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Abstract

This thesis work deals with the problem of learning the topology of a network starting
from the signals emitted by the network nodes while executing some distributed processing
task. In particular, these signals are generated over time through a vector autoregressive
process, which is a linear diffusion process where each node exchanges messages with its
neighbors (therefore, according to the underlying network graph) and aggregate them
according to a certain combination policy. We consider the demanding setting of graph
learning under partial observability, where only part of the nodes can be probed, and we
study under which conditions the subgraph relative to the probed nodes can be correctly
estimated. This is a challenging problem since the observed signals are also influenced
by the presence of latent nodes, whose signals act as noise and can in principle prevent
faithful graph reconstruction. In particular, we consider two fundamental questions. The
first question is about achievability: Under which conditions the graph learning problem
can be solved? Namely, for meaningful classes of graphs, is there a graph estimator which,
starting from signals of the probed nodes, is able to recover the related subgraph? Usually,
a positive answer for achievability only says that one or more estimators exist, and that
it works for a sufficiently large number of samples. Therefore, the second question arises
in the context of sample complexity: Given a graph estimator found by the achievability
analysis, how many samples it needs to work properly in practice? Recent results in the
literature examined this problem when the underlying graph is generated according to
an Erdős-Rényi random model. The main limitation of this assumption is that Erdős-
Rényi graphs use a simple construction mechanism that produces (sometimes unrealistic)
homogeneous networks with independent edges. We overcome this issue by solving the
problem of graph learning over preferential attachment graphs, which are characterized
by a large heterogeneity, featuring both very connected nodes (which model real-world
network “hubs”) and peripheral nodes having few connections. Moreover, preferential-
attachment graphs enforce a strong dependence between the edges of the graph. These
are important properties that can be observed in real-world networks. In particular, our
main contribution examines the case where a first-order vector autoregressive process,
equipped with a stable Laplacian combination matrix, is run over the a graph drawn
according to the popular Bollobás-Riordan preferential attachment model. In this thesis
we first introduce a unifying framework for graph learning under partial observability.
This framework covers in particular the previous results on Erdős-Rényi graphs and our
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novel results on Bollobás-Riordan graphs. The main achievability result established in the
present thesis is that a combination matrix estimator known as Granger estimator achieves
graph learning under partial observability. We also characterize the sample complexity
over Bollobás-Riordan graphs, establishing that it is essentially linear in the network size.
Comparing this result with what was observed before for Erdős-Rényi graphs, we obtain
the following interesting classification: i) dense Erdős-Rényi graphs require the highest
sample complexity rate, where the number of samples scales quadratically as the network
size grows; ii) the intermediate sample complexity rate is given by Bollobás-Riordan
graphs, which require an almost-linear sample scaling law; finally, iii) sparse Erdős-Rényi
graphs have a lighter, sublinear sample scaling law.
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Notation

Matrices are denoted by upper-case letters, vectors by lower-case letters. We use boldface
font to denote random variables, and normal font for their realizations. Sets and graphs
are denoted by upper-case calligraphic letters. For an N × N matrix Z, the submatrix
spanning the rows of Z indexed by set P ⊆ {1, 2, . . . , N} and the columns indexed by
set T ⊆ {1, 2, . . . , N}, is denoted by ZPT, or alternatively by [Z]PT. When P = T, the
submatrix ZPT is abbreviated as ZP. Moreover, in the indexing of a submatrix we keep
the index set of the corresponding full matrix. For example, if P = {2, 3} and T = {2, 4, 5},
the submatrix M = ZPT is a 2 × 3 matrix, indexed as follows:

M =
z22 z24 z25

z32 z34 z35
=

m22 m24 m25

m32 m34 m35
. (1)

For a graph G, the corresponding capital letter G is used to denote its adjacency matrix,
which has zero diagonal, and whose off-diagonal (k, ‘)-entry gk‘ is equal to 1 if a directed
edge from ‘ to k exists, and is zero otherwise. The symbol k·kmax computes the maximum
absolute entry of its matrix argument, whereas the symbol k · kmax-off computes the

maximum absolute off-diagonal entry of its matrix argument. The symbol
p−→ denotes

convergence in probability as the network size scales to infinity. Likewise, the symbol
a.s.−−→ denotes almost-sure convergence.
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Chapter 1

Introduction and Problem
Formulation

The present work deals with distributed systems made by a large number of units, such
as devices of a communication network, sensors in a monitoring system, or individuals
in a social network. These units are allowed to interact over time and, when considered
together, can give rise to sophisticated dynamics. Usually, an individual unit is not
able to interact directly with all the other units in the system. Instead, the single units
form a network wherein each of them is allowed to reach a limited number of units,
i.e., its neighbors. Thus, the interactions across the network consists of local information
exchanges, and the ensemble of local effects gives rise over time to a global, decentralized
system dynamics.

There are many notable examples of complex systems that derive their sophistica-
tion from coordination among simpler units and from the aggregation and processing of
decentralized pieces of information. Relevant examples of these systems are telecommu-
nication and computer networks. These types of systems are the natural environment to
run distributed algorithms. Nature itself provides beautiful examples of distributed sys-
tems. Discoveries in biological sciences have revealed remarkable patterns of organization
and structured complexity in the behavior of animal groups [1] and in the dynamics of
brain connectivity [5]. Motivated by the aforementioned reasons, in recent years, many
efforts have been devoted to achieve a deeper understanding of information processing,
adaptation, and learning over complex networks in several disciplines, including machine
learning, optimization, control, economics, biological sciences, information sciences, and
social sciences [103].

Multi-agent networks can be employed to solve complex problems that would be un-
affordable by a stand-alone processing unit (e.g., for lack of resources) performing a cen-
tralized algorithm. In particular, they have been considered to solve demanding problems
in the context of optimization, learning, and inference [14,30,33,55,83,102,103,117,120].
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Moreover, decentralized solutions exhibit undisputed advantages in terms of scalabil-
ity, resilience to failures and robustness.

In a decentralized system, the network topology plays a critical role in enabling the
interactions among individuals: while each unit in these systems is not capable of so-
phisticated behavior on its own, it is the interaction among the constituents that leads
to systems able to accomplishing complex tasks, with even an impressive capability of
adjusting their behavior in response to changes in the environment [103].

Many literature works examine the direct learning problem, i.e., given a certain topol-
ogy, how the network agents are able to solve the assigned learning task [13,19,20,59,83–
85, 87, 94, 102–104, 110, 115–119]. In this thesis we focus instead on the fundamental in-
verse learning problem: Given the output signals produced by the network agents during
the accomplishment of their (direct) learning task, can we infer the network structure?
Our final aim is to reconstruct the underlying network graph determining the interaction
pattern among the probed agents. Due to the emphasis on the network structure, in
our treatment we will refer to the individual units of the distributed system as network
nodes. Since the addressed problem arises across multiple disciplines, it is referred to
in different ways. The various terminologies include graph learning, topology inference,
network tomography, graph reconstruction, and graph estimation. In this work we will
mostly use “graph learning.”

This is a problem of fundamental importance, which can provide answers to many
useful questions arising across several disciplines. For example, by observing the local
dynamics at a subset of the nodes, can one establish how the information is shared across
the network? Or how privacy is reflected in the nodes’ signals? Can one reconstruct
how a given information propagates across the network nodes? Can one discover whether
there are some “influential” nodes which directly affect the behavior of large portions of
the network?

Providing answers to these questions would be beneficial for a large number of appli-
cations. For example, discovering who is communicating with whom over the Internet
is crucial in several cybersecurity applications [41, 66, 92, 113]. As another example, one
can study the mechanism of opinion formation over a social network, or attempting to
locate the source of fake news [64,72]. Moreover, with a graph learning tool it is possible
to characterize the evolution of urban traffic in large cities [31], learning the synchro-
nized cognitive behavior of a school of fish which is escaping from a predator [29,89], and
investigating the connectivity patterns within the brain [60].

In this work we address the graph learning task under some demanding conditions.
First, we consider the setting of partial observability, where only a limited subset of nodes
can be accessed. The goal is to infer the topology linking the probed nodes This setting
arises very often, especially over large networks, as it is usually not possible to gather
information from all network nodes.

A second important element of novelty of this thesis is that we consider preferential
attachment graphs to model the network structure. These are random graph models that,
at the price of introducing significant sophistication in the network formation process and
in the technical analysis, are able to capture important features observed over real-world
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graphs. For example, they exhibit node heterogeneity (i.e., “hubs” with many connections
as opposed to peripheral nodes with few connections) and edge dependence (i.e., edges
are not drawn independently as is the case for the popular Erdős-Rényi random graphs).

In the remainder of this chapter we will present the relevant modeling assumptions in
full detail. In Section 1.1 we formalize the dynamical system in terms of a discrete-time,
linear diffusion system, namely, a first-order vector autoregressive model. Section 1.2
introduces the partial observability setting. In Section 1.3 we introduce the two funda-
mental questions addressed in the analysis: Is graph learning achievable in the considered
setting? If yes, how many samples are required, i.e., which is the sample complexity of
the graph learning task? Finally, in Section 1.4 we describe the overall organization of
the thesis.

1.1 First-Order Vector Autoregressive Dynamics

A graph is defined by an ensemble of nodes and edges. In the general formulation, we
consider directed graphs. Later, when focusing on specific graph models in Chapters 4
and 5, we will consider undirected graphs. Over a directed graph, given any two nodes
k and ‘, they can be disconnected (no edge between them), connected in one direction
(e.g., from k to ‘ or from ‘ to k), or they can be connected in both directions (two
directed edges). We consider a random graph defined over N nodes and denoted by G(N)
(bold notation highlights graph randomness). The qualification “random” signifies that
connections between nodes are drawn according to some probabilistic mechanism. The
graph structure can be conveniently encoded into an adjacency matrixG(N). This matrix
has all zeros on the main diagonal, whereas its (k, ‘) entry gk‘(N) is equal to 1 if there is
an edge from ‘ to k, and is 0 otherwise.

Given a certain graph, the actions of the network nodes are described by a distributed
linear dynamical system. Every node k, at time t = 1, 2, . . . , is driven by a random
input source xk,t(N) and produces the output signal yk,t(N) according to the following
diffusion model, a.k.a. first-order vector autoregressive model [63]:

yk,t(N) =

NX
‘=1

ak‘(N)y‘,t−1(N) + xk,t(N), (1.1)

which can be conveniently recast in matrix form as:

yt(N) = A(N)yt−1(N) + xt(N), (1.2)

where xt(N) and yt(N) stack the entries xk,t(N) and yk,t(N) into N × 1 column vec-
tors, and where matrix A(N) = [ak‘(N)] collects the nonnegative combination weights
ak‘(N).1 This model has many applications in several fields. For example, in economics

1Making explicit the dependence of the combination weights upon N is critical in our treatment, since
we need to examine the properties of these weights and related network descriptors as functions of N .
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it is used for time-series forecasting of financial data [48]. It is also employed in bioin-
formatics and biostatistics for estimating gene-regulatory networks from gene expression
data [40]. Moreover, the vector autoregressive model governs several distributed algo-
rithms over networks aimed at solving inference tasks, such as distributed detection prob-
lems [16,76].

In our setting, the eigenvalues of A(N) are assumed to lie strictly inside the unit circle
to ensure that system (1.1) is Schur stable. The combination matrix A(N) reflects the
interconnections dictated by graph G(N). Thus, weight ak‘(N) is strictly positive if there
is an edge from ‘ to k, and is zero otherwise. In view of (1.1), this structure implies that
node k at time t updates its state yk,t(N) by incorporating only previous-time signals
y‘,t−1(N) received from nodes ‘ for which ak‘(N) > 0. In general, A(N) need not be
symmetric. For example, we could have ak‘(N) > 0 and a‘k(N) = 0. Accordingly, when
we talk of “connected/disconnected pairs”, we refer to ordered pairs with (k, ‘) being
distinct from (‘, k).

The stochastic dynamical system in (1.1) contains different sources of randomness. All
involved random variables are assumed to lie in a common probability space (Ω,F, P ).
One source of randomness is given by the sequence of random graphs G(N), for N =
1, 2, . . ., while the combination matrixA(N) is a deterministic function of the graph G(N).
Thus, once a graph realization is fixed, the combination matrix becomes deterministic,
and the system in (1.1) evolves according to the randomness of the input signals xk,t(N),
which are independent and identically distributed (i.i.d.) w.r.t. to node index k, time
index t, and network size N . These signals are statistically independent of the sequence of
graphs, and, without loss of generality, are assumed to have zero mean and unit variance.
The vectors y0(N) that initialize the recursion (1.1) are assumed to be square-integrable
random vectors with arbitrary distribution, independent of all input signals xk,t(N). They
are allowed to depend only on G(N) and, conditionally on G(N), they are independent
of all other graphs in the sequence. The particular distribution of y0(N) will be mostly
immaterial for our results, since we will be dealing with the steady-state regime where the
number of samples goes to infinity and the initial state does not play a role. Only when
we study the sample complexity, we will assume a specific distribution for the initial state
— see Theorem 8 in Chapter 6.

1.2 Partial Observability

Most of the earlier works on graph learning assume that all nodes in a network are
monitored. We will refer to this condition as full observability. However, this condition
is seldom verified. For example, in probing signals from the brain, usually only certain
regions can monitored. Also, monitoring a social network with millions of members is
possible only by limiting the observation scope. Over these networks, due to different
forms of physical limitations, it is not practical to assume that data can be collected from
all nodes. We refer to this condition as partial observability. Partial observability makes
graph learning task more demanding. In fact, the observations collected at the monitored
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Figure 1.1: A graphical sketch of the graph learning problem under partial observabil-
ity. The input of the problem is constituted by the signals generated by the subset of
probed nodes, and the learning problem amounts to use this information to discover the
underlying topology governing the interactions of the observed nodes.

nodes are influenced (through information propagation) by the unobserved nodes, which
act as source of noise. It is then natural to ask whether the graph learning problem is
well-posed under partial observability, namely, if we can collect sufficient information to
learn the underlying graph linking the probed nodes. This is a hard problem, which could
be unfeasible in general.

Figure 1.1 provides a schematic illustration of graph learning under partial observabil-
ity. Given a network graph, a signal evolving over time is associated with each node of
the graph. The time evolution of the signals is dictated by an exogenous random mecha-
nism (driving noisy source) and by the local interactions between neighboring nodes. In
particular, in our case we consider the first-order vector autoregressive dynamics in (1.2).
An inferential engine collects signal samples from a limited set of probed nodes, since we
work in the regime of partial observability. The inference goal is to learn the subgraph
linking the probed nodes.

Letting P be the probed subset, i.e., the subset containing only the nodes that can be
probed, and given an observation time window t = 1, 2, . . . , T , the collection of signals
available to perform graph learning will be compactly denoted by:

YP(T,N) , {yk,t(N) : k ∈ P, t ∈ [1, T ] }. (1.3)

Our goal is to estimate the interconnections between nodes in P, namely, the topology of
the partial graph GP(N) relative to P, starting from the signals in (1.3). Formally, we
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need to build a graph estimator:2

bGP(T,N) = f(YP(T,N)), (1.4)

where in the notation we emphasized that the properties of the graph estimator will
depend on the number of samples and the network size. We will judge the goodness
of a graph estimator in the asymptotic framework where one specifies the functional
dependence of the number of samples T upon the network size N through a sample law
TN , and lets the network size N go to infinity. In this analysis, we allow the probed
subset to depend on N , namely, we introduce a deterministic sequence of subsets:

SN ⊆ {1, 2, . . . , N}, (1.5)

where SN is the probed subset of the graph of size N . For ease of notation, when a graph
on N nodes or an N×N matrix is evaluated over subset SN , subscript N will be omitted,
for example, we will write GS(N) in place of GSN

(N).

1.3 Achievability and Sample Complexity Analysis

The evolution of the signals yk,t(N) is dictated by repeated interactions between neigh-
boring nodes, and these interactions are determined by the graph topology. Thus, it is
legitimate to ask whether the topology can be inferred from observing the evolution of
the signals at the nodes.

We say that a graph estimator is consistent for the family of random graphs G(N)
and for the sequence of probed subsets SN if:

lim
N→∞

P
hbGS(TN , N) = GS(N)

i
= 1, (1.6)

for some sample scaling law TN . Accordingly, we say that the graph learning problem is
achievable if there exists a consistent graph estimator.

The law TN characterizes the so-called sample complexity of the estimator, namely,
how the number of samples scales with the network size to provide faithful graph learning
using that estimator. The study of the sample law TN , and in particular the quest for
finding the slowest growth rate ensuring achievability (possibly considering a fixed graph
estimator), will be referred to as sample complexity analysis. This analysis is relevant in
practical applications, since the amount of available data is determined by several physical
constraints. For example, the dynamical system can be observed only over a certain time
interval, the data acquisition rate is limited, and there are limitations in terms of energy,
bandwidth or storage capacity.

2Formally, function f in (1.3) is allowed to depend on T , N , and P. This dependence is left implicit
for ease of notation.
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1.4 Thesis Overview

This thesis is organized as follows. In the next chapter we will make an analysis of the
related work. In Chapter 3 we propose a unifying framework to describe and certify
when graph learning is achievable. We will introduce relevant descriptors and notions
such as the bias and the identifiability gap, which will be then useful to address the two
fundamental questions of achievability and sample complexity. This framework paves the
way for examining specific scenarios of interest. More precisely, by “specific scenario” we
mean a set of assumptions that i) fully characterize the vector autoregressive system (1.2)
by specifying the random model for the network graph G(N) and the combination policy

to build the matrix A(N); and ii) describe the graph learning strategies bGP(T,N) that
can be adopted, and the particular observability scenario in terms of the sequence of
probed subsets SN .

One relevant scenario that has been recently considered is based on the Erdős-Rényi
random graph model [73–75,77,78,100]. The achievability and sample-complexity results
for this model will be described in Chapter 4. As said before, this thesis focuses instead
on a more sophisticated graph construction, the preferential attachment construction. In
particular, we consider the Bollobás-Riordan graph model, which will be examined in
detail in Chapters 5 and 6. Finally, in Chapter 7, we apply the theoretical analysis to
both synthetic and real data. Moreover, we also test two useful extensions not covered
by the theoretical analysis, namely, directed preferential-attachment graphs and dynamic
graphs. The main publications relative to the content of the present thesis are [25–27].
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Chapter 2

Related Work

There is a large body of literature that examines the problem of graph learning. In this
chapter, we examine the works most relevant to our treatment. In order to facilitate the
illustration, it is useful to classify the pertinent works in terms of three main features.

• Full vs. partial observability. Namely, whether the input of the graph learning
problem is a function of all network nodes, or of a limited subset thereof.

• Static vs. dynamical systems. Some works examine graph learning over static sys-
tems, like graphical models, where the data collected from the graph nodes do not
evolve according to a dynamical model. They have a joint distribution that does
not depend on time, and the inferential engine is assumed to collect independent
realizations of these data [2]. Other works focus instead on dynamical situations,
like the vector autoregressive model in (1.2) or typical systems studied in graph
signal processing [98,106].

• Sample complexity. Many works consider the achievability issue, by establishing
whether the graph can be faithfully estimated provided that an unspecified, suf-
ficiently large number of samples can be collected. However, only some of these
works additionally address the sample complexity issue, by providing formal results
on how many samples are required to estimate the graph. Typically, these results
establish the number of samples necessary to get some prescribed accuracy as the
network size grows, and therefore they typically involve a large-scale, asymptotic
analysis. This is coherent with our definition of sample complexity provided in
Chapter 1, whose aim is to characterize the sample law TN required by a graph
estimator to achieve graph learning as N → ∞.

In Table 2.1 we report the works that will be examined in this chapter, organized in a
convenient taxonomy based on the aforementioned three features. Along the rows of the
table, the references are divided in two groups according to whether they assume full ob-
servability or partial observability. Along the columns, the references are sliced according
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Static
networked systems

Dynamical
networked systems

With sample
complexity analysis

Without sample
complexity analysis

Full
observ.

Gaussian graphical
models with local

separation [2]

Graph signal processing
[80,90,106]

Parameter estimation in
autoregressive systems

[49,95]

Continuous-time
stochastic differential

systems [6]

Stochastic processes
interrelated by

self-kin networks [69]

Nonlinear dynamic
systems [44]

Partial
observ.

Gaussian graphical
models with

“sparsity & low-rank”
assumption [18]

Restricted Boltzmann
machines with

bounded degree [15]

Locally tree-like
graphs with

bounded girth [3]

Link prediction strategies
with similarity indices

[62,123]

Latent graphical models
with polytrees [37]

Continuous-time stochastic
differential systems with

local-global structure [51]

Erdős-Rényi model
[22, 73–75,77,78,100]

Bollobás-Riordan model
[25–27]

Link prediction strategies
on dynamic graphs [52,88]

Parameter estimation in
autoregressive systems

[42]

Stochastic processes
interrelated by
polytree [70] or

loopy [71] networks

Table 2.1: Taxonomy of existing works addressing the graph learning problem. Across
rows, the works are separated according to the observability regime: the first row contains
works examining graph learning under the full observability regime, whereas the second
row contains works assuming the partial observability regime. Across columns, the same
works are divided in works on static and dynamical networked systems, and are further
sliced according to whether they include a sample complexity analysis or only study
the problem feasibility. We use italic font to identify the works relative to the setting
adopted in this thesis. These include both previous literature works based on the Erdős-
Rényi model, and the works collecting the results of the present thesis, which consider
the Bollobás-Riordan model.

to two criteria, which are identified by the two pairs of columns headers. According to the
first criterion, the works are partitioned in two groups, depending on the kind of dynamics
involved in the assumed model: i) A group of works where no dynamics occurs, which
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includes some works in the context of high-dimensional graphical models; ii) a group of
works assuming a networked system evolving according to a prescribed dynamics. Ac-
cording to the second criterion, Table 2.1 organizes the works in other two groups. It
distinguishes between: i) Works that carry out a sample complexity analysis in addition
to achievability; ii) works where only the achievability issue is examined.

In this taxonomy, we use italic font to identify the works that use the setting illustrated
in Chapter 1. Each work in the table is identified by its bibliography item and a brief
text description. The text description tries to capture the most peculiar features of the
work, for example, the specific graph model and/or the kind of dynamics.

The remainder of this chapter is organized as follows. In Sections 2.1 and 2.2 we
provide an essential survey of the literature works in Table 2.1. In particular, in the
former section we discuss the works assuming full observability and in the latter we do
the same for the works assuming partial observability. Finally, in Section 2.3 we highlight
the main elements of novelty of our work.

2.1 Graph Learning Under Full Observability

Even if the focus of our work is on partial observability, we start with an illustration of
relevant works on graph learning under full observability. This is useful since the works
on full observability introduce some fundamental principles and methods that constitute
a useful basis/reference necessary before tackling the more challenging setting of partial
observability.
Gaussian graphical models. Given a graph G of N nodes, a Gaussian graphical model
on G is the family of multivariate Gaussian distributions on RN with concentration matrix
(i.e., the inverse of the covariance matrix) JG satisfying:

[JG]k‘ = 0 ⇐⇒ nodes k and ‘ are disconnected in G. (2.1)

Hence, the topology of G describes the sparsity pattern of the concentration matrix. The
graph learning problem addressed in the context of graphical models can be described as
follows. One observes a stream of i.i.d. realizations of a multivariate Gaussian satisfy-
ing (2.1) for a certain underlying graph G. By exploiting the fact that the data distribution
depends on G, the problem of estimating G from the collected samples is considered.

In [2], the graph learning problem is addressed for a specific class of graphical models
fulfilling a structural constraint named local separation. This constraint enforces a ho-
mogeneous sparsity across the graph by imposing high distances (path lengths) among
the nodes of the graph. Technically speaking, a graph G satisfies the local separation
property with parameters η and γ when for any couple of disconnected nodes (k, ‘) in G

the distance between k and ‘ can be made higher than γ by removing at most η nodes
from G. The parameter η is strictly related to the number of paths from k to ‘ with length
less or equal to γ.

Under some technical assumptions including the local separation property, the Authors
of [2] prove the existence of an algorithm which is able to recover G provided that a
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sufficiently high number of samples is available. The analysis is conducted under the
asymptotic setting where the graph size N tends to infinity, and establishes how the
number of collected samples must scales with N .

The aforementioned problem falls in the class of full observability since the algorithm
receives as inputs the complete (N -dimensional) realizations, and tries to recover the
entire graph G. Additionally, the observations collected for graph recovery are assumed
to be i.i.d. rather than arising from a dynamical model with memory, as in the model
illustrated in Chapter 1. In this respect, there are several other works that address the
graph learning problem for graphical models in the setting of partial observability, and
we will discuss these results in Section 2.2.
Graph signal processing. Works [90,106] arise in the context of graph signal process-
ing [67,68,91,98,99,107,111], a recent framework that extends classical signal processing
tools and operations (e.g., Fourier transform, sampling, filtering) to signals defined on a
graph. In [106] the Authors study the discrete-time dynamics:

yt = (I − αtLG)yt−1, (2.2)

where LG is the N × N Laplacian matrix of graph G and αt is a time-varying scalar
function. The proposed approach consists in learning the graph G by first estimating the
Laplacian matrix LG. The input at disposal for this task is obtained by observing several
different runs of the dynamics (2.2), all evolving over the same network, and collecting
one sample for each run. Each run may have different values of the function αt and the
relative sample is taken at different, unknown times. The problem of recovering matrix LG

from these “snapshots” is underdetermined. To overcome this issue the Authors of [106]
propose a strategy based on a regularized convex optimization problem. The idea is to
find, among the candidate Laplacian matrices that are consistent with the observations,
the one that maximizes an objective function promoting sparsity. It is shown in [106]
that the proposed strategy ensures consistent estimation of the graph as the number of
measurements grows.

