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Abstract

This manuscript is devoted to the study of the qualitative behaviour of the
solutions of evolution equations arising from elliptic and parabolic problems
on unbounded domains with unbounded coefficients. In particular, we deal
with the elliptic operator of the form

A=div(QV)+ F-V -V,

where the matrix Q(z) = (¢;;(x)) is symmetric and uniformly elliptic and the
coefficients ¢;;, F' and V' are typically unbounded functions.

Since the classical semigroup theory does not apply in case of unbounded
coefficients, in Chapter[I/we illustrate how to construct the minimal semigroup
T(-) associated with A in Cy(R?). It provides a solution of the corresponding
parabolic Cauchy problem

Owu(t, z) = Au(t, x), t>0, R
u(0,z) = f(=), x € RY,

for f € Cy(R?), that is given through an integral kernel p as follows

7(0)() = [ pit.0.0) 1)y

Moreover, such solution is unique if a Lyapunov function exists. Since an
explicit formula is in general not available, it is interesting to look for pointwise
estimates for the integral kernel p.

In Chapter [2| we consider a Schrodinger type operator in divergence form,
namely the operator A when F' = 0. We prove first that the minimal realiza-
tion Ay of A in L2(R?) with unbounded coefficients generates a symmetric
sub-Markovian and ultracontractive semigroup on L?(R?) which coincides on
L*(RY)NCy(RY) with the minimal semigroup generated by a realization of A on
Cy(R?). Moreover, using time dependent Lyapunov functions, we show point-
wise upper bounds for the heat kernel of A. We then improve such estimates
and deduce some spectral properties of A,,;;, in concrete examples, such as in
the case of polynomial and exponential diffusion and potential coefficients.

Chapter (3| deals with the whole operator A. With appropriate modifi-
cations, similar kernel estimates described above are valid for this operator.
In addition, we prove global Sobolev regularity and pointwise upper bounds
for the gradient of p. We finally apply such estimates in case of polynomial
coefficients.



Sommario

Questa tesi e dedicata allo studio del comportamento qualitativo delle soluzioni
di equazioni di evoluzione derivanti da problemi ellittici e parabolici su do-
mini non limitati con coefficienti non limitati. In particolare, ci si occupa
dell’operatore ellittico della forma

A=div(QV)+ F-V -V,

dove la matrice Q(z) = (g;j(x)) ¢ simmetrica e uniformemente ellittica e i
coefficienti ¢;;, F' e V sono tipicamente funzioni non limitate.

Poiché la teoria classica dei semigruppi non si applica in caso di coefficienti
non limitati, nel Capitolo [1|illustriamo come costruire il semigruppo minimale
T(-) associato ad A in Cy(R?). Esso fornisce una soluzione del corrispondente
problema di Cauchy parabolico

Owu(t, z) = Au(t, x), t>0, R
u(0,z) = f(=), x € RY,

per f € Cy(RY), che & data attravenso un nucleo integrale p da

7)) = [ pit.0.0) 1) dy

Inoltre, tale soluzione e unica se esiste una funzione di Lyapunov. Poiché in
generale non e disponibile una formula esplicita, ¢ interessante cercare stime
puntuali per il nucleo integrale p.

Nel Capitolo 2| si considera un operatore di tipo Schrédinger in forma di
divergenza, cioe 'operatore A con F' = 0. Inizialmente si prova che la minima
realizzazione Ay, di A in L?(R?) con coefficienti non limitati genera un semi-
gruppo simmetrico, sub-Markoviano e ultracontrattivo su L?(R?) che coincide
su L2(RY) N Cy(R?) con il semigruppo minimale generato da una realizzazione
di A su Cy(R?). Inoltre, usando le funzioni di Lyapunov dipendenti dal tempo,
si mostrano stime puntuali dall’alto per il nucleo del calore di A. Quindi si
applicano tali stime e si deducono alcune proprieta spettrali di Ay, in es-
empi concreti, come nel caso di coefficienti di diffusione e potenziale di tipo
polinomiale ed esponenziale.

Nel Capitolo 3| si considera I'intero operatore A. Con opportune modifiche,
simili stime del nucleo sopra descritte rimangono valide. Inoltre, si dimostrano
risultati di regolarita globale di Sobolev e stime puntuali per il gradiente di p.
Infine si applicano tali stime nel caso di coefficienti polinomiali.
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Introduction

Starting from the second half of the past century, elliptic operators with
bounded coefficients have been investigated extensively both in R? and in open
subsets of R?. Nowadays we have a wide knowledge on this subject.

In recent years, the attention turned to operators with unbounded coef-
ficients in R?. The motivation lies in their applications in many branches
of applied science, engineering and economics. For example, in fluid dynam-
ics, the study of the Navier-Stokes equations with rotating obstacle involves a
change of variables which transform operators with bounded coefficients into
operators with unbounded ones (see [24] 27]). Equations with unbounded co-
efficients also arise from stochastic models in mathematical finance, such as
the well known Black-Scholes equation in [6]. Moreover, in biology, they play
a role in the study of the motion of a particle acting under a force perturbed
by noise (see [22]).

The analysis of operators with unbounded coefficients has been devel-
oped using several approaches, with methods and ideas from partial differen-
tial equations, Dirichlet forms, stochastic processes and stochastic differential
equations.

The Ornstein-Uhlenbeck operator represents one of the most famous exam-
ples of an operator with unbounded coefficients in R¢. It is defined on smooth
functions by

d d
Apw) = 3 3 ayDyela) + 3 Fya;Dig(e),
ij=1 ij=1
for any x € RY, where (g;;) is a constant positive definite matrix and (F};) is
a constant real matrix. It exhibits the main features of this class of operators,
such as the fact that the associated semigroup in Cy(R?) is neither strongly
continuous nor analytic.

One quickly realizes that leaving the bounded coefficients setting for the
unbounded one is not merely a generalization: the classical semigroup theory is
unfit as well as the classical theory of elliptic differential operators. Moreover,
it has considerable consequences. For example, the failure of the maximum
principle leads to the nonuniqueness of the continuous bounded solutions of
the corresponding parabolic Cauchy problems.

With this in mind, in Chapter [1] we illustrate specific techniques contained
in [36, 47, [48] in order to deal with uniformly elliptic operators defined on

5
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smooth functions by

d

Ap(x) = Y a(@)Diyp(x) + Y Fil@) Dig(w) = V(2)p(x), (1)

i,j=1 i=1

for any z € R where the matrix Q = (g;;) is symmetric and uniformly elliptic
and the coefficients are locally Holder continuous and typically unbounded
functions. The goal is to study general properties of the semigroup 7'(-) in
spaces of continuous functions Cy(R?) such as the existence and uniqueness of
solutions to the elliptic and parabolic equation.

More precisely, for f € C,(R?) we consider the parabolic problem

{&tu(t,x) = Au(t, ), t>0, R @)

u(0,z) = f(x), z € RY

By mean of an approximation argument with Cauchy-Dirichlet problems in
bounded and smooth domains and classical Schauder estimates, we prove that
the problem (2)) admits a classical solution for every f € Cy(R?). This solution
is given by a semigroup 7T'(+), namely u(t,x) = T(t) f(z). Moreover, it admits
an integral representation by

7)) = [ plt.e.)fw)dy )

where p is a positive function called integral kernel. In general such semigroup
is neither strongly continuous nor analytic in Cy(R?). Hence, the next step
is to make clear the meaning of generator. For that, in comparison with the
classical concept of infinitesimal generator, we introduce the weak generator
of T'(+).

Finally, one can ask for the uniqueness of the solution to problem . As
anticipated above, the answer is negative: unlike the case when the coefficients
are bounded, the classical maximum principle may fail. This is the reason why;,
in general, the parabolic problem admits more than one solution. Hence,
to prove uniqueness results some additional assumptions on the operator A
need to be imposed. The typical assumption which we assume is the existence
of a so-called Lyapunov function, i.e. a function 0 < Z € C**¢(R?) such that
lim|y| 00 Z(x) = 00 and

AZ(z) < AZ(w),

for some A > 0. Furthermore, we introduce time dependent Lyapunov func-
tions for the operator d; + A. These are functions W € CH2+¢((0,T) x RY) N
C([0,T] x RY) such that lim, . W(t,2) = oo uniformly for ¢ in compact
subsets of (0, 7], W < Z and there exists 0 < h € L'((0,T)) such that

AW (t,2) + AW (t,2) < h()W(t,z),

for all (t,z) € (0,T) x R%. Finally, we prove that both Z and W are integrable
with respect to the measure pdy.
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In Chapter |2 we present the work in [17]. We consider the Schréodinger
type operator defined on smooth functions ¢ by

Ap =div(QVy) — Vo, (4)

where the matrix () = (g;;) is symmetric and uniformly elliptic and the co-
efficients are typically unbounded functions. If ¢;; € C’llotc(Rd) and 0 <V €
C¢ (RY) for some ¢ € (0,1), then we can associate the semigroup 7T'(-) in
Cy(R?) constructed in Chapter

At this point one may wonder if it is possible to obtain generation results
also in the space L?(R?). The answer is positive in the sense that the minimal
realization of A in L?(R?) generates a positive symmetric Cy-semigroup Ty (+)
on L?(R%) which is also sub-Markovian and ultracontractive. In the first part
of Chapter [2, we see that the idea behind the construction of the semigroup
T5(+) relies again on an approximation argument and makes use of sesquilinear
forms. For this reason, Ty(-) is consistent with T(-), namely it coincides with
T(-) in the intersection L*(R%) N Cy(R?). Actually, even more is achieved:
T»(+) extends to a positive Cyp-semigroup of contractions T,(-) on LP(R?) for
all p € [1,00). They are compact and the spectrum of their corresponding
generators is independent of p.

Let us now assume that there exists a Lyapunov function Z for the
Schrodinger type operator A, i.e. 0 < Z € C?*T¢(R?) such that lim|, o Z(z) =
00, AZ(x) < M and nAZ(z) — V(x)Z(x) < M for all x € R? and some con-
stant M > 0. Then, as mentioned above for the more general elliptic operator
(1), for every f € Cy(R?) the semigroup T'(¢) applied to the initial datum f
gives the unique solution to the parabolic problem . As usually happens,
in general an explicit formula for this solution is not available, thus one tries
to find pointwise estimates. Since the semigroup is given through an integral
kernel p(t,z,y), this translates in looking for pointwise kernel estimates.

This is the reason why an important aspect in the study of elliptic op-
erators is to have estimates for the kernel p and, consequently, this ques-
tion has received a lot of attention in the literature. We mention here
[1, 4 9] [10} (11} 130} [31} [34} |41}, [50], where specific operators were considered. In
particular, in these last years second order elliptic operators with polynomially
growing coefficients and their associated semigroups have been widely studied
(see for example [12] [13] [14] 15] 16} 21], 36, 37| 43| [44] [45] [46]). For instance,
the case of the (non-divergence type) Schrédinger operator

(14 [z[")A = [z]? ()

was discussed extensively in the literature. Kernel estimates were obtained in
[16] assuming that m > 2, s > m — 2 and in [37] when m € [0,2) and s > 2.
Furthermore, if m > 2 and s > m — 2, kernel estimates for the corresponding
divergence form operators

x

]

(14 ]z|™A + blz|™ = .V — c|z|* (6)
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are proved in [I3] and for ¢ = 0 in [45]. In the papers mentioned above
regarding the operators and @, the authors used a technique based on the
relationship between the log-Sobolev inequality and the ultracontractivity of
a suitable semigroup in a weighted space. Let us also mention that for m =0
and s > 0 both upper and lower estimates were established in [42].

On this path, the second part of Chapter [2|is devoted to generalize the
above results concerning second order elliptic operators with polynomially
growing coefficients to our Schrodinger type operator . The starting point is
the case of bounded diffusion coefficients, see [1}[10, 34} 41]. These techniques
were extended to include also unbounded diffusion coefficients in [30] [31] for
nonautonomous operators in non-divergence form. In here we adopt the tech-
nique of time dependent Lyapunov functions used in [1, 30} [31, [51] to our
divergence form setting. In particular, we deal with time dependent Lyapunov
functions W for 9; + A and 9, + nA — V', so they satisfy

QW (t, ) + AW (t,z) < h(t)W(t, z)

and
oW (t,z) + nAW (t,z) — V()W (t,z) < h(t)W(t, x),

for any (¢,z) € (0,T) x R%, where 7 is the ellipticity constant of the matrix
@ and T > 0. This allows for a unified approach to obtain kernel bounds
corresponding to [13] [42] in the divergence form setting. As a matter of fact,
we can allow even more general conditions on m and s in order to get kernel
estimate for our prototype operator

div((1+ |27 V) — Jal, (7)

where x — |7/, is a C?-function satisfying |z|. = |z| for |x] > 1. We require
merely that m > 0 and s > |m — 2|; moreover, we can drop the assumption
d > 3 imposed in [13[42]. We first establish sufficient conditions under which
functions like W(t,z) = et*l2ld are time dependent Lyapunov functions for
more general operators with polynomially growing coefficients, namely such
that

d
> a0 < o1+ 2™, (8)
ij=1
for some constant ¢, > 0 and every £, x € R% Then, applying the technique
mentioned above to the kernel p associated to the operator , we get the
following inequality

a(Q’mVs)k —m+2 S_ZH'Q

p(t, x,y) S Ctl_ s—m+2 efgtam‘:je*%tﬂyh ’ (9)

for any t € (0,1), z,y € RY where k > d +2, 8 = #, 0<e<1/p,
8

As our approach does not depend on the specific structure of the coeffi-

cients, we can establish kernel estimates not only in the case where Q(x) =
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(14 |x|?)I. Indeed, an estimate similar to (8]) of the quadratic form associated
to @ is enough. In addition, we can even leave the setting of polynomially grow-
ing coefficients and consider coefficients of exponential growth; this includes
the case Q(x) = el I and V(z) = el for d > 1 and 2 < m < s. We can
then handle operators of the form

div(emmVu) — ell®

Here we would like to mention the paper [20] where pointwise estimates are
obtained in the elliptic case for exponentially growing coefficients. We stress
that these estimates can be improved by choosing a Lyapunov function like

| B
W(t,z) = exp (51&“/ ez d7'> :
0

The kernel estimate obtained in this setting is

|« B
p(t,z,y) <Ct'2 exp(Ct™) exp (—%ta/ ez dr) (10)
0

€ [yl B
X exp —éta/ ez dr |,
0

for any t € (0,1), x,y € R? where k > d + 2, 1+5 <8< m,e >0,

o> 25—{2—777,—2
m

Chapters 3| deals with the results in paper [32]. We are concerned with the
more general operator

A=div(QV)+ F-V -V, (11)

where in addition we assume that the drift term F" belongs to C’ﬁ;f(]Rd; R%). For
F = 0 we obtain the operator studied in Chapter |2l Thanks to the chosen
symmetric structure, in the right hand side of @ and terms involving
both x and y appear. However, all the results in Chapter 2| can be refined in
order to deal with the more general operator .

In this chapter, we are aim to establish not only estimates for p but also for
Vp, the gradient of p. Apart from the existence of time dependent Lyapunov
functions, an important tool to obtain such estimates is the square integrability
of the logarithmic gradient of p. Such integrability property plays an important
role to obtain regularity results for p, cf. [9, Section 7.4]. Moreover, as in [41],
once estimates for Vp are obtained, one can repeat the same procedure to
get estimates for D?p and hence estimates for d,p. This allows us to obtain
the differentiability of the semigroup T'(-). Estimates for the gradient of p
were obtained in [41, Section 5] in the case of bounded diffusion coefficients.
As in [30} [31], we use approximation to extend this to unbounded diffusion
coefficients. We point out that the constant in the estimate for Vp obtained
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in [41) Thm. 5.3] depend on ||@Q||,, and thus this estimate cannot be used in
an approximation result. Therefore, we first establish an estimate for Vp in
the case of bounded diffusion coefficients where the constant in the estimate
does not depend on ||@Q|| . With this estimate at hand, we can then tackle the
case of unbounded diffusion coefficients by approximating them with bounded
ones. In this way, we can prove our main result which provides an estimate of
Vp in the general case.
We illustrate our results by applying them to the prototype operator

A= div((L+[2]?)V) = o -V — o,

with p > (m — 1)V 1, s > |m — 2|, m > 0. Then, we derive that

3a(mVpV %)k«ka

Vp(t,z,y)| < C(1 — logt)t%_Te*Etalylf’

for any t € (0,1), 2,y € RY, where § = >4, k > 2(d +2), 0 < 2ke < 5 and

8
a> g



Chapter 1

The minimal semigroup in

Cp(R%)

Elliptic operators with unbounded coefficients have been studied a lot recently
since they have applications in many fields of science, economic and engineer-
ing. The literature significantly improved and we are now able to deal with
second order elliptic partial differential operators A defined by

Ap(x) =Y g;j(2) Dyjep(z) + Y Fi(x)Dip(x) — V(@)p(x), = €RY,

ij=1 i=1

on smooth functions, where the diffusion coefficients (), the drift F' and the
potential V' are typically unbounded functions. Throughout, we will keep the
following assumptions.

Hypothesis 1.0.1. (a) The coefficients q;j, F; and 0 <V belong to C’lcoc(Rd)
for some ¢ € (0,1) and for alli,j =1,...,d.

(b) The matriz Q) = (¢j)ij=1
there is m > 0 such that

4 s symmetric and uniformly elliptic, i.e.

77777

d
Z ¢ij(2)&& > n|Ef for all x, € € RY.

t,j=1

Our main interest is the parabolic problem associated with A

{atu(t,a:) = Au(t, ), t>0, 2 € R (1.1)

u(0,2) = f(x), r € RY.

The aim of this first chapter is to show how to construct analytically the
semigroup 7'(+) associated with A in Cy(RY).

If the coefficients of A were bounded, then for any f € Cy(RY) and any
t > 0 we would define T'(¢)f as the value at t of the classical solution to the
Cauchy problem . We point out that the boundedness of the coefficients

11
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leads to the uniqueness results: it is a straightforward consequence of the
classical maximum principle (see [38]). Thus, it is not surprising that in case of
unbounded coefficients the bounded classical solution to the parabolic problem
may not be unique. It is all about the failure of the classical maximum
principle.

In Section the arguments used to prove the existence of a classical
solution are based both on an approximation argument with Cauchy-Dirichlet
problems in bounded and smooth domains, and classical Schauder estimates.
In particular, we consider in a ball B, of fixed radius p > 0 the problem
with Dirichlet boundary conditions on 0B,. Named T,(-) the associated
semigroup, we set 7'(+) as the limit as p — oo of T),(-). Since T,(+) is well known
(see e.g. [38]), it is not hard to investigate the properties of T'(). It turns out
that such a limit defines a positive contraction semigroup in Cy(R¢) which has
an integral representation through a kernel and gives a solution to problem
. Actually, if f > 0, it gives the minimal positive solution. That’s why
T(-) is called the minimal semigroup associated with A.

In general, such a semigroup is neither strongly continuous nor analytic
in Cy(R?), so it does not make sense to consider its infinitesimal generator.
However, the corresponding concept in the unbounded context is that of weak
generator.

In order to introduce it, we need to take a step back and to study the
resolvent equation

A — Au = f, (1.2)

with A > 0 and f € Cy(RY). With a similar approximation procedure, in
Section we prove the existence of a solution u € Dp.x(A) to the elliptic

equation (1.2), where
Diax(A) = {u € C,(RY) N W2P(R?) for all 1 < p < oo: Au € Co(R)}. (1.3)

Moreover, u is given by u(x) = (R(X\)f)(x), where R(A) is the resolvent of a
closed linear operator A = (A, D).

Subsequently, in Section we show that A is the weak generator of the
semigroup 7'(+) in the sense that the resolvent R(\)f(x) is the Laplace trans-
form of T'(t) f(x).

In Section we investigate the assumptions that allow us to prove the
uniqueness of solutions to the parabolic problem , the existence of the so-
called Lyapunov functions. Even though up to now it is already clear that the
parabolic problem and the elliptic equation are not independent of
one another, we highlight the connection by proving that there exists a unique
solution to the elliptic equation in Dy,.y(A) if and only if there exists a unique
classical solution to the parabolic problem, which is bounded in [0,7] x R?
for any 7" > 0. In such a situation, the domain D of the weak generator A
coincides with Dpax(A).

Then, in Section [1.5] we explore more properties of Lyapunov functions Z
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for the following operator in divergence form
Ap =div(QVy)+ F - Vo — V.

We discuss the integrability of Z with respect to the measure pdy. We find
out that if the diffusion coefficients and their spatial derivatives are bounded,
then Z satisfies

[ pttrnzay <z )

for all t > 0, x € R? and some A\ > 0. Approximating A with a family of
operators with bounded diffusion coefficients, we prove that the same inequal-
ity holds if we assume that Z is a Lyapunov function not only for A, but
also for nA + F -V — V. This allows us to show the tightness of the family
{p(t,z,y)dy [t € (0,T)}.

Finally, in Section [1.6] we introduce time dependent Lyapunov functions
for 0, + A, with A the operator in divergence form mentioned above. We
proceed similarly to prove the integrability of such functions with respect to
the measure pdy. This is an important result we will use in the next chapters.

For more details of the results that we present here, we refer the reader to
[36, 47, 48] .

1.1 The resolvent equation
This section is devoted to the study of the elliptic equation (1.2)), that is
Au — Au = f,

with A > 0 and f € Cy(R?). We aim to prove that it admits a solution in the
maximal domain Dy, (A) defined in . We call A, .« the realization of A
in Cy(R?) with domain Dyyay(A).

First, we prove that A, is a closed operator.

Lemma 1.1.1. [48, Lemma 3.1] The operator Anyax is closed.

Proof. Let (u,) be a sequence in Dy (A) such that u, converges to u € Cy(R?)
and Au, to g € Cy(R?) uniformly in R?. Then, by Theorem for any pair
of bounded sets Q@ CcC ' CC R? we have

ltn =kl < ClllAtn = Aurl oy + lltn = will o] < oo,

for some constant C' depending on p,Q2,€), A and for every 1 < p < oo. It
follows that (u,,) is a Cauchy sequence in W2?(Q), thus u € W2P(Q). Since
is arbitrary, it implies that u € VVi’f(]Rd). Finally, since A is continuous from
W2P(RY) to L2 (R%), we conclude that g = Au. O

loc loc
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The next step is to construct a solution of (1.2) in Dyax(A) with an ap-
proximation argument. We fix a ball B, with p > 0 and for every f € Cy(B,)
we consider the Dirichlet problem in Cy(B,)

{)\u(x) — Au(zx) = f(x), x € B,

u(z) =0, r € 0B,. (14)

It admits a unique solution u, € W??(B,) for all 1 < p < oo, according to
Proposition Taking into account the realization A, of the operator A
with domain

D,(A) = {u € Cy(B,) NW?*P(B,) for all 1 < p < oo: Au € C(B,)}, (1.5)

this means that the operator A — A is bijective from D,(A) onto Cy(B,). Thus,
we have that
up = RO\ A, (1.6)
where R(\, A,) := (A — A,)~! is the resolvent operator of A, for A > 0.
In the following theorem we construct a solution of (1.2)) by taking the limit

of the sequence (u,). In other words, the operator A — A is surjective from

Dunax(A) to Cy(RY).

Theorem 1.1.2. [{8, Theorem 3.4] For every f € Cy(R?) there exists u €
Dinax(A) solving equation (1.2) and satisfying the inequality

full < Mo (17)

Moreover, if f >0, then u > 0.

Proof. Let 0 < f € Cy(RY). As above, we consider the solution u, to the
problem in Cy(B,) for all p > 0. Applying the maximum principle
(Theorem to the functions u, and u, — u, for any o < p, we deduce
that the sequence (u,) is nonnegative and increasing. Moreover,

1/l
”up“oo < \ (1.8)
Then, we may define
u(z) = lim u,(x).
pP—>00

As a result, not only u > 0, but we also obtain that (1.7) is valid by letting
p — oo in (1.8). In addition, considering that Au, = Au, — f, we infer that

AUl oo < Al + 11 flloe < 21 1o - (1.9)

We now show that u, converges uniformly on compact sets to the function
u. For this, we fix 0 <o+ 1 < p. Given 1 < p < oo, Theorem leads to

||Up||w2,p(Bg) < CU(HupHLp(BUH) + HAupHLp(BUH))v (1.10)
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for some constant C, > 0. Combining this with (1.8) and (1.9) we derive that
there exists a positive constant C, such that

HupvaZp(Bg) < Co [ flloo -

Hence, (u,) is a bounded sequence in W?P(B,) for any 1 < p < oo and any
fixed ¢ > 0. By the Sobolev embedding theorems for p > d, it follows that
(u,) is bounded in C'(B,) too and the Ascoli-Arzeld theorem implies that u,,
converges to u as p — oo uniformly on compact subsets of R?. Using the fact
that Au, = Au, — f on B,, also Au, converges uniformly on compact subsets
of R

Applying now to the difference u,, —u,,, we get

Hupz - um”w?w(BU) < OJ(”upz - um”Lp(Bp) + HAU,OQ - AuleLp(Bp)),

for fixed o < p. Therefore, u € W2P(R?) and u, converges to u as p — 0o
strongly in W27 (R?) for any 1 < p < co.

Finally, letting p — oo in Au, = Au, — f, we conclude that u € Dyax(A)
and it solves the equation (1.2).

If now f is a general function belonging to Cy(RY), we write f = f+ — f~

and, by , we have
Up = R(/\v Ap)f = R<>‘7Ap)(f+) - R()‘> Ap)(f_) =i Up1 — Upa2.

Using the above proof for u,; and u, 2, we may define the function u as before.
Moreover, since (1.8) is satisfied also when f changes sign on R? we obtain
again inequality (1.7). Then, the result is valid even for general f € Cj(R?).

[

We point out that in general, given the datum f € Cy,(R?), the function
u we constructed in the previous theorem is not the unique solution to the
elliptic equation in Dyax(A), namely the operator AI — A is not bijective
from Dpax(A) to Cy(RY).

In the following result we define an operator A= (A, 15) such that for every
A > 0, A — A is bijective from D to Cy(R?). The idea is to collect in D the
solutions given by Theorem [1.1.2

Theorem 1.1.3. [/8, Section 3] There is a family of bounded operators
(R(A\)xso on Cy(RY) such that for every f € Cy(R?) the solution of the equa-

tion (1.2)) provided by Theorem is given by

for any x € R Moreover, there is a closed linear operator A= (A, D) in
Cy(R?) such that

R\ A) =R\ and D= R\)(Cy(RY)).
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Proof. We define the family (R()\))xso on Cy(R?) by

RN f = K}E&R(A A)f, (1.11)
for any f € Cy(R?). We note that, since u, = R(\, A,)f, R(\)f is exactly the
solution u € Dpax(A) to the equation (1.2) constructed in Theorem as
the limit of the sequence (u,). Moreover, by the proof of Theorem we
have that

AR <1

and, if f > 0, the sequence (R(A, 4,)f) is nonnegative and increasing.
In view of the application of Proposition we prove that the family
(R(X))aso satisfies the resolvent identity

R(A) = R(p) = (1= A R(1) R(A). (1.12)
Let f > 0. Clearly,

R(AN)R(p)f > limsup R(\, A,)R(p, Ap) f.

p—00

Furthermore, fixed p;, we have

lim inf R(A, A,) R(p, Ap) f = liminf R(A, Ay ) R(p, Ap)f = R(A, Ay )R (1) f.
Letting p; — oo yields liminf, .. R(\, A,)R ( w, Ay f > RAR(n)f. As
a result, we derive that lim, ... R(\, A,)R(u, A,)f = R(AN)R(p)f. This is
enough to deduce because the family (R()\, A,))as0 satisfies the resol-
vent identity. The general case when f € C,(R?) follows as usual by writing
f = fT — f~. In addition, we note that the operators R()\) are injective.
Indeed, if R(A\)f =0, then f = (A — A)R(\)f = 0 because R(\) is a solution
of the equation (1.2)).

We finally apply Proposition [B.1.1]to infer that there exists a closed linear
operator A whose resolvent is R(\). O

We show that u = R(\) f is the minimal positive solution if f > 0.

Proposition 1.1.4. [/8, Proposition 3.6] If f > 0, then u = R(X\)f is the
manimal element among the nonnegative solutions of (1.2)) in Diyax(A).

Proof. Let 0 < v € Dyax(A) be a solution of . If u, is defined as in ,
then A(v —u,) — A(v —u,) =01in B, and v —u, = v > 0 on 0B,. According
to Theorem [C.2.2, we have that v > u, in B,. If we now let p — co we deduce
that v < wv. O

We now prove that the operator Ais actually a restriction of A ..

Proposition 1.1.5. [/8, Proposition 3.5] The following statements hold.
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() D C Dpay(A) and Au= Au foru e D.

(b) D = Dpax(A) holds if and only if \XI — A is injective on Dyax(A) for some
(hence all) positive \.

(¢) Dmax(A) N Co(RY) C D.

Proof. We recall that, by Theorem D consists of the solutions to the

equation in Dyax(A) given by Theorem namely functions of the
form R(\)f with f € Cy(R?). Then, statement (a) follows. Moreover, since
A — A is always bijective from D to Cy(R%), it is injective on Dyax(A) if and
only if D and Dy (A) coincide. This proves (b).

We now turn to (c). Let v € Dyax(A) N Co(R?) and consider f = v — Av
and u = R(1,A)f. Clearly, f € Cy(R%) and u € D. If we show that v = u,
then the statement is proved. If u, = R(1, A,)f, then (u, —v) — A(u, —v) =0
in B,. As a result, since u, vanishes on 0B5,, then the maximum principle
yields

sup [up () — v(2)] = sup [up () — v(2)] = sup [o(2)].

Hence, letting p — oo, we get

u(z) —v(z)] < lim |u(z)| =0,

|z|—o00

for every x € R where we used that v € Cy(R?). Thus, u = v. O

1.2 The semigroup

Given the parabolic problem (1.1) associated to the operator A, namely

Ow(t,x) = Au(t,z), t>0, € R
uw(0,z) = f(x), r € RY,

in this section we prove the existence of a classical solution. This will allow us
to construct the related semigroup 7(-).

Let us fix a ball B, with p > 0. Proposition and Theorem show
that, since A is uniformly elliptic on B,, then for every f € C(B,) there is a

unique solution to the problem (1.1) in B, with Dirichlet boundary conditions
on 0B,, that is the following problem

Ou,(t, x) = Au,(t, x), t>0,z€ B,
u,(t, x) =0, t>0, z € 0B,, (1.13)
u,(0,2) = f(z), z € B,,.

In other words, the realization A, of the operator A with domain D,(A) defined
in (1.5) generates an analytic semigroup 7,(+) in the space C(B,) such that

up(t, ) = T,(t) f(x),
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is a solution of for any t > 0 and =z € B,,.

We note that, since D,(A) is not dense in C(B,), then T)(-) is not strongly
continuous. Indeed, the strong continuity at 0 fails. We now recall some
properties of the semigroup 7,(-), which can be found for example in [39,
Chapter 3] and [23, Chapter 3, Section 7].

Proposition 1.2.1. The following statements hold true.
(a) T,(t)f — f ast — 0 uniformly in B, if and only if f € Co(B,).

(b) T,t)f = f ast — 0 uniformly in B, for every o < p, hence pointwise
in B,.

(c) T,(t) is a bounded operator in LP(B,) for every 1 <p < oo andt > 0.

(d) T,(-) are integral operators, i.e. there exists a kernel p,(t,z,y) such that

T,(1)f(x) = / po(t,, ) f(y) dy.

P

for every f € C’(Ep). Moreover, the kernel p, is positive, the functions
po(t, -, ) and p,(t,z,-) are measurable for any t > 0,z € RY, and for
every y € B,, 0 < & < 1 we have p(-,-,y) € CYF/2X¢((e,7) x B,) and it
satisfies Oip, = Ap,.

(e) T,(-) is positive, i.e. T,(t)f >0 if f > 0.
(f) T,(t) are contractions, i.e. || T,(t)f|l < ||fllo-

(9) T,(t) preserves bounded pointwise convergence for every t > 0, i.e. if
(fn) € C(B,) satisfies || fall, < C for everyn € N and f,, — f pointwise,
then T,(t)f, = T,(t)f pointwise.

(h) For every f € C(B,) and 0 < & < T the function u,(t,z) = T,(t)f(x)
belongs to C'H¢/224¢ ((e,7) x B,).

As a consequence of the weak maximum principle, we deduce that the
semigroups T,(-) are increasing in the sense of the following lemma.

Lemma 1.2.2. [48, Lemma 4.1] Let f € Cy(R?), f > 0 and p < p1 < pa.
Then

0 < T, (1) f(z) < Tp(1) f (),
for everyt >0 and x € B,,.

Proof. We start with proving the result in case of f vanishing on 05,,. We
consider the function

w(t, x) = T, (1) f(x) = Tp, (1) f ().
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Since f € Cy(B,,), then by Proposition[1.2.1[a) we obtain that w is continuous
on [0,00) X B,,. Moreover, w solves the parabolic equation dyw = Aw and
vanishes for ¢ = 0. For € 0B,, we have that T),(t) f(xz) > 0 since T),(-) is
positive by Proposition [1.2.1(e) and T}, (¢) f(z) = 0. Thus, w > 0 on [0, co) X
0B,,. Applying Proposition we get that w(t,z) > 0 in [0,00) X B,,.

We now turn to the general case. If f € Cy(R?) with f > 0, we approximate
f in the L*(B,,) norm with a nonnegative sequence of continuous functions
(fn) vanishing on 0B,,. Then, for any n € N we define

wn(t’ :E) = sz(t)fn(x) - Tp1(t)fn(x)7

for all € B,,. Since T),(+) is bounded in L*(B,,) for i = 1,2 by Proposition
[1.2.1)c) and f, — f in L*(B,,), then w,(t,) — w(t,-) in L*(B,,) for all t > 0.
Moreover, by what we proved above, w, > 0 in [0,00) x B,,. It follows that
w > 0 and, thus, T, () f(x) < T,,(t)f(z) for all z € B,,.

Finally, by the positivity of T}, (-), we deduce that T, (¢)f(x) > 0. O

In view of the previous lemma, we can define the semigroup 7'(+) associated
with A in R?. We set

T)f(x) = lim T,(t) f(x),

pP—r00
for all 0 < f € Cy(R?Y) and T'(t)f = T(t)fT —T(t)f~ for general f € Cy(R?).
Proposition 1.2.3. T(-) is a positive contraction semigroup in Cy(R?).

Proof. Clearly, T'(t) is a linear operator. Moreover, taking into account Propo-
sition|1.2.1](e)-(f), the positivity and the contractivity of T'(-) are inherited by
that of T,(-).

We now check the semigroup law. Let 0 < f € Cp(R%). On one hand, we
have

T(t+5)f () = lim Tyt +5)f(2) = lim T,()T,(5)f () < TWOT () (2).
On the other hand, by the monoticity and the boundedness of the sequence
(T,(t)f), for every p; > 0 we get
T(t+5)(x) = lim T,OT,(5)f() 2 lin T, (0T,() () = Ty, (0T (5)1 (@)
Letting p; — oo we find that T'(t+s) f(x) > T(t)T(s) f(z), thus the semigroup

law in case f > 0. For general f it suffices to write f = f* — f~ and use the
linearity of T'(t). O

We now show that, for any f € C,(RY), T(t)f(z) is a solution to the
parabolic equation d;u = Au.



