a large number of
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sensors [22]. Aerial vehicles, are provided with cameras and pos-
sibly other sensors, some of which are built into mobile devices
such as smartphones.

Technological advances have changed the way in which UAVs
interact with the environment and humans. In particular, the
classical Pan, Tilt and Zoom (PTZ) mode, where only camera
is moving parts, can be extended to Throttle, Pitch, Roll, Yaw,
allowing more advanced mobile framing. The aircraft can move
freely in the working environment with more degrees of freedom,
which allows for a greater selection of shooting options and
therefore the best possible detection of biometric targets.

The flight of these vehicles is usually managed by a pilot via
an RC (remote control). In some cases, however, the pilot cannot
react quickly enough in critical situations; hence, the need to
automate processes such as object tracking, landing, take-off,
return home, etc. Autonomous UAV flight is also desirable to
reach certain destinations or avoid obstacles [29].

Drones can be used for a variety of purposes, such as surveil-
lance, hobbies, rescue, photography, interactive social context,
and more [121]. Therefore, day to day, they are becoming in-
creasingly ubiquitous. Sometimes, the probability of success of a
mission using drones can be compromised by the human factor.
Because of this, appropriate interfaces exist to maximize automa-
tion and minimize the potential impact of human error, such
interface as in [85]. In the present study, however, the drone in-
terface is reduced to a minimum and the control is totally by the
software. Traditional user interfaces for human-drone interaction
are remote controls, phones, and simple gestures, which allow
people to engage with a drone in a natural way [27].

In some circumstances, biometrics could be employed in an
unconventional way as an interface for human-drone interaction.
Aiming and launching flying robots with user-defined trajectories
is one example. The authors of [20] present a user interface based
on facial data. The approach is simple to understand and does
not necessitate any user instrumentation. Beyond line-of-sight,
the drone is deployed on a desired 3D trajectory. A study of
integrated interface gestures and face pose estimation can be
found in [94], which takes a different approach to the topic.
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Combining the use of behavioral biometrics and drone flight
is also possible. The trajectories of the drone connected to the
emotion of the pilot are tracked in [28]. In [129] can be found as
another human-robot interface tool that employs face information
for control.

Drones have also been utilized to gather photographs overhead
in several recent biometric datasets of facial images. Examples
include the DroneFace dataset [62] and the multimodal dataset
MUBIDUS-I [35]. Images were taken in both controlled and un-
controlled situations in the latter case.

3.2.1.2 The Flight controller of the UAV

The UAV when equipped with a ground-based controller, and
a communication system between them is knowns as UAS (Un-
manned Aircraft System), and drones are part of they. These
aircraft are classified differently by defense or civil agencies, with
categories constantly evolving. They can be classified accord-
ing to their size, range, flight duration, purpose of use, and in
some cases cost, as explained in [126]. Commercial models are
so advanced in terms of performance and sensors that they can
be compared to professional ones. The model chosen for this
study is part of the first case. In origin, these vehicles were in use
for missions considered “dull, dirty, or dangerous” for humans,
often military [120]. Quickly, the use of commercial drones has
expanded into many daily life human activities such as leisure
and scientific research. Even because, they can be equipped with
various sensors and modern technologies to overcome architec-
tural barriers ensuring the safety of people. Many advantages
have emerged for various critical situations in the field of security.
UAVs can be flown by a human pilot under remote control (RPAS
- Remote Piloted Aircraft System), autonomously using on-board
computers, or as in our case, through a remote application. The
flight of many of the new generation drones can be controlled via
programming. This makes it possible to create intelligent flight
systems like those with the DJI drone, one of the most widely
used commercial systems.
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3.2.2 Method and Tools

The drone it is programmed to adapt to the position of the sub-
ject’s face in the frame and to fly autonomously to take pictures
from a sufficient distance and a convenient perspective. The oper-
ator only needs to perform simple system startup and shutdown
commands. The pilot-drone interface to the system should be
simple since it only requires starting and stopping the applica-
tion. Furthermore, the only requirement is the physical presence
of a human subject at the scene. The contactless mode offers com-
plete freedom of movement: test subjects can take control of the
drone by attracting their attention. The drone then recognizes the
user’s face and begins hovering to take pictures. The captured
images are processed to produce the 3D model. The drone model
used in the experiments is a DJI Phantom 4 Pro+ [31], and is
equipped with the DJI Mobile Software Development Kit (SDK)3

[30] a proprietary development libraries.
Detection is a prerequisite for recognition. We used the Google

Mobile Vision API [55], which is now part of the Machine Learn-
ing Kit, for detection. Because of its portability and scalability,
the Mobile Vision API library was chosen over the standard
OpenCV [18] library. The Google API and the DJI SDK can be uti-
lized on any DJI remote flight control system without additional
computing resources required. There would have been additional
limits if OpenCV had been used for the detection stage.

The API’s detection technique is based on a machine learning
approach to object localization that ensures long-term support.
To automate the flight of Phantom 4 Pro, it is used the DJI SDK,
specifically the Mobile SDK, to construct a custom mobile app
that fully exploits the DJI aerial platform’s capabilities. With the
Android Studio IDE, Android DJI SDK full compatibility [54],
the Android app was built.

On the ground, the drone is initially in stand-by mode. The
application instructs the drone to lift the camera and wait for
face detection inside the scene in the first stage. When a face is
spotted, the UAV takes flight and aligns the camera with it both
horizontally and vertically before starting the preprogrammed
procedure. At this point, the flight follows a geometric figure

3 Set of libraries that group functionality for multi-platform software developing
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pattern around the topic, such as a rhomboid, while capturing a
picture of the image, as in Fig. 3.2.

Other flying trajectories are possible, such as circles. What
matters is that the subject is always framed from different per-
spectives. Only rhomboids were chosen for the sake of simplicity.

Finally, the 3DF Zephyr software form 3DF Flow [1] processes
the video recorded by the drone and creates an accurate 3D
reconstruction of the subject under acquisition. A repository
containing the source code of the proposed solution is available
online at https://github.com/ldema/Remote3D.

3.2.2.1 Hardware

The acquisition devices used are not particularly high-end. The
drone model is a DJI Phantom 4 Pro+ with the following specifi-
cations: a flight autonomy time of 30 min, as far as 7 km control
distance, 72 km/h max flight speed, up to 4K 60fps video resolu-
tion, up to 30 m sensor distance, obstacle sensing for 5 directions,
6 camera navigation system, main camera specification (FOV)
84° 8.8 mm/24 mm (35 mm format equivalent) f/2.8 - f/11 auto
focus at 1 m −∞. In addition, a smartphone Samsung S8 with
12 MP, f/1.7, 26mm (wide), 1/2.55", 1.4µm, dual pixel PDAF,
OIS, back camera specification. The data for reconstruction and
co-registration was processed on a computation system, an Asus
laptop with Intel® Core™ i7 6700HQ Processor, Intel® HM170

Chipset, NVIDIA® GeForce® GTX 1070 with 8GB VRAM, 16GB
DDR4 2133MHz SDRAM.

3.2.2.2 Software

Google Mobile Vision API: The Mobile Vision API framework al-
lows the detection of contents present in photos or videos like
specific objects, bar-codes, faces, and text. The tool is part of the
ML Kit (Machine Learning for Mobile Developers Kit), a very
powerful and easy-to-use package based on Google’s expertise
in the field of machine learning, offered to mobile developers.
It includes very fast pre-trained object detectors that locate and
describe the object in any orientation within images or video
frames. In this application a face detector was used. It returns
the region coordinates of interest containing the human face, and

https://github.com/ldema/Remote3D
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it is able to extract facial landmarks positions referring to the
contour of the eyes, ears, nose, cheeks, mouth, and visage. The
very responsive response of this detector allows processing of
the video stream from the drone in real-time .

