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CHAPTER 1

Introduction

To describe the interaction of a molecule with an external field the concept of molecular
response comes into play. Formally, it refers to response theory, namely, the calcula-
tion of field-induced molecular properties through changes in expectation values.[1] The
molecular response can take a variety of forms depending on the perturbing field, which
can be electric, magnetic, or both, static or dynamic as in the case of the electromag-
netic radiation. For example, in the presence of an electric field (time-independent or
time-dependent) the electron cloud is polarised and an induced electric moment (static
or dynamic) appears as a consequence of the perturbation. In the case of a magnetic
field, electron currents start flowing within the electron cloud, thus providing an induced
magnetic moment. Such induced electric and magnetic moments can be measured and
may serve in technological applications.

What primarily changes during the interaction with a static field is the energy of
the molecule, which becomes a function of the applied field. The quantum mechanical
calculation of the molecular energy is, therefore, a way to achieve the determination of
molecular properties. Customarily, the molecular energy is expanded in a series of powers
of the applied field, which leads to identification of each term of the series with a specific
molecular property. Accordingly, molecular properties are classified as first-order (or
intrinsic), second-order (or linear), third, fourth, . . . (or non-linear) properties. To cite a
few, electric polarizability and magnetizability are linear response molecular properties,
whereas first and second hyperpolarizabilities are non-linear molecular properties. By
definition, molecular properties are tensors of rank determined by the powers of the
applied field.

From a chemical point of view, it is interesting to consider how molecular composition
and structure affect response properties. The same atoms, or group of atoms (functional
groups) in different chemical contests, can provide substantially different molecular prop-
erties. Understanding why this happens may have practical consequences, as for example,
directing the work of synthesis of new molecules showing peculiar characteristics.[2] In
this regard, the theoretical work can provide a substantial help, avoiding lengthy labo-
ratory work and waste of substances. The great computing power nowadays available
makes it possible to achieve this purpose, with a precision comparable to the experimen-
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tal one. Computational methods, based on perturbation theory/response theory, not
practicable only a few years ago, are now routinely employed for the prediction of static
and dynamic molecular properties at different levels of approximation.[3–5]

However, despite the great amount of work done so far, there is still a lot to do.
Although the knowledge of electronic energies and transition moments between electronic
states allows the determination of a number of molecular response properties, the level
of understanding that they permit is not sufficient to analyze in detail the contributions
from different places of the molecular space. This further step, necessary for chemical
interpretation, can be achieved in the context of a slightly less explored field, i.e., those of
molecular density functions, in particular those associated to response properties, whose
dependence on the position makes this type of study feasible.

The present PhD thesis describes the research work carried out in the last three years
by the candidate for the determination and exploration of molecular property density
functions associated to the response to external electric and magnetic perturbations.

As it regards this work, there are two basic density functions: the electron charge
density ρ = −eγ, which is a scalar field, and the electron current density J = −ej,
which is a vector field, where γ(r) and j(r) are the probability density and probability
current density functions, respectively, from which the majority of electric and magnetic
property density functions can be derived. The general concept of a density function for
a molecular property was pioneered by Jameson and Buckingham.[6, 7]

A very appealing feature of any density function is its dependence on the position
vector r, which permits to explore the molecular space looking for the loci most impor-
tant for determining the final value of a property. In other words, it allows to study
the connection between molecular structure and properties. For example, aromaticity
is an important chemical concept that is connected to enhanced diamagnetic response
and low-field NMR proton chemical shift. Both phenomena find an explanation in the
so called ring-current model,[8–11] which assumes a delocalized current induced in the
π-electron cloud of a ring of conjugated atoms by an external magnetic field. Visualiza-
tion of the magnetically induced current density and related proton magnetic shielding
density, permits a rapid understanding of what is happening inside the molecule and
provides insight into shape and size of any ring currents present in the molecule un-
der investigation. Moreover, a quantitative estimation of the current density flux gives a
measure of aromaticity, which is not directly influenced by any geometrical factor.[12, 13]

In the following, property density functions will be discussed in a number of ways,
from their definition, to their representation and analysis. An important aspect of those
density functions derived in terms of current density is their vector nature. This entails
a number of different ways for their visualization and adoption of topological tools for
their analysis.

After a first part of general definitions, a second part of the present thesis is devoted to
the molecular density functions induced by a static magnetic field. A third part concerns
the dynamic response due to the interaction with the radiation.

All developed methods have been implemented within the freely available SYSMOIC
package.[14][3]

Throughout this thesis, SI units are used and standard tensor formalism is employed,
e.g., the Einstein convention of implicit summation over two repeated Greek indices
is applied. The third-rank Levi-Civita skew-tensor is indicated by ϵαβγ and δij is the
Kronecker’s delta. The imaginary unit is represented by a Roman i.
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CHAPTER 2

General Definitions

We premise that our study of the interaction of a molecule with external electric and
magnetic fields is a semi-classical one, i.e., the molecular system is treated at QM level,
whilst the fields are considered at classical level. Therefore, we start recalling the basic
equations of the classical electromagnetic field theory that will be used in the following.
Then the quantum mechanical Hamiltonian in the BO approximation will be outlined
together with some of the tools needed for the topological analysis of the scalar field
ρ(r), useful also for the analysis of the current density exposed later.

2.1 Classical Hamiltonian

In the presence of an electric field E(r, t) and a magnetic field B(r, t) a classical particle
of charge q, moving with velocity v, experiences the Lorentz force[15]

F = q(E + v ×B) (2.1)

The electric and magnetic fields satisfy Maxwell’s equations[15–19]

∇ ·E =
ρ

ϵ0
(2.2)

∇×B − µ0ϵ0
∂E

∂t
= µ0J (2.3)

∇ ·B = 0 (2.4)

∇×E +
∂B

∂t
= 0 (2.5)

When the charge density ρ(r, t) and the current density J(r, t) are the sources of the
fields, Maxwell’s equations can be solved for E(r, t) and B(r, t). Conversely, since the
particles are driven by the Lorentz force (2.1), ρ(r, t) and J(r, t) depend on E(r, t) and
B(r, t). Maxwell’s equations consist of two pairs of distinct equations: the inhomoge-
neous equations (2.2) and (2.3), and the homogeneous equations (2.4) and (2.5). The
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first and third equations correspond to Gauss’ law for electric and magnetic fields, respec-
tively. The other two equations are the Ampère-Maxwell and Faraday-Neumann-Lenz
laws.

The homogeneous equations are independent of the charges and currents in the sys-
tem. Indeed, according the equation (2.4) the magnetic field can be written as the curl
of a vector field, as the divergence of a curl is always vanishing. Such a vector field is
known as the vector potential A[15, 19]. Therefore

B = ∇×A (2.6)

Replacing this equation in the Faraday-Neumann-Lenz law (2.5), one has

∇×E +
∂ (∇×A)

∂t
= 0 (2.7)

This equation can be rearranged to obtain

∇×
(
E +

∂A

∂t

)
= 0 (2.8)

The quantity E + ∂A
∂t is irrotational[20, 21] so that

E = −∇Φ − ∂A

∂t
(2.9)

where Φ is known as the scalar or electric potential (the minus sign is largely a matter
of convention).

From Maxwell’s inhomogeneous equations one can extract the continuity equation

∂ρ

∂t
+ ∇ · J = 0 (2.10)

that relates ρ and J and expresses the law of local conservation of the electric charge.
Equations (2.6) and (2.9) do not define uniquely the scalar and the vector potentials,
indeed they are the same after a gauge transformation. Changing the potentials according
to

A → A′ = A + ∇f (2.11)

Φ → Φ′ = Φ − ∂f

∂t
(2.12)

where f is an arbitrary function of position, leads to exactly the same fields, since[22]

∇× (∇f) = 0

Equations (2.11) and (2.12) define a change of gauge.
Now, let us consider an idealized situation in which, the charged particles in the

molecule are not the sources of the fields, rather they interact with an electromagnetic
field generated by other sources considered sufficiently remote so that we can set them
to zero. Then, Maxwell’s equations become

∇ ·E = 0 (2.13)

∇ ·B = 0 (2.14)

∇×E = −∂B
∂t

(2.15)

∇×B = µ0ϵ0
∂E

∂t
(2.16)

13



which constitute a set of coupled, first-order, partial differential equations for E and B.
They can be decoupled taking the curl of (2.15) and (2.16), arriving at

∇2E − µ0ϵ0
∂2E

∂t2
= 0 (2.17)

∇2B − µ0ϵ0
∂2B

∂t2
= 0 (2.18)

whose solutions are the very well known plane waves defined by

E(r, t) = ℜ
{
E0e

i(ωt−k·r)
}

(2.19)

B(r, t) = ℜ
{
B0e

i(ωt−k·r)
}

(2.20)

where ω = 2πν is the angular frequency in radians per second, ν is the frequency in hertz,
k = kn̂ = ω

c n̂ is the the wave vector and n̂ is the unit vector indicating the direction
of propagation of the wave. E and B oscillate periodically in phase on planes mutually
orthogonal whose intersection coincides with k. Using the Euler relation

eix = cos(x) + i sin(x) (2.21)

it follows that
E(r, t) = E0 cos(ωt− k · r) (2.22)

B(r, t) = B0 cos(ωt− k · r) (2.23)

To treat the molecule at QM level, we need a Hamiltonian describing the interaction be-
tween the charged particles in the molecule and the external electromagnetic fields trav-
eling in the vacuum. We start considering the Lagrangian of n non-relativistic charged
particles with charges qi, masses mi and positions ri in an electromagnetic field,[23] that
is,

L =

n∑
i

1

2
miṙ

2
i +

n∑
i

qiṙi ·Ai −
n∑
i

qiΦi (2.24)

in Cartesian coordinates. Indeed, if we substitute (2.24) in the Euler-Lagrange equations

n∑
i

[
d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri

]
= 0 (2.25)

we obtain that
n∑
i

[
mir̈i + qi∇Φi + q

dAi

dt
− qi∇(ṙi ·Ai)

]
= 0 (2.26)

which is equivalent to Newton’s equations with the Lorentz’s force. The generalized
momenta are given by:

pi =
∂L

∂ṙi
= miṙi + qiAi (2.27)

which can be rearranged expressing the velocities in terms of the momenta as

ṙi =
pi − qiAi

mi
(2.28)
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Now, starting from the definition of the Hamiltonian

H =

{
n∑
i

pi · ṙi

}
− L (2.29)

and considering that

L =

n∑
i

[
pi −

1

2
miṙi

]
· ṙi −

n∑
i

qiΦi (2.30)

we obtain

H =

n∑
i

pi · ṙi −
n∑
i

[
pi −

1

2
miṙi

]
· ṙi +

n∑
i

qiΦi (2.31)

from which it follows

H =

n∑
i

1

2
miṙ

2
i +

n∑
i

qiΦi (2.32)

If we introduce the mechanical momentum of the particle[23]

πi = pi − qiAi (2.33)

the total Hamiltonian can be written as

H =

n∑
i

π2
i

2mi
+

n∑
i

qiΦi (2.34)

This approximation is called minimal coupling.[24] For the sake of simplicity, here we
have not taken into account the Coulomb interaction between charged particles. In the
QM approach one has to substitute the classical Hamiltonian H with the operator Ĥ.
To conclude this section, let us consider the case of a time-independent magnetic field.

For a static and uniform magnetic field equation (2.6) reads

Bα = ϵαβγ∇βrγ = constant (2.35)

In this case, a satisfactory solution for A is given by

A =
1

2
B × r ⇒ Aα =

1

2
ϵαβγBβrγ (2.36)

since, as it can be easily shown

(∇×A)α =
1

2
ϵαβγ∇βϵγλµBλrµ

(∇×A)α =
1

2
(δαλδβµ − δαµδβλ)∇βBλrµ

(∇×A)α =
1

2
Bα∇βrβ − 1

2
Bβ∇βrα

(∇×A)α =
3

2
Bα − 1

2
Bα = Bα

(2.37)

Equation (2.36), proposed for the vector potential A, also accounts for the Coulomb
gauge

∇ ·A = ∇αϵαβγBβrγ = 0 (2.38)
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Figure 2.1: For any point at distance r from a physically relevant reference point, in
the coordinate system K, the descriptions of induced charge and current densities of two
observers in systems K ′ and K ′′, with origins r′ and r′′ respectively, separated by a
distance d are equivalent.

However, as stated before, this solution is not unique due to the gauge transformations
(2.11) and (2.12). For example, two different choices of the origin of the vector potential,
as shown in Figure 2.1, give two alternative forms of A at any given point in space,
though the field itself remains the same.

A′ =
1

2
B × (r − r′) (2.39)

A′ → A′′ =
1

2
B × (r − r′′) (2.40)

A′′ = A′ − 1

2
B × d (2.41)

∇×A′′ = ∇×A′ (2.42)

Therefore a shift of the origin of coordinates by a vector d = r′′ − r′ corresponds to a
change of gauge (2.11) where

f(r) = −1

2
B × d · r (2.43)

since

∇αf(r) = −1

2
∇α(B × d · r)

= −1

2
∇αϵβγδBγdδrβ

= −1

2
ϵβγδBγdδδαβ

∇f(r) = −1

2
B × d

A′′ = A′ + ∇f(r)

(2.44)
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2.2 Quantum Mechanical Hamiltonian

Within the BO approximation,[25] for a molecule with n electrons and N clamped nuclei,
charge, mass, position, canonical and angular momentum of the k-th electron are indi-
cated, in the configuration space, by −e, me, rk, p̂k = −iℏ∇k, l̂k = rk×p̂k, k = 1, 2 . . . n,
using boldface letters for electronic vector operators. Analogous quantities for nuclei are
Zae, Ma, Ra, etc., for a = 1, 2 . . . N . Capitals denote n-electron vector operators, e.g.,
for position, canonical momentum and angular momentum

R̂ =

n∑
k=1

rk P̂ =

n∑
k=1

p̂k L̂ =

n∑
k=1

l̂k

Then, the electric dipole operator in the length formalism becomes

µ̂α = −eR̂α (2.45)

the electric quadrupole operator is

µ̂αβ = −e
2

n∑
k=1

(rαrβ)k (2.46)

and the magnetic dipole operator

m̂α = − e

2me
L̂α (2.47)

Let us introduce the general definition of n-electron probability density matrix functions[22]
for a stationary state wavefunction Ψ(X)

γ (x1;x′
1) = n

∫
Ψ (x1,X1) Ψ∗ (x′

1,X1) dX1 (2.48)

of electronic space-spin coordinates xk = rk ⊗ ηk, k = 1, 2, . . . , n, where

X1 ≡ {x2, . . . ,xn} X = {x1,X1} dX1 ≡ {dx2, . . . , dxn} (2.49)

By integrating over the spin variable η1, a spatial probability density matrix is obtained

γ(r; r′) ≡ γ(r1; r′1) =

∫
η′
1=η1

γ (x1;x′
1) dη1 (2.50)

Putting r = r′ we obtain the probability charge density

γ(r) ≡ γ(r; r) (2.51)

For the reference state Ψa the probability and charge densities are

γ(r) = n

∫
Ψa (r,X1) Ψ∗

a (r,X1) dX1 (2.52)

ρ(r) = −eγ(r) (2.53)

Now, let us transform the classical Hamiltonian (2.34) for the interaction with time-
dependent fields in the corresponding quantum mechanical operator. To have a correct
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description of the molecular system, we must also take into account the Coulomb inter-
actions between charged particles, not introduced before for the sake of simplicity. The
QM Hamiltonian reads[22]

Ĥ =
1

2me

n∑
k

π̂2
k − e

n∑
k

Φk + V̂ (r) (2.54)

with

V̂ (r) =
e2

8πε0

∑
k,j

′ 1

rkj
− e2

8πε0

∑
a,k

Za

rak
+

e2

8πε0

∑
a,a′

′ZaZa′

Raa′
(2.55)

where primes mean that, performing the double summation, k ̸= j and a ̸= a′. After
some manipulation (2.54) can be conveniently rewritten as

Ĥ = Ĥ(0) + Ĥ(1) + Ĥ(2) (2.56)

where

Ĥ(0) = − ℏ2

2me

n∑
k

∇2
k + V̂ (r) (2.57)

Ĥ(1) = − ieℏ
2me

n∑
k

(∇k ·Ak + Ak ·∇k) − e

n∑
k

Φk (2.58)

Ĥ(2) =
e2

2me

n∑
k

A2
k (2.59)

Now a question arises: “What are the explicit forms for vector and scalar potentials Ak

and Φk that we have to consider for the interaction with electric and magnetic time-
dependent fields?” A solution can be that of taking into account the series expansions
of the vector and scalar potentials about a reference point, which is set equal to the
origin[26]

Aα(r, t) =

∞∑
j=0

j + 1

(j + 2)!
ϵαβγrγrα1

rα2
· · · rαj

Bαjαj−1···α1β(0, t) (2.60)

Φ(r, t) = −
∞∑
j=0

1

(j + 1)!
rαrα1

rα2
· · · rαj

Eαjαj−1···α1α(0, t) (2.61)

with

Bαjαj−1···α1α(0, t) ≡
[

∂jBα(r, t)

∂rαj
∂rαj−1

· · · ∂rα1

]
r=0

(2.62)

and

Eαjαj−1···α1α(0, t) ≡
[

∂jEα(r, t)

∂rαj
∂rαj−1

· · · ∂rα1

]
r=0

(2.63)

obtained according to the Bloch derivation,[26] satisfying the gauge conditions (2.11) and
(2.12), with a scalar function defined as

f(r, t) = −
∞∑
j=1

1

j!
rα1

rα2
· · · rαj

Aαjαj−1···α1
(0, t) (2.64)
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in which

Aαjαj−1···α1α(0, t) ≡
[

∂jAα(r, t)

∂rαj
∂rαj−1

· · · ∂rα1

]
r=0

(2.65)

Within the Bloch gauge, we get for the divergence of the new vector potential

∇ ·A =

∞∑
j=0

(j + 1)(j + 2)

(j + 3)!
ϵαβγrαrα1

rα2
· · · rαj

Bαjαj−1···α1βγ(0, t) (2.66)

that is, the Bloch potentials fulfill neither the Lorenz gauge

∇ ·A + µ0ϵ0
∂Φ

∂t
= 0 (2.67)

nor the Coulomb gauge,
∇ ·A = 0 (2.68)

except for a static and uniform magnetic field. In the latter case, we have

Ak =
1

2
B × rk (2.69)

from which it follows that Ĥ(1) becomes

Ĥ(1) = − ieℏ
2me

n∑
k

B × rk ·∇k =
e

2me

n∑
k

lk ·B (2.70)

(in this case Φ is vanishing). In general, for time-dependent fields, different orders in the
potentials A and Φ must be considered to obtain a correct description of the molecular
system in the presence of an electromagnetic field. The most simple one is the case of the
electric dipole approximation, introduced for the first time by Maria Göppert Mayer,[27]
in which A(r, t) = 0 and Φ(r, t) = −rαEα(0, t). Then, one has

Ĥ(1) = −e
n∑
k

Φk = e

n∑
k

rkαEα(0, t) = −µ̂αEα(0, t) (2.71)

The electric dipole approximation corresponds to a situation in which the wavelength of
the radiation is much longer than molecular size, so that the molecule effectively sees only
a uniform electric field rather than the full electromagnetic wave. This approximation is
therefore reasonable for small- and medium-sized molecules exposed to electromagnetic
radiation with wavelengths in the ultraviolet region, or longer. In the dipole approxi-
mation, the magnetic field is absent. To have a perturbing magnetic field, we need the
expansion (2.60) truncated at first-order, at least. In general, to construct the Hamil-
tonian Ĥ(1), a truncation of order n in the electric field must be accompanied by a
truncation at order n− 1 in the magnetic field.[5] To show how this can be accomplished
let us consider

Ĥ(1) = Ĥ
(1)
Φ + Ĥ

(1)
A (2.72)

where Ĥ
(1)
Φ and Ĥ

(1)
A contain respectively the electric and magnetic multipolar expansion.

For the electric multipolar expansion we have

Ĥ
(1)
Φ = −

∞∑
j=0

[
µ̂αα1α2···αj

Eαjαj−1···α1α(0, t)
]

(2.73)
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with

µ̂αα1···αj = − e

(j + 1)!

n∑
k

(
rαrα1 · · · rαj

)
k

(2.74)

For Ĥ
(1)
A the simpler approach, due to Bloch[26], consists to write the magnetic multipolar

expansion as

Ĥ
(1)
A = −

∞∑
j=0

[
m̂αα1α2···αj

Bαjαj−1···α1α(0, t)
]

(2.75)

with

m̂αα1···αj
= − e

2me

j + 1

(j + 2)!

n∑
k

(
lαrα1

· · · rαj
+ rα1

· · · rαj
lα
)
k

(2.76)

Using these Hamiltonians we have, for example, that in the electric quadrupole approxi-
mation (EQA),

Ĥ(1) = −µ̂αEα(0, t) − µ̂αβEβα(0, t) − m̂αBα(0, t)

= ĤE + Ĥ∇E + ĤB
(2.77)

while in the electric octopole approximation (EOA)

Ĥ(1) = −µ̂αEα(0, t) − µ̂αβEβα(0, t) − µ̂αβγEγβα(0, t) − m̂αBα(0, t) − m̂αβBβα(0, t)

= ĤE + Ĥ∇E + Ĥ∇∇E + ĤB + Ĥ∇B

(2.78)
and so on.

In the following sections only the electric quadrupole approximation will be used to
derive the total induced first order polarization charge and current density vector. This
approximation corresponds to considering a uniform magnetic field, and a non uniform
electric field with uniform gradient on the molecular domain. This is assumed to be
enough to have a good description of the interaction between the molecule and the
electromagnetic fields. In the case of strongly nonuniform optical fields more elaborate
approximations would be needed.
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2.3 Topological Analysis of the Electron Charge Density

The aim of this section is to recall briefly the concepts behind the topological analysis
of ρ(r), first introduced by Bader within the QTAIM theory,[28, 29] and then included
under the broader scope of QCT by Popelier in 2003.[30] In QCT other fields, beyond
∇ρ are also studied, such as the gradients of ∇2ρ(r), the gradient of the ELF function
and others.[31, 32] A useful definition of an atom comes from QTAIM, indeed according
to Ref.[28], we have

A quantum subsystem is bounded by a surface S(r) that satisfies the condi-
tion of “zero flux” in the gradient vector field of the charge density, the field
∇ρ(r),

∇ρ(r) · n(r) = 0 all r in S(r) (2.79)

where n(r) is the unit vector normal to the surface at r. The application of
this condition to a charge distribution results in its exhaustive and disjoint
partitioning into a set of spatial regions, each of which, in general, contains
a single nucleus.

This condition is the starting point of QCT analysis of the electron density ρ(r) usually
performed with a Newton-Raphson approach. The topology of ρ is understood by study-
ing the gradient vector field ∇ρ(r). This vector field is a collection of gradient paths,
which are curves in space that follow the direction of steepest ascent in ρ.[28] Therefore
a gradient path has a sense; it always originates and terminates at points where ∇ρ(r)
vanishes. These points are called critical points. CPs occurring in a 3D function, such
as ρ, can be best characterized by the eigenvalues λi with i = 1, 2, 3 of the Hessian of ρ,
evaluated at the CP, introducing the concepts of rank r and signature s. The Hessian is
a 3×3 matrix, denoted by ∇∇ρ, defined as[28, 30, 33]

H [ρ(rc)] =


∂2ρ
∂x∂x

∂2ρ
∂x∂y

∂2ρ
∂x∂z

∂2ρ
∂y∂x

∂2ρ
∂y∂y

∂2ρ
∂y∂z

∂2ρ
∂z∂x

∂2ρ
∂z∂y

∂2ρ
∂z∂z


r=rc

(2.80)

that contains all partial second derivatives of ρ with respect to the Cartesian position
coordinates x, y and z. The Hessian matrix is always real and symmetric so it has
real eigenvalues. Recalling that, the rank r of a CP refers to the number of non-zero
eigenvalues while the signature s is the sum of the signs of the eigenvalues, it is possible
to note that for a 3D scalar function only two kind of saddle points can exist. For
example, one type of saddle point has two non-zero eigenvalues and one strictly positive.
Consequently, its rank is three and its signature is (−1) + (−1) + 1 = −1. This is
conveniently denoted[34] as a (3,−1) point, or bond critical point (BCP), where the first
index refers to the rank and the second to the signature. The BCPs are linked to the
nuclei via the so-called atomic interaction line. This line consists of a pair of gradient
paths, each of which originates at the BCP and terminates at a nucleus. The set of
all atomic interaction lines occurring in a molecule is called the molecular graph (MG).
Another topologically important object is the interatomic surface, which separates two
bonded atoms. In summary, to be brief, the following kinds of CPs occur:[34]

� (3,+1) Two positive curvatures: ρ is a minimum in the plane defined by the corre-
sponding eigenvectors and a maximum along the third axis which is perpendicular
to this plane. This CP is called ring critical point (RCP);
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� (3,−1) Two negative curvatures: ρ is a maximum in the plane defined by the corre-
sponding eigenvectors but is a minimum along the third axis which is perpendicular
to this plane. This CP is called BCP;

� (3,+3) Three curvatures are positive: ρ is a local minimum. This CP is called cage
critical point (CCP);

� (3,−3) Three negative curvatures: ρ is a local maximum. This CP is called nuclear
critical point (NCP) because it is usually, but not always,[35] found to be coincident
with the nuclear coordinates.

