
University of Salerno

Department of Mathematics

Ph.D. in Mathematics, Physics and
Applications

Numerical Modeling of Stochastic
Differential Problems with Applications

Giuseppe Giordano

Advisor

Prof. Beatrice Paternoster

Ph.D. Director

Prof. Patrizia Longobardi

Cycle XXXV, SSD MAT/08, A.Y. 2021/2022



Abstract

The interest in the study of stochastic differential equations has grown con-
siderably in recent years. The main reason for this interest is that stochastic
differential equations are a potential tool for modeling evolutionary problems,
especially when the dynamics are affected by stochastic perturbations. Of par-
ticular importance is the study of numerics related to these problems since, in
the literature, there are a few stochastic differential equations whose solution
is known explicitly. Therefore, the spirit of this thesis is to analyze numer-
ical methods for stochastic differential equations and how these can be used
for the description of real-life problems. After an introduction to stochastic
differential problems and some models in which these are used, we will then
move on to some recalls of numerical methods, known in the literature. Subse-
quently, the focus will be on new research results obtained, divided into three
essential parts. In the first part, based on the well-known idea of collocation
for Volterra Integral Equations, we obtained continuous numerical methods,
which allow us to know the solution not only at the grid points of the nu-
merical discretization but throughout the entire integration interval. Research
on this front continued by pointing out how these continuous extensions can
be applied to obtain a good estimate of the local truncation error. In fact,
as is also known in the deterministic context, this is a first building-block for
the development of a variable step-size algorithm, useful especially in the in-
tegration of stiff problems. The second part, instead, focused on geometric
numerical integration for stochastic Hamiltonian problems. Unlike determin-
istic Hamiltonian problems, where energy is conserved over time, stochastic
Hamiltonian problems of Itô type and driven by the additive Wiener process
satisfy the trace equation, i.e. the expected value of the Hamiltonian func-
tion grows linearly over time. Interest in this study derives from some results
on stochastic Runge-Kutta methods developed by K. Burrage et al. in 2012.
These methods, in fact, have a significant error that increases with increas-
ing stochastic noise. Therefore, through a perturbative analysis, the reason
for this behaviour was analyzed, concluding that the preservation of the main
features of stochastic Hamiltonian problems does not occur directly for any
discretization of time. The research was then extended to stochastic Hamilto-
nian problems with multiplicative noise, first obtaining a characterization of
the behaviour of the mean value of the Hamiltonian and then showing that
first-order approximations to such systems are unable to maintain such be-
haviour. In the last part of this thesis, two different models were analyzed in
which stochastic differential equations (including stochastic partial differential
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equations) occur. Specifically, first, the stochastic FitzHugh-Nagumo system
for signal propagation in nerve cells was analyzed, in which the voltage variable
is the solution of a one-dimensional partial derivative differential equation of
a parabolic type with a cubic nonlinearity driven by additive space-time white
noise. Splitting methods for temporal integration will then be developed for
that model, showing that such schemes admit strong convergence order 1{4.
Next, the analysis shifted to modeling the spread out of fake news through the
stochastic SIR model, which is widely used in the epidemiological context for
the spread of an epidemic. In particular, interest was placed on the stiffness
property of the differential problem by pointing out that in a given population,
the more stiff the problem, the faster the transit of fake news. Numerical evi-
dence, which will demonstrate the effectiveness of the theoretical results, will
be provided in the development of the thesis.
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Introduction

This Ph.D. Thesis is focused on the study and analysis of numerical methods
for Stochastic Differential Equations (SDEs), and Stochastic Partial Differen-
tial Equations (SPDEs) interpreted in Itô sense. This study is motivated by
the role that SDEs and SPDEs play in modeling evolutionary problems. For
many years, Ordinary Differential Equations (ODEs), or more generally par-
tial differential equations, have been widely used to model phenomena deriving
from natural science and technology. Although this class of equations consti-
tutes a powerful tool for modeling evolution phenomena, the introduction of
stochasticity in such models guarantees a more realistic representation. As a
matter of fact, when the system’s dynamics are affected by random perturba-
tions, SDEs (or SPDEs) are preferable. In some sense, SDEs can be regarded
as differential equations that contain random elements [235]: when the random
perturbations are absent, the SDEs become ODEs.

The origin of the study and of the analysis of stochastic differential equa-
tions appeared in the literature for the first time in 1930 with the well-known
Ornstein-Uhlenbeck model of Brownian motion, which the solution is known
as Ornstein-Uhlenbeck process. It is named after Leonard Ornstein and George
Eugene Uhlenbeck. The first application dates back to the physical sciences
with a model for the velocity of a massive Brownian particle under the influence
of friction.

Although the first equation appeared in 1930, the first and true rigorous
mathematical theory was born in the mid-20th century by the Japanese math-
ematician Kiyosi Itô , when in 1942 he published the paper On stochastic
processes (Infinitely divisible laws of probability) on the Japanese Journal of
Mathematics [164].

Just to mention a few examples, using stochastic differential equations, one
can model several phenomena like the dispersion of a pollutant in the air or in
the water, the effect of noise on the transmission of telecommunication signals,
the dynamics of chemical reactions or the dynamics of several populations of
living beings when random environmental perturbations affect their growth
rate.

In the last year, the number of researchers involved in the numerics for
SDEs has grown considerably. The interest is given by the fact that in the
existing literature, there are only a few equations in which the solution is ana-
lytically known. Therefore the development of ad hoc numerical methods, able
to solve approximately the problem under consideration, becomes essential.

A natural approach to construct numerical methods is to perturb classical
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deterministic methods for ordinary differential equations, such as the Euler-
Maruyama method (named after Leonhard Euler and Gisiro Maruyama) or the
more general θ- methods. Subsequently, the research shifted to derive numer-
ical methods with a higher order of convergence under numerical discretiza-
tions, such as numerical methods based on the well-known Itô-Taylor formula
(considered as the stochastic counterpart of Taylor’s formula) or stochastic
Runge-Kutta method following the same deterministic settings.

Taking into consideration the existing literature on numerical methods for
stochastic differential equations, the spirit of this Ph.D. thesis is certainly to
illustrate how SDEs are involved in the modeling of evolution problems, thus
also considering real-life problems and how it is possible to derive numerical
methods for approximating the solution of the problem under consideration.
This Ph.D. thesis can be divided into three parts, as seen in the sequel.

The first part will entirely focus on studying continuous numerical meth-
ods for stochastic differential equations. These methods will be built following
the well-known collocation technique, based on the idea of approximating the
exact solution with a suitable approximant belonging to a chosen finite dimen-
sional space, usually a piecewise algebraic polynomial, which exactly satisfies
the equation on a specific subset of the integration interval. The collocation
methods are very advantageous due to they provide us with an approximation
of the solution of the equation, not only in the grid points of the numerical
discretization but in the whole integration interval. Furthermore, it is also im-
portant that the continuous approximant can be chosen as a linear combination
of functions ad hoc for the problem considered with the aim to better repro-
duce the qualitative behavior of the solution. Another advantage of collocation
methods is in the fact that they are a powerful tool for developing a variable
step size algorithm used mainly to integrate problems with a high stiffness. It
should also be remembered that collocation also has an important theoretical
significance: indeed, many numerical methods are difficult to analyze as dis-
crete schemes, whereas their analysis, when reformulated as collocation-based
methods, is quite simplified and can be done in a very elegant way. Therefore,
following the same approach for the construction of collocation methods for
Volterra Integral Equations (VIEs), we will construct continuous extensions of
selected numerical methods for stochastic differential equations. In particu-
lar, for selected data settings, a continuous extension of the Euler-Maruyama
method will be obtained. As happens in the deterministic context, also in
the stochastic case, continuous approximants make the analysis of the corre-
sponding numerical methods simpler and easier to use. So a question we asked
ourselves is: can continuous extension provide an efficient local truncation er-
ror estimation? However, our answer is positive but at a preliminary stage.
Indeed, through continuous extensions reported by Higham et. al. in [152], it
was found that the estimate obtained is accurate when applied to different test
problems with three different numerical methods: Euler-Maruyama, Split-Step
Backward Euler and Backward Euler methods.

The second part of this Ph.D. thesis is focused on studying geometric nu-
merical integration, widely used in the deterministic context for ordinary differ-
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ential equations (see, for instance, [144]). The spirit is to investigate whether
numerical discretizations are able to preserve specific invariant laws when ap-
plied to stochastic differential systems that possess a particular characterizing
structure or a property of interest. In a nutshell, we want to reproduce the
geometric structures of a given continuous problem along with its discretized
counterpart. In particular, the purpose of this Ph.D. thesis concerns the anal-
ysis of energy-preserving methods applied to stochastic Hamiltonian problems
in their formulation according to Itô. Stochastic Hamiltonian problems are
the most suitable candidates to conciliate the Hamiltonian nature of classical
mechanics, which is closely related to the canonical character of the evolution
equations, with the non-differentiable nature of the Wiener process, which
describes the continuous innovative character of stochastic effects [21, 22].

Stochastic Hamiltonian problems are used in many applications, such as
molecular dynamics, celestial mechanics, population dynamics, weather fore-
cast, immunology, control theory, fluid dynamics, theory of adiabatic invari-
ants, continuum mechanics, nonlinear optics, elastodynamics, oceanography,
electromagnetism, cosmology and quantum field theory, just to mention a few
examples.

In this Ph.D. thesis, particular interest will be initially placed on Itô-type
stochastic Hamiltonian problems with additive noise, which leads us to a sys-
tem of stochastic differential equations with additive noise. Different from
what happens for deterministic Hamiltonian problems, where the Hamiltonian
function is a first integral of the system, in the stochastic case, Burrage et.
al. in [68, 74] proved that, in the case of additive noise, the Hamiltonian
function satisfies the trace equation, revealing that the expected value of the
Hamiltonian grows linearly over time. The authors also have proved that, if we
consider stochastic Runge-Kutta methods involving multiple Wiener processes,
they preserve the trace law along its numerical dynamics, at least for quadratic
Hamiltonians. However, stochastic Runge-Kutta methods exhibit a remark-
able error growth as the parameter ϵ of the diffusive part increases. Through
a perturbative analysis, in terms of ϵ expansions, we investigate the reason of
this behavior, due to the presence of a secular term ϵ

?
t destroying the overall

conservation accuracy. In [84], the authors have derived a drift-preserving nu-
merical integrator for stochastic Hamiltonian problems with additive noise, in
order to reproduce the trace law along the numerical discretization.
The analysis will then be extended to the case of stochastic Hamiltonian sys-
tems with (small) multiplicative noise. First, a characterization of the expected
value of the Hamiltonian function will be obtained, emphasizing the separable
and quadratic Hamiltonian. Next, we will show that, in general, first-order
approximations to such systems cannot retain the same behavior discovered
for the exact averaged Hamiltonian. At the conclusion of this second part, the
analysis for the specific case of Euler-Maruyama methods is performed.

The last part of this thesis aims to study and analyze evolution models,
one involving stochastic partial differential equations and the second stochastic
differential equations. In detail:

• FitzHugh-Nagumo (FhN) system (named after Richard FitzHugh)
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is a model widely used in neuroscience. In the deterministic context,
FitzHugh–Nagumo system is a simplified two-dimensional version of the
famous Hodgkin–Huxley model, which describes how action potentials
propagate along an axon. Historically this was the first model created to
describe this process, for which its discoverers, physiologists Alan Lloyd
Hodgkin and Andrew Huxley, won the Nobel Prize in Physiology in 1963.
Noise is omnipresent in neural systems and arises from different sources:
it could be internal noise (such as random synaptic input from other neu-
rons) or external noise. It was noted in [237] that adding an appropriate
amount of noise in the model helps to detect weak signals.
This Ph.D. thesis proposes a splitting strategy for the stochastic FitzHugh-
Nagumo system. The main idea of a splitting strategy is to decompose
the vector field, appearing in the evolution equation, into several parts,
in order to exhibit subsystems that can be integrated exactly (or eas-
ily). The contributions of non linearity, diffusion operators, and noise
can be integrated and combined separately to obtain an explicit, easy-
to-implement, and effective numerical scheme. The most crucial result
concerning this study is the proof of mean square convergence at a rate
of at least 1/4 of the proposed numerical scheme. We also prove that the
scheme satisfies appropriate moment bounds, which is remarkable since
we consider schemes that explicitly deal with a non linearity with cubic
growth.
The analysis combines some features of the analysis of splitting schemes
of the stochastic Allen-Cahn equation [45] and of finite-dimensional ver-
sions of the FhN stochastic system; however, we need to develop non-
trivial and original arguments to treat the stochastic FitzHugh-Nagumo
system.

• The problem of fake news represents a real threat to the stability and
cohesion of societies, especially in a context like the current one, where
news is now accessible from everyday devices such as smartphones, PCs,
or smart speakers. In the face of this growing number of information
sources, a greater critical sense is needed among users because not all
news is founded, and some can even be very dangerous. In fact, al-
though the phenomenon of hoaxes existed even before the Internet, with
the web, the spread of misleading news increases, due to the modern
channels of transmission, such as Social Media, which can easily reach
millions of users worldwide. As a matter of fact, in today’s society, fake
news is spreading significantly more widely, quickly, deeply and with a
long-range, compared to real news, in a dynamic that affects all sectors
of information, often exponentially.
Through the use of epidemiological models, widely used to analyze the
spread of a disease in a population, the aim of the last part of this Ph.D.
thesis is to be able to model the spread of fake news in such a way as to
limit its serious consequences that could occur in the future.
In the first analysis, the classic SIR model was considered, where the
population is divided into three subgroups: susceptible, infected and re-
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covered. Each of these categories will be given a meaning with regard
to the phenomenon of fake news. In particular, the susceptible will be
potentially authoring the spreading of fake news; the infected will be the
wide variety of authors highly active in posting fake information; the
recovered will be authors who are inactive in the spreading of fake news.
This Ph.D. thesis highlights how the stiffness index, which is often used
as a measure of stiffness for differential problems, can be employed to
model the spread of fake news. In particular, we show that the more
the stiffness index of the SIR model is high, the more the transit of fake
news in a given population is rapid.
It is clear that the phenomenon of fake news can be affected by uncer-
tainty. Indeed, the dissemination of information is a stochastic process
that may depend, for example, on the content of the information, the
influence of users and the structure of the network. In this context, it
is highlighted how the phenomenon of fake news is best described by a
model of stochastic differential equations. In this thesis, we use a stochas-
tic SIR model obtained by perturbing the classic SIR model. The analysis
linked to the stiffness index turns out to be more complex this time, as
in the stochastic community, a strict definition of a stiffness index is still
unclear. Therefore, here this analysis has been carried out by pointing
out that the larger the diffusive parameter of the stochastic counterpart
is, the more the order reduction phenomenon occurs and therefore the
more the problem becomes stiff [30, 31]. Furthermore, it has been exper-
imentally proved that the more the stiff problem, the more the contagion
curve tends to lower, a consequence of the fact that stochastic perturba-
tions within the model create noise, which in turn could generate chaos
in the population.

This Ph.D. thesis is organized as follows: in the first chapter, the fun-
damental notions regarding stochastic differential equations will be recalled,
emphasizing those that are the main results of the existence and uniqueness of
the SDE and the famous formula of Itô. In Chapter 2, instead, the standard
aspects of some numerical methods for stochastic differential equations will be
reported, which will be useful in the sequel of this thesis. The third chapter
aims to obtain continuous methods for stochastic differential equations. First,
the collocation technique for the Volterra integral equations will be recalled.
Subsequently, however, by exploiting this technique, continuous extensions of
some numerical methods for SDE will be obtained. The original results shown
in this chapter are an object of [93]. The study then continues with the anal-
ysis of stochastic Hamiltonian problems, which will be studied in the fourth
chapter of this Ph.D. thesis. In particular, after introducing the importance of
Hamiltonian problems in real-life modeling phenomena, we will move on to the
study of stochastic Hamiltonian problems with both additive and multiplica-
tive noise. For each of these classes, the perturbative analysis will be carried
out through the ϵ expansions, concluding that it is not possible to preserve
the trace laws under any numerical discretizations. The novelty enclosed in
this chapter is an object of [121]. The Chapter 5 contains new research that
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I have conducted in collaboration with Prof. David Cohen (from Chalmers
University of Gothenburg and University of Gothenburg) and Prof. Charles-
Edouard Brehier (from the University of Pau). It is based on the study of a
used model for signal propagation in nerve cells. A splitting method will be
analyzed, and the related convergence analyzes will be discussed. The actual
result is reported in [44]. The last chapter instead deals with a relevant prob-
lem in modern society concerning the spread of fake news. In particular, we
will first see how the deterministic stiffness index can be used to model the
spread of fake news, and then we will study the stochastic counterpart. Part of
this research is reported in [119]. All the results obtained will be confirmed by
numerical simulations that will demonstrate the theoretical efficiency. Finally,
conclusions and possible future work will be discussed.



Chapter 1

Stochastic Differential Equations

In this first chapter a brief introduction to stochastic differential equations
(SDEs) will be provided, highlighting the fundamental results useful for the
sequel of this thesis. Some examples of applications in which SDEs are widely
used will be introduced.

1.1 Stochastic differential equations
Let pΩ,F ,Pq a be complete probability space with filtration tFtutě0 satisfying
the usual conditions and let W ptq “ pW1ptq, . . . ,Wmptqq be an m–dimensional
Wiener process (or also called Brownian motion) defined on the space, having
independent Wiener process components. If f : rt0, T s ˆ Rd Ñ Rd and G :
rt0, T s ˆ Rd Ñ Rdˆm are two functions Borel measurable, the d–dimensional
stochastic differential equation of Itô type is given by

dXptq “ fpt,Xptqqdt ` Gpt,XptqqdW ptq, t P rt0, T s, (1.1)

with initial value Xpt0q “ X0 an Ft0–measurable Rd–valued random variable,
such that E|X0|2 is finite. Usually, in the literature (see [151], for instance),
f is called the drift coefficient and G the diffusion coefficient of the equation
(1.1). Different from the deterministic case, in the stochastic setting one is
not allowed to write dW ptq{dt, since the Brownian motion, usually, is nowhere
differentiable in time with probability 1. Therefore, equation (1.1) assumes
only a theoretical interest and it is difficult to be managed.
To better understand the considered problem, by integrating equation (1.1) in
rt0, ts, the corresponding integral formulation of (1.1) is introduced, and it is
given by

Xptq “ X0 `

ż t

t0

fps,Xpsqq ds `

ż t

t0

Gps,Xpsqq dW psq, t P rt0, T s. (1.2)

The first integral appearing in (1.2) is a standard Riemann integral along paths
while the second integral of the right–side is intended in the Itô sense, that is,
respect to uniform grid t0 ă t1 ă . . . ă tN “ T it reads

ż t

t0

Gps,Xpsqq dW psq “ lim
NÑ`8

N´1
ÿ

j“0

Gptj, Xptjqq∆Wj, (1.3)

7



1.1 Stochastic differential equations 8

where ∆Wj :“ W ptj`1q ´ W ptjq are the so-called Wiener increments, namely
normally distributed random variable with mean 0 and variance ∆t :“ tj`1´tj.

Remark 1.1.1. The stochastic differential equations (1.1) is interpreted in
Itô sense, since the stochastic integral, appearing in (1.2), is in the Itô for-
mulation. As a matter of fact, there are infinite ways to define the stochastic
integral in (1.2). As reported in the Gard’s monograph [131], if Hpt,Xptqq “

rh1pt,Xq, . . . , hmpt,XqsT is an nˆm suitable matrix–valued function with com-
ponents hj n–vector valued functions, by taking t0 ă t1 ă . . . ă tN “ T an
uniform mesh of the interval rt0, T s, the family of stochastic integrals is defined
by

ż T

t0

Hps,Xpsqq dW psq “ lim
NÑ`8

N´1
ÿ

j“0

H ptj, λXptj`1q ` p1 ´ λqXptjqq∆Wj,

(1.4)
for some real-value λ P r0, 1s. In terms of columns of H, equation (1.4) can be
written as

ż T

t0

m
ÿ

i“1

hips,Xpsqq dWipsq “

lim
NÑ`8

N´1
ÿ

j“1

˜

m
ÿ

i“1

hipt, λXptj`1q ` p1 ´ λqXptjqq

¸

∆Wij,

where ∆Wij :“ Wiptj`1 ´ Wiptjqq.
The reader may note that in the the case λ “ 0, the well-defined Itô integral
is obtained, while, the case λ “ 1{2 (the Stratonovich integral) deserves to
be treated separately for its physical meaning [37, 135, 190, 248] and for the
numerous and several applications in different areas, see for instance [13, 154,
172, 193, 212] and references therein.
The Stratonovich integral is usually denoted by

ż T

t0

Hps,Xpsqq ˝ dW psq,

and correspondingly, the SDEs in the Stratonovich sense are written as

dXptq “ fpt,Xptqqdt ` Gpt,Xptqq ˝ dW ptq, t P r0, T s. (1.5)

Effortlessly, one can show that the Stratonovich integral coincides with ordinary
calculus in the deterministic case. Furthermore, one can prove that the Itô
SDEs (1.2) are equivalent to the Stratonovich SDEs

dXptq “ fpt,Xptqqdt ´
1

2
G1

pt,XptqqGpt,Xptqqdt ` Gpt,Xptqq ˝ dW ptq,

in the sense that if Xptq solves one that, it also solves the other.
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1.2 Solution of SDEs
In this section, the concept of solution of SDEs will be presented and some the-
orems of existence and uniqueness of the solution will be stated. In particular,
these results will allow us to state that equation (1.2) is definitely well-defined.

Denote by Lpprt0, T s;Rdq the family of Rd-valued Ft-adapted process
tfptqut0ďtďT such that

şT

t0
|fptq|p dt ă `8 almost surely (a.s).

Definition 1.2.1. A Rd–valued stochastic process tXptqu, with t0 ď t ď T , is
a solution of (1.1) if and only if it satisfies the following properties:

1. tXptqu is continuous and Ft–adapted;

2. tfpt,Xptqqu P Lprt0, T s;Rdq and tGpt,Xptqqu P L2prt0, T s;Rdˆmq, for
P rt0, T s;

3. equation (1.2) holds for every t P rt0, T s with probability 1.

According to the Definition 1.2.1, the solution of a stochastic differential
equation, is a stochastic process, therefore for any t P rt0, T s, Xptq is a random
variable. Furthermore, in the first place one could immediately observe that
in order for equation (1.2) to make sense, the functions f and G in (1.2) must
satisfy appropriate conditions. The next theorem establishes the existence and
uniqueness of the solution to SDEs (1.1), under a very strong condition.

Theorem 1.2.1. Assume that:

1. the functions fpt, xptqq and Gpt, xptqq are Borel measurable with respect
to t P rt0, T s and x P Rd;

2. there exists a constant K such that for all t P rt0, T s, and x, y P Rd

(a) (Lipschitz condition)

|fpt, xq ´ fpt, yq| ` |Gpt, xq ´ Gpt, yq| ď K|x ´ y|;

(b) (Linear growth condition)

|fpt, xq|2 ` |Gpt, xq|2 ď K2p1 ` |x|2q;

3. X0 is independent of W ptq, for t ą t0, and E|X0|2 ă 8.

Then there exists a solution Xptq to (1.1) defined on rt0, T s which is continuous
with probability 1 and such that

sup
tPrt0,T s

E|Xptq|
2

ă 8.

Moreover, the solution Xptq is pathwise unique, in the sense that if Xptq and
Y ptq are two solutions to SDE (1.1), then

P

˜

sup
tPrt0,T s

|Xptq ´ Y ptq| “ 0

¸

“ 1.
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The proof of the above theorem is technical and requires knowledge of some
probabilistic aspects, therefore it is omitted. For details, the interested reader
could read, for instance [10, 165].
According to Theorem 1.2.1, the existence and uniqueness of the solution to
(1.1) require the functions f and G satisfy the Lipschitz condition and linear
growth in the state variable. The condition (2a) is responsable for uniqueness
of the solution, while the condition (2b) ensures the existence of the solution.
The Lipschitz condition (2a) of Theorem 1.2.1 means that the drift and dif-
fusion coefficients of (1.1) do not change faster than a linear function of x.
Clearly, these conditions imply the continuity of fpt,Xptqq and Gpt,Xptqq in
Xptq for all t P rt0, T s. However, these conditions impose much more stringent
constraints and, therefore, may be relaxed; in particular, the Lipschitz (uni-
form) condition (2a) may be substituted with the local Lipschitz condition, as
follow:

(2a’) For each N ą 0, there is a constant KN such that for all t P r0, T s, and
for X and Y , with |X| ď N , |Y | ď N ,

|fpt,Xq ´ fpt, Y q| ` |Gpt,Xq ´ Gpt, Y q| ď KN |X ´ Y |.

Furthermore, the linear growth condition is too restricted. Therefore Mao,
in his monograph [191], shows and proves the following remarkable theorem:

Theorem 1.2.2. Assume that the local Lipschitz condition (2a’) holds, but the
linear growth condition (2b) is replaced with the following monotone condition:
there exists a positive constant K such that for all pt,Xptqq P rt0, T s ˆ Rd

XTfpt,Xptqq `
1

2
|Gpt,Xptqq|2 ď Kp1 ` |X|2q.

Then there exists a unique solution Xptq to equation (1.1).

According with [110], the following definitions can be given.

Definition 1.2.2. Il the diffusion term G of equation (1.1) does not depend
on the variable X, that is Gpt,Xq ” Gptq for all t P rt0, T s, then the SDE (1.1)
is said to have an additive noise. Otherwise it is said to have a multiplicative
noise.

Definition 1.2.3. If the coefficients f and G of (1.1) do not depend explicitly
on time, then the SDE (1.1) is called autonomous.

Keeping in mind the definitions just considered, an SDE with additive
noise, i.e.

Xptq “ Xpt0q `

ż t

t0

fps,Xpsqq ds ` σW ptq (1.6)

with σ P R, can be seen as the simplest way to perturb an ordinary differential
equation (ODE). In fact, let consider an ODE of the form

dx

dt
“ fpt, xptqq, t P rt0, T s, (1.7)
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with initial condition xpt0q “ x0. The solution of (1.7) can be written as

xptq “ xpt0q `

ż t

t0

fps, xpsqqds (1.8)

Therefore, equation (1.6) appears as a stochastic perturbation of the solu-
tion (1.8) to ODE (1.7).

1.3 The Itô formula
To complete the basic theory of stochastic differential equations it is important
to consider an essential key tool in the stochastic calculus: Itô’s Lemma (or
also called Itô ’s formula). In particular, it can be regarded as a stochastic
version of the deterministic chain-rule, widely used to differentiate functions of
the solutions to deterministic differential equations. As a matter of fact, Itô’s
formula gives the stochastic differential of a smooth function of the solution of
a stochastic differential equation.
As the reader will recall, if xptq is the solution of the following ordinary differ-
ential equation

d

dt
xptq “ fpt, xptqq, t ě t0

with a suitable function f , then the chain rule applied to a smooth suitable
function vpxptqq gives

d

dt
vpxptqq “

d

dx
vpxptqq

d

dt
xptq “ v1

pxptqqfpxptqq.

To better understand the Itô’s Lemma, the scalar version will be intro-
duced first, that is applied to a scalar stochastic differential equation, and
subsequently it will be possible to state the same Lemma for a system of
SDEs.

Theorem 1.3.1 (The one-dimensional Itô formula). Consider a one-dimensional
SDE

$

&

%

dXptq “ fpt,Xptqq dt ` gpt,Xptqq dW ptq, t P rt0, T s,

Xpt0q “ X0.
(1.9)

with Xptq P R for all t P rt0, T s. Assume that the functions f and g of (1.9)
satisfy the conditions of Theorem 1.2.1 guaranteeing the existence and unique-
ness of solution. If the real–valued function F pt, xq has continuous partial
derivatives BF {Bt, BF {Bx, and B2F {Bx2 for t P rt0, T s and x P R, and Xptq
is a solution of (1.9), then the process F pt,Xptqq has the following stochastic
differential

dF pt,Xptqq “

„

BF

Bt
` f

BF

Bx
`

1

2
g2

B2F

Bx2

ȷ

pt,Xptqqdt `

„

BF

Bx
g

ȷ

pt,XptqqdW ptq.

(1.10)
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The integral representation of (1.10) reads

F pt,Xptqq “ F pt0, X0q `

ż t

t0

„

BF

Bt
` f

BF

Bx
`

1

2
g2

B2F

Bx2

ȷ

ps,Xpsqqds

`

ż t

t0

„

BF

Bx
g

ȷ

ps,XpsqqdW psq.

Itô’s Lemma is a powerful result in the stochastic calculus, since the solu-
tions of many stochastic differential equations are computed, the bounds for
their moments are provided and numerical methods are obtained for (1.9).
A simplifying example will be shown to understand the usefulness of the Itô
formula to find the solution of a given SDE.

Example 1.3.1. Consider the following scalar linear stochastic differential
equation

dXptq “ fptqXptqdt ` gptqXptqdW ptq, (1.11)

where f and g are continuous functions. Letting F pxq “ x2, Itô’s Lemma can
be applied and it asserts that

dX2
ptq “

“

2fptqX2
` g2ptqX2

ptq
‰

` 2gptqX2
ptqdW ptq.

The stochastic process
Y ptq “ X2

ptq

solves the SDE

dY ptq “
“

2fptq ` g2ptq
‰

Y ptq ` 2gptqY ptqdW ptq. (1.12)

Similarly to the scalar case, one shall extend the one–dimensional Itô’s
formula to the multidimensional case. For a function F : rt0, T sˆRd Ñ R with
continuous partial derivatives BF {Bt, BF {Bxi B2F {BxiBxj, putting X “ tXiu,
W “ tWju, f “ tfiu, and G “ tgiju for i “ 1, . . . , d and j “ 1, . . . ,m, one has,
in component form

dF pt,Xptqq “

«

BF

Bt
`

d
ÿ

i“1

fi
BF

Bxi
`

d
ÿ

i,j“1

m
ÿ

k“1

1

2
gikgjk

B2F

BxiBxj

ff

pt,Xptqqdt

`

d
ÿ

i“1

BF

Bxi
pt,Xptqq

m
ÿ

j“1

gijpt,XptqqdWjptq,

(1.13)

whose integral form is given by

F pt,Xptqq “ F pt0, X0q `

ż t

t0

«

BF

Bt
`

d
ÿ

i“1

fi
BF

Bxi

`

d
ÿ

i,j“1

m
ÿ

k“1

1

2
gikgjk

B2F

BxiBxj

ff

ps,Xpsqqds

`

d
ÿ

i“1

ż t

t0

BF

Bxi
ps,Xpsqq

m
ÿ

j“1

gijps,XpsqqdWjpsq,
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Equivalently, in vector–matrix form, equation (1.13) can be rearranged in
a more compact form as

dF “

„

Ft ` fTFx `
1

2
tracepGGTFxxq

ȷ

pt,Xptqqdt ` rF T
xGs pt,XptqqdW ptq,

(1.14)
where ’trace’ denotes the trace operator on the sum of main diagonal entries,
and Fx, Fxx are respectively the vector gradient of the function F , that is

pFxqj “
B

Bxj
F , for j “ 1, . . . , d and the Hessian matrix of the function F , i.e.,

pFxxqj,i “
B

BxjBxi
F , for any j “ 1, . . . , d and i “ 1, . . . ,m.

Another important result concerning the stochastic calculus is the so-called
Itô isometry, which for a sufficiently smooth function h : rt0, T s ˆ Rd Ñ R is
given by

E

«

ˇ

ˇ

ˇ

ˇ

ż t

t0

hps,XpsqqdW psq

ˇ

ˇ

ˇ

ˇ

2
ff

“

ż t

t0

E
“

hps,Xpsqq
2
‰

ds

This above results derive substantially from an application of the Itô’s Lemma
and on the principle that dW ptq2 ” dt (see [151]).

1.4 Some applications
This subsection will describe some applications in which stochastic differential
equations are widely used. Given the random nature of SDEs solution, these
can be used in multiple real-life phenomena, especially when the latter are
subject to random perturbations. Hence some problems involving SDEs will
be listed and described below, starting from dynamic population models to
financial models.