1.2. The semigroup 20

Theorem 1.2.4. [/8, Theorem 4.2] For f € Cy(RY), let u(t,x) = T(t)f(z)
fort >0, z € RY. Then u belongs to the space Cp/** “((0,00) x RY) and

loc
satisfies the equation

d

Oyu(t, x) Z ¢ij(x)Diju(t, z) + Z Fiy(x)Dsu(t,x) — V(x)u(t, z).

2,7=1 =1

Proof. Fix ¢,7,0 > 0 such that 0 < ¢ < 7. By interior Schauder estimates
(see Theorem |C.1.3) there exists a constant C' such that

Hup’|01+C/2,2+C([577—]X§0) <C HupHoo )

for any p > 0. Then, since T),(t) are contractions by Proposition M(f), we
have

Hup||ol+</2,2+<([577-]><§0) <O\ flloo
It follows by Ascoli-Arzela theorem that u, converges to w uniformly in [e, 7] x
B,. We now apply again interior Schauder estimates for 0 < ¢; < ¢ and
£ < g1 <11 < 7T obtaining that there exists a constant C’ such that

[tpy — tp, ||Cl+</272+<([51,71]XEGI) < Oy, — up, ||Loo([€,T]X§G) :

Combining this with the fact that (u,) is a Cauchy sequence in L>([e, 7] x B,)
we get that (u,) is a Cauchy sequence in C**¢/2%¢([g, 7] x B,,). Hence,
u, = uin CLF/22H (0, 00) x RY) and, thus, u € Cr/*?7((0, 00) x R%) and

loc loc

Ou = Au. O]

In the following result we obtain an integral representation of the semigroup
T(-) from that of T),(-). Indeed, the integral kernel of T'() is obtained as the
limit of the kernels p, that represent 7),(-).

Theorem 1.2.5. [48, Theorem 4.4] The semigroup T(-) can be represented in
the form

7)) = [ plt.e.)f)dy (1.14)

for f € Cy(R%). Moreover, the integral kernel p enjoys the following properties:

(a) p=p(t,z,y) is a positive function in (0,00) x R? x R? and the functions
p(t,-,-) and p(t,x,-) are measurable for any t > 0, x € RY;

(b) for almost every y € R the function p(-,-,y) belongs to
CHC/Q’“C((O, ) x RY) and solves the equation O;p = Ap.

loc

Proof. Taking into account Proposition (d), we have that every semigroup
T,(-) is represented by the kernel p, in B,. Moreover, by Lemma [1.2.2] if
0 < f € Cy(RY), then T,(t)f converge monotonically to T'(¢) f. Consequently,
for every 0 < f € Cy(R%) and 0 < p < p; < pa, we have

/B [Pps (7, y) — Doy (8,2, 9)] f(y) dy > 0,
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for any ¢t > 0 and « € B,,. Since the function p,,(t,z,-) — p,, (t,z,-) is contin-
uous in B, for every t > 0 and x € B,, it follows that p,,(t,z,y) > p,, (t,z,y)
for all t > 0 and z,y € B,. As a result, also the kernels p, increase with p.

We claim that the semigroup 7°(+) is represented by the kernel p defined as
follows

p(t,l‘, y) = hm pp<t,$, y)
pP—>0

First, we observe that p is finite almost everywhere. For that, it suffices to
take f = 1 in Proposition[1.2.1) (f) to get

/ pp(t7x7y) dyS 17
By

for all t > 0, z € B, and p > 0. If we now let p — oo, the monotone
convergence leads to

/ p(t,z,y)dy <1,
]Rd

for all t > 0 and € R? This shows that p(t,z,y) is finite for any ¢ > 0,
r € R? and almost any y € R%. Moreover, by monotone convergence we have
T(t)f(x) = lim T,(¢)f(z) = m | py(t,z,y)f(y)dy =/ p(t,z,y) f(y) dy,
p—00 p—00 B, R4
for positive f € Cy(R?). For general f we put f = f* — f~ in the previous
expression and we obtain (1.14). In addition, each kernel p, is positive and the
functions p,(t,,-) and p,(t,x,-) are measurable for any ¢ > 0, z € R%. Thus,
the limit p satisfies (a).

The rest of the proof is devoted to the regularity of p. We fix y € R? such
that p(t,z,vy) is finite for any ¢t > 0 and x € R%. Then, we apply the parabolic
Harnack inequality (see e.g. [35, Chapter VII]) for 0 < ¢ < 7, t; > 7 and
o > 1, obtaining that there exists a constant C' > 0 such that

sup [ppz <t7 z, y) — Pp (tw xz, y)] < C lILf‘ [p/)2 (t17 z, y) — Ppy (tl; xz, y)]
e<t<T,xEBgs z€B,
Taking pi, p2 — oo and considering that p(ti,z,y) < oo for some = € B,, we
have that

HLf [pp2<t1=x>y) _ppl(tlvxay)] — 0.

(EGBG

Therefore, p,(-,-,y) converges to p(-,-,y) as p — oo uniformly in [¢, 7] x B,.
Finally, fixed 01 < 0 and ¢ < £; < 7y < 7, interior Schauder estimates (see

Theorem |C.1.3) yield

Hpm('a ) y) — DPp ('7 E y) H01+c/2,2+g([517n}x§

0'1)
< ' ||pp2('7 5 y) _pm('v K y)HLOO([g,T]xEO) )

for some constant C’ > 0. Since the right hand side of the previous inequality
converges to 0, then (p,(,-,y)) is a Cauchy sequence in C**¢/22+¢([g, 7] x
B,,). We conclude that p(-, -, y) belongs to CL./*2T€((0, 00) x R) for almost

loc

all y € R? and 9,p = Ap. O
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Next, we investigate the continuity properties of the semigroup 7'(-), such
as the continuity of the function u(t,x) = T'(t)f(x) up to t = 0. From that,
it follows that, for any f € Cy(RY), T(t)f(x) is actually a classical solution to

the parabolic problem (1.1)).

Proposition 1.2.6. [/8, Proposition 4.3, Theorem 4.5, Proposition 4.6] The
following statements hold.

(a) If f € Co(RY), then T(t)f — f ast — 0 uniformly on RY.
(b) If f € Cy(RY), then T(t)f — f ast — 0 uniformly on compact subsets of
R4,

(¢c) If (gn) is a bounded sequence in Cy(R?) and g,(z) — g(z) for every x € R?
with g € Cy(RY), then T(t)gn(z) — T(t)g(x) as n — oo in CH2((0,00) X
R%).

Proof. We start with proving (a) if f € C?(R?) with support contained in B,.

In such a case we have that f € D,(A). Then, since A, is sectorial by Theorem
C.3.3, we apply Proposition to infer that

T,01() = fle) = [ Tye)Afa)ds,

for any x € Ep. Applying the dominated convergence theorem we get

7))~ 1) = [ T()Af@) s, (1.15)

for any z € B, but also for z € R? by the arbitrarity of p. Hence, since T'(¢)
is a contraction by Proposition we obtain

|wwf—mmsAnT@AmmwSHMﬂu-

Letting t — 0 we deduce that T'(t)f converges to f uniformly.

If now f is a generic function belonging to Cy(R?), we approximate f with
a sequence (f,) of C*-functions such that f,, has support contained in B, .
Then, by the contractivity of 7'(-), we derive that

1T f = flloe <NT@S =T W) fallo + 1@ S = fallo + 10 = flls
<2fo = flloe + 1T (E) fro = frll -
Since T'(t)f, converges to f, uniformly as ¢ — 0 by what we proved above,
taking the limsup as ¢ — 0 and then the limit as n — oo in the previous

inequality yields (a).
We now prove (b). We define

p(t,z,B) = / p(t,z,y)dy,
B
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for any measurable set B C R?. We preliminarily show that
p(t,z, R\ By,) = 0 (1.16)

as t — 0 uniformly on B, for every p > 0. For that, let fi, fo € Co(R?) be such
that 0 < xp, < fi < XB,, < fo < 1. Since f; <1 and vanishes in R\ By, we
deduce by Theorem that

7(0)i(0) = [

Rd

pt,x,y) fily) dy < / p(t,x,y)dy = p(t, v, Byy),

B,
for every z € R%. Moreover, considering that fo > 0 and fo = 1 in By, for
any r € R? we get

p(t,x, By,) = /

Ba,

mmwmw@s/mmwmwwzﬂmm»

R4
Combining the both estimates, we find that
T(t)fi(x) < p(t,x, Byy) <T(t) fa(2),

for any 2 € RY. Therefore, given that T'(t)f; — 1 as t — 0 uniformly on B, for
i = 1,2 by (a), we obtain that also p(t,x, By,) — 1 uniformly on B,. Hence,
we deduce (1.16) by the following chain of inequalities

0 S p(t7qud \ BZp) = p(t,ZL’,Rd) —p(t,l’, B2p> S 1 _p(t7x7 B2p>‘

We are now ready to prove (b). Let 0 < f € Cy(RY) and consider a function n €
Co(R?) such that 0 <7 <1,n=1in By, and with support contained in Bj,.
Using the positivity of 7'(+) by Proposition and its integral representation
given by Theorem we have

T(@t) f(x) =T@E)(nf)(x)] =TE)((1—n)f)(x)
= /de(t, z,y)(1—n(y))f(y) dy

swm/ plt,,y) dy
RN\ By,
= HfHoop(t,x,Rd \ BQP)'

Thus, according to (1.16), we have that the left hand side tends to 0 as t — 0
uniformly on B,. Moreover, since nf € Co(R?), then [|T(t)(nf) — (nf)|l — 0
as t — 0 by (a). In conclusion, since on B, we have T'(t)f — f = T(t)f —

T(t)(nf) +T()(nf) —nf, we write
1T f = flloe S NT@f =T + 1TE0S) = ()l -

It follows that T(t)f converges to f as t — 0 uniformly on B,. Considering
f=f"— f~, we get the result for general f € C,(R?). This proves (b).
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We now show that (c) holds. For that, fix 0 < e < 7, ¢ > 0 and let (g,)
be a bounded sequence in Cy(R?) such that g,(z) — g(x) € Cy(R?) for every
r € R%. We prove that T'(t)g,(z) — T(t)g(x) uniformly for (t,z) € [e, 7] x B,.

Since Theorem [1.2.5] provides us with an integral representation for the
semigroup 7'(-), it suffices to apply the dominated convergence theorem to
infer that

T(t)gn(x) = T(t)g(x),
for any * € R? By the boundedness of the sequence (g,), we have that

sup,, [|gnll, < K for some constant K > 0. Combining this with the fact that
T'(-) is a contraction semigroup by Proposition |1.2.3| we deduce that

sup | T(t)gnll o, < K,

for every t > 0. If we apply the interior Schauder estimates in Theorem [C.1.2]
we derive that the sequence (T'(-)g,) is bounded in C'+¢/22+¢([e. 7] x B,).
The Ascoli-Arzela theorem implies that there exists a subsequence (7°(-) f,,)
converging uniformly in [e,7] X B, to a function v € C**¢/22¢([¢, 7] x B,).
Since T'()g, converges pointwise to T'(-)g in (0,00) x R, we obtain that v =
T(-)g and (T(-)g,) converges to T(-)g uniformly in [, 7] x B,. We also get
that T'(t)g,(z) — T(t)g(z) as n — oo in C?((0,00) x RY). O

In general, given f € Cy(R?), u(t,x) = T(t)f(x) is not the unique classical
solution to the problem which is bounded in [0, 7] x R? for any T > 0.
However, if f > 0, u is the minimal positive solution in the sense of the next
proposition.

Proposition 1.2.7. For f >0, let u(t,z) = T(t)f(x) fort >0, x € R, If v
is another positive solution to the parabolic problem (1.1)), then v > w.

Proof. 1f we apply the weak maximum principle (Proposition |C.2.3)) to the
function v(t,z) — u,(t,z) for any t > 0 and x € B, then we get v(t,z) >
u,(t,z). Taking p — oo leads to v > w. O

Since T'(+) selects the minimal from among all bounded positive solutions to
the problem (1.1, we sometimes refer to it as the minimal semigroup associated
with A.

1.3 The weak generator

Since the semigroup 7'(+) is not strongly continuous in Cy(R?), it is not possible
to consider the infinitesimal generator in the usual sense. However, we can
take the Laplace transform of the semigroup [ e T'(t)f(z) dt for X > 0 and
x e RYTIE ([ e MT(t) f(x) dt)rso is the resolvent family of a closed operator,
then that operator is called the weak generator of T'(-) and we write

RO\ A)f(x) = / TN (o) dt,
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for A > 0 and 2 € R%. In our situation the generator is A = (A, D) defined in
Theorem

Proposition 1.3.1. [{1, Proposition 5.1] The generator of T() is A. In
particular it coincides with Anax if and only if A\I — A is injective on Dyyax(A).

Proof. For A > 0, f € Cy(R?) and x € R? we have

R\ A)f(x) = /0 h e MT(t) f(x) dt = ,}320 Oooe”Tp(t) f(z)dt
= lim R(\, 4,)f(z) = R(\) f(z) = R(A, A) f(x).

p—00

This show that R(\, A) is exactly the resolvent family of A defined in (1.11).
The last part of the statement follows from Proposition [1.1.5] O

In [36, Proposition 2.3.1] it is proved that A is given by the following direct
description

R T(Hu —
D= {u € Cy(RY): sup W < o0, 3g € Cy(R?) such that
>0 .
lim T(ulz) = u() =g(x) Vx € Rd} ,
t—0 t

Au(z) =lim T(tu(z) = u() for u € D.
t

t—0

Moreover, if f € D, then T'(t)f € D for every t > 0 and we have
T(t) f(x) = AT(D)f(z) = T(H) Af (x), (1.17)

for any ¢t > 0 and x € R%
In the following result we point out that identity (1.17) is valid for C?-
functions with compact support.

Corollary 1.3.2. If f € C?(RY), then 0, T(t)f(z) = T(t)Af(z) for anyt > 0
and x € R,

Proof. Let f € C2(R?). Since C*(R?) C Dyyax(A) N Co(R?), we apply Proposi-
tion to infer that f € D. Then the statement follows by . Alterna-
tively, it is possible to directly compute the derivative of T'(¢) f(x) by dividing
by t equation and then let ¢ — 0. O

As a consequence of the previous result, we prove the following lemma that
will be very useful in the next chapters.

Lemma 1.3.3. [1, Lemma 2.1] Let 0 < a < b and ¢ € C*(Q(a,b)). Then
/( )(@w(t,y)+A90(t,y))p(t,w,y) dt dy
Q(a,b

= /Rd (p(b, x, y)go(b, y) - p(a, €, y)@(a7 y)) dy.
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Proof. Let ¢ € C*(Q(a,b)). Then, applying Corollary we have
T (t)p(-, 1)) =T ()0 (-, 1) + T(t)Ap(-, 1).

The thesis follows by integrating the previous identity over [a,b] and writing
T(t) in terms of the kernel p. O

1.4 Lyapunov functions

In the previous sections we proved the existence of solutions to the problems
and for any f € Cy(R?) and A > 0. Now we show that the uniqueness
of such solutions is ensured by the existence of a Lyapunov function. In the
next chapter we will see some examples in case of operators in divergence form
with polynomially or exponentially growing diffusion coefficients.

Definition 1.4.1. We say that a function Z : R¢ — [0,00) is a Lyapunov
function for A if 0 < Z € C*(R?) for some ¢ € (0,1) such that im0 Z(z) =
oo and there is a constant A > 0 such that

AZ(z) < \Z(x) (1.18)
for all x € RY.

We sometimes say that Z is a Lyapunov function for A with respect to A
when we want to underline the constant A > 0 which satifies inequality (1.18).

Remark 1.4.2. If Z is a Lyapunov function for A, then Z + C 1is also a
Lyapunov function for A for any positive constant C. So, one can assume

without loss of generality that a Lyapunov function Z for A satisfies Z(x) > 1
for all z € R

We need the following lemma which provides us with a local maximum
principle for functions in VVli’f(Rd).

Lemma 1.4.3. [38, Proposition 4.2.1] Assume that u € WEP(RY), for any

loc
p € [1,00), and that Au € C(RY). If zy is a local mazimum (resp. minimum,)

of u, then
Au(xg) + V(xo)u(zg) <0 (resp. Au(zo) + V(xg)u(zo) > 0)
We are now ready to prove the main theorem of this section.

Theorem 1.4.4. Assume that A has a Lyapunov function Z. Then the fol-

lowing statements hold.

(a) Fized T > 0, if u,v € Cy([0,T] x RY) N CL2((0,T] x RY) are solutions of
problem (1.1)), then u = v.
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(b) The function u(t,z) = T(t)f(x) is the unique classical solution of the
Cauchy problem (1.1) which is bounded in each strip [0,T] x R%.

(¢) The operator \I — A is injective on Dy (A) for any A > 0.

(d) The weak generator A= (A, 15) coincides with Amax = (A, Dmax)-

Proof. Statement (b) easily follows by (a) and, by Proposition|1.1.5, (c) implies
(d). We now prove (a) and (c).

Let u € Cy([0,T] x RY) N CH2((0,T] x RY) be a solution of the parabolic
problem (1.1) with f > 0. For e > 0 we consider the function

ve(t, ) = e Mu(t, r) + e Z(z),

for any (t,x) € [0,7] x R%. Then, for every R > 0, v. has a minimum point
(to,r0) € [0,T] x Bg. If v.(ty, 79) < 0, then to > 0. Indeed, if to = 0, then
ve(0,20) = f(z0) +eZ(x0) > 0, which is not possible. Therefore, Oyv.(tg, o) <
0. On one hand, by Lemma 1.4.3 we deduce that

A’Ug(to, .730) + V(afo)’l)g(to, .CE()) 2 0. (119)
On the other hand, since AZ < A7, we get
O — (A= XN)v. =e(\Z — AZ) > 0. (1.20)

Taking into account that dyv.(to, 20) < 0 and combining (1.19) with (1.20), we
deduce that

0 S 8t?j8(t07 [L’()) — (A — )\])’UE('[ZQ, QT())
< (A + V(xo))ve(to, zo) — (A — A)ve(to, x0)
= (V(20) + A)ve(to, o).

Since V(xg) > 0 and A > 0, it follows that v.(to,z9) > 0, so v. > 0. Letting
¢ — 0 we obtain that v > 0.

We infer that this proves (a). Indeed, if we have u,v € Cy([0,7] x R%) N
C12((0, T] x R?) solutions of problem (1.1]), then the difference u — v solves the
same problem with f = 0. Arguing as above yields v > v and, taking v — u
instead, it leads to u = v.

For (c), let v € Dpax(A) with Av—Av = 0, where A > 0. By local regularity
results for elliptic equations in bounded domains, we have that v € C’it<(Rd).
Moreover, the function

u(t, x) = eMo(w)
belongs to Cy([0,T] x R?) N CY2((0,T] x RY) an
f = v. Then, (b) implies that u(t,z) = T(t)v(x
by Proposition [1.2.3] we have |[u(t,-)|| . < ||v|.

since

nd satisfies problem (1.1)) with
). Since T'(+) is a contraction

for every t > 0. In addition,

sup [u(t, z)| = e |lvll. ,
zCR4

we conclude that [[v]|_, = 0. O
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1.5 Integrability of Lyapunov functions

In this section we deal with an operator A in divergence form, namely
Ap =div(QVe) + F - Vo — Vi,

where we assume that A satisfies Hypothesis and the diffusion coefficients
gi; belong to CLH(RY) for all i,j =1,...,d.

We investigate the integrability of Lyapunov functions for A with respect
to the measure p(t, x,y)dy. We first prove the following lemma.

Lemma 1.5.1. Let Z be a Lyapunov function for A. Take ¥ € CP(R) with
O(t) =1 for [t| <1, 9(t) =0 for |t| > 2,0 <9 <1 and set V,,,(x) = I(|Z]),
F,=9,F,V, =19,V and

qz(jm) - ﬁsz‘j + (1 - ﬁm)n(sz‘ja

where 0;; 1s the Kronecker delta. Moreover, define Q,, = (qf]m)) and

Ay = div(QunV) + Fp - V = V.

Consider the analytic semigroup T,,(-) generated by A,, in Cy(R%). Then, for
every f € Cy(R?) we have

Tn()f () =T
in CY2((e,T) x Bgr) as m — oo for every 0 < e <T and R > 0.

Proof. Let f € Cy(RY), 0 < e < T and R > 0. By [38, Theorem 6.2.9] there
exists a positive constant C' depending on ¢, 7" and R such that

1T () fllorseraseqeinnry < CNTm() S o erpmixasey < C 1l ey -

Then the Ascoli-Arzela theorem infers that there is a sequence (my,) such that
T, (-)f = win C¥*((e,T) x Bg) for some function u € C’llotg/Q’HC((O, +00) X
R?). Moreover, we have that |u(t,z)| < ||f]|., and du — Au=01in (0,7) x R?
since Oy Lpn, () f — Ap T, () f = 01in (0,T) x Bg for my > R. From now on
we write T,,(-) instead of T}, (-). Indeed, if we show the statement for the

subsequence (T, (+)), then it is valid for the whole sequence (7,(-)). We set

u(0,2) = f(z),

for all z € R?. If we prove that u(t, z) is continuous up to t = 0, then Theorem
implies that u(t,x) = T'(t) f(z) for any ¢t > 0 and z € R%.

In the case f € CFT(R?) the continuity of u(t,z) for t = 0 follows by
applying the Schauder estimates for the operator A (see [38, Theorem 6.2.10])

||Tm(')f||cl+</2,2+§([0,T]XBR) <C ||f||02+<(]Rd) :
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Indeed, from that we have T,,(-)f — T(:)f as m — oo in C*2([0,T] x Bg).
Let now assume f € C.(RY). We approximate f with a sequence (f;) of
C*t¢_functions such that fy — f in L>®(R?). For any ¢ > 0 we have

HTm(t)f - fHLoo(BR) < HTm(t)(f - fk)”LOO(BR) + ”Tm(t)fk: - kaLOO(BR)
1 = fell oo )
ST fi = fill sy +21F = fill Loy -

Since f;, € CyT(R?), we deduce from the previous case that T, (-) fr — T(-) fx
as m — oo in CY2([0,T] x Bg) for all k € N. Therefore, letting m — oo in
the previous inequality, we obtain that

lu(t, ) = fll g (pr) < 1T fr = fill ooy + 211 = fill g ey »

for any t > 0. If we now let t — 0 and k£ — oo we find that u(t,z) — f(z) as
t — 0 for any z € Bg. Thus, as a consequence of Theorem we derive the
statement.

We finally prove that u(¢,z) is continuous up to ¢ = 0 for a general f €
Cy(RY). We consider a function ¢ € C.(R?) such that 0 < ¢ <1, p = 1 in
Br/> and with support contained in Bg. For t > 0 we write

Tn()f = Tn(t)(@f) + Tt (1 = @) f).

We observe that the function w = T, (¢) (1 —¢) f) = || fll o Tm(t)(1 —¢) satisfies
the equation Dyw = A,w and w(0,-) = (1 —¢)f — (1 —¢) || fll., < 0. Thus,
w < 0. A similar inequality holds if we replace f with —f. Then we find that

T ()1 = @) N < Nl Ta(t)(L = ).

Hence we get

T () f = f1 S| Tn(8)(@f) = f1 + | Tn(®)((1 = ) )]
< Tn(@)(ef) = I+ 1l Tn()(1 = ¢)
<T@ (pf) = I+ [ flle (0= Toult)g).

Since the functions ¢ f and ¢ belong to C.(R?), we deduce that T,,(t)(¢f) —
T(t)(¢f) and T,,(t)p — T(t)p as m — oo. Letting m — oo in the previous
inequality yields

ut,-) = I < |T@(@f) = f1+ [ fllo 1 =T(#)g).

Taking into account that ¢ = 1in Bpg/; and considering the previous expression
in Br/s, we let ¢ — 0 and we proceed as above to gain the statement.
O

We now show the main result of this section.
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Proposition 1.5.2. Assume that A satisfies Hypothesis with q;; €
C’HC(R‘Z). If Z is a Lyapunov function for A with respect to A, then

loc

[ otz < 2(a), (1.21)

for every x € R% and t > 0.

Proof. Let x € R and t > 0. We split the proof in several steps.
Step 1. First of all, we approximate Z with a CZ(R?)-function. Let a > 0
and set

Lo =24 N .

For every 0 < € < 1 we consider a function 9. € C*°(R) such that 1.(t) =t
for t < a, 1.(t) is constant for t > a+¢, . > 0 and ¥” < 0. We approximate
Z with the function 9. o Z € C*(R?). Indeed, we have that

Y. 0 Z — Z pointwise as € — 0, o — +0.

Now we approximate A with the operator A, = div(Q,,V) + F,, -V =V, and
T'(-) with the analytic semigroup 7,,(-) as in Lemma We observe that
the domain of A, is Dyax(Am).

Since limy| 00 Z(x) = 400, there exists M, > 0 such that Z(z) > a+1 for
|z| > M,. Since € < 1, by definition of v, it follows that (1.0 Z)(x) is constant
outside the compact set {Z < a+ 1} and so 9. o Z is a bounded function. It
implies that A,,¥.(Z(z)) is bounded too. Hence, the function v, o Z belongs
t0 Diax(Am)-

Step 2. We now prove that

0T (t)0e(Z () < T (8)(V(Z () AmZ (). (1.22)
Using , we write the left hand side of the previous inequality as follows
T ()Ve(Z(x)) = AnTo()e(Z () = Tn(t) Amte(Z(z))  (1.23)

Moreover, we have that

Ape(Z(@)) = 3 Di (a5 @)Dy (Z(2)) ) + 3 Filw) Dite(Z ()
= Vi(2)t:(2(2))
—UL(2(2)) AnZ(x) + V(@) Z(2)UL(Z () = - Z())
+L(2(2) 3 4" (@) DiZ () D;Z (). (1.24)

On one hand, since 9? < 0, it follows that t¢.(t) < 1.(t) for t > 0. Taking
t = Z(z) and given that V,,, > 0, we obtain that

Vin(@)[Z(2)¢L(Z(x)) — e(Z(2))] < 0. (1.25)
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On the other hand, by Hypothesis[1.0.1] @ is uniformly elliptic, so

d
> 4" (2)DiZ(2)D; Z (= Z 6ij(2)D; Z(x) D; Z ()

i,j=1 ,7=1

+ (1 =V (2)) [VZ ()]
>n|VZ(z)|* >0,

whereas ¢ (Z(x)) < 0. Then,

Z " (x)D; Z(x)D; Z(x) < 0. (1.26)

i,j=1

Combining ([1.24) with (1.25) and (1.26) yields
Anbe(Z () < YUZ (7)) AnZ(z).

Therefore, from (1.23) we gain inequality (1.22).
Step 3. Letting m — oo in (1.22), we show that

T(t)ve(Z(x)) < T(t)(¥2(Z(x))AZ(x)). (1.27)

Since 1. o Z is constant outside the compact set {Z < a + 1} as observed in
Step 1, in there we have that ¥.(Z(z)) = 0. Hence, the right hand side of
(1.27) makes sense and for m sufficiently large we infer that

Tn(t)(WL(Z(2)) AmZ (1)) = T (1) (V2(Z () AZ ().
For m large we can then write as follows

O Tn()¥=(Z(2)) < T () (V2(Z(2)) AZ ().
Letting m — oo and using Lemma since the functions v¢.(Z(z)) and
YL(Z(2))AZ(z) belong to Cy(R?) we obtain inequality (1.27).
Step 4. Letting e — 0 in (1.27), we now prove that

OT () Za() < /{ . PEE0AZ) dy (1.28)

First, if we consider the sequence (¢, o Z) with respect to e, we have that it
is bounded, 1. o Z € C%(R?) and 1. 0 Z — Z, pointwise as ¢ — 0, with Z, €
Cy(R?). Then, by Proposition[1.2.6(c), we deduce that T'()(y. 0 Z) — T(t)Z,
in C*?((0,400) x R?). Consequently, if we look at the left hand side of (1.27),
we have
\T'(t))-(Z(x)) — 0T (t) Zo(z) ase — 0.

Second, we apply the dominated convergence theorem in the right hand side of
because Y. (t) — X(-o0,a(t) as € = 0 and AZ is bounded on the compact
set {Z < a+ 1}. Then we obtain

/ plt, 7, y) 0L (Z(9) AZ(y) dy — / p(t,x,9)AZ(y) dy as e — 0.
{Z<a+1} Z<a}
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Then (1.28) follows.
Step 5. Finally, letting o — oo in (1.28)), we get (1.21). Indeed, since Z is
a Lyaponov function for A, (1.28) yields

0T (t)Zy(x) < /

{Z<a}

p(t,x,y)AZ(y) dy < A/{ }p(t,x,y)Z(y) dy
Z<a

<3 [ stz an [ pltagady
{Z<a} {Z>a}
<X [ pltiny)Za(y) dy = AT (@) Zulo)
R
Then, by Gronwall’s Lemma, it follows that
T#)Zo(z) < o MT(0)Z,(3) = M Zo (),

for all x € R and ¢ > 0. Letting @« — oo we conclude that (1.21]) holds
true. O

Corollary 1.5.3. Assume that A satisfies Hypothesis with q;; €
C’IE:CFC(RC[) and that there exists a Lyapunov function Z for the operator A.
Then, for fized T > 0, the family {p(t,z,y)dy | t € (0,T)} is tight, namely for
every € > 0 there is a constant R > 0 such that p(t,z,R\ Bg) < ¢ for any

te (0,7).

Proof. Let R > 0 be large enough. We have that

/Rd p(t,z,y)Z(y) dy > /Rd\BRp(t,x,y)Z(y) dy > ( inf Z) p(t,x,Rd\BR).

RI\BR
Therefore, by Proposition it follows that

M Z ()

Bt ) N
infRd\BR A

tor,RI\NBp) < ———
p( & \ R> - infRd\BRZ /]Rd

as R — oo. O

p(t, 7, y)Z(y) dy <

Remark 1.5.4. If 0 < Z € C*(R?) such that lim|;|o Z(z) = 400 and there
18 a constant M > 0 such that

AZ(x) < M,

for all z € R?, then Z is a Lyapunov function for A. Indeed, as in Remark
one can assume without loss of generality that Z > 1. So,

AZ(z) <M < MZ(x),

for allz € RY. Hence, we find that Z is a Lyapunov function for A with respect
to M.
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1.6 Time dependent Lyapunov functions

As in the previous section, we deal with the operator A in divergence form
defined by

Ap =div(QVy)+ F - Vo — V.