DJI Mobile SDK software: The DJI Mobile SDK is designed
to allow developers access via software to the capabilities of
DJI’s aircraft. It includes a set of libraries that group software
calls for simplifying application development. High-level calls
for low-level functionality such as flight stabilization, battery
management, and signal transmission and communication, are
provided from the SDK and can be imported into an Android or
iOS app by its interfaces. The developers through the SDK can
have easy access to many product features and capabilities such
as can automate the flight, receive real-time video and sensor
data, control the camera and gimbal, download saved media from
the product, and monitor the state of onboard sensors. Many of
these features have been used in this application work to reach
the desired outcome.

Fig. 3.1 illustrates the way the DJI Mobile SDK interfaces with
a mobile application and how to connect to a DJI aircraft. Fur-
thermore, Fig. 3.2 shows an application testing by means of the
flight simulator. A mobile application is developed using the
DJI Mobile SDK and runs on a mobile device such as an Apple
iPhone, iPad, Nexus phone, Nexus tablet, or other device that
supports the applicable platform (iOS or Android).

3DF ZEPHYR software: It is possible to reconstruct 3D models
of objects from multiple photos, by means of the 3DF Zephyr
software. The software has no specific hardware requirements,
however, it can take advantage of GPU computing capability if
one is available. It is based on proprietary reconstruction technol-
ogy, which is essentially photogrammetry. The generated model
has good accuracy if the framed object is stable and the images
are in focus. The software selects the most focused frames and
discards those that are not sufficiently similar. Details on this
step are given and best discussed in Section 3.2.4.2. Standard
parameter settings were used for our experiments, with the focus
set at a high level. During the render step, the software selects
the best frames for reconstruction from the extracted frames.
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Figure 3.1: Connection diagram between the mobile device and the DJI
system.

3DF Zephyr can create and export meshes and point clouds
in the most popular 3D formats to generate video animations,
digital elevation models, cross sections, and contour lines. You
can derive the angle, area, and volume. The software application
needs computationally demanding, even more by high resolu-
tion images, although multiple CPU cores and Nvidia Compute
Unified Device Architecture (CUDA) technology, if available, can
speed up the computation. 3DF Zephyr can import not only
images, but also videos.

3.2.3 Use of the system with safety

Before use the SDK to automate the drone flight, some of follow-
ing issues need to be addressed. Aircraft moves in spaces shared
by people, structures, animals, plants, and possibly other drones.
The aircraft can move at speeds of up to 20 m/s and can have a
mass of up to 2.80 kilograms (kinetic energy). While the ability
to change position by software programming is quite powerful,
and safety systems are present on board, attention must be paid
to the things and people around it.

However, developers and users should continue to monitor air-
craft movements to avoid dangerous and unintentional collisions
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Figure 3.2: Flight simulator in action.

(share space). DJI offers a geofencing system to keep airplanes
out of sensitive areas.

The UAV can cross challenging wireless areas during the flight,
therefore wireless connectivity can be unpredictable. There, hun-
dreds of milliseconds may be required to transfer a command,
provided it happens, and unforeseeable situations may occur in
the physical world (highly asynchronous process).

Moreover, to solve the collision problems it is possible to set
the flight to a less sensitive function of the remote control, not
abrupt movements, and stopping in the vicinity of obstacles

3.2.4 Performance evaluation

The system consists mainly of three software modules. The first
module automates the subject recording process and records
video images as soon as a human face is recognized in the video
sequence. The drone flies autonomously and corrects its path
to allow different perspective shots of the subject. The 3D re-
construction is implemented by second module. Discard useless
frames: those with excessive blur, sub-optimal angles, and other
flaws. Some examples of half-body models are shown in Fig. 3.5.
The co-registration of the models pipeline are obtained in this
way. The third module performs the core registration of the
model obtained in the pipeline in the following way: the 3D
model of an object reconstructed by the drone in flight is aligned
together with the model of the same object captured under ideal
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and cooperative conditions by the smartphone. As expected, the
accuracy of the reconstructed model from the drone recordings
is as high as the co-registration error is low.

The following sections 3.2.4.1 introduce the system user inter-
face, the benchmark, and the software product used to manage
point clouds. Experimental results of the section 3.2.4.3 describe
the level of performance achieved and makes some observations
derived from the behavior of the system.

3.2.4.1 Human interaction and interface

By collecting the raw data, the drone goes through a sequence
of various phases and states in a certain order, similar to a finite
automaton. A summary of the phases and phase transitions is
shown in Fig. 3.3.

Figure 3.3: Flow chart of the drone phases in flight for data collection.

The first phase is named DETECTION. In the initial state named
landed the Phantom 4 drone is at ground level. The user presses
the start button on the RC to start the automation and a command
is sent to the drone to tilt the gimbal upwards by 29.5°. Next,
the application will then start streaming from the aircraft and
the transmitted data will be processed by the facial recognition
of the Google Mobile Vision API real-time. The UAV takes off
and tilts the gimbal to 0°, which is the default stand by camera
position, when a face is detected in the scene. This flight mode is
called take-off. Fig. 3.4 shows an example of the real execution
of this mode.

After taking off, the drone tries to align the face, both horizon-
tally and vertically, to the center of the camera frame. This phase
is called CENTRAL ALIGNMENT and completed the alignment, the
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Figure 3.4: (Left) The drone stands by until a face is detected in the cam-
era. (Right) The drone starting to take off when is detected
a face.

aircraft starts the video recording, switching to the state stalled

flight to perform phase ACQUISITION.
The drone flying around the subject actually acquires the face

details, phase name ACQUISITION. The height should ideally be
at eye level. The parameters Yaw and Pitch are modulated in
rapid succession to achieve height stabilization. By pressing a
designated button, the drone can be stopped from continuing its
trajectory at any time for safety concerns.

Once the flight path has been completed, all data have been
acquired, the aircraft goes back to the ground level in the landed,
and the camera returns to the original 29.5° orientation, phase
LANDING.

3.2.4.2 3D Reconstruction phase

A video recording of the subject has been captured after the
automated drone flies and then the 3DF Zephyr program can
begin 3D reconstruction. First of all, the video is loaded into the
software and then is separated into frames, which are treated
as separate single images. In the software, it is possible to set
parameters for the frame rate, for extraction Frame Per Second.
(FPS)4, for the automatic analysis of the blur artifacts in each
frame, and for the threshold to reject outlier frames that do not
contain a component similar enough to the others. It is also
possible to intervene manually and cut some parts of the video

4 The number of consecutive full-screen images that are displayed each second
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that are not needed for extraction, if necessary - e.g., those not
including the subject.

The next phase called STRUCTURE FROM MOTION processes all
images that were originally loaded into the software, normal-
izes their orientation, and creates an initial representation of
the photographed object, which is defined as a scattering point
cloud5.

An example of the results from the last two phases is shows in
Fig. 3.5.

Figure 3.5: 3D reconstruction of half body left and center with FHD and
C4K resolution from drone and right with FHD resolution
from mobile device.

3.2.4.3 Results and discussion

Based on the system described above, 3D models of 20 partici-
pants were obtained in the distance range of between 2.5 and 3
meters at different resolutions. The group of people subjected
to the experiments were men between the ages of 40 and 50, 1.7
to 1.8 meters tall, and of Caucasian descent with no occlusion
in the facial area, except for one person who wore a mustache.
The environment consists of an open space outside and without
obstruction in the flight zone between the drone and the subject
to be acquired, and behind the drone for at least 2 meters.