1.4.1 Population dynamics

Population dynamics, as reported in [24] is the ecology field that aims to
study the variation in time and space of population size and density for one or
more species in a crowded environment. In the deterministic case, a classical
model to describe population dynamics is given by the logistic linear–quadratic
Verhulst equation [19]:

dx

dt
“ rpK ´ xqx, (1.15)

where the constant K ą 0 is the carrying capacity of the environment and the
constant r ą 0 is such that 1{r is a characteristic timescale. The solution xptq
represents the population density of time t
In a very natural way, by randomizing the constant K and r, equation (1.15)
leads to the following scalar autonomous SDE in Itô sense [151]

dXptq “ rXptqpK ´ Xptqqdt ` βXptqdW ptq, t P r0, T s. (1.16)
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Immediately, one can observe that if the stochastic noise β vanishes, the stan-
dard logistic ODE (1.15) is obtained. The constant β controls the strength
of the stochasticity term. For this model (1.16), Kloeden and Platen in [165]
have shown that the exact solution of the SDE (1.16) is

Xptq “
Xp0qeprK´ 1

2
β2qt`βW ptq

1 ` Xp0qr
şt

0
eprK´ 1

2
β2qs`βW psqds

.

Therefore, to maintain the positivity of the solution to the model, it is nec-
essary that the initial value Xp0q ě 0 with probability 1. In this hypothesis
then Xptq ě 0 for every t P r0, T s with probability 1.
Another very studied deterministic model of multi–species interaction is the
Lotka-Volterra system [239](or also called Predatory–prey model), that for a
d–dimension population it is given by

dxi
dt

“ xi

˜

bi `

d
ÿ

j“1

aijxj

¸

. (1.17)

Here xi denotes the density of i–th species, the coefficient bi is the intrinsic
growth rate for i–species and aij represents the effect of the j–th species upon
the i–th one. The matrix A “ paijq is the so-called interaction matrix. As
reported in Kloeden and Platen monograph [165], randomizing the growth
coefficients, equation (1.17) becomes a system of SDEs as follows

dXiptq “ Xiptq

˜

bi `

d
ÿ

j“1

aijXjptq

¸

dt ` βiXiptqdWiptq, t P r0, T s. (1.18)

Different from the Verhulst model, here the exact solutions are not known;
therefore they must be solved numerically, with some numerical methods (see
Chapter 2).

1.4.2 Stochastic SIS Model

In the epidemiological field, it is widespread to use deterministic-compartmental
models when studying the spread of a new disease. This subsection will
pay particular attention to the study of the SIS epidemic model (susceptible-
infected-susceptible) and how it is possible to define it in a stochastic context,
introducing random perturbations. If Sptq denotes the number of susceptible
people and Iptq the number of infected at time t, the differential model is
defined as

$

’

’

’

&

’

’

’

%

dSptq

dt
“ µN ´ βSptqIptq ` γIptq ´ µSptq,

dIptq

dt
“ βSptqIptq ´ pγ ` µqIptq,

(1.19)

with positive initial condition S0, I0 such that S0`I0 “ N , where N is the total
size of the population. Here, the parameter µ represents the per capita death
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rate, γ the rate at which infected people became cured, and the coefficient β
the disease transmission rate.
If one supposes that random environmental factor takes action simultaneously
on each individual in the population [136], then the stochastic SIS model in
the Itô sense assumes the form

$

&

%

dSptq “ pµN ´ βSptqIptq ` γIptq ´ µSptqq dt ´ σSptqIptqdW ptq,

dIptq “ pβSptqIptq ´ pγ ` µqIptqq dt ` σSptqIptqdW ptq,
(1.20)

where the parameter µ, γ, β assume the same meaning as the deterministic SIS
model, while the parameter σ is the amplitude of the stochastic counterpart.
Keeping in mind that Sptq “ N´Iptq, then the model (1.20) can be rearranged
as a single scalar SDE, as follows

dIptq “ IptqpβN ´ µ ´ γ ´ βIptqqdt ` σpN ´ IptqqdW ptq, (1.21)

with initial condition Ip0q “ I0. As shown in [136], stochastic SIS model (1.21)
admits a unique and positive solution Iptq P p0, Nq, in the sense that

PtIptq P p0, Nq, @t ě 0u “ 1.

There are multiple models that describe the spread of an epidemic. For in-
stance, in Chapter 6 the stochastic SIR model (susceptible-infected-recovered)
will be introduced, adapting it to the context of the spread of fake news.

1.4.3 Twitter Activity

In recent years, the rapid increase in the use of social networks has changed
the way people interact with each other. In fact, the role of social networks is
precisely to create a place for discussion within which users want to interact
and discuss. In particular, Twitter is a micro-blogging platform where each
registered user can send and share "tweets" (considered as small information)
that can be private or made public to the user’s followers. In [196] a model
that analyzes the correlated human activity in massive social organizations
is described through SDE. Specifically, the stochastic process for the average
waiting time between successive tweets is determined by the following scalar
SDE:

dXptq “ p1 ` fpXptqqq dt `
a

XptqdW ptq,

where the deterministic function fpXptqq is chosen so that the process has a
non-trivial stationary distribution.

1.4.4 Seismography

The study of earthquakes has been extensively studied over the years using
deterministic differential models. Of course, from the intuitive point of view,
these phenomena are preferably described by stochastic differential equations,
which better acquire the behaviour of the phenomenon studied. As reported
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in [165], the first classic model for seismography was introduced by Bolotin,
assuming that the acceleration z2ptq of the ground level zptq at time t:

z2
ptq “ Iptqξptq, (1.22)

with ξptq Gaussian white noise (stationary and ergodic random process with
zero mean [192]), and Iptq “ hteαt, where α, h are positive known constants.
Usually, the second order stochastic differential equation may be rewritten as
a system of SDEs

$

&

%

dZ1ptq “ Z2ptqdt

dZ2ptq “ IptqdW ptq
(1.23)

where Z1ptq “ zptq is the vertical displacement and Z2ptq “ z1ptq the velocity
in the vertical direction.

Kozin has proposed a different variant of (1.22) [165]. In particular, he
assumes that the acceleration can be replaced by a time-dependent linear com-
bination of the acceleration and its derivatives. Assuming that aptq “ z2ptq,
the proposed model is:

a2
ptq ` c1ptqa1

ptq ` c0ptqaptq “ Iptqξptq (1.24)

with c1ptq “ c10 and c0ptq “ c00 ` c01t ` c02t
2 ` c03t

3 for known coefficients
c10, c00, c01, c02, c03 and ξptq Gaussian white noise.
In a similar way to the previous model, equation (1.24) can be rearranged as
a system of SDEs

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

dZ1ptq “ Z1ptqdt

dZ2ptq “ Z2ptqdt

dZ3ptq “ Z3ptqdt

dZ4ptq “ p´c1ptqZ4ptq ´ c0ptqZ3ptqqdt ` IptqdW ptq

with Z1ptq “ zptq, Z2ptq “ z1ptq, Z3ptq “ z2ptq “ aptq and Z4ptq “ z3ptq “ a1ptq.

1.4.5 Investment Finance

One of the most relevant problems in the field of financial mathematics con-
cerns the study of that process that governs the dynamics of an asset, that
is, a financial object whose value is known but is subject to change in the
future. One of the widely used model is the geometric Brownian motion, used
to model stock prices in the Black–Scholes partial differential equation [148]:

dSptq “ λSptqdt ` σSptqdW ptq. (1.25)

Here, the quantity Sptq is the price of the asset at time t. The constant
parameters λ and σ are respectively the measure of the average rate of growth
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of the asset price (also known as drift term) and the measure of the standard
deviation of the returns (also known as volatility).

The explicit solution of the linear SDE (1.25) is known and it is given by:

Sptq “ S0 exp

„ˆ

λ ´
1

2
σ2

˙

t ` σW ptq

ȷ

(1.26)

with initial condition Sp0q “ S0.
As seen in the following sections, this equation will often occur when one

wants to study numerical linear stability for SDE. Straightforwardly, from
(1.26), one can find that the expected value of (1.26) is

ErSptqs “ S0 exppλtq.

Hence, the average price increases exponentially, and is independent of σ.
Another very used model in mathematical finance is the so-called Ornstein-

Uhlenbeck process, named after Leonard Ornstein and George Eugene Uhlen-
beck. It is used to model interest rate dynamics. The Ornstein–Uhlenbeck
process Sptq is the solution of the following SDE

dSptq “ λpµ ´ Sptqqdt ` σdW ptq. (1.27)

with initial condition Spt0q “ S0 and µ constant parameter. The explicit
solution of the equation (1.27) is known, and it is given in integral form by

Sptq “ µ ` eλtpS0 ´ µq ` σe´λt

ż t

0

eλsdW psq.

It is important to note that the solution Sptq of the model (1.27) could become
negative, but if µ ą 1.5σ2{λ, the probability of Sptq being negative is rather
small for any sufficiently large value of t [191].

1.4.6 Double-Well potential

A potential function is a sufficiently smooth function V that is bounded below
and such that there exists a function x such that

dx

dt
“ ´V 1

pxptqq. (1.28)

This function is widely used in quantum mechanics, in quantum field theory
and elsewhere for the exploration of various physical phenomena.
The stochastic additive version of (1.28) is given by

dXptq “ ´V 1
pXptqqdt ` σdW ptq (1.29)

where σ P R. The double-well potential [151] is defined as

V pxq “ x2px ´ 2q
2. (1.30)

Applying (1.30) to (1.29), the SDE is

dXptq “
`

´8Xptq ` 12Xptq2 ´ 4Xptq3
˘

dt ` σdW ptq.

This problem will be used in the sequel of this thesis.



Chapter 2

Numerics for SDEs

As the reader noted in the previous chapter, there are many phenomena in
which stochastic differential equations are involved. However, it seems evident
that, as happens in the case of ordinary differential equations, there are very
few equations whose explicit solution is known. Therefore, if you want to
broaden the set of solvable stochastic differential equations, it is necessary to
resort to numerical methods that allow us to find an approximate solution
to the problem under consideration. Therefore this chapter will be entirely
dedicated to numerics for SDEs, analyzing different numerical methods for
SDE and studying he corresponding properties of convergence and numerical
stability. Firstly, the Euler-Maruyama method will be remembered, considered
as the stochastic counterpart of the classic Euler method for ODEs. Then the
reader will see how it is possible to obtain numerical methods with higher order
of convergence. Moreover a class of implicit methods, knows as stochastic
θ methods, will then be analyzed. Finally a stochastic version of Runge-
Kutta methods is given, obtaining methods as a stochastic perturbation of
deterministic Runge-Kutta methods.

As the reader will observe in the sequel of this chapter, constructing numer-
ical methods for SDEs with high order of strong convergence is by no means
a trivial problem, since the stochastic perturbation of a deterministic ordi-
nary differential equation involves the random variable W ptq which behaves
as Op∆tq. This led researchers to construct a general theory for constructing
higher-order numerical schemes for SDE, making use of the so-called Itô-Taylor
stochastic expansion, considered as a stochastic generalization of the classical
Taylor expansion for functions of the solution of an ODE [110].

A numerical method for ODEs of the form
$

’

&

’

%

dx

dt
“ fpt, xptqq, t P rt0, T s,

xpt0q “ x0,

(2.1)

with Xptq P Rd consists of discretizing the integration integral rt0, T s in a mesh
of N points of the form tn “ t0`n∆t, with ∆t ą 0 and for n “ 0, . . . N´1, and
to generate a sequence of vectors txnu such that xn in an approximation of the
solution xptnq. Numerical methods for ODEs have been extensively studied

18
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over the years by many researchers; for example, it is possible to refer (but not
exhaustively) to [76, 144, 146, 174, 233, 253] and references therein.

Following the same idea of numerical methods for ODEs, some of the nu-
merical methods existing in the literature for SDEs and their relative properties
of convergence and stability will be reviewed in the following subsections.

2.1 Euler-Maruyama method
Euler-Maruyama method (EM) is the simplest numerical method used to ap-
proximate a given SDE or a system of SDEs. It is considered as the stochastic
counterpart of the explicit Euler method for ODEs [151, 150]. Remember that
given a initial value problem of the form

$

’

&

’

%

d

dt
xptq “ fpt, xptqq t P rt0, T s,

xpt0q “ x0,

(2.2)

with xptq P Rd, the explicit Euler method applied to (2.2) is

xn`1 “ xn ` ∆t fptn, xnq (2.3)

for n “ 0, . . . N ´ 1, where xn « xptnq.
Now, consider a well-posed stochastic initial value problem

$

&

%

dXptq “ fpt,Xptqq dt ` Gpt,Xptqq dW ptq, t P rt0, T s,

Xpt0q “ X0.
(2.4)

Let ti “ t0 ` i∆t be a uniform partition of the integration interval rt0, T s with
step-size ∆t “ pT ´ t0q{N , for some integer N . The integral formulation of
(2.4), computed for t P ptn, tn`1s, is given by

Xptq “ X0 `

ż t

tn

fps,Xpsqq ds `

ż t

tn

Gps,Xpsqq dW psq, t P rt0, T s. (2.5)

By evaluating (2.5) for t “ tn`1, one gets

Xptn`1q “ Xptnq `

ż tn`1

tn

fps,Xpsqqds `

ż tn`1

tn

Gps,XpsqqdW psq. (2.6)

Now, one can approximate the two integrals by the simple left-endpoint
Riemann sums, i.e.,

ż tn`1

tn

fps,Xpsqdsq « ∆t fptn, Xptnqq,

ż tn`1

tn

gps,XpsqdW psqq « ∆Wn gptn, Xptnqq.

(2.7)
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Figure 2.1: True solution and EM approximation of (1.25)

where ∆Wn “ W ptn`1q´W ptnq is a normal variable with 0 mean and variance
∆t. By inserting (2.7) into (2.6), the approximating sequence defined as

Xn`1 “ Xn ` ∆tfptn, Xnq ` ∆WnGptn, Xnq, (2.8)

for n “ 0, . . . , N ´ 1, defines the well known Euler-Maruyama method.
It is worth to observe that in the case G ” 0, with probability 1, and X0

constant, then the method (2.8) reduces to the classic Euler method for ODEs
(2.3).

Example 2.1.1. Apply the Euler-Maruyama method (2.8) to equation (1.25)
in the interval r0, 1s, choosing the parameters λ “ 2, σ “ 1 and initial condition
X0 “ 1. To simulate a trajectory of the EM method, firstly, the Wiener process
is discretized with resolution step-size δt “ 2´8 and then the EM method is
applied with a step-size ∆t “ Rδt with R “ 4 as follow.

Xn`1 “ Xn ` λtXn∆t ` σXn∆Wn.

Figure 2.1 shows the exact solution (1.26) with a solid line and the approx-
imate one through red asterisks. As noted in [150], the discrepancy between
the true solution and the EM approximation at the endpoint t “ 1 is 0.6907.
Reducing the step-size ∆t “ 2δt and ∆t “ δt, the endpoint errors become
respectively 0.1595 and 0.0821. This suggests that the EM method’s discrep-
ancy error is reduced as the step-size ∆t decreases or equivalently increases the
number N .

In studying numerical methods for differential equations, it is crucial to
establish whether, given a numerical scheme, it turns out to be convergent or
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not, and if so, to study the order of convergence. Another important question
concerns the study of (linear) stability, which looks at the asymptotic behavior
when T Ñ `8. For these two reasons, the analysis of convergence and stability
for the EM method will be discussed below.

Unlike the study of convergence for ordinary differential equations, in the
stochastic case, two different definitions of convergence of numerical methods
are distinguished: weak convergence and strong convergence. In a nutshell, the
first will look at the error between the mean of the exact solution and the mean
of the numerical one, while the latter will look at the mean of the norm of the
error between the true solution and the approximate one. In detail, according
to [150, 151], the weak error is

eweak
∆t :“ sup

t0ďtnďT
|ErϕpXnqs ´ ErϕpXptnqqs| , (2.9)

where the function ϕ : Rd Ñ R must satisfy smoothness and polynomial growth
conditions. A numerical method is said weakly convergent if

lim
∆tÑ0

eweak
∆t “ 0. (2.10)

Therefore, a numerical method has weak order of convergence γ if there exists a
constant C (which does not depend on ∆t) and a step-size level ∆t˚ (sufficiently
small) such that

eweak
∆t ď C∆tγ, for each ∆t P p0,∆t˚q. (2.11)

Note that in the deterministic case (i.e. G ” 0 and non random initial value),
the property (2.10) with ϕpxq “ x reduces to the usual deterministic conver-
gence criterion. Under suitable conditions, one can prove that the EM method
has weak order of convergence γ “ 1, that is

eweak
∆t ď C∆t.

A sketch of the proof is given in [151, Chapter 9], but if the reader is interested
in the complete proof, it is possible to refer to [165]. From an experimental
point of view, Figure 2.2 illustrates the weak convergence order of the EM
method, on a log-log scale, when applied to the linear equation (1.25) on r0, T s

with T “ 1 and parameters λ “ 2, µ “ 0.1 and X0 “ 1 (constant). Here
the function ϕ of the equation (2.9) is the identity map. The asterisks in the
Figure 2.2 represent the endpoint error for five different step-sizes ∆t “ 2p´10

with 1 ď p ď 5, computed with M “ 50000 simulations over r0, 1s. Note that
the exact solution of (1.25) has expected value

ErXpT qs “ eλT .

The expected value of the EM endpoint approximation ErXN s is computed
with a simple average, that is

ErXN s „
1

M

M
ÿ

s“1

X
psq

N ,
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Figure 2.2: Weak endpoint error plot for EM method

where X
psq

N denotes the s-th sample path of the numerical solution at the
endpoint T “ 1.

Similarly to what was done for the study of weak convergence, the following
quantity is defined as strong error :

estrong
∆t :“ sup

t0ďtnďT
Er|Xptnq ´ Xn|s. (2.12)

Basically, the strong error considers the expected value of the absolute error
|Xptnq ´ Xn| at each time point. A numerical method is said to be strongly
convergent if and only if

lim
∆tÑ0

estrong
∆t “ 0.

Consequentially a numerical method has strong order β if there exists a con-
stant K and a step-size level ∆t˚ such that

estrong
∆t ď K∆tβ, for each ∆t P p0,∆t˚q.

Assuming f and G are two locally Lipschitz functions and the exact and nu-
merical solution have a bounded p-th moment for some p ą 2, then Higham
et. al. in [152] have proved the EM method converges strongly. Furthermore,
it is possible to prove that the strong order of the EM method is β “ 1

2
, that

is
estrong
∆t ď K∆t

1
2 .

In [151, Chapter 10], a sketch of the proof is given.
Figure 2.3 shows the strong endpoint error, on a log-log scale, of EM method

when it is applied to linear test problem (1.25) with λ “ 2, σ “ 1 and X0 “ 1
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Figure 2.3: Strong endpoint error plot for EM method

(constant). Firstly, M “ 1000 discretized Wiener process paths are computed
with step-size δt “ 2´9 over r0, 1s and for each path, EM method is applied
with 5 different step-sizes ∆t “ 2p´1δt for 1 ď p ď 5. The expected value of
(2.12) is computed by

Er|XpT q ´ XN |s „
1

M

M
ÿ

s“1

|XpT q ´ XN |
psq

where |XpT q´XN |psq is the error between the exact solution (1.26) in the final
point T “ 1 and the approximate one, at the s-th sample path. Experimentally,
Figure 2.3 confirms that EM method has strong order of convergence 1

2
.

It is also possible to prove that the EM method has strong convergence order
β “ 1 if applied to additive noise problems, i.e. when the function Gpt,Xptqq

of (1.1) is constant: see for instance, [151] for details.
However, there are some problems in which the Euler-Maruyama method

may not converge in either a weak or a strong sense, as clarified by the following
equation

dXptq “ ´Xptq3dt ` dW ptq. (2.13)

The drift coefficient of the problem does not satisfy the global Lipschitz con-
dition. The proof of the existence and uniqueness of the solution related to
this problem has been proved in [197]. In [155], the authors showed that there
is a small (but not zero) probability that the EM applied to (2.13) produces
a point Xn “ ∆t´1 that makes the cubic term X3

n dominant. This growth
can make the expectation uncontrollable and, therefore, the method could not
converge in both a strong and a weak sense.
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The study of numerics linked to stochastic differential equations goes on to
the study of stability. Actually, the study of the convergence of the numerical
methods regarding the study of the accuracy over a finite interval rt0, T s. On
the other hand, the stability property looks at the behaviour of the SDEs for
a long time T Ñ `8. To make the analysis simpler, it will focus on the linear
test equation (1.25)

dXptq “ λXptqdt ` σXptqdW ptq, (2.14)

where the parameters λ and σ are allowed to be complex. Recalling that the
exact solution to the above problem is

Xptq “ X0 exp

„ˆ

λ ´
1

2
σ2

˙

t ` σW ptq

ȷ

. (2.15)

For this reason, the conducted analysis will also be called linear stability. From
(2.15), it is possible to show that

ErXptq2s “ ErX2
0 sep2λ`σ2qt. (2.16)

Assuming that X0 ‰ 0 with probability 1, the mean-square stability is defined
as

lim
tÑ`8

ErXptq2s “ 0. (2.17)

This property (2.17) is completely characterized by the following condition

Retλu `
1

2
|σ|

2
ă 0, (2.18)

where Retλu denotes the real part of the parameter λ. Therefore, for the SDE
(2.14) to be mean-square stable, the parameters characterizing it must satisfy
the property (2.18). Similarly, from (2.15) follows

lim
tÑ`8

|Xptq| “ 0, with prob. 1 ô Re
"

λ ´
1

2
σ2

*

ă 0. (2.19)

The property on the left-side of (2.19) is known as asymptotic stability. Clearly,
from (2.18) and (2.19), it is therefore easy to observe that mean-square stability
implies asymptotic stability but not vice versa. Furthermore, both definitions,
in the case in which the diffusion term σ “ 0 is reduced to the same condition
Retλu ă 0, which characterizes the deterministic linear stability.
Correspondingly, a numerical method for SDEs will be said to be:

1. mean-square stable if
lim

nÑ`8
ErX2

ns “ 0; (2.20)

2. asymptotic stable if
lim

nÑ`8
|Xn| “ 0, (2.21)

with probability 1.
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EM method

Regarding the EM method, properties (2.20) and (2.21) can be adapted as
follows:

EM is mean-square stable ô |1 ` ∆tλ|
2

` ∆t|σ|
2

ă 1, (2.22)

and

EM is asymptotically stable ô E
”

log
ˇ

ˇ

ˇ
1 ` ∆t `

?
∆tσN p0, 1q

ˇ

ˇ

ˇ

ı

ă 0,

(2.23)
with N p0, 1q standard normal variable i.e. normally distributed random vari-
able with mean 0 and variance 1. In the case λ and σ real numbers, fixing
x “ ∆tλ and y “ ∆tσ2, follows immediately that the mean-square stability
condition (2.18) to SDE (2.14) becomes y ă ´2x and the asymptotic stabil-
ity (2.19) as y ą 2x. The corresponding condition for the mean-square EM
method (2.22) becomes y ă ´x2 ´ 2x. Regarding the asymptotic stability
of the EM method, in [151], the authors have shown the condition (2.23) is
equivalent to the following one

log |1 ` x| ` γpcq ă 0,

where c :“ y{p1 ` xq and γpcq “ Erlog |1 ` cV |s, with V a standard normal
variable. The explicit expression of the function γpcq is

γpcq “

ż `8

´8

log |1 ` cs|e´s2{2ds. (2.24)

According to the current notation, Figure 2.4 shows the mean-square and
asymptotic stability regions. In particular vertical blue shading shows the
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mean-square stability region of the SDE (2.14) (marked SDE_ms), and cor-
respondingly, the mean-square stability region for EM (marked as EM_ms)
is plotted with the solid blue curve. Of course, horizontal red shading shows
the asymptotic stability region of the SDE (2.14) (marked as SDE_as), and
with the solid red curve, the EM asymptotic stability region is plotted. The
function (2.24) can be approximate by using a numerical quadrature formula
[63, 95, 97, 207, 232].

2.2 Stochastic two-step methods
In this section a class of stochastic two-step methods is introduced, based on
the idea of the deterministic multistep numerical methods, widely used in the
deterministic context to numerically approximate the solution of a given ODEs
[146, 156].

On a uniform grid, a stochastic two-step linear method for SDE (1.1), has
the following form

α2Xn`1 ` α1Xn ` α0Xn´1 “

∆t rβ2 fptn`1, Xn`1q ` β1 fptn, Xnq ` β0 fptn´1, Xn´1qs

` γ1Gptn, Xnq∆Wn ` γ0Gptn´1, Xn´1q∆Wn´1

(2.25)

for n “ 1, 2, . . . , N ´ 2, α2, α1, α0, β2, β1, β0, γ1, γ0 P R are the coefficients of
the method and where X0 and X1 are assumed to be given. The two Wiener
increments ∆Wn “ W ptn`1q ´ W ptnq and ∆Wn´1 “ W ptnq ´ W ptn´1q are
required to be independent at each time step n. Moreover, as the reader can
note, if β2 “ 0 one obtains an explicit numerical method, otherwise, if β ‰ 0,
one obtains an implicit numerical method, which requires a computation of a
system of non linear equations (if the drift function f and the diffusion term
G are non linear). The convergence and the linear stability of such methods
have been studied in the literature (see [60]). Exponential non linear stability
are, instead, analysed in [59].

2.3 High strong order method: Milstein scheme
So far, the Euler Maruyama method has been described, looking at its con-
vergence and stability properties. In particular, it should be remembered that
the EM method has a strong convergence order 1{2 and a weak convergence
order equal to 1. This subsection aims to derive a high strong convergence
order which will be called the Milstein method. It is named after Grigori N.
Milstein, who first published it in 1974 [204]. Consider the scalar stochastic
differential equation

$

&

%

dXptq “ fpt,Xptqq dt ` gpt,Xptqq dW ptq, t P rt0, T s,

Xpt0q “ X0,
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that in integral form can be written as

Xptq “ X0 `

ż t

t0

fps,Xpsqq ds `

ż t

t0

gps,Xpsqq dW psq, t P rt0, T s. (2.26)

Keeping in mind that for a scalar function F pt,Xptqq of the solution Xptq of
(2.26), Itô’s Lemma leads to

F pt,Xptqq “ F pt0, Xpt0qq `

ż t

t0

L0F ps,Xpsqq ds `

ż T

t0

L1F ps,Xpsqq dW psq,

(2.27)
where the two differential operators are given by

L0 “
B

Bt
` f

B

Bx
`

1

2
g2

B2

Bx2
,

L1 “ g
B

Bx
.

It is easy to observe that:

• If F pt,Xptqq “ Xptq then the Itô’s formula (2.27) is just the equation
(2.26);

• If F pt,Xptqq “ fpt,Xptqq, then

fpt,Xptqq “ fpt0, Xpt0qq `

ż t

t0

L0fps,Xpsqq ds`

ż T

t0

L1fps,Xpsqq dW psq;

(2.28)

• Similarly, if F pt,Xptqq “ gpt,Xptqq, then

gpt,Xptqq “ gpt0, Xpt0qq `

ż t

t0

L0gps,Xpsqq ds `

ż T

t0

L1gps,Xpsqq dW psq.

(2.29)

Therefore, substituting (2.28) and (2.29) to (2.26) leads to

Xptq “ Xpt0q `

ż t

t0

„

fpt0, Xpt0qq `

ż s

t0

L0fpu,Xpuqq du `

ż s

t0

L1fpu,Xpuqq du

ȷ

ds

`

ż t

t0

„

gpt0, Xpt0qq `

ż s

t0

L0gpu,Xpuqq du `

ż s

t0

L1gpu,Xpuqq du

ȷ

dW psq

“ Xpt0q ` fpt0, Xpt0qq

ż t

t0

ds ` gpt0, Xpt0qq

ż t

t0

dW psq ` R1pt, t0q,

with the remainder

R1pt, t0q “

ż t

t0

ż s

t0

L0fpu,Xpuqq du ds `

ż t

t0

ż s

t0

L1fpu,Xpuqq dW puq ds

`

ż t

t0

ż s

t0

L0gpu,Xpuqq du dW psq `

ż t

t0

ż s

t0

L1gpu,Xpuqq dW puq dW psq.

(2.30)
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Continuing once more by applying Itô formula to L1g in the fourth double
integral of the remainder R1pt, t0q in (2.30), the following Itô-Taylor expansion
is obtained

Xptq “ Xpt0q ` fpt0, Xpt0qq

ż t

t0

ds ` gpt0, Xpt0qq

ż t

t0

dW psq

` L1gpt0, Xpt0qq

ż t

t0

ż s

t0

dW puq dW psq ` R2pt, t0q,

(2.31)

with the second remainder R2pt, t0q given by

R2pt, t0q “

ż t

t0

ż s

t0

L0fpu,Xpuqq du ds `

ż t

t0

ż s

t0

L1fpu,Xpuqq dW puq ds

`

ż t

t0

ż s

t0

L0gpu,Xpuqq du dW psq

`

ż t

t0

ż s

t0

ż u

t0

L0L1gpz,Xpzqq dz dW puq dW psq

`

ż t

t0

ż s

t0

ż u

t0

L1L1gpz,Xpzqq dW pzq dW puq dW psq.

Starting from equation (2.31), replacing t0 by tn and t by tn`1 and leaving out
the remainder, the following numerical scheme is thus obtained

Xn`1 “ Xn`∆tfptn, Xnq`∆Wngptn, Xnq`L1gptn, Xnq

ż tn`1

tn

ż s

tn

dW puq dW psq.

(2.32)
It is possible to show that

ż tn`1

tn

ż t

tn

dW psq dW ptq “
1

2
pp∆Wnq

2
´ ∆tq. (2.33)

Replacing (2.33) into (2.32), the Milstein scheme [151] is thus obtained:

Xn`1 “ Xn ` ∆tfptn, Xnq ` ∆Wngptn, Xnq

`
1

2

Bg

BX
ptn, Xnqgptn, Xnqpp∆Wnq

2
´ ∆tq.

(2.34)

The Milstein method thus constructed has strong convergence order 1, but
nevertheless, the weak convergence order remains unchanged from that of the
Euler-Maruyama method, which is equal to 1. Figure 2.5 shows experimen-
tally how the strong convergence order of the Milstein method is equal to 1.
In particular, the Milstein method has been applied to the equation (1.16)
by population dynamics by choosing the parameters r “ 2, K “ 1, β “ 0.25
and initial condition X0 “ 1. The Wiener process is discretized over r0, 1s with
step-size δt “ 2´11. Since the exact solution of the problem involved a stochas-
tic integral, then a reference solution can be obtained by applying the Milstein
method with step size δt “ 2´11. This solution has been compared with the
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Figure 2.5: Strong endpoint error plot for Milstein scheme

Milstein approximation using step sizes ∆t “ Rδt with R “ 16, 32, 64, 128 on
500 sample paths.
Clearly, the Milstein scheme in equation (2.34) refers to the case in which the
SDE considered is of the scalar type. In a non-trivial way, it is possible to
extend the Milstein method to the multidimensional case.
In particular, letW ptq “ rW1ptq, . . . ,WmptqsT be anm-multidimensional Wiener
process and the function G “ rg1pt,Xptqq, . . . , gdpt,XptqqsT, with the j-th com-
ponent of gk “ rg1,kpt,Xptqq, . . . , gd,kpt,XptqqsT. Then a system of SDEs can
be written as

dXptq “ fpt,Xptqqdt `

m
ÿ

k“1

gkpt,XptqqdW k
ptq.

In this case, the Milstein method becomes:

Xn`1 “ Xn ` ∆tfptn, Xnq `

m
ÿ

k“1

gkptn, Xnq∆W k
n

`

m
ÿ

j1,j2“1

Lj1gj2ptn, Xnq

ż tn`1

tn

ż t

tn

dW j1psq dW j2ptq.

For details, the reader can refer to [151, 165]. Furthermore, the study of
the stability of the Milstein method can be found, for instance, in [62, 149].

2.4 Stochastic θ-methods
The methods studied so far are explicit schemes, that is the solution in the
time-step tn`1 of the considered uniform grid mesh depends only on the numer-
ical solution at time-step tn. It is well known from the deterministic case that
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there are classes of differential equations (so-called stiff differential equation)
that arise in many applications [2, 3, 4, 5, 6, 7, 8, 70, 73, 75, 142, 143, 221], for
which it is not possible to apply an explicit numerical method since it would
require a very small step size ∆t. This fact makes the numerical computation,
practically, impossible. For this reason, it is necessary to introduce implicit
numerical methods, which, unlike the explicit ones, require the solution of an
equation or, more precisely, a system of non linear equations. Although more
expensive from a computational point of view, these methods have higher sta-
bility properties and, therefore, one can obtain a good approximation of the
exact solution of the problem with a smaller step-size. The class of implicit nu-
merical methods considered in this subsection are called stochastic θ-methods.