In this section we keep the following assumptions.

s Cl+C<Rd;Rd><d); F =

~~~~~ loc

(RY) for some ¢ € (0,1). Moreover,

Hypothesis 1.6.1. We have Q = (q;j)i =1
(F})j1...q € CS(RERY and 0 <V e CS

loc loc

-----

(a) the matriz Q is symmetric and uniformly elliptic, i.e. there isn > 0 such
that

d
> ai(@)&G = nlE* for all x, € € RY;

ij=1
(b) there is a Lyapunov function Z for A.

We now introduce time dependent Lyapunov functions for L := 0; + A as
in [1, 30, (31, 4T, [51].

Definition 1.6.2. We say that a function W : [0,T] x R — [0, 00) is a time
dependent Lyapunov function for L if W € CY2((0,T) x R?) N C([0,T] x
RY) such that limjy e W (t,z) = oo uniformly for t in compact subsets of
(0, 7], W < Z and there is 0 < h € L'((0,T)) such that

LW (t,z) < h(t)W(t, z), (1.29)
or all (t,x) € (0,T) x R? and some T > 0.
[

To emphasize the dependence on Z and h, we also say that W is a time
dependent Lyapunov function for L with respect to Z and h.

The first part of this section is devoted to showing that time dependent
Lyapunov functions are integrable with respect to the measure p(t, x, y)dy for
any (t,z) € (0,T) x R?. For that, for any (¢,z) € (0,T) x R? we define

wit.)i= [ pta ) Wit dy. (1.30)

Proposition 1.6.3. Assume that A satisfies Hypothesis[1.6.1. If W is a time
dependent Lyapunov function for L with respect to Z and h, then

G (t,2) < el MO a0, 7)),

for any (t,x) € [0,T] x RY.
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Proof. Let x € R and t € [0, T]. The proof is similar to the one of Proposition
We let o > 0 and set

Weo =W A a,

for all ¢ € [0,7T] and = € RY. We approximate W with the C,”(R¢)-function
oW, where 0 < ¢ < 1 and the function v, is such that ). € C*°(R), ¥.(t) =t
for t < a, 1.(t) is constant for t > a + ¢, . > 0 and ¥” < 0. Similarly, as
in Lemma 1.5.1, we approximate A with the operator A4, = div(Q,V) + F, -
V —V,, and T'(-) with the analytic semigroup 7,,(+). Furthermore, as observed
in Step 1 of Proposition [1.5.2] the function ¢.(W (¢,-)) belongs to Dyax(Am)
for any ¢ € [¢,T]. We note that by we have

O (L) -(W(t,3)) = AT ()0 (W (E, ) + T () (W (2, 2)) 0, W (2, )
= Tn(O)[Amte(W (t, ) + U2 (W (L, 2)) 0 W (L, )],

for all t € [¢,T] and z € R By computing A,,%. (W (t,y)) and repeating the
argument used in Step 2 of the proof of Proposition we get

O ()W (L, 2)) < T (O (W (L, 2)) (00 + Am) W (L, 7)],

for all t € [e,T]. Moreover, as in Step 3, we may let m — oo using Lemma
in order to obtain that

T (D). (W(t,2)) < T(&)(WL(W (t,2)) LW (¢, )
- / Dt 2,y LW (6, y)) LW (2, ) dy,
{W<a+1}

for all t € [e,T], where L = 0, + A. Then, since . (W(t,-)) — Wy(t,")
pointwise as € — 0, we let ¢ — 0 in the previous inequality and we apply

Theorem ¢) to derive that

OT(OWalt,z) < / p(t, 2, y) LW (£, ) dy,
{W<a}

for all ¢t € [0,T]. In addition, since W is a time dependent Lyapunov function
for L, we use (1.29) and we find that

AT (Wt ) < / Pt 2, y) LW (1, y) dy
{W<a}
< h(t) / plt, 2, y)W (t,y) dy
{W<a}

< ht) /{ oy P OW ) dy () /{ plt,,y)ady

W>a)
= ht) [ pltsa.p)Walt.n) dy = HOT(OWa t.2).
for all t € [0, T]. According to Gronwall’s Lemma, for all ¢ € [0,7] we get
TE)Walt, z) < o "y (0, 7).

The statement follows by letting o — oo. O]
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In the second part of this section we introduce a family of operators A,
with bounded diffusion coefficients approximating the operator A. It will be
useful in the next chapters.

Assume that there exists a time dependent Lyapunov function W; with
respect to Z for the operator L, where Z is the Lyapunov function given in
Hypothesis[1.6.1(b). Let ¢ € C2°(R) be a function such that 0 < p <1, p =1
n(—1,1), ¢ =0in R\ (=2,2), ¢ is decreasing in (0,+00) and |s¢'(s)| < 2
for all s € R. We set

pal) = (Wi (to, 2) /) (1.31)
and
0 (x) = en(@)a; () + (1 = pu(2))ndi, (1.32)

where ¢y € (0,7") and ¢;; is the Kronecker delta. We consider @, := (ql(]")) and
we approximate A with the family of operators A,, defined by

Ay, = div(Q, V) + F-V — V. (1.33)

Lemma 1.6.4. Assume that A satisfies Hypothesis[1.6.1] with the function Z
in Hypothesis (b) being a Lyapunov function for both the operators A and
nA + F -V — V. Then, for every n € N, the diffusion coefficients qi(;) and
their first order spatial derivatives are bounded on RY. Moreover the operator
A, satisfies Hypothesis and if W is a time dependent Lyapunov function
for the operators L and 0, +nA+ F -V —V with respect to Z and h such that
VW | is bounded on (0,T) x Bg for all R > 0, then W is a time dependent

Lyapunov function for 0y + A,,.

Proof. Clearly, since lim|g—c Wi(to,2) = 400, the functions ¢, vanish out-

side a compact set. As a consequence, the coefficients qg-l)

derivatives Dkqi(;l) are bounded on R? for all 7,5,k = 1,...,d. We now check
Hypothesis for A,. First, we observe that @, is symmetric and, thanks

to the uniformly ellipticity of @), we get

and their spatial

Zq“” 2)&EE = on qu 2)&& + (1 — pa(@) 1€ > nlef?,

i,j=1 i,j=1

for any z, £ € R%

It remains to prove that if Z is a Lyapunov function for the operators A
and nA + F -V —V, then Z is a Lyapunov function for A,. As Remark
shows, without loss of generality we may assume that the infimum of Z is
positive. Let z € R%. Then

A Z(x) =div(Q,VZ(x)) + F(x) - VZ(x) — V(x)Z(z)
=pn(2)div(QVZ(z)) + QVu(z) - VZ(2) = nVen(z) - VZ(2)
+ (1 = pn(2))AZ(2) + F(z) - VZ(2) = V(2)Z(2)
=pn(2)AZ(2) + (1 — u(2))(NAZ(2) + F(x) - VZ(x) — V(2)Z (7))
+ QV(z) - VZ(x) = nVeu(z) - VZ(2).
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For the first and the second term in the right hand side we use that AZ(z) <
A (z) and nAZ(z)+ F -VZ(z) = V(x)Z(x) < NZ(x):

ApnZ(x) < MNZ(x) + QVu(x) - VZ(x) —nV,(z) - VZ(x). (1.34)

We can find a bound also for the last two terms since the functions ¢, vanish
outside a compact set. As a result we find a constant A\, > 0 such that

AnZ(z) < M\ Z(x),

for any x € R%. )

We now check that if W is a time dependent Lyapunov function for the
operators L and 9, +nA+F -V —V with respect to Z and h such that [VIV] is
bounded on (0,7") x Bg for all R > 0, then W is a time d(jpendent Lya~punov
function for 9; + A,. This can be seen by computing O, W (t,y) + A, W (t,y)
for (t,y) € (0,T) x R%:

atW(t7 y) + AHW(T,, y)
=on() LW (t,y) + (1 = ea () [OW (t, y) + nAW (L, y) + F(y) - VW (2, y)
)

(
— V)W (t, )]+ QVenly) - VW (t,y) — nVeu(y) - VW (L, y).

Since W is a time dependent Lyapunov function for the operators L and 8, +
nA + F -V — V, the first two terms in the right hand side are bounded by

h(t)W (t,y):
W (t, y)+ AW (t,y) < h(t)W (£, y)+QV e, (y)- VIV (£, y)—nV o, (y)- VW (t,y),

where h(t) € L'((0,T)). Furthermore, the last terms are bounded by a nonneg-
ative constant because ¢, vanishes outside a compact set and |VIW| is bounded
on (0,T) X Bg for all R > 0. Hence, there is a function h,,(t) € L'((0,T)) such
that

atW(ta y) + AHW(ta y) < hn(t)W<t7 y)?

for all (t,y) € (0,T) x R% Then W is a time dependent Lyapunov function
for 0, + A,,. O

Remark 1.6.5. Let Z be a Lyapunov function for the operators A and nA +
F -V —V with respect to \. If there exists a nonnegative function f such that

for all = € R?, then, for any n € N, Z is a Lyapunov function for A, with
respect to the same \. Indeed, by (1.34) we have

AnZ(x) < NZ(x) + %w'(Wl(to, ) [n)[(QVWi(to, ), VZ(x))
— (VWi(to, ), VZ(z))].
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Making use of (1.35) and taking into account that Q is uniformly elliptic, f >0

and ¢ is decreasing in (0, +00), then we get

AnZ(x) < MZ(x) + %@'(Wl(toaf)/n)f(l")KQVWl(tmx), VWi(to, z))
— VWi (to, 2)*] < AZ(x),

for all x € R%. Thus, we conclude that Z is a Lyapunov function for A, with
respect to A for any n € N.

As a consequence of the previous lemma, for every n € N the semigroup
generated by A, in Cy(R?) is given by a kernel p, (¢, z,y).
The following result similar to [31, Proposition 2.9].

Lemma 1.6.6. Assume that A satisfies Hypothesis[1.6.1] with the function Z
in Hypothesis (b) being a Lyapunov function for both the operators A and
nA+F -V —V. Let A, be the operator defined by and pp(t,z,y) be the
integral kernel of the associated semigroup. Then, for t > 0 and x € R%, we
have that

pn(t> x, ) - P(t7 T, )

locally uniformly in R? as n — oo.

Proof. We consider the semigroup T}, (-) generated by A, in C,(R?). By Lemma
we have that the function Z is a Lyapunov function for the operator A,,.
Proceeding as in the proof of Lemma it is possible to show that

[ omttanswds— [ oo ) du

Rd

for all f € C**¢(R?). Hence,

po(t, z,y)dy — p(t, z,y)dy

weakly. On the other hand, from [8 Corollary 3.11] and Sobolev embedding, it
follows that for any compact K C R? there are a constant C; > 0 and v € (0, 1)
such that [|p,(¢, 2, )|y < C1 for all n € N. Thus, by compactness and a
diagonal argument, up to a subsequence p,(t,x,-) converges locally uniformly
to a continuous function, that has to be p(¢,x,-) by the weakly convergence
proved above. O

We now consider the function
Ewan(t,z) = /dpn(t, z,y)W(t,y)dy, (1.36)
R

for any (t,z) € [0,7] x R? and n € N.
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Lemma 1.6.7. Assume that A satisfies Hypothesis with the function
Z in Hypothesis (b) being a Lyapunov function for both the operators A
and nA + F -V —V and such that holds. Let W be a time dependent
Lyapunov function for the operators L and 0y + nA + F -V — V' with respect
to Z and h such that

(a) |VW]| is bounded on (0,T) x Bg for all R > 0;
(b) there are ¢ > 0 and o € (0,1) such that

W < egZt°.
Then

Ewn( ) = §w(, o)

uniformly in (0,T) as n — oo, where the above functions are defined as in
(130) and (130)

Proof. Let t € (0,7T). Then

|§W,n(t7x) - fW(t7I)| S /]Rd W<t’y) |pn(t>x7y) —p(t,x,y)| dy

We fix R > 0 and we split the above integral in the integral over Br and the
one over the complementary of Br. Thus,

|€W77Z(t’ "L‘) - £W(t7 JZ)|
S/ W (t,y) lpn(t, 2, y) — p(t, z,y)| dy
R4\ Bg

+ [ W(t,y) |pa(t,z,y) — p(t,z,y)| dy

Br
< / W (t, y)p(t, . ) dy + / W (t, y)pa(t, 2, y) dy
R\ Bg RN\Bpg
+ [ W(t,y) |pa(t,z,y) —p(t,z,y)| dy. (1.37)
Br

On the other hand, Proposition yields
[ plta)Z()dy < 2(0) < 7 2(2)
R4

for allz € R, t € [0, T] and for some A > 0. Hence, (b) and Hélder’s inequality
lead to

/ Wt y)p(t, . ) dy < co / 27 (y)p(t, 2, y) dy
R4\ Bg

R\ Bg

l—0o
< (/ Z(y)p(t, z,y) dy) p(t,z, R\ Bg)’
RN\Bpg

< ¢ (e’\TZ(x))l_Up(t, z,RY\ Bg)°.
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Since the family {p(¢,z,y)dy |t € (0,7)} is tight by Corollary [1.5.3, the first
term in the right hand side of can be bounded by any given € > 0 if R
is large enough. We can argue similarly for the second term in the right hand
side of because Z is a Lyapunov function for A, with respect to A by
Lemma and Remark Lastly, we look at the third term:

W(t,y) |pa(t, z,y) — p(t,z,y)| dy
Br

< HWHLOO((O,T)XBR) [P (-2, ) = p(-, @, ')HLoo((o,T)xBR) | Br|,

where |Bg| denotes the Lebesgue measure of the ball Bg. Given R > 0,
considering that p,(t,z,-) — p(t,z,-) locally uniformly in R? by Lemma m,
also the third term in the right hand side of can be bounded by ¢ if
n is large enough. To sum up, &wn(-,z) — &w(,x) uniformly on (0,7) as
n — oo. O



Chapter 2

Schrodinger type operators with
unbounded diffusion terms

In this chapter, we are concerned with Schrodinger type operators defined on
smooth functions ¢ by

Ap =div(QVey) — V.

This operator has been studied in the paper [17]. We are interested in the
situation when the diffusion coefficients () and the potential V' are unbounded
functions.

In particular, we discuss the generation of a symmetric sub-Markovian
and ultracontractive Cyp-semigroup on L?(R?) which coincides on L?*(R%) N
Cy(R?) with the minimal semigroup generated by a realization of A on Cy(RY).
Moreover, we look for pointwise upper bounds for the heat kernel of A and
we apply the result in concrete examples, such as polynomial and exponential
diffusion and potential coefficients.

Throughout, we make the following assumptions on ) and V.

4 € CLTYRE R qnd 0 <V e

loc

Hypothesis 2.0.1. We have Q = (¢;j)i j=1
CS (RY) for some ¢ € (0,1). Moreover,

loc

.....

(a) the matriz Q is symmetric and uniformly elliptic, i.e. there isn > 0 such
that

d
> ai(@)&& = nlel® for all z, & € R

3,j=1

(b) there are 0 < Z € C*™(R?Y) and a constant M > 0 such that
limg oo Z(x) = 00, AZ(x) < M and nAZ(x) — V(x)Z(x) < M for
all x € R%.

It follows by Remark that the function Z in Hypothesis [2.0.1(b) is a
Lyapunov function for the operators A and nA — V.

40
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As shown in Chapter [1] a suitable realization of A generates a semigroup
T(-) = (T(t))¢>0 on the space Cy(R?) that is given through an integral kernel.
Therefore, we can write

T(0f(@) = [ pto)f@)dy. >0, R f € CR)

where the kernel p is positive, p(t,-,-) and p(¢,z,-) are measurable for any
t >0,z € RY and for ae. fixed y € RY p(-,-,y) € Cltt</2’2+<((0, o0) X
R?). Moreover, since we assumed in Hypothesis (b) that there exists
a Lyapunov function for A, then by Theorem the domain of the weak
generator is the maximal domain D, (A) and T'(¢)f is the unique classical

solution of the corresponding Cauchy problem.

The chapter is organized as follows. In Section we adapt the techniques
in [4] to prove that T'(-) can be extended to a symmetric sub-Markovian and
ultracontractive Cyp-semigroup on L*(R%). More precisely, given the maximal
realization A, in L?(RY)

D(Apax) = {u € L*(RY) N HE (RY), Au € L*(RY)},
Anaxtt = Au,

we prove the uniqueness of the minimal realization in L?(RY), that is the
operator A, such that

(a) Amin C Amax;
(b)  Awin generates a positive, symmetric Co-semigroup Ty(-) on L*(R9);

(c) if B C Amax generates a positive Cy-semigroup S(-), then To(t) < S(t) for
all ¢ > 0.

For that, we use an approximation argument. We consider balls B, of increas-
ing radius p > 0 and we construct a sequence of semigroups 7 (-) on L?(B,)
via form methods. It turns out that 7()(-) are symmetric, sub-Markovian, con-
tractive and strongly continuous. They increase to a semigroup Ts(-) which
inherits all the above mentioned properties. Furthermore, T5(-) is ultracontrac-
tive, its generator is A, and it is consistent with 7'(-), namely it coincides
with T'(-) in the intersection L?(R%) N Cy(R?). Finally, classical results show
that this semigroup extrapolates to a positive Cy-semigroup of contractions in
all LP(RY), p € [1,00). Moreover, in the examples considered in Section ,
these semigroups are compact and the spectra of their corresponding genera-
tors are independent of p.

The second focus in this chapter lies in proving pointwise upper bounds
for the kernel p. Recently, many papers addressed this question in case of
polynomially growing coefficients (see for example [12] 13} 14, [15] 16} 21, (36,
37, 43| [44, [45] [46]). We adopt the technique of time dependent Lyapunov
functions used in [1} 30, [31] [51] to our divergence form setting.
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Because of their key role, in Section we establish sufficient conditions
under which certain exponential functions are time dependent Lyapunov func-
tions in the case of polynomially and exponentially growing diffusion coeffi-
cients.

The strategy we use to find kernel estimates is based on an approxima-
tion argument. We approximate the diffusion coefficients ¢;; with bounded
ones q@ as at the beginning of Section and we consider the family of the

1
corresponding approximating operators

A, = div(Q,V) — V.

At this point one would be tempted to think that, since kernel estimates in case
of bounded diffusion coefficients are available in works such as [1} [10] 34} [41],
one could just apply such results for the approximating kernels p,, and then
let n — oo. Unfortunately, it is not possible because the constant in the right
hand side of the mentioned estimates depend on the diffusion coefficients, so
it could explode as n — oo. Thus, we need a different approach to estimate
the kernels p,.

For this reason, in Section we adapt [31, Theorem 3.7] in order to
prove the key result that will allow us to overcome this problem, see Theorem
Moreover, we provide some global regularity results for the kernel p.
Under suitable assumptions, they permit us to apply Theorem in case of
bounded diffusion coefficients to obtain in Section the right estimate. Here
the existence of time dependent Lyapunov functions plays a crucial role. With
these ingredients at hand, in Section we estimate the kernels p,, and we
derive kernel estimates for the general operator A.

In the subsequent Section[2.6] we implement the previous results in concrete
examples. We first deal with the operator with polynomial coefficients

A =div((1+ [2[7)V) — |2[%,

for s > |m — 2| and m > 0. Furthermore, since the method does not rely on
the specific form of the coefficients, it is possible to consider even exponential
functions, such as the operator

A = div(el" V) — el

for 2 <m < s.
In the concluding Section [2.7, we present some consequences of our result
for the spectrum and the eigenfunctions of the operator A, from Section 2.1]

2.1 Generation of semigroups on L?*(RY)

In this section we show that, according to Definition[B.4.1] a realization of A in
L?*(R%) generates a symmetric sub-Markovian and ultracontractive semigroup
Ty(-) on L*(R?) which coincides with the semigroup 7'(-) on L?(R%) N Cy(RY).
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We now take up our main line of study and consider the elliptic operator
A, defined by

A HE (R = DRY,  Ap = div(QVe) — V.
Its maximal realization Ap.y in L2(RY) is defined by
D(Apax) = {u € LA (RN N HE(RY), Au € L*(RY)},
Apaxtt = Au.

We adapt the proof of Theorem 1.1, Proposition 1.2 and Proposition 1.3 in
[4] to our situation to show that there is also a minimal realization A, of
A. The minimal realization of A in L?*(R?) is the operator presented in the
following theorem.

Theorem 2.1.1. There exists a unique operator Ay, on L*(RY) such that
(CL) Amin C Amax;
(b) Anin generates a positive, symmetric Co-semigroup To(-) on L*(R?);

(¢) if B C Apmax generates a positive Cy-semigroup S(-), then Tyh(t) < S(t)
for allt > 0.

The operator Amim and the semigroup Ts(+) have the following additional prop-
erties:

(d) D(Apm) C HY(RY) and —(Aminu, u) > n|||Vul||3 for all u € D(Amn);
(e) Ti(+) is sub-Markovian and ultracontractive;

(f) the semigroup Ty(-) is consistent with T(-), i.e.
L) f =Tt f, t>0,fcL*RY)NCy(RY).

Proof. Step 1. We define approximate semigroups 7 (-) on L*(B,).
To that end, we consider the sesquilinear form a, : Hj(B,) x Hy(B,) — C,
defined by

d
a,(u,v) = / Z ¢ijDiuD ;v dx +/ Vuv de.

Bp =1 By
This form is obviously symmetric. Using that ¢) and V' are bounded on B,,
an easy application of Holder’s inequality yields

|ap(u,v)|§/ |<Qvu,w>|dx+/ V Jul o] da
By

By

<@l e e /B IVl (Vo] 2 + [V i) /B ] o] da
P

P

< ||Q||L°O(Bp;Rd><d) ||vul|L2(Bp) HVUHL?(BP)
T IVl 2o, 1l p2s,) 101l 225,

< (19l sy + VL)) Nl gy 1Ny
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for all u,v € H}(B,). Moreover, from the positivity of V, the uniform elliptic-
ity of ) and Poincaré’s inequality, it follows that

2 2
a(u,w) 20 [[Vullap,) = viulys,

for any v € Hj(B,) and for some v > 0. This shows that the form a, sat-
isfies and (D.7). Thus, if we denote by —A, the associated operator

on L*(B,), Proposition and Remark imply that A, generates a
strongly continuous contraction semigroup 7 () on L?(B,).

We now show that the semigroup 7)(-) is positive. In view of the first
Beurling-Deny criterion on forms (see Theorem |D.2.1) it suffices to prove that

(i) (Reu)™ € Hy(B,),
(i) a,(Reu,Imu) € R,
(iii) a,((Reuw)™, (Reu)”) <0,

for all u € H}(B,). Following the proof of [49, Proposition 4.4], we start by
establishing (i) in H'(B,), namely (Reu)* € H'(B,) for any u € H'(B,).
First, for € > 0, we consider on C the function

fe(z) =22 +e2—e.

We note that f.(u) € H'(B,) for all u € H'(B,) because the partial derivatives
% f-and % f- with respect tot = Rez and s = Imz are continuous and bounded
on C. Moreover, if we compute the j-th derivative, we get

Rewu Imu
Df.(u) = ———=D;(Reu) + ——=D,;(Imu
Jf( ) \/m J( ) \/W J( )

u

Then, for all ¢ € D(B,), we have

= Re Dju

D;u Y

(u)D;pdr = — Re dx
f-(u)Djep / ¥
B, B,

If we let ¢ — 0 we obtain
/ lu|Djpdx = —/ Re [sign(w)D;u] ¢ du.
B, B,

Then |u| € H'(B,) and D;|u| = Relsign(u)D;u]. We can repeat the same
argument for Rewu so that we conclude that [Reu| € H*(B,) and D;|Reu| =
sign(Reu)D;(Rew). Finally, using the fact that (Reu)™ = 1(|Reu| + Rew),
we conclude that (Rew)t € H'(B,) and

Dj (Re U)+ = Dj<Re U)X{Reu>0}-
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Similarly, (Reu)” € H*(B,). We now prove (i). If we consider a function
f € D(B,), then f € H'(B,), so by what we showed above we have that
(Ref)* € H'(B,). Moreover, (Ref)" has compact support, thus it belongs to
Hi(B,). If we take u € Hj(B,), then we find a sequence (f,,) C D(B,) such
that

lim f, =u
n—oo

in H'(B,). Since (Ref,)" — (Rew)" in H'(B,) and (Ref,)* € Hj(B,), we
conclude that (Reu)™ € Hg(B,). Furthermore, (ii) and (iii) hold true because
a, has real-valued coefficients and a,((Reu)*, (Reu)”™) = 0. Making use of
Theorem we see that the semigroup T)(-) is positive.

Finally, we prove that 7 () is L>-contractive. By the second Beurling-
Deny criterion for forms (see Theorem [D.2.2), we need to show that

(i) (LA |ul)signu € Hy(B,),
(ii) Rea,((1Au|)signu, (Ju| —1)T signu) > 0,

for all u € Hy(B,).
We begin to state that (1 A |u|)signu € H*(B,) for all u € H'(B,) as in
[49 Proposition 4.11]. For € > 0, we define on R the function

fg(t)z{o t—12+e2—c ift>1,

ift <1.

Since f. has bounded derivatives on R, then f.(u) € H'(B,) for all real-valued
u € H*(B,). Computing the j-th derivative of f.(|u|) we obtain

Jul -1

Djfs(‘u’) = \/<|u’ — 1>2 T e

=Djlul X{ju>13-

Thus, we get

lu| — 1
fe(lu))Djpdr = —/ D;|ul X gju>11 dx,
/B,, : B (u] — 12 e ey

for any ¢ € D(B,). Letting ¢ — 0 we derive that (Ju| — 1)" € H'(B,) and

Dj(lul = 1)" = Djlul xjuj>1y = Re(sign(@) Dju) X {juj>1}-

u o -+ 1
It follows that \/m(|u| 1)* € H(B,) and

D, L(|u|_1)+ :M {Dju—LuDjM
Vv +e Viul?+¢ +e€

u

———D:|ul Xqju>11-
\/m J| | {lu|>1}

+
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Taking ¢ — 0 yields (|u| — 1)* signu € H'(B,) and

Dy((Jul — 1)* sign )

_ (u =1 4 - |
= m (Dju — signu Dj|u|) + signu D;|u| X {ju|>1}
, Im(sign(w)D;u) | .
= {Dﬂu! +i(Jul — 1) ( |15| )D; )} SIgN U X {ju|>1}- (2.1)

We deduce that (1 A |ul)signu € H'(B,) considering that (1 A |u|)signu =
u— (Ju| — 1) signu. In addition,

D; (1 A Jul) signw)

. Im(sign(w)D;u .
=Dy [Dful +iful = DR gy

_Dyu+t Z_Im(sigm(ﬂ)Dju)

SIgN U X flu|>1
|u| {lu|>1}

— [Djlul + i Im(sign (@) Dju)] sign u X juj>1)

_Im(sign(@) D;u)
Jul

JIm(sign(uw)D;u

- |ul )Sign“X{lubl} + Dju X{jul<1}- (2.2)

sign u X {ju>1} + Dju — Dju X {ju/>1}

Since (1 A |u) signu € Hy(B,) for all u € D(B,), arguing by density as above,
we get (i) also for any u € Hy(B,). We now show (ii). Taking into account

and we find that

Rea,((1 A \u]) signu, (Ju| — 1) signu)

Im(sign(w)D;u) .
=Re | Z u{ » |) )SlgHUX{u|>1}+DiUX{|usu} x
Pg,g=1

, Im(signu D;u
X {Dj|u|+z(|u| —1) ( m J )] sign(@) X {ju|>1} d

+ Re/ V(1A |u|)signu (Ju] — 1) signw dx

d .
) Im(sign(w)D;u
Z/B E %ij len () )DjIUIX{|u|>1} dl’]

Jul

Z m(sign(w)D;u) Im(sign u D ;)
t Jul?

— Re

(Jul = 1) X(juj>1y d

BPzg 1
+ Re/ VLA |u)(Ju| — 1) da.
By

The first integral in the right hand side of the previous identity is real, hence
the corresponding term is null. Moreover, Im(sign u D;u) = — Im(sign(w)D;u),
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thus the second term is nonnegative as the third one. We conclude that
(ii) holds true. We now apply Theorem to infer that T (.) is L>-
contractive. Combining this with the positivity proved above we conclude
that 7)(-) is sub-Markovian.

Step 2. We prove that the semigroups 7")(-) are increasing to a semigroup
T(+).

We now consider functions on B, to be defined on all of R?, by extending
them with 0 outside of B,. Then, for any 0 < p; < pa, we identify H}(B,,)
with a subspace of H}(B,,).

Given 0 < p; < pa, we have to show that

T(Pl)(t) < T(ﬂz)(t)’
for all t > 0 or, equivalently,
R(A, A ) f < R(A Ap) S,

for all 0 < f € L*R?) and A > 0, where R(\, A,) := (M — A,)7! is the
resolvent operator of A, for \ in the resolvent set p(A,) of A,,.

Let 0 < f € L*R?%) and A > 0. We set uy = R\, A,)f and uy =
R(N A,,)f. For k=1,2, since (A — A,, )uy = f, we have

d
)\/ U dx +/ Z ¢i;DjurDiv dx +/ Vuvdr = fudzx,
B B B

P1 P1 7,5=1 P1 By,

for all v € Hj(B,,). Using the formula gt = (|g| + ¢)/2 with g = (ug — ua)™
we deduce that (u; —u2)* € H(B,,). Hence, we can take v = (u; — uz)" in
the previous identity. Then we derive that

d
)\/ uk(ul — U2)+ dx + Z qiij'LLkD,L'(Ul — UQ>+ dx
B,

P1 By, 1,j=1
+ / Vug(uy — ug) " d = fluy —up)™ du.
Bpy By,

If we now subtract the two indentities, it follows that

d
)\/ (ug — ug)(uy — ug)™ dz + Z ¢i;Dj(u1 — u2) Di(ug — ug) ™ dx
B

o1 Boy i j=1

+ V(up — ug)(uy — ug) ™ dz = 0.
Bpy

The uniform ellipticity of () yields

)\/B [(u —u2)+]2dx+17/3 |V (uy —u2)+|2 dx

P1 Pl

+/B V(uy —uz) " dx < 0.

P1



2.1. Generation of semigroups on L*(R%) 48

Since V' > 0, we obtain that (u; — u2)™ = 0. Thus, u; < uy on B,. We
conclude that 7)(-) are increasing.
As every semigroup T(p)(-) is contractive, we may define

Ty(t)f = sup T (1) f
neN
for 0 < f € L*R?) and then Ty(t)f = To(t)ft — To(t)f~ for general
f € L*RY%). An easy computation shows that Th(-) is a positive contrac-

tion semigroup. We prove that Ty(-) is strongly continuous. To that end, fix
0 < f € D(RY), and p > 0 such that suppf C B,. Let ¢, | 0. Then

limsup |7 (t,) f — Ta(ta) 13

n—oo

=limsup [T (t.) fII5 + | To(t) 113 — 20T (ta) f, To(tn) f)o]

n—oo

<limsup 211 £15 = 20T () £, T () f)2] = 2] £113 — 2 113 = 0.

Here, in the third line we have used the contractivity of T®)(-) and Ty(-),
that 0 < TW(t,)f < Ty(t,)f and the strong continuity of T (-). Thus,
Ty(t,)f — f as n — oco. Splitting f € D(R?) into positive and negative part,
we see that this is true for general f. In view of the contractivity of T5(-), a
standard 3¢ argument yields strong continuity of T5(-).

As the form a, is symmetric, the semigroup T)(-) consists of symmetric op-
erators and thus, so does the limit semigroup T5(-). Likewise, sub-Markovianity
of Ty(-) is inherited by that of T®)(.).

Step 3. We identify the generator A, of Ta(+).

Let us first note that R(\, A,)f — R(\, Amin)f as p — oo for every A > 0.
For 0 < f € L*(R?) this can be deduced from the construction of T(-) by
taking Laplace transforms and using the monotone convergence as follows

RN A f = /0 h e MT,(t) f dt — /O Ooe—”TQ(t) fdt =R\ Apin)f.

Otherwise, for general f € L*(RY), we write f = f* — f~. Then, since
R(MNA)f = RIVA)fT — RN A, f, the statement follows similarly by
letting p — oo.

Now fix a sequence p, T oo and f € L?(R%). We put u = R(1, Ap) f and
u, = R(1,A,,)f. Then u, - vand A, u, = u, — f = u— f = Apnu in
L*(R%) as n — oo. By the coercivity of the form a,,, we have

nlim sup/ |V, |* dr < limsup a,, [t,, u,] = limsup — (A, u,, u,)

n—o0 n—0o0 n—o0

= —(Aminl, u). (2.3)

It follows that (u,)nen is a bounded sequence in H!(R?) and thus, by reflexivity
of HY(RY), u,, — u weakly in H'(R?). The arbitrarity of u € D(Auy,) implies
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that D(Amm) C HY(RY). Moreover, using the weak lower semicontinuity of
norms, we see that (2.3) implies —(Ammu, u) > n|||Vulll3.
Now fix v € D(R?). As u, converges to u weakly in H'(R?), we see that

(Au,v) = TLILng()(Aun,v) = JLIEO<AP"U"’U> = (Apint, v),
proving Apin C Amax. At this point, properties (a), (d) and (by definition of
Amin) (b) are proved.

Step 4. We establish the minimality property (c).

Let B C Amax be such that B generates a positive Cg-semigroup S(-) on