In [90] the Authors examine the discrete-time dynamics:

yt = WG yt−1, (2.3)

where WG is a N ×N matrix with nonnegative entries and spectral radius equal to 1; of
particular interest in this analysis is the case:

WG = D
− 1

2

G GD
− 1

2

G , (2.4)

where DG is the diagonal matrix whose nonzero entries are the degrees of the nodes in G.
The formulation of the graph learning problem is as follows. We are allowed to observe
several runs of the dynamical system defined by (2.3), and for each run we sample only
one value, at a time that is unknown and that can differ across the experiments. The final
aim is to estimate WG. Again, this problem is highly undetermined since, even assuming
an infinite number of samples at disposal, the set of matrices WG is infinite. In particular,
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it is possible to show that the set of admissible matrices can be expressed in closed form
as a convex polytope. Therefore, a two-step inferential process is proposed. First, the
aforementioned polytope is approximated using the (finite) samples at disposal. Then,
the final estimator for WG is selected from this candidate pool according to a suitable
selection criterion. For example, the sparsity criterion extracts from the polytope the
matrix with minimum total sum of its entries, and this consists in practice in solving a
linear programming problem.

A common feature of the works examined in this section is that the considered graph
estimation problem is undetermined, namely, the data at disposal are not sufficient to
determine a unique estimate of G. In other words, there are several candidate solutions
explaining the measurements. To overcome this issue, the strategies in [90, 106] exploit
some prior knowledge about the graph structure under examination, which is then trans-
lated into appropriate structural constraints. We have already mentioned sparsity con-
straints. Another typical constraint is on the smoothness of the graph signal [53,106]. In
a nutshell, a graph signal is smooth when the signals indexed by nearby nodes are close
to each other. In contrast, the framework considered in the present thesis do not impose
such constraints.

A more general system has been proposed in [80], which considers the following au-
toregressive dynamics:

yt =

mX
j=1

pj(WG)yt−j + xt, for t = 1, 2, . . . , (2.5)

where pj(WG) are matrix polynomials of an N ×N matrix WG having support graph G,
and xt is a random noise process.

In [80] the aim is to estimate matrix WG from the output signals yt collected over a
certain observation window.
Parameter estimation in vector autoregressive systems. There are several works
that try to estimate the parameters of vector autoregressive systems. Even if these works
are not originally focused on graph learning, they can be in principle adopted for this
purpose on systems like the one considered Chapter 1. In fact, the support graph (i.e.,
the nonzero entries) of the combination matrix A coincide with the underlying network

graph. Therefore, once we have an estimated combination matrix bA, it makes sense
to estimate the network graph by classifying the entries of bA in some suitable way to
distinguish connected/disconnected node pairs.

Before starting our discussion, it is worth recalling that for first-order vector autore-
gressive systems, there exists a well-known relation that relates the combination matrix
A, the steady-state covariance matrix R0 and the one-lag covariance matrix of the sys-
tem [63]:

R1 = AR0. (2.6)

Therefore, when addressing the estimation of A in the full observability regime a matrix
estimator is promptly available: bA , bR1

bR−1
0 , (2.7)
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where bRj is the sample covariance relative to Rj , for j ∈ {0, 1}. This estimator is also
known as Granger estimator or predictor, a terminology that arises in the context of
Granger causality [45].1

In [49] the Authors focus on estimating the transition matrices A1, A2, . . . , Am, of the
general stationary vector autoregression of order m:

yt =

mX
j=1

Ajyt−j + xt, (2.8)

were xt is a Gaussian process. The Authors provide results for both achievability and
sample complexity analysis. When considering the case m = 1, the proposed estimatorbA1 is the solution to an optimization problem whose constraints enforce an approximate
version of relation (2.6), by imposing an upper bound:

kA bR0 − bR1kmax < λ (2.9)

where A is the generic candidate solution for bA1, and bR0 and bR1 are sample versions
of R0 and R1, respectively. In particular, under the assumption that A1 belongs to the
following class:

max
‘=1,2,...,N

NX
k=1

|[A1]k‘|q ≤ β, and kA1k1 ≤ γ(T,N), (2.10)

for some constants 0 ≤ q < 1 and β > 0, and some function γ(T,N), the Authors are able

to characterize the estimation errors k bA1 −A1k1 and k bA1 −A1kmax — relative to the ‘1

matrix norm and the max matrix norm, respectively — in terms of T , N and γ(T,N),
and consequently are able to derive the sample complexity of their estimation algorithm.

In [95], the problem of learning the parameters of a vector autoregressive process is
addressed under the assumption that the probed data are corrupted. In particular, the
considered system is:

yt = Ayt−1 + xt, (2.11)

with xt a random noise process, and the collected data are not realizations of the output
process yt but instead they are realizations of:

zt = Pt (yt + ut) , (2.12)

where Pt is a random diagonal matrix and ut is a random additive noise process. The
mapping yt 7→ zt models either missing data or distortion effects due to imperfect mea-
surements. For example, the diagonal entries of Pt can be binary random variables
indicating whether or not a node is probed at time t; also, they can act as multiplicative
noise for modeling highly inaccurate measurements.

1This estimator will play a key role in our analysis, and in Section 3.5 we will present it in more detail.
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There are two proposed estimators. The first one is the Granger estimator (2.7),
which is adopted when matrix A is dense. The second one, employed when A is sparse,
is a regularized version similar to the solution proposed by [49]. The peculiarity of this

work is that the sample covariance matrices bR0 and bR1 are not computed in the standard
way (i.e., by means of sample averages), but new ways are adopted to account for the
corruption effects introduced by (2.12).

Also the kind of theoretical guarantees provided in [95] are of the same type as in [49].
The Authors show that the effect of data corruption is equivalent to a reduction of the
number of collected samples, leading to the following conclusion: learning using corrupted
data does not impair achievability, but only worsens the sample complexity of the system.

The assumption of corrupted data is a key difference that distinguishes our work
from [95]. As a matter of terminology, we remark that in [95] the intermittent mea-
surements at some nodes are referred to as “partial observations,” but the meaning is
different from the one adopted here. In fact, in [95] all nodes can be probed, even if not
continuously at any time step, and the qualification “partial” refers to intermittence of
observations at each node. Instead, in our work we assume that some nodes can be always
probed (without corruption) and other nodes are completely inaccessible.
Continuous-time linear systems of stochastic equations. In [6] the Authors study
the following N -dimensional continuous-time linear system described by the stochastic
vector differential equations:

ẏt = WGyt + xt, for t ≥ 0, (2.13)

where WG is an N × N matrix with support G, and xt is a N -dimensional standard
Brownian motion. System (2.13) is the continuous-time counterpart of (1.2), where the
rate of change of the system state yk,t relative to node k is driven by the current state of
the neighbors of k, corrupted by an additive noise.

The topology inference algorithm proposed in [6] solves N independent regularized
least squares problems, each one estimating a row of the adjacency matrix G of G. The
regularizers of the optimization problem encode sparsity assumptions on the topology.

The algorithm is fed by monitoring the trajectory of yt over a time window [0,W ].
In particular, the data are collected by sampling the trajectory with a suitable sampling
period η. The work also develops a sample complexity analysis, and it shows that the
resulting sample scaling laws critically depend on the value of η.
Frequency-domain approach. In [69] the Authors consider a set of N discrete-time,
wide-sense stationary stochastic processes whose z-transforms y1(z),y2(z), . . . ,yN (z) are
mutually dependent in view of the following relations:

yk(z) =

NX
‘=1

hk‘(z)y‘(z) + xk(z), for k = 1, 2, . . . , N , (2.14)

where x1(z),x2(z), . . . ,xN (z) are the z-transforms of another set of random processes
employed to model additive noise, while the function hk‘(z) is equal to zero for all z if
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process k is not influenced by process ‘, and is a (possibly non-causal) transfer function
otherwise. We can rewrite (2.14) in matrix form as:

y(z) = H(z)y(z) + x(z), (2.15)

where x(z) and y(z) stack the entries xk(z) and yk(z) into N × 1 column vectors, and
where the matrix H(z) = [hk‘(z)] collects the transfer functions hk‘(z).

From the sparsity pattern of matrix H(z) the Authors define the directed support
graph GH having N nodes and directed edges such that:

the edge from node ‘ to node k is in GH ⇐⇒ hk‘(z) 6= 0. (2.16)

By probing the nodes signal sequences across a finite time window, the Authors pro-
pose a reconstruction algorithm based on Wiener filter to estimate GH . The proposed
strategy is shown to guarantee exact reconstruction for the so-called self-kin networks.
For more general kinds of networks the strategy computes the smallest self-kin network
embodying the true network. In a nutshell, self-kin networks are oriented graphs with the
following transitivity property: if three nodes k, ‘ and h are such that the edges (k, h)
and (‘, h) both exist (i.e., we have a directed edge from k to h and another directed edge
from ‘ to h) then there must exist either edge (k, ‘) or (‘, k). The self-kin assumption can
be an important limitation in practical applications. In fact, it imposes the requirement
that the aforementioned property holds for any triple of nodes, which is seldom verified
over real networks, especially over large-scale networks.
Nonlinear dynamical systems. Most of the existing works on graph learning deal
with models where the nodes’ signals are linearly combined through a suitable weighting
matrix. The extension of the existing results and tools to the nonlinear case is highly
nontrivial. Before concluding this section, it is useful to mention some recent works that
focus on topology inference over nonlinear dynamical systems.

In [44] the Authors consider a nonlinear dynamical model running on a graph G of N
which satisfies some structural constraints like:

yt = f(yt, t;G) + xt, for t = 1, 2, . . . , (2.17)

for some nonlinear function f . Note also that (2.17) does not represent an iterative
evolution like (1.2), but instead it represents an instantaneous constraint enforced on yt.
Let yk,t and y‘,t be the signals of nodes k and ‘, respectively. To determine if a directed
edge exists from node ‘ to node k in G, the Authors propose the following strategy, which
extends to the nonlinear case the method of partial correlations. They define a mapping:

byk,t , bf {yh,t : h ∈ {1, 2, . . . , N} \ {k, ‘}} . (2.18)

arising from solving a nonlinear (possibly regularized) regression problem. In particular,

the work considers kernel-based nonlinear regression models for bf , namely, the functionbf is modeled as a linear combination of nonlinear kernel functions. This mapping is an
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estimator for yk,t starting from the values of the other processes, except for y‘,t and yk,t.
Define the residual:

ρk‘ , yk,t − bf {yh,t : h ∈ {1, 2, . . . , N} \ {k, ‘}} , (2.19)

and define symmetrically ρ‘k. The proposed strategy consists in comparing against a
threshold the correlation coefficient between the residuals ρk‘ and ρ‘k, and an edge be-
tween nodes ‘ and k is declared iff the threshold is exceeded.

2.2 Graph Learning Under Partial Observability

Gaussian graphical models. In [18] the Authors address graph learning over Gaussian
graphical models. Thus, we have a multivariate Gaussian y ∈ RN with concentration
matrix JG satisfying (2.1) for a certain underlying graph G of N nodes. One observes a
stream of i.i.d. realizations from the marginal Gaussian distribution relative to a subset
P ⊂ {1, 2, . . . , N} of the vector entries. Recalling that by definition ΣG , J−1

G is the
covariance matrix of the entire multivariate Gaussian, then by using the Schur complement
formula we get (let Σ and J denote ΣG and JG, respectively):

ΣP = JP − JPP0(JP0)−1JP0P, (2.20)

where P0 is the complement set {1, 2, . . . , N} \ P, relative to the unobserved variables.
Recalling (2.1), we have that the first term on the RHS of (2.20) encodes the subgraph
topology GP of the graphical model relative to the observed nodes. The Authors assume
that this term is sparse. The second term is observed to be a low-rank matrix, provided
that the number of unobserved variables is small relative to the number of observed
variables.

Since matrix ΣP in (2.20) can be estimated from the data, we can in principle esti-
mate the two terms described above and, therefore: i) recover the subgraph GP, and ii)
compute the number of unobserved variables. However, this “inverse problem” is highly
underdetermined in general, and the aforementioned sparsity & low-rank assumption is
essential to turn it into a feasible problem. Under the aforementioned assumptions, it is
shown in [18] that the graph learning problem can be formulated as a regularized convex
optimization problem. In particular, the Authors adopt an ‘1-norm regularization to ac-
count for sparsity of the matrix associated with the probed nodes, and a nuclear-norm
regularization to control the rank of the matrix associated with the latent nodes.
Restricted Boltzmann machines. In [15], the Authors consider a special kind of
graphical model called restricted Boltzmann machine. It is a special kind of bipartite
graph, namely, a graph where the nodes can be divided into two partitions such that any
edge of the graph connects a node of one partition with a node of the other partition (that
is, each partition represents a fully disconnected subgraph). In particular, a restricted
Boltzmann machine is a bipartite graph equipped with a weighted adjacency matrix WG,
namely, a matrix such that for each pair of nodes k and ‘:

[WG]k‘ = 0 ⇐⇒ nodes k and ‘ are disconnected in G. (2.21)
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The nodes in the two partitions of the graph encode two random vectors y0 and y00 with
binary entries, whose joint distribution is parametric in WG and such that the entries
of y0 are mutually independent given y00 and, conversely, the entries of y00 are mutually
independent given y0. The vector entries of y0 and y00 are called observed variables and
latent variables, respectively. The aim of the work is to learn the distribution of the
observed variables y0. Since this distribution is parametrized by WG, this strategy is also
useful for a graph learning task. The proposed strategy has been proved to work well for a
specific class of Boltzmann machines that are named ferromagnetic. It is composed of two
steps. The first step consists of a greedy algorithm for learning the two-hop neighborhood
of an observed node. In this algorithm a key role is played by a statistical descriptor called
empirical influence. Once the two-hop neighborhoods are determined, a further technique
is proposed to learn the distribution of the observed variables by means of a regression
algorithm involving the two-hop neighbors.
Graphical models with tree-like topology. In [3] the problem of structure estimation
in graphical models with latent variables is considered for the family of locally tree-like
graphs with a bound on the girth, which is the length of the shortest cycle in the graph.
The proposed algorithm operates in two stages. The first stage is based on reconstructing
acyclic local parts of the graph, and the second stage merges them together. In order
to learn efficiently the local acyclic pieces of the graph, a further assumption is required,
referred to as correlation decay, which guarantees that the correlation of “far” nodes in
the graph is small.

However, assumptions like the bounded girth and the tree-like structure can be hard
to be met in practice, especially for large-scale networks. In fact, these assumptions
enforce some local constraints on the network, which must be verified at any portion on
the underlying graph. For example, the tree-like assumption imposes that there not even
a single cycle in the graph. As a result, as the considered network gets large, such type
of conditions become more and more difficult to be met.

Moreover, graphical models such as the ones used in the aforementioned references
do not assume that there are signals evolving over time at the network nodes. For this
reason, the results obtained in the aforementioned references on graph learning in the
presence of latent variables do not apply to the dynamical system considered in our work.
A relevant exception is [37], where the Authors consider N random processes whose joint
distribution, when represented with a graphical model, exhibits a polytree topology. A
polytree is a directed acyclic graph whose corresponding undirected graph (obtained by
replacing its directed edges with undirected edges) is a tree. It is interesting to note that
the polytree topology fulfills the self-kin constraint used in [69], with the only exceptions
at the roots of the shared subtrees.

In [37], graph learning must be performed from data samples collected by monitoring
a subset P of the N network nodes. No information is available about the unobserved
nodes (neither their number is known). The goal is to discover the hidden nodes of
the polytree along with the connections between the hidden and observed nodes. The
rationale of the algorithm is as follows. The first step is to discover the set of roots of the
underlying polytree. For each root found at the previous step, the second step consists in
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reconstructing the relative tree. The last step builds an estimated polytree by merging
the trees estimated at the previous step. The Authors also carry out a sample complexity
analysis, determining the size of the time horizon required to successfully retrieve the
polytree.
Parameter estimation in vector autoregressive systems. In the context of full
observability, we discussed some works that focus on estimating the parameters of a
vector autoregressive system by probing the system nodes over time [49, 95]. Now we
discuss another work on the same topic which assumes instead partial observability [42].

In [42], the following N -dimensional vector autoregressive system is considered:

yt = Ayt−1 + xt, for t = 1, 2, . . . . (2.22)

Given a subset P ⊂ {1, 2, . . . , N} of probed nodes, let P0 , {1, 2, . . . , N} \ P be its
complement set, i.e., the set of unobserved nodes. Thus, the equations in (2.22) can be
conveniently partitioned in the following block representation: 

[yt]P

[yt]P0

!
=

 
APP APP0

AP0P AP0P0

! 
[yt−1]P

[yt−1]P0

!
+

 
[xt]P

[xt]P0

!
. (2.23)

The aim is to estimate a submatrix AP from observing [yt]P over time. The addressed
problem is solved by assuming that the number of probed nodes, |P|, is smaller than the
number of unobserved nodes, |P0| = N−|P|. This is a restrictive assumption that is often
not met in practice, especially over large networks. We remark that, in contrast, our
analysis will hold for any number of unobserved nodes (ruling out the trivial cases that
the probed subset is either fully connected or fully disconnected). Two algorithms are
proposed in [42], one using a variational expectation-maximization approach and another
exploiting the second-order moments of the random process [yt]S. These algorithms are
proved to work well under some technical “identifiability” conditions.
Continuous-time systems. In the context of full observability we have seen that the
works in [49, 95] and the work in [6] adopt a similar model, with the key difference that
the former works consider a continuous-time dynamics, whereas the latter work considers
discrete-time signals. In a similar fashion we can now present [51] as the continuous-time
counterpart of [42]: 

[ẏt]P

[ẏt]P0

!
=

 
APP APP0

AP0P AP0P0

! 
[yt]P

[yt]P0

!
+

 
[xt]P

[xt]P0

!
, for t ≥ 0. (2.24)

The graph learning strategy proposed in [51] is similar to the one proposed in [18], and
amounts to find an optimal sum decomposition of a matrix into a sparse matrix and a
low-rank matrix, by means of a regularized convex optimization problem.

The key assumption made here is that the considered models have the so-called local-
global structure, where each of the observed random processes is explicitly influenced by
only a few observed ones, while at the same time the unobserved processes interact with
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many observed ones. As in [42], the results in [51] are proved under the assumption that
the number |P0| of latent variables is smaller than the number |P| of observed ones.
Frequency-domain approach. References [70] and [71] consider the same model adopted
in [69], with the difference that only the processes from a subset of nodes can be observed.
As in [37], the underlying topology is assumed to be a polytree. The proposed algorithm
is based on the computation of the so-called log-coherence distance, which requires the
knowledge of the cross-spectral densities of the observed processes.

In [71] the transfer functions can be learned by a generalization of the so-called door
criterion, a powerful parameter identification tool for structural equations models. This
generalization is important since it allows to consider graphs having loops, unlike other
works [37,70] that rule out this possibility.
Link Prediction problems. Another interesting problem related to graph learning is
the link prediction problem. Consider a network graph G with N nodes and assume that,
for a fixed pair of nodes k and ‘, one is interested to know whether an edge connecting
them exists. The link prediction problem attempts to estimate the likelihood of the
existence of such an edge (i.e., a “link”) starting from some relevant information on the
graph G, such as the set of known edges, some attributes of nodes k and ‘ (and possibly of
their neighbors), or some structural properties of the graph (e.g., sparsity). The simplest
family of link prediction methods uses the similarity-based framework, where each pair
of nodes k and ‘ is assigned a score defined as the similarity score sk,‘. All non-observed
links are ranked according to their scores, and the links connecting more similar nodes
are supposed to have higher likelihoods. The method based on similarity scores can be
very simple or very complicated and it may work well for some networks while fail for
some others.

Node similarity can be defined by using some essential attributes/descriptors of nodes
or, if such attributes are unavailable, by considering some forms of structural kinships.
One of the simplest similarity index is the common neighbors index: two nodes are more
likely to have a link if they have many common neighbors. For instance, this quantity
has been used to examine collaboration networks, showing a positive correlation between
the number of common neighbors and the probability that two scientists will collaborate
in the future [86]. In [56], the neighbors counting index has been exploited to confirm
the common intuition that two students having many mutual friends are very probable to
be friends in future. Many variants of this index have been proposed, each one favoring
different kinds of similarity criteria, and a systematic survey can be found in [62].

Anyway, similarity heuristics make strong assumptions on when two nodes are likely
to be connected, which limits their effectiveness on networks where these assumptions
fail. For example, consider again the common neighbors heuristic. Its assumption may
be correct in social networks [56], but was shown to fail in protein-protein interaction
networks, where two proteins sharing many common neighbors are actually less likely
to interact [57]. In this regard, a more rewarding approach could be to learn a suitable
heuristic from a given network instead of using predefined rules. This can be done by
using modern deep learning techniques. By extracting a local subgraph around each target
link, the aim is to learn a function mapping the subgraph patterns to link existence, thus
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automatically learning a heuristic suited to the current network. An important work in
this field is [123], which proposes a solution based on the so-called SEAL framework. In
a nutshell, this solution consists in extracting local enclosing subgraphs around links as
training data, and use a neural network to learn which enclosing subgraphs correspond to
link existence. More formally, the enclosing subgraph for a node pair (k, ‘) is the subgraph
induced from the network made by the neighbors of k and ‘ up to a certain number of
hops.

An approach different from similarity-based techniques is proposed in [28], which is
useful for many networks when some hierarchical organization exists among nodes. The
Authors define a general technique to infer the underlying hierarchy of the network and
predict the missing links. In particular, the procedure adopts a maximum likelihood
method, where the likelihood is a function of both the network dendogram D (i.e., a
possible network hierarchy) and of the conditional probability that, given D, a certain
link exists. The hierarchical structure model provides a smart way to predict missing
links, and is able to capture the hidden hierarchical structure of the network. However,
this algorithm is very slow. Its time complexity is usually quadratic in the network size
and, in the worst case, it takes exponential time. In comparison, the hierarchical structure
model cannot manage a network with tens of thousand nodes, while the algorithms based
on local similarity indices can deal with networks with tens of million nodes [62]. Another
noticeable remark is that this model may give poor predictions for networks without clear
hierarchical structures.

In [39, 122], a class of graph learning strategies is proposed, based on the following
steps: first, learn suitable regression or classification models that best represent an ob-
served real network, and then predict the missing links by using the learned model. Given
a target network graph G, this kind of probabilistic models will optimize a target function
to learn a network model M which can fit the observed data of the target network; then the
probability of existence of a link (k, ‘) is estimated through the conditional probability:

P (k and ‘ connected | model M) . (2.25)

The link prediction works presented so far do not assume any dynamics in the underlying
graph, whereas in [52, 88] link prediction is settled on networks whose topology evolves
over time. In [88], a time sequence of graphs snapshots is given and classical similarity
scores are computed on each snapshot, so as to get a time sequence for each score. Then,
a forecasting model is used on these time series to predict the future similarity scores.
In [52], given a snapshot sequence, the similarity scores are computed in dependence of
the so-called temporal events, which encode the formation/disappearance time pattern of
a link.

By comparison, we note that the graph learning problem addressed in the present
thesis work and the link prediction both devise a reverse-engineering approach on some
data collected from a networked apparatus to determine whether two nodes are directly
connected or not. Anyway, there are some important differences between the two ap-
proaches.
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The first difference is about the nature of the available input data. The considered
graph learning problem aims at retrieving the graph from some kind of signals emitted by
the nodes, and no topological information is at disposal. On the other side, in the context
of link prediction the proposed strategies assume the knowledge of part of the graph
interconnections. Remarkable examples are the common neighbors similarity index and,
even more evidently, the use of the enclosing graphs for feeding graph neural networks.
The second difference regards the kind of considered dynamics. In the graph learning
setting considered in this work, the networked system is inherently dynamical, since the
signals emitted by the nodes evolve over time. On the other side, the link prediction
problem generally does not allow for dynamical systems. Some works consider networks
with a time-evolving topology, and the information considered for the vertices can be
considered time-varying only in the sense that it reflects the structural changes of the
networks. Another difference pertains to the scope of the prediction. In graph learning
problems, even the ones facing with partial observability, the goal is to estimate an entire
(sub)graph at once, which may be arbitrarily large. On the other side, in link prediction
settings the focus is to detect the existence of a single edge at a time. Even if one can
learn large portions of a network one link at a time, this is usually more expensive than
directly estimating all the links with techniques tailored to this task.

2.3 Main Contributions

In the previous section, several literature works in the field of graph learning have been
discussed. In particular, for any work we introduced the key assumptions of the addressed
problem, the network model, the kind of dynamics (if any) evolving over it, and the ideas
underlying the proposed solutions. We have also organized these works in a convenient
taxonomy (see Table 2.1) to shed light on the similarities among them and the considered
problem. Now, we are ready to pinpoint the exact position of the proposed work in
this big picture, by systematically describing the research advances achieved with the
results collected in the present thesis. This analysis is reported in Table 2.2, which
highlights the main elements of novelty of the present thesis: we work under partial
observability, without limitations in the number of unobserved nodes, considering large-
scale network models that do not enforce local constraints that are hardly met in large-scale
networks and examining network systems equipped with a dynamics. This setting was first
proposed in [73–75,77,78,100], where we can find results on both achievability and sample
complexity under the assumption that the underlying graph is drawn according to the
Erdős-Rényi model. We present a summary of these results in Chapter 4. As anticipated
in the previous chapter, in this thesis we extend the existing results in a twofold direction:
i) We introduce a unifying framework useful for a general class of random graph models
(Chapter 3); ii) we characterize the achievability and sample complexity of Bollobás-
Riordan graphs (Chapter 5).
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Assumptions of other works... ...which differ in our work.

The graph learning problem is examined
under the full observability assumption,
where all the network nodes are known to
exist, can be accessed and are probed
[2, 6, 44,49,69,80,90,95,106].

The graph learning problem is examined
under the partial observability assumption.
This assumption naturally takes into account
many real-world applications, when one faces
time/space complexity constraints, privacy
concerns, etc.

A “weak” partial observability regime is
considered, where the number of unobserved
nodes must be less than the number of
observed ones [18].

A “strong” partial observability regime is
considered, where the number of unobserved
nodes is arbitrary, ruling out the trivial case
that the probed subgraph is either fully
connected or fully disconnected.

The graph learning problem is examined for
fixed, finite-size networks. Only the
achievability issue is considered, while the
sample complexity analysis is not carried out
[42,44,69–71].

The graph learning problem is examined in
the doubly-asymptotic framework where both
the network size and the number of samples
grow. This provides analytic tools for
studying both achievability and sample
complexity issues for large-scale networks.

The examined networked system is not
dynamical [2, 3, 15,18,62,123].

The examined networked system runs the
autoregressive dynamics (1.2).