According to the definition of θ-methods for deterministic ODEs, the stochas-
tic θ-methods for SDEs (1.1) is given by

Xn`1 “ Xn ` p1´ θq∆tfptn, Xnq ` θ∆tfptn`1, Xn`1q `∆WnGptn, Xnq (2.35)

with θ P r0, 1s and ∆Wn “ r∆W 1
n , . . . ,∆W

m
n sT. Note, in the case θ “ 0, the

Euler-Maruyama methods is so obtained. When θ ‰ 0, a class of implicit
numerical method is derived. In particular, the numerical method, obtained
in correspondence of θ “ 1, is called the stochastic backward Euler method. It
is also possible to show that if f satisfies the global Lipschitz condition, then
(2.35) admits a unique solution for all sufficiently small ∆t. Furthermore, for
a definite classes of non linear functions f , a unique solution exists for any
∆t ą 0.

The linear stability properties of the θ-method are now studied, first for
the mean-square case and subsequently for the asymptotic case. Before this,
it is worth remembering that linear stability is studied on the scalar test linear
equation (2.14) whose exact solution is given by (2.15). Also remember that
conditions that guarantee the mean-square stability and asymptotic stability
of SDE (2.14) are discussed in the subsection 2.1 by (2.18) and (2.19).

The stochastic θ-methods applied to linear test equation (2.14) gives

p1 ´ θ∆tλqXn`1 “ Xnp1 ` p1 ´ θq∆tλ `
?
∆tσVnq (2.36)

where Vn „ N p0, 1q are independent and identically distributed (i.i.d.) random
variables. By squaring both sides of (2.36) and considering the expected value,
one has

ErX2
n`1s “

p1 ` p1 ´ θq∆tλq2 ` ∆tσ2

p1 ´ θ∆tλq2
ErX2

ns. (2.37)

with the assumption that p1 ´ θ∆tλq ‰ 0. However, this hypothesis is not
restrictive because if p1 ´ θ∆tλq was equal to 0, this would imply that µ ą 0,
which leads us to a non-stable SDE, in the sense that

lim
tÑ`8

ErXptq2s “ `8.

Based on the definition (2.20), the stochastic θ-methods are mean-square stable
if and only if

p1 ` p1 ´ θq∆tλq2 ` ∆tσ2

p1 ´ θ∆tλq2
ă 1 (2.38)
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Figure 2.6: Mean-square stability region for the stochastic θ-method
and the underlying SDE

holds. Equation (2.38) can also be read as

∆tp1 ´ 2θqλ2 ă ´2

ˆ

λ `
1

2
σ2

˙

. (2.39)

If the parameters λ and σ of the linear test SDE (2.14) are real, by setting
x “ ∆tλ and y “ ∆tσ2, equation (2.39) can be easily rewritten as y ă p2θ ´

1qx2 ´ 2x, while the mean-square stability condition of the SDE (2.18) can be
rewritten as y ă ´2x. Figure 2.6 shows the stability regions in a finite portion
of the x ´ y plane for different values of the θ parameter. In particular, for
all figures, the horizontal red stripes show the SDE stability region, bounded
by the line y “ ´2x, while the vertical blue lines show the stability region for
the numerical method. Therefore, from Figure 2.6, one can observe that for
0 ď θ ă 1

2
the method (2.35) has a finite stability region. For 1

2
ă θ ď 1, the
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method is over-stable, i.e. it is always stable on a stable SDE but can also be
stable on a non-stable SDE. For θ “ 1

2
the stability region of the numerical

method coincides with the stability region of the SDE. To summarize, the
following theorem, proved by Higham in [149] holds:

Theorem 2.4.1. Consider the method (2.35) applied to the test problem (2.14)
and let

∆tS :“
2|λ ` 1

2
σ2|

p1 ´ 2θqλ2
.

For 0 ď θ ă 1
2
,

1. SDE stable ñ θ-method stable for ∆t ă ∆tS;

2. SDE unstable ñ θ-method unstable for ant ∆t ą 0.

For 1
2

ă θ ď 1

1. SDE stable ñ θ-method stable for all ∆t ą 0;

2. SDE unstable ñ θ-method unstable for ∆t ă ∆tS.

For θ “ 1
2

1. SDE stable ô θ-method stable for all ∆t ą 0.

Let’s focus now on the concept of asymptotic stability, which even if it is
more complex to study, it is just as important as the mean-square stability,
since it appears in many modelling contexts [191]. For the analysis it is crucial
to rewrite (2.36) as

Xn`1 “ pa ` bVnqXn, (2.40)

with
a :“

1 ` p1 ´ θqx

1 ´ θx
, b :“

?
y

1 ´ θx
,

where x :“ ∆tλ and y :“ ∆tσ2 with assumption 1´θx ‰ 0, as for mean-square
stability analysis. The following Lemma, proved in [57], holds

Lemma 2.4.1. The stochastic θ-methods are asymptotically stable if and only
if

Erlog |a ` bVn|s ă 0. (2.41)

The condition (2.41) that characterized the asymptotic stability of the
stochastic θ-methods can be rearranged as

log |a| ` γpcq ă 0, (2.42)

where c :“ b{a and γpcq is defined by (2.24). The following theorem gives us
an important result about the boundness of the asymptotic stability region.

Theorem 2.4.2. The stochastic θ-methods have unbounded asymptotic stabil-
ity region if and only if θ ě 1

1`eD
, where D :“ ´mincPR γpcq.
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Figure 2.7: Asymptotic stability region for the stochastic θ-method

Numerically, it is possible to find that D « 0.2454 and hence 1{p1 ` eDq «

0.4390. Figure 2.7 plots the asymptotic stability region for different values of
parameters θ and the asymptotic stability region of the SDE considered, that
in this notation it has bounded by the red line y “ 2x. Note that Figure
2.7 confirms the theoretical analysis and furthermore the asymptotic stability
region increases monotonically with θ, and all are strictly contained in the SDE
stability region.

2.5 Stochastic Runge-Kutta methods
In the study of numerics related to deterministic differential calculus, Runge-
Kutta methods constitute an important family of numerical methods for solv-
ing initial value ordinary differential systems.

For a differential problem of the form
"

y1ptq “ fpt, yptqq, t P rt0, T s,
ypt0q “ y0,

an s-stage Runge-Kutta method takes the form

yn`1 “ yn ` ∆t
s

ÿ

j“1

bjfptn ` cj∆t, Yjq

Yi “ yn ` ∆t
s

ÿ

j“1

aijfptn ` cj∆t, Yjq, i “ 1, . . . , s.

(2.43)
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Often, the class of Runge-Kutta methods is represented by its Butcher tableau

c A

bT

where A “ paijq
j“1...,s
i“1,...,s, bT “ pb1, . . . , bsq, c “ Ae, e “ p1, . . . , 1qT. Generally,

when the matrix A is strictly lower triangular, the method is said to be explicit;
otherwise, the method is implicit and may be suitable for integrating stiff
problems if the method has appropriate stability properties.

Our interest is turned to the study of stochastic Runge-Kutta methods
applied to the d-dimensional Itô SDE of the type

dXptq “ fpt,Xptqqdt `

m
ÿ

k“1

gkpt,XptqqdW k
ptq, t P rt0, T s (2.44)

driven by m-dimensional Wiener process and initial condition Xpt0q “ X0.
Here f : rt0, T s ˆRd Ñ Rd and gk : rt0, T s ˆRd Ñ Rd for k “ 1, . . . ,m. Often,
this class of methods derives from stochastic perturbation of the associated
deterministic Runge-Kutta method.

First of all, as the reader may recall, the Euler-Maruyama method for nu-
merically solving SDEs (2.44) is the most basic numerical integration scheme.
In general, as well as in the deterministic case, the stochastic Heun method
produces an order of magnitude improvement in step size compared to the
classical Euler-Maruyama method. For the multidimensional SDE (2.44), on
the uniform grid

I∆t “ ttn “ t0 ` n∆t, n “ 0, 1, . . . , n, N∆t “ T u,

the Heun scheme [131] is given by

Xn`1 “ Xn`
1

2

”

fptn, Xnq ` fptn`1, X̃n`1q

ı

∆t

`
1

2

”

Gptn, Xnq ` Gptn`1, X̃n`1q

ı

∆Wn,

(2.45)

with the Euler predictor

X̃n`1 “ X̃n ` fptn, X̃nq∆t ` Gptn, X̃nq∆Wn.

McShane, in [200], proved the scheme (2.45) converges in mean-square sense
to the Itô solution of

dXptq “

«

fpt,Xptq `
1

2

m
ÿ

k“1

∇X

`

gkpt,Xptqqqgkpt,Xptqq
˘

ff

dt

`

m
ÿ

k“1

gkpt,XptqqdW ptq
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where ∇X denotes the Jacobian operator.
Notice that if one replaces f by f´ !

2

řm
k“1∇Xg

kpt,Xptqqqgkpt,Xptqqq in (2.45),
one obtains convergence to the solution of the Itô SDEs (2.44).

As in the case of ordinary differential calculus, one might be interested
in obtaining methods with higher-order accuracy via higher-order stochastic
Runge-Kutta schemes (SRK), introduced by Rümelin in [226]. The main prob-
lem related to these schemes concerns the lack of knowledge of the limit within
which these methods converge (see [255, 166]).

Let Gpt,Xptqq “ rg1pt,Xptqq, . . . , gdpt,XptqqsT P Rdˆm, the explicit ps` 1q-
th order SRK scheme is given by

Xn`1 “ Xn `

s
ÿ

j“0

pjKj ∆t `

s
ÿ

j“0

qjLj ∆Wn (2.46)

where

K0 “ fptn ` α0∆t,Xnq, L0 “ Gptn ` α0∆t,Xnq

Xp1q
n “ Xn ` β10K0∆t ` γ10L0∆Wn

K1 “ fptn ` α1∆t,X
p1q
n q, L1 “ Gptn ` α1∆t,X

p1q
n q

Xp2q
n “ Xn ` rβ20K0 ` β21K1s∆t ` rγ20L0 ` γ21L1s∆Wn

K2 “ fptn ` α2∆t,X
p2q
n q, L2 “ Gptn ` α2∆t,X

p2q
n q

...

...

Xpsq
n “ Xn `

s´1
ÿ

j“0

βsjKj ∆t `

s´1
ÿ

j“0

γsjLj ∆Wn

Ks “ fptn ` αs∆t,X
psq
n q, Ls “ Gptn ` αs∆t,X

psq
n q

(2.47)

and
s

ÿ

j“0

pj “

s
ÿ

j“0

qj “ 1. (2.48)

The coefficients of the method are then collected in the following Butcher
tableau

α0

α1 β10 γ10

α2 β20 β21 γ20 γ21
...

...
... . . . ...

... . . .
αs βs0 βs1 ¨ ¨ ¨ βs,s´1 γs γs1 ¨ ¨ ¨ γs,s´1

p0 p1 ¨ ¨ ¨ ps´1 ps q0 q1 ¨ ¨ ¨ qs´1 qs

Rümelin in [226] established under what conditions it is possible to have
convergence results (in mean-square sense) for SRK schemes. In particular,
the following theorem gives us convergences results for one-dimensional SDE
(i.e. SDE (2.44) with d “ m “ 1).
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Theorem 2.5.1. Suppose f, Bf{Bt, Bf{BX, g, Bg{Bt, Bg{BX, B2g{Bt2, Bg2{BtBX,
B2g{BX2 are bounded. Then the approximation Xn defined by (2.46)-(2.48)
converges uniformly on rt0, T s in mean-square sense to the Itô solution Y ptq of

dY ptq “

„

fpt,Xptqq ` γ
Bg

Bx
pt,Xptqqgpt,Xptqq

ȷ

dt ` gpt,XptqqdW ptq, (2.49)

with correction factor λ “ 0 for s “ 0 and

λ “

m
ÿ

i“1

qi

i´1
ÿ

j“0

γij, m ě 1. (2.50)

Note that if one replaces f by f ´ λgpBg{BXq, then the scheme (2.46)
converges uniformly to the solution of the Itô equation

dXptq “ fpt,Xptqqdt ` gpt,XptqqdW ptq.

The family of SRK methods contains both the Euler Maruyama and Heun
methods. In particular, the first one correspond to the choice s “ 0 with
α0 “ 0 and p0 “ q0 “ 1. The second one correspond to the choice s “ 1 with
α0 “ 0, α1 “ β10 “ γ10 “ 1, p0 “ p1 “ q0 “ q1 “ 1{2 and the corresponding
correction factor γ “ 1{2. It is possible to prove that Theorem 2.5.1 can be
easily obtained again in the case of a multidimensional SDE (2.44). Clearly
the term Bg{BXg in (2.49) has to be replaced by

m
ÿ

k“1

p∇X g
k
qgk,

where again ∇X g
k denotes the Jacobian of gk with elements pBgki {BXjqij. The

correction factor λ remains the same as (2.50).
However, this class of explicit methods just described presents some prob-

lems related to the numerical order they can reach. Indeed Rümelin in [226]
proved the following strong error barrier theorem.

Theorem 2.5.2. Let f and g be arbitrary scalar functions and consider the
corresponding scalar SDE

dXptq “ fpt,Xptqqdt ` gpt,XptqqdW ptq.

If f and g have continuous and bounded partial derivatives up to the sixth order,
then the one-step strong order (i.e. the order of magnitude of local error) of
(2.46)-(2.48) cannot exceed 3/2.

Note that the greatest order of magnitude of the one-step error is obtained
by the Heun method. In addition, Rümelin also proved that, in the multi-
dimensional case (2.44), the highest order of magnitude of one step error is
1, and it is obtained directly from the Euler-Maruyama method (see Gard’s
monograph [131]). Furthermore, the order 3/2 can only be reached if and only
if the following commutative condition is satisfied:

p∇X g
i
qgj “ p∇X g

j
qgi, for all i, j “ 1 . . . ,m.
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Hence, if higher strong order methods are required, (2.46) must be modified
in some way to include other stochastic elements. For example, K. Burrage
et. al. in [64, 66, 67, 71, 72] have developed a class of high order stochastic
Runge-Kutta methods, either explicit or implicit, thus breaking the barrier
Theorem 2.5.2 proposed by Rümelin. In all these works in order to obtain order
conditions, the authors generalized Butcher’s tree theory [78] to the stochastic
case. Other contributions in this area have been given by Rößler, building a
new class of stochastic Runge-Kutta methods (either explicit or implicit) with
high order of convergence [221, 223, 224]. Further, in the context of strong
approximations of SDEs, SRK methods have been studied, for instance, in
[16, 65, 70, 123, 165, 198, 203, 236, 242, 251]. Weak convergence of SRK
methods have been discussed, e.g, in [16, 167, 168, 169, 187, 198, 203, 219,
220, 222, 244, 245].

The analysis of the numerical stability properties of various types of SRK
methods has been extensively addressed by the existing literature; in particu-
lar, they focus their attention on determining which conditions the coefficients
of the method should satisfy to obtain good stability properties. The interested
reader can therefore see, for example [71, 72, 88, 116, 123, 173, 227, 228, 243]
and references contained therein.



Chapter 3

Continuous-time numerical
methods for SDEs

This section aims to describe some procedures to obtain continuous extensions
of determining numerical methods for solving stochastic differential equations.
As known in the deterministic case, continuous extensions allow us to get a
dense output, this means knowing the approximate solution is not in the grid
points of the mesh but in the whole integration interval. This clearly turns
out to be essential to build a reasonable error estimate and then move on to
constructing an efficient variable step algorithm, which is essential to solve stiff
SDEs. Therefore this section will be structured as follows: first, a procedure
for obtaining continuous extensions of methods for SDEs will be described
based on the idea of numerical collocation for Volterra integral equations [93].
Subsequently, preliminary results about a procedure to obtain an efficient local
error estimation will be given associated with selecting numerical methods for
SDEs using their possible continuous extension.

3.1 Collocation method for Volterra Integral
Equations

Numerical collocation for deterministic problems is a powerful and feasible
technique for developing functional equations. In other words, the provided
approximant (the collocation function) is constructed as a linear combination of
selected basis functions, spanning a finite dimensional functional space; usually,
these functions are piecewise algebraic polynomials. The collocation function
is required to exactly satisfy the given equation at a selected set of points of
the integration interval, denoted as collocation points. It is worth observing
that the collocation function can be chosen as a linear combination of ad hoc
basis functions, chosen coherently with the qualitative character of the given
problem.

Collocation methods allow us to obtain an approximation over the entire in-
tegration interval of the solution of the given equation. This feature is mainly,
for instance, to provide high continuous order methods not suffering from or-

38
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der reduction when applied to stiff problems [77, 118], as well as to provide an
efficient and accurate procedure of error estimation useful in variable step-size
implementations [122]. Nonetheless, re-casting discrete numerical methods as
collocation methods make their analysis benefit from their continuous formu-
lation.

In this subsection, particular interest will be given to the study of collo-
cation methods for Volterra integral equations (VIEs) because these will be
the key point for developing continuous numerical methods for stochastic dif-
ferential equations. In the literature, many authors have analyzed collocation
methods for VIE, see [55, 56] and references therein contained. Consider VIEs
of the form

yptq “ gptq `

ż t

0

kpt, s, ypsqq ds, t P I “ r0, T s, (3.1)

where k P CpD ˆ Rq, with D “ tpt, sq : 0 ď s ď t ď T u and g P Cptq. Let

I∆t “ ttn “ n∆t, n “ 0, 1, . . . , n, N∆t “ T u, ∆t ą 0, (3.2)

be a uniform discretization of the interval I. With respect to (3.2), the problem
(3.1) can be rewritten as

yptq “ Fnptq ` ϕnptq, t P rtn, tn`1s,

where the lag term Fn, which contains the past history of the phenomena, is

Fnptq :“ gptq `

ż tn

0

kpt, s, ypsqq ds,

and the increment function ϕnptq given by

ϕnptq :“

ż t

tn

kpt, s, ypsqq ds.

Now, let
0 ď c1 ă . . . ă cm ď 1

be m collocation parameters, and denote by tnj “ tn ` cj∆t the so-called
collocation points. Collocation methods allow us to approximate the exact
solution yptq of (3.1) by a piecewise polynomial

P ptq P S
p´1q

m´1pIhq “ tv|ptn,tn`1 P Πm´1, n “ 0, 1, . . . , N ´ 1u,

where Πm´1 denotes the space of (real) algebraic polynomials of degree not ex-
ceeding m´1. The collocation polynomial, restricted to the interval rtn, tn`1s,
is of the form

Pnptn ` θ∆tq “

m
ÿ

j“1

LjpθqYnj, θ P r0, 1s, (3.3)
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for n “ 0, . . . , N´1, where Ljpθq is the j-th Lagrange fundamental polynomial

Ljpθq :“
m

ź

k“1,k‰j

θ ´ ck
cj ´ ck

and Ynj “ Pnptnjq. The exact collocation equation is obtained by imposing that
the polynomial (3.3) exactly satisfies the integral equation at the collocation
points and requires, at each time step, the solution of a system of m nonlinear
equations in the m unknowns Yni, as

$

’

’

’

&

’

’

’

%

Yni “ Fni ` Φni,

yn`1 “

m
ÿ

j“1

Ljp1qYnj,
(3.4)

where

Fni “ gptniq ` ∆t
n´1
ÿ

v“0

ż 1

0

k ptni, tv ` θ∆t, Pvptv ` θ∆tqq dθ, (3.5)

Φni “ h

ż ci

0

k ptni, tn ` θ∆t, Pnptn ` θ∆tqq dθ, (3.6)

for i “ 1, . . . ,m.
The maximum attainable order of convergence of such methods is at most

2m, and it is achieved if Gauss nodes are used as collocation points in the
iterated collocation methods. Furthermore, such methods have local order
of convergence 2m ´ 2 if one uses m Lobatto collocation points or m ´ 1
Gauss points with cm “ 1, and order 2m ´ 1 if one uses m Radau II points.
Unfortunately, the maximum order is gained only at the mesh points. In fact,
the classical collocation methods have uniform order Op∆tmq over the entire
integration interval.

Different from the ODEs case, the collocation equations are generally not
yet in a form amenable to numerical computation due to the presence of the
memory term.To make the method (3.4) a fully discretized numerical scheme,
another discretization based on suitable quadrature formulas F̃ni « Fni and
ϕ̃ni « ϕni for approximating the lag term and the increment function, are
needed. This procedure leads to the well-known idea of discretized collocation.
The discretized collocation polynomial is of the form

P̃nptn ` θ∆tq “

m
ÿ

j“1

LjpθqỸnj, θ P r0, 1s, (3.7)

for n “ 0, . . . , N ´ 1, where Ỹnj “ P̃nptnjq. The corresponding discretized
collocation method assumes the form:

$

’

’

’

&

’

’

’

%

Ỹni “ F̃ni ` Φ̃ni,

ỹn`1 “

m
ÿ

j“1

Ljp1qỸnj,
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where

F̃ni “ gptniq ` ∆t
n´1
ÿ

v“0

µ1
ÿ

l“1

blk
´

tni, tv ` ξl ∆t, P̃vptv ` ξl ∆tq
¯

, (3.8)

Φ̃ni “ ∆t
µ2
ÿ

l“1

wilk
´

tni, tn ` dil ∆t, P̃nptn ` dil ∆tq
¯

, (3.9)

for i “ 1, . . . ,m, where
pξl, blq

µ1

l“1 pdil, wilq
µ2

l“1

are two quadrature formulas with nodes ξl and dil such that

0 ď ξ1 ă . . . ă ξµ1 ď 1

and
0 ď di1 ă . . . ă diµ2 ď 1.

Here µ1 and µ2 are positive integers and bl and wil are the weights of the
formulae.

Brunner in [56] has shown that under suitable conditions on the quadrature
formulas (3.8) and (3.9), such methods preserve the same order of the exact
collocation methods. Furthermore, it is possible to prove that a collocation
method for VIEs is equivalent to an implicit Runge-Kutta method for VIEs if
and only if cm “ 1. Other continuous extensions of Runge-Kutta methods for
VIEs (not necessary with collocation technique) have been introduced in [25].

The most commonly used collocation methods are those based on the zeros
of determined orthogonal polynomials, that is Lobatto, Radau and Gauss,
which, remember, have respectively order of local convergence order 2m ´

2, 2m ´ 1, 2m, where m is the number of collocation points. The stability
properties of such methods can be found in [26, 56, 81, 100] and references
therein contained.

To try to increase the uniform convergence order of the one-step collocation
methods, first in [180] for the ODEs and then in [96] for the VIEs, multistep
collocation methods have been introduced. Generally, multistep collocation
methods depend on more parameters than the classical ones without signifi-
cantly increasing computational cost. Hence, many more freedom degrees are
to be spent to obtain high stability properties and a high order of convergence.
For this reason, as an immediate consequence, it can be shown that multistep
collocation methods generally have a higher order of convergence than one-
stage collocation methods with the same number of stages. Moreover, due to
their high order of convergence, they do not suffer from the phenomenon of or-
der reduction, which occurs in the integration of stiff problems. For all details,
the interested reader can refer to [82] and the references contained therein.
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3.2 Continuous extension of selected numerical
methods for SDEs

Following the idea of collocation for Volterra integral equations, this section
provides a procedure to obtain an approximation of the solution of a givenXptq
of (1.2) on the overall integration interval will be described. In particular an
approximation uptq of the solution Xptq of (1.2) will be provided, supposing
that its restriction unptq to the interval rtn, tn`1s is a linear polynomial.

To this purpose, let c1, . . . , cm be the collocation parameters such that

0 ď c1 ă . . . ă cm ď 1

and let
tnj “ tn ` ∆tcj,

for j “ 1, . . . ,m, the corresponding collocation points in the interval rtn, tn`1s.
The following ansatz is therefore required: in a sufficiently small interval of
length ∆t, the solution Xptq to (1.2) can be approximated by the linear func-
tion

unptn ` θ∆tq “

m
ÿ

j“1

LjpθqU
rns

j , θ P r0, 1s, (3.10)

where Ljpθq are the Lagrange fundamental polynomials with respect to the
collocation parameters and U rns

i “ unptniq, for i “ 1, . . . ,m.
Correspondingly, the following numerical scheme is obtained

$

’

’

&

’

’

%

U
rns

i “ Fn ` Φ
rns

i , i “ 1, . . . ,m

Xn`1 “

m
ÿ

j“1

Ljp1qU
rns

j ,
(3.11)

where the lag-term

Fn “ X0 `

ż tn

t0

fps, upsqq ds `

ż tn

t0

gps, upsqq dW psq, (3.12)

contains all the past history of the dynamics up to the grid point tn, while the
incremental terms Φ

rns

i , for i “ 1 . . . ,m, are defined by

Φ
rns

i “

ż tni

tn

fps, unpsqq ds `

ż tni

tn

gps, unpsqq dW psq.

By employing (3.10) and by a suitable change of variable, the incremental
terms assume the form

Φ
rns

i “ ∆t

ż ci

0

f

˜

tn ` θ∆t,
m
ÿ

j“1

LjpθqU
rns

j

¸

dθ

`

ż tni

tn

g

˜

s,
m
ÿ

j“1

Lj

ˆ

s ´ tn
∆t

˙

U
rns

j

¸

dW psq.

(3.13)
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Clearly, the scheme thus written (3.11) requires the solution of a system of
m-nonlinear equations in the unknowns U rns

1 , . . . , U
rns
m .

By setting cm “ 1, the scheme (3.11) may be substantively simplified. In
fact, in this case, one can note that

Φrns
m “

ż tn`1

tn

fps, unpsqqds `

ż tn`1

tn

gps, unpsqqdW psq, (3.14)

therefore, by (3.11), (3.12) and (3.14),

U rns
m “ Fn ` Φrns

m “ Fn`1, n “ 0, . . . , N ´ 1.

As a consequence, by (3.10),

Fn “ U rn´1s
m “ un´1ptn´1 ` cm∆tq “ un´1ptnq “ Xn,

i.e. for each time step the lag term Fn is equal to the numerical solution Xn

at the mesh point tn. Moreover,

Xn`1 “ unptn ` ∆tq “ unptn ` cm∆tq “ U rns
m

and the method (3.11) assumes the form
$

&

%

U
rns

i “ Xn ` Φ
rns

i , i “ 1, . . . ,m

Xn`1 “ U
rns
m ,

where the expressions for Φ
rns

i are the same as (3.13), for i “ 1, . . . ,m.
As with the collocation methods for the VIEs, also in this case, one can

observe that the method reported in (3.11) is not fully discretized. In fact, it
requires the resolution of integrals both in the deterministic and in the stochas-
tic part. To obtain a full discretization method, another discretization based
on suitable quadrature formulas Fn « F̃n and Φ

rns

i « Φ̃
rns

i for approximating
the lag-term and the incremental terms, are needed. The discretized linear
function (3.10) becomes

ũnptn ` θ∆tq “

m
ÿ

j“1

LjpθqŨ
rns

j , θ P r0, 1s, (3.15)

for n “ 0, . . . , N ´ 1 and Ũ
rns

j :“ ũnptnjq. The m unknowns U rns

j are deter-
mined by imposing that the linear function (3.15) satisfy exactly the given
SDEs at the collocation points and by using suitable quadrature formulas for
the approximation of the integrals. Therefore the corresponding discretized
numerical scheme assumes the form:

$

’

’

&

’

’

%

Ũ
rns

i “ F̃n ` Φ̃
rns

i , i “ 1, . . . ,m

X̃n`1 “

m
ÿ

j“1

Ljp1qŨ
rns

j ,
(3.16)
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where

F̃n “ X0 `

µ0
ÿ

l“1

bl fpξl, ũnpξlqq `

µ1
ÿ

l“1

Al gpωl, ũnpωlqq, (3.17)

and

Φ̃
rns

i “ ∆t
µ2
ÿ

l“1

τilfptn ` dil∆t, ũnptn ` dil∆tqq

`

µ3
ÿ

l“1

Bilg

˜

ρil,
m
ÿ

j“1

Lj

ˆ

ρil ´ tn
∆t

˙

Ũ
rns

j

¸

.

(3.18)

The formulas (3.17) and (3.18) are obtained by using deterministic quadrature
formulas of the form

pξl, blq
µ0

l“1 pdil, τilq
µ2

l“1, i “ 1, . . . ,m,

and the following stochastic quadrature formulas [140]

pωl, Alq
µ1

l“1 pρil, Bilq
µ3

l“0, i “ 1, . . . ,m,

where ξl, dil, ωl, ρil and bl, τil, Al, Bil are suitable quadrature nodes and weights
respectively and µ0, µ1, µ2, µ3 are positive integers. By setting the last collo-
cation point cm “ 1, then, by virtue of the previous observations, F̃ rns “ X̃n,
and choosing as quadrature formulas the rectangular quadrature formula, the
numerical scheme can be simplified. In fact, directly, the expression of Ũ rns

i for
i “ 1, . . . ,m become

Ũ
rns

i “ X̃n ` ∆t cif

˜

tn,
m
ÿ

j“1

pjŨ
rns

j

¸

` g

˜

tn,
m
ÿ

j“1

pjU
rns

j

¸

a

ci∆tV
rns

i (3.19)

where pj “ Ljp0q and V
rns

j are normal variables of mean 0 and variance 1,
for any j “ 1, . . . ,m. Furthermore, from (3.19), if one chooses c1 “ 0, then
U

rns

1 “ X̃n.

Let us now consider a special case: let m “ 2, 0 ď c1 ă 1 and c2 “ 1. The
corresponding discretized method, obtained from (3.16) by approximating the
integrals using the rectangular quadrature rule is
$

’

’

’

&

’

’

’

%

Ũ
rns

1 “ X̃n ` ∆t c1f
´

p1Ũ
rns

1 ` p2Ũ
rns

2

¯

` g
´

p1Ũ
rns

1 ` p2Ũ
rns

2

¯ ?
c1∆tV

rns

1 ,

Ũ
rns

2 “ X̃n ` ∆t f
´

p1Ũ
rns

1 ` p2Ũ
rns

2

¯

` g
´

p1Ũ
rns

1 ` p2Ũ
rns

2

¯ ?
∆tV

rns

2 ,

X̃n`1 “ Ũ
rns

2 ,

(3.20)
where, again, p1 “ L1p0q, p2 “ L2p0q and V

rns

1 , V rns

2 are normal variables of
mean 0 and variance 1.
The continuous approximant, in the interval rtn, tn`1s, assumes the form

ũnptn ` θ∆tq “
1 ´ θ

1 ´ c1
Ũ

rns

1 `
θ ´ c1
1 ´ c1

Ũ
rns

2 θ P r0, 1s. (3.21)



3.2 Continuous extension of selected numerical methods for SDEs 45

Remark 3.2.1. The proposed numerical scheme (3.20) requires the solution
of a system of two non linear equations in the unknown variable U rns

1 and U rns

2 .
In order to discuss its solvability, two different approach are proposed. First
of all, the system (3.20) in vector-form becomes

U rns
“ X̃ne ` ∆t fppTUq `

?
∆t αrnsgppTUq, (3.22)

where U rns “ rU
rns

1 , U
rns

2 sT, p “ rp1, p2sT, c “ rc1, 1sT, αrns “ r
?
c1V

rns

1 , V
rns

2 sT,
and e “ r1, 1sT.
A first approach is based on the fixed point theorem. Assuming that f and g
are globally Lipschitz continuous functions and let us consider the function

φpU rns
q :“ ∆t cfppTU rns

q `
?
∆t αrnsgppTU rns

q.

The solvability of (3.22) is equivalent to prove the function φpU rnsq is a con-
tractive mapping. Therefore,

φpU rns
q´φpZrns

q “ ∆t c
“

fppTU rns
q ´ fppTZrns

q
‰

`∆t αrns
“

gppTU rns
q ´ gppTZrns

q
‰

,

then

|φpU rns
q ´ φpZrns

q| ď ∆t |c| |fppTU rns
q ´ fppTZrns

q|

`
?
∆t |αrns

| |gppTU rns
q ´ gppTZrns

q|

ď p∆tLf |c| `
?
∆tLg|αrns

|q|pT
| |U rns

´ Zrns
|.

Hence, in order for the function φpU rnsq to be a contractive mapping, then ∆t
must be satisfy the following condition

∆tLf |c| `
?
∆tLg|αrns

| ă
1

|pT|
.

A second approach is, instead, based on the implicit function theorem. If f and
g are C2 functions, by defining

ψpU rns, X̃n,∆t, c, α
rns

q :“ U rns
´ X̃ne ´ ∆t cfppTU rns

q ´
?
∆t αrnsgppTU rns

q,

then the solvability of U rns in (3.22), for sufficiently small ∆t, is equivalent in
showing that

ˇ

ˇ

ˇ
∇U rnsψpU rns, X̃n,∆t, c, α

rns
q|∆t“0

ˇ

ˇ

ˇ
‰ 0.