L*(RY). To prove Ty(t) < S(t) for all t > 0 it suffices to prove R(\, Apin) <
R(A, B) for all A > 0; this is an easy consequence of Euler’s formula.

To see this, let us fix again a sequence p, T 0o, A >0 and 0 < f € L*(R?).
We put u = R(\, Apin) f, v = R(\, B) f and w, = R(\, A,,)f. As B C Apax,
we have v € H! (R?) and

loc

d
/\/ (uy — v)wdx + / Z ¢ D;(u, —v)Dyw dx
B B

on pn =1

+ / V(up, —v)wdz =0, (2.4)

Pn

for all w € Hj(B,,). As the semigroup S(-) is positive, v > 0 and thus
(u, —v)* < w,. Consequently, (u, —v)* € H}(B,,) and we may insert
w = (u, —v)" into (2.4). Taking the uniform ellipticity of @ into account, this
yields

)\/B ((un—v)+)2da:+n/B

Pn Pn

\V(un—v)+\2dx+/ V((un—v)+)2dq: <0.

BPn

As V >0, it follows that (u, —v)* = 0 and thus u, < v. Upon n — oo we
obtain u < v. Hence R(\, Apin)f < R(\, B)f for 0 < f € L*(R%).

Step 5. We establish properties (e) and (f).

As we have already mentioned above, the semigroup Ts(-) is sub-Markovian
and consists of symmetric operators. The latter implies that the generator
Amin of Ty(+) is selfadjoint. In view of property (d), the ultracontractivity of
the semigroup follows immediately from Proposition [B.4.2]

As for consistency we note that the semigroup 7'(+) on Cy(R?) constructed
in Chapter (1| is obtained by the same approximation procedure as for Ty(-).
But the semigroup solutions of the Cauchy-Dirichlet problem associated with
A on Cy(B,) is consistent with the semigroup solution on L?(B,) considered
above. Thus, consistency of T5(-) and 7'(-) follows. O

Remark 2.1.2. (a) As the minimal realization Ay, of the elliptic operator
A generates a symmetric sub-Markovian Cy-semigroup To(+) on L*(R?), it
follows from Theorem that T5(+) extends to a positive Cy-semigroup
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of contractions T,(-) on LP(R?) for all p € [1,00). Moreover these semi-
groups are consistent, i.e.

T,@t)f =T,(t)f, forall f € LP(RY) N LYRY), ¢t > 0.

(b) Since, by Theorem|2.1.1, Ty(-) is ultracontractive, and Ty(+) coincides with
T(-) on L*(R?) N Cy(RY), it follows that Ty(+) is given through an integral
kernel which coincides with the kernel p of the semigroup T(+).

2.2 Time dependent Lyapunov functions

As in [1}, 30 [31} 41} [51] we use time dependent Lyapunov functions introduced
in Definition to prove pointwise bounds of the kernel p. In particular,
we will deal with time dependent Lyapunov functions W for the operators
L = 0, + A and 0; + nA — V with respect to Z and h, where Z is the
Lyapunov function introduced in Hypothesis 2.0.1(b) and 0 < h € L((0,7)).
Then, for fixed T" > 0, they satisfy the following inequalities

LW (t,z) < h(t)W(t,x) (2.5)
and
OW (t,x) + nAW (t,z) — V(z)W (t,x) < h(t)W (t, ) (2.6)

for all (t,z) € (0,T) x R<.

In this section we give conditions under which certain exponentials are time
dependent Lyapunov functions for L := 9, + A and 9, + nA — V also in the
case of polynomially and exponentially growing diffusion coefficients.

2.2.1 Time dependent Lyapunov functions for polyno-
mially growing diffusion
In the following result we assume that the diffusion coefficients grow polyno-

mially. Here z +— |z|? denotes any C?-function which coincides with z +— |z|?
for |z| > 1. Moreover we take 7" = 1 in Definition [1.6.2]

Proposition 2.2.1. Assume that there is a constant ¢, > 0 such that

d
D ()68 < cq(1+ [a™)IE) (2.7)

ij=1

holds for all £, x € RY and some m > 0. For (t,z) € [0,1] x RY, consider the
function
W(t,z) = eEta|x‘f,

; g
with > (2=m)V0,e>0and a > 5o —. If

§
li 1pm (o, T V) oz 2,
imsup |z (G ] smxw—l) < (28)
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is satisfied for A > c,ef and
lim V(z) |z 2™ > ¢ (2.9)

|z| =00
holds true for some ¢ > 0, then W is a time dependent Lyapunov function for
L and 0y +nA —V with respect to Z(z) = el7? and h(t) = Cto=2+m=2) for
some y > 5“1%2 and some constant Cy > 0. Here G; = Z?Zl D;qi; and Z is
a Lyapunov function for A and nA — V. Moreover,

Ew(tx) < B MO .
for all (t,z) € [0,1] x R%.
Proof. 1t is easy to see that W € C12((0,1) x RHNC([0, 1] x RY), W (t, z) — oo
as |x| — oo uniformly for ¢ in compact subsets of (0, 1] and W < Z. It remains
to show that there is 0 < h € L*(0,1) such that (2.5)) and (2.6 hold true.

In the following computations we assume that |z] > 1 so that |z|] = |z|’
for s > 0. Otherwise, if |z| < 1, then by continuity the functions

(t,x) = |W(t,z) 'LW(t, )|
and
(t,2) — |W(t, ) HO,W (t, ) + nAW (t,z) — V(2)W (t, 2)]|

are bounded on (0,1) x B;. Thus, we possibly choose a larger constant C to
define the function h(t).
Let t € (0,1) and |z| > 1. By straightforward computations we have

D;W(t,x) =eft* |x|ﬂ_2 z;W(t, x),
Dy(qi; D;W)(t, 2) =Bt |x|° > Dygyj(x)x;W (¢, )
+eB(8 — 2t |2 gy ()i W (t, @)
+ et 2|77 iy ()W (8, )
+ 2322 |w[2374 gij(x)zx ;W (L, x).
Then, we obtain

LW (t,x) =0,W (t,x) + AW (¢, )

d
zgozta_l |m|18 W(ta :L‘) + 6/Bta |‘T|IB_2 W(tv ZL‘) Z quz](l‘)mj

3,j=1

d
+eB(B— 2t 2T Wt 2) Y qij(x)mia

1,j=1

d
+eBt [x" P Wt 2) Y gi(x)dy;

ij=1

d
+ 2B 2P () Y qi(n)miay — V(2)W (L, x).

3,j=1
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We recall that G; = Zle D;q;; and we use the polynomially growth of the
diffusion coefficients (2.7). We have

LW (t,z) <eot® ' |2|P W(t,z) + et 2| 2 W (t,2)G(z) - x
+cgeB(B =2 [T (L4 o) |2 W (t, )
+ dege St 2P (14 |z[™)W (L, z)
+ 2282 2P (L + |2|™) [P Wt x) — V(@)W (¢, z).

Since (1 + |z|™) < 2|2|™ and t* < 1, we arrange the terms as follows.

LW(t,2) < Bt |2 2 W (t,2) | — |2> 7™ + 2¢,((8 — 2)* + d) 2| ”

Bt
x V
4 ceeBt + et |z + |z PG = — ———— ] (210
q q | | | | |[E’ 65 |I|ﬁ 1 ( )
Let v > z5.=- We distinguish two cases.

1
Case 1: |x| > o
Since t* < 1 and using (2.10]), we get

LW (t,x) <eBt® |« 2 W (t,z) [ 232 20, (8 — 2)T + d) [

g
tcgeB 4 cggB e+ <G S L) ] . (2.11)

ol Bl
We claim that, if we assume further that |z| is large enough, then
LW(t,z) <0,

for all t € (0,1). To see this, let |z] > K for some K > 1. Combining (2.8)

with (2.11)) yields
LW (t, ) < eft® [« 2 W (t, ) % 272 4 2e (B — 2)F + d) || °
+ coef + ciefla]™™ — Al (2.12)

Considering that v > £ >0 and m > 0, we infer that

B+m 27
(6]

ii9-8-m - -m
E|x|v+2 g +20q((ﬁ_2>++d) || B+cq65—|—cqéﬁ|x| -
<

(5+ 2052 + @)+ e ) K- ye =
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where [ := min(%1 — 2+ +m,B,m) > 0. Since A > ¢,ef3, choosing

(52 -2+ D+
- A —cep ’

it follows that the quantity within square brackets in the right hand side of
is negative. Thus LW (t,z) < 0 for |z| > %, |z] > K and for all
t€(0,1).

For the remaining values of x, |x| < K, we have that LW (¢,z) < C for a
certain constant C' > 0. Anyway, we conclude that

LW (t,z) < CW(t,x),

for all ¢ € (0,1) and |z > .
1
Case 2: |z| < ot
We assume that |z| is large enough. Otherwise, as in Case 1, LW (t,x) <

C < CW(t,z) for a certain constant C. We combine (2.8)) and (2.10]) to deduce
that

LW (t,2) <[eat®™ 777 + 20,28((8 — 2)* + djp7Hm 2
+ e pPReT @) o 232420 (26-2)

— Bt | AW (L, ).

We drop the term involving A because it is negative. Moreover, since v >
1/(B +m — 2), we note that the leading term is t*~76+m=2)  Hence

LW(t, ) < h(t)W (¢, ),

where
h(t) := Cyto28+m=2)
For the function h(t) to be in the space L'((0,1)), we set a > 5+i_2. In this
way, choosing v < 2,8?:;@1—2 so that a — v(26 + m — 2) > —1, h(t) is integrable
in the interval (0, 1).
Summing up, considering a possibly larger constant C', we proved for
all t € (0,1) and = € R<.

We now verify (2.6). An easy computation shows that

AW (t,x) = eB(B +d — 2t x| 2 W (t, z) + 262 |x|P 2 W (t, ).
Thus, we get

oW (t,z) + nAW (t,z) — V()W (t, x)
—cat® 2P W(t, x) + neB(B +d — 2)t* x| 2 W (t, z)
+ 02 B2 2P TP W (L, x) — V()W (L, x). (2.13)
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As in the first part of the proof, we let v > m
cases.

1
Case 1: |z| > ot
Since t* < 1, by (2.13) we obtain
oW (t,z) + nAW (t,z) — V(x)W (t, x)

and we distinguish two

< Bt oWt ) % 2|7 (Bt d — 2) x| P
—m 1 2—-2—m
HneBlal ™ = V(@) la -

If |z| large enough, then by (2.9) we have
W (t,x) + nAW (t,x) — V(x)W(t, )

< eft® |z W (L, )

«Q 1i9-8-m —pb—m
E‘“”W (B4 d—2) )z °

+nef |z — %] :

Arguing as in (2.12), we find that O, W (¢t,x) + nAW (t,z) — V(x)W (t,x) is
negative for |z| large, whereas it is bounded for the remaining values of z.
Therefore, we deduce that

oW (t,x) + nAW (t,x) — V(z)W(t,x) < CW (t, z),
for all ¢ € (0,1) and |z > .
1
Case 2: |z| < =
Since V' > 0, (2.13)) leads to
oW (t,x) + nAW (t,x) — V(x)W(t, )
< [504750‘_1_76 +neB((B —2)F + d)teB2 4 7752621520‘_7(25_2)} W(t,x).

We can control the right hand side of the previous inequality with the function
h(t)W (t, x), obtaining that

AW (t,x) + nAW (t,2) — V(x)W(t,z) < h()W(t, z),

where the constant ' in the function h has to be suitably adjusted. In both
cases holds true. We conclude that W is a time dependent Lyapunov
function for L and 0; + nA — V. In addition, we observe that, if we take t = 1
and we argue similarly, then it follows that Z is a Lyapunov function for A
and nA — V.

Moreover, by Proposition we have

Ew(t,x) < eJo 1) dSW(O,x) < elo h(s)ds _. Cs,
for all (t,z) € [0,1] x R<. O
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Remark 2.2.2. One can easily see that the same conclusion as in Proposition
2.2. 1| remains valid if we replace the operator A with the more general operator
Ap == A+ F -V with F € C°(R4,RY) for some ¢ € (0,1), and the condition

with

x V
lim sup |z|t=#~™ ( G+F) — — —) < —A.

This generalizes Proposition 2.3 in [1].

2.2.2 Time dependent Lyapunov functions for exponen-
tially growing diffusion

We now turn to the case of exponentially growing diffusion.
Proposition 2.2.3. Assume that there is a constant ¢, > 0 such that
d
D ()6 < ceel” ¢ (2.14)
ij=1

holds for all ¢, x € R? and some m > 2. Consider the function

|l B
W(t,z) = exp (eta/ e2d7>
0

for (t,z) € [0,1] x R, with%+1§6§m,5>0anda>%. If

o | im %
lim sup ]w\l’ﬂ’me’%’m G-I - — | <A (2.15)
|| —00 |ZE| 5@%
is satisfied for A > 0 and
lim V(z)|z|' P el =" 5 ¢ (2.16)

|z| =00

holds true for some ¢ > 0, then W s a time dependent Lyapunov function
.8

for L and 8, + nA — V with respect to Z(x) = exp (e fom* ez dr) and h(t) =

C’gta_7(5+%m_1) for some v > % and some constant C3 > 0. Here G; =

Zfil D;qi; and Z is a Lyapunov function for A and nA —V. Moreover,
§W(t7$) S 6.[01 h(s) ds = 04
for all (t,z) € [0,1] x R%.

Proof. Throughout the proof we assume that |z| > 1 so that |z|] = |z|” for
s > 0. The estimates can be extended to R? by possibly choosing larger
constants.
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Let t € (0,1) and |z| > 1. By direct computations we have

Y
DW(t,z) =et® LWt 2),
||
1 1=
Dz(qujW)(t,x) :5ta’_|€2DiQij(x)ij(tax)
T

L gy i8-8 12
+§€5t |z|" " e 2 g (x)z ;W (L, x)
ol 1=°
+ et ﬂe 2 qw(x)(SUW(t,x)
x
=]

1
—et—e 2 qy(x) v W(t, x)

]

1
+ €2t2a—26|z|ﬂqij(x)xiij(t, x).

2]

Hence we deduce that

LW (t,z) =0,W(t,z) + AW (t,x)

|| B
zeat"‘_lW(t,x)/ ez dr +5ta|—e E Wi(t,x Z D;q;;(z
0

i,7=1

xs
+ 5ﬁta|x|ﬁg =n W(t,x) qu T)T;x;

i,j=1
1
o
+et me2 (t,x) qu
i,j=1
—5t“ie W(t, ) Zq Vi T
|x| ij J
i,j=1

+e t2a| 2 elel’ Wi(t,x qu z)riz; — V(o)W (t, x).

i,7=1

First of all, we drop the negative term involving ¢ in the right hand side of

the previous equality. Second, we use the exponentially growth of the diffusion
coefficients (2.14) to obtain that

=l s 1 b
LW (t,x) §5ato‘_1W(t,a:)/ e dr + 8taﬂel2 W(t,z)G(z) - x
O x
1

1 o B-1 L=l yipm ol 12l pm
+§cesﬂt |z|" e W (t,z) + deeet ﬂe 2 W(t,x)
T

+ e 220l T W (¢ 1) — V()W (¢, 2).
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Since t* < 1, we can write the previous inequality as follows:

m m ‘I' B
LW (t,z) <et® |z el ey (¢ ) [% || LA™ oIl el / ez dr
0

1 _ |z|® _g_ |zP _B—
+ el lal M eT T +dee Jal Fmm =" 4 et [P

+ || P e~ 5 —lel (G S BE )

(2.17)
I

Let v > % We now distinguish two cases.

|

Case 1: e > )
trm

First, we observe that

=l s l=1?
erdr <lzx|lez.
0

Then, since t* < 1 and e < 1, by (2.17) we get

LW (t,z) <et® |z bl Wt 2y | o 20 (5w =1)lel™

1 -m —pb—m —b—m
+ 5eeB o] + dee |a] ey e x|

B el m T %4

|l’| ce 2

1 m
Moreover, e(TmA)‘xl < 1 because vy > % Thus, we derive that

—B—m

LW (t,z) <et® |z el ™™y (¢ 2 a2

1 —m —b—m —b—m
t el 4 dee o T + cee ]

x| m
E
ce 2

If |z| is large enough, say |z| > K for some K > 1, then we apply (2.15) to
deduce that

— m —B-—m 1 —-m
LW (t,z) <et® |zt ! el el W(t,x) [a 2> P~ 4 5065 ||

tdee x| 4 e |2 T — A
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We now show that, for a suitable choice of K, the quantity within square
brackets is negative. Since 8 > % + 1 and m > 2, we have 8 > 2 and hence

2—B—m

1 -m —B—m —B—m
o [a7P7 4 Seaf | o dee | TP 4 ceefa] TP - A

1
< (a + 5066 + dc, + cee) K™ —A.

As a result, by taking

1 1
K> (a+§ceﬁxdce+ces)m’

we finally get LW (t,z) < 0. For the remaining values of x, LW is bounded
by a constant. In both cases we have

LW (t,z) < CW(t,x),

for all t € (0,1), el*™ > L and for some constant C' > 0.

om
Case 2: ™™ < —.
tym

Notice that |z| < ¢ and, since < m, we have
1
e’ <« — for lz] > 1.
tym

Then, if |z| is large enough, using 5 > 1, and combining (2.15)) and (2.17)), we
obtain that

LW(t,l‘) S €O[ta_l_’y<%+1) -+ %cegﬁto‘_7<ﬂ+gm_l) —+ dcegtafg'Ym + Ce€2t2a72'ym

— Aet® |zt e"”ﬁ+x|m] W(t,x).
Dropping the last negative term, we find

cate 1 (5+) 4 lceaﬁto‘”(ﬁ%m_l)

LW (t,z) < 5

+ deet®™ ™ 06621520‘2””] W(t,z).

Since v > + and # > 2 + 1, the leading term is pe=y(B+Em-1) Therefore, we
gain

LW (t,z) < Ct* Y BEam=D) (¢ ),

for all t € (0,1), el*I™ < L= and for some constant C' > 0.

tym
To sum up, there exists a constant C3 > 0 such that

LW(t,z) < h(t)W (¢, 2),
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for all t € (0,1) and = € R?, where h(t) = Cyte(8+3m=1)

Moreover, we choose v < 5 f;;_l, which is possible since o >
2

that « —y (84 2m —1) > —1 and h € L'((0,1)). We conclude that condition
(2.5)) is satisfied.

To show (2.6) we compute

2B+m—2
2m

, SO

1 « B—1 M (67 1 w
AW (t, x) :55& |z|" 7" e W(t,x) + det me > W(t, )

1 1
- eto‘|—‘ez’|W(t, x) + 52t2ae|z‘ﬁW(t, x).
x

Hence,

BW (t, 2) + nAW (t,x) — V(2)W (¢, z)

) ol s 1 PIRRNEL
=cat™” W(t,m)/ erdr + Ene,ﬁto‘ lz|"" e 2 W(t, x)
0
D1 P L1 P
+ dnet ﬂe > Wi(t,x) —net ﬂe > W(t,x)
T x

+ et W (t, ) — V(2)W(t, 2)
a—1 ! kil 1 al.8-1 laf?
<eat® "W (t,x) ez dr + 5776575 |z|" " e 2 W(t,x)
0

1 j=f
+ dnetaﬂelle(t, z) + et el W(t, z) — V(e)W(t,z). (2.18)
x
We use the same strategy as above. We let v > % and we consider two cases.
m 1
Case 1: el > —.

tym
By (2.18)) we obtain
oW (t,x) + nAW (t,z) — V()W (t, )

<et® o] I W (1, 2) | a2 el 1 Ly
5

s a1 L
+dn x| 77" 4 e o] P —gV(x)|x|1 fmm g=lol’~lal ]

Using (2.16) and the fact that v > L, we get
oW (t,z) + nAW (t,z) — V()W (t, x)
<et® ||t el T W (8 2) | P

1 —m —B—m —B—m c
+ 518 |2 +dn x| 4 e P -

If |z| is large enough, then the quantity within square brackets is negative.
Otherwise, we can control it with a constant. In both cases, we deduce that

W (t, ) + nAW (t,z) — V(2)W (¢, 2) < O,
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for all t € (0,1), el*™ > L and for some constant C' > 0.

tym

m 1
Case 2: el*I" < —

tym’

Since f < m and V > 0, yields
oW (t,z) + nAW (t,z) — V(x)W (t, x)
< [eod&“*l*’7 (5+1) ¢ %nsﬁto‘”(/” 1) 4 dpeto7E 4 peemm W (t,r)
<ot (BHEm =)y ¢, 0,

for some constant C. Therefore, by possibly choosing a larger (3, we gain
. Then, W is a time dependent Lyapunov function for L and 0, +nA —V.
Moreover, taking ¢t = 1 and arguing similarly, we obtain that Z is a Lyapunov
function for A and nA — V. Finally, the last assertion follows from Proposition
1.6.3 O

2.3 Preliminary results for bounded diffusion
coefficients

Throughout this section we assume that the coefficients ¢;; and their spatial
derivatives Dyg;; are bounded on R for all i,j,h = 1,...,d. Under this
assumption, we establish global boundedness and Sobolev regularity of the
kernel p. The results presented here are the main ingredients that in the next
section will allow us to obtain an upper bound for the kernel p in case of
bounded diffusion coefficients such that the constant in the right hand side of
the estimate does not depend on the diffusion itself.

2.3.1 Global regularity results

We fix T > 0 and consider p as a function of (t,3) € (0,7) x R? for fixed
x € R%. Moreover, we fix 0 < ag < a < b < by < T and we set

1
&
P (b, 2, a0, bo) = ( [ vty dy) )
Q(ao,bo)

We now look for the values of s for which the transition kernel p belongs to
the space H*'(Q(a,b)) presented in Definition For that, we adapt [41]
Lemma 3.1] for operators with potential term.

Lemma 2.3.1. Assume that q;;, Dyqi; are bounded on R fori,j,h=1,...,d.
If Ty(k, z, a0, bo) < 0o for some k > 1 and p € L"(Q(ag,by)) for some 1 <r <
o0, then p € H¥(Q(a,b)) for s=rk/(r+k—1) ifr < oo, s=k if r = co.

Proof. Throughout the proof we consider a generic constant ¢ depending on
k,x,a9,a,b, by and the coefficients ¢;;. Let ¥ € C*°(R) be such that
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o 9(t)=1fora<t<b,

e J(t) =0 for t < ap, t > by,

e 0<V<1.

Moreover, let ¢ € CH?(Q(0,T)). If we apply Lemma to the function J¢

we get

/] ﬂ@w+w%w)ﬁdy=-—/m (¢G -V — gV +ppd') dt dy, (2.20)
Q(0,T) Q(0,1)

where ¢ := Up, Ay = szzl ¢;jD;; and G, = Z?Zl D;q;j. If r < oo and
s = rk/(r +k — 1), then from Hoélder’s inequality with exponents k/s and
k/(k — s) we obtain that

/ Vep®dt dy = / Vsp%ps(k%) dt dy
Q(ao,bo) Q(ao,bo)

7 1-s/k
k s(k—1)
< (/ V pdtdy) (/ p R dtdy)
Q(ao;bo) Q(ao,bo)

= (/ VEpdt dy) (/ p"dt dy>
Q(ao,bo) Q(aobo)

s(k—1

- F2<k7 x, ap, bo)s Hp”LTECQ(ao,bo)) :

If r = 00 and s = k, we write

[ vededy= [ v pddy < Talh b0 (915 g -
Q(ao,bo) Q(ao,bo)

In both cases it leads to

k=1
IVp < Pl L7 @ aosbo))

L3(Q(ao,bo)) =

Therefore, applying Holder’s inequality with exponents s and s’ such that
1/s+1/s" =1, we have

Ls'(Q(0,T))

qVSOdtdy' <NIVoll s ora o e
’/Q(O,T) L#(Q(ao,bo))

k—1
<c HpHLf(Q(aO,bO)) HSOHLs’(Q(o,T)) : (2.21)

It is possible to repeat the same computations with 1 instead of V' to prove

that p € L*(Q(ap, by)) and

k—1
HpHLS(Q(aO,bO)) <c HP“Lf(Q(ao,bo)) : (2.22)

Similarly, since Djg;; are bounded on R?, it follows that

k1
IGPI e @anbor = €PN (a0 o)) -
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Consequently,

qG-Vgadtdy‘ <GPl s (0tanson IVl Lo oo.r
/Q(O,T) (Q(ao,bo)) (Q(0,1))

k=1
<c ”pHLf(Q(ao,bo)) H%OHW:,J(Q(O,T)) :

Putting everything together yields

k—1
‘/ q(Owp + Arp) dt dy‘ <c ||pHLI:(Q(aO,bO)) ||90”W°;1(Q(0,T)) : (2.23)
Q(0,T) °
We now consider the difference quotient with respect to the variable y

T_np(t,y) = |h| 7 (et y — hejy) — o(t,y)),

for any (t,y) € Q(0,7), 0 # h € R small enough and fixed jo € {1,...,d}.
Substituting 7_,¢ instead of ¢ in (2.23)) leads to

k=1
‘ /Q or) 4(Oem_pyp + Ar7_pep) di dy‘ < clpll ¥ ag.boyy 17-1# lwot @iom) -

(2.24)
By a change of variables, we find that

/ QAT o dt dy
Q(0,T)

d

1

Qo) =~
1

d
- q(t,y) Y i (y) Dijep(t, y) dt dy.

] S ™Y 24

. : _ d
Summing and subtracting |h|™" [,y a(t y+hesy) 3520 4 (y) Dije(t,y) dt dy
implies that
d
/ qAT_pp dt dy :/ q(t,y + hej,) Z i (y) Dijo(t, y) dt dy
Q0,T)

Q1) ij=1

- / ThqA1p dt dy. (2.25)
Q0,T)

Moreover, since there is &, on the segment from y to y+he;, such that 7,¢;;(y) =
Djyqii(&,), applying Holder’s inequality and (2.22)) we have

d
/( )q(t, y+hejy) Y Djyaii (&) Dijep(t, y) dt dy
Q0,7

,j=1

k—1
<c HpHLS(Q(ao,bo)) ”SOHW;,’Q(Q(O,T)) <c HPHLf(Q(aO,bO)) HSDHW;,’Q(Q(O,T)) , (2.26)
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where we used the boundedness of the first order derivatives of the diffusion
coefficients. Considering that ||T_hg0||Wso/,1(Q(a0,b0)) < ||<p||W31/,2(Q(a07b0)) and com-

bining (2.24) with (2.25)) and (2.26) yields

‘/ ThQ(at(P + AlSO) dt dy‘ < ‘/ Q(atT—hSO + AlT—hSO) dt dy‘
Q(0,T) Q(0,T)

d
- /( )q(t,y +hej)) Y i (y) Dijep(t, y) di dy
Q0,T

3,j=1

k=1
< Pl 27 a0 o)y 12 llw22 00,7 (2.27)

Moreover, since ¢ € L*(Q(0,T)) and s = (s—1)s’, we observe that |7,q|*27,q €
L*(Q(0,T)) and we have

(2.28)

s— s—1
11700170 | Lo 0.9y = I8l Ze 00,1y -

According to [33, Theorem 9.2.3] we choose ¢ € W5*(Q(0,T)) such that

0o+ Ay = 52 in Q0. T
o+ Avp = |mg|* g, in Q(0,7), (2.29)
o(T,y) =0, y € RY,
and
||S0||W:,’2(Q(O,T)) <C H |ThQ|S_27'hq’ L (Q(0,T)) ° (230)

We note that we cannot insert directly such a ¢ in (2.27)) because it does not
have compact support with respect to the space variables. Thus, we approxi-
mate o in W,*(Q(0,T)) with a sequence ¢, € C12(Q(0,T)) defined by

en(t,y) = Y(y/n)e(t,y),

where 1 € C®(R?) is a fixed smooth function such that ¢(y) = 1 for |y| < 1.
Writing for ¢, letting n — oo and using the dominated convergence
theorem, we deduce that is valid also for ¢ € W.*(Q(0,T)).

Therefore, since ¢ is the solution of the Cauchy problem , it follows
that

k-1
IThq|® = / Thq(Orp + A1) dt dy < c|IPl| .F ot s 12 w200
/Q(O,T) Q(0,T) (Q(ao,bo)) 2(Q(0,1))

k-1
k-l -2
<c ||p||Lf(Q(a0,b0)) H|ThCI|S ThQ| L¥(Q(0,7))

s—1
Ls(Q(0,7)) >

where we used (2.27)), (2.30) and (2.28)). In conclusion, we obtain that Vq €

L*(Q(0,T)) and

k=1
= clIpll 27 ao,bey) 1704

IVq
thus p € W21(Q(a,b)).

k=1
L) =€ HpHLI’f(Q(aO,bO)) 5 (2.31)
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We are left to show that the distributional time derivative of p is in the
space (W9 (Q(a,b))). For that, we take ¢ € C1?(Q(0,T)) and we apply again
Lemma to the function J¢. Then, integrating by parts, we get

/ qOpp dt dy = / (QVp, Vq) dt dy + / (Vo — ppd') dt dy.
Q(0,7) Q(0,7) Q(0,7)

If we take into account inequalities (2.21)) and (2.22)), then we have

k=1
qatwdtdy’ < ’/ (QVe,Vq) dtdy’ + e 1Pl E o s 191 2 o0 -

By the boundedness of the diffusion coefficients, Holder’s inequality and (2.31]),
we finally deduce that

qatgodtdy’ <cIVall s oo 1€llwot oo
‘/Q(O,T) (Q(0,1)) H(Q0,1)

k—1
+ Pl 27 a0y 191 L+ 0,1

k—1
<c ||p||Llf(Q(aO,b0)) ||§0||Ws°;1(Q(0,T)) :

We finally observe that the previous inequality can be extended to every ¢ €
Wol(Q(a,b)). O

Corollary 2.3.2. Assume that q;;, Dngi; are bounded on R for i,j,h =
1,...,d. If Ty(k,z,a9,b0) < oo for some k > 1 and p € L>®(Q(ap,by)), then
p € H¥(Q(a,b)) for all s € (1,k].

Proof. Since p € L'(Q(ag, by)) N L=(Q(ag, b)), by interpolation we have p €
L™(Q(aop, b)) for all 1 < r < oo . Then the statement follows from Lemma
O

Remark 2.3.3. Lemma and thus Corollary[2.3.2 hold true for the more
general operator Ap := A+ F -V with F € C*(R%,RY) for some ¢ € (0,1) if
we further assume that T'1(k, x, ag,by) < 0o, where

1
3
Fl(kax7a07b0) - (/ |F(y>|kp(t7x7y) dtd:U) .
Q(ao,bo)

Indeed, inspecting the proof of Lemma one realizes that it suffices to

replace (2.20) by

/ q(Opp + Arp) dtdy = — / [¢(G+ F) -V —qVe+ ppd]dtdy.
Q(ao,bo) Q(ao,bo)

Apart from that, the proof works the same.
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2.3.2 Boundedness of weak solutions to parabolic prob-
lems

Here, we consider functions u which are, in some sense, weak solutions to an
inhomogeneus parabolic equation 0;u — Au = f and prove an estimate of their
supremum norm. For that, we adapt the results in [31, Section 3.2].

Before stating the main theorem of this subsection, we show the following
lemma.

Lemma 2.3.4. Let { > 0 and 9: R? — R be a nonnegative, smooth and
compactly supported function. Moreover, assume that one of the following
situations applies:

(a) ue HP(Q(a,b)) for somep >d+2;

(b) ue HP(Q(a,b)) NCy(Q(a,b)) for some p < d+ 2.
Then, 9(u— ), € W (Q(a,b)) and

Proof. We start by observing that ¢(u — ¢), € W;,’l(Q(a,b)) because ¥(u —
0 = W= 0)y, VO =0 = vpuzn V0(u — 0) and d(u— ) €
W (Q(a, b))

If we are under condition (a), we apply Lemma to have a se-
quence (u,) C C(R4) converging to u in the HP'-norm. Moreover, since
HP(Q(a, b)) is continuously embedded in Cy(Q(a,b)) by Theorem [A.4.5]
then w, converges to u uniformly in Q(a,b). Otherwise, under condition
(b), the sequence w, is provided by Lemma In both cases, we de-
duce that J(u, — £); tends to ¥(u — £); in WS/’I(Q(a, b)). As a result, since

O € (ng’l(Q(a, b)))’, we have

/ P u, — ) 0w dt de — / Yu — ), O dt dx,
(a,b)
as n — 0o. We now write

/ Wy, — £) 4 Opudt do (2.32)
Q(a,b)

:/ Hup — £) 4 Opuy, dt dz + / P uy, — €)1 (0w — Oyuy,) dt dx
Q(a,b) Q(a,b)
= Il + IQ.

In particular, we have

90, ((uy, — 0)%) dt da

5= s
%/Rﬁ — 02 — (un(a,”) — %] dz,
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Since u,, converges to u uniformly in Q(a,b) and ¥ is compactly supported in

R¢, then
1
Lo g [ 9l(b) — 02~ (ula, )~ 02 da, (2.33)
R4

as n — 0o0. Moreover, by the boundedness of the sequence ¥(u, — £), in
WI?/I(Q(CL, b)) and the fact that dyu,, tends to dyu in (WIS/J(Q(CL, b)), it follows
that Iy — 0 as n — co. Combining this with (2.32) and (2.33) leads to the
thesis. O

Moreover, we need an easy lemma stated below.

Lemma 2.3.5. [26, Lemma 7.1] Let a > 0 and let (z,,) be a sequence of real
positive numbers such that

Tpy1 < OBzt (2.34)

with C' >0 and B > 1. If xy < C’iB*a%, then we have

, < B™axg (2.35)
and hence in particular

lim z, = 0.

n—oo

Proof. We proceed by induction. Clearly, inequality (2.35) holds true for n =
0. If it is satisfied for n, then by (2.34]) we have

n 1 n

1 < CB 2t < OB™(Bw) '™ = (CBwx§) B~

that is (2.35) for n + 1. O

We are now ready to prove the main theorem of this subsection. It is a
key result that will allow us to generalize the kernel estimates from bounded
to unbounded diffusion coefficients.

n+1

+1 _n+l
o To f; B Zo,

Theorem 2.3.6. Assume that q;; is bounded on R? fori,j = 1,...,d. Let
0<ay<by<T, k>d+2 and let functions f € L2(Q(ao, b)), h = (h:) €
LE(Q(ag, bo); RY) and u € L*(ag, by; L*(R?)) be given such that u(ag) = 0 and
one of the following situations applies:

(a) ue HP(Q(ag, b)) for some p > d+2;
(b) ue HP(Q(ao,bo)) N Cy(Q(ao, bo)) for some p < d + 2.
Moreover, assume that

/ (QVu, Vi) + o] dt dx = /
Q(ao,bo)

Fibdt dr + / (h, V) dt da,
Q(ao,bo)

Q(ao,bo)
(2.36)
for all ¥ € C(Q(ag,by)). Then u is bounded and there exists a constant
C >0, depending only on n,d and k (but not depending on ||Q||,) such that

[ulloo < CCllully + 11l +[151])-
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Proof. We initially assume that ||ul|,, Hf||% R, < 1.

First, we observe that u € L*(Q(ag,bp)) not only under condition (b),
but also under condition (a) since HP'(Q(aqg, by)) is continuously embedded in
Co(Q(ag, bo)) for p > d + 2 by Theorem [A.4.5|

Second, we fix ¢ > 1. Taking into account that v € L*(Q(ao,by)) and
V(u—0)y = XguseyVu, we deduce that (u — €); € W>(Q(ao,by)) for any
r e (1,00).

Next, we consider a standard sequence 9,, of cutoff functions (in x). Making
use of a density argument one can see that holds true even for functions
v € W2HQ(ag,by)) for any r € (1,00) such that there exists R > 0 with
Y(t,r) =0 for all t € (ag,by) and || > R. Hence, we may plug ¢ := 92 (u—/{)

in (2.36) obtaining that

/ V2 (u — ) L Opudt dw + / 92(QVu, V(u—0))dt dx
Q(ao,bo) Q(ao,bo)

+ 2/ I (QVu, VO, (u — £) dt da = / FO2(u — 0), dt dz
Q(ao,bo) Q(

ao,bo)

+ / 07 (h, V(u—0) ) dt dz + 2/ On(u — €) 4 (h,V,) dt d.
Q(ao,bo) Q(ao,bo)

Applying Lemma and considering that u(ag) = 0, it leads to

3 [Pty 02 dos [ 2= 0.,V (- 0,) deds

2 Jra Q(ao,bo)

—I-Q/ Vo (QV (u—0) 4, V) (u—0), dt dx :/ f92(u —0), dtdw
Q(ao;bo) Q(ao,bo)

T / 9201,V (u — 0),) dt da + 2 / D — 04 b V0, di dr.
Q(ao,bo) Q(

ao,bo)
Therefore, we write

1

2 Jga Q(ao,bo)

=D+ I3+ Iy, (2.37)

where

L=2 / 0lQV (1 — )4, V9, (u— ) dt da,
Q(ao,bo)
I —/ f92(u—£) dt du,
Q(ao,bo)
Iy = / 92 (h,V(u—£)) dtdz,
Q(ao,bo)

- 2/ ol — 0). (h, V0, dt da.
Q(ao,bo)
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Since [(QV (u — 0)4, VI,)| < |Q2V(u — €)4]|Q2V¥,| by the Cauchy-Schwarz
inequality, we may use Holder’s and Young’s inequality to get

1
<t / PAQV (4 — 0)4,V(u — 0),) dt do
2 Q(ao,bo)
+2 / (QVD,,, V,) (u — )% dt dx.
Q(ao,bo)

Furthermore, since the diffusion coefficients are bounded on R? and we can
take ¥, such that |V, | < ¢/n for some positive constant ¢ independent of n,
we have

1
<y [ QY- 0. Va0, dida
2 Q(ao,bo)

2¢2
