
University of Salerno

Department of Computer Science

Dottorato di Ricerca in Informatica
Curriculum Computer Science and Information

Technology
XXXV Ciclo

Tesi di Dottorato / Ph.D. Thesis

A Study of some ML and DL-based

Strategies for Network Security

Eslam FARSIMADAN

Supervisor: Prof. Francesco PALMIERI

PhD Program Director: Prof. Andrea DE LUCIA

A.A 2022/2023





Family means nobody gets left behind or forgotten.

Dedicated to my family.

For their endless love, support, and encouragement.





No one who achieves success

does so without acknowledging the help of others.

The wise and confident

acknowledge this help with gratitude.

Ð Alfred North Whitehead

A C K N O W L E D G M E N T S

Dear Prof. Francesco Palmieri, words cannot express my grati-
tude for the guidance, support, and mentorship you have pro-
vided me throughout my Ph.D. journey. Your expertise, insight,
and unwavering commitment have been a true inspiration, and I
am deeply grateful for your impact on my life and research.

Your dedication to your students is unparalleled, and your
commitment to excellence is an example to us all. I am truly
honored to have had the opportunity to work with you and to
benefit from your wisdom, guidance, and encouragement. Your
insightful and constructive feedback has been instrumental in
shaping my research and bringing it to completion, and I am
proud to have learned from the best.

I would also like to extend my sincere thanks to the reviewers
who have generously given their time and expertise to evaluate
my work. Your suggestions and insights have been invaluable
in improving the quality of my research, and I am genuinely
grateful for the opportunity to incorporate your feedback into
my thesis.

Finally, I would like to acknowledge the support of my col-
leagues, friends, and family (especially my beloved wife, Leila),
who have been a constant source of encouragement and inspira-
tion throughout this journey.

Thank you all for being a part of my life and helping me reach
this fantastic milestone. I am eternally grateful for your support
and guidance, and I will cherish these memories.

With heartfelt appreciation,
Eslam Farsimadan

v





A B S T R A C T

The Internet and advanced communication networks, such as
IoT and cellular networks, produce enormous and diverse traffic
data flows. The behavior of network traffic in these networks is
highly intricate due to factors like device mobility and network
heterogeneity. As a result, conventional network security and
management methods struggle to handle the challenges of se-
curing, monitoring, and analyzing the network and data. These
challenges include issues such as the efficacy of classification
and detection strategies, precision, accuracy, and the ability to
process big data in real-time.

Recently, machine learning and deep learning have proven
to be highly effective in addressing network security concerns
and have demonstrated superiority over traditional methods.
Consequently, researchers in the field of networking are turning
to these machine learning and deep learning models for network
security and management.

Motivated by the success and effectiveness of these models, this
thesis concentrates on addressing two crucial and challenging
issues in network security through dynamic analysis, machine
learning, and deep learning models, with a particular emphasis
on artificial neural networks. More precisely, it presents new
learning-based techniques for attack classification and malware
detection.

First, a general introduction with some motivations for this
thesis is presented. Then, the state-of-the-art is investigated, and
the most effective artificial intelligence-based methods related to
the above-mentioned network security aspects are reported. After
that, the primary materials and preliminaries for constructing
the proposed models, such as neural network types, recurrence
plots, and so on, are introduced in detail. Finally, the proposed
methods for attack classification and malware detection are inves-
tigated in terms of mathematical background, model architecture,
experimental setting, and evaluation.
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Moreover, the proposed methods are analyzed from a theo-
retical perspective and through specific performance evaluation
experiments on real network traffic datasets. The obtained results,
in the presence of several unbalanced datasets instances, prove
the effectiveness of the proposed approaches.

Keywords: Network Security, Attack Detection, Attack Classi-
fication, Malware Detection, Machine Learning, Deep Learning,
Neural Networks, Recurrence Plots, Markov Chain
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1
I N T R O D U C T I O N

The Internet is one of the most important inventions of the 21st
century that has dramatically impacted our daily lives. It has
transcended borders and revolutionized the way we communi-
cate, play games, work, shop, socialize, listen to music, watch
movies, order food, pay bills, and more. As its name suggests,
the Internet is a network of networks comprising various small,
medium, and large networks and has become a fundamental part
of our lives. Many people in today’s generation depend on the
Internet for their professional, social, and personal needs and
activities (Figure 1.1) [1]. The rise of the Internet, the Internet
of Things (IoT), and advanced networking technologies have
made the world increasingly interconnected. Consequently, vast
amounts of personal, commercial, military, and government in-
formation are stored on networking infrastructures around the
world. These networks and advanced technologies are crucial for
the functioning of the Internet and various related applications
in fields such as engineering, computer science, and beyond.

Figure 1.1: Individuals using the Internet [1].
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2 introduction

One of the critical and most complex challenges in these inter-
connected networks and advanced networking technologies is
ensuring the security of these networks and applications. Net-
work security involves continuous efforts to evaluate the security
status of the network, implement protective and preventative
measures against security threats, and establish mechanisms for
quickly detecting security issues. Moreover, it has some protocols,
procedures, and techniques for responding to attacks. In simpler
terms, network security is about protecting our networks and
data from breaches, intrusions, and other security threats. It is a
broad and encompassing term that encompasses hardware and
software solutions, as well as policies, rules, and configurations
related to network use, accessibility, and overall threat protection
[2].

The report by Cybersecurity Ventures in [3] states that network
security problems are becoming more prominent, sophisticated,
and expensive. It is estimated that the cost of global network
security and cybersecurity issues will increase by 15% each year
over the next four years, reaching 10.5 trillion USD annually by
2025, up from 3 trillion USD in 2015. This is the largest transfer
of wealth in history and poses a risk to innovation and invest-
ment incentives. It is also significantly larger than the yearly
damage caused by natural disasters and more profitable than the
combined global trade of all major illegal drugs. Additionally,
according to the 2021 Cyberthreat Defense Report (CDR) by the
CyberEdge Group, 86% of organizations experienced at least
one successful cyber attack last year (Figure 1.2). Hence, it is of
utmost importance to enhance the security of communication
systems and networks against security issues and cyber threats,
mainly as people are relying more on wireless networks such
as cellular networks and WiFi for daily activities (e.g., online
shopping, online banking, and internet-based business).

Even though network security is crucial for both the Internet
and newly developed networks, there is a noticeable absence
and significant lack of simple-to-apply and easy-to-implement
security measures. Indeed, there exists a communication gap
between the developers of network security technologies and
developers of networks. Network design is a well-developed
process. In contrast to network design, secure network design is
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Figure 1.2: Percentage of organizations compromised by at least one
successful attack [4].

not a well-developed process. When it comes to network security,
it is crucial to remember that the entire network must be secure,
not just specific components. Indeed, network security involves
more than just ensuring the security of the computers at the
start and end of the communication. The communication channel
used to transmit data must also be secure and protected from
potential security breaches.

Therefore, nowadays, network security should increasingly be
gaining attention as the Internet and networking technologies
expand. Initially, it was assumed that new security methods
would be actively researched due to the significance of the field.
However, current developments and research in network security
are not very promising, impactful, or impressive. Unfortunately,
a large portion of network security research is still focused on
improving the same technologies currently being used that have
been proven not to be effective enough.

Consequently, and due to the expanding traffic flow in ad-
vanced communication systems like cellular and IoT networks,
network security-related issues such as detecting malware on IoT
devices, detecting anomalies and attacks, and classifying network
traffic have become crucial research areas in the field of network
security. Recently, to tackle these challenges, new Artificial In-
telligence (AI)-based classification and detection strategies, such
as machine learning and artificial neural network techniques,
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have been explored as effective methods for effectively identify-
ing abnormal events within normal traffic and ensuring secure
networks.

Machine learning (ML)-based models have been highly suc-
cessful in addressing security issues in networking technologies.
They can use large datasets to train the models in centralized and
decentralized approaches. However, building a comprehensive
knowledge base on emerging security threats is currently a slow,
complex, and challenging process [5].

Artificial Neural Networks (ANNs) are a machine learning
technique that takes inspiration from the functioning of neurons
in the human brain. In other words, an ANN is an adaptive
system that learns through interconnected nodes in a layered
structure that mimics the structure of the human brain. Therefore,
they are especially suitable for modeling non-linear relationships
and are typically used to perform pattern recognition, classify
objects, and control systems. ANNs rely on training data to learn
and improve their accuracy over time, and once these learning
algorithms are fine-tuned, they are strong tools in computer
science, particularly network security and related classification
tasks. Moreover, ANN-based approaches are a crucial technology
causing innovation in many systems and tasks, including network
traffic classification, detection tasks, and feature extraction. An
ANN consists of an input layer, one or more hidden layers, and
an output layer. In each layer, there are several nodes or neurons,
and the nodes in each layer use the outputs of the nodes in
the previous layer as inputs, such that all neurons interconnect
through the different layers.

ANNs with multiple layers are referred to as Deep Learning
(DL) or Deep Neural Networks (DNNs). DNNs have recently
begun to outperform traditional ANN approaches in various
domains, particularly security issues and pattern recognition.
That is because of their ability to handle a massive amount of
data. Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), Autoencoders (AEs), and their related com-
binations are eligible under the umbrella of DNNs, which can
be employed to deal with security issues related to IoT domains
and ICT infrastructures.
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1.1 motivations

However, some considerations should be taken into account
in the case of using ML, DL, and in general learning-based
models. Building privacy-preserving models and choosing the
appropriate form of datasets are among the challenging issues in
these models.

Since the involved organizations (developers and/or end-users)
with network security are often unwilling to share their own
data since they are concerned about disclosing their intellectual
property and sensitive data about their IoT applications and
systems, building privacy-preserving models is a critical task
in network security. Federated Learning (FL)-based approaches
represent recent privacy-preserving solutions that employ the
ML and DL models’ capabilities in several classification and
detection tasks without the need to share critical data [6]. In
fact, FL is an ML setting where multiple entities collaborate in
solving a learning problem without directly exchanging data.
A central server coordinates the federated training process. FL
allows multiple parties to jointly train a model on their combined
data without having to compromise the privacy of any of the
participants. Since private data never leaves the local devices,
FL can provide strong privacy guarantees to the participants.
These guarantees can be made rigorous by applying encryption
techniques to the communicated parameter updates or concealing
them with differentially private mechanisms.

On the other side, datasets and how to use them to feed
ML, DL, and other learning-based models are crucial. In other
words, these models (specifically for network security applica-
tions) should be fed with suitable datasets in good ways to be
effective and robust. In this regard, some useful techniques and
materials can be used to reconstruct and reshape datasets to feed
the models effectively.

Recurrence Plots (RPs) are a helpful tool in visualizing the
states of complex systems, where recurrence plays a significant
role in the temporal evolution of the systems’ dynamic trajectories
[7]. Hence, by utilizing the time series of a single observable
variable, a topologically equivalent representation of the behavior
of the original multi-dimensional system can be reconstructed.
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Consequently, since RPs can visualize complex systems’ states
by representing discriminative and dynamic characteristics, they
might be employed to train a CNN capable of providing good
classification performance without being adversely affected by
obfuscation techniques.

Furthermore, Markov chains are one of the most effective
cutting-edge dynamic analysis-based strategies that can model
the API calls invoked by malware applications and construct the
representative behavioral patterns of particular malware families
[8]. More precisely, they consider the sequence of API calls to
model the application-related behavior as a graph where each
node represents a unique API, while each edge represents the
transition probability between two APIs. Markov chain-based
detectors have also been proven resistant to evasion efforts car-
ried out by selectively inserting irrelevant API calls throughout
malicious [9].

With these motivations, in this thesis, we focus on the effec-
tiveness of some ML, DL, and dynamic analysis-based models in
dealing with crucial issues in network security and the related
most disparate classification tasks (e.g., network traffic classi-
fication, encrypted traffic, attack detection/classification, and
malware detection). The main contribution of this thesis is based
on some of our papers that are [10±12].

In the following, we briefly explain some of the important
network security issues that are investigated in this thesis, our
motivations, and our contribution. In the next chapters, we will
focus on these issues in detail.

1.2 attack detection/classification

Attack detection and classification are critical data analysis pro-
cesses for spotting network intrusions and attacks. Detecting and
classifying network attacks is the challenge of monitoring and
distinguishing anomalous traffic patterns, flows, and activities
from the network’s regular anticipated behavior, which might
compromise information system security. Attack detection, clas-
sification, and prevention are at the forefront of the information
security landscape as organizations and governments look for
trustworthy solutions to safeguard their information assets from
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unwanted disclosures and unauthorized access. Furthermore, as
demand and applications in broad fields such as security, health
and medical risk, financial surveillance, risk management, and AI
safety grow, attack detection/classification plays an increasingly
significant role, as highlighted in numerous communities such
as machine learning, computer vision, data mining, and statistics
[13].

The goal of DL for attack detection and classification is to
develop feature representations or attack scores using neural net-
works. Numerous deep attack detection/classification techniques
have been developed, showing much superior performance than
traditional strategies in tackling complex detection and classifi-
cation issues in multiple real-world applications. DL methods,
such as CNNs and AEs, provide end-to-end optimization of the
whole attack detection pipeline, as well as the learning of repre-
sentations especially tuned for attack detection and classification.
These two characteristics are critical for addressing the primary
attack detection/classification issues, but traditional techniques
lack them. Regardless of the data type, they mainly assist in en-
hancing the usage of labeled normal data or some labeled attack
data, hence decreasing the requirement for extensive labeled data
as in fully-supervised scenarios [14].

With these motivations and the importance of network at-
tack detection and classification in network security, this thesis
introduces a network attack classification method based on a
particular stacked neural network [11].

Indeed, we explore the theory of dynamic non-linear systems
for effectively capturing and understanding the innermost and
more expressive Internet traffic dynamics with the aim of reli-
ably recognizing and classifying network attacks and anomalies.
Consequently, a novel IoT-related network attacks classifier is
proposed by combining the capabilities of AEs in automatically
finding relevant features and the effectiveness of characteristics
coming from non-linear analysis theory arranged as recurrence
plots. More precisely, we consider statistical information related
to benign and malicious traffic-related activities available in the
CIC-IDS2017 dataset as raw input data. Then, we employ the
corresponding multi-channel image representation of recurrence
plots and a Convolutional Sparse Autoencoder (CNN-SAE) to per-
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form automatic interpretation of recurrence plot images, intend-
ing to use the reliable discriminating power of such non-linear
structures in attack classification tasks. The achieved results show
the effectiveness of the proposed classifier also in the presence of
several unbalanced datasets partitions.

1.3 malware detection

Malware, which stands for malicious software, is designed to
access or be installed on computers, cellphones, and other sim-
ilar devices without the user’s consent or permission. For the
profit of a third party, they carry out undesired tasks on the
host computer, smartphone, and other devices. Malware has the
potential to significantly reduce the host machine’s performance.
Malware comes in a wide variety, from simple programs meant
to annoy users to sophisticated programs that steal critical infor-
mation from the host system and transfer it to remote servers.
Furthermore, there are several varieties of malware on the In-
ternet. Adware, Browser Hijacking Software, Spyware, Viruses,
Worms, Scareware, and Trojan Horses are some of the more
well-known ones [15].

Many computer and IoT systems are susceptible to attacks
and malware infection due to broad Internet use. Therefore, the
early recognition of malware is necessary to secure the systems,
data, and information. Several malware detection techniques
have recently been presented by researchers [16]. However, due
to obfuscation and evasion strategies, as well as the variety of
malicious behavior brought on by the rapid rate at which new
malware and malware variants are developed every day, multiple
challenges prevent these solutions from properly identifying
various forms of malware, particularly zero-day attacks [17].

With the extensive use of ML and DL in recent years, new
methods for identifying malware have developed using these
techniques, and malware detection models have become signif-
icantly more successful. As a result, considerable research has
been done on the techniques of malware detection utilizing ML
and DL to deal with the increasing proliferation of malware [18].
However, because these models are frequently trained on private
application data, many of the participants are hesitant to con-
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tribute their data for this purpose. Thus, some FL-based solutions
that employ ML models for malware detection and classification
without disclosing user data are becoming increasingly prevalent
[19, 20].

Aimed by this motivation, in this thesis, a new ML-based
malware detection model, which uses the benefits of federated
Markov chains, for Android-based IoT devices is introduced [10].

We propose a federated Markov chains paradigm, which makes
data owners proactive contributors to the ML-based detector
model building, giving them the means to timely update a global
model without sharing their private raw data. More precisely,
Markov chains and associative rules are used within a federated
logic, in which users independently process the raw data of each
application and then send the extracted information to a central
server, primarily dedicated to setting up and sharing the detector
in a way that protects user privacy. We validate the effectiveness
of the presented method by using a malware dataset composed of
several famous malware families. Finally, we analyze the required
temporal effort through a dedicated performance assessment,
where several dataset partitions, splitting criteria, and clients
have been considered. The related performances are comparable
for the considered dataset in the presence of non-IID data.

Therefore, as mentioned before, the main objective of the the-
sis is to investigate the effectiveness of some dynamic analysis
and AI-based models, specifically artificial neural networks, for
network security (network attacks classification and malware
detection on IoT devices).

1.4 outline of the thesis

Based on the objectives, the thesis is organized as follows:

• Chapter 1 is for a general introduction. This chapter starts
with a discussion of the current status of network secu-
rity and introduces some of the most crucial issues, chal-
lenges, motivations, and countermeasures in this area. It
also briefly discusses artificial intelligence as an effective
solution to face network security problems. Moreover, it
remarks on the motivations of this thesis, and some of the
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basic information about the original contributions of this
thesis, which are some aspects of network security such as
attack detection/classification and malware detection, are
presented. Finally, this chapter terminates by highlighting
the outlines of this thesis.

• Chapter 2 reviews the recent studies on the network secu-
rity aspects that are addressed in this thesis. In fact, this
chapter presents the related works about the most relevant
ML, DL, and dynamic analysis-based approaches applied
in the before-mentioned classification and detection tasks.

• Chapter 3 presents some preliminaries. The approaches
presented in this thesis make use of different ML and DL
models. Moreover, different types of neural networks are
employed to provide robust classifiers or detectors, which
are suitable for most network security tasks. For the sake of
clarity, in this chapter, the basic theoretical backgrounds of
machine learning, deep learning, the employed neural net-
works, recurrence plots, and the Markov chain are briefly
presented.

• Chapter 4 aims to propose a novel network attacks classifier.
Accordingly, in this chapter, the capabilities of a convolu-
tional autoencoder-based neural network are exploited for
mining relevant features from traffic flows. Indeed, non-
linear characteristics, essentially represented as attractors’
trajectories in phase space, arranged as recurrence plots,
and the most relevant spatial features extracted from them
by using a convolutional sparse autoencoder, are combined
for supporting attack classification tasks. Moreover, a for-
mal description of the overall workflow is provided to
motivate how the proposed approach, from the theoretical
point of view, improves and affects the feature extraction
process, respectively.

• Chapter 5 presents a federated Markov chains-based model
for malware detection in Android-based IoT scenarios. This
paradigm makes data owners proactive contributors to the
ML-based detector model building, giving them the means
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to timely update a global model without sharing their pri-
vate raw data. In other words, in this chapter, a federated
architecture is presented to support the rules mining pro-
cess as multiple Markov chains, and then, the resulting
associative rules-based detector is exploited to recognize
and classify several malware families by considering both
centralized and decentralized data.

• Chapter 6 shows the conclusions of this thesis and future
work.





2
S TAT E O F T H E A RT

This chapter investigates the recent studies on the network secu-
rity aspects that are addressed in this thesis. Indeed, this chapter
presents the related works about the most relevant ML and DL-
based approaches applied in attack detection and classification
and dynamic analysis-based methods for malware detection tasks.
Therefore, it is organized into two sections, each one devoted to
the state-of-the-art related to one of the above-mentioned issues.

2.1 attack detection and classification

DL is widely used for network security, particularly for network
Intrusion Detection Systems (IDS). A study by Papamartzivanos
et al. [21] introduced a DL-based, self-adaptive, and autonomous
misuse detection system that utilized Autoencoder and sparse
Autoencoder. It combined self-taught learning and MAPE-K
frameworks to create a scalable and autonomous IDS with 77.99%
accuracy, which was higher than the static technique’s 59.71%
accuracy. The complexity of modern communication systems and
big traffic data make it difficult for traditional techniques and
classical ML to handle the IDS task. Naseer et al. [13] studied the
use of DL for anomaly detection systems and proposed various
DL-based methods such as CNN, AE, and RNN, along with
traditional ML models such as Support Vector Machine (SVM),
Decision Tree, Nearest Neighbour, and Random Forest. They
evaluated their methods using the NSLKDD dataset [22] and
found that DL-based anomaly detection is suitable for real-world
applications. The authors aimed to compare the effectiveness of
DL models to shallow models in anomaly detection and found
that DL models outperform shallow models in classification met-
rics like accuracy and precision, but take more time for training
and testing. Jiang et al. [23] proposed using a CNN to detect vir-
tual Media Access Control (MAC) spoofing attacks by gathering
physical features from channel state information.