The topology of the target graph must fulfill
some local constraints like bounded girth plus
correlation decay [3], self-kin structures [69]
or tree-like constraints [37], which must be
satisfied at any specific piece of the network.
These conditions are hard to be met over
large networks. For example, in polytree
networks, not even a single cycle is admitted
in the graph.

The considered network graph topology
arises from the Bollobás-Rordan model. This
model does not enforce local constraints.
Moreover, it produces heterogeneous
networks featuring real-world properties like
dependence across edges and the formation
of “hubs” with many connections, as opposed
to peripheral nodes with few connections.

The topology of the target graph is assumed
to be drawn according the Erdős-Rényi
model, which leads to homogeneous
networks [73–75,77,78,100].

,

Table 2.2: Summary table reporting the key differences between the present work and
the existing works.
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Chapter 3

Achievable Graph Learning

Over a networked dynamical system, the problem of retrieving the graph from signals
collected at the nodes is meaningful since the (partially) observed network dynamics is
dependent on the underlying graph G(N). However, it is not obvious how the graph
learning task should be implemented and whether the underlying graph can be learned
faithfully. The achievability analysis addresses these questions. Specifically, when we
say that graph learning is achievable, we mean that there exists a strategy that ensures
faithful reconstruction of the probed network topology in the asymptotic regime where
the network size goes to infinity, and the number of samples is allowed to grow with the
network size.

For the considered dynamics (1.2), this dependence on the graph is conveyed by the
combination matrix A(N). For this reason, a promising approach to build a graph esti-
mator consists in the following two steps: i) first compute a matrix estimator:

bAP(T,N) = g YP(T,N) , (3.1)

and ii) then provide a suitable strategy to classify the entries of the matrix estimator as
connected or disconnected pairs.

This approach has been successfully followed for scenarios employing the Erdős-Rényi
model [73–75,78] and the Bollobás-Riordan model [25,26] to generate the random graph
G(N). However, the validity of this approach is not limited to these specific models, and
could be adopted in future works to other topologies. In this chapter we will describe this
approach in its general form, i.e., without assuming a specific model for G(N), while in the
next chapters we will derive from the general analysis presented here some fundamental
results on graph learning over specific graph models.

The forthcoming notions of identifiability, universal local structural consistency, iden-
tifiability gap and bias where introduced in [73–75, 78]. These notions cover the case of
deterministic identifiability gap and bias. However, there are relevant classes of graphs
that do not match this assumption. For example, as we will see later, in the case of
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preferential attachment graphs the identifiability gap is random [25, 26]. In this chap-
ter, we will accordingly extend the original definitions by including the possibility that
both the identifiability gap and the bias are random quantities, and identify three general
conditions to ensure achievability: i) asymptotic concentration of the combination matrix
(Definition 1), which ensures that, as N → ∞, the (scaled) matrix entries corresponding
to the graph edges stay well separated from the zero entries, and are all clustered around
a strictly positive value; ii) the existence of a limiting matrix estimator as T → ∞, i.e.,
for an ideally infinite number of samples (Definition 4); iii) the regularity of the limiting
estimator (Definition 5), which ensures that this estimator is similar, for large network
sizes, to (a possibly biased version of) the true combination matrix, thus preserving useful
information to detect the graph edges. When these three conditions hold, the resulting
sample estimator fulfills universal local structural consistency (Definition 2), a funda-
mental property that will be shown to imply achievability of the graph learning problem
under partial observability — see Theorems 1 and 2 further ahead. With this general
framework in mind, we are able to state general conditions for achievability, which are
also used to organize conveniently the proofs of the results pertaining to Erdős-Rényi and
Bollobás-Riordan graphs, reported in Chapters 4 and 5, respectively.

3.1 Useful Class of Combination Matrices

Throughout our treatment, we will focus on combination matrices satisfying the following
asymptotic concentration property.

Definition 1 (Asymptotic Concentration of the Combination Matrix). Consider
a family of random graphs G(N) with adjacency matrices G(N). If there exist a positive
sequence cN and a positive random variable γ defined on the probability space (Ω,F, P ),
such that for any deterministic sequence of probed subsets SN :

kcNAS(N) − γ GS(N)kmax-off
p−→ 0, (3.2)

then we say that the combination matrix A(N) is asymptotically concentrated for the
family of graphs G(N), with scaling sequence cN and identifiability gap γ.

In principle, the nature of the randomness of γ looks rather abstract from the defini-
tion. Its practical meaning will become clearer in the Chapter 5, where we will study the
Bollobás-Riordan preferential attachment model. Over this model, the random variable
γ arises as a specific limiting value associated to the sequence of maximum degrees of the
graphs obtained during the preferential attachment procedure.

Let us now give some insight on the practical meaning of Definition 1. Since γ is
positive, from (3.6) we can write, for ε > 0:1

lim
N→∞

P [kcNAS(N) − γ GS(N)kmax-off > εγ] = 0, (3.4)

1Given a sequence of random variables e(N) vanishing in probability with N , and a strictly positive
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which means that, with high probability as N → ∞, for all k 6= ‘ in SN :

cN ak‘(N) ∈


[(1 − ε)γ, (1 + ε)γ], (k, ‘) connected,

[−εγ, εγ], (k, ‘) disconnected.

(3.5)

We see that, for small ε, the combination matrix entries are tightly clustered: i) around
a positive value γ for connected node pairs, and ii) around zero for disconnected node
pairs — see Figure 3.1 (top panel) for a graphical illustration.

3.2 Universal Local Structural Consistency

If the combination matrixAS(N) is asymptotically concentrated according to Definition 1,

we expect that a good estimator bAS(T,N) emulates this behavior. In particular, we
introduce the following definition.

Definition 2 (Universal Local Structural Consistency of the Matrix Estimator).
Consider a combination matrix A(N) with support graph G(N), having adjacency matrix
G(N). If there exist a positive sequences cN , and two random variables γ and β, with γ
strictly positive, defined on the probability space (Ω,F, P ), such that for some TN and for
the deterministic sequence of probed subsets SN :

kcN bAS(TN , N) − γGS(N) − βkmax-off
p−→ 0, (3.6)

then we say that the matrix estimator bAP(T,N) achieves universal local structural con-
sistency for the sequence SN , with sample law TN , scaling sequence cN , identifiability gap
γ and bias β.

As a matter of terminology: i) the adjective universal is used because, as we will
promptly show, Eq. (3.6) automatically enables the possibility of recovering the topology
by means of unsupervised clustering, i.e., without prior knowledge as regards the net-
work size and other system parameters; ii) the adjective local comes from the observation
that the structure of the topology connecting nodes in the probed subset will be faith-
fully recovered by probing only these particular nodes; and iii) the adjective structural
is used because we estimate only the structure (i.e., the support graph) underlying the
combination matrix.

random variable z, for an arbitrary δ > 0 we have:

P[e(N) > z] ≤ P[e(N) > z,z > zδ/2] + P[z ≤ zδ/2]

≤ P[e(N) > zδ/2] + δ/2 < δ, (3.3)

where zδ/2 > 0 is chosen such that P[z ≤ zδ/2] ≤ δ/2 (a condition that can be met for any δ since
P[z ≤ 0] = 0), and the last inequality holds for sufficiently large N since e(N) vanishes in probability.
The arbitrariness of δ implies that limN→∞ P[e(N) > z] = 0, and (3.4) follows from (3.6) by setting
e(N) = kcNAS(N) − γ GS(N)kmax-off and z = εγ.
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Using the same arguments that, starting from (3.2), led to the configuration (3.5) illus-
trated in Figure 3.1 (top panel), we can also conclude that the universal local structural
consistency (3.6) implies the following asymptotic dichotomy, illustrated in Figure 3.1
(bottom panel), with high probability as N → ∞:

cN bak‘(TN , N) ∈


h
β + (1 − ε)γ, β + (1 + ε)γ

i
, (k, ‘) connected,

h
β − εγ,β + εγ

i
, (k, ‘) disconnected.

(3.7)

By comparing the two illustrations in Figures 3.1 we observe that the off-diagonal entries
of the matrix estimator bAS(TN , N) preserve the same pattern of the corresponding entries
of matrix AS(N), with the difference that the estimator has a bias quantified by the
random variable β. Notably, this bias does not impair the possibility of recovering the
support graph. What matters to achieve faithful graph recovery is the presence of the
identifiability gap γ that separates the matrix entries corresponding to connected and
disconnected node pairs. This property automatically enables the possibility of clustering
the off-diagonal entries of matrix bAS(TN , N) so as to classify connected vs. disconnected
pairs, ruling out the trivial case that the probed subgraph is either fully connected or fully
disconnected, i.e., that we have only one cluster. Once a clustering procedure graphclu(·)
is devised, we obtain the consistent graph estimator:bGP(T,N) = graphclu bAP(T,N) . (3.8)

This result is established in the next section.

3.3 Clustering the Matrix Estimator

It is not difficult to envisage clustering algorithms that can achieve correct classification
of the node pairs under condition (3.7). In order to show that such an algorithm actually
exists, we need to introduce first a formal definition of correct clustering.

Definition 3 (Correct Clustering). Let A = [ak‘] be an S×S matrix with nonnegative
entries and let G the adjacency matrix corresponding to the support graph of A. The
diagonal entries of G are zero by convention (since we are not interested in self-loops).

Let bA = [bak‘] be an estimated matrix fulfilling, for some positive values ε and γ, and
for value β, the following condition for all k 6= ‘:

bak‘ ∈


h
β + (1 − ε)γ, β + (1 + ε)γ

i
, if ak‘ > 0,

(i.e., if (k, ‘) is connected in G)h
β − εγ, β + εγ

i
, otherwise,

(3.9)
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Asymptotic concentration of the combination matrix

Universal local structural consistency of the matrix estimator

Figure 3.1: Graphical illustration of Definition 1 (top panel) and Definition 2 (bottom
panel). Blue circles denote disconnected node pairs, whereas red circles denote connected
pairs. The essential difference between the two illustrations is that the entries of the ma-
trix estimator bAS(TN , N), while still preserving the same dichotomy as the corresponding
entries of matrix AS(N), converge to biased limit values.

and let bG = graphclu(bA) : RS×S → {0, 1}S×S (3.10)

be a clustering algorithm that computes an estimated adjacency matrix bG. Then, algo-
rithm graphclu(·) will be said to be correct if, when the sets of connected and disconnected
pairs in G are both non-empty, there exists a sufficiently small ε such that we have:

bG = G (3.11)

independently of the values of γ and β.

As an example of clustering that matches Definition 3, let us consider an algorithm
that computes the midpoint between the maximum and minimum off-diagonal entries of
the estimated matrix. Using the bounds in (3.9) we can write:

β +
1

2
− ε γ ≤ maxk,‘ bak‘ + mink,‘ bak‘

2
≤ β +

1

2
+ ε γ. (3.12)
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Accordingly, correct clustering will be surely performed if the lowest admissible value
β + (1 − ε)γ for the connected pairs lies above the threshold, namely if:

β + (1 − ε) γ > β +
1

2
+ ε γ ⇔ ε <

1

4
, (3.13)

and if the highest admissible value β+εγ for the disconnected pairs lies below the thresh-
old, namely if:

β + εγ < β +
1

2
− ε γ ⇔ ε <

1

4
. (3.14)

In summary, the simple algorithm that employs an intermediate threshold to separate the
clusters matches Definition 3, provided that ε < 1/4.

We now prove that universal local structural consistency of the sample estimator
implies the existence of a consistent graph estimator according to (1.6), which in turn
implies achievability. This is established in the next theorem.

Theorem 1 (Sufficient Conditions for Consistency of the Graph Estimator).
Consider a graph model G(N) and a sequence of probed subsets SN such that the probability
that GS(N) is either fully connected or fully disconnected vanishes as N → ∞. LetbAP(T,N) be an estimator of AP(N), which achieves universal local structural consistency
according to Definition 2 with sample law TN , and let graphclu(·) be a correct clustering
algorithm according to Definition 3. Then, the graph estimator:

bGP(T,N) = graphclu bAP(T,N) (3.15)

satisfies the consistency property (1.6), namely,

lim
N→∞

P
hbGS(TN , N) = GS(N)

i
= 1. (3.16)

for the family of graphs G(N), the sequence of probed subsets SN and the sample law TN .

Proof: See Appendix A.
From a theoretical standpoint, the midpoint rule is enough to conclude that correct

clustering is possible. However, the midpoint rule is not necessarily the best option to be
used in practice, as we will carefully explain in Section 3.6, where we will also introduce
another clustering rule inspired by the k-means algorithm.

3.4 Limiting Matrix Estimators and Consistent Graph
Estimators

It is useful to introduce the limiting estimator, which corresponds to the ideal estimator
obtained when an infinite number of samples is available, namely, with T → ∞ and N
fixed.
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Definition 4 (Limiting Matrix Estimator). We say that a matrix estimator bAP(T,N)

converges to a limiting estimator bAP(N) if, for any ε > 0:

lim
T→∞

P
h
k bAP(T,N) − bAP(N)kmax > ε|A(N) = A

i
= 0. (3.17)

We notice that: i) the conditional probability in (3.17) depends on the overall combi-
nation matrix A(N) corresponding to the entire network; and ii) the limiting estimatorbAP(N) inherits the randomness in A(N), but in (3.17) we used normal font to denote it
since the realization of A(N) is fixed due to conditioning. Condition (3.17) is a standard
condition of consistency achieved by many empirical estimators, which are convergent as
the number of samples scales to infinity.

If a limiting estimator bAP(N) exists, it makes sense to examine whether it allows us
to recover faithfully the true combination matrix. In particular, it is useful to introduce
the following notion of regularity.

Definition 5 (Regular Limiting Estimator). Consider an asymptotically concentrated
combination matrix A(N), with scaling sequence cN . If there exist a random variable β
defined on the probability space (Ω,F, P ), such that for the deterministic sequence of
probed subsets SN we have:

cN bAS(N) −AS(N) − β
max-off

p−→ 0, (3.18)

then we say that the limiting estimator bAP(N) is regular for the sequence SN , with bias
β.

The next theorem establishes useful connections among the combination matrix, the
sample estimator and the limiting estimator.

Theorem 2 (Sufficient Conditions for Universal Local Structural Consistency).

Let bAP(T,N) be an estimator of the combination submatrix AP(N) such that:

i) A(N) asymptotically concentrates according to Definition 1, with scaling sequence
cN and identifiability gap γ,

ii) bAP(T,N) converges to the limiting matrix estimator bAP(N) as T → ∞ according
to Definition 4,

iii) the limiting estimator is regular in the sense of Definition 5, with bias β, for the
sequence SN .

Then, there exists a sample law TN , with TN
N→∞−→ ∞, such that the matrix estimatorbAP(T,N) achieves universal local structural consistency for the sequence SN according to

Definition 2, with scaling sequence cN , identifiability gap γ and bias β.
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Proof: See Appendix A.

We remark that in Theorem 2 the law TN is unspecified. In other words, the theorem
ensures that the exists a suitable sample law ensuring consistent learning, but it does not
establish how fast the number of samples must grow with the network size. The aim of
the sample complexity analysis is to fill this gap.

We can summarize the results of the present analysis as follows. Assume that the
combination matrix A(N) fulfills Definition 1 and assume that we have a matrix esti-

mator bAP(T,N) of AP(N) converging according to Definition 4. With these premises,
in Theorem 2 we proved that the regularity property of the limiting estimator of Defini-
tion 5 implies universal local structural consistency of the sample estimator according to
Definition 2, and therefore it implies achievability in view of Theorem 1. This is a useful
result, since it allows us to establish whether graph learning is achievable by focusing only
on the properties of the limiting estimator, i.e., disregarding sample complexity issues.

3.5 Granger Estimator

So far we have dealt with the abstract concepts of matrix estimators and limiting matrix
estimators. In this section we introduce a concrete example of estimator that will play a
fundamental role in the analysis conducted in Chapters 4 and 5.

Preliminarily, it is necessary to introduce the steady-state covariance matrix and the
one-lag covariance matrix corresponding to model (1.1), which are, respectively [63]:

R0(N) = lim
i→∞

E yi(N)y>
i (N) A(N) , (3.19)

R1(N) = lim
i→∞

E yi(N)y>
i−1(N) A(N) , (3.20)

where bold notation for the covariance matrices is used to encompass randomness of the
underlying graph. Under model (1.1) (with a stable matrixA(N)), it is known that the co-
variance matrix is the solution to the discrete-time Lyapunov equationA(N)R0(N)A>(N)−
R0(N) + I = 0, which is [103]:

R0(N) =

∞X
i=0

Ai(N)[Ai(N)]>. (3.21)

Moreover, by exploiting (1.1) it is readily seen that:

R1(N) = A(N)R0(N), (3.22)

which implies the following inversion formula:

A(N) = R1(N)R−1
0 (N) ⇒ AP(N) = [R1(N)R−1

0 (N)]P. (3.23)

Since covariance matrices can be faithfully estimated through sample covariance matrices
as the number of samples increases, Eq. (3.23) suggests that the true matrix AP(N) can

36



be actually estimated from the samples, which would imply that consistent graph learning
is trivially possible.

However, under partial observability we can only compute the covariance matrices
over the probed subset, [R0(N)]P and [R1(N)]P. As a result, computation of the inver-
sion formula (3.23) is impaired by the unavailability of signals from the latent nodes.
Nevertheless, the limiting estimator (which actually depends only on the covariances over
the probed subset): bAP(N) = [R1(N)]P([R0(N)]P)−1 (3.24)

is a meaningful choice that, in the context of Granger causality [45], is referred to as
the Granger estimator or predictor, and attempts to provide the best linear prediction of
the future samples from the past one-lag samples over the probed subset. In a nutshell,
Granger causality refers to the relationships between time series. With reference to our
example, assume that we regress yk,t(N) on the past one-lag time series available in the
network, y‘,t−1(N), for ‘ ∈ P. It has been proved that the optimal predictor of yk,t(N)
(i.e., the one minimizing the regression error) does not exploit the time series y‘,t−1(N) if
ak‘(N) = 0. Thus, one says that k is “Granger-caused” by those ‘ such that ak‘(N) 6= 0.

On the other hand, from elementary matrix algebra we know that:

[R1(N)]P([R0(N)]P)−1 6= [R1(N)R0(N)−1]P, (3.25)

namely, the Granger estimator (3.24) constructed from the probed subset is different from
the Granger estimator (3.23) constructed from the entire network and then projected onto

the probed subset. This difference gives rise to the question of whether bAP(N) can be
still profitably used to estimate graph GP(N).

Sample Granger Estimator. We introduce the sample Granger estimator:

bAP(T,N) = [R1(T,N)]P([R0(T,N)]P)−1, (3.26)

which replaces the true covariance matrices appearing in (3.24) with the sample covariance
matrices R0(T,N) and R1(T,N), whose (k, ‘)-entries are defined as:

[Rj(T,N)]k‘ =
1

T − j

TX
i=1+j

yk,i(N)y>
‘,i−j(N), j = 0, 1. (3.27)

By ergodicity, the sample Granger estimator converges to the limiting estimator in (3.24)
in the sense of Definition 4.

Regularized Granger Estimator. Another version of the Granger estimator, which
will be particularly useful in our sample complexity analysis, is the regularized Granger
estimator. When dealing with covariance-based estimators, one source of sample com-
plexity comes from how well-conditioned these matrices are. For this reason, it is useful to
replace (3.26) with its regularized counterpart, namely, a matrix bAP(T,N) constructed as

follows. For k ∈ P, the k-th row of bAP(T,N) is a solution to the constrained optimization
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problem (here x ∈ R|P| is a row vector, and, for a matrix M , the notation [M ]kP denotes
the k-th row of submatrix MP):

min
x∈R|P|

kx [R0(T,N)]P − [R1(T,N)]kPk∞ s.t. kxk1 ≤ 1. (3.28)

We remark that, when the sample covariance matrix is invertible, the non-regularized
Granger estimator in (3.26) is the only matrix that yields a zero residual in (3.28). As
a result, when the non-regularized Granger estimator fulfills the constraint in (3.28), the
two estimators coincide.

3.6 A modified k-means Algorithm

Let us recall the relation in (3.7) arising from Definition 2. We have that, for N large,

the off-diagonal entries of the matrix estimator bAS(TN , N) form two clusters, and in
particular: i) the entries relative to disconnected pairs are scattered around a value β, and
ii) the entries relative to connected pairs are scattered around a strictly higher value β+γ.
Moreover, the amount of scattering around these two values becomes asymptotically
negligible. This behavior is qualitatively illustrated in Figure 3.1 (bottom panel).

There is no doubt that any reasonable clustering algorithm would be able to prop-
erly separate the two clusters when the scattering effect is sufficiently small, namely,
for a sufficiently large network size N and a suitable sample law TN . For example, in
Section 3.3 we showed that an asymptotically correct separation of the two clusters is
obtained by simply choosing as separating threshold the midpoint between the maximum
and minimum off-diagonal entries of the matrix estimator. In particular, we showed that
this rule implements a correct clustering algorithm in the sense specified by Definition 3,
which means that the midpoint rule works well for sufficiently small ε. In terms of the
matrix estimator bAS(TN , N), a small ε means that the entries of this estimator must be
sufficiently concentrated around the values β and β+γ. This concentration requires that
N is sufficiently large.

However, the asymptotic correctness of an algorithm is not the only characteristic that
we need in practical situations. Another desirable characteristic is a high tolerance to the
amount of scattering due to finite network size effects. Therefore, between two or more
algorithms fulfilling Definition 3, we will always prefer the one which behaves better for
finite network sizes.

In this respect, we have observed that the popular k-means algorithm (in our case,
with k = 2) seems to work better than the aforementioned midpoint rule in a high
variety of practical situations. Unfortunately, it is well-known that this algorithm can
have problems in presence of unbalanced clusters [43, 101], a phenomenon illustrated in
Figure 3.2. To understand why, let us briefly discuss how the k-means algorithm works.
Let v be the vector containing the data to cluster. The k-means attempts to minimize
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Figure 3.2: An example showing the benefits of the modified k-means algorithm over
the classical k-means algorithm with k = 2 in presence of unbalanced clusters. In the
top panel we show the dataset that we employ for the experiment. Note that the data
are organized in two clusters, with very different sizes. In particular, the points in the
big cluster are depicted in blue, while the points in the small cluster are depicted in
red. In the middle and bottom panels, we show the clusters computed by the k-means
algorithm and its modified version reported in Listing 1, respectively. In both panels,
the black line represents the midpoint between the centroids computed by the pertinent
algorithm. Consequently, all points above the threshold are marked in blue, since they
are the estimation of the (true) big cluster shown in the top panel. The remaining points
are marked in red. We note that the k-means algorithm returns a wrong solution, which
in practice separates the big cluster in two. As described in the main text, this biased
behavior arises from the fact that the cost associated to the small cluster in (3.29) is
negligible. On the other hand, the modified k-means algorithm does not have the same
issue, and in fact it successfully estimates the true clusters.

the following cost function [43,101]:X
vj∈C0

(vj − c0)2 +
X

vj∈C1

(vj − c1)2, (3.29)
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over all possible clusters C0 and C1, where c0 and c1 are the clusters’ centroids, defined
respectively as:

c0 ,
1

|C0|
X

vj∈C0

vj , c1 ,
1

|C1|
X

vj∈C1

vj . (3.30)

It is possible to show that, to minimize the cost function in (3.29), it suffices to consider
the cluster pairs C0 and C1 whose centroids are such that the midpoint:

c0 + c1

2
(3.31)

separates the two clusters, namely,

∀vj ∈ C0 vj <
c0 + c1

2
, and ∀vj ∈ C1 vj >

c0 + c1

2
. (3.32)

We will refer to this set as set of admissible configurations, and we will denote it by A.
Figure 3.2 illustrates two possible admissible configurations in a case where the true
clusters associated to the input vector v have very different sizes (top panel). The first
admissible configuration (middle panel) is wrong, since it splits the larger cluster in two.
On the other hand, the second configuration (bottom panel) is correct, namely, represents
correctly the true data partitioning. In some cases where there is a very large cluster, as
the one shown in Figure 3.2, it may happen that the cost function in (3.29) is minimized
by the wrong admissible configuration and not by the correct one.

The intuition behind this fact is that the error associated to the small true cluster is
negligible, and the cost function in (3.29) creates a bias in favor of the entries of the large
cluster. This is of course a undesirable property, which may lead to wrong conclusions
even if the true clusters are clearly visible and neatly separated as in the case of Figure 3.2.

Moreover, since in our model it is actually permitted that one cluster dominates the
other one. For instance, we will see in the next chapters that over some popular random
graph models, in the sparse regime we can have a connected graphs (where any pair of
nodes is connected through some path) while the fraction of connected node pairs can
even vanish as N → ∞. Owing to the aforementioned problems, we are not guaranteed
that the k-means algorithm is asymptotically correct in the sense of Definition 3.

To overcome these limitations, it is possible to devise a straightforward modification
of the k-means algorithm [75]. By examining again the two solutions in Figure 3.2, we see
that the correct admissible configuration is the one with higher distance c1 − c0 between
the cluster centroids. Therefore, the flaw of the k-means algorithm can be remediated by
selecting, among all the admissible solutions in the set A, the one with largest centroids
distance. A pseudo-code of this algorithm is reported in Listing 1.

Assume that the input vector v contains L elements, and assume that the elements
have been preliminarily arranged in ascending order. The first step of the modified k-
means algorithm consists in computing the set A. Since the elements of v are ordered, this
set can be computed by performing an exhaustive search over the cluster configurations:

C0(j) = {1, 2, . . . , j}, and C1(j) = {j + 1, j + 2, . . . , L}, (3.33)
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Listing 1: Modified k-means algorithm, j? = clu(v)

% v is an L× 1 vector with entries sorted in ascending order

% the algorithm computes the set of admissible configurations for the standard k-means

A = ∅;
for j = 1 : L− 1 do

% set 2 tentative clusters

C0(j) = {v1, v2, . . . , vj};
C1(j) = {vj+1, vj+2, . . . , vL};
% compute the centroids of the 2 clusters

c0(j) = 1
j

Pj
i=1 vi, c1(j) = 1

L−j

PL
i=j+1 vi;

% check if the midpoint between the centroids separates the clusters

if vj <
c0(j) + c1(j)

2
< vj+1 then

A = A ∪ {j};
end

end
% select the admissible configuration with largest centroid distance

j? = argmax
j∈A

[c1(j) − c0(j)];

for j ∈ {1, 2, . . . , L − 1}. Accordingly, we see that any possible partition is identified by
an index j. Consequently, the algorithm scans all possible cluster pairs (3.33) spanning
the set {1, 2, . . . , L− 1}, and retains the set of indices fulfilling the required condition in
the list A = {j1, j2, . . .}.