Since

∇U rnsψpU rns, X̃n,∆t, c, α
rns

q “ I2 ´ ∆t c pTf 1
ppTU rns

q ´
?
∆tαrnspTg1

ppTU rns
q,

then
ˇ

ˇ

ˇ
∇U rnsψpU rns, X̃n,∆t, c, α

rns
q|∆t“0

ˇ

ˇ

ˇ
“ |I2| “ 1 ‰ 0.

where I2 is the identity matrix of dimension two. Hence, by the implicit func-
tion theorem, for sufficiently small value of ∆t, the function U rns is solvable.
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Table 3.1: Absolute errors in the endpoint T “ 1 obtained applying (3.11) to
problem (3.25), for several number of grid points and for selected values of the
parameter c1.

N c1 “ 0 c1 “ 1{4 c1 “ 1{2 c1 “ 3{4

27 3.0967 ¨ 10´3 3.0675 ¨ 10´3 3.0095 ¨ 10´3 2.8355 ¨ 10´3

26 6.5909 ¨ 10´3 6.5634 ¨ 10´3 6.5083 ¨ 10´3 6.3435 ¨ 10´3

25 1.5071 ¨ 10´2 1.5044 ¨ 10´2 1.5071 ¨ 10´2 1.4834 ¨ 10´2

24 2.8721 ¨ 10´2 2.8698 ¨ 10´2 2.8653 ¨ 10´2 2.8520 ¨ 10´2

Example 3.2.1. The derived family of continuous methods (3.20) contains the
EM method as a particular case when c1 “ 0. As a matter of fact, imposing
c1 “ 0 in (3.20) and taking into account that p1 “ 1 and p2 “ 0, the method
assumes the form

$

&

%

Ũ
rns

1 “ X̃n,

Ũ
rns

2 “ X̃n ` ∆t fpX̃nq ` gpX̃nq
?
∆tV

rns

2

and the value of X̃n`1 can be evaluated as

X̃n`1 “ X̃n ` ∆t fpX̃nq ` gpX̃nq
?
∆tV

rns

2 , (3.23)

which corresponds to the EM method (2.8). In the case of the EM method, the
continuous approximant assumes the form

ũnptn ` θ∆tq “ p1 ´ θqX̃n ` θX̃n`1 θ P r0, 1s. (3.24)

From an experimental point of view, one can observe the accuracy of the
new class of methods obtained above, emphasising its weak accuracy (2.11).

Let us assume the following SDE as a test problem

dXptq “ t2dt ` e
t
2 cospXptqqdW ptq, Xp0q “ 0, t P r0, 1s. (3.25)

The expected value of the exact solution is EpXptqq “
t3

3
.

Table 6.1 shows the absolute errors corresponding to various numerical
methods belonging to the family (3.11), for selected values of c1 and setting
c2 “ 1, applied to problem (3.25). All methods exhibit the same weak order of
convergence of EM method (2.8), which is equal to 1. In other terms, passing
to the continuous extension does not deteriorate the order EM.
Let us now set c1 “ 1

4
and c2 “ 1, and apply the corresponding method to the

following additional SDE

dXptq “ e´ t
2dt ` eXptq´ t

2dW ptq, Xp0q “ 0, t P r0, 1s, (3.26)
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Figure 3.1: Absolute weak errors associated to the application of (3.11) with
c1 “ 1{4 to problem (3.25) (dashed-dotted blue line), problem (3.26) (solid
magenta line) and problem (3.27) (dotted black line). The reference slope of
order 1 is depicted by the dashed red line.
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whose exact solution has expected value EpXptqq “ 2 ´ 2e´ t
2 , and to the

problem

dpXptqq “ p2Xptq ` e2tqdt ` XptqdW ptq, Xp0q “ 1, t P r0, 1s, (3.27)

whose exact solution has expectation given by EpXptqq “ ´e2tp1 ` tq.
Figure 1 shows the behaviour of the absolute errors for decreasing step size

values. One can observe that the method obtained by imposing c1 “ 1{4,
applied to (3.25), (3.26) and (3.27), exhibits weak order of convergence equal
to 1. So, for values of c1 different from 0, the same weak order of convergence
of EM method (2.8) is preserved.

3.3 Are continuous extension able to provide an
LTE estimation?

This section aims to show purely preliminary results obtained from numerical
experiments regarding an efficient and accurate estimation of the local trun-
cation error (LTE) associated to selected numerical methods for autonomous
SDEs of the type

dXptq “ fpXptqq dt ` gpXptqq dW ptq, t P rt0, T s

Xpt0q “ X0,
(3.28)

with Xptq P Rd for each t, f : Rd Ñ Rd, g : Rd Ñ Rdˆm, and W ptq is a
m-dimensional Wiener process.
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Specifically, in our analysis, Euler-Maruyama, Split-Step Backward Euler
and Backward Euler methods are considered here.

The local truncation error of a numerical method is an estimate of the error
introduced in a single iteration of the method, assuming that everything fed
into the method was perfectly accurate and there is no round-off error. In a
nutshell, to determine the LTE, one has to look at the following difference

lteptk`1q :“ Xptk`1q ´ X̃n`1 (3.29)

where Xp¨q is the exact solution of (1.1) and X̃ is the numerical solution based
on the assumption that it is determined from exact information.

Through a continuous extension of the methods mentioned above, in the
spirit of [152], an estimation of LTE is therefore numerically obtained, ex-
tending the idea effectively used in the deterministic setting via numerical
collocation (see, for instance, [118]).

Continuous-time extension of Euler-Maruyama method

Briefly, it is recalled that the Euler-Maruyama method for an autonomous SDE
(3.28), respect to the uniform grid

I∆t “ ttk “ k∆t, k “ 0, 1, ¨ ¨ ¨ , N, N∆t “ T u,

is given by
Xk`1 “ Xk ` ∆tfpXkq ` gpXkq∆Wk. (3.30)

A natural continuous-time extension (see [152]) of the discrete approximation
defined in (3.30) is then given by

X̃ptq :“ Xk `pt´tkqfpXkq`gpXkqpW ptq´W ptkqq, for t P rtk`1, tkq, (3.31)

or equivalently, by putting t ´ tk “ s∆t, (3.31) becomes

X̃ptk ` s∆tq :“ Xk ` s∆tfpXkq `
?
s∆tgpXkqVk, for s P r0, 1q,

where Vk is a normal standard variable.

Continuous-time extension of Split-Step Backward Euler method

Before defining the continuous extension of the Split-Step Backward Euler
method (SSBE), let us impose some useful assumptions on the SDE (3.28).

Assumption 3.3.1. The functions f and g in (3.28) are C1, and there exist
constants µ, c ą 0, such that:

xa ´ b, fpaq ´ fpbqy ď µ|a ´ b|2, @a, b P Rd,

|gpaq ´ gpbq|2 ď c|a ´ b|2, @a, b P Rd.

where | ¨ | denotes both the Euclidean vector norm and the Frobenius (or trace)
matrix norm.
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By taking Y0 “ X0, the SSBE is defined as
#

Y ˚
k “ Yk ` ∆tfpY ˚

k q,

Yk`1 “ Y ˚
k ` gpY ˚

k q∆Wk,
(3.32)

where Y ˚
k represents an intermediate approximation of the solution, useful to

produce the successive approximation Yk`1 to the solution of (3.28). In our
preliminary analysis, it is essential to remember a key property, which can be
proved under hypotheses 3.3.1. Basically, it asserts that the SSBE method can
be revised as the EM method applied to a modified SDE of a similar form, as
visible from the following Lemma and Corollary, proved in [152].

Lemma 3.3.1. Let us assume Assumption 3.3.1 and suppose ∆t P p0,∆tcq,
∆tc ă 1{p2βq, where β “ mint

`

µ ` 1
2

˘

, 2cu. Given d P Rd, the implicit equa-
tion

c “ d ` ∆tfpcq

has an unique solution c. By defining the functions F∆tp¨q, f∆tp¨q and g∆tp¨q by

F∆tpdq “ c, f∆tpdq “ fpF∆tpdqq, g∆tpdq “ gpF∆tpdqq,

then F∆t, f∆t, g∆t P C1, g∆tp¨q Ñ gp¨q and f∆tp¨q Ñ fp¨q as ∆t Ñ 0 in C1

uniformly on compact sets and, for any a, b P Rd,

|f∆tpaq| ď
|fpaq|

1 ´ ∆tµ
,

|F∆tpdq ´ F∆tpcq|2 ď
1

1 ´ 2∆tµ
|d ´ c|2,

xa ´ b, f∆tpaq ´ f∆tpbqy ď
µ

1 ´ 2µ∆t
|a ´ b|2.

Further, g∆t is globally Lipschitz, and there exist α1, β1 ą 0 such that

mintxf∆tpaq, ay, |g∆tpaq|
2
u ď α1

` β1
|a|

2
@a P Rm.

Corollary 3.3.1. Let us assume Assumptions 3.3.1 and suppose ∆t P p0,∆tcq.
Then the SSBE applied to (3.28) is equivalent to the EM method applied to the
modified SDE

dy∆tptq “ f∆tpy∆tptqq dt ` g∆tpy∆tq dW ptq, 0 ď t ď T, y∆tp0q “ y0, (3.33)

where f∆t, g∆t are defined in Lemma 3.3.1.

Therefore, Corollary 3.3.1 allows us to rewrite SSBE as the EM method
applied to (3.33). Therefore, the continuous-time extension of SSBE can be
obtained from (3.31) with f and g replaced by f∆t and g∆t, respectively. Then,
it is given by

Y ptq :“ Yk`pt´tkqf∆tpYkq`g∆tpYkqpW ptq´W ptkqq, for t P rtk`1, tkq. (3.34)

In an equivalent formulation, by taking t ´ tk “ s∆t, (3.34) becomes,

Y ptk ` s∆tq :“ Yk ` s∆t f∆tpYkq `
?
s∆t g∆tpYkqVk, (3.35)

where Vk is a normal standard variable.
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Continuous-time extension of Backward Euler

The stochastic backward Euler (BE) method [152] applied to (3.28) is given
by Z0 “ X0 and

Zk`1 “ Zk ` ∆t fpZk`1q ` gpZkq∆Wk. (3.36)

The following result gives us a connection between the solution computed by
the SSBE method and that arising from the BE method [152].

Lemma 3.3.2. Let tYku and tZku denote SSBE and BE solutions, respectively
given by (3.32) and (3.36), respectively. Under Assumption 3.3.1, if Y0 “

Z0 ´ ∆t fpZ0q, then

Zk “ Yk ` ∆t f∆tpYkq, @k ě 0.

By using Lemma 3.3.2, it is natural to define the continuous-time extension
to the BE method as

Zptq “ Y ptq ` ∆t f∆tpY ptqq, (3.37)

where Zp0q “ X0. Here Y ptq denotes the continuous-time extension to SSBE
(3.34) and f∆t is defined in the previous subsection.

3.4 Numerical tests
In this section, based on the continuous extensions provided in the previous
section, numerical evidences on selected test problems highlight the effective-
ness of our preliminary procedure to estimate the local truncation error for
the selected one-step stochastic numerical methods. In particular, the Figures
3.2, 3.3, 3.4 show how the estimate tends to approach the true local error, as
the value of the step size ∆t decreases. Specifically, the following problems are
considered:

• the equation of geometric Brownian motion
#

dXptq “ ´2Xptqdt ` XptqdW ptq, t P r0, 50s,

Xp0q “ 1,
(3.38)

whose exact solution is

Xptq “ exp

ˆ

´
5

2
t ` W ptq

˙

;

• the nonlinear problem
#

dXptq “ ´Xptqp1 ´ X2ptqqdt ` p1 ´ X2ptqqdW ptq, t P r0, 10s,

Xp0q “ X0 “ 0.25,
(3.39)

with the exact solution given by

Xptq “
p1 ` X0q expp2W ptqq ` X0 ´ 1

p1 ` X0q expp2W ptqq ´ X0 ` 1
;
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• the nonlinear SDE
$

’

&

’

%

dXptq “ ´
1

900
Xptqp1 ´ X2ptqqdt `

1

30
p1 ´ X2ptqqdW ptq, t P r0, 20s,

Xp0q “
1

10
,

(3.40)
whose exact solution is given by

Xptq “ tanh

ˆ

1

30
W ptq ` arctanh pXp0qq

˙

.

• the non linear problem with two Wiener process
$

&

%

dXptq “ ´
1

900
Xptqp1 ´ X2ptqqdt `

1

30
p1 ´ X2ptqqdW1ptq ` 0.01dW2ptq,

Xp0q “ 0.9,
(3.41)

with t P r0, 5s. Since the exact solution is not knows, the reference one
is given by applying the considered numerical schemes with N “ 216.

• the system of SDEs
$

’

’

&

’

’

%

dX1ptq “ p´X1ptq ` X2ptqqdt ` 0.1X1ptqdW1ptq

dX2ptq “ pX1ptq ´ X2ptqqdt ` 0.1X2ptqdW2ptq

X1p0q “ 1, X2p0q “ 0.

t P r0, 1s. (3.42)

The reference solution is given by applying the considered numerical
schemes with N “ 216.

The results, contained in Figures 3.2, 3.3, 3.4, 3.5 and 3.6 show the plot
of the local error and its estimation for Euler-Maruyama, Split step Backward
Euler and Backward Euler methods applied to the above problems, with N “

29 and N “ 213 grid points. The expected values of the errors and their
estimates are computed over 1000 paths. In particular, these figures confirm
the accuracy of the estimation in all considered cases.
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Figure 3.2: Left: Local error estimate VS true local error for EM, SSBE and
BE methods applied with N “ 29 grid points over 1000 paths on (3.38); right:
same scenario with N “ 213 grid points.
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Figure 3.3: Left: Local error estimate VS true local error for EM, SSBE and
BE methods applied with N “ 29 grid points over 1000 paths on (3.39); right:
same scenario with N “ 213 grid points.
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Figure 3.4: Left: Local error estimate VS true local error for EM, SSBE and
BE methods applied with N “ 29 grid points over 1000 paths on (3.40); right:
same scenario with N “ 213 grid points.
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Figure 3.5: Left: Local error estimate VS true local error for EM, SSBE and
BE methods applied with N “ 29 grid points over 1000 paths on (3.41); right:
same scenario with N “ 213 grid points.
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Figure 3.6: Left: Local error estimate VS true local error for EM, SSBE and
BE methods applied with N “ 29 grid points over 1000 paths on (3.42); right:
same scenario with N “ 213 grid points.



Chapter 4

Stochastic Hamiltonian Problems

A Hamiltonian problem is a dynamic system used to describe the evolution of
a physical system. Hamilton’s equations first appeared in 1834 by Hamilton,
inspired in part by his earlier work in the field of optics. Later, these equa-
tions are found to be essential in multiple branches of physics and beyond and
range from the nanoscale to molecular dynamics at the macroscale of celes-
tial mechanics. Hamiltonian equations arise as models in weather prediction
and meteorology [98, 234], solid mechanics [17, 134, 240] and elastodynamics
[138, 238], nonlinear optics [133], oceanography [18, 158], cosmology [215, 250],
electromagnetism [27] and quantum field theory [106, 170, 225], for example.
Other applications can be found in [1, 112, 141, 210, 256, 258].
Clearly, when the dynamics of the system are affected by random noisy per-
turbation, deterministic Hamiltonian systems are not well matched, therefore
stochastic versions are preferable instead [68, 74, 84, 121, 185, 260].
The irreversible character of stochastic dynamics destroys the idea of isolated
systems, since the particles are repeatedly influenced by small unpredictable
perturbations of the external environment. In order to combine the laws of
evolution for average macroscopic observable with the microscopic dynamics
of the constituent particles of a statistical system, it is necessary that the mi-
croscopic dynamics have a highly chaotic character and the overall system can
be decomposed into almost independent microscopic subsystems. Therefore,
stochastic Hamiltonian problems are the most suitable candidates to concili-
ate the Hamiltonian nature of classical mechanics, which is closely related to
the canonical character of the evolution equations, with the non-differentiable
nature of the Wiener process, which describes the continuous innovative char-
acter of stochastic effects [21, 22]. In particular, in this thesis the behaviour of
discretizations to these problems are analyzed, motivated by some results on
stochastic Runge-Kutta methods (SRK) developed by Burrage and Burrage
in [68]. In fact, SRK methods present a remarkable error that increases with
the parameter of the diffusive part of the problem. Through a perturbative
analysis, the reason of this behaviour is investigated, leading to a negative
answer: retaining the main features of stochastic Hamiltonian problems does
not happen straightforwardly for any time discretization.
This section is organized as follows: first of all a new class of stochastic Runge-
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Kutta methods are introduced and subsequently our attention will be turned
to stochastic Hamiltonian problems first considering an additive type noise
and then linear type. Therefore the perturbation analysis will be performed
for both cases.

4.1 Hamiltonian problems
Generally, a deterministic Hamiltonian system on the interval rt0, T s is repre-
sented in the form

p1ptq “ ´
B

Bq
Hppptq, qptqq,

q1ptq “
B

Bp
Hppptq, qptqq

(4.1)

where H : R2d Ñ R is the Hamiltonian function of the system, while pptq, qptq P

Rd respectively denote generalized momenta and generalized coordinates asso-
ciated to the mechanical system. In a more compact form, system (4.1) may
be rewritten as

y1
ptq “ J ∇Hpyptqq (4.2)

where yptq “ ppptq, qptqqT P R2d and

J “

ˆ

0 ´Id
Id 0

˙

“ ´JT
“ ´J´1

with Id the identity matrix of dimension d. Moreover, ∇H denotes the gradient
of H.

It is well known from the existing literature, Hptq is a first integral of the
system, that is its value remains constant along the solution yptq

Hpyptqq “ Hpy0q, for all t P rt0, T s.

The search for first integrals is interesting since their knowledge allows im-
mediately to obtain qualitative information on the dynamics of the system.
In the mechanical systems field, the Hamiltonian is interpreted as the total
energy of the system and therefore, it is of interest to derive methods which
are able to preserve this property in the discrete solution. Geometric numer-
ical integration is able to perform an excellent long-time conservation of the
Hamiltonian along the numerical solution. In particular, the researchers are
directed towards employing symplectic Runge-Kutta methods [76, 144, 229],
which are meant to exactly preserve quadratic invariants possessed by (4.2)
along the numerical solution. Remember that a generic RK method (2.43) has
the property of being symplectic if and only if the coefficients that characterize
it satisfy the following identities

biaij ` bjaji “ bibj

for all i, j “ 1, . . . , s. Furthermore, symplectic RK methods are capable of
preserving any Hamiltonian function over exponentially long times with an
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exponentially decreasing error, as proved by Benettin and Giorgilli (see [144]).
However, even though symplectic RK methods accurately preserve any Hamil-
tonian function, they have the limit of being implicit, and thus they require
a remarkable computational effort in the integration process. Therefore many
contributions in the literature are devoted to the construction and development
of semi-implicit numerical methods with a lower computational cost that are
able to near preserve these invariant laws [79, 80, 103, 114, 144, 145]. Other
numerical methods able to preserve the total energy of the mechanical system
are developed by Brugnano et. al. in [51, 52], called Hamiltonian Boundary
Value Methods (HBVMs). Such type of methods are based on the discretiza-
tion of a local Fourier expansion of the given ODE problem in which different
choices of the basis lead to different classes of methods.

4.2 Stochastic Hamiltonian problems with addi-
tive noise

As described at the beginning of this chapter, our interest is devoted to stochas-
tic Hamiltonian problems. For a fixed positive integer m, let pΩ,F ,Pq be a
complete probability space with filtration tFtutPrt0,T s and let W : rt0, T s ˆΩ Ñ

Rm a standard pF⊔qtPrt0,T s–Wiener process with continuous sample paths on
pΩ,F ,Pq. The stochastic Hamiltonian systems of Itô type with additive noise
have the form

$

&

%

dqptq “ ∇pHppptq, qptqq dt,

dpptq “ ´∇qHppptq, qptqq dt ` Σ dW ptq
(4.3)

for t P rt0, T s, where pptq, qptq P Rm and Σ P Rmˆm is a diagonal matrix, whose
generic diagonal element is denoted by ϵi, for i “ 1, . . . ,m. Moreover, let us
assume that the initial values pp0, q0q are such that EpHpp0, q0qq is finite. One
can immediately observe that if the matrix Σ is the zero matrix, the stochastic
Hamiltonian system (4.3) recasts the deterministic Hamiltonian system (4.1).

It is well-known that the existing literature (see, for instance, [68, 74, 84]
and references therein) has revealed that neither the Hamiltonian function
Hppptq, qptqq nor its expectation are preserved along the dynamics described by
Equation (4.3). Through the use of Itô’s Lemma (1.14), a stochastic differential
equation can be rewritten in such a way that the Hamiltonian function H is
a solution. For this reason, given the 2m– Itô SDE driven by m-dimensional
Wiener process,

dXptq “ fpt,Xptqqdt ` Gpt,XptqqdW ptq, Xpt0q “ X0 (4.4)

where f : rt0, T s ˆ R2m Ñ R2m and Gpt,Xptqq “ rg1pt,Xptq, . . . , gmpt,XptqqsT

with gi : rt0, T s ˆ R2m Ñ R2m for i “ 1, . . . ,m. Then the SDE for U “

Hpt,Xptqq is given by

dU “

˜

BU

Bt
`

2m
ÿ

i“1

fi
BU

BXi

`
1

2
tracepGGT∇2Uq

¸

dt `

m
ÿ

i“1

gi
BU

BXm`i

dWi.
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Therefore from (4.3) by putting U “ Hpqptq, pptqq and

• f “ p∇pH,´∇qHqT

• ∇U “ p∇qH,∇pHqT

• ∇U “

ˆ

∇qqH ∇qpH
∇pqH ∇ppH

˙

• gi “ ϵip0, eiq
T, where 0 is the zero vector of dimension m and ei is the

i-th basis vector of Rm

one has

dH “

˜

1

2

m
ÿ

i“1

ϵ2i∇ii
ppH

¸

dt `

m
ÿ

i“1

ϵi∇i
pHdWi

where ∇i
pH is the i-th component of ∇pH and ∇ii

pp is the element in position
pi, iq of the Hessian matrix associated to the function H with respect to p.

Integrating from t0 to t, gives

Hppptq, qptqq “ Hpppt0q, qpt0qq `
1

2

m
ÿ

i“1

ε2i

ż t

t0

∇ii
ppH ds `

m
ÿ

i“1

εi

ż t

t0

∇i
pH dWipsq.

The expected value of Hamiltonian is then given by

E rHppptq, qptqqs “ E rHpppt0q, qpt0qqs `
1

2

m
ÿ

i“1

ε2i

ż t

t0

Ep∇ii
ppHq ds, (4.5)

confirming that the expected value of the Hamiltonian is not preserved for Itô
stochastic Hamiltonian problems. In particular, if the Hamiltonian is of the
form

Hppptq, qptqq “
1

2

m
ÿ

i“1

piptq
2

` V pqptqq,

i.e. the sum of the kinetic and potential energy of the system, for a suitable
smooth potential V : Rm Ñ R, the corresponding Hamiltonian system of Itô
type reads

$

&

%

dqptq “ pptq dt,

dpptq “ ´∇qV pqptqq dt ` Σ dW ptq.
(4.6)

Correspondingly, its expectation is then given by

E rHppptq, qptqqs “ E rHpppt0q, qpt0qqs `
1

2

m
ÿ

i“1

ε2i pt ´ t0q. (4.7)

Therefore, the Hamiltonian function grows linearly in time.
In the existing literature there are several contributions concerning the

numerics related to stochastic Hamiltonian problems [14, 74, 68, 84, 121, 202].
They are aimed at determining numerical methods capable of maintaining
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equation (4.7) along the discretized dynamics, i.e. methods able to satisfy the
following equation

ErHpqn, pnqs “ ErHpq0, p0qs `
1

2

m
ÿ

i“1

ϵ2i ptn ´ t0q

where tn “ n∆t for n “ 1, . . . , N , ∆t “ T {N and N positive integer. Here qn
and pn denote the approximation of qptnq and pptnq respectively.

A natural question that arises is the following:: is it straightforward to ac-
curately retain qualitative features of stochastic Hamiltonian problems under
time discretizations? Therefore our attention is paid to investigate a long-term
behaviour of numerical methods analyzed in [68, 74] for stochastic Hamiltonian
problems (4.6) and in particular on the understanding the validity of (4.7) for
large time windows and for large values of the entries of Σ, in line with the
well-knows Benettin-Giorgilli theorem, explaining the long-term behaviour of
symplectic Runge-Kutta schemes for the deterministic Hamiltonian systems.
For this reason, in the next subsection, Runge-Kutta methods proposed by
Burrage and Burrage in [68] will be analyzed, showing that the latter are able
to maintain linear growth in the expected value of the Hamiltonian function
(4.7).

4.2.1 A new version of stochastic Runge-Kutta methods

Let us consider a general problem with additive noise, i.e.,

dyptq “ fpyq dt ` ϵ r dW, (4.8)

where y, r P R2m, ε is a positive scalar value and W ptq is a scalar Wiener
process. The new formulation of stochastic Runge-Kutta methods is based on
the idea of Brugnano et. al. [53, 54]. Then, the integral formulation of (4.8)
reads

yptn`1q “ yptnq `

ż tn`1

tn

fpypuqq du ` ϵ r

ż tn`1

tn

dW puq. (4.9)

In particular for the intermediate points tn ` ci∆t, equation (4.9) becomes

yptn ` ci∆tq “ yptnq `

ż tn`ci∆t

tn

fpypuqq du ` ϵ r

ż tn`ci∆t

tn

dW puq. (4.10)

Denoting Yi the approximation to (4.10), then a different formulation of stochas-
tic Runge-Kutta methods, proposed by Burrage et. al. in [68], is

Yi “ yn ` ∆t
s

ÿ

j“1

aijfpYjq ` ϵ pW ptn ` ci∆tq ´ W ptnqq r, i “ 1, . . . , s

yn`1 “ yn ` ∆t
s

ÿ

j“1

bjfpYjq ` ϵ pW ptn ` ∆tq ´ W ptnqq r

(4.11)
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Furthermore, it must be taken into account that the sampling W ptn ` ci ∆tq ´

W ptnq can be written as a sum of Wiener increments of the type

i
ÿ

j“1

pW ptn ` cj ∆tq ´ W ptn ` cj´1∆tqq .

Therefore, by putting

zi “ W ptn ` ci ∆tq ´ W ptn ` ci´1∆tq “
?
ci ´ ci´1∆Wi for i “ 1, . . . , s ` 1,

where c0 “ 0, cs`1 “ 1 and ∆Wi are s`1 independent samples of normally dis-
tributed variables N p0,∆tq, then the stochastic Runge-Kutta methods (4.11)
become

Yi “ yn ` h
s

ÿ

j“1

aij fpYjq ` ε
i

ÿ

j“1

zj r,

yn`1 “ yn ` h
s

ÿ

j“1

bj fpYjq ` ε
s`1
ÿ

j“1

zj r.

(4.12)

As proved by Gard in his monograph [131], the strong convergence of (4.12)
is equivalent to the convergence of the underlying Runge-Kutta method with
coefficients pA, b, cq, i.e., it occurs when

řs
i“1 bi “ 1. The analysis of SRK

arising from the perturbation of deterministic Runge-Kutta methods is also
described in [88], where conditions to inherit A-stability are provided. Other
issues of stochastic Runge-Kutta methods are analyzed, for instance, in [116,
147, 153, 221] and references therein. Analogous issues for the time integration
of stochastic problems with memory are discussed in [94, 115].

Let us consider a linear version of (4.8) as test equation, i.e.,

dyptq “ Qy dt ` ε r dW (4.13)

where
Q “

„

0 1
´1 0

ȷ

, r “

„

0
1

ȷ

.

In other terms, the following Hamiltonian problem is considered

dqptq “ pptq dt
dpptq “ ´qptq dt ` ϵ dW ptq

(4.14)

as test equation, with Hamiltonian

Hppptq, qptqq “
1

2
pp2 ` q2q. (4.15)

The performance of the following methods, when applied to the aforementioned
test problem, are now evaluated:

• IM, the implicit midpoint rule

1{2 1{2
1

(4.16)
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• the 3-stage Lobatto IIIA (LIIIA)

0 0 0 0
1{2 5{24 1{3 ´1{24
1 1{6 2{3 1{6

1{6 2{3 1{6

(4.17)

• MQ, able to exactly preserve quartic Hamiltonian [74]

0 0 0 0
1{2 1{12 1{3 1{12
1 1{6 2{3 1{6

1{6 2{3 1{6

(4.18)

Burrage and Burrage in [68] have shown that all three of these above meth-
ods (4.16)-(4.18), applied to the test linear problem (4.14), preserve the linear
growth of the expected value of the Hamiltonian function (4.7). In particu-
lar, to confirm the validity of this result, it is possible to prove the following
theorem.

Theorem 4.2.1. The implicit midpoint rule (4.16) preserves the expectation
of the Hamiltonian (4.15) exactly, that is it preserves (4.7).

Proof. Consider the IM method in formulation (4.12)

Y “ yn `
∆t

2
fpY q `

1
?
2
∆W1 ϵ r

yn`1 “ yn ` ∆t fpY q `
1

?
2

p∆W1 ` ∆W2q ϵ r

(4.19)

By applying (4.19) to the linear test problem (4.13), the IM method can be
rewritten as

yn`1 “ RpQ∆tqyn ` ϵ SpQ∆tq r

where

RpQ∆tq “

ˆ

I ´
∆t

2
Q

˙´1 ˆ

I `
∆t

2
Q

˙

,

SpQ∆tq “ z2I ` RpQ∆tqz1.

with I 2-dimensional identity matrix. By using the expectation properties,
one has

Eryn`1s “ RpQ∆tqEryns

and furthermore

EryT
n`1yn`1s “ EryT

nR
T
pQ∆tqRpQ∆tq yns ` ϵ2rT ErST

pQ∆tqSpQ∆tqs r.

Since Q is a skew-symmetric matrix, then the implicit midpoint rule has the
following trivial properties
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• RTpQ∆tqRpQ∆tq “ I,

• ErSTpQ∆tqSpQ∆tqs “ Erz21 ` z22s I “ I∆t.

Thus
ErHns “ EryT

n`1yn`1s “ ErHns `
ϵ2

2
∆t.

This concludes the proof.

The theorem thus obtained can be proved trivially even if the LIIIA (4.17)
and MQ (4.18) methods are used.

Let us show the numerical evidence arising from the application of the three
aforementioned methods to the following stochastic Hamiltonian problems:

• the double-well potential, with a Hamiltonian function

Hppptq, qptqq “
1

2
p2 `

1

4
q4 ´

1

2
q2, t P r0, 40s (4.20)

and initial condition rq0, p0sT “
“?

2,
?
2
‰

T. The expected Hamiltonian
in the endpoint of the integration interval is given by

E rHppp40q, qp40qs “ 1 ` 20ε2;

• the Hénon-Heiles problem, with a Hamiltonian function

Hppptq, qptqq “
1

2
pp21 `p22q`

1

2
pq21 `q22q`

1

16

ˆ

q1q
2
2 ´

1

3
q31

˙

, t P r0, 40s

(4.21)
and initial condition rq0, p0sT “

“?
3, 1, 1, 1

‰T. This problem is charac-
terized by the presence of two sources of noise, both with amplitude ϵ.
Hence, in this case, the expected Hamiltonian in the endpoint of the
integration interval is

E rHppp40q, qp40qs “ 3 ` 40ϵ2,

according to (4.7).

4.2.2 Numerical tests and ϵ-expansion

The experiments are carried out for fixed values of the stepsize ∆t and for
several values of the diffusive parameter ϵ. The results, displayed in Table 4.1,
show the increase of the error on the expected Hamiltonian for increasing values
of ϵ, which is not mitigated if the stepsize is reduced. Actually, this behaviour
is more general: indeed, the linear drift in the expected Hamiltonian is not well
preserved by any discretization. In fact, as one can see in Table 4.1 that there is
a strong correlation between the value of ϵ and the error of the expected value
of Hamiltonian. In particular, for bigger values of ϵ, like 0.2, the error does not
decrease by reducing the value of the step size. While this behaviour can partly
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ε ∆t MQ LIIIA IM

0 0.05 1.5(-15) 7.9(-7) 4.3(-4)
0 0.2 1.7(-15) 2.1(-4) 6.1(-3)
0.001 0.1 1.2(-5) 3.4(-6) 1.7(-3)
0.01 0.1 4.2(-5) 3.7(-4) 6.7(-4)
0.5 0.05 1.2(-2) 9.3(-2) 1.2(-3)
0.5 0.2 9.6(-2) 4.1(-2) 4.8(-2)

ε ∆t MQ LIIIA IM

0 0.1 1.8(-15) 3.4(-8) 6.9(-5)
0.001 0.1 1.1(-4) 1.1(-4) 1.2(-4)
0.01 0.1 7.8(-4) 2.8(-5) 1.1(-4)
0.01 0.2 8.4(-4) 6.6(-4) 1.4(-3)
0.2 0.1 8.5(-3) 1.3(-2) 3.2(-3)
0.2 0.2 4.0(-3) 6.5(-3) 1.1(-2)

Table 4.1: Hamiltonian errors in the endpoint of the integration interval for
the implicit midpoint rule (IM), the 3-stage Lobatto IIIA (LIIIA) and the MQ
method, applied to the double well potential (4.20) (top) and to the Hénon-
Heiles problem (4.21) (bottom).

be ascribed to the pseudo-random generator used in the implementations, now
this issue in terms of perturbation arguments is investigated and widely used
in the context of deterministic differential problems [144].