The number and type of critical points[29, 30] that can coexist in a molecule or crystal
follow a strict topological relationship which states that:

nNCP − nBCP + nRCP − nCCP =

{
1 (Isolated molecules)

0 (Infinite crystals)
(2.81)

where each n denotes the number of CP of each type. The first equality is known as the
Poincaré–Hopf relationship and applies for isolated finite systems such as a molecule, the
second equality is known as the Morse equation and applies in cases of infinite periodic
lattices.[36] The concept of Poincaré index will be introduced, in detail, in chapter 3.
Violation of equation (2.81) implies an inconsistent characteristic set, that a critical point
has been missed, and that a further search for the missing critical point(s) is necessary.
On the other hand, the fulfillment of this equation does not guarantee the completeness
of the CPs search.
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CHAPTER 3

Time-Independent Electron Current Density

This chapter has a dual aim. The first is to report the equations defining the total current
density induced by a time-independent magnetic field, while the second is to show a
procedure referred to as CTOCD that provides a solution to the well-known problem of
the origin dependence of the computed current density vector field. Withing this chapter
spin effects will not be taken into account.[37–39][13] To show how the QM expression for
the total many body current density J can be obtained, the Landau-Lifshitz approach[37]
is used which is based on the relation

δHc = −
∫

J(r) · δA(r) d3r (3.1)

To use this idea for a QM system, Landau and Lifshitz argued that the classical Hamilto-
nian Hc is to be identified with the expectation value of the QM Hamiltonian according
to

Hc = ⟨H⟩ = ⟨Ψ|Ĥ|Ψ⟩ (3.2)

Due to equation (3.1), only terms containing the vector potential A must be taken into
account. Looking at the interaction Hamiltonian (2.54), one can see that the vector
potential appears only in the first term on the r.h.s.. Then, defining

ĥ(1) =
π̂2

2me
(3.3)

and using equation (2.48) we can focus only on the term[22]〈
n∑
k

ĥ(k)

〉
=

∫
x′

1=x1

ĥ(1)γ(x1;x′
1) dx1 (3.4)

Moreover, since spin-effects are not taken into account in ĥ(1), it is possible to complete
the integration over spin variable and write the following equation〈

n∑
k

ĥ(k)

〉
=

∫
r′=r

ĥ(1)γ(r; r′) d3r (3.5)
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recovering the spinless density (2.50) introduced in the previous chapter. To obtain the
current density vector J from equation (3.1), we need to calculate the variation δHc with
respect to an infinitesimal change of the vector potential[38, 39][13]

A(r) + δA(r) (3.6)

Expanding π̂2 we have

π̂2 = (−iℏ∇ + eA)2 = −ℏ2∇2 − iℏe(A ·∇ + ∇ ·A) + e2A2 (3.7)

Substituting this expression and the definition (2.50) in equation (3.5), we can write

Hc + δHc =
n

2me

∫
Ψ∗ (r,X1)π2 Ψ (r,X1) dX1 d

3r+

ne

2me

∫
Ψ∗ (r,X1) [δA · p̂ + p̂ · δA + 2eA · δA] Ψ (r,X1) dX1 d

3r

(3.8)

because
(A + δA)2 = A ·A + δA · δA + 2A · δA (3.9)

and the second order variation δA · δA is not considered to be vanishingly small. From
the previous equations it follows that

δHc =
ne

2me

∫
Ψ∗ (r,X1) [δA · p̂ + p̂ · δA + 2eA · δA] Ψ (r,X1) dX1 d

3r (3.10)

Let us consider now the term ∇ · (δAΨ). If we apply the vector identity

∇ · (fV ) = f∇ · V + ∇f · V (3.11)

with f = Ψ and V = δA we obtain

∇ · (ΨδA) = Ψ∇ · (δA) + ∇Ψ · (δA) (3.12)

Multiplying the last equation on the left by Ψ∗, one can write

Ψ∗∇ · (ΨδA) = Ψ∗Ψ∇ · (δA) + Ψ∗∇Ψ · (δA) (3.13)

The term Ψ∗Ψ∇ · (δA), on the r.h.s of the previous equation, can be identified with
f∇ · V , in which f = Ψ∗Ψ and V = δA, so using again the identity (3.11) one has

Ψ∗∇ · (ΨδA) = ∇ · (Ψ∗δAΨ) −∇(Ψ∗Ψ) · δA + Ψ∗∇Ψ · δA (3.14)

Considering that
∇(Ψ∗Ψ) · δA = ∇Ψ∗ · δAΨ + Ψ∗∇Ψ · δA (3.15)

equation (3.13) can be rearranged in the form

Ψ∗∇ · (δAΨ) = ∇ · (Ψ∗δAΨ) −∇Ψ∗ · δAΨ (3.16)

Applying the divergence theorem for the first term on the r.h.s of the last identity and
considering that the wavefunction goes to zero at infinity we have∫

∇ · (Ψ∗δAΨ) d3r = 0 (3.17)
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from which relation (3.10) can be rewritten as

δHc = −n ieℏ
2me

∫
Ψ∗ (r,X1) δA ·∇Ψ (r,X1) dX1 d

3r

+n
ieℏ
2me

∫
∇Ψ∗ (r,X1) · δAΨ (r,X1) dX1 d

3r

+n
e2

me

∫
Ψ∗ (r,X1)A · δAΨ (r,X1) dX1 d

3r

(3.18)

Comparing this last equation with (3.1) it follows that

J(r) = n
ieℏ
2me

∫
{Ψ∗ (r,X1)∇Ψ (r,X1) − Ψ (r,X1)∇Ψ∗ (r,X1)} dX1 −

e2

me
Aγ(r)

(3.19)
conventionally rewritten as

J(r) = − e

me
ℜ [π̂γ (r; r′)]r′=r (3.20)

In SI units the dimensions of J are
[
Am−2

]
. This is the equation obtained in the static

case. Then, according to equation (2.10) it must be the case that ∇ · J = 0.
The expression of J(r) is conventionally rewritten as the sum of a paramagnetic and

a diamagnetic term
J(r) = Jp(r) + Jd(r) (3.21)

The paramagnetic term is

Jp(r) = n
ieℏ
2me

∫
{Ψ∗ (r,X1)∇Ψ (r,X1) − Ψ (r,X1)∇Ψ∗ (r,X1)} dX1 (3.22)

while the diamagnetic term, called also Larmor contribution, is

Jd(r) = − e2

me
Aγ(r) (3.23)

with the vector potential A defined as

A = AB +

N ′∑
I=1

AmI (3.24)

AB =
1

2
B × r AmI =

µ0

4π

mI × (r −RI)

|r −RI |3
(3.25)

Considering the reference state Ψ = Ψa and expanding the wavefunction in powers of
the applied external magnetic field B, we have

Ψa = Ψ(0)
a + ΨB

a ·B + · · · (3.26)

Substituting this expansion in equation (3.19) we have

J(r) = n
ieℏ
2me

∫ {
(Ψ(0)

a + ΨB
a ·B + · · · )∗∇(Ψ(0)

a + ΨB
a ·B + · · · )+

− (Ψ(0)
a + ΨB

a ·B + · · · )∇(Ψ(0)
a + ΨB

a ·B + · · · )∗
}
dX1

− n
e2

me
A

∫
(Ψ(0)

a + ΨB
a ·B + · · · )(Ψ(0)

a + ΨB
a ·B + · · · )∗dX1

(3.27)
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where we have omitted the function arguments for the sake of space. Collecting terms in
different powers of the applied magnetic field, we can split the total current density as

Jα(r) = J (0)
α (r) + J Bβ

α (r)Bβ + · · · (3.28)

where J Bβ
α is the second rank current density tensor[40] defined as

J Bβ
α =

∂JB
α

∂Bβ
(3.29)

Considering that ΨB
a is pure imaginary, i.e. ΨB∗

a = −ΨB
a the different terms are

J (0)(r) = n
ieℏ
2me

∫
{Ψ(0)∗

a ∇Ψ(0)
a − Ψ(0)

a ∇Ψ(0)∗
a } dX1 (3.30)

JB(r) = n
ieℏ
me

∫
{Ψ(0)∗

a ∇ΨB
a ·B + ΨB∗

a ·B∇Ψ(0)
a } dX1 −

ne2

2me
B × r

∫
Ψ(0)

a Ψ(0)∗
a dX1

(3.31)

Since Ψ
(0)
a can always be chosen real, i.e. Ψ

(0)
a = Ψ

(0)∗
a , we have J (0)(r) = 0. In (3.31)

it is still possible to distinguish a paramagnetic and a diamagnetic term

JB
p (r) = n

ieℏ
me

∫
{Ψ(0)∗

a ∇ΨB
a ·B + ΨB∗

a ·B∇Ψ(0)
a } dX1 (3.32)

JB
d (r) = − ne2

2me
B × r

∫
Ψ(0)

a Ψ(0)∗
a dX1 (3.33)

From Rayleigh-Schrödinger perturbation theory, the first order perturbed wavefunction
is

ΨBα
a = − e

2meℏ
∑
j ̸=a

ω−1
ja |j⟩ ⟨j| L̂α |a⟩ (3.34)

where |a⟩ stands for the reference state Ψ
(0)
a . Substituting this equation in (3.32) we can

see that the first-order perturbed paramagnetic component becomes

JB
pα

(r) =
ne2

2m2
eℏ
Bβ

∑
j ̸=a

1

ωja

× ℜ
{〈

a
∣∣∣L̂β

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1)p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1)p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣L̂β

∣∣∣ a〉}
(3.35)

Magnetic properties, like magnetizability and nuclear magnetic shielding, can be obtained
by integrating the current density tensor field according to[41]

ξαβ =
1

4

∫
rγ

(
ϵαγδJ

Bβ

δ + ϵβγδJ Bα

δ

)
d3r (3.36)

σI
αδ = −µ0

4π
ϵαβγ

∫
rβ −RIβ

|r −RI |3
J Bδ
γ (r) d3r (3.37)
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3.1 Continuous Transformation of the Origin of the
Current Density

Since the interest here is only on the linear response hereafter the magnetically induced
first-order current density vector will be briefly referred to as current density and the
second-rank current density tensor just as current density tensor. According to a defi-
nition proposed by Hirschfelder,[42] the current density, as well the charge density, is a
subobservable. As a consequence, the exact current density tensor is origin-independent
although it can be written as the sum of origin-dependent paramagnetic and diamagnetic
contributions. In other words, in a change of the coordinate system, see picture 2.1,

r′ → r′′ = r′ + d (3.38)

the total current density must remain unchanged, whilst the paramagnetic and diamag-
netic terms change in a compensatory manner. For the change of origin (3.38) the
paramagnetic and diamagnetic terms change according to[14][3]

J Bβ
pα (r − r′′) = J Bβ

pα (r − r′) + J (d×B)β
pα (r) (3.39)

J Bβ

dα
(r − r′′) = J Bβ

dα
(r − r′) + J (d×B)β

dα
(r) (3.40)

with

J (d×B)β
pα (r) = − ne2

2m2
eℏ
ϵβγδdγ

∑
j ̸=a

1

ωja

×ℜ
{〈

a
∣∣∣P̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂δ

∣∣∣ a〉} (3.41)

J (d×B)β
dα

(r) =
e2

2me
ϵαβγdγγ

(0)(r) (3.42)

Therefore, for any new origin r′′ of the current density tensor, one can write

J Bβ
α (r − r′′) = J Bβ

pα (r − r′) + J (d×B)β
pα (r) + J Bβ

dα
(r − r′) + J (d×B)β

dα
(r) (3.43)

Hence, the constraint for invariance of total current density tensor reduces to

J (d×B)β
pα (r) = −J (d×B)β

dα
(r) (3.44)

However, this condition is not true in practical calculations. To overcome this difficulty,
and to obtain origin-independent current densities within the algebraic approximation,
Keith and Bader[43] have reported an approach that employs a different origin for each
point in real space. This method, which has been termed “continuous set of gauge
transformations” by the authors, actually amounts to considering the shift d, in equation
(3.38), as a function of r. However, it must be noted that within this approach the
continuity condition for the current density is not satisfied in practical calculation (see
section 3.1.6 for further considerations). It is better, from a physical point of view, to call
this method “continuous transformation of the origin of the current density” (CTOCD)
instead of “continuous set of gauge transformations” (CSGT).[44] Some possible forms
for d(r) have been proposed during the years and in the following sections a description
of the most important variants of them will be given.
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3.1.1 CTOCD-DZ1

The simplest choice is to set d(r) = r. This method is called “diamagnetic zero” or
“ipsocentric”[45, 46] approach because it makes the diamagnetic contribution vanish
everywhere for exact and approximate cases, indeed:[44]

J Bβ
α (r) = J Bβ

pα (r) + J (d×B)β
pα (r) (3.45)

where

J Bβ
pα (r) =

ne2

2m2
eℏ

∑
j ̸=a

1

ωja

× ℜ
{〈

a
∣∣∣L̂β

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1)p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1)p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣L̂β

∣∣∣ a〉}
(3.46)

J (d×B)β
pα (r) = − ne2

2m2
eℏ
ϵβγδrγ

∑
j ̸=a

1

ωja

×ℜ
{〈

a
∣∣∣P̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂δ

∣∣∣ a〉} (3.47)

It has been proven, by numerical applications, that this choice of the shift function is not
particularly good, as perturbed wavefunctions are involved in the calculations.[43, 47]
For this reason other variants of the method have been proposed, which are detailed here
in the following.

28



3.1.2 CTOCD-DZ2

The CTOCD-DZ1 approach requires very large basis sets and it is not recommended
for the calculation of accurate nuclear magnetic shieldings and magnetizabilities. To
overcome this difficulty, in the original implementation of the method,[43] an exponential
function was used to shift the origin toward the nearest nucleus. This modification was
termed by KB as CSDGT (continuous set of damped gauge transformations), which is
also referred to in the literature as CTOCD-DZ2.[48]

Within the CTOCD-DZ2 approach the shift function is defined as:

d(r) = r −
∑
a

(r −Ra) e−α|r−Ra|4 (3.48)

where the summation runs over all nuclei at their positions Ra, and the positive constant
α is somewhat arbitrarily set to 2 au. The CTOCD-DZ2 shift function is illustrated in
Figure (3.1)

Figure 3.1: The d(r) function for H2O molecule in the CTOCD-DZ2 approach. When
applied to a red point in r, the d(r) function shifts it to the blue point connected through
a line.

The total current density tensor with this shift function becomes

J Bβ
α (r) = J Bβ

pα (r) + J (d×B)β
pα (r) + J (d×B)β

dα
(r) (3.49)

where J Bβ
pα (r) is the term defined in (3.35) and

J (d×B)β
pα (r) =

ne2

2m2
eℏ
ϵβγδ

{
rγ −

∑
a

(rγ −Raγ) e−α|r−Ra|4
}∑

j ̸=a

1

ωja

×ℜ
{〈

a
∣∣∣P̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂δ

∣∣∣ a〉} (3.50)

J (d×B)β
dα

(r) = − e2

2me
ϵαβγ

∑
a

{
(rγ −Raγ) e−α|r−Ra|4

}
γ(0)(r) (3.51)
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3.1.3 CTOCD-PZ1

Since the paramagnetic contribution to the current density is the most difficult to calcu-
late with high accuracy,[47] a more suitable choice for d(r) can be obtained by searching
for an origin which causes JB

p to vanish everywhere. The respective Ansatz leads to a

contradiction which is resolved by setting to zero only the two components of JB
p that

are perpendicular to the inducing magnetic field. This variant of the method was termed
CTOCD-PZ1, after paramagnetic zero.[49, 50]

Within the CTOCD-PZ1 approach, a shift function d(r) is sought such that the

Figure 3.2: The d(r) function for H2O molecule in the CTOCD-PZ1 approach. See
caption 3.1 for details.

paramagnetic contributions to the current density is formally annihilated. The condition
is:

J Bβ
pα (r − r′) = −J (d×B)β

pα (3.52)

which gives the 3 × 3 system of linear equations

Md = T (3.53)

where

Mδβ =
ne

me
ϵαβγBγ

∫ [
Ψ(d×B)α∗

a p̂δΨ(0)
a + Ψ(0)∗

a p̂δΨ(d×B)α
a

]
dX1 (3.54)

Tδ = − ne

me
Bα

∫ [
ΨBα

∗

a p̂δΨ(0)
a + Ψ(0)∗

a p̂δΨBα
a

]
dX1 (3.55)

and the wavefunction Ψ
(d×B)α
a is defined according to

Ψ(d×B)α
a = − e

2meℏ
∑
j ̸=a

ω−1
ja |j⟩⟨j|P̂α|a⟩ (3.56)

The 3× 3 M matrix defined accordingly equation (3.54) is singular, for example, setting
B = Bzϵ3 its last column vanishes:

M =

 Mxx Mxy 0
Myx Myy 0
Mzx Mzy 0

 (3.57)
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In physical terms, the quantum mechanical paramagnetic current flowing in the direction
of B cannot be annihilated. Therefore, a 2 × 2 subsystem of equations(

Mxx Mxy

Myx Myy

)(
dx
dy

)
=

(
Tx
Ty

)
(3.58)

is solved, over a grid of points in real space, to determine the components

dx =
TxMyy − TyMxy

MxxMyy −MxyMyx

dy =
TyMxx − TxMyx

MxxMyy −MxyMyx

(3.59)

of the shift vector function that annihilates the paramagnetic current over planes per-
pendicular to B. The equations derived are valid for cyclic permutations of x, y, z. The
CTOCD-PZ1 shift function is illustrated in Figure (3.2). Thus, within the CTOCD-
PZ1 scheme, the transverse current density contains only contributions that are formally
diamagnetic:

J Bβ
α (r) = J Bβ

dα
(r) + J (d×B)β

dα
(r) (3.60)

Therefore, the transverse PZ1 current density is explicitly origin independent also for
approximate electronic wavefunctions, since it depends on the difference r− d(r) of two
vectors whose origin can arbitrarily be chosen.[51]

3.1.4 CTOCD-PZ2

Similarly to the CTOCD-DZ2 case a CTOCD-PZ2 variant has been proposed, which
shifts the origin towards the nearest nucleus. Within the CTOCD-PZ2 approach the
d(r) function is that provided by the CTOCD-PZ1, then it is moved to the nearest
nucleus according to

d(r) = dPZ1(r) −
∑
a

[
dPZ1(r) −Ra

]
e−α|r−Ra|4 (3.61)

Figure 3.3: The d(r) function for H2O molecule in the CTOCD-PZ2 approach. See
caption 3.1 for details.

The CTOCD-PZ2 shift function is illustrated in Figure (3.3). This approach is particu-
larly useful for the calculation of magnetic properties using a small basis set.[52]
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3.1.5 CSGT Methods

Recently, a few other choices for d(r) have been developed, as for example the CSGT with
atomic size adjustments determined using the Bragg-Slater atomic radii or considering
the bond critical points of the electron density distribution.[53, 54][1]

Within the CSGT-STD approach,[55] available within the Gaussian package[56], the
shift function is

d(r) = r −
N∑

a=1

(r −Ra)wa(r) (3.62)

where the exponential function of the CTOCD-DZ2/PZ2 variants, see equations (3.48)
and (3.61), has been replaced by the normalized nuclear weight function

wa(r) =
Pa(r)∑
j Pj(r)

(3.63)

of the Becke’s algorithm.[53] CSGT-STD, CSGT-BS, and CSGT-BCP methods differ
in how the cell function Pa(r) is determined. Here we give our implementation of the
Becke’s algorithm, keeping as much as possible the original notation:[53, 54][1]

1. Some data required by the algorithm are predetermined such as: (i) a matrix of
interatomic distances Rij ; (ii) BCP positions are assigned to each pair of bonded
atoms; (iii) each element of a matrix of ratios χij is set to one.

2. if not CSGT-STD, then only for pairs of bonded atoms i and j:
(a) χij = Ri

Rj
, where Ri, Rj are the atomic radii, respectively, of atom i and j for

the CSGT-BS method;
(b) χij = Di

Dj
where Di,Dj are the distances, respectively, from the internuclear

BCP to atom i and j for the CSGT-BCP method.

3. For each atom i = 1, ..., N

(a) set Pi = 1

(b) for each atom j(̸= i) = 1, ..., N

i. set µij = (ri − rj) /Rij , where ri and rj are the distances, respectively,
from r to nuclei i and j;

ii. set uij = (χij − 1)/(χij + 1)

iii. set aij = uij/
(
u2ij − 1

)
iv. adjust |aij | ≤ 1

2 only for CSGT-BS method

v. set vij = µij + aij(1 − µ2
ij)

vi. set f1 = PolyBecke(vij), where PolyBecke(x) = 3
2x− 1

2x
3

vii. set f2 = PolyBecke(f1)

viii. set f3 = PolyBecke(f2)

ix. set s3 = 1
2 (1 − f3)

x. set Pi = Pi × s3

(c) next j

(d) Calculation of the cell function Pi(r) =
∏

j ̸=i s(vij) is now complete.

4. Next i
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When all the cell functions have been determined, we can use them to calculate the
origin according to equation (3.62). The differences between the three CSGT methods
are illustrated in the following pictures, where it is possible to recognize how the origin
is differently chosen for each approach.

Figure 3.4: The d(r) function for H2O molecule in the CSGT-STD approach. See caption
3.1 for details.

Figure 3.5: The d(r) function for H2O molecule in the CSGT-BS approach. See caption
3.1 for details.