For the traditional k-means algorithm (with k = 2), a criterion to select an admissible
configuration is the minimization of (3.29). Contrariwise, the modified algorithm returns
the configuration j? in A with maximum distance between the centroids:

j? = argmax
j∈A

[c1(j) − c0(j)], (3.34)

where c0(j) and c1(j) are computed from C0(j) and C1(j) according to (3.30). We remark
that in principle we could have multiple maximizers, and in this case the choice for
j? should be further refined with some additional criterion. However, in our case this
refinement is immaterial since we will see later in Theorem 3 that for our assumptions
the maximizer j? is unique with high probability as N → ∞.

Finally, in order to build a graph estimator of the form (3.8), we need to build a
grapclu(·) operator of the form (3.10) starting from the procedure described in Listing 1.
This is an easy task, which can be formally summarized as follows:

1. Given an input matrix M , its off-diagonal entries are vectorized and sorted in as-
cending order. Let v be the resulting vector.
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2. The clustering algorithm in Listing 1 is applied to vector v, and the optimal config-
uration j? is constructed.

3. The zero-diagonal adjacency matrix G, of the same size as M , is constructed such
that the off-diagonal entry gk‘ is set to 0 if the corresponding element vj belongs
to2 C0(j?) = {v1, v2, . . . , vj?}, and to 1 otherwise, namely, if element vj belongs to
C1(j?) = {vj?+1, vj?+2, . . . , vL}.

A pseudo-code of this algorithm is reported in Listing 2. Now that we have a working
graphclu(·) operation of the form (3.10), which benefits from the flexibility of the k-means
algorithm while concurrently ruling out the biased behavior reported in Figure 3.2, we
show that it satisfies Definition 3.

Theorem 3 (Correctness of the modified k-means algorithm). The clustering
algorithm reported in Listing 2 satisfies Definition 3 with ε ≤ 1

6 .

Proof: See Appendix A.
In summary, the modified k-means algorithm produces two benefits. First, it is asymp-

totically correct for N → ∞. Second, it improves the performance of the k-means for
finite size networks, since it also works in situations like the one illustrated in Figure 3.2.

3.7 General Scheme for Consistent Graph Estimators

Building upon the analysis developed so far, we can identify a general scheme to construct
consistent graph estimators over a wide range of situations adhering to the problem in-
troduced in Chapter 1. We will see in later chapters how this scheme can be successfully
exploited to build consistent graph estimators in context where the graph sequence G(N)
is drawn according to some popular random graph models, namely, the Erdős-Rényi and
the Bollobás-Riordan models.

Corollary 1 (Sufficient Conditions for Achievability). Consider the graph learning
problem under partial observability over vector autoregressive systems like (1.2). Let the
quadruple: n

G(N), SN , A(N), bAP(T,N)
o

(3.35)

satisfy the following properties:

i) the probed subsets SN is such that the probability that GS(N) is either fully connected
or fully disconnected vanishes as N → ∞,

ii) the combination matrix A(N) asymptotically concentrates according to Definition 1,

iii) the matrix estimator bAP(T,N) converges to the limiting matrix estimator bAP(N)
according to Definition 4, and this limit is regular in the sense of Definition 5.

2Note that the vectorization and the sorting operations that we used at step 1 to compute v from M
define a one-to-one mapping between the matrix indices (k, ‘) and the vector indices j.
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Listing 2: Graph Estimator based on the modified k-means algorithm,
G = graphclu(M)

% M is an S×S matrix

% the algorithm computes an S×S zero-diagonal matrix with off-diagonal entries equal to 0 or 1

% mapping the output of the modified k-means algorithm over the entries of M

% vectorize and sort the off-diagonal entries of M ,

% also record the index map idx : (k, ‘) 7→ j such that if j= idx(k, ‘) then mk‘ =vj

v, idx(·, ·) = sort vec off-diag(M) ;

% cluster the sorted entries and compute the cluster C1(j?)

j? = clu(v); C1(j?) = {vj?+1, vj?+2, . . . , vL};

% initialize the estimated adjacency matrix with all zeros, then set to 1 the off-diagonal entries

gk‘ for which mk‘ is in C1(j?)

G = zeros(S × S);
for k, ‘=1 : S with k 6= ‘ do

j = idx(k, ‘);

if vj ∈ C1(j?) then
gk‘ = 1;

end

end

Then, the graph estimator:

bGP(T,N) = graphclu bAP(T,N) , (3.36)

where graphclu(·) is the clustering procedure reported in Listing 2, satisfies the consistency
property (1.6), namely,

lim
N→∞

P
hbGS(TN , N) = GS(N)

i
= 1. (3.37)

for some sample law TN (whose characterization is the aim of the sample complexity
analysis).

Proof: This result is a direct consequence of Theorems 1, 2 and 3.
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Chapter 4

Learning Erdős-Rényi Graphs

In this chapter we present some literature results [73–75,77,78,100] on graph learning un-
der partial observability (as formulated in Chapter 1) when the underlying graph sequence
G(N) is drawn according to the Erdős-Rényi model.

4.1 Erdős-Renyi Model

The most popular model to build a random graph is the Erdős-Rényi model. This model
generates an undirected graph, which means that edges exist always in both directions
or, equivalently, that there is no need to talk of directed edges, but simply of edges.
Accordingly, the adjacency matrix G is symmetric, and the random process giving rise to
it generates only the upper (or lower) triangular part of the matrix. Over an Erdős-Rényi
random graph, the edges are determined, one independently from the other, by running a
sequence of Bernoulli experiments with identical success (i.e., connection) probability [7,
35]. Accordingly, the variables gk‘(N), for k, ‘ = 1, 2, . . . , N and k < ‘, are independent
Bernoulli random variables with connection probability:

pN , P[gk‘(N) = 1]. (4.1)

One useful graph descriptor is the node degree, which counts the number of neighbors of
a node. The degree of node k is:

dG,k(N) ,
NX
‘=1

gk‘(N). (4.2)

According to (4.1) and (4.2), the expected degree (i.e., the expected number of neighbors
of each node) is given by:

E[dG,k(N)] = (N − 1)pN , for each node k = 1, 2, . . . , N . (4.3)
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In particular, in the following analysis we shall use the minimal and maximal degrees,
which are defined respectively as:

νG(N) , min
k∈[1,N ]

dG,k(N), µG(N) , max
k∈[1,N ]

dG,k(N). (4.4)

The explicit dependence of the connection probability upon N is a critical feature of the
Erdős-Rényi model, since it allows characterizing different types of asymptotic graph be-
havior. First of all, in order to guarantee that the graph is connected with high probability
as N → ∞, the connection probability must satisfy [7, 35]:

pN =
logN + cN

N
, cN

N→∞−→ ∞. (4.5)

When (4.5) is verified we say that we are in the connected regime. A relevant class of
connected graphs is the class where the expected degree in (4.3) goes to infinity faster
than logN , which means that, for 0 ≤ p < 1:

pN = ωN
logN

N

N→∞−→ p, ωN
N→∞−→ ∞. (4.6)

It is known that, for this class of graphs, the minimal and maximal degrees both concen-
trate1 asymptotically around NpN , in the following sense.

Figure 4.1: Taxonomy of the connected regimes of the Erdős-Rényi model considered in
this work. The arrows indicate that we are moving from a more general to a more specific
condition.

1We remark that here the term “concentration” is borrowed from a common terminology in statistics,
which is used to describe situations when some random quantities asymptotically converge around a
common value.
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Theorem 4 (Degree Concentration in Erdős-Rényi Graphs). Let G(N) be a graph
sequence generated according to the Erdős-Rényi graph model with connection probability
satisfying (4.6). Then, the minimal and the maximal degree sequences νG(N) and µG(N)
arising from the graph sequence satisfy:

νG(N)

NpN

p−→ 1,
µG(N)

NpN

p−→ 1. (4.7)

Proof: See Appendix A in [75].

Recalling (4.3), we see that the physical meaning of (4.7) is that both the minimal
and the maximal degrees scale as the expected degree asymptotically as N → ∞. The
connection regime described by (4.6) will be referred to as the degree concentration regime.
Moreover, when the limit connection probability p in (4.6) is zero we talk of sparse
(connected) regime. Otherwise, if the limit connection probability p is nonzero we talk of
dense regime. Figure 4.1 illustrates a diagram that summarizes the concentration/sparsity
taxonomy of the aforementioned connected regimes.

4.2 Assumptions on the Probed Subset SN

In order to study the graph learning problem under partial observability, it is necessary
to specify how the sequence of probed subsets SN scales with N . In particular, we
are interested in ruling out the pathological situations where the subgraph of probed
nodes end up being fully disconnected or fully connected as N → ∞. The next lemma
characterizes how the probed subset must scale with N to avoid these cases.

Lemma 1 (Nontrivial Erdős-Rényi Subgraphs). Let SN be a sequence of subsets
satisfying (1.5) and:

|SN | N→∞−→ ∞. (4.8)

Let G(N) be a random graph sequence drawn according to the Erdős-Rényi model with

connection probability pN
N→∞−→ p, where 0 ≤ p < 1. Then:

lim
N→∞

P GS(N) is fully connected = 0. (4.9)

Moreover, if either 0 < p < 1 or

p = 0 and lim
N→∞

|SN |2 pN = ∞, (4.10)

then:

lim
N→∞

P GS(N) is fully disconnected = 0. (4.11)

Proof: See Appendix D.
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An assumption of particular interest for the probed subsets is that their cardinalities
scale linearly according to:

lim
N→∞

|SN |
N

= ξ, for some 0 < ξ < 1. (4.12)

It is easy to verify that with this choice the sequence SN satisfies the hypotheses of
Lemma 1. In fact, combining (4.6) and (4.12) we obtain the condition:

|SN |2 pN
N→∞−→ ∞. (4.13)

4.3 Assumptions on the Combination Policy A(N)

Once a network graph G(N) is constructed, it is necessary to define a policy to assign
the combination matrix A(N). Combination matrices arise across several domains, in-
cluding distributed optimization, adaptation and learning over networks, social learning,
network stochastic control. In all these domains, the system designer is called to run
an algorithm (e.g., for optimization, learning, control) over a certain network topology.
To this end, he/she devises a distributed procedure where the network nodes exchange
locally information according to a certain combination matrix. Some popular choices in
these contexts are the Laplacian and the Metropolis policies [14, 30, 33, 55, 102, 103, 120],
which are illustrated below.

4.3.1 Laplacian Matrix

The graph Laplacian L(N) is a matrix whose off-diagonal (k, ‘)-entry is −1 for connected
pairs (k, ‘) and 0 otherwise, and whose k-th main diagonal entry is the degree of node k.
Starting from L(N), the Laplacian combination matrix is defined as:

A(N) = ρ× (I − cL(N)), c ,
λ

1 + µG(N)
, (4.14)

where µG(N) is the maximal degree of G(N), λ ≤ 1 is a positive parameter that tunes
the relative importance of the self-weights, and ρ < 1 is a positive parameter that grants
stability of the dynamical system in (1.1) — see [103]. The Laplacian combination rule
can be conveniently described in terms of the individual entries as follows, for k 6= ‘:

ak‘(N) = 0, (k, ‘) disconnected,

ak‘(N) =
ρλ

1 + µG(N)
, (k, ‘) connected,

akk(N) = ρ−
NX
‘=1
‘ 6=k

ak‘(N).

(4.15)
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4.3.2 Metropolis Matrix

The Metropolis combination matrix is defined as follows, for k 6= ‘:

ak‘(N) = 0, (k, ‘) disconnected,

ak‘(N) =
ρ

1 + max {dG,k(N),dG,‘(N)}
, (k, ‘) connected,

akk(N) = ρ−
NX
‘=1
‘ 6=k

ak‘(N).

(4.16)

where dG,k(N) is the degree of of node k in G(N), while 0 < ρ < 1 has the same meaning
as for the Laplacian matrix. The Metropolis combination rule is a special case of the
Hastings rule, an optimal combination policy that boosts performance in distributed
consensus/diffusion networks [103].

4.3.3 Regular Diffusion Matrices

The matrices arising from the Laplacian and Metropolis rules belong to a broader fam-
ily of policies for which the combination matrices are symmetric and satisfy, for some
parameters κ and ρ such that 0 < κ ≤ ρ < 1:

ak‘(N) = 0, (k, ‘) disconnected,

κ

1 + µG(N)
6 ak‘(N) 6

κ

1 + νG(N)
, (k, ‘) connected,

akk(N) = ρ−
NX
‘=1
‘ 6=k

ak‘(N).

(4.17)

We will refer to these kind of matrices as regular diffusion matrices. These matrices are
scaled left-stochastic matrices (i.e., their rows sum up to a constant value ρ) with support
graph G(N). We also remark that the Laplacian matrix and the Metropolis matrix match
(4.17) with κ = ρλ and κ = ρ, respectively.

4.4 Achievability for Erdős-Rényi Graphs

The following lemma shows that the regular diffusion matrices in (4.17) asymptotically
concentrate when their support graph G(N) is an Erdős-Rényi graph under the degree
concentration regime.

Lemma 2 ( Asymptotic Concentration of Regular Diffusion Matrices over
Erdős-Rényi graphs ). Consider the case when the support graph of a regular diffusion
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matrix like (4.17) is the simple graph G(N) drawn according to the Erdős-Rényi model with
connection probability pN scaling according to the degree concentration regime (4.5), (4.6).
Then the combination matrix satisfies Definition 1 with scaling sequence cN , NpN and
deterministic identifiability gap γ , κ.

Proof: See Appendix D.

The next result establishes the regularity of the limiting Granger estimator in the
considered scenario.

Lemma 3 (Regularity of the Limiting Granger Estimator for Erdős-Rényi
graphs). Let A(N) be a regular diffusion matrix (4.17) with support graph G(N) drawn
according to the Erdős-Rényi model under degree concentration regime (4.5), (4.6). Then
for any sequence of probed subsets SN such that:

lim
N→∞

|SN |
N

= ξ, for some 0 < ξ < 1, (4.18)

the limiting Granger estimator satisfies:

NpN bAS(N) −AS(N) −β
max-off

p−→ 0, (4.19)

with:

β , κ2p
(2ρ− κ) (1 − ξ)

1 − (ρ2 − 2ρκξ + κ2ξ)
, (4.20)

namely, it fulfills Definition 5 for the considered sequence SN , with (deterministic) bias β.

Proof: See Appendix D.

In view of Lemmas 2 and 3, we can now state the main achievability result for Erdős-
Rényi random graphs.

Theorem 5 (Achievability for Erdős-Rényi Graphs). Let us consider the dynam-
ical system (1.1), with a regular diffusion matrix as in (4.17), and with network graph
G(N) being a simple graph arising from the Erdős-Rényi model under degree concentration
regime (4.5), (4.6). Then, for any probed subset sequence SN such that:

lim
N→∞

|SN |
N

= ξ, for some 0 < ξ < 1, (4.21)

the graph estimator: bGP(T,N) = graphclu bAP(T,N) , (4.22)

where graphclu(·) is the clustering procedure in Listing 2, and bAP(T,N) is the sample
Granger estimator in (3.26), satisfies the consistency property (1.6):

lim
N→∞

P
hbGS(TN , N) = GS(N)

i
= 1. (4.23)

for some scaling law TN .
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Proof: This result is a direct consequence of Lemmas 1, 2 and 3, applied to Corollary 1,
along with the fact that the sample Granger estimator in (3.26) converges to the limiting
Granger estimator (3.24) by ergodicity.

4.5 Results on Sample Complexity

We now report the available results on the sample complexity of the regularized Granger
estimator operating over Erdős-Rényi graphs. The analysis, conducted in [75], works
under the following classical assumption on system (1.1) [6, 49,61,95].

Assumption 1 (Stationary Gaussian Vector Autoregressive System). For the
sample complexity analysis, we assume that the input signals xk,i(N) are standard Gaus-
sian variables (independent w.r.t. to node index k, time index i, and network size N).
Under these conditions, given a realization A(N) = A of the combination matrix, the
vector autoregressive process in (1.1) admits a Gaussian stationary distribution (which is
a function of A) [6, 63]. We assume that, given A(N) = A, the initial vector y0(N) is
distributed according to the stationary distribution.

Theorem 6 (Sample Complexity of the Granger Estimator for Erdős-Rényi
Graphs). Let us consider the dynamical system (1.1) operating under Assumption 1 with
a regular diffusion matrix as in (4.17), and with network graph G(N) arising from the
Erdős-Rényi model under degree concentration regime (4.6). Then, for any probed subset
sequence SN such that:

lim
N→∞

|SN |
N

= ξ, for some 0 < ξ < 1, (4.24)

the graph estimator: bGP(T,N) = graphclu bAP(T,N) , (4.25)

where graphclu(·) is the clustering procedure in Listing 2, and bAP(T,N) is the sample
Granger estimator in (3.26), is consistent with sample complexity law:

TN = C(NpN )2 log |SN |, (4.26)

for some constant C > 0.

Proof: See Appendix I in [75].
We see from (4.26) that under the dense regime (where pN converges to some nonzero

probability p) the sample complexity is essentially quadratic in N . On the other hand,
under the sparse regime, recalling from (4.6) that we have NpN = ωN logN , we see that:

TN ∼ (ωN logN)2 log |SN | (4.27)

revealing that the specific sample complexity under the sparse regime depends on the
specific speed of growth of the sequence ωN , which regulates the sparsity of the problem.
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Chapter 5

Learning Bollobás-Riordan
Graphs

5.1 Bollobás-Riordan Model

Preferential attachment graphs are typically obtained through an iterative process that
goes as follows. Starting from a graph with a certain structure, at each subsequent it-
eration one node is added, along with some edges connecting this node to the graph
constructed until that iteration. The term “preferential attachment” is used because the
probability that the new node is connected to an existing node is proportional to the
degree of the latter. Therefore, nodes that have already experienced a large amount of
connections are favored, giving rise to a dichotomy in the network, where some nodes
emerge as hubs with most of the connections, whereas the remaining nodes become pe-
ripheral and feature few connections.

The way to build a preferential attachment model is not unique. Since the pioneering
work [4], several preferential attachment models have been proposed. One of the most
popular variants is the Bollobás-Riordan random graph, which is the model examined in
this work [8, 10]. The Bollobás-Riordan model provides an elegant mathematical formu-
lation that allows to capture many features of real-world networks and to obtain clean
analytical results for useful graph descriptors (e.g., node degrees, minimum and maxi-
mal degrees, centrality measures). Let us delve into the mathematical description of the
Bollobás-Riordan model [8, 10].

First of all, a Bollobás-Riordan graph is a multigraph, which means that multiple self-
loops and multiple edges are permitted. A random multigraph of size n will be denoted by
M(n) and its adjacency matrix by M(n). Matrix M(n) is the symmetric (since Bollobás-
Riordan graphs are undirected) n×n matrix whose off-diagonal (k, ‘)-entry mk‘(n) is the
number of edges between nodes k and ‘, and whose diagonal entry mkk(n) is the number
of self-loops of node k.
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Figure 5.1: One example of iterative construction of a Bollobás-Riordan multigraph with
parameter η = 3.

Then, the Bollobás-Riordan preferential-attachment model with parameter η ∈ N gen-
erates iteratively a random sequence of multigraphs M(n), for n = 1, 2, . . . , according to
the following procedure — see Figure 5.1 for a graphical illustration. The initial multi-
graph M(1) is a deterministic multigraph with one node and η self-loops. Multigraph
M(n) is constructed starting from M(n− 1) by adding a new node n and η new connec-
tions (edges or self-loops). Specifically, η steps are performed, and at each step node n is
connected to a node randomly chosen from the set {1, 2, . . . , n}. The intermediate multi-
graph obtained at steps s = 1, 2, . . . , η, is denoted by M(n; s). Accordingly, since after
η steps we obtain the updated multigraph M(n), we have the identity M(n; η) = M(n).
Likewise, we have M(n; 0) = M(n− 1).

Exploiting the procedure shown in Figure 5.1 we can argue that the adjacency matrices
possess the following structure:

M(n) =



m1,n(n)

M(n− 1)
...

mn−1,n(n)
mn,1(n) · · · mn,n−1(n) mn,n(n)


, (5.1)

with M(1) = η. In fact, when passing from M(n − 1) to M(n) we simply attach η new
edges to the new node n, so that the number of edges mk‘(n − 1) between any pair of
nodes k, ‘ < n remains unaltered. In comparison, the adjacency matrix entries relative
to the fresh node n evolve according to the following rule:

mnk(n) = mkn(n) =

ηX
s=1

I(v(n; s) = k), k ∈ {1, . . . , n} (5.2)

where I(·) is the indicator function (which is equal to 1 if its argument is true and is zero
otherwise) and we denote by v(n; s) the particular node that becomes connected to n
through the edge introduced at step s. For this reason, for any k ≤ ‘ ≤ n, the (k, ‘)-entry
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of the adjacency matrix is actually determined only at iteration ‘, and, hence, it makes
sense to drop the dependence on n and write:

mk‘(n) = mk‘(‘) ,mk‘ = m‘k. (5.3)

Node Degrees and Preferential Attachment Rule

We adopt the standard convention that the degree of node k, denoted by dM,k(n), is the
number of edges connected to k plus twice1 the number of self-loops [32]:

dM,k(n) =

nX
‘=1
‘ 6=k

mk‘ + 2mkk. (5.4)

Likewise, we denote by dM,k(n; s) the degree of node k in the intermediate multigraph
M(n; s).

At each step s, the degree of a node k 6= n in the intermediate multigraph M(n; s)
increases by 1 if the node picked at step s is equal to k, namely,

dM,k(n; s) = dM,k(n; s− 1) + I(v(n; s) = k). (5.5)

In comparison, the degree of the new node n increases by 1 if the node picked at step s
is equal to k < n, while it increases by 2 if node n itself is picked, since each self-loop is
counted twice in the degree, with the initialization dM,n(n; 0) = 0.

dM,n(n; s) = dM,n(n; s− 1) + 1 + I(v(n; s) = n). (5.6)

The description of the multigraph construction is now completed by assigning the prob-
ability that a particular node is picked. Consider first the probability that the new node
n is attached to an existing node k < n, namely,

P [v(n; s) = k|M(n; s− 1)] =
dM,k(n; s− 1)

1 +
Pn

‘=1 dM,‘(n; s− 1)
. (5.7)

Let us ignore for now the term 1 appearing in the denominator. We see that the prob-
ability mass function in (5.7) matches well the preferential attachment paradigm, since
we see that nodes with higher degrees in M(n; s − 1) are more likely to be connected
to the incoming node n, and so their degrees are more likely to increase further as the
multigraph construction proceeds, according to “the rich get richer” philosophy.

We switch to the probability that a self-loop is created on the new node n:

P [v(n; s) = n|M(n; s− 1)] =
1 + dM,n(n; s− 1)

1 +
Pn

‘=1 dM,‘(n; s− 1)
. (5.8)

1If we sum all degrees over index k in (5.4), each edge is counted twice (because mk‘ = m‘k), and
each self-loop is counted twice (because of the factor 2). As a result, with the adopted convention the
half-sum of the degrees in the multigraph is exactly equal to the total number of edges and self-loops.
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The term 1 in the numerator corresponds to first attaching one end of a new edge to the
new node and updating the degree of that node before attaching the other end of the
edge [8,10]. Note that this term grants a nonzero probability of self-loops (we recall that
dM,n(n; 0) = 0) when the new node enters the system. The term 1 in the denominator
is necessary to get an admissible probability mass function, i.e., to let the sum of the
probabilities in (5.7) and (5.8) be equal to 1.

It is useful to provide a more explicit representation for the denominator in (5.7) and
(5.8). Since we know (see footnote 1) that the half-sum of all degrees is equal to the total
number of edges and self-loops, and since at each step the Bollobás-Riordan construction
adds exactly η new connections, we get the following equality:

1 +

nX
k=1

dM,k(n; s− 1) = 1 + 2η(n− 1) + 2(s− 1), (5.9)

which reveals that the denominator of the preferential attachment probability is a deter-
ministic quantity. Finally, by merging (5.7) and (5.8) in a single equation, and using (5.9)
to represent the denominator, we get, for all k = 1, 2, . . . , n, the compact representation:

P [v(n; s) = k|M(n; s− 1)] =
δkn + dM,k(n; s− 1)

1 + 2η(n− 1) + 2(s− 1)
, (5.10)

where δkn is the Kronecker delta.

Maximal Degree

One fundamental graph descriptor that will play a critical role in our analysis is the
maximal degree µM(N). In particular, we will rely on the asymptotic growth of the
maximal degree with the network size N , which, as formally stated in Appendix 5.2, was
found to be on the order of

√
N , in the following sense (see Theorem 8.14 at [112, p.

280]):

µM(N)√
N

a.s.−−→ µ, (5.11)

where
a.s.−−→ denotes almost-sure convergence as N → ∞, and µ is a certain positive random

variable.

The square-root growth of the maximal degree in a Bollobás-Riordan graph can be
related to the well known power-law or scale-free behavior of these graphs. The power-law
decay refers to the average number of nodes with degree equal to d, which was shown
to scale as an inverse power of d, precisely as d−3 for Bollobás-Riordan graphs. It was
shown in [10] that such heavy-tailed behavior, as opposed, for instance, to the exponential
tail corresponding to an Erdős-Rényi graph, reflects into a faster growth of the maximal
degree, namely, the

√
N growth prescribed by (5.11).
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From Multigraph M(N) to Graph G(N)

The multigraph structure was chosen by Bollobás and Riordan because it was instrumental
to prove a number of theoretical results [8,10]. The final goal of their model, however, was
to construct a standard (i.e., simple) graph, with single edges and no self-loops. Actually,
the multigraphs generated according to the Bollobás-Riordan model are approximately
similar to simple graphs, since it is possible to show that the fraction of edges that are
either repetitions or self-loops vanishes as N grows, as formally stated in the following
lemma. Before stating the lemma, it is useful to notice that, by construction, the number
of edges in M(n) is equal to ηn since we start with η loops in M(1) and add η new edges
at a time.