13
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The authors in [24] focus on anomaly detection in cloud data
center networks using the Gray Wolf Optimization (GWO) algo-
rithm and CNN. They assert that their method is ideal for real-
time anomaly detection of network log big data. They tested their
approach using the DARPA’98, KDD’99, and synthetic datasets
and found it to be superior to existing methods in the literature.
The approach achieved an accuracy of 97.92% on the DARPA’98

dataset and 98.42% accuracy on the KDD’99 dataset. The authors
highlight that current anomaly detection methods are inefficient
and result in high computational complexity and false positives,
especially in the context of real-time big data anomaly detection.

Yousefi-Azar et al. demonstrated the potential of using AE
in cybersecurity, specifically for anomaly and malware detec-
tion [25]. The authors used a single AE model with the same
architecture for both tasks and obtained favorable results due
to AE being an unsupervised generative model that can learn
the inherent representation of traffic data. The proposed AE had
an accuracy of 83.34% and outperformed traditional ML models
such as Decision Tree, Gaussian Naïve Bayes, and Fuzzy classifier.
Malaiya et al. [26] studied the use of DL for anomaly detection in
network traffic data. They evaluated different DL models such as
fully connected networks, Sequence-to-Sequence, and Variational
Autoencoder. They noted that the non-linear nature of network
traffic data makes it difficult for classical ML techniques like
SVM to perform well in anomaly detection.

The author in [27] proposed using Stacked Autoencoders
(Stacked AEs) in 2017 for anomaly detection and attack cate-
gorization in IEEE 802.11 networks. The author first studied
the threats and attacks in this network and identified the chal-
lenges in achieving high accuracy in attack classification. Then,
a Stacked AE method was proposed for anomaly detection and
classification. The method can automatically learn the critical
features of the data and has an accuracy of 98.66%.

Chen et al. addressed security in mobile edge computing for
transportation systems in [28]. The authors highlighted the grow-
ing communication volume among connected edge devices and
the resulting security challenge. To overcome this, they proposed
a deep belief network-based feature learning method to detect
unknown attacks in mobile edge computing. Their proposed
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method was compared to 4 classical ML algorithms (Softmax Re-
gression, Decision Tree, SVM, and Random Forest) and showed
improved accuracy.

Notwithstanding the significant effort made in annotating IoT
traffic records, the number of labeled records is still limited, rais-
ing the difficulty in identifying attacks and intrusions. To address
this issue, Abdel-Basset et al. [29] introduced a semi-supervised
DL approach for intrusion detection called SS-Deep-ID, which
consists of a multi-scale residual temporal convolutional (MS-
Res) module that finetunes the network capability in learning
spatio-temporal representations. The key in the MS-Res module
is the dilated causal convolutions (DC-Conv) [30], and a traffic
attention module is incorporated to help the network emphasize
the most significant features for detecting intrusions.

Nie et al. [31] developed an IDS based on the Deep Deter-
ministic Policy Gradient (DDPG) algorithm [32]. Their method
first extracts the statistical features of prior network traffic to
capture the trends of traffic flows and perform traffic prediction.
Then, the developed traffic predictors are employed in combina-
tion with a suitable threshold to enable intrusion detection. The
CIC-DDoS2019 dataset [33] was used to evaluate the proposed
model. The achieved performance included 99% precision with
a false positive rate of 1.21%, outperforming PCA and Sparse
Regularized Matrix Factorization (SRMF) [34].

Wang et al. [35] proposed a federated anomaly detection sys-
tem employing deep reinforcement learning to enable multiple
parties to jointly learn an accurate deep model while preserv-
ing the data itself locally and confidential. Another significant
advantage of using federated distribution instead of a central-
ized architecture is that unexpected intrusions in one or more
client systems do not affect the whole system. However, since
federated learning employs secure aggregation to protect the
confidentiality of the local models, it cannot detect anomalies in
the participants’ contributions to the joint model.

The discussed ML and DL-based methods for network security
are summarized in Table 2.1.

On the other side, Recurrence Plots (RPs) have been applied
in many scientific fields to study and better understand com-
plex systems’ behavior, including astrophysics, earth sciences,
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Author(s) Method(s) Advantages

Papamartzivanos et al. [21]
AEs, Sparse AEs, self-taught
learning, MAPE-K Scalable and autonomous IDS

Naseer et al. [13]
CNN, AE, RNN, SVM, Deci-
sion Tree, Nearest Neighbor,
Random Forest

DL-based anomaly detection
suitable for real-world appli-
cations

Jiang et al. [23] CNN
Detection of virtual MAC
spoofing attacks

Garg et al. [24] GWO, CNN
Ideal for real-time anomaly
detection of network log big
data

Yousefi-Azar et al. [25] AEs

Anomaly and malware detec-
tion model capable of learn-
ing the inherent representa-
tion of traffic data

Malaiya et al. [26]
Fully connected networks,
LSTM Sequence-to-Sequence,
Variational AEs

99% of binary classifica-
tion accuracy for network
anomaly detection on public
data sets

Thing [27] Stacked AEs
High accuracy in attack clas-
sification

Chen et al. [28] Deep belief network
Improved accuracy in detect-
ing unknown attacks in mo-
bile edge computing

Abdel-Basset et al. [29] DC-Conv, Attention module

Efficiency of intrusion de-
tection and increasing the
robustness of performance
while maintaining computa-
tional efficiency

Nie et al. [31] DDPG algorithm
99% precision with an false
positive rate of 1.21%

Wang et al. [35]
Federated Deep Reinforce-
ment Learning empowered
Anomaly Detection (FLAD)

In order to prevent privacy
leakage, abnormal actions of
users are detected on time

Table 2.1: An overview of the discussed ML and DL-based network
security works.

engineering, biology, cardiology, and neuroscience, as extensively
surveyed in [36].

In particular, DL-based models have been widely employed for
extracting non-linear features from RPs calculated on raw data
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samples [37±39]. For instance, Kirichenko et al. [40] have inves-
tigated the effectiveness of RPs derived from electroencephalo-
grams (EEG) time series concerning various human conditions.
The obtained results, carried out using the Epileptic Seizure
Recognition dataset [41], have proven the effectiveness of CNNs
in detecting both seizure and no-seizure situations from the re-
lated plots with an average accuracy of 98.40%. Tziridis et al.
[42] have deeply investigated the RPs related to EEG signals by
applying to them several noise levels. More precisely, they have
perpetuated the input signal by adding, each time, one noise
level and then classifying the related RPs through several fa-
mous state-of-the-art CNNs, such as AlexNet [43], ResNet18 [44],
DenseNet121 [45], and VGG16 [46], respectively. The obtained
results have proven, for each considered dataset, the validity
of RPs in the presence of several noise levels by achieving an
average accuracy between 95% and 97%.

Furthermore, RPs have also been investigated in strictly-related
Computer Science fields, like Malware classification. In this di-
rection, Sartoli et al. [47] have employed a CNN to perform a
malware classification task by considering the plots derived from
the malware binary images. More precisely, the obtained results,
carried out from the Microsoft Malware Classification Challenge
dataset [48] have proven the effectiveness of the proposed ap-
proach with an average accuracy of 96.7% in the presence of nine
unbalanced malware families.

Internet traffic analysis solutions have also been investigated
using non-linear features arranged as RPs, which offered signifi-
cant advantages in identifying more complex and unidentified
traffic categories [7]. More precisely, since RPs can visualize com-
plex systems’ states by representing discriminative and dynamic
characteristics [49, 50], they might be employed to train a neural
network or machine learning mechanism capable of providing
good classification performance without being adversely affected
by obfuscation techniques. The first network anomaly detection
experience leveraging non-linear methods, particularly Recur-
rence Quantification Analysis, has been presented in work [51].
Similar techniques have also been employed [52], relying on time-
dependent Unthresholded Recurrence Plots for representing the
traffic time series, with the goal of capturing their non-linear



18 state of the art

features, then analyzed through an Extreme Learning Machine
Autoencoder.

The discussed RP-based methods are summarized in Table 2.2.

Author(s) Method(s) Advantages

Kirichenko et al. [40] RPs, CNN

Detecting both seizure and
no-seizure situations from the
related plots with an average
accuracy of 98.40%

Tziridis et al. [42] RPs, CNNs An average accuracy between
95% and 97%

Sartoli et al. [47] RPs, CNNs
An average accuracy of 96.7%
in the presence of nine unbal-
anced malware families

Palmieri et al. [7]
RPs, Analysis of non-
stationary hidden transition
patterns of IP traffic flows

Effective for providing a de-
terministic interpretation of
recurrence patterns in traffic
flows

Palmieri et al.[51]
Recurrence Quantification
Analysis, Discriminative Re-
stricted Boltzmann Machine

Detecting any type of un-
known anomalous events

Hu et al. [52]
Unthreholded RPs, Extreme
Learning Machine AE (ELM-
AE)

Performing well on complex
nonlinear systems using unla-
beled datasets

Table 2.2: An overview of the discussed RP-based methods.

Convolutional neural networks, autoencoders, and their related
combinations, which are eligible under the umbrella of deep neu-
ral networks, have been employed to deal with the most disparate
classification and detection tasks (e.g., unbalanced dataset, en-
crypted traffic, and anomaly detection) and their results are very
promising [53±56].

Accordingly, in Chapter 4, we combine the abilities of Au-
toencoders in distilling meaningful and relevant features and
the effectiveness of non-linear characteristics in capturing traffic
behavior, arranged as Recurrence Plots, to introduce a detector ca-
pable of performing anomaly and attack detection/classification
tasks in the presence of different conditions in terms of available
training/testing datasets.
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2.2 malware detection

Most of the existing malware are specifically designed to be self-
modifying in order to evade pattern-matching detection mecha-
nisms [57]. Such types of malware are also known as polymor-
phic and metamorphic malware, which can mutate the appear-
ance of their code by adding several NOP and loop instructions,
permuting user registers, and modifying static data structures.
Consequently, static malware analysis-based approaches become
ineffective and can be strongly affected by obfuscation tools.
Therefore, to overcome these issues, several dynamic analysis-
based methods have been proposed in the last years [58±61]. They
analyze the dynamic behavior of an application by considering
several aspects like function calls, parameters monitoring, and
API calls tracing [62].

However, since most of them are characterized by a consider-
able computational complexity (i. e., they are often NP-Complete)
[63, 64], several studies have adopted Markov chain-based mod-
els that represent the applications-related features vectors as
transition probabilities between each API calls pair. Such ap-
proaches have shown their effectiveness against evasion tech-
niques by proving that the insertion and removal of arbitrary
calls do not significantly affect the transition probabilities [65, 66].
More precisely, in 2018, A. Martin et al. [9] presented a tool that
classifies Android malware families by arranging the extracted
dynamic features as a Markov chain. The following application,
also known as Classifying Android malware families by model-
ing dynamic traces with Markov chains (CANDYMAN), has been
validated on a collection of 4442 samples grouped into 24 differ-
ent malware families by achieving a precision of 81.8%. In 2019,
M. Ficco [8] proposed an IoT anomaly detector by considering the
transaction probabilities associated with the API call sequences
invoked by an application. In detail, the following model has
obtained an F-measure of 89% on 22000 benign applications and
24000 malware collected from several famous datasets. D’Angelo
et al. [67] presented a new associative rules-based malware clas-
sifier capable of combining the Markov chains and associative
rules. More precisely, they have proven the effectiveness of the
classification scheme on 8 malware families by comparing it with
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the state-of-art algorithms and achieving an average F-score of
96.1%.

On the other hand, due to the recent explosion of malware
attacks, also in scenarios characterizing new userland devices in
the IoT segment market, and to the necessity of protecting the pri-
vacy and intellectual property at both the individual users’ and
organizations’ level, the involved subjects are becoming increas-
ingly reluctant to share their sensitive data and, consequently,
being involved in any security scenario capable of defending
them against new hostile activities. To overcome this issue by
preserving privacy, one of the most popular options is asso-
ciated with FL-based [68] solutions, where each decentralized
entity trains an individual model using only its data and, in
order to create a global and shared model, sends the obtained
model parameters to a central server [69]. In this direction, many
FL-based solutions have been proposed and adopted in several
application domains, such as healthcare applications [70], Failure
prognosis [71], and network traffic detection and classification
[72, 73]. Also, they have been used for malware classification in
IoT environments by considering several extracted features, FL
algorithms optimization, learning models, and security schemes.
Unfortunately, due to the high amount of related works pub-
lished, performing a complete comparison among them is very
difficult. A detailed comparison among the different solutions
proposed in the literature is presented [73±75].

Ruei-Hau et al. [76] proposed a new Android detection schema
to prevent possible Poisoning attacks on a federated model. They
protected the federated learning process through a Secure Multi-
Party Computation (SMPC) implementation provided by Open-
Mined/PySyft [77]. Moreover, they evaluated the discussed de-
tection model in both centralized and decentralized scenarios
by respectively obtaining an average accuracy of 94.05% and
93.45%. In the same direction, Galvez et al. [78] presented Less is
More (LiM), an Android malware classification framework that
leverages FL to detect and classify malicious applications by em-
ploying static features. More precisely, the following framework
has achieved an average F-Score of 95% over 50 iteration rounds
and 50000 Android applications distributed among 200 clients
trained in a semi-supervised manner.
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Shukla et al. [79] proposed a Robust and Active Protection
with Intelligent Defense (RAPID) strategy against malicious ac-
tivities based on CNNs and grey-scale figures representing the
application binary files. The following malware classifier, able to
distinguish 6 famous malware families, has proven its effective-
ness by obtaining a 94% average accuracy and introducing, in
addition, a server-side defense mechanism based on the euclidean
distances among the related federated model features. Finally,
in 2022, Rey et al. [6] and Popoola et al. [80] presented similar
network flows-based approaches to detect the presence of Botnet-
related cyberattacks in IoT domains with a 99% average accuracy.
More precisely, the following methods have been trained by con-
sidering several learning scenarios (Supervised, Semi-Supervised,
and Unsupervised), DNNs models (with different numbers of
layers and hidden neurons), federated hyperparameters (number
of clients and rounds), and network features respectively related
to Bot-IoT and N-BaIoT datasets [81].

However, most of the reported FL-based approaches consider
static features that, as previously remarked, are strongly affected
by obfuscation techniques and polymorphic malware, while traf-
fic flows-based ones, being based on features directly derived
from the stored network packets, become ineffective against traf-
fic anonymization techniques. Furthermore, since both of them
are not able to analyze the application-related dynamic behavior,
they cannot be used in any possible runtime-based detection or
classification strategies [61].

Moreover, as previously highlighted in the introduction, FL-
based models are often adversely affected by non-Independent
and Identically Distributed (non-IID) data for what concerns train-
ing time, convergence, learning process, and classification results
[82, 83]. For this reason, many learning strategies have been pro-
posed in recent years. In 2020, Karimireddy et al. [20] presented
the Stochastic Controlled Averaging algorithm (SCAFFOLD) that
tries to estimate the update direction for both server and client
models. More precisely, the proposed algorithm, validated in the
presence of 100 clients and unbalanced dataset partitions, has
outperformed the most famous state-of-the-art Federated algo-
rithms by slightly improving the convergence process in terms of
required computational time. Li et al. [84] proposed an extension
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of the FedAvg algorithm based, at each iteration, on the selection
of a subset of clients through their local loss function values. The
presented FedProx algorithm, tested on four famous federated
datasets, has achieved comparable IID and non-IID loss functions
but at the expense of slower convergence.

Lu et al. [85] presented an improvement of the FedAvg algo-
rithm based on Earth Mover’s Distance (EMD) between central
and local parameters. More precisely, a new metric, defined
as node degree contribution, is derived to improve the local
models-related aggregation at each iteration. Also, the experi-
mental results carried out with 100 clients and a different number
of iterations, have shown a similar convergence behavior and
a slight improvement in accuracy compared with the FedAvg
algorithm. Eventually, Pagliarola et al. [86] proposed a PartialNet
Strategy that reduces communication costs by considering par-
tially trained models that, at each iteration, are aggregated by the
central server if and only if they satisfy a given threshold. The
following strategy, validated on a real-world dataset regarding
people affected by hypertension, has proven effective by reducing
communication costs in both IID and non-IID data scenarios.

The discussed methods for malware detection tasks are sum-
marized in Table 2.3.

Further, as previously stated, the proposed learning strategies
are often characterized by additional hyperparameters whose
tuning complexity could limit their applicability. Therefore, to
overcome the discussed issues and preserve the intellectual prop-
erty and privacy of the involved users and companies, we extend
the associative rules-based detector, presented in [67], within a
federated logic. More precisely, we recall the capability of our
approach to be inherently robust against evasion/obfuscation
techniques based on the API call flow perturbation. Also, we
highlight the possibility of using it in non-IID data scenarios that,
as previously discussed, often adversely affect the convergence
and learning processes of the FL-based models.
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Author(s) Method(s) Advantages

Martin et al. [9] Markov chain, CANDYMAN
The privacy of the data can
be preserved without losing
model performance

Ficco [8] Markov chain

The Markov chain approach
detects unknown malware
samples with F-measure up
to 89%

D’Angelo et al. [67] Association rule-based

The method is able to detect
unknown malware samples
with 99% accuracy and an F-
measure of 96.10%

Ruei-Hau et al. [76]
FL, Support Vector Machine
(SVM)

The privacy of app informa-
tion and trained local models
is guaranteed

Galvez et al. [78] FL

The method is robust against
both poisoning attacks by ad-
versaries who control half of
the clients, and inference at-
tacks performed by an honest-
but-curious cloud server

Shukla et al. [79] FL, CNN
An average accuracy of 94% is
obtained, while ensuring data
security and privacy

Rey et al. [6] FL ,DNN
The privacy of the data can
be preserved without losing
model performance

Popoola et al. [80] FL, DNN

Detecting zero-day botnet at-
tacks with high classifica-
tion performance, having low
communication overhead

Karimireddy et al. [20]
Stochastic Controlled Averag-
ing algorithm

The method can take advan-
tage of similarities in the
client’s data yielding even
faster convergence

Li et al. [84]
Improved federated averag-
ing

In highly heterogeneous set-
tings, the method demon-
strates significantly more sta-
ble and accurate convergence
behavior

Lu et al. [85] Federated averaging, EMD
The method can reduce the
impact of non-IID data prob-
lems

Pagliarola et al. [86] FL

The method reduces commu-
nication costs in both IID and
non-IID data scenarios, The
method achieves excellent re-
sults in terms of classification
accuracy

Table 2.3: An overview of the discussed malware detectors.
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P R E L I M I N A R I E S

The methods presented in this thesis utilize different machine
learning and deep learning models. Moreover, different types
of neural networks are employed to provide robust classifiers
or detectors, which are suitable for most network security tasks.
For the sake of clarity, in this chapter, the basic theoretical back-
grounds of machine learning, deep learning, the employed neural
networks, recurrence plots, and the Markov chain are described.

3.1 machine learning

(AI) has attracted lots of interest in recent years for many use
cases, such as self-driving cars [87], chatbots [88], virtual assis-
tants [89], and more [90]. The history of AI dates back to the
1950s when researchers aimed to automate intellectual tasks typi-
cally performed by humans. The dominant method for achieving
human-level AI during this time was symbolic AI, which relied
on a vast set of rules for manipulating knowledge. Even though
symbolic AI successfully dealt with well-defined tasks, it proved
limited in solving more complex tasks such as speech recognition
and image classification. To overcome these challenges, the field
of machine learning emerged as a new approach to AI.

The rise of Machine Learning (ML) has introduced a new ap-
proach to programming. In traditional programming and sym-
bolic AI, rules and data are input by the user to produce results.
In contrast, with ML, the user inputs data and desired results,
and the learning model generates the rules. These rules are then
applied to new data to produce outcomes. ML systems are train-
able rather than explicitly programmable, meaning they require
large amounts of data to identify meaningful features and gener-
ate rules for automation [91]. The process of building analytical
models through explicit programming, shallow ML, and deep
learning is illustrated in Figure 3.1.

25
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Figure 3.1: The process of analytical model building for explicit pro-
gramming, shallow ML, and deep learning [92].

As a statistical-based analytical tool, ML has gained widespread
use in various fields such as healthcare, finance, marketing, and
cybersecurity, among others. Its ability to make informed deci-
sions based on data analysis relieves the burden of processing
vast amounts of information, making it ideal for analyzing com-
plex situations. Additionally, its ability to respond quickly to
abnormal behavior is an advantage in early detection, outpacing
human response times [93].

ML is commonly classified into three main learning paradigms:
supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning (as shown in Figure 3.2).
These paradigms vary in the types of tasks they can solve and
how data is presented to the computer. The task and data often
dictate which paradigm should be used, with supervised learn-
ing being the most common. However, in some cases, multiple
paradigms can be combined to achieve better results [94]. This
section provides an overview of these paradigms and their use
cases.

Supervised Learning (SL). Supervised Machine Learning uses
labeled training data to create a target model (function). A labeled
data consists of an input feature vector (x) and an output label (y).
The output label serves as the supervisory signal. The learning
algorithm learns the relationship between the feature vector and
label in the training data and applies that knowledge to new data
to accurately predict class labels.