The recordings were made with minimal wind and in light
conditions either sunny, but with no shadows in the recording
area. Four different resolutions were considered: FHD, 2.7K, 4K,
and C4K. 3D models contain a large amount of information. In
this thesis, we focus on the alignment and 3D face reconstruction
of the obtained models.

5 Set of three-dimensional vertices for 3D models.
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Quantitative data from the experiments are collected in Ta-
ble 3.1. The ‘Processing time’ value refers to the 640 × 480 of
each cropped video frame, coincident with the bounding box
enclosing the half body of the subjects.

The main contribution of these quantitative results refers to
the influence of the video resolution on the calculation time and
the extraction of point clouds, which in turn should affect the
precision of the reconstructed model.

Table 3.1: Quantitative data from the experimental session.
Data information Drone Drone Drone Drone Mobile

Video resolution FHD 2.7K 4K C4K FHD

Video duration (sec) [90,120] [90,120] [90,120] [90,120] [25,35]

Video-frames used [80,130] [80,120] [75,110] [80,110] [50,75]

Processing time (min) [90,120] [90,120] [120,180] [120,180] [50,75]

Point cloud size [1k,2k] [2k,3k] [3k,4k] [3k,3.5k] [4.5k,6k]

From the table, it can be noted that for the drone data, the
variations of the data processing time at different resolutions
are fairly limited and that for videos in 4K, the point cloud size
is higher than under other conditions. This suggests that the
information captured at resolutions below 4K are not enough
to achieve quality to produce accurate 3D models, and the C4K
resolution may include noise. The experimental results presented
in Table 3.2 and in Figs. 3.7, 3.8 endorse further this observation.

To assess the accuracy of the drone’s 3D reconstruction, the
3D face mesh was aligned with the ideal model acquired via a
mobile device under laboratory-controlled conditions. The ICP

method was used to align the models [15] and Root-Mean-Square
Error (RMSE) as a co-registration error metric to estimate how the
3D models fit together, according to the following equation:

RMSE =

√
1
N ∑N

i=1(Dronei − Mobilei)
2 (3.1)

where N is the point cloud size in the 3D model saved by
the co-registration process, while Dronei and Mobilei are the
corresponding points of the two clouds found closest during
the co-registration through the ICP algorithm. The mean RMSE
achieved in the experimental session for all participants acquired
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and reconstructed is shown in Table 3.2. The table also reports
the mean variance of the co-registration of the point clouds. The
most promising results are achieved with video resolution at 4K
where the error is the lowest, as expected from the preliminary
point cloud size considerations. Visually the Fig. 3.8c highlights
the impact of this result.

Table 3.2: RMSE and variance of the 3D pint cloud alignment.

Drone Video Resolution

FHD 2.7K 4K C4K

RMSE 0.0356 0.0270 0.0264 0.0275

variance 0.0007 0.0005 0.0004 0.0005

Taking half-body 3D models of a subject, from a drone at
different video resolutions and that from the mobile, the region of
interest of the face has been extracted and compared. In Fig. 3.7a
are shown the extraction visual results.

The overlap between the segmented point clouds, from the
drone and mobile, can be observed in Fig. 3.6. Different colors
show the drone model versus smartphone model, and how the
two points clouds are co-registered for each comparison. When
both point clouds contribute to the fully coloring plot, they are
well co-registered.

(a) FHD (b) 2.7K (c) 4K (d) C4K

Figure 3.6: The mobile vs. drone point cloud registration at different
resolutions.

Similar occurs in Fig. 3.7b, where the two textures are inter-
leaved, the overlapping error is low. The overlap is greatest at
4K drone resolution, as it can be seen. The comparison results
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in Table 3.2 show that the 4K resolution produces the lowest
Root-Mean-Square Error (RMSE) and mean variance.

(a) (left to right) MobileFHD, DroneFHD, 2.7K, 4K, C4K.

(b) (left to right) MobileFHDvsDroneFHD, 2.7K, 4K, C4K.

Figure 3.7: Crops of the 3D faces. On top portions extracted from the
3D models acquired by mobile device and by drone in con-
trolled conditions at different resolutions. On bottom visual
results of the overlap between the 3D model acquisition
from mobile and by the drone. The overlap is not satisfac-
tory when a model prevails on the other. The more accurate
the overlapping, the more interleaved the textures.

Fig. 3.8 shows the distance maps obtained by the comparison
of the ideal 3D model from the mobile acquisitions with those
generated by images acquired from the drone during flight. The
figure, in particular, shows how the map differs depending on the
video resolution used in the comparison. The Hausdorff distance
is used as the distance measure and the distributions from the
nearest to farthest pixels are depicted on the left side of each
map. As can be analyzed in the histograms, at 4K resolution, the
best similar reconstruction is achieved.

When precise overlapping of the two models occurs, a high
concentration of red and yellow points is accumulated at the
bottom of the histogram (red/yellow color), while the blue one
is the farthest. With FHD and 2.7K, you can see a wide area of
non-ideal overlap. The resolutions of 4K and C4K are about the
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same, but upon a thorough inspection, the lowest value cards that
correspond to the 4K resolution are more compact and provide
slightly better overlap than C4K.

(a) FHD (b) 2.7K

(c) 4K (d) C4K

Figure 3.8: Maps of Hausdorff distance at different video resolutions,
Mobile vs Drone.

3.3 massive 3d face matching

3D reconstruction of human faces can provide a lot of informa-
tion to biometric recognition algorithms, which can help them
to perform better. Making biometric data computation faster is
a critical step in real-time scenarios. It is even more so when
dealing with three-dimensional face models, where the amount
of data and preprocessing complexity is significant. Classics pro-
gramming methodologies or those based on neural networks are
no longer computational sufficient for the purpose and therefore
we move on to others. One is getting General-Purpose computing
on Graphics Processing Units (GPGPU) programming into play.
The GPGPU is used for processing that is extremely demanding
in terms of processing power, and for which traditional CPU
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architectures do not have sufficient processing capacity. By their
nature, these processes are highly parallel and therefore able to
greatly benefit from the typical architecture of GPUs (Fig. 3.9).
CPUs used for fast sequential operations (10 thrs), GPUs for many
parallel operations (1000 thrs). GPUs Compared to CPUs have a
lot of memory bandwidth, very low latency, and higher machine
instruction speed. Applications are typically developed by a mix
of parallel parts (GPU) and sequential parts (CPU) to maximize
the overall performance. Furthermore, GPU and CPU work in-
dependently and asynchronously on separate memory spaces.
The available GPGPU programming technologies are: CUDA is
Nvidia’s proprietary technology for GPU computing; ROCm and
HIP are similar technologies to CUDA, but they are open source
and developed by AMD; Open Computing Language (OpenCL) is
a library based on ANSI C and C ++ 14 languages.

(a) CPU (b) GPU

Figure 3.9: CPU and GPU basic architectures.

Preliminary experiments have been conducted in order to ver-
ify if what has been said has a basis. The experiments carried
out foresaw a one-to-many comparison on large sets of 3D face
images to perform their recognition in computationally com-
petitive times. The study has been conducted with the aim of
massively processing a face data set (1 million subjects) in search
of a specific face in time equal to real-time, Fig. 3.10.