Lemma 4 (Equivalence Between Bollobás-Riordan Multigraphs and Simple
Graphs). Let M(N) be a Bollobás-Riordan multigraph of size N , and let m̊(N) and
m̈(N) be the number of self-loops and redundant edges, respectively. Then, the number
of self-loops and redundant edges are asymptotically negligible w.r.t. the total number of
connections ηN , namely,

lim
N→∞

E[m̊(N) + m̈(N)]

ηN
= 0. (5.12)

Proof: We start with the analysis of the number of self-loops in M(N), which is equal
to:

m̊(N) ,
NX

k=1

mkk. (5.13)

Given a multigraph M(k − 1), let us consider the η steps, s = 1, 2, . . . , η, necessary to
build the multigraph M(k). Consider a sequence of nodes v1, v2, . . . , vη selected during
the η steps, with the prescription that exactly m out of the η nodes are equal to k, i.e.,
we have m self-loops attached to the new node k. We denote by Vm the ensemble of
configurations v1, v2, . . . , vη that match such prescription. We note in passing that the
cardinality of Vm is equal to η

m . According to the adopted notation, the probability of
having exactly m self-loops attached to k admits the following representation:

P[mkk = m |M(k − 1)]

(a)
=
X
Vm

ηY
s=1

P[v(k; s) = vs | {v(k; τ) = vτ}s−1
τ=1,M(k − 1)]

≤
X
Vm

Y
s:vs=k

P[v(k; s) = k | {v(k; τ) = vτ}s−1
τ=1,M(k − 1)]

(b)

≤ η

m

1

(k − 1)m
, (5.14)
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where (a) follows by the chain rule and (b) follows from (5.42), once noticing that dM,k(k−
1) = 0. Now, by exploiting the definition of M(1), the multigraph made by a single node
with η self-loops, we can write:

m̊(N) = η +

NX
k=2

mkk, (5.15)

which, in view of (5.14) yields:

E[m̊(N) |M(k − 1)] =

η +

NX
k=2

ηX
m=1

mP[mkk = m |M(k − 1)]

≤ η +

NX
k=2

ηX
m=1

m
η

m

2η

k − 1

m

≤ η + C(η)

NX
k=2

1

k − 1
, (5.16)

where the finite constant C(η) is implicitly defined in the last step of (5.16). We imme-
diately see from (5.16) that:

lim
N→∞

E[m̊(N)]

N
= 0, (5.17)

since the last summation in (5.16) is the harmonic number, which grows logarithmically
with N .

We continue by examining the expected number of redundant edges in M(N):

E[m̈(N)] =

NX
‘=1

‘−1X
k=1

E[m̈k‘], (5.18)

where the number of redundant edges between two distinct nodes k and ‘ in the multigraph
M(‘) can be conveniently represented as:

m̈k‘ , max{mk‘ − 1, 0}, (5.19)

We want to show that:

lim
N→∞

E[m̈(N)]

N
= 0. (5.20)

In order to prove (5.20), we can call upon the Stolz-Cesàro theorem, and apply (5.50) with

the choices f‘ =
P‘−1

k=1 E[m̈k‘] and g‘ = 1 (which corresponds to apply the Cesàro-mean
theorem), implying that it would suffice to show that:

lim
‘→∞

‘−1X
k=1

E[m̈k‘] = 0. (5.21)
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Reasoning as done to obtain (5.14), we have the following representation:

P[mk‘ = m |M(‘− 1)]

≤
X
Vm

Y
s:vs=k

P[v(‘; s) = k | {v(‘; τ) = vτ}s−1
τ=1,M(‘− 1)]

≤ η

m

dM,k(‘− 1) + 2η

2η (‘− 1)

m

, (5.22)

where in the last step we applied (5.42). Exploiting (5.19), from (5.22) we can compute
the conditional expected value of m̈k‘, obtaining:

E[m̈k‘ |M(‘− 1)] =

η−1X
m=1

mP[m̈k‘ = m |M(‘− 1)]

=

ηX
m=2

(m− 1)P[mk‘ = m |M(‘− 1)]

≤
ηX

m=2

(m− 1)
η

m

dM,k(‘− 1) + 2η

2η (‘− 1)

m

(5.23)

≤ dM,k(‘− 1) + 2η

2η (‘− 1)

×
ηX

m=2

(m− 1)
η

m

µM(‘− 1) + 2η

2η (‘− 1)

m−1

, (5.24)

where, in the last step the degree of node k has been upper bounded m− 1 times by the
maximal degree. Summing over index k, from (5.24) we get:

‘−1X
k=1

E[m̈k‘ |M(‘− 1)] ≤
P‘−1

k=1 (dM,k(‘− 1) + 2η)

2η (‘− 1)

×
ηX

m=2

(m− 1)
η

m

µM(‘− 1) + 2η

2η (‘− 1)

m−1

. (5.25)

Using (5.9) and recalling that dM,k(‘− 1) = dM,k(‘− 1; η), we have that:

‘−1X
k=1

dM,k(‘− 1) = 2η(‘− 1), (5.26)
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which, taking expectation w.r.t. to M(‘− 1) in (5.25), yields:

‘−1X
k=1

E[m̈k‘]

≤ 2

ηX
m=2

(m− 1)
η

m
E

"
µM(‘− 1) + η

2η (‘− 1)

m−1
#
, (5.27)

and the claim in (5.21) follows by (5.39), which, further applying (5.17), completes the
proof of the lemma.

According to Lemma 4, it makes sense to introduce the simple2 graph G(N) associated
to a multigraph M(N), obtained by uprooting all self-loops and redundant edges from
M(N). The entries of the adjacency matrix G(N) of graph G(N) are:

gkk = 0, gk‘ = min{mk‘, 1} for k 6= ‘. (5.28)

Likewise (and coherently with (4.2)) the degree of node k in G(n) and the corresponding
maximal degree are, respectively:

dG,k(N) =

NX
‘=1

gk‘, µG(N) = max
k∈[1,N ]

dG,k(N). (5.29)

The equivalence between M(N) and G(N) holds also in terms of maximal degrees, as
stated in the following lemma.

Lemma 5. Let µM(N) and µG(N) be the maximal degrees of the multigraph M(N) and
of the associated simple graph G(N), respectively. We have that:

µM(N) − µG(N)√
N

p−→ 0, (5.30)

which further implies:

µG(N)√
N

p−→ µ, (5.31)

where µ is the same limiting variable introduced in (5.11).

Proof: Considering the definition of the multigraph degree in (5.4), and separating the
contribution of the redundant edges in (5.19) from the contribution of the simple graph

2In graph theory, the qualification “simple” is used to stress that the graph has no self-loops and no
multiple edges.
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term in (5.28), we can write:

dM,k(N) = 2mkk +

NX
‘=1
‘ 6=k

mk‘

(a)
= 2mkk +

NX
‘=1
‘6=k

gk‘ +

k−1X
‘=1

m̈k‘ +

NX
‘=k+1

m̈k‘

(b)
< 3 η + dG,k(N) +

NX
‘=k+1

m̈k‘, (5.32)

where in (a) we adopt the convention that the second summation is equal to zero when
k = 1, and that the third summation is equal to zero when k = N ; and in (b) the
inequality follows because the number of self-loops attached to node k at cycle k, as well
as the number of edges connecting node k to a node ‘ < k, are at most equal to the
number of steps η, namely, mkk ≤ η and

Pk−1
‘=1 m̈k‘ < η. Taking the maximum over

k ∈ [1, N ] in (5.32) we can write:

0 ≤ µM(N) − µG(N) < 3 η + max
k∈[1,N ]

NX
‘=k+1

m̈k‘

= 3 η + max
k∈[1,N−1]

NX
‘=k+1

m̈k‘, (5.33)

where the equality follows because of the summation is zero when k = N . For any k ≥ 1,
let us introduce the sequence:

uk(‘) ,
m̈k‘, k < ‘,
0, otherwise.

(5.34)

It is readily verified that the family of sequences {uk(‘)}‘≥1 indexed by the parameter k,
matches the hypotheses of Lemma 21, with the choices Θ = N \ {0}, b = η, and with the
filtration {F(‘)}‘≥1 generated by the random sequence {M(‘)}‘≥1. In particular, for any

ε > 0, and for any N ≥ 1, by choosing T = [1, N ] and u = ε
√
N , we can apply Lemma 21

and write:

P

"
max

k∈[1,N−1]

NX
‘=k+1

m̈k‘ > ε
√
N

#

≤ Ne−
3ε
16η

√
N + P max

k∈[1,N−1]
Ck(N) >

ε

2

√
N , (5.35)
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where

Ck(N) =

NX
‘=k+1

E[m̈k‘|M(‘− 1)]. (5.36)

On the other hand, for 1 ≤ k ≤ N − 1 we have that:

Ck(N) ≤
NX
‘=2

E[m̈k‘|M(‘− 1)]

≤
NX
‘=2

ηX
m=2

(m− 1)
η

m

dM,k(‘− 1) + 2η

2η (‘− 1)

m

≤
NX
‘=2

ηX
m=2

(m− 1)
η

m

µM(‘− 1) + 2η

2η (‘− 1)

m

, (5.37)

where in the second inequality we applied (5.23), whereas the third inequality follows from
the definition of maximal degree. Applying Markov’s inequality and exploiting (5.37) we
obtain:

P max
k∈[1,N−1]

Ck(N) ≥ ε

2

√
N

≤ 2

ε

ηX
m=2

(m− 1)
η

m

1√
N

NX
‘=1

E
µM(‘) + 2η

‘

m

. (5.38)

Substituting (5.38) into (5.35) and applying Lemma 7, from (5.33) we obtain the con-
vergence in (5.30). Then, the convergence in (5.31) comes directly from (5.11), and the
proof is complete.

In the following, we will refer to graph G(N) as Bollobás-Riordan simple graph, or
simply as Bollobás-Riordan graph.

5.2 Useful Results on Bollobás-Riordan Multigraphs

We start by enunciating two properties of the maximal degree µM(N) that will be critical
in our development.

Theorem 8.14 in [112, p. 280]. For N = 1, 2, . . . , let µM(N) be the maximal degree
sequence defined over the multigraph sequence M(N). For any m ∈ N we have that:

lim sup
N→∞

E
µM(N)√

N

m

< ∞. (5.39)

Moreover, there exists a strictly positive random variable µ such that:

µM(N)√
N

a.s.−−→ µ, (5.40)
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where
a.s.−−→ denotes almost-sure convergence.

We continue by proving a lemma that provides a uniform upper bound on the prefer-
ential attachment probability.

Lemma 6 (Bounds on the Preferential Attachment Probability). The preferential
attachment probability defined in (5.10) obeys the following bound:

P [v(n; s) = k|M(n; s− 1)] <
dM,k(n− 1) + 2η

2η (n− 1)
. (5.41)

Moreover, for any set T ⊆ {1, 2, . . . , s− 1}, we have that:

P[v(n; s)=k|{v(n; τ)}τ∈T,M(n− 1)] <
dM,k(n− 1) + 2η

2η (n− 1)
. (5.42)

Proof: First we focus on the numerator in (5.10). Joining (5.5) and (5.6), we can
write the degree of node k in multigraph M(n, s− 1) as:

dM,k(n; s− 1) = dM,k(n; s− 2) + I(v(n; s− 1) = k) + δkn, (5.43)

where δkn is the Kronecker delta. Developing the recursion in (5.43) over index s, we get:

dM,k(n; s− 1) = dM,k(n− 1) +

s−1X
t=1

I(v(n; t) = k)

+ (s− 1)δkn ≤ dM,k(n− 1) + 2(s− 1), (5.44)

which implies that the numerator in (5.10) is upper bounded as:

δkn + dM,k(n; s− 1) ≤ dM,k(n− 1) + 2s− 1

< dM,k(n− 1) + 2η, (5.45)

where the last inequality follows by observing that s ≤ η.
We switch to the analysis of the denominator in (5.10), which is lower bounded as:

1 + 2η(n− 1) + 2(s− 1) > 2η (n− 1). (5.46)

Using (5.45) and (5.46) in (5.10), we get (5.41). It remains to prove (5.42). By applying
the law of total probability, we can write:

P [v(n; s) = k|{v(n; τ)}τ∈T,M(n− 1)]

(a)
=
X
M

P [v(n; s) = k|M(n, s− 1) = M]

× P [M(n, s− 1) = M|{v(n; τ)}τ∈T,M(n− 1)]

(b)
<
dM,k(n− 1) + 2η

2η (n− 1)
. (5.47)
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In the summation, M spans the space of possible multigraphs M(n, s−1) compatible with
the multigraph M(n − 1) and the collection of selected nodes {v(n; τ)}τ∈T, and where:
(a) comes from the fact that the preferential attachment rule is Markovian, namely, the
selection at step s depends only on the previous multigraph M(n; s − 1) (regardless of
any details about the previous multigraph evolution); while (b) comes from (5.41).

Lemma 7 (Sum of Maximal Degree Powers). For all m ≥ 2 we have that:

lim
N→∞

1√
N

NX
n=1

E
µM(n) + 2η

n

m

= 0. (5.48)

Proof: First we observe that:

1√
N

NX
n=1

E
µM(n) + 2η

n

m

=

PN
n=1 n

−m/2

√
N

NX
n=1

E
µM(n) + 2η

n

m

PN
n=1 n

−m/2
. (5.49)

From the Stolz-Cesàro theorem, for any two positive sequences fN and gN with gN → ∞
as N → ∞, we have that [17,109]:

lim sup
N→∞

PN
n=1 fnPN
n=1 gn

≤ lim sup
N→∞

fN
gN

, (5.50)

which applied to the last fraction in (5.49) yields:

lim sup
N→∞

NX
n=1

E
µM(n) + 2η

n

m

PN
n=1 n

−m/2

≤ lim sup
N→∞

E
µM(N) + 2η

N

m

N−m/2

= lim sup
N→∞

E
µM(N) + 2η√

N

m

< ∞, (5.51)

where the last inequality follows by (5.39).
Focusing on the first fraction in (5.49) we have that, for m > 2:

∞X
n=1

n−m/2 = ζ(m/2), (5.52)
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where ζ(·) is the Riemann zeta function (which is finite), while for m = 2 the summation
in (5.52) is the harmonic number, which diverges logarithmically as N → ∞. Accordingly,
we conclude that for all m ≥ 2:

lim
N→∞

PN
n=1 n

−m/2

√
N

= 0. (5.53)

The claim of the lemma now follows by applying (5.51) and (5.53).

Lemma 8 (Correlation Between Degrees). For any 1 ≤ k < ‘ ≤ N , we have that:

E[mkNm‘N |M(N − 1)] <
µM(N − 1) + 2η

N − 1

2

. (5.54)

Proof: It is convenient to introduce the following binary random variables:

βks(N) , I(v(N ; s) = k), (5.55)

for 1 ≤ k ≤ N and 1 ≤ s ≤ η. Using (5.2), we can write:

E [mkNm‘N |M(N − 1)]

= E

"
ηX

s=1

βks(N)

ηX
s=1

β‘s(N) M(N − 1)

#
=

X
1≤s,t≤η

s 6=t

E [βks(N)β‘t(N)|M(N − 1)] , (5.56)

where the last step holds true since k 6= ‘ by assumption. Let us examine the behavior
of the individual term in (5.56) and focus, without loss of generality, on the case s > t.
Since βks(N) and β‘t(N) are indicator variables, we have that:

E [βks(N)β‘t(N)|M(N − 1)]

= P[v(N ; s) = k,v(N ; t) = ‘|M(N − 1)]

= P[v(N ; s) = k|v(N ; t) = ‘,M(N − 1)]

× P[v(N ; t) = ‘|M(N − 1)]

<
η(η − 1)

2

µM(N − 1) + 2η

2η (N − 1)

2

, (5.57)

where the last inequality follows from (5.42), and the claim follows by observing that
η(η − 1)/(8η2) < 1.
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5.3 Asymptotic Concentration of the Laplacian

In this section we show that the Laplacian matrix, when defined over the Bollobás-Riordan
graph presented in Section 5.1, asymptotically concentrates according to Definition 1.

Lemma 9 (Asymptotic Concentration of the Laplacian Combination Matrix
over Bollobás-Riordan Graphs). Consider the case when the support graph of the
Laplacian combination matrix (4.15) is the simple graph G(N) obtained from a Bollobás-
Riordan multigraph M(N) with step parameter η. Then the Laplacian combination matrix
satisfies Definition 1 with scaling sequence cN ,

√
N and identifiability gap:

γ ,
ρλ

µ
, (5.58)

where µ is given by (5.11).

Proof: From definition (4.15) of the Laplacian matrix we have that:

A(N) − diag(A(N)) = ρλ
G(N)

1 + µG(N)
. (5.59)

Therefore, the term:
k
√
NA(N) − γG(N)||max-off , (5.60)

where γ is the identifiability gap introduced in Definition 1, is upper bounded by:

ρλ
√
N

1 + µG(N)
− γ p−→ 0, (5.61)

with the convergence following from (5.40) and (5.30) since µ is strictly positive. Thus,
we have:

k
√
NA(N) − γG(N)||max-off

p−→ 0, (5.62)

which concludes the proof.

5.4 Assumptions on the Probed Subset SN

As done for Erdős-Rényi graphs, we focus on the case where the fraction of probed nodes
converges to some value ξ. Notably, this value is arbitrary, i.e., is allowed to be arbitrarily
small. The next lemma shows that under this assumption for the probed subsets, the
subgraph GS(N) is nontrivial w.h.p. as N → ∞.

Lemma 10 (Nontrivial Bollobás-Riordan Subgraphs). Let SN be a sequence of
subsets satisfying (1.5) with:

lim
N→∞

|SN |
N

= ξ, for some 0 < ξ < 1, (5.63)
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and let G(N) be a random graph sequence associated with a Bollobás-Riordan multigraph
M(N). Then: i) for sufficiently large N , subgraph GS(N) is not fully connected; and ii)
the probability that GS(N) is fully disconnected vanishes as N → ∞.

Proof: The sum of all degrees in multigraph M(N) grows linearly with N . In order to
have a fully connected subgraph GS(N), the sum of all degrees of this subgraph should be
equal to |SN |2, which scales as N2 in view of (5.63). Therefore, subgraph GS(N) cannot
be fully connected as N grows.

We move on to examine the probability that GS(N) is fully disconnected. Let

SN = {n1, n2, . . . , n|SN |}, V‘ , {n1, n2, . . . , n‘}, (5.64)

with:

n1 < n2 < . . . < n|SN |. (5.65)

We can write:

P[GS(N) is fully disconnected]

≤P v(n2; 1) /∈V1,v(n3; 1) /∈V2, . . . ,v(n|SN |; 1) /∈V|SN |−1

=

|SN |Y
‘=2

P v(n‘; 1) /∈ V‘−1|{v(nk; 1) /∈ Vk−1}‘−1
k=2 , (5.66)

where the inequality follows by considering only the connections at step s = 1 of the
preferential attachment construction, whereas the equality follows by the chain rule. Now,
from (5.10), for any k < n we obtain the following lower bound:

P [v(n; 1) = k|M(n− 1)] ≥ η

1 + 2η(n− 1)
≥ 1

2n
. (5.67)

Accordingly, the individual term in (5.66) can be upper bounded as follows:

P v(n‘; 1) /∈ V‘−1|{v(nk; 1) /∈ Vk−1}‘−1
k=2

= 1 −
‘−1X
k=1

P v(n‘; 1) = nk|{v(nk; 1) /∈ Vk−1}‘−1
k=2

≤ 1 − ‘− 1

2n‘
≤ 1 − ‘− 1

2N
. (5.68)
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Using (5.68) in (5.66), we finally get:3

P[GS(N) is fully disconnected]

≤
|SN |Y
‘=2

1 − ‘− 1

2N
≤

|SN |Y
‘=|SN |/2+1

1 − ‘− 1

2N

≤ 1 − |SN |
4N

|SN |/2
N→∞−→ 0, (5.70)

where the second inequality holds because all terms in the product are smaller than 1,
while convergence holds in view of (5.63).

5.5 Regularity of the Limiting Granger Estimator

Lemma 11 (Regularity of the Limiting Granger Estimator over Bollobás-Rior-
dan graphs). Consider the case when the support graph of the Laplacian combination
matrix (4.15) is the simple graph G(N) obtained from a Bollobás-Riordan multigraph
M(N) with step parameter η. Then for any sequence of probed subsets SN the limiting
Granger estimator satisfies:

√
Nk bAS(N) −AS(N)||max-off

p−→ 0, (5.71)

namely, it fulfills Definition 5 for any sequence SN , with bias β = 0.

Proof: Since Lemma 16 holds for any symmetric matrix A fulfilling (B.1) and any subset
SN ⊆ {1, 2, . . . , N}, in view of (B.46) we can write:

k bAS(N) −AS(N)kmax-off ≤ κM A(N) , (5.72)

where M(A) is defined in (B.2). Applying Lemma 17 to (5.72), we conclude that:

√
Nk bAS(N) −AS(N)||max-off

p−→ 0, (5.73)

for any sequence of probed subsets SN .

3For each multigraph M(n‘ − 1) such that {v(nk; 1) /∈ Vk−1}‘−1
k=2, we can write:

P
h
v(n‘; 1) = nk|{v(nk; 1) /∈ Vk−1}‘−1

k=2,M(n‘ − 1)
i

= P [v(n‘; 1) = nk|M(n‘ − 1)] . (5.69)

Since the bound in (5.67) does not depend on M(n− 1), by applying the law of total probability, we can

use (5.67) to bound also the probability P
h
v(n‘; 1) = nk|{v(nk; 1) /∈ Vk−1}‘−1

k=2

i
.

68



5.6 Achievability for Bollobás-Riordan Graphs

We are now ready to state the main achievability result involving Bollobás-Riordan
graphs.

Theorem 7 (Achievability for Bollobás-Riordan Graphs). Let us consider the dy-
namical system (1.1), with Laplacian combination matrix as in (4.15), and with network
graph G(N) being a simple graph obtained from a Bollobás-Riordan multigraph M(N)
with step parameter η. Then, for any probed subset sequence SN such that:

lim
N→∞

|SN |
N

= ξ, for some 0 < ξ < 1, (5.74)

the graph estimator: bGP(T,N) = graphclu bAP(T,N) , (5.75)

where graphclu(·) is the clustering procedure in Listing 2, and bAP(T,N) is the sample
Granger estimator (3.28), satisfies the consistency property (1.6):

lim
N→∞

P
hbGS(TN , N) = GS(N)

i
= 1. (5.76)

for some scaling law TN .

Proof: This result is a direct consequence of Lemmas 9, 10 and 11, applied to Corollary 1,
along with the fact that the sample Granger estimator (3.28) converges to the limiting
Granger estimator (3.24) by ergodicity.

Equation (5.11) reveals that the limiting (scaled) maximal degree µ is an intrinsic
property of the specific Bollobás-Riordan multigraph instance. In other words, as the
Bollobás-Riordan multigraph construction progresses, the maximal degree, scaled by

√
N ,

tends to become stable, and converges to a certain value µ. However, this value is random,
implying that if we repeat the Bollobás-Riordan multigraph construction with the same
parameters, we obtain a different value for µ. In view of (5.58), this implies that the
value of the identifiability gap that is critical for graph learning purposes is random as
well, i.e., it depends on the particular graph sequence. This is a fundamental difference
that distinguishes the behavior of Bollobás-Riordan graphs from the behavior of Erdős-
Rényi graphs, where the identifiability gap is instead deterministic and independent of the
particular graph realization. However, and remarkably, we already know from Theorem 7
that randomness of the gap does not impair the possibility of consistent graph recovery.

We observe that the coupling between Bollobás-Riordan graphs (which are undirected)
and the Laplacian rule gives rise to a symmetric combination matrix. Under this assump-
tion, the series for the covariance matrix in (3.21) can be computed as (I denotes the
N ×N identity matrix):

R0(N) =
∞X
i=0

A2i(N) = I −A2(N)
−1

, (5.77)
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whose structure is exploited in the proofs of our results. While symmetry is useful to
develop these technical arguments, we remark that the Granger estimator is based upon
relation (3.22), which does not rely on symmetry at all. This observation, along with
the series structure in (3.21) that is similar to the structure exploited in Appendix B
for the symmetric case, suggests that the Granger estimator can work also with non-
symmetric matrices, as we will show in Section 7.2 by examining a directed version of
Bollobás-Riordan graphs.
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Chapter 6

Sample Complexity

We are now ready to illustrate our analysis of the sample complexity of the regularized
Granger estimator operating over Bollobás-Riordan graphs. Following [6,49,61,75,78,95],
the analysis is performed under Assumption 1, which is classical for systems like (1.1).

6.1 Preliminary Results

The following lemmas characterize the rate of convergence of the sample covariance esti-
mators. Preliminarily, it is convenient to introduce the following auxiliary function:

fT (x),|SN |2e−T/2 + |SN |2e−[
√
Tx−

√
2]

2

, (6.1)

and the error matrices, for j ∈ {0, 1}:

Ej ,
h bRj(T,N) − [Rj(N)

i
SN

. (6.2)

Lemma 12 (Sample Covariance Errors). Let us consider the dynamical system (1.1)
operating under Assumption 1, with Laplacian combination matrix as in (4.15), and with
network graph G(N) being a simple graph obtained from a Bollobás-Riordan multigraph
M(N) with step parameter η. Then there exists a constant C such that:

P[kE0kmax > ]≤ 3 fT C for T >
2

( C)2
, (6.3)

P[kE1kmax > ]≤ 4 fT−1 C for T > 1 +
2

( C)2
. (6.4)

Proof: In this proof we will often consider conditional probabilities given A(N) = A.
This is tantamount to assuming that the dynamical system (1.2) is run with a determin-
istic matrix A. In such a scenario, matrix R0(N) becomes deterministic, since accord-
ing (3.21) it is a deterministic function of A(N). Accordingly, we will conveniently denote
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by the normal-font symbol R0 the realization of R0(N) corresponding to A. In contrast,
the quantity R0(T,N) in (3.27) will remain random, since by definition it depends also
on the source of randomness given by {xt(N)}Tt=1 and y0(N).

