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A B S T R A C T

The healthcare industry plays a critical role in saving lives ev-
ery day. As  a result, researchers, physicians, and experts are
constantly working to find new ways to address illnesses and dis-
abilities. In addition, technological advancements, especially in
artificial intelligence and machine learning, have helped the sci-
entific community design and propose advanced diagnostic tools
to help physicians make crucial patient care decisions. These
tools allow researchers to analyze vast amounts of data in new
ways, often in real-time, for various purposes, such as
detect-ing patterns behind illnesses, analyzing signals and
detecting potential cancer from images.

In this context, this work was dedicated to the study of the
Melanoma Image Binary Classification Problem (MIBCP), mainly
by analyzing and proposing solutions to addressing the open
issues in this field that did not allow a massive utilization of
computer-aided diagnostic systems for early diagnosis. In partic-
ular, this work focuses on the resolution of the problems that may
be behind high-performance automatic prediction models: the
need to minimize risk situations, even by accepting lower overall
performance; the opportunity to use clinical images instead of
instrumental images in early diagnosis; the need able doctors to
evaluate how the automatic prediction models learn and choose
the results, rather than blindly relying only on the statistical
values that can be calculated by analyzing the performance of
the system on training, validation and test tests; the need for a
scalable architecture specialized in allowing the refinement of
prediction models in a fast and accessible way to non-experts.

The results reported aim to help increase trust in the automatic
system that can be implemented thanks to deep learning, in
particular by showing these systems’ advantages, limitations
and disadvantages and providing tools that show the potential
to overcome these limitations. Also, this work aims to improve
Melanoma early detection, which is now a limiting factor for
first-line therapies in this tumour pathology.

vii



A B S T R A C T  I N  I T A L I A N O

Il settore sanitario svolge un ruolo fondamentale nel salvare vi-
te ogni giorno. D i  conseguenza, ricercatori, medici ed esperti
lavorano costantemente per trovare nuovi modi per affrontare
malattie e disabilità. Inoltre, i progressi tecnologici, in particola-
re nell’intelligenza artificiale e nell’apprendimento automatico,
hanno aiutato la comunità scientifica a progettare e proporre
strumenti diagnostici avanzati per aiutare i medici a prendere
decisioni cruciali sulla cura del paziente. Questi strumenti con-
sentono ai ricercatori di analizzare grandi quantità di dati in
modi nuovi, spesso in tempo reale, per vari scopi, come rilevare
modelli dietro malattie, analizzare segnali e rilevare potenziali
tumori dalle immagini. In questo contesto, questo lavoro è stato
dedicato allo studio del Melanoma Image Binary Classification
Problem (MIBCP), principalmente analizzando e proponendo
soluzioni per affrontare le questioni aperte in questo campo che
non hanno consentito un utilizzo massiccio di sistemi diagnostici
assistiti da computer per la diagnosi precoce . In particolare,
questo lavoro si concentra sulla risoluzione dei problemi che pos-
sono essere alla base di modelli di previsione automatica ad alte
prestazioni: la necessità di minimizzare le situazioni di rischio,
anche accettando prestazioni complessive inferiori; l’opportunità
di utilizzare immagini cliniche invece di immagini strumentali
nella diagnosi precoce; la necessità di medici in grado di valutare
come i modelli di previsione automatica apprendono e scelgono i
risultati, piuttosto che affidarsi ciecamente solo ai valori statistici
che possono essere calcolati analizzando le prestazioni del siste-
ma su traning, validation e test set; la necessità di un’architettura
scalabile specializzata nel consentire l’affinamento dei modelli di
previsione in modo rapido e accessibile ai non esperti. I  risultati
riportati mirano ad aumentare la fiducia nel sistema automatico
che può essere implementato grazie al deep learning, in parti-
colare mostrando vantaggi, limiti e svantaggi di questi sistemi
e fornendo strumenti che mostrano il potenziale per superare
questi limiti. Inoltre, questo lavoro mira a migliorare la diagno-
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si precoce del melanoma, che ora è un fattore limitante per le
terapie di prima linea in questa patologia tumorale.
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I N T R O D U C T I O N
1

The main objective of this introduction is to provide a brief
overview of the context around the melanoma detection problem
(Section 1.1). Then the importance of using Artificial Intelligence
(AI) techniques to construct increasingly efficient Computer-
Aided Design (CAD)  systems is described. Also, some critical
open challenges in this field are presented in Section 1.2. Finally,
the contribution and the organization of the thesis are described
(Section 1.3 and Section 1.5).

1.1 ov e r v i e w

Healthcare saves lives every day. Nowdays, thousand of people,
among researchers, physicians and experts are trying to discover
new ways to address illness and disabilities. The technological
progress of recent years, particularly in the Artificial Intelligence
(AI) and Machine Learning (ML)/Deep Learning (DL) fields,
concurrently with the emerging trend of Open Data and the
explosion of Cloud Architecture, has helped the scientific com-
munity to discover new potential ways to address issues in the
healthcare area, allowing a drastic reduction in the time needed to
perform experimentations. Technology can revolutionize how we
view medicine and is vital to developing advanced diagnos-tic
tools which enable crucial patient care decisions [62]. In the past,
using artificial intelligence by researchers and physicians was
bound to many limitations. Finding quality data, informa-tion,
and specialized technology to perform adequate prediction model
training was particularly difficult. As  a result, for many years,
performing artificial intelligence research and application was
possible only thanks to big projects or research groups of
BigTech companies.

Fortunately, we are still experiencing a favourable time regard-
ing the quality of the research tools and data we can access. In
particular, we have witnessed the success of Big Data concurrently
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2 i n t r o d u c t i o n

with the explosion of new parallel computation paradigms, like
CUD A  and OpenCL, while we already possess robust distributed
computation technologies like MPI and OpenMP. Together, these
tools allow researchers to analyze the enormous amount of data
provided by BigData in new ways, often in real-time, in particular
with the rise of Cloud Computing: looking for a hidden pattern
behind illness, analyzing in real-time electroencephalography
(EEG) or electrocardiogram (ECG) looking for hidden malfunc-
tions, detecting potential cancer from images; the number of new
applications is very high.

Developing high-quality, accurate Artificial Intelligence re-
sources showed the potential to improve the work of the clini-
cians by intervening in the prevention, diagnosis and treatment
of many pathologies. Some modern A I  and standard computer
science technologies have increased clinical laboratory power of
devices, allowing many diagnostic activities outside laboratories.
In addition, medical aids and new advanced diagnostic equip-
ment are increasingly relying on qualified experts in the field to
supplement medical evaluations and assist in diagnosis. Scien-
tific progress in information and computer technology has led to
a new trend in Healthcare: Digital Health and Telemedicine.

While healthcare saves lives, digital healthcare shows the po-
tential to save a tremendous amount of life. Nowadays, we have
the potential to change the conception of medicine dramatically,
and, at the same time, we are starting to design and test advanced
diagnostics systems in making decisions intrinsic to patient care.
The hope is to have in the nearest future C A D  that can improve
early diagnosis.

In this context of growing in automatic tool proposal for early
diagnosis, this work focused on Melanoma disease, particularly
on the Image Binary Classification Problem (MIBCP), understood
as the possibility chose from a skin lesion image an answer
between benign and malignant.

This study explicitly addresses the challenges when high-
performing automatic prediction models might be introduced in
real healthcare scenarios:

•  minimizing potential risks related to automatic choices,
even lowering the overall performance;



1.1 ov e r v i e w 3

•  exploring the possibility of using clinical images for early
diagnosis instead of relying solely on instrumental images
(dermoscopic, histologic);

•  allowing the doctor to assess (and understand) how the
prediction models work;

•  make decisions to increase confidence in C A D ,  instead of
forcing them to trust on statistical values derived from
performance testing.

In addition, the study highlights the requirement for a scalable
architecture that is user-friendly and accessible for non-experts,
allowing for effortless refinement of prediction models.

Melanoma is a type of aggressive skin cancer developing from
melanocytes, cells that produce melanin pigment, and is one of
the deadliest tumours in the world. Skin cancer is defined as
the unregulated expansion of skin cells caused by D N A  damage.
In the early stages, it might be confused with a normal naevus.
Although it represents a minority of cutaneous malignancies, this
tumour is the leading cause of mortality. Therefore, the impor-
tance of an early diagnosis of Melanoma has become increasingly
evident, especially in subjects with a high risk of developing
cancer because it allows us an increment of cure rate.

Furthermore, early detection is critical for first-line therapy in
this tumour pathology. Generally, in clinical practice, a first visual
inspection by a dermatologist is used to diagnose Melanoma,
often with polarized light magnification’s assistance. However,
the attestation of a correct diagnosis also depends on the ability
of physician related to his/her degree of experience in discrimi-
nating between skin lesions.

Nowadays, many proposals exist for C A D  systems for derma-
tologists. However, the claims that incredible performance of the
A I  surpasses performance of clinicians still have not resulted in
massive use of C A D  systems for early diagnosis: this is because
many other challenges exist, for example, the little trust in these
systems, the potential risks related to automatic choices, the need
for specific hardware, the need for computer science skills.

Despite the high accuracy reached by C A D ,  the final word on
a cancer diagnosis is still delegated to the Biopsy: early diagnosis
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remains challenging due to the need for histological analysis to
ensure correctness in diagnosis; nowadays, patients still have to
undergo surgery to minimize false positives (FP) and negatives
(FN) in diagnosis; this fact contrasts with all the potential the
technologies provide to us. Also, most of this software involves
computer vision(CV) related techniques like border detection,
symmetry/asymmetry analysis, colour analysis and dimension.
Furthermore, it relies on dermoscopic images, and then they
require specific hardware to acquire the images: the need for
specific hardware often slows down the speed in broad utilization
of these techniques. Also, as discussed in the next chapter, C A D
performance can drop while the underlying training set changes,
which may drastically impact the diagnosis.

In order to address these issues, this work relies on the as-
sumption that, while designing a C A D  system that will work
in the health field, it might be mandatory to focus on reaching
the lowest false negative rate (FNR) possible to avoid errors that
can lead to life-threatening situations. Also, the work relies on
the assumption that the C A D  system must enable the users to
understand what a decision is based on, mainly using explain-
able A I  (XIA) concepts, and must allow not skilled users to train
and test new prediction models. Finally, the clinical images are
considered the primary source of information for this project due
to their potential large availability and simplicity in acquisitions.

1.2 op e n c h a l l e n g e s

The solution to a clinical issue is closely linked to medical re-
search and the expertise of healthcare professionals. Therefore,
the best outcome can be achieved only through collaboration
between technological and medical actors.

Many C A D s  have been developed and proposed to aid der-
matologists in determining if a skin lesion is or could become a
melanoma, but there are still challenges to be addressed. First,
increasing trust in this system in the final user (doctor, phisicians,
dermatologist) is mandatory.

Most C A D  utilizes computer vision techniques, such as border
detection, colour analysis, and dimension detection, to analyze
skin lesions. However, most of this software uses images, and the
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complexity of skin images can pose problems such as irregular
fuzzy boundaries, noise, low contrast, or poor lighting, which
must be considered in developing melanoma detection systems.
So then, the complexity of the images is still an open issue in this
research field.

Building C A D  systems can be broken down into main several
steps:

1. a dataset of melanoma and non-melanoma images is ob-
tained or created. The images may be dermoscopic, clinical,
or histological, with the dermoscopic images providing the
most detail but with a smaller dataset, while clinical images
are less detailed but more readily available, and histological
images provide the highest image resolution;

2. one or more computer vision and image processing tech-
niques extract features from the images, serving as the
training inputs;

3. the classification model can be trained using neural net-
works, SVMs, custom predictors, classifiers, or other ma-
chine/deep learning techniques, and multiple techniques
may be combined to improve accuracy;

4. finally, validation and test steps are performed to measure
the performance of the model.

Another open issue is selecting the best suitable classification
model that can provide better performance regarding melanoma
classification. Also, it is essential to note that the term "perfor-
mance" definition must not be only related to the classification’s
accuracy and speed. Focusing on the False Positive and False
Negative is essential because a wrong diagnosis may lead to a
life-threatening situation.

In addition, other open issues exist when dealing with C A D
and Melanoma: the first is the storage space and computational
power required to train complex models on large datasets to
perform well. The second issue is the effort needed to update
one or more models. Furthermore, once a model is trained and
deployed, there is no simple way to improve its performance
without retraining the model: these issues are clearly explained
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by what happened in the ISIC 2018 challenges; the performance
of the winning model from the ISIC 2018 challenge dropped from
88.5% to 63.6% in the ISIC 2019 challenge due to the introduction
of more categories and images; this highlights the fact that deep
learning performances are strictly related to the quality of the
image and the structure of the training dataset.

Therefore, managing inter-class and intra-class dissimilarities
is an open issue that can profoundly impact the performance of
the classification system that must be addressed.

1.3 c o n t r i b u t i o n o f t h i s  t h e s i s

The first contribution of this work is an overview of the melanoma
classification problem analyzed from two different points of view
(POV): the physician and the data scientist POVs. In particular,
the first chapter provides an overview of melanoma disease and
the current clinical assessment standards. From the physician
and clinical POV, having the lowest false negative rate (FNR) is
more important than having the highest accuracy because the
false negatives may lead to a life-threatening situation in patients.
It is essential to note that the physician’s POV (PPOV) is used
to drive all the design and evaluation of the proposed models.
Also, an overview of the machine learning and deep learning
approaches proposed to build a reliable C A D  system is provided.

The second contribution is related to the opportunity to pro-
vide a classification model that can use clinical images instead of
dermatoscopic and histological images. Nowadays, we can pro-
cess and analyze medical images through complex mathematical
algorithms to extract information and create new knowledge of
pathological and physiological phenomena that are not detected
with visual analysis alone. Furthermore, thanks to classification
models able to use clinical images, we could potentially speed
up the broad utilization of C A D  systems by avoiding the need
for specific hardware like dermatoscopic because mobile devices
surround us with ultra-high resolution cameras. In particular, the
second contribution is a deep study of the main available convo-
lutional neural network (CNN)  architectures performances from
the perspective of minimizing the F N R  using clinical images.
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The third contribution is the proposal of new C N N  models
designed by genetic algorithms (GA): in particular, the G A  fit-
ness function was oriented to drive the evolution of the G A
populations to minimize the C N N  structures and the FNR.

The final contribution of this work is to provide a robust sys-
tem against performance drops that can occur while the training
data changes: in particular, a cloud-fog-edge architecture is pro-
posed, and the experimentation results are presented in the latest
chapters.

This thesis aims to help to improve Melanoma early detection,
which is now a limiting factor for first-line therapies in this
tumour pathology.

1.4 r e s e a r c h qu e s t i o n s

In the context of melanoma detection from digital images, it is
more important to consider the false-negative rate (FNR) than
global accuracy because of the severe consequences of missing a
melanoma diagnosis. Melanoma is a deadly form of skin cancer
that can spread quickly, making early detection crucial for suc-
cessful treatment. If a melanoma is missed by a detection system,
this could lead to a delay in diagnosis and treatment, which can
have devastating consequences for the patient’s health outcomes.

While global accuracy is a useful metric for measuring the
overall performance of a detection system, it may not be sufficient
for assessing the effectiveness of a system for detecting rare or
critical cases such as melanoma. A  high global accuracy score
may suggest that the system is effective, but if the F N R  is high,
it means that a significant proportion of melanomas are being
missed. Therefore, minimizing the F N R  is a critical objective in
melanoma detection to ensure that patients receive timely and
accurate diagnoses.

The research question for this doctoral thesis is centered around
the development of a reliable and accurate melanoma detection
model using clinical images. Specifically, the study aims to inves-
tigate the performance of various convolutional neural network
(CNN) architectures in minimizing the false negative rate (FNR)
for the detection of melanoma. The study will focus on the use of
clinical images rather than dermatoscopic and histological
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images, as this has the potential to broaden the utilization of
computer-aided diagnosis (CAD)  systems by eliminating the
need for specialized hardware.

The research will involve a comprehensive evaluation of the
performance of different C N N  architectures, with a focus on
achieving optimal F N R  while also considering the overall ac-
curacy, precision, and recall of the model. Also, the research
investigated how GA can be used to generate new C N N  architec-
tures optimized to minimize FNR.

The results of this study are expected to contribute to the de-
velopment of more effective and accessible melanoma detection
tools, which could have significant implications for the early
diagnosis and treatment of this deadly disease.

The research questions can be summarized as follows:

What is the performance of convolutional neural network
(CNN) architectures for minimizing the false negative rate
(FNR) when using clinical images instead of dermatoscopic
and histological images? How can the use of clinical
images potentially speed up the utilization of computer-
aided diagnosis (CAD)  systems? What is the
performance of the proposed convolutional neural network
(CNN)  models designed by genetic algorithms (GA) in
minimizing both the structure of the C N N  and the false
negative rate (FNR), and how do these models compare to
existing C N N  architectures in terms of accuracy, precision,
and recall? How effective is the proposed cloud-
fog-edge architecture in providing a robust system against
performance drops caused by changes in training data, and
what are the experimental results of its implementation?

1.5 o r g a n i z a t i o n o f t h e t h e s i s

After this Chapter Introduction, the thesis is divided as follows:
In Chapter 2, there is an overview of skin cancers, Melanoma

and detection issues. In particular, it reports an overview of
the scientific literature relating to melanoma detection problems
using clinical images (MDCI). The Chapter begins with a review
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of some processes required for melanoma detection and ends
with a description of the classification algorithms proposed in
the literature to address these issues.

Chapter 3 illustrated the experimental results related to multiple
C N N  architectures trained on clinical images with and without
segmentation and data augmentation in order to obtain the best
model of C N N  and for the minimization of False Negative Rate
(FNR).

Chapter 4 presents an alternative way to use an extended ver-
sion of G A  to address the MDCI.  In particular, the Chapter
presents the experimental results obtained using G A  (selection,
mutation, merging and crossover) to perform the design of a
C N N  driven by the GA scoring function; the maximization of the
prediction accuracy and the minimization of the F N R  was used
as scoring functions.

