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ABSTRACT 

Classic galactosemia is an inborn error of metabolism associated with mutations that 

impair the activity and the stability of the dimeric enzyme galactose-1-phosphate 

uridylyltransferase (GALT), which catalyzes the third step in galactose metabolism. 

Out of more than 300 known mutations, p.Gln188Arg, a missense mutation located at 

the active site and in the dimer interface, is the most frequently found for GALT. It 

causes the almost total inactivation of the enzyme and impairs its stability, resulting in 

the most severe phenotype of the disease. In the past, and more recently, the structural 

effects of this mutation were deduced on the static structure of the wild-type human 

enzyme; however, we feel that a dynamic view of the protein is necessary to deeply 

understand their behavior and obtain tips for possible therapeutic interventions. 

We performed molecular dynamics simulations of both wild type and p.Gln188Arg 

GALT proteins in the absence or in the presence of the substrates in different conditions 

of temperature. Our results suggest the importance of the intersubunit interactions for 

the correct activity of this enzyme and can be used as a starting point for the search of 

drugs able to rescue the activity of this enzyme in galactosemic patients.  

Since no treatments, including the current one (the removal of galactose from the diet), 

are adequate to solve lifelong physical and cognitive disability, some research groups 

started searching for pharmaceutical chaperones towards GALT. Pharmaceutical 

chaperones are small molecules able to bind specific target proteins and to stabilize 

their native conformation or to correct misfolding in proteins affected by mutations 

thus rescuing their original function. In particular, it has been found that arginine was 

able to rescue the activity of several mutant GALT enzymes including p.Gln188Arg in 

a bacterial model of the disease. However, more recently, this rescue was not confirmed 

testing Arg directly on four galactosemic patients affected by p.Gln188Arg mutation. 

Given that no molecular characterization of the possible effects of arginine on GALT 

has been performed, and given that the number of patients treated with arginine is 

extremely limited for drawing definitive conclusions at the clinical level, we performed 
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computational simulations to predict the interactions (if any) between this amino acid 

and the enzyme. Our results do not support the possibility that arginine could function 

as a pharmacochaperone for GALT, but information obtained by this study could be 

useful for identifying, in the future, possible pharmacochaperones for this enzyme. 

Simultaneously, we wondered if there might be an allosteric site in the GALT enzyme 

and if it could be used as a target to develop new pharmacochaperones for this enzyme. 

Through a computational predictor and considering our previous results, we identified 

a potential allosteric site corresponding also the to portion of the enzyme to which 

arginine interacts. This potential allosteric site can be a target for new candidate 

pharmachochaperones for human GALT.  

A possible interaction between putative pharmacochaperones was simulated by 

molecular docking of both wild type and p.Gln188Arg GALT proteins. Starting from 

the best conformation of docking, the next step was to proceed with the search for 

pharmacophores, using the method of receptor-based pharmacomodelling. This led to 

the identification of five new ligands, which were selected for further docking on the 

allosteric site. All ligands selected showed promising results. These results were used 

to set up further molecular dynamics studies that are currently ongoing.  

Preliminary tests of these ligands on fibroblasts from galactosemic patients showed 

their ability to lower galactose-1-phosphate concentration when fibroblasts are stressed 

by galactose. These preliminary data obviously need to be confirmed, but they are 

promising for the development of pharmacochaperon therapy for galactosemia. 
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RIASSUNTO 

 

La galattosemia classica è un disturbo metabolico genetico raro causato da mutazioni 

che compromettono l'attività e la stabilità dell'enzima dimerico galattosio-1-fosfato 

uridiltransferasi (GALT), che catalizza la terza fase del metabolismo del galattosio. Tra 

le oltre 300 mutazioni note, p.Gln188Arg, una mutazione missenso situata nel sito 

attivo e all'interfaccia del dimero, è la più frequentemente riscontrata per l’enzima 

GALT. Essa causa l'inattivazione quasi totale dell'enzima e ne compromette la stabilità, 

determinando il fenotipo più grave della malattia. In passato, e più recentemente, gli 

effetti strutturali di questa mutazione sono stati dedotti dalla struttura statica 

dell'enzima umano wild-type; tuttavia, abbiamo ritenuto che una visione dinamica della 

proteina fosse necessaria per comprenderne a fondo il comportamento e ottenere 

suggerimenti per possibili interventi terapeutici. Abbiamo, perciò, eseguito simulazioni 

di dinamica molecolare della proteina GALT wild-type e del mutante p.Gln188Arg, in 

assenza o in presenza dei substrati, in diverse condizioni di temperatura. I nostri 

risultati suggeriscono l'importanza delle interazioni intersubunitarie per una corretta 

attività di questo enzima e possono essere utilizzati come punto di partenza per la 

ricerca di farmaci in grado di ripristinare l'attività di questo enzima nei pazienti 

galattosemici.  

Poiché l'attuale trattamento della malattia (l'eliminazione del galattosio dalla dieta) non 

è adeguato a risolvere la disabilità fisica e cognitiva dei pazienti galattosemici, che può 

durare tutta la vita, alcuni gruppi di ricerca hanno iniziato a cercare farmacochaperoni 

per GALT. I farmacochaperoni sono piccole molecole, in grado di legare specifiche 

proteine bersaglio, che possono stabilizzare la loro conformazione nativa o addirittura 

correggere il misfolding di proteine affette da mutazioni, ripristinando così la loro 

funzione originale. In particolare, si è scoperto che l'arginina era in grado di ripristinare 

l'attività di diversi enzimi mutanti di GALT, tra cui p.Gln188Arg, in un modello 

batterico della malattia. Tuttavia, recentemente, testando l'arginina direttamente su 

quattro pazienti galattosemici affetti dalla mutazione p.Gln188Arg, questo ripristino 
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funzionale non è stato confermato. Dato che non sono state effettuate caratterizzazioni 

molecolari dei possibili effetti dell'arginina nei confronti di GALT e dato che il numero 

di pazienti trattati con arginina è estremamente limitato per trarre conclusioni definitive 

a livello clinico, abbiamo effettuato simulazioni computazionali per prevedere le 

interazioni (se esistono) tra questo aminoacido e l'enzima. I nostri risultati non 

supportano la possibilità che l'arginina possa funzionare come farmacochaperone per 

GALT, ma le informazioni ottenute da questo studio potrebbero essere utili per 

identificare, in futuro, possibili farmacochaperoni per questo enzima. 

Allo stesso tempo, ci siamo chiesti se potesse esistere un sito allosterico nell'enzima 

GALT e se potesse essere usato come bersaglio per sviluppare nuovi farmacochaperoni 

per questo enzima. Attraverso un predittore computazionale e considerando i nostri 

precedenti risultati, abbiamo identificato un potenziale sito allosterico corrispondente 

anche alla porzione di interazione dell'enzima con l'arginina. Questo potenziale sito 

allosterico può essere un bersaglio per nuovi farmacochaperoni, che abbiamo 

identificato come candidati per l'enzima GALT umano.  

Mediante docking molecolare, è stata simulata una possibile interazione tra i nuovi 

farmacochaperoni e le proteine GALT wild type e p.Gln188Arg. Partendo dalla 

migliore conformazione del docking, il passo successivo è stato quello di procedere 

con la ricerca di farmacofori, utilizzando un medoto chiamato “receptor-based”. Ciò 

ha portato all'identificazione di cinque nuovi ligandi, che sono stati selezionati per un 

ulteriore docking sul sito allosterico. Una prima analisi rivela che tutti i ligandi 

selezionati hanno dato risultati promettenti. Questi risultati sono stati utilizzati per 

impostare ulteriori studi di dinamica molecolare, che sono attualmente in corso. Inoltre, 

risultati preliminari eseguiti su fibroblasti di pazienti galattosemici hanno suggerito che 

questi composti siano in grado di migliorare l'attività dell'enzima. 

Test preliminari di questi ligandi su fibroblasti di pazienti galattosemici hanno mostrato 

la capacità di tutti di abbassare la concentrazione di galattosio-1-fosfato quando i 

fibroblasti sono stressati dal galattosio. Questi dati preliminari devono ovviamente 
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essere confermati, ma sono dati promettenti per lo sviluppo di una terapia basata su 

farmacochaperoni per la galattosemia. 
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1. INTRODUCTION 

 

1.1 Galactose 

Louis Pasteur discovered galactose in milk in 1856 and called it "lactose". It was only 

later that the name "galactose", derived from the Greek word "", which means 

"milk", was attributed to this sugar [Coelho et al., 2015a]. 

Galactose is a monosaccharide, aldohexose sugar, C4 epimer of glucose. It is more 

common in nature in its D-configuration, it is ubiquitous in all bacteria, plants and 

animals [Bell et al., 2012]. In humans, it is produced endogenously in small amounts, 

but it is introduced in large amounts from the diet. In fact, it is an energy-providing 

nutrient present mainly in milk and dairy products, bound to glucose to form the 

disaccharide sugar lactose, a vital source of energy for infants [Bell et al., 2012]. 

Moreover, it is also present as a free monosaccharide in many food plants or legumes, 

nuts, and cereals [Acosta, et al., 1995].  

The biologically active isomer, D-galactose, plays a fundamental role for our organism 

not only at the energetic level, but also in many other processes (Figure 1.1). At the 

respiratory level, for example, galactose is one of the main components of mucin, the 

glycoprotein that synthesizes mucus, a viscous colloid that forms a physical barrier in 

all epithelial surfaces of the human body, including the gastrointestinal, respiratory, 

reproductive, and urinary tracts [Bansil and Turner, 2018].  

Galactose is also involved in galactosylation of the most abundant immunoglobulins 

in plasma (IgG). In particular, this galactosylation is an essential step to achieve 

immune activation by autoantibodies either through complement (C1q) or Fc gamma 

receptors (FcγR). In fact, the agalactosylation decreases affinity for FcγR and also C1q 

binding, leading to immune diseases [Kemna et al., 2017].  

In kidneys, the role of galactose relates to a condition called idiopathic steroid-resistant 

nephrotic syndrome (SRNS). In particular, SRNS has been associated with the 
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presence of a circulating focal sclerosis permeability factor (FSPF), which is believed 

to damage the renal glomerular barrier. In vitro, galactose has been shown to bind to 

FSG, inactivating it. Galactose may have also an effect in vivo on glomerular 

permeability but its role has yet to be clarified by further studies [Sgambat et al., 2013]. 

Moreover, galactose is used in the biosynthesis of several macromolecules in the 

human body, including glycolipids and glycoproteins. Glycoproteins are cell 

membrane components that are important for cellular signal transduction [Alberts et 

al., 2002]. The galactosylation of proteins protects and stabilize surface proteins, 

improving their structural stability. Galactose plays also an essential role in the central 

nervous system, because most glycolipids, such as gangliosides, cerebrosides, and 

sphingolipids contains it. For example, galactosylceramide is the primary sphingolipid 

found in the myelin sheath [Zöller et al., 2005].  

Finally, at the gastrointestinal level, galactose has a prebiotic role, maintaining the 

microbiota, and at the reproductive level it contributes to fertility, facilitating sperm 

penetration into the zona pellucida [Kotb et al., 2019]. 

 

 

Figure 1.1: The roles of galactose in vivo [Kotb et al., 2019] 
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1.2 The catabolism of D-galactose through the Leloir pathway 

After being released from lactose and hydrolyzed into its monosaccharide components 

by the disaccharidase lactase (β-galactosidase) in the enterocytes of intestinal villi 

[Coelho et al., 2015a], -galactose is converted into glucose-1-phosphate (G1P), 

through a metabolic pathway called "Leloir pathway" in the honour of the researcher 

who first discovered it [Leloir, 1951].  

The Leloir metabolic pathway is highly conserved, from bacteria to yeast to humans, 

confirming the importance of galactose in living organisms [Chai et al., 2013].  

This pathway is divided into 4 steps, each of which catalyzed by a specific enzyme: 

galactose mutarotase (GALM, E.C. 5.1.3.3), galactokinase (GALK1, E.C. 2.7.1.6), 

galactose-1-phosphate uridylyltransferase (GALT, E.C. 2.7.7.12) and UDP-galactose-

4'-epimerase (GALE, E.C. 5.1.3.2) (Figure 1.2). 

 

 

Figure 1.2: The Leloir pathway [Reinhardt et al., 2013] 

 

STEP 1: Conversion of β-D-galactose to the α-anomer by the GALM enzyme (Figure 

1.3). The enzymatic catalysis follows an acid-base mechanism, involving two crucial 

residues: glutamic acid at position 304 (Glu304) and histidine at position 170 (His170). 

Glu304 accepts a proton of the hydroxyl group in the C-1 position and His170 gives a 
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proton to the oxygen in the C-5 position. This causes the opening of the galactose ring, 

followed by a rotation of 180o of the C1 - C2 bond [Thoden et al., 2003]. 

 

Figure 1.3: Step 1 of Leloir’s pathway [Holden et al., 2003] 

 

STEP 2: conversion of α-D-galactose to galactose-1-phosphate (Figure 1.4). The 

enzyme GALK1 catalyzes the phosphorylation of the hydroxyl group bound to the 

anomeric C-1 carbon by a reaction with a well-defined temporal sequence: ATP binds 

to the enzyme after the sugar [Holden et al., 2003].  

 

Figure 1.4: Step 2 of the Leloir’s pathway [Holden et al., 2003] 

 

The active site of the human enzyme has correctly positioned negative and positive 

side chains, namely aspartic acid at position 186 (Asp186) and arginine at position 37 

(Arg37), both of which influence the overall activity of GALK1. The proposed 

mechanism is divided into two steps: the first reaction between enzyme and galactose 

and the second reaction between galactose and ATP (Figure 1.5). The anionic form of 

Asp186 is stabilized by the neighboring Arg37. In fact, one of the roles of Arg37 is to 

increase the pKa of Asp186. The positive charge of Arg37 also helps bind negatively 

charged species in the active site. The aspartate residue accepts a proton from the C1-
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OH of the sugar. The resulting extremely nucleophilic alkoxide ion attacks the γ-

phosphorus of ATP, transferring the phosphate group to the sugar. The protonation 

state of Asp186 can be restored by an interaction with water once the products have 

diffused away from the active site [Megarity et al., 2011]. 

 

Figure 1.5 (A) A potential active site mechanism for galactokinase: attack of Asp186 to galactose 

(B): attack of galactose to ATP [Megarity et al., 2011] 
 

STEP 3: conversion of galactose-1-phosphate into glucose-1-phosphate (G1P) (Figure 

1.6). This reaction is catalyzed by GALT enzyme and takes place in the presence of 

the complex uridine diphosphate (UDP)-glucose and using as a substrate galactose-1-

phosphate produced in the previous step. In particular, there is the transfer of the 

uridine monophosphate (UMP) group from UDP-glucose to galactose-1-phosphate, 

resulting in the formation of UDP-galactose and G1P, which is subsequently 

transformed into glucose-6-phosphate that enters as an intermediate in the glycolytic 

pathway [Holden et al., 2003]. 

  

Figure 1.6: Step 3 of Leloir’s pathway [Holden et al., 2003] 

GALT 
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STEP 4: The enzyme GALE catalyzes the final step of this metabolic pathway by 

regenerating the UDP-glucose molecule used in the previous step (Figure 1.7).  

 

Figure 1.7: Step 4 of Leloir’s pathway [Holden et al., 2003]. 

 

The enzymatic mechanism of this epimerase probably proceeds in three steps (Figure 

1.8): i. a tyrosine residue extracts a proton from the 4'-hydroxyl of UDP-galactose, and 

the 4'-hydride is added to NAD+, producing NADH and a 4-ketopyranose intermediate; 

ii. the 4-ketopyranose intermediate rotates 180°, showing its opposite side to NADH; 

iii. the hydride is transferred from NADH to C-4 of the sugar, reversing the 

stereochemistry of the 4'-center. At the same time, a tyrosine residue donates its proton 

and regenerates the 4'-hydroxyl group [Nam et al., 2019]. 

 

 

Figure 1.8: Enzymatic mechanism of GALE [Nam et al., 2019] 

https://www.nature.com/articles/s41598-019-47591-w#auth-Young_Woo-Nam
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1.3 GALT enzyme 

GALT enzyme belongs to the family of histidine triad transferases characterized by the 

sequence motif HhHhHhh (where H stands for histidine and h for a hydrophobic 

amino acid) [Brenner, 2002]. Since the present Ph.D. project is focused on this enzyme, 

its mechanism of action, structure, and models are described in details below. 

1.3.1 The mechanism of action of GALT 

The mechanism of action of GALT occurs via a ping-pong reaction kinetics in two 

steps: uridylation and deuridylation. In the first step (Figure 1.9), a nucleophilic 

histidine residue (His186 in human GALT and His166 in Escherichia coli (E. coli)) 

attacks the α-phosphate of UDP-glucose to form a covalent adduct, 5,6-dihydrouridine-

5-monophosphate (H2U) bound to GALT. Simultaneously, this reaction releases G1P 

[McCorvie et al., 2016]. 

 

Figure 1.9: Uridylation mechanism of GALT 

 

In the second step (Figure 1.10), the uridylate enzyme interacts with the second 

substrate of the reaction, the -galactose-1-phosphate molecule resulting from the 

previous step catalyzed by the enzyme GALK1. This reaction produces UDP-galactose 

and regenerates the enzyme GALT, which can then participate in another round of 
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catalysis [McCorvie et al., 2016]. As reported above, the enzyme GALE catalyzes later 

the conversion of the UDP-galactose produced by GALT into UDP-glucose so that 

GALT can use it again as a substrate in a subsequent reaction. 

 

Figure 1.10: Deuridylation mechanism of GALT 

 

1.3.2 GALT: structures and models 

Before an experimental structure of the human enzyme GALT (hGALT) was made 

available, three-dimensional (3D) structures of GALT from E. coli in complex with 

different ligands were solved.  

The first structure from E. coli was solved by multiple isomorphous replacement and 

electron density modification techniques and refined to a resolution of 1.8 Å (PDB 

code 1HXP) [Wedekind et al., 1995]. Thanks to this structure, it was possible to 

visualize the quaternary assembly typical of GALT: it consists of two identical 

polypeptide chains with a central cavity between the subunits. This cavity readily 

accepts water molecules bound by hydrogen bonds inside the cavity. In addition, the 

protein interface could be visualized, which also contains a considerable number of 

hydrophobic residues. Each subunit of the enzyme consists of a single domain with a 

"half a barrel" topology. The barrel "staves" are formed by an antiparallel β-sheet made 

by nine strands [Wedekind et al., 1995]. 
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In that structure, it has been shown that an iron atom is important for stabilizing the 

structure of the protein. The iron atom is located outside the barrel, at the center of the 

subunit interface. The coordination within the subunit resembles a distorted square 

pyramid, which is formed by the equatorial bonding of two histidines and a bidentate 

carboxylate group, as well as a single axial histidine [Wedekind et al., 1995]. 

Subsequently, the second structure was solved from E. coli with a resolution of 1.86 Å 

by X-ray diffraction (PDB code 1HXQ) [Wedekind et al., 1996].  

In particular, this study was carried out to gain a better understanding of the existing 

structural and mechanistic studies of this enzyme. This structure has revealed the 

covalent attachment of the H2U -phosphorus to His166, representing a genuine 

reaction intermediate in the double-displacement mechanism [Wedekind et al., 1996]. 

Next, Thoden and his co-authors determined the structures of E. coli enzyme/UDP-

glucose (PDB code 1GUQ) and enzyme/UDP-galactose (PDB code 1GUP) complexes, 

in which the catalytic nucleophile His166 was replaced by a glycine residue. The 

structures were refined to 1.8 Å resolution by single-crystal X-ray diffraction analysis. 