The proof of (6.3) and (6.4) is a slight variation of the bounding technique used in
Lemma 1 of [49]. In particular, let us define for t, τ = 0, 1, . . . , with τ ≤ t, the conditional
cross-covariance between yt(N) and yτ (N), namely,

Σt,τ , E yt(N)y>
τ (N)|A(N) = A = At−τΣτ,τ = At−τR0, (6.5)

where the intermediate equality is a classical result on vector autoregressive models [63],
while the last equality comes from the enforced stationarity assumption. Starting from (6.5),
in Lemma 1 of [49] the following bound is used:

kΣt,τkmax ≤ kΣt,τk2 ≤ kAt−τk2kR0k2. (6.6)

In our case we can exploit additional constraints on A to replace (6.6) by:

kΣt,τkmax ≤ kAt−τk∞kR0kmax = ρt−τ max
k=1,2,...,N

[R0]kk, (6.7)

where the inequality comes from the fact that, for any two matrices M1, M2 of compatible
dimensions, we have kM1M2kmax ≤ kM1k∞kM2kmax. The equality in (6.7) follows by us-
ing (B.8) and by applying Cauchy-Schwarz inequality to obtain |[R0]k‘| ≤

p
[R0]kk[R0]‘‘.

Using (6.7) in place of (6.6), and leaving other arguments in the proof of Lemma 1
of [49] unaltered, we get, for any T such that:1

T >
2

ϕ(R0)
2 , (6.8)

the following bound:

P[|[E0]k‘|> |A(N) = A]≤3 e−T/2+e−[
√
T ϕ(R0)−

√
2]

2

, (6.9)

where:

ϕ(R0) ,
1 − ρ

16
√

2

min
k=1,2,...,N

[R0]kk

max
k=1,2,...,N

[R0]2kk
. (6.10)

From (5.77), (B.3), and (B.29) we have the inequalities:

min
k=1,2,...,N

[R0]kk ≥ 1, max
k=1,2,...,N

[R0]kk ≤ ᾱ, (6.11)

which can be used to bound the quantity ϕ(R0) in (6.10) as:

ϕ(R0) ≥ 1

ᾱ2

1 − ρ

16
√

2
, C. (6.12)

1Condition (6.8) is explicitly stated in Lemma 3 of [49], and basically requires that the function

e−(
√

Tx−
√

2)2 appearing in (6.9) is evaluated in the region where it is decreasing, i.e., for x >
p

2/T .
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Since the function e−(
√
Tx−

√
2)2 is decreasing for any x >

p
2/T , we conclude from (6.9)

and (6.12) that, under the condition on T in (6.3), we have:

P[|[E0]k‘| > |A(N) = A] ≤ 3 e−T/2 + e−[
√
T C−

√
2]

2

, (6.13)

which is a bound independent of the current realization A. Therefore, by applying the
law of total probability in (6.13) we get:

P [|[E0]k‘| > ] ≤ 3 e−T/2 + e−[
√
T C−

√
2]

2

. (6.14)

Now, using the union bound over the set of probed nodes SN we can write:

P[kE0kmax > ] ≤
X

k,‘∈[1,N ]

P [|[E0]k‘| > ]

≤ 3|SN |2 e−T/2 + e−[
√
T C−

√
2]

2

,

(6.15)

and the claim in (6.3) follows from the definition of fT in (6.1). In order to obtain (6.4),
we must apply the same steps shown above to the proof of Lemma 2 of [49].

Lemma 13 (Scaling Law Useful for Sample Complexity). Assume the same condi-
tions used in Lemma 12, and consider the following scaling law for the number of samples:

TN = ωNN logN, (6.16)

for some positive sequence ωN diverging in an arbitrarily slow fashion as N → ∞. Then,
for any sequence SN such that:

lim
N→∞

|SN |
N

= ξ, for some 0 < ξ < 1, (6.17)

and for j ∈ {0, 1}, we have that:

√
Nk[Rj(TN , N)]S − [Rj(N)]Skmax

p−→ 0, (6.18)

Proof: We need to show that, for any δ > 0:

lim
N→∞

P
h√

Nk[Rj(TN , N)]S − [Rj(N)]Skmax > δ
i

= 0. (6.19)

We will prove the claim with reference to the case j = 0, with the proof being identical
for j = 1. Let us consider Lemma 12 with the choice = δ/

√
N . Since Eq. (6.16) implies

that:

TN ( C)2 = TN
(δ C)2

N

N→∞−→ ∞, (6.20)
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we see that condition on T in (6.3) is met for N sufficiently large. We conclude that to
prove (6.19) it suffices to show that, for any δ > 0:

lim
N→∞

fTN

δ C√
N

= 0. (6.21)

Now, the first term on the RHS of (6.1) converges to zero since TN in (6.16) tends to
+∞ faster than log |SN |. On the other hand, the second term on the RHS of (6.1) can
be written as:

exp

(
−

p
TN

δ C√
N

−
√

2
2

+ log |SN |2
)

=exp

−
 sδ2C2

ωN logN

log |SN |
− 1p

log |SN |

!2

−1

log|SN |2
, (6.22)

and vanishes as N → ∞ in view of (6.17) and the fact that ωN → ∞ by assumption.

6.2 Sample Complexity of the Regularized Granger
Estimator

Theorem 8 (Sample Complexity of the Regularized Granger Estimator for
Bollobás-Riordan Graphs). Let us consider the dynamical system (1.1) operating un-
der Assumption 1, with Laplacian combination matrix as in (4.15), and with network
graph G(N) being a simple graph obtained from a Bollobás-Riordan multigraph M(N)
with step parameter η. Then, for any probed subset sequence SN the graph estimator:

bGP(T,N) = graphclu bAP(T,N) , (6.23)

where graphclu(·) is the clustering procedure in Listing 2, and bAP(T,N) is the regularized
Granger estimator in (3.28), is consistent with sample complexity law:

TN = ωNN logN, (6.24)

where ωN can be chosen as a positive sequence diverging in an arbitrarily slow fashion.

Proof: Calling upon Lemma 11 in [75], we have the following bound:

√
N k bAS(T,N) − bAS(N)kmax

≤ 2k[R0]−1
S k1

√
N (k[R0(T,N)]S − [R0(N)]Skmax

+ k[R1(T,N)]S − [R1(N)]Skmax) . (6.25)
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Moreover, in [75, Eq. (321)], it was shown that:

k[R0]−1
S k1 ≤ 1 + ρ2. (6.26)

If we now use (6.26) in (6.25), from Lemma 13 we conclude that:

√
Nk bAS(TN , N) − bAS(N)kmax

p−→ 0. (6.27)

From Theorems 9 and 11 we have, by application of the triangle inequality, that:

k
√
N bAS(TN , N) − γGS(N)kmax-off

p−→ 0, (6.28)

which in turn implies (see footnote 1) that (A.1) holds true with high probability as
N → ∞ with the sample scaling law in (6.16). This means that the clustering algorithm
graphclu is able to reconstruct correctly the subgraph of probed nodes, provided that the
latter is neither fully connected nor fully disconnected. However, the probability that
GS(N) is fully connected or fully disconnected vanishes N → ∞ in view of Lemma 10,
and the proof is complete.

Let us comment on the main ramifications of Theorem 8. First of all, since the
sequence ωN can grow in an arbitrarily slow fashion, any sample complexity that scales
slightly faster than N logN achieves consistency. Therefore, the bottom line of Theorem 8
is that the sample complexity of the proposed estimator is essentially linear. Let us now
see where this linear law originates from.

According to the Laplacian matrix structure in (4.15), the growth of the maximal
degree determines the way the nonzero entries of the combination matrix shrink down
as N → ∞. The smaller they are, the higher is the precision required by the sample
estimators to distinguish the nonzero entries from the zero entries. For this reason,
faster scaling laws of the maximal degree become more demanding in terms of number
of samples. This argument can be made rigorous, and is in fact exploited in the proof of
Theorem 8 to show that the sample complexity goes essentially (i.e., up to a logN factor)
as µ2

G(N). As a result, the
√
N -growth of the maximal degree over Bollobás-Riordan

graphs reflects into a final sample complexity that is essentially linear in N .
In summary, from a technical viewpoint we conclude that the main factor influencing

sample complexity is the maximal degree of the graph. However, it is useful to relate this
behavior to more “physical” attributes of the system, to capture the factors that play
a domineering role on sample complexity. One important attribute of Bollobás-Riordan
graphs is sparsity. Bollobás-Riordan graphs are very sparsely connected, since, over a
total number of possible N(N − 1)/2 edges, only ηN edges are drawn, which results
into a sparsity ratio (no. of connected edges over total no. of possible edges) scaling
as 1/N . The sporadic presence of connections might suggest that the nodes have small
degree, which, in the light of the previous discussion, would suggest a slow growth of
the maximal degree. However, this conclusion is not precise. To understand why, it
is useful to contrast Bollobás-Riordan graphs against Erdős-Rényi graphs. We consider
in particular Erdős-Rényi graphs under the degree concentration regime because under
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this regime results on sample complexity are available [75, 78]. Erdős-Rényi graphs are
built homogeneously (i.e., presence/absence of edges is established in an i.i.d. manner).
This homogeneity implies in particular that the maximal and average degree of an Erdős-
Rényi graph scale comparably, i.e., µG(N) ∼ Np, where p is the connection probability.
Accordingly, over sparse Erdős-Rényi graphs where p ≈ (logN)/N , the sample complexity
is polylogarithmic in N , whereas over dense graphs with constant p it is almost-quadratic
in N .

Let us see what happens over Bollobás-Riordan graphs. Notably, the latter graphs are
sparser than the sparsest connected Erdős-Rényi graphs! In fact, we observed that the
sparsity ratio of Bollobás-Riordan graphs is 1/N , whereas for sparse connected Erdős-
Rényi graphs we have a sparsity ratio given by the connection probability ≈ (logN)/N .
However, despite such increased sparsity, the maximal degree of Bollobás-Riordan graphs
grows as

√
N , namely, faster than the logarithmic law characterizing sparse Erdős-Rényi

graphs. This difference must be ascribed to the fact that Bollobás-Riordan graphs are
highly inhomogeneous and, hence, even with a small number of overall connections, there
are nodes with a very large number of neighbors, inducing a faster growth of the maximal
degree.

76



Chapter 7

Simulations and Experiments

7.1 Synthetic Data

According to Theorem 2, and in view of Lemmas 9 and 11, we have that the sample
Granger estimator in (3.26) achieves universal local structural consistency according to
Definition 2. As discussed in Chapter 3, this condition implies that the entries of the
sample matrix estimator exhibit the dichotomy illustrated in Figure 3.1 (bottom panel).
Therefore, we start by reproducing this behavior on synthetic data.

The two panels in Figure 7.1 display the pattern exhibited by the entries of the sample
Granger estimator, bAP(N), for two realizations of the random graph G(N) with a probed
subset P containing half the nodes of the entire network. For both realizations, the
entries of bAP(N) are scaled by

√
N , and, for clarity of visualization, they are vectorized

and rearranged so that the entries corresponding to disconnected nodes come first. The
vertical arrow displays the gap γ, which was estimated using (5.11), (5.30) and (5.58),
with reference to the pertinent graph topology shown in the figure. The following notable
effects are observed. First, in perfect accordance with Definition 2, we see the emergence
of an identifiability gap that separates clearly the entries corresponding to disconnected
node pairs from the entries corresponding to connected node pairs. We also recall that in
this case the bias is zero. Second, clustering is definitely visible: the entries pertaining to
disconnected nodes cluster around zero, whereas the entries corresponding to connected
nodes around γ, the limiting value displayed by the vertical arrow. Last but not least, by
comparing side-by-side the panels in Figure 7.1, we see that the two different realizations
correspond to different values of the gap γ, which confirms that this gap is in fact random.

We see from (5.58) that the limiting random variable µ is one fundamental ingredient
of the identifiability gap. It is therefore useful to examine the statistical distribution
of µ, and in particular its behavior in comparison to the finite-size (scaled) maximal
degree µG(N)/

√
N — see (5.31). To this end, in Figure 7.2 we display: i) the empirical

histograms of the scaled maximal degree, for three values of N (first three panels from the
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left); and ii) the empirical histogram corresponding to the limiting variable µ (rightmost
panel). To obtain the latter histogram, we exploit the following result.

Theorem 17 in [8]. Let p1,p2, . . . be the points of a Poisson process with rate η, i.e.,
equal to the number of new edges added at each iteration of the Bollobás-Riordan procedure
(see Section 5.1). The limiting random variable in (5.40) is equal to:

µ = max
n=1,2,...

zn − zn−1. (7.1)

where, for n = 0, 1, . . . , we defined:

z0 , 0, zn , 2η
√
pηn. (7.2)

According to this theorem, we simulate a Poisson process with rate η and use the ex-
pression of µ provided in (7.1) and (7.2). By comparing the different panels in Figure 7.2,
we see that the distribution of the scaled maximal degree approaches the distribution of
µ as N increases, and that the result is stable yet for the values N = 100 and N = 250.
These are interesting values since, in the range [100, 250], the probability of correct graph
learning is close to 1, as we can appreciate from the quantitative performance analysis
reported in Figure 7.3.

More specifically, in Figure 7.3 we show the probability of correct graph learning
evaluated empirically over 103 Monte Carlo runs, as a function of the network size N .
Specifically, the dynamical evolution in (1.1) is simulated over a network of increasing size
N ranging from 50 to 250, and we consider a subset of probed nodes having cardinality
bξNc, with ξ = 0.15. The curves displayed with continuous line refer to the limiting
Granger estimator in (3.24), which is obtained by using the true covariance matrices.
Markers refer to the regularized Granger estimator in (3.28), which is instead computed
over the samples. The take-away messages from Figure 7.3 are that: i) for sufficiently
large number of samples, the learning curve of the empirical Granger estimator reaches
the curve of the limiting Granger estimator; and ii) consistent learning is progressively
achieved as N grows.

In Figure 7.3, a relatively large number of samples is considered, and kept constant
across all values of the network size N . Another useful analysis pertains to the effective
number of samples necessary to achieve a target learning probability. In Figure 7.4 we
evaluate empirically the number of samples needed to get a probability equal to 90% of
the probability of correct learning achieved by the limiting Granger estimator. The blue
curve corresponds to Bollobás-Riordan graphs, and shows a growth that matches well the
almost-linear growth prescribed by Theorem 8.

It is useful to compare the observed behavior against the behavior of Erdős-Rényi
graphs. The sample complexity laws relative to Erdős-Rényi graphs mentioned in the
previous section are confirmed by the curves in Figure 7.4, revealing in particular that:
i) the intermediate growth rate is given by Bollobás-Riordan graphs (blue curve), with
almost-linear sample complexity; ii) the highest sample complexity is quadratic, and is
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required by dense Erdős-Rényi graphs (green curve); and iii) the lowest sample complexity
is achieved by sparse Erdős-Rényi graphs (red curve), and depends on the specific law
chosen for the vanishing connection probability p.

The bottom line is that: i) sparsity of preferential attachment graphs makes them
easier to learn than dense graphs; whereas ii) heterogeneity of preferential attachment
graphs implies a power-law behavior that reflects into a

√
N -growth of the maximal

degree, making them harder to learn than sparse homogeneous graphs.
Finally, we provide some quantitative data as regards the computational complexity

of the graph learning strategy in the considered examples. To this end, we now report
the run times relative to the XPS 7390 laptop of Dell Inc.®, equipped with an i7 Intel®

processor and a 16GB RAM. The graph learning algorithm can be decoupled in two
steps: i) computing the Granger estimator; and ii) performing the clustering algorithm
on its entries. The cost associated to the clustering algorithm is negligible. In the first
step, if we use the regularized Granger estimator, we need an optimization algorithm
to solve numerically (3.28). In our simulations, we employed the MATLAB® package
CVX [46, 47], which exhibited a run time ranging from ≈ 3 s to ≈ 8 s when N ranges
from 100 to 250, with ξ = 0.15. The run time reduces to less than 1 ms if we use instead
the non-regularized Granger estimator1 in (3.26), which in the considered examples was
found to coincide with its regularized counterpart — see the discussion following (3.28).

7.2 Real Networks and Directed Graphs

So far, we tested our results over synthetic network topologies generated according to
the Bollobás-Riordan procedure described in Section 5.1. Since the main motivation
behind the challenging study of these graphs is their similarity to real-world graphs, in
this section we examine some topologies of existing networks. The examples that we are
going to illustrate should be intended in the following way. We are given the topology of
a real-world network, such as, e.g., a power-grid network, a network of routers, or a social
network, which can support the implementation of distributed learning algorithms for
different useful purposes. We therefore use the assigned network topology to build/run on
top of it a distributed algorithm, for example, an adaptive distributed detection algorithm,
or a social learning algorithm, which are examples matching well the considered model
— see Section V-A in [78], and [11,108]. Then, the focus of topology inference is to solve
the reverse learning problem of retrieving the network graph from partial observation of
the nodes’ output.

We are now ready to illustrate the tests conducted over two real-world networks
provided by a popular web-repository [97], corresponding to the topologies shown in
Figure 7.5. As a preliminary comment, we can see that these topologies exhibit a di-
chotomous structure with “hubs” featuring many connections as opposed to “peripheral”
nodes with few connections. Similarly shaped structures match well the heterogeneity

1We remark that no theoretical proof on the sample complexity of the non-regularized Granger esti-
mator is available.
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guaranteed by Bollobás-Riordan models, while they are impossible to mimic through the
independent/homogeneous Erdős-Rényi generation.

The example in the top panel of Figure 7.5 refers to a power-grid network composed
of N = 4941 nodes, connected according to the displayed topology. Over this topology,
we let the autoregressive system (1.1) run with a Laplacian combination policy, and then
applied our inference algorithm under the case that only one third of the nodes are probed,
with T = 2 · 105 samples. The results of the test are shown in the top plot in Figure 7.5.
We see that the clustering algorithm, when applied over the entries of the regularized
Granger estimator in (3.28), is able to separate correctly the disconnected/connected
nodes, therefore providing faithful graph learning.

The second example, illustrated in the bottom panel of Figure 7.5, refers to a network
of 100 routers connected according to the shown topology, which was extracted from a
bigger network reported in the web-repository [97]. In this case, 50% of the nodes are
probed, and we have T = 106 available samples. The results of the test are shown in the
bottom plot in Figure. 7.5, where we can appreciate that the graph learning algorithm
successfully classifies the node connections within the probed subnetwork. In comparison
to the top panel, we see that in the bottom panel the spread of the sample estimators is
reduced, which is a consequence of the fact that we have a larger number of samples and
a smaller network size.

It is also useful to test whether the Granger estimator can achieve faithful graph
learning over directed graphs. While Bollobás-Riordan graphs are naturally undirected,
there are of course several straightforward ways to devise directed variants thereof, see,
e.g., [8]. Perhaps the simplest way is to perform, at each step of the preferential attach-
ment construction: i) the insertion of a directed edge from the new node n to an existing
node, based on an attachment probability ruled by the in-degree of the existing nodes; and
ii) the insertion of a directed edge from an existing node to the new node n, based on an
attachment probability ruled by the out-degree of the existing nodes. Such construction is
used in Figure 7.6, where we report two realizations relative to the parameters described
in the caption. Regarding the Laplacian matrix, in the directed case we use definition
(4.15) with the maximal in-degree. We see that, even in this non-symmetric case, the
regularized Granger estimator is still able to separate well connected from disconnected
pairs.

7.3 Dynamic Graphs

In this section we consider the dynamic graph setting, where the underlying graph is
allowed to grow over time, while the node signals needed to perform topology inference
are concurrently collected. We denote the graph at time t by Gt, and its size by Nt. When
the graph size increases, passing from n−1 nodes to n nodes, the topology of the previous
subgraph relative to the nodes {1, 2, . . . , n − 1} remains unaltered. In other words, the
graph is dynamic in the sense that during time new nodes are attached to the previous
structure by some new edges, but: i) if an edge was added between two nodes it will never
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disappear; ii) if an edge was not added between two nodes it will never be added later
The incremental construction of such graphs can be done using both the Bollobás-

Riordan procedure and the Erdős-Rényi model (with fixed connection probability pN = p)
in a natural way. In fact, in the former case we have just to follow the construction rules
as in Figure 5.1, by adding new nodes at each time instant when Nt increases by 1.
In the latter case, when the n-th node is added, we need to draw n − 1 i.i.d. Bernoulli
experiments with success probability p, in order to determine which new edge must be
added between the new node and the previous n− 1 nodes.

Moreover, we assume that the probed subset P is fixed (and such that |P| = N0);
accordingly, it is the graph involving the latent nodes, including connections between
latent and probed nodes, that grows over time.

The dynamic graph setting is illustrated in Figure 7.7, where we also show the dif-
ference with the static setting. In the static setting (bottom diagram), a fixed graph
underlies the diffusion process for the entire observation interval during which topology
inference is performed. In contrast, in the dynamic setting (top diagram) the graph grows
incrementally over time with the probed set kept fixed.

While our technical analysis relies on the static case, in this section we present some
preliminary experiments showing that graph learning in the dynamic setting is still pos-
sible, and that some new features arise, especially in terms of sample complexity.

Under the aforementioned dynamic graph setting, we need to modify (1.2) into:2

yt = Atyt−1 + xt, (7.3)

where the combination matrix At is obtained by using (4.15) over the dynamic graph Gt.
Moreover, motivated by the fact that for any t we have [63]:

R1(t) = AtR0(t− 1) =⇒ At = R1(t)[R0(t− 1)]−1, (7.4)

where:
R0(t− 1) , E yt−1y

>
t−1 At , R1(t) , E yty

>
t At , (7.5)

by following the same reasoning as in Section 3.5, we consider the following estimator:bAP(t) = [R1(t)]P[R0(t− 1)]−1
P , (7.6)

which provides the best linear prediction of the future samples from the past one-lag
samples collected over the probed subset. Actually, after having collected a certain number
T of samples:

[yt]P : t ∈ [1, T ] , (7.7)

we approximate (7.6) using the available dataset (7.7), namely, by substituting [Rj(T )]P,
for j ∈ {0, 1}, with:

bRj,P(T ) ,

 1

T − j

TX
t=1+j

yty
>
t−j


P

=
1

T − j

TX
t=1+j

[yt]P[yt]
>
P , (7.8)

2Note that, since now the network size is a function of time, we can drop the functional dependence
on Nt and simplify the notation, for example, using yt instead of yt(Nt).
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yielding the sample Granger estimator:

bR1,P(T ) bR0,P(T )
−1

. (7.9)

We consider graph growths of the form:

Nt = N0 + αtβ , (7.10)

where N0 is the initial graph size. Note that there is a connection between the graph
growth Nt and the sample complexity. Indeed, saying that the network size at time t is
Nt ∼ tβ means that the number of samples employed to estimate a graph of size N is
TN ∼ N1/β . Therefore, the following remarkable coupling between sample complexity and
graph growth emerges in the dynamic setting. If a certain minimum sample complexity is
necessary to learn faithfully, this means that a maximum graph growth is permitted. In
other words, sample complexity places a limit on the maximum allowable velocity at which
the dynamic graph can grow over time. Building on the results available from Theorems 6
and 8, we would expect that, in order to successfully learn the graph topology in the
dynamic case, the graph growth should be slower than:

Nt ∼ t1/2 [Erdős-Rényi graphs], (7.11)

Nt ∼ t [Bollobás-Riordan graphs]. (7.12)

However, our experiments show that successful results can be obtained also with faster
growth rates, and in particular by considering:

Nt ∼ t4/5 [Erdős-Rényi graphs], (7.13)

Nt ∼ t3/2 [Bollobás-Riordan graphs], (7.14)

we get the performance shown in Figure 7.8.
The exponents 4/5 and 3/2 are based on numerical experiments, as there are currently

no counterparts of Theorems 6 and 8 available for the dynamic case. As was mentioned,
in (7.13) and (7.14) we increase the velocity at which the graph grows, for both the Erdős-
Rényi and the Bollobás-Riordan models, which corresponds to reducing the number of
samples. In particular, by inverting the relations in (7.13) and (7.14), the new sample
scaling laws are:

TN ∼ N5/4 < N2 [Erdős-Rényi graphs], (7.15)

TN ∼ N2/3 < N [Bollobás-Riordan graphs]. (7.16)

Remarkably, the plots in Figure 7.8 reveal that, despite the increased velocity (i.e., the
reduced number of samples), the graph learning problem remains feasible. In contrast, in
the static case (where the graph has constant size N = 200, which is the size corresponding
to the end of the observation window for the dynamic case), the performance is not good
since we are violating the prescriptions of Theorems 6 and 8.
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We have also tested the directed counterparts of Erdős-Rényi graphs and of Bollobás-
Riordan graphs. In particular, for directed Erdős-Rényi graphs, a.k.a. binomial graphs,
directed edges corresponding to pairs (k, ‘) and (‘, k) are drawn independently, while for
directed Bollobás-Riordan graphs we consider preferential-attachment probabilities based
on in-degrees and out-degrees to build directed edges as described in Section 7.2. We
obtained results similar to those shown in Figure 7.8.