L2210l

n2

/Q( b )(u — ()% dtdx. (2.38)

We define Ay(t) = {u(t,:) > ¢}, Ay == {u > ¢} and we consider |A,(t)],
the d-dimensional Lebesgue measure of A,(t), and |A|, the d + 1-dimensional
Lebesgue measure of Ay. After that We employ Holder’s inequality with ex-

ponents £, 2+ 2 and s with 2 =1 — 2 4 715 to estimate |I5] as follows

Bl < [ 10 fllu = O dudtde < W flly e = Oy | Ayl 27 *

We now invoke Lemma withp=q=2+ % in order to derive that
1 = 0)4llyps < es(ll(w =0l + IV (w=0)]). (2.39)

Thus,
T2 < es(l(u = Oz + [V(u = O)4]l,)[Ag 2 * o2, (2.40)

where we used that || f||% < 1. Similarly, applying Hoélder’s inequality with

exponents k,2 and s with 2 = 1 — 1, since [|h]|, < 1 and [V¥,| < ¢/n, we find

k>
that
1 1
3] < IV (u—0) 4]y [ A2 x (2.41)
and
2c 11
ol = — [I(u = O)+[l; [Ae[2 7% (2.42)

We note that, according to the monotone convergence theorem, and
imply that the integrals [, a0y /(4 — O)1 dt dz and fQ( V(
0)+) dt dx exist. Moreover, by (2.42), we have I, — 0 asn — oo. Consequently,
combining with and letting n — oo, it follows that

1

1
é/Rd(U(bO’ =02 de + 2/Q(ao bo)(QV(u—€)+,V(u—€)+)dtdx

g/ Fl(u—0), dtdx+/ BV (= 0)|dide.  (2.43)
Q(ao,bo) Q(ao,bo)
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Since (QV(u — )4, V(u—0)y) > n|V(u — £),|* by the uniform ellipticity of
the matrix @), one obtains from (2.40), (2.41) and (2.43)) that

1
5 [ ) = 0 do ot 2 V(= 01
Rd
1 2, 1 1_1
<es(l(t = 04l + 19— 0 ) AEE 4o 4 V(0 — 0), ], A2

If we repeat the above proof for any b € (ag, by) and we take the supremum
over such by in the previous inequality, then we get

min(1,5) (| (u — 012 5 + |V (u — €)413)
<2es([|(u — €)1 ]l + [V (1w = 0)4]|)|Ag 27 T2
+ 2V (u— ) 4], | A2 (2.44)

We observe that, since £ > 1 and ||ul|, <1, then

| A = / dtdr < / (?dt dx
{u>£} {uzt}

< / lu(t, ) *dt de < |jul); < 1. (2.45)
{u>¢}
Therefore, |Ay| < 1. Considering also that k > d+2 implies £ —1 < %—%%—ﬁ,
by (2.44) we derive that
11
(= )l + IV (= 04, < IIAJE, (2.46)

for some constant L. As a result, taking m > ¢ yields

(m—€)2|Am|:/ (m—ﬁ)thde/ (u—@)thde/ (u — 0)* dt dx
Am Am Ag

<[(w— o [AT2 = [[(w = 0)4 3,4 [Ad 7,

Ol

d+2

where we used Hélder s inequality with exponents 1 + % and “=. Taking into

account also (2.39) and -, we find
(m = 02| An| < 5([[(w = O llop + IV (w = €)1+ [|5)*Ag] 72
< L2\ A ET T = | Ay E A (2.47)

Now let ¢ > 1 and consider £, = 20 — 27", y, = |A, | for n € N and

a= dLH — 2> 0. If we write (2.47) with m = €,,1 and { = {,,, we get

Easy computations show that, if we choose ¢ = max(1, 21+§,/1/d), then, since
|A7] <1 as in (2.45), we have

1
= A <1< <4Vd> 4%,
14
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Consequently, we can apply Lemma with B =4 and C = 4y, /ZQ to infer
that |As, | = y, — 0 as n — oo. This implies that |A,| = 0 for £ > 2/, i.e.
u < 20 =: C. Replacing u with —u, by linearity we obtain that also —u < C,
hence |lul|, < C.

To end the proof, we remove the additional assumptions

HuH2,||fH%,||h||k < 1. We consider M = ||ull, + Hng + [|h]|, and we

repeat the above argument with @ = u/M, f = f/M and h = h/M, since
they verify formula (2.36). Then, from ||| < C we gain |jul| < CM. O

2.4 Kernel estimates in case of bounded diffu-
sion coefficients

In this section we establish pointwise upper bounds for the kernel p assum-
ing that ¢;; and Dyg;; are bounded on R? for all 4,5,h = 1,...,d. In the
next section they will be applied to a family of operators with bounded diffu-
sion coefficients that approximates A. To this purpose we make the following
assumptions.

Hypothesis 2.4.1. Fiz T > 0,7 € R and 0 < ap < a < b < by < T. Let
us consider two time dependent Lyapunov functions Wy, Wy for the operator
L := 0, + A with Wy < W, and a weight function 1 < w € CY*((0,T) x R?)
such that

(a) the functions w2 and w2Vw are bounded on Q(ag,by);

(b) there exist k > d + 2 and constants ci, ..., cs, possibly depending on the
interval (ag, by), with

2
k

_ a1
(i) w < cyw'® W, (i) |QVw| < cow'® W,

2

(iii) |div(QVw)| < csw BWE, (i) [0iw] < cow B2WSE
(v) V2 < c5w_%W2%,
on [ag, bo] x RY.
The following result can be deduced as in [30, Theorem 12.4] and [31,
Theorem 4.2].

Theorem 2.4.2. Assume Hypothesis k> d+ 2 and that q¢;j, Dyg;; are
bounded on RY fori,j,h =1,...,d. Then there is a constant C > 0 depending
only on d, k and n such that

bo

k
k C k k
<0f+<—1k+c§+6§+cj> Ew, (t, @) dt

w(t,y)p(t,z,y) < C
(t, y)p(t, z,y) b b)! 0

bo

+ cF Ew, (t, 1) dt] , (2.48)

ao
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for all (t,y) € (a,b) x R? and any fized x € R,

Proof. Throughout the proof we consider p as a function of (¢,y) € (0,7) x R%.
We first prove the theorem under the assumption that w along with its first
order partial derivatives are bounded. We split the proof in several steps.

Step 1. Let ag < a1 < a <b < by < by. We show that p € L>*(Q(ay,b1)) N
H(Q(ar,by)) for all s € (1,k/2).

The boundedness of p in Q(aq,b;) follows from the fact that p is domi-
nated by the kernel associated to the operator Ay := div(QV) which satisfies
Gaussian estimates, since the diffusion coefficients are assumed to be bounded.

Hence, the idea is to apply Corollary[2.3.2]to infer that p € H>1(Q(as1,b1))
for all s € (1,k/2). For that, it suffices to prove that the quantity
o (k/2, 2, a0,by) defined as in is finite. On one hand, by Hypothesis

C ha’ C
/() a
( OubO)

FZ(k/27x7a07bO)
Wa(t
C'sf/ 2 ’y)p(t,x,y) dt dy
Q(ao,bo) U)(t,y)

IMES
NI

(y)p(t, =, y) dt dy

IN

bo

clg/ Wy(t, y)p(t, =, y) dt dy = c& Ew,(t, ) dt.
Q(ao,bo)

ao

IN

On the other hand, Proposition implies that the right hand side is finite.
Then, we conclude that I's(k/2, x, ag, by) < o0.
Step 2. Let ¥ € C*(R) be such that

o J(t)=1fora <t <hb,
o J(t)=0fort <ayt>b,
¢ 0<9 <1, Y] < 52y

We put ¢ := 92p and we note that wqg € L(Q(ar,b1)) N H> (Q(ay, by)) for
all s € (1,k/2) because of Step 1 and since we are assuming that w and its
derivatives are bounded. Moreover, given 1 € C12(Q(ay,b1)), we write

plt,y) = 93 (Dw(t,y)u(t,y).
Since ¢ € CH*(Q(a1,b1)), applying Lemma we deduce that

| (@t + Actt. ot o) dedy =0,
Q(a1,b1)
After some computations, we derive from the previous identity that

/ wq(—0p — div(QVv)) dt dy = / 2¢(QVw, V) dt dy
Q(a1,b1) Q(a1,b1)

k _
+ / [q@tw + qdiv(QVw) — ¢Vw + 5pw19¥19’ W dt dy.
Q(a1,b1)
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Integrating by parts the left hand side, we have

/ (QV (wq), Vi) + 0, (wq)] dt dy = / 24(QVw, Vi) d dy
Q(a1,b1) Q(

a1,b1)
k 2
+ / {q@tw + qdiv(QVw) — ¢Vw + §pw19]€219’} W dt dy.
Q(a1,b1)

We now apply Theorem with

u i=wq,
[ :=q0w + qdiv(QVw) — ¢Vw + gpwl‘}%zﬂ’, (2.49)
h :=2¢qQVw. (2.50)

Then there is a constant C' > 0 depending only on 7, d and k (but not de-
pending on ||@]| ) such that

[ulloe < CCllully + 1111 + 117115,

where for p € [1,00) we denote by | f|[, the usual LP-norm of the function
f:Q(ay,b1) — R. In the following we consider C' as a positive constant that
can vary from line to line, but it will always depend only on n, d and k.
Replacing the expressions of u, f and h in the previous inequality we obtain

fwal.. < ¢ ( budly + a0l + ladiv@wly + oVl

k
. 2.51
- +la@val, ) (251)

Step 3. We make use of Hypothesis to estimate the terms in the right
hand side of (2.51)) in order to find an estimate for ||wg||_ . We set

b1
M; = Ew,(t,z)dt, i=1,2.

ai

First of all, we apply Hypothesis to estimate [lwql|,:

Jwgll2 = / (wq)® dt dy < |lwal].. / wqdt dy
Q(a1,b1) Q(a1,b1)

+ prﬁ‘%

k k
< ¢f Jlwqll, / Wigdt dy < cf gl M.
Q(a1,b1)

Similarly, we estimate Hq@thg and ||g diV(va)Hg as follows
k k k k k=2 k
lqoww||} :/ |Oyw|2q2 dtdy < ¢} / w2 Wiq2 dtdy
2 Q(a1,b1) Q(a1,b1)

k k=2 k k=2
<cilugl [ Wagdedy < cf llug] F 2,
Q(a1,b1)

k _
= / |div(QVw)|§q§ dtdy < ¢} / w%qug dt dy
Q(a1,b1) Q(a1,b1)

lq div(@Vw)]

IMESINTES

& ko2
< ¢ lwgll g M.
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The same can be done for the rest of the terms in the right hand side of (2.51)
applying Hypothesis To sum up, we find

k 1 1 k—2 2
lwall, < ef lwqll2, My, ladrwly < eallwall & MY,
. k=2 2 k=2 2
ladiv(@QVuw)lls < e llwall J My lVels < e llwall & M,
k k-2 k k2 2 k11
s [Pt |, < e lwall F ME 19QVwll, < e gl F MY
1 3 1

Putting all together in (2.51), we gain the following inequality:

ko1 1 1 k=1
|wql| o, <Cci MP ||wql|2, + CeaM |Jwql| F

+C +ezteq | M 4 s My | [|wg|| F

by —b
If we set
Xo= gl a=CeiMy,
B = C’czMI%, v:=C [(blci ; +c3+ 04) Ml% + C%M;] , (2.52)

then we obtain
k
XF <aXz 4 X 4y xR

If we apply Young’s inequality aX 5 < }lX k1 a? we get

4 4 4
Xk S 5042 —I— gﬁXk_l + g’}/Xk_Q. (253)

We now prove that it leads to

4 4 4
X <-B+4/= 22
< 2B+ 3’y+(3a

We consider the function

)i. (2.54)

4 4 4 4 4 4
gk Fok—1 % k2 % o g2 2 o %\ 2
f(r):=r 357‘ 37" g =T (7’ 357‘ 37) 3
4
=" 2g(r) — gaz.

First, we show that f is increasing in (%B +4/37+ (%oﬂ)%, oo). This can be
seen by computing the first derivative:

F(r) = (k= 2 g(r) + 2/ ().

Since the function ¢ in positive and increasing in <§ﬁ +4/3y + (%oﬂ)%» oo),

it follows that f’(r) > 0 in the given interval, so f is increasing.
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Second, we have that

f(gﬁ—F\/g—F(gaQ)i)l ) .
~(5r+ 45+ (5)) [(gm S5 (')
rlie ()

|

W

ol
_I_
w

- <§B+\/§+ (goﬂ) ) _ %ag)iJr%gﬁﬁ
) ()]

-2
4,0\ F (4 \F 4
> (§a2> (§a2) - §a2 = 0. (2.55)

On one hand, from the previous observations we deduce that f(r) > 0 if
r>3B8+./57+ (%az)%. On the other hand, by (2.53), f(X) < 0. Thus, we
conclude that (2.54) holds true. Consequently, there exists a positive constant
K, such that

lwall. < K (a2 + 8% + %)

We get the desired estimate by plugging in the previous inequality the
definition of «a, 5,7 and letting a; | ag and by 1 bg.

Step 4. We now prove the theorem also if w is not necessary bounded. In
such case we set

Since
Diw, = (1 +cw) *Dyw

forall i, =1,...,d, then by Hypothesis|2.4.1(a) it follows that w. is bounded
together with its first order partial derivatives. Moreover, making use of Hy-

pothesis 2.4.1(b), we have
k
w. <w < cf Wi,

k 1

1QVw.| = (1+ew) 2|QVw| < (1 + ew) 2w v W1 < cowe* WP,

=

kE—2

|div(QVw.)| < (14 ew) ?|div(QVw)| + 2¢(1 + ew) ?|QVw||Vuw|
< @7+ eawet W

10w, | = (1 + ew)?|Ow| < C4w5 VV1 :
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Thus, w, satisfies Hypothesis with the same constants ci, co, ¢4, c5 and
the constant 217 'c2 + c3 instead of c3. We repeat Steps 1-3 for w. and then,
letting ¢ — 0, we gain estimate (2.48). O

Notice that the assumption of bounded diffusion coefficients was crucial to
apply Theorem The fact that the constant C' does not depend on ||Q]|
will allow us to extend this result to the general case.

2.5 Kernel estimates for general diffusion co-
efficients

In this section we bring all together in order to finally prove the second main
result of this chapter: the pointwise upper bound of the kernel p.

In view of applying the results from the previous section, the first step is
to approximate the operator A as in Chapter 1) with the family of operators
A,, with bounded diffusion coefficients defined by

A, = div(Q.V) -V,

where the matrix @, := (qz(jn)) is defined by (1.32). Moreover, we take the
function ¢,, in as in (1.31), where the function W; is the time dependent
Lyapunov function from Hypothesis and the constant to € (0,7) will be
chosen later on.

It follows by Lemma that A, satisfies Hypothesis Then, for
every n € N, the semigroup generated by A, in Cy(R?) is given by a kernel

Pult, . y).
In order to show further properties about the operators A,, we make the
following assumptions.

Hypothesis 2.5.1. Fiz T >0, x € R and 0 < ap < a < b < by < T. Let
us consider two time dependent Lyapunov functions Wy, Wy for the operators
O+ A and 0 +nA -V with Wy < Wy and |VNWh|, |V Wa| bounded on (0,T) x Br
for all R > 0 and a weight function 1 < w € CY2((0,T) x R?) such that

(a) on [ag, bo] x R we have
|Aw| < CGW%Wf;
(b) there is ty € (0,T) such that
QVWi(to, )] < cxWi(ty, -Juw ¥ T§

(¢) there are ¢ > 0 and o € (0,1) such that

Wy <27
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(d) there is a nonnegative function f such that
VZ(z) = f(x)VWi(to, ),
for all z € R

We observe that W and W5 are time dependent Lyapunov functions for 0,+
A, by Lemma We now prove that if the operator A satisfies Hypothesis
then the same is true for the operators A,, assuming further Hypothesis
2.5.11

Lemma 2.5.2. Assume that the operator A satisfies Hypotheses|2.4.1(b) and
2.5.1((a)-(b). Then the operator A, satisfies Hypothesis|2.4.1(b) with the same

constants cq, ¢y, c5, with co being replaced by 2co and with
. k—2__ 2 _1 k—2__ 2
|div(Q,Vw)| < (e3+ neg)w & WE +4n~ cocow & W (2.56)
instead of (iii).

Proof. The constants cq,cs and c¢5 are the same because the corresponding
inequalities do not depend on the diffusion coefficients. Let us note that Hy-
pothesis [2.4.1(b)-(ii) implies that

Vw| = |Q7'QVuw| < n_lcQw%Wf‘
It follows that A, satisfies Hypothesis M(b) with 2c, instead of cy:
1
Q. Vw| = |p,QVw + (1 — p,)nVw| < |QVw|+ n|Vw| < QCQw%WI’“.

In order to show the last estimate we observe that, for (¢,y) € [ag, bg] x RY, we
have

div(Q,Vw(t,y))
—n(y)div(QVw(t, y)) + £ [QVWi(to, y) - Vu(t,y)
—nVWi(te,y) - Vw(t,y)] +n(1 — pu(y))Aw(t, y).

Moreover, since we took the function ¢ such that [t¢'(t)] < 2 as in Section|[1.6,
we obtain that

¢ (Wi (to, y)/n)

(Wi (to,y)/n)

[QVWi(to,y) - Vw(t,y) — nVWi(te, y) - Vw(t, y)]‘

= Watte g UGV Willo, ) [Vt y)l + 0 [VWi (Lo, 9)] [Vt )

We observe that Wi (ty,y) # 0 because, by Hypothesis [2.4.1(b)-(i), we have
that 1 < w(to,y) < clf/2W1(t0,y). Now, applying Hypotheses 2.4.1(b) and

2.5.1(a)-(b) for the operator A, we gain inequality (2.56). O
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As shown in the previous section, we can now get estimates for the kernels
DPn-

Lemma 2.5.3. Assume that the operator A satisfies Hypotheses and
2.5.1. Fori1=1,2, we set

fWi,n(twr) = /den(tax7y)wl(t>y) dy

Then for any n € N there is a constant C > 0 depending only on d, k and n
such that

k

c? E ok ok bo

w(t,y)pn(t, v, y) < C[ (C + m +ch+ci +ci+ Cé) Ewyn(t, ) dt
0 — ag

ool

fWQ,n(tWr) dt] ) (257)

for all (t,y) € (a,b) x R? and fived x € RY.

Proof. Since the operators A, have bounded diffusion coefficients and satisfy
Hypotheses 2.0.1]and [2.4.1] by Lemmas|1.6.4|and [2.5.2] we can apply Theorem

to A,. We note that we replaced inequality (iii) in Hypothesis [2.4.1(b)
with (2.56)), so in the proof of Theorem (Step 3) we take

BTN

c 2
v = C’{(b . ) + 3+ neg + 04) MF + (c2 + 40" eyer) MY |
L —

Then, (2.57) holds true. ]

We now prove our main result by letting n — oo in (2.57) in order to obtain
an upper bound for the transition kernel p even if the diffusion coefficients are
unbounded.

Theorem 2.5.4. Assume that the operator A satisfies Hypotheses and
2.5.1. Then there is a constant C' > 0 depending only on d, k and n such that

E c? Lok k k bo
w(t,y)p(t,z,y) <C| | cf + ot + kbl vl ¢ Ew, (t,2) dt
0 — 2 ag

kE k bo

+ (e +cie2) Ew, (L, ) dt] , (2.58)

ap
for all (t,y) € (a,b) x R? and fived x € RY.

Proof. Let (t,y) € (a,b) x R and x € R%. First, by Lemma we have
that

Pult,z,y) — p(t,2,y),
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as n — oo for all z € R% Second, thanks to Hypothesis M(c), we apply
Lemma to infer that

gWi,n('v :L‘) — ng(v x)v

locally uniformly in (0,7) as n — oo for ¢ = 1,2. Then, inequality (2.58)
follows by letting n — oo in (2.57) and considering that the constant C' in
the right hand side of the latter inequality does not depend on the diffusion

coefficients qu) : O

2.6 Some applications

In this section we aim to show how the results of the previous sections work
in some concrete examples. In particular, we apply Theorem to obtain
explicit kernel estimates in case of operators with polynomial or exponential
diffusion coefficients and potential terms.

2.6.1 Kernel estimates in case of polynomial coefficients
We consider the operator

A =div((1+ [2[7)V) — |2/,
with s > |m — 2| and m > 0. Moreover we set

w(t,x) = estalacl’f and W;(t,z) = egjta|x\f7

1
B
Theorem 2.6.1. Let p be the integral kernel associated with the operator A
with Q(z) = (1+ |x|7")] and V (z) = |z|*, where s > |m —2| and m > 0. Then

a(2mVs) E _=& s—m+2 37?+2

p(t,l’,y) SCtlf somt2 ko5t 2 o5ty ’

and o > =2

Wherej:1,2,,6:5_7;—+2,0<6<81<€2< Trm—2

fork>d+2 and any t € (0,1), z,y € RY, where C is a positive constant.

Proof. Step 1. We apply Proposition to verify that the operator A satis-

fies Hypothesis with

Z(x) = es2ll?
and that W and W, are time dependent Lyapunov functions for the operators
L := 0,4+ A and 9; + nA — V with respect to Z. Clearly, (2.7) holds true with

¢, = 1. Since s > |m — 2|, we have > (2 —m) V 0. It remains to check (2.8))
and (2.9). Let |z| > 1 and set G; = S°% | Digij = m|z|™ 2z;. Then

4 T V 4 B |x|®
a5 (6 5= s ) =l kel - )
| Bl g8z
1

gj—ﬁ.

= mlz| ™ —
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If |z| is large enough, for example |z| > K with

then we get
x V 1 1
o (G' = 61) =mlz|’ — — <mK’ - — < —1,
[ &;8lx| el el
where we have used that ¢; < % Hence, (2.8) is satisfied if we choose A := 1.
Moreover, we have

lim V(z) |z = lim |72 = 1.
|| —o00 |z| =00

Consequently, holds true for any ¢ < 1.

Step 2. We now show that A satisfies Hypothesis . FixT =1, x € R?,
0<ay <a<b<b <Tandk > d+ 2. Hypothesis[2.4.1(a) obviously
holds true. Let (¢,y) € [ag, bo] x RE We assume that |y| > 1; otherwise, in
a neighborhood of the origin, all the quantities we are going to estimate are
certainly bounded. First, since € < g1, we have that

52
w < clw%Wl’“,
with ¢; = 1. Second, an easy computation shows that

Vuw(t o
|Q(y2_1w( 7y>| . :sﬁta’y‘ﬂfl(l_'_ ‘y’m>€*%(81*€)t y|?
w<tay)TW1(tay>E
< 26t |y|Prm ek (2.59)

We make use of the following remark: since the function ¢ — t?e~* on (0, c0)
attains its maximum at the point ¢ = p, then for 7,7,z > 0 we have

~

N . 5 B 5 v
Z,YG,TZK“} _ T—E<7_Zﬁ)ﬁefﬂ'zﬁ S 7B (%) e B =: C("%B)T_E (260)

Applying (2.60) to the inequality (2.59) with z = |y|, 7 = +(e1 —e)t*, B =1
and v = +m — 1> 0 yields

|Q(y)Vuw(t,y)|
w(t,y) T Wi(t,y)*

_ B+m—1
B

<2C(B+m—1,B)e5t° E@l - e)ta}

Thus, we choose ¢y = Eag ? . where € is a universal constant. Similarly,
|div(Q(y)Vu(t,y))| _mlyl™ |Vw(t, y)| + (1 + [y[™)|Aw|
<eBt [mlyl™ 7 + 2((6 = 2)* + d)ly
+ Qgﬁtawl?ﬁ-i-m—z} 6—%(81—g)ta‘y|5‘
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As a result, applying (2.60) to each term, we find that

|div(Q(y)Vw(t,y))l
w(t7 y)%WI (t7 y)%

<C(B,m)epte {[m +2((8-2)" +d)] E(el - 5)150‘]

_28+m—2
a 2 o B _ _a(m=2) _ 7%
+2ept E(gl —e)t <et "~ F <ca, .

am

Therefore, we pick c3 = Ea; 7 In the same way, we have
‘atw<t7 y)|

k—2 2

U)(t, y>TW1 (ta y)E

= cat*My|Pemi el

-1
< O(B)eat™! [%(51 - e)to‘} < cay .

Then, we take ¢y = cag'. Finally,
1 —s

2 s 1 @ 1
ng) = |y|§@_ﬁ(62—e)t ly|? < C(S,B) {—(62 B g)ta} <ea, ”,
’U)(t,y)_EWQ(t,y) k

so we set ¢5 = Ea;%.
Step 3. We check Hypothesis assuming as above that |y| > 1. First,
we have

A t «
BRI i [(8 - 2+ d)lyl"= + gyl 2] e
w(tay)Twl(tay)E

Recalling that |y| > 1 and applying (2.60) yields
|Aw(t, y)|

[N}

@
Q
»

N
|

el

<eBt [((B—2)" +d)lyl” +epte|y*] e x e

2

<c(@este {((5 9 )[R -ae]

+efBt E(sl — 5)t°‘] . } <@

Thus, Hypothesis m(a) is verified by taking ¢4 = ¢. To choose the constant
cr, we let tg € (0,t). Then, we get

|Q(y)VWi(to, )| _ eyl A+ Jy ™M) Wik, )

’LU(t, y)il/kwl (t07 y)WQ(t> y)l/k ’LU(t, y>71/kW1 (t07 y)W2 (ta y)l/k
< 26, Bty eI

Btm—1
< 2C(B,m)e ft* E(@ — 6)#“} ’

a(m—1) _
5 < cay

am
B

IN

ct
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am

Consequently, we set ¢; = Ea(; ? in Hypothesis [2.5.1(b). We observe that
Hypothesis [2.5.1(c) is clearly satisfied. Finally, we have

VZ(z) = %6@2—6%)'%'5 VWi (to, ),
0

for all # € R?, hence Hypothesis [2.5.1(d) holds.

To sum up, the constants cy, ..., c; are the following:
_am 1
c =1, cp=c3=cr=rca, ", cy =cag
_as
cs = cag 7, cg = C.

Step 4. We are now ready to apply Theorem[2.5.4, Thus, there is a positive
constant C' > 0 depending only on d and k such that

bo
/ §W1 (t, fL‘) dt

ag

k
3 cf k., o5, 5 5
w(t,y)p(t,z,y) <C| | ¢ t gttt

(bo — b)2

L ko bo
+ (e +c3c?) Ew,(t, ) dt], (2.61)

ao

for all (t,y) € (a,b) x R? and fixed x € RY. We set ag = t/4,a = t/2,b =
(t+1)/2 and by = (t + 3)/4. Moreover, by Proposition [2.2.1 there are two

constants H; and Hj not depending on ag and by such that (t,x) < H, for
all (t,z) € [0,1] x R¢, so

i 31
§w, (t ) dt < Hy(bo — ao) = - Hj.

ao

If we now replace in (2.61)) the values of the constants ¢y, ..., ¢; determined in
Step 3, we use the previous inequality and we consider C' as a positive constant
that can vary from line to line, we obtain

w(t,y)p(t,z,y) < C [tl‘%’“ s R (2.62)
We note that, since o > ﬁ, s> |m —2| and § = =242 it follows that
a(mV3) mV 3 S s 1

B f+m—2" 2(+m—2) s+m—2" 2

Hence,
1_ a(m\/%)

=5 < s

As a result, by (2.62)), we find that

k

a(mv )k _a(mVs)k

U)(t, y)p<t7$a ?J) S Ctli B = C’tl Ts—mt2
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Writing the expression of the weight function w we gain the following inequal-
ity:

a(2mvs) s—m+2

plt,z,y) < Ct' =z Femet®le = (2.63)

for k > d + 2 and for any t € (0,1), z,y € R<.
Step 5. Since A* = A, applying (2.63) to p*(t,y,x), we derive that

a(2mVs) s—m+2

p*(t, v, CL’) S C«tlf P ke—stam* 2 ’

for all ¢ € (0,1) and z,y € R?. Combining this with (2.63) and considering
that p*(t,y,z) = p(t, z,y) yields

a(2mVs)k . 377£L+2 s—m+2

p(t,z,y) = p(t, 2, y)?p(t, z,y)/? < Ct' =Sz Fem5tlal = =5tk F

for k > d + 2 and for any ¢t € (0,1), x,y € R% O

2.6.2 Kernel estimates in case of exponential coeffi-
cients

Let A be the operator ‘
A = div(el" V) — el

with 2 <m < s. Set

ol SR
w(t,z) = exp (5750‘/ e dT) and W;(t,xz) = exp <5jta/ e d7'> :
0 0

wherej:1,2,%+1§5§m70<5<51<52and0‘>QB;Z:_Q'

Theorem 2.6.2. Let p be the integral kernel associated with the operator A
with Q(z) = el*I" I and V(x) = €l*I", where 2 < m < s. Then

X ||, B
p(t, z,y) <Ct-2 exp(Ct™%) exp (—%ta/ ez dT)
0

£ Iyl* 7_['1
X exp —Eta/ ez dr |,
0

fork>d+2 and any t € (0,1), z,y € RY, where C is a positive constant.

Proof. Step 1. We check conditions (2.14), (2.15) and (2.16]) to apply Propo-

sition and show that W; and W, are time dependent Lyapunov functions
for L =0,+ A and 9, + nA — V. It is clear that (2.14) holds true with ¢, = 1.
Moreover, since s > m, it follows that

lim V(z) |z P e ™ = im | el e el = g
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and

. 2%\ m x Vv
lim sup |z|'~#~me™ 2 el <G P— = W)

.

|z|—o00 ce 2
. — _M 1 - S _ B _|m

= lim sup <m|x| Be=2 — = ||t Bmelel el ] > — 0.
|x|—o00 3

Consequently, there exist constants ¢, A > 0 such that and hold
true. By Proposition we conclude that W; and W are time dependent
Lyapunov functions for L = 9, + A and 9, + nA — V. In addition, we also note
that Hypothesis is verified with

|l B
Z(x) = exp (52/ e d7'> .
0

Step 2. We prove that A satisfies all the assumptions of Theorem [2.5.4] Fix
T=12zeR,0<ay<a<b<by<Tandk > d+2. Let (t,y) € [ag, bo] xR
If |y| < 1, by continuity all the functions we are estimating are bounded by
a constant. Thus, let |y| > 1. Since ¢ < €1, we have that w < W;. Hence,
inequality

.2
w < clwkTQWl’“
holds true with ¢; = 1. After, we observe that

vl s vl s (lyl=1)°
/ ez dr > / ez dr > e , (2.64)
0 |

y|-1

which leads to

B |yl
Q(y)Vuw(t — B
| (yz_lw( 9)l - = et¥exp _|y| + y|™ — —(81 6>to‘/ ez dr
w(t,y) & Wi(t,y)* 2 k 0

A 5
£1—¢€ Jyl—
< et exp ("%l +y|™ — (1—]{:)#%” 7 ) . (2.65)
We now consider the function
B _1yB
r o =D
f(r):= 5 T e e )
where r > 1 and € := (g1 — €)/k. Considering that there exists a universal

constant ¢ > 0 (that can vary from line to line) depending on S and m such

that 5
r (r—=1)f
5 +rm<ece 1,

for all » > 1, we get
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Y
If we set = = e 2 and we compute the maximum of the function h(z) =

C\/z — £t%z, then we obtain that

As a result, by (2.65) we derive
—o

1Q(y)Vw(t,y)| 2 N
w(t,y) T Wit,y)h < ettexp (4~t )Scexp<ca0 ).

Then, we set ¢y := ¢exp(ca,®). In a similar way, we have that

|div(Q () w(t,y))
w(t,y) ® Wilt,y)*

1 B
> [(d— 1>€f}aﬂey2+|y| + met® |y’m 1 ‘y\ Ty™
Yy

_ |y] B
X exp <—wt“/ ez d7'> .
0

Using again (2.64), we deduce
|div(Q(y) Vw(t, y))|
w(t,y) T Wit y)F

B
2 — W
<(d — 1)et™exp (—’2‘ + [y|™ (Elk 5)taew21>>
2 — _1B
+ met® exp (log|y|m1 ’3/2‘ +ly | (61]{; €>ta€(le))
B
- m 261 —¢€) 4 W=0?
+§staexp (1og|y|ﬁ 1+%+|y| _ (1k ) e 0 )

m 2(61 - 5) tae(921)5) .
k

T2 exp (|y|ﬁ Tty

< (( —1)+m+ g) et exp (:—Zt_a)

22
+ % exp (—t a) < cexp(cay®).

Proceeding as above yields

|div(Q(y)Vw(t, y))
W(t, y>%wl (t> y)%

8¢

Thus, we choose ¢35 = ¢exp(cag ). Concerning ¢, we have

lvl s Nei — lvl s
’at:ig(t? y)‘ _ = SOéta_l / ez dr exp [ — (61 8) e / ez dr
W(t, y)Twl (ta y)E 0 k 0

< cayt.
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We take ¢, = ¢ay . Repeating the same procedure for the remaining estimates,
we get c5 = cg = ¢7 = c3. Finally, we have

51758

|l B
VZ(z) = £ exp <(£2 — 51258)/ e d7'> VWi (to, ),
0

for all x € R%, hence Hypothesis 2.5.1(d) holds.

Step 3. As in the proof of Theorem we choose ag =t/4,a =1/2,b =
(t+1)/2, by = (t + 3)/4 and we notice that, by Proposition [2.2.3, there are
two constants H; and Hs not depending on ay and by such that

bo 3t
gwj(t,l‘) dt S Hj(b[) — ao) = ZH]

ao

Applying Theorem [2.5.4, we infer that there exists a positive constant C' > 0
depending only on d, k and n such that holds. From that, taking into
account the values of the constants ¢y, ..., c; found in Step 2, keeping track
only of powers of ¢ and absorbing all other constants into the constant C, we
get

w(t,y)p(t,z,y) < C’[t exp(ct™ ) + o 4 t1+§] <Ct's exp(Ct™).

Hence,

|y|* B
p(t,x,y) < Ctle exp(Ct™%) exp (—5750‘/ ez d7'> : (2.66)
0

for k > d + 2 and for any t € (0,1), z,y € R? where C' depends only on
d,k,n, B and m.

Step 4. We conclude the proof by applying inequality (2.66) to p*(¢,y, z).
This is possible because A* = A. Then we obtain

B

||,
pr(t,y,z) < Cti=s exp(Ct™%) exp <—8ta/ ez dT) ,
0

for all t € (0,1) and x,y € RY. As a consequence, since p*(t,y,r) = p(t, x,y),
we get the desired inequality as follows:

]__E o I o |£E|* ﬁ
<Ct 2 exp(Ct™*)exp _§t e dr
0

5 ‘yl* B
X exp —§t°‘/ ez dr |,
0

for all t € (0,1) and z,y € R%. O

N

1y
p(t,z,y) =p(t,z,y)2p"(t,y, v)
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2.7 Spectral properties and eigenfunctions es-
timates

In this section we study some spectral properties of A,,;, with either polynomial
or exponential coefficients. In particular we prove the following result.

Theorem 2.7.1. If Q(z) = (1 + |z|7")] and V(z) = |z|® with s > |m — 2| and
m >0 or Q(z) = eI and V(x) = el*I", where 2 < m < s, then T(t) is
compact for all t > 0 and p € (1,00). Moreover the spectrum of the generator
of T,,(+) is independent of p for p € (1,00) and consists of a sequence of negative
real ergenvalues which accumulates at —oo.

Proof. By [18, Theorem 1.6.3], it suffices to prove that T5(t) is compact for all
t > 0. To this purpose let us assume that Q(z) = (1 + |z|7*)] and V(x) = |z|°
with s > m — 2 and m > 2 or Q(x) = "I and V(x) = e*I", where 2 < m <
s. Applying [18] Corollary 1.6.7], one deduces that the L?-realization Ay of
Ay = div(QV) has compact resolvent and thus the semigroup S(t) generated
by Ag in L?(R?) is compact for all t > 0, cf. [19, Theorem 4.29]. Since V > 0
we have 0 < Ty(t) < S(t) for all ¢ > 0. Applying the Aliprantis-Burkinshaw
theorem [2, Theorem 5.15] we obtain the compactness of T5(t) for all ¢ > 0.
Let us now show the compactness of T5(¢) in the case where Q(z) = (1 +
|z|7) ] and V (z) = |z|® with s > |m—2| and 0 < m < 2. The operator A, can
be considered as the sum of the operator Ayu := (1+ |z|™)Au — |z|*u and the
operator Bu := V(1 + |z|7") - Vu. From [37, Proposition 2.3] we know that B
is a small perturbation of Ay. Hence, R(A, Amim) = R(A, A3)(I — BR(), Ay)) ™!
for all A\ € p(Ay). Moreover, by [37, Proposition 2.10], we know that A, has