Figure 3.6: The d(r) function for H2O molecule in the CSGT-BCP approach. See caption
3.1 for details.
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3.1.6 About the Translational Invariance of the Current Density

The aim of this section is to illustrate some aspects of the translational invariance of
the total CTOCD current density tensor and related consequences on the continuity and
charge-current conservation. We start proving the condition

J (d×B)β
pα (r) = −J (d×B)β

dα
(r) (3.64)

for any shift function d(r). We rewrite equations (3.41) and (3.42) as

J (d×B)β
pα (r) = − ne2

2m2
eℏ
ϵβγδdγ(r)

∑
j ̸=a

1

ωja

×ℜ
{〈

a
∣∣∣P̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂δ

∣∣∣ a〉} (3.65)

J (d×B)β
dα

(r) =
e2

2me
ϵαβγdγ(r)γ(0)(r) (3.66)

Considering off-diagonal hypervirial relationships〈
a
∣∣∣R̂α

∣∣∣ j〉 =
i

meωja

〈
a
∣∣∣P̂α

∣∣∣ j〉 (3.67)

〈
j
∣∣∣R̂α

∣∣∣ a〉 = − i

meωja

〈
j
∣∣∣P̂α

∣∣∣ a〉 (3.68)

and

ℜ (a+ ib) = a ℑ (a+ ib) = b (3.69)

ℑ [i (a+ ib)] = a ℑ [i (a+ ib)] = ℜ (a+ ib) (3.70)

ℜ [i (a+ ib)] = −b ℜ [i (a+ ib)] = −ℑ (a+ ib) (3.71)

equation (3.65) can be rewritten as

J (d×B)β
pα (r) = − ne2

2meℏ
ϵβγδdγ(r)

∑
j ̸=a

ℑ
{〈

a
∣∣∣R̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂αΨ

(0)
j (r,X1) dX1

〈
j
∣∣∣R̂δ

∣∣∣ a〉} (3.72)

and is easily recast in the following form

J (d×B)β
pα (r) = − ne2

2meℏ
ϵβγδdγ(r)ℑ

{∫ ∑
j ̸=a

Ψ
(0)
j (r,X1)

〈
j
∣∣∣R̂δ

∣∣∣ a〉
∗

p̂αΨ(0)
a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂α

∑
j ̸=a

Ψ
(0)
j (r,X1)

〈
j
∣∣∣R̂δ

∣∣∣ a〉
 dX1

}
(3.73)
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Then, if we add and subtract the same quantity, twice in both summations, we have

J (d×B)β
pα (r) = − ne2

2meℏ
ϵβγδdγ(r)ℑ

{∫ ∑
j

Ψ
(0)
j (r,X1)

〈
j
∣∣∣R̂δ

∣∣∣ a〉
∗

p̂αΨ(0)
a (r,X1) dX1

−
〈
a
∣∣∣R̂δ

∣∣∣ j〉∫
Ψ(0)∗

a (r,X1) p̂αΨ(0)
a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂α

∑
j

Ψ
(0)
j (r,X1)

〈
j
∣∣∣R̂δ

∣∣∣ a〉
 dX1

+
〈
j
∣∣∣R̂δ

∣∣∣ a〉∫
Ψ(0)∗

a (r,X1) p̂αΨ(0)
a (r,X1) dX1

}
(3.74)

Using the condition of completeness, the previous equation is rewritten as

J (d×B)β
pα (r) = − ne2

2meℏ
ϵβγδdγ(r)ℑ

{∫
Ψ(0)∗

a (r,X1) R̂δp̂αΨ(0)
a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂αR̂δΨ(0)

a (r,X1) dX1

}
(3.75)

or introducing the commutator,
[
R̂δ, p̂α

]
, as

J (d×B)β
pα (r) = − ne2

2meℏ
ϵβγδdγ(r)ℑ

{∫
Ψ(0)∗

a (r,X1)
[
R̂δ, p̂α

]
Ψ(0)

a (r,X1) dX1

}
(3.76)

Now, let’s focus on the commutator[
R̂δ, p̂α

]
=

[
n∑

i=1

r̂iδ, p̂1α

]
= [r̂1δ, p̂1α] = iℏδδα (3.77)

Then, we have

J (d×B)β
pα (r) = − ne2

2me
ϵβγαdγ(r)

∫
Ψ(0)∗

a (r,X1) Ψ(0)
a (r,X1) dX1 (3.78)

which proves (3.64) since

J (d×B)β
pα (r) = − e2

2me
ϵαβγdγ(r)γ(0) = −J (d×B)β

dα
(r) (3.79)

This equality is satisfied only in the complete basis set limit if the state functions are exact
eigenfunctions of a model Hamiltonian and therefore satisfy the off-diagonal hypervirial
theorem for the position operator, as in HF, DFT or Full-CI approaches.[57, 58][5]

Let us consider the following equality, with f(r) any real function∫
∇ ·

[
f(r)JB(r)

]
d3r =

∫
JB(r) ·∇f(r) d3r +

∫
f(r)∇ · JB(r) d3r (3.80)

Applying the divergence theorem∫
JB(r) ·∇f(r) d3r =

∮
f(r)JB(r) · ds︸ ︷︷ ︸

=0

−
∫
f(r)∇ · JB(r) d3r (3.81)
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Then, allowing for the continuity equation

∇ · JB(r) = 0 (3.82)

one has that ∫
JB(r) ·∇f(r) d3r = 0 (3.83)

Choosing f(r) = x, y, and z one obtains∫
JB
α (r) d3r = 0 (3.84)

which is the Sambe condition for charge and current conservation.[59]
We observe that continuity implies conservation of the current. Further, the origin-

independence condition (3.79), for the exact case, permits to reduce the Sambe condition
(3.84) to the Arrighini-Maestro-Moccia (AMM) sum rule[60], in which the integrals of
the traditional (not shifted) paramagnetic and diamagnetic components equal to∫

JB
pα

(r) d3r =
e2

2m2
e

{
P̂α, L̂β

}
−1
Bβ ,∫

JB
dα

(r) d3r = − e2

2me
ϵαβγ

〈
a
∣∣∣R̂γ

∣∣∣ a〉Bβ ,

(3.85)

where{
P̂α, L̂β

}
−1

=
1

ℏ
∑
j ̸=a

2

ωja
ℜ
{〈

a
∣∣∣P̂α

∣∣∣ j〉〈
j
∣∣∣L̂β

∣∣∣ a〉}
= meϵαβγ

〈
a
∣∣∣R̂γ

∣∣∣ a〉 (3.86)

In an approximate calculation, conditions (3.79) and (3.84) are not fulfilled, even if the
CTOCD current densities (all variants) are origin-independent.[51] Therefore the latter
do not fulfill the continuity equation and the charge and current conservation, except
for symmetry reasons. For example, in Figure (3.7) ∇ · JB is shown for the benzene
molecule, where the Sambe condition (3.84) of conservation is fulfilled by symmetry, the
current is origin independent, but the divergence, as one can see is not vanishing at all.

Figure 3.7: Diverging color maps of ∇ · JB(r) in benzene calculated at the B972/pc-
Sseg-0 level of theory, using the CTOCD-DZ1 method. Red/blue color means posi-
tive/negative divergence.
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3.2 Symmetry of the MAGIC Density

The electron density ρ(r) of a molecule has the same symmetry as the molecule itself,
considered as a rigid body in its equilibrium state. Accordingly, we may regard the 32
conventional symmetry classes [61] as mathematical tools which describe the possible
point groups symmetry of ρ. In the presence of a static magnetic field an electronic
current density is induced, which satisfies two conditions: (a) there must not be sinks or
sources in the current density field, because ∇ · JB(r) = 0; (b) there must not be any
current leaving the molecular region, thus the integral conservation condition∫

JB(r) d3r = 0 (3.87)

over the full space should be satisfied. Within a non vanishing current density field, new
symmetry transformations are required, which must be regarded as the combination of
an operation acting on the geometrical shape of the molecule and another that acts on
JB without altering the space coordinates. An operation peculiar to vector fields is the
reversal in direction. In the case of current density this is equivalent to time reversal R,
that is, an antiunitary operator which does not affect position, but changes sign of the
velocity vector.[62] Thus,

Rρ(r) = ρ(r) RJB(r) = −JB(r) (3.88)

Since R changes the sign of time, it is a cyclic operator of order o = 2, i.e., R2 = E.
However R is not a symmetry operation by itself, i.e., it cannot appear alone in any
group, since it would imply JB(r) = −JB(r) at any point r. In the presence of current
density, R is always combined with other symmetry operations as P = RQ, where Q is
either a rotation or a reflection. The set of symmetry transformations {P} forms a group
in the usual mathematical sense. It is called a magnetic group (M hereafter), which is
the same as one of Shubnikov color group [63], where the color change is replaced by the
time-reversal operator. However, some further restrictions must be considered. Both Q
and P = RQ cannot occur in a magnetic group M , since M would then contain Q−1

and PQ−1 = RQQ−1 = R, which is not allowed, as stated before. Equally excluded are
those P = RQ for which Q is of odd order o, since P o = RoQo = RE = R. It follows
that the possibility of RC3 axes is ruled out. Conversely, RS3 is an allowed operation.
On the basis of these properties an algorithm for finding the groups of point symmetry
transformations, in the presence of a magnetic field, can be devised.[64] Take a symmetry
class and let elements {Q1, Q2, . . . , Qg} to form the group G. Consider a subgroup H of
elements {Qi} among the elements of G, which also belong to one of the 32 symmetry
classes. Multiply by R all elements of G−H, i.e., all those belonging to G but not to H,
to obtain Pk = RQk. If the set of element Qi ∈ H and Pk = RQk (Qk ∈ G −H) form
a group, then this is one of the possible groups searched for. The proposed algorithm
is quite laborious to apply. A theorem that makes the search easier has been proven by
Tavger and Zaitsev.[64] Accordingly, let H be a subgroup of G, then a necessary and
sufficient condition for the elements Qi ∈ H and elements Pk = RQk (Qk ∈ G −H) to
form a group is that H is of index 2 in G. Then, the following Tavger-Zaitsev algorithm
follows:[64]

1. the groups of point transformations in the presence of a magnetic field will contain
in the first place the 32 conventional symmetry classes;

2. to find all the others, select a subgroup H ≡ {Qi} of index 2 in G;
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3. form the set G−H of operators {Qk};

4. construct R {G−H}, consisting of {Pk} = {RQk};

5. obtain the magnetic group M as H +R {G−H}, consisting of {Qi, Pk}.

Altogether, there are 90 classes of point symmetry transformations with a non vanishing
current density; of these 32 coincide with the 32 conventional symmetry classes and 58
are new. Within the Schönflies notation, a magnetic group can be given a symbol that
makes explicit the H subgroup of index 2 used in the TZ algorithm, i.e., M(H). Some
interesting features of the current density field are a direct consequence of the magnetic
group symmetry:

(i) a σh plane cannot be crossed by the streamlines of the current density;

(ii) Rσv and Rσd planes can be crossed only by streamlines perpendicular to them. If
a trajectory approaches Rσ planes to an angle different from 90◦, it is scattered
away, and the phase portrait of a saddle is observed;

(iii) vortex or saddle stagnation lines, i.e., (2,0) manifolds, may lie on, but not pass
through, an Rσ;

(iv) quite frequently stagnation lines are fully contained in Rσ planes;

(v) in the absence of Rσ planes, with rare exceptions, the stagnation graphs contain
only isolated singularities;

(vi) Cn symmetry axes, parallel to the inducing magnetic field and lying on Rσv planes,
are necessarily (2,0) stagnation lines.
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3.3 Topological Analysis and Stagnation Graph of the
MAGIC Density

In this section some of the tools needed to deal with vectorial fields and in particular with
the current density vector field J(r) will be recalled in analogy to the topological analysis
of the electron charge density. In particular a description of trajectories as streamlines
and stagnation graphs (SG) is given. Within classical hydrodynamics the differential
equations for the velocity vector field v are

v =
dr

dt

dx

vx
=
dy

vy
=
dz

vz
(3.89)

where t is time. Similar equations can be written for the trajectories of the stationary
field J = ρv, which defines a field parallel to the velocity. The streamlines of the current
density vector field J(r) are determined as solutions of the real autonomous system of
differential equations

J(r) =
dr

dτ
(3.90)

where the derivatives dx/dτ , dy/dτ and dz/dτ have been arranged in a column vector,
and τ is any convenient coordinate along the trajectory. A (time) arrow is used in the
maps to indicate the direction of the current. Equation (3.90) can be rewritten in the
form

dx

Jx
=
dy

Jy
=
dz

Jz
(3.91)

which characterizes a deterministic problem: one and only one trajectory passes through
any nonsingular point of the vector field. The solution to (3.91) is easily arrived at by
well-known numerical procedures, e.g. Euler and Runge–Kutta integration, in the regions
of space where JB does not vanish. Trajectories of the induced current density are plot-

ted in magenta in the following maps. The induced current density JB
α (r) = J Bβ

α (r)Bβ

is a three-dimensional vector field, which has a topological structure determined by its
stagnation points, i.e., singularities, where the current density vector field vanishes.[65–
67] The ensemble of all isolated points r and lines at which JB

α (r) = 0 is termed the
stagnation graph of the current density. A convenient way for searching and characteriz-
ing stagnation points is a Newton-Raphson based procedure, albeit other methods have
also been proposed.[68] In the vicinity of a singularity at r0 the current density field can
be described by the Taylor series expansion

JB
α (r) = (rβ − r0β)

(
∇βJ

B
α

)
r0

+
1

2
(rβ − r0β)(rγ − r0γ)

(
∇β∇γJ

B
α

)
r0

+ · · · (3.92)

then, dropping all non linear terms and setting the current density vector components
to zero, one has

JB(r2) ≈ JB(r1) +
(
∇JB

)
r1

(r2 − r1) = 0 (3.93)
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Starting from a grid of arbitrarily chosen points r1, the following loop (vector components
by column)

n = 0;

while
(∣∣JB(r1)

∣∣ > ϵ and n < NMAX
)
{ n = n+ 1;

g =
(
∇JB

)
r1

; t = −JB(r1);

r2 = r1 + g−1t; r1 = r2;

}

is repeated until the current density modulus is found smaller than a certain minimum
threshold ϵ, or a maximum number of steps NMAX has been employed. At the end of
each successful search, one determines the Jacobian matrix, whose eigenvalues ξ1, ξ2, ξ3
(eigenvectors v1,v2,v3) permit to characterize the singularity according to the widely
adopted Euler index, in terms of (rank, signature).[65–67, 69] The rank r is defined as
the number of non-vanishing eigenvalues of the Jacobian matrix. The signature s is the
excess of eigenvalues with a positive real part over a negative real part. The continuity
equation ∇αJ

B
α = 0 implies that ξ1 + ξ2 + ξ3 = 0, which poses a limit on the possible

(r, s). Adopting a conventional nomenclature[34], the allowed cases are as follows:

� (3,±1) points correspond to isolated singularities. The eigenvalues satisfy the con-
dition ξ3 = −ℜ(ξ1 + ξ2). If ξ1 and ξ2 are real then a node or a saddle is observed
in the phase portrait of the flow over the plane of the eigenvectors v1 and v2. If ξ1
and ξ2 are complex conjugate, a focus is found.

� (2, 0) points belong to stagnation lines, ξ3 = 0 and ξ1 = −ξ2. If ξ1,2 are real (pure
imaginary) the phase portrait of a saddle (vortex) is observed. In the case of a
saddle, the corresponding eigenvectors v1 and v2 are real and give the direction of
the asymptotes through the singularity. In the case of a vortex, the two eigenvectors
are complex conjugate. Saddle and vortex stagnation lines are continuous manifolds
of (2, 0) points. The eigenvector v3 is locally tangent to the stagnation line, which
can be an open line, as in the case of an axial vortex, or form a close loop, as in
the case of a toroidal vortex.

� (0, 0) points correspond to transition singularities at which branching of stagnation
lines may occur, with eigenvalues ξ3 = ξ1 = ξ2 = 0. From a mathematical point
of view, these points correspond to a transition between pure imaginary and pure
real eigenvalues.

The direction of flow about a singularity, a focus or vortex in particular, is determined
by the vorticity, i.e., by the local curl

(
∇× JB

)
r0

, which corresponds to the non null

elements of antisymmetric component of the Jacobian matrix.[67] Stagnation graphs
for several molecules of interest can be found in the literature.[67, 69–74] In order to
distinguish all kinds of stagnation points (SP), different symbols and colors will be used
in the maps according to the following code: (0,0) branching points are marked with
magenta dots; isolated (3,±1) and (2,0) points belonging to vortical lines are indicated by
a red/green dot if

(
∇× JB

)
r0
·B is positive/negative; (2,0) saddle lines are denoted by a

sequence of blue dots; isolated (3,±1) saddle-node points are marked using 3-dash crosses,
one dash for each eigenvalue ξi, parallel to the corresponding eigenvector vi and coloured
in blue/red if ξi is positive/negative. In practice, SGs can be determined searching
for singularities over planes perpendicular to the inducing magnetic field, neglecting
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the component of the current density parallel to B. Repeating the search for many
contiguous planes, a pseudo-SG is obtained, which contains the true SG plus a number
of additional points. The latter can be easily eliminated checking whether the modulus
of the current calculated using all the vector components is less then the minimum
search threshold. However, pseudo-SGs are very useful and have their own conceptual
value.[75, 76] A simple spatial model of vector field, defined by three equations for the
current density components, describing trajectories everywhere parallel to the xy plane,
has been proposed by Gomes[66] to illustrate the notion of SG and the associated idea
of a separatrix as a closed boundaryless surface encasing a vortex and separating it from
other domains of JB. A separatrix cannot be crossed by any trajectory, it is filled with
asymptotic current lines which may start and finish at singular (0,0) branching points,
as found for the Gomes model,[77] or for molecules.[76] Separatrices represented by the
surface of a topological sphere contain poloidal currents flowing on the surface of a torus,
and connecting (3,±1) singularities.

Another tool that can be used to characterize the topology of a vectorial field is the
Poincaré index, that is also known as Poincaré–Hopf index formula. Here for the sake of
simplicity we report only an extrapolation of the mathematical definition given in Ref.
[78]. Let X be a vector field on the manifold M . A critical point of X is a point x0 at
which X vanishes

X(x0) = 0 (3.94)

In any coordinate system surrounding x0 the Jacobian matrix of X is

J(x0) =

[(
∂Xi

∂xk

)
x0

]
(3.95)

The eigenvalues of this matrix do not depend on the coordinate system. The critical
point is called hyperbolic if none of its eigenvalues has zero real part. Since the Jacobian
matrix is real, then the characteristic exponents occur in complex conjugate pairs. If x0
is a hyperbolic critical point of X, the number of eigenvalues (counting multiplicities)
with negative real part is called the index of x0. The Poincaré-Hopf index theorem states
that if M is compact and the vector field X only has (isolated) critical points, then the
number of critical points is finite and∑

i

indexxi(X) = χ(M) (3.96)

where χ(M) is the Euler characteristic of M .
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CHAPTER 4

Time-Dependent Perturbations

In this chapter expressions for the polarization charge and current densities induced in
the electron cloud of a molecule by a monochromatic plane wave will be briefly recalled
using the time-dependent quantum mechanical perturbation theory.[79] As usual, let
us consider that the eigenvalue problem for the time-independent Born Oppenheimer
electronic Hamiltonian

Ĥ(0)Ψ
(0)
j = E

(0)
j Ψ

(0)
j (4.1)

has been solved, determining a set of eigenfunctions Ψ
(0)
j and corresponding energy eigen-

values E
(0)
j . The reference (ground) non-degenerate state is indicated by Ψ

(0)
a . Let us de-

note with Ĥ(1) the first order correction to Ĥ(0) that satisfies the general requirement[80]

Ĥ(1)(r, t→ −∞) = 0̂ (4.2)

and that depends explicitly on time according to

Ĥ(1)(r, t) = Ĥ(1)(r) cos(ωt) (4.3)

Then, the Schrödinger equation reads

iℏ
∂Φa

∂t
=

[
Ĥ(0) + Ĥ(1)

]
Φa (4.4)

Conventionally, within the Schrödinger picture, the perturbed wave function Φa is ex-
pressed as a linear combination

Φa =

∞∑
b=0

cb(t)Θb(t) (4.5)

of stationary states Θb(t)

Θb(t) = Ψ
(0)
b e−

i
ℏE

(0)
b t (4.6)
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with coefficients cb depending on time. Substituting the previous expression in (4.4) one
has

iℏ
∞∑
b=0

d

dt

[
cb(t)Ψ

(0)
b e−

i
ℏE

(0)
b t

]
=

[
Ĥ(0) + Ĥ(1)

] ∞∑
b=0

cb(t)Ψ
(0)
b e−

i
ℏE

(0)
b t (4.7)

from which it follows

iℏ
∞∑
b=0

d

dt

[
cb(t)Ψ

(0)
b e−

i
ℏE

(0)
b t

]
=

∞∑
b=0

cb(t)Ĥ
(0)Ψ

(0)
b e−

i
ℏE

(0)
b t

+

∞∑
b=0

cb(t)Ĥ
(1)Ψ

(0)
b e−

i
ℏE

(0)
b t

(4.8)

Now, using equation (4.1) we obtain

iℏ
∞∑
b=0

d

dt

[
cb(t)Ψ

(0)
b e−

i
ℏE

(0)
b t

]
=

∞∑
b=0

cb(t)E
(0)
b Ψ

(0)
b e−

i
ℏE

(0)
b t

+

∞∑
b=0

cb(t)Ĥ
(1)Ψ

(0)
b e−

i
ℏE

(0)
b t

(4.9)

The l.h.s of the above equation can be rearranged as

iℏ
d

dt

[
cb(t)Ψ

(0)
b e−

i
ℏE

(0)
b t

]
= iℏ

dcb(t)

dt
Ψ

(0)
b e−

i
ℏE

(0)
b t + cb(t)E

(0)
b Ψ

(0)
b e−

i
ℏE

(0)
b t (4.10)

from which it follows that (4.9) reduces to

iℏ
∞∑
b=0

dcb(t)

dt
Ψ

(0)
b e−

i
ℏE

(0)
b t =

∞∑
b=0

cb(t)Ĥ
(1)Ψ

(0)
b e−

i
ℏE

(0)
b t (4.11)

Multiplying the previous equation by Ψ
(0)∗
j , and integrating both sides with respect to

space and spin coordinates, one has

iℏ
∞∑
b=0

dcb(t)

dt

〈
Ψ

(0)
j |Ψ(0)

b

〉
e−

i
ℏE

(0)
b t =

∞∑
b=0

cb(t)
〈

Ψ
(0)
j

∣∣∣Ĥ(1)
∣∣∣Ψ

(0)
b

〉
e−

i
ℏE

(0)
b t (4.12)

Using the orthonormalization condition of the unperturbed wave functions, and then

multiplying by − i
ℏe

i
ℏE

(0)
j t one gets

dcj(t)

dt
= − i

ℏ

∞∑
b=0

cb(t)
〈

Ψ
(0)
j

∣∣∣Ĥ(1)
∣∣∣Ψ

(0)
b

〉
eiωjbt (4.13)

where ωjb =
(
E

(0)
j − E

(0)
b

)
/ℏ are the natural transition frequencies. As it is very well

known equation (4.13) corresponds to the matrix formulation of the time-dependent
Schrödinger equation. The time-dependent coefficients are obtained by a perturbation
expansion

cb(t) = c
(0)
b (t) + λc

(1)
b (t) + λ2c

(2)
b (t) + · · · (4.14)

with the requirements[80]

c
(0)
b (t) = δba (4.15)

c
(l)
b (t→ −∞) = 0, l ̸= 0 (4.16)
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Using the last expansion in equation (4.13) and considering that according to perturba-
tion theory λ appears also as a factor multiplying Ĥ(1) we get

d

dt
[c

(0)
j (t) + λc

(1)
j (t) + · · · ] = − i

ℏ

∞∑
b=0

[c
(0)
b (t) + λc

(1)
b (t) + · · · ]

〈
Ψ

(0)
j

∣∣∣λĤ(1)
∣∣∣Ψ

(0)
b

〉
eiωjbt

(4.17)
The equality holds for each power of λ, so we get

ċ
(0)
j (t) = 0 (4.18)

ċ
(1)
j (t) = − i

ℏ

∞∑
b=0

c
(0)
b (t)

〈
Ψ

(0)
j

∣∣∣Ĥ(1)
∣∣∣Ψ

(0)
b

〉
eiωjbt (4.19)

...