One conclusion arising from these results is that, under partial observability, applica-
tion of the Granger estimator over dynamic graphs can deliver superior performance as
compared to the static case. This is a remarkable and perhaps unexpected behavior. It is
possible to provide an interpretation of this behavior based on Theorems 6 and 8. Even
though these theorems characterize only the static case, their proofs reveal that the main
factor determining the sample complexity is the magnitude of the nonzero entries in the
combination matrix: the smaller they are, the higher the sample complexity will be. On
the other hand, the nonzero entries are inversely proportional to the maximum degree of
the graph, which increases with the network size, leading to an increase in sample com-
plexity. Under a static model, the system works during the entire observation interval
with the largest graph. In contrast, under the dynamic model the system works with
growing graphs and, hence, on average the network size is smaller (i.e., more favorable)
than the size considered in the static case (see Figure 7.7). This is one reason why the
dynamic case looks less demanding in terms of samples, ultimately implying that a faster
growth is permitted for the sequence of dynamic graphs.
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Figure 7.1: Illustration of universal local structural consistency of the sample Granger
estimator in (3.26) for two realizations of a Bollobás-Riordan graph with number of nodes
N = 100 and parameter η = 3. The plots show the entries of the sample Granger
estimator, scaled by

√
N , vectorized and rearranged so that entries corresponding to

disconnected nodes come first. The vertical arrow displays the gap γ. In the shown
network topologies, probed nodes are displayed in green, while latent nodes in purple, with
the circle radius being proportional to the node degree. The probed subset has cardinality
N/2 = 50, and its nodes are randomly picked from {1, 2, . . . , N} without replacement.
The parameters of the Laplacian matrix are ρ = 0.5 and λ = 0.75. In practice, the
connections of the graph can be estimated by applying a clustering procedure over the
entries of the sample Granger estimator shown in the plot, which accurately reproduce
the dichotomous pattern of the true (scaled) combination matrix revealed by Lemma 9.
According to the analysis presented in Chapter 3, the possibility of retrieving the graph
by means of a clustering procedure is a consequence of the fact that the sample Granger
estimator in (3.26) achieves universal local structural consistency — see Definition 2.
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Figure 7.2: First three panels. Empirical histograms, obtained over 103 Monte Carlo runs,
relative to the scaled maximal degree µG(N)/

√
N . Rightmost panel. Empirical histogram

relative to the limiting random variable µ, obtained by simulating, over 103 Monte Carlo
runs, a Poisson process of rate η, and by exploiting relations (7.1) and (7.2).
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Figure 7.3: Probability of correct graph recovery for different values of the network size N .
For each network size, the probability of correct graph recovery is estimated empirically
over 103 Monte Carlo runs. We remark that correct graph recovery here means that
graphs with even a single wrong edge are counted as an erroneous experiment. The
graphs are generated according to a Bollobás-Riordan model with parameter η = 3.
The sequence of probed subsets fulfills (5.63) with ξ = 0.15. We consider: the limiting
estimator (3.24) obtained by using the true covariances (solid line); and the empirical
estimator (3.28) obtained by using the sample covariances (markers) evaluated over T =
3 ·106 samples. The clustering algorithm applied to the Granger estimator is the modified
k-means algorithm proposed in [75]. The parameters of the Laplacian matrix are ρ = 0.5
and λ = 0.75.
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Figure 7.4: Sample complexity of preferential attachment graphs, compared against sparse
and dense Erdős-Rényi graphs. The curves depict the number of samples needed by the
empirical estimator to attain 90% of the performance (i.e., probability of correct graph
recovery) of the limiting estimator, for different values of N . The preferential attachment
graphs are generated as Bollobás-Riordan graphs with parameter η = 3. The sparse
Erdős-Rényi graphs are generated with a connection probability p = log N

N · loglogN ,
whereas for the dense Erdős-Rényi graphs we have p = 0.5. The underlying probability
of correct graph recovery is evaluated over 103 Monte Carlo runs. The parameters of the
Laplacian matrix are ρ = 0.5 and λ = 0.75.
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Figure 7.5: Experiments over real-world topologies. The parameters of the Laplacian
matrix are ρ = 0.5 and λ = 0.75. Top. A simulation run of (1.1) over a power-grid network
of N = 4941 nodes taken from the web-repository [97]. The plot shows the entries of the
regularized Granger estimator in (3.28), scaled by

√
N , vectorized and rearranged so that

entries corresponding to disconnected nodes come first. In this run we set T = 2 · 105,
and consider a subset of probed nodes having cardinality N/3 = 1647. In the network
topology, probed nodes are displayed in green, while latent nodes in purple, with the circle
radius being proportional to the node degree. Bottom. The same general setting as in the
left panel, with reference to a network of N = 100 real-world routers, whose connection
topology was extracted from a bigger network available in the web-repository [97]. In this
run we set T = 106, and consider a subset of probed nodes having cardinality N/2 = 50.
In both cases, we run the clustering algorithm in Listing 1 over the entries of the matrix
estimator using the procedure defined in Listing 2. We display the resulting clustering
threshold (dashed line), which represents the midpoint of the centroids of the two clusters
constructed by the algorithm. We see that the threshold correctly separates the entries
relative to the connected node pairs from the entries relative to unconnected node pairs,
leading to a correct estimation of the graph.

87



Figure 7.6: Two realizations of a directed Bollobás-Riordan graph, whose construction is
detailed in the main text. We set N = 100 and η = 3. The plot shows the entries of the
regularized Granger estimator in (3.28) computed over T = 106 samples, scaled by

√
N ,

vectorized and rearranged so that entries corresponding to disconnected nodes come first.
In the shown network topologies, probed nodes are displayed in green, while latent nodes
in purple, with the circle radius being proportional to the node in-degree. The probed
subset has cardinality N/2 = 50, and its nodes are randomly picked from {1, 2, . . . , N}
without replacement. The parameters of the Laplacian matrix are ρ = 0.5 and λ = 0.75.
In both cases, we run the clustering algorithm in Listing 1 over the entries of the matrix
estimator using the procedure defined in Listing 2. We display the resulting clustering
threshold (dashed line), which represents the midpoint of the centroids of the two clusters
constructed by the algorithm. We see that the threshold correctly separates the entries
relative to the connected node pairs from the entries relative to unconnected node pairs,
leading to a correct estimation of the graph.
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Figure 7.7: Dynamic graphs vs. static graphs. The unobserved nodes are shown in black,
while the probed nodes in cyan. The probed set P is further highlighted by the yellow
area.
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Figure 7.8: Left plot. Erdős-Rényi graphs with connection probability p = 0. In the
dynamic case, the network size scales as Nt ∼ t4/5. Right plot. Bollobás-Riordan graphs
with parameter η = 3. In the dynamic case, the network size scales as Nt ∼ t3/2. In
both experiments we use the sample Granger estimator (7.9), followed by the modified
k-means algorithm in Listing 2; the probed subset is P = {1, 2, . . . , 10}, and N0 = 15; the
parameters of the Laplacian combination matrix are λ = 0.75 and ρ = 0.5; and we use
103 Monte Carlo runs.
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Conclusion

In this thesis, we have examined the problem of learning a network graph from the signals
diffusing across the network according to the vector autoregressive model in (1.1). The
distinguishing features of our work are: i) the network topology is modeled as a prefer-
ential attachment random graph; and ii) only part of the network is monitored (partial
observability). We established that the Granger estimator under partial observability
achieves faithful graph learning (with high probability as the network grows) for the class
of Bollobás-Riordan graphs when the signals of neighboring nodes are combined according
to the Laplacian matrix of the graph.

Previous results on consistent graph learning under partial observability, for diffusion
models like (1.1), were relative to Erdős-Rényi graphs, which cannot reproduce faithfully
the behavior of several useful real-world networks. In contrast, preferential attachment
graphs were shown to be powerful in capturing useful real-world effects such as node
heterogeneity and statistical dependence across graph edges. Accordingly, moving from
Erdős-Rényi to Bollobás-Riordan graphs constitutes a useful research advance, which was
rather demanding, especially because the multigraph construction relies on a preferential
attachment mechanism, which introduces significant dependence across the edges, thus
preventing from application of the simpler i.i.d. models adopted for the former graph
models. Exploiting statistical concentration results for dependent processes, we are able
to examine in detail the limiting properties of these graphs, and to ascertain that the
entries of the Granger matrix estimator computed over the probed subnetwork split into
two classes, separated by an identifiability gap. As a peculiar feature of the Bollobás-
Riordan model, this gap is a random variable, which depends on the particular instance
of the multigraph generation, as opposed to the deterministic gap observed for Erdős-
Rényi graphs. We proved that the emergence of the gap is critical to enable achievable
graph learning, and characterized the scaling law that relates how the number of samples
must grow with the network size (Theorem 8), finding that the sample complexity is
slightly larger than N logN .

There are many other open questions that might deserve attention. For example,
achievability is expressed in a worst-case perspective where perfect graph reconstruction
is required. It would be useful to relax the criterion to encompass a possible fraction of
misclassified edges, and see how this impacts the performance and the requested number
of samples. Moreover, since classification is performed by using an unsupervised clustering
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algorithm, it would be useful to see whether one could explore side-information to set a
classification threshold, and see how this changes the fraction of misclassified nodes.

We established that the identifiability gap over Bollobás-Riordan graphs is random,
as opposed to the deterministic nature that was proved over Erdős-Rényi graphs. This
difference stimulates an open question that concerns the connections between the nature
(deterministic or random) of the identifiability gap and the generative mechanism of
the graph. For example, it would be interesting to consider other useful graph models,
such as the stochastic block model, Chung-Lu graphs, random dot product or random
geometric graphs. In particular, it would be interesting to ascertain whether randomness
of the identifiability gap is related to the scale-free property or the preferential attachment
mechanism.

The conducted analysis does not depend on a specific selection rule for the subset of
probed nodes. Indeed, some of our results hold for any (deterministic) subset of probed
nodes. For Theorem 8, we just need to impose that the cardinality of this subset scales
linearly with N so as to avoid trivial (i.e., fully connected or fully disconnected) subgraphs
as N → ∞. Regarding the choice of the probed subset, it is interesting to consider an
adversarial perspective where a malicious entity wants to select it to impair the topology
inference algorithm. In the traditional setting, attacks to network graphs have the goal of
impairing the connectivity properties the network. One classical attack is the deletion at-
tack, where the attacker has the freedom of deleting some nodes [9]. The goal is to reduce
the connectivity of the selected subgraph surviving after the deletion process. In partic-
ular, when the attacker leverages knowledge of the preferential attachment construction,
he/she can delete all the “oldest” nodes to minimize connectivity. In our context, connec-
tivity of probed nodes is not of interest, but one way to impair the clustering algorithm
would be to select a subset that is fully connected or fully disconnected. However, when
the cardinality of the probed subset grows linearly with N , we know that both these ex-
treme situations occur with vanishing probability as N grows. The picture changes if the
attack does not rely only on the graph model, and the adversary has the power of choosing
the subset based on the actual realizations of the graph and/or of the nodes’ output. In
this case, the subset becomes statistically dependent on other random variables, and the
statistical properties of the combination matrix and its estimated counterpart change due
to the dependence introduced between the subset and the matrix entries. Carrying out
the analysis under this scenario requires a different analysis that is not covered by the
results of this work.

Devising matrix estimators different from (3.28), exploiting in particular some other
structural constraints such as sparsity or smoothness can be useful to reduce sample
complexity.

Another important aspect pertains to online graph learning algorithms [108, 114]. A
preliminary analysis has been presented in Section 7.3, where we have implemented an
online variation of the sample Granger estimator that learns from streaming data, encom-
passing the possibility that the graph topology changes due to the evolutionary mechanism
of the Bollobás-Riordan graph. We have shown experimentally that this estimator con-
tinues to guarantee correct graph learning, and even with a smaller sample complexity
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w.r.t. the case when the graph is static (i.e., does not grow over time). However, a formal
analysis concerning these results is still missing.

Useful research advances concern the generalization to higher-order vector autore-
gressive processes, nonlinear models, and other classes of combination matrices. One
particularly interesting extension regards the case where the combination matrix is asym-
metric. This case as been considered in the experimental analysis (Section 7.2), where
the asymmetry of the combination matrix arises from the fact that the underlying graph
is directed. We have shown that the Granger estimator is still useful to learn the true
graph, but a formal proof of this result is currently unavailable.

As a final point, we note that a graph estimator that works under the partial ob-
servability assumption could be useful even when all the nodes in the network can be
probed. For instance, this happens in the situation where, over large networks, one can
eventually probe all nodes, but not simultaneously, due to various types of constraints
(i.e., computation and accessibility), it might be impractical to measure/collect all signals
from the network at once. In this situation, even if the final goal is to reconstruct the
whole graph, the only viable solution is to learn separately several patches of the network
graph and merge the partial results coming from each patch to eventually estimate the
entire network graph. This approach has been first proposed in [78]. An interesting open
problem is the determination of a strategy to form and select the patches so as to optimize
the efficiency of the learning algorithm.
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Appendix A

Proofs of Theorems 1, 2 and 3

Proof of Theorem 1: From universal local structural consistency, recalling (3.7), we
know that for any ε > 0 and all k 6= ‘ we have with high probability as N → ∞:

cN bak‘(TN , N) ∈


h
β + (1 − ε)γ, β + (1 + ε)γ

i
, (k, ‘) connected,

h
β − εγ,β + εγ

i
, (k, ‘) disconnected.

(A.1)

By assumption, there exists a certain ε > 0 such that the algorithm graphclu(·) achieves
successful classification for all configurations fulfilling (A.1), provided that GS(N) is nei-
ther fully connected nor fully disconnected. Thus, the proof is complete because we have
just noted that configurations fulfilling (A.1) occur with high probability as N → ∞,
and by assumption the probability that GS(N) is fully connected or fully disconnected
vanishes as N → ∞.

Proof of Theorem 2: By application of the triangle inequality we can write:

kcN bAS(T,N) − γGS(N) − βkmax-off

≤ cNk bAS(T,N) − bAS(N)kmax-off

+ kcN ( bAS(N) −AS(N)) − βkmax-off

+ kcNAS(N) − γGS(N)kmax-off . (A.2)

Let us focus on the first term on the RHS of (A.2). From the definition of limiting
estimator in (3.17), we have, for any N ∈ N and ε > 0:

lim
T→∞

P
h
cNk bAS(T,N) − bAS(N)kmax-off > ε

i
= 0. (A.3)
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By definition of limit, from (A.3) we conclude that, for any N ∈ N and any δ, ε > 0, there
exists always a value T0(N, δ, ε) such that for all T ≥ T0(N, δ, ε):

P
h
cNk bAS(T,N) − bAS(N)kmax-off > ε

i
≤ δ. (A.4)

Let now fN and gN be two positive sequences vanishing with N with arbitrary laws.
Since the reduction of δ and/or ε is a more demanding condition, the function T0(N, δ, ε)
can be always chosen to be non-increasing w.r.t. both δ and ε, which implies that for
sufficiently large N :

T0(N, fN , gN ) ≥ T0(N, δ, ε), (A.5)

further implying, in view of (A.4):

P
h
cNk bAS(T0(N, fN , gN ), N) − bAS(N)kmax-off > ε

i
≤ δ. (A.6)

In other words, if the number of samples scales with N as TN = T0(N, fN , gN ), we can
write:

cNk bAS(TN , N) − bAS(N)kmax-off
p−→ 0. (A.7)

Plugging this result into (A.2) and noticing that the second and third terms on the RHS
of (A.2) vanish in probability in view of Definitions 5 and 1, respectively, we conclude
that:

kcN bAS(TN , N) − γGS(N) − βkmax-off
p−→ 0, (A.8)

Proof of Theorem 3: Let
v1 ≤ v2 ≤ . . . ≤ vL (A.9)

be the vectorized and reordered set of the off-diagonal entries of the input matrix that feeds
the graphclu(·) procedure. By assumption, we have that for these entries the property
in (3.9) holds for some values ε, γ and β. In particular we are interested in the case
ε ≤ 1/6, for which we can surely write:

β + εγ < β + (1 − ε)γ, (A.10)

and therefore there exists an index j? ∈ [1, L] such that, recalling the notation used
in (3.33), the entries relative to connected pairs are in the set:

C0(j?) = {v1, v2, . . . , vj?}, (A.11)

and satisfy:
β − εγ ≤ vj ≤ β + εγ, for j = 1, 2, . . . , j?, (A.12)

while the entries relative to disconnected pairs are in the set:

C1(j?) = {vj?+1, vj?+2, . . . , vL}. (A.13)
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and satisfy:

β + (1 − ε)γ ≤ vj ≤ β + (1 + ε)γ, for j = j? + 1, j? + 2, . . . , L. (A.14)

Of course, the clusters C0(j?) and C1(j?) are the correct solution to the graph learning
problem. Thus, to prove the claim we have to show that the index j? actually coincides
with the solution provided by Listing 1. We recall that Listing 1 selects its output within
the set A made of the eligible solutions of the k-means algorithm. Accordingly, we start
by showing that j? is added to the set A, proving that the centroids midpoint fulfills the
condition:

vj? <
c0(j?) + c1(j?)

2
< vj?+1, (A.15)

where we recall that c0(j?) and c1(j?) are the centroids of clusters C0(j?) and C1(j?),
respectively. From (A.12) and (A.14) we have:

β − εγ ≤ c0(j?) ≤ β + εγ, β + (1 − ε)γ ≤ c1(j?) ≤ β + (1 + ε)γ, (A.16)

and, hence,

β +
1

2
− ε γ ≤ c0(j?) + c1(j?)

2
≤ β +

1

2
+ ε γ. (A.17)

Since ε ≤ 1/6 (and in particular ε < 1/4) we have:

1

2
− ε > ε, and

1

2
+ ε < 1 − ε, (A.18)

which, used into (A.17), yield:

β + εγ <
c0(j?) + c1(j?)

2
< β + (1 − ε)γ, (A.19)

and therefore (A.15) is proved by recalling (A.12) and (A.14).
In principle, other eligible solutions could exist, and it remains to prove that if another

value j ∈ A\{j?} exists, then this configuration must necessarily exhibit a smaller distance
between the clusters, namely,

c1(j) − c0(j) < c1(j?) − c0(j?) ∀j ∈ A \ {j?}. (A.20)

First, we note that, in view of (A.16), the distance between the centroids relative to j?

has lower bound:

c1(j?) − c0(j?) ≥ (1 − 2ε)γ. (A.21)

Let now j ∈ A with j > j?. By definition we have:

β + (1 − ε)γ ≤ vj <
c0(j) + c1(j)

2
, (A.22)
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where the upper bound is due to the fact that j ∈ A, whereas the lower bound is due to
the assumption j > j?, which implies vj ∈ C1(j?). Multiplying by −2 the leftmost and
rightmost terms in (A.22) and adding 2c1(j), we obtain:

c1(j) − c0(j) < 2c1(j) − 2β − 2(1 − ε)γ, (A.23)

and since we certainly have c1(j) ≤ vL ≤ β + (1 + ε)γ, we finally get:

c1(j) − c0(j) < 4εγ. (A.24)

Since the condition ε ≤ 1/6 is equivalent to:

4ε ≤ 1 − 2ε, (A.25)

by comparing (A.21) and (A.24) we obtain (A.20) for each j > j?. Since similar arguments
can be used for the remaining case j < j?, the proof is complete.
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Appendix B

Deterministic Properties of the
Limiting Granger Estimator

In this section we obtain an upper bound on the error of the limiting Granger estimator.
To this aim, we start by proving two auxiliary lemmas that hold for any N×N scaled left-
stochastic matrix A = [ak‘], namely, for any matrix whose entries satisfy the conditions:

ak‘ ≥ 0,

NX
‘=1

ak‘ = ρ. (B.1)

In the following analysis we denote by a
(i)
k‘ the (k, ‘)-entry of the matrix power Ai, and

we use the following quantity:

M(A) , max
k,‘∈[1,N ]

k 6=‘

NX
j=1
j 6=k,‘

akjaj‘. (B.2)

Lemma 14 (Bounds on Matrix Powers). Let A be an N × N scaled left-stochastic
matrix as in (B.1). For i = 1, 2, . . . , we have that:

• The main diagonal entries of A2i satisfy the inequalities:

a
(2i)
kk ≤ αi, (B.3)

where the sequence αi is recursively defined as:

α1 = ρ2, αi+1 = ρ2αi + ρ2(i+1). (B.4)

• The off-diagonal entries of A2i satisfy the inequalities:

a
(2i)
k‘ ≤ βi ak‘ + γi (B.5)
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where βi and γi are two sequences recursively defined as:

β1 =2ρ, βi+1 = 2ραi + ρ2 βi, (B.6)

γ1 =M(A), γi+1 = M(A)αi + 3ρM(A)βi + ρ2 γi. (B.7)

Proof: Preliminarily, it is useful to observe that:1

NX
‘=1

a
(i)
k‘ = ρi. (B.9)

We start by proving (B.3) by induction. For i = 1, the claim follows directly from (B.9).
We shall therefore prove that (B.3) holds for i + 1, assuming that it holds for i. To this
aim, let us write the diagonal terms of matrix A2(i+1) as:

a
(2i+2)
kk =

NX
‘=1

a
(2i)
k‘ a

(2)
‘k = a

(2i)
kk a

(2)
kk +

NX
‘=1
‘ 6=k

a
(2i)
k‘ a

(2)
‘k . (B.10)

We observe that (B.9) implies in particular the following inequalities:

a
(2)
kk ≤ ρ2, a

(2)
‘k ≤ ρ2,

NX
‘=1
‘6=k

a
(2i)
k‘ ≤ ρ2i, (B.11)

which, applied in (B.10), yield:

a
(2i+2)
kk ≤ ρ2 a

(2i)
kk + ρ2(i+1). (B.12)

Since a
(2i)
kk ≤ αi by the induction hypothesis, from (B.12) we get:

a
(2i+2)
kk ≤ ρ2 αi + ρ2(i+1) = αi+1, (B.13)

which corresponds to (B.3) for the case i + 1, and the claim for the diagonal entries is
proved.

We continue by proving (B.5) by induction. For any k, ‘ = 1, 2, . . . , N , with k 6= ‘, we
have:

a
(2)
k‘ =

NX
h=1

akhah‘ = (akk + a‘‘) ak‘ +

NX
h=1
h6=k,‘

akhah‘

≤ 2ρ ak‘ + M(A) , β1 ak‘ + γ1, (B.14)

1We can prove this property by induction as follows. For i = 1 the property is exactly (B.1), while
the induction step comes from:

NX
‘=1

a
(i+1)
k‘ =

NX
‘=1

NX
h=1

a
(i)
khah‘ =

NX
h=1

a
(i)
kh

NX
‘=1

ah‘ = ρiρ. (B.8)

102



where: i) in the inequality we exploited the fact that the diagonal entries of A are upper
bounded by ρ in view of (B.1), and we used the definition of M(A) in (B.2); and ii) in
the last equality we applied the definitions of β1 and γ1 appearing in (B.6) and (B.7),
respectively. We conclude from (B.14) that the claim in (B.5) holds for i = 1. Let us
now show that, if the claim holds for a generic i, then it holds for i + 1. To this aim, we
observe that:

a
(2i+2)
k‘ =

NX
h=1

a
(2)
kh a

(2i)
h‘ = a

(2)
k‘ a

(2i)
‘‘ +

NX
h=1
h6=‘

a
(2)
kh a

(2i)
h‘

≤ a
(2)
k‘ a

(2i)
‘‘ +

NX
h=1
h6=‘

a
(2)
kh βi ah‘ + γi

≤ αi a
(2)
k‘ +βi

 
a

(2)
kk ak‘ +

NX
h=1
h 6=k,‘

a
(2)
kh ah‘

!
+γi

NX
h=1
h6=‘

a
(2)
kh , (B.15)

where the first inequality follows by applying the induction hypothesis to term a
(2i)
h‘ ,

while in the second inequality we used (B.3). Let us now bound the individual terms that
multiply the quantities αi, βi, and γi in (B.15).

• From (B.14) we have:

a
(2)
k‘ ≤ 2ρ ak‘ + M(A). (B.16)

• From (B.9) we have:

a
(2)
kk ≤ ρ2,

NX
h=1
h6=‘

a
(2)
kh ≤ ρ2. (B.17)

• We can write:

NX
h=1
h6=k,‘

a
(2)
kh ah‘ ≤

NX
h=1
h6=k,‘

2ρ akh + M(A) ah‘

≤ 2ρM(A) + ρM(A) = 3ρM(A), (B.18)

where in the first inequality we applied (B.14), while in the second inequality we
applied (B.1) and (B.2).

Using (B.16), (B.17), and (B.18) in (B.15), we get:

a
(2i+2)
k‘ ≤ αi 2ρ ak‘ + M(A) + βi ρ2ak‘ + 3ρM(A) + γi ρ

2

= βi+1ak‘ + γi+1, (B.19)

where the equality comes from (B.6) and (B.7), and the proof is complete.

103



Lemma 15 (Bounds on a Useful Matrix Power Series). Let A be an N ×N scaled
left-stochastic matrix as in (B.1). Let

C , [A2]P0 , H , (IP0 − C)−1 =

∞X
i=0

Ci, (B.20)

where we recall that P0 , {1, 2, . . . , N} \ P. Let further

ᾱ , 1 +
ρ2

(1 − ρ2)2
, β̄ , 2ρ

ᾱ

1 − ρ2
, γ̄ ,

ᾱ + 3ρβ̄

1 − ρ2
. (B.21)

Then, for i = 1, 2, . . . , we have that:

• The main diagonal entries of matrix H satisfy the inequalities:

0 < hkk ≤ ᾱ. (B.22)

• The off-diagonal entries of matrix H satisfy the inequalities:

0 ≤ hk‘ ≤ β̄ak‘ + M(A)γ̄. (B.23)

Proof: The fact that hk‘ ≥ 0 for any k and ‘ is an immediate consequence of the
definition of matrix H in (B.20), since the entries of matrix powers Ci are nonnegative
for any i. So in the next we will focus on the upper bounds in (B.22) and (B.23).