compact resolvent and hence A, has compact resolvent too. Since Ty(-) is
an analytic semigroup, we deduce that Ty(t) is compact for all ¢ > 0. O

Let us now estimate the eigenfunctions of A,;,. To this purpose let us note
first that, by the semigroup law and the symmetry of p(t,-,-) for any ¢ > 0,
we have

p(t+s,z,y) = / p(t,z, 2)p(s,y,2)dz, t,s>0,z,y¢€ R,
Rd

Thus,

2

So, if we denote by 1 an eigenfunction of A, associated to the eigenvalue A,

2
t
p(t,x,x):/p<—,x,y> dy, t>0,x€]Rd.
Rd
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then Holder’s inequality implies

e’\%|¢($)| = |Ta(t/2)y(x)|

/p(%,x,y> [v(y)| dy
Rd
< (/de(%,x,y) dy> 14112

1
= p<t7 z, x>2 ||w||2

IN

for any ¢t > 0 and any € R?. Therefore, if we normalize 1, i.e. [[1]s = 1,
then
t 1
[W(x)| < e Pep(t,x, )2, t>0,2cR

So, by Theorem and Theorem we deduce the following result.
Corollary 2.7.2. Let ¢ be any normalized eigenfunction of Amin. Then,

(a) in the case of polynomially growing coefficients, i.e., Q(x) = (1 + |z|™)I
and V(x) = |z|*, where s > |m — 2| and m > 0, we have

s—m+42

W}(x)‘ < 616*02|x‘* 2

for all x € R%, for some constants ci,co > 0;

(b) in the case of exponentially growing coefficients, i.e., Q(x) = eI and
V(z) = el where 2 < m < s, we have

|l B
|(x)] < cqexp (—02/ er dT) )
0

for all z € R%, for some constants ¢y, co > 0.



Chapter 3

Elliptic operators with
unbounded diffusion, drift and
potential terms

In Chapter [2| we treated Schrodinger type operators in divergence form. In
this chapter, we are concerned with the more general elliptic operator defined
on smooth functions ¢ by

Ap =div(QVy) + F -V — Vo,

where the diffusion coefficients @), the drift ' and the potential V' are typically
unbounded functions.

As studied in the paper [32], here we aim to prove global Sobolev regularity
and pointwise upper bounds for the gradient of transition densities associated
with A. Throughout, we make the following assumptions on @, F and V.

4 € Cl-‘rC(Rd; Rdxd>7 F =

loc

(RY) for some ¢ € (0,1). More-

Hypothesis 3.0.1. We have Q = (qj)i =1
(Fy)j=1,.a € CLt“(RERY) and 0 <V € Cf

loc loc

77777

over,

(a) The matriz Q is symmetric and uniformly elliptic, i.e. there is n > 0
such that

d
> qii(@)&& = nlEl for all z, & € R

ij=1

(b) there are 0 < Z € C?*(RY) and a constant M > 0 such that
limig| oo Z(2) = 00, AZ(x) < M and nAZ(x)+ F-VZ(x)—=V(x)Z(x) <
M for all x € R,

We observe that, by Remark , Hypothesis (b) implies that Z is a
Lyapunov function for A and nA + F' -V — V as introduced in Chapter

As in Chapter , the construction of the minimal semigroup 7'(+) in Cy(R?)
described in Chapter (1| applies for the more general elliptic operator A as well.

88
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Then a suitable realization of the above operator A generates a (typically not
strongly continuous) semigroup 7' = (T'(t));>o on the space Cy(R?) that is
given through an integral kernel p, i.e.

T(0)f() = [ plt.)fo)dy, ¢> 0.2 €R, € GRY)

where the kernel p is positive, p(t,-,-) and p(¢,z,-) are measurable for any
t >0,z €RY and for ae. fixed y € RY p(-, -, y) € CLE/*27¢((0, 00) x RY).

In Section [3.1], the approach of Chapter [2 based on the existence of time
dependent Lyapunov functions for 0; + A and 0; + nA + F - V — V allows
us to establish estimates for the kernel p. Such functions play an important
role in the technique used in [41] in case of operators with bounded diffusion
coefficients in order to obtain estimates not only for p, but also for Vp, the
gradient of p. In there, the key point is to prove the square integrability of the
logarithmic gradient of p. From that, global regularity results follow.

The core of this chapter is to repeat the same steps to achieve bounds
for the gradient of the transition kernel. For this purpose we make use of
an approximation argument: we approximate the operator A with a family
of operators A, with bounded diffusion coefficients. As already underlined in
Chapter 2| what is important for this procedure to work when dealing with the
approximating kernels p,, is to ensure that the constant in the right hand side
of the estimate of Vp, does not depend on the diffusion matrix. To this end,
making use of Theorem in Section [3.2] we establish a suitable estimate for
Vp in case of bounded diffusion coefficients. Then, in Section we achieve
the corresponding estimate for the general operator A.

Finally, in Section we see our main result at work on the prototype
operator

div((1 + [2[7)Vu) — [ - Vu— [a],
forp>(m—1)V1, s> |m—2| and m > 0, where z — |z|, is a C*-function
satisfying |z|, = |z| for |z| > 1.

3.1 Preliminaries

In this section we present the ingredients we will use in the next section to find
pointwise upper bounds for the derivatives of the kernel in case of bounded
diffusion coefficients. We will make use of time dependent Lyapunov functions
W for the operators L := 0;+ A and 0, +nA+ F -V —V with respect to Z and
h introduced in Chapter |1, where Z is the Lyapunov function in Hypothesis
3.0.1(b) and 0 < h € L'((0,T)). According to Definition[1.6.2} for fixed T > 0
and for all (¢,z) € (0,T) x RY, they satisfy the following inequalities

LW(t, ) < h(t)W (¢, ),

oW (t,x) + nAW (t,x) + F(x) - VW (t,x) — V()W (t,x) < h(t)W (t, ).
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3.1.1 Kernel estimates in case of bounded diffusion co-
efficients

As in Chapter [2| time dependent Lyapunov functions allow us to establish
pointwise upper bounds for the kernel p.

Theorem 3.1.1. Fiz T > 0,z € R and 0 < ap < a < b < by < T. Let
us consider two time dependent Lyapunov functions Wy, Wy for the operators
L =0;+A with1 <W; < Wy and a weight function 1 < w € CH2((0,T) x R?)
such that

(a) the functions w20 and w2Vw are bounded on Q(ag,by);

(b) there exist k > d + 2 and constants ci,...,ce > 1, possibly depending on
the interval (ag, by), with

(1) w < clw%Wl%, (11) |QVw| < ngk%WI%,
(111) |div(QVw)| < ng%wl%, (iv) |0yw| < c4wkk;>2W1%,
(0) VE < cswt W, (i) |F| < cow W,

on [ag, bo] x R4,

If qij, Dpgi; are bounded on R? fori,j,h = 1,...,d, then there is a constant
C > 0 depending only on d, k and n such that

k cg E ok bo
w(t,y)p(t,:c,y) < ¢ Cl2 + W+C§+C§ +Cf le(tax) dt

+(c’§+c’g—|—c

S
%)
SINIES
N———
i
5
—~
~+
&
N—
QL
~
1

for all (t,y) € (a,b) x R and any fived x € R, where

fta) = [ pltz,p)Witt.n) dy

fori=1,2.

Proof. The difference of Theorem and the above theorem is the presence
of the drift term in the operator A. For that, here we assumed further in-
equality (vi). We now inspect the proof of Theorem and we highlight the
changes to make in order to deal with it.

We first assume that w along with its first order spatial derivatives is

bounded.
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Taking into account Remark in Step 1 it is still possible to apply
Corollary to infer that p € H5'(Q(ay, b)) for all s € (1,k/2). Indeed, by
w > 1, (i), (vi) and Wy < W, we have

Dy ()2, 7, a0, bo) / Fy) 5 p(t, 2, y) dt dy
Q(ao,bo)

k
<[ ult)lFw)l ) dedy
Q(ao,bo)
k
ch/ w(t,y)2Wa(t,y)?p(t, z,y) dt dy
Q(ao,bo)

6 / Wi(t,y)?Wal(t, y)2p(t, z,y) dt dy
Q(ao,bo)

k k bo
< €1 062 £W2 (ta l’) dt.

ap
Moreover, since time dependent Lyapunov functions are integrable with respect
to p(t, x,y)dy thanks to Proposition |1.6.3] we deduce that T'y(k/2, z, ag, by) <
00.

In Step 2 the keypoint is to apply Theorem [2.3.6] For that repeating the
same computations, it turns out that we have to replace (2.49) and -
respectively, by

k B
f = qow + qdiv(QVw) — ¢Vw + Epwﬁ‘%ﬁ’ + qFVw,
h = 2qQVw + wqF.
As a consequence, in (2.51) the new terms lgFVw|[x and [lwqF]]; appear.
Making use of inequalities (ii) and (vi), in Step 3 we obtain

k=2 2
lgFVwllx <0~ escs lwall & My,

k—1 1
“quHk < G ||UJQHO§ My

Hence, we set

1 1
B=C (chlk + c6M;) ,

2
v = CKb b+03+c4)M + (cace + ¢2) My |,
=

instead of (2.52). The rest of the proof carries over Verbatim m
Remark 3.1.2. [f one assumes |QVw| < oW, |QD*w| < 03W1 and

IVQ| < crw ka’“, for some positive constants ca, cs, c7, then, since w > 1,
we have

|div(QVw)| < d (|VQ||Vuw| + |QD*w])

IR 1
<d (cgcm_lelWl’“ + céWl’“)

d (cocrn™ + ) w%WE. (3.1)

IN
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So, since 1 < W1, the assumption (iii) of the above theorem is satisfied with
c3 =d (cacm 4 ¢5)

For further purposes, we obtain from the above remark the following corol-
lary.

Corollary 3.1.3. Assume all the assumptions of Theorem except (ii)
a1 1 a1

and (iii). If |QVw| < ;W2 |QD?w| < W and |[VQ| < cpw W2 hold

for some positive constants ca, ¢y, ¢z, then there is a constant C > 0 depending

only on d, k and n such that

bo bo
w(t,y)p(t,z,y) < C <A1 Ew, (t, ) dt + As Ew, (t, ) dt) , (3.2)

ao ao

for all (t,y) € (a,b) x R and any fized x € RY, with
k

Clz k -1 / % %
+————+ &+ [d(coern " +¢5)]% + 3,
(bo —b)2

kE k
Ay=cb+cE+eicg. (3.3)
We aim to establish estimates for the derivatives of the kernel p. To this
purpose we make the following assumptions.

Hypothesis 3.1.4. Fix T >0,z € R and 0 < ap < a < b < by <T. Let us
consider two time dependent Lyapunov functions 1 < Wy, Wy with Wi < Wy
and a weight function 1 < w € CY3((0,T) x RY) with 9,Vw € C((0,T) x R?)
such that for some € € (0,1) and k > 2(d + 2) the following hold true:

1 l1—e
a dy < oo for all fired t € a,b] and
W [ ) 0

1 1—¢
/ < ) dt dy < oo;
Q(ab) w(t,y)

(b) the functions wVw, w 20w, w2 D?*w, w3DwD;w, w?d,Vw,
w30wVw, |[Vw|™*1D%w and |Vw| %719, Vw are bounded on Q(ag, by);

(c) there exist constants ci,...,c11 > 1, possibly depending on the interval
(ag, bo), such that

(i) w < clw%Wﬁ, (11) |QVw| < CQWli;
(iii) |QDw| < csWF, (iv) |Baw] < cqw TWEE,
(v) V2 < c5w_%W2i, (vi) |F| < cGw_%WQi,
(vii) VOQ| < et WP, (viii) [V F| < csw kWi,
(iz) [VV| < cou i Wy, (2) |D3w| < crgWEF |

(IL‘Z) |8ti| S 011W1E,
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on [ag, by] x R4,

From now on, we fix 0 < ag < a < a1 < by < b < by < T with T >

0,b—b; >a; —a>a—apand z € R?. Moreover, we consider p as a function
of (t,y) € (0,T) x R%

3.1.2 Global regularity results for bounded diffusion co-
efficients
In this subsection we assume that the coefficients ¢;; and their spatial deriva-

tives Dyg;; are bounded on R? for all 4, j,h = 1,...,d. In here we present some
of the key results that in the next section will make our technique work.

Adapting [41, Theorem 5.1] to operators with potential term, we show that
p'/? belongs to Wy (Q(a,b)).

Theorem 3.1.5. Assume Hypothesis|3.1.4] and that q;;, Dyq;; are bounded on
R? fori,j,k =1,...,d. Then the functions plog®p and plogp are integrable
in Q(a,b) and in R for all fived t € [a,b] and

/ Mdtdy S%/ (IF()* + V2(y)) p(t, z, y) dt dy
oy Ptr,y) 7% JQ(ab)

+/ p(t,z,y)log® p(t, x,y) dt dy
Q(ab)

2 _
- / [p(t,:v,y) logp(t,m,y)]i;gdy < 0.
N JRrd

In particular, p2 belongs to W' (Q(a, b)).

Proof. We first observe that, by Corollary and Hypothesis[3.1.4(a), plogp
is integrable in R? for all fixed t € [a,b] and plog®p is integrable in Q(a,b).

Moreover, using Hypothesis and Proposition we have
Pu(kzcanb) = [ F() ot ) dedy
Q(ao,bo)
<[ wlt)F@ ) dedy
Q(ao,bo)

g%/ Walt, y)}p(t, 2, y) dt dy
Q(ao,bo)

bo
<k [ &yt r)dt < oco. (3.4)

ag
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Similarly, we get
Pk, 2, ag, by)* = / VE(y)plt, o, y) dt dy
Q(ao,bo)
< / W (t,y)VF(y)p(t, z,y) dt dy
Q(ao,bo)

<" / Wa(t,y)p(t, z,y) dt dy
Q(ao,bo)

bo
=ik Ew,(t, z) dt < 0.

ao

Hence, Lemma and Remark imply that p € W,S’I(Q(a, b)). As a
consequence, since by Lemma we have that for all ¢ € C1?(Q(a, b))

/Q( b)(at90<t7y) + Ap(t,y))p(t,z,y)dtdy = [ [p(t,z,y)e(t y)], = dy,

R4

then integrating by parts we get

/ poyp dt dy =/ [(QV e, Vp) — p(F, V) + Vp|dtdy
Q(a.b) Q(a,b)

+ [ ey, )iz, dy. (3.5)

By density, the previous identity holds if ¢ € W, (Q(a,b)) with compact
support in y. We now consider ¢ € C>°(R?) such that

e ((y)=1for[y| <1,
* ((y) =0 for y| > 2,
e 0 (L1

We set ¢, (y) = C(y/n) for all n € N. Since (2logp € W, (Q(a, b)) by Propo-

sition |C.4.2} choosing ¢ = (?logp in (3.5) yields

d d
G
/( )Cﬁatp dt dy :/( ) (— Z i DipDjp + 2G, log p Z 4i; DipD;Cn
Q(a,b Q(a,b

i,j=1 b,j=1

— C2(F,Vp) — 2¢.plog p(F, V() + CVp 10gp) dt dy

+ / [p(t, 7, y)C (y) log p(t, &, )] dy.
R4
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Defining q(u,v) := C.l.: ¢;;uv; for all u,v € R, we obtain
i,=1 1] J
/ Czq(Vp, Vp) dy
Q(a,d) p

=—2/ Cnlogpq(Vp, V() dtdy+/ CX(F, Vp) dt dy
Q(a,b) Q(a,b)

+2/ Cuplog p(F, V() dtdy—/ (2Vplogpdtdy
Q(a,b) Qa,b)

a,b

+ [ Clp—plogpli=t dy.
]Rd
Then,

/ 2IVPVD) g op g2k, — L+ | Clp— plogpl=t dy,
Qab) p "
(3.6)

where

I — / Cologpa(Vp, V) didy, T — / C2(F, Vp) dt dy,
Q(a,b) Q(a,b)

K, - / Cplogp(F, VG dtdy, L — / CVplogpdt dy.
Q(a.b) Q(a,b)

In the following we estimate the previous quantities in order to show that
q(Vp, Vp)/p is integrable in Q(a, b).
Applying the Cauchy-Schwarz inequality and Hoélder’s inequality, we deduce
that

|1, S/( )Cn\logp\ lq(Vp, V()| dt dy
Q(a,b

q(Vp, Vp)
< /Q(a,b) (CnT> (\/z_?| logplx/q(VCmVCn)) dt dy

= (/ C’ZLM dt dy) (/ plog® pq(Vé,, VE,) dt dy) .
Qlab) p o)
(3.7)
In addition, given that |V (| is bounded by a constant M, we observe that

M2
1(V60 V6 < QU 196, < 12

Combining this with (3.7) and using Young’s inequality, we derive that

Vp,V
|1,] < 51/ CZM dt dy + CJLH;’O/ plog? pdt dy. (3.8)
Q(a,b) S1N%JQ(ab)
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In the same way, we have

Tl < / Gl F| [Vp| dt dy
Q(a,b)

Vpl* : :
< / VP ey < / F2pdt dy) o 3Y)
Q(asb) p Q(asb)

Since the matrix @) is uniformly elliptic by Hypothesis [3.0.1] by Young’s in-
equality we get

Vp,V 1
17, < 2 2l VD) gy L |Fp dt dy. (3.10)
n 4

M JQ(ab) p €2 JQ(ab)

Moreover, by Holder’s and Young’s inequality, we have

M
K| < / Flpllogp| [Vl di dy < - / |Flp|log p| dt dy
Q(a,b) o Jo(

a,b)
M 3 3
< — (/ !F!2pdtdy) (/ plog?pdtdy)
- \JQ(ab) Q(a,b)
M M
< —/ \F|*pdtdy + — plog? pdt dy (3.11)
" JQab) An Jqa)
and
} :
L] < / Vp|logp| dtdy < (/ Vzpdtdy) (/ p10g2pdtdy)
Q(ab) Q(ab) Q(a,b)
1
< — Vipdtdy + €3 / plog® pdtdy. (3.12)
4e3 JQ(a) Qab)

Using (3:8), (3.10), and (3.12) in (3:0) yields

(1 — 2 — Q) / Cgm dt dy
n Q(a,b) p

1 2M 1
< (——l——)/ |F|*pdtdy + — V2pdt dy
ey n Q(a,b) 4e3 Jo(ab)
M c
+ | —t+es+ “QH;’O / plog? pdt dy
2n 281” Q(a,b)
+ /d Calp — plog pli= dy. (3.13)
R

We note that, taking into account Hypothesis and Proposition we
deduce that

b
2 1
/ |F|*pdtdy < cé/ w tWEpdtdy < cg/ Ew,(t,x)dt < oo (3.14)
Q(a,b) Q(a,b) a
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and
4 2 b
/ V2pdtdy < cg/ w W pdtdy < cg‘/ Ew,(t,z) dt < 0.
Q(a,b) Q(a,b) a

Consequently, considering also that plog®p is integrable in Q(a,b), letting
n — oo in (3.13)) leads to

/ 4(Vp. Vp) dt dy < oo.
(a,b) p

We now come back to (3.6). Choosing £y = 1/n in (3.8) we get

1 Vp, V
I, < = / Cfb—q( P, Vp) dtdy + ——= CHQH / plog? pdt dy.
Q(a,b) p 4n Q(a,b)

Since both ¢(Vp, Vp)/p and plog®p are integrable in Q(a,b), we find that
I, — 0 as n — oo. Similarly, by (3.11) and (3.14), K,, — 0 as n — .
Moreover, applying Young’s inequality in (3.9)), we have

|V10|2 1 2
|| < 54/ dt dy + —/ |F'|*p dt dy.
Qab) P 4e4 Joap)

Estimating J,, as above, L, as in (3.12) and letting n — oo in (3.6) we gain
that

2
77/ V| dtdyg/ q(Vp,Vp) it dy
Qap) P Q(ab) P

1 1
§€4/ |Vp] dtdy + — / |F|2pdtdy+—/ V2pdt dy
Qap) P 4€4 JQap) g3 Jqan

+83/ plog® pdtdy +/ [p — plog pli=" dy, (3.15)
Q(a,b) R4

where in the first inequality we used the uniformly ellipticity of the matrix Q.
We also observe that the function ¢t — (T'(¢)1)(z) is decreasing in [0, +00) for
any r € R? because the semigroup is contractive. Hence, we have

/p(b,x,y)dyS/ pla,z,y) dy,
Rd R4

for all z € R% Tt follows that [o.[p(t,z,y)]!=% dy < 0. Combining this with
(3.15) and setting €5 = €4 = 1/2, then we derive the desired inequality. O

As in [41, Lemma 5.1], we prove that Vp is bounded.

Lemma 3.1.6. Assume Hypothesis and that q;j, Dyqi; are bounded on
R? fori,j,h=1,...,d. Then Vp € L*(Q(ay,b1)) for all 1 < s < co.
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Proof. Arguing as in the proof of Theorem we know that Vp €
L*(Q(a,b)). We now show that Vp € L>(Q(a,b)). For fixed z € R? we
consider the function q(t,y) := 9*/2(t)p(t,z,y), where ¥ € C*®(R) be such
that

e ¥(t) =1 for t € [ay,by],

e J(t)=0fort <a,t>b

o 0 <y <.
We set
1 2\ 1 2
T1>1suchthatr—1:(1—E>E+E,
k
oa=—,
™

2 1
£ > 1 such that — + — = 1.
a fp

Then, since /g € Wy (Q(ao, by)) by Theorem m, Holder’s inequality with
exponents 1/, 1/ and 1/ yields

/ ’F|r1|vq’7‘1 dtd’y :/ |F|T1ql/aqfl/alvqﬁ/a|Vq|r172/a dt dy
Q(ao,bo) Q(ao,bo)

2 5 .
S (/ |VC]‘ dtdy) (/ |F|T’1athdy)
Q(ao,bo) 4 Q(ao,bo)
1
5 7
X (/ |Vg|ri—a)B dtdy)
Q(ao,bo)
V ’2 é é
< (/ |—pdtdy> (/ \F]’“thdy)
Qap) P Q(a,b)
7
X (/ |Vq|kdtdy) :
Q(ao,bo)

We observe that the right hand side of the previous inequality is finite because
of Theorem and the fact that Vp € L¥(Q(a,b)). Hence F - Vq be-
longs to L™ (Q(ag, by)). Similarly, applying Holder’s inequality with exponents
2/a and 1/ we get

/ |divF|" g™ dt dy = / |divF|" ¥/ g~ dt dy
Q(ao,bo) Q(ao,bo)

2
o B
< </ |divF|"19/%q dt dy) (/ q(”_%)ﬁ dt dy)
Q(ao,bo) Q(ao,bo)

1

2
, o B
= iv %q dt dy Fdtdy ) . 3.16
divF
Q(ao,bo) Q(ao,bo)
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By Hypothesis and Proposition we deduce that

/ divF|2qdtdy < df / IVF|2qdtdy
Q(ao,bo) Q(ao,bo)

k 1
< d%cég2 / w_%Wfth dy
Q(ao;bo)
kB[P
<dicg Ew, (t, ) dt < 0. (3.17)

ap

Thus from (3.16) we derive that ¢divF € L™ (Q(ag, bp)). Similar computations
imply that Vg € L™ (Q(ag,by)). Since F € C1(R?% R?), we now apply Propo-
sition (c) to infer that p € W:l’iOC(Q(ag, b)) and it satisfies the equation
Oip — Ayp = 0, where

A" =div(QV) —F -V =V —divF

is the formal adjoint of A. As a consequence, ¢ belongs to W:l’iOC(Q(aO, bo)) N
L™ (Q(ao, bp)) and solves the parabolic problem

g — div(QVq) = —F - Vg — Vg — qdivF + pdy(9%),  in Q(ag, bo),
q(ao,y) =0, y € R
(3.18)
Since we proved that the right hand side belongs to L™ (Q(ag, by)), then by
[33, Theorem IV.9.1] it follows that ¢ € W,2(Q(ao, by)).
If ry < d+2, then Vg € L**(Q(ag, by)) for 1/s; = 1/r1 —1/(d+2) according
to the Sobolev embedding theorem. In this case we iterate the procedure
described above with

111
S, 1 d+2’
So—/{?,

for every n € N. If r,, < d+ 2 for every n € N, then 0 < s,, < 5,,41. If we take
s = lim,,_yo S,, We derive that

1 1 2V 1 2 1 0

;—( —z);+z‘m< ’
where we used that & > 2(d + 2). As a result, there exists n € N such
that r, > d + 2, so Vq € L>(Q(ao, bo)) by the Sobolev embedding theorem.
Otherwise, if r, = d + 2 for some n € N, then s, < oo is arbitrary, thus
rne1 > d + 2, taking s, sufficiently large and since k > 2(d + 2).

To sum up, Vp € L*(Q(a,b)). If we now take into account Theorem [3.1.5]

we finally prove that Vp € L'(Q(a,b)) observing that

/ |Vq|dtdy < </ —dtdy) (/ thdy) . g
Q(ao,bo) Q(ao,bo) 4 Q(ao,bo)
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Moreover, a result similar to [41] Theorem 5.2] is valid.

Theorem 3.1.7. Assume Hypothesis and that g;j, Dygi; are bounded on
R? fori,j,h=1,...,d. Thenp € Wk/Q(Q(al, b1)).

Proof. Let ¢ and ¥ be as in Lemma [3.1.6, m Since Vq € L*(Q(ag, by)) we have

[ rEvataray = [ jpEed s VAl ity
Q(ao,bo) Q(ao,bo) \/_

1

k=2 V 2 2

< |Vl 5 ( / Vol dtd) ( / \F\kthdy) |
Q(ag,bo) P Q(ao,bo)

Considering Theorem and (3.4)), we obtain that F'- Vq € Lg(Q(ao, bo))-

In a similar way we have

N|=

/ \divF|2q2 dt dy = / divF|2q" q2q2 dt dy
Q(ao,bo) Q(ao,bo)

i : %
<llall.Z (/ IdivF|kthdy) (/ thdy) .
Q(ao,bo) Q(ao,bo)

Inequality (3.17) implies that ¢divE € L5(Q(ag, bo)). If we repeat the compu-
tation with V 1nstead of d1vF we find that V¢ belongs to L2 (Q(ao, bo)) as well.
As in the proof of Lemma q solves the parabolic problem (3.18] . Since
the right hand side belongs to Lf (Q(ag, by)), we obtain that ¢ € Wkl/g(Q(a, b)).

Hence, p € Wkli(Q(al, b1)). ]

It is possible to prove even more regularity on Vp, as the following result
shows.

Theorem 3.1.8. Assume Hypothesis|3.1.4 and that g;;, Dyq;; are bounded on
R? fori,j,h=1,...,d. Then Vp € H2>1(Q(a1,b,)).

Proof. In view of Theorem [3.1.7, we are left to show that
f)th(., x, ) € (W((],;}Q),(Q(al, bl)))/

Let ¢ and 9 be as in Lemma and consider ¢ € C1?(Q(a,b)). By Lemma
1.3.3] we have

/ (Orp(t, y) + Ap(t, y))p(t, z,y) dtdy:/ p(t, =, y)p(t, y))i=t dy.
Q(a,b) Rd

Substituting 19590 instead of ¢ in the previous equation, we get

/ (qatso —(QVp,Vq) + (F,Vp)g — Vg +p908t19§> dtdy = 0.
Q(a,b)
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We replace again ¢ by the difference quotients with respect to the variable y

o(t,y — he;) —o(t,y)
|h| ’

for (t,y) € Q(a,b), 0 # h € R and we obtain

T_pp(t,y) =

/ 40h(r_nip) dt dy — / (QV (r_1p), V) dt dy
Q(a,b) Q(a,b)

+/ <F>V(T—h90)>thdy_/ Va(r_np) dt dy
Q(a,b) Q(a.b)

+/ p(T—hSO)atﬁg ditdy=1 —I)+ 13— 14+ 15 =0,
Q(a,b)

where
h=[ o) didy, L= [ (@) Vapdtdy,
Q(ab) Q(a,b)
I; :/ (F,V(T_pp))qdt dy, I, :/ Va(t_np) dtdy,
Q(a,b) Q(ab)

I5 =/ p(T_1p)09% dt dy.
Q(a,b)
By a change of variables we have
L =/ (7hq)Orp dt dy
Q(a,b)
and
1
b= | (@ he) V), atty + hey)

(Q)Ve(t,y), Va(t,y))) dt dy.

Summing and subtracting |h|™! fQ(a ) (Q(y+he;)Vo(t,y), Vq(t,y)) dt dy in the
previous expression yields

I = / ((Qy + he;) Vo (t,y), Vrng(t,y)
Q(a,b)
+ (mQ)Ve(t,y), Va(t,y))) dt dy.
Similarly, we find that
I - / (maalt, ) (F(y + he;), Volt, )
Q(a,b)
+q(t, y) (T F(t,y), Ve(t,y))) dt dy,

L = / (V (W)a(t y) + V(y + he;)mua(t v) ot y) dt dy,
Q(a,b)

I5 —/ (Tp) 002 dt dy.
Q(a,b)
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Since ¢;; € C}(R?), applying the Cauchy-Schwarz inequality and Holder’s in-
equality we deduce that

[I2| <c (”VThQHLk/z Qap) T ||VCI||Lk/2(Q a,b) > ||(70||W(k/2), (Q(a,b)) *

Moreover,

2
k k
[I3] < IThq(t, y)|? |F(y + he;)|2 dtdy IIwIIWol Qb))
Q(ab) k/2)!

k k
+ 2| Fl2 ditd
( /Q it y) Ielhes: ot

b2 [ (t, y)|* g i
<|lmall & / —————dtdy (/ |F(y—|—hej)|kpdtdy> X
Q(a,b) p Q(a,b)

X ||90||W(0k}2),(Q(a,b))

Jun

k—2 E
+llall Lo gan) (/Q(a ) |Tn 7|2 g dt dy) HSOHW(” (@ab) -

Similarly, we have

—2 % t 2
L] < gl % ( IR hej>|’“pdtdy) JR e
Q(ab) Q(a,b) p

)

==

< llellwer oo

k—2 k
e lal o ([, 191 patds) el e

Finally,
[Is] < ¢ HThPHLk/2(Q a,b)) HSDHWO/ y(Qa) -
Hence,
/Q(a ) (Thq)Opp dt dy| < C[ VTRl 2oy T IVl Lrr2 (0
2 :
ThP
+ || 22 ([ 1P eyt deay
VP L2(Q(a,b)) \Y Q(a,b)
2 1
ThD F
+llmall 7 || 22 ([ Wi+ nepPatnaay)
VP L2(Q(ab)) \YQ(a,b)

k=2 k %
+ lall % (ea) (/Q( b)\ThFP q(t,y) dtdy)

2
k &
+ V|2 t, dtd + 7 ’ )
(/Q(a,b)l h | Q( y) y) } H thLk/Q(Q(a,b))] HSOHW(Ok}Q)/(Q(a:b))
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As p € Wkl/’QQ(Q(CL b)) by Theorem [3.1.7, it follows that V7,g — VD,q
in L2(Q(a,b)) as h — 0, which implies the boundedness of ||V7q]| s

L (Qab)’
Similarly, we may infer the boundedness of HThp/ VD H 12(Qa from Theorem

- As Vp € L>(Q(a,b)) by Lemma 3.1.6 “ the dlfference quotients 7,q
converge weak™ in L>°(Q(a, b)) to D;q, where also ||7,¢||, is bounded. Bound-
edness of the integrals involving F' can easily be deduced from the fact that
F e CLFRERY), Ve ¢ (RY) and the mean value theorem. All together,

loc loc
we see that for a certain constant C, we have

’/ (Thq)Opp dt dy| < C IIsOIIW(Ok; Q@)
a,b)

for all ¢ € C1%(Q(a,b)).
By density, this estimate extends to ¢ € W&}2 (Q(a,b)) and it follows
that the elements 7,¢ are uniformly bounded in (W(k/Q),(Q(a, b))). Thus, by

reflexivity, we see that as h — 0 we find cluster-points in (W&’}z),(Q(a, b))
But testing against functions in C2°(Q(a, b)), we find that the only possible
cluster point is D;q. This yields 0,D;p € (W%}Q (Q(a,b)))" and finishes the
proof. O]

3.2 Estimates for the derivatives of the kernel
in case of bounded diffusion coefficients

With the help of Theorem 2.3.6, we can now prove an upper bound for [wVp|
that does not depend on the ||| _-bound of the diffusion coefficients.

Theorem 3.2.1. Assume Hypothesis and that q;;, Dygi; are bounded on
R? fori,j,h =1,...,d. Then there is a constant C > 0 depending only on d,
k and n (but not depending on ||Q|| ) such that

lw(t,y)Vp(t, z,y)|

— 1 3
SC{B1 E1(a0, b0)2 [wpll Zoe (@any

_|_

2 — 2 k2
(BQHI(GOabO)k B3:2(a0vb0)k>prHLI;"(Q(a,b))

k—1
+ | B4Z1 (a0, bo)* + Bs Eg(ao,bo)i] lwpll % oas)
) ) v ?
+ (Bﬁ (ao, b0)§ B7 EQ((I(), b0>§) / | p| dtd y (319)
Qap) P

for all (t,y) € (a1,b) xR and fived x € R, where By, i = 1,...,7 are positive
constants depending only on ¢;, i =1,...,11, b, by and k and, for i =1,2, we
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define

bo

Ew,(t, ) = /de(t,x,y)Wi(t,y) dy, Zi(ag,bo) = Ew, (t,x) dt.

ag

Proof. We first prove the theorem assuming that the weight function w, along
with its first order partial derivatives and its second order partial derivatives
of the form D;;w and 9,D;w are bounded. We fix ap < a < ay < a; < by <
by < b < by.

We show that

V(wp) € 13 (Q(az, b2)) N L™(Q(az, ba)). (3.20)
We apply Lemma and Theorem to infer that that
Vp € H2 ' (Qaz, b)) N L¥(Q(az, by)).

By Corollary we have p € L>®(Q(az2,b2)). Moreover, arguing as in

the proof of Theorem [3.1.5] Hypothesis and Proposition lead to
Iy (k/2,2,a0,b0), Ta(k/2,2,a0,by) < 0o. As a consequence, Lemma [2.3.1] and

Remark imply that p € 7‘[%’1(62(@2, b2)). Thus, we get (3.20).
Let ¢ € C*°(R) be such that

o J(t) =1 for t € [ay, by],
e ¥(t) =0 for t < ag, t > by,

e 0<¥<Tland || < 2.

We define
q(t,y) =92 (t)p(t, z,y)

and we note that V(wq) € H2(Q(as, b2))NL¥(Q(as, by)). Furthermore, given
© € C*(Q(az, b)), we write

b(t,y) =92 (t)w(t,y) Dro(t,y),

with h =1,...,d. Applying Lemma for each h = 1,...,d yields
/ (G (t, y) + Ap(t, y))p(t, z,y) dt dy = 0.
Q(az,b2)

Integrating by parts, we get

/Q( ) (PO — (QV, Vp) + (F, Vip)p — Vpp|dt dy = 0.
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Replacing the expression of the functions ¢ and ¢, after some computations

we derive that

/ [—19 02 wp(Drp) + wq(0:Due) — (QVw, V) (Dpyp)
Q(az2,b2)
—{(QV Dpp, wVq) + (F,qVw)(Dpp) + (F,VDrp)wq

— Vwq(Drp) + q(0sw)(Dnyp) | dt dy = 0.

Integrating by parts again in order to remove the derivative Dy in front of ¢,
we have that

k / k=2 k: kE—2
/ — =092 w(Dypp)p — =902 p(Dpw)p + (0;Dp(wq))p
Qazbs) | 2 2

+ (DrQ)Vw, Vg)o + (Q(DyVw), V) + (QVw, Dy Vq)p
+w((DrQ)Vaq, V) + (QDy(wVq), V) — g(F, DyVw)p

— ¢(DrF, Vw)p — (Dpg)(F, Vw)o — w(Dpg)(F, Vi)

— q(Dhw)(F, V) —wq(DyF, V) + Vw(Dyrq)e + Vq(Dyw)e

+ (DnV)wqp — (O Dpw)qp — (atw)(Dhq)w] dtdy=0.  (3.21)

Since

/ (QVw, DV q)p dt dy = —/
Q(a2,b2)

(Drg)div(QVw)e
Q(az,b2)

+ (Dhg){QVw, Vi) | dt dy
and
| Qpuwva.Tededy
Q(az,b2)
= [ [1@vDuwa). ve) - a(@Du(Tu). V)
az,b2
~ (D) (QVw, Vi) | dt dy.

we can adjust the terms in (3.21) to obtain that

fodtdy + / (h, V) dtdy,
Q(az2,b2)

/ (QVu, V) + ooy didy = /
Q(az,b2)

Q(a2,b2)
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where

u =Dy (wq),
- -

f=50'0"F w(Dip) + 50'0°% p(Dyw) — (DQ)Vaw, V) — (Q(Dy V), V)
+ (Drq) div(QVw) + ¢(DpVw, F) + ¢(Vw, Dy F) + (Dpg){(Vw, F)
— Vw(Dpq) — Vq(Drw) — wq(DpV) + (0, Drw)q + (yw)(Drq),

h =2(Dpq)QVw — w(DrQ)(Vq) + ¢QDrVw + wF (Dhrq) + ¢F (Dpw)
+ wq(DyF).
We now aim to apply Theorem to the function u and infer that there

exists a constant C, depending only on d, n and k, but not on ||@Q||_,, such
that

[1Dn(wg) |l

k
< C| | Du(wa)ll, +

k
by — by by — by
T IHDAQ) Ve, Vo) |1 + [ (Q(DyVw), Va)lls + | (Drg)div(QVw)]|
+ oDy Vw, F) [« + la{Vw, DuF) |5 + [(Daa) (V. )]

+ Ve (Dug)lls + IVa(Dyw) s + [wg(DuV) s + (1@ Dpwo)al] s
+ @) Daa) s + (D)) QVwlly + [[w(DAQ) (V) + 4@ Da Vo]l

+wP(Du)ly + laF (D)l + wgDyFll, |

19%]9(th)

|0 w(Dp)

.t
2

k
2

Summing over h = 1,...,d and since ||V (wq)|| > ||wVqll, — [¢Vw]|| yields

WVl

k . k ‘
by — by E by —by
+(VQVw, Vo) ls + [QD*wVg], + [(Va)div(QVaw)] s

+ [a(D?w) || + llg(Vw, V)i + (V) (Fw, Bl + Vel s
+IVaVully + [wgV Vs + 1@Vl s + 11(@w)(Vo)l
+[HQVw, Vo), + [w(VQ)(Va)ll, + |aQD*w|[, + w(Va, F)l,

< | lwVal, + gVl + 5= [ wVp 97 pVu

k
2

+ llg(Vw, F)|l, + [lwgVF[, | + lgVw] - (3.22)

We set )
V|

P .= / ——dtdy
Qaz,bo) P

and, for a sake of simplicity, we write Z; instead of Z;(ag,by) to refer to