ċ
(l)
j (t) = − i

ℏ

∞∑
b=0

c
(l−1)
b (t)

〈
Ψ

(0)
j

∣∣∣Ĥ(1)
∣∣∣Ψ

(0)
b

〉
eiωjbt (4.20)

with ċj = d
dtcj . Starting from equation (4.20) and using the requirement (4.15) one finds

c
(1)
j (t) = − i

ℏ

〈
j|Ĥ(1)|a

〉∫ t

−∞
eiωjat

′
cosωt′dt′ ≡ cja(t) (4.21)

where |j⟩ ≡ |Ψ(0)
j ⟩. The integral is calculated by parts, allowing for the assumption (4.2)

and equation (4.3), see, for instance Ref. [81],∫ t

−∞
eiωjat

′
cosωt′dt′ = − eiωjat

(ω2
ja − ω2)

(ω sinωt+ iωja cosωt) (4.22)

It can be argued that an alternative, and possibly more rigorous, calculation of integral
(4.22) would require the use of a convergence factor,[82] since the integrand function
keeps oscillating for t→ −∞. At any rate, we can assume that the integral is multiplied
by Ĥ(1), relying on equation (4.3). Thus, owing to equation (4.2),

cja(t) = − eiωjat

ℏ(ω2
ja − ω2)

[〈
j
∣∣∣Ĥ(1)

∣∣∣ a〉ωja + i
〈
j
∣∣∣ ˆ̇H(1)

∣∣∣ a〉] (4.23)

with
ˆ̇H(1) =

∂

∂t
Ĥ(1)

The zero- and first-order perturbed wave functions are given by the expressions

Φ(0)
a ≡ Θa = Ψ(0)

a e−
i
ℏE(0)

a t (4.24)

Φ(1)
a = −1

ℏ
∑
j ̸=a

(ω2
ja − ω2)−1

[〈
k
∣∣∣Ĥ(1)

∣∣∣ a〉ωka + i
〈
k
∣∣∣ ˆ̇H(1)

∣∣∣ a〉] e− i
ℏE(0)

a t (4.25)

then the first-order perturbed electron charge density is written in the form

ρ(1)(r, t) = −ne
∫ [

Φ(0)
a (r,X1)Φ(1)∗

a (r,X1) + Φ(1)
a (r,X1)Φ(0)∗

a (r,X1)
]
dX1 (4.26)
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A non-Larmor contribution to the electron current density is given by the relation

J (1)(r, t) = − ne

me

∫
ℜ
[
Φ(0)

a (r,X1)p̂Φ(1)∗
a (r,X1) + Φ(1)

a (r,X1)p̂Φ(0)∗
a (r,X1)

]
dX1

(4.27)

with p̂ = −iℏ∇. Introducing the expressions for Φ
(0)
a and Φ

(1)
a we write the first-order

charge polarization density induced by the electromagnetic perturbation within the elec-
tron cloud as[83]

ρ(1)(r, t) =
2ne

ℏ
∑
j ̸=a

(
ω2
ja − ω2

)−1 ℜ
{[
ωja

〈
a
∣∣∣Ĥ(1)

∣∣∣ j〉− i
〈
a
∣∣∣ ˆ̇H

∣∣∣ j〉]
×
∫

Ψ
(0)∗
j (r,X1) Ψ(0)

a (r,X1) dX1

}
(4.28)

and the first order induced dynamic current density vector as[83]

J (1)(r, t) =
ne

meℏ
∑
j ̸=a

(
ω2
ja − ω2

)−1 ℜ
{[〈

a
∣∣∣Ĥ(1)

∣∣∣ j〉ωja − i
〈
a
∣∣∣ ˆ̇H(1)

∣∣∣ j〉]
×
∫

Ψ
(0)∗
j (r,X1) p̂Ψ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂Ψ
(0)
j (r,X1) dX1

×
[〈
j
∣∣∣Ĥ(1)

∣∣∣ a〉ωja + i
〈
j
∣∣∣ ˆ̇H(1)

∣∣∣ a〉]} (4.29)

The first order induced current density vector contains also a Larmor term that is the
same appearing in the static case (see chapter 3 for the derivation)

JB
d (r, t) = − e2

2me
B(ω, t) × rγ(0)(r) (4.30)

Eventually, we recall that the problem (4.4) discussed above is given an alternative, for-
mally easier, solution within the framework of Dirac’s interaction picture,[80] introducing
the operator[84]

R̂ = e
i
ℏ Ĥ(0)t (4.31)

which brings the stationary states (4.6) to rest, consistently transforming the Hamilto-
nian,

R̂Θj = Ψ
(0)
j , Ĥ(1)(r, t) → Ĥ

(1)
I (r, t) = R̂Ĥ(1)R̂†. (4.32)

Within this approach, one obtains a general expression for the differential “equation of
motion” in the I picture,

Ĥ
(1)
I ΦI = iℏ

∂

∂t
ΦI , (4.33)

whereby the c
(l)
j (t) coefficients are obtained[80] for any l, via a procedure analogous to

that employed to solve equation (4.20).
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4.1 Time-Dependent Electron Charge Densities

In this section we will show explicitly the equations that define the first order induced
charge polarization density using the previous derived equation (4.28) obtained with time
dependent perturbation theory. If the electronic eigenstates have been determined for a

molecule perturbed by an external static magnetic field B, Ψ
(0)
a and Ψ

(0)
j contain imagi-

nary contributions. Therefore, within the electric quadrupole approximation (EQA),[83]
and to first order in the fields associated to a monochromatic plane wave, six charge
densities are considered to account for perturbation effects,[79]

ρ(1)(r, ω) = ρE(r, ω) + ρḂ(r, ω) + ρ∇E(r, ω)

+ ρĖ(r, ω) + ρB(r, ω) + ρ∇Ė(r, ω) (4.34)

where here we have changed the argument of the function from t to ω because it is usual,
if we want to study the topology of these scalar fields, to analyze them considering a fixed
time, for example t = 0 in which cos(ωt) = 1. The expressions that define the different
terms are

ρE(r, ω) = −2ne

ℏ
Eβ(0, ω)

∑
j ̸=a

ωja

ω2
ja − ω2

ℜ
{
⟨a |µ̂β | j⟩

∫
Ψ

(0)∗
j (r,X1)Ψ(0)

a (r,X1)dX1

}
(4.35)

ρḂ(r, ω) = −2ne

ℏ
Ḃβ(ω)

∑
j ̸=a

1

ω2
ja − ω2

ℑ
{
⟨a |m̂β | j⟩

∫
Ψ

(0)∗
j (r,X1)Ψ(0)

a (r,X1)dX1

}
(4.36)

ρ∇E(r, ω) = −2ne

ℏ
Eγβ(ω)

∑
j ̸=a

ωja

ω2
ja − ω2

ℜ
{
⟨a |µ̂βγ | j⟩

∫
Ψ

(0)∗
j (r,X1)Ψ(0)

a (r,X1)dX1

}
(4.37)

ρĖ(r, ω) = −2ne

ℏ
Ėβ(0, ω)

∑
j ̸=a

1

ω2
ja − ω2

ℑ
{
⟨a |µ̂β | j⟩

∫
Ψ

(0)∗
j (r,X1)Ψ(0)

a (r,X1)dX1

}
(4.38)

ρB(r, ω) = −2ne

ℏ
Bβ(ω)

∑
j ̸=a

ωja

ω2
ja − ω2

ℜ
{
⟨a |m̂β | j⟩

∫
Ψ

(0)∗
j (r,X1)Ψ(0)

a (r,X1)dX1

}
(4.39)

ρ∇Ė(r, ω) = −2ne

ℏ
Ėγβ(ω)

∑
j ̸=a

1

ω2
ja − ω2

ℑ
{
⟨a |µ̂βγ | j⟩

∫
Ψ

(0)∗
j (r,X1)Ψ(0)

a (r,X1)dX1

}
(4.40)

If Ψ
(0)
a and Ψ

(0)
j are real, the second line of equation (4.34) vanishes. The polarization

charge density (4.34) is invariant with respect to passive and active translations of the
origin[79] if the hypervirial momentum theorem[57] expressed in terms of off-diagonal
hypervirial relationships introduced before in equations (3.67) and (3.68) is satisfied.
Within the algebraic approximation,[85] this condition is met only for complete basis
sets.
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4.2 Time-Dependent Electron Current Densities

Using an approach similar to the one employed in the previous section, for the induced
first-order charge polarization, it is possible to obtain equations defining the first-order
induced current density vector using equation (4.29). As before, if the electronic eigen-
states have been determined for a molecule perturbed by an external static magnetic

field B, Ψ
(0)
a and Ψ

(0)
j contain imaginary contributions. Therefore, within the electric

quadrupole approximation (EQA),[83] and to first order in the fields associated to a
monochromatic plane wave, six terms must be considered to account for perturbation
effects,[79]

J (1)(r, ω) = J Ė(r, ω) + JB(r, ω) + J∇Ė(r, ω)

+ JE(r, ω) + JḂ(r, ω) + J∇E(r, ω) (4.41)

where
JB(r, ω) ≡ JB

CO(r, ω) = JB
p (r, ω) + JB

d (r, ω) (4.42)

is calculated relying on the Van Vleck common origin (CO) approach.[86] The total elec-
tronic current density (4.41) is invariant with respect to passive and active translations
of the origin[79] in the case of exact and optimal variational wavefunctions.[57]. It is
expedient to rewrite the expression defined in equation (4.41) in terms of second- and
third-rank current density tensors (CDT),[40] as done for the static case in the previous
chapter, according to

J Ėβ
α (r, ω) =

∂J Ė
α

∂Ėβ

= − ne

meℏ
∑
j ̸=a

(
ω2
ja − ω2

)−1

×ℑ
{
⟨a |µ̂β | j⟩

∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂αΨ

(0)
j (r,X1) dX1 ⟨j |µ̂β | a⟩

}
(4.43)

J Bβ
pα (r, ω) =

∂JB
α

∂Bβ
= − ne

meℏ
∑
j ̸=a

ωja

ω2
ja − ω2

×ℜ
{
⟨a |m̂β | j⟩

∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1 ⟨j |m̂β | a⟩

}
(4.44)

J Bβ

dα
=

∂JB
dα

∂Bβ
= − e2

2me
ϵαβγrγγ

(0)(r) (4.45)

J Ėγβ
α (r, ω) =

∂J∇Ė
α

∂Ėγβ

= − ne

meℏ
∑
j ̸=a

(
ω2
ja − ω2

)−1

×ℑ
{
⟨a |µ̂βγ | j⟩

∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂αΨ

(0)
j (r,X1) dX1 ⟨j |µ̂βγ | a⟩

}
(4.46)
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J Eβ
α (r, ω) =

∂JE
α

∂Eβ
= − ne

meℏ
∑
j ̸=a

ωja

ω2
ja − ω2

ℜ
{
⟨a |µ̂β | j⟩

×
∫

Ψ
(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1 ⟨j |µ̂β | a⟩

}
(4.47)

J Ḃβ
α (r, ω) =

∂JḂ
α

∂Ḃβ

= − ne

meℏ
∑
j ̸=a

(
ω2
ja − ω2

)−1 ℑ
{
⟨a |m̂β | j⟩

×
∫

Ψ
(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂αΨ

(0)
j (r,X1) dX1 ⟨j |m̂β | a⟩

}
(4.48)

J Eγβ
α (r, ω) =

∂J∇E
α

∂Eγβ
= − ne

meℏ
∑
j ̸=a

ωja

ω2
ja − ω2

ℜ
{
⟨a |µ̂βγ | j⟩

×
∫

Ψ
(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1 ⟨j |µ̂βγ | a⟩

}
(4.49)

In this case if Ψ
(0)
a and Ψ

(0)
j are real the second line of equation (4.41) vanishes. In the

following, we will not consider any term in the second line of equation (4.41) as they
vanish as a consequence of choosing real unperturbed eigenstates. As regards terms con-
tained in the first line, of equation (4.41), their physical behavior will be illustrated. For
this purpose the decomposition of these tensors into a pure static and a pure dynamic
contribution will be given. Furthermore the links between the vectors, from which these
tensors can be obtained by differentiation, and some molecular properties like polariz-
abilities and optical rotation power will be shown.

48



4.3 Charge and Current Conservation

Now that we have introduced the first order polarization charge and the total induced
current density vector at the first order, in the quadrupole approximation, it is important
to establish the laws that link the currents to the charge distributions term by term.
These laws can be written in terms of continuity equations for the different kinds of
perturbations considered in this approximation[87]

∇αJ
Ė
α +

∂

∂t
ρE = 0 (4.50)

∇αJ
B
α +

∂

∂t
ρḂ = 0 (4.51)

∇αJ
∇Ė
α +

∂

∂t
ρ∇E = 0 (4.52)

∇αJ
E
α +

∂

∂t
ρĖ = 0 (4.53)

∇αJ
Ḃ
α +

∂

∂t
ρB = 0 (4.54)

∇αJ
∇E
α +

∂

∂t
ρ∇Ė = 0 (4.55)

A tensorial notation of the previous equations is also useful

∇α J Ėβ
α + ϱEβ = 0 (4.56)

∇α J Bβ
α − ω2ϱḂβ = 0 (4.57)

∇α J∇γĖβ
α + ϱ∇γEβ = 0 (4.58)

∇αJ
Eβ
α − ω2ϱĖβ = 0 (4.59)

∇α J Ḃβ
α + ϱBβ = 0 (4.60)

∇α J∇γEβ
α − ω2ϱ∇γĖβ = 0 (4.61)

where in general we have introduced the notation

ϱXβ =
∂ρX

∂Xβ
(4.62)

to identify the vector that can be used to define the perturbed polarization charge at first
order. It is found that these continuity equations are satisfied by the exact eigenfunctions
of a model Hamiltonian and by variationally optimal wavefunctions, for which hypervirial
theorems are valid. They are expected to hold only approximately in calculations using
the algebraic approximation, with increasing accuracy for extended high-quality basis
sets.
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4.4 Time-Dependent CTOCD-DZ

Within the algebraic approximation,[85] computed CO current densities, equation (4.42),
introduced before are not separately invariant of origin. Starting from these definitions,
it is possible to obtain a magnetically induced current that is alone invariant under active
and passive translations of the origin, as for the time-independent case shown in chapter
3. These new relationships defining this magnetically induced current density can be
obtained starting from equation

J Bβ
α (r, ω) =

ne2

2m2
eℏ

∑
j ̸=a

ωja

ω2
ja − ω2

×ℜ
{〈

a
∣∣∣L̂β

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣L̂β

∣∣∣ a〉}
− e2

2me
ϵαβγrγγ

(0)(r) (4.63)

and introducing a translation of the origin r′ → r′′ = r′ +d, assuming r′ coincident with
the origin of the reference system. In this way we have that

J Bβ
α (r, ω) =

ne2

2m2
eℏ

∑
j ̸=a

ωja

ω2
ja − ω2

ℜ
{〈

a
∣∣∣L̂β

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

−ϵβγδdγ
〈
a
∣∣∣P̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣L̂β

∣∣∣ a〉
−ϵβγδdγ

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂δ

∣∣∣ a〉}
− e2

2me
ϵαβγrγγ

(0)(r) +
e2

2me
ϵαβγdγγ

(0)(r) (4.64)

As before, it is the aim of the CTOCD method to assume that d depends on the position,
i.e., d(r). By choosing the ipsocentric approach, d(r) = r, we are able to recover the
two non-Larmor terms defined according to

J Bβ
pα (r, ω) =

ne2

2m2
eℏ

∑
j ̸=a

ωja

ω2
ja − ω2

×ℜ
{〈

a
∣∣∣L̂β

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣L̂β

∣∣∣ a〉} (4.65)
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J (d×B)β
pα (r, ω) = − ne2

2m2
eℏ
ϵβγδrγ

∑
j ̸=a

ωja

ω2
ja − ω2

×ℜ
{〈

a
∣∣∣P̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂δ

∣∣∣ a〉} (4.66)

Let’s consider now the J Bβ
pα term. If we multiply and divide by ωja, the fraction can be

rewritten as

ωja

ωja

ωja

ω2
ja − ω2

=
1

ωja

[
1 +

ω2

ω2
ja − ω2

]
=

1

ωja
+

ω2

ωja(ω2
ja − ω2)

(4.67)

Then, the CTOCD-DZ dynamic current density tensor is rewritten

J Bβ
pα (r, ω) = J Bβ

psα(r) + J Bβ

pdα
(r, ω) (4.68)

with

J Bβ
psα(r) =

ne2

2m2
eℏ

∑
j ̸=a

(ωja)−1

×ℜ
{〈

a
∣∣∣L̂β

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣L̂β

∣∣∣ a〉} (4.69)

J Bβ

pdα
(r, ω) =

ne2

2m2
eℏ

∑
j ̸=a

ω2

ωja(ω2
ja − ω2)

×ℜ
{〈

a
∣∣∣L̂β

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣L̂β

∣∣∣ a〉} (4.70)

where the first term gives the static limit while the second gives the dynamic behavior.

Now, if we consider the J (d×B)β
pα term of the CTOCD-DZ current density tensor a similar

factorization
J (d×B)β
pα (r, ω) = J (d×B)β

psα (r) + J (d×B)β
pdα

(r, ω) (4.71)

can be done. The results are

J (d×B)β
psα (r) = − ne2

2m2
eℏ
ϵβγδrγ

∑
j ̸=a

(ωja)−1

×ℜ
{〈

a
∣∣∣P̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂α Ψ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂α Ψ
(0)
j (r,X1) dX1

〈
j
∣∣∣R̂δ

∣∣∣ a〉} (4.72)
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J (d×B)β
pdα

(r, ω) = − ne2

2m2
eℏ
ϵβγδrγ

∑
j ̸=a

ω2

ωja(ω2
ja − ω2)

×ℜ
{〈

a
∣∣∣P̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂α Ψ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂α Ψ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂δ

∣∣∣ a〉} (4.73)

The equations derived here, decomposing the tensor J (d×B)β
pα into a static and a dynamic

contribution, can be rewritten using the off-diagonal hypervirial relationships (3.67) and
(3.68) and the relation ℜ[i(a+ ib)] = −ℑ(a+ ib) as

J (d×B)β
psα (r) = − ne2

2meℏ
ϵβγδrγ

∑
j ̸=a

×ℑ
{〈

a
∣∣∣R̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂α Ψ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂α Ψ

(0)
j (r,X1) dX1

〈
j
∣∣∣R̂δ

∣∣∣ a〉} (4.74)

J (d×B)β
pdα

(r, ω) = − ne2

2meℏ
ϵβγδrγ

∑
j ̸=a

ω2

ω2
ja − ω2

×ℑ
{〈

a
∣∣∣R̂δ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂α Ψ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂α Ψ

(0)
j (r,X1) dX1

〈
j
∣∣∣R̂δ

∣∣∣ a〉} (4.75)

Summarizing, we note that it is possible to express the CTOCD-DZ current density
tensor as

IBβ
α (r, ω) = J Bβ

psα(r) + J Bβ

pdα
(r, ω) + J (d×B)β

psα (r) + J (d×B)β
pdα

(r, ω) (4.76)

while the vector can be rewritten as

IB(r, ω) = JB
ps(r, ω) + JB

pd(r, ω) + Jd×B
ps (r, ω) + Jd×B

pd (r, ω) (4.77)

= JB
ps(r, ω) + JB

pd(r, ω) + Jd×B
ps (r, ω) + ∆(r, ω) (4.78)

where
∆(r, ω) = Jd×B

pd (r, ω) (4.79)

The technique applied here to decompose the time-dependent CTOCD-DZ current den-
sity tensor, in a pure static and a pure dynamic term, can be applied in general to all
the dynamic current density tensors previously derived, as we will see in the following
sections. We note also that∫

JB
psα

(r, 0) d3r =
e2

2m2
e

{
P̂α, L̂β

}
−1
Bβ∫

Jd×B
psα

(r, 0) d3r = − e2

4m2
e

{
P̂α, L̂β

}
−1
Bβ − e2

4me
ϵαβγ

〈
a
∣∣∣R̂γ

∣∣∣ a〉Bβ

(4.80)
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with {
P̂α, L̂β

}
−1

=
1

ℏ
∑
j ̸=a

2

ωja
ℜ
{〈
a
∣∣∣P̂α

∣∣∣ j〉〈
j
∣∣∣L̂β

∣∣∣ a〉} = meϵαβγ

〈
a
∣∣∣R̂γ

∣∣∣ a〉 (4.81)

as in the static case shown in chapter 3, while in the dynamic case the satisfied relation-
ships are ∫

JB
pα

(r, ω) d3r = −κ′ (R,L)
αβ ωBβ(ω) +

e2

2m2
e

{
P̂α, L̂β

}
−1
Bβ(ω) (4.82)

∫
Jd×B
pα

(r, ω) d3r =
1

2

{
ω
[
κ′αβ − κ′γγδαβ − ωϵβγδαδ,γα

]
− e2

me
ϵαβγ

〈
a
∣∣∣R̂γ

∣∣∣ a〉}Bβ(ω)

(4.83)
where

κ
′ (R,L)
αβ = − e2

2meℏ
∑
j ̸=a

2ω

ω2
ja − ω2

ℑ
{〈
a
∣∣∣R̂α

∣∣∣ j〉〈
j
∣∣∣L̂β

∣∣∣ a〉} (4.84)

is the mixed electric-dipole magnetic-dipole polarizability in the (R,L) formalism, while
αα,βγ is the mixed electric-dipole electric-quadrupole polarizability in the (R) or (P)
gauges defined respectively as

α
(R)
α,βγ = − e

ℏ
∑
j ̸=a

2ωja

ω2
ja − ω2

ℜ
{〈
a
∣∣∣R̂α

∣∣∣ j〉 ⟨j |µ̂βγ | a⟩
}

α
(P )
α,βγ =

e

meℏ
∑
j ̸=a

2

ω2
ja − ω2

ℑ
{〈
a
∣∣∣P̂α

∣∣∣ j〉 ⟨j |µ̂βγ | a⟩
} (4.85)

From the previous equations it follows that∫
JB
pα

(r, ω) d3r +

∫
Jd×B
pα

(r, ω) d3 = −1

2

[
κ′γγδαβ + κ′αβ + ωϵβγδαδ,γα

]
ωBβ(ω) (4.86)

This relation can be used to obtain a definition of the isotropic optical rotation power
density that is independent from the chosen origin[88][4]

k′αα(r, ω) = − 1

2ω
IBα
α (r, ω) (4.87)
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4.5 Decomposition of the Current Density Induced by
the Time Derivative of the Electric Field

Let us consider now the current density tensor components induced by the time derivative
of the electric field

J Ėβ
α (r, ω) =

ne2

meℏ
∑
j ̸=a

(
ω2
ja − ω2

)−1

×ℑ
{〈

a
∣∣∣R̂β

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂αΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂αΨ

(0)
j (r,X1) dX1

〈
j
∣∣∣R̂β

∣∣∣ a〉} (4.88)

that constitutes a useful definition for an origin independent polarizability density. If we
multiply and divide for ω2

ja being

ω2
ja

ω2
ja

1

ω2
ja − ω2

=
1

ω2
ja

[
1 +

ω2

ω2
ja − ω2

]
=

1

ω2
ja

+
ω2

ω2
ja(ω2

ja − ω2)
(4.89)

it is possible to write, as before, two terms

J Ėβ
α (r, ω) = J Ėβ

sα (r) + J Ėβ

dα
(r, ω) (4.90)

defined respectively as

J Ėγ
sβ

(r, ω) =
ne2

meℏ
∑
j ̸=a

(
ω2
ja

)−1

×ℑ
{〈

a
∣∣∣R̂γ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂βΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂βΨ

(0)
j (r,X1) dX1

〈
j
∣∣∣R̂γ

∣∣∣ a〉} (4.91)

J Ėγ

dβ
(r, ω) =

ne2

meℏ
∑
j ̸=a

ω2

ω2
ja(ω2

ja − ω2)

×ℑ
{〈

a
∣∣∣R̂γ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂βΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂βΨ

(0)
j (r,X1) dX1

〈
j
∣∣∣R̂γ

∣∣∣ a〉} (4.92)

or using the off-diagonal hypervirial relationships (3.67) and (3.68) as

J Ėγ
sβ

(r, ω) =
ne2

ℏ
∑
j ̸=a

(ωja)
−3

×ℑ
{

i
〈
a
∣∣∣P̂γ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂βΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂βΨ
(0)
j (r,X1) dX1i

〈
j
∣∣∣P̂γ

∣∣∣ a〉} (4.93)
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J Ėγ

dβ
(r, ω) =

ne2

ℏ
∑
j ̸=a

ω2

ω3
ja(ω2

ja − ω2)

×ℑ
{

i
〈
a
∣∣∣P̂γ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂βΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂βΨ
(0)
j (r,X1) dX1i

〈
j
∣∣∣P̂γ

∣∣∣ a〉} (4.94)

Now, using ℑ[i(a+ ib)] = ℜ(a+ ib) we obtain

J Ėγ
sβ

(r, ω) =
ne2

ℏ
∑
j ̸=a

(ωja)
−3

×ℜ
{〈

a
∣∣∣P̂γ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂βΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂βΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂γ

∣∣∣ a〉} (4.95)

J Ėγ

dβ
(r, ω) =

ne2

ℏ
∑
j ̸=a

ω2

ω3
ja(ω2

ja − ω2)

×ℜ
{〈

a
∣∣∣P̂γ

∣∣∣ j〉∫
Ψ

(0)∗
j (r,X1) p̂βΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂βΨ
(0)
j (r,X1) dX1

〈
j
∣∣∣P̂γ

∣∣∣ a〉} (4.96)

The integration of the total vector gives∫
J Ė
α (r, ω) d3r = αβαĖβ(0, ω) (4.97)

where αβα is the electric dipole polarizability defined in the mixed dipole-length dipole-
velocity formalism

α
(RP )
αβ =

e2

meℏ
∑
j ̸=a

2

ω2
ja − ω2

ℑ
{〈
a
∣∣∣R̂α

∣∣∣ j〉〈
j
∣∣∣P̂β

∣∣∣ a〉} (4.98)

or using equations (4.95) and (4.96) in the dipole-velocity dipole-velocity formalism

α
(PP )
αβ =

e2

m2
eℏ

∑
j ̸=a

2

ωja(ω2
ja − ω2)

ℜ
{〈
a
∣∣∣P̂α

∣∣∣ j〉〈
j
∣∣∣P̂β

∣∣∣ a〉} (4.99)
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4.6 Decomposition of the Current Density Induced by
the Time Derivative of Electric Field Gradient

Let us consider the current density tensor components induced by the time derivative of
the electric field gradient

J Ėγα

β (r, ω) = − ne

meℏ
∑
j ̸=a

(
ω2
ja − ω2

)−1

×ℑ
{
⟨a |µ̂αγ | j⟩

∫
Ψ

(0)∗
j (r,X1) p̂βΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
a (r,X1) p̂βΨ

(0)
j (r,X1) dX1 ⟨j |µ̂αγ | a⟩

}
(4.100)

if we multiply and divide for ω2
ja being

ω2
ja

ω2
ja

1

ω2
ja − ω2

=
1

ω2
ja

[
1 +

ω2

ω2
ja − ω2

]
=

1

ω2
ja

+
ω2

ω2
ja(ω2

ja − ω2)
(4.101)

one obtains two terms

J Ėγα

β (r, ω) = J Ėγα
sβ

(r) + J Ėγα

dβ
(r, ω) (4.102)

defined respectively as

J Ėγα
sβ

(r) = − ne

meℏ
∑
j ̸=a

(ωja)
−2

×ℑ
{
⟨a |µ̂αγ | j⟩

∫
Ψ

(0)∗
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a (r,X1) dX1

−
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}
(4.103)

J Ėγα

dβ
(r, ω) = − ne

meℏ
∑
j ̸=a

ω2

ω2
ja(ω2

ja − ω2)

×ℑ
{
⟨a |µ̂αγ | j⟩

∫
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(0)∗
j (r,X1) p̂βΨ(0)

a (r,X1) dX1

−
∫

Ψ(0)∗
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(0)
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}
(4.104)

The integral of this current vector gives us the mixed electric-dipole electric-quadrupole
polarizability ∫

J∇Ė
α d3r = α

(P )
α,βγĖγβ(ω) (4.105)

where

α
(P )
α,βγ =

e

meℏ
∑
j ̸=a

2

ω2
ja − ω2

ℑ
{〈
a
∣∣∣P̂α

∣∣∣ j〉 ⟨j |µ̂βγ | a⟩
}

(4.106)
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CHAPTER 5

Implementations and Applications

The aim of this chapter is to show some applications of the previous reported equations
and how they have been used to solve chemical problems. All the theory, described
in the previous chapters, has been implemented within the freely available SYSMOIC
package.[14][3] The SYSMOIC program is available online for three different platforms.
Instructions for downloading and using the package can be found at: http://sysmoic.

chem.unisa.it/MANUAL/.