In Chapter 5, the contribution of the intra-class dissimilarities
(ICD) and extra-class similarity (ECS) presence in melanoma
images dataset in affect classification performance is reported;
then, a hybrid architecture design on the continuous re-training
approach is presented and analyzed.

Finally, conclusions and future studies are followed in Chapter
6. This Chapter highlights the contributions proposed by these
works and any future directions.





B A C K G R O U N D
2

This Chapter describes the critical point regarding MDCI.  In
particular, some notions on melanoma and its assessment are
outlined, considering advantages and disadvantages (Section 2.1,
Section 2.2). Then the most diffused methods of machine learning
and deep learning for melanoma detection are described (Sec-
tion 2.3 and Section 2.4). In particular, we focus on machine and
deep learning techniques and genetic algorithms and evaluation
performance (Section 2.5).

2.1 m e l a n o m a

Melanoma is a form of skin cancer that starts from melanocytes,
the cells that produce melanin pigment [82]. It belongs to the
generic skin cancer class, including basal cell carcinoma, squa-
mous cell carcinoma and Melanoma [5]. From the biological point
of view, skin cancer is an uncontrollable proliferation of skin cells
driven by D N A  damage that can occur due to multiple reasons:
ultraviolet radiation, sun expositions, sunburn, radiation and
genotoxic effect [31]. In addition, evidence in the literature sug-
gests that genetic and environmental factors might be considered
risk factors: race, in particular caucasian, light-coloured skin and a
positive family history of Melanoma can be considered risk
factors. [77].

Melanoma is one of the deadliest tumours in the world and is
aggressive [18]. Although it represents a minority of cutaneous
malignancies, this tumour is the leading cause of mortality re-
lated to skin cancers due to its ability to metastasize to different
tissues rapidly. In addition, the site of the primary Melanoma’s
initial growth strongly correlates with the risk of metastatic pro-
gression, with melanomas developing in the head, neck, and
trunk having a higher risk of metastatic progression than those
developing in the limb [82].

11
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Skin melanoma cases have significantly grown during the
past 30 years. Nevertheless, the trends vary depending on the
age group: For instance, between 2007 and 2016, the rate for
those under 50 decreased by 1.2% annually, while the rate for
people over 50 increased by 2.2%. The American Cancer Society
estimates that alone in the United States, there will be 100350
new cases and 6850 deaths in both sexes in 2020 1.

L ike other tumours, a five-stage protocol is used to assess
melanoma development. The protocol is based on the Ameri-
can Joint Committee on Cancer Staging Manual [30]: the primary
characteristics used to distinguish between benign or malignant
lesions are thickness, ulceration, and metastasis to lymph nodes
or other regions of the body; for tumour stage between I and III,
the excision is the treatment of choice. The Figure 2.1 shows the
stages of melanoma in detail.

In stage 0, the epidermis contains abnormal melanocytes that
could become cancerous. Therefore, in this Stage, the Melanoma
is considered in situ.

In the next Stage, thickness and ulceration might be considered.
In particular, Stage I is divided into Stage I A  and Stage IB: in the
first one (IA), ulcerations are not present, and the thickness of
the tumour is less than 1 mm; in the second one (IB), ulcerations
may be present for the tumours with thickness less o equal than
1mm; Also, it is considered to be into Stage IB tumours
without ulcerations but with thickness is between 1mm and
2mm.

Stage II  is split into three substages: I IA, IIB and IIC; In the first
one (IIA), the tumour could have ulceration, but the thickness
must be less or equal to 1mm, or the tumour think can be between 1
and 2mm without ulcerations; In the second one (IIB), the
tumours are ulcerated, and the thickness is between 2mm and
4mm; the tumour with the thickness greater than 4mm that
not exposes ulceration is considered in Stage IIB; If the tumour
thickness is greater than 4mm without ulceration, it is considered
in Stage IIC.

The tumour is considered Stage III  if cancer has spread to one
or more lymph nodes without progressing to other body regions:

1 https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-
and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-
figures-2020.pdf
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Figure 2.1: Stages of Melanoma.

in this Stage, thickness and ulceration are not considered vari-
ables of primary importance. Starting from Stage III, the process
called metastasis starts, and excision of the lesion alone is not
sufficient to ensure healing: In this case, chemotherapy [18], radi-
ation therapy [93], immunotherapy [81] and targeted therapy [10]
are required treatments.

If the tumour has progressed to other body regions, it is con-
sidered in Stage IV. The following Table 2.1 reports a summary
of the melanoma stages.

Due to the death ratio of Melanoma, it is critical to establish
the tumour stages quickly and with certainty to evaluate the best
therapy to improve the prognosis.

2.2 m e l a n o m a a ssess m e n t a n d v i s u a l  i n s p e c t i o n

Usually, a first visual inspection of a dermatologist is used to dis-
criminate between benign skin lesions and potential Melanoma
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•
Thickness

N A

< =  1mm

< =  1mm

]1mm, 2mm]

]2mm, 4mm]

>  4mm

>  4mm

N A

N A

Ulceration

N A

False

True

False

True

False

True

N A

N A

Metastasis

False

False

False

False

False

False

False

True

True

Other Body Region S TA G E

False                           0

False                          I A

False                      IB / I I A

False                      IB / I I A

False                          IIB

False                          IIB

False                         I I C

False                          I I I

True I V

Table 2.1: Summary of the melanoma stages

situations. Often, the visual inspection is made with polarized
light magnification’s assistance, with a dermatoscopic. The attes-
tation of a valid diagnosis given by visual inspection is entirely
dependent on the ability of the pyisician in discerning between
distinct skin lesions, which is proportional to his/her level of
expertise. The Biopsy, on the other hand, has the last say on the
cancer diagnosis.

The strict interconnection between the ability of the dermatolo-
gist and the diagnosis may lead to life-threatening situations.

For example, after a visual inspection, a physician may confuse
a Stage IB Melanoma with Stage I I A  melanoma: these stages
may be confused due to overlapping (see Table 2.1) in thickness
range and ulceration presence or missing; the real problem in
this scenario is that the next Stage after IB is the Stage IIB, the
last Stage before metastasis starts. Therefore, failing to deter-
mine the correct Tumour Stage with the visual inspection may
reduce cure success. In particular, considering the Stage system
defined by American Joint Committee on Cancer Staging Manual,
visual inspection may be enough only for the Melanoma stage
between 0 and IIC: when the phase of metastasis and aggression
of other sites has not yet started. This fact strongly shows why
the research must focus on providing systems and techniques to
improve early diagnosis as best as possible.



2.2 m e l a n o m a a ss e ss m e n t a n d v i s u a l  i n s p e c t i o n 15

Another dangerous situation may arise if a physician incurs
false positive (FP) or false negative (FN) diagnoses: in the first
situation, the patient may be doubly stressed due to the fear of
Melanoma and the need to face with a biopsy, but in the end, he
will realize that he has no cancer in his body. However, in the FN
situation, the patient is already ill and may have Melanoma in
the initial Stage that be cured entirely; unfortunately, in the F N
scenario, the physician diagnosed that the skin lesion is benign,
and he does not require any further analysis.

Apart from the stress, in the FP scenario, the patient will
survive. However, in the FN scenario, the evolution of Melanoma
may lead to an infaust prognosis. This fact suggests that research
efforts should be focused on providing diagnosis protocols that
minimize F N  events at the expense of many more FPs.

A  dermatologist performing a Visual Skin Inspection (VSI) may
face several difficulties, mainly because every skin lesion could
significantly differ from or resemble the others, and it is common
to have extra-class similarities (ECS) and intra-class differences
(ICD) :  the ECS and I C D  are crucial in the experimentation which
is the basis of the contributions of this thesis.

The presence of areas with anatomical-morphological traits
strikingly similar to those of a benign nevus can confuse skilled
dermatologists: this fact makes the photo screening a difficult
task, and there is a big chance that errors will be made through-
out the inspection.

For example, Figure 2.2 reports multiple examples of different
Melanomas and naevus that may confuse during preliminary
visual Inspection.

In order to overcome confusion situation, a dermatologist
might use different techniques. A  dermatologist can evaluate a
skin lesion following different inspection protocols:

•  A B C D  rule, which considers a lesion’s Asymmetry, Border,
Color and Diameter [64];

•  The Seven Point Checklist (7PCL), which considers the
change in the size of the lesion, irregular pigmentation,
irregular border, inflammation, itch or altered sensation,
larger than other lesions (diameter >7mm), and Oozing/crust-
ing of the lesion [38];
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Figure 2.2: Several examples of neavus and melanoma images.

•  The Weighted 7PCL , which considers the same features as
7PCL but assigns more weight to the size of the lesion, the
irregularity in the pigmentation and border are considered
more important.

However, the dermatologist may only speculate a diagnosis:
the final word on cancer must be confirmed by a biopsy.

2.2.1 Dermoscopic and Histological Inspection

As described above, the most superficial inspection can be per-
formed by observing the skin without the support of any tool.
For example, the dermatologist might try to apply one of the in-
spection protocols described above for each suspect lesion visible
on the body of the patient.

Unfortunately, I C D  and ECS may confuse a dermatologist, par-
ticularly during the feature analysis following one of the available
inspection protocols. For example, Figure 2.3 shows a melanoma
and a simple naevus that show similar colour, thickness and di-
ameter. Also, it is essential to consider that noise is often present
in images, and there may not always be enough contrast between
tissues to allow for a precise diagnosis.

In order to improve the quality of the analysis, a dermatolo-
gist may use a dermoscopy during the VSI: dermoscopic images
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Figure 2.3: Example of simple naevus with similar colour, thickness
and diameter.

have a higher informative content that can be extracted using the
"ABCD" rule. Also, dermoscopic images allow us the examina-
tion of the pigment arrangement in the context of the lesion, the
depth of localization, and the presence of subcutaneous patterns
visible to the human eye via simple clinical analysis. Finally,
dermoscopic images consent the retrieval of lesion enlargement
between 10 and 20 times. The Figure 2.4 shows the differences
between a clinical image (a portable device image), and a der-
matoscope image.

Figure 2.4: Example of clinical and dermoscopic image.
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The highest informative content can be extracted from the his-
tological images: histological images result from suitably treated
biological tissue preparation for subsequent microscopic analy-
sis. The histological examination allows us to have information
on the morphology and functionality of the tissues and cells
that constitute them. As a result, histological images provide the
highest informative content at the cellular level.

In order to avoid relying only on physician skills, it is possible
to use many approaches.

2.2.2 Lymph Node Mapping

Since the flow of lymph is directed, some cancers spread pre-
dictably from where the cancer started: this orderly progression
of some cancers’ spread usually begins with regional lymph
nodes and then moves on to the next echelon of lymph nodes.
For example, the most typical location for malignant melanoma
metastases is lymph node metastasis [11].

In some cancer situations, if cancer spreads, it will eventu-
ally affect the lymph nodes (lymph glands) nearby the tumour
before moving on to other body regions. In that case, there is
a substantial possibility that cancer has not spread if the sen-
tinel lymph node is cancer-free: sentinel lymph nodes are lymph
nodes that may have metastasized, and locating one is crucial
since it indicates how far the tumour has spread.

The sentinel Lymph Node Mapping(LNM) may be performed
to ascertain whether the malignancy has spread or not: the pro-
cedure is performed using dyes and radioactive materials. Fig-
ure 2.5 report an example of a sentinel lymph node related to
breast cancer: the axillary lymph nodes may be the first lymph
nodes to be impacted in breast cancer since they get 75% of the
lymph from the breasts.

The method does have some disadvantages, mainly when
applied to melanoma patients. Only patients with positive nodes
can benefit therapeutically from this method[manca ref].

A  false negative result could come from failing to find cancer
cells in the sentinel node since there might still be malignant
cells in the lymph node basin. Furthermore, there is no convinc-
ing proof that patients who undergo a complete lymph node
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Figure 2.5: Sentinel lymph node.

dissection in response to a positive sentinel lymph node result
have an improved prognosis in comparison to patients who wait
until later in their disease, when the lymph nodes can be felt
by a doctor, to undergo a complete dissection. These patients
may undergo unnecessary complete dissection, increasing their
chance of developing lymphedema [91].

2.2.3 Computer Tomography

Although the most typical location for malignant melanoma
metastases is lymph node metastasis, lung metastasis was found
in 85% of end-stage melanoma patients, making the lungs and
pleura the second most prevalent site for malignant melanoma
metastases after lymph node involvement. Approximately 60–70%
of melanoma patients had liver metastases at the time of autopsy,
making it the most prevalent metastasis involving the abdomen
and pelvis. In that case, a computerized x-ray imaging proce-
dure known as a Computed Tomography (CT) scan can be used
instead of LNM.

C T  uses a narrow x-ray beam that is quickly spun around the
patient’s body to produce signals processed by the machine’s
computer to produce "slices", known as tomographic images.
In order to create a three-dimensional (3D) image in which we
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may identify tumours or other abnormalities in the patient’s
body, these slices can be digitally "stacked" together after being
collected. A  C T  scanner employs a motorized x-ray source that
spins around the circular opening of a doughnut-shaped frame
called a gantry: this is in contrast to a traditional x-ray, which
uses a stationary x-ray tube.

During the C T  procedure, the patient is lying on a bed that
rotates across the gantry as a narrow beam of x-rays is shot into
the body by the x-ray tube: particular digital x-ray detectors are
placed immediately across from the x-ray source and are used
in C T  scanners in place of film. The detectors catch the x-rays as
they leave the patient and send them to a computer [11].

The C T  computer constructs a two-dimensional imaging slice
of the patient using advanced mathematical methods each time
the x-ray source completes one full revolution. Depending on the
C T  equipment being used, the thickness of the tissue shown in
each imaging slice might change, but it typically ranges from 1 to
10 millimetres. After finishing a whole slice, the image is
saved, and the motorized bed is slowly lowered onto the gantry.
Then another image slice is created by repeating the x-ray
scanning procedure. This procedure is repeated until the
required number of slices has been gathered.

The computer can either display the image slices separately
or stack them to create a 3D image of the patient that displays
the skeleton, organs, tissues and any anomalies the doctor hopes
to spot. This approach has various benefits, including the ability
to rotate the 3D image in space or to see slices one after the
other, which makes it simpler to pinpoint the precise location of
a potential problem.

Figure 2.6 show an example of C T  images reporting Melanoma
liver metastasis.

2.2.4 Positron Emission Tomography

Malignant tumours metabolize glucose faster than benign tu-
mours. So then, it might be possible to discriminate between
benign and malignant tumours by observing the metabolic activ-
ity of the cells [27].
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Figure 2.6: Melanoma metastasi in the liver.

The metabolic activity can be measured using a process known
as Positron Emission Tomography (PET) [63] which belongs
to nuclear medicine. PET can assess physiological function by
examining neurotransmitters, blood flow, metabolism, and radio-
labeled medicines [9]: also, it provides quantitative studies that
make it possible to track relative changes over time as a disease
process alters or reacts to a particular stimulus.

In the melanoma scenario, PET can gauge how quickly the
body uses glucose in various locations by using radiolabelled
glucose analogue 18-fluorodeoxyglucose (FDG) that can be ac-
cumulated to estimate the rate of glucose consumption. Often,
whole-body scans are used to stage and detect melanoma
metas-tases [39].

PET is crucial for portraying the biomedical changes to the
body, the structure and function of the organs or tissues, and their
biochemical characteristics. As  a result, PET allows detection of
the onset of a disease process before other imaging procedures
can detect structural alterations such as CT.

A  radiopharmaceutical—also known as a radionuclide or ra-
dioactive tracer—is used in the PET to assess the metabolism
of a particular organ or tissue. For example, the method finds
radioactivity after injecting a tiny amount of a radioactive tracer
into a peripheral vein: the tracer, which is often labelled with
oxygen-15, fluorine-18, carbon-11, or nitrogen-13. The overall
radioactive dose is comparable to the computed tomography
dose.
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A  PET scan lasts 10 to 40 minutes. The patient is fully clothed
during computed tomography and painless. An example is
shown in the Figure 2.7.

Figure 2.7: Melanoma PET scan.

2.2.5 Magnetic Resonance Image

Melanoma cells may expose well-defined patterns if exposed to
a magnetic resonance field. For example, in [59] twenty-seven
sites of Melanoma were evaluated with Magnetic Resonance
Image (MRI) technique discovering four signal patterns that can
be used to determine if a melanoma is present or not. Also, for
some malignant Melanoma, in particular, intracerebral malignant
Melanoma, PET can be used with MRI to increase sensitivity
in detection [97]. Figure 2.8 shows an example of melanoma
detection through MRI.

MRI uses radiofrequency radiation that transitions between
the nuclear spin states of tissue hydrogen atoms (protons) caused
by a high external magnetic field. The variance in relaxation
durations among various tissue types is the primary source of
contrast in clinical MRI. Therefore, the spin-lattice (Tl) and spin-
spin (T2) relaxation times are frequently used to describe an MR
signal’s behaviour and can be used as a baseline for generating
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Figure 2.8: Melanoma metastases detect by MRI [29].

MR contrast. Therefore, it is possible to use fat and muscle signal
intensities as reference tissues to grade lesions into high, low or
intermediate intensity categories.

Consequently, MRI offers further data for locating and describ-
ing tumours and healthy tissues.

2.2.6 Standard blood chemistry tests

Standard blood chemistry testscan be used to look for a marker.
A  few biomarkers are produced by melanoma cells in the blood
to identify lymph node metastasis. The most important genes
associated with Melanoma are M L A N A 2  (Melan-A; also known
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as MART-1, melanoma antigen recognized by T  cells, MAGEA3
(melanoma antigen family A ,  3), and MITF (microphthalmia-
associated transcription factor) [52].