Let us rewrite the linear equation (4.13) as a second-order SDE

:q “ ´q ` ε
?
t, (4.22)

where ε is a normal distributed random variable.
Let us assume the following ansatz for the solution qptq to (4.22)

qptq “

8
ÿ

i“0

qiptqε
i

and replace it into (4.22), leading to

:q0ptq ` ε :q1ptq ` ¨ ¨ ¨ “ ´q0ptq ´ ε q1ptq ` ¨ ¨ ¨ ` ε
?
t.

Collecting in terms of powers of ε yields

p :q0ptq ` q0ptqq ` ε
´

:q1ptq ` q1ptq ´
?
t
¯

` ¨ ¨ ¨ “ 0.

Let us focus on the coefficients of ε0 and ε1, satisfying the differential equations

:q0 ` q0 “ 0,

:q1 ` q1 “
?
t,
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respectively. The equation for q0ptq is equipped by the initial values q0pt0q “

9q0pt0q “ 1. Then, its exact solution is easily computable and given by

q0ptq “ cosptq ` sinptq.

Correspondingly, assuming the ansatz

pptq “

8
ÿ

i“0

qiptqε
i

for pptq “ 9qptq, one has p0ptq “ cosptq ´ sinptq.
Let us now consider the equation for q1ptq, equipped by the initial values

q1pt0q “ 9q1pt0q “ 0. Then, its exact solution can be computed by variation of
constants, leading to

q1ptq “ ´

c

π

2
C

˜

c

2

π

?
t

¸

cosptq ´

c

π

2
S

˜

c

2

π

?
t

¸

sinptq `
?
t,

p1ptq “

c

π

2

˜

C

˜

c

2

π

?
t

¸

sinptq ´ S

˜

c

2

π

?
t

¸

cosptq

¸

,

where S and C are the Fresnel integrals

Spxq “

ż x

0

sin
´π

2
t2

¯

dt,

Cpxq “

ż x

0

cos
´π

2
t2

¯

dt.

Hence, the solution of (4.13) can be represented as

qptq “ cos t ` sin t ´ ε

˜

c

π

2
C

˜

c

2

π

?
t

¸

cosptq `

c

π

2
S

˜

c

2

π

?
t

¸

sinptq ´
?
t

¸

` . . .

pptq “ cos t ´ sin t ` ε

c

π

2

˜

C

˜

c

2

π

?
t

¸

sinptq ´ S

˜

c

2

π

?
t

¸

cosptq

¸

` . . .

It is worth observing the presence of the secular term
?
t in the solution

of qptq. This term is unbounded as t grows, making an accurate long-time
integration unfeasible. This secular term cannot be removed as it is often
done in perturbative methods of ODEs with various techniques like that of
Poincaré-Lindstedt.

Furthermore, when the value ε is small, i.e. ε ! 1, the presence of the
secular term is mitigated over reasonable short time intervals. When ε is large,
the secular term is dominating. This result is also graphically represented in
Figure 4.1, where a comparison between the computed expected Hamiltonian
vs its exact counterpart is shown for several values of ε.
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Figure 4.1: Comparison between the computed expected Hamiltonian (red) vs
its exact counterpart (blue), for ε “ 0.01, 0.1, 0.2, 0.5
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4.3 Stochastic Hamiltonian problems with mul-
tiplicative noise

In this subsection, our analysis aims to come out as an introductory attempt
to introduce multiplicative (small) noise in Hamiltonian systems (4.1), that at
least at the best of our knowledge and under a numerical perspective, nowadays
still represents an undiscovered field of research. As one may observe from the
previous subsection, the numerical investigation of Hamiltonian systems driven
by additive noise, indeed, constitutes a full-analyzed topic in the scientific
literature, as visible, for example, in [49, 68, 74, 91, 105, 108, 120, 121, 201,
202, 203] and reference therein. It turned out, indeed, that the Hamiltonian
is not conserved (neither in expectation) along the exact flow of such systems.
Here, a characterization of the averaged Hamiltonian will be provided when
the stochastic system is obtained by the employ of a multiplicative noise, that
is, the following system will be considered

dqptq “∇pHppptq, qptqq dt,

dpptq “ ´ ∇qHppptq, qptqq dt ` qptqΣTdW ptq,
(4.23)

for t P rt0, T s, where pptq, qptq P Rm, Σ P Rm and W P Rm is a vector of m
independent Wiener processes. As visible in (4.23), only multiplicative noises
are considered, that are linear in qptq.

In the case of multiplicative noises, the following result generalizes the so-
called trace law provided in (4.7).

Theorem 4.3.1. For a given Itô Hamiltonian problem (4.23), the expected
Hamiltonian satisfies

E rHpqptq, pptqqs “E rHpqp0q, pp0qqs

`
1

2
trace pΣTΣq

m
ÿ

i,k“1

ż t

0

E
“

qipsqqkpsq∇ki
ppHpqpsq, ppsqq

‰

ds,

(4.24)

for t ě 0.

Proof. One immediately observes that the proof straightforwardly descends
from Itô lemma (1.13) applied to the function Hpqptq, pptqq in (4.23). For this
purpose, it is convenient to rewrite (4.23) in a more compact form, i.e., by
considering

dyptq “ fpyptqqdt ` gpyptqqdW ptq, (4.25)

where yptq “ rqptq, pptqsT P R2m, fpyptqq “ r∇pHpyptqq,´∇qHpyptqqsT and
Gpyptqq “ rOmˆm qΣTsT P R2mˆm. Indeed, one has

dHpqptq, pptqq “ L0Hpqptq, pptqqdt ` L1Hpqptq, pptqqdW ptq, (4.26)

for t ě 0, where

L0Hpyptqq “ fpyptqq
T∇yHpyptqq`

1

2
trace

ˆ

gpyptqqgpyptqq
T∇yyHpyptqq

˙

(4.27)
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and
L1Hpqptq, pptqq “ ∇yHpyptqq

TGpyptqq. (4.28)

By (4.23), the first term in the right-hand side of (4.27) vanishes, Hence, one
gets

L0Hpqptq, pptqq “
1

2
trace pqptqΣTΣqptqT∇ppHpqptq, pptqqq

“
1

2
trace pΣTΣq

m
ÿ

i,k“1

qiptqqkptq∇ki
ppHpqptq, pptqq

and
L1Hpqptq, pptqq “ ∇pHpqptq, pptqq

Tqptq ¨ ΣT.

Then, by passing to the integral representation of (4.26), one gets

Hpqptq, pptqq “ Hpqp0q, pp0qq

`
1

2
Tr pΣTΣq

m
ÿ

i,k“1

ż t

0

qipsqqkpsq∇ki
ppHpqpsq, ppsqq ds ` I1ptq,

(4.29)

where I1ptq here stands for a martingale term with zero initial expectation.
Passing to side-by-side expectation concludes the proof.

It is straightforward to verify that, in the case of additive noise, Equation
(4.24) recasts the usual trace law (4.7).

4.3.1 The case of quadratic Hamiltonian

Let consider a separable and quadratic Hamiltonian function Hpq, pq, i.e.,

Hpq, pq “
1

2
pq2 ` p2q.

In this case, it is possible to gain some insights on Equation (4.29). For this
purpose, as a test problem the linear system arising from (4.23) with quadratic
potential will be considered, leading to

dyptq “ Jyptqdt ` σ rJyptqdW ptq, (4.30)

where
J “

„

0 1
´1 0

ȷ

, rJ “

„

0 0
1 0

ȷ

.

Equation (4.24) can be recasted as follows

E rHpqptq, pptqqs “ E rHpq0, p0qs `
1

2
σ2

ż t

0

E
“

qpsq2
‰

ds (4.31)
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and the computation of the integral appearing on the right-hand side can be
properly computed by usual SDEs arguments [165], as briefly reported in the
remainder. By denoting

P ptq “ E ryptqyptqT
s

the correlation matrix associated with the system (4.30), then pptq is the so-
lution of the following system of ODEs

dP

dt
“ JP ptq ´ P ptqJ ` σ2

rJP ptq rJT.

Moreover, by setting

p̂ptq “
“

E
“

qptq2
‰

E rqptqpptqs E
“

pptq2
‰‰T

,

then, it turns out that p̂ptq solves the linear system of ODEs

dp̂

dt
“ Sp̂ptq, (4.32)

where

S “

»

—

–

0 2 0

´1 0 1

σ2 ´2 0

fi

ffi

fl

,

whose characteristic polynomial is given by

µpλq “ λ3 ` 4λ ´ 2σ2.

By Cartesio’s rule and since Tr pSq “ 0, it turns out that the above polyno-
mial admits one real positive root and a pair of complex conjugate roots with
negative real parts. Let λ1 be the real eigenvalue of S and λ2 and λ2 the two
complex conjugate eigenvalues. As a consequence, solving (4.32) leads to the
following expression for the second moment of qptq

E
“

qptq2
‰

“ αeλ1t ` eRepλ2qt
rβ cos pImpλ2qtq ` γ sin pImpλ2qtqs , (4.33)

where λ1 ą 0,Repλ2q ă 0 and α, β, γ are constants depending on the initial
conditions. Then, one has

ˇ

ˇ

ˇ

ˇ

E rHpqptq, pptqqs ´ E rHpqp0q, pp0qqs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

2
σ2

ż t

0

E
“

qpsq2
‰

ds

ˇ

ˇ

ˇ

ˇ

ď
1

2
σ2

ż t

0

|α| eλ1s ` K eRepλ2qs ds

ď
1

2
σ2

„

α

λ1

`

eλ1t ´ 1
˘

`
K

|Repλ2q|

ȷ

,

(4.34)
where K “ max t|β|, |γ|u. Hence, it turns out that for sufficiently large t ě 0,
the averaged deviation of the Hamiltonian function blows up exponentially.
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On the other side, one can conclude that, for reasonable values of λ1pσqt such
that eλ1t is well approximated by 1 ` λ1pσqt, one finally gets

ˇ

ˇ

ˇ

ˇ

E rHpqptq, pptqqs ´ E rHpqp0q, pp0qqs

ˇ

ˇ

ˇ

ˇ

ď
1

2
σ2

„

λ1pσqt `
K

|Repλ2q|

ȷ

. (4.35)

Symbolic computations have revealed that λ1 is a smooth increasing function of
σ and, hence, it is possible to have a suitable control on it by properly choosing
small values of σ. Hence for suitably small noises, the averaged Hamiltonian
deviation, in modulus, is bounded by a linear drift, up to a constant term
depending on the initial conditions. Of course, it is worth recalling that, if σ
is large enough and/or for large time windows, the quantity on the right-hand
side of (4.35) grows exponentially in time.

4.3.2 Perturbative analysis and numerical tests

Following the lines drawn in [121], our attention is turned to analyzing the be-
haviour of the expected Hamiltonian along a general first-order approximation
to system (4.23), in order to understand if it is always possible to retain (4.35)
along suitable discretizations to (4.30). With this aim, let us assume as ansatz
the possibility to represent yptq in power series of σ, i.e.,

yptq “
ÿ

iě0

yiptqσ
i,

where yiptq, i ě 0, are random processes to be determined. By substituting
the above assumption in (4.30), one gets

ÿ

iě0

dyiptqσ
i

“ J
ÿ

iě0

yiptqσ
idt ` rJ

ÿ

iě0

yiptqσ
i`1dW ptq,

leading to

dy0ptq “ Jy0ptqdt, y0p0q “ y0,

dyiptq “ Jyiptqdt ` rJyi´1ptqdW ptq, yip0q “ 0, i “ 1, 2 . . . .

Then, by assuming that y0 is a deterministic value, one obtains

y0ptq “ eJty0,

yiptq “

ż t

0

eJpt´sq
rJyi´1psq dW psq, i “ 1, 2, . . .

Hence, denoting a general first-order approximation to yptq as yptq “ y0ptq `

σy1ptq, one gets

yptq “ eJty0 ` σ

ż t

0

eJpt´sq
rJy0psq dW psq.
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Then, by using the properties of Itô integrals [165] and by the orthogonality
of the matrix J , one gets

E
“

}yptq}
2
‰

“ E

«

›

›

›

›

eJty0 ` σ

ż t

0

eJpt´sq
rJy0psqdW psq

›

›

›

›

2
ff

“ E
”

›

›eJty0
›

›

2
ı

` σ2E

«

›

›

›

›

ż t

0

eJpt´sq
rJy0psq dW psq

›

›

›

›

2
ff

` 2σE
„

eJty0

ż t

0

eJpt´sq
rJy0psqdW psq

ȷ

“ E
“

}y0}
2
‰

` σ2

ż t

0

›

›

›
eJpt´sq

rJy0psq
›

›

›

2

ds

“ E
“

}y0}
2
‰

` σ2

ż t

0

›

›

›

rJy0psq
›

›

›

2

ds

“ E
“

}y0}
2
‰

` σ2

ż t

0

›

›

›

rJeJsy0

›

›

›

2

ds.

Since, for v “ rv1 v2s
T P R2, one has

›

›

›

rJv
›

›

›

2

“ v21, one gets

›

›

›

rJeJsy0

›

›

›

2

“
`

eJsy0
˘2

1
“ pcospsqq0 ` sinpsqp0q

2 .

Therefore, one obtains

E
“

}yptq}
2
‰

“ E
“

}y0}
2
‰

` σ2

ż t

0

pcospsqq0 ` sinpsqp0q
2 ds

“ E
“

}y0}
2
‰

`
σ2

2
E

“

}y0}
2
‰

t `
σ2

2

“

α0 cosptq sinptq ` β0 sin
2
ptq

‰

,

where α0 “ q20 ´ p20 and β0 “ 2q0p0. As a consequence,

E rHpyptqqs “ E rHpy0qs `
σ2

2
E rHpy0qs t `

σ2

4

“

α0 cosptq sinptq ` β0 sin
2
ptq

‰

.

Finally, one can conclude that
ˇ

ˇ

ˇ

ˇ

E rHpyptqqs ´ E rHpy0qs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

σ2

2
E rHpy0qs t `

σ2

4

“

α0 cosptq sinptq ` β0 sin
2
ptq

‰

ˇ

ˇ

ˇ

ˇ

ď
σ2

2

„

E rHpy0qs t ` K0

ȷ

,

(4.36)
where K0 “ 1

2
maxtα0, β0u. The comparison between (4.35) and (4.36) reveals

that it is not possible to obtain a good behaviour in terms of conservation of
(4.36) through any general first-order approximation to (4.30); the accuracy is
destroyed for large values of σ and over long time windows.

As a selected example of expected failure in preserving inequality (4.35)
along the numerical dynamics generated by approximations to (4.30), now the
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Figure 4.2: Averaged Hamiltonian deviation for Euler-Maruyama scheme
(4.37) computed with ∆t “ 0.1, σ “ 0.01,M “ 105.

behaviour of the Euler-Maruyama scheme [131, 165] when applied to system
(4.30) is studied. The method is as follows:

yn “ yn´1 ` ∆tJyn´1 ` σ rJyn´1∆Wn “

´

I ` ∆tJ ` σ rJ∆Wn´1

¯

yn´1. (4.37)

Therefore, one has

E
“

}yn}
2
‰

“ E

»

–

›

›

›

›

›

˜

n
ź

i“1

I ` ∆tJ ` σ rJ∆Wn´i

¸

y0

›

›

›

›

›

2
fi

fl

ď

n
ź

i“1

E
„

´

1 ` ∆t }J} ` σ∆Wn´1

›

›

›

rJ
›

›

›

¯2
ȷ

}y0}
2

“

n
ź

i“1

ˆ

1 ` ∆t2 }J}
2

` σ2∆t
›

›

›

rJ
›

›

›

2

` 2∆t }J}

˙

}y0}
2

“

n
ÿ

k“0

ˆ

n

k

˙

∆tk
`

σ2
` 2 ` ∆t

˘k
}y0}

2 ,

that is,

E rHpynqs ´ E rHpy0qs ď
1

2

n
ÿ

k“1

ˆ

n

k

˙

∆tk
`

σ2
` 2 ` ∆t

˘k
. (4.38)

According to the inequality in (4.38), extra terms appear in the compu-
tation of the deviation of the averaged Hamiltonian destroying any eventual
possibility of inheriting (4.35). A numerical evidence is depicted in Figure 4.2,
where the growth in time of the averaged Hamiltonian deviation is well visible,
according to (4.35).



Chapter 5

SPDEs: Splitting schemes for
FitzHugh–Nagumo equation

5.1 Introduction
Ordinary differential equations and the corresponding stochastic version are
good models when time is the only variable needed for the description of the
studied phenomena. However, very often it happens that the latter is not
able to describe the phenomenon under consideration and for this reason, it
is necessary to resort to the use of partial differential equations (PDEs) and
correspondingly stochastic partial differential equations (SPDEs), which also
take into account the conditions of the spatial domain. As a matter of fact,
the SPDEs can be seen as the stochastic version of the deterministic PDEs in
some Hilbert or Banach space with coefficients (including the inhomogeneous
terms) being random functions of space and time. In the literature, there
are multiple models described by SPDEs. For example, the reader can find
some examples in Pao-Liu Chow’s monograph [85], ranging from the problem
of turbulent transport to financial models. Clearly, determining the analytical
solution of SPDEs is by no means an easy-to-solve problem. In fact, many
researchers have gone so far as to determine advanced numerical methods
capable of obtaining a good approximation of the solution of the problem,
trying to minimize the computational cost. For example the interested reader
can see [15, 20, 28, 48, 39, 42, 89, 90, 91, 107, 171, 175, 252] and the references
therein.
In this thesis, our interest is focused on the study of the stochastic FitzHugh–
Nagumo system and on numerical integrators, which treat the nonlinearity
explicitly for the temporal discretization of the system, based on splitting
strategies [44].

Splitting schemes have been used extensively in previous years. In partic-
ular, the recent work [61] analyses the strong convergence of splitting schemes
for a class of semi-linear SDEs as well as preservation of possible structural
properties of the problem. The work [246] performs extensive numerical sim-
ulations on the FitzHugh–Nagumo equation with space-time white noise in
one dimension: a finite difference discretization is used in space, while the

74



5.1 Introduction 75

classical Euler–Maruyama is used in time. The article [34] studies numeri-
cally the FitzHugh–Nagumo equation with coloured noise in two dimension.
More precisely, the authors use a finite element discretization in space and the
semi-implicit Euler–Maruyama scheme in time. The two previously mentioned
works employ crude explicit discretization for the nonlinearity and therefore
may have issues about moment bounds. The work [139] proves convergence
(without rates) of a fully-discrete numerical scheme, based on a Galerkin
method in space and the tamed Euler scheme in time, for a general SPDE
with super-linearly growing operators. This is then applied to the FitzHugh–
Nagumo equation with space-time white noise in one dimension. The articles
[230] and [231] prove strong convergence rates of a finite difference spatial dis-
cretization of the FitzHugh–Nagumo equation with space-time white noise in
one dimension.

The deterministic FitzHugh–Nagumo system is a simplified two-dimensional
version of the famous Hodgkin–Huxley model that describes how action po-
tentials propagate along an axon. Noise is omnipresent in neural systems
and arises from different sources: it could be internal noise (such as ran-
dom synaptic input from other neurons) or external noise, see for instance
[181] for details. It was noted in [237] that the addition of an appropri-
ate amount of noise in the model helps to detect weak signals. All of this
has attracted a large body of works on the analysis of the influence of ex-
ternal random perturbations in neurons in the recent years, see for instance
[179, 181, 184, 206, 214, 237, 241, 247, 257].

The stochastic FitzHugh–Nagumo system is given by
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

B

Bt
upt, ζq “

B2

Bζ2
upt, ζq ` upt, ζq ´ u3pt, ζq ´ vpt, ζq `

B2

BtBζ
W pt, ζq,

B

Bt
vpt, ζq “ γ1upt, ζq ´ γ2vpt, ζq ` β,

B

Bζ
upt, 0q “

B

Bζ
upt, 1q “ 0,

up0, ζq “ u0pζq, vp0, ζq “ v0pζq,

(5.1)

for ζ P p0, 1q and t ě 0. Here, the unknowns u “
`

uptq
˘

tě0
and v “

`

vptq
˘

tě0

are L2p0, 1q-valued stochastic processes, with initial values u0, v0 P L2p0, 1q, see
Section 5.2 and the standard monograph [102] on stochastic evolution equa-
tions in Hilbert spaces. In addition, γ1, γ2, β P R are three real-valued param-
eters, ∆ “ B2

Bζ2
is the Laplace operator endowed with homogeneous Neumann

boundary conditions, and
`

W ptq
˘

tě0
is a cylindrical Wiener process, meaning

that the component u is driven by space-time white noise.
In its physical sense, the component u represents the voltage variable while

the component v is the recovery variable. The noise represents random fluctu-
ations of the membrane potential, see [237] for a related model with a scalar
noise. Note that in the considered system only the evolution of the voltage
variable u is driven by a Wiener process. Having noise for the evolution of
the recovery variable v would correspond to modelling different biological phe-
nomena that are not treated in this work.
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The major difficulty in the theoretical and numerical analysis of the SPDE
system above is the nonlinearity u ´ u3 appearing in the evolution of the
component u: this nonlinearity is not globally Lipschitz continuous and has
polynomial growth. As proved in [23], using a standard explicit discretization
such as the Euler–Maruyama method (2.8) would yield numerical schemes
which usually do not converge. More precisely, moment bounds, uniform with
respect to the time step size, would not hold for such methods.

For an efficient numerical simulation of the above SPDE system, a splitting
strategy is therefore used to define integrators and furthermore appropriate
moment bounds and strong error estimates will be obtained. Splitting schemes
have a long history in the numerical analysis of ordinary and partial differential
equations, see for instance [32, 144, 178, 199] and references therein. Splitting
integrators have recently been applied and analysed in the context of stochastic
ordinary and partial differential equations. Without being exhaustive, the in-
terested reader can refer to [9, 11, 33, 58, 84, 177, 205] for the finite-dimensional
context and to [29, 41, 43, 45, 47, 99, 101, 113, 137, 182, 194, 195, 211] for the
context of SPDEs.

In a nutshell, the key idea of the splitting integrators is to decompose the
vector field, appearing in the evolution equation, in several parts, in order
to exhibit subsystems that can be integrated exactly (or easily). One then
composes the (exact or approximate) flows associated with the subsystems to
define integrators applied to the original problem.

The main result obtained in this Thesis is to demonstrate the strong con-
vergence of the aforementioned method, with relative order of convergence 1{4,
for easy to implement splitting integrators, see Equation (5.24) in Subsection
5.3.2, for the time discretization of the SPDE defined above, see Theorem 5.3.2
for a precise statement.

The first non-trivial step of the analysis is to obtain suitable moment
bounds for the splitting scheme, see Theorem 5.3.1. Note that the proof of
the moment bounds of Theorem 5.3.1 is inspired by the work [46] where split-
ting schemes for the stochastic Allen–Cahn equation

Bupt, ζq

Bt
“

B2upt, ζq

Bζ2
` upt, ζq ´ u3pt, ζq `

B2

BtBζ
W pt, ζq

were studied. The proof of the strong convergence error estimates of Theorem
5.3.2 is inspired by the article [45]. However, one needs a dedicated and detailed
analysis since the considered stochastic FitzHugh–Nagumo system is not a
parabolic stochastic evolution system, and several arguments are non trivial.
Note also that the construction of the splitting scheme is inspired by the recent
article [61] that treats a finite dimensional version

$

’

&

’

%

duptq “ puptq ´ u3ptq ´ vptqq dt,
dvptq “ pγ1uptq ´ γ2vptq ` βq dt ` dBptq,

up0q “ u0, vp0q “ v0,

of the stochastic FitzHugh–Nagumo system (where the finite-dimensional noise
B is in the v-component).
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5.2 Background of the problem
This section is devoted to introducing the functional framework, the linear and
nonlinear operators, and the Wiener process. This allows us to consider the
stochastic FitzHugh–Nagumo SPDE system as a stochastic evolution equation
in the classical framework of [102].

5.2.1 Functional framework

Let us first introduce the infinite-dimensional, separable Hilbert space H “

L2p0, 1q of square integrable functions from p0, 1q to R, equipped with the
inner product x¨, ¨yH and the norm } ¨ }H that satisfy

xu1, u2yH “

ż 1

0

u1pζqu2pζq dζ, }u}H “
a

xu, uyH ,

respectively, for all u1, u2, u P H. Let us then introduce the product space
H “ H ˆ H, which is also an infinite-dimensional, separable Hilbert space,
with the inner product x¨, ¨yH and the norm } ¨ }H defined by

xx1, x2yH “ xu1, u2yH ` xv1, v2yH , }x}H “

b

}u}2H ` }v}2H ,

for all x1 “ pu1, v1q, x2 “ pu2, v2q, x “ pu, vq P H.
Let also E “ C0pr0, 1sq be the space of continuous functions from r0, 1s to

R, and E “ EˆE the corresponding product space. One immediately observes
that E and E are both separable Banach spaces, with the following norms

}u}E “ max
ζPr0,1s

|upζq|, }x}E “ max
`

}u}E, }v}E
˘

for all u P E and x “ pu, vq P E .
Let us denote the inner product and the norm in the finite-dimensional

Euclidean space R2 by x¨, ¨y and } ¨ }, respectively. If M is a 2 ˆ 2 real-valued
matrix, let ~M~ “ sup

xPR2;}x}“1

}Mx}.

5.2.2 Linear operators

This subsection presents the material required to use the semigroup approach
for SPDEs, see for instance [102].

For all j P N, set λj “ pjπq2 and ejpζq “
?
2 cospjπζq for all ζ P r0, 1s. In

addition, set λ0 “ 0 and e0pζq “ 1 for all ζ P r0, 1s. Then
`

ej
˘

jě0
is a complete

orthonormal system of H, and one has

∆ej “ ´λjej

for all j ě 0, where ∆ denotes the Laplace operator with homogeneous Neu-
mann boundary conditions. For all u P H and all t ě 0, set

et∆u “
ÿ

jě0

e´tλjxu, ejyHej. (5.2)
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Then, for any u0 P H, the mapping pt, ζq ÞÑ upt, ζq “ et∆u0pζq is the unique
solution of the heat equation on p0, 1q with homogeneous Neumann boundary
conditions and initial value up0, ¨q “ u0:

$

’

’

’

’

&

’

’

’

’

%

Bupt, ζq

Bt
“ ∆upt, ζq, t ą 0, ζ P p0, 1q,

Bupt, 0q

Bζ
“

Bupt, 1q

Bζ
“ 0, t ą 0,

up0, ζq “ u0pζq, ζ P p0, 1q.

Moreover, for all α P r0, 2s, set

Hα
“

#

u P H;
ÿ

jě0

λαj xu, ejy
2
H ă 8

+

,

p´∆q
α
2 u “

ÿ

jě0

λ
α
2
j xu, ejyHej, u P Hα.

Observe that H0 “ H “ L2p0, 1q. The Laplace operator ∆ with homogeneous
Neumann boundary conditions is a self-adjoint unbounded linear operator on
H, with domain Dp∆q “ H2. Also be Hα “ Hα ˆ H for all α P r0, 2s.

Let us now introduce the linear operator Λ, defined as follows: for all
x “ pu, vq P H2, set

Λx “

ˆ

´∆u
0

˙

.

Then Λ is a self-adjoint unbounded linear operator on H, with domain DpΛq “

H2. For all x “ pu, vq P H and t ě 0, set

e´tΛx “

ˆ

et∆u
v

˙

. (5.3)

Regularity estimates for this operator are presented in Section 5.4 below.

5.2.3 Nonlinear operator

Let β, γ1, γ2 P R be parameters of the model. Define the mapping F : R2 Ñ R2

such that for all x “ pu, vq P R2 one has

F pxq “

ˆ

u ´ u3 ´ v
γ1u ´ γ2v ` β

˙

.

To define splitting schemes, it is convenient to introduce two auxiliary map-
pings FNL : R2 Ñ R2 and F L : R2 Ñ R2 defined as follows: for all x “ pu, vq P

R2 one has

FNL
pxq “

ˆ

u ´ u3

β

˙

F L
pxq “

ˆ

´v
γ1u ´ γ2v

˙

“ Bx,
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where the matrix B is defined by

B “

ˆ

0 ´1
γ1 ´γ2

˙

.

Therefore, one immediately has

F pxq “ FNL
pxq ` F L

pxq (5.4)

for all x P R2.
The mapping F L is globally Lipschitz continuous. In fact, for all x1, x2 P R2

then
}F L

px2q ´ F L
px1q} ď ~B~}x2 ´ x1}.

However F and FNL are only locally Lipschitz continuous, and satisfy a
one-sided Lipschitz continuity property, that is there exists a positive constant
C P p0,8q such that for all x1, x2 P R2 such that

xx2 ´ x1, F px2q ´ F px1qy ď C}x2 ´ x1}
2,

xx2 ´ x1, F
NL

px2q ´ FNL
px1qy ď C}x2 ´ x1}

2.
(5.5)

In the sequel, an abuse of notation is used for simplicity: the same notation
is employed for a mapping f : R2 Ñ R2 and for the associated Nemytskii
operator defined on H or on E by fpu, vq “ fpup¨q, vp¨qq.

5.2.4 Cylindrical Wiener process

It remains to define the noise that drives the stochastic FitzHugh–Nagumo
system. Let

`

W ptq
˘

tě0
be a cylindrical Wiener process on H: given a sequence

`

βjp¨q
˘

jě0
of independent standard real-valued Wiener processes, defined on a

probability space pΩ,F ,Pq equipped with a filtration
`

Ft

˘

tě0
that satisfies the

usual conditions, set
W ptq “

ÿ

jě0

βjptqej. (5.6)

where
`

ej
˘

jě0
is a complete orthonormal system of H, defined above. For all

t ě 0, define

Wptq “

ˆ

W ptq
0

˙

“
ÿ

jě0

βjptq

ˆ

ej
0

˙

,

then
`

Wptq
˘

tě0
is a generalized Q-Wiener process on H, with the covariance

operator

Q “

ˆ

I 0
0 0

˙

.

Note that almost surely W ptq R H and Wptq R H for all t ą 0. However, for all
T ě 0, the Itô stochastic integrals

şT

0
Lptq dW ptq and

şT

0
Lptq dWptq are well-

defined H-valued and H-valued random variables respectively, if
`

Lptq
˘

0ďtďT
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and
`

Lptq
˘

0ďtďT
are adapted processes that satisfy

ř

jě0

şT

0
Er}Lptqej}

2
Hs dt ă

8 and
ř

jě0

şT

0
Er}Lptq

ˆ

ej
0

˙

}2Hs dt ă 8, respectively.

Observe that for all T ě 0 one has
ÿ

jě0

ż T

0

}et∆ej}
2
H dt “

ÿ

jě0

ż T

0

}e´tΛ

ˆ

ej
0

˙

}
2
H dt ď T `

ÿ

jě1

λ´1
j ă 8.

Therefore, for all t ě 0 one can define the H-valued random variable Zptq and
the H-valued random variable Zptq, called the stochastic convolutions, by

Zptq “

ż t

0

ept´sq∆ dW psq,

Zptq “

ż t

0

e´pt´sqΛ dWpsq.

(5.7)

The processes
`

Zptq
˘

tě0
and

`

Zptq
˘

tě0
are interpreted as the mild solutions of

the stochastic evolution equations

dZptq “ ∆Zptq dt ` dW ptq,

dZptq “ ´ΛZptq dt ` dWptq

with initial values Zp0q “ 0 and Zp0q “ 0. Note that Zptq “

ˆ

Zptq
0

˙

for all

t ě 0.