5.1 Time-Independent Electron Current Densities

SYSMOIC is a program package for the calculation of origin-independent electron current
density and derived magnetic properties in molecular systems. In particular, it can be
used to compute the current density tensors for general unrestricted wavefunctions at the
HF[43, 44] or DFT[89, 90] level of theory, using either the orbital or the density matrix
approaches. Applying time-independent perturbation theory, as seen before in chapter
3, and introducing the vectors

Ψ
Lβ
a (r,X1) =

1

ℏ
∑
j ̸=a

1

ωja
Ψ

(0)
j (r,X1)

〈
j
∣∣∣L̂β

∣∣∣ a〉 (5.1)

ΨPδ
a (r,X1) =

1

ℏ
∑
j ̸=a

1

ωja
Ψ

(0)
j (r,X1)

〈
j
∣∣∣P̂δ

∣∣∣ a〉 (5.2)

we rewrite J Bβ
pα and J (d×B)β

pα , see equations (3.46) and (3.65), as follows

J Bβ
pα (r) =

ne2

2m2
e

ℜ
{∫

Ψ
Lβ∗
a (r,X1)p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1)p̂αΨ
Lβ
a (r,X1) dX1

}
(5.3)
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J (d×B)β
pα (r) = − ne2

2m2
e

ϵβγδdγ(r)ℜ
{∫

ΨPδ∗
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a (r,X1) dX1

+

∫
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a (r,X1) p̂αΨPδ
a (r,X1) dX1

}
(5.4)

Allowing for definitions of total electronic angular and linear momentum operators, de-
fined in section 2.2, the vector functions (5.1) and (5.2) become

Ψ
Lβ
a (r,X1) = −iℏΨ

(r×∇)β
a (r,X1) (5.5)

ΨPδ
a (r,X1) = −iℏΨ∇δ

a (r,X1) (5.6)

where
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ωja

〈
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∣∣∣∣∣∑
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(∇δ)k
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〉

Ψ
(0)
j (r,X1) (5.8)

Assuming real eigenstates of the unperturbed Hamiltonian (we always use this assump-
tion here and in the following), we obtain

J Bβ
pα (r) =

ne2ℏ
2m2

e

{∫
Ψ

(r×∇)β
a (r,X1)∇αΨ(0)
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}
(5.9)

J (d×B)β
pα (r) = −ne
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e
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a (r,X1)∇αΨ(0)
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−
∫

Ψ(0)
a (r,X1)∇αΨ∇δ

a (r,X1) dX1

}
(5.10)

For an unrestricted system, represented by a one-determinant wavefunction

Ψ =
1√
n!

det
[
ψα
1 , ψ

β
2 , · · ·

]
(5.11)

constructed by n = nα + nβ occupied molecular orbitals, equations (5.9) and (5.10)
become, in atomic units,

J Bβ
pα (r) =

1

2

n∑
j

[
ψ
(r×∇)β
j (r)∇αψ

(0)
j (r) − ψ

(0)
j (r)∇αψ

(r×∇)β
j (r)

]
(5.12)

J (d×B)β
pα (r) = −1

2
ϵβγδdγ(r)

n∑
j

[
ψ∇δ
j (r)∇αψ

(0)
j (r) − ψ

(0)
j (r)∇αψ

∇δ
j (r)

]
(5.13)

The expressions for both diamagnetic contributions require only the electron charge den-
sity

J Bβ

dα
(r) =

1

2
ϵαβγrγρ

(0)(r) (5.14)

J (d×B)β
dα

(r) = −1

2
ϵαβγdγ(r)ρ(0)(r) (5.15)
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The spatial part of spin-orbitals is expanded as linear combinations of basis functions
χq, according to

ψ
(0)
j (r) =

∑
q

C
(0)
qj χq(r) (5.16)

ψ
(r×∇)β
j (r) =

∑
q

C
(r×∇)β
qj χq(r) (5.17)

ψ∇δ
j (r) =

∑
q

C∇δ
qj χq(r) (5.18)

where C
(0)
qj indicates canonical unperturbed coefficients, C

(r×∇)β
qj and C∇δ

qj are the per-
turbed coefficients, placing in the first nα columns molecular orbitals of α spin and in the
next nβ columns molecular orbitals of β spin. Substituting the expansions of perturbed
spin orbitals in the previous equations, it can be seen that geometrical first derivatives
of basis set functions are required for the current density tensor calculation. It is easily
recognized that the electronic unperturbed charge density can be computed as

ρ(r) =
∑
p

∑
q

Rpq χp(r)χq(r) (5.19)

where

Rpq = Rα
pq +Rβ

pq (5.20)

Rα
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nα∑
j=1

C
(0)
pj (C

(0)
qj )∗ (5.21)

Rβ
pq =

nβ∑
j=nα+1

C
(0)
pj (C

(0)
qj )∗ (5.22)

are respectively the total, the spin alpha and spin beta unperturbed density matrices.
From (5.19) it is also possible to note the link between the orbital and the density matrix

approach. For completeness, we present here also the equations for J Bβ
pα and J (d×B)β

pα

written using the density matrix approach

J Bβ
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2

∑
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∑
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in which
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(
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(0)
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pi C
(0)
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]
(5.25)

are the perturbed anti-symmetric density matrices. Obviously, orbital decomposition of
current densities, as well as related molecular properties, can be obtained only using the
orbital “picture”. However, the orbital “picture” is not suitable to deal with correlated
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wavefunctions. In this latter case the density matrix “picture” can be used independently
from the electronic structure method adopted for the calculation, getting, for example,
the required density matrices in the atomic basis from another program.

The expressions defined in this section for implementation purposes are valid for
both HF and DFT levels of theory and all coefficients are calculated using the Coupled
Perturbed Hartree-Fock or Kohn-Sham procedures. For closed shell HF calculations
these coefficients can be obtained directly with the SYSMOIC. In all other cases, it is
possible to use the interfaces available within the SYSMOIC software to obtain the MO
coefficients from a Gaussian 16[56] calculation, by means of the keywords NMR=CSGT
output=(CSGT,wfx) through the wavefunction file. Geometrical first derivatives of the
current density tensor, electronic charge density, and so on, are required by a number
of package functionalities, as, for example, topological studies of induced fields but also
gradient and vorticity of the current density. These geometrical derivatives can be easily
derived, as described in Ref. [14][3]. Regarding the basis set expansion in SYSMOIC,
unnormalized Cartesian Gaussian functions centered at R are used, defined as

χ(r; ζ,n,R) = (x−Rx)
nx (y −Ry)

ny (z −Rz)
nz exp

[
−ζ(r −R)2

]
(5.26)

where ζ is the orbital exponent and n = (nx, ny, nz) is a vector of non-negative integers.
The sum nx+ny +nz is closely related to the total angular momentum quantum number.
Analytical and numerical first, second and third derivatives of the basis set functions are
available.
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5.1.1 NMR Characterization of MB[6]CPP

One of the most exciting aspects of the research work occurs when one is able to contribute
to the elucidation of a problem. This is the case, for example, of the methylene-bridged
6-cycloparaphenylene MB[6]CPP whose structure is illustrated in Figure 5.1.[91, 92][2]
Rather interestingly, this nanobelt is predicted to sustain a global paratropic current

Figure 5.1: Structure of methylene-bridged 6-cycloparaphenylene MB[6]CPP.

around the belt in response to a magnetic perturbation parallel to the main symmetry
z-axis. This is a consequence of the HOMO and LUMO symmetries whose direct prod-
uct matches exactly the symmetry of the rotation Rz.[45, 46] This behavior is typical
of antiaromatic species, and a significant paratropic contribution to the current density
induced by a parallel magnetic field is expected to occur. Thanks to Itami’s newly reported
and diversified experimental data,[91] the possibility to validate such a prediction can now
be accomplished.[92][2] In particular, we want show the major impact of the paratropic
current on the 1H-NMR chemical shifts of this nanobelt.

A powerful tool to detect and quantify delocalized currents, either diamagnetic (aro-
matic) or paramagnetic (antiaromatic), is provided by the so-called current strength, or
current susceptibility, which provides the net current strength crossing a plane perpen-
dicular to a selected bond in a molecule.[12] Our method to calculate current strengths
is as follows.[13] Let P be a plane bisecting at right angles a given bond between atoms
K and L and let p be a normal unitary vector pointing from K to L. The cross section
of the current density over P is given by

JB
⊥ = JB(r) · p r ∈ P (5.27)

The cross section JB
⊥ is a two-dimensional scalar field, having extremum points dis-

tributed around the center of the K-L bond. For each of these extrema a domain of
integration of JB

⊥ can be defined as the area inside a contour line containing only that
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extremum point and no other point of maximum or minimum. The contour line value is
set as close to zero as possible in agreement with the above condition. Then, if N is the
number of domains, the net current strength for the selected bond is given by

N∑
I=1

∫
I

JB(r) · dp (5.28)

Other methods to calculate current strengths have been proposed in the literature.[93]
By definition, only delocalized currents can give a contribution. Current strengths cal-
culated at the B97-2/6-311+G(2d,p)//B97-2/6-31G(d) level, induced in the molecule by
a magnetic field parallel to the main symmetry axis, are shown in Figure 5.2. Origin

Figure 5.2: Net C−C bond current strengths for a magnetic field parallel to the main
symmetry axis and pointing from bottom to top. Values aside each arrow represent the
percentage relationship with respect to the benzene current strength. Circulation from
left to right are globally paratropic/antiaromatic.

independence of the current density has been ensured by using the continuous set of
gauge transformations method with atomic size adjustments determined by the bond
critical points of the electron density distribution (CSGT-BCP).[54][1] As can be ob-
served, in MB[6]CPP the current flow is paratropic and bifurcates and gathers around
the six-membered rings of the embedded cycloparaphenylene nano-hoop.

Predicted and experimental 1H-NMR chemical shifts are reported in Table 5.1. These

Table 5.1: Calculated and experimental 1H-NMR chemical shifts of MB[6]CPP.

Har Hin Hout

B972 8.11 4.08 4.22
expt. 7.86 4.09 4.29

are found to be in fairly good agreement. Putting aside for now the aromatic protons we
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have found particularly interesting the positions of the signals for the methylene protons.
According to the anisotropy effect due to the paratropic belt current, the methylene
protons overlooking the current should experience a deshielding effect higher than that
felt by the protons facing the outside of the belt see Figure 5.3 for a useful scheme of this
description. Contrary to expectations based on this simple picture, however, both the

Figure 5.3: Left: top view. Right: schematic representation of the paratropic current
flowing in a tiny wire having the nanobelt radius.

experimental data and the calculated chemical shifts show Hin more shielded than Hout

by 0.20 ppm. Of course, other factors superimposed on the paratropic belt current must
be taken into account, as, for example, the diatropic currents induced on the distorted
atomic scaffold by a perpendicular magnetic field. These currents are predicted to be
mainly local to the benzene rings, with sizable portions flowing on the methylene groups
as a consequence of the hyperconjugation between the aliphatic C−H bonds and the
aromatic π-system. To deconvolute this rather complex situation, we have explored the
consequences of cutting the belt to switch off the paratropic current. In addition, to study
the influence of the curvature, we have considered planar fluorene 3, folded fluorene 4,
and a half of the nanobelt 5, as shown in Figure 5.4. The geometries of 4 and 5 are taken

Figure 5.4: Fluorene 3, Folded Fluorene 4, Half Nanobelts 5 and 6.
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by cutting out the fragments from MB[6]CPP without further geometry optimization,
apart from adding hydrogen atoms to saturate broken bonds. Calculations of proton
chemical shifts of 3−5 have been carried out at the same levels of theory as above. As

Table 5.2: CSGT-BCP 1H NMR δ’s in ppm at the B97-2/6-311+G(2d,p) level

mol Har1 Har2 Hin Hout

3 7.56 7.87 3.78 3.78
4 7.39 7.50 3.18 4.28
5 7.27 7.29 3.01 4.11

can be observed in Table 5.2 passing from 3 to 4, the bending induces effects on all the
protons. The most impressive is the splitting of the methylene proton signals in opposite
directions: the inner proton moves upfield by nearly 0.6 ppm, while the outer proton
moves downfield by about 0.5 ppm. Ignoring for now the magnitude of this very large
separation of 1.1 ppm, this corresponds to the relative position of the signals, where the
inner proton is more shielded than the outer one. A second effect that can be observed is
on the aromatic protons, both of which undergo an upfield shift ranging within 0.2−0.4
ppm. These effects can be readily explained as follows. First, looking at the folded
structures, it is easy to recognize the different exposures of the methylene protons to the
diamagnetic ring current of the two proximal benzene rings: Hin going inside the shielding
zones and Hout going outside. Second, the decreased conjugation reduces the strength of
the benzene ring current with a consequent upfield shift of the aromatic proton signals.
This picture is nicely consolidated in 5, where the aromatic proton signals get closer to
each other and move a little further upfield and the methylene proton chemical shifts
reach presumably their final values in the absence of the paramagnetic belt current,
1.1 ppm apart. Next, to see if any computationally less intensive method could be
found to estimate as close as possible the effect of the paramagnetic belt current, we
have considered the few electron model by Steiner and Fowler,[45, 46] calculating the
orbital contributions to the current strength for the bond connecting the benzene rings
along the cycloparaphenylene nanohoop, induced by a magnetic field parallel to the main
symmetry axis, due to the HOMO, HOMO-1, ..., and so on. Of course, the full orbital
sum gives the value reported in Figure 5.2, corresponding to 73% of benzene current
strength (BCS). The hope is to find some stable value much before using only a few
frontier orbitals, whose contribution to the current density would be a genuine feature
of the belt. The result of the procedure is given in Figure 5.5. As expected, the A2g

HOMO alone gives a very large paratropic current strength equal to 138% of BCS, which
is mainly due to virtual transitions to the LUMO and LUMO+1, both of A1g symmetry.
Adding the doubly degenerate Eu HOMO-1, the current strength remains paratropic
but reduces to the 65% of BCS, as might be expected since a diatropic contribution is
determined by the (x, y) translational symmetry of the virtual transitions to the LUMO
and LUMO+1. Adding one more occupied orbital, i.e., the A2u HOMO-2, the current
strength rises to 67% of BCP, from virtual transitions to higher virtual orbitals, then
it does not show any further change adding up to 12 more occupied MO’s. This nice
result now allows us to confidentially estimate the paratropic belt current effects as those
arising from the four HOMO, HOMO-1 (doubly degenerate), and HOMO-2 only, which
provide a stable current strength that closely matches the total one. Moreover, maps of
the induced current density clearly show that the flow generated by these few orbitals is
fully delocalized all over the belt, i.e., it is a genuine feature of the macrocycle.

In summary, it has been found that the effect due to the belt curvature alone would
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provide, in general, 1H δ’s shifted to high field with respect to the experimental data.
Such an effect is particularly evident for the methylene protons of MB[6]CPP, especially
for the proton facing inside the belt, which is calculated more than 1 ppm up-field respect
to the observed signal. Aromatic protons are also calculated to be shifted up-field to 0.8
ppm for MB[6]CPP. Application of the few electron model[45, 46] has permitted quanti-
tative evaluation of the effect on the proton chemical shifts of the global paratropic belt
current, induced by a magnetic perturbation parallel to the main molecular symmetry
axis, predicted for these kinds of macrocycles [94, 95] but never proven, until now, on
the basis of experimental results. The effect of such tubular paratropic currents result in
a general but differentiate down-field shift, which brings all the calculated 1H δ’s in nice
agreement with the experimental data. The methylene protons of the rigidified [6]cy-
cloparaphenylene, whose NMR signals are the most affected by the two opposite effects,
provide striking evidence for the presence of the paratropic belt-currents.

Figure 5.5: Contributions to total current density given only from frontier orbitals. White
arrows indicate a diamagnetic current while black arrows a paramagnetic current.
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5.1.2 On the JAP Method for the Indirect Determination of De-
localized Currents from Experimental Chemical Shifts

The much more ambitious goal of recovering a coarse-grained picture of the current
density from experimental values has been recently advanced by Jirásek, Anderson and
Peeks (JAP),[96] who estimated the global current strength in several macrocycles from
the change of their proton chemical shifts recorded in solution over the proton chemical
shifts of suitably chosen reference compounds, according to the simple intercept-free
linear equation

∆δi = δi,aro − δi,ref = σi,ref − σi,aro = RCGFi
I

B
(5.29)

where I is the global current strength induced in linear regime by a magnetic field of
modulus B, and, foreach magnetic nucleus i, the ring current geometric factor RCGFi,
first proposed in Ref.[97], is a function of the geometry of the molecule and of the cir-
cuits considered relevant for the non-localized part of the magnetic response. As with
NICS-based works, the JAP approach comes with an internal validation, the ability of
the model to reproduce the experimental ∆δi, but, due to the small number of experi-
mental data (not to mention the far from trivial problem of identifying correct reference
compounds) the possibility remains that JAP currents are not in agreement with reliable
computations, and their meaning could then be questioned. As the JAP approach could
be of wide use in the realm of magnetic aromaticity, we deemed it necessary to assess its
effectiveness, and we took the task of computing local and global current strengths for the
systems considered in Ref.[96]. From this analysis, we excluded cycloporphyrin nanor-
ings, which have been object of a previous study.[98][6] The systems studied, labeled as in
Ref.[96], are reported in Figure 5.6. Topologically, they are annulenes (1,2), nanohoops
decorated by single rings (3-7,12) or by small polycycles (8,10-11), and a circulene, i.e.
a swung-in-plane nanobelt (9), sometimes in different charge states. Magnetically in-
duced currents have been obtained by SYSMOIC starting from wavefunction files (.wfx)
obtained by Gaussian 16[56] run at the BHandHLYP/6-31G* level on geometries opti-
mized at the same level. Global current strengths have been computed by integrating the
current crossing a plane bisecting a C-C bond up to 10−3 atomic units (at this level the
reference benzene ring current is −12.2 nA T−1). Numerical results are collected in Table
5.3. Accurate determination of local currents is less straightforward, because the large
areas associated to small integration thresholds can include contributions associated to
different bonds and a criterion is needed to assign contributions to individual bonds. In
this work local currents have been first obtained at the less demanding 2 · 10−2 atomic
units level (the reference benzene ring current reduces to −10.3 nA T−1; percent values
are reported in Figures 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 with or without the sketch of
the integration domains, which are useful to grasp the shape of the currents). Current
in percent units of the benzene current strength are only approximately preserved when
different integration thresholds are used. As a correction for this error, best values of
local signed current strength, have been obtained by the equation

Īcorr,B = Ī
(10−3)
global

Ī
(2·10−2)
B

Ī
(2·10−2)
global

(5.30)

Where do residual discrepancies come from? The Biot-Savart law, used to develop the
equations of the model, is known to work exactly also in the quantum mechanical domain,
provided the correct current density is used. Therefore, the problems can only come from
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Figure 5.6: Molecules studied in this work.
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Table 5.3: Signed current strengths (in nAT−1) retrieved by the JAP method and by DFT
calculations at the BHandHLYP/6-31G* level. R2 is the coefficient of determination of
the JAP linear model taken from Ref.[96]. %err is the percent error of the ĪJAP over
the ĪDFT values. The fraction of rings whose tropicity is predicted correctly, ϕokTROP , is
given in the last column.
[a] Non-optimized geometry taken from the crystal structure of Ref.[99]

R2 ĪJAP ĪDFT %err ϕokTROP

1 0.97 −13.3 −13.3 0 1/1
2 0.97 −10.1 −8.4 20 1/1
3 0.98 −38.0 −25.1 51 2/2
42+ 0.99 −25.9 −38.5 −33 2/2
52+ 0.98 −26.6 −33.8 −21 2/2
62+ 0.99 −33.4 −25.2 33 2/2
72+ 0.96 −28.3 −27.6 3 2/2
82+ 0.97 −29.3 −25.1 17 3/6
92+ 0.91 −22.7 −36.9 −38 3/4
102+ 0.99 −20.1 −32.6 −38 3/4
112+ 0.99 −26.7 −43.1 −38 3/4
124+ 0.94 −33.0 −6.9 3787 1/4
124+ [a] −34.5 2 1/4
92− 0.84 −12.9 −28.1 −54 3/4
94− 0.23 5.0 1.8 178 1/4
10 0.88 8.6 11.8 −27 2/4
11 0.96 7.0 3.1 126 2/4
S1 0.96 −11.2 −9.3 20 1/1
S2 0.99 −29.8 −26.7 12 2/2
S3 0.94 5.1 2.1 50 2/3
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the inadequate modeling of the current density. In this respect the assumptions of the
JAP model can be summarized as follows:

� The macrocycle is assumed to have a single conformation, built upon gas-phase
B3LYP/6-31G* optimization starting from the crystallographic structure (geome-
try can be a problem!);

� the contributions to the shielding of the i-th spectator atom coming from different
directions of the external field are weighted by the net projected cross-section area
of the circuit along the direction of the applied magnetic field (strictly correct for
planar monocycles only!);

� the shape of the current is that of two infinitely thin homotropic circuits displaced
from the average local plane by ±0.7 Å (heterotropic circulations do occur in cy-
cloporphyrins!);

� local currents are preserved passing from the reference compounds to the studied
macrocycles (does not seem the case);

� delocalized currents run along one or few equally weighted piecewise linear path-
ways running along selected conjugated circuits running all along the macrocycle
(problematic for localized patterns. Extension of the model to fit more than a ring
current proved cumbersome, due to heavy correlation of the fit parameters, but
good results were obtained in the case of 94−.);

In conclusion, we have performed a check of the ability of JAP model to recover DFT
ring currents, which can be nowadays computed with user-friendly automated software.
The model is effective in recovering global and local tropicities, but errors of the order
of a full benzene ring current can occur. In percentage terms, the largest error has been
reported for a calculation on 124+ and for 94−, a system with a negligible global ring
current, dominated by local currents. Extension of the model to fit more than a ring
current proved cumbersome, due to heavy correlation of the fit-parameters, but good
results were obtained in the case of 94−. The application of a similar approach to other
systems will be non-trivial, not only because of the strong correlation of the parameters,
but also because choosing the proper reference system can be complicated, especially in
bent systems, so that presently the indirect route of retrieving the current density from
few experimental chemical shifts should still be considered a rough and challenging road.
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Figure 5.7: Integration domains used to determine the bond current strengths for
molecules 1, 2, 32+, 42+, 52+ and 62+. The domains are bounded by contour lines
at 2 × 10−2 a.u.
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Figure 5.8: Integration domains used to determine the bond current strengths for
molecules 72+, 82+, 92+, 92−, 94− and 10. The domains are bounded by contour lines
at 2 × 10−2 a.u.
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Figure 5.9: Integration domains used to determine the bond current strengths for
molecules 102+, 11, 112+, 124+, s1, s2 and s3. The domains are bounded by con-
tour lines at 2 × 10−2 a.u.
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Figure 5.10: Relative bond current strengths obtained with the integration domains of
molecules in picture 5.7.
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Figure 5.11: Relative bond current strengths obtained with the integration domains of
molecules in picture 5.8.
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Figure 5.12: Relative bond current strengths obtained with the integration domains of
molecules in picture 5.9.
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5.1.3 Magnetic Characterization of the Infinitene Molecule

The large family of polycyclic aromatic hydrocarbons (PAHs) has recently acquired a new
member referred to as infinitene due to its helically twisted structure resembling that of
the ∞ symbol.[100] Even at first glance, infinitene looks as a truly fascinating molecule,
in particular with regard to some issues concerning the nature of its aromaticity in terms
of the magnetic criterion.[101] In fact, beside enhanced stability, specific reactivity and
bond equalization, it is well recognized that the magnetically induced current density
is intimately linked with the aromaticity concept and it is an essential ingredient for
the interpretation of the magnetic response of conjugated π-systems, such as the nuclear
magnetic shielding in NMR spectroscopy and the exaltation of diamagnetism.[102, 103]
However, despite recent progress,[96, 104] the inference of the actual shape of the ring
current in PAHs, starting from 1H NMR data or the calculations of a few nucleus inde-
pendent chemical shifts (NICSs)[105] is not straightforward, and this is especially true
for curved PAHs.