ffj Ew,(t,z)dt for i = 1,2. We observe that =;, =5 < oo by Proposition
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Moreover, thanks to Theorem |3.1.5] we know that P < oco. Finally, we
estimate the terms in the right hand side of (3.22). We start with [|wVq,.
Using Hélder’s inequality and Hypothesis 3.1.4(c) one obtains

\V4
lu¥ali= [ w?vePardy < ¥l / Nl vt ay
Q(a2,b2) Q(az,b2) \/_

1
<oVl | [ Vel 4y, ([ wqddy)
Qazbo) 4 Q(az,b2)
L3 \Y% 2 2
<cifuval, ([ Vel 41 (/ 5W1<t,x>dt)
Qaz,b2) P Q(az,b2)

k 11

=

Hence, we have

Similarly, we get

=

1z k2
, < aPrE] Juv)
2

{VQVw, V)|l <n eser PYE] [0Vl F

11 k=2
|(Va)div(@QVw)lx < d( eaer + e) PEEF w gl

where we have applied here (3.1). Moreover,

(V) (Vw, F)|[x <7 “epes PYE] ||w Vg oF

1@w)(Vo)lls < esPEE] [wVell 5,
k=1

1(QVw, Vo), < PEEF [u¥q|2F
1 k-1

[(YQ)(Va)ll < erPHEF [wVal| F

1L k=1
lw(Vg, F)|), < ce PFES lwVgl[ &
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In addition, we estimate ||¢Vw]||; as follows

1
oVoli= [ @Vl ddy <G, [ widedy
Q(az,b2) Q(

az,bz)

<023 Jwall, 1.

Thus, we have
1 1
laVwll, <17 =7 [Jwgl|2, -

In a similar way, we obtain

Hﬁ%pr

_1 :% k;2
LS eE] |lwgll F
2

2 J
||Q(D2w)FH§ <0 eseeZS Jwgll
2 k2
la{Vw, VE)[|x < nteacsZ5 lwall F
2 k2
VaVw]x < Nl ec3ZS wall &,
_2 ke
[wgV Vs < =5 [Jwall S
2 J
10 Vw)glle < enEr flwgll s
2 =% AL
1qQD*w||, < 51 Jwall F
1 ket
lg(Vw, F)||, <0~ 'eacsZ5 [lwgll 5,

1 ko1
lwgVEl, < esZ5 [lwgll & -

Finally, we get
k%

k—1
IVl < llallE ||a( + [Vol?)

[e.e]

We now estimate [|¢(14|Vw|?) ||« by applying Theorem with w replaced
by @ = (1 + |[Vw|*)2. First, we check the assumptions using Hypothesis
3.1.4{c):

1 2
Wi =1+ Vol <1+7572GW) < (1402w},

QV@| = k(1 + [Vu?) T |(QD*w)Vu| < ki'T|QD*w||Viw| < keyd T W,
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div(QV@)| <d|V(QV@)| < dVQ||Vid| + d|QD*d|

—2

<d|VQ|kw' F | D*w||Vw| + d|(k — 2)w F|Vd||QD*w||Vuw|
+ ko'% | DPw||QVw| + kb F |QDw| | D*w|

_ 2
§]{5d[77_2620367 -+ (/{7 — 1)77_163 + CQClo]ZDL’VZWIk,

_ 2
b k

Oub| < k(1 + |Vw|?) 2 |Vw||9,Vw| < kn~eaery = Wi,
1

1
@rVE < (1+ |Vw])V% < (c5 + 1 teges) W,

=

WEF| < (1+ |Vw))|F| < (c6+ 1 eace) W

Moreover, w2V and w20, are bounded on Q(ag, by) as we assumed in
Hypothesis [3.1.4(b) that the functions |Vw|™*'D?*w and |Vw|*19,Vw are
bounded. Hence, the assumptions of Theorem hold true with w replaced
by w and with the constants c1, . .., ¢g replaced, respectively, by 1+n72c2, kes,
kd[n=2coczer + (K — 1)n7 12 + cacio), knteacrt, c5 +n7 eacs and cg + 0 cacs.
Thus, we obtain that

. c’2“ L E k& k& k&
02+—( ey teieie; +eiefy el | S

o+ 1vu)
by —b1)2

<C

ko kk ., 55 555 k. kk
+ (Ce +cycg +escd +ese5ef +cs —1—0205) ol

Consequently, we estimate the last term in the right hand side of (3.22)) as
follows

Co 10101 11 11\ 1
l¢Vuw|,, <C <C2+( Tt tejcsel +ejeiy+ciet | =1

b2 — 61)2

11 111 1 Bl
+ (CG + cace + 505 + 30568 +C5+C2C5> :21 [wall &



3.2. Estimates for the derivatives of the kernel in case of bounded diffusion
coeflicients 110

Combining (3.22) with the above estimates yields

|wVal
<CcfP4 :4 HquH2 + P [(02 + ) EF + ¢ 522’“] HquH;%l

c 1 1 k=2
1+ CPF {(b 2 + coc7 4+ c3 + c4> EF + (cace +€3) 55] [wVall 2
2 — 01

1

+Cer 2 uwg||2,

Co 2 2 k—2
+C {(b 2 +011) =F 4 (CQC§+0306+0208+09) Eﬁ“} |lwq|| F
9 — b1

02 1 1 1 1 1 1 1
2 2 2 —k
+C 02+—( T tC3+cycsc; +CQCl(J‘|‘C2C11 =1

by — 1)2

11 111 1 E-1
+ (Ca + CoCg + CICE + 33 cE + 5+ cacs + Cs) EQ’“] lwa|| F -
We observe that, by Young’s inequality, we find
B 1 1 g Bo1 1 1
Cef PE} [Vl < CPef PEE} + ¢ [luVal..
Then, setting

X = Vgl ,

k 1 i
a ;:CQCfP% Ef +Ccr =F ||wq||§o +C

©2 +c :‘%
by—b )T

2 k=2
+ (Czcg + c3¢6 + Cacs + C9) Ef] |lwal|

02 1 1 1 1 1 1 1 1
‘I‘C CQ‘I‘_( +63+CQC2C7 +02610+02011 :f

by — by)?

1 1 1 1 1 k=1
+ (C@ +coce +cici +cics 06 + ¢5 + cacs + CS) ZQIC] quHm{c )

3 :=CP3

1
’:‘ =2k
02“1_07 =9 06_2]7

1 1
+cocr+ 3ty )| ZF + (cac6 + cg) =50,
b2 — bl

we derive that A 4 4

We now prove that it leads to

4 A 4 \*
X <8+ \/;Jr (§a> . (3.24)
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We consider the function

4 4 4 4 4 4
fr) =1k~ gﬁrkfl - §’Y7"k72 —ze= k2 (r2 — Pr — —’Y) — s

k—2 4

g(r) — ga.

1

First, we show that f is increasing in <§6 +1/37+ (Ga)r, oo). This can be
seen by computing the first derivative:

F(r) = (k= 2 g(r) + 2/ ().

Since the function g in positive and increasing in <§6 + 7 + (% )% oo), it
follows that f’(r) > 0 in the given interval, so f is increasing.

Second, as in (2.55]), we have that

4 A 4 \*
f(gﬁ—F\/;—i—(ga) >>0.

On one hand, from the previous observations we deduce that f(r) > 0 if
r> 36+ \/5—1— (%a)%. On the other hand, by (3.23), f(X) < 0. Thus, we
conclude that holds true. Consequently, there exists a positive constant
K such that

lwVall,, < K1 (a+ 85 +4%).

By plugging in the previous inequality the definition of «;, 3, we get

Co _2
+c =k
(52 —b H) !

2 k=2
+ (a2 + c306 + Cacs + o) Eﬁ] HWQ|’L§<>(Q(QQ,1;2))

1wVl Lo (Qaz.b2))

1 1
SC{CQEf quHzOO(Q(az,ln)) +

Co 1 1 1 1 1 1 1 ’_‘l
+ o+ ———F tetcicic +e3efyteieqy =
(by — b1)2
1 1 1 1 1 1 k—1
+ <06 + cocs +cicg +cieieg + s+ cacs + 08) E5 | lwall o @asm)
k
k ci k _1
+ 012+—+62+CQC7+C3 +C7+C4 :12
(by —b1)>

1
+ (cg +CQ g +C§)522

P%}.
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Letting as | a and by 1 b and considering that f §w, (t,x) dt < f $w, (t,v) dt
for j = 1,2, we gain

lw(t,y)Vp(t, z,y)|

EaIN)

Co —_
( + C11) Z1(ao, bo)

gc{cmao,bo)z lwpl i + | (55

_ 2 k2
+ (e + 36 + cacs + ¢9)Za(ao, bo) k] lwpll 5 (@ an)

==

Cs 1 1 1 1 1 1 _
_I_ Co _|_ W + C3 + CQ C3 C7 _|‘ 02 CIO + CQ Cll .:1(@0, b())
— V1

1 1 1 1 1 1 k—1
+ <06 + coce +c5¢8 +c5c5¢8 + o5+ cacs + Cs) Ea(ao, bo)k] lwpll L& (a.p)

k

k c? E k k k 1
2 1 2 k 2 | = 5
(cl +—+02+c2c7 +c3 +c7+c4> =1(ao, bo)?

(b—101)2
] </ Vil dtdy>2 } (3.25)
Qap) P

for all (t,y) € (a1,b1) x R? and fixed x € R%.
To finish the proof, it remains to remove the additional assumption on the
weight w. For € > 0, we define the function

[NIES

k k
+ (C’g + C22 662 + Cg)EQ(ao, bo)

w
W, = )
1+ew
We have
Dyw, = (1 + ew) > D;w,
8,5’(1]5 = (1 + 5w> 28,5’[11,
Dijwa = (]_ + 511)) QDZ‘J‘U) - 28(1 -+ 5w)_3(Diw)(Djw),
ODsw, = (1 + cw) 20, Dyw — 2¢(1 + ew) > (Qpw) (D;w),

for all 4,5 = 1,...,d. Then by Hypothesis [3.1.4(b) it follows that w., along
with its first order partial derivatives and its second order partial derivatives of
the form D;;w, and 0,D;w. are bounded. If we now check Hypothesis (c)
we have that

Eo1
we <w < ¢ WP,

QVw.| = (1+ 5w)_2|QVw| < ngli,

1
|QD*w,.| < (14 cw)?|QD*w| + 2¢(1 + ew) *|QVw||[Vw| < (c3 + 20~ c3)WF,
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|D3w.| < (14 ew) 2| D*w| + 6e(1 + ew) *|Vw|| D*w| + 6£*(1 + ew) | Vw|?
3
< (c10 + 6n2cges + 61733 WPF,

k-2
k

1
|Oywe| = (1 + 5w)_2|8tw| <cqw B Wk

and

=

10,Vw,| < (1 +ew) 2|0, Vw| + 26(1 4 ew) *|Vw||0w| < (11 + 20 eacs) W

This shows that w, satisfies Hypothesis [3.1.4(c) with the same constants
1, C, C4, C5, Cg, C7, Cg, Cg and with the constants c3, ci9, c11 replaced, respec-
tively, by c3 + 20713, c1o + 617 2cocs + 6733 and ¢y1 + 20 Legey.

Thus, the estimate shown in the first part of the proof holds true
with the function w, instead of w and with the constants on the right hand side
that do not depend on €. We finally let ¢ — 0 to gain inequality . [

Remark 3.2.2. From the above proof one can see that the constants B;, i =
1,...,6 are given by

312027
C2
BQZ + cocyq + C11,
b—b
2 2
Bg:CQC5+0366+0206+0268+09,
9 Co L1 31 L1 1 1 L1
— 2 ~2 L2 2 »2 2 L2 2 2 2 L2
B4—02+03+CQ+W+020307—|—0207+c2010+0203+CQC4+02011,

11 1 11 1 3 1
Bs = cg + cace + c3cg + cacg +c5c5¢5 +c5¢6 + ¢5 + cacs + cs,
k

k c? y  EEE Lk
Bs =cf + ———— +cy+cjci +ci +cp+cf,
(b—1b1)>
E ok
By =ch+cicg + k. (3.26)

3.3 Estimates for the derivatives of the kernel
for general diffusion coefficients

In this section we proceed by approximation as in Chapter [2 Section [2.5] We
approximate the operator A as in Chapter [I We consider the function ¢,
defined by , where W7 is the time dependent Lyapunov function from
Hypothesis and the constant ¢y € (0,7") will be chosen later on. Then,
we take the matrix @), := (ql(]")) defined by and the following family of
operators A, with bounded diffusion coefficients

A, = div(Q, V) + F-V — V.
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As a consequence of the Lemmal |[1.6.4], for every n € N the semigroup generated
by A, in Cy(R?) is given by a kernel p,(t,z,y).
We now make the following assumptions.

Hypothesis 3.3.1. Fizx T >0, 2 € R and 0 < ap <a <b < by <T. Let us
consider two time dependent Lyapunov functions 1 < Wy, Wy for the operators
L:=0,+A and Oy + nA + F -V =V with Wy < Wy, |VWy|, VW3] bounded
on (0,T) x Bg for all R > 0 and a weight function 1 <w € C*?((0,T) x R?)
such that

(a) there isty € (0,T) such that

QI W(to, )| < craWa(to, -Jw™ /AW, />,

(b) there are ¢y > 0 and o € (0,1) such that
Wy < coZ'°,
where Z is the function introduced in Hypothesis[3.0.1(b);
(c) there is a nonnegative function f such that
VZ(z) = f(x)VWi(to, x),
for all x € RY.

As a consequence of the previous assumptions, the operators A, inherit
Hypothesis from A.

Lemma 3.3.2. Assume that the operator A satisfies Hypotheses|3.1.4)(c) and
13.3.1((a). Then the operator A, satisfies Hypothesis|3.1.4)(¢c) with the same con-

stants cq, ¢4, Cs5, Cg, Cs, Cy, C10, C11 and with co, c3, c7 being replaced, respectively,
by 2¢q,2c3 and v/3(cr + 2(1 + Vd)cya).

Proof. The constants ¢y, ¢y, ¢s5, ¢g, Cs, Cg, C19, 11 remain the same because the
corresponding inequalities do not depend on the diffusion coefficients. Let us

note that Hypothesis [3.1.4c)-(ii) implies that
IVw| < n_chWﬁ.
So, it follows that
Q20| = @V + (1 = @i V| < [QVi| + 7|Vl < 2, WiF.
Similarly, we get

|QnD2w‘ = [ QD*w + (1 — p,)nD*w| < |QD*w| + n |D?*w| < 203W1%.
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Finally, for (¢,y) € [aq, bo] X RY, given that the function ¢ satisfies |s¢’(s)| < 2
as defined in Section [1.6] and using Hypothesis[3.3.1(a), we have

IVQu|
: ' (Wi(to, ) /n) ?
= OnDpg;j + ! n07 D Wi (o, -)(gij — ndij)
j,h=1

d / 2
Wi(to,-)/n
<3 § [wnDhqz-jm'S”( 1(n(; )/m) |DhW1(to,->!2<qu+n26ij)}
i7j7h‘:1

<3len*IVQP

+3(Wilto, ) /n)* ¢/ (Walto, ) /m)|*(Wh(to,-))™> D lais DaWa(to, -)I?

ijhfl
2 20,/
+3di* (Wh(to, -) /n)?|¢' (Wi(to, -) /n) (Wi (to, -) ZthWI to, ")

1
<3(2 + A2, + 4dE)w W
Then,
1
|VQTL’ S \/3(07 + 2012 + 2\/&012)11) kW 2k 0
We can now obtain estimates for the gradients of the kernels p,.

Lemma 3.3.3. Assume that Hypothesis holds and that the operator A
satisfies Hypothesis|3.1.4. Fori= 1,2, we set

bo
SWi,n<t7x> = /d pn(tax7y)VVZ(tay) dy and Ei,n(a’O?bO) = gWi,n(tux) dt.
R

ag

Then for any n € N we have

lw(t,y)Vpa(t,z,y)| < K,,

for all (t,y) € (a1,b1) x R? and fired x € R?, where

1 k-2
K, = C{(&A.+ngk +By4k)Emmm$@+IBpﬁ+%B2+BQAJ

k—

1
—I— BgA k + (B4 —|— B5)A k —|— B5A Sk + BGBg + B7BS} \_Qn(a(), bo)

1
2

+ (Bﬁ E1.n(ao, bo)% + B7 Zs.(ao, boﬁ) (/ pn log? p, dt dy)
Q(a,b)

l
+ Br Ez,n(aoybo)%> (/d[pn log pni= dy) }’
R

and the constants Ay, By,. .., Bs, A1, By, Bs are defined as in (3.3), (3.26),

(3:30). (3:25) and (329).

NI

- (B(s El,n(a07 bo)
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Proof. Since the operator A satisfies Hypotheses|3.1.4|and [3.3.1] then for any
n € N the operator A, satisfies Hypotheses [3.0.1) and [3.1.4) by Lemma [1.6.4]
with slightly different constants given by Lemma|3.3.2] Consequently, applying

(3.2) to p, we get

w(t, Y )pa(t, z,y) < C (211 =10 (a0, bo) + As Ean (a0, bo)) , (3.27)
where .
~ k X c? E k E ok k k
A1:0f+c2+m+c§c?+c§cf2+c§+cj. (3.28)
0o — 2

Moreover, applying (3.19) to p,, we obtain

\w(t,y)Vpn(t, z,y)|

- 1 3
< 0{31 E1n(a0, b0)? [[wpnl|f o ((ap))

k-2

—_ 2 &
+ By Za(a0, b0) ) lwpall & g

kN

+ (Bz E1.n(a0, bo)

e
=

- ko1
+ | BaE1n(ao, bo)* + Bs E2,n(a0, bo) ] [wpnll L5 Qo))

2 3
) / Venl” dy| Y.
Qab) DPn

Co 11 1 1 1 1 3 1
——— tcicie; Fo3eicl, ol
(b—10b)2

3 1 11 1 1 1
+ ¢3¢y + ¢3¢y + cacy + caci +c5ciy,

[N

~ 1 —
+ (BG E1n(a0,b0)2 + Br Za.,(a0, bo)

where

B4=CQ+03+C§+

[NIES
|2

_ ok c Ek kK k
1 k ko k
Bg =c{ + ———— + s tc5c; +cscl+c3 i e+ (3.29)

(b —b1)2
Finally, by Theorem we have

|Vpn|2

/ — " dtdy < C|(cg + cg) Eo.n(ao, bo) + / Py log? p,, dt dy
Qap) Pn

Q(a,b)

— / [palog palizody
R
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Combining them yields

B
k=2 k—2
+ 43" Eanan, b))

+ <B4 El,n(GO; bo)% + Bs EQ,n<a07 b‘J)%) X

k—1

~ k=1 — k—1 @’_\ k—1 N~
X <A1k Ein(ao,bo) ¥ + Ay* Esn(ag,b) * )+ (BG E1,n(ag, bo)

%
) Bs =5 5, (ao, bo)% + (/ pnlog® p, dt dy)
Q(a,b)
%
- </d[pn logpn]izzdy) ] }7
R

Bg = ¢ + c:. (3.30)

N

SIS

+ B7 Z5,(ao, bo)

where

Considering that =5 ,,(ag, by) < Za.,(ag, by), the statement follows. O

Lemma 3.3.4. Assume that Hypothesis holds and that the operator A
satisfies Hypothesis|3.1.4. Then, for n — oo, we have

/d[p”(t’x>y> log p(t, 2, y)|iZhdy — /d[p(t,x,y) log p(t, z,y)]i=dy
R R
and

/ pa(t, 2, y) log? p,(t, z,y) dt dy — p(t,z,y)log? p(t, z,y) dt dy.
Q(ab) Q(ab)

In particular, the latter integrals are finite.

Proof. We observe that, by Lemma , we have that p,(t,z,-) — p(t,x,")
locally uniformly in R as n — oo. Moreover, Lemma implies that
§win(e, ) = &w, (-, ) uniformly in (ag, by) as n — oo for j = 1,2. Then, it
follows from inequality that p, < C,w™! for a certain constant C,, with
sup C,, < oo. Making use of Hypothesis[3.1.4(a), we find integrable majorants
for p, log p, and p, log? p,. At this point, the statements follows by means of
the dominated convergence theorem. O]

Corollary 3.3.5. Assume Hypotheses|3.1.4 and|3.3.1. Then

VP € Wy (Q(a, b))
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Proof. As a consequence of Hypothesis [3.1.4(b) and Lemma [3.3.4]

1
C :=sup — (IF(y)” + V3(y)) pa(t, 2, y) dt dy
neN 11" JQ(a,b)

+/ pa(t, ,y) log® p,(t, z,y) dt dy
Q(a.b)

2 i
- —/ [pn(t, ,y) log pu(t, z,y)|i=bdy < .
7 JRrd

It follows from Theorem that /p, is bounded in Wy (Q(a,b)). As this
space is reflexive, a subsequence of p, converges weakly to some element g of
Wy ’1(Q(a, b)). However, as p, — p pointwise and with an integrable majorant,
testing against a function in C>°(R%), we see that ¢ = p. O

We can now prove our main result.

Theorem 3.3.6. Assume that the operator A satisfies Hypotheses and
(3.3.1. Then we have

w(t, y)Vp(t, =, y)| < K,
for all (t,y) € (a,b) x R? and fived v € R?, where

~ k=2 k—

~1 k=2 ~ ~ k=1 1 k=2
K = C{ <BlA12 =+ BQAlk + B4A1k ) El(ao, bo) + |:BlA22 + (B2 + B3)A2k

~ k=2 ~ k-1 ~ k=1 ~
+ BgAl k —f- (B4 —I— B5)A2k + B5A1 k —f- BGBS + B7B8] EQ(CL(), b[))
1
1 2
+B752(a07b0)§> </ plOngdtdy)
Q(a,b)

) (/Rd[plogp]izzdyf } (3.31)

and the constants Ay, By, ..., Bs, A1, By, Bg are defined as in (3.3), (3.26),
B30), 3.28) and (3:29).
Proof. By Lemmas and we infer that

lim sup |w(t, y)Vpa(t, z,y)| < K.

n—oo

N

+ (B6 =1 (ao, bo)

N

- (BG =1(ao, bo)% + B7 Z5(ap, bo)

Then, for || small, we have

w(t,y) 'p(t,x,y+ h})L —p(t,x,y)‘

pn<t7 z,y + h) - pn(ta xz, y)

= limsup w(t, y)

n—00 h
1
< limsupw(t,y) / |Vpu(t,x,y + sh)|ds
n—00 0

1
< K/ w(t,y)
o 0 w(t7y+8h)

If we now let |h| — 0, the statement follows. O

ds.
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As a simple consequence one obtains the following Sobolev regularity for
.

Corollary 3.3.7. Assume in addition to Hypotheses [3.1.4) and [3.3.1, that
fQ(a b w(t,z)™" dtdr < oo for somer € (1,00). Then p € W2 (Q(a,D)).

3.4 Application to the case of polynomial co-
efficients

Here we apply the results of the previous sections to the case of operators with
polynomial diffusion coefficients, drift and potential terms.

Consider Q(z) = (1 + |z|™)I, F(z) = —|z|P"'2 and V(z) = |z|® with
p>(m—1)V1 s>|m—2]and m > 0. To apply Theorem [3.3.6| we set

w(t,x) — eatalmlf and I/Vj(t,x) _ egjt‘lp:"f,
for (t,y) € (0,1) x R, where j = 1,2, § = =242 (0 < 2ke <&, < &3 < % and
B

Theorem 3.4.1. Let p be the integral kernel associated with the operator A
with Q(z) = (1 + |z|™)I, F(z) = —|z[P" 'z and V(z) = |z|*, where p >
(m—1)V1, s>|m—2| and m > 0. Then

s—m—+2

_ a(2mV2pVs) Pl

plt,,y) < O~ Sk eet -

and
3a(mVpV %)k-}—a

IVp(t, z,y)| < O(1 - logt)ta— stz — e =tolul” (3.32)
for k> 2(d+2) and any t € (0,1), x,y € R

Proof. Step 1. We show that W; and W5 are time dependent Lyapunov func-
tions for L = 0, + A and 0; + nA + F - V — V with respect to the function

Z(x) = 217,
For that, we take into account Remark Let |z] > 1 and set G; =

S Digy; = m|z|™ 2z;. Since s > |m—2|, we have 8 > (2—m)V0. Moreover,

§
xlﬁm(G+F .i_—>
S R

= ol = (mla = — o~
g;Bx)P!

1
< m|1]|_’8 _

6]‘&‘
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If || is large enough, for example |z| > K with

we get

V 1
xl_ﬁ_m(G+F-£——)<mx_’3——
AN G ) =

where we have used that ¢; < % In addition, we have

lim V() |z = lim |o>727™ = 1.

Hence, lim;|—00 V() 2> 72*"™ > ¢ for any ¢ < 1. Consequently, by Proposi-

tion and Remark we obtain that W; and W, are time dependent
Lyapunov functions for L = 9, + A and 0; + nA + F -V — V. Similar compu-
tations show that the function Z(z) satisfies Hypothesis [3.0.1[b).

Step 2. We now show that A satisfies Hypotheses [3.1.4] and [3.3.1] Fix
T=1LzeR, 0<a <a<b<b <Tandk > 2(d+2). Let (t,y) €
[ag, bo] x RZ  Clearly, Hypothesis (a)-(b) and Hypothesis (b) are
satisfied. We assume that |y| > 1; otherwise, in a neighborhood of the origin,
all the quantities we are going to estimate are obviously bounded.

First, since 2¢ < g1, we infer that

k=2 4
w< cqw F W,

with ¢; = 1. Second, we have

|Q(y)Vuw(t,y)|
Wl(ta y)i

o O

S 2€5ta|y|5+m_16_i(81_2k5)t(x|y‘6. (333)

We make use of the following remark: since the function ¢ — #?e~* on (0, c0)
attains its maximum at the point ¢ = p, then for 7,7, 2 > 0 we have

ol ol v % ol ol
e ™ =17 E (1) e < 7B (%) e 7= C(y,B)T 5. (3.34)
Applying (3.34) to the inequality (3.33) with z = |y|, 7 = - (61 —2ke)t*, 5 = 3
and v = +m — 1> 0 yields

‘Q<y)vw(tuy)’ _ « |:i
Wl(t,y)i <2C(B+m —1,P)ept 21{:(

_Btm=1
B

g1 — 2k€)ta:|

_a(m-1t _a(m-1t
a7 <tay °

IN
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_a(mfl)"r
Thus, we choose ¢co =¢a, “ , where ¢ is a universal constant. In a similar
way,
Q) D*w(t,y)| (1 + |y[™)|D*w(t, y)|
Wl (tv y)% Wl (tv y)%

< 2v3e8t [ (8= 2)* + V) [yl + eprefy 2| kbl

Applying (3.34) to each term, we get

|Q(y) D*w(t, )| . 1 1
TATL <C(B,m)ept {((6 —-2)" + \/&> {E(sl — ke)t ]
1 _wﬁ‘fm% _a(m=2) _a(m=2)F
+e St [E(gl — kg)ta} <e F <ecay, "’
a(m—2)T

B

Therefore, we pick c3 = ¢q, . Furthermore, if we consider tq € (0,t), we

have

QW) ||[VW1(to, )|
Wi(to, y)w(t,y) " VEWi(t, y)t/2

= VAB= (1 + Jy|")lyl e

_gm=t

L~ B
< cq, = Ci2,

.
ot Y B

IN

where we used (3.34). We can proceed in the same way to check the remaining

inequalities. To sum up, the constants cy, ..., ci2 are the following:
704(m71)+ 7a(m72)+
=1 — — = B __ = B
c1 =1, Cy = C7 = C12 = CQy, s C3 = Cay s
1 _as _ap
_ A = 26 =, P
C4 = C11 = CQaq Cs = Cagy Cg = Cag
_a(p=1) _as=nt
cg =cay 7 cg=7cay, " c1p = C.

Step 3. We are now ready to apply Theorem [3.3.6] To that end, we choose
ap=1t/4,a=1/2,b= (t+1)/2 and by = (t+3)/4. If we now set A = mVpV 3,

i _B _ s=m+2
since o > o=, 5 > |m — 2| and 8 = *=5+=, we have

al s B S 1

7>2(ﬁ+m—2) s+m—2>2

Hence we can estimate the constant A, in (3.3) as follows

k apk _alm=1)"V+p)k _ask
2 23

k LT B ask L _ak
Ay =cg+c3cg +es=c|t 7 +t +t 2 | <@t 5 (3.35)

Similarly, if we consider the remaining constants in the right hand side of (3.31)
we obtain that

~ _ [,k _k _,—aX _,_or g
A1§C<t B+t 2), Blgct B BQSCt B R

_,_3ax ~ _, 22 _,_2ax
B3§Ct A, B4§Ct By B5SCt A,

Be <at 7, B, <at %, Bs<at™%.  (3.36)
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Moreover, by Proposition there are two constants H; and Hs not de-
pending on ag and by such that &, (¢, ) < H; for all (s,z) € [0,1] x R¢, so for
J = 1,2 we have

bo 3t
=j(a0,bo) = [ &w,(t, ) dt < Hi(bo — ao) = - Hj. (3.37)

ag
Furthermore, by Corollary the approximation procedure used to obtain
Pns " and Lemma m we obtain
p(t,z,y) < Ot~ F e~=t* Wl (3.38)
Then,

alk
B
< C(1 —logt)t! — et Y,

p(t,z,y)logp(t,z,y) < ot [log0+ ) logt — 5ta|y’f} ot Iyl

Considering that a = £ and b= (t +1)/2, it leads to

_ Ak+a a8
/d[p(t,x,y) log p(t, =, y)li=, dy < C(1 —logt)t' /d e dz
R R

17 /\k+o¢

< C(1—logt)t : (3.39)

where in the integral we performed the change of variables z = a%y and z =
bsy. We also get

/Q(a ) p(t,z,y) log? p(t, z,y) dt dy < C(1 —logt)*t*~ 5 (3.40)
Putting (3.35)-(3.40)) in (3.31)) yields
K<C(1- logt)tg o
Thus, Estimate follows from Theorem m n

Similar estimates as in the symmetric case, see Theorem can be also
obtained for operators with drift term.

Remark 3.4.2. If in addition to the assumptions of Theorem one as-
sumes that s > (p — 1)V (2p — m)™, then

s—m—+42 s—m—+42
2

a(2mV2pVs) k) _ Eta

plt,z,y) < Ct' = somiz Femattlels F o5ty (3.41)

holds for k > d+2 and any t € (0,1), x,y € R Indeed, the formal adjoint of
Ais A* = A—2F -V +(d+p—1)|z[P~t. The associated minimal semigroup is
given by the kernel p(t,x,y)* = p(t,y,x). Sinces > (p—1)V(2p—m)™, one can
see that the condition in Remark[2.2.9is satisfied and since s > p—1, it follows
that limyy) e V() |2 27 = 1, where V(z) := |z|*—(d+p—1)|z|P~}, = € R
So, p*(t,x,y) satisfies (3.38] . Arguing as in Step 4 of the proof of Theorem
2.6.1) one obtains (3.41).



Appendix A

Function spaces

In this appendix we collect all the function spaces that we consider in this
manuscript. In the following we will deal with real-valued or complex-valued
functions. However, all the definitions apply for vector-valued functions: for
example we say that F = (F}) belongs to the space Cj(R%; R?) if each compo-
nent F; belongs to Cy(R?).

A.1 Spaces of continuous functions

Let © be a domain or its closure and K = R or C.

Definition A.1.1. ¢ We denote by C(QQ) the set of all continuous functions
f: Q=K.

o Fora € (0,1), C¥(Q) is the subset of C(S2) consisting of functions f: @ — K
which are a-Holder continuous in 2, namely such that

|f(x) = fy)]

sup ———q — < Q.
wyee |7 =y
TFY
e In general, for a € (0,00), C*(Q) is the subset of C'(§2) of functions f:  —
K which admit derivatives up to the order [« and their derivatives of order
[a] are (o — [a])-Hélder continuous in 0 (if « ¢ N).

o We denote by Cy(2) the set of all functions f: Q — K which are bounded

and continuous in ). It is a Banach space when endowed with the sup-norm

1 lloe = sup [f(@)l, [ e G(Q).

o If Q is bounded, then Cy() denotes the set of all continuous functions
f: Q — K which vanish on the boundary of Q. If Q is unbounded, then
sometimes we also require that f vanishes as |x| — oo. It is a Banach space
when endowed with the sup-norm.

123
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o Fora € (0,1), C8(Q) is the space of bounded a-Hdélder continuous functions
in ), namely the subset of Cy(Q2) consisting of functions f: Q — K such

that
[f]Ca(Q) = sup |f($) B fiy)| < 00.
’ x,zfﬂ |z —y
Ty

It is a Banach space when endowed with the norm
[flleo@) = Iflle + flez@,  f € CF ().

e [n general, for a € (0,00), C(R2) is the subset of Cy(S2) of functions f: Q —
K which admit bounded derivatives up to the order [a] and their derivatives
of order [a] are (o — [a])-Hélder continuous in Q (if « ¢ N). It is a Banach

space when endowed with the norm

Hf”C?( Z HDﬂf” Z ’f] cpllqy f e Cy(Q).

|18I<[e] 18l=l[e]

e For a € (0,00), we denote by C2.(Q) the set of all functions f: Q@ — K

which belong to C'(K) for each compact subset K of €.

o C.(Q) denotes the space of continuous functions with compact support in
Q C R

e We denote by C°(Q) the space of smooth functions with compact support in
Q.

A.2 Parabolic Holder spaces

Let I C R and ©Q C R? be, respectively, an interval and a domain, or a closure
of a domain. Moreover, let «, 5 € (0,1) and k € N be fixed.

Definition A.2.1. e C{)”O([ x Q) denotes the space of all the bounded con-
tinuous functions f: I x Q — K such that the function f(-,x) is a-Hélder
continuous in I for each x € ). It is a Banach space with the norm

I llegomxey = s IfC2Mlopany. f€ Gy (1 x Q).

e By C’I?’ﬁ(] x Q) we denote the space of all the bounded continuous functions
f:IxQ — K such that the function f(t,-) is f-Hdlder continuous in Q for
each t € I. It is a Banach space with the norm

07
1 lega iy = sup I G N lepay S € C (I x Q).
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o COPI X Q)= CMI x Q) NCYP(I x Q). It is a Banach space with the
norm

£ llgscruey = Wllcpsqruey + SRLFC gy, f €GP x ).

o C12(I x Q) denotes the space of all functions f: I x Q — K which are
once continuously differentiable with respect to time and twice continuously
differentiable with respect to the spatial variables in I x Q with continuous
deriwatives.

° C’;+a/2’2+a(1 X Q) is the subspace of CV2(I x Q) consisting of all the bounded
functions f: I x Q — K with 0,f and D;; in C:/M(I x Q) for each i,j =
1,...,d. It is a Banach space with the norm

d d
[ lgrrerssagrngy =1l + NP3l + 32 1D5 fll oz gy
j=1

,j=1

1+a/2,24«
+ ||atf||cf/2’°‘(l><§2)’ feo,” /2,2+ (I x Q).

° C’llota/z’%ro‘([x Q) is the local Holder space consisting of functions f: I x€Q —

K which belong to C,)1+a/2’2+5(K) for every compact subset K of I x €.

o IfI = (a,b) for 0 <a<bandQ=TRI we denote by C1%((a,b) x RY) the
space of all functions f: (a,b) x RY — K compactly supported in (a,b) x R?,
which belong to CY%((a,b) x RY). Notice that we are not requiring that
f € CY%((a,b) x RY) vanishes at t = a, t = b.

o CX(IxQ) denotes the space of smooth functions f: I xQ — K with compact
support in I x €.

We skip the subscript "b” to define the sets C*%(I x Q), C%?(I x ),
CoB(I x Q) and C*+*/22+2(] x Q) when the boundedness is not required.
A.3 L? and Sobolev spaces

Let Q be a domain of R%.

Definition A.3.1. e For every p € [1,00), LP(2) denotes the space of all the
(equivalence classes of ) measurable functions f: Q — K such that

/|f|pdx<oo.
Q

It is a Banach space when endowed with the norm

T ( / \frpdw)’”  fel.
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o We denote by L>(2) the space of all the (equivalence classes of ) measurable
functions f: Q0 — K such that

esssup f =inf{C > 0: |f(z)| < C, for almost every x € Q}.
Q

It is a Banach space when endowed with the norm | f||., = esssupg f for
every f € L>(9).

e Forp € [1,00], Lt () denotes the set of all the (equivalence classes of)

measurable functions f: Q — K which belong to LP(K) for every bounded
domain K whose closure is contained in ).

If Q is clear from the context, then for p € [1, 00] we simply write ||-||,, for
the norm in LP().

We now introduce Sobolev spaces of integer order. Let €2 be a domain of
R? k€ Nand p € [1,00).

Definition A.3.2. ¢ We denote by W5P(Q) the subspace of LP(S2) of all the
(equivalence classes of ) measurable functions f: Q@ — K with distributional
derivatives up to the order k belonging to LP()). It is a Banach space when
endowed with the norm

1 Iy () = ( Z ||Daf||}£p(§z)) , fewrr(Q).

lal<k

o We set H'(Q) := WH(Q).

o By WEP(Q) we denote the closure of the set of test functions C°(Q) into
WHRP(Q) with respect to the norm of WHP(Q).

e We denote by HL(Q) the closure of the set of test functions C°(S)) with
respect to the norm of H'(Q).

. VV{;C”(Q) denotes the set of all the (equivalence classes of ) measurable func-

tions f: Q — K which belong to WkP(K) for every bounded domain K
whose closure is contained in €.

A.4 Parabolic L’ and Sobolev spaces

Let 0 < a < b < oo and consider the set Q(a,b) = (a,b) x RY. We define the
LP-spaces in Q(a,b) as in Definition [A.3.1]

Definition A.4.1. e For every p € [1,00), LP(Q(a,b)) denotes the space of
all the (equivalence classes of ) measurable functions f: Q(a,b) — K such

that
/ |fIP dt dex < oo.
Q(a,b)
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It is a Banach space when endowed with the norm

1 lisiaeny = ( /Q s dm)p e Q).

o We denote by L>(Q(a,b)) the space of all the (equivalence classes of) mea-
surable functions f: Q(a,b) — K such that

ess sup f =inf{C > 0: |f(t,x)| < C, for almost every (t,z) € Q(a,b)}.