There are many serological prognostic markers for cutaneous
Melanoma, such as S100 calcium-binding protein B (S100B),
melanoma inhibitory activity (MIA), hepatocyte growth factor
(HGF), eosinophil cationic protein (ECP), serum indoleamine 2,3-
dioxygenase (IDO), decreased vitamin D  level, and serum lactate
dehydrogenase (LDH).  Beyond these, we also have D N A  methy-
lation biomarkers, microRNA (miRNA), Long noncoding R N A s
(lncRNAs) and Histone modification biomarkers, as summarized
in Figure 2.9.

Figure 2.9: A  summary of the sierological prognostic markers for cuta-
neous Melanoma.

Circulating tumour cells (CTCs) have been identified using
various methods, including filtration, flow cytometry, microflu-
idics, and the microbead sorting technique, but the most common
method is RT-PCR of the Melanoma associated transcripts. Circu-
lating biomarkers with liquid biopsies from melanoma patients
may be used for diagnosis, staging, and prognosis. The main
problem is that histological evaluation is still being used because
these biomarkers are only slowly validated [48, 68].
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2.3 s t a t e o f t h e a r t  a n d r e l a t e d w o r k s

One of the most popular strategies for utilizing obtained biologi-
cal data and facilitating diagnosis is C A D  that support clinical
decisions. Adopting a computerized system that supports the
dermatologist and has strong repeatability and stability can lead
to a quicker diagnosis and higher accuracy. In order to extract
relevant data for digital health, these cutting-edge technologies
are increasingly applied to biomedical challenges [60, 83], such
as proteomics [6, 15], genetics and image and signal data classifi-
cation [19, 20], and visualization [14]. Additionally, the Internet
of Medical Things (IoMT), a subset of the Internet of Things
(IoT) dedicated to the connectivity of all medical equipment,
expands as more medical devices are connected [92]. As a result,
new intelligence systems for health and well-being supported
by mobile apps, robots, and remote servers such as in [16, 25]
are possible. Nowadays, many proposals exist for C A D  to help
with melanoma detection: most of these systems work with im-
ages and lie in computer vision-related techniques like border
detection, symmetry/asymmetry analysis, colour analysis and
dimension. Moreover, these systems can use different image in-
puts, particularly images that can be dermoscopic, clinical or
histological images. The final goal of these systems is to detect
Melanoma using lesion photographs as input automatically. The
ability of C N N s  are crucial [42] in the detection [65], segmen-
tation, and categorization of melanocytic lesions and they have
been well documented [103].

However, it is possible to perform melanoma detection with-
out images, but only by using the numerical description of the
features: as an example, a C A D  might be implemented by using
a decision tree that uses lesion size and colour. It is possible to
use decision trees [104], Support Vector Machines (SVM) [32], lo-
gistic regression [90] and Bayesian classifiers [80]; it is possible to
consider this case as the ML approach. Of course, it is possible to
use ML and D L  separately or in combination. Also, it is possible
to attempt to merge ML and D L  with other computer science
techniques like genetic algorithms (GA) or swarm intelligence
algorithms.
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2.4 m a c h i n e l e a r n i n g  a n d deep l e a r n i n g

ML is a research field aiming to design and implement algorithms
which imitate human intelligence skills in problem-solving. As
humans, we interact and learn from the environment and can
generalize the results archived for a problem to solve another
similar problem that has not yet been observed. Machine learning
algorithms follow a similar behaviour: they observe examples
(training data) and try to generalize a solution by computing
generic rules that solve a particular problem; they try multiple
times to optimize the generic rules following a score function;
often, the score function is computed (or is related to) consider-
ing the number of correct and wrong answer produced by the
algorithms. D L  might be considered an evolution of ML. In ML,
the model works rely on mathematical objects for which scientists
expect to extract the "rules" that allow the model to generalize a
problem. On the contrary, in the D L  approach, we "believe" (have
faith) that the neural network (NN) may learn how to generalize a
problem by optimizing its layer weights; often, in DL ,  multiple
"hidden layers" are accepted as is, as a black-box.

2.4.1 Underfitting and Overfitting

During model training, scientists tend to find suitable models
by using first the training set (for the training step) and then the
test set. If the accuracy is adequate, we may be tempted to raise
the accuracy of the prediction by increasing or decreasing the
selection features or by using feature engineering in our machine
learning model. However, occasionally, our model might produce
poor results: the reason for our model’s low performance could be
that it is either too simple or too complex to express the problem
accurately. In D L / M L  fields, the terms used to refer to these
issues are overfitting and underfitting. In the underfitting case,
the line (a generic model) does not cover all the points shown in
the graph. Therefore, such a model tends to cause underfitting
of data. Hence, it is also called High Bias. In the overfitting case,
the predicted line covers all the points in the graph: the model
memorized the training set entirely (including bias and outlier);
in this situation, it could be believed that the model is excellent
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and comprehensive. Of course, it is not precisely accurate, though,
because the projected line in the graph includes all outlier and
noisy points. Due to its intricacy, such a model is also accountable
for predicting poor results. Hence, it also goes by the name High
Variance. The middle graph shows a pretty good predicted line. It
covers most of the points in the graph and maintains the balance
between bias and variance. In order to reach this balance between
bias and variance, both ML and D L  approaches must deliberately
sacrifice the ability to memorize the entire training set to increase
the ability to generalize a solution. It is no coincidence that
scientists want to imitate human behaviour. Humans learn from
the environment and generalize the results archived to solve
similar problems that have not yet been observed. Almost always,
we do not memorize all the steps to solve a specific problem, but
we generalize and abstract the problem to use the learned skills in
future. The quality of the training data [37] significantly impacts
the model performance. The training data is generally derived
from a collection of characteristics extracted for the particular
problem to solve: as an example, in the MDCI problem addressed
in this document:

•  the "Collection" (training set) is a set of clinical images
showing a skin lesion; the "training set" contains both
"melanoma" and "benign skin lesion - naevus"; each object
in the training set is labelled as "melanoma" or "naevus";

•  the "characteristics" are the shape, the size, the colour, the
diameter and all the other "image descriptors" may be
computed from a single image (percentage of blue).

2.4.2 Training methodologies

Pattern recognition, computer vision, spacecraft engineering,
finance, entertainment, computational biology, and many other
fields use machine learning and deep learning techniques. It is
possible to consider three main learning paradigms to train an
M L / D L  model: Supervised Learning, Unsupervised Learning
and Transfer Learning. Furthermore, these approaches may be
combined.
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In Supervised Learning, the training set includes well-labelled
examples. For each example, the model, during the training ses-
sion, knows a priori the relationship between input and expected
output: the model can utilize the training set to learn and in-
fer the relationship between inputs and outputs. In this case,
the model is trained using a proper technique, which modifies
the model’s internal status (often the status is represented by
weights) and other parameters based on the data to reduce the
prediction error. The reduction of the prediction error allows the
model to have an acceptable ability to generalize and understand
the relationship between input and output data. If the model
is trained well, it can also generate predictions on unknowable
facts. The most widely used supervised learning techniques are
decision trees, Naive Bayes, Support Vector Machines (SVM), and
classifiers based on neural network architectures.

In the MDCI problem, the training set is composed of melanoma
and naevus images; for each, the model will know the correct
label to assign.

In Unsupervised Learning, the model’s internal state is changed
to attempt to group the incoming data and group them in appro-
priate clusters. These algorithms use topological or probabilistic
methods to learn a few features from the data. This approach is
mainly used for clustering and feature reduction. The most fa-
mous unsupervised Learning are Principal Component Analysis
(PCA), K-Means Clustering and Self-Organizing Maps (SOM).

A  pre-trained model developed for one task is used as the
foundation for a model for another task in Transfer Learning
(TL): often, pre-trained models are utilized as the foundation
for computer vision and natural language processing (NLP). As
an example, a model trained on an extensive dataset to detect
soccer players may be re-used to detect rugby player after a small
re-training step on a small dataset containing examples of the last
one. This method can solve problem "B" with a generic model M,
which is strictly related to problem "A" for which model M was
built. Most T L  methodologies align the source and target domain
input spaces under the premise that the domain distributions are
the same [96].

In general, performance may degrade when T L  is employed
due to the intra-class difference between an object in problem "A"
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and "B". In order to improve performance, it is possible to carry
out an additional step known as fine-tuning: by performing fine-
tuning, the pre-trained weights of a model "A" are used as the
basis instead of using random values for the training session of
model "B". For example, if model"B" is more complex than model
"A", the pre-trained weights can be used together with random
values to perform a train only for the model part not available in
model "A". In general, using TL ,  one of the following strategies is
performed: to correct the source’s marginal distribution differ-
ence, correct the conditional distribution difference, or correct
both the marginal and conditional distribution differences. The
mixed approach draws its basis from supervised, non-supervised
Learning and TL .  Semi-supervised models aim to use a small
amount of training data labelled together with a large amount of
input data without a label: This often occurs in real situations
where data labelling is costly, and we can obtain a constant flow
of data.

In this thesis, we used different approaches in order to classify
the melanoma images. Specifically, our approach consider the
use of some N N s  and GAs. Moreover, we have also employed
hybrid architectures in the field of melanoma detection. In this
section, we will discuss the related works considered as a starting
point for our research.

The vast majority of the works in the literature are based on
the classification of dermoscopic images.

Already in 2013, Razmjooy et al. [78] proposed a new algorithm
for hair removal applying canny edge detection and new features
based on asymmetry and irregular border quantification to im-
prove SVM. They reached an accuracy of 95%. In 2014, Ramezani
et al. [76] used SVM employed with a threshold-based method
for segmentation after applying noise removal techniques to the
images. They used 187 features indicating asymmetry, border
irregularity, color variation, dimension, and texture, which are re-
duced by applying PCA. The authors obtained an A C C  of 82.2%,
a specificity of 86.93%, and a sensitivity of 77%.

From 2015 to recent years, several neural network architec-
tures, in particular C N N s  have been used for the classification of
melanoma. C N N s  assistance improved the dermatologist’s accu-
racy in interpreting skin cancers and may increase the acceptance
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of this new procedure further. A  recent systematic review ex-
plores 19 studies comparing classifications between CNN-based
classifiers for melanoma, which show superior or equivalent per-
formance to clinicians, regardless of the type of input data [37].

Nasr-Esfahani et al. proposed using a deep learning system on a
computer server equipped with a graphics processing unit (GPU)
to detect melanoma lesions using clinical images. Clinical input
images, which may involve illumination and noise effects, are
pre-processed and then submitted to a pre-trained C N N  that dis-
tinguishes between melanoma and benign cases in the proposed
system. The collection consists of 170 non-dermoscopic images
(70 melanoma, 100 naevi) from the University Medical Center
Groningen’s Department of Dermatology’s digital image library
(UMCG). The proposed system has reached 81% of accuracy [65].

Yu et al. [99] constructed a fully convolutional residual network
(FCRN) for segmentation,incorporating a multi-scale contextual
information integration scheme. Then they used very deep resid-
ual networks for classification on ISBI 2016 Skin Lesion Analysis
Towards Melanoma Detection Challenge dataset. The reached
accuracy was 85.5% while the specificity, sensitivity and A U C
was 93.1%, 54,7% and 85.5% with segmentation.

Kawahara et al. proposed a multitask deep C N N  trained on
multimodal data using clinical, dermoscopic images and patient
metadata. Using several multitask loss functions, each of which
takes into account different combinations of input modalities and
a seven-point checklist, their neural network generated multi-
modal feature vectors for image retrieval and detection of clinical
discriminant regions [51].

Aldwgeri et al. combined several C N N  architectures in order
to improve the performance of melanoma classification on the
dataset created for the ISIC 2018 challenge, known as HAM10000
(Human against Machine). This dataset contains 10015 images di-
vided in different pathologies: Melanoma (MEL), Melanocytic ne-
vus (NV), Basal cell carcinoma (BCC), Actinic keratosis (AKIEC),
Benign keratosis (BKL), Dermatofibroma (DF) and Vascular le-
sion (VASC). They implemented five CNNs:  VGG-Net, ResNet50,
InceptionV3, Xception and DenseNet121. An ensemble model
with balanced multi-class accuracy of 80.1% and mean average
0.89 ROC A U C  achieved the best performance.
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The authors in [28] used a GoogLeNet D C N N  model archi-
tecture trained on a dataset of clinical images of malignant
melanoma (MM), squamous cell carcinoma (SCC), bowen disease,
actinic keratosis, basal cell carcinoma (BCC), naevus cell naevus
(NCN),  blue naevus, congenital melanocytic naevus, spitz nae-
vus, sebaceous naevus, poroma, seborrhoeic keratosis, naevus
spilus and lentigo simplex. In particular, there are 540 malignant
melanoma images, reaching an accuracy of 72.6%.

Zhang et al. have constructed an attention residual learning
C N N ,  called A R L - C N N ,  to avoid the problem of little data avail-
able, extra-class similarity and intra-class variation. They based
their network on an attention mechanism capable of increasing
the possibility of discriminating the information available by fo-
cusing on its semantic meaning. The authors do not introduce
new extra learnable layers in the network. Still, they delegate the
possibility of grasping the semantic meaning to the more abstract
feature maps of the higher layers. The authors use the dataset
ISIC 2017 with 1320 additionally dermoscopy images, including
466 melanoma. A R L - C N N  network consists of 50 layers and has
obtained an A C C  of 85%, a specificity of 89.6% and a sensitivity
of 65.8% [100].

The study presented in [46] used a dataset of more than 12,000
skin images of malignant and benign tumors, from which they
extracted 5,846 clinical images of pigmented skin lesions from
3,551 patients. The dataset contains 1,611 malignant melanoma
images. This study used a Faster Region-based C N N  (FRCNN)
model because it consistently demonstrated good classification
accuracy, robustness, and speed. The authors evaluate the classifi-
cation of FRCNN into six classes: malignant melanoma and basal
cell carcinoma (malignant classes), naevus, seborrheic kerato-
sis, senile lentigo, and hematoma/hemangioma (benign classes).
They achieve an accuracy of 86.2%. The accuracy, sensitivity and
specificity for two-class classification (benign or malignant) were
91.5 %, 83.3 % and 94.5%, respectively.

Alizadeh et al. [3] suggest a method to classify skin cancer on
dermoscopy images based on four steps: pre-processing, C N N
classification, classification based on feature extraction, and final
classification using the ensemble method. They have tested their
approach on ISIC datasets.
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Abbes et al. [2] proposed a fuzzy decision ontology-based C A D
system consisting of two major steps. The first step introduces a
framework for concept modeling based on extracted relevant
features. The ontology is constructed with the concepts involved
in the A B C D  rule: asymmetry, border, color, and differential
structures. As  a result, the Bag-of-Words, which model these
concepts, are generated using extracted features from skin lesion
images. The second step classifies the lesion images, based on
fuzzy decision rules with K-Nearest Neighbors approach, by
indicating the risk level of an existing melanoma. They reached
a sensitivity of (96%) and an accuracy of (92%) on two public
datasets of 206 skin lesion images.

Ba et al. [7] proposed a multi-class C N N  trained and validated
using a dataset of 25,773 clinical images approved by the Chinese
P L A  General Hospital & Medical School’s Institutional Review
Board. It covers ten types of skin cancer: basal cell carcinoma
(BCC), squamous cell carcinoma (SCC), including keratoacan-
thoma, melanoma (MM), Bowen disease (BD), actinic keratosis
(AK), melanocytic naevus (MN), seborrhoeic keratosis (SK), hae-
mangioma, including pyogenic granuloma, cherry haemangioma,
sinusoidal haemangioma and angiokeratoma, dermatofibroma
(DF) and wart. C N N  used in [7] achieved an overall accuracy of
78.45%, and CNN-assisted dermatologists achieved greater accu-
racy (76.60% versus 62.78%) than non-assisted dermatologists in
interpreting clinical images.

Kaur et al. [50] have developed a new deep convolutional neural
network (DCNN)  model for classifying skin lesions by connecting
many blocks to allow ample feature information to pass straight
through the network. They have named this architecture Lesion
Classification Network (LCNet). In order to extract low and high-
level feature information from lesions, each block of the network
uses distinct parameters such as the number of kernels, filter size,
and stride. Furthermore, since ISIC datasets are unbalanced, the
authors use data augmentation and oversampling methods.

In our previous work [22], we evaluated three neural archi-
tectures on the MED-NODE dataset: AlexNet, GoogleNet and
Google InceptionV3. In this previous work, we addressed the
issue of T L  and the development of a more adaptable system
design that can accommodate changes in training datasets. Our



2.4 m a c h i n e l e a r n i n g  a n d deep l e a r n i n g 33

findings suggest that AlexNet is the most robust network in terms
of TL ,  without data augmentation, with mean accuracies of 78%
and 89% with and without Otsu segmentation, respectively [21].

The Darwinian concept that the most suitable environment
elements have a better chance of surviving and transferring
their features to their progeny is followed by GAs  in emulating
the modes of evolution. There is a population of individuals
(called chromosomes) that evolve from generation to generation
using natural evolutionary processes. In evolution, there are three
fundamental mechanisms:

•  selection: the selection indicates the process of selection of
the most promising solutions capable of generating indi-
viduals who survive in the environment;

•  cross over: it is a genetic recombination operator which
introduces variation in the population;

•  mutation: it shifts the space of solutions, resulting in the
development of new information and the recovery of knowl-
edge that has been lost through time in the population.

The evolutionary algorithms use heuristic exploration to find
novel solutions to problems where there is no complete knowl-
edge of the search area. They then start with the original solution
and alter, integrate, and evolve it until they have a better outcome.

The application of genetic algorithms has grown in popularity
in N N  optimization. Genetic algorithms can optimize several
processes using the notion of biological evolution. The approach
iterates through three stages: selection, crossover, and mutation,
starting with a random population of network architectures [53].
GAs  are used to improve C N N  hyperparameters. For example,
the number of neurons in each layer and the size and number of
filters in each layer can affect the accuracy of a neural network
model.