Infinitene can be seen as two cleaved coronene ([6]circulene) subunits, twisted as two
homochiral helices and stitched together by both their ends, in such a way that the rim
of one coronene is attached to the hub of the other, forming two circuits of equal length
containing 24 carbon atoms each. For coronene it is known that two counter-rotating
ring currents are induced by a perpendicular magnetic field, one strongly diatropic on
the rim, another weakly paratropic on the hub, which provide evidence for a resultant
global aromaticity of the molecule.[106]

Therefore, a number of questions concerning the shape and strength of ring currents
(if any) arise:

i) What pathways do the currents travel through?

ii) Are they global, or local to Clar sextets?

iii) Which tropicity do they display?

iv) How does their strength compare with the benzene ring current?

v) How large is the exaltation of diamagnetism for this aromatic molecule?

vi) How can the high-field 1H NMR signals be justified on the basis of the actual current
tropicity?

Nowadays, there exist powerful methods that can be readily used to solve the problem
by calculating directly the magnetically induced current density for any orientation of
the inducing magnetic field.[14, 107] Therefore, not at all surprisingly, despite the work
of synthesis was very recent,[100] a theoretical paper elucidating the current pathways in
infinitene has already appeared,[108] when our study was still in progress. In that work
it has been clearly shown that the induced current is characterized by two aromatic, non-
intersecting global π-electron current pathways, formed by the two circuits of 24 carbon
atoms along the edges shaped as the infinite symbol. This finding answers the first three
of the above questions. Besides, it addresses the question whether the molecule follows
Hückel 4n + 2 or Möbius 4n aromaticity rules, showing that infinitene does not belong
to any of these classes of molecules. Nonetheless, the last three questions remain.

Experimental 1H NMR spectrum of infinitene presents six doublet peaks within the
aromatic region (from 6.4 to 8.2 ppm) which have been successfully assigned to the var-
ious kinds of protons on the basis of a very good comparison with calculated chemical
shifts at the GIAO-DFT/B3LYP/6-311+G(2d,p) level of theory in CHCl3 with an SMD
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solvent model.[100] It was suggested that it is reasonable to attribute the larger shielding
of the protons attached to the central naphthalene (Ha and Hb, same labeling as in Ref.
[100]) to an effect from the ring current on a lower benzene ring. No other argument
was given supporting this idea. To better understand the behavior of this molecule we
have taken the geometry of the (P, P )-isomer of infinitene, optimized at the PBE0/6-
311+G(d,p) level of theory in the gas phase, reported by Krzeszewski et al.[100] within
the Supporting Information file. The symmetry point group of the structure is D2 with
the Cartesian x axis perpendicular to the central C-C bonds of the stacked naphthalene
subunits. Then, we have performed the calculation of the magnetically induced current
density using the CTOCD-DZ method to ensure origin independent results, adopting
the B97-2[109]/6-311+G(2d,p)[110] level of theory in the gas phase. The Gaussian 16
program[56] was used to obtain the perturbed molecular orbitals with the CSGT[55]
keyword and the SYSMOIC program package[14][3] to perform the actual calculation of
the current density. In infinitene σ/π orbital separation is not strictly possible. However,
descendants of p-orbitals can be easily detected using a combination of symmetry argu-
ments and by inspection. The 156 doubly occupied molecular orbitals of D2 infinitene
can be partitioned into 48 1s cores plus 84 σ orbitals, spanning the symmetries

Γcore+σ = 35A ⊕ 34B1 ⊕ 31B2 ⊕ 32B3, (5.31)

and 24 more orbitals that can be tentatively classified as π orbitals

Γπ = 6A ⊕ 5B1 ⊕ 6B2 ⊕ 7B3. (5.32)

Using some facilities contained in the SYSMOIC package, we have readily identified the
set composed by HOMO, HOMO-1, HOMO-2, . . . , HOMO-14 plus HOMO-17 as nearly
true π orbitals, as confirmed by inspection with GaussView. Searching for the remaining
8 orbitals was unsuccessful due to large σ/π mixing. Then, only HOMO,. . . ,HOMO-14
plus HOMO-17 have been used in the calculation of the current density map induced
in the π-electron cloud. The calculated CTOCD-DZ π-electron current density, induced
by a unitary magnetic field parallel to the Cartesian x axis, is shown in Figure 5.13.
Considering that the typical benzene ring current has a maximum value of about 0.08
a.u.[111], we have applied a lower/higher cutoff of 0.05/0.1 a.u. to the current density
values calculated over a grid of 12× 20× 28 a0 in step of 0.4 a0. As can be observed, the
result is impressively clear and in full agreement with the current pathways reported in
Ref.[108]. Two distinct current flows can be seen to occur along the equivalent circuits
of 24 carbon atoms, each one formed by all the K-regions of a coronene subunit plus
the internal fjord region of the second coronene subunit. Looking carefully, the two
global ring currents are really disjointed, as already noted, since along the radial bond of
the coronene subunits the current goes in opposite directions. As can be observed, the
homotropicity of the current pathways is a direct consequence of the magnetic symmetry
group,[63] which can be worked out according to Tavger and Zaitsev.[64] Actually, when
the magnetic field is parallel to Cx

2 , the magnetic group is D2(Cx
2 ) = (E Cx

2 RC
y
2 RC

z
2 ),

where R is the time reversal operator. Every symmetry element can be easily seen
looking at the current density field depicted in Figure 5.13. This qualitative result is
confirmed by the quantitative representation given by the calculated all-electron bond
current strengths[12] reported in the bottom inset of Figure 5.14. The two insets in the
top of Figure 5.14 have been calculated separating the contribution given by the set of
16 orbitals identified as nearly true π orbitals (top left) and the contribution given by all
the remaining 140 orbitals (top right), which includes also the 8 orbitals showing a large
σ/π mixing. What is shown in the top right inset of Figure 5.14 can be due to delocalized
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currents coming from σ-electrons, which are known to be somewhat less than 10% of the
total current in benzene,[13] but also to the residual σ/π mixing. At any rate, in the
bottom inset of Figure 5.14 a real representation is given of the current delocalization,
which is not affected by any ambiguous assumption. As can be observed, the current
strength along the terminal K-regions is about 92% the benzene current strength, it
increases in the intermediate K-regions and reaches a maximum of 111% within the fjord
regions. The current strength for the radial bonds of the coronene subunits is vanishing
for all those bonds which are interchanged by C2 symmetry elements and is not larger
than 0.5 nA/T in all other cases. This shows quantitatively the disconnection of the two
global ring currents.

Given the particular form of the current density, in which there are no ring currents
localized on benzene rings, we have considered a different explanation to attribute the
larger shielding of the protons attached to the central naphthalene. To see that, we

Figure 5.13: π-electron current density induced in infinitene by a unitary magnetic field
(blue arrow) parallel to x Cartesian axis, corresponding to Cx

2 symmetry element. The
other two binary axes of D2 must be combined with the time reversal operator. Currents
lower/higher than 0.05/0.1 a.u. are not shown.

have computed the spatial contributions to the 1H NMR magnetic shieldings, at the
CSGT/B97-2/6-311+G(2d,1p) level, using the method proposed by Jinger et al.[113] For
the application of this method, integration of the magnetic shielding density function[6]
has to be performed adopting Becke’s partition scheme for the calculation of molecular
integrals.[53] Due to the fairly high sensitivity of the atomic contributions on the atomic
size adjustments chosen to decompose the molecular space,[54][1] the BCP positions
of the electron density gradient[29] have been used to define the heteronuclear cutoff
profiles.[114][9] In planar aromatics the out-of-plane component of the nuclear magnetic
shielding tensor is the one of major interest. Owing to the disjointed global current
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Figure 5.14: Calculated bond current strengths in infinitene. Top left π-electron contri-
bution from the orbital set used to compute Figure 5.13; top right contribution from all
the remaining orbitals; bottom all-electrons. See caption of Figure 5.13 for the orien-
tation of the inducing magnetic field. Figures attached to each arrow give the current
strength in percentage respect to the benzene ring current strength of 12.0 nA/T taken
as reference.[112]
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density induced by a magnetic field parallel to the x direction a similar importance is
expected to occur for the xx component of the tensor. Therefore, we have focused our
attention on both the xx and isotropic component of the proton magnetic shieldings.
Results are assembled in Figure 5.15 formed by six insets, one for each symmetry unique

Figure 5.15: Spatial contributions to the proton magnetic shieldings. See text for details.

proton of the molecule (same labeling as in Ref. [100]). In each inset, contributions to the
xx component of the tensor are plotted on the left beside the contributions to the isotropic
component (tensor average value) on the right. Spatial contributions are represented as
spheres of radius proportional to the cubic root of the calculated value and centered on
the corresponding nucleus. Shielding/deshielding contributions are shown in red/blue.
According to the Biot-Savart law[15] the current effect decreases with the square of the
distance. Moreover, closed current loops around atomic nuclei or centered on chemical
bond, that do not cover the reference position, provide negligible effects irrespective of
their strength. Following this key of interpretation, common to all protons it can be seen
that:

i) a main shielding contribution (core contribution) is given by the molecular region
around each proton;

ii) the nearest atoms provide the next important contributions;

iii) sizable contributions come from atoms at intermediate distances, or even far away,
as a consequence of the globally delocalized current;

iv) the contribution given by the bonded carbon atom to the xx component of the
magnetic shielding is always negative (deshielding), which turns always positive
(shielding) for the isotropic component;

v) large deshielding contributions from the next nearest atoms are negative in both
xx and isotropic components;
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vi) with the exception of the attached carbon atom and some very minor ones, the
isotropic values closely resemble the xx contributions, revealing the dominant role
played by the delocalized current, even if moderated to some extent by the perpen-
dicular components.

It can be observed that all pictures for protons Hc, Hd, He, and Hf (see middle and
bottom rows of Figure 5.15) show similar features. For Hb there are larger contributions
coming from lower benzene rings. For Ha the picture is completely different, showing
important deshielding contributions from the carbon atoms forming the fjord region plus
a crown of shielding contributions all along the rim of the coronene subunit in which
the proton is inserted. To deal with such a complex situation, we have collected in
Table 5.4 the core contribution and the sum of all shielding (positive) and deshielding
(negative) spatial contributions to the isotropic component of the magnetic shielding of
the infinitene protons.

Table 5.4: Contributions to the isotropic component of the proton magnetic shieldings:
core, sum of shielding spatial contributions (SSSC), sum of deshielding spatial contribu-
tions (SDSC), and proton net charges qH.

Proton core SSSC SDSC total δcal δExpt[100] qH
Ha 18.85 8.91 −3.41 24.35 7.14 6.99 0.1675
Hb 19.83 6.95 −1.74 25.04 6.44 6.43 0.1320
Hc 19.76 5.79 −1.70 23.86 7.62 7.60 0.1387
Hd 19.79 5.49 −1.88 23.41 8.08 8.04 0.1385
He 19.76 5.36 −1.88 23.24 8.24 8.18 0.1398
Hf 19.78 5.25 −1.76 23.27 8.22 8.16 0.1433

Total values have also been transformed to calculated chemical shifts δcal relative to TMS
using[115]

δi = σref − σi + δref (5.33)

where σref is the computed shielding constant for the same nucleus in a reference com-
pound, σi is the computed shielding constant for the nucleus in the molecule of interest
and δref is the experimental chemical shift for the reference compound relative to TMS.
For aromatic protons we use C6H6 as the reference compound, adopting δref = 7.36 ppm
in CDCl3.[116] First of all, we note the good comparison with experimental chemical
shifts:[100] the order of the signals is correctly computed and the largest deviation is
only 0.15 ppm for Ha. Looking at the core contributions, it can be observed that protons
c,d,e,f show almost the same value (max deviation 0.03 ppm), indicating a very similar
internal region. The same protons display a decreasing sum of shielding spatial contri-
butions (SSSC) going from Hc to Hf (∆σ = 0.54 ppm) in parallel with a decreasing sum
of deshielding spatial contributions (SDSC), Hf apart which deviates a little from this
tendency. This behavior changes a lot for Ha and Hb. The latter shows an SSSC equal
to 6.95 ppm, which surpasses by 1.16 ppm the value relative to Hc, accounting quanti-
tatively for the δExpt(Hc) − δExpt(Hb) = 1.17 ppm. This increment of the SSSC can be
traced back to the somewhat larger shielding contributions from the carbon atoms of the
lower benzene rings and from the K-regions of the coronene subunit, visible in top row
of Figure 5.15 on the right. As regards Ha everything is changed: the core contribution
is the smallest, whilst in absolute value both SSSC and SDSC are the largest. This leads
to cross compensations, which collocates the Ha chemical shift midway between Hb and
Hc. Looking at Figure 5.15, top row on the left, it is possible to locate the source of the
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largest deshielding on the carbon atoms forming the fjord and the source of the largest
shielding on the carbons in the lower benzene rings and K-regions as well. In other
words, seen along the x-axis, Ha is inside two counter-rotating currents and undergoes
their opposite effects, i.e., the paratropic one giving a deshielding effect, the diatropic
one giving a shielding effect. The smaller core contribution can be attributed to a loss
of electron charge in the immediate region around the nucleus, which is compatible with
the calculated Mulliken populations, showing that the four Ha’s have the highest posi-
tive charge within the set of hydrogen atoms. It is known that upon formation of CH-π
interactions, the hydrogen loses electrons.[117]

Returning to the unsolved questions underlined before for infinitene, we have shown
that: iv) as for the strength of the current, induced by a perturbing magnetic field
perpendicular to the central C-C bonds of the two stacked naphthalene subunits, in the
K-regions it is 1.5 times weaker than the diatropic current that circulates on a pristine
coronene rim, whilst in the fjord the current is twice stronger than the paratropic current
on a pristine coronene hub; v) the exaltation of diamagnetism is fairly low, being only
73% of the expected value; vi) the high-field 1H NMR signals are due to the global
currents flowing on the fjord region and on the carbon atoms on the lower benzene rings
and K-edges, with a fairly large deshielding effect on Ha, from the former, and shielding
effect on both Ha and Hb from the latter.
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5.2 Time-Dependent Magnetically Induced Current
Density and Origin Invariant Optical Rotatory
Power Density

In this section the aim is to illustrate how it is possible to implement the origin inde-
pendent isotropic optical rotation power density defined according to equation (4.87),
starting from the implementation of the time dependent magnetically induced current
density according to the definitions given in section 4.4. To implement the CTOCD-DZ
dynamic current density tensor the procedure to follow is exactly the same as the one
given in section 5.1. The only difference is that the vectors (5.1) and (5.2) are now
redefined accordingly
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This means also that the previous equations (5.9) and (5.10) now depend on the radiation
frequency ω
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From a practical point of view, we have that the perturbed coefficients introduced in the
section 5.1 and consequently the perturbed density matrices now depend on the radiation
frequency, and to compute them we can use RPA at the HF or DFT level of theory,
equivalent to TDHF[118] and TDDFT.[119, 120] As noted before for the static case, these
coefficients can be obtained directly using SYSMOIC at the HF level of theory for closed
shell systems, or from a Gaussian 16 calculation using the interfaces provided within the
program. Examples of applications of these equations, that are given in Refs.[88][4] and
[121][11], for the calculation of origin independent optical rotatory power density and
time-dependent magnetically induced current densities in the CTOCD-DZ approach, are
illustrated in the following subsections respectively for H2O2 and for LiH changing the
frequency of radiation ω.
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5.2.1 Origin-Invariant MEMDP Density

We have studied how Mixed Electric Dipole Magnetic Dipole Polarizability (MEMDP)
density equation (4.87) varies with respect to internal rotation. For this purpose, we
have calculated the optical rotation density in the CTOCD-DZ formalism for a selection
of dihedral angles at the wavelength of 355 nm for the H2O2 molecule. Five dihedral
angles are of interest, i.e., the two at which the optical rotation is maximum (δ ∼ 60◦)
and minimum (δ ∼ 150◦), the angle at which optical rotation changes sign (δ ∼ 120◦), in
addition to δ = 0◦ and δ = 180◦, corresponding to C2v and C2h structures, respectively.
The conventional specific rotation

[α]λ =
28800π2NA

λ2M
β (5.38)

in the usual deg [dm g/cm3]−1 units, when the radiation wavelength λ is in cm, the
molecular mass M in g mol−1 and β = Tr(κ′)/(3ω) in cm4, can be obtained as a volu-
metric integral of the MEMDP density. In Figure 5.16 the specific rotation is reported as
a function of the dihedral angle. Computed optical rotation densities for the selected δ’s

Figure 5.16: Specific rotation of the Ra enantiomer of H2O2, λ = 355 nm, as a function
of the dihedral angle for the MEMDP. See Figure 5.17 for other details.

are shown as diverging color maps in Figure 5.17, for planes containing the oxygen atoms,
parallel (left) and perpendicular (right) to the C2 symmetry axis. Positive/negative den-
sity values are red/blue. As can be observed, the specific rotation density is mainly
located in the vicinity of oxygen atoms, with conspicuous alternation of sign.

At δ = 0◦ and δ = 180◦ the symmetry of density maps is consistent with obviously
vanishing optical rotation. In particular, the specific rotation density changes sign by
reflection through a symmetry plane and vanishes at all its points. This is the typical
feature of the scalar product between a polar vector and an axial vector. For δ = 0◦

two such planes are present, i.e., σv and σ′
v, for δ = 180◦ only σh is present. For all

the intermediate conformers, the absence of symmetry planes gives rise to positive and
negative regions which do not cancel one another out. At δ = 60◦ a red (positive)
contribution is dominant over the plane containing the C2 axis; at δ = 150◦ a blue
(negative) contribution over the plane perpendicular to the C2 axis prevails; at δ = 120◦

the two slices in Figure 5.17 suggest how all contributions cancel out passing from positive
to negative optical rotation.

In summary, as far as we can see from this simple example, the specific rotation density
provided by the CDT evaluated by the CTOCD-DZ approach is a function characterized
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by high intensity peaks of opposite sign in the proximity of atoms, whose symmetry
is clearly connected with the integrated property. It enables us to understand more
precisely how the absence of symmetry planes gives rise to optical rotation.

Nonetheless, it remains to be understood how the dominant sign of optical rotation
density is connected with the molecular configuration, which implies that further inves-
tigations are needed in this regard.

Figure 5.17: Origin-independent CTOCD-DZ MEMDP densities calculated at 355 nm
using TDHF theory adopting a fairly large basis set consisting of the uncontracted d-
aug-cc-pVQZ on hydrogen atoms and d-aug-cc-pVTZ on oxygen atoms, displayed for five
different values of the H2O2 dihedral angle. On the left, the plotting plane contains the
main symmetry axis; on the right, the plane is perpendicular to the C2 symmetry axis.
Each plotting area is a square centered in the O–O bond midpoint, with a side of 10 a0.
Side bar values are in deg [dm g/cm3]−1a−3

0 .
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5.2.2 Stagnation Graphs of LiH

For the LiH molecule, chosen in a first attempt to implement the theory presented in
section 4.4, we have adopted a system of coordinates with origin in the center of nuclear
charges. The Li-H bond lies in the z Cartesian direction, coinciding with the C∞v

symmetry axis; lithium (hydrogen) has positive (negative) z-coordinate.
To investigate the effects of optical magnetic fields, associated to monochromatic

waves with different ω frequency on the JB(r, ω) vector field, we have chosen the corre-
sponding stagnation graphs, which yield nearly complete information in a compact and
portable way. SGs superimposed to streamline maps showing heteroclinic orbits that
join the equilibrium points, thus defining the topological structure of JB(r, ω), have
been calculated for nine ω-frequency values of the magnetic field B ≡ Bx(ω)ϵ1 oscillat-
ing at right angles to the z-axis, see Figure 5.20.

Figure 5.18: Toroidal current density induced in the lithium hydride molecule by a static
magnetic field Bxϵ1 perpendicular to the bond, directed along the vertical direction of
the figure. The (3,±1) saddle-nodes are represented by three branched crosses: two red
branches on the forefront denote a sink (3,−1) saddle-node, with index ι = +1, lying on a
manifold tangent to the surface of a topological torus T 2, with Euler characteristic χ = 0.
In the background, the conjugated (3,+1) source, with index ι = −1, is indicated by a
blue cross on the tangent plane. The (3,±1) SPs are joined by a heteroclinic streamline
corresponding to a one-dimensional hollow region of the toroidal flow. The Poincaré-Hopf
theorem[122, 123] is satisfied in the form +1 −1 = 0, using the indices reported in the
literature.[78, 124]

The first panel a corresponds to the frequency of sodium D-line. The asymptotic orbits
reported in Figure 5.20 can be compared with those of Figure 5.18 for static magnetic
field, and others previously reported,[67, 72] to visualize qualitative modifications of
molecular response induced by a frequency-dependent perturbation.
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The current density vector field and its SG are characterized by the magnetic symmetry
group of the molecule, obtained by the Tavger-Zaitsev method,[64] i.e.,

C2v(Cs) ≡ {ERC2(z)Rσv(xz)σv(yz)} ≡ 2mm, (5.39)

denoting by R the time-reversal operator and using either the Schönflies or the interna-
tional notation. Accordingly, the σv(yz) plane cannot be crossed by the flow, and the
Rσv(xz) is traversed only by streamlines orthogonal to it.[101]

Figure 5.19: The ϱḂx density induced by the time derivative of the magnetic field of a
monochromatic wave oscillating with ω = 0.125 a.u. It vanishes identically all over the
Rσv(xz) plane for symmetry reasons.