These models have provided an important key to understanding the composition and 

properties of the active site, showing that it is formed by amino acid residues derived 

from both subunits of the dimer. For example, these models have highlighted the 

importance of the side chains of Glu317 and Gln323, able to accommodate both UDP-

galactose and UDP-glucose substrates. In addition, these models have shown that 

Gln168 plays an essential role by binding to the phosphate of the substrate, and that 

three residues (Leu54, Val61, Phe151) provide important hydrophobic surfaces for the 

active site.  

Considering that hGALT shares 46% sequence identity with the bacterial enzyme and 

that the two sequences are very similar starting from the 20th amino acid of the human 

sequence, the homology modeling strategy was successfully applied to build a suitable 

model of the hGALT enzyme, starting from these bacterial structures. This theoretical 

model allowed to study the catalytic mechanism of the human enzyme and to lay the 
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foundations for the study of the mutations of this enzyme (as will be explained below) 

[Marabotti and Facchiano, 2005; Facchiano and Marabotti, 2010]. 

The first crystallographic structure of hGALT (in particular, of the variant 

p.Asn314Asp) was obtained in 2016 and deposited in the Protein Data Bank with the 

PDB code 5IN3 [McCorvie et al., 2016]. hGALT was obtained by molecular 

replacement using bacterial GALT (PDB code 1HXP) as a template [Wedekind et al., 

1995]. Unlike GALT from E. coli, which had an iron atom, hGALT is a metalloprotein 

in which two zinc ions are bound to a site approximately 20 Å far from the active site, 

formed by residues Glu202, His301, His319, and His321. As expected, hGALT 

exhibits a homodimeric quaternary arrangement and consists of two identical chains 

(A and B) of 379 amino acids each [Brenner, 2002]. Each protomer is arranged in a 

central nine-stranded β-sheet flanked on either side by five α-helices and a small three-

stranded β-sheet (Figure 1.11). The interface between the two subunits is stabilized by 

17 hydrogen bonds and 2 salt bridges between residues Asp 113 (chain B)-Arg228 

(chain A) and His114 (chain B)-Glu 220 (chain A). In particular, these salt bridges are 

located at the end of a dimerization loop (residues 106-122) and stabilize the interface. 

 

Figure 1.11 Cartoon representation of hGALT structure (chain A) showing secondary structure 

elements and showing the two salt bridges Asp113B-Arg228A and His114B-Glu220A [McCorvie et 

al., 2016]. 

. 
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The two chains (A and B) are arranged in a mirror-inverted manner with respect to 

each other, forming a central cavity and two active sites at the interfaces between them 

(Figure 1.12). The association of the two monomers leads to the catalytically active 

form of the protein, as both active sites consist of residues belonging to both chains 

(table 1.1). 

 

Figure 1.12: Structure of hGALT: Chain A is in blue, chain B in orange; the substrates G1P are 

represented in green; the substrates H2U are represented in cyan. Figure obtained with Pymol. 

 

SUBSTRATE INTERACTING RESIDUES 

ACTIVE SITE A CHAIN A CHAIN B 

G1P A N173 and Q188 K334, F335, V337, 

Y339, E340, Q346 

H2U A G179, S181, H186 R48, R51 

 

ACTIVE SITE B CHAIN A CHAIN B 

G1P B K334, F335, V337, 

Y339, E340, Q346 

N173 and Q188 

H2U B R48, R51 G179, S181, H186 

  

 Table 1.1: Residues interacting with G1P and H2U in hGALT [McCorvie et al., 2016]. 
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The uridylation induces structural changes to the protein and reduces its flexibility.  

The conformational changes are shown synthetically below: 

- loop 49-63, corresponding to a surface-exposed region in the H2U-binding site. It 

was not possible to determine an electron density map for this loop, but it is supposed 

to become ordered when bound to UDP sugar, which makes it more compact, less 

flexible, less susceptible to degradation, and more thermostable; 

- loop 76-90, which is involved in H2U binding. It loses flexibility during uridylylation; 

H2U-hGALT is more compact than apo-hGALT, as evidenced by the fact that 

uridylylation reduces the radius of gyration and intrinsic hydrophobicity [McCorvie et 

al., 2016]. 

Recently, this crystallographic structure of hGALT was used as a template to re-model 

the structure of this enzyme. This made it possible to remove non-canonical residue 

conformations, to add the missing residues, to remove the mutation p.Asn314Asp in 

the crystallographic structure, and to model the loop at position 48-62, which is not 

present in the crystallographic structure. This final model is deposited in a web-

accessible resource called Galactosemia Proteins Database 2.0 [d'Acierno et al., 2018] 

(https://proteinvariants.eu/galactosemia). The superposition of the new model with the 

crystallographic structure revealed that the backbone and the conformations of the side 

chains are generally preserved. This final model was used as a reference for many 

analyses, including those presented in this work. 

In 2018, a second hGALT structure in a complex with H2U was deposited in PDB with 

the code 6GQD [Fairhead et al., 2018]. This structure consists only of the A chain 

(from Tyr 21 to Tyr 366) and was solved by X-ray diffraction at a resolution of 1.52 

Å, with crystallization of some epitope mutations. More precisely, it is an hGALT 

artificial variant, with substitutions at the protein surface to a crystallization-prone 

epitope motif (A21Y:A22T:T23P:R25L), aimed at enhancing protein crystallizability. 

 

https://proteinvariants.eu/galactosemia
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1.4 Galactosemia: different forms  

Galactosemia is an ensemble of rare genetic metabolic disorders characterized by the 

impairment of galactose metabolism. The discovery of galactosemia dates back to 1908 

when von Ruess, in the publication “Sugar Excretion in infancy”, classified it as a 

disorder belonging to the class of carbohydrate metabolism [Bray et al., 1951]. The 

different galactosemia types are caused by mutations in the genes coding for the four 

enzymes essential in the Leloir galactose degradation metabolic pathway. All these 

diseases follow an autosomal recessive pattern of inheritance [Wada et al., 2020]. 

Galactosemia type I (OMIM: #230400) is caused by homozygous or compound 

heterozygous mutations in the gene encoding for the enzyme GALT, located on 

chromosome 9p13. This disease is also called "classic galactosemia" [Kotb et al., 

2019]. The incidence of this disease varies when comparing different nations: a higher 

incidence is found in Irish ancestry (1:24,000), whereas the lowest incidence is found 

in Swedish ancestry (1:100,000) [Kotb et al., 2019], with an annual incidence of 1 per 

30,000/60,000 births worldwide and 1 per 47,000 in the Caucasian population 

[Moammar et al., 1996]. This form of galactosemia will be discussed in detail in the 

following paragraph. 

Galactosemia type II (OMIM: #230200), first described by Gitzelmann [Gitzelmann, 

1965], is the mildest form of galactosemia and is caused by mutations in the gene on 

chromosome 17q24 that encodes GALK1. It is estimated that the incidence of 

galactosemia type II is less than 1 in 100,000 births [Hennermann et al., 2011]. The 

prevalence of galactosemia type II is estimated to be approximately 1 in 1,000,000 in 

Japan and 1 in 60,000 in the United States [Sneha et al., 2018]. The only recurrent 

clinical sign is an early cataract due to the accumulation of galactitol in the lens. 

Cataract occurs in the neonatal period and can lead to significant visual impairment, 

but galactose-reduced diet leads to its regression. Other clinical signs, such as 

hypoglycemia, hepatomegaly, and hypercholesterolemia, are more difficult to detect, 

while others, such as symptomatic mental retardation, microcephaly, and failure to 
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thrive, are sporadic and difficult to diagnose. Patients with GALK1 deficiency 

generally have increased plasma galactose concentration and galactitol excretion in the 

urine [Hennermann et al., 2011]. 

Galactosemia type III (OMIM: #230350) is caused by mutations in the gene located 

on chromosome 1p36 encoding the enzyme UDP-galactose 4-epimerase (GALE). 

GALE deficiency was demonstrated to exist in a rare but clinically severe 

“generalized” form [Openo et al., 2006]. It has been first described by Gitzelmann 

[Gitzelmann, 1965] and confirmed by Holton when he reported the case of a child who 

had similar symptoms to patients with classical galactosemia, but with normal GALT 

activity and diminished GALE activity [Holton et al., 1981]. 

In 1990, two forms of type III galactosemia were identified: the peripheral and the 

generalized form [Endres, 1990]. The first form is a benign disease in which only the 

galactose level is altered in patients, as in type II galactosemia, whereas the second 

form is severe and resembles type I galactosemia. Later, several mutations were found 

to be associated with an "intermediate" form of the disease, i.e., the patients and/or 

their cells with intermediate GALE impairment may have abnormally high galactose 

1-phosphate blood levels, referred to the cells, in the presence of galactose, as well as 

abnormally high UDP-galactose levels and low UDP-glucose levels, even in the 

absence of galactose in the diet [Openo et al., 2006]. Kalckar hypothesized that patients 

with GALE deficiency, unlike individuals with classical galactosemia, require at least 

a small amount of dietary galactose to maintain homeostasis [Kalckar, 1961]. 

GALE catalyses also the conversion of N-acetylgalactosamine and N-

acetylglucosamine, a reaction important in maintaining the pools of UDP-sugars, and 

the loss of its activity may explain the abnormal glycosylation patterns seen in some 

cell cultures and animal models of type III galactosemia [Kingsley et al., 1986]. 

Galactosemia type IV (OMIM: #618881) is caused by mutations in the gene located 

on chromosome 2p22 encoding GALM and is a recently identified form of 

galactosemia [Wada et al., 2020]. Iwasawa and coauthors estimated the incidence of 
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GALM deficiency to be almost 1:10,000 in African populations, almost 1:80,000 in 

the Japanese population, and much lower in many other populations [Iwasawa et al., 

2019]. 

This new type of genetic galactosemia was detected during newborn screening for 

classical galactosemia in Japan [Kikuchi et al., 2021]. To date, despite the diagnosis 

and genotyping of many thousands of galactosemic patients worldwide, the incidence 

and long-term consequences of GALM deficiency are unknown. However, patients 

with reduced GALM activity may be asymptomatic for many years. These symptoms 

are similar to those of II type galactosemia: increased blood galactose concentrations 

and cataracts at a young age [Timson, 2019]. 

Patients with GALM deficiency are identified by elevated galactose levels, while 

GALT activity is normal and galactose 1-phosphate levels are usually below the 

threshold. A substantial number of cases are likely to go undiagnosed, especially in 

countries and regions where newborn screening for galactosemia is not available or 

where blood galactose is not measured [Kikuchi et al., 2021]. 

1.4.1 Diagnosis of galactosemia  

To date, the Beutler test is the most common test for the diagnosis of galactosemia 

(Figure 1.13). It is based on the detection of the conversion of galactose-1-phosphate 

to gluconate-6-phosphate, a process involving the activities of GALT, 

phosphoglucomutase (PGM) and glucose-6-phosphate dehydrogenase (G6PDH). The 

activity of these three enzymes is revealed by the fluorescence produced by NADPH. 

A GALT deficit results in a true positive test for galactosemia type I, but a positive 

result could indicate also PGM or G6PDH deficiency, resulting in a false positive test 

for galactosemia type I [Banford et al., 2021]. 
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Figure 1.13: Beutler test [Banford et al., 2021] 

An alternative test is based on fluorescence produced by NAD+, the cofactor required 

for galactose dehydrogenase, a non-human enzyme. Galactose, previously obtained 

from galactose-1-phosphate by a nonspecific phosphatase enzyme, is then detected by 

oxidation catalyzed by galactose dehydrogenase [Banford et al., 2021]. With this last 

test, a false positive result could occur in patients with galactosemia type II because 

the galactose concentration is not as elevated as in patients with galactosemia type I or 

III. 

Another useful test measures the concentration of galactitol in urines by gas 

chromatography [Allen et al., 1988].  

Complete sequencing of the suspect gene is recommended to obtain a correct diagnosis. 

In fact, molecular biology techniques are usually used to confirm the diagnosis. 

Previously, site-specific probes were used to detect common mutations, but these 

methods inevitably missed unusual and unexpected mutations. To ensure a tailored 

medical approach, full sequencing of the putative causative gene is now recommended 

[Viggiano et al., 2018]. Fortunately, galactosemia is included in newborn screening 

programs in several countries, for example in the European Union, the screening of 

galactosemia is performed in about one-third of countries. Even in countries where 

galactosemia is included in screening programs, such as Japan and the United States, 

screening is primarily for classical galactosemia, the most severe form of galactosemia 

[Kikuchi et al., 2021]. 
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1.5 Classical galactosemia: clinical picture  

Classic galactosemia is the first discovered [Timson, 2016] and the most studied form 

of galactosemia, due to its frequency and complications [Kotb et al., 2019]. It can 

manifest with both acute and long-term consequences. The acute form mainly affects 

newborns, as they feed almost exclusively on breast milk, which is rich in lactose. Once 

galactosemic newborns come into contact with milk, they show typical symptoms of 

galactose poisoning such as jaundice, feeding difficulties, failure to thrive, liver cell 

damage, hemorrhage, and possibly death from E. coli sepsis. The acute disease can 

usually be resolved with a life-long galactose-restricted diet, which unfortunately does 

not prevent most galactosemic patients from developing a late complication during 

childhood and adolescence [McCorvie 2011]. Very common clinical signs that may be 

present include those related to the nervous system. This is expected since, as described 

in paragraph 1.1, one of the most important roles of galactose in human body is the 

formation of the myelin sheath of nerve fibers [Kotb et al., 2019]. The symptoms 

related to the nervous system are mental dysfunction, dysarthria, anxiety, ataxia, 

attention deficit, hyperactivity, apraxia disorder, and autistic behavior [Lynch et al., 

2015]. Other symptoms that are often seen in patients with this disease include 

abnormalities of the reproductive system, especially in females who may suffer from 

oligomenorrhea, premature ovarian insufficiency, delayed puberty and decreased 

fertility. Additionally, many patients also experience hepatic failure, hepatomegaly, 

and elevated hepatic transaminase levels. Other symptoms regard encephalopathy, 

feeding difficulties, gait disturbance and imbalance, hypoglycemia, low levels of 

vitamin D, and osteoporosis [Kotb et al., 2019]. 

In addition to the different GALT variants (see below), it is worth mentioning the 

Duarte polymorphism, identified by Reichard and Woo in 1991. In the same year, Elsas 

and coauthors discovered that one of two biochemical phenotypes of the GALT 

enzyme, called Duarte 2 (D2), was caused by a single nucleotide variant (c.940A→G 



 
 

 
18 

 
 

substitution in GALT exon 10) leading to the mutation replacing the original aspartate 

in position 314 with asparagine (p.Asn314Asp) [Elsas et al., 1994]. 

The characteristic Duarte isoform is also associated with a variant allele (c.652C→T 

substitution in GALT exon 7) in cis with p.Asn314Asp leading to a rare and neutral 

polymorphism for leucine at amino acid 218 (p.Leu181Leu) [Podskarbi et al., 1996]. 

This last is called Los Angeles phenotype (D1). D1 and D2 variants differ in GALT 

activity, with D1 showing 110% to 130% of normal red blood cell activity, and D2 

only showing 40% to 50%. Podskarbi and coworkers in 1996 suggested that the 

decrease in GALT activity in D2 could be the result of regulation of GALT gene 

expression by the intronic mutations causing an aberrant splice processing, possibly 

inducing the formation of a low level of correctly spliced mRNA [Podskarbi et al., 

1996]. 

In 1997, Langley et al. postulated a favorable codon bias suggesting that the increased 

GALT activity in D1 may be due to increasing GALT protein abundance without 

increasing transcription or decreasing thermolability [Langley et al., 1997].  

In pediatric subjects with Duarte polymorphism, cognitive abilities (memory, 

executive function, and auditory processing), communication processes (speech and 

language), physical development (including motor skills, coordination, and occurrence 

of tremor), and social-emotional development are only occasionally impaired 

(https://clinicaltrials.gov/ct2/show/NCT02519504). Typically, patients do not show 

any symptom, although GALT activity is low. Women are at an increased risk of 

ovarian cancer and premature ovarian insufficiency [Fung et al., 2003]. However, a 

large amount of conflicting literature exists: some reports consider this biochemical 

phenotype to be benign and do not recommend life-long galactose restrictions, while 

others consider it a pathological condition [Kotb et al., 2018].  

1.5.1 Classical galactosemia: the most common associated variants 

Galactosemia type I is characterized by high allelic heterogeneity. To date, according 

to ARUP database (http://arup.utah.edu/database/GALT/GALT_welcome.ph), 

https://www.omim.org/entry/606999#19
https://clinicaltrials.gov/ct2/show/NCT02519504
http://arup.utah.edu/database/GALT/GALT_welcome.ph
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[Calderon et al., 2007] more than 330 variants of hGALT are known, most of which 

are missense mutations (Figure 1.14). 

 

Figure 1.14: Variant types of hGALT [Calderon et al., 2007] 

 

The prevalence of the mutations is different in different geographical and ethnic 

groups. We report only the most common variants below; for a full list of variants, 

please refer to http://arup.utah.edu/database/GALT/GALT_welcome.ph. 

- p.Gln188Arg: it is the most frequent mutation found for GALT in the Caucasian 

population and represents up to 70% of classic galactosemia-associated variants. It is 

a missense mutation replacing the original glutamine, located in the active site and at 

the dimer interface of GALT enzyme, with arginine. It causes the almost total 

inactivation of the enzyme and impairs its stability. This has been confirmed by 

biochemical studies in yeast, which have demonstrated that the homodimeric mutant is 

characterized by almost total loss of function, while the heterodimer shows a residual 

activity varying between 15 and 45% compared to the wild-type, instead of the 

expected 50% [Elsevier and Fridovich-Keil, 1996];  

http://arup.utah.edu/database/GALT/GALT_welcome.ph
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- p.Lys285Asn: it is a missense mutation replacing the original lysine with asparagine, 

and it is the second most common European mutation, especially in the East Europeans. 

It represents up to 34% of galactosemic alleles [Flanagan et al., 2010] and is rare in 

individuals with non-European ancestry [Manga et al., 2007]. A study of Czech, 

Slovak, Polish and Austrian galactosemic patients [Kozak et al., 2000] found that the 

frequency of this mutation was higher in these populations than in other European 

populations. Particularly, it is one of the most frequent in healthy Slovenian population 

[Lukac-Bajalo et al., 2005]. Although the individuals who are homoallelic for this 

mutation have a severe phenotype with complete loss of enzyme activity [Podskarbi et 

al., 1996; Shin et al., 1999], the heterozygotes have about 50% of normal GALT 

activity and are asymptomatic at birth. There is some evidence that the risk of 

developing certain diseases, such as cataracts, is increased later in life for heterozygotes 

[Karas and Goldberg, 2003]; 

- p.Ser135Leu: it is found almost exclusively in African Americans, suggesting that it 

occurred more than 100,000 years ago, after the first wave of migration of Homo 

sapiens out of Africa [Tyfield et al., 1999]. It is a missense mutation replacing the 

original serine with leucine and it accounts for almost 50% of mutant alleles in this 

ethnic group [Lai et al., 1996; Wang et al., 1998]. This mutation was first reported by 

Reichardt and colleagues [Reichardt et al., 1992]. However, they concluded that it was 

a polymorphism, using a fibroblast-like cell line (COS cell) transient expression 

system. The studies of haemolysates, lymphocytes, and lymphoblasts derived from 

patients homozygous for p.Ser135Leu also revealed levels of activity ranging from 

undetectable to ~5% wild-type [Lai et al., 1996; Wang et al., 1998]. Subsequent studies, 

in contrast with the previous study, using a null-background yeast expression system, 

have demonstrated that there were approximately 5% wild-type levels of activity 

associated with this variant [Fridovich-Keil et al., 1995]. The explanation for this 

apparent disparity remains unknown but it may be due either to differences in the 
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properties of the host cells or to differences between transient- and stable-expression 

assays [Fridovich-Keil et al., 1995].  