Recently, Pérez and Ventura have proposed a C N N  architecture
designed by a genetic algorithm that finds optimal members of
an ensemble learning model. Their work suggests how genetic
algorithms can find efficient architectures in the diagnosis of
melanoma with performances 11% and 13% better than C N N
models used in the literature [70].
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With the advent of digital images, the objective is to use Com-
puter Vision, Machine Learning, and Deep Learning to extract
information from them and produce new knowledge: this enables
the use of images for early diagnosis and subsequent treatment
of various diseases. However, using real-world data to build
melanoma risk models entails overcoming difficulties with data
preprocessing, effective representation, and computing efficiency.
In addition, computational difficulties exist while translating the
data and training a machine learning algorithm, even when reli-
able patient data can be gathered for a predictive model. In order
to use melanoma images in machine-learning models, images
must first be retrieved and translated into a suitable format.

The size of the dataset and the sophistication of the machine
learning algorithm may therefore provide computational difficul-
ties.

Users can launch machines of various sizes equipped with
prebuilt libraries for machine learning algorithms thanks to the
cloud, a computer infrastructure that can be accessed via the
internet. The most accurate model may be created by using this
technology to assess a variety of algorithms: continuous training-
test iterations may be needed to provide robust prediction mod-
els. Predictive accuracy is not the only element to consider when
selecting classifiers and machine learning approaches when work-
ing with massive data or data that cannot be processed through
conventional architectures; computational complexity and cost
must also be considered.

In [79] Aaron et al. present a case study demonstrating the
efficacy of a cloud-based method for learning from de-identified
electronic health record data for melanoma risk prediction. In or-
der to combine distributed and non-distributed computing in the
cloud, the authors employed distributed processing with Apache
Spark for data preprocessing and labelling and non-distributed
processing with sci-kit-learn for machine learning model training:
in particular, they explored logistic regression (LR), random forest
(RF), and XGBoost (XGB) models to evaluate performance across
the original and sampled datasets. XGBoost is an implementation
of regularized gradient-boosted trees. gradient-boosted classifier
achieved the best predictive performance with cross-validation
(AUC = 79%, Sensitivity = 75%, Specificity = 68%). Compared to a
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model built on the original data, two orders of magnitude smaller
datasets could achieve statistically similar or better performance
with less than 1% of the training time and cost.

In [47], the authors used HAM10000 to explore the perfor-
mance of five convolutional network models (resnet, squeezenet,
densenet and inceptionv3 and a custom CNN),  using Deep Learn-
ing Studio: DLS provides GPU training on the cloud; in particular,
up to 4 GPUs in its community edition and additional GPUs in its
enterprise edition. The DLS  models achieved an A U C  of 99.77%
in detecting cancer cells from the images of cancer cells. Despite
the high performances reported in their results, the authors aim
to show that the cloud approach can help non-specialists in com-
puter science to exploit melanoma detection issues. In particular,
they observed that a common theme in almost all literature con-
tributes is that it is made to appear as a job of specialists in the
domain of computers and software engineering.

In [44], Huang et al. exploited the DenseNet C N N  model to
identify skin cancers and benign skin tumours using K C G M H
and HAM10000 datasets. In particular, they aim to build a
lightweight skin cancer classification that can be distributed on
cloud platforms and mobile devices for remote diagnostic ap-
plications. The authors claimed an accuracy reached 89.5% for
the binary classifications (benign vs malignant) in the K C G M H
dataset; the accuracy was 85.8% in the HAM10000 dataset in the
seven-class classification and 72.1% in the KCGMH dataset in the
five-class classification.

2.5 e va l u a t i o n o f m e l a n o m a c l a s s i f i c a t i o n

In order to evaluate the C N N  performance, we used the classical
metrics described by the equations below (Equation 2.1- 2.7):

Accuracy =  
T N +  FP +  FN +  T P

(2.1)

Sensitivity(TPR) =  
T P +  FN

(2.2)
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Speci f icity(TNR) =  
T N +  FP

(2.3)

Precision(PPV) =  
T P +  FP

(2.4)

F D R  =  
FP +  T P

(2.5)

F PR =  
FP +  T N

(2.6)

F N R =  
FN +  T P

(2.7)

TP, TN,  and FP are the numbers of correctly predicted true pos-
itives and true negatives, whereas FP and F N  are the numbers
of incorrect predicted false positives and false negatives, respec-
tively. The degree to which the measured value of a quantity
corresponds to its true value is known as accuracy (ACC).  The
sensitivity (SN) of a test refers to its ability to detect true positives.
Finally, the ability of a test to detect true negatives is measured
by its speci f icity (SP). It is important to note that in the MIBCP
context, we consider the specificity and the FNR,  described be-
low, as the primary and most essential metrics due to our goal to
identify which technology can minimize the type 2 error.

Precision, also known as Positive Predictive Value (PPV), is a
statistical measure that shows the percentages of true positive
values in a test. The False Discovery Rate (FDR) measures the
frequency of type I  errors in null hypothesis testing.

2.5.1 Explainable A I  - X I A

Explainable A I  (XAI)  refers to A I  systems that can provide a
human-understandable explanation for their predictions, deci-
sions, or actions [35]. The term "explainability" is used to describe
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the degree to which a person can understand the internal work-
ings of a model or system. The goal of X A I  is to create A I  systems
that are not only effective and efficient but also transparent and
understandable to the people who use them.

X A I  is becoming increasingly important as A I  is being used to
make more critical decisions, such as medical diagnoses, financial
predictions, and criminal investigations. In these scenarios, it is
essential to understand how an A I  system arrived at its decision
so that the results can be trusted and validated. Furthermore,
X A I  can help build trust in A I  systems, especially among people
sceptical of the technology [23]. There are several approaches to
achieving explainability in AI ,  including:

1. Model interpretability: This involves designing A I  models
that are inherently simple and transparent, such as linear
regression models or decision trees. These models are easily
understood and easily explained by their structure and
weights;

2. Post-hoc explanation: This approach generates explanations
for predictions made by complex, black-box A I  models,
such as deep neural networks. Techniques such as feature
importance, saliency maps, and local interpretable model-
agnostic explanations (LIME) can be used to generate ex-
planations;

3. Transparency by design: This approach involves incorporat-
ing transparency into the design of A I  systems from the
beginning, such as by using transparent algorithms or cre-
ating a system for auditing and explaining A I  predictions.

Ultimately, X A I  aims to make A I  more trustworthy, account-
able, and usable. By providing explanations for A I  predictions,
decisions, and actions, X A I  can help build confidence in A I  and
ensure that it is used responsibly and ethically.

2.5.2 Local Interpretable Model-Agnostic Explanations (LIME)

Local Interpretable Model-Agnostic Explanations (LIME) is a
popular open-source software for generating explanations for
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machine learning models. It is designed to provide human-
understandable explanations for the predictions made by com-
plex, black-box A I  models, such as deep neural networks [61].

LIME treats a complex A I  model as a "black box" and generates
an interpretable model local to a specific prediction. This local
interpretable model is generated by sampling the input space
around the prediction and using the samples to fit a simple,
interpretable model, such as a linear regression or a decision tree.
The explanations provided by LIME are based on the coefficients
of the interpretable model, which can be used to understand how
different input features contribute to the prediction.

L IME is "model-agnostic", meaning that it can be used with
any machine learning model, regardless of the type of model or
the data used to train it: this makes it a flexible and powerful tool
for generating explanations for various A I  models. L IME can be
used in a variety of applications, including:

•  debugging and diagnosing machine learning models: By
explaining the predictions made by a model, LIME can help
identify errors or biases in the model and suggest ways to
improve it;

•  building trust in AI :  By providing explanations for A I  pre-
dictions, L IME can help build trust in A I  systems and
ensure that they are used responsibly and ethically;

•  improving human-AI interaction: By providing human-
understandable explanations for A I  predictions, LIME can
help to improve communication between humans and A I
systems and facilitate more effective collaboration.

Overall, L IME is helpful for anyone interested in developing
more transparent and explainable A I  systems. Providing local
and interpretable explanations for A I  predictions can help in-
crease transparency and build trust in AI ,  making it a valuable
tool for practitioners, researchers, and policymakers alike.
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M I N I M I Z A T I O N A N D  X I A

This chapter compares the main C N N  architectures for melanoma
detection, highlighting the FNR as the preferred metric and X I A
as the way to increase trust in the choices made by C A D .  First,
the background section discusses the primary issue in early
melanoma detection and the advantage of having a low number
of false negatives, which is helpful in diagnostic systems (Sec-
tion 3.1). Then, the used methods are reported (see Section 3.2)
with particular attention to dataset preparation and image im-
provement. Finally, in Section 3.3, we present the results and
discuss conclusions 3.4.

3.1 b a c k g r o u n d

Melanoma represents only 1.7% of skin cancers, but it has a high
mortality rate due to its capacity to spread fast and metastasize
to numerous areas. Therefore, the more effective treatment for
prevention is the surgical removal of the primary tumour before
tumour cells detach the lymph nodes, allowing the tumour to
spread rapidly.

Early detection of melanoma is critical as it considerably re-
duces mortality in 90% of cases because it will enable therapeutic
intervention at a less advanced stage when it is still localized
to the site of tumour growth [1]. Furthermore, a study compar-
ing risk-adapted specialized skin surveillance with regular skin
screening shows melanomas are more likely to be discovered at
an early stage [94].

Unfortunately, populations and screening procedures vary by
country, and there are rarely clear criteria. For example, in Ger-
many, regular skin cancer screenings are suggested for people
over 35, whereas skin cancer screenings are generally not recom-
mended in the United States. The absence of a standard protocol
could lead to a failure in early detection.

39
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Nowadays, the standard way to perform a people check-up
comprises a whole-body skin exam, often supported by der-
moscopy or other imaging techniques: both exams are performed
by an expert, a human. If the expert detects a potential risk
naevus, it is mandatory to execute a biopsy to provide a cor-
rect melanoma or non-melanoma diagnosis. Unfortunately, this
standard way suffers, at least, from the following drawbacks.

The missing of an internationally accepted standard for the
screening procedures of melanoma makes it challenging to have
standardized data sets that can help with statistical and ex-
ploratory analysis. Also, a manually performed body scan can
be slow because the dermatologist often needs to use the der-
matoscopic. Interestingly, even though clinical images are easy to
capture and could provide similar performance as dermoscopic
images [13], most of the works in the literature use dermoscopic
images. In the Internet of Things (IoT) and Internet of Medical
Devices (IoMD) era, C A D  system services should be provided
to patients without needing to visit the clinic physically or have
a dermoscopic at home: We are moving toward digital health.
Therefore, we expect that patients should be able to take a photo,
send it to web services, and receive preliminary answers regard-
ing whether they should be seen or not.

Another issue is related to human skills: the screening is done
by one or more human experts who rely on their skills and knowl-
edge: If something goes wrong with these skills, a biopsy may be
requested for a simple naevus, leading to an invasive operation,
the biopsy, for the patient. On the contrary, a biopsy may not
be requested for melanoma. In that case, we could have type 1
(false positive) and type 2 (false negative) classification errors. A
type I error occurs during verifying a statistical hypothesis when
the true null hypothesis is incorrectly rejected. A  type II  error is
the failure to reject an incorrect null hypothesis. Following that,
the False Positive Rate (FPR) and False Negative Rate (FNR) can
be defined as the proportion of all negative results that lead to
positive test outcomes and the proportion of positives that lead
to adverse test outcomes, respectively.

Fortunately, A I  has shown the potential to outperform derma-
tologists in dermoscopic melanoma diagnosis [72]. In addition,
the C N N  has been shown to provide the most accurate and pre-
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cise results for constructing skin lesion classifiers [4]-[26]: the
significant improvement made by these results is that unneces-
sary biopsies are frequently avoided while needed biopsies are
missed only a few times; this significantly reduces FNR and FPR.

Then, the most used C N N s  architecture performance was stud-
ied to identify the best network, in terms of FNR,  that could
be eligible for a C A D  in the melanoma detection field using
clinical images. Furthermore, we have chosen to consider F N R
minimization because missing a needed biopsy on the skin is
more dangerous (life-threatening) than making a biopsy without
melanoma.

The neural networks studied, updated and trained are AlexNet [54],
DenseNet [43], Google Inception V3 [87], GoogleNet [88], Mo-
bileNet [41], ShuffleNet [102], SqueezeNet [45] and V G G  [86].

3.2 m e t hods

3.2.1 Dataset preparation

In this work, the dataset presented in developing the MED-NODE
computer-assisted melanoma diagnosis system, called in this
document MED-NODE [33], was used as the primary image
source. MED-NODE is composed of 70 images of melanoma and
100 images of naevi. A l l  the images were clinical. Then it was
taken without the utilization of a dermoscopic.

Due to the small dataset size, multiple combinations of image
operators were applied to the original dataset: data augmentation
(DA) and image optimization to extend the training dataset
size. D A  can aid in the extension of small datasets and the
improvement of prediction performance.

In particular, three new training sets were built from the origi-
nal MED-NODE dataset by applying different image operations
and D A  operators to the same images differently.

The operators used to perform data augmentation to build
the new dataset were: random rotation, random scaling, and
random translation on X  and Y. With these operators, we built a
new dataset named “NSA" containing the MED-NODE original
images and the new images generated by the D A  operations
applied to the MED-NODE original images.
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The D A  performed can be reproduced by using the follow-
ing code (with theimageDataAugmenter object provided by MAT-
LAB):

imageAugmenter = imageDataAugmenter( ...

‘RandRotation’,[-180,180], ...

‘RandScale’,[1,100],...

‘RandXTranslation’,[-180 180], ...

‘RandYTranslation’,[-180 180])

Using NSA,  we could compare the Neural NetworK (NN)
performance to understand how data augmentation impacts
N N  prediction performances in this specific case of MCIBCP.
The results of the comparison are available in the following
sections. We were also interested in evaluating the impact of
the image quality improvement techniques on N N  classification
performances; in particular, we used the pre-processing quality
step (IIQ) and a simple segmentation process (OTSU). More
details regarding these two techniques are available in the next
subsection.

From the original MED-NODE dataset, we built the following
new datasets:

•  “INA",which contains MED-NODE original images im-
proved by combining IIQ and the OTSU method (IIQpOTSU);

•  “IA", which contains N S A  images improved by combining
IIQ and the Otsu method (IIQpOTSU).

For clarity, the acronyms used to identify each dataset can be
interpreted as:

•  “ INA",  containing MED-NODE original images by using
quality improved and data augmentation techniques;

•  “NIA", containing MED-NODE original images not quality
improved but using data augmentation techniques;

•  “IA", containing the NSA images by using quality improved
and data augmentation techniques;

For coherence, the original MED-NODE dataset was renamed
into N I N A  (Not improved, Not Data Augmented) in the follow-
ing sections.
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3.2.2 Image improvement method

Clinical images often suffer from poor contrast: to improve the
quality of the MED-NODE,  a M AT L A B  routine was used: this
routine executes histogram optimization and enhances the con-
trast of coloured images. Image enhancement means improving
an image’s perceptibility so that the final product is superior
to the original: Image contrast enhancement before further pre-
processing can improve analysis results [71]. The function used
for implementing the IIQ operation is listed below:

data = function IIQ(data)
s\_l = rgb2lab(data);
max\_l = 100;
L = s\_l (:,:,1)/ max\_l;
sh\_a = s\_l;
sh\_a (:,:,1) = adapthisteq(L)* max\_l;
sh\_a = lab2rgb(sh\_a);

data= sh\_a;

In Figure 3.1 and Figure 3.2, a sample image before (a) and
after the IIQ application (b) is shown for naevi and melanoma
images, respectively.

3.2.3 Image segmentation method

In order to investigate how segmentation might impact training
performance, the OTSU method for the segmentation process
was used. In particular, OTSU was used to make two of the three
datasets described in the next section. OTSU performs automatic
image thresholding, separating the pixels into background and
foreground [66]. OTSU segmentation was performed using the
following code:

[input_image,map] = imread(F);
bw_input = rgb2gray(input_image);
[T, EM] = graythresh(bw_input);
BW = imbinarize(bw_input, T);
mask_otsu = BW;
mask_otsu= ~mask_otsu;
new_image = input_image * mask_otsu;
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Figure 3.1: Images of Naevi before and after application are shown
from top to bottom. Specifically in the upper part the images
before the application where you can also see the skin while
in the lower part the images after the segmentation.

3.2.4 CNN refactoring and evaluation

In order to identify the C N N  that ensures the best FNR regarding
the MCIBCP, the following networks were refactored: Alexnet,
DenseNet, GoogleNet Inception V3, GoogleNet, MobileNet, Shuf-
fleNet, SqueezeNet and VGG16. The performances of these net-
work in terms of F N R  was analyzed.

The original version of C N N  comes with pre-trained weights
to solve a multi-class classification problem. In particular, these
networks were trained on ImageNet [55] and can discriminate
between 1000 classes of objects. Al l  the pre-trained weights from
these networks were discarded as a first step. These preliminary
steps removed all possibilities of transfer learning from the Ima-
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Figure 3.2: Images of Melanoma before and after application are shown
from top to bottom. Specifically in the upper part the images
before the application where you can also see the skin while
in the lower part the images after the segmentation.

geNet upon which all these networks were pre-trained. Also, all
the final layers (softmax, Fully connected) of all the C N N s  were
changed to allow these networks to discriminate between two
classes instead of one thousand classes.

In [21], the results reported strongly suggested that the training
and validation steps could suffer from intra-class dissimilarities
and extra-class similarities. In particular, we rely on the hypoth-
esis that the C N N  performances can vary, even if the training,
validation, and test sets vary minimally. This fact can be observed
in [34] when the ISIC 2018 winning algorithms performances
dropped to a coin flip performance by only adding a new object
class.

In order to avoid biased results, a similar training protocol used
in [21] was followed to consider the mean performance instead
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of absolute performance to make our analysis more robust. The
experimental environment used was MatLab 2021b1.