The disconnected SGs of LiH, in the presence of magnetic field perpendicular to the bond
axis, for all the ω values examined in this study, are constituted by two (or three, see
panels c-i) connected subgraphs. Five basic features characterize their topology:

� (i) the presence, in the vicinity of the H nucleus, of a green SL, nearly parallel to
B ≡ Bx(ω)ϵ1, going from and up to the boundaries of the configuration space.
It indicates the primary (referred to as “matrix” by Gomes[66]) diatropic vortex,
which consists of a continuous pattern of juxtaposed current loops, approximately
parallel to one another;

� (ii) a closed SL, forming a ring of (2,0) SPs, with a pair of green and red segments.[125]
Such a stagnation loop implies the presence of vortical currents winding on the sur-
face of a topological torus;

� (iii) a pair of conjugated (3,±1) saddle-nodes, denoted by crosses, which play a
pivotal role for understanding the connected subgraph of toroidal currents;

� (iv) the primary vortical SL and all the stagnation loops lie entirely on the Rσv(xz)
symmetry plane;
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� (v) on increasing the value of ω a compression of the toroidal surface is observed in
panels a through i of Figure 5.20. The decrease of volume is accompanied by the
onset of vortex- and saddle-flow, documented by connected subgraphs on the right
of c-i, starting and decaying at (0,0) singularities.

An important result, consistent with point (iv), is that the continuity equation (4.51) is
exactly satisfied on the xz plane, for symmetry reasons, in the form 0 + 0 = 0 when the

magnetic field oscillates in the x direction. In fact, as shown in Figure 5.19, the ϱḂx(r, ω)
vector vanishes all over the Rσv(xz) plane, which can only be crossed by perpendicular
streamlines of JBx

y (r, ω), with ∇yJ
Bx
y (r, ω) = 0. Thus

ϱḂx(r, ω) = 0 JBx
x (r, ω) = JBx

z (r, ω) = 0 ∇αJ Bx
α (r, ω)Bx = ∇αJ

Bx
α (r, ω) = 0

(5.40)
for each r on this plane. Let us now consider a topological sphere, i.e., an S2 surface
with Euler characteristic χ = 2, enclosing the molecule, the stagnation loops observed in
panels a-i and all the asymptotic orbits connecting the (3,±1) SPs. At its intersections
with the connected part of the SG which consists of the primary stagnation line passing
close to the H nucleus, the electron flow can be represented on a tangent plane, i.e., a
smooth Euclidean manifold, by a diatropic vortex with Poincaré index ι = +1. Thus,
the Poincaré-Hopf theorem[122, 123] is satisfied in the form +1 + 1 = 2 on S2. A second
connected part of the SG contains the stagnation loop represented in red and green[125]
in Figure 5.20, which also displays a pair of conjugated (3,±1) saddle-nodes. Six orbits
enter or leave the (3,±1) SPs saddle-nodes in the directions specified by an arrow. On the
σv(yz) plane, which contains these points, the continuity equation (4.51) is not satisfied
by symmetry, but it would be fulfilled in the case of complete basis set. At right angles
to the σv(yz) plane, two heteroclinic trajectories, lying on an xy plane, leave the source
(3,+1) and arrive at the sink (3,−1) singular point. An asymptotic wavy line on σv(yz)
flows across the stagnation loop, through its center, thus defining the central “axis” of
the toroidal currents, four of which are shown above and below the yz plane in panel
b. Another pair of vortices is displayed on either side of the separation between green
and red SLs in a. The two heteroclinic orbits which lie on the yz plane, leaving and
entering the (3,±1) saddle-nodes, enclose the vortical diatropic axis and the stagnation
loop, respectively. This pattern is analogous to that observed in Figure 5.18 for a static
B: also for optical magnetic fields, the Poincaré-Hopf theorem[122, 123] is satisfied in
the form +1 −1 = 0, i.e., the Euler characteristic of a torus T 2.

Thus, the set of six asymptotic lines joining the (3,±1) saddle-nodes constitutes a
peculiar structure of all the panels displayed in Figure 5.20, playing a major role for the
rationalization of the current density vector field of LiH.

A secondary, connected stagnation subgraph, observable for ω=0.116 a.u., in the inset
c of Figure 5.20, is formed by one green and one blue SLs. An analogous loop is observed
in panels d and e. The latter shows further splitting of the green vortex line, giving rise
to a blue segment which indicates intermediate saddle-flow. These loops account for a
pattern not considered by Gomes,[66] which may be referred to as a “vacuum fluctuation”,
since it indicates the ability of a current density vector field of giving rise ex nihilo to
(0,0) singular points in regions where they are not observed in analogous situations, e.g.,
for static fields and lower frequencies. Remarkably, the fluctuations displayed in panels
h and i are characterized by saddle- and paratropic flow, denoted by blue and red SLs,
respectively.

However, since these subgraphs lie on the Rσv(xz) plane, where the identities (5.40)
are fulfilled for symmetry reasons, the index conservation theorem[121][11] is evidently
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valid. In fact, the creation of a vortical axis is accompanied by that of a saddle line.
For instance, in panel c, they take place at a (0,0) singular point with coordinates
x = 0.267, z = 2.394 bohr, in the proximity of which the Poincaré indices +1 of a
vortex is canceled by −1 of an associated saddle. In other words, the transition from two
imaginary to two real eigenvalues with opposite sign of the Jacobian matrix necessarily
comes about via three null eigenvalues of the Jacobian matrix. Another (0,0) point,
symmetrically placed at x = −0.267, z = 2.394 bohr, defines the end of the vacuum
fluctuation.

Figure 5.20: Stagnation graphs of the current density vector induced in the electron cloud
of the lithium hydride molecule by a magnetic field Bx(ω)ϵ1 perpendicular to the bond
axis, oscillating at nine increasing frequencies in the transparent region: a) 0.07732, b)
0.110, c) 0.116, d) 0.118, e) 0.120, f) 0.121, g) 0.122, h) 0.123 and i) 0.125 a.u.. Blue
color indicates saddle SLs formed by (2,0) points; red/green color designates (2,0) points
of paratropic/diatropic vortical SLs. (3,±1) SPs are marked by a cross, indicating the
direction of streamlines which enter (leave) the singularity in red (blue) on the tangent
plane.

Summarizing, the present work provides convincing evidence that theoretical procedures
based on continuous translation of the origin of the electronic current density, induced in
a chemical species by frequency-dependent magnetic fields, can be easily and effectively
coded in a computer program. The JB(r, ω) based on such a computational scheme
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yields reliable visualizations of vector fields that meet the requirement of origin indepen-
dence all over the electron charge distribution. The preliminary investigation outlined in
this study,[121][11] which, to the best of our knowledge, is the first ever reported, may
stimulate future research in this field. Although limited to a small compound, the LiH
molecule, it revealed quite useful to analyze a series of questions, concerning mathemati-
cal and physical aspects. For instance, the information arrived at on topological features,
e.g., the distribution of singular points of different types, is expected to be immediately
transferable to larger compounds.

A number of characteristics so far not observed for time-independent B appear in
JB(r) for a molecule in the presence of optical magnetic field, marking differences that
may be quite relevant between static and dynamic case. They are nicely described via
a disconnected stagnation graph, usually containing connected subgraphs constituted by
stagnation lines and isolated singularities. In the case of the LiH molecule, two noticeable
phenomena have been detected:

� (i) a contraction of the toroidal surface surrounding the Li nucleus, a typical signa-
ture of its JB(r, ω) field, is observed on increasing the ω frequency of the impinging
radiation. This reduction of volume is accompanied by shrinkage of the asymptotic
orbits which connect (3,±1) singularities defining source and sink of the torus.

� (ii) The decrease in size of toroidal flow takes place together with a sudden out-
break of connected subgraphs, i.e., stagnation loops formed by vortex- and saddle-
lines, beginning and ending at two (0,0) singularities, critical points at which three
eigenvalues of the Jacobian matrix vanish. Since the Poincaré indices of vortex and
saddle SLs have opposite (±1) sign, their sum must identically vanish where the
fluctuation starts and decays to fulfil the Gomes theorem. The loops of saddle- and
vortex-lines, either diatropic or paratropic, start appearing at certain values of ω
in regions of the electron cloud where they could not be observed for smaller fre-
quencies. Accordingly, they have been referred to as “vacuum fluctuations”, since
they suddenly materialize in the vector field. Branchings of this kind have not been
predicted by Gomes.[66]

All the calculations, shown in this subsection, have been carried out using the BHandHLYP
functional,[126] recently shown to provide reliable linear response properties,[58][5] em-
ploying basis sets of contracted functions which include terms of high angular momen-
tum, taken from Basis Set Exchange (BSE).[110] In particular, the aug-pcSseg-4 basis
set[127] has been adopted for this molecule. BHandHLYP transition matrix elements〈
j
∣∣∣(r ×∇)β

∣∣∣ a〉, ⟨j |∇δ| a⟩, amplitudes Tj and energies ωja have been computed by the

Gaussian 16 program package,[56] using the TD=(full,sos) 6d 10f keywords. The molec-
ular geometry has been optimized using the same functional and basis set. CTOCD-DZ
time-dependent CDT components have been evaluated using the SYSMOIC program
package.[14][3] Stagnation graphs have been computed at t = 0.
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5.3 Origin Independent Polarizability Densities and
Toroidisabilities

The aim of this section is to discuss how the implementation of an origin-independent
polarizability density can be achieved, starting from the definition of the current density

tensor J Ėβ
α , given in section 4.5. Using a notation similar to the one adopted before we

have that equation (4.43) can be rewritten as

J Ėβ
α (r, ω) =

ne2

me
ℑ
{∫

Ψ
(Rβ)0∗
a (r,X1, ω)p̂αΨ(0)

a (r,X1)dX1

−
∫

Ψ(0)∗
a (r,X1)p̂αΨ

(Rβ)0
a (r,X1, ω)dX1

}
(5.41)

or if we use off-diagonal hypervirial relationships

J Ėβ
α (r, ω) =

ne2

m2
e

ℜ
{
−
∫

Ψ
(Pβ)−1∗
j (r,X1, ω) p̂αΨ(0)

a (r,X1) dX1

+

∫
Ψ(0)∗

a (r,X1) p̂αΨ
(Pβ)−1

j (r,X1, ω) dX1

}
(5.42)

where

Ψ
(Rβ)0
a (r,X1, ω) =

1

ℏ
∑
j ̸=a

〈
j|R̂β |a

〉
ω2
ja − ω2

Ψ
(0)
j (r,X1) (5.43)

Ψ
(Pβ)−1
a (r,X1, ω) =

1

ℏ
∑
j ̸=a

〈
j|P̂β |a

〉
ωja(ω2

ja − ω2)
Ψ

(0)
j (r,X1) (5.44)

can be regarded as vectors explicitly dependent on the radiation frequency ω. Allowing
for definitions of total electronic angular momentum operator, introduced before, the
vector function (5.44) becomes

Ψ
(Pβ)−1
a (r,X1, ω) = −iℏΨ

(∇β)−1
a (r,X1, ω) (5.45)

where

Ψ
(∇β)−1
a (r,X1, ω) =

∑
j ̸=a

1

ωja(ω2
ja − ω2)

〈
j

∣∣∣∣∣∑
k

(∇β)k

∣∣∣∣∣ a
〉

Ψ
(0)
j (r,X1) (5.46)

For an unrestricted open-shell system, represented by a one-determinant wavefunction

Ψ =
1√
n!

det
[
ψα
1 , ψ

β
2 , · · ·

]
(5.47)

constructed by n = nα +nβ occupied molecular orbitals, the previous equations become,
in atomic units, respectively

J Ėβ
α (r, ω) =

n∑
j

[
−ψ(Rβ)0

j (r, ω)∇αψ
(0)
j (r) + ψ

(0)
j (r)∇αψ

(Rβ)0
j (r, ω)

]
(5.48)
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J Ėβ
α (r, ω) = −

n∑
j

[
ψ
(∇β)−1

j (r, ω)∇αψ
(0)
j (r) − ψ

(0)
j (r)∇αψ

(∇β)−1

j (r, ω)
]

(5.49)

Then, spin-orbitals ψj are expanded as linear combinations of basis functions χq

ψ
(0)
j (r) =

∑
q

C
(0)
qj χq(r) (5.50)

ψ
(Rβ)0
j (r, ω) =

∑
q

C
(Rβ)0
qj (ω)χq(r) (5.51)

ψ
(∇β)−1

j (r, ω) =
∑
q

C
(∇β)−1

qj (ω)χq(r) (5.52)

where C
(0)
qj , C

(Rβ)0
qj (ω) and C

(∇β)−1

qj (ω) are unperturbed and perturbed coefficients that
are different for α and β spin-orbitals that can be obtained using the RPA at the HF or
DFT level of theory. To be complete, as done before, we can introduce also the equations
rewritten using the density matrices approach

J Ėβ
α (r, ω) = −

∑
p

∑
q

R
(Rβ)0
pq (ω)χq∇αχp (5.53)

J Ėβ
α (r, ω) = −

∑
p

∑
q

R
(∇β)−1
pq (ω)χq∇αχp (5.54)

where the anti-symmetric density matrices are defined as

R
(Rβ)0
pq (ω) =

n∑
j

[
C

(0)
pj C

(Rβ)0
qj − C

(Rβ)0
pj C

(0)
qj

]
(5.55)

R
(∇β)−1
pq (ω) =

n∑
j

[
C

(0)
pj C

(∇β)−1

qj − C
(∇β)−1

pj C
(0)
qj

]
(5.56)

The tensor J Ėβ
α (r, ω) is connected with two physical quantities, depending on whether it

is multiplied by E(ω, t) = E0 cos(ωt) or Ė(ω, t) = −ωE0 sin(ωt) = ωE0 cos(ωt+π/2).

Mα(r, ω) = J Ėβ
α (r, ω)E0β cos(ωt), (5.57)

J Ė
α (r, ω) = ωJ Ėβ

α (r, ω)E0β cos(ωt+ π/2) (5.58)

These relations define the dipole density vector Mα(r, ω) induced in the molecule and

the current density vector J Ė(r, ω), quite important for the interpretation of static and

dynamic properties. An interesting feature of J Ė(r, ω) is that can be interpreted as a
polarization current because it is generated by an electric field out of phase by π/2. A
detailed description of these applications can be found in Refs.[128][8] and [129][10].
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5.3.1 Origin-Independent Polarizability Density

Three simple model systems have been considered for the calculation of static and dy-
namic electric dipole polarizability densities at the TDDFT level of approximation. They
are H2O and the linear molecules CO and N2. Owing to their small size, very ac-
curate computations have been carried out, using the BHandHLYP functional, [126]
recently shown to provide good linear response properties, [58][5] adopting basis sets
of contracted functions which include terms of high angular momentum, taken from
the BSE.[110] In particular, on H atom we have chosen the aug-cc-pV5Z basis, that is,
a (6s5p4d3f2g) basis set. For C, N, and O atoms we have adopted the aug-cc-pV7Z,
which corresponds to a (9s8p7d6f5g4h3i2j) basis set. BHandHLYP transition matrix
elements, amplitudes Tj and energies ωja have been computed by the Gaussian 16 pro-
gram package,[56] using the TD=(full,sos) 6d 10f keywords. Molecular geometries were
optimized at BHandHLYP/aug-cc-pVTZ level. Polarizability densities have been eval-
uated using the SYSMOIC program package.[14][3] Spatial integration of the density
functions has been performed using the Becke scheme,[53] adopting 131 angular points
for the Lebedev’s quadrature of 59th order of accuracy[130] and 131 radial points for
the Gauss-Chebyshev radial quadrature of second-kind.[131] Let us first consider the

origin independence of the polarizability densities defined by means of J Ėβ
α (r, ω) for

the (P,R) and (P, P ) formalisms, in comparison with the conventional origin-dependent
polarizability density

ℵαβ(r, ω) = rαϱ
Eβ (r, ω) (5.59)

in the (R,R) formalism. This is a quite interesting point since translational invariance
is a fundamental requirement for any physically meaningful density, irrespective of basis
set choice. To investigate this aspect, we have calculated the isotropic value of the
polarizability densities of the H2O molecule for two different origins, adopting the rather
small 6-31G(d,p) basis set within the TDHF approach. The origin hereafter denoted
‘000’ has been chosen by making it coincide with the center of nuclear charges. The
second origin, referred to as ‘123’, has been set shifting the previous one by 1, 2, and 3
bohr along x, y, and z, respectively. Some points of interest are:

1. Densities b and c would be exactly the same in the limit of complete basis set. In
Figure 5.21 some differences can be observed owing to the small size of the basis
set adopted;

2. Computed tensor components ααβ depend on basis set quality. Upon integration,
all densities, for both origins, would converge to the same value of dipole polariz-
ability in the complete basis set limit;

3. The density a depends on the origin, although the corresponding electric dipole
polarizability does not, but improves on increasing basis set quality towards the
complete basis set result.

Carbon monoxide is similar to the nitrogen molecule, in that it has the same number
of electrons, chemical bonds and lone pairs. To some extent, also their electric response
properties, permanent electric dipole moment and electric dipole polarizability, are sim-
ilar, consider for instance the very small dipole moment of CO, 0.122 D.[132] However,
these molecules contain distinct atomic species and different polarizability densities are
expected to characterize them, in connection with diverse topology of induced current
density fields. To highight this point, in Figures 5.22 and 5.23 we display diverging
color maps for the polarizability density tensor components of CO and N2, respectively,
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Figure 5.21: Calculated isotropic polarizability densities for the H2O molecule at TDHF
6-31G(d,p) level of approximation, displayed as iso-value surfaces: red +0.02, blue −5×
10−4 a30. Densities on the left/right column are relative to the ‘000’/‘123’ origin, see
text. Labels a, b, c denote the three different polarizability densities respectively.
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calculated for the static case and for two radiation frequencies which bracket - one less
and one greater than - the excitation energy associated with the first non-zero transi-
tion moment of the corresponding tensor component. For ω ̸= 0, we stress that our
approach is not valid in the near-resonant region, since the SOS relations used here do
not contain any (phenomenological) dumping term representing the finite lifetime of the
excited states.[133] Therefore, we have carefully chosen the frequency values to keep the
polarizability tensor components below reasonable limits within the transparent region.
The captions to Figures 5.22 and 5.23 report α∥ and α⊥ obtained by integrating the po-
larizability densities displayed. As can be observed, the absolute value of the integrated
polarizability components is always less than 75 a.u.

Figure 5.22: Diverging color map of the origin-independent polarizability density func-
tions for the CO molecule. The CPK (Corey-Pauling-Koltun) color scheme colors ‘atom’
objects by the atom (element) type. The top row shows parallel components calculated
by Eq. (5.48) for three radiation frequencies, ω = 0.0, 0.393, 0.401 a.u., from left to right.

The polarizability components obtained by spatial integration are α
(R,P )
∥ (0) = 14.67,

α
(R,P )
∥ (0.393) = 44.03, and α

(R,P )
∥ (0.401) = −18.37 a.u.. The bottom row shows per-

pendicular components calculated for three radiation frequencies, ω = 0.0, 0.312, 0.325
a.u., from left to right. The polarizability components obtained by spatial integration

are α
(R,P )
⊥ (0) = 11.59, α

(R,P )
⊥ (0.312) = 64.02, and α

(R,P )
⊥ (0.325) = −73.71 a.u.

For the static case, we found that the parallel polarizability densities of CO and N2 are
characterized by similar negative domains of small extension in the vicinity of the nuclei,
embedded within a positive region, which in carbon monoxide is more conspicuous about
the oxygen nucleus - in the upper end of the CO bond in Figure 5.22 - than carbon’s,
whilst in N2 the obviously symmetric positive distribution has a magnitude roughly in-
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termediate between that of O and C in Fig. 5.22. Interestingly, the α∥ components
calculated in this study are almost the same for CO (14.67 a.u.) and N2 (14.56 a.u.),
despite the different density distributions.

The perpendicular component of the polarizability density presents pairs of “bubbles”
of opposite sign nearby each nucleus, resembling a p orbital oriented along the bond.
Notably, the bubble size depends on the nuclear species, being larger about C rather
than O in carbon monoxide. In the nitrogen molecule, the bubbles have smaller size and
are characterized by N-centered negative cores. In any case, positive (red) regions extend
in space much more than negative (blue) ones. Moreover, the bubble pairs are aligned
in CO, whereas they are anti-aligned in N2.

Remarkably, the domains of juxtaposed bubbles with opposite sign tend to offset
one another upon integration. Therefore, their contribution to the integrated property
almost vanishes. As a consequence, α⊥(0) turns out to be smaller than α∥(0), a result
that would be difficult to explain without the corresponding maps of polarizability density
components shown in Figures. 5.22 and 5.23. Actually, our calculated values are 11.59
and 9.93 a.u. for CO and N2, respectively, whereas computed α∥(0) for these molecules
are 14.67 and 14.56 a.u. respectively.

Comparing our results with the coupled-cluster (CCSDT) static polarizability calcu-
lated by Hammond et al. [134], we note a general good agreement, with the relevant
exception of α∥ in CO for which a discrepancy as large as 6% is observed. From this
point of view, it seems clear that for this component the electronic correlation provides
a sizeable contribution, larger in CO than in N2, as evidenced also by the quite small
dipole moment estimated here 4 × 10−4 D, at least with the correct sign.

For the dynamic case, the positive regions of electric dipole polarizability density are
observed to increase steadily more than the negative ones, as the radiation frequency
increases from zero towards the first transition energy in both molecules, see for example
the central panel of Figures 5.22 and 5.23. This is consistent with the expected enhance-
ment of the polarizability tensor components. Since the first transition energy for the

perpendicular matrix element
〈
j
∣∣∣R̂⊥

∣∣∣ a〉 is less than the first transition energy for the

parallel matrix element
〈
j
∣∣∣R̂∥

∣∣∣ a〉 in both molecule, α⊥(ω) becomes larger than α∥(ω) as

the radiation frequency ω approaches the first transition pole, as also noted in Ref.[134].
The situation changes drastically when the components turn negative whenever ω

goes beyond a resonant frequency. Interestingly, with the exception of the perpendicular
polarizability density in CO, the density functions do not just change their sign, but
undergo also a significant modification of size, as well as distortion of their shape.

Summarizing, we have shown how is possible to define a pure theoretical origin-
independent polarizability density that can be used to explain better the charge po-
larization mechanism, to our knowledge this has not been done before. This density
function manifests a behavior that changes inside the molecular domain due to an elec-
tron counter-polarization effect observed only if the considered system has at least p-type
electrons. As found practically, in He atom and H2 molecule we have only red regions.
This picture is confirmed also at the Full-CI level of theory.
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Figure 5.23: Diverging color map of the origin-independent polarizability density func-
tions for the N2 molecule. The top row displays parallel components calculated by
Eq. (5.48) for three radiation frequencies, ω = 0.0, 0.465, 0.486 a.u., from left to right.

The polarizability components obtained by spatial integration are α
(R,P )
∥ (0) = 14.56,

α
(R,P )
∥ (0.465) = 71.89, and α

(R,P )
∥ (0.486) = −40.92 a.u. The bottom row displays per-

pendicular components computed for three radiation frequencies, ω = 0.0, 0.450, 0.478
a.u., from left to right. The polarizability components obtained by spatial integration

are α
(R,P )
⊥ (0) = 9.93, α

(R,P )
⊥ (0.450) = 29.20, and α

(R,P )
⊥ (0.478) = −16.40 a.u.
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5.3.2 Dynamic Toroidizability in Optical Electric Fields

The existence of red and blue regions in maps of the polarizability density function,

shown in the previous subsection, implies that the vectorial field J Ė(r, ω) associated

with the tensor J Ėβ
α is characterized by a toroidal structure. This particular shape is a

universal feature of closed-shell atoms and molecules in the presence of a time-dependent
electric field.