Therefore, in SL, the objective is to learn a target function
(model) from the dataset to the set of labels using a training set,
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Figure 3.2: ML main learning paradigms.

which is a subset of the dataset. Past experience is used as a
reference for decision-making, and a high-quality training set
is crucial for building an effective model. However, a successful
outcome is not solely dependent on the dataset; the training
method also plays a significant role. Before making predictions,
the model’s performance, such as accuracy, is usually evaluated
to determine its reliability. The model’s effectiveness is deter-
mined by its predictive performance on test data, another subset
of the dataset.

SL can further be classified into two techniques: classification
and regression. Classification involves categorizing input data
into discrete groups based on the probabilities of each group be-
longing to a certain class. The class with the highest likelihood of
belonging to the sample wins [95]. On the other hand, regression
predicts continuous responses from input variables. For example,
it can predict the temperature or demand for power [96]. The
percentage of correct predictions measures the performance of
a classification model. In contrast, a regression model’s perfor-
mance is evaluated by calculating the root-mean-square error,
which measures the deviation between the predicted and actual
values.

Some examples of SL algorithms are as follows:

• Support Vector Machines (SVM) for classification;

• decision trees for classification;

• Naive Bayes for classification;
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• K-nearest neighbors (K-NN) for classification;

• random forest for classification and regression;

• linear, logistic, polynomial, and least square regression for
regression;

• ensemble methods for classification and regression.

Unsupervised Learning (UL). Unsupervised machine learning
is a process of learning without the use of labeled training data.
The input data (x) is the only information available, with no
corresponding output data (y) for training. In this scenario, un-
supervised learning algorithms attempt to identify the structure
and distribution of the data to uncover and present any signifi-
cant patterns or classes present. This type of learning is referred
to as unsupervised because there is no supervisor providing the
correct answers.

In UL, unlike SL, there is no labeled training data and a training
process. This means the system operates independently, and its
performance is difficult to evaluate. While some researchers use
pre-existing labeled data to assess the results of the UL model,
this is not practical in real-world applications, and experts may
need to manually analyze the results to perform an external
evaluation [94].

The main objectives of UL are to discover patterns and relation-
ships in data, estimate the probability distribution that generated
the data, find groups in the data through clustering, identify as-
sociations in the data, detect outliers, and reduce the complexity
of the data through dimensionality reduction. Clustering aims
to identify natural groupings in the data, while association rule
learning seeks to uncover rules that describe a significant portion
of the data. Through dimensionality reduction, unsupervised
learning identifies related features in the dataset, allowing for
the removal of redundant information to minimize noise.

Some examples of UL algorithms are as follows:

• hierarchical clustering for clustering;

• mixture models for clustering;

• K-means clustering for clustering;
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• factor analysis for clustering;

• Principal Component Analysis (PCA);

• apriori algorithm for association problems;

• independent component analysis;

• singular value decomposition.

Semi-Supervised Learning (SSL). Semi-supervised machine
learning is used when the training data consists of a small num-
ber of labeled points and a large number of unlabeled points.
This can happen due to the limited availability of labeled data
or its high cost of production. These problems bridge the gap
between supervised and unsupervised learning. Collecting and
storing unlabeled data is usually inexpensive and straightfor-
ward, but obtaining labeled data is time-consuming and costly.
Many practical machine learning scenarios fall under the um-
brella of SSL.

SSL uses the supervised learning process with limited labeled
data to develop a classifier that can predict the class of unlabeled
samples. The classifier then assigns a confidence score to each
pseudo-labeled sample, allowing the administrator to determine
its accuracy. The confident pseudo-labeled samples are added
to the training set, and the classifier is updated until all data is
labeled. However, because the pseudo-labeling is done randomly,
certain assumptions such as smoothness and clustering must be
made before training on the unlabeled data [97, 98].

Therefore, SSL can also be seen as learning with constraints,
where constraints are imposed on the behavior of the learned
classifier on unlabeled instances. SSL can take on either an in-
ductive or transductive approach. In the inductive approach, the
unknown function is inferred from the available data, while in
the transductive approach, the values of the unknown function
for specific points of interest are inferred from the available data.

Some types of SSL techniques are as follows:

• self-labelled techniques;

• semi-supervised support vector machines;

• generative models.
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• graph-based models;

Reinforcement Learning (RL). RL is a powerful machine learn-
ing technique that has gained significant attention recently due to
its ability to solve complex problems in dynamic environments.
Unlike supervised learning, which requires labeled data, and
unsupervised learning, which requires only unlabeled data, RL
requires an interactive environment where an agent can receive
feedback through rewards. Indeed, in RL, an agent learns from
its interactions with the environment by continuously adjusting
its behavior to maximize the expected cumulative reward. The
learning process is based on trial and error, where the agent takes
action, receives rewards, and updates its policy. The agent’s goal
is to find the optimal policy that maximizes the reward over time
[99].

RL has been applied in various fields such as robotics, gam-
ing, and control systems. RL has been used in robotics to train
robots to perform tasks such as grasping objects, navigation, and
manipulation. RL has been used in gaming to develop AI agents
that can compete with human players in complex games such
as chess, Go, and video games. RL has been used in control
systems to optimize control policies for systems such as energy
management and traffic control systems.

RL algorithms can be classified into value-based, policy-based,
and actor-critic algorithms. Value-based algorithms aim to es-
timate the expected reward for each state or state-action pair.
Policy-based algorithms focus on directly learning the optimal
policy, while actor-critic algorithms combine value-based and
policy-based methods.

In conclusion, RL is a promising machine learning technique
that offers a new way of solving problems in dynamic environ-
ments. It has the potential to be applied in a wide range of fields
and has already been used to develop advanced AI systems in
various domains.

Some categories of RL algorithms and techniques are as fol-
lows:

• Monte Carlo;

• Q-learning (State-Action-Reward-State);
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• State-Action-Reward-State-Action (SARSA);

• Q-Learning-Lambda (State-Action-Reward-State with eligi-
bility traces);

• SARSA-Lambda (State-Action-Reward-State-Action with
eligibility traces);

• Trust Region Policy Optimization (TRPO);

• Deep Deterministic Policy Gradient (DDPG);

• Deep Q network (DQN);

• Proximal Policy Optimization (PPO).

3.2 deep learning and neural networks

Traditional ML methods faced challenges in processing natural
data in its raw form. Building a pattern recognition or ML sys-
tem was a complex and time-consuming process that required
extensive domain knowledge and engineering expertise. The
raw data, such as the pixel values in an image, needed to be
transformed into a suitable internal representation or feature
vector through a feature extractor before the learning subsystem,
usually a classifier, could recognize or classify patterns in the
input.

Representation learning is a branch of machine learning that
enables machines to learn the representations necessary for pat-
tern recognition and classification from raw data. This is achieved
through the use of novel learning methods that consist of mul-
tiple levels of representation created by composing simple but
non-linear modules. Each module transforms the representation
from one level to a higher and more abstract level. The compo-
sition of enough such transformations enables the learning of
very complex functions. In classification tasks, higher representa-
tion levels highlight important input features for discrimination
and minimize irrelevant variations. The key characteristic of this
approach is that the feature extraction layers are not manually de-
signed by humans but learned from data using a general-purpose
learning algorithm [100].
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Deep Learning (DL), a subfield of ML and AI, is considered
a cornerstone technology of the current Fourth Industrial Rev-
olution (4IR or Industry 4.0) (Figure 3.3). DL methods utilize
representation learning to model data through complex architec-
tures that incorporate various non-linear transformations. The
building blocks of DL are neural networks, which are combined
to form deep neural networks. Because of its ability to learn
from data, DL, which evolved from artificial neural networks,
has gained significant attention in the field of computing and has
been widely applied in various fields, including visual recogni-
tion [101, 102], speech recognition [103], natural language pro-
cessing [104], language translation [105, 106], healthcare [107],
cybersecurity [108±111], and many more.

Figure 3.3: The hierarchical relationship between AI concepts and
classes.

Neural networks, the building blocks of deep learning models,
have garnered increasing attention in research since the late 1980s.
They provide a potent set of solutions for specific problems that
are complementary to those of more conventional techniques.
An Artificial Neural Network (ANN), often known as Neural
Network (NN), is a mathematical model designed to emulate
the structure and function of biological neural networks. From
the mathematical point of view, ANN is an application f, which
is non-linear concerning its parameters θ that associates to an
entry x an output y = f (x, θ). As usual in statistical learning, the
parameters θ are estimated from learning samples. Every ANN
is constructed using its basic blocks, artificial neurons, which are
simple mathematical (or computational) models. These models
function using three basic operations: multiplication, summation,
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and activation. These three operations define the core rules of the
model. The first step in processing inputs in an artificial neuron is
to be weighted, which involves multiplying each input value by
a corresponding weight. The weighted inputs and a bias term are
then summed together. Finally, the output is obtained by passing
the sum value through an activation function (Figure 3.4).

Figure 3.4: General model of an artificial neuron.

Several types of architectures exist for ANNs, such as deep
neural networks (multilayer perceptrons), convolutional neural
networks, recurrent neural networks, autoencoders, and so on.
In the following, some of the most important types of these
architectures that are used in this thesis are explained in detail.

3.2.1 Deep Neural Networks

Deep Neural Network (DNN) is a type of neural network with
multiple hidden layers and neurons. These networks have the
ability to learn essential features, leading to improved classifi-
cation and prediction performance. Because of their ability to
build strong prediction models and adapt to non-linear situa-
tions, DNNs are being widely used in various fields [112]. They
are also known as fully-connected feed-forward neural networks
and can be depicted as a Directed Acyclic Graph (DAG) with
data flowing from the input layer to the output layer in a single
direction (Figure 3.5) [100]. The architecture of DNNs can be
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changed by adjusting the hyper-parameters during the training
phase [92].

Figure 3.5: Typical structure of the DNN model.

We assume an input data vector x and a standard DNN net-
work. Given these settings, the DNN carries out the following
operation:

y = σ(W.x + b). (3.1)

In the equation, y represents the output from a layer, W stands
for the weights being learned, and b refers to the bias neurons.
σ(.) is an activation function that enhances the training process
of the model by adding non-linearity to it. The most frequently
used non-linear activation functions are depicted in Figure 3.6.

The ReLU and Leaky ReLU activation functions have been
introduced as a solution to the issue of gradient vanishing in
other activation functions. Gradient vanishing occurs when the
gradients of the loss function become extremely small, making it
difficult for them to pass through the layers. This problem has
been addressed in [113].

3.2.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) is considered to be one of
the most efficient types of deep neural networks and has proven
to be particularly effective in fields such as image processing,
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Figure 3.6: Commonly used activation functions.

object recognition, natural language processing, and autonomous
driving. CNNs can be applied to various types of data, including
time-series data which can be represented as a 1-dimensional
grid of regularly sampled data points; image data which can be
represented as a 2-dimensional grid of pixels; and video data
which can be viewed as 3-dimensional tensors. This versatility
and practical success is why CNNs are widely used. The term
convolutional in CNN refers to the use of a mathematical opera-
tion known as convolution.

s(t) = (x ∗ w)(t) =
∫ ∞

−∞
x(a)w(t− a)da. (3.2)

In the context of convolutional networks, the first input to the
convolution operation (in Equation 3.2, the function x) is typically
referred to as the input, while the second input (in Equation 3.2,
the function w) is known as the filter or kernel. The result of
the convolution operation is often referred to as the feature
map. In computer science, the convolution operation is typically
expressed in its discrete form as follows:

s(t) = (x ∗ w)(t) =
∞

∑
−∞

x(a)w(t− a). (3.3)

In CNNs, the input is typically a multi-dimensional array of
data, often referred to as a tensor, while the kernel or filter is



36 preliminaries

another tensor consisting of parameters that are learned by the
algorithm. As each element of the input and kernel must be
stored individually, it is usually assumed that these functions are
zero everywhere except for the finite set of points with stored
values. This means that the infinite summation in the convolution
operation can be computed as a summation over a finite number
of elements in the arrays.

Convolution operations are often performed across multiple
axes simultaneously. For instance, if the input is a 2-dimensional
image, a 2-dimensional kernel K is often used:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n). (3.4)

Convolution is commutative, meaning that it can be expressed
equivalently as:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n). (3.5)

The popularity of using CNNs for deep learning has grown
significantly due to two main reasons:

• the first reason is that CNNs eliminate the need for manual
feature extraction, as the network can learn these features
directly.

• the second reason is that CNNs can be retrained for new
recognition tasks, enabling leveraging existing networks.

Like other neural networks, CNNs have input and output layers.
Their strength is the multiple hidden layers, which use specific
mathematical operations to learn relevant features. Lower layers
learn basic features (Low-Level features), while higher layers
use these basic features to learn more complex and abstracted
features (High-Level features). Typically, each layer performs the
following three operations in sequence:

• Convolution. The main operation in a CNN is convolution.
It applies multiple convolutional filters to the input data,
each filter designed to detect specific features. The slid-
ing involved in the convolution is performed by different
artificial neurons that share the same weights.
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• Rectified Linear activation fUnction (ReLU). The ReLU
function, as stated, outputs zero for negative input values
and the input itself for positive input values. It is utilized as
the activation function for the output of each convolutional
neuron. This function has been a breakthrough in deep
learning due to its ability to tackle the vanishing gradient
problem, a well-known issue, and achieve improved learn-
ing performance. Unlike the commonly used sigmoid and
hyperbolic tangent activation functions, ReLU has proven
to be more effective.

• Pooling. Pooling is utilized as a down-sampling function
for two primary reasons: to decrease the size of the output
layers and thus the number of connections with subsequent
layers and to make the features insensitive to location. This
leads to faster learning and allows CNNs to recognize fea-
tures regardless of their position (achieving local translation
invariance). The two most common pooling methods are
max-pooling and average pooling, with the former accentu-
ating the most active feature and the latter highlighting the
average value of the features.

The final step in implementing a CNN is the classification process,
which uses a fully connected feed-forward neural network with
an output vector equal in size to the number of classes to be
predicted. The softmax function is typically used to classify based
on probability values (Figure 3.7).

Figure 3.7: General architecture of a CNN.
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3.2.3 Recurrent Neural Networks

Feed-forward neural networks return almost identical outputs
for the same inputs, which can be desirable in some cases but
limiting in others where the network needs to respond differently
based on past inputs. For this purpose, the network needs to
preserve the memories of the past. This may be done by providing
a state to the network and using it as part of the subsequent
operations.

Recurrent Neural Network (RNN) is a popular neural network
model that is widely used to analyze sequential data. The feed-
back loops in RNNs have a significant impact on the network’s
behavior even for the same inputs, making it a suitable choice
for analyzing sequences [114]. RNNs differ from CNNs in their
design and purpose. CNNs are optimized for processing grid-
like data, such as images, while RNNs are specialized in working
with sequences of values like x1, x2, ..., xt. Additionally, RNNs
can handle sequences of varying lengths. Recurrent networks
and some other machine learning and statistical methods utilize
the innovative approach of sharing parameters across different
layers of the model, allowing the model to be used for data
instances with varying forms. Parameter sharing is especially
crucial when a particular item of data may appear at multiple
positions within the sequence. This optimization technique can
result in significant memory savings in machine learning models
[115]. The main advantage of using RNNs over traditional neural
networks is their ability to handle sequential data, where each
sample is dependent on previous ones.

As mentioned, RNNs are specifically designed to model se-
quences where there is a strong correlation between consecutive
samples. At each time step, RNN combines the current input
and the state, which contains information from previous steps,
to produce output. This information is passed through recurrent
connections between units, as illustrated in Figure 3.8. Given
a sequence of inputs x = (x1, x2, ..., xt), an RNN performs the
following computations:

st = σs(Wxxt + Wsst−1 + bs), (3.6)
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ht = σh(Whst + bh), (3.7)

where st represents the state of the RNN at time step t, serving
as a memory unit. The value of st is computed as a function of
the input at time t, (xt), and the previous state of the RNN, st−1.
Moreover, the weights Wx and Wh are learned during training,
while bs and bh represent the biases. The training of an RNN is

Figure 3.8: General structure of an RNN.

done using a variation of the Backpropagation algorithm, the
Backpropagation Through Time (BPTT) algorithm [116]. BPTT
involves unrolling the RNN into a series of feed-forward neural
networks, leading to a deep network with multiple hidden layers,
which is then trained through the Backpropagation algorithm.
However, this process is susceptible to the vanishing gradient
problem. To mitigate this issue, the long short-term memory
network was introduced [117].

The core idea of the Long Short-Term Memory (LSTM) model
is to use self-loops to store the gradient of recent input events for
long durations [117]. This allows them to effectively learn and
model long-term dependencies in sequential data, making them
useful for tasks such as handwriting recognition [118], speech
recognition [119], handwriting generation [120], machine trans-
lation [121], image captioning [122], and parsing [123]. LSTM
was developed to tackle two significant issues present in pre-
vious techniques, namely, vanishing and exploding gradients.
Conventional gradient-based learning methods such as BPTT
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and Real-Time Recurrent Learning (RTRL) can cause error signals
to decrease or increase during back-propagation through the
model. The LSTM network was designed to address the prob-
lems of back-propagation of error signals. This was achieved by
incorporating a system of gates into the network. A graphical
illustration of the structure of an LSTM network is shown in
Figure 3.9. The LSTM structure has an Internal Cell State (ct)

Figure 3.9: Schematic representation of an LSTM cell.

that enables it to keep or discard previous information. The state
is updated by four internal activation layers, known as gates,
which are constructed using a sigmoid neural network layer and
a point-wise operation. The purpose of each gate is defined as
follows:

• Forget Gate ( ft): decides the amount of past information
that needs to be forgotten.

• Input Gate: determines the amount of information from
the current input to be stored in the cell state. It combines
the output from a sigmoid layer (it) and a tanh layer (ct) to
make the decision. The sigmoid layer decides which infor-
mation to update, and the tanh layer decides the magnitude
of the chosen information to be added to the current state.



3.2 deep learning and neural networks 41

• Output Gate (ot): determines which and how much data to
provide as output (ht) starting from the actual cell state (ct).

3.2.4 Autoencoders

Autoencoders (AEs) are artificial neural networks that operate
without supervision to generate new data through a sequence of
two processes, encoding and decoding. As depicted in Figure 3.10,
the first process is implemented by an encoder which is devoted
to compressing the input into a space of latent variables. In
contrast, the second process is implemented by a decoder which
is involved in reconstructing the input based on the information
included in latent variables. Both the encoder and decoder are
typically implemented as neural networks, with the encoder and
decoder networks being usually symmetric to each other in terms
of their architecture and weight matrices.

Figure 3.10: Schematic representation of an Autoencoder.

The principal purpose of AE is to learn the key features of its
input data so that it can copy the input as the desired output.
By copying only the most important and representative aspects
of the input, the AE can identify the most useful properties of
the data and use them to reconstruct the original data. From
a mathematical point of view, assume there is a training set of
{x1, x2, x3, ..., xn} where for each data sample, we have xi ∈ R

n.
The objective of the AE is to reconstruct the network input by re-
ducing the reconstruction error, i.e., x̃i = xi for i ∈ {1, 2, 3, ..., n}.
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To put it simply, the AE attempts to learn a compressed represen-
tation of the input data. Given this objective, the AE endeavors
to minimize the following loss function:

Γ(W, b) = ||x− FW,b(x)||2, (3.8)

in which W and b are the vectors of the network weights and
biases, respectively, and FW,b(x) is the identity function that the
AE tries to learn.

Moreover, AEs are used to create a latent space with a dimen-
sional smaller than the original data dimension in a manner sim-
ilar to techniques for data compression through dimensionality
reduction like Principal Component Analysis (PCA), Linear Dis-
criminant Analysis (LDA), Discriminant Function Analysis (DFA),
and t-distributed Stochastic Neighbor Embedding (t-SNE) [124].
The crucial difference between AEs and these dimensionality re-
duction techniques is that AEs are capable of representing input
data using non-linear combinations of features. This enables them
to represent more intricate input data with a low-dimensional
latent space.

The specific type of neural network employed in the encoder-
decoder pair determines the overall functionality of the Au-
toencoder (AE). Basically, there are seven types of AEs, Sparse
AE (SAE) [125], Contractive AE [126], Denoising AE [127], Un-
dercomplete AE [128], Deep AE [129], Variational AE [130], and
Convolutional AE [131].

3.2.5 Stacked Neural Networks

Constructing robust and reliable neural network models for a
classification task can be challenging and require a significant
amount of time. However, their performance can be improved
by merging and combining multiple related models into a single
Stacked Neural Network (SNN). The theory behind SNNs is based
on the idea that combining multiple feature types, each learned
by a different network, reduces uncertainty and improves the bal-
ance between the speed of the training process and the accuracy
of classification [132, 133]. The training process of an SSN starts
by training each individual model independently and then fine-
tuning the entire network through a supervised method, such as
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backpropagation (Figure 3.11). This method helps to overcome
the vanishing gradient problem.

Figure 3.11: General architecture of an SNN.

Additionally, SNNs have become increasingly popular in the
context of Autoencoders, which are referred to as Stacked Au-
toencoders. Stacked Autoencoders have been demonstrated to
be highly effective in handling unbalanced and noisy datasets
[127, 134]. A Stacked Autoencoder is implemented by connecting
the encoders of multiple AEs in sequence, followed by a fully
connected network.