As it can be trivially verified by induction, we first note that for any k, ‘ ∈ P0 and any
i = 1, 2, . . .:

c
(i)
k‘ ≤ a

(2i)
k‘ , (B.24)

implying that the upper bounds provided in Lemma 14 are also valid for the matrix
powers Ci. Therefore, by the definition of H in (B.20), we have:

hkk ≤ 1 +

∞X
i=1

αi, hk‘ ≤
∞X
i=1

βiak‘ +

∞X
i=1

γi, (B.25)

where the sequences αi, βi and γi are defined in (B.4), (B.6) and (B.7), respectively.
According to (B.25), to establish the upper bounds in (B.22) and (B.23) it suffices to
show that:

1 +

∞X
i=1

αi = ᾱ,

∞X
i=1

βi = β̄,

∞X
i=1

γi = M(A) γ̄. (B.26)

To this aim, we note that the sequence αi in (B.4) matches (E.1) in Lemma 20 with the
choices:

f1 = a = d = ρ2, b = c = 0. (B.27)
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Therefore, we can apply (E.2) to obtain:

αi = ρ2(i−1) ρ2 + ρ2(i− 1) = i ρ2i, (B.28)

which, recalling the series
P∞

i=1 i a
i = a

(1−a)2 (for |a| < 1), allows us to write:

1 +

∞X
i=1

αi = 1 +
ρ2

(1 − ρ2)2
= ᾱ. (B.29)

Thus, we proved (B.22).
Let us move on to prove (B.23). By substituting (B.28) in (B.6), we get:

βi+1 = ρ2βi + 2ρ2i+1i, (B.30)

and therefore we see that the sequence βi matches (E.1) in Lemma 20 with the choices:

f1 = c = 2ρ, a = ρ2, b = d = 0. (B.31)

In view of (E.2), we conclude that:

βi =ρ2(i−1) 2ρ + 2ρ
i(i− 1)

2
= ρ2i−1 i2 − i + 2 , (B.32)

which implies that the series
P∞

i=1 βi converges. Since we showed that also the seriesP∞
i=1 αi is convergent, by summing over index i in (B.6) we can write:

∞X
i=1

βi+1 = 2ρ

∞X
i=1

αi + ρ2
∞X
i=1

βi, (B.33)

or
∞X
i=1

βi − β1 = 2ρ

∞X
i=1

αi + ρ2
∞X
i=1

βi, (B.34)

which, using β1 = 2ρ and (B.29), yields:

∞X
i=1

βi = 2ρ
1 +

P∞
i=1 αi

1 − ρ2
= 2ρ

ᾱ

1 − ρ2
= β̄. (B.35)

It remains to examine the behavior of the summation in (B.25) involving the sequence γi
in (B.7). Substituting (B.28) and (B.32) in (B.7) we get:

γi+1 = ρ2γi + M(A)ρ2ii + 3M(A)ρ2i i2 − i + 2

= ρ2γi + M(A)ρ2i 3i2 − 2i + 6 , (B.36)
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which shows that the sequence γi matches (E.1) in Lemma 20 with the choices:

f1 = M(A), a = ρ2, b = 3M(A), c = −2M(A), d = 6M(A). (B.37)

We conclude that the series
P∞

i=1 γi is convergent. Thus, by summing over i in (B.7), we
can write:

∞X
i=1

γi − γ1 = M(A)

∞X
i=1

αi + 3M(A)

∞X
i=1

βi + ρ2
∞X
i=1

γi, (B.38)

which, using γ1 = M(A) along with (B.29) and (B.35), yields:

∞X
i=1

γi = M(A)
ᾱ + 3ρβ̄

1 − ρ2
= M(A) γ̄, (B.39)

and the proof is complete.

We are now ready to apply Lemmas 14 and 15 to obtain a bound on the error of the
limiting Granger estimator. By definition, the limiting Granger estimator bAP(N) is a
deterministic function of the combination matrix A(N). In fact, for a realization A of
A(N), the limiting Granger estimator is:bAP , [R1]P[R0]−1

P , (B.40)

with:

R0 ,
∞X
i=0

Ai[Ai]>, R1 , AR0. (B.41)

When A is symmetric, we have (recall that I denotes the N ×N identity matrix):

R0 = (I −A2)−1, (B.42)

and the limiting Granger estimator admits the following expression, first proved in Ap-
pendix A of [77] and in particular corresponding to Eq. (66) of [77]:bAP = AP + APP0(IP0 − [A2]P0)−1[A2]P0P, (B.43)

which is critical to prove the following lemma. Thus, with the notation introduced
in (B.20), when A is symmetric the limiting Granger estimator admits the following
representation: bAP −AP = APP0H[A2]P0P, (B.44)

or, in terms of the individual (k, ‘)-entry:

ek‘ , APP0H[A2]P0P k‘
=

X
j,m∈P0

akjhjma
(2)
m‘

=
X
j∈P0

akjhjja
(2)
j‘ +

X
j,m∈P0

j 6=m

akjhjma
(2)
m‘ . (B.45)

The following result provides a useful bound for such error entry.
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Lemma 16 (Bound on the Error of the Limiting Granger Estimator). Let A be
an N × N scaled left-stochastic matrix as in (B.1). If A is symmetric, then for any P

and any k, ‘ ∈ P with k 6= ‘ we have:

0 ≤ ek‘ ≤ κM(A) ∀P ⊆ {1, 2, . . . , N}, (B.46)

where κ is a positive constant, and M(A) is defined in (B.2).

Proof: We note that ek‘ ≥ 0 since all involved matrices are nonnegative — see (B.22)
and (B.23) for what concerns H. Therefore, it suffices to prove that:

ek‘ ≤ κM(A), (B.47)

for some positive constant κ. To this aim, let us consider two indices k, ‘ ∈ P with k 6= ‘.
Calling upon Lemma 15, we can apply (B.22) and (B.23) in (B.45), yielding:

ek‘ ≤ ᾱ
X
j∈P0

akja
(2)
j‘ + β̄

X
j,m∈P0

j 6=m

akjajma
(2)
m‘ + M(A)γ̄

X
j,m∈P0

j 6=m

akja
(2)
m‘. (B.48)

The first summation in (B.48) can be upper bounded as follows:X
j∈P0

akja
(2)
j‘ ≤

X
j∈P0

akj 2ρ aj‘ + M(A)

= 2ρ
X
j∈P0

akjaj‘ + M(A)
X
j∈P0

akj

≤ 2ρM(A) + M(A) = 3M(A), (B.49)

where in the first inequality we used (B.14), while in the second inequality we used the
following bounds:

X
j∈P0

akjaj‘ ≤
NX
j=1
j 6=k,‘

akjaj‘ ≤ M(A),
X
j∈P0

akj ≤ ρ. (B.50)

Here, we remark that the inequality on the left exploits the fact that k, ‘ ∈ P and j ∈ P0,
so we are allowed to extend the sum across j ∈ P0 to a sum across j ∈ {1, 2, . . . , N}\{k, ‘}.

Next we focus on the second summation in (B.48), which can be upper bounded as
follows: X

j,m∈P0

j 6=m

akjajma
(2)
m‘ ≤

X
j,m∈P0

j 6=m

akjajm 2ρ am‘ + M(A)

= 2ρ
X

j,m∈P0

j 6=m

akjajmam‘ + M(A)
X

j,m∈P0

j 6=m

akjajm,

≤ 2ρ2M(A) + ρ2M(A) = 3ρ2M(A), (B.51)
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where in the first inequality we used (B.14), while in the second inequality we used (B.1)
and (B.2) to get:X

j,m∈P0

j 6=m

akjajmam‘ =
X
j∈P0

akj
X
m∈P0

j 6=m

ajmam‘≤
X
j∈P0

akjM(A) ≤ ρM(A), (B.52)

and: X
j,m∈P0

j 6=m

akjajm =
X
j∈P0

akj
X
m∈P0

j 6=m

ajm ≤
X
j∈P0

akjρ ≤ ρ2. (B.53)

Finally, the third summation in (B.48) can be manipulated as follows:

X
j,m∈P0

j 6=m

akja
(2)
m‘ =

X
j,m∈P0

j 6=m

akj

NX
h=1

amhah‘

=
X
j∈P0

akj

NX
h=1

ah‘
X
m∈P0

m 6=j

amh ≤ ρ3, (B.54)

where in the last step we applied repeatedly (B.1), further noticing that in view of the
symmetry of A we can write: X

m∈P0

m6=j

amh =
X
m∈P0

m 6=j

ahm ≤ ρ. (B.55)

Using (B.49), (B.51), and (B.54) in (B.48), we get:

ek‘ ≤ 3ρᾱ + 3ρ2β̄ + ρ3γ̄ M(A) , κM(A), (B.56)

which proves the claim.
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Appendix C

Useful Convergence Results

In the previous appendix we obtained some upper and lower bounds on the limiting
Granger estimation error, and in particular we have seen that these bounds are functions of
the term M(A) defined in (B.2). In this appendix we will provide some useful convergence
results involving these quantities, which will be exploited later to prove the regularity of
the limiting Granger estimator.

Lemma 17 (Useful Convergence Results for Bollobás-Riordan Graphs). Let
A(N) be the Laplacian combination matrix (4.15) with support graph G(N) obtained from
a Bollobás-Riordan multigraph M(N) with step parameter η. Then we have that:

√
N M A(N)

p−→ 0, (C.1)

where from (B.2):

M A(N) = max
k,‘∈[1,N ]

k 6=‘

NX
j=1
j 6=k,‘

ajk(N)aj‘(N). (C.2)

Proof: Using (4.15) in (C.2) we get:

√
N M A(N) =

 
ρλ

√
N

1 + µG(N)

!2
1√
N

max
k,‘∈[1,N ]

k<‘

NX
j=1
j 6=k,‘

gjkgj‘

| {z }
tN

. (C.3)

Note that, by exploiting the fact thatA(N) is symmetric by assumption, we have replaced

the constraint k 6= ‘ in (C.2) with k < ‘ in (C.3). Since the term
√
N

1+µG(N) converges almost

surely to 1/µ, it is sufficient to show that the term tN in (C.3) vanishes in probability as
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N → ∞. To this aim, it is expedient to work in terms of the original multigraph M(N)
that originates the simple graph G(N). We have that:

tN ≤ 1√
N

max
k,‘∈[1,N ]

k<‘

NX
j=1
j 6=k,‘

mjkmj‘

=
1√
N

max
k,‘∈[1,N ]

k<‘

‘X
j=1
j 6=k,‘

mjkmj‘

| {z }
t0N

+
1√
N

max
k,‘∈[1,N ]

k<‘

NX
j=‘+1

mjkmj‘

| {z }
t00N

. (C.4)

By construction, mk‘ ∈ {1, . . . , η}, and using (5.4), for any k < ‘ we have:

‘X
j=1
j 6=k,‘

mjkmj‘ ≤ η

‘X
j=1
j 6=k,‘

mj‘ ≤ η dM,‘(‘) ≤ 2η2, (C.5)

where the last inequality holds because, in the multigraph M(‘), node ‘ has only η
edges, and so its degree dM,‘(‘) is upper bounded by 2η. Applying (C.5) to the random
sequence t0N in (C.4), we conclude that t0N vanishes almost surely as N → ∞. It remains
to show that t00N in (C.4) vanishes in probability. To this end, we call upon Lemma 21,
by introducing the following family of sequences, for any k, ‘ ∈ N with 1 ≤ k < ‘:

uk‘(j) ,
mjkmj‘, j > ‘,
0, otherwise.

(C.6)

Following the notation adopted in Lemma 21, we have a family of sequences {uk‘(j)}j≥1

parameterized by the set:

Θ = {(k, ‘) ∈ N2 : 1 ≤ k < ‘}. (C.7)

Moreover, we introduce the aggregate variable:

Uk‘(N) ,
NX
j=1

uk‘(j). (C.8)

Convergence to zero of the random variable t00N in (C.4) is equivalent to the following
statement:

∀ε > 0, lim
N→∞

P

 max
k,‘∈[1,N ]

k<‘

Uk‘(N) > ε
√
N

 = 0. (C.9)
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Now, for any (k, ‘) ∈ Θ:

uk‘(1) = 0, and ∀j > 1, 0 ≤ uk‘(j) ≤ η2, (C.10)

where the upper bound follows because, in view of (5.2) and (5.3), both mjk and mj‘

cannot exceed the number of steps η. From (C.10) we see that the family of sequences
in (C.6) meets the hypotheses of Lemma 21 with the filtration {F(n)}n≥1 generated by
the random sequence {M(n)}n≥1. We conclude that the probability in (C.9) is upper
bounded by:

N(N − 1)

2
e
− 3

16η2 ε
√
N

+ P

 max
k,‘∈[1,N ]

k<‘

Ck‘(N) >
ε

2

√
N

 , (C.11)

where:

Ck‘(N) ,
NX
j=1

E[uk‘(j)|M(j − 1)]. (C.12)

On the other hand, from Lemma 8 we have that:

max
k,‘∈[1,N ]

k<‘

Ck‘(N) <

NX
j=1

µM(j − 1) + 2η

j − 1

2

. (C.13)

Therefore, applying Markov’s inequality and (C.13) to the second term in (C.11), we
conclude that this term is upper bounded by:

2

ε
√
N

NX
j=1

E

"
µM(j − 1) + 2η

j − 1

2
#
, (C.14)

which vanishes as N → ∞ in view of Lemma 7, concluding the proof of the theorem.
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Appendix D

Graph Learning over
Erdős-Rényi Graphs

Proof of Lemma 1: Since by assumption 0 ≤ p < 1 and |SN | N→∞−→ ∞, the claim
in (4.9) is immediately verified since we have that:

P GS(N) is fully connected = p
|SN |(|SN |−1)

2

N
N→∞−→ 0. (D.1)

Similarly, when the limiting connection probability p is in (0, 1), since |SN | N→∞−→ ∞,
the convergence in (4.11) is immediately verified as follows:

P GS(N) is fully disconnected = 1 − pN
|SN |(|SN |−1)

2 N→∞−→ 0. (D.2)

It remain to prove (4.11) when p = 0. In this case we first write:

P GS(N) is fully disconnected = (1−pN )
|SN |(|SN |−1)

2 = exp
|SN |(|SN | − 1)

2
log(1 − pN ) .

(D.3)
Now since we assumed:

|SN |2pN
N→∞−→ ∞, (D.4)

and considering the well known limits (for pN → 0):

log(1 − pN )

pN

N→∞−→ −1,
|SN |(|SN | − 1)

|SN |2
N→∞−→ 1, (D.5)

we have that the probability in (D.3) vanishes as N → ∞, which concludes the proof.

Proof of Lemma 2: Let us introduce the quantities:

δν,N ,
κ

1 + νG(N)
, δµ,N ,

κ

1 + µG(N)
. (D.6)
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Since by assumption we have (4.5), which implies:

NpN
N→∞−→ ∞, (D.7)

and recalling Lemma 4, we obtain:

NpN δν,N
p−→ κ, and NpN δµ,N

p−→ κ. (D.8)

From definition (4.17), a regular diffusion matrix is such that:

δµ,N G(N) ≤ A(N) − diag(A(N)) ≤ δν,N G(N), (D.9)

where diag(·) is a diagonal matrix having on the main diagonal the entries of its matrix
argument. Thus, using (D.8) and (D.9) we can write:

kNpNA(N) − κG(N)||max-off ≤ max |NpNδν,N − κ| , |NpNδµ,N − κ| p−→ 0, (D.10)

which concludes the proof.

The proof of Lemma 3, originally presented in [75], relies on a bound on the Granger
estimator different from the bound found in Lemma 16. This bound is detailed in the
next lemma.

Lemma 18 (Other Useful Bounds on the Error of the Limiting Granger Esti-
mator). Let A be an N ×N scaled left-stochastic matrix as in (B.1). If A is symmetric,
then we have for any P and any k, ‘ ∈ P with k 6= ‘:

ek‘ ≤ α(A)
h
2S(A)M(A,P0) + M(A) eB(A,P0)

i
+ β(A)

h
2S(A)B3(A,P0) + M(A)fM(A,P0)

i
+ γ(A)

h
2S(A)

ffM(A,P0) +
eeB(A,P0)

i
M(A) (D.11)

ek‘ ≥ α(A)
h
2 s(A)m(A,P0) + m(A)eb(A,P0)

i
+ β(A) [2 s(A) b3(A,P0) + m(A) em(A,P0)]

+ γ(A) 2 s(A) eem(A,P0) +
eeb(A,P0) m(A) (D.12)

where the new quantities introduced in these bounds are defined in Table D.1.

Proof: See Appendices B, C, D and G of [75].
In order to prove Lemma 3, we then need to characterize the asymptotic behavior

of the bounds in Lemma 18. This task can be accomplished thanks to the convergence
results stated in the next lemma.
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Lemma 19 (Useful Convergence Results for Erdős-Rényi Graphs). Let A(N) be
a regular diffusion matrix (4.17) with support graph G(N) drawn according to the Erdős-
Rényi model under the degree concentration regime (4.6). Let SN be any probed subset
sequence such that:

lim
N→∞

|SN |
N

= ξ, for some 0 < ξ < 1. (D.13)

Then, the quantities defined in Table D.1 satisfy:

NpN M A(N)
p−→ κ2p NpN m A(N)

p−→ κ2p (D.14)

S A(N)
p−→ κ2(ρ− κ) s A(N)

p−→ κ2(ρ− κ) (D.15)

NpNM A(N), S0N
p−→ κ2p(1 − ξ) NpNm A(N), S0N

p−→ κ2p(1 − ξ) (D.16)eB A(N), S0N
p−→ κ(1 − ξ) eb A(N), S0N

p−→ κ(1 − ξ) (D.17)

B3 A(N), S0N
p−→ κ3ρ(1 − ξ)2 b3 A(N), S0N

p−→ κ3ρ(1 − ξ)2 (D.18)fM(A,P0) A(N), S0N
p−→ κ2(1 − ξ)2 em(A,P0) A(N), S0N

p−→ κ2(1 − ξ)2 (D.19)ffM(A,P0) A(N), S0N
p−→ κ2(1 − ξ)2 eem(A,P0) A(N), S0N

p−→ κ2(1 − ξ)2 (D.20)eeB(A,P0) A(N), S0N
p−→ κ3(1 − ξ)2 eeb(A,P0) A(N), S0N

p−→ κ3(1 − ξ)2. (D.21)

and:

α A(N)
p−→ 1 +

ζ2

1 − ζ2
α A(N)

p−→ 1 +
ζ2

1 − ζ2
(D.22)

β A(N)
p−→ 2ζ

(1 − ζ2)2
β A(N)

p−→ 2ζ

(1 − ζ2)2
(D.23)

γ A(N)
p−→ ϕ γ A(N)

p−→ ϕ (D.24)

for:

ϕ ,
1 − ζ2 + 2 ζ[2 ζ (1 − ξ) + κ(1 − ξ)]

[1 − (ρ2 − 2ρκξ + κ2ξ)][1 − ζ2]2
and ζ , ρ− κ. (D.25)

Proof: See Appendix F in [75].

Now, we are ready to prove Lemma 3.

Proof of Lemma 3: It is well known that for any set of values X ⊆ R such that:

∀x ∈ X a ≤ x ≤ b, (D.26)

with a, b ∈ R some constants, we can write:

0 ≤ max
x∈X

|x| ≤ |a| + |b|. (D.27)
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Now, let z(A,P) and Z(A,P) compactly denote the lower bound in (D.12) and the upper
bound in (D.11), respectively. If we consider:

X , {NpN [ bAS(N) −AS(N)]k‘ − β : k, ‘ ∈ S, k 6= ‘}, (D.28)

then by exploiting Lemma 18 we can use (D.27) with:

a , NpN z(A,P) − β, b , NpNZ(A,P) − β, (D.29)

to obtain:

NpN bAS(N) −AS(N) −β
max-off

≤ NpN z A(N), SN −β + NpNZ A(N), SN −β .

(D.30)
We can use the convergences listed in Lemma 19 and, after some algebraic computations,
we obtain for any sequence of probed subsets SN satisfying (4.18):

NpN z A(N), SN
p−→ β, NpNZ A(N), SN

p−→ β. (D.31)

From the squeeze theorem for convergence in probability, using (D.30) and (D.31) we get
the claim:

NpN bAS(N) −AS(N) −β
max-off

p−→ 0. (D.32)
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New terms in bounds (D.11), (D.12)
Original

notation [75]

S(A) , max
k∈[1,N ]

akk s(A) , min
k∈[1,N ]

akk Ma,self ma,self

M(A,P0), max
k,‘∈[1,N ]

k 6=‘

X
j∈P0

j 6=k,‘

akjaj‘ m(A,P0), min
k,‘∈[1,N ]

k 6=‘

X
j∈P0

j 6=k,‘

akjaj‘ M(P0) m(P0)

eB(A,P0) , max
k∈P

X
‘∈P0

ak‘ eb(A,P0) , min
k∈P

X
‘∈P0

ak‘ fM(S0)
a,sum em(S0)

a,sum

B3(A,P0),max
k,‘∈P
k 6=‘

X
j,m∈P0

j 6=m

akjajmam‘ b3(A,P0),min
k,‘∈P
k 6=‘

X
j,m∈P0

j 6=m

akjajmam‘ M
(S0)
a3,sum m

(S0)
a3,sum

fM(A,P0) , max
k∈P

X
j,m∈P0

j 6=m

akjajm em(A,P0) , min
k∈P

X
j,m∈P0

j 6=m

akjajm fM(P0) em(P0)

ffM(A,P0) , max
k,‘∈P
k 6=‘

X
j,m∈P0

j 6=m

akjam‘
eem(A,P0) , min

k,‘∈P
k 6=‘

X
j,m∈P0

j 6=m

akjam‘ ffM(P0) eem(P0)

eeB(A,P0),max
k,‘∈P

X
j∈P0

akj

NX
h=1
h 6=‘

ah‘
X
m∈P0
m 6=j,h

amh
eeb(A,P0),min

k,‘∈P

X
j∈P0

akj

NX
h=1
h 6=‘

ah‘
X
m∈P0
m 6=j,h

amh
ffM(P0)

a,sum
eem(P0)

a,sum

The terms α(A), β(A) and γ(A)
have the same role as ᾱ, β̄ and γ̄
in (B.22) and (B.23), but produce
sharper upper bounds.

The terms α(A), β(A) and γ(A)

are similar to α(A), β(A) and
γ(A), but correspond to sharper
lower bounds.

Φα Φα

Φβ Φβ

Φγ Φγ

Table D.1: Definitions of the new terms introduced in bounds (D.11), (D.12) of Lemma 18.
They arise from the analysis conducted in [75] which is analogous but more general than
the one presented in this appendix. We changed the original notation of these terms to
conform them to the style adopted in this document. In the second column of the table
we report the formulation used in [75].
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Appendix E

Auxiliary Technical Results

Lemma 20. Let fi be the sequence recursively defined as:

fi+1 = afi + ai b i2 + c i + d , i = 1, 2, . . . (E.1)

with 0 < a < 1 and b, c, d ∈ R. Then we have that:

fi = ai−1 f1+b
i(i−1)(2i−1)

6
+c

i(i− 1)

2
+d(i−1) . (E.2)

Proof: Unfolding the recursion in (E.1), we conclude that, for all i > 1:

fi = ai−1

f1 +

i−1X
j=1

bj2 + cj + d

 . (E.3)

Thus, to obtain (E.2) we use the well-known results:

i−1X
j=1

j =
i(i− 1)

2
,

i−1X
j=1

j2 =
i(i− 1)(2i− 1)

6
. (E.4)

The following lemma is an adaptation of Theorem 2.1 in [38], useful for the proofs of
Lemma 5 and Lemma 17.

Lemma 21. Let us consider a family of random sequences {uθ(n)}n≥1 spanned by the
parameter θ ∈ Θ and defined on the same probability space. Assume that the following
conditions are met for all θ ∈ Θ:

uθ(1) = 0, 0 ≤ uθ(n) ≤ b for all n > 1, (E.5)
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for a positive constant b. Let us further define the first two conditional moment sequences
{νθ(n)}n≥1 and {χθ(n)}n≥1 w.r.t. a given filtration {F(n)}n≥1 of the underlying space:

νθ(1) , 0, νθ(n) , E[uθ(n)|F(n− 1)], (E.6)

χθ(1) , 0, χθ(n) , E[u2
θ(n)|F(n− 1)], (E.7)

and finally consider:

Uθ(N) ,
NX

n=1

uθ(n), Cθ(N) ,
NX

n=1

νθ(n), (E.8)

Qθ(N) ,
NX

n=1

χθ(n), Ūθ(N) , Uθ(N) −Cθ(N). (E.9)

Then, for any subset T ⊆ Θ and any u > 0 we have:

P max
θ∈T

Uθ(N) > u ≤ |T| e− 3
16bu + P max

θ∈T
Cθ(N) >

u

2
. (E.10)

Proof: For any two events E1 and E2, it is true that (Ē2 is the complement of event
E2):

P[E1] = P[E1,E2] + P[E1, Ē2] ≤ P[E1,E2] + P[Ē2], (E.11)

so that we can write:

P max
θ∈T

Uθ(N)>u ≤ P max
θ∈T

Uθ(N)>u, max
θ∈T

Cθ(N)≤ u

2

+ P max
θ∈T

Cθ(N) >
u

2
. (E.12)

Let us focus on the first term on the RHS of (E.12). We have the following relations:([
θ∈T

{Uθ(N) > u}

)\( \
θ0∈T

{Cθ0(N) ≤ u/2}

)
(a)
=

([
θ∈T

Ūθ(N)>u−Cθ(N)

)\( \
θ0∈T

{Cθ0(N)≤u/2}

)
(b)

⊆
[
θ∈T

Ūθ(N) > u−Cθ(N) ∩ {Cθ(N) ≤ u/2}

(c)

⊆
[
θ∈T

Ūθ(N) > u− u/2 ∩ {Cθ(N) ≤ u/2}

(d)

⊆
[
θ∈T

Ūθ(N) > u− u/2 ∩ {Qθ(N) ≤ bu/2} , (E.13)
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where (a) follows from the definition of Ūθ(N) in (E.9); (b) is obtained by retaining only
the event corresponding to θ0 = θ in the intersection; (c) holds since in the intersection
−u/2 ≤ −Cθ(N); and (d) follows by observing that, in view of (E.5), (E.6) and (E.7)
we have χθ(n) ≤ bνθ(n), which in turn implies, from the definitions in (E.8) and (E.9),
that Qθ(N) ≤ bCθ(N). Using (E.13) in the first term on the RHS of (E.12), and further
applying the union bound, we obtain:

P max
θ∈T

Uθ(N) > u, max
θ∈T

Cθ(N) ≤ u

2

≤
X
θ∈T

P Ūθ(N) >
u

2
, Qθ(N) ≤ bu

2
. (E.14)

The sequence {Ūθ(N)}N≥1 is a martingale by construction, since it is a sum of random
variables (i.e., uθ(n)) minus their conditional expectation (i.e., νθ(n)). Moreover, from
(E.5) we have the bound:

Ūθ(N + 1) − Ūθ(N) ≤ uθ(N + 1) ≤ b. (E.15)

Therefore, it can be readily checked that the scaled sequence {Ūθ(N)/b}N≥1 meets the
hypotheses of Theorem 2.1 in [38], and in particular the upper bound obtained by com-
bining Eqs. (10), (11) and (15) in [38], which finally yields:

P Ūθ(N) >
u

2
,Qθ(N) ≤ bu

2
≤ e−

3
16bu, (E.16)

and the proof is complete.
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