1.5.2 p.Gln188Arg: the importance of this variant 

Among all variants of hGALT, p.Gln188Arg is a very clinically relevant mutation since 

it is the most widespread mutation in Caucasian population, as reported above. 

The high frequency of p.Gln188Arg mutation in European populations, compared to 

the very low frequency in Asian populations, suggests that this mutation arose after 

immigration from Africa and the subsequent divergence of Caucasian and Asian 

populations [Singh et al., 2012]. It is interesting to know that the frequency increases 

moving from East to West across the globe [Tyfield et al., 1999]. 

As told before, this mutation is located at the active site and at the dimer interface of 

the quaternary GALT assembly. Early biochemical experiments in yeast revealed that 

the homodimeric mutant has practically complete loss of function, but the heterodimer 

has activity in the range of 15-45% of wild-type, rather than the expected 50%. 

Therefore, a partial dominant negative effect on the functionality of the mutant enzyme 

was observed in heterozygosity, indicating that the negative effect of this mutation is 

present not only in homozygosity but also when a healthy copy of the monomer is 

present [Elsevier and Fridovich-Keil, 1996]. 

Both homodimers and heterodimers with the p.Gln188Arg mutation were among the 

first theoretical models created for hGALT [Marabotti and Facchiano, 2005]. These 

models also allowed researchers to study the impact of the mutation on both enzyme-

substrate and interchain interactions based on comparisons with the wild-type enzyme. 

The mutant Arg188 residue establishes different interactions with the substrate than 

the wild-type Gln188 residue, according to the examination of enzyme-substrate 

contacts (Figure 1.15): 

- Gln188 forms two hydrogen bonds with the UDP-glucose substrate's phosphate 

component (with the O2 and O1 of the phosphate group). This creates an electron 
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density dispersion on the α-phosphate, favoring its subsequent nucleophilic attack by 

the galactose 1-phosphate. 

- Arg188 forms only one hydrogen bond with the phosphate portion of the UDP-sugar 

(with the O2 of the phosphate group) and an additional hydrogen bond with the O5 that 

connects the uridyl portion to the phosphate chain; this bond is unable to disperse the 

negative charge in the same way as the other hydrogen bonds [Marabotti and 

Facchiano, 2005]. The reaction at this point cannot proceed to the second step of the 

ping-pong mechanism, and there is an accumulation of G1P at the cellular level. 

 

Figure 1.15: A. Interactions of Gln188 with UDP-galactose B. Interactions of Arg188 with UDP-

galactose [Marabotti and Facchiano, 2005]. 

 

An interchain contact analysis showed that there were significantly fewer hydrogen 

bonds in the mutant heterodimer and homodimer protein than in the wild-type. This 

predicted that the mutation not only had functional effects within the enzyme, but also 

structural ones. Since the active site is part of the dimer interface, being formed by 

residues from both subunits, this means that a mutation in the active site could disrupt 

not only the enzymatic catalytic function but also the interaction between the subunits 

[Marabotti and Facchiano, 2005]. Marabotti and Facchiano confirmed that amino acids 

included within a distance of 5 Å from residue 188 belong to both chains of the dimer. 

Among these amino acids, the nearest one is Arg48 of the other chain to which residue 

188 belongs (Figure 1.16). They evidenced that, when residue 188 is mutated to 
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arginine, it is in strict contact with Arg 48. Furthermore, within a radius of 5 Å from 

residue 188, there are three further positively charged residues (Arg48, Arg51 and 

Lys127), while only one residue (Glu172) is negatively charged. This suggests that the 

causes of unfavourable dimerisation are both steric hindrance, due to the high 

proximity of two bulky residues, and repulsion due to an unfavourable electrostatic 

interaction [Marabotti and Facchiano, 2005]. 

 

Figur 1.16: (A) Close-up of the contact between Gln188 (light gray) in chain A and Arg48 (dark gray) 

in chain B of hGALT. (B) Close-up of the contact between Arg188 (light gray) in the chain 

A and Arg48 (dark gray) in chain B of Q188R-hGALT. Amino acids within a distance of 5 Å from 

residue 188 are represented in stick mode [Marabotti and Facchiano, 2005]. 

 

McCorvie and coworkers also investigated the effects of uridylation and zinc binding 

on p.Gln188Arg aggregation. They discovered that p.Gln188Arg is more prone to 

aggregation than H2U-hGALT but has comparable aggregation rates to apo-hGALT. 

This indicates that uridylylation decreases the kinetics of hGALT aggregation, and that 

p.Gln188Arg aggregation is likely related to the lower degree of uridylylation. They 

observed that zinc binding causes aggregation of all mutant proteins; however, this 

aggregation is severely increased in the p.Gln188Arg protein. Unexpectedly, high Zn2+ 

content prevented aggregation of all hGALT species during the experiment. Using a 

method available at “The Aggrescan server” (http://bioinf.uab.es/aggrescan/), they 

also predicted that the active site of hGALT, which has a -strand-rich structure, is a 

hot region for aggregation that can be altered by uridylylation at the His186 active site. 

http://bioinf.uab.es/aggrescan/
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Regardless, there seems to be a correlation between the aggregation of the 

p.Gln188Arg protein, its solubility, and the level of protein in the cell. Higher levels of 

protein are more likely to be aggregated. This suggests that, although the protein is 

lowering its solubility significantly, the protein may become dysfunctional in the 

presence of higher levels of Zn. These results indicate that p.Gln188Arg has a stronger 

aggregation ability due to its lower ability to be uridylylated and that Zn is a structurally  

important ion which influences the stability and aggregation tendency of hGALT 

[McCorvie et al., 2016].  

1.5.3 Classical galactosemia: a misfolding disease? 

Although the effects of mutations of hGALT are difficult to predict, in most cases they 

impact on the correct folding of the protein, and the resulting enzyme is unstable from 

a structural point of view, therefore causing dysfunction [McCorvie et al., 2016]. 

It is appropriate to describe here previous and parallel studies that put an effort to 

clarify whether galactosemia is a misfolding disease. 

In literature, there are several pieces of evidence that suggest the unfolded protein 

response (UPR) is activated in galactosemia. Accumulated unfolded protein during the 

UPR is either correctly refolded, or unsuccessfully refolded and degraded by the 

ubiquitin-proteasome pathway [Kim et al., 2006]. 

Research on UPR activation in classic galactosemia has been conducted using a yeast 

model and a human cell line. Slepak and coworkers showed that in a yeast model of 

classic galactosemia (gal7Δ mutant, human GALT equivalent) [Slepak et al., 2005] and 

in a human cell line model of classic galactosemia [Slepak et al., 2007], genes 

controlled by the UPR are also induced by galactose. 

A study conducted on two yeast models of classic galactosemia suggests that galactose-

1-phosphate synthesis is essential to causing endoplasmic reticulum stress (ER). ER 

stress, caused by UPR activation, has been shown to play a protective role against the 

cytotoxic effect of galactose [De-Souza et al., 2014]. This study provides evidence that 
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molecules that interfere with ER stress may be effective in treating classic galactosemia 

[Kraskiewicz and FitzGerald, 2012]. 

In a 2013 work, McCorvie and co-authors discovered that five hGALT mutants, 

p.Asp28Tyr, p.Leu74Pro, p.Phe171Ser, p.Phe194Leu, and p.Arg333Gly, lack key 

interactions required for protein structure stability and substrate binding. However, 

each one produces distinct modifications in various features of the protein at the same 

time. Each of the five mutants was tested in vitro to examine the stability, substrate 

binding, capacity to dimerize, and enzyme kinetics. p.Asp28Tyr is the only substitution 

among the five mutations that does not cause significant changes in the substrate 

binding, which is reflected by different characteristics from the other four. The 

fluorescence results suggest that all variants but p.Asp28Tyr have an altered 

conformation compared to the wild-type enzyme. Additionally, p.Asp28Tyr was only 

slightly more resistant to thermal denaturation. 

Although p.Phe194Leu and p.Arg333Gly still have the ability to bind substrates, their 

binding is not as strong as that of the wild-type protein. 

Their results suggested that only p.Phe171Ser and p.Leu74Pro, which are both 

positioned in the active site like p.Gln188Arg, severely impair enzyme activity and 

appear to produce a significant decrease in substrate binding ability. Those variants 

that are impaired in the formation of the intermediates may be more prone to protease 

degradation. This suggests that these mutations, especially those occurring at the active 

site, cause protein misfolding, and that there is compelling evidence that this is a 

common molecular mechanism that causes hGALT deficiency in patients [McCorvie 

et al., 2013]. In the same study, the molecular causes of the disability of the mutants to 

bind substrates and proceed with the reaction were investigated. In this context, 

modifying the protein sequence affects the amount of active protein by causing 

conformational changes that alter the active site. This compromises the substrate 

binding, uridylylated intermediate generation and changes the protein's overall 

stability. 



 
 

 
26 

 
 

For example, Leu74 forms some crucial hydrogen bonds with Cys120 and Tyr89 (via 

the backbone oxygen) and with Asn72 (via the backbone nitrogen). The mutation of 

leucine to proline in position 74 results in the removal of the hydrogen bond with Asn72 

on the same chain. Moreover, Leu74 is flanked by Pro73 and Cys75 and results to be 

close to uracil moiety of UDP-galactose. This leads to a van der Waals contact between 

Leu74 and part of the substrate; the mutation of leucine to proline removes this contact, 

causing a conformation change of the active site and disability to bind substrate for 

enzyme. 

p.Phe171Ser showed similar effects on enzyme function to p.Lys74Pro, considering its 

location at the active site. This residue is important because it forms a hydrogen bond 

with Gln188 of the same subunit, a crucial residue for the ping-pong mechanism [Mc 

Corvie et al., 2013] 

The results of this study show that hGALT requires some degree of flexibility to 

function optimally, and that the impaired function of some variants is due to altered 

folding. Since the majority of disease-associated mutations of hGALT are not found at 

the active site, it has been hypothesized that protein misfolding is the most likely cause 

of their effects [Mc Corvie et al., 2013].  

In the same study, using FTMap server (http://ftmap.bu.edu), McCorvie and coauthors 

identified a cavity between the two subunits of hGALT, and hypothesized that it 

probably has an allosteric function; however, no literature exists describing which 

residues are involved [Mc Corvie et al., 2013].  

 

1.6 The pharmacochaperones 

 

The term “Pharmacological chaperones”, also known as "pharmacochaperones" (PCs) 

was introduced to describe chemical compounds that bind specifically and stabilize 

target proteins. Morello and coworkers first defined with this term the action of a 

specific antagonist that stabilizes some mutants of the vasopressin receptor [Morello et 
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al., 2000]. PCs are small molecules able to bind specific target protein, which can 

stabilize their native conformation or even correct misfolding in proteins affected by 

mutations, thus rescuing their original function. 

The main class of proteins target of PCs is represented by transferases, followed by 

transporters and receptors. These proteins can have different subcellular localisation 

but in the majority of cases they are situated in plasma membrane and lysosomes 

[Liguori et al., 2020]. 

There are different types of PCs, each with specific characteristics, and they can be 

classified into different types: competitive inhibitors, activating compounds and 

allosteric ligands. Despite their diversity, all of them are low molecular weight 

chemical molecules that have entered clinical practice for many diseases caused by 

protein instability [Liguori et al., 2020].  

PCs are different from chemical chaperones, because they interact with proteins in a 

specific way. On the contrary, chemical chaperones interact with proteins in a non-

specific way, binding them near the interfaces between protein domains. This induces 

the formation of a network of favorable weak interactions that eventually allows the 

different parts of a protein to be stably linked [Scafuri et al., 2022]. 

Since their discovery in the early 2000s, PC have been considered as candidate 

treatments for an increasing number of rare genetic diseases, first of all Fabry disease 

[Fan et al., 1999], lysosomal storage disorders [Thomas et al., 2019], cystic fibrosis 

[Hanrahan et al., 2017], and also phenylketonuria [Pampalone et al., 2021].  

Despite the high expectations and the continuously increasing amount of studies on 

PC, only few drugs belonging to this class have been entered in the clinics [Scafuri et 

al., 2022]. However, PCs remain a promising therapeutic approach for the treatment of 

rare inborn errors of metabolism, caused by genetic mutations that often can destabilize 

the structure of the wild-type proteins expressed by that gene [Matalonga et al., 2017]. 

Starting from these considerations, McCorvie and co-workers proposed the use of PC 

as drug candidates for classic galactosemia based on the protein structural instability 
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caused by disease-associated mutations in the human GALT gene [McCorvie et al., 

2013]. 

1.6.1 "First generation" PCs 

The majority of PCs developed early (called "first-generation" PCs) compete with real 

substrates of their target proteins. In fact, these PCs are competitive inhibitors that bind 

to the active site of the enzyme in the folded state preferentially, stabilizing the protein 

[Scafuri et al., 2022]. 

The following examples of first generation PCs illustrate the wide diffusion and 

pharmacological efficacy of this type of drugs. 

Migalastat, an iminosugar analog of galactose, is the first representative example of a 

competitive inhibitor used as a PC. It was approved by Food and Drug Administration 

(FDA) as the first oral therapy for Fabry disease, a X-linked lysosomal disorder with a 

deficit of acid alpha-galactosidase A enzyme (AGAL). In 1999, it was demonstrated 

that Migalastat raised the residual activity of responsive AGAL mutants (p.Arg301Gln 

and p.Gln279Glu) [Fan et al., 1999] and, subsequently, many others experiments have 

confirmed that migalastat is a potent inhibitor of AGAL. Meanwhile, migalastat has 

been a good starting point for the synthesis of similar glycomimetic molecules [Liguori 

et al., 2020]. Isofagomine, for example, is a modified iminosugar, and appeared to be 

very promising in stabilizing mutant of glucosylceramidase [Sun et al., 2012]. 

A second representative example of competitive inhibitors is Ambroxol, a mucolitic 

agent used as to treat hypersecretion and hyaline membrane disease in newborns 

[Maegawa et al., 2009]. Ambroxol has also been shown to be effective in treating 

Gaucher disease, the most frequent lysosomal storage disease caused by a deficiency 

of glucocerebrosidase (GCase) [Ivanova et al., 2018]. This is due to its inhibitory 

activity, as well as to its ability to bind and stabilize the enzyme. In particular, ambroxol 

has been shown to increase the activity of some mutants of GCase (p.Asn370Ser and 

p.Phe231Ile) [Maegawa et al., 2009]. Additionally, the usage of ambroxol has been 

linked to other diseases. For example, increasing the levels of GCase can lower the 
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level of alpha-synuclein, the protein that causes Parkinson's disease dementia [Silveira 

et al., 2019]. 

Pyrimethamine is another example of a competitive inhibitor that has been discovered 

to inhibit one of the three isoforms of human hexosaminidase (HexA). GM2 

gangliosidosis is a rare genetic illness that causes the gradual destruction of nerve cells 

in the brain and spinal cord due to a genetic mutation in the gene coding for HexA 

[Yamanaka et al., 1994]. Pyrimethamine, a drug already approved by the FDA against 

malaria and toxoplasmosis [Leport et al., 1996, Weiss et al., 1992], has been identified 

as a chaperone in the late-onset variant of GM2 ganglosidosis [Tropak et al., 2007, 

Beck et al., 1998]. 

There are many other examples of competitive inhibitors, such as lumacaftor for cystic 

fibrosis. Lumacaftor binds to an anion channel (CFTR) expressed at the apical surface 

of secretory epithelia in the pancreas, intestine, exocrine glands, and lungs. Mutations 

in CFTR have a major and dangerous effect on all of these organs [Carlile et. al., 2018]. 

Ezetimibe and pranlukast bind to and increase the activity of N-acetylgalactosamine-

6-sulfate sulfatase (GALNS), which is mutated in a rare disease called Morquio A 

syndrome (a mucopolysaccharidosis IVA) [Alméciga Diaz et al., 2019]. 

1.6.2 "Second generation" PCs 

Although the study and use of first-generation PCs is increasing, they present several 

problems that prevent them from becoming widely diffused drugs. The first real 

problem lies in their nature: they are competitive inhibitors that, by binding to the target 

enzyme, do not allow the true substrate to bind, thereby compromising the biological 

mechanism [Scafuri et al., 2022]. The second issue is that each genetic disease is 

defined by a variety of distinct mutations (many of which are private), but only a small 

percentage of these variants respond to PCs.  

For these reasons, a second generation of PCs has more recently been developed, 

molecules that specifically bind to a different position than the active site of the target 

enzyme [Scafuri et al., 2022]. Interacting with non-catalytic domains allows them to 
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avoid competition with the substrate and to expand the spectrum of responsive 

mutations [Parenti et al., 2015]. 

The second generation PCs are considered activators compounds and below are 

described some representative examples. 

The first example is glucose-1,6-bisphosphate, which activates the phosphomanno-

mutase 2 enzyme (PMM2). The main activity of PMM2 in vivo consists of the 

isomerization of mannose-6-phosphate into mannose-1-phosphate, which is activated 

and eventually introduced into glycans [Citro et al., 2018]. A mutation in the gene 

coding for this enzyme causes PMM2-CDG disease, the most common form of 

congenital N-glycosylation pathology. The disease, characterized by cerebellar 

dysfunction, abnormal fat distribution, strabismus and hypotonia, has a highly variable 

clinical picture: some adults only have a mild form of the disease, while some die in 

the first year of life, and other are asymptomatic carriers [Lam et al., 2021]. 

Another example of PCs that binds to the active site and stabilizes mutants in cells is 

11-cis-retinal, which is a natural cofactor of rhodopsin. This activator promotes the 

cellular folding of this protein, which is associated with the autosomal dominant 

disease retinitis pigmentosa, a slowly progressive and bilateral degeneration of the 

retina and retinal pigment epithelium characterized by choroidal neovascularization 

and macular edema, which eventually leads to irreversible loss of central vision 

[Noorwez et al., 2004]. 

Tetrahydrobiopterin, the natural cofactors of phenylalanine hydroxylase, is a further 

example of second generation PCs in the treatment of a rare form of phenylketonuria, 

called mild hyperphenylalaninemia, an inborn error of amino acid metabolism, with or 

without clinical manifestations of impaired cognitive function, and behavioral and 

developmental disorders [de Baulny et al., 2007]. In particular, tetrahydrobiopterin 

treatment led to normal or nearly normal blood phenylalanine concentrations in most 

patients with residual phenylalanine hydroxylase activity, suggesting that 
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responsiveness to tetrahydrobiopterin is a common feature of mild 

hyperphenylalaninemia phenotypes [Muntau et al., 2002]. 

The examples given above are meant to show how much second generation PCs are 

developing and how promising they are as potential therapies for pathologies that 

currently do not have a cure. 

As reported above, the second generation PCs bind specifically to a different position 

than the active site in the target enzymes, and when this different position is in an 

allosteric region, these PCs are called allosteric non-inhibitory PCs. There are several 

molecules that act as allosteric non-inhibitory PCs, such as 2,6-dithiopurine which 

stabilizes AGAL in Fabry disease, as extensively described above. This molecule 

preferentially binds to an AGAL region identified as an allosteric hot spot for ligand 

binding [Citro et al., 2016]. 

Erythropoietic porphyria is characterized by severe skin photosensitivity that may lead 

to scarring, blistering, and increased hair growth on the face and back of the hands. It 

is a condition caused by an overproduction of porphyrins as a result of a deficiency in 

the enzyme uroporphyrinogen III synthase (UROS). In silico docking was used to 

identify an allosteric binding site on the surface of the enzyme. 2500 diverse chemical 

fragments were looked for among ligands. The authors discovered that the antifungal 

ciclopirox could help to stabilize UROS. In particular, ciclopirox binds to UROS in an 

allosteric location, away from the active site, with no effect on the enzyme's catalytic 

activity [Urquiza et al., 2019]. 