3.3 recurrence plots

Many methods for classification and detection tasks begin by
investigating particular non-linear features, such as recurring
events and concealed non-stationary patterns in the time series
related to the traffic classes that need to be explicitly distin-



44 preliminaries

guished. A preliminary study, also known as the supervised
learning phase, is necessary to identify the most distinguishing
characteristics of each type of traffic flow using pre-classified
reference flows. This is a time-consuming and challenging pro-
cess that requires significant computing resources and human
expertise. However, it only needs to be completed once during
the initial ’knowledge construction’ phase of the model. Once
the qualitative discrimination methods have been established, all
subsequent tasks include a ’quantitative’ recurrence assessment
that can be realistically performed online for specific purposes
and hence resource-limited network devices. The preliminary
study mentioned above can be carried out through the use of
Recurrence plots (RPs) analysis. This method provides valuable
information about the non-stationary patterns of variation in
time-series data. The core concept is to reconstruct the dynamics
of an unknown system in the phase space by using time-delay
embedding and then calculating the distances between all pairs
of embedded vectors, resulting in a symmetric two-dimensional
matrix. The RP visualizes and represents this distance matrix.

3.3.1 Non-Stationarity Characteristic

Stationarity is extremely important in the context of traditional
linear and non-linear time series analysis, mainly when work-
ing with time series of traffic variables which are often non-
stationary [135]. The term "stationarity" refers to an assumed
regularity pattern in a data series [136], and a time series is
considered non-stationary when the joint probability distribu-
tion of xi, xi+1, ..., xi+(q−1) depends on the time index i for some
value of q [137]. Traffic volume analysis in traffic engineering is
closely related to the concept of non-stationarity. Detecting non-
stationarity is crucial because it identifies changes in the temporal
statistical behavior of the underlying process. It is important to
identify these points and changes in many dynamic phenomena
[135]. Sudden changes in the statistical characteristics of traffic
variables, such as volume or packet size, can provide insight into
the different dynamics associated with the specific behavior of
the involved end applications.
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3.3.2 Reconstructing the Phase Space: Delay-Coordinate Embedding

A comprehensive analysis of a dynamic system is usually possible
when the equations of motion and all the degrees of freedom
(n) are known. The evolving state of such a dynamic system
can be represented by sequences of "state vectors" or vectors of
state variables in the phase space [138]. Unfortunately, only a
limited number of quantities can usually be observed in a system.
However, it is possible to reconstruct the whole dynamics of the
system from a relatively small set of observable variables. It is
not common to have complete knowledge of all state variables in
the analysis of a complex non-linear system like an end-to-end
traffic flow, as the system’s evolution is shaped by the interaction
of a very complex set of such variables. The analyst has access to
only one time series, which is obtained through sampling from a
single observation point.

The delay-coordinate embedding method employs past val-
ues to construct a proper representation of the internal dy-
namics. Takens theorem states that by using the time delay
method, it is possible to recreate a topologically equivalent rep-
resentation of the behavior of the original multi-dimensional
system (In other words, the theorem implies that the phase
space trajectory can be reconstructed) using the time series
of a single observable variable: starting from the scalar time
series {xt}

T
t=1 we construct a sequence of (embedded) vectors

y(i) = (xi, xi+τ, xi+2τ, ..., xi+(m−1)τ) [139±141]. The set of all em-
bedded vectors y(i), i = 1, ..., T(m− 1)τ, establishs a trajectory
in ℜm where m is the embedding dimension, and τ is the time
delay. Each point of the phase space of the system at time i is
reconstructed using the delayed vector y(i), which is placed in an
m-dimensional space referred to as the reconstructed phase space.
According to the Takens theorem, the sequence of embedded vec-
tors that recreate the original dynamics must have the correct
values of m and τ. In particular, the value of m must be greater
than 2d + 1, where d is the dimension of the original, unknown
system. The Correlation Dimension D2 of Grassberger±Procaccia
can be used to estimate the original dimension d of the system
[36].
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Therefore, choosing an appropriate value for the time delay
τ and the embedding dimension m is a crucial step in delay-
coordinate embedding. Several methods have been developed to
make an informed guess, such as the Average Mutual Informa-
tion (AMI) function for determining τ [142], and the False Nearest
Neighbours (FNN) method for determining m [143]. These meth-
ods have been widely used in the literature and have been shown
to provide good results.

The AMI minimum is considered a good estimate for τ as it is
based on the idea that variables that are uncorrelated produce
values that are also uncorrelated. Suppose that the time series do-
main is divided into equiprobable bins. Let pi be the probability
of having a time series value in the ith bin, let pi,j(τ) be the joint
probability to have a time series value in the ith bin and a time
series value in the jth bin after a time τ, that is the probability
of transition from the ith to the jth bin in τ time. The average
mutual information function is:

S(τ) = ∑
i,j

pij(τ)ln(
pij(τ)

pi pj
). (3.9)

The proposal to use the first zero-crossing of the autocorrela-
tion function is supported by a similar argument [36]. Some other
authors propose using the first maximum of the AMI instead,
as it corresponds to the system’s inherent periods. One effective
method to determine suitable values for m is through the use of
false nearest neighbors. This method of determining the embed-
ding dimension through false nearest neighbors examines the
number of false nearest neighbors with respect to m. False nearest
neighbors are data points that were closest in lower embedding
dimensions but become separated as the dimension is increased.
For example, two points on a circle may appear close to each
other even though they are not if the circle is viewed sideways
(as a projection), resulting in the appearance of a line segment.
Increasing the dimension m of the reconstructed space by one
allows distinguishing between the orbital points, i.e., those that
are true neighbors and those that are not. Let y be a point of the
reconstructed space. Let y(r) be the rth nearest neighbour of y
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and compute the (squared) Euclidean distance D2 between them
(as usual, yk denotes the kth component of y)

D2
m(y, y(r)) =

m−1

∑
k=1

|yk − y
(r)
k |

2
. (3.10)

Next, raise m to m + 1 and calculate the new distance, i.e.,
D2

m+1(y, y(r)). The point y(r) is said to be a false nearest neighbor
if:

D2
m+1(y, y(r))− D2

m(y, y(r))

D2
m(y, y(r))

> DTS. (3.11)

where DTS is a predetermined threshold. Keep in mind that
the number of false nearest neighbors is dependent on DTS. In
practice, the percentage of FNN is calculated for each m of a set
of values. The embedding dimension is said to be found for the
first m such that the percentage of FNN falls to zero. Because this
percentage never reaches zero with real-world and noisy data,
the embedding dimension with the lowest FNN percentage is
usually chosen.

3.3.3 Building the Recurrence Plots

The next step in RP analysis is to compute the mutual distances
between embedded vectors in order to construct the recurrence
plot. As a result, a standard must be chosen. The L1-norm (mini-
mum norm), the L2-norm (Euclidean norm), and the L∞-norm
(maximum norm) are three commonly used norms, according to
[36].

An RP is essentially a two-dimensional graphic representation
of the distances matrix D = {di,j}, where the pixel at coordinates
(i, j) is shaded based on the distance between the ith and jth
vectors. More accurately, if the distance di,j is less than a pre-
defined cutoff value ϵ (the two points are sufficiently near to
each other), a dot is plotted in (i, j). Because each coordinate i

represents a point in time, RP provides information about the
temporal correlation of phase space points.

As a matter of fact, in RP, each horizontal coordinate i relates to
the system’s state at i, and each vertical coordinate j relates to the
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system’s state at j. Therefore, a recurrent point in (i, j) indicates
that the interaction between the observed quantities is recurring,
as it is almost the same in both instants i and j. Thus, if the
point (i, j) is characterized as recurrent, the state j belongs to
the neighborhood of size ϵ centered on i. This signifies that the
system’s state at i is comparable to the system’s state at j; in
other words, the system stays in neighboring orbits. Formally,
the following equation describes the recurrence of a state x from
the time i in a different time j [144]:

ri,j = θ(ϵ− ||xi − xj||), i, j = 1, 2, ..., N, (3.12)

where ri,j is an element of the recurrence matrix R, N is the
number of states xi in the time window of the study, ϵ is the
threshold for the distances, ||.|| is a norm, and θ(x) is the Heavi-
side function, defined as θ(x) = 0, for x < 0, θ(x) = 1, for x ≥ 0.
In other words, ri,j gives a value of 1 if (i, j) is recurrent and a
value of 0 otherwise. Note that the RP is symmetric (assuming
a constant value of ϵ), i.e., Di,j = Dj,i. Moreover, as ri,i = 1 (for
i = 1, 2, 3, ..., N), an RP will always include a diagonal line angled
at 45◦ called the Line of Identity (LOI).

Every recurrence point represents an isolated recurrence of the
phase relationship between the time series. Line segments that
are parallel to the main diagonal originate from points near each
other successively forward in time (i, j), (i + 1, j + 1), ..., (i + l, j +

l) such that xj, xj+1, ..., xj+l is (respectively) close to xi, xi+1, ..., xi+l .
Therefore, a diagonal line denotes a stable recurrence of the phase
relationship during the time period corresponding to the diago-
nal’s length (l). The recurrence period is the time interval that
separates different diagonals. Given that they are not sequentially
forward in time, recurrent points arranged in rows and columns
do not provide any information regarding the timing of the peri-
odicity. Nevertheless, horizontal and vertical lines are connected
with stationary states. The orbit in the phase space will circle
around a few points in the future and create a representation
of the system’s attractor if the time series is deterministic. The
RP will then show short upward line segments parallel to the
principal diagonal. Those segments correspond to sequences. In
contrast, the RP of a completely random sequence will not exhibit
any structure at all.
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The goal of RP analysis is to find a number of patterns (in
the RP) that point to statistical characteristics of the time series,
including non-stationarity, data drifts, etc. A patterned RP is
produced by any non-stationary process. The RP will show a
fading toward the corners if the procedure has a pattern. The RP
includes interruptions (dark-colored bands) in the case of abrupt
changes. In the RP, diagonal lines and a checkerboard structure
result from the cyclicity of an oscillating process.

On a more detailed and intricate level, there are some fun-
damental patterns, frequently referred to as small-scale struc-
tures, that are strictly related to deterministic structure and
non-linearity. These patterns include single dots, diagonal lines,
and vertical and horizontal lines (the combination of vertical
and horizontal lines obviously forms rectangular clusters). The
quantitative analysis of the RPs is based on these small-scale
structures.

For instance, horizontal or vertical lines on an RP ((ri,j+k = 1
for k = 1, . . . , v, where v is the length of the vertical line) indicate
that the system state either does not change or changes extremely
slowly over time. The system seems to have been stuck in a state
for some time. This is a common characteristic of laminar states
known as intermittency.

Diagonal lines (ri+k,j+k = 1 for k = 1, . . . , l, where l is the
diagonal line’s length) represent trajectories that pass through
the same area of the phase space at various time periods. As a
result, when the series exhibits any determinism or periodicity,
parallel and perpendicular lines to the main diagonal appear.
More particularly, when states evolve deterministically at various
intervals, diagonal lines parallel to the LOI appear. Phase discor-
dances are represented as diagonal structures parallel to the LOI
(this is often a hint for an inappropriate embedding). The lengths
of diagonal lines are directly related to the ratio of determinism
or predictability inherent to the system. Assume that the states
are neighbors at periods I and j, or that ri,j = 1. Similar circum-
stances result in a similar future, which means the probability
for ri+1,j+1 = 1 if the system behaves predictably. This results
in infinitely long diagonal lines for systems that are completely
predictable (like in the RP of the sine function). In contrast, if
the system is stochastic, the probability of ri+1,j+1 = 1 is very
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Figure 3.12: Typical examples of RPs for different time series.

small, and only single points or short lines can be discovered. The
faster the divergence, i.e., the greater the Lyapunov exponent, the
shorter the diagonals. The length of the lines parallel to the RP’s
principal diagonal reveals how quickly the trajectories diverge in
phase space.

On the other side, isolated single points in an RP can appear
when states are recurrent but infrequent or if they vary signifi-
cantly or do not endure for any period of time, pointing towards
a stochastic process. However, they are not the only indication of
randomness or noise. Finally, when data changes slowly, square-
like structures appear (sojourn points). Some typical examples of
RPs for different time series are shown in Figure 3.12.
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3.4 markov chains

Markov chains are a useful mathematical tool in stochastic sys-
tems. The fundamental idea is known as the Markov Property,
which states that some stochastic process predictions may be
made more straightforwardly by treating the future as indepen-
dent of the past in light of the process’s current state. This is
used to make future state forecasts for stochastic processes easier
to understand [145, 146].

Markov chains are utilized in a wide range of contexts because
they can be designed to model many real-world processes. These
disciplines include voice recognition, search engine algorithms,
network security, mapping of animal population distributions,
and more. Predicting asset and option values and estimating
credit risks are two other applications [147].

The fundamental definitions needed to comprehend Markov
chains are provided in the following sections. In addition, specific
fundamental Markov chain characteristics and the particular
example of finite state space Markov chains are investigated
[148].

3.4.1 Random Variables and Random Processes

Before investigating Markov chains, let us go over some funda-
mental yet significant concepts in probability theory.

First, in mathematics, a random variable X is a variable whose
value is determined by a random phenomenon. This result can
be a number (or anything similar to a number, such as vectors)
or something else. For illustration, we may define a random
variable as the result of tossing a coin (not a number unless you
assign, for instance, 0 to head and 1 to tail) or the outcome of
rolling a dice (number). Also, keep in mind that the space of
potential outcomes for a random variable might be discrete or
continuous. For instance, a Poisson random variable is discrete,
while a normal random variable is continuous.

Then, we can define a stochastic process (also known as the
random process) as a set of random variables indexed by a set T

that frequently denotes various instants in time (we will assume
that in the following). Either T is the set of natural numbers
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(discrete time random process) or T is the set of real numbers
(continuous time random process) are the two most frequent
scenarios. For instance, tossing a coin every day falls under
the definition of a discrete-time random process. However, a
continually fluctuating stock market option’s price falls under
the definition of a continuous-time random process. Random
variables at different time instants can be dependent on each
other in some way (for example, stock price) or independent
of each other (for example, coin flipping), and they can have a
continuous or discrete state space (space of possible outcomes at
each instant of time).

3.4.2 Markov Property and Markov Chain

There are several well-known families of random processes, in-
cluding the Poisson, Gaussian, Autoregressive, Moving-Average,
Markov, and others. These particular cases have unique character-
istics that let us study and comprehend them more thoroughly.

The Markov property is one that significantly simplifies the
analysis of a random process. The Markov property states that,
for a random process, if we know the value the process has
taken at a particular moment, we will not be able to infer any
further information about the behavior of the process in the fu-
ture by understanding more about its previous behavior. More
mathematically, for any assumed time, the future states’ con-
ditional distribution of the process given current and previous
states depends just on the present state and not at all on the past
states (the property known as memoryless). The term Markov
process refers to a random process with the Markov property.

Now that the initial concept has been established, we are able
to define homogeneous discrete-time Markov chains. Indeed, A
Markov chain is a discrete state space and discrete-time Markov
process. Therefore, a Markov chain is a discrete succession of
states that satisfy the Markov property and are selected from a
discrete state space (finite or infinite). A Markov chain can be
represented mathematically as:

X = (Xn)n∈N = (X1, X2, X3, ...), (3.13)
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in which the process gets its values in a discrete set E at each
instant of time, which signifies ∀n ∈ N, Xn ∈ E. The Markov
property thus implies:

P(Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, Xn−2 = sn−2, ...) =

P(Xn+1 = sn+1|Xn = sn).
(3.14)

Again, this last equation emphasizes the notion that, for a
given period, the probability distribution for the future state is
determined only by the present state and not by previous states.

3.4.3 Random Dynamic of Markov Chains

The preceding subsection established a broad framework that
may be matched by any Markov chain. This subsection will
illustrate the Markov chain’s random dynamic.

Indeed, it can be difficult, if not impossible, to characterize a
discrete-time random process that does not satisfy the Markov
property. The probability distribution at a particular time can
be determined by one or more time instants in the past and
(or) future. Any accurate description of the process might be
challenging because of all these potential temporal dependencies.

On the other hand, the dynamic of a Markov chain is easily
defined thanks to the Markov property. Indeed, only two things
must be specified: an initial probability distribution q0 (i.e., a
probability distribution at the time instant n = 0) represented by:

P(X0 = s) = q0(s), ∀s ∈ E, (3.15)

and a transition probability kernel p (which indicates the proba-
bility that a state at time n + 1 would succeed to another at time
n for each pair of states) represented by:

P(Xn+1 = sn+1|Xn = sn) = p(sn, sn+1), ∀(sn, sn+1) ∈ E×E (3.16)

With the previous two items specified, the entire (probabilistic)
dynamic of the system is well-defined. Indeed, the probability
of any realization of the process may thus be estimated in a
recurrent manner.
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Since they properly characterize the probabilistic dynamic
of the process, many additional more complicated events may
then be estimated using only the transition probability kernel
p and the initial probability distribution q0. One last fundamen-
tal relationship that should be mentioned is the statement of
the probability distribution at time n + 1 with respect to the
probability distribution at time n:

qn+1(sn+1) = P(Xn+1 = sn+1)

= ∑
s∈E

P(xn = s)P(xn+1 = sn+1|xn = s)

= ∑
s∈E

qn(s)p(s, sn+1).

(3.17)

3.4.4 Markov Chains Properties

Some fundamental Markov chain characteristics or properties are
provided in this subsection. The goal is not to delve deeply into
the mathematical details but rather to provide a broad overview
of the topics of interest that should be investigated while utilizing
Markov chains. A Markov chain can be seen as a graph. The
following will use the graphical form of Make chains to illustrate
some of the characteristics. It should be noted, however, that
these characteristics are not necessarily restricted to the finite
state space scenario.

3.4.4.1 Reducibility, Periodicity, Transience, and Recurrence

If each state can be reached from any other state, even not in a
single time step, the Markov chain is said to be irreducible. If the
state space is finite and the Markov chain can be described by a
graph, the graph that represents an irreducible Markov chain is
referred to be strongly connected (Figure 3.13).

If any return to a state after leaving it needs multiple k time
steps (k is the greatest common divisor of all available return
route lengths), then the state has a period of k (Figure 3.14). A
state is called aperiodic if k = 1, and a Markov chain is consid-
ered aperiodic if all of its states are aperiodic. If one state in an
irreducible Markov chain is aperiodic, then all states in the chain
are aperiodic.
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Figure 3.13: The illustration of the irreducibility property. (a) is not
irreducible, and (b) is irreducible.

Figure 3.14: The illustration of the periodicity property. (a) is 2-periodic,
and (b) is 3-periodic.

If there is a non-zero probability that we would never return
to a state, it is said to be transient. In contrast, a state is said to
be recurrent if we have a 1 probability of returning to it in the
future after leaving it (Figure 3.15).

It is possible to determine the mean recurrence time for a recur-
rence state, which is the anticipated return time after leaving the
state. Noticing that the estimated return time is not always finite
even if the probability of return is equal to 1. Therefore, for the
recurrent states, we can differentiate between the null recurrent
state (infinite anticipated return time) and the positive recurrent
state (finite anticipated return time).
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Figure 3.15: The illustration of the transience and recurrence property.
(a) 1, 2, and 3 are transient, whereas 4 and 5 are recurrent.
(b) is a full chain recurrent.

3.4.4.2 Stationary distribution, limiting behavior, and ergodicity

In this subsection, properties that characterize some aspects of the
(random) dynamic described by a Markov chain are discussed.

A probability distribution like π is called a stationary distri-
bution over the state space E if it satisfies the following equation:

π(e
′
) = ∑

e∈E

π(e)p(e, e
′
), ∀e

′
∈ E. (3.18)

Since the probability of being in e
′

at the current step isπ(e
′
) and

the probability of being in e
′

at the next step is ∑e∈E π(e)p(e, e
′
),

a stationary distribution confirms that the probability of being in
e
′

at the current step is identical to the probability of being in e
′

at the next step.
Therefore, concerning the definition, a stationary probability

distribution is one that does not change over time. Thus, the ini-
tial distribution q will remain the same for all subsequent time
steps if it is a stationary distribution. If the state space is fi-
nite, p and π can be represented by a matrix and a raw vector,
respectively, therefore:

π = πe = πe2 = .... (3.19)

It is important to note that an irreducible Markov chain only
has a stationary probability distribution if all of its states are
positive recurrent.
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The following is another intriguing characteristic of stationary
probability distributions. No matter what the initial probabili-
ties are, if the chain is recurrent positive (therefore, there exists
a stationary distribution) and aperiodic, then when time steps
approach infinity, the probability distribution of the chain con-
verges. In this case, the chain is considered to have a limiting
distribution, which is just the stationary distribution. Generally,
it can be expressed as, ∀(e, e

′
) ∈ E× E:

lim
n→∞

P(Xn = e
′
|X0 = e) = lim

n→∞
pn(e, e

′
) = π(e

′
). (3.20)

It should be mentioned once again that there is no presumption
on the initial probability distribution; regardless of the initial
configuration, the probability distribution of the chain converges
to the stationary distribution (equilibrium distribution of the
chain).