One hundred training steps were performed for each net-
work and dataset: 3,200 (training, validation, and test) steps
were performed to collect the experimental data. Each training
step was performed by using MaxEpochs=30, MiniBatchSize=32
and InitialLearnRate=1e 4. For each training step, the training,
validation, and test sets were allowed to change slightly while the
previous network weights were discarded. No transfer learning
was allowed during the training steps. The dataset was divided
using the following ratios for each iteration: 0.5 for the training
set (85), 0.3 (51) for the validation set, and 0.2 (34) for the test
set. The randomized option of splitEachLabel method was en-
abled. The training set was split equally between melanoma and
non-melanoma photos, chosen randomly from the starting image
collection for each cycle. In addition, each image was resized to
fit the network’s input constraints. For example, for Google
Inception V3, the input images were resized to 299x299, while for
AlexNet, the images were resized to 227x227 pixels. The training
and validation sessions were executed using the trainNetwork
function, while the classify function executed test sessions.

3.2.5 X I A  analysis

In order to allow physicians to evaluate network results, L IME
was used. In particular, for each classification result, an image
showing the naevus section that allowed the N N  to determine the
choice between benign or malign classes is generated. Figure 3.3
reports an example of the L IME output on the results obtained
using InceptionV3 N N .  The classificator and the L IME output
were analysed in collaboration with the Department of Medicine,
Surgery and Dentistry "Scuola Medica Salernitana" (DIPMED).

Due to hardware limitations, LIME was executed only on Clin-
ical Images in this work. Also, preliminary tests were executed
using Colab. The preliminary results suggested that the N N
trained also uses the background to make the prediction. Conse-

1 https://www.mathworks.com/products/matlab.html
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quently, the segmentation pre-processing step must be improved
to avoid noise in the background.

Figure 3.3: The InceptionV3 prediction explained by LIME.

3.3 r e s u l t s a n d d i s c uss i o n

In this section, the results collected in each experiment are pre-
sented in terms of average, maximum, minimum, and standard
deviation values for the A C C  to identify which C N N  performs
better globally. In addition, the results are presented in a form
emphasising the importance of having the lowest F N R  possible
in early melanoma detection.

Table 3.1 reports the accuracies of all the C N N s  using the
“ IA"  and “ INA "  datasets. For each C N N ,  two rows are used to
show accuracies when data augmentation is used or not, while
imaging optimization techniques are always used. The best mean
accuracy results for the AlexNet and SqueezeNet networks are
highlighted in red, settling at 78%. These findings highlight how
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these two C N N s  might resist inter-class/extra-class issues most.
Interestingly, Google InceptionV3, GoogleNet, and VGG reach an
average accuracy greater than 70% when the data augmentation
is not used on the I N A  dataset. Overall, all tested C N N s  perform
better on the I N A  dataset, suggesting that data augmentation
using scaling, rotation, and translation may reduce classification
performance. Again, AlexNet obtained the best global perfor-
mance.

Table 3.1: The global performances of the C N N s  on the I N A  and I A
datasets are reported. In addition, image improvement tech-
niques are active.

IIQ active

Net

Alex Net

DenseNet

Google InceptionV3

GoogleNet

MobileNet

ShuffleNet

SqueezeNet

VGG

D A A C C  (min)

None            0.65

Yes               0.44

None            0.56

Yes               0.41

None            0.56

Yes               0.32

None            0.60

Yes               0.32

None            0.47

Yes               0.35

None            0.53

Yes               0.15

None            0.65

Yes               0.35

None            0.59

Yes 0.53

A C C  (max)

0.94

0.91

0.79

0.85

0.94

0.74

0.91

0.74

0.79

0.74

0.82

0.74

0.91

0.79

0.83

0.79

A C C  (mean)

0.78

0.68

0.69

0.66

0.76

0.53

0.75

0.55

0.58

0.49

0.66

0.50

0.78

0.58

0.74

0.70

A C C  (sd)

0.06

0.08

0.05

0.12

0.07

0.09

0.07

0.09

0.04

0.09

0.06

0.11

0.05

0.09

0.05

0.05

Table 3.2 reports the accuracies of all the C N N s  using the
“N I N A "  and “NIA "  datasets. L ike Table 3.1, two rows are used
for each C N N  to show accuracy when data augmentation is used.
In this case, no IIQ techniques are active.

AlexNet reaches a mean accuracy of 89% when no data aug-
mentation is used. GoogleNet settled on 80%. Again, the results
suggest that the best outcomes for all networks can be obtained
without data augmentation techniques.

In Figure 3.4, a summarization of the results regarding global
performance is reported. The red box highlights that AlexNet
performs best in the four conditions (IA, I N A ,  N I A ,  N INA) .
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Table 3.2: The global performances of the C N N s  on the N I N A  and
N I A  datasets are reported. In addition, image improvement
techniques are not active.

IIQ not active

Net

Alex Net

DenseNet

Google InceptionV3

GoogleNet

MobileNet

ShuffleNet

SqueezeNet

VGG

D A A C C  (min)

None            0.68

Yes               0.76

None            0.62

Yes               0.41

None            0.56

Yes               0.32

None            0.65

Yes               0.30

None            0.50

Yes               0.35

None            0.44

Yes               0.26

None            0.38

Yes               0.15

None            0.59

Yes 0.59

A C C  (max)

1

0.97

0.79

0.88

0.94

0.71

0.94

0.76

0.91

0.76

0.88

0.74

1

0.79

0.82

0.82

A C C  (mean)

0.89

0.87

0.74

0.73

0.74

0.55

0.80

0.55

0.75

0.56

0.69

0.52

0.55

0.58

0.75

0.73

A C C  (sd)

0.05

0.05

0.04

0.08

0.07

0.07

0.06

0.09

0.09

0.08

0.08

0.10

0.11

0.10

0.04

0.05

Table 3.3 and Table 3.4 report the standard metrics for evaluating
the tested networks: The first one reports the results for the “IA"
and “ INA "  datasets; the second one reports the results for the
“N I N A "  and “NIA "  datasets. The table structure is the same as
the previous two, with two rows for each network: Figure 3.5 and
Figure 3.6 report the table data graphically; each column’s colours
are identified with an acronym with the form metric_[DA]; as an
example, SN _ DA means sensitivity with data augmentation, if
_DA is omitted, the metric value is considered in the case without
data augmentation. As  expected, the best results for SP and SN
are obtained without data augmentation due to the previous
accuracy results presented: we can see that experiments without
data augmentation outperform all methods except SqueezeNet,
which is the only exception; in SqueezeNet, SP and SN values
increase with data augmentation.

However, in the context of MCIBCP, the F N R  takes on more
weight because it is directly related to the type 2 error. Therefore,
the results reported in Table 3.3 and Table 3.4 suggest:
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Figure 3.4: The global performances of the C N N  on the four datasets.

•  SqueezeNet ensures the lowest F N R  (0.13) on the “ INA "
dataset;

•  AlexNet ensures the lowest FNR when used on the “NINA"
dataset (0.13);

•  DenseNet ensures the lowest FNR on the “IA" dataset (0.27);

•  V G G  ensures the lowest F N R  on the “NIA" dataset (0.07).

Interestingly, even though SqueezeNet is confirmed as the
worst network in global terms, it ensured the lowest F N R  in at
least one case. Therefore, SqueezeNet in the I N A  situation can be
chosen to minimize type 2 errors.

3.4 c o n c l u s i o n

Melanoma is a severe type of skin cancer responsible for about
99,780 new malignant diagnoses2. However, melanoma can be
cured in most cases with an early diagnosis. Therefore, early
diagnosis is critical in this context. Melanomas exist in many
different shapes, sizes, and colours and affect people with all
skin types. Dermatologists use these characteristics to apply the
A B C D E  rules that can be used to estimate the degree of threat

2 https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-
statistics.html
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Table 3.3: The F N R  and the other metrics of the C N N s  on the I A  and
I N A  datasets are reported. The image improvement tech-
niques are active.

I I Q  active

Net

AlexNet

DenseNet

Google InceptionV3

GoogleNet

MobileNet

ShuffleNet

SqueezeNet

VGG

D A         S N

None      0.75

Yes        0.63

None      0.51

Yes        0.55

None      0.74

Yes        0.38

None      0.72

Yes        0.44

None      0.37

Yes        0.38

None      0.55

Yes        0.39

None      0.32

Yes        0.39

None      0.59

Yes 0.61

SP PPV      F D R       F N R       FPR

0.82      0.73 0.27 0.25 0.18

0.76      0.65 0.35 0.37 0.24

0.81      0.78 0.22 0.34 0.19

0.69      0.62 0.38 0.27 0.24

0.79      0.68 0.32 0.26 0.21

0.57      0.38 0.62 0.47 0.41

0.78      0.67 0.33 0.28 0.22

0.62      0.40 0.60 0.51 0.37

0.59      0.09 0.91 0.48 0.41

0.51      0.59 0.41 0.53 0.32

0.75      0.67 0.33 0.41 0.25

0.57      0.51 0.49 0.55 0.42

0.59      0.79 0.21 0.13 0.11

0.63      0.42 0.58 0.42 0.36

0.80      0.71 0.30 0.26 0.20

0.65 0.64 0.36 0.30 0.18

regarding a naevus. Unfortunately, nowadays, the last word re-
garding the malignancy of a lesion is delegated to the biopsy,
which performs the histological analysis of the suspected lesion.
Unfortunately, this state-of-the-art protocol can lead to delays in
diagnosis and unnecessary invasive surgery in the case of FP. In
the case of non-detection of melanoma, this F N  outcome could
result in potentially fatal circumstances. In recent years, multiple
computer-aided diagnoses (CAD) systems working on melanoma
images have been proposed to speed up diagnosis. In addition,
some results in the literature suggest that artificial intelligence
techniques can outperform dermatologists in melanoma diagno-
sis, particularly C N N .  These networks have been proven to give
the most accurate and exact results for choosing between benign
and malignant outcomes. If the accuracy of these C N N  continues
to grow in the future, unnecessary biopsies (type 1 error – FP)
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Table 3.4: The F N R  and the other metrics of the C N N s  on the N I N A
and N I A  datasets are reported. The image improvement
techniques are active.

I I Q  not active

Net D A S N

AlexNet
None      0.87

Yes 0.84

DenseNet
None      0.56

Yes 0.64

Google InceptionV3      
None      0.73

Yes 0.39

GoogleNet
None      0.79

Yes 0.45

MobileNet
None      0.81

Yes 0.32

ShuffleNet
None      0.61

Yes 0.36

SqueezeNet
None      0.23

Yes 0.43

VGG
None      0.58

Yes 0.82

SP PPV      F D R       F N R       FPR

0.90      0.86 0.15 0.13 0.10

0.91      0.87 0.14 0.16 0.09

0.82      0.77 0.23 0.29 0.18

0.74      0.56 0.44 0.19 0.26

0.76      0.62 0.38 0.27 0.24

0.60      0.29 0.71 0.57 0.40

0.82      0.72 0.28 0.21 0.18

0.63      0.48 0.52 0.54 0.37

0.72      0.45 0.55 0.14 0.28

0.61      0.29 0.71 0.37 0.38

0.74      0.60 0.40 0.35 0.26

0.60      0.45 0.55 0.52 0.39

0.43      0.43 0.57 0.22 0.27

0.62      0.41 0.59 0.41 0.37

0.83      0.76 0.24 0.27 0.17

0.59 0.40 0.60 0.07 0.24

will be avoided more and more, while needed biopsies (type 2
error – FN) will be missed only a few times.

In this complex context, where early melanoma treatment,
minimizing F N R  and providing easy-to-use tools to physicians
is critical, our work aims to investigate the current C N N  ar-
chitectures available. In particular, we aimed to identify the
C N N  network structure that ensures the lowest FNR when used
with Clinical Melanoma Images: nine CNNs,  including Alexnet,
DenseNet, GoogleNet Inception V3, GoogleNet, MobileNet, Shuf-
fleNet, SqueezeNet, and VGG16 were evaluated. We started from
the MED-NODE dataset, which includes 170 clinical photos (70
images of melanoma and 100 images of naevi) extracted from
the digital image archive of the Department of Dermatology of
the University Medical Center of Groningen (UMCG). Due to
the small size of the dataset, we used image improvement and
data augmentation techniques; four datasets (NINA,  N IA ,  INA,
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Figure 3.5: Comparison of SN and SP for the I N A  e I A  datasets.

Figure 3.6: Comparison of SN and SP for the N I N A  e N I A  datasets.

IA)  were generated to investigate the impact of D A  and image
preprocessing on the final classification performance. The train-
ing, validation, and test sessions were executed on each dataset.
Overall, all tested neural networks, with one exception, perform
better without data augmentation, with a maximum accuracy
of 0.78% achieved by AlexNet and SqueezeNet. In the absence
of preprocessing and data augmentation, AlexNet performed
best with 0.89%, 0.75% and 0.82% of accuracy, sensitivity, and
specificity, respectively. In the context of MCIBCP, however, the
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FNR is more important than global accuracy because it is directly
related to type 2 errors, which can result in life-threatening sit-
uations. The results suggest that the V G G  C N N  can ensure the
lowest FNR at the expense of global accuracy, while AlexNet can
ensure comparable FNR like VGG but with the highest global ac-
curacy. Therefore, VGG and AlexNet were the C N N s  that might
be used to build a C A D  system, FNR-driven and easy to use due to
the capability to use clinical images instead of dermoscopic
images. The remarkable results obtained with clinical images
alone, whose quality is unquestionably lower than that of dermo-
scopic images, enable help in prevention in a situation where it is
crucial.

Finally, the results support what has already been discovered:
that networks perform better when using the original images
without any preprocessing [19, 21]. Additional research on this
aspect might aid in understanding the motivation behind this
behaviour. Furthermore, future research could investigate local
and global features relevant to melanoma, other neural networks,
and different image preprocessing techniques to minimize the
F N R  while maximizing global accuracy and other metrics.



G E N E T I C  A L G O R I T H M S F O R M E L A N O M A
4

C L A S S I F I C A T I O N

This Chapter proposes and describes the contribution to the scien-
tific literature for diagnosing melanoma using genetic algorithms,
which represents the main idea of our work (see Section 4.1)
. The Chapter will concentrate on two key topics: the use of
ge-netic algorithms in clinical images and the application of
genetic algorithms to clinical and dermoscopic images.

The first work, detailed in Section 4.2, has a vital position in
Smart healthcare, contributing to the creation and growth of the
Internet of Medical Things (IoMT). For example, in future, thanks
to systems capable of recognizing melanoma from clinical im-
ages, patients might be able to conduct an increasingly accurate
monitoring process using the devices at their disposal.

Prevention in the field of melanoma identification is essen-
tial for lowering the mortality rate and enhancing patient lives.
Therefore, we intend to present a preliminary approach to the
detection of melanoma through clinical imaging in our initial
work. In the second study, presented in Section 4.3, we aimed
to expand and enhance the prior contribution by focusing on
dermoscopic images to compare results with clinical images to
contribute to and facilitate the dermatologist’s work.

The contributions presented below add significant novelty to
the literature through the innovative use of genetic algorithms.
Evolutionary algorithms, also known as genetic algorithms, opti-
mize deep learning models’ parameters (tuning) using the bio-
logical concept of evolution and its operations [98]. However, the
work presented uses the GAs for network structure optimization
rather than parameter optimization to build new and efficient
networks using the evolved processes.

55
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4.1 i d e a

A  G A  is an optimization method influenced by the biological
principles of natural selection and evolutionary theory [53]. It is
used to discover the optimal solution to an optimization problem
by simulating natural Selection. John Holland introduced genetic
algorithms in 1975, based on Darwin’s evolutionary theories
outlined in his 1859 book, "On the Origin of Species by Means of
Natural Selection and the Preservation of Favoured Races in the
Struggle for Life".

These algorithms imitate the processes of evolution by conform-
ing to the Darwinian theory that the elements of the environment
with the most significant potential for adaptation have a greater
chance of surviving and passing on their traits to subsequent
generations. Therefore, there is a population of individuals, each
of which has n chromosomes and was created at random. These
individuals continue to change from generation to generation
by mechanisms analogous to the natural process of evolution.
Chromosomes almost always take the form of binary strings
when they are stored. Each locus (a particular location on a
chro-mosome) is composed of two alleles (various versions of
genes) represented by the numbers 0 and 1 [56].

More in general, the goal of a G A  is to build a population of
candidate solutions to a problem, evaluate each candidate solu-
tion using a fitness function (scoring function), and then select
the best solutions to generate a new population. This method is
carried out iteratively until either a solution considered adequate
is discovered or a particular stopping requirement is satisfied.
Next, the Selection of solutions for raising the future generation
is based on their fitness, with the most likely candidates being
the most effective. Finally, the new population is produced using
a process known as crossing and mutation. Then, two-parent
solutions are united to produce a child solution, and random
alterations are introduced to expand the population’s genetic
diversity. This process continues in an iterative way, which ulti-
mately results in the enhancement of solutions through time. To
be more explicit, the following is a list of the basic operations
that are involved in a genetic algorithm:
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1. Initialization: The first step is randomly populating the
population of potential solutions.

2. Selection: In this phase, the G A  selects the most suitable
parents from the present population. There are numer-
ous selection methods, including Selection by the roulette
wheel, Selection by tournament, and Selection by rank.

3. Crossover: This is the process of recombining selected par-
ents’ genetic material to produce offspring solutions. The
progeny solutions will inherit qualities from both parents.

4. Mutation: Mutation is the process of introducing random
changes to the genetic material of progeny, helping pre-
vent the G A  from becoming locked in a local optimum by
introducing new genetic variations into the population.

5. Evaluation: This step evaluates the fitness of each solution
in the population. The fitness function assigns each solution a
score based on how well it solves the current problem.