1.6.3 Computational strategies for the identification of PCs 

Computational technologies (computer-aided drug design) have revolutionized the 

drug discovery process by reducing time and costs [Feinstein, 2016]. In a general 

workflow for PCs development, it is possible to identify the different stages of drug 

discovery that a particular compound may undergo, which can benefit from a 

computational approach (Figure 1.17) [Scafuri et al., 2022]. 
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Figure 1.17: Workflow showing the general roadmap for PCs development, with a highlight on where 

computational solutions can be inserted to improve the discovery of a putative PC [Scafuri et al., 

2022]. 

 

The first step is the target discovery, which consists of identifying mutant targets for 

PCs therapy. The protein responsible for the disease must have mutations that 

destabilize the protein itself. In most cases, the mutations are numerous and have 

multiple genotypes and phenotypes, which makes the selection more complex. The 

pathogenicity of amino acid substitutions can be predicted by studying the effect of the 

substitutions on the structure, function, and stability of proteins. This requires 

computational tools that are currently available [Scafuri et al., 2022]. 

The second step, which can also be done contemporaneously to the first, is to identify 

binding sites for the second generation PCs. As discussed above, the recent trend is to 

identify PCs that bind to alternative protein sites, different to the active site of the 

enzyme [Parenti et al., 2015]. However, even when the 3D structure of the protein of 

interest is available, it is not trivial to find those sites. A plethora of different 

computational tools and approaches have been developed in recent years for this scope, 

some of which are accessible from the Web (table 1.2). 
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Name URL Principle Reference 

CASTp http://sts.bioe.uic.edu/castp/  Grid-based geometry [Binkowski et 

al., 2003; Tian et 

al., 2018] 

COACH-D https://yanglab.nankai.edu.cn/COACH-D/  Consensus; Support Vector 

Machine 

[Wu et al., 2018] 

3DLigandSite https://www.wass-michaelislab.org/3dlig/  Template-based method [Wass et al., 

2010] 

FunFold2 https://www.reading.ac.uk/bioinf/FunFOLD/  Template-based method [Roche et al., 

2013] 

DeepSite https://playmolecule.com/deepsite/  Template-based methods, 

neural networks 

[Jiménez et al., 

2017] 

Table 1.2: Web accessible predictors of protein cavities and ligand binding sites 

 [Scafuri et al., 2022]. 

 

Different approaches to identify active sites in biomolecules exist, each based on 

different methods. The oldest of these approaches are geometry-based methods, either 

grid-based or probe-based. In the first case the molecule is positioned in a 3D Cartesian 

grid and some geometric conditions must be satisfied for a pocket to be identified. In 

the second case, the pockets are identified by the probe spheres that are tangent to the 

surfaces of two atoms of the biomolecule [Scafuri et al., 2022]. 

The next step is to screen for putative PCs at the possible site(s) previously identified. 

This step requires a virtual screening of large compound libraries. This screening 

serves two fundamental purposes: to reduce the number of compounds to be evaluated 

experimentally and to expand the chemical diversity of the compounds that are 

preliminaryly evaluated [Shaker et al., 2021]. To date, millions of chemical compounds 

are available in many databases, either public or owned by private companies (table 

1.3) that can be freely accessed or used under request to perform virtual screening.  

http://sts.bioe.uic.edu/castp/
https://yanglab.nankai.edu.cn/COACH-D/
https://www.wass-michaelislab.org/3dlig/
https://www.reading.ac.uk/bioinf/FunFOLD/
https://playmolecule.com/deepsite/
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Table 1.3 Web accessible databases of chemical compounds [Scafuri et al., 2022]. 

 

In the simplest case where both the structure of the compounds and the target protein 

are available, the best method for predicting the binding affinity between ligand-protein 

is molecular docking [Kitchen et al., 2004]. The development of molecular docking 

programs dates back to 40 years ago [Kuntz et al., 1982], and today there are several 

programs: ICM [Totrov and Abagyan, 1997], FlexX [Kramer et al., 1999], Glide 

[Friesner et al., 2004; Halgren et al., 2004], GOLD [Verdonk et al., 2003], MDock 

[Huang et al., 2007], MOE [Vilar et al., 2008], AutoDock [Morris et al., 2009], 

AutoDockVina [Trott and Olson 2010], DOCK [Anderson et al., 2005], to mention 

only some of the most popular ones.  

The use of pharmacophoric models is undoubtedly one of the most well-known 

approaches for drug research. The term "pharmacophore" is defined as “An ensemble 

of steric and electronic features that is necessary to ensure the optimal supramolecular 

interactions with a specific biological target structure and to trigger (or to block) its 

biological response” [Balakumar et al., 2018]. Therefore, it is an abstract concept that 

explains the interaction capabilities of a compound towards its target structure rather 

than an actual molecule or association of functional groups [Wermuth et al., 1998]. 

These models simulate phenomena (physical, chemical, and biological) that occur 

during drug-receptor interactions [Drwal et al., 2011]. 

In drug design, two types of pharmacophore modeling techniques are used: ligand-

based pharmacophore modeling and structure-based pharmacophore modeling. If the 
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target protein structure is not known, the ligand-based pharmacophore modeling 

approach is used to create new chemical entities; otherwise, structure-based 

pharmacophore modeling can be used when the 3D structure of the macromolecule of 

interest (typically a receptor or enzyme with or without a bound ligand) is available 

[Balakumar et al., 2018]. 

In a 3D pharmacophoric model with both chemical and functional interactions, the 

spatial arrangement of the chemical features represents the ligand's interactions with 

the receptor, and the pharmacophoric pattern generated represents the binding mode of 

those ligands that bind to the same target in the same way [Wolbere al., 2006]. Each 

pharmacophoric model has specific properties that correspond to the observed 

interactions in the drug-receptor complex: hydrogen bond acceptor, hydrogen bond 

donor, cation, anion, aromatic, and hydrophobic features The knowledge of these 

features helps in the screening of the databases and in the identification of target 

molecules for the following steps. 

The last step to find putative PCs for a selected target protein consists in two phases: 

docking of a ligand dataset against the putative binding site and molecular dynamics 

(MD) simulation to refine the interaction and to evaluate the effect of the ligand in a 

dynamic way. 

Standard docking protocols cannot handle the entire flexibility of the protein. However, 

there are two main ways to include protein flexibility; in both it is possible to study the 

best accommodation of the ligand into the cavity. The first way allows a limited 

conformational variability of the residues in close contact with the ligand on the 

binding site. The second way consists in creating a set of alternative receptor 

conformations to simulate the protein conformational changes [Wong et al., 2021].  

Nevertheless, in both ways it is not possible to identify the effect induced by the 

binding of the ligand on the overall structure of the protein. For this reason, MD 

simulations are necessary to perform a complete study about the conformational 

flexibility of protein and to allow to perform an accurate prediction of the binding free 
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energy of the ligands [Graff et al., 2021]. There are many popular programs for 

biomolecular MD simulations, including GROMACS [Abraham et al., 2015a], NAMD 

[Phillips et al., 2021], AMBER [Case et al., 2005], CHARMM [Jo et al., 2008], 

Desmond [Bowers et al., 2006], among others.  

In conclusion, to search any PC with a computational approach it is necessary to apply 

docking and MD simulations. In both cases, the choice of which program to use is 

highly problematic because it may depend on many factors, such as speed, accuracy, 

and free availability. However, both programs (for docking and MD simulations) must 

be set up on the system to be studied, obtaining the best experimental conditions in 

order to have results that are as accurate as possible [Scafuri et al., 2021]. 

1.6.4. Arginine as a possible PC for GALT: testing the hypothesis 

It is known that the amino acid arginine is a stabilizing agent for poorly folded proteins, 

preventing their aggregation and cellular accumulation. As a result, it has already 

shown a beneficial effect in some hereditary metabolic disorders [Berendse et al., 2013; 

Silva et al., 2017]. In 2014, Coelho and coauthors showed that the increased tendency 

of several GALT mutants to aggregate, associated with protein misfolding, could be a 

pathogenetic mechanism in classic galactosemia [Coelho et al., 2015b].  

In particular, they focalized their studies on functional and structural impact on the 

most frequent variations in classic galactosemia: p.Gln188Arg, p.Ser135Leu, 

p.Lys285Asn, and p.Asn314Asp. Based on this study, the most surprising and novel 

observation was that most of the variants, particularly relevant for p.Gln188Arg, show 

disturbed aggregation profiles, despite the absence of detectable structural effects on 

their secondary and tertiary structures. This is an important observation because, at the 

cellular level, the accumulation of aggregation-prone proteins can seriously interfere 

with cellular homeostasis [Coelho et al., 2015b]. Moreover, two studies, one based on 

increased ER stress in p.Gln188Arg homozygous patients [Slepak et al., 2007] and the 

other one based on increased unfolded protein response in GALT-null galactosemia 

model [De-Souza et al., 2014] also suggested that there is a basal level of protein 
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homeostasis disturbance associated with galactosemia. The results of Coelho and 

coauthors in 2014 suggested that GALT aggregation associated with protein 

misfolding could be an important pathogenetic mechanism in classical galactosemia, 

laying the groundwork for future studies on GALT aggregation in vivo [Coelho et al., 

2015b]. This led the same group to successfully test the ability of arginine, an amino 

acid known for its activity as a protein stabilizer with an anti-aggregation effect 

[Coelho et al., 2015b], in improving the activity of GALT mutants, including 

p.Gln188Arg. In particular, galactose-sensitive prokaryotic models were developed 

with a twofold aim: to evaluate the negative effect of mutations on the one hand and 

the possible positive effect of arginine on the other. These models were deprived of 

their endogenous GALT gene, and added with the human GALT genes carrying 

different mutations, including p.Ser135Leu, p.Gly175Asp, p.Gln188Arg, 

p.Arg231Cys, p.Arg231His, p.Lys285Asn and p.Asn314Asp. After the addition of 

galactose, the p.Ser135Leu, p.Arg231His and p.Asn314Asp mutants showed no 

growth arrest (with a growth rate comparable to that observed in the presence of the 

control medium). On the other hand, p.Gln188Arg, p.Arg231Cys, and p.Lys285Asn 

cultures showed impaired growth, with different levels of galactose toxicity. 

Subsequently, the cultures were treated with arginine. In the p.Gly175Asp, 

p.Gln188Arg and p.Lys285Asn mutants, a significant improvement in activity was 

observed, underlined by an increased ability to cope with galactose-induced toxicity 

(Figure 1.18) [Coelho et al., 2015b]. 
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Figure 1.18: Arginine improves the function of p.Gln188Arg (panels a and b), p.Lys285Asn (panels 

c and d), and p.Gly175Asp (panels e and f) hGALT in prokaryotic models of the disease.  

Panels a, c, and e depict the growth profiles of Escherichia coli ΔgalT expressing p.Gln188Arg, 

p.Lys285Asn and p.Gly175Asp, respectively, in the absence and in the presence of galactose. Panels 

b, d, and f depict the ratio curves for bacteria expressing, respectively, p.Gln188Arg, p.Lys285Asn, 

and p.Gly175Asp hGALT, in the presence or absence of galactose (black circles, in the presence of 

25 mM arginine; hollow circles, absence of arginine). The gray-shaded areas and the white arrows 

depict the effect of arginin in improving the ability of these variants to alleviate galactose toxicity, 

highlighted by white arrows. [Coelho et al., 2015b] 

 

This study revealed that arginine shows a mutation-specific beneficial effect, in 

particular on two of the most widespread pathogenic variants, which lays the 

foundations for further studies, since arginine could have a great therapeutic impact 

against classical galactosemia. 

After this promising results, Haskovic and coworkers conducted in vivo studies on four 

galactosemic patients to evaluate the effect of arginine in galactose metabolism, 

conducted in vitro studies with three fibroblast cell lines derived from classic 

galactosemia patients as well as recombinant protein experiments. Patients were treated 

with arginine aspartate (in the commercially available form of Asparten®) in a dose of 

15 g/day, for one month. Patients did not show a significant improvement in whole-

body galactose oxidative capacity, which remained the same before and after arginine 

aspartate administration (Figure 1.19 A). GALT activity analysis in red blood cells 

(RBC) revealed no statistically significant difference after treatment compared to 
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baseline. Galactose metabolite concentrations did not significantly change (Figure 1.19 

B) [Haskovic et al., 2018]. Thus, it was deduced that, at least for people carrying this 

mutation, arginine has no potential therapeutic role. 

 

Figure 1.19. A. Mean galactose oxidative capacity before and after Asparten® supplementation; x 

axis: time in minute, y axis: CUMPC and CO2 eliminated in air. B Mean GALT activity is expressed 

as μmol of UDP-Gal formed per hour per mmol hemoglobin [Haskovic et al., 2018] 

 

However, neither study was an in-depth analysis of the molecular interactions between 

the GALT enzyme and arginine. Moreover, the number of patients recruited in the 

clinical trial was very small (only four), and the short duration of the study (1 month) 

was insufficient for evaluating the effects of arginine on long-term clinical outcomes. 

Furthermore, a single dose (15 g/day) was tested during the clinical trial, and the 

authors argued that the discrepancy with the results of the prokaryotic model could be 

due to the higher concentration of arginine used for those experiments. Therefore, the 

molecular aspects of the putative interaction between arginine and GALT enzyme 

remain unclear. 

 

1.7 Objectives of the thesis 

The goal of the project was to identify potential PCs for one of the most common and 

debilitating mutations found for GALT, p.Gln188Arg [Timson, 2016]. 

This project was structured in several stages. First of all, since in the past and more 

recently, the structural effects of this mutation were deduced from the static structure 
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of the wild-type human enzyme, we felt that a dynamic view of the protein was 

necessary to deeply understand its behavior and obtain tips for possible therapeutic 

interventions. Thus, we performed MD simulations of both wild-type and p.Gln188Arg 

proteins in the absence or the presence of the substrates in different conditions. On the 

other hand, the first evidence of a PC's potentially positive role against the 

p.Gln188Arg mutation was delivered through research on arginine amino acid [Coelho 

et al., 2015b], a known suppressor of protein aggregation [Baynes et al., 2005]. 

Arginine, however, showed a positive effect only in a prokaryotic model [Coelho et 

al., 2015b], but no therapeutic effect was found after one month of the administration, 

for patients affected by the p.Gln188Arg variant in homozygosity [Haskovic et al., 

2018]. The lack of information about molecular interactions of this amino acid with 

respect to the protein prompted us to investigate its binding in the active site and central 

cavity of both wild type and p.Gln188Arg mutant, either in the presence or in the 

absence of the substrates G1P and H2U.  

In this respect, the aim was to evaluate the efficacy of this amino acid in restoring the 

correct folding of the mutated enzyme and therefore its function, maintaining the bond 

with the enzyme over time. First of all, the binding of arginine to the enzyme was 

simulated by molecular docking. The representative conformations obtained by 

docking simulations were used as starting point for the following MD simulations at 

two different temperatures: 310 K, corresponding to the normal body temperature, and 

334 K, a higher temperature to induce protein destabilization.  

In the second part of the project, we wondered if there might be an allosteric site in 

GALT enzyme, as suggested by the literature [McCorvie et al., 2013], and if this 

allosteric site could be used as a target to develop new PCs for this enzyme. 

Through a computational predictor, we identified an allosteric site, corresponding to 

the portion of the protein interacting with arginine.  

The identification of the allosteric site occurred simultaneously with the search for new 

PC candidates for hGALT.  
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A possible interaction between PCs, selected from drugs already in therapeutic use for 

different diseases, and hGALT (both wild type and mutant), was simulated by 

molecular docking on both the active site and the central cavity. The next step was to 

proceed with the search for pharmacophores, starting from the best docking 

conformations. This led to the identification of new ligands, which were selected for 

further docking on the allosteric site. Different ligands have been shown to provide 

promising results both in "in silico" and in preliminary "wet" experiments.  

Finally, the MD protocol was also improved to find the best experimental conditions 

to set up further MD studies focused on the interactions between hGALT system and 

these new ligands, and on the search of allosteric pathways in hGALT, starting from 

MD simulations of greater length.  
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2. MATERIALS AND METHODS 

 

2.1 Databases 

I will describe in the following paragraph the databases used for the present work, some 

of which have been developed in house. 

2.1.1 Protein Data Bank 

The Protein Data Bank (https://www.wwpdb.org/) was founded in 1971 as a free, 

public database containing the crystallographic coordinates of biological 

macromolecules (proteins, nucleic acids, carbohydrates, and a variety of complexes) 

[Berman et al., 2000]. It is one of the oldest scientific databases, having been 

established at the Cambridge Crystallographic Data Centre in 1965 [Attwood et al., 

2011]. The Research Collaboratory for Structural Bioinformatics (RCSB) has been 

fully responsible for its management since 1 July 1999 [Bhat et al., 2001] and still 

provides a portal (https://www.rcsb.org/) for the data access. 

There were only seven protein structures when it was founded, and the number has 

steadily increased since 1980, to around 200,000 today (last access: 31 October 2022). 

The structures are obtained by various experimental methods: X-ray crystallography 

for the majority (166,649), nuclear magnetic resonance (NMR) for more than ten 

thousands (13,653), and the remaining by other methods such as cryo-electron 

microscopy (cryoEM) which has considerably expanded in the last years [Callaway 

2020]. 

Presently, in addition to experimentally-determined macromolecular structures, 

RCSB.org now offers access to ~1 million Computed Structure Models (CSMs) from 

AlphaFoldDB [Jumper et al., 2021 and Varadi et al., 2021] and RoseTTAFold (from 

Model Archive (https://www.modelarchive.org/). 

Certainly, the number of macromolecular structures has increased since the beginning, 

but the rate of growth in the number of structures remains slow. Furthermore, there is 

https://www.wwpdb.org/
https://www.rcsb.org/
https://www.modelarchive.org/
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a high level of redundancy in the PDB that demonstrates the great difficulty in 

obtaining structural data on new proteins. 

The resources in PDB can be accessed freely using the available tools, which are 

personalized to the various needs of the user community [Di Costanzo et al., 2016]. 

The 3D structure can be graphically represented, and there are links to other databases, 

such as UniProt (the main protein sequence database) [UniProt Consortium, 2021]. 

Alternatively, the structure coordinates file can be downloaded from the website in the 

PDB format. This is a universally recognized format used by all molecular graphics 

programs, in which the positions of all the macromolecular atoms in the space are 

represented by their cartesian coordinates. Identified by a unique four-character code 

(one number and three alphanumeric characters) and divided into lines (records) and 

80 columns, the pdb file appears as a text file divided into two fundamental parts. 

There is a series of useful information in the first part (HEADER), such as the type of 

macromolecule, the reference organism, various parameters used to determine the 

quality of the macromolecule structure (resolution, R-value, and R-free), experimental 

details, cell parameters, missing atoms or residues. The Cartesian coordinates of the 

atoms of the macromolecule and of any ligands/cofactors are marked with ATOM and 

HETATM, respectively. For crystallographic structures, these records include also the 

occupancy factor, which varies from 0.0 to 1.0 and can be lowered if the atom spends 

only a fraction of the time in the position identified by the Cartesian coordinate, and 

the B-factor, which represents the displacement of atoms from their average position 

identified by the Cartesian coordinates. If an anisotropic B-factor is present, the record 

ANISOU is added below each record ATOM. 

This data bank was used to download the hGALT structure with PDB code 5IN3, 

solved by X-ray crystallography, selected for this project among the other structures of 

GALT enzyme available [McCorvie et al., 2016]. 
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2.1.2 Galactosemia Proteins Database 2.0 

Galactosemia Proteins Database 2.0 [d'Acierno et al., 2018], 

(https://proteinvariants.eu/galactosemia) is a database developed in house that collects 

information about the structural and functional effects of the variants of the four 

enzymes of the galactose metabolism. It is accessible to the entire scientific community 

and developed at the Institute of Food Sciences of the National Research Council of 

Avellino, in partnership with the Department of Chemistry and Biology "A. Zambelli" 

of the University of Salerno.  