The last intriguing characteristic of a Markov chain’s behavior
is ergodicity. If an irreducible Markov chain validates the subse-
quent ergodic theorem, it is said to as ergodic. Suppose that there
exists an application f (.) which maps the state space E to the
real line (for example, it can be the cost to be in each state). For
the n first terms, the mean value that this application takes along
a particular trajectory (temporal mean) is represented by:

1
n
( f (X0, X1, ..., Xn−1)) =

1
n

n−1

∑
i=0

f (Xi). (3.21)

The mean value of application f weighted by the stationary
distribution (spatial mean) is computed as follows:

∑
e∈E

π(e) f (e). (3.22)

Then, the ergodic theorem asserts that the spatial mean is iden-
tical to the temporal mean when the trajectory grows indefinitely
long (weighted by stationary distribution). The ergodic property
can be expressed as follows:

1
n

n−1

∑
i=0

f (Xi) = ∑
e∈E

π(e) f (e). (3.23)

In other words, at the limit, the early behavior of the trajectory
becomes insignificant, and only the long-run stationary behavior
is essential for computing the temporal mean.





4
R E C U R R E N C E P L O T S - B A S E D AT TA C K
C L A S S I F I C AT I O N

The advent of the Internet of Things (IoT), with the consequent
changes in network architectures and communication dynamics,
has affected the security market by introducing further complex-
ity in traffic flow analysis, classification, and detection activities.
Consequently, to face these emerging challenges, new empow-
ered strategies are needed to effectively spot anomalous events
within legitimate traffic and guarantee the success of early alert-
ing facilities. However, such detection and classification strategies
strongly depend on the right choice of employed features, which
can be mined from individual or aggregated observations. There-
fore, this work explores the theory of dynamic non-linear systems
for effectively capturing and understanding the more expressive
Internet traffic dynamics arranged as Recurrence Plots. To accom-
plish this, it leverages the abilities of Convolutional Autoencoders
to derive meaningful features from the constructed plots. The
achieved results, derived from a real dataset, demonstrate the
effectiveness of the presented approach by also outperforming
state-of-the-art classifiers. The main content of this chapter is
based on one of our papers entitled ’Recurrence Plots-based
Anomaly Detection using CNN-Autoencoders’ [10].

4.1 introduction

The success of IoT technologies, being the origin of significant
changes in communication dynamics (e.g., affecting network
layout/architecture, protocols, and interaction patterns), has
strongly influenced the nature of Internet traffic introducing
new security challenges.

In particular, due to the exponential growth of the number of
IoT traffic sources and consequent traffic volumes (in terms of
a superposition of individual flows on aggregation nodes and
interfaces), distinguishing network anomalies became a difficult

59
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task, in which randomness and background noise effects are
more and more dominant. Also, the evolution from centralized
or cloud-based solutions to edge service architectures, with the
consequent flattening of infrastructure topologies and the se-
curity perimeter dissolution, introduced further complexity in
traffic flow collection and interpretation.

Such interpretation, implying the understanding of the whole
spectrum of the underlying traffic dynamics, requires careful
analysis and correlation of the most characterizing traffic fea-
tures with the final goal of discovering less evident (or often
almost hidden) relationships between dynamics that describe the
nature of a specific flow (i.e., a legitimate activity or a malicious
one). Moreover, such a degree of complexity in the network traffic
behavior cannot be effectively described with traditional traffic
models and it has been shown [149] that, given the well-known
chaotic nature of Internet traffic, the theory of nonlinear dynam-
ical systems can be very helpful in providing extremely deep
insights into traffic flow organization properties by highlighting
the existence of periodic structures and recurrence phenomena
[150] that are not evident at a glance and are significantly effec-
tive in discriminating events that deviate from normality. This is
also due to the capability of nonlinear analysis of exploring the
system’s behavior in the phase space, which is a dimensionally
richer representation of the system depicting its evolution pattern
simultaneously on multiple time scales.

That means, in more detail, reconstructing and studying the
system’s attractor to appreciate the structure of multi-dimensional
curves, also known as trajectories, formed in such space, corre-
sponding to the system’s evolution (or motion) over time. Such
attractor is highly descriptive of the most significant, intrinsic,
and discriminative system dynamics so that it can be used as an
invaluable source of features for attack detection and classifica-
tion.

A Recurrence Plot (RP) [49] is an extremely effective way
of representing a system’s behavior in phase space and hence
visualizing its attractor as a two-dimensional image. Such image
is characterized by large-scale, or typological patterns that can
be homogeneous, periodic, drift, and disrupted as well as by the
presence of small-scale structures, defining the specific texture,
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identifying single dots, diagonal lines, vertical/horizontal lines,
or bowed ones [36]. So, the structure of an RP is an effective tool
for representing the behavior of a network flow, and hence for
its classification as normal or anomalous [12].

Unfortunately, while being an extremely effective way of rep-
resenting the system behavior, the visual interpretation of RPs is
extremely difficult and requires a lot of experience. Accordingly,
in this chapter, we exploit the potentialities of a Convolutional
Sparse Autoencoders (CNN-SAE)-based neural network in ex-
tracting relevant spatial features from the RPs associated with
traffic flows. To accomplish this, we start from some elemen-
tary statistical features (referred to as basic features) derived
by sampling multiple consecutive observations over time and,
thus, aggregated within the same temporal window. Then, by
leveraging the aforementioned non-linear analysis framework we
arrange them as multiple RPs (one for each basic feature), and
hence multi-channel images. After that, a CNN-SAE is employed
to derive new spatial features capable of capturing more complex
and discriminating dynamics and thus significantly improving
the DNNs-based classification process. Therefore, we employ a
pipelined architecture by combining the following three main
aspects, namely: extracting non-linear characteristics from the
basic ones, finding out relevant features from the related RPs pro-
cessed through the usage of a CNN-SAE, and then performing
attack classification tasks by using the classification abilities of a
fully-connected softmax DNN, respectively.

In addition, a comprehensive mathematical explanation of
the overall workflow is provided to clarify how the proposed
approach improves and affects the feature extraction process.
Moreover, its effectiveness is investigated in presence of several
unbalanced dataset partitions and finally compared with the
most common and widely available state-of-the-art approaches.

Hence, the main contributions of this chapter can be summa-
rized as follows [10]:

1. A formal description of the overall workflow is provided to
investigate how the proposed approach, from the theoreti-
cal point of view, improves and affects the feature extraction
process, respectively;
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2. Non-linear characteristics, arranged as RPs, and the related
spatial features extracted using a CNN-SAE are combined
to perform attack classification tasks.

The remainder of this chapter is organized as follows. Section
4.2 will describe the proposed approach by providing a detailed
mathematical formalization of the RPs and AEs. Section 4.3 will
report the experimental phase and achieved results.

4.2 the attack classification strategy

This section presents the proposed approach for implementing
the proposed attack classification strategy capable of exploiting
the effectiveness of RPs in capturing traffic flow information. We
accomplish this through three main steps, namely: determining
new non-linear features from the basic ones (that is, building
the RPs), extracting the more representative features from the
RPs, and then performing classification using a Stacked Neural
Network. More precisely, as shown in Figure 4.1, the RPs are
built through the traditional delay-coordinate embedding process
whereas the intermediate feature extraction step is performed
by employing a CNN-SAE trained on the derived RPs. Then, for
implementing the final classification step, we use the AE-related
latent space as input to feed a fully-connected softmax neural
network.

Figure 4.1: The proposed workflow.

As depicted in Figure 4.1, in this way, we combine the effective-
ness of RPs in capturing traffic dynamics, the capability of AEs in
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finding relevant features, and the classification abilities of DNNs.
Therefore, in order to better present the proposed workflow’s
potentialities, we give a detailed description of each step by also
providing a mathematical formulation of the involved CNN-SAE
to explain how it is able to interpret RPs by determining new
spatial features that differ from the well-known large-scale or
small-scale structures commonly used in human-driven visual
inspection.

4.2.1 Determining recurrence plot-based features

Understanding the hidden criteria and laws that rule network
traffic behavior in certain moments is a very complex task, essen-
tially due to the well-known irregularities and chaotic evolution
trends that characterize its evolution. Such complexity is not
easily manageable with the traditional event modeling arsenal
and can be much better handled by using different concepts, ab-
stractions, and points of view coming from the nonlinear analysis
and dynamical system modeling framework.

Starting from these ideas, we can consider a system status si(t)

at time t as resulting from the superposition of a certain number
of traffic flows, each described by specific features of interest
f1, . . . , fn, that are traversing the interface under observation at
that time. Such a status evolves over time into another status
sj(t + ∆t) according to specific dynamics occurring in the time
interval ∆t, which can be referred to as normal activities or to
an anomalous situation such as an attack. The entire evolution
pattern characterizing the known system lifetime is described by
the corresponding attractor, a geometrical abstraction describing
the asymptotical evolution of the system status, whose study
in certain points can reveal very complex properties providing
deep insight into flow aggregation and clustering dynamics and
revealing the presence of recurring structures that are not imme-
diately evident at a glance and that can be used to really describe
the behavior associated to normal or anomalous activities.

In order to better understand traffic dynamics under differ-
ent conditions we specifically search for redundancies in the
observed flows, in terms of a periodic recurrence of specific end-
to-end communication patterns, inside traffic data. This is quite
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straightforward in typical deterministic systems (e.g. describ-
ing an oscillatory phenomenon) where a return to a previously
visited state occurs with a specific periodicity. Unfortunately, In-
ternet traffic dynamics are known to be characterizable by using
a chaotic system model, which, while deterministic, is aperiodic.
In this case, it is not easy to discern temporal dependencies, but
considering approximate repetitions of specific events we can
build more complex rules that are able to give a deeper and bet-
ter representation of the observed behavior. That is, we can still
exploit recurrence phenomena to describe the system behavior if
we consider the concept of recurrence within a specific threshold,
and more specifically, so that we can consider a system state
behaving as recurrent when it repeats its behavior after a certain
quantity of time, also if not exactly, in a sufficiently close way.

As previously seen, RPs are an invaluable source of infor-
mation for understanding the most representative properties of
traffic flows. However, their interpretation is extremely complex
and prone to errors, since it implies a high degree of subjectivity
and expertise. Indeed, RPs contain a lot of interesting informa-
tion about the system of interest concealed in subtle patterns that
are not easily ascertained by visual inspection [12]. To overcome
this issue, Zbilut and Webber [151] introduced the concept of
Recurrence Quantification Analysis (RQA), which is an efficient
and deterministic way of non-stationarity features identification
in traffic flows. The core of such analysis is that it uncovers
time correlations between data that are not based on linear or
non-linear assumptions and cannot be distinguished through the
direct study of one-dimensional series of traffic flow volumes [7,
152]. However, RQA is able to quantify only an extremely limited
part of the information available in an RP, and more effective
ways of extracting highly discriminant spatial features from such
information are needed.

Therefore, in this chapter, we employ RPs images to gain sig-
nificant insights related to network traffic flows by skipping the
threshold-related value section issue using a gray scale for dis-
tances, in which white and black colors are used to represent
short and long distances, respectively. Because network anoma-
lies usually take place within temporal regions of a certain size,
they cannot be spotted starting from individual traffic samples.
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That is, individual observations occurring within a time series
can not effectively capture anomalous events if picked one by
one or isolated in a completely different context. Instead, the
behavior that defines univocally an attack (and consequently the
related features) becomes evident only when multiple temporal
regions are considered together.

Hence, we do not scrutinize individual traffic flows as a sample
at a specific time but consider aggregates of contiguous samples
determined through the use of a sliding window scheme, better
capturing the traffic behavior over time. This scheme is based
on two distinct values: the sliding window size and the related.
The offset parameter represents the time distance between two
windows. The construction of RPs is performed through delay-
coordinate embedding on independent windows of samples of a
specific size, taken on the time series resulting from each basic
feature, as shown in Figure 4.2. The time delay τ and the embed-
ding dimension m used for such purpose have been determined
at the training time on the entire set of flows constituting the
training set, respectively as the first minimum of average mutual
information function [153], and the embedding dimension m, by
using the False Nearest Neighbors (FNN) method [143].

Figure 4.2: Schema of the sliding windows for RPs aggregation.
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The window size has to be long enough to avoid the well-
known curse of dimensionality phenomenon, making all the
obtained estimations essentially meaningless. On the other hand,
it must not be too big to contain the classification latency. Of
course, it also depends on the sampling interval to guarantee the
availability of a sufficient number of observations falling within
a window [149].

Also, we aggregated RPs associated with the different basic fea-
tures available in sample observations as multi-channel images,
in which each channel represents one of the employed features,
by improving their descriptive power.

4.2.2 Using CNN Autoencoders for extracting spatial features from

RPs

In this configuration, we suppose that the AE used for processing
aggregated RPs, with reference to Figure 4.1, includes only three
layers, namely: input, hidden, and output, respectively.

Let x ∈ R
d be the input vector of Figure 4.1, and let xAE ∈ R

d′

be the input of the considered AE, then x ≡ xAE and d = d′.
As explained in Section 3.2.4, an AE seeks to reconstruct the

input by encoding it to a latent space h, which is then decoded
to an output x̃AE defined as follows:

x̃AE = y(W ′,b′)(h(W,b)(xAE)) ≡ xAE (4.1)

where (W, b) and (W ′, b′) represent the matrix of the weights
and the bias vector of the encoder and decoder respectively,
whereas y is the decoder activation function.

Moreover. let n be the number of hidden neurons of AE, then
W ∈ R

n×d′ , b ∈ R
n, and h(W,b) is given by:

h(W,b)(xAE) = σ(WxAE + b) (4.2)

where σ is the encoder activation function.
Since an Autoencoder is trained by minimizing a loss function
F , it is possible to consider additional constraints, also referred to
as regularization terms, to give the AE some specific capabilities.



4.2 the attack classification strategy 67

For instance, Sparse AEs are often employed to extract meaning-
ful and relevant features from input data and, consequently, to
improve the classification results. More precisely, Sparsity can
be obtained through different strategies (e.g., L1 regularization
and KL regularization) by forcing the involved AE to have only
a few simultaneously active nodes (1 in theory) that, as a result,
positively affects the learning process [154]. Concerning SAEs,
their regularization is accomplished by adding a penalty term to
the loss function, that is:

F (xAE, x̃AE)Sparse = F (xAE, x̃AE) + λS(W, b) (4.3)

where λ expresses the degree of regularization, and S(W, b)

represents the sparsity-related term.
Once the training process is completed, the output of the lth

hidden neuron hl can be derived by:

hl = σ(
d′

∑
k=1

wlkxAE
k + bl) (4.4)

Hence, since the input data of a Sparse AE is constrained by
||xAE||2 ≤ 1, each input data component xAE

k activating the lth

neuron is given by:

xAE
k =

wlk

∑
d′
m=1(wlm)2

, ∀ k, m = 1 ... d′. (4.5)

which extracts a feature exactly corresponding to the lth output
node. That means that a Sparse AE can learn different sets of
characteristics from input data at least equal to the number of
considered hidden neurons n.

As described in Section 3.2.5, AEs are frequently coupled with
different DNNs flavors to add new functionalities and improve
the ability to mine more complex features from input data. Thus,
to fully exploit the effectiveness of non-linear characteristics, we
use several Convolutional layers to derive relevant relations from
the related aggregated RPs that can be considered as spatial
features [54].
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Let X ∈ R
Nx×Ny be the CNN-related input, RP ∈ R

N×N be an
aggregated Recurrence Plot of Figure 4.2, and C f ∈ R

a×b be the
f th filter, respectively. Then, X ≡ RP and Nx × Ny = d = N × N.

On these assumptions, the convolution operation, applied on
the CNN-input RP with N f filters, is defined by:

Fi,j =
N f

∑
f=1

a

∑
p=1

b

∑
q=1

C
f
p,qRPi+p−1,j+q−1 (4.6)

with Fi,j the components of the filtered input F.
The size of F is defined through its row Fx and column Fy

dimensions, by:

Fx =
Nx − a + 2P

Sx
+ 1

Fy =
Ny − b + 2P

Sy
+ 1

(4.7)

where P is the Padding referring to the number of zeros around
the border of X, while Sx and Sy are the Strides related to the
row and column, which control the shifting of the filter on the
input matrix.

Since d = Nx × Ny, it is possible to map any xk to a point RPi,j

into a two-dimensional array. Thus, with abuse of notation, we
can assert that:

xk ≡ RPi,j (4.8)

with k = 1, ..., d, i = 1, ..., Nx, and j = 1, ..., Ny.
By substituting Fi,j of Equation 4.6 into xAE

k of Equation 4.4, it
yields:

hl = σ(
d′

∑
k=1

w′lkxϕ(k) + bl) (4.9)

such that d′ = Fx × Fy, while

w′lk =
N f

∑
f=1

a

∑
p=1

b

∑
q=1

C
f
p,qwlk (4.10)
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and

xϕ(k) ≡ RPi+p−1,j+q−1 (4.11)

Analogously to Equation 4.4 and Equation 4.5, Equation 4.9
and Equation 4.10 indicate that w′lk (for each l, k) represent the
new extracted features that express a more complex knowledge
because they are defined as the linear combination of the orig-
inal wlk. Therefore, the employed CNN-SAE configuration can
process non-linear characteristics, arranged as RPs, by providing
meaningful features to feed the fully-connected softmax neural
network.

4.3 performance evaluation and results analysis

The presented experiments and their results are devoted to
demonstrating the effectiveness of the proposed approach lever-
aging RPs for representing network traffic anomalies as multi-
channel images and automatically interpreting them through the
extraction of highly discriminative spatial classification features.
To accomplish this, we employ the learning abilities of CNN Au-
toencoders trained on a famous dataset, which includes packets
generated by different workstations, protocols, and applications.

4.3.1 Dataset and Basic Features

For the following experiments, we used real-world traffic features
available in the Intrusion Detection Evaluation Dataset (CIC-
IDS2017)1 [155], which are composed of several .csv files related
to Benign and Attack activities. More precisely, we considered
all the Normal traffic captured during Monday 03/07/2017 and
Malicious traffic captured from Tuesday 04/07/2017 to Friday
07/07/2017. Table 4.1 summarizes the traffic nature and related
activities for each day and each employed .csv file, respectively.

Since the used dataset provides more than 80 network-related
features, we pre-processed it in order to represent each bidi-
rectional flow (summarized as a single dataset entry) as a low-

1 https://www.unb.ca/cic/datasets/ids-2017.html
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Day/CSV Name Typology Description

Monday Normal Normal human activities

Tuesday Attack Brute Force (FTP/SSH-Patator)

Wednesday Attack DoS/DDoS

Thursday Attack Brute Force (FTP/SSH-Patator)

Friday1 Attack Port Scan

Friday2 Attack DDoS

Table 4.1: Overview on the employed .csv files.

dimensional vector characterized by only the following nine basic
features:

• Total Fwd Packets: number of sent packets from Sender;

• Total Bwd Packets: number of sent packets from Receiver;

• Flow Bytes/s: flow of bytes for second;

• Flow Packets/s: flow of exchanged packets for second;

• Average Packet Size: average number of sent packets;

• Packet Length Mean: mean length of the exchanged packet;

• Down/Up Ration: the Down/Up ratio estimated for the con-
sidered flow;

• SYN Flag Count: number of set SYN Flags;

• ACK Flag Count: number of set ACK Flags.

Then, we used the related ground-truth to associate each flow
with its corresponding typology (normal or each type of attack),
thus adding the supervisory signal. Finally, since the basic fea-
tures had characterized by different scales, we considered several
rescaling approaches that have been applied to the whole dataset
to remove any possible bias situations. Accordingly, following
the achieved results, we rescaled each .csv file employing a stan-
dard normal distribution, with zero mean and standard deviation
equal to 1 (µ = 0, σ = 1).
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4.3.2 Experimental setting

Once the basic features have been selected and scaled, we merged
all related .csv files as a whole dataset in order to estimate the
embedding dimension m and the time_delay τ. More precisely,
for each feature-related column, we performed the False Near-
est Neighbors (FNN) Algorithm [143] and derived the Average
Mutual Information (AMI) using the Non-Linear Time Series
Analysis (NoLiTSA) Python framework [156]. Therefore, we set
the minimum value m = 3 and τ = 1 because they were the
common values capable of minimizing the false neighbors and
the AMI, respectively. Then, we split the employed dataset into
two mutually-exclusive sets using, for each .csv file, the 70%
of vectors for training and the remaining 30% for testing. The
resulting .csv files were aggregated to form the overall training
and testing datasets, respectively. Note that the temporal order
was conserved during such a splitting process. Next, by follow-
ing the schema proposed in Figure 4.2, several sliding windows
characterized by having different dimensions and offsets have
been considered, as reported below:

• winDim: dimension for each window (8, 16, 32, 64, 128);

• offset: distance between two windows (1 - Consecutive,
winDim/2 - semi-overlapped, winDim - non-overlapped).

More precisely, for each set of flows (each characterized by the
9 basic features mentioned above) falling within a specific sliding
window, the related RPs as (winDim− (m− 1)τ)× (winDim−
(m− 1)τ) matrices for each considered basic feature were first
generated. Then, the resulting RPs (one for each basic feature)
were aggregated together to form a single multi-channel (9-
channels) RP image, which characterizes the set of traffic flows
falling within the considered time window. Furthermore, in order
to classify a single traffic flow, each derived RP was labeled so
as to assume the label of the last flow belonging to the consid-
ered time window. In such a way, each flow is associated with a
specific RP and is evaluated by taking into account the previous
flows (i.e. the traffic history).