A toroidal moment together with an induced electric dipole moment generates a
particular configuration termed an electric anapole. The aim of this subsection is to

show some plots of the current density vector field J Ė in atoms and molecules.
Very accurate computations have been carried out using the BHandHLYP func-

tional, [126] recently shown to provide good linear response properties.[58][5] Large basis
sets, which include high angular momentum functions, taken from BSE,[110] have been
adopted. Three different basis sets have been considered, that are, aug-cc-pV5Z-RIFIT
for Ne, Ar, Kr and BeH2; aug-cc-pV7Z for CO and N2; aug-cc-pVQZ for benzene. The
Gaussian 16 program package [56] has been used to compute transition matrix elements

of operators R̂ and P̂ and to optimize geometries at BHandHLYP/aug-cc-pVTZ level.
The SYSMOIC program package [14][3] has been employed to compute maps and tra-

jectories of the current density J Ė and to evaluate the spatial integrals of polarisability
and mixed anapole-electric dipole polarisability densities, using the Becke scheme,[53]
adopting 131 angular points for Lebedev’s quadrature of 59th order of accuracy[130] and
131 radial points for the Gauss-Chebyshev radial quadrature of second-kind.[131]

The theoretical results arrived at in the present subsection demonstrate that the
electronic cloud of diamagnetic atoms and molecules, i.e., closed shell systems containing
an even number of electrons, is characterized by a peculiar and pervasive propensity to
dynamic toroidization, which can be induced by the oscillating electric field of a beam
of monochromatic light. Such a phenomenology is determined by the time derivative of
the associated electric field, giving rise to an electronic current density vector field, and
inducing at the same time an electric dipole polarizability density conveniently described
by a second-rank tensor field.

Therefore, atoms and molecules exhibit induced anapolar response resulting from
superposition of toroidal and electric dipole moments in the transparent region. At any
rate, the induction of toroidization is governed by a second-rank tensor, the anapole
polarizability f ′αβ defined by

f ′αβ = −1

ℏ
∑
j ̸=a

2ω

ω2
ja − ω2

ℑ{⟨a |âα| j⟩ ⟨j |µ̂β | a⟩}

= −1

6
ω

∫ (
r2δαγ − rαrγ

)
J Ėβ
γ d3r (5.60)

with

â =
e

6me

n∑
k=1

[
r2p̂− r (r · p̂) + iℏr

]
k

(5.61)

the electronic anapole operator. Its expectation value is quite weak and hardly mea-
surable, according to computed estimates reported in Table 5.5.[88, 135][4] The toroidal
contributions are small and difficult to detect in materials that exist in nature.[136]
However they are possibly enhanced for ω approaching an absorption frequency.

98



The discovery of a resonant toroidal response in metamaterials has driven the method-
ical study of toroidal electrodynamics. Therefore, further investigations are needed to
understand the behavior of chemical probes in near-resonance spectral regions. Nonethe-
less, despite the recent flood of experimental and theoretical works, the field is still in
its infancy, with a number of problems to be solved and practical applications to delve
into. Toroidal resonances in chemical systems like those studied here remain to be ob-
served and the spectroscopy of toroidal resonances to be developed. Thus systematic
investigations must be taken up in earnest by physicists and chemists.

Figure 5.24: Anapole moments of benzene induced by the time derivative Ė of monochro-
matic light with wavelength λ=589.3 nm, corresponding to sodium D line. The map on

the left shows a section of the J Ė vector field induced by a uniform electric field or-
thogonal to the Tσh plane, by placing a set of streamlines lying on a σd plane onto
the electric dipole polarisability density. Heteroclinic trajectories about two opposite C
atoms connect pairs of conjugated saddle-nodes, i.e., critical (3,±1) stagnation points
corresponding to source and sink of poloidal flow that generates six toroidal moments,
one for each carbon atom, shown on the right.

Table 5.5: Toroidal and electric dipole polarisabilities of the considered systems.†

Molecule f ′∥ f ′⊥ α
(R,P )
∥ α

(R,P )
⊥ α

(R,R)
∥ α

(R,R)
⊥

Ne −0.0267 −0.0267 2.58 2.58 2.54 2.54
Ar −0.3129 −0.3129 11.22 11.22 11.15 11.15
Kr −0.5527 −0.5527 17.13 17.13 17.14 17.14
CO −0.3443 −0.7994 14.9391 11.8749 14.9394 11.8751
N2 −0.3099 −0.4700 14.7997 10.0691 14.7999 10.0691

BeH2 −0.7722 −1.8998 20.61 20.33 20.63 20.35
C6H6 −7.1495 −6.5442 45.02 82.13 44.95 82.13

† From CODATA recommended values of physical constants,[137] the conversion factors from a.u.
to SI units are,
for f ′

αβ : e2a40/ℏ = 1.908 750 473× 10−45 Fm4s−1,

for ααβ : e2a20/Eh = 1.648 777 273× 10−41 Fm2.
The SI units for toroidal moment are Am3.
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Figure 5.25: Anapole moment of CO induced by the time derivative Ė of monochromatic
light with wavelength λ=589.3 nm, corresponding to sodium D line. The map on the

left shows a section of the J Ė vector field induced by the electric field Ezϵ3 parallel
to the bond, by placing a set of streamlines onto the electric dipole polarisability den-
sity. Heteroclinic trajectories connect two pairs of conjugated saddle-nodes, i.e., (3,±1)
stagnation points corresponding to source (blue) and sink (red) of flow that generates
toroidal moments along the central symmetry axis of toroidal surfaces represented on the
right.
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Figure 5.26: Anapole moments of N2 induced by the time derivative Ė of monochromatic
light with wavelength λ=589.3 nm, corresponding to sodium D line. The maps on the

left show a section of the J Ė vector field, by placing a set of streamlines onto the electric
dipole polarisability density. Heteroclinic trajectories connect two conjugated saddle-
nodes, i.e., (3,±1) stagnation points corresponding to source and sink of poloidal flow
that generates a toroidal moment along the central symmetry axis of toroidal surfaces
displayed on the right. On the left of panel a (b) the electric field Ezϵ3 is parallel (Exϵ1,
directed from right to left, is orthogonal) to the bond direction.
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Figure 5.27: Anapole moments of rare gas atoms induced by the time derivative Ė of
monochromatic light with wavelength λ=589.3 nm, corresponding to sodium D line. a:

Ne, b: Ar, c: Kr. Maps on the left show a section of the J Ė vector field, by super-
imposing electric dipole polarisability density and heteroclinic streamlines that connect
two conjugated saddle-nodes,[34] i.e., critical (3,±1) stagnation points corresponding to
source and sink of the poloidal flow that generates a toroidal moment along the central
symmetry axis of a torus represented on the right. The onion-like structure of the vector
field is shown on the left of panel b via two closed orbits flanking the nucleus. They mark
the intersection with the plot plane of inner poloidal currents observed on the right. A
second torus of much smaller size, with stagnation circumference crossing the plot plane
at ±0.13 bohr, highlighted by red circles, was found in the proximity of the Ar nucleus.
A peripheral poloidal circulation takes place in Kr.
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Figure 5.28: Anapole moments of BeH2 induced by the time derivative Ė of monochro-
matic light with wavelength λ=589.3 nm, corresponding to sodium D line. The maps

on the left show a section of the J Ė vector field, by superimposing a few streamlines
onto the electric dipole polarisability density. Heteroclinic trajectories connect two con-
jugated saddle-nodes, i.e., critical (3,±1) stagnation points corresponding to source and
sink of poloidal flow that generates a toroidal moment along the central symmetry axis
of a torus represented on the right. On the left of panel a (b) the electric field Ezϵ3 is
parallel (Exϵ1, directed outward, is orthogonal) to the bond direction. The torus on the
right of b has been rotated by ≈ 45° about the z axis to improve visibility of source and
sink on the x axis.
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CHAPTER 6

Conclusions and Outlook

The general theory of first-order molecular density functions, which are connected to the
molecular response to external electric and magnetic fields, has been developed in terms
of induced charge and current densities.

The study started by considering first the well-established working methods already
available for the calculation of the current density induced within the molecular electronic
cloud interacting with a static magnetic field. Then, we considered interaction with
time-dependent fields, associated to the radiation. The first part was preparatory to
the second one, as it allowed the introduction of methods that solve the so-called gauge
problem, which manifests itself in the approximate calculation of magnetic properties that
depend on the reference origin. It has been shown that these methods, which exploit the
continuous transformation of the origin of the current density (CTOCD), can be applied
also when the inducing magnetic field depends on time.

Moreover, it has been shown how to obtain a reasonable description of the molecular
system in the presence of radiation. This entails that different multipolar orders in the
potentials defining the time-dependent electric and magnetic fields must be considered. In
the simplest case (quadrupole approximation), it turns out that both the first-order time-
dependent electronic charge density and the first-order time-dependent current density
are made of six terms, three proportional respectively to the electric field, the magnetic
field, and the gradient of the electric field, plus another three proportional to the time
derivative of the fields. Only the sum of these contributions provides a total current
density that is invariant with respect to passive and active translations of the origin for
an exact calculation. All contributions to induced current and charge densities, with

the exception of J∇Ė and ρ∇E , have been implemented at TDHF and TDDFT level of
theory.

The application of the theoretical methods studied and developed during the period
of thesis can be listed separately for the static and the dynamic cases. For the cur-
rent density induced by a static magnetic field, four studies have been performed. In
particular, one for disentangling the contributions to the proton magnetic shielding in
carbon nanohoops and nanobelts and another to characterize the magnetic behaviour of
the infinitene molecule. For the dynamic case, six studies have been performed.
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The contribution to the time-dependent current density provided by the time deriva-
tive of the electric field shows an interesting double-faced interpretation. From the one
side, it is an unconventional vector field formed by toroidal circulations of electronic
current around heavy molecular nuclei induced by the variation with time of the elec-
tric field; from the other side, it is a mixed electric-dipole magnetic-dipole polarizability
density, which reveals negative contributions to the molecular polarizability in regions
nearby heavy nuclei, in connection with the internal toroidal flow. The contribution to
the current density provided by the time-dependent magnetic field has been implemented
using the CTOCD-DZ method to ensure origin independent current density. Its topology
has been analyzed. This contribution has been shown to provide, after the extraction of
the time-dependent part, an optical rotatory power density, which is promising for the
topological interpretation of the optical chirality.

With regard to upcoming activities, the contribution to current density provided by
the electric field gradient will be implemented. In this way all terms appearing in (4.41)
will be available to compute the total first order current density within the quadrupole
approximation. Then, it will be interesting to evaluate the relative weights of the various
contributions and fully verify the charge and current conservation constraint.

Also, the study and the implementation of other applications has commenced. In
particular:

� the extension to open-shell systems;

� the study of the interaction with strong magnetic fields, which was initiated through
an approach based on the finite field perturbation method in the static case, but
which would be more appropriately addressed by calculating the time-dependent
current density induced at second-order by an electromagnetic field.

Last but not least, the study of electron correlation effects on the induced current
densities which has been my main argument of study and work during my stay abroad,
concerning the implementation of method for the calculation of densities at CCSD level
of theory. Preliminary results are reported in poster 3.
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Posters

Posters presented at international meetings on the topic of the thesis in the three years
period.

1. Magnetic Characterization of the Infinitene Molecule presented at the XV
Italian Conference on Supramolecular Chemistry, SUPRAMOL2022, June 28 July
1 2022, Salerno, Proceedings P7;

2. On the JAP method for the indirect determination of delocalized cur-
rents from experimental chemical shifts presented at the XIX International
Symposium on Novel Aromatic Compounds, ISNA19, 3-8 July 2022, Warsaw,
Poland pag. 217;

3. CCSD Calculation of Dynamic Polarizability Density and Toroidizability
presented at the “XVIII European Summer School in Quantum Chemistry 2022”
September 11-24 2022, at Hotel Torre Normanna, Sicily.
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Magnetic Characterization of the Infinitene
Molecule

Guglielmo Monaco, Riccardo Zanasi, Francesco F. Summa*
Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Italy

The origin-independent current density induced by a perpendicular magnetic field in the infinitene molecule [1] has been calculated, confirming the
recently presented result by Orozco-Ic et al. [2] of two disjointed global current pathways along the edges formed by 24 carbon atoms having the
form of the infinity symbol. The current strength has been assessed along the C–C bonds forming the two separate circuits, whose particular shape
provides a diamagnetic exaltation which is only 73% of the expected value for this aromatic molecule. Through space currents have been found along
the bond paths determined by the electron density gradient, whose strength is 10% that of the aromatic benzene ring current. It is shown that the pair
of high-field 1H NMR experimental signals carry the signature of the two global currents, which are counterrotating inside the fjord regions with
respect to the rim of the coronene subunits.

[1] Krzeszewski, M.; Ito, H.; Itami, K. J. Am. Chem. Soc. 2022, 144, 862−871.
[2] Orozco-Ic, M.; Valiev, R. R.; Sundholm, D. Phys. Chem. Chem. Phys. 2022, 24, 6404−6409.
[3] Lazzeretti, P.; Malagoli, M.; Zanasi, R. Chem. Phys. Lett. 1994, 220, 299– 304.
[4] Monaco, G.; Summa, F. F.; Zanasi, R. J. Chem. Inf. Model. 2021, 61, 270–283.

Returning to the unsolved questions underlined before for infinitene, we have shown the following: (iv) As for the strength of the current, induced by a perturbing magnetic
field perpendicular to the central C−C bonds of the two stacked naphthalene subunits, in the K-regions it is 1.5 times weaker than the diatropic current that circulates on
pristine coronene rim, while in the fjord the current is 2 times stronger than the paratropic current on pristine coronene hub. (v) The exaltation of diamagnetism is fairly
low, being only 73% of the expected value. (vi) The high-field 1H NMR signals are due to the global currents flowing on the fjord region and on the carbon atoms on the
lower benzene rings and K-edges, with a fairly large deshielding effect on Ha , the former, and shielding effects on both Ha and Hb , the latter.
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π-Electron current density induced in infinitene by a unitary
magnetic field (blue arrow) parallel to the Cartesian x-axis,
corresponding to C2x symmetry element.

METHODS

We have taken the geometry of the (P,P)-isomer of infinitene, optimized at the PBE0/6-311+G(d,p)
level of theory in the gas phase, reported by Krzeszewski et al. [1] The symmetry point group of the
structure is D2 with the Cartesian x-axis perpendicular to the central C–C bonds of the stacked
naphthalene subunits, as shown in Figure. Then, we have performed the calculation of the
magnetically induced current density using the CTOCD-DZ method to ensure origin-independent
results, [3] adopting the B97-2/6-311+G(2d,p) level of theory in the gas phase. The Gaussian 16
program was used to obtain the perturbed molecular orbitals with the CSGT keyword and the
SYSMOIC program package [4] to perform the actual calculation of the current density. The entire
procedure is a very simple one; details can be obtained visiting the link reported in ref [4].

DISCUSSION

(i) What pathways do the currents travel through?
(ii) Are they global, or local to Clar sextets?
(iii) Which tropicity do they display?
(iv) How do their strengths compare with the benzene ring current?
(v) How large is the exaltation of diamagnetism for this aromatic molecule?
(vi) How can the high-field 1H NMR signals be justified on the basis of the actual current tropicity?
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Calculated bond current strengths in infinitene. Top left, π-electron contribution;
top right, contribution from all the remaining orbitals; bottom, all electrons.
Numbers attached to each arrow give the current strength in percentage with
respect to the benzene ring current strength of 12.0 nA/T.

Ha Ha

Hb Hb

Hc Hc Hd Hd

He He

Hf Hf

Spatial contributions to the proton magnetic shieldings. In each panel, contributions to the
xx component of the tensor are plotted on the left beside the contributions to the isotropic
component on the right. Shielding/deshielding contributions are shown in red/blue.

Contributions to the Isotropic Component of the Proton Magnetic Shieldings: Core, Sum of
Shielding Spatial Contributions (SSSC), Sum of Deshielding Spatial Contributions (SDSC),
and Proton Net Charges qH

Figure 6.1: SUPRAMOL 2022, “XV Italian Conference on Supramolecular Chemistry”
Jun. 28-Jul. 1, Salerno, Proceedings P7.
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On the JAP method for the indirect determination of 
delocalized currents from experimental chemical shifts

Alessandro Landi, Francesco F. Summa, Riccardo Zanasi , Guglielmo Monaco*
Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Italy

The JAP model (after Jirásek, Anderson, and Peeks [1]) aims at retrieving global current strengths from experimental 1H chemical shifts.
Owing to the present capabilities of accurate computations of current strengths, the efficacy of the model has been tested with DFT computations
using SYSMOIC [2]. Both global and local tropicities are correctly predicted in most cases and the quantitative agreement is overall fair. An
extension of the model is found to give improvement in an exemplary critical case, where the global delocalized current is negligible and the current
density map is dominated by local currents.

Magnetically induced currents have been obtained by SYSMOIC[37] starting
from wavefunction files (.wfx) obtained by Gaussian16[38] run at the
BHandHLYP/6-31G* level on geometries optimized at the same level. The
functional used is one of the best for the calculation of the magnetic response,
according to gradings based on magnetizabilities[39] and hypervirial
relationships.[40] Global current strengths have been computed integrating the
current crossing a plane bisecting a C-C bond up to 10-3 atomic units (at this
level the reference benzene ring current is -12.2 nA T-1). Numerical results are
collected in Table 1. Accurate determination of local currents is less
straightforward, because the large areas associated to small integration
thresholds can include contribution associated to different bonds and a criterion
is needed to assign contributions to individual bonds. In this work local currents
have been first obtained at the less demanding 2∙10-2 atomic units level (the
reference benzene ring current reduces to -10.3 nA T-1; percent values are
reported in Fig.s S1 and S2, with or without the sketch of the integration
domains, which are useful to grasp the shape of the currents). Current in percent
units of the benzene current strength are only approximately preserved when
different integration thresholds are used. As a correction for this error, best
values of local signed current strength, e.g. for ring B, have been obtained by the
equation in yellow.

[1] Jirásek, M.; Anderson, H. L.; Peeks, M. D. Acc. Chem. Res. 2021, 54, 3241–3251.
[2] Monaco, G.; Summa, F. F.; Zanasi, R. J. Chem. Inf. Model. 2021, 61, 270–283.
[3] Matito, E.; Casademont, I.; Ramos-Cordoba, E.; Torrent-Sucarrat, M.; Guerrero-Avilés, R. Angew. Chem. Int.       
Ed. 2021, 
[4] Landi, A.; Summa, F. F.; Monaco, G. Chemistry 2021, 3, 991–1004. 
[5] Summa, F. F.; Monaco, G.; Scott, L. T.; Zanasi, R. J. Phys. Chem. Lett. 2020, 7489–7494.

JAP model is effective in recovering global and local tropicities, but errors of the order of a full benzene ring current
can occur. In percent term, the largest error has been reported for a calculation on 124+ and for 94-, a system with a
negligible global ring current, dominated by local currents. The application of variants with more ring current
parameters to other system will be non-trivial, not only because of the strong correlation of the parameters, but also
because choosing the proper reference system can be complicated, especially in bent systems [5], so that presently the
indirect route of retrieving the current density from few experimental chemical shifts should still be considered a rough
and bumpy challenging road.

R2 ̅𝐼!"# ̅𝐼$%& %err 𝜙'()*+,

1 0.97 -13.3 -13.3 0 1/1
2 0.97 -10.1 -8.4 20 1/1
3 0.98 -38.0 -25.1 51 2/2
42+ 0.99 -25.9 -38.5 -33 2/2
52+ 0.98 -26.6 -33.8 -21 2/2
62+ 0.99 -33.4 -25.2 33 2/2
72+ 0.96 -28.3 -27.6 3 2/2
82+ 0.97 -29.3 -25.1 17 3/6
92+ 0.91 -22.7 -36.9 -38 3/4
102+ 0.99 -20.1 -32.6 -38 3/4
112+ 0.99 -26.7 -43.1 -38 3/4
124+ 0.94 -33.0 -6.9 3787 1/4
124+ [a] -34.5 2 1/4
92- 0.84 -12.9 -28.1 -54 3/4
94- 0.23 5.0 1.8 178 1/4
10 0.88 8.6 11.8 -27 2/4
11 0.96 7.0 3.1 126 2/4
S1 0.96 -11.2 -9.3 20 1/1
S2 0.99 -29.8 -26.7 12 2/2
S3 0.94 5.1 2.1 50 2/3
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Table 1. Signed current strengths (in nA T-1)
retrieved by the JAP method and by DFT. R2 is the
coefficient of determination of the JAP linear model
taken from ref. [1]. %err is the percent error of the
$𝑰𝐉𝐀𝐏 over the $𝑰𝐃𝐅𝐓 values. The fraction of rings
whose tropicity is predicted correctly, 𝝓𝑻𝑹𝑶𝑷

𝒐𝒌 , is
given in the last column.

REFERENCES

WHERE DO RESIDUAL DISCREPANCIES COME FROM?

👍

🤔

The Biot-Savart law, used to develop the equations of the model, is known to work exactly also in the quantum
mechanical domain, provided the correct current density is used. Therefore, the problems can only come from the
inadequate modeling of the current density. In this respect the assumptions of the JAP model can be summarized as
follows:
I) The macrocycle is assumed to have a single conformation, built upon gas-phase B3LYP/6-31G* optimization

starting from the crystallographic structure,

II) the contributions to the shielding of the i-th spectator atom coming from different directions of the external field are
weighted by the net projected cross-section area of the circuit along the direction of the applied magnetic field

III) the shape of the current is that of two infinitely thin homotropic circuits displaced from the average local plane by
±0.7 Å (the displacement is in-plane for porhyrins),

IV) local currents are preserved passing from the reference compounds
to the studied macrocycles,

🤔

🤔

Geometry can be a problem. [3]

🤔

Does not seem the case

🤔

🤔 Strictly correct for planar monocycles only

Heterotropic circulations do occur in cycloporphyrins [4]

V) delocalized currents run along one or few equally weighted piecewise linear pathways running
along selected conjugated circuits running all along the macrocycle

Problematic for localized patterns. Extension of the model to fit more than a ring
current revealed cumbersome, due to heavy correlation of the fit parameters, but good results
were obtained in the case of 94-.

🤔 🤔

Figure 6.2: ISNA19, “XIX International Symposium on Novel Aromatic Compounds, 3-8
July, Warsaw, pag. 217.
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CCSD Calculations of Dynamic Polarizability Density 
and Toroidizability

G. Monacoa, R. Zanasia, S. Corianib, J. H. Andersenb and F. F. Summaa,b
aDepartment of Chemistry and Biology “A. Zambelli”, University of Salerno, Italy

bDTU Chemistry, Technical University of Denmark

REFERENCES

A physically meaningful, origin-independent, definition of the polarizability density function was found to be equivalent to the current density due
to the time derivative of the electric field[1]

since where is the frequency dependent electric dipole

polarizability in the mixed dipole length-dipole velocity formalism, which is equivalent to that in the dipole gauge via off-diagonal hypervirial
relationships. Here we present an improved level of calculation from

TDHF/TDDFT[1] TDCCSD[2]

Comparing CCSD and HF results, it clearly emerges that, point by point, the electron correlation effects are much larger than one would argue
considering the integrated dipole electric polarizability alone reported in the table.

[1] Summa, F. F.; Monaco, G.; Lazzeretti, P.; Zanasi, R. J. Phys. Chem. Lett. 2021, 12, 8855 8864.
[2] Faber, R.; Andersen, J. H.; Coriani, S. py-ccrsp, Python module for CC and EOM-CC response experiments. 2020-2022.
[3] Monaco, G.; Summa, F. F.; Zanasi, R. J. Chem. Inf. Model. 2021, 61, 270 283.

(a) (b) (c)

(d) (e) (f)
Diverging color map of the origin-independent polarizability density functions calculated at CCSD/aug-pcSseg2 level of theory. Top/bottom row 
shows the perpendicular/parallel component for three radiation wave-lengths, λ = 633, 589.3, 355 nm, from left to right, respectively of H2 (a), HF 
(b), CO (c), LiH (d), LiF (e) and N2 (f). Red positive, blue negative.

Difference maps of the polarizability density
calculated at CCSD minus HF level of theory for
λ = 633 nm. First/second row ⟘/∥ component,
from left to right for H2, HF, CO, side bar is ±
0.01, ± 0.1, and ± 0.1 a.u. respectively.
Third/fourth row ⟘/∥ component, from left to
right for LiH, LiF, N2, side bar is ± 0.1, 0.1, and ±
0.05 a.u. respectively. Red positive, blue negative.

Instant views of the current density induced in LiH
by the time derivative of the electric field of the
radiation parallel to the symmetry axis of the
molecule. Left λ = 633 nm, center λ = 589.3 nm,
right λ = 355 nm. Owing to axial symmetry, rotating
about the z-axis a torus is generated.

Figure 6.3: “XVIII European Summer School in Quantum Chemistry 2022” 11-24 Sept.,
at Hotel Torre Normanna, Sicily.
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