5.2.5 The stochastic FitzHugh–Nagumo SPDE system

The stochastic FhN SPDE system (5.1) can be rewritten as a stochastic evo-
lution system

$

’

&

’

%

duptq “ ∆uptq dt ` puptq ´ u3ptq ´ vptqq dt ` dW ptq,

dvptq “ pγ1uptq ´ γ2vptq ` βq dt,
up0q “ u0, vp0q “ v0,

(5.8)

where the unknowns up¨q “
`

uptq
˘

tě0
and vp¨q “

`

vptq
˘

tě0
are H-valued

stochastic processes, and with initial values u0 P H and v0 P H. Recall that
Neumann boundary conditions are used in the above system. Using the nota-
tion introduced above and setting Xptq “ puptq, vptqq for all t ě 0, the stochas-
tic evolution system (5.8) is treated in the sequel as the stochastic evolution
equation

dXptq “ ´ΛXptq dt ` F pXptqq dt ` dWptq, Xp0q “ x0, (5.9)

with the initial value x0 “ pu0, v0q P H. For all T P p0,8q, a stochastic process
`

Xptq
˘

0ďtďT
is called a mild solution of (5.9) if it has continuous trajectories

with values in H, and if for all t P r0, T s one has

Xptq “ e´tΛx0 `

ż t

0

e´pt´sqΛF pXpsqq ds `

ż t

0

e´pt´sqΛ dWpsq. (5.10)
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In the framework presented in this section, the stochastic evolution equation
(5.9) admits a unique global mild solution, for any initial value x0 P H2α X E
and for α P r0, 1

4
q, see Proposition 5.4.2 below.

For simplicity, the initial values u0, v0, resp. x0, appearing in (5.8), resp.
(5.9), are deterministic.

5.3 Splitting numerical schemes
The time-step size of the integrators defined below is denoted by ∆t. Without
loss of generality, it is assumed that ∆t P p0,∆t0q, where ∆t0 is an arbitrary
positive real number, and that there exists T P p0,8q and N P N such that
∆t “ T {N . The notation tn “ n∆t for n P t0, . . . , Nu is used in the sequel.
The increments of the Wiener processes

`

W ptq
˘

tě0
and

`

Wptq
˘

tě0
are denoted

by

δWn “ W ptn`1q ´ W ptnq, δWn “ Wptn`1q ´ Wptnq “

ˆ

δWn

0

˙

.

The proposed time integrators for the SPDE (5.9) are based on a splitting
strategy. Recall that the main principle of splitting integrators is to decompose
the vector field of the evolution problem in several parts, such that the arising
subsystems are exactly (or easily) integrated. In the next Subsection 5.3.1-
5.3.3 all the details regarding the type of subsystems to be solved and the
main results will be provided.

5.3.1 Solutions of auxiliary subsystems

The construction of the proposed splitting schemes is based on the combination
of exact or approximate solutions of the three subsystems considered below.

‚ The nonlinear differential equation (considered on the Euclidean space
R2)

$

&

%

dxNLptq

dt
“ FNL

pxNL
ptqq,

xNL
p0q “ x0 P R2

(5.11)

admits a unique global solution
`

xNLptq
˘

tě0
. This solution has the following

exact expression, see for instance [46, Equation (3)]: for all t ě 0 and x0 “

pu0, v0q P R2, one has

xNL
ptq “ ϕNL

t px0q “

˜

u0?
u2
0`p1´u2

0qe´2t

v0 ` βt

¸

. (5.12)

‚ The linear differential equation (considered on the Euclidean space R2)
$

&

%

dxLptq

dt
“ F L

pxLptqq,

xLp0q “ x0 P R2

(5.13)
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admits a unique global solution
`

xLptq
˘

tě0
. This solution has the following

expression: for all t ě 0 and x0 “ pu0, v0q P R2, one has

xLptq “ ϕL
t px0q “ etBx0. (5.14)

‚ The stochastic evolution equation (considered on the Hilbert space H)
#

dXs
ptq “ ´ΛXs

ptq dt ` dWptq

Xs
p0q “ x0 P H

(5.15)

admits a unique global solution
`

Xsptq
˘

tě0
. This solution has the following

expression: for all t ě 0 and x0 “ pu0, v0q P H, one has

Xs
ptq “ e´tΛx0 `

ż t

0

e´pt´sqΛdWpsq “

ˆ

et∆u0 `
şt

0
ept´sq∆ dW psq
v0

˙

, (5.16)

see (5.7) for the expression of the stochastic convolution. For all n P t0, . . . , N´

1u, set Xs,exact
n “ Xsptnq, then one has the following recursion formula

Xs,exact
n`1 “ e´∆tΛXs,exact

n `

ż tn`1

tn

e´ptn`1´sqΛ dWpsq (5.17)

recalling the notation tn “ n∆t.
Instead of using the exact solution (5.16) of the stochastic convolution

(5.15), one can use approximate solutions
`

Xs,exp
n

˘

ně0
“

`

us,expn , vs,expn

˘

ně0
and

`

Xs,imp
n

˘

ně0
“

`

us,imp
n , vs,imp

n

˘

ně0
defined by an exponential Euler scheme and a

linear implicit Euler scheme, respectively:

Xs,exp
n`1 “ e´∆tΛ

´

Xs,exp
n ` δWn

¯

“

ˆ

e∆t∆
`

us,expn ` δWn

˘

vs,expn

˙

, (5.18)

and

Xs,imp
n`1 “

`

I ` ∆tΛ
˘´1

´

Xs,imp
n ` δWn

¯

“

ˆ

pI ´ ∆t∆q´1
`

us,imp
n ` δWn

˘

vs,imp
n

˙

,

(5.19)
with initial values Xs,exp

0 “ Xs,imp
0 “ x0 “ pu0, v0q P H, us,exp0 “ us,imp

0 “ u0 P H
and vs,exp0 “ vs,imp

0 “ v0 P H.

5.3.2 Definition of the splitting schemes

Now the three splitting schemes are introduced. They are constructed using
a Lie–Trotter strategy, where first the subsystems (5.11), (5.13) are solved
exactly using the flow maps (5.12) and (5.14) respectively, and where the
subsystem (5.15) is either solved exactly using (5.16) or approximately using
(5.18) or (5.19).

For the composition of the first two subsystems, define the mapping ϕ∆t :
R2 Ñ R2 as follows: for all ∆t P p0,∆t0q, set

ϕ∆t “ ϕL
∆t ˝ ϕNL

∆t . (5.20)
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Using the expression (5.17) for the exact solution (5.16) of (5.15) leads to the
definition of the following explicit splitting scheme for the stochastic FitzHugh–
Nagumo SPDE system (5.8):

XLT,exact
n`1 “ e´∆tΛϕ∆t

`

XLT,exact
n

˘

`

ż tn`1

tn

e´ptn`1´sqΛ dWpsq. (5.21)

Using the exponential Euler scheme (5.18) to approximate the solution of
(5.15) leads to the definition of the following explicit splitting scheme for (5.8):

XLT,expo
n`1 “ e´∆tΛϕ∆t

`

XLT,expo
n

˘

` e´∆tΛδWn. (5.22)

Using the linear implicit Euler scheme (5.19) to approximate the solution
of (5.15) leads to the definition of the following splitting scheme for (5.8):

XLT,imp
n`1 “ pI ` ∆tΛq

´1ϕ∆t

`

XLT,imp
n

˘

` pI ` ∆tΛq
´1δWn. (5.23)

For these three Lie–Trotter splitting schemes (5.21), (5.22) and (5.23), the
same initial value is imposed:

XLT,exact
0 “ XLT,expo

0 “ XLT,imp
0 “ x0 P H.

Before proceeding with the statements of the main results, let us give sev-
eral observations and auxiliary tools.

Observe that all these three schemes (5.21), (5.22) and (5.23) can be written
using the single formulation

Xn`1 “ A∆tϕ∆tpXnq `

ż tn`1

tn

Btn`1´s dWpsq (5.24)

which is used in the analysis below. The expressions of the linear operators A∆t

and Btn`1´s for each of the three schemes are given by: A∆t “ e´∆tΛ,Btn`1´s “

e´ptn`1´sqΛ for the scheme (5.21) A∆t “ Btn`1´s “ e´∆tΛ for the scheme (5.22),
and A∆t “ Btn`1´s “ pI ` ∆tΛq´1 for the scheme (5.23).

For any value ∆t P p0,∆t0q of the time-step size, introduce the mapping
ψ∆t : R2 Ñ R2 defined as follows: for all x P R2,

ψ∆tpxq “
ϕ∆tpxq ´ x

∆t
. (5.25)

The Lie–Trotter splitting scheme (5.24) is then written as

Xn`1 “ A∆tXn ` ∆tA∆tψ∆tpXnq `

ż tn`1

tn

Btn`1´s dWpsq

and can thus be interpreted as a numerical scheme applied to the auxiliary
stochastic evolution equation

dX∆tptq “ ´ΛX∆tptq dt ` ψ∆tpX∆tptqq dt ` dWptq, X∆tp0q “ x0. (5.26)

Note that the SPDE (5.26) is similar to the original problem (5.9), however
the nonlinearity F is replaced by the auxiliary mapping ψ∆t.
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5.3.3 Principal results

In this Subsection, the principal results of this chapter will be stated. First,
moment bounds for the three splitting schemes (5.24) are given, see Theorem
5.3.1. Then, strong error estimates, with rate of convergence 1{4, for the
numerical approximations of the solution of the stochastic FitzHugh–Nagumo
SPDE system (5.9), see Theorem 5.3.2 will be given.

Theorem 5.3.1. For all T P p0,8q and p P r1,8q, there exists CppT q P p0,8q

such that for all x0 P E one has

sup
∆tPp0,∆t0q

sup
0ďnďN

Er}Xn}
p
Es ď CppT q

`

1 ` }x0}
p
E
˘

, (5.27)

where
`

Xn

˘

ně0
is given by (5.24) (with initial value X0 “ x0), and where

T “ N∆t with N P N.

The proof of this theorem is postponed to Section 5.5.
The following theorem give us the main results of this Chapter regarding

the strong convergence of the three splitting schemes of type (5.24). Its proof
is given in Section 5.5.

Theorem 5.3.2. For all T P p0,8q, p P r1,8q and α P r0, 1
4
q, there exists

Cα,ppT q P p0,8q such that for all x0 “ pu0, v0q P H2α X E, all ∆t P p0,∆t0q,
one has

sup
0ďnďN

`

Er}Xptnq ´ Xn}
p
Hs

˘
1
p ď Cα,ppT q∆tα

`

1 ` }p´∆q
αu0}

7
H ` }x0}

7
E
˘

. (5.28)

The order of convergence 1{4 obtained in Theorem 5.3.2 is consistent with
the temporal Hölder regularity property of the trajectories t ÞÑ Xptq P H.
It is also consistent with the strong convergence rate obtained in [45] for the
stochastic Allen–Cahn equation. However new arguments are required to study
the FitzHugh–Nagumo system which is not a parabolic SPDE problem, and
which has a cubic nonlinearity.

Let us state two of the main auxiliary results which are used in the proofs
of the main results. These propositions are proved in Section 5.5.

Proposition 5.3.1. For all ∆t P p0,∆t0q, the mapping ϕ∆t : R2 Ñ R2 defined
by (5.20) is globally Lipschitz continuous. In addition, for all ∆t P p0,∆t0q
and all x1, x2 P R2 one has

}ϕ∆tpx2q ´ ϕ∆tpx1q} ď ep1`~B~q∆t
}x2 ´ x1}. (5.29)

Proposition 5.3.2. There exists Cp∆t0q P p0,8q such that for all ∆t P

p0,∆t0q, the mapping ψ∆t : R2 Ñ R2 defined by (5.25) satisfies the follow-
ing properties: for all x1, x2 P R2, one has

xx2 ´ x1, ψ∆tpx2q ´ ψ∆tpx1qy ď Cp∆t0q}x2 ´ x1}
2 (5.30)

}ψ∆tpx2q ´ ψ∆tpx1q} ď Cp∆t0q
`

1 ` }x1}
3

` }x2}
3
˘

}x2 ´ x1}, (5.31)
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and for all x P R2 one has

}ψ∆tpxq ´ F pxq} ď Cp∆t0q∆t
`

1 ` }x}
5
˘

. (5.32)

Finally,
sup

∆tPp0,∆t0q

}ψ∆tp0q} ă 8. (5.33)

The inequality (5.30) states that ψ∆t satisfies a one-sided Lipschitz conti-
nuity property that is uniform with respect to ∆t P p0,∆t0q. This is similar
to the property (5.5) satisfied by F . It is straightforward to check that ψ∆t is
in fact globally Lipschitz continuous for any fixed ∆t P p0,∆t0q, however this
property does not hold uniformly with respect to ∆t P p0,∆t0q. Instead, one
has the one-sided Lipschitz continuity property (5.30) and the local Lipschitz
continuity property (5.31) that are both uniform with respect to ∆t P p0,∆t0q.

5.4 Preliminary results
In this section several results will be proven, which are required for the analysis
of the three splitting schemes of type (5.24). In particular, properties of the
semigroup (Proposition 5.4.1) are obtained and moreover the properties of the
auxiliary mappings ϕ∆t (Proposition 5.3.1) and ψ∆t (Proposition 5.3.2) will
be given. Furthermore the well-posedness and moment bounds for the mild
solution of the considered SPDE will be studied.

5.4.1 Properties of the semigroup

In this subsection, properties of the semigroup generated by the linear operator
Λ in the stochastic FitzHugh–Nagumo system (5.9) are studied. In addition,
estimates for the operator pI`∆tΛq´1 used in the semi-linear splitting schemes
(5.19) and (5.23) are also provided.

Proposition 5.4.1. The semigroup
`

e´tΛ
˘

tě0
defined by (5.3) satisfies the

following properties:

1. For all t ě 0, e´tΛ is a bounded linear operator from H to H and from
E to E. In addition, for all t ě 0 one has

sup
xPHzt0u

}e´tΛx}H

}x}H
“ 1, sup

xPEzt0u

}e´tΛx}E

}x}E
“ 1. (5.34)

2. Smoothing property. For all α P r0,8q, there exists a real number Cα P

p0,8q such that, for all pu, vq P H and all t P p0,8q, one has

}e´tΛ

ˆ

p´∆qαu
v

˙

}H ď Cαpmint1, tuq
´α

}pu, vq}H. (5.35)
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3. Temporal regularity. For all µ, ν ě 0 with µ ` ν ď 1, there exists a
real number Cµ,ν P p0,8q such that, for all x “ pu, vq P H2ν and all
t1, t2 P p0,8q, one has

}e´t2Λx ´ e´t1Λx}H ď Cµ,ν
|t2 ´ t1|

µ`ν

pmintt2, t1uqµ
}p´∆q

νu}H . (5.36)

Proof. :

1. Since the eigenvalues
`

λj
˘

jě0
of ´∆ are nonnegative, it is straightforward

to see that for all x “ pu, vq P H and t ě 0 one has e´tΛx P H, and

}e´tΛx}
2
H “ }et∆u}

2
H ` }v}

2
H ď }u}

2
H ` }v}

2
H “ }x}

2
H.

This proves that e´tΛ is a bounded linear operator from H to H for all
t ě 0, and that

sup
xPHzt0u

}e´tΛx}H

}x}H
ď 1.

On the other hand, using the formula for the Green function of the heat
equation with homogeneous Neumann boundary conditions, the semi-
group

`

et∆
˘

tě0
defined by (5.2) satisfies the following properties: for all

t ě 0 and u P E, one has et∆u P E and }et∆u}E ď }u}E. As a conse-
quence of the facts, for all x “ pu, vq P E , one has e´tΛx “ pet∆u, vq P E
and

}e´tΛx}E “ max
`

}et∆u}E, }v}E
˘

ď max
`

}u}E, }v}E
˘

“ }x}E .

To conclude the proof of (5.34), it suffices to check that for x “ p0, vq

and all t ě 0 one has e´tΛx “ x.

2. The smoothing property (5.35) is a straightforward consequence of the
smoothing property for the semigroup

`

et∆
˘

tě0
: for all α P r0,8q, t ě 0

and u P H, one has (recall that λ0 “ 0)

}et∆p´∆q
αu}

2
H “

ÿ

jě1

e´2tλjλ2αj xu, ejy
2
H ď sup

ξPp0,8q

`

ξ2αe´2ξ
˘

t´2α
}u}

2
H .

As a consequence, for all α P r0,8q, t ě 0 and x “ pu, vq P H, one has

}e´tΛ

ˆ

p´∆qαu
v

˙

}
2
H “ }et∆p´∆q

αu}
2
H ` }v}

2
H

ď C2
αt

´2α
}u}

2
H ` }v}

2
H

ď C2
αpmint1, tuq

´2α
}x}

2
H.

3. The regularity property (5.36) is a straightforward consequence of the
following regularity property for the semigroup

`

et∆
˘

tě0
: for all µ, ν P



5.4 Preliminary results 87

r0, 1s with µ ` ν ď 1, 0 ď t1 ď t2 and u P H2ν , one has

}et2∆u ´ et1∆u}
2
H “ }pept2´t1q∆

´ Iqet1∆u}
2
H

“
ÿ

jě1

`

e´pt2´t1qλj ´ 1
˘2
e´2t1λjxu, ejy

2
H

ď 22pµ`νq
pt2 ´ t1q

2pµ`νq
ÿ

jě1

λ
2pµ`νq

j e´2t1λjxu, ejy
2
H

ď 22pµ`νq sup
ξPp0,8q

`

ξ2µe´2ξ
˘pt2 ´ t1q

2pµ`νq

t2µ1

ÿ

jě1

λ2νj xu, ejy
2
H

ď 22pµ`νq sup
ξPp0,8q

`

ξ2µe´2ξ
˘pt2 ´ t1q

2pµ`νq

t2µ1
}p´∆q

νu}
2
H .

As a consequence, for all µ, ν P r0, 1s with µ ` ν ď 1, 0 ď t1 ď t2 and
x “ pu, vq P H2ν ˆ H, one has

}e´t2Λx ´ e´t1Λx}H “ }et2∆u ´ et1∆u}H ď Cµ,ν
|t2 ´ t1|µ`ν

tµ1
}p´∆q

νu}H .

The proof of Proposition 5.4.1 is thus completed.

In the sequel, the following properties are also used for the analysis of the
splitting scheme (5.23) for which a linear implicit Euler method is used for the
approximation (5.19) of the stochastic convolution: for all t ě 0, pI ` tΛq´1 is
a bounded linear operator from H to H and from E to E , and one has

sup
xPHzt0u

}pI ` tΛq´1x}H

}x}H
“ 1, sup

xPEzt0u

}pI ` tΛq´1x}E

}x}E
“ 1. (5.37)

The proof of the inequality (5.37) is straightforward. Indeed, for all x P H or
x P E , and all t ě 0, one has

pI ` tΛq
´1x “

ż 8

0

e´pI`tΛqsx ds.

Using (5.34), one then obtains the inequalities

}pI ` tΛq
´1x}H ď

ż 8

0

e´s
}e´tsΛx}H ds ď

ż 8

0

e´s ds}x}H “ }x}H

}pI ` tΛq
´1x}E ď

ż 8

0

e´s
}e´tsΛx}E ds ď

ż 8

0

e´s ds}x}E “ }x}E .

Like in the proof of (5.34), choosing x “ p0, vq gives pI ` tΛq´1x “ x for all
t ě 0, and thus concludes the proof of (5.37).

In order to prove Propositions 5.3.1 and 5.3.2 that state properties of the
mappings ϕ∆t : R2 Ñ R2 and ψ∆t : R2 Ñ R2 defined by (5.20) and (5.25), it is
convenient to introduce the auxiliary mappings ϕAC

t : R Ñ R and ψAC
t : R Ñ R,

defined as follows: for all t P p0,8q and u P R, set

ϕAC
t puq “

u
a

u2 ` p1 ´ u2qe´2t
, ψAC

t puq “
ϕAC
t puq ´ u

t
. (5.38)
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The mapping ϕAC
t is the flow map associated with the nonlinear differential

equation, see the subsystem (5.11),

duACptq

dt
“ uAC

ptq ´ puAC
ptqq

3,

meaning that uACptq “ ϕAC
t puACp0qq for all t ě 0. The properties of the

mappings ϕAC
∆t and ψAC

∆t stated in Lemma 5.4.1 are given by [46, Lemma 3.1–
3.4].

Lemma 5.4.1. There exists Cp∆t0q P p0,8q such that for all ∆t P p0,∆t0q,
the mappings ϕAC

∆t : R Ñ R and ψAC
∆t : R Ñ R satisfy the following properties:

• For all ∆t P p0,∆t0q and u1, u2 P R, one has

|ϕAC
∆t pu2q ´ ϕAC

∆t pu1q| ď e∆t
|u2 ´ u1|. (5.39)

• For all ∆t P p0,∆t0q and u1, u2 P R, one has
`

u2 ´ u1
˘`

ψAC
∆t pu2q ´ ψAC

∆t pu1q
˘

ď Cp∆t0q|u2 ´ u1|
2, (5.40)

|ψAC
∆t pu2q ´ ψAC

∆t pu1q| ď Cp∆t0q
`

1 ` |u1|
3

` |u2|
3
˘

|u2 ´ u1|, (5.41)

and for all ∆t P p0,∆t0q and u P R, one has

|ψ∆tpuq ´ pu ´ u3q| ď Cp∆t0q∆t
`

1 ` |u|
5
˘

. (5.42)

Proof of Proposition 5.3.1. Note that for all ∆t P p0,∆t0q and x “ pu, vq P R2

one has
ϕNL
∆t pxq “

ˆ

ϕAC
∆t puq

v ` β∆t

˙

.

Using the definition (5.20) and the inequality (5.39) from Lemma 5.4.1, one
then obtains the following inequality: for all ∆t P p0,∆t0q and all x1 “

pu1, v1q, x2 “ pu2, v2q P R2, one has

}ϕ∆tpx2q ´ ϕ∆tpx1q}
2

“ }ϕL
∆tpϕ

NL
∆t px2qq ´ ϕL

∆tpϕ
NL
∆t px1qq}

2

“ }e∆tB
`

ϕNL
∆t px2q ´ ϕNL

∆t px1q
˘

}
2

ď e2∆t~B~
}ϕNL

∆t px2q ´ ϕNL
∆t px1q}

2

ď e2∆t~B~
`

|ϕAC
∆t pu2q ´ ϕAC

∆t pu1q|
2

` |v2 ´ v1|
2
˘

ď e2∆t~B~
`

e2∆t
|u2 ´ u1|

2
` |v2 ´ v1|

2
˘

ď e2∆tp1`~B~q
}x2 ´ x1}

2.

Then the result is straightforward. In fact, ϕ∆t is the composition of the two
globally Lipschitz continuous mappings ϕL

∆t and ϕNL
∆t . The proof is given to

exhibit the dependence of the Lipschitz constant with respect to the time-step
size ∆t P p0,∆t0q.
This concludes the proof of Proposition 5.3.1.
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In order to prove Proposition 5.3.2, the main tool is the following expression
for the mapping ψ∆t defined by (5.25): for all ∆t P p0,∆t0q and x P R2, one
has

ψ∆tpxq “ ψL
∆tpϕ

NL
∆t pxqq ` ψNL

∆t pxq, (5.43)

where the mappings ψL
∆t and ψNL

∆t are given by

ψL
∆tpxq “

ϕL
∆tpxq ´ x

∆t
“
e∆tB ´ I

∆t
x

ψNL
∆t pxq “

ϕNL
∆t pxq ´ x

∆t
“

ˆ

ψAC
∆t puq

β

˙

for all ∆t P p0,∆t0q and x “ pu, vq P R2.
The proof of the equality (5.43) is straightforward: using (5.20), one has

ψ∆tpxq “
ϕ∆tpxq ´ x

∆t
“
ϕL
∆tpϕ

NL
∆t pxqq ´ ϕNL

∆t pxq

∆t
`
ϕNL
∆t pxq ´ x

∆t
“ ψL

∆tpϕ
NL
∆t pxqq ` ψNL

∆t pxq.

Thanks to the identity (5.43), Proposition 5.3.2 can be proved.

Proof of Proposition 5.3.2. Note that the mapping ψL
∆t : R2 Ñ R2 is linear and

therefore is globally Lipschitz continuous. In addition, for all ∆t P p0,∆t0q and
x1, x2 P R2, one has

}ψL
∆tpx2q ´ ψL

∆tpx1q} ď ~
e∆tB ´ I

∆t
~}x2 ´ x1} ď

e∆t0~B~ ´ 1

∆t0
}x2 ´ x1}, (5.44)

using the inequalities

~
e∆tB ´ I

∆t
~ “ ~

8
ÿ

k“1

∆tk´1

k!
Bk

~

ď

8
ÿ

k“1

∆tk´1

k!
~B~

k

ď

8
ÿ

k“1

∆tk´1
0

k!
~B~

k

“
e∆t0~B~ ´ 1

∆t0
.

Let us first prove the one-sided Lipschitz continuity property (5.30): for all
∆t P p0,∆t0q and x1, x2 P R2, using the identity (5.43), then the Cauchy–
Schwarz inequality and (5.44), one has

xx2 ´ x1, ψ∆tpx2q ´ ψ∆tpx1qy “ xx2 ´ x1, ψ
L
∆tpϕ

NL
∆t px2qq ´ ψL

∆tpϕ
NL
∆t px1qqy

` xx2 ´ x1, ψ
NL
∆t px2q ´ ψNL

∆t px1qy

ď
e∆t0~B~ ´ 1

∆t0
}x2 ´ x1}}ϕNL

∆t px2q ´ ϕNL
∆t px2q}

` xx2 ´ x1, ψ
NL
∆t px2q ´ ψNL

∆t px1qy.
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On the one hand, using the same arguments as in the proof of Proposition
5.3.1, one has

}ϕNL
∆t px2q ´ ϕNL

∆t px1q} ď e∆t}x2 ´ x1} ď e∆t0}x2 ´ x1}.

On the other hand, for all x “ pu, vq P R2 one has

ψNL
∆t pxq “

ˆ

ψAC
∆t puq

β

˙

.

Using the inequality (5.40) from Lemma 5.4.1, one then obtains

xx2 ´ x1, ψ
NL
∆t px2q ´ ψNL

∆t px1qy ď e∆t}x2 ´ x1}
2

ď e∆t0}x2 ´ x1}
2.

Gathering the results then gives

xx2 ´ x1, ψ∆tpx2q ´ ψ∆tpx1qy ď

´e∆t0~B~ ´ 1

∆t0
` 1

¯

e∆t0}x2 ´ x1}
2,

which concludes the proof of the inequality (5.30).
Let us now prove the local Lipschitz continuity property (5.31). Using

the identity (5.43) and the inequality (5.41), for all ∆t P p0,∆t0q and x1 “

pu1, v1q, x2 “ pu2, v2q P R2, one has

}ψ∆tpx2q ´ ψ∆tpx1q} ď }ψL
∆tpϕ

NL
∆t px2qq ´ ψL

∆tpϕ
NL
∆t px1qq} ` }ψNL

∆t px2q ´ ψNL
∆t px1q}

ď
e∆t0~B~ ´ 1

∆t0
}ϕNL

∆t px2q ´ ϕNL
∆t px1q}

` Cp∆t0q
`

1 ` |u1|
3

` |u2|
3
˘

|u2 ´ u1|

ď

´e∆t0~B~ ´ 1

∆t0
e∆t0 ` Cp∆t0q

¯

`

1 ` }x1}
3

` }x2}
3
˘

}x2 ´ x1}.

Let us now prove the error estimate (5.32). Using the identities (5.4) and
(5.43), for all ∆t P p0,∆t0q and x “ pu, vq P R2, one has

}ψ∆tpxq ´ F pxq} ď }ψL
∆tpϕ

NL
∆t pxqq ´ F L

pxq} ` }ψNL
∆t pxq ´ FNL

pxq}.

On the one hand, using the inequality (5.44), the expressions of the linear
mappings F L and ψL

∆t and the definition of ψNL
∆t , one has

}ψL
∆tpϕ

NL
∆t pxqq ´ F L

pxq} ď }ψL
∆tpϕ

NL
∆t pxqq ´ F L

pϕNL
∆t pxqq} ` }F L

pϕNL
∆t pxqq ´ F L

pxq}

ď ~
e∆tB ´ I ´ ∆tB

∆t
~}ϕNL

∆t pxq} ` ∆t~B~}ψNL
∆t pxq}.

Note that ϕNL
∆t p0q “ pϕAC

∆t p0q, β∆tq “ p0, β∆tq and ψNL
∆t p0q “ pψAC

∆t p0q, βq “

p0, βq. In addition, one has

~
e∆tB ´ I ´ ∆tB

∆t
~ ď

8
ÿ

k“2

∆tk´1

k!
~B~

k

ď ∆t
8
ÿ

k“2

∆tk´2
0

k!
~B~

k

“ ∆t
e∆t0~B~ ´ 1 ´ ∆t0~B~

∆t0
.
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Therefore, using the inequalities (5.29) from Proposition 5.3.1 and (5.41) from
Lemma 5.4.1, one has

}ψL
∆tpϕ

NL
∆t pxqq ´ F L

pxq} ď Cp∆t0q∆tp1 ` }x}
4
q.

On the other hand, using the inequality (5.42) from Lemma 5.4.1, one has

}ψNL
∆t pxq ´ FNL

pxq} “ |ψAC
∆t puq ´ pu ´ u3q| ď Cp∆t0q∆t

`

1 ` |u|
5
˘

.

Gathering the estimates then gives the inequality

}ψ∆tpxq ´ F pxq} ď Cp∆t0q∆tp1 ` }x}
5
q,

which concludes the proof of (5.32).
It remains to prove the inequality (5.33). The proof is straightforward:

using (5.43) and the equalities ϕAC
∆t p0q “ ψAC

∆t p0q “ 0, one has

ψ∆tp0q “
e∆tB ´ I

∆t
ϕNL
∆t p0q ` ψNL

∆t p0q “ e∆tB

ˆ

0
β

˙

.

Therefore one gets
sup

∆tPp0,∆t0q

}ψ∆tp0q} ď e∆t0~B~
|β|.

The proof of Proposition 5.3.2 is thus completed.

Let us conclude this subsection with a remark concerning the order of the
composition of the two subsystems to define the splitting schemes, see equation
(5.20).

Remark 5.4.1. Let ϕ̂∆t : R2 Ñ R2 be defined as follows: for all ∆t P p0,∆t0q,
set

ϕ̂∆t “ ϕNL
∆t ˝ ϕL

∆t. (5.45)

Compared with the definition (5.20) of ϕ∆t, the order of the composition of
the integrators ϕL

∆t and ϕNL
∆t associated with the subsystems (5.13) and (5.11),

respectively is reversed. Define also

ψ̂∆tpxq “
ϕ̂∆tpxq ´ x

∆t
(5.46)

for all ∆t P p0,∆t0q and x P R2. Using the mapping ϕ̂∆t, modifying the
definition of the scheme (5.24) gives the alternative splitting scheme

X̂n`1 “ A∆tϕ̂∆tpX̂nq `

ż tn`1

tn

Btn`1´s dWpsq (5.47)

for the approximation of the stochastic evolution equation (5.9). Precisely,
alternatives of the splitting schemes (5.21), (5.22) and (5.23) are obtained
from the formulation (5.47). However, the analysis performed in this paper
does not encompass the case of the scheme (5.47), due to missing properties
for the mapping ψ̂∆t, compared with ψ∆t, as explained below.
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Note that the result of Proposition 5.3.1 also holds with ϕ∆t replaced by ϕ̂∆t.
However, it is not clear whether the one-sided Lipschitz continuity property
(5.30) from Proposition 5.3.2 holds also with ψ∆t replaced by ψ̂∆t (uniformly
with respect to ∆t P p0,∆t0q). The proof of the inequality (5.30) exploits the
global Lipschitz continuity property (5.44) of the auxiliary mapping ψL

∆t, which
is a linear mapping from R2 to R2. Instead of the identity (5.43), one has

ψ̂∆tpxq “ ψNL
∆t pϕL

∆tpxqq ` ψL
∆tpxq, (5.48)

and since ψNL
∆t is not globally Lipschitz continuous uniformly with respect to

∆t P p0,∆t0q, the arguments of the proof above cannot be repeated for the
splitting scheme (5.47).

Now, moment bounds for the solutions of the stochastic evolution equations
(5.9) and (5.26) are obtained.

Let us first state the moment bounds for the stochastic convolution defined
by (5.7).

Lemma 5.4.2. Let
`

Zptq
˘

tě0
be defined by (5.7). For all T P p0,8q and

p P r1,8q, one has
sup

0ďtďT
Er}Zptq}

p
Es ă 8.

Proof. Let us only provide the sketch of the proof. To deal with homoge-
neous Neumann boundary conditions, it is convenient to introduce Z0ptq “

xZptq, e0ye0 “ β0ptqe0 and ZKptq “ Zptq ´ Z0ptq for all t ě 0. Let also

Z0ptq “

ˆ

Z0ptq
0

˙

and ZKptq “ Zptq ´ Z0ptq. On the one hand, one has

sup
0ďtďT

Er}Z0ptq}
p
Es “ sup

0ďtďT
Er}Z0ptq}

p
Es ď sup

0ďtďT
Er|β0ptq|

p
s}e0}

p
E ď CT

p
2 .