This database has been organized into two main areas: a common general part in which 

there is a description of the disease, a list of several useful resources (such as scientific 

and curated databases) and a list of associations or no-profit organizations devoted to 

galactosemia; and an enzyme-specific part that provides the access to the information 

about all the enzymes of the Leloir’s pathway. It collects a set of theoretical models of 

the variants associated to the different forms of galactosemia, as well as tools for 

searching and visualizing the results of analyses performed on the models, allowing 

people to investigate the structural and functional effects of variations.  

The model of the 3D structure of the human wild-type hGALT, which was generated 

from the 5IN3.pdb crystal structure, as well as the p.Gln188Arg model, have been 

downloaded from this database. 

2.1.3 Databases of small molecules 

PubChem, ZINC15, and DrugBank were the databases of small molecules used for this 

project.  

PubChem (https://pubchem.ncbi.nlm.nih.gov/) is a public and free database, hosted at 

the National Institutes of Health (NIH), which contains structures of small organic 

molecules, as well as information about their chemical and physical properties, 

biological activities, patents, health, safety, and toxicity data [Kim et al., 2019]. Small 

molecules predominate in PubChem, but larger molecules such as nucleotides, 

carbohydrates, lipids, peptides, and chemically modified macromolecules are also 

https://proteinvariants.eu/galactosemia
https://pubchem.ncbi.nlm.nih.gov/
https://www.nih.gov/
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present. Substance (compound information), Compound (structures), and BioAssay 

(bioactivity data) are the three main sections of PubChem. The structure of interest can 

be downloaded from the Compound section in a variety of formats, including sdf, json, 

xml, and asn.1, in both 2D and 3D formats.  

ZINC15 (http://zinc.docking.org), developed in 2004 by the Department of 

Pharmaceutical Chemistry at the University of California, San Francisco (UCSF), is a 

free database that contains the 3D structures of millions of commercially available 

compounds, in standard, ready-to-use formats (mol2 and sdf). In the 'Substances' 

section, a quick search allows to enter the name of a known compound of interest and 

obtain its 3D structure in the most appropriate form for a specific purpose, such as 

molecular docking simulations, which is the database's original focus. Compounds can 

also be found using designed chemical structure, biological activity, physical 

properties, similarity to a starting compound, predictions or annotations to a specific 

target, and other features [Sterling and Irwin, 2015]. 

The structures of arginine and of the possible PCs for hGALT were retrieved, 

respectively, from ZINC15 and PubChem. 

Another Web-based database that contains detailed molecular information about drugs, 

their mechanisms, interactions, and targets is DrugBank (https://go.drugbank.com/). It 

also includes data on the effects of hundreds of drugs at metabolite levels 

(pharmacometabolomics), gene expression levels (pharmacotranscriptomics), and 

protein expression levels (pharmacoproteomics) [Wishart et al., 2018]. It has been first 

described in 2006, has evolved over the past 12 years in response to significant 

improvements in web standards and changing needs for drug research and 

development.  

It is possible to write the name of the molecule in the search section and instantly get 

a result structured in several sections, the main ones being two: 

http://zinc.docking.org/substance/387170
https://go.drugbank.com/
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- a general section in which the ligand is described in the details, including the 

summary, the generic name, the background (drug description), the type of molecule 

with structure, weight and chemical formula; 

- a section dedicated to pharmacology, including the associated therapies, any 

contraindications, the mechanism of action, the metabolism, the eventual toxicity or 

pharmacogenomic effects. 

The DrugBank database is extensively used by drug researchers and developers, 

pharmaceutical companies, the medical community, and the general public. It has been 

used here for the selection of the PCs for hGALT. 

 

2.2 Programs and tools for molecular structures visualization and 

manipulation 

There are numerous programs available, both commercial and free, for visualizing the 

structures of macromolecules such as proteins and possibly associated small ligands.  

The goal of using these programs is always to gain a better understanding of the 

conformational characteristics of molecules of biological interest and their interactions. 

All these programs read the coordinate portion of the pdb file and allow images to be 

manipulated, rotated and translated, zoomed in and out, and displayed in different 

colors and representations.  

2.2.1 PyMOL  

PyMOL (http://www.pymol.org) (Schrödinger, Inc.) is a molecular graphics program 

created in 1998 by the US biophysicist Warren Lyford DeLano and released to the 

scientific community in 2000. This program supports several functions, including 3D 

molecule visualization and molecule motion, such as translation, rotation, and 

magnification [Rigsby et al., 2016].  

http://www.pymol.org/
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PyMOL was used to visualize the 3D structures of hGALT and its variants and 

manipulate them with appropriate modifications, as well as to visualize the results of 

MD simulations. 

2.2.2 UCSF Chimera  

Chimera (https://www.cgl.ucsf.edu/chimera/) is a free and highly extensible molecular 

graphics program [Pettersen et al., 2004]. Accepted file formats include the pdb and 

mol2 formats. This program supports a wide range of functions, including molecular 

structure analysis, electronic density map visualization, and sequence alignments. It is 

also possible to make structural changes to the various elements loaded within it.  

UCSF Chimera has been used in the current project to minimize the structure of some 

ligands used for docking and to restore the normal phosphate group of H2U in the 

structure of hGALT and p.Gln188Arg, as it will be explained in the following chapter. 

2.2.3 BIOVIA Discovery Studio 

Discovery Studio (Dassault Systèmes BIOVIA, San Diego, 2015) is a comprehensive 

software for analyzing and modeling molecular structures and sequences. Its many 

features include input file editing and receptor-ligand interaction analysis. In this last 

case, the types of interactions that can be graphically represented are conventional 

hydrogen bond, van der Waals, π interactions and covalent bonds. In addition, it can 

be used to assess the receptor surface's hydrophobicity, charge, solvent-accessible and 

non-solvent-accessible area, and ionisability (acid-base). 

In this project, Discovery Studio has been primarily used for protein-ligand interaction 

analysis and for the generation of pharmacophoric models (Discovery Studio- 

Interaction generation protocol) [Vuorinen and Schuster, 2015], by means of the 

HypoGen algorithm [Meslamani et al., 2012], which attempts to automatically identify 

a 3D spatial arrangement of chemical features common to the training molecules, using 

a variety of sources of information, including gene expression data, protein-protein 

interactions, and chemical databases. The HypoGen algorithm ranks potential drug 

targets based on their potential to treat the disease. HypoGen consists of 3 main stages: 

https://www.cgl.ucsf.edu/chimera/
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construction, stabilization, and optimization. In the first step, pharmacophores with 

common characteristics to the identified bioactive molecules are generated, and then 

all pharmacophoric conformations with a maximum of five default characteristics are 

collected. Only those pharmacophores best suited to bioactive molecules will be 

available at the end of this phase. Pharmacophores mapping inactive molecules are 

removed during the stabilization phase. Finally, the pattern collection is optimized 

using the simulated annealing algorithm [Vuorinen and Schuster, 2015]. As result, only 

the pharmacophoric models with higher scores are shown as output [Khedkar et al., 

2007].  

Discovery Studio Interaction Generation protocol consists of two main steps. In the 

first, pharmacophoric features are identified: hydrogen bond acceptor (A), hydrogen 

bond donor (D), cation (P), anion (N), aromatic system (R), and hydrophobic (H); in 

the second, all features that do not correspond to protein-ligand interactions are 

eliminated. In this way, Discovery Studio creates all possible combinations of 

pharmacophoric models and classifies them basing on decreasing selectivity score. The 

selectivity of a pharmacological model depends on the number and types of features 

and their 3D arrangement. 

Among the generated pharmacophore models, the best one (which generally 

corresponds to the first one) is selected and used for the last step, i.e. searching for 

pharmacophoric hits in a selected database. In particular, the ’Search 3D-database’ 

function provides a rapid filtering of the input database, selecting those hits that match 

the minimum amount of features defined or not by user. In the latter case, the default 

setting is one. A hit list is finally provided in the form of a table, presented in 

descending order of fit value, with associated information for each compound (see 

paragraph 2.6.4). 
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2.3 Programs for protein cavity identification. 

Cavity identification programs allows to identify cavities formed because of the 

specific folding of the amino acid chain, corresponding to sites of the protein that may 

play important functional roles. 

2.3.1 CASTp 

The Computed Atlas of Surface Topography of Proteins 3.0 (CASTp 3.0) 

(http://sts.bioe.uic.edu/castp/index.html) is a Web-server that lets users to locate, 

delineate, and measure the cavities within the protein structure, by means of a 

geometric approach. By uploading the pdb file of the molecule of interest, the program 

returns a graphic representation of the cavities. Moreover, it displays volumes of 

cavities and channels, topographical features of specific assemblies found in PDBs, 

secondary structure information, functional sites, site variants, and other annotations 

on protein residues [Tian et al., 2018].  

The two starting structures of hGALT and p.Gln188Arg were analyzed with the 

CASTp 3.0 Web server (http://sts.bioe.uic.edu/castp/calculation.html; last accessed 5 

October 2021) [Tian et al., 2018], to identify the possible cavitie(s) to perform docking 

with the ligand arginine and other potential PC ligands. 

2.3.2 FTMap 

To identify potential allosteric site(s) of hGALT, a computational mapping server, 

FTMap (http://ftmap.bu.edu), was used.  

FTMap is a computational mapping server that identifies binding regions on the surface 

of macromolecules, called hotspots [Brenke et al., 2009]. One key property of hotspots 

is their ability to bind with high affinity small molecules with size similar to drugs 

[Owens, 2007]. 

The server is based on a combination of three methods: i. Conformational analysis of 

the small molecule and the protein; ii. Electrostatic potential analysis; iii. Hydrogen 

bonding analysis [Kozakov et al., 2015]. The only input required by FTMap is the 

structure of either a protein, or DNA, or RNA, obtained by X-ray crystallography or 

http://sts.bioe.uic.edu/castp/index.html
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NMR techniques. The input can be provided by giving a PDB ID, or by loading a 

structure in PDB format [Kozakov et al., 2015]. 

In details, the FTMap algorithm consists of five steps: i. rigid body docking of probe 

molecules. The server distributes small organic probes of various sizes, shapes and 

polarity (ethanol, isopropanol, isobutanol, acetone, acetaldehyde, dimethyl ether, 

cyclohexane, ethane, acetonitrile, urea, methylamine, phenol, benzaldehyde, benzene, 

acetamide, and N,N-dimethylformamide) in the 3D structure of the macromolecule to 

be analyzed. For each probe, billions of docked conformations are sampled by a rigid 

body docking step. At the end, the 2000 best poses for each probe are retained for 

further processing; ii. minimization and rescoring: the free energy of each of the 2000 

complexes, generated in Step 1, is minimized using the CHARMM potential with the 

Analytic Continuum Electrostatic (ACE) model [Brooks et al., 1983]; iii. clustering 

and ranking: the minimized probe conformations from step 2 are grouped into clusters 

using a simple greedy algorithm, excluding clusters with less than 10 members. The 

clusters are ranked on the basis of their Boltzmann averaged energies, and for each 

probe, 6 clusters with the lowest average free energies are retained [Ruvinsky and 

Kozintsev, 2006]; iv: determination of consensus sites (CSs): the groups of different 

probes are clustered using the distance between the centers of mass of the cluster 

centers as the distance measure; v: characterization of the binding site: first the largest 

CSs is selected because it is the most important subsite. Moreover, additional CSs are 

identified expanding the binding site by adding any CS (irrespective of its size) within 

7 Å from any CS already in the binding site, and this procedure continues until no 

further expansion is possible [McDonald and Thornton, 1994].  

At the end, a hotspot can be obtained and it is considered “druggable” if it fulfills two 

conditions: 

- Consensus site strength (S), defined as the number of probes within the cluster. A 

consensus site with S ≥ 16 will be druggable; a consensus site with S ≤ 13 is not 

druggable due to very weak binding sites;  
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- Distance between consensus sites: the distance of a consensus from a secondary 

consensus site or another hotspot by a maximum of 8 Å [Kozakov et al., 2015]. 

Through this method, a "possible allosteric site" for hGALT was identified, also in 

agreement with data from MD simulations of arginine. 

 

2.4 Molecular docking 

Docking is a set of methodologies that simulate the interactions between two molecular 

entities (protein/protein or protein/ligand) in order to identify the best molecular 

complex in terms of energy [Morris et al., 2008]. These interactions may involve two 

similar or different molecules that play key roles in different biochemical and cellular 

pathways. This is of great relevance especially from a pharmaceutical point of view. 

2.4.1 Basic concepts for molecular docking 

To perform a docking, the interacting structures must first be complete, and all possible 

interactions between them must be identified and evaluated energetically. There are 

two main challenges: managing the possible number of interactions, as the size of the 

interacting entities increases, and taking into account the possible conformational 

variability of proteins in the absence or presence of a ligand. 

There are several types of docking:  

- rigid-body docking, in which the two interactors are kept in fixed conformations 

[Shoichet and Kuntz, 1991];  

- rigid-protein docking, in which the conformation of the largest interactor (typically 

the protein) is kept fixed, while the conformation of the smaller interactor (typically 

the ligand) is varied in order to have as many conformations as possible [Banitt et al., 

2011];  

- flexible docking, where both interactors can explore the entire conformational space 

of their interaction, as they are both considered flexible bodies [Koshland, 1963]; 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425816/#CR109
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425816/#CR55
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- covalent docking: a possible method for simulating covalent ligand-protein 

interactions [Bianco et al., 2016]. 

Docking consists essentially of three steps: 

i. Initial exploration, in which the properties of the interactors are evaluated and 

compared with any known similar complexes. A docking simulation requires high 

quality atomic resolution structures of both interactors in order to produce reliable 

results, since the interactions that are observed involve single atoms. Furthermore, 

in some crystallographic structures, there may be alternative positions of observed 

atoms. In these cases, both alternatives must be tested during the docking 

simulations [Morris and Lim-Wilby 2008]; 

ii. Selection of the conformation of both interactors and docking, this step refers to 

the simulations that enable to identify the most favorable conformations of the 

interactors. In order to study the conformational variability of the ligand relative to 

its receptor, algorithms have been developed that allow to explore comprehensively 

and efficiently the different "poses" that the ligand can assume; 

iii. The refinement phase, in which specific contacts in the complexes are analyzed, 

assessing the volume occupied by the ligand at the binding site and distinguishing 

similarities and differences with other ligands of the same class. 

For docking, it is necessary to use an algorithm to perform the searching phase, and a 

scoring function to rank the results. The search methods can be divided into two main 

categories: systematic and stochastic. The outcome of a systematic search is 

deterministic, but the quality of the solution depends on the granularity of the sampling 

of the search space. These methods are commonly used in rigid protein docking. 

Stochastic methods that rely on an element of randomness are more suitable for higher-

dimensional problems, such as flexible ligand–protein docking, in which the 

conformational space is sampled by performing random changes to a single ligand or 

a population of ligands [Sousa et al., 2006]. 
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Another classification of search methods is based on the number of potential solutions 

that are explored. For example, local search methods tend to find the closest minimum 

energy to the current conformation, while global search methods seek the best (i.e. the 

global) minimum energy within the defined search space. Hybrid global-local research 

methods have been shown to work even better than global methods alone, being more 

efficient and able to find lower energies [Morris et al., 1998]. 

Genetic algorithms are effective to perform conformational search in docking. They 

are inspired by biology, mimicking the main characteristics of Darwinian evolution 

and Mendelian genetics. The main concept of these algorithms is that a ligand bound 

to a protein can be described by a set of state variables that define the ligand translation, 

orientation, and conformation with respect to the protein. In a genetic algorithm, each 

state variable corresponds to a "gene". The state of the ligand corresponds to the 

"genotype", and its atomic coordinates correspond to the "phenotype". In molecular 

docking, the "fitness" is the total interaction energy of the ligand with the protein, and 

it is evaluated using an energy function. Pairs of individuals are randomly mated and 

new individuals inherit genes from one or both parents in a process of crossover. Some 

offspring randomly mutates one gene, which changes their fitness. The selection of the 

offspring of the current generation is based on the fitness of the individual: thus, those 

best suited to the environment in which they are located reproduce, while those less 

suited are discarded [Morris et al., 1998].  

The Lamarckian Genetic Algorithm (LGA) uses different starting conformations of the 

ligand, referred to as the "population of individuals", to find the conformation that best 

interacts with the protein environment. This is done by choosing the individual with 

the highest "fitness", which is determined by an energy score. However, this procedure 

is based on an inverse mapping function, which yields a genotype from a given 

phenotype. It is possible to finish a local search by replacing the individual with the 

result of the local search [Morris et al., 1998]. 
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The scoring functions required for docking have two fundamental properties: 

selectivity (the ability to distinguish between correct and incorrect structures) and 

efficiency (the ability to find the solution in a reasonable amount of computing time).  

Three types of functions can be used: classical force field-based functions, knowledge-

based functions, and empirical functions. The classical force field-based functions 

compute the direct interactions between protein and ligand, including non-covalent 

protein-ligand interactions. Considering the intrinsic error of each individual energetic 

term, these methods often need empirical scaling parameters to fit their results to 

experimental binding data [Li et al., 2019]. Later, scoring functions were improved by 

solvation energy terms to take into account the free energy change in a protein-ligand 

binding process [Zou et al., 1999]. The energy terms were computed with either 

Poisson–Boltzmann (PB) or Generalized Born (GB) continuum solvation models [Liu 

and Wang 2015].  

In knowledge-based potentials, the frequency of a pairwise contact can be assumed to 

be a measure of the energy it contributes to protein-ligand binding. If a specific 

pairwise contact occurs more frequently than in a reference state, it indicates a 

favorable interaction between the given atom pair. If it occurs less frequently, it 

indicates an unfavorable interaction. The standard approach for deriving desired 

pairwise potentials is to use a large set of protein-ligand complex structures from PDB 

as the training set [Evers et al., 2003].  

In an empirical-based scoring function, the final score is determined by linear 

regression from experimental data collected for a particular category of ligands. A 

training set of protein-ligand complexes with known 3D structures and binding affinity 

data is required to perform the regression analysis. Empirical scoring functions must 

first be calibrated to reproduce protein-ligand binding affinities. The generalization of 

these scoring functions to other categories of ligands is dependent on the quality and 

quantity of experimental data collected [Liu and Wang, 2015].  
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2.4.2 AutoDock suite 

For the docking simulations made in our project, we used AutoDock version 4.2, 

setting up the molecular system with the AutoDockTools (ADT) 1.5.6 software [Morris 

et al., 2008].  

Since its release in 1990, AutoDock is an effective tool in predicting bound 

conformations and binding energies of ligands for macromolecular targets, accurately 

and quickly [Goodsell, 1990]. 

AutoDock is made up of two programs, AutoGrid and AutoDock, which work together 

within the ADT graphical interface. ADT is useful for the coordinate preparation, 

experiment design, and analysis. It is implemented in the object-oriented programming 

language Python and is built from reusable software components. ADT includes 

methods for formatting input molecule files, calculating charges, and specifying 

rotatable bonds in the ligand and the protein, as well as methods for clustering, 

displaying, and analyzing the results of docking experiments [Morris et al., 2009]. To 

prepare the input, the receptor and ligand pdb files are converted into an AutoDock 

proprietary format called pdbqt, which contains information on the partial charge, the 

position of the polar hydrogens, and the rotational degrees of freedom of the ligand 

bonds in addition to the coordinates. Then, a three-dimensional grid, either including 

the entire protein in the case of "blind" docking (i.e. without any indication of the 

location of the binding site) or focusing solely on the binding site in the case of 

"focused" docking is set up.  