For the first experimental phase, the problem has been moved
from 3D space to 2D space to valuate a 3D face identification
method but with a computational complexity equal to 2D. In
short, it was tried to consider a 3-channel 2D face image with
R, G, B channels, as the representation of a 3D model. This is
possible using normal maps [3]. In a 2D image representation of
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Figure 3.10: Objective: search a face identity in a huge dataset in real-
time.

a normal map, the three channels’ values of a point (pixel) are
the intensities of the vectors x, y, z called normal of the 3D model
at that point respectively of a view, Fig. 3.11.

Having a very large dataset of 3D face models, equal to 1

million, even better if different subjects is not easy. Then the 2D
LFWcrop face dataset (64x64 face image dimension) of approx-
imately 13,000 subjects have been used [113], and the normal
maps for each image have been generated and duplicated for use-
ful numbers of times. This is because the first experimental part
is more interesting for verifying the speed of massive calculation
rather than accuracy.

Figure 3.11: 2D Normal map image of the sample face.

For the valuation, the basic idea is to prepare two matrices,
called mega-matrix containing a predetermined number of nor-
mal maps of face images. One of the mega matrices includes
the faces of the dataset and the other, the face to be sampled,
duplicated as many times as there are faces in the first, Fig. 3.12).
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(a) Dataset faces (b) Sample faces

Figure 3.12: The two mega-matrices normal map portions. (a) the
Dataset mega-matrix, and (b) the Sample mega-matrix.

Once obtained, the two matrices have been transferred to the
GPU memory and processed in bulk by means of an atomic
operation. Atomic parallel operations are as fast as they can be
as a basic computation within a GPU. The Boolean bitwise AND
was computed between the two mega matrices as showed in
Fig. 3.13. The figure shows the case of perfect matching when the
face image is present in the dataset.

(a) mega-matrix (b) zoom

Figure 3.13: The mega-matrix bitwise computation result (a), with the
relative region of interest zooming portion (b)

If the {Face Dataset AND (NOT Face Sample)} bitwise opera-
tion is made on the mega-matrices the better the matching of face
images is than minor are different bits. Fig. 3.14 shows the result
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of a perfect matching in the black region area. The difference
computational time with the previous operation is imperceptible.

Figure 3.14: The Difference mega-matrices detail in Dataset AND (NOT
Sample Face) bit-wise operation

The experiment was iterated to test different models of GPU
video card performance using different dimensions of the mega-
matrices about the number of face images. Table 3.3 shows the
specifications of the tested GPU model. For any iteration, initially
a 10K step of face images from the dataset has been used between
0 and 100K, and after a 50K step of face images from 100K to 1M.
The size of a face image, 64x64 pixel in RGB format, is equal to
12.288 bytes. The following Table 3.4 shows the size in bytes of
any mega-matrices.

Table 3.3: GPU specifications models used in the experiments.

GPU model VRAM TxB GPU Clk Mem Clk

Geforce GTX 970M 3Gb 1024 1038 MHz 5 Gbps

Quadro P4000 8Gb 1024 1227 MHz 6 Gbps

GeForce RTX 2080 Ti 12Gb 1024 1750 MHz 14 Gbps

To bitwise compute the two maga-matrices, first they would
be transferred to the guest memory. These take time comparable
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Table 3.4: Byte size of mega-matrices.

Faces Size

10K 118 Mb

20K 235 Mb

30K 352 Mb

40K 469 Mb

50K 586 Mb

60K 704 Mb

70K 820 Mb

80K 936 Mb

90K 1 Gb

Faces Size

100K 1,2 Gb

150K 1,7 Gb

200K 2,3 Gb

250K 2,9 Gb

300K 3,4 Gb

350K 4 Gb

400K 4,6 Gb

450K 5,2 Gb

500K 5,7 Gb

Faces Size

550K 6,3 Gb

600K 6,8 Gb

650K 7,4 Gb

700K 8 Gb

750K 8,6 Gb

800K 9,2 Gb

850K 9,7 Gb

900K 10,3 Gb

950K 10,9 Gb

1 M 11,5 Gb

to the computational time. Fig. 3.15 show the GPU computation
times. As you can see, the graph data is truncated due to the
memory capacity of the GPUs model and the grow of time is
directly proportional to the amount of data processed. Up to
100K, the growth time is 1, double data needs double time over
the trend factor decrease.

Figure 3.15: The benchmark of GPU computation

Memory allocation on the guest (GPU) takes more consuming
time of computational time and therefore it cannot be overlooked.
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The GPU memory allocation times related to the GPUs models
and to the amount of memory are shown in in Fig. 3.16. The
growth factor is less than 0.5. The allocation of double memory
does not imply a double allocation time. This is even more true
as the memory performance of the video card increases.

Figure 3.16: The benchmark of memory GPU allocation

Once obtained distance/difference value for each face image
which a label or index has been assigned, these values have
been to be sorted in order to identify the face images similar
to the one it has been looking for. In many real-time scenarios,
and this is one of them, efficient sorting algorithms are a key
requirement. Parallel computing solutions on CPU and GPU are
implemented to grow up the performance. In [57] the author has
investigated some implementations of the fastest GPU and CPU
sorting algorithms. An exhaustive survey of GPU based sorting
algorithms can be found in [116]. The sorting time is very fast
on GPUs, therefore is negligible related to the whole operation,
as shown in Fig. 3.17. In addition to the fact that GPU times
are substantially lower than CPU times, the computing time
for CPUs climbs linearly as the number of elements increases,
whereas the GPUs growth trend is more attenuated. If the number
of elements to be sorted is lower to 100K, CPU and GPU have the
same computation time, under 50K elements the CPU is better,
as shown in the chart of Fig. 3.17.

It can infer that the tested method for massive 3D recognition
of the face is a viable potential solution in real-time scenarios,
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Figure 3.17: The benchmark of parallel sorting CPUs vs GPUs

thanks also to the possibility of scaling up to meet increased
workloads. It is critical to choose characteristics to employ for
the generation of the templates in this type of approach, since
they must allow comparison with bitwise operations. In a future
experimental phase, it is planned to identify the most suitable
preprocessing function to uniform the model to a frontal pose as
suggested in the work [4] and select a feature extraction function
more suitable for the massive bitwise comparison. The exper-
iments will focus on the accuracy of the identification system
considering that it can be usefully compensated by the speed of
performance.





4
T R E N D S , L A C K S A N D C O N T R O V E R S I E S

The biometrics market is growing rapidly. Let us summarize
a study by a marketing agency, Mordor Intelligence: The next
generation biometrics market posted a Compound annual growth
rate (CAGR) of 35.53% during the forecast period (2021-2026),
Fig. 4.1. A paradigm shift toward more data protection and less
security threats in the business of the next-generation biometrics
market is one of the most important trends. End users prefer to
rely on integrated solutions rather than traditional methods.

Figure 4.1: Market Summary, CAGR of 35.53% during the forecast
period (2021 -2026).

The next-generation biometrics market is expected to grow sig-
nificantly due to an increase in the number of terrorist activities
and an increase in theft of important data and information that
raises national security concerns. Key factors such as the growth
of electronic passport programs, government support, and their
widespread use in criminal identification are the major drivers
behind the market. With the rise of airport security initiatives and
attempts to reduce crime rates, investment in biometric systems
around the world is increasing.

Various government initiatives such as electronic passports,
electronic driver’s licenses, border controls, national ID cards, etc.
are being implemented in developed countries with advanced
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biometrics, Fig. 4.2. Iris recognition is the fastest of this type of so-
lution. It is one of the growing segments. Some of the advantages
of this technology are that it is easy to use, difficult to counterfeit,
and accurate. Applications of iris recognition in the consumer
electronics field are expected to show the highest growth rates
during the forecast period, primarily due to the commercializa-
tion of various electronic devices based on iris scanning, such
as smartphones, tablets, smartwatches, and notebooks. However,
factors such as high deployment costs and the threat of privacy
breaches are expected to impede market growth.