Qab)
It is a Banach space when endowed with the norm || f||,, = esssupg, ) f for
every f € L>(Q(a,b)).

We now define parabolic Sobolev spaces for p € (1, 00) as follows.

Definition A.4.2. e By W'(Q(a,b)) we denote the space of functions f €
LP(Q(a, b)) having weak space derivatives D;f € LP(Q(a,b)) fori=1,...,d
equipped with the norm

1 ot ey = I1f le@@sy + IVl o @ap)ra)-

o We denote by W,*(Q(a,b)) the space of functions f € LP(Q(a,b)) having
weak space derivatives D f € LP(Q(a,b)) for |a] <2 and weak time deriva-
tive O f € LP(Q(a,b)) equipped with the norm

1 w22 0asy = 1Fllzr@aen + 10:f lr@@my + Y 1D fllzr e

1<]al<2
We shall also define the space HP!(Q(a,b)) and provide some properties.

Definition A.4.3. For 1 < p < oo, we denote by HP'(Q(a,b)) the space of
all functions f € W(Q(a, b)) with d,f € (W;,’l(Q(a, b)), the dual space of
ng’l(Q(a, b)), endowed with the norm

11301 @ayy = Hatf”(vvﬁ;%cz(a,b)))' I lwp sy
where 1/p+1/p" = 1.

Lemma A.4.4. [/1, Lemmas 7.1, 7.2] There exists a linear, continuous ex-
tension operator E: HPY(Q(a, b)) — HPL(RI). Moreover, the restrictions of
functions in C=®(R¥1) to Q(a,b) are dense in HP(Q(a,b)).

Theorem A.4.5. [/1, Theorem 7.1] If p > d + 2, then HP*(Q(a,b)) is con-
tinuously embedded in Cy(Q(a,b)).

Lemma A.4.6. [30, Lemma 12.3] Let u € HP'(Q(a,b)) N Cy(Q(a,b)) for
some p € (1,00). Then, there erists a sequence (u,) C CZ(RY) of smooth
functions such that u, tends to u in W' (Q(a,b)) and locally uniformly in
Q(a,b), and Oyu,, converges to Opu weakly™ in (W;,’l(Q(a, b)) asn — oc.
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We conclude this section by defining the space LP(a, b; LY(R?)) as follows.

Definition A.4.7. e For every p,q € (1,00) denote by LP(a,b; LY(R%)) the
space of all the (equivalence classes of ) measurable functions f: Q(a,b) — R
such that

/ || f(t, HLqu dt < oo.

It is a Banach space when endowed with the norm

171, = (/ TR )

o We denote by L>®(a,b; L*(RY)) the space of all the (equivalence classes of)
measurable functions f: Q(a,b) — R such that

sup [|f(Z, )| 2 (pay < 00
te(a,b)

It is a Banach space when endowed with the norm

Hﬂuz—swwﬁ()mmwy

te(a,b)
Lemma A.4.8. [33, Chapter 2, § 3] Let d > 2, p and q be given such that
}D + % = 4. Here we have p € [2,00] and q € [2,2d/(d — 2)] in the case where
d>3andp € (2,00|, ¢ € [2,00] in the case where d = 2. Then every function
in Wy (Q(a, b)) NL>®(a, b; L*(RY)) belongs to LP(a,b; LY(R?)). Moreover, there
is a constant cg, which is independent of a, b in bounded subsets of R, such that
for f € W' (Q(a, b)) N L>(a, b; L*(RY)) we have

1fllpg < esUflloz + 1V FIl)-



Appendix B

Introduction to semigroup
theory

Semigroup theory has been widely studied and nowadays it is well understood.
We refer for example to K.J. Engel and R. Nagel [19], T. Kato [28], A. Lu-
nardi [40], L. Lorenzi and A. Rhandi [38]. In the following we provide a brief
survey on semigroups of bounded linear operators on a Banach space (X, ||-|]).
In particular, we first introduce strongly continuous semigroups and analytic
semigroups. Subsequently, we deal with sub-Markovian and ultracontractive
Co-semigroups on L?-spaces.
Now, we take a step back and we give the definition of semigroup.

Definition B.0.1. A family {T(t): t > 0} of bounded and linear operators on
X is called a semigroup (or semigroup of bounded operators) if it satisfies the
semigroup property, i.e.,

(a) T(0)=1,
(b) T(t+s)=T)T(s) for everyt,s > 0.

In order to simplify the notation, in the following we will write 7'(-). More-
over, we say that a semigroup 7'(-) is contractive if || T'(¢)|| < 1 for any t > 0.

B.1 Spectrum and resolvent

Let A: D(A) € X — X be an operator on X. We define spectrum and
resolvent set of A the following sets

p(A) ={Ae C| A — A: D(A) — X is bijective with bounded inverse},
o(A) = C\ p(A).

Moreover, we call the resolvent of A the operator R(\, A) € L(X) defined by

RO\ A) = (M — A)7L,

129
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for any A € p(A).
If A: D(A) C X — X isaclosed linear operator, then the family { R(\, A) |
A € p(A)} satisfies the resolvent identity

R(A, A) = R(p, A) = (k= N R(p, A)R(A, A),

for any A\, u € p(A). Actually, if a family of operators satisfies the resolvent
identity, then it’s a resolvent family as the next proposition states.

Proposition B.1.1. [38, Proposition A.4.6] Let QQ C C be an open set, and let
{F(A\): A€ Q} C L(X) be a family of linear operators verifying the resolvent
identity

FO) = F(i) = (5 — VFO)F ().
for any A\, p € Q. If the operator F(\y) is injective, for some Ay € €, then there

exists a closed linear operator A: D(A) C X — X such that p(A) contains Q
and R(\, A) = F(\) for each \ € (.

B.2 Strongly continuous semigroups

In this section we deal with the first important class of semigroups character-
ized by the strong continuity property.

Definition B.2.1. A family of bounded operators T(-) on X, which satisfies
the semigroup property, is a strongly continuous semigroup (or Co-semigroup)
if the function

te[0,4+00) —»T(t)r e X

15 continuous for every v € X.

The next result shows that the function ¢ — ||T'(¢)|| grows at most expo-
nentially at infinity.

Proposition B.2.2. Let T(-) be a Cy-semigroup. Then there exist M > 1 and
w € R such that
1T < Me",

for anyt > 0.
Moreover, the following characterization of strong continuity holds.

Corollary B.2.3. A semigroup of bounded operators T(-) on X is strongly
continuous if and only if the function t — T(t)x is continuous att = 0 for any
reX.

It is possible to associate to the Cy-semigroup T'(+) a linear operator, the
infinitesimal generator, defined as follows
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t—0t

T(t)r —x

D(A):{xeXHhmMeX},

Azxr = lim
t—0+

, x € D(A).

It turns out that A is a closed linear operator whose domain D(A) is dense in X.
Moreover, T(t)D(A) C D(A) and AT(t)f = T(t)Af, for allt > 0, f € D(A).
For every t > 0 and f € X we have

/OtT(s)fdseD(A) and T(t)f—f:A/OtT(s)fds.

In particular, if f € D(A) then

A/OtT(s)fds - /OtT(s)Afds.

Proposition B.2.4. Let M > 1 and w € R be such that |T(t)|| < Me** for
allt > 0. Then

(a) p(A) D{X € C|Re\ >w};

(b) the resolvent operator is given by the Laplace trasform of T(t), namely

R\ A f = /0 h e MT(t)f dt,

for any f € X, A € C such that Re\ > w;
(¢) For anyn € N and X € C such that Re\ > w we have

M

RA € —i——.

IR A < on =y

There is a close connection between Cy-semigroups and the abstract Cauchy
problem

{u’(t) = Au(t), t>0,
u(0) = f.

Indeed, for every f € D(A) the function T'(-)f is differentiable and it is the
unique solution of the previous Cauchy problem. For this reason, it is inter-
esting to establish if A is the generator of a Cy-semigroup.

The first of this kind of results is the Hille-Yosida theorem.

Theorem B.2.5. Let A: D(A) C X — X be a closed and densely defined

operator (D(A) = X ). Then A is the generator of a Cy-semigroup on X if
and only if there exist w > 0, M > 0 such that
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(a) p(A) D{X € C|ReX >w};

(b) for anyn € N
M

RO A <€ e

In this case, the semigroup T(-) generated by A satisfies || T(t)|| < Me“" for all
t>0.

The second result we aim to state is the Lumer-Phillips theorem.

Theorem B.2.6. Let A : D(A) C X — X be a densely defined operator.
Moreover assume that p(A) N (0, +00) # @& and A is dissipative, i.e.

IAf = AFI = M

forany A > 0 and f € D(A). Then A generates a Cy-semigroup of contractions
on X (ie. ||T@)|| <1 foranyt>0).

B.3 Analytic semigroups

In this section we introduce another relevant class of semigroups of bounded
operators: the analytic semigroups. For w € R and 6, € (7/2, ) we denote by

Yoo, ={A€C|A#w, |larg(A —w)| < 0o}

the sector in C of angle ;. We now define sectorial operators; they are deeply
connected to analytic semigroups.

Definition B.3.1. Let A: D(A) C X — X be a closed linear operator. A is
called sectorial in X if there exist w € R, 8y € (7/2,7) and M > 0 such that
p(A) D Xy, and

HR()‘a A)Hﬁ(X) < M‘)‘ - W’A,

for any A € Xy, 4,.

Moreover, S(w, 0y, M) denotes the set of sectorial operators which satisfy
the previous definition. Then, if A € S(w, 6y, M), we define

T(t) = i/ e R(N, A)d, (B.1)
Yron,w

o 2mi
for any ¢ > 0, where v, is the union of the following curves

Virgw P E [ry00) = w+pe ™ eC,
Yormw 1 0 € =1, m] = w+ re? e C,
V3w P S [T, OO) =Wt pein S C7

with r > 0 and n € (7/2, 6p) fixed. It turns out that the above expression does
not depend on r and 7 and the following theorem holds.
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Theorem B.3.2. Let A € S(w,6y, M) and T(t) be defined as in (B.1) for any
t > 0. Then the following statements hold.

(a) For any x € X, k € N andt > 0, T(t)x € D(A*). Moreover, if v €
D(A¥), then A*T (t)x = T(t)A*x for all t > 0.

(b) If we set T(0) = I, the family T(-) defines a semigroup of bounded oper-
ators.
(¢c) There exists My, >0 (k € NU{0}) such that
[t5(A — wD)*T(t)|| < Mye,
for anyt >0 and k € NU{0}.
(d) The function t — T(t) belongs to C*°((0,00), L(X)).
(e) We have DFT(t) = AFT(t) for any t > 0.

(f) The functiont — T(t) admits an analytic extention to the sector Yo g,—x /2

given by
1
T(z) = — MR(A, A) dA
=55 | ROA
for any z € X g,—r/2, where 0, is arbitrarily fixed in (7/2,0y — arg(z)).
By means of the previous results we define an analytic semigroup as follows.

Definition B.3.3. Let A: D(A) C X — X be a sectorial operator. Then the
family T(-) defined by (B.1) for t > 0 such that T(0) = I is called analytic
semigroup generated by A in X.

We now state some properties of the semigroup 7'(-).

Proposition B.3.4. Let T(:) be the analytic semigroup generated by A €
S(w, 0o, M). Then the following properties hold true.

t
(a) For each x € X andt >0, / T(s)xds € D(A) and
0

A /t T(s)xds =T(t)r — x.
If, in addition, x € D(A),Othen
Tt)r —z = /t T(s)Axds,
for anyt > 0. 0
(b) If A € C with Re A > w, then

R\ A) = /OO e MT(t) dt.

One can wonder if A generates a Cy-semigroup. In general the answer is
negative. However, if D(A) is dense in X, then 7'(+) is a Cy-semigroup whose
infinitesimal generator is the sectorial operator A.
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B.4 Sub-Markovian and ultracontractive Cj-
semigroups on L?

In this section we deal with Cp-semigroups on L?(£2), where Q is a subset of
R?. We start by giving some definitions.

Definition B.4.1. Let Q@ C RY and T'(+) be a Cy-semigroup on L*(Q). We say
that

o T'(-) is real if, given a real-valued function f, then T(t)f is real-valued for
allt > 0;

o T(:
'(

is positive if T'(t)f >0 for allt >0 and f > 0;

is L>=-contractive if | T(t) flloc < ||f|loe for all t >0 and f € L*(Q2) N
£);

o T(:
o T'(:

)
)
Le(
e T(-) is sub-Markovian if it is positive and L*>-contractive;
) is symmetric if T*(+) = T(-);
)

is ultracontractive if there is a constant ¢ > 0 such that
_d
1Tl ety < et™2,
for allt > 0.

To establish ultracontractivity we use the following useful result, see [4]
Proposition 1.5], where we replace the H'-norm with the L*-norm of the gra-
dient. The proof remains the same and is based on Nash’s inequality

e :
lull”* < call Vulllafull{, (B.2)
for all u € LY(R?) N HY(RY).

Proposition B.4.2. Let T(-) be a Cy-semigroup on L*(R?) such that T(-)
and T*(-) are sub-Markovian. Assume that, for 6 > 0, the generator A of T'(-)
satisfies

() D(A) C H'(RY);
(b) (—Au,u) = 6||[Vulll3, Vue D(A);
(¢) (=Au,u) = 6[[[Vulll3, Vue D(AY).
Then there is cs > 0 such that
1Tl pr gy < cst™2, V2> 0,

i.e. T(+) is ultracontractive.
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Proof. Since T*(+) is sub-Markovian, the L>-contractivity of 7*(-) implies that
T(-) is contractive on L'(R?), that is

IT@ Ny < 11f1ly s (B.3)

for any ¢t > 0 and f € L*(R%) N L?(R%). Therefore, T(-) extrapolates to a Cy-
semigroup on L'(R?) (see [5, Section 7.2]). Hence for f € L*(RY) N L>®(RY),
AR\ A)f — f in LY(RY) and in L?(RY) as A — oo. Given that AR(\, A)f €
D(A), it follows that D(A) N L'(RY) is dense in L*(R?) N L2(RY).

We now prove that

de d/4
st < (52) sl (B.4)

for every t > 0 and f € LY(R%) N L*(R?). Let f € D(A) N LY(R?). Since
T(t)f € D(A), by (b) we have

d
ZITOI1; = 2AT @), T(1) )2 < =20 [VT DS ]]5-
Thus, considering that T'(t)f € H'(R?) by (a), we apply Nash’s inequality

(B.2) and we deduce that

d 25 T (¢ 24+4/d
D g < -2 10O

@ 1Ty

As a result, we derive
d 2 2 _2.,d
E(IIT(t)fllg) L Z—E(IIT(t)fllg) L 1—IIT(lﬁ)fllg

46 P OV s
>
> 2o (IT@ 1) —HT( TG

d 2 ||T( )f||_4/d — d 2 ||f||_4/d7

where the last inequality follows by - Integrating, we obtain

_ td 2 2
O = [ U@ s (g = T,

Since D(A)N LY (RY) is dense in L' (R%) N L?(R?), the previous inequality holds
true for any f € L'(R%) N L*(R?). Thus, (B.4) follows. If we now repeat the
same computations for the adjoint semigroup 7%(-) applying (c) instead of (b),
we get

de; i /4
el < (52) .
for every t > 0 and f € LY(R%) N L?*(RY). Then

de2 d/4
o< (52) . (B5)
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for every t > 0 and f € L*(R?) N L>°(R?). Combining (B.4) with (B.5) yields

dC2 d/2 -
IO sm) < 1Dl i T aamy < (5E) 0

for every ¢ > 0. Therefore, the semigroup 7'(+) is ultracontractive with

/2
Cs — d—ci O
46 ’
The following result displays an important feature of ultracontractive semi-

groups, namely they are given through an integral kernel (see for example [38|
Theorem 15.1.3]).

Theorem B.4.3. Let Q C R If a Cy-semigroup T(-) on L*() is ultra-
contractive, then for every t > 0 there exists an integral kernel p(t,-,-) €

L>(Q2 x Q) such that

7)) = | plt.2.)f) dy
0

for every t > 0 and f € L'(Q) N L*(Q). Moreover, |k(t,-, )|l 1~(oxq) < ct~t
for every t > 0 and some constant ¢ > 0.

We now give the definition of consistent semigroup.

Definition B.4.4. Let Q C R? and 1 < p; < py < co. A semigroup T,(-)
which is defined on LP(S) for p € [p1,po] is called consistent if T,,(t) f = T,(t) f
for allt >0, q € [p1,p2] and f € LP(Q2) N LY(N).

As in [18, Theorem 1.4.1], we see that a symmetric sub-Markovian semi-
group on L%()) gives rise to consistent semigroups.

Theorem B.4.5. Let Q C RY. If T(-) is a symmetric sub-Markovian semi-
group on L*(Q), then L'Y(Q) N L*°(Q) is invariant under T(-) and T(-) may
be extended from L'(Q) N L=(Q) to a positive contraction semigroup T,(-)
on LP(Q) for all 1 < p < oco. These semigroups are strongly continuous if
1 < p < oo and are consistent.



Appendix C

Classical results on PDE’s of

elliptic and parabolic problems

In this appendix we recall some classical results we used in the previous chap-
ters, such as interior Schauder estimates and some maximum principle.

Let © be an open set of R?. We consider the second order elliptic partial
differential operator A defined by

Ap(x) = > () Digp(x) + Y Fi(w) Dig() = V(z)p(x), w€Q,

ij=1 i=1

on smooth functions, with real coefficients ¢;;, F; and V' defined in Q2. Through-
out, we keep the following assumptions.

Hypothesis C.0.1. The matriz Q = (¢ij)i j=1
elliptic, i.e. there is n > 0 such that

4 1s symmetric and uniformly

.....

d
Z Gij ()& > n|Ef? for allE € Q, z € Q.

,j=1

C.1 A priori estimates

In the following theorem we state some well-known interior LP-estimates.

Theorem C.1.1. [36, Theorem C.1.1] Let 2 be an open set and p any real
number in the interval (1,00). If the coefficients of the operator A are bounded
and continuous in S, then for any open set ¥ CC Q there exists a positive
constant C, depending on p, Q, ', n and the moduli of continuity of ¢;; in €,
such that

||U||W2,p(Q/) < C(”uHLP(Q) + ||Au||LP(Q))7
for any u € LP(Q) N W2P(Q) such that Au € LP(Q).

loc

The next two theorems provide us with Schauder estimates.

137
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Theorem C.1.2. /36, Theorem C.1.4] Assume that the coefficients of the
operator A belong to Cs(Q) for some ¢ € (0,1). Further, assume that u €
C’litC/Q’HC((O,T) x Q) is a bounded (with respect to the sup-norm) solution of
the equation Owu(t,z) — Au(t,x) = 0 for every t € (0,T), x € Q. Then, for
any open set Q' CC Q and any s € (0,7T), there ezists a positive constant C
depending on s, the coefficients of the operator A, Q,Q and T such that

||u||cl+</2’2+<([S,T)XQ’) S O sup |u|
(0,T)xQ2

Theorem C.1.3. [36, Theorem C.1.5] Let Q0 be an open subset of RY with
boundary of class C**¢ for some ¢ € (0,1), and let ' and " be two bounded
subsets of Q such that Q' C Q" C Q and dist(QY', Q\ Q") > 0. Moreover, assume
that the coefficients of the operator A belong to C’f;c(ﬁ). Finally, assume that
u e CY/225(ITy Ty) x Q) solves the differential equation O — Au = 0 in
(T}, T) x Q" for some 0 < Ty < Ty. Then, if u =0 on (T1,T3) x 9", we
have that for any T* € (T, Ts) there exists a positive constant C' depending on
T T, 15,0, Q" such that

||u||cl+c/2,2+<([T*,T2]Xﬁ’) <C ||U||Loo((T1,T2)><Q//) :

C.2 Classical maximum principles

In this section we collect the classical maximum principles for continuous so-
lutions to both the elliptic equations and for the parabolic Cauchy problems.
We make the following assumptions.

Hypothesis C.2.1. (a) 2 is either an open bounded set with boundary of
class C? or Q = R¢;

(b) qi;, F; and 0 <V belong to Cy(Q);
(c) Hypothesis is satisfied.
We start with the classical maximum principle for elliptic equations.

Theorem C.2.2. [36, Theorem C.2.2] Let A\ > 0 and suppose that u € Wg’p(Q)

loc

for all 1 < p < oo satisfies the differential inequality Au — Au > 0. Then
(a) if u>0 on I8, then u >0 in Q;

(b) if f € Cy(Q) and u € WQ’p(Q) for all 1 < p < oo solves the problem

loc

Au(z) — Au(z) = f(x), x €,
u(x) =0, x € 89,

then
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We now state the weak parabolic maximum principle in the form we need.

Proposition C.2.3. [36, Proposition C.2.3] Fiz T > 0. Let u € C**((0,T] x
Q) N Cy([0,T] x Q) be such that

Owu(t, x) — Au(t,z) > 0, te(0,T], x€Q,
u(t,z) >0, t e (0,T], z € 09,
u(0,2) >0, reN

Then w > 0 in [0,T] x Q.

C.3 Existence of classical solution to PDE’s
and analytic semigroups

Here, we adopt the following assumptions on €2 and on the coefficients of the
operator A.

Hypothesis C.3.1. (a) Q is either an open set with a boundary which is
uniformly of class C**2¢ for some ¢ € (0,1) or Q = RY;

(b) qij, F; and 0 <V belong to ng(g);

(¢c) The matriz Q = (qij)ij=1,..d s symmetric and uniformly elliptic, i.e.
there is 7 > 0 such that

d
> gi(@)6&; > gl for all € €RY, € QL
1,7=1

Proposition C.3.2. [36, Proposition C.3.2] For every f € Cy(Q2) the Cauchy-
Dirichlet problem

Owu(t, z) = Au(t, x), t>0,x €,
u(t,z) =0, t> 0,z €09,
u(0,z) = f(x), x €,
admits a unique solution u € C([0,00) x Q\ ({0} x 9Q)) N C2((0,00) x Q)

which is bounded in [0,T] x Q for any T > 0. Moreover, |Ju(t,")|l.. < |Ifll.
for every t > 0.

Moreover, the following result involving analytic semigroups holds.

Theorem C.3.3. [36, Theorem C.3.6] The realization of the operator A with
domain

D(A) = {u € Co(Q) NW2P(Q) for all 1 < p < co: Au € C(Q)}

loc

is sectorial in Cy(Q).
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Concerning the elliptic equation, we have the following result.

Proposition C.3.4. [36, Proposition C.3.4] For every f € Cy(Q2) and any
A > 0, there exists a unique solution u € I/Vlif(Q) for all1 < p < oo to the
Dirichlet problem

Mu(z) — Au(z) = f(z), x € (),
u(z) =0, x € 092

C.4 Local regularity of transition densities

In this section we combine the results of [8] with the Schauder estimates to
obtain regularity properties of the transition kernel associated with the second
order elliptic operator defined as in Chapter |3| by

Ap =div(QVy)+ F - Vo — V.

We assume that the diffusion coefficients ¢;; and their spatial derivatives Dj,g;;
are bounded on R? for all i, j,h = 1,...,d, whereas the drift F' and the poten-
tial V' can also be unbounded. More precisely, we make the following assump-
tions.

Hypothesis C.4.1. (a) We have q;; € C,™(RY), F; € CS,
CC (RY) for some ¢ € (0,1);

loc

(b) The matriz Q) = (¢;j)ij=1
there 1s m > 0 such that

(RY), 0 <V €

4 s symmetric and uniformly elliptic, i.e.

77777

d
Z ¢ij(2)&& > nlé* for all z, € € R

t,j=1

We consider the minimal semigroup 7'(-) in Cy(R?) generated by A as con-
structed in Chapter [1} It is given through an integral kernel p as follows

0@ = [ pltenfwdy. +>0.2 R [ € GRY

Then, the following result shows some regularity properties of p with respect
to all the variables (¢, z,y).

Proposition C.4.2. [3/, Proposition 2.1] The kernel p(t,x,y) is a positive
continuous function in (0,00) x RY x R which enjoys the following properties.

(a) For every v € R4 1 < s < oo, the function p(-,z,-) belongs to
?—lf(;i(((),oo) x RY). In particular p,Dyp € L ((0,00) x RY) for all

loc
i=1,...,d and p(-,z,-) is continuous.
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(b)

(¢)

For every y € R% the function p(-,-,y) belongs to CL1/**T¢((0, 00) x RY)

loc

and solves the equation Oyp = Ap for t > 0. Moreover

sup ||p(-, '7y)||cl+</2,2+<([a,T]xBR) < o0,
lyl<R

for every 0 <e <T and R > 0.

If, in addition, F € C*(R%:RY), then p(-,x,-) € W2 (Q(0,T)) for every

s,loc

r€R? 1< s < oo and satisfies the equation O;p — Ayp =0, where
A" =div(QV) — F -V — (V +divF)

is the formal adjoint of A.



Appendix D

Semigroups associated with
sesquilinear forms

In this appendix we give an overview of sesquilinear form theory and associated
operators and semigroups. We refer to the book of Ouhabaz [49] for a wide
description on this subject.

Let H be a Hilbert space over K = C or R and D(a) a linear subspace of
H. We denote by (-,-) the inner product of H and by ||-|| the corresponding
norm.

Definition D.0.1. An application
a:D(a) x D(a) - K

is called unbounded sesquilinear form if for every o € K and u,v,w € D(a)
we have
a(au + v, w) = aa(u, w) + a(v, w)

and
a(u, av + w) = aa(u,v) + a(u, w).

The space D(a) is the domain of a.
We now introduce some relevant properties a sesquilinear form may enjoy.

Definition D.0.2. Let a: D(a) x D(a) — K be a sesquilinear form. We say
that

(a) a is densely defined if

D(a) is dense in H. (D.1)

(b) a is accretive if
Rea(u,u) >0 for all u € D(a). (D.2)
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(c) a is continuous if there exists a non-negative constant M such that

|a(u, v)] < M [[ull, [[vll, for all u,v € D(a). (D.3)

where [[ull, = \/Re a(u, u) + [[ul]*.

(d) a is closed if
(D(a),||-]l,) is a complete space. (D.4)

If the form a satisfies conditions (D.1)-(D.4)), then ||-||, is a norm on D(a),
the norm associated with the form a, and D(a) is a Hilbert space.

Definition D.0.3. Let a : D(a) x D(a) — K be a sesquilinear form. The
adjoint form of a is the sesquilinear form a* defined by

a*(u,v) = a(v,u),

with domain D(a*) = D(a). We say that a is a symmetric form if a* = a, that
18

a(u,v) := a(v,u),

for all u,v € D(a).

D.1 Generation result

One can associate an operator to sesquilinear forms enjoying the properties
mentioned above.

Definition D.1.1. Let a be a densely defined, accretive, continuous and closed
sesquilinear form on H. The unbounded operator A defined by

D(A) ={u € D(a) | Fv € H: a(u,¢) = (v,¢) V¢ € D(a)},
Au=v, ue D(A)
is called the operator associated with the form a.

The following result clarifies the connection between sesquilinear forms and
semigroups.

Proposition D.1.2. [/9, Proposition 1.51] The operator —A is the generator
of a strongly continuous contraction semigroup on H.

Remark D.1.3. Let (V,|-|l\,) be an Hilbert space that is continuously and

densely injected into H (we write V— H), i.e. V. C H, V is dense in H for
the norm of H and there exists a constant ¢ > 0 such that

|ul] < cllully, for allu e V. (D.5)

Leta:V xV — K be a sesquilinear form satifying the following conditions:
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(a) there exists a non-negative constant M such that

la(u, v)| < M |jully [|v]|y, for all u,v € V. (D.6)
(b) a is coercive, i.e. there exists v > 0 such that

Rea(u,u) > v|ull for allu € V. (D.7)

Then a is densely defined and accretive. Moreover, we note that the norms

|l and ||-||, are equivalent. Indeed, by (D.7), we have that

2 2 2
[ully = Rea(u, u) + [lull” > Rea(u,u) > v [[ully

and, by (D.5) and (D.6),

2 2 2 2
lully = Re au, w) + [Jull” < [a(u, w)| + ¢ [Jully, < (M + ) [Jully, .

Consequently, the form a is also continuous and closed. Then, by Proposition
—A is the generator of a strongly continuous contraction semigroup on
H.

D.2 Positive and L*-contractive semigroups

Let H = L*(Q) and a be a densely defined, accretive, continuous and closed
sesquilinear form on L?*()). Denote by A its associated operator and by
(€750 the semigroup generated by —A on L?*(Q2). The following criteria
provide us with equivalent conditions on the sesquilinear form a to check if the
semigroup (e~4);>¢ is positive and L*°-contractive.

Theorem D.2.1 (First Beurling-Deny criterion). [{9, Theorem 2.6] The fol-
lowing assertions are equivalent.

(a) The semigroup (e~*1);>q is positive.

(b) w € D(a) = (Reu)™ € D(a),a(Reu,Imu) € R and
a((Reu)™, (Reu)™) < 0.

Theorem D.2.2 (Second Beurling-Deny criterion). [49, Theorem 2.13] The
following assertions are equivalent.

(a) The semigroup (e~'4)>q is L>®-contractive.

(b) v € D(a) = (1 A |u])signu € D(a) and Rea((1 A |u])signu, (ju| —
1) signu) > 0.



List of Symbols

Sets

N set of all positive natural numbers

R set of all real numbers

C set of all complex numbers

R4 euclidean d-dimensional space

B, open disk with centre at 0 and radius p > 0

B, the closure of B,

Q(a,b)  the strip (a,b) x R?

A CC B given two subsets A, B C R? with B open, it means
that A is contained in B

1G] empty set

L(X,Y) space of all bounded linear operators T" from X into Y
with |7 = sup, o 121

L(X) = L(X,X)

D(RY) = C®(R?) space of test functions

D(RY)  space of distributions on  C R?

Matrix and linear algebra

1@l
V@

the j-th vector of the canonical basis of R?

inner euclidean product between the vectors z,y € R?

=: (x,y)

euclidean norm of z € R?

euclidean norm of the dxd matrix @ = (g;;), i.e. |Q|* =

d

Zi,j:l |Qij|2

norm of the d x d matrix ) = (g;;) if the entries depend
: 2 d 2

onz € QCRY e Q| = Zmzl a2

euclidean norm of the gradient of the matrix ) = (¢;;)

whose entries are continuously differentiable in an open

. d
set Q C R de. VO =377 [ Digij)?
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Functions

XE

characteristic function of the set E, i.e. xp(z) = 1if
r€ FEand xg(r)=0ifz ¢ E

1 the function identically equal to 1

fr positive part of the real-valued function f: Q C R? —
R, i.e. f(z) = max(f(z),0) for every x €

f~ negative part of the real-valued function f: Q Cc R? —
R, ie. f~(x) = min(f(x),0) for every z € Q

f complex conjugate of the complex function of f : ) C
R¢ — C

Ref real part of the function f : Q C R = C

Imf imaginary part of the function f: Q C RY — C

signf  sign of the function f: Q C R? — C defined as i if

u(z) # 0 and 0 if u(z) =0

o f = f time derivative of a function f : I x R? — R,
Where I C [0,00) is an interval

D;f g L i-th spatial derivative of a function f : I x R? —
R, where I C [0, 00) is an interval

D f = D;D;f second order spatial derivative of a function
f:IxR?*— R, where I C [0,00) is an interval

Vf = (D1f,...,Dyf) gradient of f

IV = Zd |D; fI?

|D*f]? = E” 1 1D 1

div(F) = Zl | DiF; divergence of F : RY — R?

Operators

I identity operator in a Banach space X

Miscellanea
supp(f) support of a function f
xVy maximum between z,y € R
[x] integer part of z € R
|a] length of the multi-index «, i.e. |a] =a; + -+ aq4
0ij Kronecker delta, i.e. 6;; = 1if ¢ = j and ¢;; = 1

dist(x,€s) distance of the point z from the set i, i.e.

otherwise

dist(l’, QQ) = infa:EQQ |.ZU - y|
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dist(Q,Qy) distance of the set 2y from the set ), i.e. the number
dist (€24, ) = inf,cq, dist(z, Q)
dx Lebesgue measure in R?
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