The grid coordinates and other information required to create the interaction maps are 

saved in a grid parameter file (gpf). AutoGrid assigns a pre-calculated interaction 

energy between each individual atom of the ligand and the protein, to each grid point 

[Morris et al., 2009]. AutoDock can apply a variety of search algorithms, including two 

local search methods [Solis and Wets 1981], two global search methods: Monte Carlo 

(MC) simulated annealing (SA) [Kirkpatrick et al., 1983], the genetic algorithm (GA) 

[Goldberg 1989] and one hybrid global–local search method, the Lamarckian GA 
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(LGA) [Morris et al., 1998]. The docking parameters are saved in a docking parameter 

file (dpf). The, AutoDock carries out the docking calculations and generates the output 

file (dlg) containing the simulation results based on the dpf file and the information 

generated by AutoGrid. The output file contains the histogram of the obtained solution 

clusters (called "poses"), the numerosity of each cluster, and the interaction energy. 

The best clusters are selected based on a compromise between the lowest (i.e. the best) 

interaction energy and the highest number of poses in each cluster, and are saved for 

later analysis. 

The force field is based on a comprehensive thermodynamic model that allows the 

incorporation of intramolecular energies into the predicted free energy of binding. This 

is performed by evaluating energies for both the bound and unbound states. A new 

charge-based desolvation method has been incorporated which uses a typical set of 

atom types and charges. The method has been calibrated on a set of 188 different 

protein-ligand complexes of known structure and binding energy, showing a standard 

error of about 2-3 kcal/mol in prediction of binding free energy in cross-validation 

studies [Morris et al., 2009] 

 

2.5 Molecular Dynamics (MD) Simulations 

Proteins do not correspond to the immobile images derived from X-ray 

crystallographic analyses, but rather they continuously move their chains, and many of 

these movements are critical to the function they perform. MD studies are an important 

approach to understand the structural and functional properties of molecular systems, 

as well as their dynamic behavior. The MD method was first introduced by Berni Julian 

Alderin in the late 1950's when, together with his collaborators, he made a series of 

remarkable numerical simulations of a simple model system, a set of hard spheres 

[Ceperley and Libby, 2021]. The next major advance was in 1964, when Rahman 

carried out the first simulation using a realistic potential for liquid argon [Rahman, 



 
 

 
57 

 
 

1964]. The first MD simulation of a realistic system was done by Rahman and 

Stillinger in their simulation of liquid water in 1974 [Stillinger, 1974]. The first protein 

simulations appeared in 1977 with the simulation of the bovine pancreatic trypsin 

inhibitor [McCammon et al., 1977]. Currently, we can perform MD simulations of 

nearly every biological system [Hollingsworth e Dror, 2018].  

2.5.1 The simplification of motion and energy calculations for macromolecules 

MD must be based on molecular mechanics in order to measure the energy associated 

with a molecule and study the forces that cause its motion [Durrant and McCammon, 

2011].  

The energy of a molecule is determined by the number and the type of atoms and bonds 

in the molecule, as well as by the forces exerted by each atom on the others, i.e. the set 

of atomic interactions in the molecule [Abraham et al., 2015]. It is possible to 

parameterize the characteristics of the atoms and bonds present in a molecule through 

a force field. One can use various approximations to represent the atoms, such as the 

"united" approximation in which hydrogen atoms bound to the carbons are treated as a 

unique atom, or the "corse-grained" approximation which coarsely represents amino 

acids while still capturing characteristics of their side chains [Jamroz et al., 2013]; the 

more precise the details on the type of atom, the more complex the calculation to be 

made. 

The properties of a covalent bond depend on the type of bond and the type of atoms 

involved in the bond. These characteristics include e.g. bond length, polarizability, and 

geometry. These properties can be calculated and tabulated from experiments 

conducted on real molecules. 

After the parameterization of atoms and bonds has been carried out, the interaction 

energy can be calculated [Wang et al., 2006]. The classical force fields widely used 

today describe the total energy of a molecule as a sum of contributions of different 
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nature that may act on the molecule, with an equation that can be represented in a 

simplified form as: 

Etot=Ebond+ Enon-bond+ Eother 

The term Ebond represents the contribution of covalent bonds to the energy of the 

molecule. This term can be further subdivided into contributions from the energy of 

stretching (vibrations), bending (rotations), and twisting (for dihedral angles), and 

other phenomena [Ponder and Case, 2003]. Instead, the term Enon-bond represents the 

contribution of atoms not covalently bound. This term usually includes the van der 

Waals interactions, electrostatic interactions, and contributions from hydrogen bonds.  

Eother describes other energetic contributions, such as, for example, those of the solvent 

in which the molecule is immersed. 

The classical force fields have a very complex mathematical treatment, which makes 

it computationally very demanding, considering that each energy calculation is 

repeated for each atom every time during the simulations. 

Each type of force field has its advantages and disadvantages, each is specific for a 

certain type of molecule, based on experimental reference models used in the 

parameterization of atoms and bonds. As a result, MD programs have integrated 

various types of force fields to allow users the ability to choose the most suitable option 

for their purposes [Scheraga et al., 2007]. 

The dynamic behavior of a system can be described using Newton's equations in a MD 

simulation. This equation is solved by double integration, which introduces two 

arbitrary constants into the solution: one related to the initial velocity (vi), the other to 

the initial position (ri). The position vector can then be expressed as a function of time 

(it) (Figure 2.1). 
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Figure 2.1: The dynamic behavior of a system of atoms a MD simulation. 

However, Newton's equation represents a set of N second-order differential equations, 

and it is complicate to solve this set of equations precisely in order to obtain atomic 

trajectories. For this reason, the equation is numerically solved at discrete time steps to 

determine the trajectory of each atom. There are several algorithms available for the 

numerical integration of Newton’s equations of motion and calculation of atomic 

trajectories in practical MD runs. Verlet Algorithm [Grubmüller et al., 1990] is an 

example and it consists in a Taylor expansion for forward and backward positions in 

time. Given the coordinates from the structure file, the initial velocities (attributed 

statistically), and the potential energy (calculated through the force field on the starting 

structure), it is possible to simulate the evolution of the system at a given time.  

2.5.2 The simulation environment 

The "life" of a biological macromolecule, such as a protein, occurs within an 

environment crowded of other molecules, atoms, or ions with which our protein is 

constantly in contact, at specific temperature and pressure conditions. As a result, in 

order to achieve a realistic prediction of the behavior of a protein during a MD 

simulation, the environment in which it is immersed must be represented, but since this 

system would be too complicated to simulate, the best compromise is to represent the 

protein as immersed in a box of water, which is viewed as a rigid molecule capable of 

short- and long-range interactions. Different types of water models are commonly used 

during simulations to recreate the aqueous environment inside the box [Scheraga et al., 

2007]. The presence of water molecules in the system, of course, increases the 

computational complexity of the calculations [Scheraga et al., 2007]. Furthermore, in 

order to recreate a neutral system, the presence of counter-ions is required to neutralize 

https://www.tandfonline.com/author/Grubm%C3%BCller%2C+H


 
 

 
60 

 
 

the net charge of the protein or its ligands, just as if a buffer solution was used in the 

laboratory [Scheraga et al., 2007].  

When such a simulation environment is used, in order to avoid the presence of 

unnatural interactions at the edges of the box between the atoms inside the box and the 

vacuum environment outside the box, usually periodic boundary conditions are 

applied. The simulation box is placed in the center of a lattice of boxes identical to 

itself, with the same conditions reproduced [Scheraga et al., 2007]. This box lattice that 

surrounds the molecular simulation environment (Figure 2.2) is required to prevent the 

protein from "escaping" the environment in which it is contained and landing in a space 

that is different from the one in which it is immersed. 

 

Figure 2.2: Representation of periodic boundary conditions [Ercolessi et al., 1997] 

 

During the simulation, the mirror images of each protein must maintain a certain 

minimum distance from each other, avoiding interacting in any way [Abraham et al., 

2015]. Each cell is identified by three vectors, the dimensions of which are listed at the 

bottom of the protein co-ordinate file. Different shapes (e.g. cubic, triclinic, octahedric, 

dodecahedric) can be selected for the box, and usually the protein is positioned in the 

central part, fixing a distance from the box edges that ensures the two periodic images 

of the protein are not coming into contact [Lemkul, 2018].  
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The environmental variables that a protein is exposed to must also be replicated within 

a MD simulation. Within the simulations, these parameters can be specified using 

thermostats and barostats to recreate environments at the desired temperature and 

pressure and observe the behavior of our system under these conditions [Scheraga et 

al., 2007].  

The dynamic state of a system is defined solely by a small set of parameters. The 

canonical isothermal ensemble (NVT) and the canonical isobaric ensemble (NPT) are 

of particular interest in MD simulation. NVT ensemble is characterized by a fixed 

number of atoms, N, a fixed volume, V, and a fixed temperature, T. NPT is 

distinguished by a constant number of atoms, N, a constant pressure, P, and a constant 

temperature, T [Scheraga et al., 2007]. As a result, by incorporating these latest values 

into simulations using a thermostat and a barostat, it is possible to observe the system's 

behavior in desired conditions [Lemkul, 2018]. 

In particular, we can use different algorithms to set a constant temperature of the 

system. The most popular algorithm used are Berendsen [Berendsen et al.,1984] and 

Nosè-Hoover [Nosè, 1984]. Berendsen thermostat is able to maintain the desired 

temperature of the system representing it coupled to an external bath [Eslami et al., 

2010]. The only limit of Berendsen could be an incorrect distribution of kinetic energy 

[Abraham et al., 2015]. To solve this, a modified Berendsen thermostat has been 

developed, called V-rescale, in which an additional stochastic term ensures a correct 

kinetic energy distribution [Basconi et al., 2013]. Instead, Nosè-Hoover considers the 

heat bath as an integral part of the system [Nosè, 1984]. We can also use different 

algorithms to set a constant pressure of the system. The most popular algorithms used 

are Berendsen, with the same considerations previously described, but applied to the 

desired pressure [Lin et al., 2017], and Parrinello-Rahman, which is similar to the 

Nosé-Hoover temperature coupling, and in theory gives the true NPT ensemble [Bussi 

et al., 2009]. 
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2.5.3 Programs used for MD simulations 

2.5.3.1 GROMACS 

MD simulations in our work have been performed using GROMACS (GROningen 

MAchine for Chemical Simulations), a package developed by the Department of 

Biophysical Chemistry at the University of Groningen in the Netherlands that is used 

to perform MD simulations on systems containing hundreds of thousands of atoms. 

This software was originally developed to examine biological molecules such as 

proteins, lipids, and nucleic acids, but it has been extended to the study of non-

biological systems as well [Abraham et al., 2015]. 

GROMACS contains a number of utilities for preparing and executing the simulations, 

and for analyzing results. It includes 15 force fields for automatically generating 

topologies for proteins and multimeric structures. The libraries contained within them, 

in particular, allow to parameterize the 20 natural and some modified amino acids, the 

4 nucleotides, various sugars and lipids, as well as special groups like heme and other 

small molecules. External tools compatible with the reference force fields can be used 

in the presence of small ligands that are not recognized by the internal force fields 

[Abraham et al., 2015]. Furthermore, GROMACS includes many tools for analyzing 

trajectories at the end of the simulation. The results are returned in the form of graphs 

complete with legends, labels, and so on, in a format that can be interpreted by a variety 

of external visualisation programs [Abraham et al., 2015]. 

2.5.3.2 ANTECHAMBER, ACPYPE 

Since GROMACS is not able to write the topology of many ligands, it is necessary to 

use external tools. A fundamental aspect of this procedure is that the parameters used 

to define the topology of the ligands designed with these tools must be consistent with 

those used to define the topology of the protein using GROMACS' internal force fields. 

As a result, there are specific softwares for each force field present in GROMACS that 

attempt to provide parameters compatible with the available force fields [Abraham et 

al., 2015]. ANTECHAMBER, a program for creating the topology of generic organic 
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molecules and metal centers, is one of these. It is based on the General Amber Force 

Field (GAFF), which was specifically designed to parameterize many pharmaceutical 

compounds while remaining consistent with AMBER [Wang et al., 2006]. The ligand 

must be submitted in pdb format. It is then transformed into mol2 format, including 

coordinates and charges for each atom, by ANTECHAMBER. ANTECHAMBER does 

not provide a topology file and a coordinate file that can be used in GROMACS. To 

convert these files into a format compatible with GROMACS, it is necessary to use 

another tool, known as ACPYPE, which is based on the Python language [Sousa and 

Vranken, 2012]. In particular, the mol2 file is given as input to LEaP, a tool in the 

ANTECHAMBER package. This converts all the parameters of the ligand, specified 

in the mol2 file, to a format compatible with GAFF. At the end of the operation, a 

prmtop file and an inpcrd file for our ligand are returned, two intermediate files that 

will be used as input to obtain the final ones for our ligand [Wang et al., 2004]. 

In the present work, ANTECHAMBER and ACPYPE were used to generate the 

topology and coordinate file for the arginine, H2U and G1P ligand. 

2.5.3.3. CHARMM-GUI 

It is a web-based graphical user interface that generates input files for a variety of 

programs such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, 

Desmond, OpenMM, and CHARMM/OpenMM [Lee et al., 2016]. Since its original 

development in 2006, CHARMM-GUI has been widely adopted for various purposes, 

but the main one is to prepare complex biomolecular systems for molecular 

simulations. It is organized through a different number of modules, to read and modify 

molecules (PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & 

Modeler); to build all-atom simulation systems in various environments (Quick MD 

Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer 

Builder, Micelle Builder, and Hex Phase Builder). In particular, Solution Builder [Jo 

et al., 2008] has been used for this project to generate a series of input files for the 

simulation of MD in aqueous solvent environments. To use Solution Builder, one must 
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load the complex (protein and cofactors) and the ligand separately, in compatible 

formats. It is then possible to add water and ion to the system through the Solution 

Builder. In this step, the users can select the waterbox type and enter the edge distance 

from a drop-down menu. The users can choose the neutralisation action by adding 

counterions only, or by selecting a concentration (default is 0.15 M) of the buffer 

solution. At the end, the user chooses both a force field and a desired simulation 

package, and downloads the input files needed to perform the simulations with the 

selected package. 

CHARMM-GUI was used to create the topology of the systems to be prepared for long 

MD simulations (see paragraph 3.4). 

2.5.4 Workflow of the MD simulations using GROMACS 

The following general steps are performed for a MD workflow when using 

GROMACS: 

- Protein topology preparation: the protein pdb file is processed to generate a topology 

file (top), a position restrains file (itp), and an atomic coordinates file (gro). The top 

file contains the parametrization of atoms, bonds, angles, and dihedrals according to 

the selected force field. The itp file contains the information used to 'constrain' the 

position of the heavy atoms and is useful for the subsequent equilibration steps. The 

gro file is the structure file in the proprietary Gromos87 format. In this step, the user is 

also prompted to choose which water model to use as a solvent in the system; 

- Preparation of the ligand topology and creation of the files for the final system: The 

same procedure that is performed for the protein is also necessary for the ligand(s), 

whenever present. If the ligand is recognized by GROMACS, its topology is 

automatically added to that of the protein; otherwise, the topology of the ligand must 

be created with the external tools described before (see paragraph 2.5.3.2). Only when 

ANTECHAMBER is used, the coordinates files of the protein and the ligand, as well 

as their topology files, must be merged manually. If CHARMM-GUI is used, the 
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complex (protein + ligand) is uploaded and the topology of the complex is 

automatically prepared (see paragraph 2.5.3.3); 

- Box construction and solvation: the system's coordinate file is processed to allow 

the construction of a box around the protein. The shape of the box and type of water 

for the system are selected in this phase (see paragraph 2.5.2). After adding the solvent, 

it is critical to update the top file with the reference to the number and type of water 

molecules added to the system [Lemkul, 2018]. This step can be fully automated when 

performed using the CHARMM-GUI program, as explained in the previous section; 

- Neutralisation: After the addition of water, the system must be neutralized by the 

addition of counterions. This is achieved by replacing water molecules with ions 

(usually, sodium or chlorine) in sufficient numbers to achieve neutrality. At the end of 

this step, the topology file will be added with the number and type of the counterions 

[Lemkul, 2018]. Also this step is fully automated when performed using the 

CHARMM-GUI, as explained in the previous section; 

- Energy minimization: Before starting the dynamics simulation, it is necessary to 

ensure that the system has no steric inconsistencies or incorrect geometry. Therefore, 

the structure must be relaxed by applying a minimization procedure. It is an iterative 

process that ends the search for the best conformation when the maximum force is 

lower than a preset value, or when a maximum number of steps is performed, 

parameters specified in the mdp file. To determine whether the minimisation is 

successful, the potential energy of the protein must be examined [Lemkul, 2018]. The 

algorithm used for minimisation is usually the steepest descent, which is very robust 

and easy to implement, but other algorithms are also available in GROMACS, such as 

the conjugate gradient algorithm [Lemkul, 2018]; 

- Equilibration: by minimizing, we obtain a geometrically relaxed structure of the 

protein. The solvent and ions surrounding the protein must also be equilibrated before 

the dynamics can begin. Moreover, it is necessary to bring the system up to the 

temperature at which we want to run the simulation, then, once the optimal temperature 
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is reached, a pressure must be applied so that the system can reach the proper density 

[Lemkul, 2018]. This phase is usually divided into two steps. A set of restraints is 

applied to the macromolecule, and a first equilibration is run with the system 

considered as NVT ensemble (fixed number of particles, volume and temperature). If 

the system is inserted in a thermostated bath at a desired temperature value, it can vary 

its energy until it equilibrates around the set temperature value. The mdp file specifies 

the temperature value in Kelvin that the user wants to set for the system. By analyzing 

the edr output file, it is possible to observe a curve describing the temperature trend 

during the equilibration and confirm that it has reached the desired value [Lemkul, 

2018]. 

A secondo equilibration step is usually run by considering the system in a NPT 

ensemble (fixed number of particles, pressure, and temperature), always keeping the 

position of the atoms in the macromolecules restrained. The addition of a barostat 

allows the system to reach the applied pressure value and to find the right density 

[Lemkul, 2018]. In a similar fashion to the previous equilibration phase, the mdp file 

allows for specification of the desired pressure value and the barostat to be used. At 

this stage, no new initial speeds are generated, the speeds from the previous 

equilibration step are used. The pressure trend during this equilibration phase can be 

visualized to make sure it has reached the set value; 

- Production dynamics: After the equilibration steps, the system is well-balanced at 

the desired temperature and pressure values. The forces imposed by spatial restraints 

on the ligand-protein system during the previous equilibration can be removed, 

allowing the final MD simulation to run for the desired time;  

- Post-processing and analysis of the results: As in any simulation conducted with 

periodic boundary conditions, molecules may appear "broken" or may "jump" back and 

forth across the box. To re-center the protein and rewrap the molecules within the unit 

cell to recover the desired shape of the box, at the end of the simulations, usually there 
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are post-processing commands that must be executed before the trajectory can be 

analyzed. After this post-processing, the trajectories can be analyzed to evaluate: 

- the stabilization of simulations: the analysis of the energetic components (including 

total energy, kinetic energy component, potential energy component, pressure, 

temperature, volume, and density), the analysis of the minimum distance of periodic 

images, and of the root mean square deviation (RMSD) of atom distances;  

- the global structural features: the analysis of the root mean square fluctuation 

(RMSF), of the radius of gyration, of the secondary structures, of the predicted solvent 

accessible surface area (SASA); 

- other analyses made to analyze the structural features of the enzyme: for example, 

the quantitative and qualitative analysis of hydrogen bonds and salt bridges, in terms 

of percentage of existence. 

The trajectories can also be visualized by means of graphic interfaces, such as Visual 

Molecular Dynamics (VMD), a molecular visualization program for displaying, 

animating, and analyzing large biomolecular systems [Humphrey et al., 1996].  