Figure 4.2: Next Generation Biometrics Market - Grow Rate by Region
(2019-2024)

4.1 biometric life , implications

Today, we try to measure everything about a person, from how
he looks at a screen to how the mouse moves, to alteration of
pulsations, microexpressions, or micro movements of the eyes
[25]. Many new generation sensors allow for all this and can be
installed on devices such as smartphones or smartwatches (wear-
able devices). Health monitoring, why not profile individuals?
This question shifts the discourse on biometrics to a fine line of
privacy. The regulations on biometric measurements are specific
to each country and generally follow a political direction. Some
privacy guarantors believe that one biometrics trait rather than
another is more invasive from the point of view of the content
(see DNA and Retina). Capturing a photo without consent is a
different violation than taking measurements of it, which must
be authorized by the guarantor. By measuring the facial features
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of a photo, sensitive information is extracted that simple storage
does not. To meet these requirements and to protect sensitive
data extracted from the measurements, various methodologies
have been developed. Sensible data protection techniques, such
as encryption, are useful, as discussed in Section 4.3. In addition,
there are laws that regulate the practices of acquiring, sharing,
and storing such data. The independent European supervisory
authority is the European Data Protection Supervisor (EDPS) by
means of General Data Protection Regulation (GDPR) laws.

Another aspect, often overlooked in favor of the insistent re-
quest for protection of the individual, is the moral and philosoph-
ical question concerning biometrics, as argued in [92]. Epstein,
claims that Biometrics can be seen as a tool for the development
of state authority [44]. To extremes, by transforming the human
subject into a series of biometric characteristics, biometrics de-
humanizes the person, would violate physical integrity, and, in
the end, offend human dignity. Agamben foresees the reduction
to naked bodies for the whole of humanity, and Biometrics will
usher in this new world [7].

As mentioned above, it is difficult to design an objective bio-
metric technology if the system is subjective and error-prone. The
proliferation of biometric technology in the public and private
sectors raises these concerns. The increasing commercialization
of biometric data by the private sector increases the risk of losing
human value. Businesses value biometrics more than individuals.

Thus, modern society should mature a "biometric conscious-
ness" that stimulates an informed public debate about these
technologies and their applications, and accountability on the
part of the state and the private sector, ownership, and access to
your physical data and other intellectual property generated by
your physical data should be understood as rights.

Meanwhile, other researchers have shown that the globalized
world is home to many people with weak or no citizen identi-
ties. Most developing countries have weak and untrustworthy
documentation, while for the poorest countries, it is nonexis-
tent at all. Without the identity of a certified individual, there
is no legal security or civil freedom. Any person can claim their
rights, including the right to refuse to verify their identity, only
if they can identify themselves. In this sense, biometrics can play
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a fundamental role in supporting and promoting human dignity
and respect for fundamental rights as a science that enables an
individual’s unique identification.

4.2 cancellable biometrics .

Biometric recognition solutions suffer from privacy and security
concerns. Allowing the acquisition of your biometrics means
exposing you to improper use. So, to protect your identity, we
have to protect your biometrics, a paradox that exists in all
protection systems, but that is the way it is. An example is very
trivial; it is how to use an alarm system to protect yourself from
intruders, and the alarm system must provide protection against
tampering. Furthermore, an essential aspect of the question is, if
a biometrics is stolen and used for illicit purposes, that biometrics
no longer guarantees the identity if the systems that use it are not
able to repel spoofing attacks by distinguishing the original one
from the one stolen. The best strategy to preserve biometrics is to
not expose them in their full, or to expose them in a changed form,
with the goal of keeping their core features for identification and
verification. An alternative option is to convert or distort sensitive
data in such a way that recovering the original data is challenging.
Another key feature is that if the previous instance of biometrics
is compromised, a new instance must always be possible.

The Cancelable Biometrics (CB) are one of the solutions to ad-
dress these concerns. Introduced first by Soutar et al. [117] in
1998 and then defined by Patel et al. [99] in 2015 as: "Cancelable
Biometrics consist of intentional, repeatable distortions of Biometric
signals based on transforms which provide a comparison of Biometric
templates in the transformed domain". The CB must meet four im-
portant requirements that are: Diversity, Reusabilityor Revocability,
Non-invertibility, and Performance.

• Diversity: The new CB of the same biometrics must be more
different than previous.

• Reusability/Revocability: The CB must be regenerated if com-
promised.

• Non-invertibility: The original biometrics cannot be recon-
structed from the CB.
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• Performance: The generated CB does not degenerate the
recognition performance.

To date, various techniques for generating the template have
been pioneered, such as non-invertible geometric transformation,
hashing, random projections and permutations, filtering, fuzzy
vault (Sub-Section 4.2.1), cryptography (Sub-Section 4.2.2), etc.
argued in [87, 98, 99].

Figure 4.3: The generation basic scheme with non-linear geometric
transformation.

An example of cancelable biometrics for face recognition is
illustrated in Fig. 4.3. Prior to feature extraction, the face image is
morphed into the original pixel signal domain. The morphed ver-
sion does not match the original face, whereas the two instances
of the morphed face match [98].

4.2.1 The Fuzzy vault technique

The first technique proposed for the generation of erasable bio-
metric keys was more cumbersome, but for a long time it was the
only technique available. Again, the idea was to hide the infor-
mation so that it could only be reconstructed by those authorized.
Many times, these techniques depend on the type of biometrics
for which they were designed; for example, biohashing was de-
signed for fingerprints and iris, but it works for any biometric
trait capable of giving a numerical vector as characteristics. In-
stead, the fuzzy vault technique [70], was designed primarily for
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fingerprints, but it should be borne in mind that this technique
also works for other characteristics derived from biometrics other
than the fingerprint. For fingerprints, in biometric systems, the
representative points of the trait, called minutiae, are considered.
Examples of minutiae are, for example, the points where the lines
join or fork or others where the noose is formed. The basic idea
is to add false points to the template so that, in comparison, only
those who coded the erasable template know how it was built.
When the subject needs to be recognized, his details are acquired,
and the intersection is made between them and the points pre-
viously saved during registration. If the subject is the same: his
minutiae on his finger will catch most of the real minutiae in the
container, discarding the fakes. If the subject is an impostor: his
minutiae do not match those of the container, then he will take
real minutiae, but most of the minutiae he will take will be false
ones, so the reconstruction fails [128].

One of the limitations of this technique is that if more sets were
stolen, making the intersection between all stolen sets would
reveal the true points (always present points). Another question
is whether it is possible to use a biometric key to encrypt data,
for which a contribution to the state of the art is made with the
solution presented in Subsection 4.3.

4.2.2 Cryptography basic concepts

Cryptology is a science that studies speech and secret writing and
is divided into two major branches: Cryptography: the science of
writing messages that no one beyond the true recipient will be
able to read, from the Greek kryptós = hidden and from the Greek
theme, gráphò that is, to write. Cryptoanalysis: the science that
deals with reading encrypted information through the breaking
of encrypted systems, therefore, studies the vulnerabilities and
improvements that can be applied to the former.

Cryptography provides a suitable tool to keep secret all infor-
mation that is not intended to be disclosed publicly, so that the
possibility of accessing it is given only to authorized persons.
Two basic operations can be performed: Encryption: this is the
operation by which the information is hidden and is carried
out using a special algorithm called a cipher; the information
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to be encrypted is known as clear text. Encryption uses a key
as a fundamental means to convert clear text into ciphertext or
cryptograms.
Decryption: it is the reverse operation with respect to encryption,
that is, the conversion from cipher text to clear text; it too uses
the cipher key.