6. Replacement: The G A  is responsible for replacing the cur-
rent population with a new generation of solutions. This
process is repeated until a satisfactory solution is found or
for several generations.

In each generation, these operations are repeated until the
termination criteria are met. The criteria could be based on the
number of generations, the best solution’s fitness, or other fac-
tors [57].

GAs  have numerous applications in different fields, includ-
ing optimization problems in engineering, finance, and machine
learning. They are especially suited to problems that are dif-
ficult to solve using traditional optimization techniques, such
as problems with an ample search space, nonlinear constraints,
and multiple local optima [49]. Although genetic algorithms
have been utilized successfully in a variety of fields, they can
be computationally costly due to the training and evaluation of
a large number of candidate solutions over successive genera-
tions [101]. In addition, the optimization quality depends on the
fitness function and algorithm parameter values, which can be
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challenging to alter. However, genetic algorithms can be a helpful
tool for exploring many solutions to a given optimization prob-
lem and supplement more conventional optimization techniques
like gradient-based optimization [24].

GA and D L  are two independent disciplines of research. How-
ever, they can be merged for specific purposes. It helps optimize
various components of deep learning models, including opti-
mizer settings, model hyperparameters, and even the architecture
of networks [12].

Inside deep learning, a genetic algorithm can tune deep learn-
ing model hyperparameters such as the number of hidden layers,
neurons per layer, learning rate, and smoothing coefficient. In this
case, the deep learning model can be used as a fitness function to
assess the performance of the genetic algorithm’s candidate solu-
tions. The genetic algorithm can then tune the hyperparameters
of the deep learning model to achieve the best performance on a
given task, such as image classification or speech recognition [98].

Combining genetic algorithms and deep learning has addi-
tional applications in the evolution of neural network architec-
tures [84]. In this case, the genetic algorithm can be employed
to develop new neural network structures and evaluate their
performance on a particular task, with the best-performing archi-
tectures providing the foundation for the subsequent generation.
Furthermore, this may enable the discovery of creative neural
network topologies outperforming conventional hand-designed
models. The latter is the case study developed in the two works
that will be discussed in the following subsections.

4.2 g e n e t i c a l g o r i t h m s o n c l i n i c a l  i m ag e

This contribution discusses the initial findings we achieved by
merging the main characteristics of genetic algorithms (GA) with
the convolutional neural network (CNN) in order to address the
melanoma detection challenge (GACNN) .

The MED-NODE clinical images dataset was used as the data
source. In addition, the capabilities of G A C N N  and AlexNet,
both with and without Otsu segmentation, were investigated. In
addition, the textitaccuracy was used as the scoring function for
the GA evolution process. This work suggested that the proposed
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method could improve melanoma categorization by enabling the
network design to develop independently of patient involvement.

The following sections report an overview of the dataset uti-
lized in subsection 4.2.1. Also, the description of the methodology
is reported in subsection 4.2.2. Finally, the results are presented
by discussing the relevant findings in subsection 4.2.3. In the sub-
section 4.2.4, the implications of these findings on the direction
of upcoming developments are discussed.

4.2.1 Dataset

The MED-NODE melanoma images dataset (MED-NODE) is a
specialized subset of the MED-NODE medical knowledge graph
(MNMKG) that primarily focuses on melanoma-related informa-
tion. The MNMKG contains images and melanoma information,
including the disease’s origins, symptoms, diagnostic procedures,
and potential treatments. Also, the MNMKG graph represents
entities such as diseases, medications, and treatments.

In particular, the edges are used to describe the interactions
between the entities. For instance, the dataset may contain in-
formation regarding the relationship between a specific type of
melanoma and the risk factors that are associated with it, or the
information may concern the relationship between a treatment
and the adverse effects that are associated with it. This dataset
can assist researchers and medical practitioners in improving
patient outcomes by assisting them in making more informed
decisions and giving a comprehensive and structured representa-
tion of the knowledge regarding melanoma. For this study, only
the images contained in MNMKG were used.

Therefore, the following section identifies this particular subset
of MNMKG with the acronym MED-NODEs:  the used dataset
consists of 170 clinical images and includes, among other things,
70 examples of melanoma and 100 examples of benign nevi [33].

4.2.2 Materials and Method

In the environment where we conducted our experiments (Matlab
2021), we defined our working objects using the nomenclature
used in GA .  If this notation F(t ) were utilized, it would denote
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the composition of an object at the moment t. To be more specific,
we define an entity E_i as a vector Ei  =  {F_1, . . . , F_m}, consist-
ing of m features. We referred to each characteristic or feature of a
generic entity as a gene of that entity. We called each feature F of a
generic entity Ei  a gene of Ei . The entire set of genes is called the
Genome of Ei . Within the context of our simulation, a gene may
stand in for a Matlab C N N  core object (network layer) or a pre-
processing routine, such as Otsu [75]. Each characteristic F j may
or may not be expressed by Ei : this means that a new entity Ek

could inherit a gene F from an existing entity Ei  that has
begun expressing it; consequently, a new entity Ek could inherit a
gene Fe from an existing entity E i  that has begun expressing it.
The set P(t) =  {E1 ,  . . . , E n }  is called Population at time t. The
population size n(t) may change following the time evolution
identified by t.

The following constraints were defined:

1. The initial gene of each entity must be an image input layer
and
or one of the previously defined pre-processing routines.

2. If the gene q is a pre-processing routine, then the gene g +  1
must be an image input or another pre-processing layer.

3. The final gene of an entity must be a classification layer.

In the context of this experiment, the population refers to the
collection of all living entities. For the experiment, we restricted
the gene types that an entity was allowed to utilize to the fol-
lowing: "Convolution," "ReLu," "Cross Channel Normalization,"
"Max Pooling," "Grouped Convolution," "Fully Connected Layer,"
"Dropout," and "Softmax.".

At  each stage of evolution, all entities whose genes have been
expressed but are incompatible with the environment are quickly
destroyed. The entity will perish at the first step if it exposes a
gene pipeline that Matlab’s focus training function does not
permit; this contradicts the terms of the function. For example, if
the first gene of the entity Ei  is a I I  layer with input dimension D
=  Width ⇥ Height ⇥ Depth and the second gene is a C  layer, it
must use the same D  input size. If this does not occur, the
training function will fail, and we will assume that the gene as it
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is expressed is incompatible with the environment that is being
simulated (melanoma classification).

The following setup was utilized during the training of each
compatible entity:

(’sgdm’, ...

’MaxEpochs’, 16, ...

’MiniBatchSize’, 12, ...

’Shuffle’, ’every-epoch’, ...

’InitialLearnRate’, 0.0001, ...

’ExecutionEnvironment’, ’auto’)

The function that drove population evolution was the maxi-
mization of global population accuracy. For each evolutionary
step, the maximum accuracy of each survivor was calculated.
Therefore, all entities that reveal an accuracy at time t equal to
or greater than the highest accuracy achieved by the generation
that came before it, t 1, will survive to the next generation.

In addition, 10% of entities randomly picked survives in each
evolution step regardless of the accuracy exposed at time t. The
G A  was terminated if there was no apparent gain in accuracy
after ten iterations of the evolutionary process. Due to the limita-
tion of the cloud platform used, the amount of feasible crossover
and mutation was limited.

Consequently, each surviving organism was restricted to ten
mutations and one hundred crossovers. We attempted to work
around these limitations by using a randomized population of
10,000 entities as our starting point. We attempted to alleviate
these limitations by generating a random population of 10,000
entities.

4.2.3 Results and Discussion

After running the AlexNet network both with and without the
Otsu segmentation applied to MED-NODE,  we carried out the
training procedure one hundred times. After that, we ran the
G A C N N ,  enabling the system to evolve for one hundred itera-
tions.

Accuracy was the criterion employed for our reference focus
(ACC):  the average A C C  (which is denoted by the "mean ACC"),
maximum A C C  (which is denoted by the "max ACC"), minimum
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A C C  (which is denoted by the "min ACC"),  and Standard Devi-
ation (which is denoted by the "SD")  for the standard AlexNet
execution were computed, as shown in Table 4.1. The average
AlexNet performance was 0.81%, while the best AlexNet perfor-
mance was 0.97%. Before completing the one-hundredth iteration,
the maximum A C C  achieved with G A C N N  is 0.97.

MED-NODE

Net

AlexNet

GACNN

Segmentation min A C C

-                        0.68

Otsu 0.50

- 0.68

max A C C mean A C C S D

0.97                  0.81             0.06

0.91                  0.72             0.07

0.97 - -

Table 4.1: Performance of AlexNet on the MED-NODE dataset.

The preliminary findings of this work indicate that GAs may be
able to direct the construction of a neural network structure with
performance comparable to that of traditional neural network
training methodologies. In addition, the preliminary findings of
our research indicate that the N N  design discovered by G A C N N  is
likely to be more stable than the conventional C N N ,  which in this
instance, is AlexNet. We found that G A C N N  had a higher
average accuracy than AlexNet (calculated over 100 runs), which
decreased the average performance hit that was brought on by
changes to the data set that were relatively insignificant. G A C N N
has a significantly better average accuracy than AlexNet’s mean
A C C ,  which is significant.

Figure 4.1 also depicts a collection of plateaus demonstrating
a diminishing tendency over an average of nine iterations. These
results suggest that the population is getting closer to finding
the best option. On the other hand, we discovered a significant
"birth-death ratio" (up to 95% at each stage of evolution). This
observation may suggest that the initial population or recom-
bination stages require more explicit definitions in order to be
adequately described.

Finally, the times needed for the executions are rather lengthy.
The current stage of the experiments clearly shows that execution
times increase proportionally with the complexity of the network,
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Figure 4.1: G A C N N  performance over 100 iterations.

related to the chromosome length. The training of each network
typically takes about eight minutes. As a result, the entire project
was distributed on the cloud.

4.2.4 Conclusion

According to the preliminary findings, using G A  to define N N
structure design might enable performance levels comparable
to those achieved by traditional N N  training methods. Specifi-
cally, G A C N N  outperforms AlexNet regarding mean A C C  over a
hundred executions. A  plateau set is also depicted in Figure 4.1,
demonstrating a decreasing trend in mean value after every nine
rounds. The conclusion that can be drawn from these results is
that the population is moving progressively closer to the best
solution. On the other hand, we found a significant death ratio
(up to 95 per cent for each step of the evolution process). This
observation may imply a need for a more precise definition of
the processes involving the original population or recombination.

A  more in-depth study is required to properly investigate
the dynamics of population change and behaviour, particularly
the birth-to-death ratio. In addition, the proposed approach can,
in the future, be used for additional melanoma datasets (for
example, clinical, dermoscopic, or histological) with the help of
other cutting-edge evolutionary optimization algorithms.
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4.3 g e n e t i c a l g o r i t h m s o n d e r m o s c o p i c i m ag es

In this section, another convolutional neural network architecture
that employs evolutionary algorithms in its design is presented.
Like the first approach, the goal is to identify the optimal neural
network structure for improved melanoma classification, in that
case using dermoscopic images instead of clinical images.

A  refined subset of pictures from ISIC, one of the most used
datasets for melanoma classification, was employed in the exper-
imental study. The genetic algorithm for building the convolu-
tional neural network enables the population to achieve optimal
fitness across successive generations. Preliminary results indicate
that the suggested strategy could improve the categorization of
melanomas by reducing the necessity for user input and avoiding
a priori network design selection.

Subsection 4.3.1 discusses the dataset used, whereas subsec-
tions 4.3.2 and 4.3.3 detail its preprocessing and image modelling
for training the networks. Next, in subsections 4.3.4 and 4.3.5, the
definition, parameters, heuristics, and fitness function utilised
for GAs are presented in depth. Then, subsection 4.3.7 will offer
the results with a discussion of their significance and a compari-
son to the relevant literature. Last but not least, subsection 4.3.9
finishes our contribution by discussing the obtained results and
future potential.

4.3.1 Dataset

The International Skin Imaging Collaboration (ISIC) is an academic-
industry collaboration that aims to make it easier to use digital
skin imaging to help reduce melanoma mortality. The Memorial
Sloan Kettering Cancer Center managed the project with the eco-
nomic aid of philanthropic contributions (sponsors and partners).
As a result, the ISIC dataset is our starting point for building the
training, validation, and test set used in this contribution.

ISIC consists of several image datasets associated with well-
founded clinical diagnoses: it contains more than 150.000 der-
moscopy images, 7.000 of which are publicly available. Each
image is associated with metadata that includes information on
the image’s status (benign or malignant), approximate location
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on the body, and demographic factors such as age and gender.
ISIC is in development from 2016 to 2020. In addition, the ISIC
challenge, an annual competition involving the scientific commu-
nity to improve dermatologic diagnostic accuracy [36], uses ISIC
to compare multiple approaches to skin disease detection.

4.3.2 Pre-processing

An ISIC refined dataset (Refined ISIC) composed of 500 RGB
images (250 melanoma images and 250 benign nevi) was defined
for this work. As  the first step, the entire ISIC dataset was pre-
processed by executing a contrast enhancement for coloured images
routine (rgbCER) because many images, such as medical images,
suffer from poor contrast. Therefore, enhancing such contrast of
images is necessary before further pre-processing or analysis can
be conducted[71]. The technique of enhancing the perceptibility
of an image so that the output image is better than the input
image is known as image enhancement.

Figure 4.2 shows each phase of the segmentation process; it
involves the creation of a mask to split the background and the
foreground. In Figure 4.2, a sample image before (a) and after
the rgbCER application (b) is shown. The following code for the
entire ISIC dataset was used: it executed contrast enhancement
in MATLAB.  Please note that the variable data in the code refer
to as RGB images.

s_lab = rgb2lab(data);
max_luminosity = 100;
L = s_lab(:,:,1)/max_luminosity;
shadow_ad = s_lab;
shadow_ad(:,:,1) =
adapthisteq(L)*max_luminosity;
shadow_ad =

lab2rgb(shadow_ad);
data=shadow_ad;

The K-means segmentation was performed to identify the
background and foreground in the second pre-processing step.
First, the foreground mask was extracted and applied hole-filling
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techniques to reduce the error made by the K-means algorithm
(Figure 4.2 (c)). Then, a cells detection technique to identify resid-
ual holes to dilate them (Figure 4.2 (d)) was used. Finally, a
border erosion technique was performed to make the foreground
mask homogeneous (Figure 4.2 (e)). The result of this second
pre-processing step is the mask that highlights the background
from the foreground (Figure 4.2 (f)). The following code reported
the primary step of the segmentation routine.

Image = data;

I = uint8(image);

numColors = 2;

L = imsegkmeans(I,numColors);

B = labeloverlay(I,L);

B = imfill(B, ’holes ’);
I = rgb2gray(I);

[~,threshold] = edge(I, ’sobel ’);
fudgeFactor = 0.5;

BWs = edge(I, ’sobel ’,threshold * fudgeFactor);
se90 = strel( ’ l ine ’,5,90);
se0 = strel( ’ l ine ’,3,0);
BWsdil = imdilate(BWs,[se90 se0]);

BWdfill = imfill(BWsdil, ’holes ’);
BWnobord = imclearborder(BWdfill,4);

seD = strel( ’diamond ’,2);
BWfinal = imerode(BWnobord,seD);

BWfinal = imerode(BWfinal,seD);

SEGMENTED = (image.*BWfinal);

Figure 4.2 (g) shows the result of the segmentation approach
regarding a single ISIC image. It applies the mask obtained
from the previous process Figure 4.2 (f) to the image improved
by rgbCER (Fig. 4.2 (b)) to exclude the background and obtain
only the information relating to the foreground. Figure 4.2 (h)
highlights in blue the original image parts considered foreground
by the previous routine. The pixels not captured by the blue mask
are considered background.

The images given as input to the algorithm are those obtained
after the pre-processing phase just described, so all the images
have the part of the interest in evidence and the black background.
In order to provide a quality training set to our D L  approach, 500



4.3 g e n e t i c a l g o r i t h m s o n d e r m o s c o p i c i m ages 67

Figure 4.2: The image segmentation process.

images were manually extracted, avoiding those still containing
imperfections undetected by the pre-processing step: this subset
of images is called Refined ISIC in this work.

4.3.3 Training, Validation and Test sets

The complete Refined IS IC  dataset was split into three subsets
using the splitEachLabel function using 0.5, 0.3 and 0.2 as split-
ting parameters. In particular, we built three subsets named
training, validation and test: training was composed of 250 images,
validation of 150 images and test of 100 images. Each subset
(training, validation, and test set) was built by randomly picking
the images from the Refined-ISIC dataset.

Each network training session used only training and vali-
dation subsets. We used the test set to evaluate the network
performances by simulating a real case scenario (in which no one
of the test images was even seen by the network before).

4.3.4 Genetic Algorithms

Following the working hypothesis, GA was not used to improve
hyperparameters’ determination on a defined and static NN .  In-
stead, the genetic approach was used to develop a self-assembling
N N  population to enhance melanoma classification. G A  algo-
rithms replicate the modes of evolution by following the Dar-
winian premise that the most suitable environment elements have
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a better chance of surviving and transmitting their features to
their descendants. A  population of individuals ( n chromosomes)
evolve from generation to generation using techniques similar to
natural evolutionary processes. To represent chromosomes, we
used the binary string representation; this might be a limitation
because the string length limits the final size of the entity. In
this experimentation, the classic G A  operations were extended
with another operation (merging) that allows two genomes (two
entities) to concatenate together. In chromosomes, each locus
(specific location on a chromosome) has two alleles (different
versions of genes): 0 and 1. Therefore, it is possible to consider
the chromosomes as discrete points in a solution space [49]. The
evolutionary algorithms carry out heuristic exploration for new
solutions to issues in which there is no complete knowledge of
the search area, and they explore all of it. Then, starting with the
first solution, they tweak, combine, and evolve until they find a
better result. Three fundamental mechanisms are considered in
evolution:

•  selection: the selection indicates the process of selection of
the most promising solutions capable of generating indi-
viduals who survive in the environment;

•  cross over: it is a genetic recombination operator which
introduces variation in the population;

•  mutation: it shifts the space of solutions, resulting in the
development of new information and the recovery of knowl-
edge lost through time in the population.