2.5.5 Performing MD calculations on HPC systems 

Because of the massive amount of calculations required, MD simulations are typically 

run on clusters or supercomputers with hundreds to thousands of processors running in 

parallel [Durrant and McCammon, 2011]. The MD simulations for this project were 

performed on advanced calculation platforms provided by CINECA, a non-profit inter-

university consortium made of 102 members (including 69 Italian universities and 33 

institutions) for automatic calculation, founded in 1969, which is one of Europe's large-

scale facilities for high-performing computing and among the most powerful in the 

world. 

CINECA's HPC environment is made up of general-purpose computers that are 

constantly kept at the cutting edge of technology. All CINECA HPC systems share a 

common environment to facilitate resource utilization and data and program 

portability. Despite the different charactesistics of the various systems, users can access 



 
 

 
68 

 
 

any system in similar ways, expect similar behavior, and have access to shared 

resources. There are areas available for both users and projects. Our simulations were 

run on MARCONI, built on the LENOVO NeXtScale platform and Intel Xeon Phi 

processors. Since June 2016, it has been gradually upgraded, and the current 

configuration is Marconi-A3 with SkyLake (in production since August 2017, 

upgraded in January 2018 and completed in November 2018). Marconi was ranked 

12th in November 2016 and 19th in November 2018 on the Top500 list of the most 

powerful supercomputers. 

To launch the simulations, users must typically prepare a shell script containing all 

operations to be executed in batch mode, once the necessary resources are available 

and allocated to the process. The process is then started and executed in the computing 

nodes of the cluster.  

The structure of a typical job in which there is a request for computing resources is 

shown in the figure 2.3: 

 
Figure 2.3: A typical shell script preparing containing all operations to be executed in batch mode. 

In red are described the meanings of each line composing the typical shell script. 

 

The access to these computational resources was made available thanks to ELIXIR-IT 

project [Castrignanò et al., 2020] 

2.6 Set up applied in the present Ph.D. project 

2.6 .1 Starting system 

We have used as a starting point the models of wild type hGALT and of the mutant 

p.Gln188Arg, derived from the crystallographic structure of hGALT enzyme (PDB 
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code: 5IN3) [McCorvie et al., 2016] and modelled according to d’Acierno et al., 2018. 

Both models contain the ligands G1P and H2U that were visible in the crystallographic 

structure, as well as the Zn ions.  

During the analysis of the crystallographic structure of wild type hGALT, we found a 

series of discrepancies (shown in the table 2.1) between some data present in the 

scientific article related to the crystallographic experiment and those released in the 

PDB file 5IN3. In this structure, the enzyme was captured during the first ping-pong 

step, having H2U and G1P in the active sites of both chains (A and B). Particularly, 

the terminal phosphate group of both H2U has a phosphorus atom which apparently 

binds 3 oxygen atoms instead of 4 (Figure 2.4). During the modelling process, the 

covalent bond between H2U and the residue His186 has not been modelled, and the 

structure of this ligand in both cases has been modified (Figure 2.4 B) in order to restore 

the normal phosphate group, by using Chimera. This covalent bond is atypical because 

it is a transient bond; the choice not to model it has also avoided problems in the 

parameterization of this anomalous bond in the following steps. Moreover, the 

phosphate groups of the two ligands (H2U and G1P) were considered in their charged 

(deprotonated) form throughout the simulations (Figure 2.4 B and C). 

 

Discrepancy PDB file McCorvie et al., 

2016 

Resolution 1.73 Å 1.9 Å 

Template used for the molecular replacement technique 1HXQ (structure 

from E. coli) 

[Wedekind et 

al.,1996] 

1HXP (structure 

from E. coli) 

[Wedekind et 

al.,1996] 

Temperature for the growth of crystal 12.85 °C 20 °C 

Pixel detector PILATUS 6M PILATUS 2M 

 

Table 2.1: Discrepancies between the experimental data contained in the PDB file 5IN3 with 

respect to the article associated to the file McCorvie et al., 2016. 

https://www.rcsb.org/search?q=audit_author.name:Wedekind,%20J.E.
https://www.rcsb.org/search?q=audit_author.name:Wedekind,%20J.E.
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Figure 2.4: A. Crystallographic structure of H2U from 5IN3; B. Structure of H2U with two negative 

charges; C. Structure of G1P with two negative charges. 

 

2.6.2 Set up of the docking simulations using AutoDock 

2.6.2.1 Docking of Arginine 

Arginine was considered in its zwitterionic form with the side chain protonated 

throughout the simulations. For all the docking simulations, polar hydrogens were 

added to the proteins and ligands (except for those groups in ligands that were 

considered deprotonated), and charges were assigned according to Gasteiger 

[Gasteiger, 1980]. For the docking with arginine into the active site of the protein, we 

used a grid map with a spacing of 0.375 Å and dimensions of 58x80x74 points, focused 

on the residues belonging to the active site of GALT formally identified as “A” 

(containing His 186 of the chain A), as reported in the PDB file. These simulations 

were performed either by alternatively keeping G1P and H2U in the active site A, or 

by removing both ligands from the active site A; instead, active site B was left without 

ligands. A grid map with the same spacing as above and dimensions of 92x112x102 

points, centered on the central cavity of the enzyme, was used to set up the simulations 

of the binding of arginine in the central cavity of the enzyme. For each system, 100 

docking runs were performed using the AutoDock Lamarckian genetic algorithm, 

treating the protein as rigid and the ligand as flexible. All the other parameters were 

kept as default (population size: 150; number of energy evaluations: 2,500,000; and 
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number of generations: 27,000), as is advisable for this molecule with 6 torsional 

degrees of freedom. The docking poses were clustered using an RMSD value of 2.0 Å. 

The conformations representative of the best energetic and/or the most populated 

cluster of poses were selected, saved in pdb format, and analyzed for their interactions 

with the enzyme by using Discovery Studio. Those identified as the best conformation 

for each system were used as a starting point for the following MD simulations. 

2.6.2.2 Docking of PCs 

A total of five PCs were selected (we will not provide their names to protect possible 

future patent applications, but we will indicate them as follows: PC1, PC2, PC3, PC4 

and PC5). These PCs were simulated in the central cavity in the same condition of 

arginine. A grid map with the same spacing as above and dimensions 68x86x72 was 

used. At the end, 16 docking were made for each PCs (see paragraph 3.3.1). Once 

identified a potential allosteric site (see paragraph 2.7), all five PCs were simulated for 

the docking also on the putative allosteric sites of both chains. A grid map with 

dimensions 48x48x56 (for potential allosteric site of chain A) and with dimensions 

50x53x43 (for potential allosteric site of chain B) were used. 

2.6.2.3. Docking of pharmacophoric hits 

The best conformations selected from each previous docking were used as the starting 

point for receptor-based pharmacophore modeling. The steps of receptor-based 

pharmacological modelling are explained in detail in paragraph 2.7.2. For now, it is 

sufficient to know that the result of this procedure provides as output a set of ligands 

(called a hit list). From this hit list, a total of 19 ligands, called pharmacophoric hits 

were selected (according to the parameters explained in paragraph 2.7.2). For each hit, 

two types of docking were simulated: on the potential allosteric site of chain A and on 

the potential allosteric site of chain B, identified by the FTMap server (see paragraph 

2.7.1). For simulations on the potential allosteric site of chain A, a grid map with the 

same spacing and dimensions 48x48x56 was used. The best docking results concerned 

only 4 ligands among the 19. So, only for these 4 ligands docking were done also into 
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a putative allosteric site of chain B. For this, a grid map with the same spacing as above 

and dimensions 50x53x43 was used. 

2.6.3. Set-up of MD simulation procedures 

Both the dynamics of GALT enzyme and of its pathogenic mutant p.Gln188Arg under 

different experimental conditions and dynamics of arginine have the same protocol, 

described in paragraph 2.6.3.1. 

During the last year of PhD, the MD simulation protocol has been modified in order to 

set-up long MD simulations for the study of the allosteric communications inside 

GALT protein. This protocol is described in section 3.4. 

MD simulations concerned the following systems:  

- no arginine: wild type hGALT; wild type hGALT + G1P + H2U; p.Gln188Arg; 

pGln188Arg + G1P + H2U at two different temperatures (310 K, corresponding to the 

normal body temperature, and 334 K, a temperature close to the Tm of the enzyme). 

We have used as a starting point the models of wild type hGALT and of the mutant 

p.Gln188Arg obtained as described previously; 

- arginine in the active site A: wild type hGALT + arginine; p.Gln188Arg + arginine; 

wild type hGALT + G1P + arginine; p.Gln188Arg + G1P + arginine; wild type hGALT 

+ H2U + arginine; p.Gln188Arg + H2U + arginine; 

- arginine in the central cavity: wild type hGALT + arginine; p.Gln188Arg + arginine; 

wild type hGALT + G1P + arginine; p.Gln188Arg + G1P + arginine; wild type hGALT 

+ H2U + arginine; p.Gln188Arg + H2U + arginine. 

The starting points for the MD of arginine simulations were the best docking results. 

The package used for the MD simulations was GROMACS 2018.3 [Abraham et al., 

2015]. The force field used throughout the simulation of systems with arginine was 

Amber ff99SB-ILDN [Ponder, et al., 2003; Lindorff-Larsen, et al., 2010], and the 

packages ANTECHAMBER and ACPYPE [Wang et al., 2006; Sousa da Silva et al., 

2012] were used according to their instructions to calculate the correct topology for the 

ligands. Each of the starting systems was included in a cubic box centered on the 
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protein, with a distance of 1.2 nm from it, filled with water (using the TIP4P model 

[Abascal et al., 2005] according to the suggestions in the GROMACS manual) and 

neutralized with sodium or chlorine counterions. The systems were first minimized by 

applying steepest descent minimization, setting the cut-off for short-range electrostatic 

and van der Waals interactions to 1.2 nm, and using the grid method to determine the 

neighbor list. Minimization stopped when the maximum force reached a value lower 

than 10.0 kJ/mol/nm. 

Equilibration steps with position-restrained MD simulations were run first in NVT 

conditions for 100 ps and subsequently in NPT conditions for 1000 ps. For the NVT 

equilibration, the V-rescale thermostat [Bussi et al., 2007] was applied, fixing two 

temperatures: 310 K (the normal body temperature) and 334 K (a temperature close to 

the Tm of the enzyme); for NPT equilibration, the Berendsen barostat [Berendsen, et 

al., 1984] was added to keep the pressure constant at 1.0 bar. At the end of the 

equilibration, for each system, we performed 200 ns-long MD simulations in NPT 

conditions, at a temperature of 310 K or 334 K. For the production runs, the Berendsen 

barostat was replaced with the Parrinello–Rahman barostat [Parrinello et al., 1981].  

The other parameters selected for the production simulations were: the leap-frog 

algorithm [van Gunsteren et al., 1988] for integrating Newton equations of motion; the 

LINear Constraint Solver (LINCS) algorithm [Hess et al., 1997] to constrain bonds; 

Verlet [Verlet et al., 1967] as cutoff scheme in the neighbor searching section; Particle 

Mesh Ewald (PME) method [Darden et al., 1993] to handle long-range electrostatic 

interactions. Two replicas have been made for each simulation. 

At the end of the simulations, the trajectories were analyzed using GROMACS analysis 

tools. The obtained results were plotted by using XMGrace software (https://plasma-

gate.weizmann.ac.il/Grace/; last accessed 24 September 2022). 
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2.6.4 Set up of the search of allosteric site and identification of pharmacophores 

for GALT 

As already reported in paragraph 2.3.2, FTMap, a computational mapping server that 

identifies hotspots or binding regions in proteins [Brenke et al., 2009], has been used 

to identify putative allosteric sites in the structures of wtGALT and p.Gln188Arg. The 

search was made by using default parameters. As reported in paragraph 2.6.2.2, we 

performed docking of 5 selected PCs either on central cavity or on the putative 

allosteric site of GALT enzyme. Following, the best conformations of docking on the 

putative allosteric site were selected and used as a starting point for the following step, 

made by applying the Discovery Studio Interaction Generation protocol (see paragraph 

2.2.3). In our set up, Discovery Studio takes as input only the docking conformations 

(best energy and most populated) and creates all possible combinations of 

pharmacophoric model. A representative result is shown in table 2.2, in which (as 

reported in the paragraph 2.2.3) is ranked on decreasing selectivity score, describing 

the pharmacophoric features (or feature set). 

 

Table 2.2: Summary of pharmacophores generated by BIOVIA Discovery Studio,  

a representative result 
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Among the generated pharmacophore models, the best one (which generally 

corresponds to the first one having a better selectivity score) is selected, and this best 

model is used for the last step, i.e. the search for pharmacophoric hits. In our study, we 

uploaded DrugBank database (the last version on Febrary 2020) into Discovery Studio.  

In particular, the ’Search 3D-database’ function provides a rapid filtering of the input 

database, selecting those hits that match the minimum amount of features defined by 

user. A hit list is finally provided in the form of a table, presented in descending order 

of fit value, with associated information for each compound (e.g. the DrugBank code, 

the IUPAC and generic name, the status of the trial (drug approved, in trial or under 

investigation) and finally whether it meets Lipinski's "rule of 5” [Lipinski et al., 1997, 

2001]. The next step involves the selection of hits based on two parameters: i. a fit 

value greater than or equal to 3; ii. only pharmacophoric hits found from the 

pharmacophore model generated by the docking conformations of the p.Gln188Arg 

mutant were reported. 

In the last step, the selected hits (19 in total) were simulated on the potential allosteric 

site of chain A. Additionally, only for the best 4 among 19 hits, docking were 

performed also on the potential allosteric site of chain B.  
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3. RESULTS AND DISCUSSION 

 

3.1 Analysis of the structure-function-dynamics relationships of GALT 

enzyme and of its pathogenic mutant p.Gln188Arg by means of MD 

simulations 

We performed MD simulations of both wtGALT and p.Gln188Arg proteins in the 

absence or in the presence of the substrates (G1P and H2U) at different temperatures 

(310 K and 334 K). 310 K corresponds to the normal human body temperature, whereas 

334 K is a temperature near the Tm of the enzyme [McCorvie et al., 2016; Coelho et 

al., 2014]. In this last case, we would like to simulate an environment that favors the 

destabilization of the enzyme, to predict the molecular effects (if any) of this 

destabilization, particularly at the level of intersubunit interactions. 

3.1.1 Analysis of MD Simulations at 310 K 

The simulations performed on both wtGALT and p.Gln188Arg at 310 K, in the 

presence and in the absence of the substrates, were analyzed to confirm that they were 

not significantly affected by perturbations. 

The analysis of the energetic components (including total energy, kinetic energy 

component, potential energy component, pressure, temperature, volume, and density), 

of the minimum distance of periodic images, and of the RMSD of atom distances, 

showed that both systems quickly reached the stabilization (see Supplementary Files 

1, 2, 3, 4)  

A slight difference in the global structural features of these two systems, in the absence 

of substrates, can be detected with the analysis of the RMSF, which shows a slightly 

enhanced flexibility of the mutant in the zone of residues ~50–70 (including segment 

50–60 formed by very conserved residues at the intersubunit interface, some of which 

are also involved in substrate interactions), ~300–320 (a long loop including the three 

conserved His residues His301, His319, His321 forming the Zn binding site), and 

marginally in the zone of mutation. The fluctuation, especially for segment 300–320, 
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is not identical in the two chains (Figure 3.1 a,b). For the mutant in the presence of the 

substrates, the RMSF graph shows for both systems an enhancement of the flexibility 

around residues 50–70 and a decrease in the flexibility of the segment between residues 

300–320 with respect to the systems in the absence of the ligands (Figure 3.1 c, d), in 

particular for one of the two chains. Thus, it appears that the presence of the substrates 

has a different effect on the local flexibility of wt hGALT with respect to p.Gln188Arg. 

 

Figure 3.1 RMSF analysis for simulations at 310 K of: (a): wtGALT; (b): p.Gln188Arg; (c) wtGALT 

+ G1P + H2U. (d) p.Gln188Arg+ G1P + H2U.  Blue lines represent RMSF fluctuation of chain A, 

red lines RMSF fluctuation of chain B. 

 

The results obtained are in agreement with the work of McCorvie et al., 2016, discussed 

in the introduction (see paragraph 1.3.2). McCorvie and coauthors identified loop 49-

63 as one of the crucial loops, corresponding to a surface-exposed region in the H2U-

binding site which is ordered only when H2U is bound to the active site. The 

enhancement of flexibility around residues 50-70 (observed in our MD simulations) 

includes the loops 49-63, which is more flexible in the mutant, where the binding of 

H2U is compromised and cannot impart order to this region. 
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The analysis of the content of secondary structures did not show main differences 

between the two systems in the absence of the ligands (see Supplementary File 9 a, b). 

The mutant enzyme with the substrates, instead, highlights a slightly increased content 

in less regular structures, such as the π-helix (indicated as 5-helix in the graph) (see 

Supplementary File 9 c, d). Thus, once again, in the presence of the substrates the 

mutant enzyme shows a perturbation that could be diagnostic of the alteration of its 

structural features due to the mutation.  

During the simulations, the radius of gyration remained stable and practically identical 

for all systems (see Supplementary File 10, panels a–d). The SASA was similar for 

systems in the absence of substrates, with a small decrease (from 310 to 290 nm2) in 

both cases and a slightly more accentuated decreasing trend for the mutant enzyme (see 

Supplementary File 11, panels a, b). In the simulation in the presence of the substrates, 

the SASA of wtGALT is fluctuating around an average value of 305 nm2, whereas in 

p.Gln188Arg it shows a marked decreasing tendency along the trajectory from about 

320 nm2 to 300 nm2 (see Supplementary File 11, panels c, d). 

The analysis of the interactions between the enzymes and the ligands present in both 

active sites show that both ligands are stably bound to the proteins during the 

simulations (see Supplementary File 12, panels a, d). Both in wtGALT and in 

p.Gln188Arg, G1P interacts with residues belonging to both chains, mainly with 

residues Arg48 and Arg51 and less stably with residues belonging to the segment 330–

340 of the protein. In wtGALT, H2U interacts with several residues, but does not show 

persistent interactions. On the contrary, in p.Gln188Arg, H2U shows persistent 

interactions with His186 and Arg188. In particular, with this last residue, both 

hydrogen bonds and salt bridges are predicted to occur. The interactions of the 

substrates are not exactly symmetrical in both active sites (Figure 3.2). 
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Figure 3.2: Interactions between enzyme and ligands in simulations at 310 K. (a) wtGALT; (b) 

p.Gln188Arg. Panels on the left indicate the ligands of the active site 1 (formally belonging to subunit 

A), panels on the right indicate the ligands of the active site 2 (formally belonging to subunit B). Grey 

background indicates interactions that persist for more than 50% of the simulation time. Grey dashed 

lines indicate H-bonds; residues underlined are also able to form salt bridges. Red dashed lines 

indicate interactions between the ligands. 

 

To verify if the introduction of the mutation p.Gln188Arg in the protein could 

destabilize its quaternary assembly, we analysed the H-bonds present at the 

intersubunit interface. The results are shown in table 3.1, in which are listed many 

stable interactions that were not detected in the static models of the enzymes 

[d’Acierno et al., 2018; McCorvie et al., 2016], but that are conserved during the 

simulations and are present in both systems. The average number of intersubunit H-

a)

9)

) 

b) 
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bonds calculated per each timeframe is slightly higher in p.Gln188Arg than in 

wtGALT, but, interestingly, when the ligands are bound to the enzymes, the number of 

stable H-bonds is frequently higher in wtGALT than in p.Gln188Arg (table 3.1). This 

suggests that the ligands exert a stabilizing effect on the quaternary assembly of the 

wild-type enzyme and that this effect is lost in the mutant.  

 

Table 3.1. Pairs of residues involved in stable intersubunit H-bonds in simulations at 310 K.Bold: 

stable interactions present in all systems. Pairs of residues are considered to have a stable H-bond 

interaction if the sum of % of existence of the H-bonds between the two residues is >50. 