On the other hand, applying the temporal and spatial increment bounds [102,
Lemma 5.21] and the Kolmogorov regularity criterion [161, Theorem C.6] gives

sup
0ďtďT

Er}ZKptq}
p
Es “ sup

0ďtďT
Er}ZKptq}

p
Es ď CpT q ă 8.

Combining the moment bounds for Z0ptq and ZKptq then concludes the proof
of Lemma 5.4.2.

Well-posedness and moment bounds properties are provided, first for the
solutions to the stochastic FitzHugh–Nagumo SPDE system (5.8), second for
the solutions to the auxiliary SPDE (5.9).

Proposition 5.4.2. For any initial value x0 P H, the stochastic evolution
equation (5.9) admits a unique global mild solution

`

Xptq
˘

tě0
, in the sense

that (5.10) is satisfied. Moreover, for all T P p0,8q and all p P r1,8q, there
exists CppT q P p0,8q such that for all x0 P E one has

sup
0ďtďT

Er}Xptq}
p
Es ď CppT q

`

1 ` }x0}
p
E
˘

. (5.49)
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Proposition 5.4.3. For any initial value x0 P H and for all ∆t P p0,∆t0q,
the stochastic evolution equation (5.26) admits a unique global mild solution
`

X∆tptq
˘

tě0
, in the sense that

X∆tptq “ e´tΛx0 `

ż t

0

e´pt´sqΛψ∆tpX∆tpsqq ds `

ż t

0

e´pt´sqΛ dWpsq (5.50)

is satisfied for all t ě 0. Moreover, for all T P p0,8q and all p P r1,8q, there
exists CppT,∆t0q P p0,8q such that for all x0 P E one has

sup
∆tPp0,∆t0q

sup
0ďtďT

Er}X∆tptq}
p
Es ď CppT q

`

1 ` }x0}
p
E
˘

. (5.51)

The detailed proofs of Propositions 5.4.2 and 5.4.3 are omitted. However let
us emphasize that the main arguments used in the proofs are, on the one hand,
the one-sided Lipschitz continuity properties (5.5) and (5.30) of F and ψ∆t,
respectively, and on the other hand, the moment bounds on Zptq from Lemma
5.4.2. Observe that the mapping ψ∆t is globally Lipschitz continuous for any
∆t ą 0, therefore the existence and uniqueness of the mild solution

`

X∆tptq
˘

tě0
satisfying (5.50) follows from standard fixed point arguments, see for instance
[102, Theorem 7.5]. The proof of the moment bounds (5.51) requires some care:
indeed, one needs to obtain upper bounds which are uniform with respect to
∆t P p0,∆t0q, and applying [102, Theorem 7.5] would not be appropriate since
the Lipschitz constant of ψ∆t is unbounded for ∆t P p0,∆t0q. Introducing
Y∆tptq “ X∆tptq ´ Zptq, one obtains the moment bounds (5.51) using the
one-sided Lipschitz continuity property (5.30) from Proposition 5.3.2, which
is uniform with respect to ∆t P p0,∆t0q. Similar arguments are used to prove
Proposition 5.4.2. Propositions 5.4.2 and 5.4.3 are variants of [46, Propositions
1 and 2] for the analysis of the stochastic Allen–Cahn equation and one refers
to [83, Proposition 6.2.2] for a more general version. Some arguments need
to be adapted since the considered systems (5.9) and (5.26) are not parabolic
systems.

Finally, let us state the following result which is required in Section 5.5
below.

Lemma 5.4.3. For all T P p0,8q, p P r1,8q and α P r0, 1
4
q, there exists

Cα,ppT q P p0,8q such that for all x0 “ pu0, v0q P H2α X E, all ∆t P p0,∆t0q
and t1, t2 P r0, T s, one has

`

Er}X∆tpt2q ´ X∆tpt1q}
p
Hs

˘
1
p ď Cα,ppT q|t2 ´ t1|

α
`

1 ` }p´∆q
αu0}

4
H ` }x0}

4
E
˘

.
(5.52)

Proof. Let 0 ď t1 ă t2 ď T , using the mild form (5.50) of the auxiliary
stochastic evolution equation, one obtains the estimate
`

Er}X∆tpt2q ´ X∆tpt1q}
p
Hs

˘
1
p ď }e´t2Λx0 ´ e´t1Λx0}H `

`

E r}Zpt2q ´ Zpt1q}
p
Hs

˘
1
p

`

ż t1

0

`

E
“

}
`

e´pt2´sqΛ
´ e´pt1´sqΛ

˘

ψ∆tpX∆tpsqq}
p
H

‰˘
1
p ds

`

ż t2

t1

`

E
“

}e´pt2´sqΛψ∆tpX∆tpsqq}
p
H

‰˘
1
p ds,
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where as the reader recalls, Zptq denotes the stochastic convolution (5.7).
The first term on the right-hand side is estimated using the inequality

(5.36) in order to get

}e´t2Λx0 ´ e´t1Λx0}H ď |t2 ´ t1|
α
}p´Λq

αx0}H.

The second term corresponds to the temporal regularity of the stochastic con-
volution

`

E r}Zpt2q ´ Zpt1q}
p
Hs

˘
1
p ď |t2 ´ t1|

α.

This is obtained combining the proofs of Lemma 5.4.2 and of [38, Theorem
4.4].

The last two terms are estimated using the polynomial growth

}ψ∆tpxq} ď Cp∆t0q p1 ` }x}q
4 ,

see equations (5.31) and(5.33) in Proposition 5.3.2. Indeed, one has

}
`

e´pt2´sqΛ
´ e´pt1´sqΛ

˘

ψ∆tpX∆tpsqq}H ď Cα
|t2 ´ t1|α

|t1 ´ s|α
}ψ∆tpX∆tpsqq}H

ď Cαp∆t0q
|t2 ´ t1|α

|t1 ´ s|α
`

1 ` }X∆tpsq}
4
E
˘

and
}e´pt2´sqΛψ∆tpX∆tpsqq}H ď

`

1 ` }X∆tpsq}
4
E
˘

for the last term. One concludes the proof using the moment bounds of the
solution of the auxiliary stochastic evolution equation, see Proposition 5.4.3.

5.5 Proofs of the main results
In this section, the detailed proofs for the main results of the present work
are presented. At first, the moment bounds for the three splitting schemes
(Theorem 5.3.1) will be provided and then the strong error estimates with
rate of convergence at least 1{4 (Theorem 5.3.2) will be proved.

Proof of Theorem 5.3.1

The proof of the moment bounds (5.27) given below is inspired by the proof
of [46, Proposition 3] and requires some auxiliary tools.

Given the time-step size ∆t P p0,∆t0q, introduce the auxiliary scheme
`

Zn

˘

ně0
defined as follows: for all n ě 0,

Zn`1 “ A∆tZn `

ż tn`1

tn

Btn`1´s dWpsq (5.53)

with initial value Z0 “ 0, using the same notation as for the general expression
(5.24) of the three splitting schemes (5.21), (5.22) and (5.23). One has the
following moment bounds for the solution of the scheme (5.53). Recall that
one has T “ N∆t for some integer N P N.
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Lemma 5.5.1. For all T P p0,8q and p P r1,8q, one has

sup
∆tPp0,∆t0q

sup
0ďnďN

Er}Zn}
p
Es ă 8. (5.54)

Lemma 5.5.1 is a variant of [46, Lemma 3.5], using the same arguments
as in the sketch of proof of Lemma 5.4.2 above. The proof of Lemma 5.5.1 is
therefore omitted.

The proof of Theorem 5.3.1 will now be given.

Proof of Theorem 5.3.1. For all n P t0, . . . , Nu, set

rn “ Xn ´ Zn. (5.55)

Using the definitions (5.24) and (5.53) and the definition (5.25) of the mapping
ψ∆t, for all n P t0, . . . , N ´ 1u, one has

rn`1 “ Xn`1 ´ Zn`1 “ A∆t

´

ϕ∆tpXnq ´ Zn

¯

“ A∆t

´

ϕ∆tprn ` Znq ´ ϕ∆tpZnq

¯

` ∆tA∆tψ∆tpZnq.

On the one hand, using the inequalities (5.34) and (5.37) and the global Lips-
chitz continuity property (5.29) of ϕ∆t (see Proposition 5.3.1), one has

}A∆t

´

ϕ∆tprn`Znq´ϕ∆tpZnq

¯

}E ď }ϕ∆tprn`Znq´ϕ∆tpZnq}E ď e∆tp1`~B~q
}rn}E .

On the other hand, using the inequalities (5.34) and (5.37), the local Lipschitz
continuity property (5.31) of ψ∆t (see Proposition 5.3.2) and the upper bound
(5.33), one has

}A∆tψ∆tpZnq}E ď Cp∆t0q
`

1 ` }Zn}
4
E
˘

.

Therefore one obtains the following inequality

}rn`1}E ď e∆tp1`~B~q
}rn}E ` Cp∆t0q

`

1 ` }Zn}
4
E
˘

,

and by a straightforward argument, using the fact that N∆t “ T , one has the
estimate:

}rn}E ď CpT,∆t0q
´

}r0}E `

n´1
ÿ

k“0

`

1 ` }Zk}
4
E
˘

¯

,

for all n P t0, . . . , Nu.
Finally, for all p P r1,8q, using the moment bound (5.54) from Lemma

5.5.1, one obtains for all n P t0, . . . , Nu

`

Er}rn}
p
Es

˘
1
p ď CpT,∆t0q

´

}r0}E`

n´1
ÿ

k“0

`

1`
`

Er}Zk}
4p
E s

˘
1
p
˘

¯

ď CppT,∆t0q
´

}r0}E`1
¯

.

Since Xn “ rn ` Zn owing to (5.55), using the moment bound above and
the moment bound (5.54) from Lemma 5.5.1 then concludes the proof of the
moment bound (5.27). The proof of Theorem 5.3.1 is thus completed.
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Proof of Theorem 5.3.2

Recall that the numerical scheme is given by (5.24). It is straightforward to
check that for all n ě 0 one has

Xn “ An
∆tx0 ` ∆t

n´1
ÿ

k“0

An´k
∆t ψ∆tpXkq `

n´1
ÿ

k“0

ż tk`1

tk

An´k´1
∆t Btk`1´s dWpsq. (5.56)

Let us introduce the auxiliary process
`

Xaux
n

˘

ně0
which is defined as follows:

for all n ě 0 one has

Xaux
n “ An

∆tx0 ` ∆t
n´1
ÿ

k“0

An´k
∆t ψ∆tpX∆tptkqq `

n´1
ÿ

k“0

ż tk`1

tk

An´k´1
∆t Btk`1´s dWpsq,

(5.57)
where, as the reader can recall, tk “ k∆t and

`

X∆tptq
˘

tě0
is the unique mild

solution of the auxiliary stochastic evolution equation (5.26). Note that for all
n ě 0 one has

Xaux
n`1 “ A∆tX

aux
n ` ∆tA∆tψ∆tpX∆tptnqq `

ż tn`1

tn

Btn`1´s dWpsq. (5.58)

Lemma 5.5.2. For all T P p0,8q and p P r1,8q, there exists CppT q P p0,8q

such that for all x0 P E one has

sup
∆tPp0,∆t0q

sup
0ďnďN

Er}Xaux
n }

p
Es ď CppT q

`

1 ` }x0}
p
E
˘

. (5.59)

Proof of Lemma 5.5.2. Using the discrete mild formulation (5.57) of Xaux
n , the

inequalities (5.34) and (5.37), the local Lipschitz continuity property (5.31) of
ψ∆t and the upper bound (5.33) (see Proposition 5.3.2), for all ∆t P p0,∆t0q
and n ě 0 one has

}Xaux
n }E ď }x0}E ` Cp∆t0q∆t

n´1
ÿ

k“0

`

1 ` }X∆tptkq}
4
E
˘

` }Zn}E .

It suffices to use the moment bounds (5.51) for the auxiliary process X∆t

from Proposition 5.4.3 and (5.54) for the Gaussian random variables Zn from
Lemma 5.5.1, and the Minkowskii inequality, to conclude the proof of the
moment bounds (5.59). The proof of Lemma 5.5.2 is thus completed.

Observe that for all n P t0, . . . , Nu the error Xptnq´Xn can be decomposed
as follows:

Xptnq ´ Xn “ Xptnq ´ X∆tptnq ` X∆tptnq ´ Xaux
n ` Xaux

n ´ Xn. (5.60)

In order to prove Theorem 5.3.2, it suffices to prove error bounds for the three
error terms appearing in the right-hand side of (5.60). They are given in
Lemma 5.5.3, Lemma 5.5.4 and Lemma 5.5.5 respectively. The proofs of these
technical lemmas are presented at the end of the section.
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Lemma 5.5.3. For all T P p0,8q and p P r1,8q, there exists CppT,∆t0q P

p0,8q such that for all x0 P E and all ∆t P p0,∆t0q, one has

sup
tPr0,T s

`

Er}Xptq ´ X∆tptq}
p
Hs

˘
1
p ď CppT,∆t0q∆t

`

1 ` }x0}
5
E
˘

. (5.61)

Lemma 5.5.4. For all T P p0,8q, p P r1,8q and α P r0, 1
4
q, there exists

Cα,ppT q P p0,8q such that for all x0 “ pu0, v0q P H2α X E, all ∆t P p0,∆t0q,
one has

sup
0ďnďN

`

Er}X∆tptnq ´ Xaux
n }

p
Hs

˘
1
p ď Cα,ppT q∆tα

`

1 ` }p´∆q
αu0}

7
H ` }x0}

7
E
˘

.

(5.62)

Lemma 5.5.5. For all T P p0,8q, p P r1,8q and α P r0, 1
4
q, there exists

Cα,ppT q P p0,8q such that for all x0 “ pu0, v0q P H2α X E, all ∆t P p0,∆t0q,
one has

sup
0ďnďN

`

Er}Xaux
n ´ Xn}

p
Hs

˘
1
p ď Cα,ppT q∆tα

`

1 ` }p´∆q
αu0}

7
H ` }x0}

7
E
˘

. (5.63)

With the auxiliary error estimates given above, it is straightforward to give
the proof of Theorem 5.3.2.

Proof of Theorem 5.3.2. Using the decomposition of the error (5.60), using the
Minkowskii inequality and the error estimates (5.61), (5.62) and (5.63), one
obtains the following result: for all α P r0, 1

4
q and p P r1,8q, there exists

Cα,p P p0,8q such that for all ∆t P p0,∆t0q one has

sup
0ďnďN

`

Er}Xptnq ´ Xn}
p
Hs

˘
1
p ď sup

0ďnďN

`

Er}Xptnq ´ X∆tptnq}
p
Hs

˘
1
p

` sup
0ďnďN

`

Er}X∆tptnq ´ Xaux
n }

p
Hs

˘
1
p

` sup
0ďnďN

`

Er}Xaux
n ´ Xn}

p
Hs

˘
1
p

ď CppT,∆t0q∆t
`

1 ` }x0}
5
E
˘

` Cα,ppT q∆tα
`

1 ` }p´∆q
αu0}

7
H ` }x0}

7
E
˘

` Cα,ppT q∆tα
`

1 ` }p´∆q
αu0}

7
H ` }x0}

7
E
˘

ď Cα,ppT q∆tα
`

1 ` }p´∆q
αu0}

7
H ` }x0}

7
E
˘

.

This concludes the proof of the inequality (5.28) and the proof of Theorem
5.3.2 is thus completed.

Let us now give the proofs of the auxiliary error estimates. Note that the
proof of Lemma 5.5.5 requires the error estimate (5.62) from Lemma 5.5.4.

Proof of Lemma 5.5.3. For all t ě 0 and ∆t P p0,∆t0q, set

R∆tptq “ X∆tptq ´ Xptq.
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The auxiliary process
`

R∆tptq
˘

tě0
is the unique solution of the evolution equa-

tion

dR∆tptq

dt
“ ´ΛR∆tptq ` ψ∆tpX∆tptqq ´ ψ∆tpXptqq ` ψ∆tpXptqq ´ F pXptqq

with the initial value R∆tp0q “ 0. Therefore one obtains, almost surely, for all
t ě 0

1

2

d}R∆tptq}2H
dt

“ xR∆tptq,´ΛR∆tptqyH ` xR∆tptq, ψ∆tpX∆tptqq ´ ψ∆tpXptqqyH

` xR∆tptq, ψ∆tpXptqq ´ F pXptqqyH.

First, one has
xR∆tptq,´ΛR∆tptqyH ď 0.

Second, using the one-sided Lipschitz continuity property (5.30) from Propo-
sition 5.3.2 for ψ∆t (uniformly with respect to ∆t P p0,∆t0q), one has

xR∆tptq, ψ∆tpX∆tptqq ´ ψ∆tpXptqqyH ď Cp∆t0q}R∆tptq}
2
H.

Finally, using the Cauchy–Schwarz and Young inequalities and the error esti-
mate (5.32) from Proposition 5.3.2 , one has

xR∆tptq, ψ∆tpXptqq ´ F pXptqqyH ď }R∆tptq}H}ψ∆tpXptqq ´ F pXptqq}H

ď
1

2
}R∆tptq}

2
H `

1

2
}ψ∆tpXptqq ´ F pXptqq}

2
H

ď
1

2
}R∆tptq}

2
H ` Cp∆t0q∆t

2
`

1 ` }Xptq}
10
E

˘

.

Gathering the upper bounds above and using Gronwall’s lemma, one obtains,
almost surely, for all t P r0, T s

}R∆tptq}
2
H ď CpT,∆t0q∆t2

ż T

0

`

1 ` }Xpsq}
10
E

˘

ds.

Using the moment bound (5.49) from Proposition 5.4.2, one then obtains for
all t P r0, T s and all p P r2,8q

`

Er}R∆tptq}
p
Hs

˘
2
p ď CpT,∆t0q∆t

2

ż T

0

`

1 ` Er}Xpsq}
5p
E s

2
p
˘

ds

ď CpT,∆t0q∆t
2
`

1 ` sup
sPr0,T s

Er}Xpsq}
5p
E s

2
p
˘

ď CppT,∆t0q∆t2
`

1 ` }x0}
10
E

˘

.

This estimate has been proved for p P r2,8q, however it is also valid for
p P r1, 2q. This concludes the proof of the error estimate (5.61) and of Lemma
5.5.3.

In order to prove Lemma 5.5.4, let us recall the following useful standard
inequality:



5.5 Proofs of the main results 99

Proposition 5.5.1. For all n P N and z P r0,8q, then

sup
nPN,zPr0,8q

n|
1

p1 ` zqn
´ e´nz

| ` sup
nPN,zPr0,8q

| 1
p1`zqn

´ e´nz|

minp1, zq
ă 8. (5.64)

Proof. Let us first state two elementary inequalities:

• for all 0 ď a ď b and n P N, one has 0 ď bn ´ an ď nbn´1pb ´ aq,

• for all z P r0,8q, one has 0 ď 1
1`z

´ e´z ď Cminp1, z2q.

As a consequence, for all n P N and z P r0,8q one has

0 ď
1

p1 ` zqn
´ e´nz

ď
n

p1 ` zqn´1

` 1

1 ` z
´ e´z

˘

.

For all n ě 3 and z P r0,8q, one has

n|
1

p1 ` zqn
´ e´nz

| ď
Cn2z2

p1 ` zqn´1

ď
Cn2z2

1 ` pn ´ 1qz `
pn´1qpn´2q

2
z2

ď
2Cn2

pn ´ 1qpn ´ 2q

ď C.

The cases n “ 1 and n “ 2 are treated separately, one has

sup
zPr0,8q

|
1

p1 ` zq
´ e´z

| ` sup
zPr0,8q

2|
1

p1 ` zq2
´ e´2z

| ă 8.

This concludes the proof of the first inequality. To prove the second inequality,
observe first that one has

sup
nPN,zPr0,8q

|
1

p1 ` zqn
´ e´nz

| ď 2.

In addition, for all n ě 2 and z P r0,8q, one has

| 1
p1`zqn

´ e´nz|

z
ď

Cnz

p1 ` zqn´1
ď

Cnz

1 ` pn ´ 1qz
ď

Cn

n ´ 1
ď C.

The case n “ 1 is treated separately: using the inequality minp1, z2q ď z one
has

sup
zPr0,8q

| 1
1`z

´ e´z|

z
ď C.

Gathering the results concludes the proof of the second inequality.

Furthermore, it is straightforward to prove that for all α P r0, 1s, one has
minp1, zq ď zα.
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Proof of Lemma 5.5.4. Using the mild formulations (5.50) for X∆tptnq and
(5.57) for Xaux

n , one obtains the following decomposition of the error: for all
n ě 0, one has

X∆tptnq ´ Xaux
n “ E∆t,1

n ` E∆t,2
n ` E∆t,3

n ` E∆t,4
n ` E∆t,5

n , (5.65)

where

E∆t,1
n “ pe´n∆tΛ

´ An
∆tqx0 (5.66)

E∆t,2
n “ Zptnq ´ Zn (5.67)

E∆t,3
n “

n´1
ÿ

k“0

ż tk`1

tk

e´ptn´sqΛ
`

ψ∆tpX∆tpsqq ´ ψ∆tpX∆tptkqq
˘

ds (5.68)

E∆t,4
n “

n´1
ÿ

k“0

ż tk`1

tk

`

e´ptn´sqΛ
´ e´ptn´tkqΛ

˘

ψ∆tpX∆tptkqq ds (5.69)

E∆t,5
n “ ∆t

n´1
ÿ

k“0

`

e´ptn´tkqΛ
´ An´k

∆t

˘

ψ∆tpX∆tptkqq. (5.70)

Let us now give estimates for those five error terms.

• If the splitting schemes (5.21) and (5.22) are considered, one has A∆t “

e´∆tΛ and thus E∆t,1
n “ 0 for all n ě 0. If the splitting scheme (5.23) is

considered, one has A∆t “ pI`∆tΛq´1, thus using the inequality (5.64),
for all n P t0, . . . , Nu, one has

}E∆t,1
n }

2
H “ }

`

en∆t∆
´ ppI ´ ∆t∆q

´1
q
n
˘

u0}
2
H

“

8
ÿ

j“1

p
1

p1 ` ∆tλjqn
´ e´n∆tλj

˘2
xu0, ejy

2
H

ď Cα

8
ÿ

j“1

p∆tλjq
2α

xu0, ejy
2
H

ď Cα∆t
2α

}p´∆q
αu0}

2
H .

Therefore one obtains the following upper bound: for all α P r0, 1
4
q, there

exists Cα P p0,8q such that for all ∆t P p0,∆t0q one has

sup
0ďnďN

`

Er}E∆t,1
n }

p
Hs

˘
1
p ď Cα∆t

α
}p´∆q

αu0}H . (5.71)

• Note that if the splitting scheme (5.21) is considered (Xn “ XLT,exact
n for

all n ě 0), one has E∆t,2
n “ 0 for all n ě 0. If the splitting schemes (5.22)

and (5.23) are considered, for all n ě 0 one has

E∆t,2
n “ Zptnq ´ Zn “

ˆ

Zptnq ´ Zn

0

˙

,
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with Zn “ ZLT,expo
n (resp. Zn “ ZLT,imp

n ) if the scheme (5.22) (resp. the
scheme (5.23)) is considered. Here, let us denote

ZLT,expo
n`1 “ e∆t∆

´

ZLT,expo
n ` δWn

¯

ZLT,imp
n`1 “ pI ´ ∆t∆q

´1
´

ZLT,imp
n ` δWn

¯

.

One has the following mean-square error estimate, which are standard
results in the analysis of numerical schemes for parabolic semilinear
stochastic partial differential equations, see for instance [213, Theorem
3.2]: for all α P r0, 1

4
q, there exists Cα P p0,8q such that

sup
ně0

Er}Zptnq ´ Zn}
2
Hs ď Cα∆t

2α,

if Zn “ ZLT,expo
n and Zn “ ZLT,imp

n . Since Zptnq ´ Zn is a H-valued
Gaussian random variable, one obtains the following upper bound: for
all α P r0, 1

4
q and p P r1,8q, there exists Cα,p P p0,8q such that for all

∆t P p0,∆t0q one has

sup
0ďnďN

`

Er}E∆t,2
n }

p
Hs

˘
1
p ď Cα,p∆t

α. (5.72)

• Using the inequality (5.34) and the local Lipschitz continuity property
(5.31) of ψ∆t (Proposition 5.3.2), one obtains

}E∆t,3
n }H ď

n´1
ÿ

k“0

ż tk`1

tk

}e´ptn´sqΛ
`

ψ∆tpX∆tpsqq ´ ψ∆tpX∆tptkqq
˘

}H ds

ď

n´1
ÿ

k“0

ż tk`1

tk

}
`

ψ∆tpX∆tpsqq ´ ψ∆tpX∆tptkqq
˘

}H ds

ď Cp∆t0q

n´1
ÿ

k“0

ż tk`1

tk

`

1 ` }X∆tpsq}
3
E ` }X∆tptkq}

3
E
˘

}X∆tpsq ´ X∆tptkq}H ds.

Using the Minkowskii and Cauchy–Schwarz inequalities, the moment
bound (5.51) (Proposition 5.4.3) and the regularity estimate (5.52) (Lemma
5.4.3), one has

`

Er}E∆t,3
n }

p
Hs

˘
1
p ď Cp∆t0q

n´1
ÿ

k“0

ż tk`1

tk

`

1 ` sup
rPrtk,tk`1s

`

Er}X∆tprq}
6p
E s

˘
1
2p

˘

ˆ
`

Er}X∆tpsq ´ X∆tptkq}
2p
H s

˘
1
2p ds

ď Cα,ppT q∆tαp1 ` }x0}
3
Eq

`

1 ` }p´∆q
αu0}

4
H ` }x0}

4
E
˘

.

Therefore one obtains the following upper bound: for all α P r0, 1
4
q,

p P r1,8q and T P p0,8q, there exists Cα,ppT q P p0,8q such that for all
∆t P p0,∆t0q one has

sup
0ďnďN

`

Er}E∆t,3
n }

p
Hs

˘
1
p ď Cα,ppT q∆tα

`

1 ` }p´∆q
αu0}

7
H ` }x0}

7
E
˘

. (5.73)
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• Using the inequality (5.36) from Proposition 5.4.1 (with µ “ α P r0, 1q

and ν “ 0) and the local Lipschitz continuity property (5.31) of ψ∆t

combined with the bound (5.33) (Proposition 5.3.2), one has for all s P

rtk, tk`1s

}
`

e´ptn´sqΛ
´ e´ptn´tkqΛ

˘

ψ∆tpX∆tptkqq}H ď Cα
|s ´ tk|α

ptn ´ sqα
}ψ∆tpX∆tptkqq}H

ď Cα
∆tα

ptn ´ sqα
`

1 ` }X∆tptkq}
4
E
˘

.

Using the Minkoswskii inequality, the moment bounds (5.51) from Propo-
sition 5.4.3, and the fact that

şT

0
s´α ds ă 8 for α P r0, 1q, one obtains

the following upper bound: for all α P r0, 1
4
q, p P r1,8q and T P p0,8q,

there exists Cα,ppT q P p0,8q such that for all ∆t P p0,∆t0q one has

sup
0ďnďN

`

Er}E∆t,4
n }

p
Hs

˘
1
p ď Cα,ppT q∆tα

`

1 ` }x0}
4
E
˘

. (5.74)

• Note that if the splitting schemes (5.21) and (5.22) are considered, one
has A∆t “ e´∆tΛ and thus E∆t,5

n “ 0 for all n ě 0. If the splitting scheme
(5.23) is considered, one has A∆t “ pI ` ∆tΛq´1. Using the inequality
(5.64), for all x “ pu, vq P H and all 0 ď k ď n ´ 1 one has

}pe´ptn´tkqΛx ´ An´k
∆t x}H “ }epn´kq∆t∆u ´ ppI ´ ∆t∆q

´1
q
n´ku}H

ď
C}u}H

pn ´ kq
ď

C}x}H

pn ´ kqα
.

As a consequence, using the Minkowskii inequality, the local Lipschitz
continuity property (5.31) of ψ∆t combined with the bound (5.33) (Propo-
sition 5.3.2) and the moment bounds (5.51) from Proposition 5.4.3, one
has

`

Er}E∆t,5
n }

p
Hs

˘
1
p ď ∆t

n´1
ÿ

k“0

C

pn ´ kqα

`

1 `
`

Er}X∆tptkq}
4p
E s

˘
1
p
˘

ď CppT q∆t
n

ÿ

ℓ“1

1

tαℓ
∆tα

`

1 ` }x0}
4
E
˘

.

Using the fact that for all α P r0, 1q one has

sup
∆tPp0,∆t0q

∆t
N
ÿ

ℓ“1

1

tαℓ
ă 8,

one obtains the following upper bound: for all α P r0, 1
4
q, p P r1,8q and

T P p0,8q, there exists Cα,ppT q P p0,8q such that for all ∆t P p0,∆t0q
one has

sup
0ďnďN

`

Er}E∆t,5
n }

p
Hs

˘
1
p ď Cα,ppT q∆tα

`

1 ` }x0}
4
E
˘

. (5.75)
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To conclude the proof: using the decomposition of the error (5.65) and the
upper bounds (5.71), (5.72), (5.73), (5.74) and (5.75), one obtains the following
upper bound: for all α P r0, 1

4
q, p P r1,8q and T P p0,8q, there exists Cα,ppT q P

p0,8q such that for all ∆t P p0,∆t0q one has

sup
0ďnďN

`

Er}X∆tptnq ´ Xaux
n }

p
Hs

˘
1
p ď Cα,ppT q∆tα

`

1 ` }p´∆q
αu0}

7
H ` }x0}

7
E
˘

.

This concludes the proof of the inequality (5.62) and the proof of Lemma 5.5.4
is completed.

Proof of Lemma 5.5.5. Using the expressions (5.58) and (5.24) for Xaux
n and

Xn, and the definition (5.25) of the mapping ψ∆t, for all n P t0, . . . , N ´ 1u

one obtains

Xaux
n`1 ´ Xn`1 “ A∆t

`

Xaux
n ´ Xn

˘

` ∆tA∆t

`

ψ∆tpX∆tptnqq ´ ψ∆tpXnq
˘

.

Writing

ψ∆tpX∆tptnqq “ ψ∆tpX∆tptnqq ´ ψ∆tpX
aux
n q ` ψ∆tpX

aux
n q,

and using again the identity (5.25), one obtains

Xaux
n`1´Xn`1 “ A∆t

`

ϕ∆tpX
aux
n q´ϕ∆tpXnq

˘

`∆tA∆t

`

ψ∆tpX∆tptnqq´ψ∆tpX
aux
n q

˘

.
(5.76)

On the one hand, using the inequalities (5.34) (Proposition 5.4.1), if A∆t “

e´∆tΛ and (5.37), if A∆t “ pI ` ∆tΛq´1, and the global Lipschitz continuity
property (5.29) of ϕ∆t (Proposition 5.3.1), one obtains

}A∆t

`

ϕ∆tpX
aux
n q ´ ϕ∆tpXnq

˘

}H ď }ϕ∆tpX
aux
n q ´ ϕ∆tpXnq}H

ď e∆tp1`~B~q
}Xaux

n ´ Xn}H.

On the other hand, using the inequalities (5.34) (Proposition 5.4.1), if A∆t “

e´∆tΛ and (5.37), if A∆t “ pI ` ∆tΛq´1, and the local Lipschitz continuity
property (5.31) of ψ∆t (Proposition 5.3.2), one obtains

}A∆t

`

ψ∆tpX∆tptnqq ´ ψ∆tpX
aux
n q

˘

}H ď }ψ∆tpX∆tptnqq ´ ψ∆tpX
aux
n q}H

ď Cp∆t0q
´

1 ` }X∆tptnq}
3
E ` }Xaux

n }
3
E

¯

ˆ }X∆tptnq ´ Xaux
n }H.

By a straightforward argument, since Xaux
0 “ X0 “ x0, for all n P t0, . . . , Nu,

one has

}Xaux
n ´ Xn}H ď

ď Cp∆t0qe
T p1`~B~q∆t

N
ÿ

k“1

´

1 ` }X∆tptkq}
3
E ` }Xaux

k }
3
E

¯

}X∆tptkq ´ Xaux
k }H.