Although many experiments were carried out by using dif-
ferent combinations of winDim/o f f set, winDim = 16 showed



72 recurrence plots-based attack classification

to get best results. Therefore, in all experiments, we used this
dimension for the time window. Table 4.2, Table 4.3, and Ta-
ble 4.4 show the details of the training and testing sets derived
by using a time window of size 16 and offset values 1, 8, and 16,
respectively.

Category Training Testing Total

DDoS 89601 38385 127986

DoS 172275 73795 246070

FTP-Patator 5537 2353 7890

Port Scan 111137 47617 158754

SSH-Patator 4097 1745 5842

Normal 370609 158817 529426

Total 753256 322712 1075968

Table 4.2: Dataset division with winDim = 16 and offset = 1.

Category Training Testing Total

DDoS 11201 4799 16000

DoS 21537 9227 30764

FTP-Patator 693 295 988

Port Scan 13893 5953 19846

SSH-Patator 513 219 732

Normal 46327 19853 66180

Total 94164 40346 134510

Table 4.3: Dataset division with winDim = 16 and offset = 8.

Finally, the dataset pre-processing phase, the related Recur-
rence Plots extraction, and all the experiments have been con-
ducted with an iMac Desktop equipped with an Intel 6-core i7
CPU @ 3.2 GHz and 16 GB RAM.
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Category Training Testing Total

DDoS 5601 2400 8001

DoS 10770 4615 15385

FTP-Patator 347 148 495

Port Scan 6947 2977 9924

SSH-Patator 257 110 367

Normal 23164 9927 33091

Total 47086 20177 67263

Table 4.4: Dataset division with winDim = 16 and offset = 16.

4.3.3 Evaluation Metrics

To assess the classification effectiveness of the presented scheme,
we considered the traditional evaluation metrics that can be
extracted from the confusion matrix: Accuracy (Acc.), Sensitivity
(Sens.), Specificity (Spec.), Precision (Prec.), F-Measure (F-Mea.),
and Area Under the ROC Curve (AUC), as defined below.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.12)

Sensitivity =
TP

TP + FN
(4.13)

Speci f icity =
TN

TN + FP
(4.14)

Precision =
TP

TP + FP
(4.15)

F−Measure =
2 ∗ Sens ∗ Prec

Sens + Prec
(4.16)

AUC =
Sens + Spec

2
(4.17)

Where for each category, TPs (True Positives) are the flows
correctly classified, FPs (False Positives) are the flows incorrectly
classified, FNs (False Negatives) are the flows incorrectly rejected,
and TNs (True Negatives) are the flows correctly rejected.
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4.3.4 Model description and Results

As mentioned earlier, we used a CNN-SAE for interpreting RPs.
Accordingly, in this Section, the implementation details are first
reported, and then the experimental results are shown.

Figure 4.3 shows the high-level organization of the CNN lay-
ers employed for the encoder side. As depicted, it includes a
sequence of three Conv2D layers with kernel_size=(2, 2), acti-
vation=relu, and padding=same, characterized by having 18, 8,
and 4 filters, respectively. After that, a Flatten layer is employed
to map the extracted features as one-dimensional latent vectors.
Hence, after having built the decoder side using the inverse
sequence of the encoding layers, we trained the CNN-SAE config-
uration by using Adam optimizer as well as the Mean Absolute
Error (MAE) as loss function for 50 epochs and batch_size = 64.

Figure 4.3: CNN layers high-level organization.

Next, we fed a fully-connected softmax neural network com-
prising two Dense layers with 512 neurons for each layer, activa-
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tion=relu for both layers, and dropout=0.5, 0.4, respectively. Also,
to obtain the classification results as probability distributions, we
used a third dense layer with 6 neurons and activation=softmax
as the output layer. Then, we trained the whole network with
Adam optimizer and SparseCategoricalFocalLoss loss function
for 20 epochs and batch_size = 256.

Many experiments were carried out by varying the following
hyper-parameters:

• numConvLayers: the number of Conv2D layers considered
(1, 2, 3);

• numFilters: the number of filters considered for each Conv2D
layer (1, 2, 4, 8, 12, 14, 16, 18, 28, 36);

• strides: the stride length and combinations for each Conv2D
layer ((1, 1), (1, 2), (2, 1), (2, 2));

• numDenseLayers: the number of Dense layers considered
(1, 2, 3, 4);

• numNeurons: the number of neurons considered for each
Dense layer (16, 24, 28, 32, 64, 96, 128, 256, 512, 1024);

• dropout: dropout values for each Dense layer (0.05, 0.1, 0.2,
0.3, 0.4, 0.5);

• activation: activation functions employed (relu, softmax,
sigmoid);

• batch_size: considered batch_size values (32, 64, 128, 256,
512, 1024, 2048);

• loss: loss functions used (Mean Squared Error (MSE), Mean
Absolute Error (MAE), SparseCategoricalCrossentropy, Spar-
seCategoricalFocalLoss).

Note that only the configurations that achieved the best results
were reported in this Section.

Table 4.5, Table 4.6, and Table 4.7 report the derived Confusion
Matrices, while Table 4.8, Table 4.9, and Table 4.10 summarize the
corresponding classification metrics derived by fine-tuning the
whole CNN-SAE-NN stacked network for 20 additional epochs.
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DDoS DoS FTP-Patator Port Scan SSH-Patator Normal

DDoS 38149 215 0 14 0 7

DoS 1992 70734 0 661 0 408

FTP-Patator 0 0 2331 0 4 18

Port Scan 90 122 0 47303 0 102

SSH-Patator 0 0 0 0 1745 0

Normal 6 52 0 0 0 158759

Table 4.5: Confusion Matrix (offset = 1).

DDoS DoS FTP-Patator Port Scan SSH-Patator Normal

DDoS 4761 30 0 3 0 5

DoS 351 8712 0 97 0 67

FTP-Patator 0 0 291 0 0 4

Port Scan 2 13 0 5925 0 13

SSH-Patator 0 0 0 0 219 0

Normal 0 10 0 0 0 19843

Table 4.6: Confusion Matrix (offset = 8).

DDoS DoS FTP-Patator Port Scan SSH-Patator Normal

DDoS 2365 21 0 5 0 9

DoS 118 4251 0 103 1 142

FTP-Patator 0 0 145 0 0 3

Port Scan 3 5 0 2962 0 7

SSH-Patator 0 0 0 0 109 1

Normal 0 2 0 0 0 9925

Table 4.7: Confusion Matrix (offset = 16).

4.3.5 Comparison and Discussion

To better demonstrate the effectiveness of the proposed classifi-
cation framework, we compare the obtained results with those
derived by the most famous state-of-the-art ML-based classifiers
provided by WEKA [157], such as Naive Bayes-based classifier
(NB), Logistic classifier (LOG), Support Vector Machine classifier
(SVM), J48 decision-tree classifier (J48), and Multilayer Percep-
tron classifier (MLP), specifically arranged for attack detection
and classification. Moreover, in order to compare the proposed
method with another model based on DL, we examined several
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Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.9928 0.9927 0.9481 0.9939 0.9704 0.9933

DoS 0.9893 0.9984 0.9945 0.9585 0.9762 0.9785

FTP-Patator 0.9999 1.0000 1.0000 0.9907 0.9953 0.9953

Port Scan 0.9969 0.9975 0.9859 0.9934 0.9897 0.9955

SSH-Patator 1.0000 1.0000 0.9977 1.0000 0.9989 1.0000

Normal 0.9982 0.9967 0.9966 0.9996 0.9981 0.9982

Avg. 0.9962 0.9976 0.9872 0.9893 0.9881 0.9935

Table 4.8: Statistic Metrics related to dataset with offset = 1.

Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.9903 0.9901 0.9310 0.9921 0.9606 0.9911

DoS 0.9859 0.9983 0.9940 0.9442 0.9684 0.9712

FTP-Patator 0.9999 1.0000 1.0000 0.9864 0.9932 0.9932

Port Scan 0.9968 0.9971 0.9834 0.9953 0.9893 0.9962

SSH-Patator 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Normal 0.9975 0.9957 0.9955 0.9995 0.9975 0.9976

Avg. 0.9951 0.9969 0.9840 0.9863 0.9848 0.9916

Table 4.9: Statistic Metrics related to dataset with offset = 8.

Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.9923 0.9932 0.9513 0.9854 0.9606 0.9893

DoS 0.9806 0.9982 0.9935 0.9211 0.9684 0.9597

FTP-Patator 0.9999 1.0000 1.0000 0.9898 0.9932 0.9899

Port Scan 0.9939 0.9937 0.9648 0.9797 0.9893 0.9943

SSH-Patator 0.9999 1.0000 0.9909 0.9909 1.0000 0.9954

Normal 0.9919 0.9842 0.9839 0.9998 0.9918 0.9920

Avg. 0.9931 0.9949 0.9807 0.9787 0.9794 0.9868

Table 4.10: Statistic Metrics related to dataset with offset = 16.

CNN and convolutional sparse autoencoder architectures that
are very effective in image processing. In this section, we report
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just the results achieved from the best architecture (in terms of
performance metrics) [158].

Table 4.11 summarizes the performance metrics related to
the employed CNN-SAE-NN configuration for each considered
offset.

Offset Acc. Spec. Prec. Sens. F-Mea. AUC

offset = 1 0.9962 0.9976 0.9872 0.9893 0.9881 0.9935

offset = 8 0.9951 0.9969 0.9840 0.9863 0.9848 0.9916

offset = 16 0.9931 0.9949 0.9807 0.9787 0.9794 0.9868

Table 4.11: Avg. Statistic Metrics comparison related to each considered
offset value.

As shown in Table 4.11, the CNN-SAE configuration achieved
the best classification results for each considered offset value (con-
secutive, semi-overlapped, and non-overlapped). More precisely,
we have obtained an average F-Measure close to 99% for the
consecutive scenario and more than 98% for the semi-overlapped
scenario, while we obtained a worsening of only less than 1% for
the non-overlapped case.

Finally, as mentioned above, we analyzed the effectiveness of
our approach by comparing the achieved results with those de-
rived from NB, LOG, SVM, J48, MLP, and CNN-based classifiers.
More precisely, we have evaluated their classification capabilities
in comparison with our method by considering non-overlapped
time windows with offset = 16, which is the worst scenario of our
approach (see table Table 4.10). Table 4.12, Table 4.13, Table 4.14,
Table 4.15, Table 4.16, and Table 4.17 summarize the average
metrics derived by the employed ML and DL-based approaches,
while Table 4.18 reports the comparison between our proposed
neural network configuration and these classifiers (only Avg.
values are reported).

As shown in Table 4.18, the proposed CNN-SAE network dras-
tically outperforms Naive Bayes-based, Logistic, Support Vector
Machine, J48 decision-tree, Multilayer Perceptron, and Convolu-
tional Neural Network-based classifiers by significantly improv-
ing the average of all evaluation metrics, specifically F-Measure.
It proves, once again, the effectiveness of the proposed approach
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Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.7126 0.7286 0.2281 0.5940 0.3296 0.6613

DoS 0.8164 0.9967 0.9493 0.2086 0.3420 0.6026

FTP-Patator 0.9279 0.9313 0.0476 0.4624 0.0864 0.6969

Port Scan 0.9133 0.9001 0.6316 0.9895 0.7711 0.9448

SSH-Patator 0.6780 0.6762 0.0167 0.9977 0.0328 0.8370

Normal 0.5145 0.9967 0.8302 0.0165 0.0324 0.5066

Avg. 0.7604 0.8716 0.4506 0.5448 0.2657 0.7082

Table 4.12: Statistic Metrics related to NB classifier.

Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.9607 0.9722 0.8097 0.8749 0.8410 0.9236

DoS 0.9170 0.9783 0.9067 0.7101 0.7965 0.8442

FTP-Patator 0.9910 0.9981 0.1392 0.0416 0.0640 0.5198

Port Scan 0.9902 0.9898 0.9440 0.9925 0.9676 0.9912

SSH-Patator 0.9939 0.9994 0.0000 0.0000 0.0000 0.4997

Normal 0.9415 0.9006 0.9055 0.9838 0.9430 0.9422

Avg. 0.9657 0.9731 0.6175 0.6005 0.6020 0.7868

Table 4.13: Statistic Metrics related to LOG classifier.

Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.9154 0.9978 0.9496 0.3045 0.4612 0.6512

DoS 0.8819 0.9494 0.7933 0.6542 0.7171 0.8018

FTP-Patator 0.9926 1.0000 0.3333 0.0004 0.0008 0.5002

Port Scan 0.9853 0.9844 0.9164 0.9908 0.9522 0.9876

SSH-Patator 0.9924 0.9979 0.0015 0.0006 0.0008 0.4992

Normal 0.8538 0.7384 0.7826 0.9730 0.8675 0.8557

Avg. 0.9369 0.9446 0.6295 0.4873 0.4999 0.7160

Table 4.14: Statistic Metrics related to SVM classifier.

and the abilities of Autoencoders that, in any application scenario
(e.g., dataset partitions), are capable of deriving meaningful fea-
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Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.9995 0.9999 0.9992 0.9964 0.9978 0.9982

DoS 0.9816 0.9970 0.9893 0.9295 0.9584 0.9632

FTP-Patator 0.9997 1.0000 1.0000 0.9580 0.9785 0.9790

Port Scan 0.9934 0.9925 0.9586 0.9985 0.9782 0.9955

SSH-Patator 0.9971 1.0000 1.0000 0.4797 0.6483 0.7398

Normal 0.9845 0.9737 0.9735 0.9956 0.9844 0.9847

Avg. 0.9926 0.9937 0.9868 0.8929 0.9243 0.9434

Table 4.15: Statistic Metrics related to J48 classifier.

Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.9324 0.9992 0.9872 0.4373 0.6061 0.7183

DoS 0.9090 0.9720 0.8806 0.6968 0.7780 0.8344

FTP-Patator 0.9963 1.0000 0.9983 0.5027 0.6687 0.7514

Port Scan 0.9980 0.9993 0.9962 0.9904 0.9933 0.9949

SSH-Patator 0.9945 1.0000 0.0000 0.0000 0.0000 0.5000

Normal 0.8689 0.7490 0.7929 0.9928 0.8817 0.8709

Avg. 0.9499 0.9533 0.7759 0.6034 0.6546 0.7783

Table 4.16: Statistic Metrics related to MLP classifier.

Category Acc. Spec. Prec. Sens. F-Mea. AUC

DDoS 0.9866 0.9877 0.9150 0.9783 0.9456 0.9830

DoS 0.9796 0.9975 0.9909 0.9194 0.9538 0.9584

FTP-Patator 0.9992 1.0000 1.0000 0.8919 0.9429 0.9459

Port Scan 0.9961 0.9970 0.9827 0.9913 0.9870 0.9941

SSH-Patator 0.9990 0.9999 0.9688 0.8455 0.9029 0.9227

Normal 0.9910 0.9828 0.9826 0.9995 0.9910 0.9912

Avg. 0.9919 0.9942 0.9733 0.9376 0.9539 0.9659

Table 4.17: Statistic Metrics related to CNN classifier.

tures from traffic dynamics arranged as RPs and thus achieve
excellent classification results.
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Method Acc. Spec. Prec. Sens. F-Mea. AUC

NB 0.7604 0.8716 0.4506 0.5448 0.2657 0.7082

LOG 0.9657 0.9731 0.6175 0.6005 0.6020 0.7868

SVM 0.9369 0.9446 0.6295 0.4873 0.4999 0.7160

J48 0.9926 0.9937 0.9868 0.8929 0.9243 0.9434

MLP 0.9499 0.9533 0.7759 0.6034 0.6546 0.7783

CNN 0.9919 0.9942 0.9733 0.9376 0.9539 0.9659

Proposed 0.9931 0.9949 0.9807 0.9787 0.9794 0.9868

Table 4.18: Comparison between the proposed configuration and ML
and DL-based approaches (only Avg. values are reported).





5
M A LWA R E D E T E C T I O N U S I N G F E D E R AT E D
M A R K O V C H A I N S

The continuous emergence of new and sophisticated malware
specifically targeting Android-based Internet of Things devices
is causing significant security hazards and is consequently fos-
tering the need for effective detection models and strategies able
to work with these hardware-constrained devices. In addition,
since such models are often trained on confidential application
data, many involved subjects are reluctant to share their data
for this purpose. Accordingly, several Federated Learning-based
solutions are emerging, which rely on the capabilities of Machine
Learning models in malware detection/classification without
sharing user data. However, Federated Learning methods are
often adversely affected by non-independent and identically dis-
tributed data in terms of both the required training time and
classification results. Therefore, a promising solution could be to
overcome the Federated Learning-related issues by preserving
the privacy of end-user data. In this direction, the capabilities
of Markov chains and associative rules are extended within a
federated environment to support malware classification tasks in
the IoT scenario.

The presented approach in this chapter, evaluated on several
malware families, has achieved an average accuracy of 99% in
the presence of centralized and decentralized unbalanced train-
ing/testing data by overcoming the most common state-of-the-art
approaches. Also, its runtime performance is comparable with
centralized ones by considering several non-independent and
identically distributed dataset partitions, splitting criteria, and
clients, respectively. The main content of this chapter is based on
one of our papers entitled ’Privacy-preserving Malware Detec-
tion in Android-based IoT Devices Through Federated Markov
Chains’ [11].

83
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5.1 introduction

The exponential growth of IoT technology together with the
success of the Android platform caused the explosion of the
number of mobile apps targeted for many flavors of Android-
based IoT devices such as smart TVs, personal assistants, smart
wearables, toasters, refrigerators, treadmills, and other intercon-
nected electronic gadgets that can be easily controlled by us-
ing common smartphones, resulting in a major driving force
within the IoT ecosystem. Also, Android-based smartphones
are assuming very frequently the role of IoT gateways for many
wearable or home/vehicle-based mission-critical IoT applications,
involving e-health, domotics, assisted driving, etc. Unfortunately,
despite the fundamental role of these architectures in the IoT
forefront, they introduce new cybersecurity issues and risks [159].
In particular, due to the lack of appropriate security protection
mechanisms on most of the simplest Android-based embedded
platforms empowering IoT devices, the large volume of yearly-
released malware applications specifically targeted for these envi-
ronments poses challenges that foster the introduction of effective
detection and classification techniques [160].

The extensive usage of concealment and obfuscation strategies
is one of the primary success factors for the malware develop-
ment market and a major cause for the significant growth of the
known number of malware samples targeting IoT devices.

Therefore, to tackle the fast development and evolution of mal-
ware in the IoT environment, it is crucial to design robust and
reliable malware detection and classification strategies that are
sensitive and effective against different malware families [161].
According to earlier malware classification studies, malware sam-
ples usually belong to a family with similar behaviors, implying
that most new malware is derived as new versions of already
existing malware. Hence, the possibility of developing strategies
that can effectively categorize malware depending on its family,
regardless of being a variant, appears particularly promising to
prevent and control its evolution over time.

Many different dynamic analysis-based techniques have been
proposed, considering the dynamic behavior of malware appli-
cations through the observation of the frequencies and/or se-
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quences of system-level Application Programming Interface (API)
calls. These strategies are based on the idea that malicious ap-
plications might contain a set of well-distinct APIs invoked in
a different order compared to those related to goodware appli-
cations [162]. Moreover, some particular API calls may be used
significantly more often in malicious code fragments [60, 67, 163].

Markov chains are one of the most effective cutting-edge dy-
namic analysis-based strategies that can model the API calls
invoked by malware applications and construct the representa-
tive behavioral patterns of particular malware families [8]. More
precisely, they consider the sequence of API calls to model the
application-related behavior as a graph where each node repre-
sents a unique API, while each edge represents the transition
probability between two APIs. Markov chain-based detectors
have also been proven resistant to evasion efforts carried out by
selectively inserting irrelevant API calls throughout malicious
code [9].

ML-based models represent another very successful approach
for detecting malware threats. They can exploit large datasets
to train the adopted models according to centralized and de-
centralized solutions. However, building a sufficiently complete
knowledge base on emerging malware attacks is currently a slow
and challenging process. In addition, the involved organizations
(developers and/or end-users) are often unwilling to share their
data since they are concerned about disclosing their intellectual
property and sensitive data about their IoT applications and
systems. Also, they are unable to keep up-to-date against new
malware attacks and are constantly at a disadvantage against
them.

Alternatively, Federated Learning (FL)-based approaches repre-
sent recent privacy-preserving solutions, leveraging ML and DL
models’ capabilities in several classification and detection tasks
without sharing their data [6, 76, 78]. However, as highlighted
in many literature studies, non-Independent and Identically Dis-
tributed (non-IID) data often adversely affects FL-based models
regarding the required training time, convergence, learning pro-
cesses, and classification results [20, 82±84]. Also, the proposed
learning strategies are often strongly influenced by the configura-
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tion of some additional hyperparameters (e.g. threshold values)
which could limit their applicability.