As written before, another mechanism called merging was added.
The merging of two chromosomes was permitted to able network
structure to grow. The proposed method is described in more
detail below.

4.3.5 GA definition

We report below the main definitions for the implementation of
the genetic algorithms used in our work.
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4.3.5.1 Population

The G A  terminology is used to identify our working items. The
basic components of evolutionary algorithms used in this re-
search will be described and explained below. For example, the
notation F (t) indicates a composition of an object at time t.

Entity Ei  is a vector Ei  =  { F  , . . . , Fm }  of m features. F  of a
generic entity Ei  represents a gene of Ei . The Genome of Ei  is
the entire set of genes. The set P(t) =  {E1 ,  . . . , E n }  is called
Population at time t. For the experiment to reach a sufficiently
extended network architecture, the start size of the genome was
set to ten to allow at least the presence of the minimal layers
required to execute a C N N .  In addition, we let the genome size
grow using the merge operation (unrelated to the G A  funda-
mental) to make network architecture more complex: the merge
operation concatenates two different genomes, doubling the size
of the entity genome. Each gene represents one of the Matlab
C N N  network layers: input, dropout, batch norm, cross-chan
norm, 2d-convolution, RELU, softmax, and Fully Connected. An
array represents each chromosome: each cell indicates whether or
not a characteristic (a feature) inside the entity exists. A  feature
denotes one of the layers used to build a C N N .  When a feature
(array cell) is active, the related layer becomes part of the network.
On the other hand, we consider the feature not expressed if it
is inactive and the layer does not belong to the network. Please
note that a mutation may activate a non-expressed feature in
the future in some evolutionary cycle. So, each feature F  can be
expressed or not by Ei  and consequently, we can have silent and
expressed genes. Furthermore, each chromosome does not have
a predetermined length because the merging technique has been
implemented and allows the joining of two chromosomes.

4.3.5.2 Fitness Function

In order to drive population evolution, we used the global popu-
lation accuracy as fitness function, whose formula is reported in
Equation 4.1.

Accuracy( ACC) =  
T N +  FP +  FN +  T P

(4.1)
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This fitness function represents the accuracy of all networks in
an evolutionary cycle arranged in a straightforward decreasing
order. The highest accuracy from each surviving entity for each
evolutionary phase was used. As a result, for each generation, all
entities that expose an accuracy at time t equal to or better than
the previous generation at time t-1 will survive. Also, a random
10% of the entities still survive and pass in the next evolution
step, regardless of the accuracy reached at time t. The execution
of the G A  stops if no progress in the accuracy metric (used as a
fitness function) occurs for ten consecutive evolution stages. The
performance of our approach with the metrics is described in
Section 2.5.

4.3.5.3 Euristic, Constraints and Limitations

Unfortunately, due to the physical restrictions of our cloud plat-
form, the possible crossover, mutation and merging were limited
to 10, 100, and 10, respectively. In order to overcome these limi-
tations, an initial randomized population of 10.000 entities was
used. The initial genomes were generated randomly. In particu-
lar, each entity’s genome gene was chosen randomly from the
allowed gene set and each gene parameter. In addition, the exper-
imental environment allows running up to 100 iterations to allow
the system to evolve correctly. Also, the following limitations
were used:

•  the initial gene of each entity Ei  must be an image input
(II) or one of the previously established pre-processing
routines;

•  if the gene g is a pre-processing routine, the gene g +  1
must be an II  layer or another pre-processing layer;

•  the latest gene of an entity must be a classification layer.

Due to hardware limitations, the GA could not generate graphs
or cycles in the neural network structures.
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4.3.5.4 Experiment execution

In order to drive the genetic evolution process, The G A  engine
(GAE) was implemented using C  and OpenMP [17]. G A E  per-
form all the task involved in population initialization and man-
agement. In particular, each simulation step (SS) is split into three
phases: population evolution (P1), Network execution (P2) and
fitness evaluation (P3).

•  Phase P1: for each SS, the G A E  performs the G A  opera-
tions (mutation, crossover and merging) on the current
population to obtain new N N  candidates;

•  Phase P2: GAE sends the entire population and training sets
to a GRIMD cluster using a map/reduce approach: each
N N  is associated with a worker; each worker calls the MAT-
LAB train function to train the N N  on the training datasets.
At this point, GAE will hold, waiting for the completion of
the “reduce" phase that will return to G A E  the survived
trained networks with the corresponding accuracy.

•  Phase P3: G A E  sorts all the accuracies in descending or-
der and selects the new candidate for the next evolution,
following the rules described in the fitness section.

Figure 4.3 shows a simplified overview of the computational
environment.

4.3.6 Experiments Setup

The experiment was performed with a hybrid Beowulf/Cloud
Computational (GRIDC) architecture setup designed to run the
Matlab 2021 environment across multiple workstations and cloud
workers. In addition, we adapted GRIMD architecture [73] that
provides a map/reduce approach to distributing across the
“grimd slaves" the working package composed of: training and
validation sets and neural networks structure to train.

The Beowulf part of the G R I D C  was composed of three high-
performance workstations equipped with N V I D I A  GPU, high
RAM available and multicore capabilities running Windows 10:
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Figure 4.3: An overview of the experiment environment architecture.

the SoftMatterLab (University of Salerno – DIFARMA) provided
pro-bono the Beowulf part of GRIDC.

The cloud part was composed of three Amazon AWS c5d.metal
instances running Centos. However, we shut down the c5d.metal
cluster during the experimentation as soon as the number of N N
became tractable only via our H P C  system. The cloud part was
provided pro-bono by Softmining SRL.

Table 4.2: Work Environment

G R I D C #Core

Beu 64

Beu 20

Beu 12

Cloud 96

Cloud 96

Cloud 96

RAM GPU0

250GB Quadro P400

64GB Intel U H D  G  770

16GB Intel U H D  G  630

192GB -

192GB -

192GB -

GPU1

RTX5000

GeForce RT X  3060 Ti

Quadro P2000

-

-

-
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4.3.7 Results and Discussion

This section reports and analyzes the preliminary results of our
experiments.

Immediately after the initialization phase, at the second itera-
tion, the population shrank by a ratio of about 1:3. In particular
because the N N  structure ( N N  structure that causes M AT L A B
train function to crash) was not compatible or because the N N
structure was valid but requires more RAM than the available
RAM on workers: this causes high death ratio. In particular, the
second observation seems strictly related to the initial choice
to avoid pooling layers to be part of the genome. These facts
strongly suggest that an improvement in the random initializa-
tion approach (better heuristics) is needed. Figure 4.4 reports the
Trend of the death ratio across the eleven iterations.

Figure 4.4: Trend of death ratio over the 11 iterations.

However, despite the high death ratio, the execution of the
G A  led to an improvement in the accuracy metric in every iter-
ation by selecting entities with high-quality criteria as the best
option over less desirable alternatives. However, many N N  popu-
lations tended to overfit: preliminary observations suggest many
dropout layers are needed. Also, it is possible to see that the
G A  algorithm reached a stable population (a plateau regarding
accuracy) after 11 evolutionary cycles without reaching the limit
of 100 iterations; at the 11th iteration, it appears that the loss of
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diversity of the N N  population prevents the exploration of novel
solutions because the GA reached a local or global optimum. This
behaviour led to drastic computation time and cost-saving be-
cause the number of “networks to train" rapidly became tractable
without cloud computational power. Furthermore, it was possible
to disable the "c5d.metal" (Table 4.2) instances after the fourth
evolutionary cycle: the residual evolutionary steps needed only
up to three days to complete.

The high mortality ratio observed may be due to the random-
ness of the initial population, where the networks die either
because the layers are incompatible with each other or because
the structure is incompatible with the working environment.

Table 4.3: Evolution during the iterations
#Iteration

1

2

3

4

5

6

7

8

9

10

11

#Population

10000

3745

1535

686

336

178

101

60

39

26

18

CrossOver

10

9

8

8

7

7

6

5

4

3

1

Mutation       Merge

100 10

95 9

89 9

83 9

76 8

70 8

62 8

51 8

44 8

33 8

11 8

Death Ratio

72,5

68,9

64,9

60,3

55,6

50,7

45,5

37,4

31,9

24,2

7,9

A C C( Va l )

0,5

0,52

0,56

0,58

0,6

0,62

0,69

0,7

0,74

0,89

0.90

ACC(Test)

0,41

0,57

0,53

0,56

0,60

0,67

0,74

0,81

0,81

0,89

0.94

Table 4.3 shows the Evolution during the 11 iterations.
After the stop of G A  routines, 19 N N  (19NN set) exposed a

validation accuracy less or equal to 0.90, with a final validation
loss of 0.2047: due to the high validation accuracy, all these 19
networks were considered equivalent. The Figure 4.5 shows the
training plot of one network picked from the 19NN set. The
accuracy of this network on the test set was 0.94.

Also, Figure 4.6 shows the confusion matrix regarding network
performance on the test set. The crossover and the mutation
operations tend to decrease following the population size and
accuracy.

The preliminary results reported in this work strongly suggest
that the GA approach can enable the design of the structure of a
neural network driven by the problem to solve, avoiding human
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Figure 4.5: Structure of the best network in the last iteration.

Figure 4.6: Confusion matrix of the best N N  in the 11th iteration.

interaction. Table 4.4 shows the best results for each iteration
until convergence is reached (up to the 11th iteration). The last
iteration reports excellent performances, such as 0.97 and 0.98 of
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specificity and precision, which show the potential to outperform
the method proposed in the literature. However, performing more
experimentation, particularly performance analysis, is mandatory,
using more extensive training and test sets.

Table 4.4: Experiments results

#Iteration TP FP

1 36 14

2 50 0

3 50 0

4 41 9

5 10 40

6 34 16

7 50 0

8 44 6

9 50 0

10 43 3

11 49 1

F N T N A C C

42 8 0,44

43 7 0,57

47 3 0,53

35 15 0,56

0 50 0,60

17 33 0,67

26 24 0,74

13 37 0,81

19 31 0,81

8 42 0,89

5 45 0,94

S E N SPE PRE

0,46 0,36 0,72

0,53 1 1

0,51 1 1

0,53 0,62 0,82

1 0,55 0,2

0,66 0,67 0,68

0,65 1 1

0,77 0,86 0,88

0,72 1 1

0,85 0,93 0,94

0,90 0,97 0,98

4.3.8 Comparison with the literature

Table 4.5 reports the performances of multiple deep-learning
techniques performed on ISIC datasets. For our proposal, a bal-
anced and small refined subset of images of ISIC, composed of
500 images, was used to provide quality images to the networks.
On this refined dataset, the approach, which involves building
the network guided by the use of genetic algorithms, achieves
maximum values of A C C  of 94%, SEN of 90%, SPE of 97%, and
PRE of 98% at the eleventh iteration. This data was used for a
preliminary comparison with other approaches.

Alizadeh et al [3] proposed an ensemble method to detect
melanoma. Their method consists of two models of C N N s  and
two texture features, local binary pattern and Haralick features.
During ISIC 2016 and ISIC 2019, the authors evaluated the
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Table 4.5: Reference literature
Reference Paper

Alizadeh et al [3]

Alizadeh et al [3]

Dataset

ISIC 2016

ISIC 2019

Methods A C C

C N N  +  feature extraction      85.2%

C N N  +  feature extraction      96.7%

S E N SPE PRE

52% 93.40% 66%

96.3%       97.1%       95.1%

Kaur et al [50]         ISIC 2016 LCNet 81.41%      81.3%      80.83%     81.88%

Kaur et al [50]

Kaur et al [50]

ISIC 2017

ISIC 2020

LCNet 88.23%     87.86%     88.86%     78.55%

LCNet 90.42%     90.39%     90.39%     90.48%

Our approach I S I C  2020 G A  design 94% 90% 97% 98%

method. The first model has nine layers and employs many
batch normalization layers to speed up classification and prevent
the problem of overfitting. The second model used a pre-trained
VGG-19. An ensemble approach is used to integrate these two
models for the classification task.

In 2022, Kaur et al. [50] proposed a deep convolutional neu-
ral network, called LCNet,  to classify malignant versus benign
melanoma images. The deep network is composed of eleven
blocks.

4.3.9 Conclusion

This contribution proposes using genetic algorithms to build
C N N s  to address the melanoma classification problem, one of the
most dangerous skin cancers. The initial hypothesis claims that
it is possible to interpret a network’s development as a system’s
evolution over time. In the GA context, the entire system adapts,
modifying its configuration in response to the dynamic of its
interactions with the environment, like reinforcement learning.
Finally, the system leads to selecting optimal solutions (local or
global) to achieve the goals of the considered task.

The initial generation of N N  is stochastic. Consequently, ini-
tially, a remarkably low accuracy is observed, while with the
advancement of the experiment, there is an attenuation of the
error consequent to a better fitness level of the N N  population.
A  set of equivalent N N  with high classification performance was
available in the last evolutionary iteration.

According to the preliminary results, allowing G A  to assist
in designing a N N  structure could yield results comparable to
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traditional N N  design (by humans) methods. Furthermore, the
proposed approach must be expanded and evaluated on larger
or additional melanoma datasets (e.g., clinical or histological).
The future goal aims to extend the training set images to improve
the understanding of the genetic algorithm in constructing the
network as the starting dataset increases.

Also, evaluating a new heuristic could reduce the high death
ratio and the tendency to overfit and permit fast convergence to a
local or global optimum. In future research, using additional
criteria to define the initialization of the algorithm and the use of a
more targeted population to achieve the desired result might be
investigated. Also, extending the permitted layer to be part of the
entity genome might be considered to allow G A  to explore more
solutions. Finally, We will also plan to improve the selection
procedures of individuals to be used for subsequent generations
through the fitness function.
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D E T E C T I O N

5.1 b a c k g r o u n d a n d c o n s i d e r e d issues

Early detection of melanoma is crucial for improving life ex-
pectancies, especially in people who are at high risk of devel-
oping the disease. Due to the many visual similarities between
melanoma and non-melanoma, early detection is particularly
difficult [95]. Nowdays, there are a plethora of proposals for a
computer-aided system for dermatologists, especially with the
use of C N N s  [74]. In this work, we proposed a more adaptable
system design that can deal with modifications to the training
datasets. To provide a Melanoma Detection service based on
clinical and dermoscopic images, we suggested the development
and application of a hybrid architecture based on cloud, fog,
and edge computing. This architecture must simultaneously deal
with the volume of data that needs to be evaluated by reduc-
ing the running time of the continuous retrain. Specifically, the
proposed hybrid architecture is composed by:

•  Cloud layer: Where data storage and high-performance com-
puting operations are performed. Also finished in the cloud
are the stages for validation and testing. Whenever a new
classifier becomes available, the Cloud layer will send a
new network to the edges;

•  Fog layer: Data from the Edge layer is received by network-
distributed server systems, which pre-process, filter, and
post the data to the Cloud. Mid-weight computational tech-
niques can also be used at this level. Finally, the Fog layer
may employ the same methodology as the Edge layer for
devices with insufficient computing power;

•  Edge layer: It consists of every intelligent IoT architectural
device, or Edge Device. At  this level, the Edge Device pro-
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cesses the data. The most recent classifier is run in the Edge
in order to examine the images.

In spite of the different techniques used for the classification
of melanoma, the following work has focused on two open prob-
lems:

1. the transfer learning reliability evaluation;

2. the impact of Impact of the three-layers architecture.

Transfer learning is a technique that speeds up training dura-
tions when applying previously learned information to a related
problem by allowing the use of pre-trained networks. This trans-
fer is based on the assumption that the target data and the
original data are in the same feature space and have the same dis-
tribution [69]. Before network training, the three datasets (train-
ing, validation, and test) are frequently fixed. A  slight change
in the subsets may have an effect on prediction accuracy, a fact
that may go unnoticed. This indicates that Transfer Learning is
still not reliable. Consequently, related to the first open issue, we
want to demonstrate how changes to the structure of a dataset
could result in a reduction in the system’s overall performance.

For the second open issue, we measured the performance of
the proposed architecture. To demonstrate that a distributed and
cooperative system is required to deploy a melanoma classifier
robust against Transfer Learning difficulties, we specifically build
the architecture to allow automatic classifier retraining and de-
ployment. Particularly, since data structure changes, a huge num-
ber of iterations are required to get the optimal classifier. In this
configuration, the Fog layer, which stores and sends each image
to the Cloud, allows the user to query the system and participate
in dataset and model changes. In this case, the data scientists
just need to classify additional images (e.g., melanoma/non-
melanoma) as they are acquired. In Figure 5.1, we depicted the
proposed three-layers architecture.

5.2 proposed m e t h o d

We simulated a three-layer architecture, with the cloud layer serv-
ing as the training and retraining layer. The GRIMD framework
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was used to build this system, allowing us to distribute each
iteration among numerous instances [73]. We have first set up
the GRIMD instances on Amazon AWS. The training, retraining,
validation, test, and performance comparison processes were
then transferred to the cloud layer. The fundamental element is
that a new model is only deployed into Fog when its accuracy
outperforms that of the one that came before it. The Layer Agents,
which we developed as a straightforward C RON D  instance,
con-trol the synchronization between each layer. Finally, the
trained models and web server were also stored in the Fog layer
together with the classification and prediction procedures. Every
end user in this scenario interacts with the Fog layer via an app.
Therefore, we may conclude that using a distributed design
could offer the end user various advantages by offering: the
gathering and assembling of data on the network to aid in the
early detection of melanoma, enhancing image databases with
new information; processing crucial data locally at the
network’s edge with local data storage leads to decreased data
processing latency, real-time response, lower bandwidth, and
faster data access; widespread distribution of resources and
computing services, made possible by a large number of mobile
Fog nodes. The issue of delivering images to a central data
server or Cloud service for processing is specifically addressed
by this architecture. Decentralizing them also improves the
capacity and, thus, the calculating times.