Using the Minkowskii and Cauchy–Schwarz inequalities, the moment bounds
(5.51) and (5.59) from Proposition 5.4.3 and Lemma 5.5.2 respectively, and
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the error estimate (5.62) from Lemma 5.5.4, one obtains the following strong
error estimate: for all α P r0, 1

4
q, p P r1,8q and T P p0,8q, there exists

Cα,ppT q P p0,8q such that for all ∆t P p0,∆t0q one has

sup
0ďnďN

`

Er}Xaux
n ´ Xn}

p
Hs

˘
1
p

ď CpT q∆t
N
ÿ

k“1

´

1 `
`

Er}X∆tptkq}
6p
E sq

1
2p `

`

}Xaux
k }

6p
E s

˘
1
2p

¯

ˆ
`

Er}X∆tptkq ´ Xaux
k }

2p
H

˘
1
2p

ď Cα,ppT q∆tα
`

1 ` }x0}
3
E
˘`

1 ` }p´∆q
αu0}

4
H ` }x0}

4
E
˘

.

This concludes the proof of the inequality (5.63) and the proof of Lemma 5.5.5
is thus completed.

5.6 Numerical experiments
This section presents numerical experiments to support and illustrate the above
theoretical results. To perform these numerical experiments, The stochastic
FitzHugh–Nagumo SPDE system (5.8) with Neumann boundary conditions
on the interval r0, 1s is considered. The spatial discretization is performed
using a standard finite difference method with mesh size denoted by h. In
order to obtain a linear system with a symmetric matrix, centered differences
are used to the numerical discretization of the Laplacian, while first order
differences are used for the discretization of the Neumann boundary conditions.
The initial values are given by u0pζq “ cosp2πζq and v0pζq “ cosp2πζq. For
the temporal discretization, the three Lie–Trotter splitting integrators (5.21),
(5.22) are used and (5.23) studied in this paper, denoted below by LTexact,
LTexpo, LTimp respectively.

5.6.1 Evolution plots

Let us first display one sample of the numerical solutions of the stochastic
FitzHugh–Nagumo system (5.8) with the parameters γ1 “ 0.08, γ2 “ 0.8γ1 and
β “ 0.7. The SPDE is discretized with finite differences with mesh h “ 2´10.
The time interval r0, T s “ r0, 1s is considered and the integrators with time
step size ∆t “ 2´15 are applied. The results are presented in Figure 5.1.
The general behaviour of the numerical solutions given by the three splitting
schemes is the same. However, one can observe a spatial smoothing effect in
the u component of the solution when the schemes LTexpo–(5.21) or to some
extent LTimp–(5.23) are applied: for a given time step size, the spatial regu-
larity of the numerical solution is increased compared with the one of the exact
solution. On the contrary, the scheme LTexact–(5.21) preserves the spatial
regularity of the solution for any value of the time step size. One can refer to
the recent preprint [40] for the analysis of this phenomenon for parabolic semi-
linear SPDEs. Let us emphasize that the phenomenon is due to the way the
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Figure 5.1: Space-time evolution plots of u and v using the Lie–Trotter splitting
schemes LTexact, LTexpo, and LTimp.

stochastic convolution is computed, exactly for the scheme LTexact–(5.21)
or approximately for the schemes LTexpo–(5.21) and LTimp–(5.23).

5.6.2 Mean-square error plots

To illustrate the rates of strong convergence for the Lie–Trotter splitting schemes
stated in Theorem 5.3.2, the stochastic FitzHugh–Nagumo system (5.8) with
the parameters γ1 “ γ2 “ β “ 1 is considered, with T “ 1 and a finite differ-
ence method is applied with h “ 2´9 for spatial discretization. The Lie–Trotter
splitting schemes are applied with time steps ranging from 2´10 to 2´18. The
reference solution is computed using the scheme LTexact–(5.21) with time
step size ∆tref “ 2´18. The expectation is approximated using Ms “ 100
samples. A plot in logarithmic scales for the mean-square errors

`

Er}XptNq ´ XN}
2
Hs

˘
1
2
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Figure 5.2: Mean-square errors as a function of the time step: Lie–Trotter
splitting schemes: left (ϕ∆t “ ϕL

∆t ˝ ϕNL
∆t ) and right (ϕ∆t “ ϕNL

∆t ˝ ϕL
∆t) (˛ for

LTexact, ˝ for LTexpo, ˚ for LTimp). The dotted lines have slopes 1{2 and
1{4.

is given on the left-hand side of Figure 5.2. One observes that the strong
rate of convergence for the three considered Lie–Trotter splitting schemes is at
least 1{4, which illustrates the result stated in Theorem 5.3.2. Furthermore,
the numerical experiments suggest that for the scheme LTexact–(5.21) the
order of convergence is 1{2, which is not covered by Theorem 5.3.2. The
fact that using an accelerated exponential Euler scheme where the stochastic
convolution is computed exactly yields higher order of convergence is known
for parabolic semilinear stochastic PDEs driven by space-time white noise,
under appropriate conditions, see for instance [157] or [40, Proposition 7.3].
However, the stochastic FitzHugh–Nagumo equations considered in this article
are not parabolic systems therefore it is not known how to prove the observed
higher order strong rate of convergence.

The right-hand side of Figure 5.2 shows the errors for the variant (5.47) of
the splitting scheme (5.24) introduced in Remark 5.4.1: the mapping ϕ∆t “

ϕL
∆t ˝ ϕNL

∆t given by (5.20) is replaced by ϕ̂∆t “ ϕNL
∆t ˝ ϕL

∆t given by (5.45). As
explained in Remark 5.4.1, this type of Lie–Trotter schemes is not covered by
the results in Section 5.3.3, more precisely the moment bounds in Theorem
5.3.1 cannot be proved by the techniques used in this article. However, the
numerical experiments are similar to those on the left-hand side of Figure 5.2
and suggest that the strong order of convergence for this variant is at least
1{4, and that higher order convergence with rate 1{2 may be obtained for the
variant of the scheme LTexact–(5.21).



Chapter 6

Stochastic evolution models: fake
news diffusion problem

Fake news is a term usually used to define articles containing invented, mis-
leading information created to misinform and make hoaxes viral through the
internet. Although the spread of fake news has recently become of great in-
terest, this problem has always existed. What seems to have clearly changed
today compared to the past, is the amount of fake news circulating in infor-
mation, especially on-line, and the importance that they are taking on. Fake
news is created by completely ignoring the editorial rules and processes used
to ensure its compliance and truthfulness [132]. Actually, it is created for
different purposes; the most common is certainly the electoral one in order
to discredit the political opponent by conditioning public opinion. Another
important purpose is the profit that is obtained online in proportion to the
number of visitors to the article.

In today’s society, fake news is spreading significantly faster, compared to
real news, because of social media that has radically changed the way in which
one transmits malformations. Nowadays, internet is widely used as the main
medium of information all over the world, since it is a rapidly accessible and low
cost source respect to traditional media such as radio, television, newspapers,
etc.

The growing need to stop fake news is highlighted also by the latest COVID-
19 pandemic. In fact, the vaccination campaign against this disease has been
enormously slowed down due to the spread of fake news and the inability of
individuals to discern the authenticity of such information [130]. In order
to counter the spread of fake news, a CoronaVirusFacts Alliance was created
at the Poynter Institute, where the data database containing fake news is
updated daily to insert new publications. For example, Figure 6.1 shows the
categories of fact-checks that help the alliance to identify successive waves
of misinformation. In particular, the bigger the wave, the more fake news
regarding the respective topic have been diffused.

The stronger is the content of the published post, the quicker it will circu-
late on social platforms. In order to understand the phenomena of fake news
it is crucial to analyze it in relation to how social media works. When a fake

107
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Figure 6.1: Waves of hoaxes of COVID-19 pandemic from https://www.
poynter.org

news becomes viral, there is no way to stop it. People who create fake news
in most cases use powerful images, tough language and harsh words because
it has been demonstrated that this kind of contents is most likely to be shared
due to its emotional and persuasive power. [12, 50, 129, 176, 208].
It has been demonstrated that fake news usually circulate faster and more
broadly than the truth. A study published from the MIT in 2018 revealed
that fake news are 70% more likely to be shared on social media than real
news, especially if the topic is politics [249]. Also, from an emotional point
of view, fake news broad diffusion is related to the feelings they stimulate in
the users, which are used to allow themselves to be bullied into a content that
simply confirm them their thoughts and ideas, even if it is not the truth [176].

Therefore the problem of fake news is one of the most important that mod-
ern society faces us and we need to be ready to respond with determination
and precision. An important step therefore concerns the development of mod-
els capable of detecting whether a given news is true or false. The interested
reader can refer to the review [132] in which recent methods based on the aid
of big data and artificial intelligence tools are described. Another important
strategy consists in the analysis of the multiple parts that form a fake news,
that is, both on the part of the creator and on the part of the user, but also
on the linguistics and semantics of the real content and its style, and finally
on the social context of the information.
Currently there are some important companies which try to limit the spread
of fake news and thus avoid the bad consequences that they can cause. For
example, the Kinzen company detects dangerous misinformation and harmful
content in audio. Through internal inguistic models, they generate optimized
audio transcripts to detect dangerous misinformation in multiple languages.

https://www.poynter.org
https://www.poynter.org
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Advanced machine learning models detect and report harmful languages, state-
ments, narratives, and policy violations within audio. The analysis is further
enhanced by the data points and crucial context of human experts, including
hashtags, keywords, phrases, slogans and insults.
Furthermore, there are many initiatives that countries around the world take
to counter the spread of fake news. In Italy, for example, the National Re-
covery and Resilience Plan (PNRR), in the section dedicated to cybersecurity,
supports the danger of the spread of fake news and the risks they represent
for democracy and for the decision-making processes that are the basis of our
political system. In particular, as reported in the Plan, an explicit research
objective for cybersecurity is to defend democracy and fight fake news through
a multidisciplinary, monitoring and "Early Warning" approach based on the
flow of information and techniques for predicting human behaviour.
In recent years, many authors have tried to create adequate mathematical mod-
els capable of predicting the spread of fake news, in order to limit in advance
the effects that the spread of these are having on our society: the interested
reader can refer, for instance, to [35, 50, 128, 162, 183, 188, 209, 216, 217, 259]
and references therein.
In this thesis a famous model for the spread of a disease, i.e. the SIR model, is
used as a model for fake news diffusion. The SIR model, well known in the ex-
isting literature of mathematical epidemiology (see, for instance, the very first
contributions on compartmental models [159, 160, 218], as well as the mono-
graphs [36, 86, 87, 111, 126, 127, 186, 189] and references therein), describes
the effects of the spread out of an epidemics in a population ideally divided
into three subgroups (susceptible, infected and recovered people). As visible
in the literature (see, for instance, [109, 132, 183]), epidemiological models can
be profitably used to describe to diffusion of fake information as an infectious
disease. Most of these models are given by nonlinear differential equations,
whose dynamics can be understood by first looking at the eigenvalues of the
Jacobian of the linearized problem and then, linking the stiffness ratio (i.e.
the ratio between the largest and the smallest moduli of the eigenvalues of
the aforementioned Jacobian matrix) to the evolution of the spreading. The
SIR model is the main channel to provide our analysis: the stiffness ratio can
help to understand the requested time to recover the truth in a given country
exposed to a certain fake news. To some extent, our aim is to provide a novel
element to understand the effectiveness of modeling the diffusion of fake news,
as well as the re-establishment of the truth: the more the stiffness ratio is
high, the faster is the re-establishment of the truth after the diffusion of fake
information. These kinds of arguments are not available in the literature, at
the best of our knowledge.

6.1 Formulation of the SIR model
The SIR model was first introduced in 1927 by Kermack and McKendrick [160],
even if seminal contributions on compartmental models are also given in [159,
218]. It represents an extremely simple mathematical model for describing the
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transmission of an infectious disease. It is a special type of model called a
compartmental model, because each letter refers to a “compartment” in which
an individual can reside. This model describes the mutual interactions of
three population of individuals: the population S of susceptible people, i.e.
the healthy individuals who can contract the disease; the population I of the
infected, i.e. individuals who have contracted the disease and are able to
transmit it; the population R of the recovered, that is, individuals who are
healed (see Figure 6.2).

S
Susceptible

I
Infective

R
Recovered

β α

Figure 6.2: Scheme of the classical SIR model.

In our model for the spread out of fake information, above populations are
described as follows:

• Sptq: potentially authoring the spreading of fake news;

• Iptq: the wide variety of authors highly active in posting fake information;

• Rptq: authors who are inactive to the spreading of fake news.

The model is based on the continuous interaction between susceptible and
infected individuals along time. The corresponding system of ODEs is then
given by:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dSptq

dt
“ ´βSptqIptq,

dIptq

dt
“ βSptqIptq ´ αIptq,

dRptq

dt
“ αIptq,

(6.1)

where α is the rate of recovery and β the contact rate. Specifically, since the
purpose of our method is to compare the impact of fake news in different coun-
tries, the parameters β and α, are related to two important indices, commonly
used to describe the social, economic and cultural performance of our society.
In particular,

β “
i

10
, α “

h

100
,

where i is the internet penetration index of the country and h is the human
development index of the same country. These values are commonly provided
in the annual report of United Nations Development Programme. In general,
the value of α is smaller than that of β because it is easier to spread a lie
than reaffirming the truth. Table 6.1 shows, for instance, the values of α and
β for selected countries, i.e., Australia, Brazil, France, India, Italy, Mexico,
Mozambique and USA, referring to the year 2019.
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Table 6.1: Values of the constants α, β, for France, India, Italy, Mexico and
United States, referring to 2019.

α β

Australia 0.009 0.087

Brazil 0.008 0.072

France 0.009 0.089

India 0.006 0.035

Italy 0.009 0.061

Mexico 0.008 0.064

Mozambique 0.005 0.021

United States 0.009 0.075

Remark 6.1.1. It is crucial to highlight the different power of the denial of a
fake news and that of the fake news itself [249]. Fake information circulates
online much faster than truth one and is more prone to be shared by users
who encounter it; on the other hand, the re-assessment of the truth is nowhere
viral and reaches far fewer people than those who have read or spread fake
information. Due to this intrinsic characteristic of true news compared to false
news, the former require a much greater commitment on the part of individual
users than that related to the spread of fake news. Above all, the spread out
of fake information does not necessarily require a particularly strong human
presence: often fake news are circulated by bots created specifically by someone
or shared by fake accounts, so they do not correspond to real people. Real
people, on the other hand, are necessary and represent the only option to restore
the truth. This motivates the choice of the recover rate α linked to human
development index per country and the contact rate β to the spread of the
internet in the same country.
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6.2 Stiffness analysis
In this section the stiffness ratio of system (6.1) will be analysed. To do this,
let us consider an initial value vector

»
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S0

I0

R0

fi

ffi

fl

“

»

—

–

Sp0q

Ip0q

Rp0q

fi

ffi

fl

,

and let us linearise model (6.1) around it, leading to
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%

dSptq

dt
“ βS0I0 ´ βI0Sptq ´ βS0Iptq ` high order terms,

dIptq

dt
“ ´βS0I0 ` βI0Sptq ` pβS0 ´ αqIptq ` high order terms,

dRptq

dt
“ αIptq.

(6.2)

Correspondingly, let us compute the Jacobian matrix of the linear part of
the vector field in (6.2), i.e.,

Jα,βpS0, I0q “

»

—

—

—

—

—

—

—

—

—

–

´βI0 ´βS0 0

βI0 βS0 ´ α 0

0 α 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

whose spectrum consists in one eigenvalue equal to 0 and two real eigenvalues
λmin
α,β pS0, I0q and λmax

α,β pS0, I0q, with |λmin
α,β pS0, I0q| ă |λmax

α,β pS0, I0q|. Correspond-
ingly, the ratio

σα,βpS0, I0q “
|λmax

α,β pS0, I0q|

|λmin
α,β pS0, I0q|

, (6.3)

meaningful in the analysis of stiff problems [174], provides the so-called stiffness
ratio of (6.1). Table 6.2 reports the stiffness ratio for each country, related to
the initial value
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I0

R0

fi

ffi

fl

“

»

—

–

0.7

0.1

0

fi

ffi

fl

, (6.4)

i.e. assuming that 70% of the initial population is susceptible, 10% are infected
and there are no recovered people. The results reveal that, the more the
internet penetration index i is higher, the more the stiffness ratio is bigger. As
a consequence, the corresponding model (6.1) is more stiff and the spread of
fake news should be more damped in time. In other words, the more (6.1) is
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Table 6.2: Values of the stiffness ratios (6.3) in France, India, Italy, Mexico
and United States, referring to 2019, assuming the vector (6.4) as initial point.

Sα,βpS0, I0q

Australia 20.03

Brazil 20.85

France 23.07

India 8.38

Italy 12.35

Mexico 17.13

Mozambique 4.39

United States 17.00

stiff, the more the corresponding country exhibits a faster transit of fake news.
Countries with a lower internet penetration index i are characterized by a less
stiff model and, as a consequence, the transit of fake information is slower and
circulates for much more time.

6.3 Numerical evidences
In this section some numerical tests are performed to confirm our theoretical
analysis, i.e., the spread of fake news is closely linked to the stiffness ratio of
(6.1). For each listed country, Figures 6.3–6.10 show the solution of problem
(6.1) in the interval [0,1000], computed by the standard Matlab built-in func-
tion ode15s, and the pattern of the ratio τα,βpSptq, Iptqq between the maximum
and minimum moduli of the non-zero eigenvalues of the matrix

Jα,βpSptq, Iptqq “

»

—

—

—

—

—

—

—

—

—

–

´βIptq ´βSptq 0

βIptq βSptq ´ α 0

0 α 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

that corresponds to the Jacobian of the problem (6.1), frozen at time t. To
some extent, we aim to check the evolution in time of the stiffness ratio
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Figure 6.3: Solution to the SIR model (6.1), with initial value given by the
vector (6.4), for Australia (top) and corresponding pattern of τα,βpSptq, Iptqq

(bottom).
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Figure 6.4: Solution to the SIR model (6.1), with initial value given by the
vector (6.4), for Brazil (top) and corresponding pattern of τα,βpSptq, Iptqq (bot-
tom).

σα,βpS0, I0q.
Each figure confirms that the higher the stiffness ratio, as listed in Table

6.2, the faster the transit of fake news will be. In some countries, such as India
or Mozambique, where the internet penetration index is small, the function
τα,βpSptq, Iptqq grows much than in the other cases (corresponding to countries
with higher internet penetration indices). As a consequence, smaller values of
the stiffness ratio correspond to a slower achievement of the maximum number
of infected people and, consequently, to a slower dispersion of fake news. The
observed number of time units needed to achieve the maximum number of
infected is listed in Table 6.3: one can observe that the number of time units is
coherent with the stiffness ratio so, the smallest value is for France, the largest
is for Mozambique.
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Figure 6.5: Solution to the SIR model (6.1), with initial value given by the
vector (6.4), for France (top) aand corresponding pattern of τα,βpSptq, Iptqq

(bottom).
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Figure 6.6: Solution to the SIR model (6.1), with initial value given by the
vector (6.4), for India (top) and corresponding pattern of τα,βpSptq, Iptqq (bot-
tom).
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Figure 6.7: Solution to the SIR model (6.1), with initial value given by the
vector (6.4), for Italy (top) and corresponding pattern of τα,βpSptq, Iptqq (bot-
tom).
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Figure 6.8: Solution to the SIR model (6.1), with initial value given by the
vector (6.4), for Mexico (top) and corresponding pattern of τα,βpSptq, Iptqq

(bottom).
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Figure 6.9: Solution to the SIR model (6.1), with initial value given by the vec-
tor (6.4), for Mozambique (top) and corresponding pattern of τα,βpSptq, Iptqq

(bottom).
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Figure 6.10: Solution to the SIR model (6.1), with initial value given by the vec-
tor (6.4), for United States (top) and corresponding pattern of τα,βpSptq, Iptqq

(bottom).
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Table 6.3: Number of time units required to reach the maximum of infected
in France, India, Italy, Mexico and United States, referring to 2019.

Number of time units

Australia 66.15

Brazil 77.00

France 61.16

India 145.75

Italy 88.90

Mexico 87.02

Mozambique 234.40

United States 74.05

6.4 Stochastic SIR model
As the reader noted in previous chapters, stochastic differential equation mod-
els are preferred over deterministic ones when the dynamics are affected by
random perturbations. The problem of fake news certainly falls into these
phenomena. In fact, the dissemination of information is a stochastic process
that may depend, for example, on the content of the information, the influence
of users and the structure of the network. Therefore, the number of users ex-
posed to different stories varies greatly and it is needed to consider probabilistic
exposure patterns to capture this uncertainty [163].

Let pΩ,F ,Pq to be a complete probability space with filtration tFtutě0,
satisfying the usual conditions. Then, by introducing stochastic perturbations
in the deterministic SIR model (6.1), the resulting system of SDEs reads

$

’

’

&

’

’

%

dSptq “ ´βSptqIptqdt ´ σSptqIptqdW ptq,

dIptq “ pβSptqIptq ´ αIptqqdt ` σSptqIptqdW ptq,

dRptq “ αIptqdt,

(6.5)

where the three different populations Sptq, Iptq and Rptq assume the same
meaning of the above deterministic model as well as the parameters β and α.
The new parameter σ is the so-called perturbation parameter, which describes
changes in the infection rate changes over time.

Unlike the deterministic case, here the analysis of stiffness is more complex,
as a strict definition of the stiffness ratio is not yet dictated in the stochas-
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tic community. For example, some authors state that a stochastic differential
equation is stiff if by applying a standard explicit integrator, such as the classic
Euler-Maruyama method, they face a severe step-size restriction due to numer-
ical stability problems [5]. Other authors instead observe the stiffness property
on the stochastic and deterministic component separately. This means that a
generic system of SDEs, this could be stiff in the deterministic part and not be
so in the stochastic part and vice versa or it could be stiff in both components
[69].

In our analysis, following the idea of [30, 31], the stiffness analysis can
be conducted by observing that the solution of stiff problems is frequently
accompanied by a phenomenon of order reduction. In particular stochastic
backward Euler (BE) method is used, that, as the reader remember, for suitable
function f and G, it is given by

Xn`1 “ Xn ` ∆t fptn`1, Xn`1q ` Gptn, Xnq∆Wn, for n “ 0, . . . , N. (6.6)

Furthermore, one remembers that the strong error of the BE method is γ “ 1,
meaning that

estrong
∆t :“ sup

t0ďtnďT
Er|Xptnq ´ Xn|s ď K∆t (6.7)

for some positive constant K.
To apply the BE method (6.6) to problem (6.5), the need to solve a system
of nonlinear equations at each step is evident. In the numerical simulations
shown in the Figures 6.11-6.18, Newton’s iterations were used that involve the
evaluation of the Jacobian matrix associated with the drift function, i.e.

JpSptnq, Iptnqq “

»

—

—

—

—

—

—

—

–

´βIptnq ´βSptnq 0

βIptnq βSptnq ´ α 0

0 α 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

All the numerical simulations shown in the left part of Figures 6.11-6.18
were carried out using the BE method with N “ 218 grid points with M “

1000 simple paths and thus plotting the expected value of each component,
calculated as a simple average on the realizations,i.e.

ErXptqs “
1

M

M
ÿ

i“1

X i
ptq

with Xptq P tSptq, Iptq, Rptqu. Similarly, the right part of Figures 6.11-6.18
represents the experimental verification of the strong convergence order of the
BE method (6.6), where the error is measured with the same reference solution
of N “ 216 steps.

From the numerical simulations it seems evident that the more the coeffi-
cient of the diffusion part of the model (6.5) σ increases, the more the order
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Figure 6.11: Solution to the stochastic SIR model (6.5) for France, with initial
value given by the vector (6.4) and σ “ 0.01 (left) and corresponding strong
error of BE method applied to (6.5) (right).
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Figure 6.12: Solution to the stochastic SIR model (6.5) for France, with initial
value given by the vector (6.4) and σ “ 0.1 (left) and corresponding strong
error of BE method applied to (6.5) (right).

of the BE method decreases, both in the case of France (with parameters
α “ 0.009 and β “ 0.089), and in the case of Mozambique (with parameters
α “ 0.005 and β “ 0.021). It is also evident that the more the problem be-
comes stiff, the more the peak of the infected tends to decrease considerably.
In fact, as in the case of France (but in the same way in the case of Mozam-
bique), with the value of σ “ 0.01, the model reaches a peak of infected people
of 0.5 (as happens in the deterministic case, see Figure 6.9); while, when σ
becomes 0.5, the peak of infectious is considerably reduced until it reaches a
value of about 0.3. However, this phenomenon can be explained considering
that adding stochastic perturbations inside the model creates noise, which in
turn could generate chaos in the population. So this leads us to a decrease in
the number of infected. However, this result is in a preliminary version and
an extension of this analysis will want to be made in future works.
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Figure 6.13: Solution to the stochastic SIR model (6.5) for France, with initial
value given by the vector (6.4) and σ “ 0.3 (left) and corresponding strong
error of BE method applied to (6.5) (right).
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Figure 6.14: Solution to the stochastic SIR model (6.5) for France, with initial
value given by the vector (6.4) and σ “ 0.5 (left) and corresponding strong
error of BE method applied to (6.5) (right).
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Figure 6.15: Solution to the stochastic SIR model (6.5) for Mozambique, with
initial value given by the vector (6.4) and σ “ 0.01 (left) and corresponding
strong error of BE method applied to (6.5) (right).
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Figure 6.16: Solution to the stochastic SIR model (6.5) for Mozambique, with
initial value given by the vector (6.4) and σ “ 0.1 (left) and corresponding
strong error of BE method applied to (6.5) (right).
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Figure 6.17: Solution to the stochastic SIR model (6.5) for Mozambique, with
initial value given by the vector (6.4) and σ “ 0.3 (left) and corresponding
strong error of BE method applied to (6.5) (right).
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Figure 6.18: Solution to the stochastic SIR model (6.5) for Mozambique, with
initial value given by the vector (6.4) and σ “ 0.5 (left) and corresponding
strong error of BE method applied to (6.5) (right).



Conclusions and Future
Perspectives

This dissertation was devoted to numerics and the analysis of numerical meth-
ods for stochastic differential equations, paying particular attention to how
these can be used in the context of modeling. Indeed, as we have observed
throughout this thesis, stochastic differential equations are powerful tools to
model real-life model problems, especially when their dynamics are affected by
random perturbations.

Following this spirit, the thesis has been essentially divided into three parts.
The first part has been focused on the development of continuous approximants
for stochastic differential equations. Following the well-known idea of collo-
cation for deterministic differential equations, particularly for Volterra Inte-
gral Equations, we have obtained continuous extensions for specific numerical
methods for SDEs. In this family of methods, for particular choices of the pa-
rameters that characterize it, a continuous extension of the well-known Euler-
Maruyama method is obtained, considered the simplest numerical method for
stochastic differential equations. The reader may wonder if continuous exten-
sions for numerical methods for SDE are useful. We know well that in the
deterministic context, they constitute a very powerful tool for many aspects.
One of these certainly concerns obtaining a good and efficient estimate of the
local truncation error and consequently the development of variable step algo-
rithms, which are very useful, especially for the numerical integration of stiff
problems. Even in the stochastic context, continuous extensions have found
wide use to prove the theorems of existence and uniqueness of solutions in not
too stringent hypotheses, such as the global Lipschitz condition: the reader
can look at the work, for example [34]. As in the deterministic context, our
goal here was to define a procedure capable of efficiently estimating the local
truncation error. However, for this estimate, it is necessary to pass through
the following identity

W ptn ` s∆tq ´ W ptnq “
?
s∆tVk, s P r0, 1s

where Vk is a standard normal variable. We know to be true only punctually,
that is, for fixed values of s, and not uniformly. In particular, for a varying
s ą 0 the left side of the identity is only 1{2-Hölder continuous, while the right
side is locally Lipschitz continuous. Despite this, the results we have obtained
appear to be significant, but the reliability or otherwise of this estimate is,
therefore, the object of future works.
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Research in this thesis then continued following the spirit of geometric
numerical integration. In particular, the attention was placed on stochastic
Hamiltonian problems of the Itô type which, in the case of additive noise, we
know how to satisfy the so-called trace equation, that is, the expected value of
the Hamiltonian function grows linearly over time. Burrage et. al. in [68, 74]
demonstrated that not all numerical discretizations are able to preserve this
linear growth over time. Therefore the authors derived stochastic Runge-Kutta
methods, involving more Wiener processes per step, proving that these exactly
preserve the trace equation, at least for quadratic Hamiltonians. In this Ph.D.
thesis, we have tried to give a reason for this lack through perturbative analysis
via ϵ expansions, being ϵ the amplitude of the stochastic part of the right-hand
side. This analysis shows the presence of spurious terms, growing in time and
with the parameter ϵ.
The analysis was therefore extended to the case of small multiplicative noise,
firstly providing a characterization of the behavior of averaged Hamiltonian
arose in such systems, with more emphasis on the separable and quadratic
Hamiltonians. Then we showed that, in general, first-order approximations to
such systems are not able to retain the same behavior discovered for the exact
averaged Hamiltonian. Future perspectives concerning the topic addressed in
Chapter 4 concern the analysis of energy preserving methods for Hamiltonian
problems with different noises. In particular, relevant interest is the study
of numerical methods for stochastic Hamiltonian systems with Levy jumps,
widely used especially in physics (for example, the reader can refer to [254]).
The goal is to understand if there are invariant laws of the problem and the
possible numerical discretizations to preserve these laws that characterize the
dynamics in question for a long time.

As has been observed in the development of this thesis, stochastic differen-
tial equations are a handy tool for describing phenomena that affect our real
life. The last part of this thesis aimed to show models in which stochastic
differential equations or partial differential stochastic ones, occur. First, the
FitzHugh - Nagumo model was presented, which describes how action poten-
tials propagate along an axon. Starting from this model, a splitting schemes,
based on the Lie-Trotter strategy, were developed where the contribution of
the nonlinearities of the diffusion operators and of the noise can be integrated
separately and combined to give an explicit, easy-to-implement and effective
numerical scheme. Starting from this method, a mean-square convergence
theorem has been proved, in which it has been outlined that the order of con-
vergence is at most 1/4. Some difficulties we need to overcome are due to the
low regularity properties of the solutions, the fact that the system is not a
parabolic PDE system, and the cubic growth of the nonlinearity. The choice
to use the Lie-Trotter strategy was based on the fact that there is a clear sep-
aration between the linear and stochastic parts in the FhN system considered.
This is only a first result obtained in this context, and surely a future direction
will involve the construction of splitting methods based on Strang’s strategy,
with a higher order of convergence. There are other directions that this re-
search could be developed. First, through the numerical experiments that have
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been conducted, it has been shown that for the scheme LTexact–(5.21) the
order of convergence is 1{2, which is not covered by Theorem 5.3.2. The fact
that using an accelerated exponential Euler scheme where the stochastic con-
volution is computed exactly yields higher order of convergence is known for
parabolic semilinear stochastic PDEs driven by space-time white noise, under
appropriate conditions, see for instance [157] or [40]. However, the stochastic
FitzHugh–Nagumo equations considered in this article are not parabolic sys-
tems; therefore, it is not known how to prove the observed higher order strong
rate of convergence. Furthermore, it is well known in the deterministic case
that splitting methods, when applied to partial differential equations with par-
ticular boundary conditions, suffer from the phenomenon of order reduction
(for example, the reader can read [124, 125]). Therefore we want to study
whether this same phenomenon also occurs in the case of stochastic partial
differential equations.

The analysis carried out in the last part of this Ph.D. thesis is helpful to
give a measure, suggested by the stiffness ratio, of the speed of reaffirmation
of the truth after the spread out of fake news. In particular, the analysis
suggests to use SIR models with high stiffness ratio to describe the diffusion
of fake information when the country is exposed to a slower transit of fake
news. Less stiff models are particularly suitable when the transit of fake news
is slower and its survival time in the exposed population is higher. Following
this line, we conducted the same analysis using a stochastic SIR model through
a stochastic perturbation of the deterministic SIR model. The research clearly
turned out to be more complex deriving from the fact that a precise definition
of the stiffness index is not yet well known. In fact, here, this property has
been highlighted by the fact that the more stiff the problem was, the more the
stochastic Backward Euler method showed a strong order reduction [30, 31].
The employed model is the standard stochastic SIR system of stochastic differ-
ential equations, but certainly, more complex models may be used in order to
describe the diffusion of fake news as an epidemic phenomenon. For example,
one may extend the analysis conducted in [117], in which the authors have
proposed a novel and alternative interpretation of the SEIR model to describe
the diffusion of fake information on the web and the consequent truth reaffir-
mation to the stochastic context. Other challenging features of this problem
are the study of sentimental analysis, social network analysis and applications
of machine learning techniques, see [92, 104].
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