Aimed by this motivation, in this chapter, we present a feder-
ated Markov chains-based paradigm for malware detection in
Android-based IoT scenarios empowered by dynamic execution
analysis with system-level API calls monitoring. Such paradigm
makes data owners proactive contributors to the ML-based de-
tector model building, giving them the means to timely update a
global model without sharing their private raw data (and hence
without disclosing their API execution history and/or applica-
tions installed). More precisely, Markov chains and associative
rules are used within a federated logic, in which users indepen-
dently process the raw API execution data of each application
and then send the extracted information to a central server, pri-
marily dedicated to setting up and sharing the detector in a way
that protects user privacy. Next, we analyze the effectiveness
of the proposed strategy, by comparing it with the most com-
mon state-of-the-art ML-based approaches, within a realistic IoT
scenario in which we used a dataset of around 3500 malware
belonging to 8 Android families. Finally, we evaluate the required
time effort by considering several dataset partitions and involved
clients. Therefore, we show that the proposed federated architec-
ture can obtain comparable time performances in the presence of
non-IID data.

The main contributions of this chapter can be summarized as
follows [11]:

1. A federated architecture is presented to support the rules
mining process as multiple Markov chains;

2. The resulting associative rules-based detector is exploited
to recognize and classify several malware families by con-
sidering both centralized and decentralized data;

3. A performance study is done to show the effectiveness of
the proposed approach in the presence of non-IID data.

The remainder of the chapter is structured as follows. Sec-
tion 5.2 will report a background overview of the presented
association rules-based detector. Section 5.3 will describe the



5.2 background 87

proposed federated architecture. Finally, Section 5.4 will discuss
the experimental results.

5.2 background

Since a sequence of API calls can be effectively used to model the
most representative behavioral features associated with a specific
malware application, the background concepts related to the
association rules-based detector, presented in [67], are recalled in
this Section. More precisely, we first report its workflow through
a step-by-step example. Then, we provide some mathematical
definitions related to the rules pruning phase, which is essential
to obtain relevant classification results.

5.2.1 Association rules-based detector

The execution flow of a specific application tm can be represented
as a sequence of API calls. As a consequence, specific rules able
to represent the given application can be extracted in the form
{APIi → APIj}, with APIi ≺ APIj. Note that such rules could
include API calls not necessarily contiguous. The number of API
calls skipped is considered to be the spacing of the rule. After
that, such rules can be associated with nodes of a Markov chain
to represent the application as a sequence of independent state
transitions [9, 164]. Ultimately, we can describe such an API calls
flow (i.e. a specific application) by using a graph, with nodes
representing two (not necessarily contiguous) API calls and edges
identifying their transition timeline (the sequence of invocation)
[8]. In order to mine any possible insight from the API calls
sequence, different pairs of API calls (rules) are extracted by
varying the spacing.

Hence, with a little abuse of notation needed for simplification
purposes, the related training process consists, for each applica-
tion tm, of n progressive steps, with k ∈ [1, . . . , n] representing
the spacing in terms of positions to be skipped within the API
calls sequence.

For each intermediate step k (with k < n), all the k− 1 spaced
transitions between two API calls are arranged in a Markov-like
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chain represented by a graph Gtm

k , in which the x-th node, Nx, is
defined as follows:

Nx = [(APIi → APIj), σx] (5.1)

where (APIi → APIj) represents the mined rule and σx is the
related number of occurrences, while the edges represent the
transition states.

Next, in the last step (k = n), all the graphs are merged into
one, namely Gtm , representing the entire execution profile of
the application tm. Also, both the edges and the total number
of occurrences of each node x of Gtm , i.e. σtm(x), are updated.
In particular, the occurrences are computed by summing the
occurrences σx of the same nodes of the previous (n− 1) graphs.

For instance, let t1 = ADDDBCDD and t2 = ADDBCCCC be
the API call sequences of two applications, by assuming only
three steps (n = 3), Figure 5.1 and Figure 5.2 show the extracted
graphs Gtm

k of each analyzed application at time-step k = 1 and
k = 2, respectively. As depicted, at time-step k = 1, the transitions
considered are contiguous, and no elements are present between
two API calls used for mining a rule. Contrary, at the time-step
k = 2, every rule is extracted by skipping an API call.

Figure 5.1: Extracted graphs G
t1
k and Gt2

k at time-step k = 1.

Next, at time-step k = 3, the previous graphs are merged
into a new graph Gtm representing the Run-time behavior of a
considered application, as shown in Figure 5.3.
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Figure 5.2: Extracted graphs G
t1
k and Gt2

k at time-step k = 2.

Figure 5.3: Merged graphs Gt1 and Gt2 related to t1 and t2 when k = 3.

Finally, since the set of association rules mined from different
applications can be used as a signature characterizing a specific
malware category (or class) c ∈ C (where C = {c1, . . . , c|C|} is
the set of malware categories), all the graphs Gtm associated with
N (c) applications belonging to the class c of the training dataset
T, are further merged as a final graph Gc, in which the total
number of occurrences of each node, σc, is again updated as well
as the related edges, as shown in Figure 5.4. Note that, as better
explained below (see Equation 5.3), σc is estimated by taking
into account the different lengths (in terms of the number of
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API calls) of the applications. Therefore, the proposed detector
is characterized by a time complexity of O(|T| × n× l), where
|T| is the training dataset dimension, n is the number of rules
extraction-related steps, and l is the number of API calls.

Figure 5.4: Final graph Gc derived by merging t1 and t2.

5.2.2 Pruning phase definition

Many rules could be extracted from the training process, thus a
pruning step is of paramount importance to select only relevant
information and then achieve relevant classification results. It
is performed by comparing the occurrence of each rule with a
threshold value. For instance, by considering a threshold of 2,
all the rules with a σx ≤ 2 could be pruned, as shown in red in
Figure 5.5.

However, the existence of similar rules among different mal-
ware families could lead to incorrect classification results. To
address this issue, a more complex pruning phase is considered,
that is only rules whose values of support and confidence that
satisfy a given property (e.g., associated with a specific threshold
value) are considered valid.

More precisely, let A = {a1, ..., a|A|} the set of admissible API
calls, a generic rule is defined as follows:

Rpq = {ap → aq} (5.2)

with ap, aq ∈ A and ap ≺ aq, which denotes that the API ap is
called before aq.
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Figure 5.5: Pruning phase of rules with σx ≤ 2.

By recalling the aforementioned association between rules and
nodes in the merged graph Gti associated with the application
ti ∈ T, and defining σti(Rpq) as the number of occurrence of the
rule Rpq in a given application ti ∈ T, then the support of the
rule Rpq with respect to the class c is defined as follows:

Φc(Rpq) =
|Rpq|∑

N (c)
i=1

σti (Rpq)
li

N (c)
(5.3)

where li is the number of API calls of ti, while |Rpq| is the cardi-
nality of the rule (i.e. 2).

Notice that, to take into account the different APIs flow lengths
that could occur among the applications of a given class c as well
as the unbalancing among the applications falling within classes
of T, the terms li, |Rpq|, and N (c) of Equation 5.3 are used to
normalize the support within the range [0, 1].

However, as it is known, the support is not sufficient to estimate
the quality of the rules in representing the applications for multi-
class contexts. Thus, the confidence of a given rule Rpq on a class
c is also defined, as follows:

Γc(Rpq) =
Φc(Rpq)

∑v∈C Φv(Rpq)
(5.4)

Equation 5.4 expresses the ability of a rule to be unique for a
specific class. Indeed, high values denote high uniqueness, while
low values indicate that the rule is also present in other malware
classes.
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As depicted, Equation 5.3 and Equation 5.4 express a metric
characterizing a given rule concerning a class c, and thus, they
can be involved in the pruning phase. More specifically, rules
having support and confidence less than given thresholds are
pruned.

5.2.3 Classification

Once the training phase is performed and, thus, several rules are
obtained, the classification of new incoming applications needs
to be implemented. To accomplish this, the following metrics are
introduced [67].

Firstly, the following confidence is provided:

Γc
Rpq

(tm) =















0 Rpq ̸⊆ tm,

σtm(Rpq) ∗ Γc(Rpq) Rpq ⊆ tm ∧ γ(tm) = c,

1/Γc(Rpq) Rpq ⊆ tm ∧ γ(tm) ̸= c.

(5.5)

where γ(tm) is the hypothesis of membership classes associated
with tm.

It represents the confidence of a rule Rpq with respect to a class
c associated with an application tm. As shown, its value depends
on the presence of the rule Rpq within the application tm, as
well as on the value assumed by the hypothesis of membership
classes.

After that, the degree of belonging to class c of an application
tm is estimated by evaluating a rank ρ, which is given by:

ρc(tm) = ∑
c∈C

∑
∀p,q

Γc
Rpq

(tm), (5.6)

where the summation on p and q takes into account all the rules
derived from the training phase.

Finally, the softmax function is used to classify the application
tm, as follows:

γ(tm) = arg max
h∈C

eρh(tm)

∑ν∈C eρν(tm)
. (5.7)
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5.3 the proposed architecture

This section presents the proposed federated architecture. More
precisely, we extend the support and confidence indexes within
a privacy-preserving federated environment. Then, we provide
some implementation details related to core modules. Finally, we
describe the proposed schema by highlighting its main advan-
tages.

5.3.1 Federated indexes definition

The first step necessary for implementing the previously-discussed
detector within a federated logic is to extend both support and
confidence by considering the entire dataset T split among sev-
eral federated clients. Note that different clients could deal with
similar malware. As a consequence, T could include multiple
copies of the same applications.

Let M be the number of considered clients, and Tj be the j-
th dataset gathered by the client j, then the entire dataset T is
subject to the following:

T =
M
⋃

j=1

Tj (5.8)

We remark that, during the learning process, no Tj dataset is
sent to the central server, but only the applications-related graphs
Gc are sent, guaranteeing the protection of privacy. Furthermore,
Equation 5.8 expresses the ability of our approach to tackle
the problem of learning from non-IID data. Notice that this
is true because according to Equation 5.8, all partial graphs are
merged into a single one, and then the support and confidence
are evaluated only by the central server.

Accordingly, let N (c, Tj) be the number of application ti ∈ Tj

whose class is c, then the federated support of the rule Rpq can
be defined as follows:

Φc
f (Rpq) =

|Rpq|∑
M
j=1 ∑

N (c,Tj)

i=1
σti (Rpq)

li

N (c)
(5.9)
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Similarly, the federated confidence of a given rule Rpq on a
class c is defined as follows:

Γc
f (Rpq) =

Φc
f (Rpq)

∑v∈C Φv
f (Rpq)

(5.10)

Finally, Equation 5.5 and Equation 5.6 can be easily general-
ized to the federated case by replacing Φ with Φ f and Γ with
Γ f , respectively and, also in this case, the classification of an
application is performed by Equation 5.7.

5.3.2 The federated rules-based detector

To overcome the aforementioned confidentiality and privacy is-
sues related to sharing data, we present an architecture that aims
to support malware classification tasks by embedding the pro-
posed associative rules-based detector within a federated logic,
in which the involved IoT devices need to send their data to a
central aggregation point devoted to sharing information. More
precisely, the proposed architecture aims to provide a privacy-
preserving data aggregation workflow where federated entities
share only their applications-related graphs (and not the raw
data) and receive the malware detector. Thus, the architecture
is able to avoid the interchange of sensitive data among clients,
and between clients and the server. Therefore, clients’ privacy
is fully guaranteed like in traditional Federated Learning-based
approaches. Besides, our approach can avoid the well-known
issues associated with the integration operations. Indeed, the cen-
tralized aggregation of graphs is extremely simple and presents
a low computational effort. Note that, since Markov chains are
defined as a memoryless stochastic process, each set of mined
k-spaced associative rules, derived from the dynamic analysis of
API calls, represents a locally trained model, which is equivalent
to the local model of the classic FL-based solutions.

Moreover, the proposed workflow needs (in theory) only one
centralized aggregation to build the presented classifier, and that
does not need any usage of sophisticated algorithms, such as the
Federated Averaging (FedAvg) [165], Federated Matched Averag-
ing (FedMA) [166], and Federated Distance (FedDist) [167]. There-
fore, the obtained results depend only on applications processed
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by the federated entities. In addition, since the defined support
and confidence indexes (see Equation 5.9 and Equation 5.10) are
computed on the centralized and aggregated associative rules,
we highlight the ability of the proposed logic to overcome the
non-IID data-related issues that, instead, adversely affect the
traditional federated learning-based solutions. For this reason,
the presented workflow differs from pure FL-based ones and
is also extremely suitable to improve the convergence process
among Edge and Cloud infrastructures, with specific reference
to data aggregation, data security, and services migration [168±
170]. Hence, to report as much detailed information as possible,
we describe the resulting architecture, structured according to
a Publish-Subscribe model/policy, by defining three processes
named Client-Side Extraction, Server-Side Aggregation, and Detector

Update, respectively.
Therefore, the main goals of the proposed architecture can be

summarized as follows:

1. A data extraction workflow is needed to collect associative
rules from each federated entity (Client-Side Extraction);

2. A data aggregation workflow is useful to manage the re-
ceived rules as category graphs and share a malware detec-
tor with each entity (Server-Side Aggregation);

3. A data update workflow is necessary for periodically re-
adapting and re-sharing the malware detector (Detector
Update).

5.3.2.1 Client-Side Extraction process

At the beginning of the Client-Side Extraction process, each fed-
erated entity asks to subscribe to the central server and receives
the number of steps n to run. Next, for each analyzed applica-
tion, and at each iteration k < n, the client extracts the k-spaced
associative rules. Finally, the client sends the related graph to the
central server. Figure 5.6 reports the discussed Client-Side Extrac-
tion process, while its steps can be summarized as Algorithm
1.

More precisely, for each application t, Algorithm 1 derives the
corresponding class c and the list of API calls (apisList). Next, at
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Figure 5.6: Client-Side Extraction process.

Algorithm 1 Client-Side Extraction

Require: Tj (j-th dataset of applications)
1: n← askSubscription()
2: for each t ∈ Tj do

3: k← 1
4: G← ∅

5: c← Class(t)
6: apisList← traceAPIs(t)
7: while k < n do

8: G← extractRules(apisList,k)
9: k← k + 1

10: end while

11: sendGraph(G,c)
12: end for

each iteration k < n, the algorithm extracts the set of k-spaced
associative rules by storing them in G. Note that, after the while
loop, G will represent the graph containing any mined rules.
Finally, the algorithm sends G and c to the central server and
processes another application.

5.3.2.2 Server-Side Aggregation process

The Server-Side Aggregation process has the fundamental task
of collecting the application-related graphs to share the proposed
model with each federated entity. To accomplish this, the server
first merges each graph with those previously received. Then, it
uses the obtained information (i.e. the learned rules) to perform
the pruning phase and share the malware detector. Note that the
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described process confers to the server the capability of continu-
ously sharing an updated classifier each time a new application
is received. Therefore, the server can immediately support the
federated entities for their detection activities, also in presence of
zero-day malware. Figure 5.7 shows the Server-Side Aggregation
process, while its steps can be summarized as Algorithm 2.

Figure 5.7: Server-Side Aggregation process.

Algorithm 2 Server-Side Aggregation

Require: M (number of subscribed clients)
1: for each i ≤ M do

2: (G,c)← receiveGraph(i)
3: graphList[c]← mergeGraph(G)
4: detector← pruningPhase(graphList)
5: sendToClients(detector)
6: end for

More precisely, every time the i-th client sends the graph G

and the corresponding class c, Algorithm 2 merges G with the
graphs previously stored in graphList[c]. Note that graphList[c]

contains the set of k-spaced rules related to class c. Next, the
algorithm performs the pruning phase and sends the detector to
each subscribed client.
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5.3.2.3 Detector Update process

This process is responsible for taking into account new malware
applications when a detector has already been shared. It com-
bines the previous phases by considering new applications. We
point out the ability of the presented architecture to continuously
share an updated classifier regardless of the presence of non-IID
data. When an unknown malware application is detected from
a federated entity, the application-related graphs are built and
sent to the server along with the related malware class. Next, the
server will merge the received graphs with those already stored,
and after the pruning phase, it will share the updated malware
detector with each subscribed entity.

5.4 experimental results

The first goal of the experiments is devoted to demonstrating the
contribution of the proposed architecture concerning the classi-
fication of several malware applications, while the second is to
study the required computational effort through performance
analysis. To accomplish this, we first show the effectiveness of
the proposed malware detector, also comparing it with other
state-of-the-art ML-based approaches, by considering both cen-
tralized and decentralized data. Next, we analyze the required
computational effort in presence of several federated entities and
non-IID data partitions, respectively.

5.4.1 Dataset and Experimental setting

The dataset considered in the following experiments has been de-
rived by Unisa Malware Dataset (UMD) [171], composed of about
3500 applications grouped in 8 Android families: Airpush (Air),
DroidKungFu (DKF), Fusob (Fus), Genpua (Gen), GinMaster
(Gin), Jisut (Jis), Opfake (Opf), and SmsPay (Sms). More pre-
cisely, to obtain the related API call sequences, we have analyzed
each application through the Cuckoo Sandbox tool [172], which
performs both static and dynamic malware analysis. Next, to eval-
uate the performances of the proposed detector, we have divided
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the resulting dataset into training and testing sets according to
the 70/30 criteria, as reported in Table 5.1.

Family Training Testing Total

Airpush 265 114 379

DroidKungFu 700 301 1001

Fusob 117 49 166

Genpua 220 94 314

GinMaster 372 160 532

Jisut 376 161 537

Opfake 431 184 615

SmsPay 122 52 174

Total 2603 1115 3718

Table 5.1: Dataset division according to the 70/30 criteria.

Then, we used the obtained sets in both centralized and decen-
tralized learning scenarios by respectively considering several
data sub-partitions, splitting criteria, and the number of clients:

• Splitting: Horizontal (Samples of each category equally
distributed), Vertical (Samples of a category are assigned
to some clients only), and Mixed;

• Clients: 4, 8, 12, and 16.

Finally, we have simulated the proposed architecture within
a socket-based Client-Server scenario, empowered by Python
Remote Objects [173], by using a MacBook Pro equipped with
an Apple M1 CPU and 16 GB of unified memory for the sever-
side and several Linux-based virtualized clients equipped with 2
Processors and 2 GB RAM, respectively.

5.4.2 Evaluation metrics

To appreciate the classification quality of the proposed federated
detector, we used the following evaluation metrics derived from
the multi-class confusion matrix: Accuracy (Acc.), Sensitivity
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(Sens.), Specificity (Spec.), Precision (Prec.), F-Measure (F-Mea.),
and Area Under the ROC Curve (AUC).

Accuracy =
TP + TN

TP + TN + FP + FN
(5.11)

Sensitivity =
TP

TP + FN
(5.12)

Speci f icity =
TN

TN + FP
(5.13)

Precision =
TP

TP + FP
(5.14)

F−Measure =
2 ∗ Sens ∗ Prec

Sens + Prec
(5.15)

AUC =
Sens + Spec

2
(5.16)

For each category, TPs (True Positives) are the applications
correctly classified, while TNs (True Negatives) are the applica-
tions correctly identified in another category. Conversely, FPs
(False Positives) are the applications incorrectly identified as a
considered category, while FNs (False Negatives) are the malware
applications in another category incorrectly identified as a con-
sidered category. In order to achieve a global perspective of the
detector effectiveness, also the average performance values (Avg.)
among all the observed malware classes have been computed.

5.4.3 Achieved results

To demonstrate the effectiveness and evaluate the performances
of the proposed federated architecture, at first we considered
the aforementioned dataset as centralized data by processing
the training set with one client only. For each application, all
the possible associative rules have been mined by using a pro-
gressive spacing k ∈ [1, 100], and thus by sending them to the
server as related graphs. Then, we merged, for each malware
family, the stored graphs as one representative graph. Next, since
the number of extracted rules is too high and could adversely
affect the classification results, we have performed the pruning
phase by considering any possible value of support (supp.) and
confidence (conf.) between 0.1 and 1.0. Finally, we have used the
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testing set to evaluate the quality of the selected training rules
by achieving the best classification performances for the combi-
nation of supp./conf. = 0.7/1.0. The obtained results, shown in
Table 5.2 and Table 5.3, demonstrate the abilities of the detector
in classifying several malware families with an average accuracy
of 99% and a limited number of FPs and FNs.

Air DKF Fus Gen Gin Jis Opf Sms

Air 112 0 0 1 1 0 0 0

DKF 4 289 0 2 1 0 0 5

Fus 0 0 49 0 0 0 0 0

Gen 1 0 0 89 1 0 0 3

Gin 1 3 1 1 153 0 0 1

Jis 0 0 0 0 0 161 0 0

Opf 0 0 0 0 0 0 184 0

Sms 1 1 0 6 1 0 0 43

Table 5.2: Confusion matrix related to centralized data.

Family Acc. Sens. Spec. Prec. AUC F-Mea.

Air 0.9917 0.9412 0.9979 0.9825 0.9696 0.9614

DKF 0.9854 0.9863 0.9851 0.9601 0.9857 0.9731

Fus 0.9991 0.9800 1.0000 1.0000 0.9900 0.9899

Gen 0.9863 0.8990 0.9950 0.9468 0.9470 0.9223

Gin 0.9899 0.9745 0.9925 0.9563 0.9835 0.9653

Jis 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Opf 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sms 0.9836 0.8269 0.9914 0.8269 0.9092 0.8269

Avg. 0.9920 0.9510 0.9952 0.9591 0.9731 0.9549

Table 5.3: Performance results related to centralized data.