Encryption algorithms can encrypt data using biometrics. We
must also keep an eye on cryptanalysis because from the moment
a new scheme is pulled out, we must prove that it is safe, that
is, we must analyze if and what are the vulnerabilities of the
code and how they can be solved. An encryption algorithm is a
technique whose purpose is to hide information by encrypting
the data (placing it in a form that is not readable by the person
in possession of it), but the authorized party must have a way to
decrypt the data.

In order to encrypt and decrypt data, the schemes used today
are based on a key, that is, they take a set of data and a key that
governs the encryption process and apply transformations that
depend on the key to change the data and make it unreadable.
In the decryption process, using the same key, you are able to
reverse this process. Techniques that use the same key to encrypt
and decrypt are called symmetric or secret key. If instead of using
one key, two are used, a public one available to everyone and
a private one (known only to the user), we are talking about
asymmetric keys. This scheme works in such a way that if the user
encrypts the data with their private key, someone can decrypt
them using the public key and vice versa. This versatility then
makes it possible to use these schemes not only to encrypt and
decrypt data, but also to implement signature algorithms, for
example, if I want to certify a signature of a document, if we want
to guarantee who sent a message, therefore, you can use these
protocols to do more operations than symmetric ones that only
do encryption and decryption. Since the asymmetric ones are
particularly heavy and slow, in general, what you do is encrypt
a set of data with a symmetrical pattern and then encrypt the
key of the symmetrical pattern with an asymmetrical pattern
(security problem).
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4.2.3 Bio-cryptosystems

Systems that manage to extract a cryptographic key1 from biomet-
rics are called bio-cryptosystems. These systems perform a binding
operation between the information coming from a biometric key2

and what should be the cryptographic key I want to use to be
able to encrypt. There are two possibilities: either I make the
biometric key stable (I make the system always extract the same
sequence of bits for the same subject implies stabilizing the bio-
metric key) or I can come up with ad hoc schemes for encryption
and decryption that are robust with respect to small and possible
errors of the key (the fuzzy vault is an example implies robust for
the minutiae). There are systems (key-generation) that directly
generate a key, taking out from the biometric key a smaller set of
additional data that allows it to be stabilized. These additional
data are called help-data3. There are key-binding systems: Find
the biometric key and the cryptographic key from the supplier,
generating data that represent how the two keys are joined [67].

Only recently has the question of the variability of biometric
data of a single individual has been studied for the generation of
biometric keys in the context of the cryptographic system [122].
The problem is more complex, for the same biometric entity the
extracted biometric data is significantly different due to acquisi-
tion characteristics, at different times. Fig. 4.4a shows a simplistic
biometrics-based key release method [122], where a correct bio-
metric template match releases a cryptographic key. This method
is vulnerable to attacks on the biometric template database, the
cryptographic key database, and the biometric matcher. The
second method (Fig. 4.4b), has the advantage of the so-called
biometrics-based key generation methods [122], the system is
not vulnerable to template information database attacks because
secrets and biometric templates are securely stored in crypto-
graphic biometric templates. An example of the combination of

1 Is a string of data that is used to lock or unlock cryptographic functions,
2 Numerical expression of the salient measurements of a biometric trait. Usually

organized in a vector or matrix, they are used in matching operations.
3 Data in support of biometric data whose purpose is to make them stabilize for

the purposes of the encryption
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(a)

(b)

Figure 4.4: Two modes of combining biometrics with cryptography: (a)
key release and (b) key generation [123]

biometric key and cryptography is presented in the following
Section 4.3.

4.3 a new bio-cryptosystem , face biometric & rsa

encryption

An original example of biometric data protection techniques with
key-binding is one of the works published “An Encryption Ap-
proach Using Information Fusion Techniques Involving Prime Numbers
and Face Biometrics” [64]. Two methodologies of two unconnected
research areas have been joined, Biometrics and Cryptography.
Specifically, the data on face biometric traits were combined with
Public-key Cryptography, with the purpose of generating a new
type of Rivest–Shamir–Adleman (RSA)4 key [109], precisely a
hybrid key.

The method presented is based on a general requirement: it can
be applied to any biometric trait considered (iris, face biometrics,
etc.) from which you can extract a Biometric Code. The new
technique devised to merge the biometric code and the public

4 RSA is a public-key cryptosystem used for secure data transmission.
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Figure 4.5: The hybrid key generation basic scheme.

key is named FIF (Face Information Fusion). Fig. 4.5 shows the
process diagram of the basic idea for generating the hybrid key.
The main phases of the system that carries out the data fusion
are listed below. The generation process goes through three main
stages which accomplish the data fusion:

• Face Algorithm: it is the stage for generating the biometric
code. Two different approaches are examined to extract
the face features. The first use SIFT (Self Invariant Feature
Transform) as described in [51]. SIFT features have many
interesting properties, one of which is highly discriminat-
ing, and the other is the ability to automatically extract
stable interest points in the image. SFA (Split Face Archi-
tecture) was used in the second approach, as stated in [38].
The authors’ goal in this last article was to address face
recognition following plastic surgery.

• RSA: it is the stage for creating the number code and the
private key; the basic requirement here is that the key must
be as much random as possible to avoid an external intruder.
This requirement refers to the process of combining the
elements of two arrays into a single matrix that will serve
as the key. We choose to employ the primality and secrecy
provided by the private key of the RSA algorithm 4 [109].
The value of the same key is then used to determine how
many elements of the biometric component array and of n
are in the union matrix.

• FIF Algorithm: it is the data fusion stage. The FIF technique
attempts to generate a Fusion Key using Face Biometrics
and Numerical Data. The transformation of two vectors into
one matrix is a vital step in this technique. In the current
implementation, it is critical that this matrix is square and
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that its order is determined by the number of components
of the two vectors.

In short, for the FIF algorithm, the RSA private key indicates
the order (indices) in which the blocks in the final matrix (hybrid
key) are built. The algorithm is reversible only if you know the
biometric component and the private key. Fig. 4.6 shows an
example of the keys involved.

(a) Biometric Code

(b) Private Key (1024 bit)

(c) Hybrid key (2048 bit)

Figure 4.6: Example of involved key code.

In an efficient cyber-protection solution, the first requirement
is the randomness of the key. The randomness of a sequence
is determinate by the P-value, with a range value between 0

and 1. A number sequence is accepted as random if P-value is
greater than 0, 01. In the tests, we used a private key of RSA
with 1024 as the bits dimension, and the Hybrid Face Codes
of dimension 2048 bits, calculated from 100 faces. The P-Value
indicators resulting from National Institute of Standards and
Technology (NIST) 5 [111] are shown in Table 4.1, with respect to
the sequence generated by the FIF system of 100 faces.

5 NIST Statistic tests that verify the randomness of a binary sequence of a fixed
dimension.
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Table 4.1: P-value Test NIST.

Test NIST P-value

Frequency 0, 489429

Block Frequency 0, 821653

Cumulative Sums1 0, 484992

Cumulative Sums2 0, 373882

Runs 0, 182665

Longest Run 0, 326421

The FIF, Hybrid Information Fusion algorithm, has a general
philosophy that is completely independent of the biometric com-
ponent we’ve looked at and is completely reversible, but only
if the biometric component and the private key generated by
the public-key cryptography algorithm are both available. An
example of a possible application of this encryption technique
is to ensure the security of blockchain and electronic currency
transactions, such as access to very private areas, classified and
confidential documents, privileges to activate critical, military, or
defensive infrastructures, and so on.