Figure 5.1 displays how the suggested hybrid design works
overall. Data buckets are kept up-to-date, and system training is
done in the cloud. In the Fog area, where services are executed,
the orchestrator is in charge of distributing the optimal services
following each formation. The Edge area is where local calcu-
lations are carried out on IoMT devices (such as smartphones).
An early examination of the loaded data is carried out by the
software program HiC-Otsu, which is part of the Fog system on
the IoMT device. To enhance the efficiency of the system, the QoS
moderator annotates content. Although the average user takes
use of the output of the services, he also adds to the system’s
knowledge base by loading data.
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Figure 5.1: General operation of the three layers architecture for
melanoma detection.

5.3 used n e t w o r k s

We compared the principle neural networks: AlexNet, GoogleNet
and Google InceptionV3. AlexNet is an eight-layer convolutional
neural network; the first five layers were convolutional, some
of them were followed by max-pooling layers, and the final
three layers were completely connected. It made use of the non-
saturating R e L U  activation function, which outperformed tanh
and sigmoid in terms of training performance [40].

GoogleNet is a convolutional neural network with 27 layers that
is made up of around 100 different building blocks, including con-
volutions, average pooling, maximum pooling, and contacts. This
network is based on the core Inception design, which debuted in
2015 and is a computationally effective network even with con-
strained computer resources. Through Google Cloud Platforms,
GoogleNet executions on Cloud TPU are accessible [89].

The development of the Inception Architecture is a key com-
ponent of Google InceptionV3 [20]. On the ImageNet dataset, it
has been demonstrated to achieve higher than 75% accuracy. It is a
widely used image recognition model. Convolutions, average
pooling, max pooling, concerts, dropouts, and fully linked layers
are some of the symmetric and asymmetric building pieces that
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make up Google InceptionV3. The model makes considerable use
of batchnorm and applies it to activation inputs. Using Softmax,
loss is calculated [89].

5.3.1 MED-NODE dataset and Pre-Processing

The used dataset is MED-NODE computer-assisted system for
melanoma diagnosis (here named MED-NODE),  composed by
170 clinical images (70 melanoma and 100 nevi images) from
the digital image archive of the Department of Dermatology of
the University Medical Center Groningen (UMCG) [33].
Dermatolo-gists have checked each image’s accuracy before
labeling it. The images are from various Caucasian patients and
have previously undergone pre-processing and anonymization.
Hair has already been removed with the Dullrazor program [58].

Four additional datasets (MDS) have been developed as a result
of our assumption that Transfer Learning is not realiable, as will
be discussed below:

•  MD1, which contains MED-NODE original images;

•  MD2, which contains MED-NODE images segmented with
the Otsu method;

•  MD3, which contains MED-NODE images and augmented
images without segmentation;

•  MD4, contains MED-NODE images and augmented images
segmented with the Otsu method.

The fundamental premise is that, when four datasets are gener-
ated, the source and destination domain data may differ in terms
of the marginal distribution, but that the reference labels will
always be the same. For each dataset D  in MDS, we repeated the
training phase 700 times to simulate continual retraining. The
dataset was divided using the following ratios for each iteration:
0.5 for the training set, 0.3 for the validation set, and 0.2 for the
test set.

Due to the large amount of previous research in this area, the
work did not concentrate on the features extraction stage (which
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includes segmentation, boundary analysis, and other character-
istics). In the segmentation/pre-processing step, the most basic
Otsu segmentation and Gaussian filter are employed. The Otsu
approach can reduce intra-class variation [67]. An application of
the imgaussfilt function with a dynamic sigma value between 1
and 7 was utilized to remove noise before each network train-
ing [8]. We performed 100 training iterations for each sigma
value. Moreover, since the dataset only contains 170 total images
(70 malignant and 100 benign), we choose the data augmentation
technique to introduce more variants by manipulating the images
artificially [85]. We opted for scale (in the range 1-10), translation
on X  and Y  axes and rotation (all in the range -180, 180).

5.4 r e s u l t s a n d d i s c uss i o n

5.4.1 Results for the transfer learning reliability evaluation

In Table 5.1 and Table 5.2, we present the findings from the
analysis of the MED-NODE dataset with and without Otsu seg-
mentation.

WITH OTSU SEGMENTATION

Net

AlexNet

Google InceptionV3

GoogleNet

Data Augmentation

None

Yes

None

Yes

None

Yes

A C C  (min)

0.65

0.44

0.56

0.32

0.60

0.32

A C C  (max)

0.94

0.91

0.94

0.74

0.91

0.74

A C C  (mean)

0.78

0.68

0.76

0.53

0.75

0.55

A C C  (sd)

0.06

0.08

0.07

0.09

0.07

0.09

Table 5.1: Performance on ME D- N O D E  dataset for A C C s  with Otsu
segmentation and with and without data augmentation

The highest values that the networks achieved in the com-
putations of the average, maximum, minimum, and standard
deviation values of the A C C  are shown in bold. The AlexNet net-
work achieves the best outcome for the average A C C  both with
and without using data augmentation or segmentation (high-
lighted in red). According to the equation in Equation 5.1, we
also used the standard deviation (SD) to estimate how much the
accuracy measures varied between the networks.
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WITHOUT OTSU SEGMENTATION

Net

AlexNet

Google InceptionV3

GoogleNet

Data Augmentation

None

Yes

None

Yes

None

Yes

A C C  (min)

0.68

0.76

0.56

0.32

0.65

0.30

A C C  (max)

1

0.97

0.94

0.71

0.94

0.76

A C C  (mean)

0.89

0.87

0.74

0.55

0.80

0.55

A C C  (sd)

0.05

0.05

0.07

0.07

0.06

0.09

Table 5.2: Performance on MED-NODE dataset for A C C s  without Otsu
segmentation and with and without data augmentation

s

S D  =
1  

Â ( x i    x)2 (5.1)
i = 1

where n is the size of the dataset and x is 1 Â i = i  xi the arithmetic
mean of x. In Figures 5.2(a)-5.2(c) are reported the SD values for
all three used networks.

In Table 5.3 and Table 5.4, in addition, we reported the values
of sensitivity (TPR), specificity (TNR), precision (PPV), false
discovery rate (FDR), false-negative rate (FNR) and false-positive
rate (FPR) for the three networks.

WI T H  OTSU S E G M E N TAT I O N

Net Data Augmentation      TPR  (%)      T N R  (%)      PPV (%)      F D R  (%)      F N R  (%)      FPR (%)

AlexNet
None

Yes

Google InceptionV3
None

Yes

GoogleNet
None

Yes

75 82 73 27 25 18

63 76 65 35 37 24

74 79 68 32 26 21

38 57 38 62 47 42

72 78 67 33 28 22

44 62 40 60 51 37

Table 5.3: Performance on ME D -N O D E  with Otsu segmentation and
with and without data augmentation

5.4.2 Results for the impact of the three-layers architecture

For each dataset, we examined the behaviors of the networks to
assess their performance. The calculations in this second experi-
ment are identical to those in the first, but they were scaled up
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(a) SDs values for AlexNet.

(b) SDs values for Google InceptionV3.

(c) SDs values calculated for GoogleNet.

Figure 5.2: Several SDs values computed for all networks.

W I T H O U T  OTSU S E G M E N TAT I O N

Net Data Augmentation      TPR  (%)      T N R  (%)      PPV (%)      F D R  (%)      F N R  (%)      FPR (%)

AlexNet
None

Yes

Google InceptionV3
None

Yes

GoogleNet
None

Yes

87                   90                   86                   15                   13                   10

84                   91                   87                   14                   16                    9

73                   76                   62                   38                   27                   24

39                   60                   29                   71                   57                   40

79                   82                   72                   28                   21                   18

45 63 48 52 54 37

Table 5.4: Performance on MED-NODE without Otsu segmentation and
with and without data augmentation

to 128 GB and several GPUs by employing Ec2 instances of types
t2 (micro-instances: t2.micro) and m5 (balanced computation
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instances: m5a.2xlarge), up to type c6 (optimized computation
instances: c6g.16xlarge).

The results, shown in Table 5.5, indicate that GoogleNet is
the most reliable network, with a mean decline in prediction
accuracy of -19.60%.

Net

AlexNet

Google InceptionV3

GoogleNet

Measure MD1

Best            0.97

Average 0.81

Drop         -19.75

Best            0.91

Average        0.75

Drop -21.33

Best            0.94

Average 0.81

Drop -16.04

MD2       MD3       MD4

0.91         0.97         0.89

0.72         0.81         0.73

-26.38      -19.75      -21.91

0.88         0.90         0.89

0.72         0.75         0.74

-22.22       -20.0       -20.27

0.93         0.91         0.89

0.77         0.75         0.74

-20.77      -21.33      -20.27

Mean Drop

-21.95

-20.96

-19.60

Table 5.5: Performance drop after 100 training steps (related to Training
and Validation steps)

Environment

Single

GRIMD(t2)

GRIMD(m5)

GRIMD(c6)

GoogleNet

82710

55140

20677

7519

Google InceptionV3

115200

94348

37105

17710

AlexNet

19724

13327

6872

3171

Table 5.6: Clock time (in seconds) measured for both the experiments

Table 5.6 displays the clock times, in seconds, for both experi-
ments. We choose the clock time because we intended to calculate
the time saved by data scientists under two conditions:

1. mimicking the standard scenario in experiment 1, which
requires for laboratory effort to undertake training, valida-
tion, and deployment as well as update the datasets;

2. In the case of experiment 2, a system is offered with the
exception of image annotation, which is in any case left to
qualified dermatologists and handles all other aspects.
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The amount of time and effort required to keep a classifier
operating at its best was gathered. We invested up to 82000
seconds in each retraining in order to achieve a good result for
the MED-NODE datasets (which only contain 170 images).

5.5 c o n c l u s i o n

The results of this research point to the possibility that, despite
the great performance noted in the literature, the widely used
Transfer Learning approach may not be reliable. These results
agree with what recently happened in [34], when, due to the
addition of new categories and images, the ISIC 2018 winning
algorithm performance decreased from 88.5% to 63.6% in the
ISIC 2019. In this work, we performed two experiments: the first
is focused on the evaluation of the T L  approach; the second is
based on the advantages provided by the use of an architecture
based on Cloud, Fog and Edge layers. Results from the first exper-
iment, in particular, demonstrate how a classifier’s performance
could deteriorate by even little modifications. Additionally, ac-
cording to our conclusions, AlexNet is the most reliable network
in terms of the Transfer Learning problem. Continuous retrain-
ing is necessary to prevent performance loss since many training
iterations are necessary to get the optimal classifier. Based on
the results for the second experiment, we were able to save up
to 76% of computational time by carrying out the continuous
retraining process required to keep the robustness of the clas-
sifier. Moreover, our results demonstrated that C N N  networks
reported better performance without segmentation. This finding
might imply that training should take into account information
contained in the skin around lesions.
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C O N C L U S I O N S
6

In this Chapter, a summary of the research contributions is re-
ported in Section 6.1. Also, in Section 6.2, some suggestions for
future work are discussed.

6.1 su m m a r y

In this thesis, four open issues in melanoma detection and clas-
sification fields are addressed: the first concerns the change in
POV from the maximization of the accuracy to the minimization
of the life-threatening scenarios, in particular by minimizing the
false-negative rate event at the expense of the global accuracy;
the second concerns the utilization of clinical images, alone or
together with other kinds of images, to speed up the early diag-
nosis, in particular regarding the fact that nowadays there is a
massive amount of mobile devices able to take the picture at high
resolution, allowing the creating of extensive training dataset
without the need of specific instrument like the dermoscopic; the
third is related to the research and design of new C N N  models
able to minimize the F N R  using genetic algorithms; the latest
concerns the design of architecture able to address the intra-class
dissimilarities/ extra class similarities allowing a cloud-fog-edge
system to perform continuous and robust retraining.

The final contribution of this work is the proposal of a guide-
line for designing and implementing a robust system that can
withstand performance decreases that may occur when the train-
ing data changes, as reported in the chapter 5.

6.1.1 Changing the POV regarding C A D  performances

As  discussed before, Melanoma is a type of skin cancer con-
sidered one of the world’s most dangerous and deadly tumour
forms that start from the melanocytes, and in its early stages, it
may be mistaken for a regular naevus. Although it accounts for
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a small portion of skin cancers, it is the leading cause of death
among those diagnosed: this highlights the significance of early
detection of Melanoma, particularly for individuals who are at a
higher risk of developing the disease, as this increases the chance
of a successful cure. Early detection also plays a critical role in
the effectiveness of first-line treatment for this type of cancer.
In order to increase the early detection effectiveness, in recent
years, there has been a significant and rapidly growing increase
in the data available on melanoma images and cure outcomes.
This data was used for correlation studies to build automatic
classificators and better understand melanoma disease evolution.

These tools showed the potential to become essential in pro-
ducing more accurate diagnoses, developing new treatments and
gaining new insights and knowledge in the next future, but de-
spite the high performance reported for these tools, particularly
the high accuracy, nowadays, the last word on the diagnosis re-
mains to the dermatologist because, in the case of a malignant
suspect, a biopsy is needed. After all, it is impossible to fully trust
the results obtained from these tools, in particular, due to the
intra-class/extra-class issues described in chapter 5. that showed
how the accuracy of these tools could drop dramatically.

The most hazardous situation during melanoma assessment is
the occurrence of a physician’s false positive (FP) or false negative
(FN) diagnosis: this is true also for automatic tools. In the case
of a false positive, the patient may experience added stress and
anxiety due to the fear of Melanoma and the need for a biopsy,
only to find out later that they do not have cancer. On the other
hand, in the false negative scenario, the patient may already have
Melanoma in its early stage and could have been fully cured if
correctly diagnosed. In a false positive case, if the physician fully
trusts the automatic system, he may have deemed the skin lesion
benign in this case, thus not requiring further examination. While
the stress and fear of a false positive diagnosis can be survived,
the progression of Melanoma in the false negative scenario may
lead to a grim outcome: this highlights the importance of re-
search efforts aimed at developing automatic tools that prioritize
reducing false adverse events, even if it means an increase in
false positive diagnoses.
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6.1.2 The potential contribute of the clinical images

The second and third contributions provide a new way of classi-
fying medical images, using clinical images instead of dermato-
scopic and histological images. Advances in technology have
allowed us to process and analyze medical images using math-
ematical algorithms to uncover information and gain a deeper
understanding of pathological and physiological processes that
cannot be detected through visual analysis alone. Additionally,
using clinical images in classification models can lead to the
broader adoption of C A D  systems, as there is no need for spe-
cialized hardware such as dermatoscopic cameras due to the
high-resolution cameras commonly found on mobile devices.
This second contribution delves into the performance of the
main available C N N  architectures in minimizing the FNR when
utilizing clinical images.

The results were achieved by combining the main capabilities
of Genetic Algorithms (GA) with Convolutional Neural Networks
(CNN)  to address the melanoma detection problem (GACNN) .
The outcome was achieved by combining the strengths of Genetic
Algorithms (GA) and Convolutional Neural Networks (CNN)
to tackle the problem of melanoma detection (GACNN) :  These
algorithms enable parallel processing and the attainment of near-
excellent results in reasonable time frames (refer to Chapter ??).
However, although this strategy leads to an acceptable solution,
further clarification of the starting parameters of the algorithms
and the associated genetic functions (such as selection, crossover,
and mutation) is still needed.

The results from these experiments indicate that allowing GA
to construct the C N N  structure can enhance melanoma classi-
fication by enabling the network design to evolve without hu-
man intervention. Furthermore, the proposed approach can be
expanded to other future melanoma datasets, such as clinical,
dermatoscopic, or histological images, using other innovative
evolutionary optimization algorithms.
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6.1.3 Addressing the intra-class/extra-class issue with the continuous
retraining

In order to address the intra-class/extra-class issues (ICEC), the
continuous retraining approach was proposed. However, this ap-
proach needs high computational power and high storage space.
In order to allow the implementation of continuous retraining,
a scalable three-tier architecture (Cloud, Fog, and Edge) is sug-
gested. In particular, the system proposed aimed to address the
issues of storage, training/retraining, and distribution of mod-
els for Melanoma classification. The primary idea is to provide
an architecture where common users can effortlessly create and
insert new classification models without altering the three-tier
architecture.

The proposed architecture was used to study the robustness of
three deep neural networks (AlexNet, GoogleNet, and Inception
V3) against the I C E C  issues: AlexNet was the most stable network,
while all the C N N  tested showed improvement in their average
accuracy without the use of segmentation or data augmentation.
These findings encourage the utilization of continuous retraining
to reduce false positives and increase sensitivity.

The main contributions and accomplishments of this thesis can
be summarized as follows:

•  a profound overview of the Melanoma diseases that lead
to the need to design C A D  focusing on FNR minimization
instead of maximization of the accuracy;

•  results that show the potential of the utilization of the
clinical images for the early diagnosis of Melanoma;

•  results that show the potential of the utilization of the
genetic algorithm to design automatic way C N N  structures
oriented to minimize the FNR;

•  results that show the main C N N  architectures performances
using clinical images instead of dermatoscopic images;

•  results that suggest that continuous retraining may address
the I C E C  issues;
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•  a proposal of three-tier architectures that enable the execu-
tion of continuous retraining;

6.2 f u t u r e w o r k s

Deep learning algorithms have been able to achieve impressive
results in many fields. However, with the increase in Big Data,
algorithms and platforms are needed to develop further to keep
up with the growth. One area of focus for improving the accuracy
of melanoma classification systems based on neural networks is
to include a broader perspective that considers all relevant data,
including anamnestic data related to the patient and their family
history and additional clinical features that can be extracted
from images. In the future, the team intends to investigate the
correlations between different data sources and explore the use
of transfer learning methods to consider the heterogeneity of
multi-domain text sources.
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