Subsequently, in order to show the learning abilities in a fed-
erated environment, we have repeated the training process by
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considering several training set sub-partitions distributed, each
time, among different clients. As shown in Table 5.4, since the
application-related graphs extraction process is performed only
by clients, the obtained results show how the proposed federated
detector model can achieve excellent classification performance,
while preserving privacy, independently of the splitting criteria
used and the number of subscribed clients.

Clients Acc. Sens. Spec. Prec. AUC F-Mea.

Centr. 0.9920 0.9510 0.9952 0.9591 0.9731 0.9549

4 0.9920 0.9510 0.9952 0.9591 0.9731 0.9549

8 0.9920 0.9510 0.9952 0.9591 0.9731 0.9549

12 0.9920 0.9510 0.9952 0.9591 0.9731 0.9549

16 0.9920 0.9510 0.9952 0.9591 0.9731 0.9549

Table 5.4: Comparison with a different number of clients and splitting
criteria (only Avg. values are reported).

5.4.4 Comparison and discussion

Next, to highlight the potentialities of the presented classifier, we
first compared the achieved results with those derived by com-
mon ML-based methods provided by Scikit-learn [174] (whose
implementation is publicly available), namely: the Random Forest
(RF) algorithm, Linear Support Vector Machine (SVM) classifier,
Decision Trees (DTs), and Gaussian Naive Bayes (GNB) classifier,
respectively. These methods have specifically been chosen be-
cause of their effectiveness in classification runtime performance.
We accomplished this by arranging the k-spaced APIs sequences
as corresponding adjacent matrices, in which each APIs pair has
been represented with the related frequency. Table 5.5, Table 5.6,
Table 5.7, and Table 5.8 report the obtained classification metrics
for each ML-based method used, while Table 5.9 compares these
results with those derived by our approach.

As reported in Table 5.9, the proposed approach outperformed
each traditional ML-based method taken into consideration. More
precisely, it achieved an average F-Measure improvement of 19%
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Family Acc. Sens. Spec. Prec. AUC F-Mea.

Air 0.9748 0.9023 0.9844 0.8844 0.9434 0.8933

DKF 0.9474 0.9494 0.9468 0.8513 0.9481 0.8977

Fus 0.9998 1.0000 0.9998 0.9969 0.9999 0.9985

Gen 0.9677 0.8063 0.9871 0.8830 0.8967 0.8429

Gin 0.9681 0.8757 0.9869 0.9318 0.9313 0.9029

Jis 0.9988 0.9979 0.9990 0.9934 0.9984 0.9956

Opf 0.9970 0.9900 0.9978 0.9822 0.9939 0.9861

Sms 0.9690 0.6348 0.9902 0.8034 0.8125 0.7093

Avg. 0.9778 0.8946 0.9865 0.9158 0.9405 0.9033

Table 5.5: Performance results related to Random Forest.

Family Acc. Sens. Spec. Prec. AUC F-Mea.

Air 0.9682 0.8820 0.9797 0.8517 0.9308 0.8666

DKF 0.9422 0.9042 0.9544 0.8642 0.9293 0.8837

Fus 0.9973 1.0000 0.9971 0.9585 0.9986 0.9788

Gen 0.9557 0.7907 0.9756 0.7960 0.8832 0.7933

Gin 0.9556 0.8578 0.9755 0.8770 0.9167 0.8673

Jis 0.9978 0.9901 0.9989 0.9929 0.9945 0.9915

Opf 0.9931 0.9736 0.9955 0.9639 0.9846 0.9688

Sms 0.9525 0.4810 0.9824 0.6346 0.7317 0.5472

Avg. 0.9703 0.8599 0.9824 0.8674 0.9212 0.8622

Table 5.6: Performance results related to Linear SVM.

on the GNB classifier and 11% on the Decision Trees. In addi-
tion, the RF and SVM classifiers, which have also achieved good
classification results, have been outperformed by our federated
detector with an average improvement of 5% and 9%, respec-
tively.

However, we also point out that, differently from our approach,
all the other methods used in the comparison have been trained
on the centralized raw data arranged as adjacent matrices, and
thus they need an extra pre-processing step as well as do not
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guarantee the privacy of the involved clients and confidentiality
of related data.

In addition, the adjacent matrices (73× 73) have been used to
test also a DL-based approach. We accomplished this through a
Keras API-based CNN, shown in Figure 5.8, trained in both cen-
tralized and federated-learning scenarios. Table 5.10 summarizes
the results derived by considering each splitting criteria and the
number of subscribed clients, Table 5.11 reports the client-related
Accuracy values derived on the testing dataset, while Table 5.12

compares our approach with the above CNN.

Family Acc. Sens. Spec. Prec. AUC F-Mea.

Air 0.9516 0.8116 0.9702 0.7828 0.8909 0.7969

DKF 0.9336 0.8715 0.9535 0.8574 0.9125 0.8644

Fus 0.9986 1.0000 0.9985 0.9786 0.9993 0.9892

Gen 0.9461 0.7297 0.9721 0.7591 0.8509 0.7441

Gin 0.9489 0.8473 0.9696 0.8501 0.9084 0.8487

Jis 0.9982 0.9979 0.9983 0.9888 0.9981 0.9933

Opf 0.9936 0.9843 0.9948 0.9586 0.9895 0.9713

Sms 0.9519 0.5201 0.9792 0.6135 0.7496 0.5629

Avg. 0.9653 0.8453 0.9795 0.8486 0.9124 0.8464

Table 5.7: Performance results related to Decision Trees.

As shown in Table 5.10, only with the Mixed splitting (Mix), the
CNN achieved comparable results with those derived from the
centralized training dataset. Their effectiveness is also confirmed
by Table 5.11, which reports similar local-related Accuracy values
for each number of subscribed clients. Vice versa, due to the
lack of convergence of the Federated CNN, no results have been
achieved by the remaining two splitting criteria (Vertical and
Horizontal).

More precisely, the Vertical one has highlighted how DL-based
models cannot learn if the data-related categories are distributed
only to some clients, adversely affecting the federated learning
process. Instead, the Horizontal one has highlighted how IID data
can also adversely influence the FL-based models. This occurs
when data are characterized from several sub-categories because
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Family Acc. Sens. Spec. Prec. AUC F-Mea.

Air 0.9432 0.7546 0.9682 0.7587 0.8614 0.7567

DKF 0.8760 0.7551 0.9149 0.7401 0.8350 0.7475

Fus 0.9925 1.0000 0.9920 0.8935 0.9960 0.9438

Gen 0.9449 0.6280 0.9830 0.8165 0.8055 0.7100

Gin 0.9033 0.5411 0.9771 0.8280 0.7591 0.6545

Jis 0.9850 0.9994 0.9828 0.8984 0.9911 0.9462

Opf 0.9359 0.9811 0.9304 0.6334 0.9558 0.7698

Sms 0.9541 0.5894 0.9772 0.6215 0.7833 0.6050

Avg. 0.9419 0.7811 0.9657 0.7738 0.8734 0.7667

Table 5.8: Performance results related to Gaussian NB.

Method Acc. Sens. Spec. Prec. AUC F-Mea.

Proposed 0.9920 0.9510 0.9952 0.9591 0.9731 0.9549

RF 0.9778 0.8946 0.9865 0.9158 0.9405 0.9033

SVM 0.9703 0.8599 0.9824 0.8674 0.9212 0.8622

DTs 0.9653 0.8453 0.9795 0.8486 0.9124 0.8464

GNB 0.9419 0.7811 0.9657 0.7738 0.8734 0.7667

Table 5.9: Comparison with ML-based methods (only Avg. values are
reported).

Split Acc. Sens. Spec. Prec. AUC F-Mea.

Centr. 0.9697 0.8692 0.9820 0.8741 0.9256 0.8711

Mix4 0.9695 0.8705 0.9819 0.8754 0.9262 0.8714

Mix8 0.9659 0.8585 0.9799 0.8576 0.9192 0.8563

Mix12 0.9635 0.8467 0.9784 0.8486 0.9126 0.8462

Mix16 0.9603 0.8318 0.9766 0.8325 0.9042 0.8297

Table 5.10: Performance Results related to CNN (only Avg. values are
reported).

they produce a sort of nested Vertical splitting. In our case,
this means that each k-spaced adjacent matrix can be related
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Clients Split min_Acc. max_Acc. avg_Acc.

4 Mix 0.9678 0.9687 0.9683

8 Mix 0.9638 0.9655 0.9647

12 Mix 0.9595 0.9622 0.9613

16 Mix 0.9561 0.9595 0.9583

Table 5.11: Clients-related Accuracy values.

Method Acc. Sens. Spec. Prec. AUC F-Mea.

Proposed 0.9920 0.9510 0.9952 0.9591 0.9731 0.9549

Centr. 0.9697 0.8692 0.9820 0.8741 0.9256 0.8711

Mix4 0.9695 0.8705 0.9819 0.8754 0.9262 0.8714

Table 5.12: Comparison between our approach and the CNN (only best
values are reported).

to a specific k-th sub-category, with k varying from 1 to 100.
Therefore, these matrices adversely affect the federated learning
process also if data are Independent and Identically Distributed
(IID). Finally, the comparison provided in Table 5.12 shows that
our approach outperformed the FL-based CNN by achieving an
average F-Measure improvement of 8%. Therefore, this confirms
the effectiveness of the proposed detector in achieving excellent
classification metrics for any considered splitting criteria (IID
and non-IID) that, instead, adversely affect the classical FL-based
solutions [20, 82±84].

5.4.5 Performance evaluation

To evaluate the performance of the proposed architecture during
the Client-Side Extraction and Server-Side Aggregation processes,
we first derived the required time effort by using the entire train-
ing set on a single machine. Next, we partitioned it by applying
the previously mentioned splitting criteria and considering the
number of involved clients, as reported in Table 5.13, Table 5.14,
Table 5.15, Table 5.16, Table 5.17, Table 5.18, Table 5.19, Table 5.20

and Table 5.21, respectively.
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Figure 5.8: Architecture of the CNN used in comparisons.

Hence, to carefully analyze the model scalability for each con-
sidered combination (splitting criteria/number of clients), we
derived the parallel Speedup, which is given by:

Speedup =
Ts

Tp
, (5.17)

where Ts is the time effort without parallelism and Tp is the re-
quired time effort with parallelism. Figure 5.9 shows the speedup-
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related behavior for each considered splitting criteria and clients,
respectively.

As shown in Figure 5.9, since the derived Speedup values are
slightly different, it is possible to appreciate how the proposed
model is characterized by semi-linear scalability. More precisely,
when the number of clients is low (i.e., 4 and 8), the system
rapidly scales thanks to low communication costs. Instead, when
the number of clients increases, the related execution costs de-
crease to the point that counterbalances the high communication
costs. For this reason, differently, by the classical FL-based solu-
tions [20, 82±84], the proposed architecture can obtain excellent
time performances in the presence of non-IID.

Clients Air DKF Fus Gen Gin Jis Opf Sms

4 66 175 29 55 93 94 107 30

8 33 87 14 27 46 47 53 15

12 22 58 9 18 31 31 35 10

16 16 43 7 13 23 23 26 7

Table 5.13: Horizontal training set division for each client.

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 265 700 0 0 0 0 0 0

C2 0 0 117 220 0 0 0 0

C3 0 0 0 0 372 376 0 0

C4 0 0 0 0 0 0 431 122

Table 5.14: Vertical training set division for 4 clients.
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Client Air DKF Fus Gen Gin Jis Opf Sms

C1 265 350 0 0 0 0 107 0

C2 0 350 117 0 0 0 107 0

C3 0 0 0 110 186 188 107 0

C4 0 0 0 110 186 188 110 122

Table 5.15: Mixed training set division for 4 clients.

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 132 350 0 0 0 0 0 0

C2 0 0 58 110 0 0 0 0

C3 0 0 0 0 186 188 0 0

C4 0 0 0 0 0 0 215 61

C5 133 350 0 0 0 0 0 0

C6 0 0 59 110 0 0 0 0

C7 0 0 0 0 186 188 0 0

C8 0 0 0 0 0 0 216 61

Table 5.16: Vertical training set division for 8 clients.

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 132 175 0 0 0 0 107 0

C2 0 175 117 0 0 0 107 0

C3 0 0 0 55 93 94 107 0

C4 0 0 0 55 93 94 110 122

C5 133 175 0 0 0 0 0 0

C6 0 175 0 0 0 0 0 0

C7 0 0 0 55 93 94 0 0

C8 0 0 0 55 93 94 0 0

Table 5.17: Mixed training set division for 8 clients.
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Client Air DKF Fus Gen Gin Jis Opf Sms

C1 66 175 0 0 0 0 0 0

C2 0 0 29 55 0 0 0 0

C3 0 0 0 0 93 94 0 0

C4 0 0 0 0 0 0 215 61

C5 133 350 0 0 0 0 0 0

C6 0 0 59 110 0 0 0 0

C7 0 0 0 0 186 188 0 0

C8 0 0 0 0 0 0 108 30

C9 66 175 0 0 0 0 0 0

C10 0 0 29 55 0 0 0 0

C11 0 0 0 0 93 94 0 0

C12 0 0 0 0 0 0 108 31

Table 5.18: Vertical training set division for 12 clients.

Client Air DKF Fus Gen Gin Jis Opf Sms

C1 66 175 0 0 0 0 53 0

C2 0 175 29 0 0 0 53 0

C3 0 0 0 55 93 94 53 0

C4 0 0 0 55 93 94 53 30

C5 133 175 0 0 0 0 0 0

C6 0 175 0 0 0 0 0 0

C7 0 0 0 55 93 94 0 0

C8 0 0 0 55 93 94 0 0

C9 66 0 0 0 0 0 53 0

C10 0 0 29 0 0 0 53 30

C11 0 0 29 0 0 0 53 30

C12 0 0 30 0 0 0 60 32

Table 5.19: Mixed training set division for 12 clients.
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Client Air DKF Fus Gen Gin Jis Opf Sms

C1 66 175 0 0 0 0 0 0

C2 0 0 29 55 0 0 0 0

C3 0 0 0 0 93 94 0 0

C4 0 0 0 0 0 0 107 30

C5 66 175 0 0 0 0 0 0

C6 0 0 29 55 0 0 0 0

C7 0 0 0 0 93 94 0 0

C8 0 0 0 0 0 0 107 30

C9 66 175 0 0 0 0 0 0

C10 0 0 29 55 0 0 0 0

C11 0 0 0 0 93 94 0 0

C12 0 0 0 0 0 0 107 30

C13 67 175 0 0 0 0 0 0

C14 0 0 30 55 0 0 0 0

C15 0 0 0 0 93 94 0 0

C16 0 0 0 0 0 0 110 32

Table 5.20: Vertical training set division for 16 clients.
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Client Air DKF Fus Gen Gin Jis Opf Sms

C1 66 87 0 0 0 0 53 0

C2 0 87 29 0 0 0 53 0

C3 0 0 0 55 93 94 53 0

C4 0 0 0 55 93 94 53 30

C5 66 87 0 0 0 0 0 0

C6 0 87 0 0 0 0 0 0

C7 0 0 0 55 93 94 0 0

C8 0 0 0 55 93 94 0 0

C9 66 0 0 0 0 0 53 0

C10 0 0 29 0 0 0 53 30

C11 0 0 29 0 0 0 53 30

C12 0 0 30 0 0 0 60 32

C13 67 87 0 0 0 0 0 0

C14 0 87 0 0 0 0 0 0

C15 0 87 0 0 0 0 0 0

C16 0 91 0 0 0 0 0 0

Table 5.21: Mixed training set division for 16 clients.
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Figure 5.9: Speedup comparison.





6
C O N C L U S I O N

In the field of network security, the increasing volume and com-
plexity of data have made it challenging for traditional security
systems to keep up with the changing security landscape. This
is where the application of ML and DL methods has come in
handy, offering the ability to handle vast amounts of data and
detect security threats in real-time.

The use of ML algorithms has shown significant progress in
detecting network intrusions, identifying malicious traffic, clas-
sifying network traffic, and improving the accuracy of security
systems. For example, the application of unsupervised learning
algorithms, like clustering, has been successful in detecting novel
and unknown attacks that were previously undetectable. On the
other hand, supervised learning algorithms like decision trees
and random forests have proven to be effective in classifying
network traffic and identifying specific security threats.

DL methods have also shown promising results in network
security. CNNs and AEs have been used to analyze network
traffic and identify security threats. RNNs have been used to
analyze network logs and identify anomalies that may indicate
security threats.

However, it is essential to note that these methods are not
without their limitations. For instance, the accuracy of these
algorithms is still not perfect and can lead to false positives
and false negatives. Additionally, the ethical concerns related
to privacy and data protection must be considered when using
these methods.

In this thesis, we focused on the effectiveness of some dy-
namic analysis, ML, and DL-based strategies in dealing with
crucial issues in network security and the related most disparate
classification tasks (e.g., network traffic classification, encrypted
traffic, anomaly and attack detection/classification, and malware
detection).

115
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In Chapter 4, we proposed a novel IoT-related network attacks
classifier by combining the capabilities of AEs in automatically
finding relevant features and the effectiveness of characteris-
tics coming from non-linear analysis theory arranged as RPs.
More precisely, we considered statistical information related to
benign and malicious traffic-related activities available in the
CIC-IDS2017 dataset as raw input data. Then, we employed
the corresponding multi-channel image representation of RPs
and a Convolutional Sparse Autoencoder (CNN-SAE) to per-
form automatic interpretation of RP images, aimed at using the
reliable discriminating power of such non-linear structures in
attack classification tasks. The achieved results, derived as statis-
tic metrics from the multi-class confusion matrix, have proven
the effectiveness of the proposed classifier in the presence of
several unbalanced datasets partitions by obtaining an average
F-Measure of more than 98%. Finally, we have evaluated the
proposed approach by comparing it with the most famous state-
of-the-art ML-based attack classification techniques such as Naive
Bayes-based, Logistic, Support Vector Machine, J48 decision-tree,
Multilayer Perceptron, and Convolutional Neural Network-based
classifiers. The proposed approach outperformed all considered
approaches with significant improvements in all evaluation met-
rics.

Therefore, based on the derived outcomes, we would like to
propose two possible future works. The first one can be inves-
tigating the effectiveness of Recurrence Plots and CNN-SAEs
for multiple hostile traffic flow detection and classification in
federated organizations. The second one is exploring the abilities
of Autoencoders in deriving relevant traffic features by consid-
ering the combination of several non-linear extraction methods.
More precisely, the following studies might improve the effec-
tiveness of real-time attack detectors and classifiers by reducing
the impact of Distributed Denial of Services (DDoS) attacks and
the required time for their detection, classification, and mitiga-
tion, respectively. By the way, these possible approaches can also
be investigated by performing some comparisons with the ad-
vanced and existing methods in the state of the art in terms of
effectiveness, robustness, and precision of evaluation metrics.
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In Chapter 5, the capabilities of Markov chains and associations-
based rules have been investigated within a federated environ-
ment in order to support privacy-aware malware detection and
classification in an Android-based IoT environment. To accom-
plish this, we enhanced the dynamic-based detector, presented
in [67], through a federated logic. Therefore, we proposed a ded-
icated architecture capable of performing a federated training
process in which end-users build a shared detector by sending
the analyzed applications to a central server. Consequently, the
interchange of sensitive information, and their protection against
the most common data leakage threats, has been similarly guaran-
teed as done in traditional Federated Learning-based approaches.
Next, we validated the effectiveness of the presented method by
employing several famous malware families derived from the
UMD dataset. More precisely, the obtained results have shown an
average accuracy of 99% by outperforming the most famous DL
and FL-based approaches and highlighting possible benefits in
zero-day malware detection. Finally, we also provided a statistical
and temporal performance assessment in the presence of non-IID
data, in which several dataset partitions, splitting criteria, and the
number of subscribed clients have been considered, respectively.

However, due to the high number of existing and yearly re-
leased malware applications, this study proposes some possible
future works that might provide some benefits, such as well-
suited mechanisms to improve the zero-day detection and the
building of new communication channels and environments for
federated entities, respectively. For this reason, one can inves-
tigate an extension of the proposed detector in order to detect
new malware families and variants characterized by more in-
tricate dynamic patterns. For instance, given an arbitrary rule,
the employed pruning indexes might consider only the "nearest
rules". Also, as another direction, researchers can optimize the
applications-related extraction process in order to improve the
required temporal effort. For instance, several selection criteria
could be employed (e.g., the proposed pruning indexes) to con-
sider only the relevant rule sequences effectively mined during
the application execution.

In general, and in conclusion, the application of ML, DL, and
dynamic analysis-based methods in network security has shown
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promising results in detecting, classifying, and mitigating security
threats. While these methods still have room for improvement,
they offer a valuable addition to the existing security landscape
and provide a comprehensive approach to network security. Fur-
ther research is necessary to improve these methods and find
new ways to integrate them into existing security systems.
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