The results of NIST statistic testing show that the codes gen-
erated by the FIF algorithm are truly random. As a result, these
findings highlight the potential prospect of applying them to
high-security or high-fraud-risk operations, such as online or
data-transfer transactions.

The problem of support or token can be solved using a hash
technique (SHA-2, 512 bits, [1]) and a conversion of the digest
code to Base 64 (to decrease memory waste and obtain more com-
pact information), according to the literature. This code would
be associated to the Hybrid Face Code, allowing you to use the
second code in the event that the first is lost.
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3 D FA C E B I O M E T R I C S I N V I RT UA L
E N V I R O N M E N T S

The use of 3D in the biometric field is not a recent issue, but
continues to be studied and new perspectives are coming. Having
a 3D model available of a face make it possible to achieve higher
levels of accuracy than 2D models for biometric functionality. This
is due to the high level of detail of the biometric properties and
the potential to evaluate them from different perspective when
transferred to a 2D reference system. Obtaining large numbers of
3D models of biometrics is not easy because either the acquisition
operations are very long and expensive, or specific devices are
required, but in any case, finding many subjects is always a
complicated thing. One solution is to think virtual, both for the
generation of models and for their field experimentation.

5.1 from real to virtual round-trip

In the field of biometrics, moving from the real world to the
virtual is not always possible, but it is worth trying. Often it is a
round trip because you switch to the virtual world and then bring
the results to the real world. Therefore, even if the separation be-
tween the two worlds must be advantageous, there must never be
a cleavage between them to obtain applicable solutions in reality.
The steps are not painless from a computational point of view,
but this is a problem of future architectures and partly solved.
Virtual data and semi-synthetic data can be merged to generate a
large number of models, with features near to real, useful for the
training needs of next generation neural networks. Many publica-
tions in the multimodal fusion literature present results based on
approximately 100 genuine participants, with little consideration
of the reality that such results could be highly biased. The authors
of [41] first address this issue and present a novel technique for
evaluating multibiometric systems on standard size databases of
real subjects. Furthermore, it is logical to consider the idea of em-

89
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ploying virtual subject databases, which are individuals created
by merging distinct biometric traits (modalities) from different
people or obtained like from the process presented in chapter 3.
If this approach is valid, it will make creating multimodal data
easier because it will just be necessary to integrate two or more
databases with roughly the same number of individuals, each
containing each distinct modality.

Synthetic datasets in combination with virtual environments
are tools for this purpose. Some examples of synthetic biometric
traits are covered in the following sections.

5.1.1 Synthetic data

Synthetic data is information that has been created artificially
using algorithms based on features of the real world. The con-
straints that these generations must follow are that the set ob-
tained must keep the fundamental properties of the real world
and must not alter the problem unless that is the goal. As
stated below, there are various advantages to creating this type
of dataset, particularly in the biometric, financial services, and
healthcare industry. They increasingly replace real data in tests
to validate mathematical models and train machine learning
models.

The advantages of their use include the reproducibility of the
test in a precise way, the lack of need to comply with regulations,
the achievement of the quality of the real test in subsequent
steps massive increase in the number of tests and the variety of
simulated conditions, the introduction of rare, unexpected, and
unreal conditions.

The disadvantages include inconsistencies when trying to repli-
cate complex real systems or conditions if the synthetic model
is not accurate, in-depth knowledge of the nature of the original
data, and the risk of having models that do not produce the
expected results due to the unknown variability of the data in
the real world.



5.1 from real to virtual round-trip 91

5.1.1.1 Big Extension

The first and most important benefit is the ability to gather a large
amount of data, referring to Data Augmentation (DA) in techni-
cal terms, which is particularly beneficial for training Artificial
Neural Networks (ANN), which requires sampling of many tens
of thousands, if not hundreds of thousands, of samples. DA is
frequently obtained by altering the properties of a source data set.
In the case of image classification, alterations such as distortion,
rotation, noise insertion, flipping, blurring, color changes, and
illumination changes are used. In a 3D face model, something
more advanced could be generated. In [63] the authors have
demonstrated the performers Deep Neural Networks (DNN) tech-
niques applied to 3D data augmentation. They synthesize images
of 3D face shape estimates with new conditions of viewpoint and
lighting conditions. This augmented model can then be applied
for face recognition, face classification, and face landmarks. Ma-
jor properties are preserved diversity to cover the variability in
real-world scenarios, and fidelity to not insert unrealistic artifacts.
Visual results are shown in Fig.5.1.

Figure 5.1: Examples of morphed emotional faces.
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5.1.1.2 Privacy guarantee

If synthetic data are not attributable to an identity, they do not
require authorization to be used or stored because they respect
the privacy of personal data. A very useful example is the gen-
eration of a synthetic dataset of facial expressions suitable for
testing emotion identification, the dataset FERG in Fig. 5.2. This
dataset is built starting from a group of people where each sub-
ject makes expressions Fig. 5.2a. For each subject and for each
expression, a character series is generated with different aspects,
but which retain the expression of the subject [10], Figures 5.2b
and 5.2c. This method is very useful because also in this field it
is not easy to find many subjects. In this case, the identity and

(a) Source (b) Primary
Character

(c) Secondary Character

Figure 5.2: FERG dataset emotion example.

image are totally protected because the dataset can be distributed
even without the face image of the original subjects and without
compromising its purpose.

5.1.1.3 Features injection

Database features in the real world can be enriched with new
information not originally present. An example is an experiment
conducted in order to realize a high-resolution synthetic model
of an iris. Other synthetic models already exist in the literature,
but in this case, it differs in terms of purpose. The intention was
to generate a series of light reflections inside the iris such as
to make extremes about the difficulty of its segmentation. The
virtual results can be seen in the Fig. 5.3.
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Figure 5.3: Synthetic Iris biometrics trait examples.

5.1.1.4 From 2D to 3D

Starting from the consideration that there are many datasets of
faces in 2D images in the literature, some authors have focused
on the possibility of generating the respective 3D models. In [77]
the authors set themselves the goal of the 3D reconstruction of
a face from a single in-the wild image with an increasing level
of detail and high fidelity characteristics. If on the one hand, the
availability of many 2d images with faces allows the generation of
innumerable 3D models, on the other hand as many starting 3D
models are necessary. Furthermore, even if the visual effects are
considerable, in essence, the 3D models are not very different as
a point cloud shape. In any case, the result is a realistic rendering
and the carried out models are useful and good as can be seen in
Fig. 5.4.

Figure 5.4: From 2D (left) to 3D face reconstructions under different
environment maps with added spot lights.
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5.1.1.5 Generative models

Non-existent data generation consistent with existing data is a
prerogative of Generative Neural Networks (GANNs). GANNs
learning by samples how to transfer predetermines features form
sample to one other preserving some characteristics of the desti-
nation sample. The authors of [130] propose a novel Dual-Agent
Generative Adversarial Network (DA-GAN) for synthesis of pro-
file views to generate high-quality faces that are really useful for
unconstrained face recognition. The biggest obstacle to learning
a well-performing pose-invariant model for unconstrained face
recognition is the high variety and few profile face photos for
each participant. To solve this issue, they trained the DA-GAN on
face photos with various predefined poses (i.e., yaw angles), and
explicitly augmented the existing training data while balancing
the pose distribution without further human annotation efforts.
In Fig. 5.5 are shown some DA-GAN results.

Figure 5.5: Refined results of DA-GAN

5.1.2 Synthetic Environment

Virtual Environments mirror the visual and dynamics character-
istics of the real world to obtain new synthetic worlds in which
to immerse human-machine interaction or design interactions
between systems and environments. There are many fields of ap-
plication, automotive, medicine, military, and gaming, in which
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there has been the greatest development, and many others. A vir-
tual environment can be thought of as a set of synthetic datasets
between static and animated elements with which it is possible
to manage interactions.

Suffice it to say that in the automotive field, virtual environ-
ments built in doc, with myriads of sensors and functions, sell
modeled and tested future mechanisms for autonomous driving
which will then be placed on the market. The level of reality,
understood not only from a visual point of view, but also from
an interactive point of view, is already very high and in some
cases the cognitive sensation perceived by the user bordered on
reality.

Building an adequate visual environment requires a lot of
design and development efforts, and computationally powerful
tools such as modern GPUs are available. The most widely used
tools are Unity, Blender, Unreal3D, and Robot Operating System
(ROS). While the first were born for gaming, ROS is a tool that has
evolved especially for the management of robots in the industrial
sector.

The purposes are important because, in cases where proto-
typing is dangerous both for equipment and people, they solve
the problem. An example is the prototyping of the project pre-
sented in the 3.2 session, in which the use of a simultaneous
driver for the drone is shown. Although without high-resolution
features, the drone simulator allowed us to prototype the flight
around a point in which a subject would then be placed for video
recording.

5.2 what could be done

Figure 5.6: An illustration of the avatar construction.
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The results presented in Section 3.2 can be further integrated in
a broader experimentation involving the use of 3D face models in
a virtual environment. The face region of the 3D models obtained
can be nested in animated characters named avatars, inserted
into the virtual environment to create an architecture suitable
for biometric purposes and collect new synthetic datasets [49],
Fig. 5.6. The solutions carried out can then be verified in real
circumstances by involving the subjects used in the acquisition by
means of a drone. An example of a first prototype implemented
with the intention of displaying features is shown in Fig. 5.7.

(a) (b)

Figure 5.7: Prototypical environment of acquisition by means of drone.
Different viewpoints of the scene: a) from the observer, b)
from the drone.



6
C O N C L U S I O N S A N D F U T U R E W O R K S

From the study carried out so far in the work of PhD, it is possible
to draw the following conclusions. Biometrics still represents an
open and constantly evolving field of research. New sensors and
software technologies broaden the field of applications, while also
improving the precision level and reliability of biometric systems.
The evolution of mobile devices is increasing the demand for this
approach in everyday life to ensure security and reliable services
related to personal identity. The results and contributions of this
work are described below. Further discussion of future scenarios
that may occur and which would require further investigation in
this area.

6.1 contributions , results , and discussion

The evolution of surveillance systems always requires new so-
lutions, and therefore leads to the creation of more complete
and multipurpose datasets suitable for biometric recognition and
identification. Following an in-depth study, we realized the lack
of a dataset that gathered more features present even in datasets
already existing but completely unrelated to each other and not
applied to the same subjects.

Due to the variety of acquisitions available, such as biometric
traits, mobile devices, pose, lighting, control conditions, and
the use of a drone, MUBIDUS-I can simplify the study and
execution of identification experiments in a variety of real-world
scenarios involving surveillance systems equipped with a variety
of acquisition devices.

Mobile devices, drones, and new categories of devices may be
added to these systems in the near future. A broader version of
MUBIDUS-I is currently in work in progress. The new version
will increase the number of biometrics recorded, the number of
subjects, and the type of recording devices.
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Although several multimodal biometric databases are already
available for research purposes, but none of them can be used like
MUBIDUS-I: acquisitions of different biometric traits on different
devices are simultaneous from different views; not all datasets
use the same subjects acquired in different sessions at a distance
of time and under different conditions; multimodal datasets use
specific devices while this uses easily available and everyday ones;
the variety of protocols, and biometrics in the dataset allow you
to simulate real-world environments and conditions, and can be
combined in heterogeneous ways to create different experimental
conditions; most of the datasets are collected for general-purpose
monitoring or activity recognition, with limited focus on person
identification or face recognition, this not; we plan to expand it to
include a further 3D model dataset of the face generated by the
acquisition data of the first; the coming dataset show that it was
a good intuition (others worked independently like PDESTRE
[75]) All of this in one dataset.

Due to drones are rapidly populating human spaces and cu-
riosity, the number of studies on facial recognition using drones
is growing as [9], and some nice ones like what explores the use
of facial expressions to represent emotions on social drones [58].
Therefore, having a system available that automatically captures
faces is important, more and more for 3D face model. Further-
more, the proposed system can be remodelled and integrated to
carry out the recognition method.

The 3D representation of the human face can add important
information to improve the performance of the biometric recogni-
tion approach. In the Section3.2 proposes an automated method
for 3D reconstruction of faces with a single dynamic source.

By means of a commercial UAV that autonomously flies along
a dynamic trajectory to capture pictures of the face, the 3D face
model is computed. Images are processed into a true 3D recon-
struction suitable for both biometric purposes and all application
areas where these models can be used. Obstacle avoidance sen-
sors allow objects to be approached within 1.5 m, so obtaining
a geometric representation that is accurate enough to provide
adequate 3D reconstruction quality is not an easy task. Proximity
sensors can be disabled via DJI SDK, but this is not recommended
for user safety as the entire process is automated. By keeping
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this constraint active, we have demonstrated that in-flight drones
can achieve accurate 3D reconstruction.

The 3D models of faces obtained from controlled acquisition
in a laboratory environment that were collected using a standard
mobile device with low camera noise, were compared with those
of the wild environment. The co-recording technique of the Itera-
tive Closest Point algorithm revealed that the models acquired
by the drone at various resolutions are mostly equivalent to the
model obtained in the absence of environmental noise. Higher
resolutions of the camera embedded in the aircraft produced
the most promising results as expected. However, based on the
results of an experiment with 20 people, 4K video resolution has
greater accuracy compared to C4K, and low computing time.

The next step in this direction will be to solve some Remote
Controller performance issues and move most of the process
directly into it.

Another useful development would be to further specialize the
presented system for biometric applications. Other physical and
behavioral traits could be used, e.g., iris or ear. and gait.

The results obtained show that UAVs can be used to automate
the collection and storage of facial biometric information. They
also suggest that the proposed approach may allow monitoring
large areas of open access without human intervention, at least
during the detection phase.

We hope that technological developments related to computing
power and battery consumption will enable all computing parts
to be installed on board in the near future, to achieve the real-
time computation. Therefore, new sensors on future UAVs will
make it easier and faster to capture 3D models of the face.

6.2 looking to the future

The arrival of 5G has enhanced the sensor connection network for
the smart cities to become. Information from countless sensors or
large data streams from more complex devices, such as drones
and robots, and super cameras, will transmit at super real-time
speeds [91].

This technological condition will allow implementations in the
planning stage to be able to become operative. Projects like the
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Figure 6.1: 5G solutions of remote 3D Reconstruction.

one presented can be inserted in many contexts of cities and
easily remotely controlled, Figure 6.1, even if some problems
still need to be solved. Connections to 5G base stations cannot
be maintained during flight of the drone, but handovers to 4G
will occur. Furthermore, the higher the flight altitude, the lower
the throughput and the more frequent handovers, as highlighted
in [93]. Nevertheless, the tests continue: Ferro et al. experimented
aerial drones and exploited the 5G mobile network communica-
tion for face recognition [46].

Furthermore, the transition to a more complex solution, such
as that of using swarms of drones, robots, or various sensors will
be more possible, without great effort [118] (Figure 6.2).

Figure 6.2: Advanced solution with swarms of drones.
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