 

We also calculated the intersubunit salt bridges present in the different simulations and 

found that their number is slightly higher in the mutant enzyme with respect to 

wtGALT in the absence of ligands, whereas the opposite is true in the presence of the 

ligands (table 3.2), as it happens for H-bonds (table 3.1). However, considering the low 

number of stable salt bridges detected during the simulations, it is not possible to 

deduce if this difference is significant. A salt bridge between Asp113 of chain A and 
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Arg228 of chain B visible in the static model, is conserved in the simulations. Instead, 

another intersubunit salt bridge that is visible in the starting structure (His114B-Glu 

220A) [d’Acierno et al., 2018; McCorvie et al., 2016], is not preserved during all the 

simulations. Additional salt bridges between the Glu58 of chain A and the Arg333 of 

chain B and between the Asp98 of chain A and the Arg51 of chain B are stably present 

in p.Gln188Arg only in the absence of substrates. 

 

Table 3.2. Pairs of residues involved in stable intersubunit salt bridges in simulations at 310 K. Pairs 

of residues are considered to have a stable salt bridge interaction when the sum of % of existence of 

the salt bridges between the two residues is >50. 

 

From these analyses it is possible to infer that the presence of the mutation is able to 

perturb the correct intersubunit interactions present in wtGALT, but this perturbation 

is more evident when the ligands are bound in the active site. Although the length of 

the simulation (200 ns) cannot allow for the detection of a complete destabilization of 

the enzyme, these effects appear to confirm what it was deduced from the analysis of 

the static structure, i.e., the replacement of Gln188 by Arg not only impairs the 

enzymatic activity, but also the stability of the quaternary assembly, and probably, the 

two effects are correlated.  

3.1.2 Analysis of MD Simulations at 334 K 

The quality checks of the trajectories obtained at higher temperature confirmed the 

good stabilization and the correct behavior of the systems during the simulations (see 

Supplementary Files 5,6,7,8). 

Similarly to the equivalent systems at 310 K, the RMSF graphs of the simulations in 

the absence of the substrates (Figure 3.3 a, b) do not reveal a great enhancement in the 

flexibility of the protein structure, confirming that the most fluctuating parts of the 
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enzymes are the segments including residues ~50–70 and ~300–320 and again the 

fluctuation is not identical in the two subunits. In the mutant enzyme, differently from 

the simulations at 310 K, in the mutant enzyme, the presence of the ligands shows the 

fluctuation in these segments, with respect to the simulation at 334 K in the absence of 

ligands (Figure 3.3 c, d). 

 

Figure 3.3 RMSF analysis for simulations at 334 K of: (a): wtGALT; (b): p.Gln188Arg; (c) 

wtGALT +G1P + H2U; (d) p.Gln188Arg+G1P + H2U. Blue lines represent RMSF fluctuation of 

chain A, red lines of chain B. 
 

The analysis of secondary structures (see Supplementary File 9, panels e–h) reveals 

the formation of more irregular structures such as the π-helix (indicated as 5-helix in 

the graph produced by DSSP algorithm) in wtGALT, and a small increase in the 

number of disordered structures such as coils in p.Gln188Arg. The presence of the 

ligands seems to stabilize the secondary structures, since in wtGALT the irregular 

structures such as π helices are no longer detected and the number of residues in the 

coils is reduced in p.Gln188Arg; however, this last system is still more perturbed, given 
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that the presence of the π-helices is still detectable. Thus, as in the case of the 

simulations at lower temperature, in the mutant enzyme, the presence of the substrates 

is not able to rescue completely the destabilization. 

Even at higher temperature, the ligands in the active site remain stably associated with 

the enzymes (see Supplementary File 12 e–h). The detailed interactions between the 

ligands and the residues of the active site are reported in Figure 3.4.  

 

 

Figure 3.4 Interactions between enzyme and ligands in simulations at 334 K. (a) wtGALT; (b) 

p.Gln188Arg. Panels on the left indicate the ligands of the active site 1 (formally belonging to subunit 

A), panels on the right indicate the ligands of the active site 2 (formally belonging to subunit B). Grey 

background indicates interactions that persist for more than 50% of the simulation time. Grey dashed 

lines indicate H-bonds; residues underlined are also able to form salt bridges. Red dashed lines 

indicate interactions between the ligands 
 

The persistent interactions between G1P and Arg48 or Arg51, predicted at 310 K both 

in wtGALT and p.Gln188Arg, are conserved even at this higher temperature, as well 

as the persistent interactions (hydrogen bonds and salt bridges) between H2U and 

Arg188. Therefore, also at high temperature it is possible to suppose that the mutant 

residue Arg188 is able to interfere with the correct enzymatic activity of GALT. Again, 

the interactions found in the two active sites are not identical. The analysis of the radius 

a)

9)

) 

b)

9)) 
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of gyration (see Supplementary File 10, panels e–h) does not highlight the main 

differences between the two proteins, whereas the analysis of the SASA (see 

Supplementary File 11, panels e–f) shows that p.Gln188Arg has a higher value of this 

parameter (average value between 330 and 340 nm2 compared to the average value 

between 290 and 300 nm2 in wtGALT), indicating that the mutant protein tends to 

expose a higher area to the solvent, and this effect is clearly more visible at high 

temperature. 

In the presence of the ligands, the SASA is slightly lower in wtGALT than in 

p.Gln188Arg and, for the mutant, is lower than the value predicted in the absence of 

the ligands (see Supplementary File 11, panels g–h), reaching the same value of the 

simulations at 310 K. 

The analysis of the interface interactions shows that, in the simulations in the absence 

of the ligands at higher temperatures, the average number of H-bonds per timeframe 

are practically unchanged in both systems with respect to the simulations at 310 K 

(Table 3.3). Contrarily to what happens in the systems at 310 K, the presence of the 

ligands in wtGALT does not increase this parameter, suggesting that at a higher 

temperature, they are no longer able to promote a further stabilization of the 

intersubunit interface. Instead, in p.Gln188Arg, this parameter is decreased, as it 

happens at body temperature, showing that the mutation still destabilizes this interface. 

In addition, at high temperature, many stable H-bond interactions, including some that 

are not detectable in the static structures, are formed during the simulations, and their 

number is higher in the absence than in the presence of the ligands, in both systems. 

The residues involved in these interactions are essentially the same predicted to interact 

at body temperature. 
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Table 3.3 Pairs of residues involved in stable intersubunit H-bonds in simulations at 334 K. Bold: 

stable interactionspresent in all systems. Pairs of residues are considered to have a stable H-bond 

interaction when the sum of % of existence of the H-bonds between the two residues is >50. 

 

The number of salt bridges is identical both between the two systems in the absence of 

ligands and between the two systems in the presence of ligands and is lower in the latter 

case (Table 3.4). Again, the number of these interactions is so low that it is not possible 

to state if this difference is significant or not. In all systems, the salt bridge between 

Asp113 and Arg228 is conserved, whereas the interaction between the Glu58 of chain 

A and the Arg333 of chain B is lost in the presence of the substrates, as it was the case 

for simulations at 310 K (table 2). From these results, it appears that at 334 K, both 

systems are not dramatically perturbed, although some differences are present 

especially in the flexibility of the most mobile segments and in the secondary 

structures. The temperature seems not to perturb drastically the quaternary assembly 

of the enzymes, but the ability of the substrates to stabilize especially the intersubunit 

H-bonds seems to be lost in wtGALT at higher temperatures, and in p.Gln188Arg in 

all conditions. 
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Table 3.4 Pairs of residues involved in stable intersubunit salt bridges in simulations at 334 K. Pairs 

of residues are considered to have a stable salt bridge interaction when the sum of % of existence of 

the salt bridges between the two residues is >50. 

 

 

3.2 Arginine as a possible pharmacochaperone for GALT 

As discussed in the paragraph 1.6.4, first the apparent ability, and then the apparent 

failure of arginine to act as a pharmacochaperone for GALT, prompted us to apply 

computational simulations in order to understand, at the molecular level, the possible 

interactions between the enzyme and this amino acid, in an effort to predict the putative 

effect (if any) of arginine on the GALT enzyme.  

3.2.1 Docking simulations 

First of all, a preliminary docking study, performed with a blind approach, showed that 

arginine tends to interact mainly with the active sites of both wtGALT and 

p.Gln188Arg mutant protein, with a preference for active site A (paragraph 1.3.2, 

figure 1.12). Additionally, the same docking study shows the interaction of arginine 

with other aspecific sites on the protein surface, without any clusterization (data not 

shown). 

Therefore, we considered the active site as a first putative target for the binding of 

arginine. Targeting the active site of the enzyme could have an effect on the overall 

stability of the structure of GALT, given that the two active sites of the protein are at 

the interface between the two subunits forming the quaternary assembly and are formed 

by residues belonging to both monomeric chains. Additionally, the mutant 

p.Gln188Arg shows a dominant negative effect due to the perturbation of the 

intersubunit interface caused by the mutation [Marabotti et al., 2005, McCorvie et al., 

2016]. Therefore, as a first approach, we docked arginine in the active site A of both 

wtGALT and p.Gln188Arg, in the presence or in the absence of the natural substrates, 
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to predict possible effects induced by this amino acid on the enzyme’s quaternary 

assembly and stability. Additionally, given that the central cavity of the GALT enzyme 

represents a very interesting target for putative PCs [Timson et al., 2016], we also 

decided to simulate the possibility that arginine could bind to this portion of the 

enzyme. The central cavity is formed by residues belonging to both subunits, creating 

important networks of interactions [d’Acierno et al., 2018; McCorvie et al., 2016] and 

our goal was to detect if the presence of arginine in this position can influence, either 

favorably or unfavorably, the activity of the enzyme.  

The two starting structures of wtGALT and p.Gln188Arg were analyzed with the 

CASTp 3.0 Web server (http://sts.bioe.uic.edu/castp/calculation.html; last accessed 5 

October 2021) [Tian et al., 2018], which identified three main cavities: the two active 

sites and the central cavity, with an area of 1772.5 Å2 and a volume of 2442.6 Å3, 

formed by 67 residues, of which 32 belong, formally, to the subunit A and 35 to subunit 

B (Figure 3.5).  

 

Figure 3.5: A. Table listing the residues of the central cavity of wtGALT detected by the CASTp 3.0 

servers: the underlined residues are part of active site; B. representation of the central cavity of 

wtGALT with a front view. Image obtained by CASTp 3.0 [Tian et al., 2018]. 
 

Then, we performed docking simulations targeting the whole central cavity, and also 

in this case, we simulated the binding of arginine in the presence and in the absence of 

both natural substrates in the active site. The docking results for arginine in the different 
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conditions simulated are reported in table 3.5. They show the different poses 

corresponding to each result and the details of their interactions with the residues of 

the protein (see Supplementary Files 13, 14).  

 

Table 3.5. Docking results for arginine used as starting point for MD simulations 

The energies of interactions predicted for arginine are negative (favorable) for all the 

systems, although their absolute values are not that high, indicative of the fact that 

arginine does not interact strongly with the protein. They are lower (more favorable) 

in those systems in which H2U alone is present in the active site. In these systems, 

arginine interacts with the residues of the active site (in particular, Arg48 and Lys334, 

which interact with the negatively charged part of the amino acid, and Glu340, Ser181, 

and Arg51, which form H-bonds with the polar groups of arginine) and with a strong, 

favorable interaction with the phosphate group of H2U. When the active site of the 

enzyme is partly occupied by G1P, the positions of arginine seem slightly different in 

the two systems. Indeed, in wtGALT, arginine interacts with the residues Glu172, 

Asn173, and Ser181, the catalytic residue His186, and Gln188; on the contrary, in the 

mutant p.Gln188Arg, there is an unfavorable interaction with the residue Arg188 that 
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probably displaces arginine towards Arg48, Asn 97, and Asp98. In both cases, there is 

also a favorable interaction with the phosphate group of G1P. 

We also simulated the condition in which the active site of the GALT enzyme and of 

mutant p.Gln188Arg are occupied by both ligands, but as expected, arginine cannot 

enter in it and stays on the protein surface, contacting a portion of the external part of 

the enzyme, with a predicted binding energy significantly higher than that obtained in 

the other simulated conditions (data not shown).  

The docking results for the central cavity of the enzymes gave less defined results than 

those in the active site, because the cavity is very large and, thus, arginine has a higher 

conformational freedom. However, all the simulations predicted a negative binding 

energy, suggesting the possibility that arginine could also bind to this cavity. In these 

systems, arginine frequently binds to Gln38 and Glu40, with occasional contacts with 

Asp197, Arg 201, Thr248, Met341, and Gln344. The predicted binding energies in all 

these conditions seem not to be significantly different, indicating that neither the 

mutation nor the presence of the substrate in the active site would affect the binding of 

arginine in the central cavity. 

3.2.2 MD Simulations — Arginine in the active site 

MD simulations were performed at 310 K and for 100 ns, a timescale in which it is 

possible to evaluate if arginine remains or not in the active site. The starting point for 

the MD simulations was the best docking results, reported in Table 3.5. The analyses 

of the energetic components, of the minimum distance of the periodic images, and of 

the RMSD of the atom distances for these simulations showed that the systems reached 

stabilization and that no major perturbation affected them (see Supplementary Files 25, 

26, 27,28,29,30). From the data obtained by the two different replicas of the 

simulations, it appears that arginine is not bound stably to the active sites of both the 

wild type and the mutant enzyme, irrespective of the absence or the presence of either 

ligand (see Supplementary File 17). When arginine binds into the active site and 

ligands are not present, arginine occupies the cavity that hosts G1P (the same identified 
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with the docking simulation) and binds to residue Arg48 and to residues belonging to 

loop 334–340 in both wt GALT and p.Gln188Arg (Figure 3.6 a, b). When G1P alone 

is in the active site, arginine occupies the place that usually hosts H2U, but interacts 

only with Asp98 in wtGALT, in addition to the phosphate group of G1P itself (Figure 

3.6 c). In p.Gln188Arg, the interactions are made with Gln54, His186, and Arg188 

(Figure 3.6 d). When H2U alone is in the active site of wtGALT, arginine is hosted 

again in the cavity of G1P and interacts with the same residues listed above. 

Additionally, arginine also interacts with the phosphate group of H2U. We observed 

that the presence of a molecule of arginine in the active site of p.Gln188Arg determines 

the creation of a cluster of positive charges that perturbs not only the interactions that 

H2U can keep with the active site, but also the binding of arginine itself. In all these 

simulations, G1P and H2U remained stably bound to both wtGALT and p.Gln188Arg 

(see Supplementary File 18). G1P stably interacts with Arg48 and Arg51, and, 

additionally, with residue 188 and residues 339 and 340, in both wtGALT and 

p.Gln188Arg (Figure 3.6 c,d). H2U in wtGALT is in contact with Asn97, Asp98, and 

His186, whereas in p.Gln188Arg, it contacts Arg48, Arg51, and Arg188 (Figure 3.6 

e,f). The replacement of Gln188 with Arg is able to perturb the pattern of interactions 

of the substrate [Marabotti et al., 2005]. Concerning the global state of the systems, the 

radius of gyration was constant during these simulations (see Supplementary File 19). 

The SASA appears to be affected by the binding of arginine in the active site: this 

parameter tends to increase when arginine moves away from the active site (see 

Supplementary File 20).  
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Figure 3.6. Interactions of arginine in the active site with enzyme and ligands. (a) wtGALT +arginine; 

(b) p.Gln188Arg + arginine; (c) wtGALT + G1P + arginine; (d) p.Gln188Arg + G1P + arginine; (e) 

wtGALT + H2U + arginine; (f) p.Gln188Arg +H2U + arginine. Gray background indicates 

interactions that persisted for more than 50% of the simulation time. Gray dashed lines indicate H-

bonds. Red dashed lines indicate interactions between the ligands. 
 

The analysis of the evolution of the secondary structures (Figure 3.7) shows that, in the 

presence of arginine alone, wtGALT shows a slightly higher presence of irregular 

structures such as the π-helix with respect to the mutant enzyme. No differences are 

detectable in both systems in the presence of G1P. In the presence of H2U, irregular 

structures are detected in the mutant enzyme when arginine is bound to the active site. 
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Figure 3.7. Representative results of DSSP analysis for simulations with arginine in the active site. 

(a) wtGALT + arginine; (b) p.Gln188Arg + arginine; (c) wtGALT + G1P + arginine; (d) p.Gln188Arg 

+ G1P + arginine; (e) wtGALT + H2U + arginine; (f) p.Gln188Arg+ H2U + arginine.  

 

Comparing the RMSF graphs (Figure 3.8), the main variability in all the simulations 

seems to be focused on the same segments already shown in simulations discussed in 

the paragraph 3.1.1 and 3.1.2., i.e., mainly segments 50–70 (including segment 50–60 

formed by very conserved residues at the intersubunit interface) and 300–320 (a long 
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loop including the conserved residues of the Zn-binding site). For segment 300–320, 

there is an asymmetrical flexibility of the two chains, more evident in the simulation 

with G1P for wt hGALT and with H2U for p.Gln188Arg. 

 

Figure 3.8. Representative results of RMSF analysis for simulations with arginine in the active site. 

(a) wtGALT + arginine;(b) p.Gln188Arg + arginine; (c) wtGALT + G1P + arginine; (d) p.Gln188Arg 

+ G1P + arginine; (e) wtGALT + H2U + arginine;(f) p.Gln188Arg + H2U + arginine. Blue lines 

represent RMSF fluctuation of chain A; red lines, that of chain B. 

 

The analysis of the stable intersubunit interactions is reported for H-bonds in Table 3.6. 

Almost half of the stable intersubunit H-bonds monitored were also present in the static 

models, whereas the others were formed during the simulations. The average number 

of intersubunit H-bonds per timeframe was very similar in the simulations involving 

wtGALT with respect to the equivalent simulations involving the mutant enzyme, also 

considering the variation between the two different replicas of each simulation.  
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This parameter is constantly lower than the same parameter obtained for simulations 

in the absence of arginine (see the paragraph 3.1). The most notable difference is visible 

in the simulations of arginine in the presence of H2U, where the average number of H-

bonds per timeframe was higher in wtGALT than in p.Gln188Arg. These data show 

that arginine does not have a favorable effect on the intersubunit contacts in the mutant 

enzyme; rather, it seems to perturb the intersubunit interactions in these systems. 

The analysis of the stable intersubunit salt bridges during the simulations is reported 

in Table 3.7. Only a few stable interactions of this type were present in the systems 

during the simulations, and most of them involved the residue Asp113 of one chain 

and Arg 228 of the other chain. The presence of arginine in the active site seems not to 

influence their existence. In contrast with the results obtained for H-bonds, the 

simulation of arginine in the active site of p.Gln188Arg bound to H2U is the one with 

the highest number of salt bridges (3), but given this low number of interactions, it is 

difficult to consider this difference as significant. 

From the results of these simulations, it seems that, if arginine binds into the active site 

of the mutant enzyme, it is not able to counteract the loss of activity; rather, it could 

even worsen it, as in the case of the simulation of arginine in the active site of the 

mutant enzyme when H2U is also bound to the site. 
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Table 3.6. Pairs of residues involved in stable intersubunit H-bonds in simulations with arginine in 

the active site. The average number of H-bonds per timeframe is reported for each replica. Dark gray 

background: intersubunit interactions identified in the initial models and conserved throughout the 

simulations; bold: stable interactions present in all systems; italics: interactions maintained in the two 

replicas of each system. Pairs of residues are considered to have a stable H-bond interaction when the 

sum of % of existence of the H-bonds between the two residues is >50. 
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Table 3.7. Pairs of residues involved in stable intersubunit salt bridges in simulations with arginine 

in the active site. Pairs of residues are considered to have a stable salt bridge interaction when the 

sum of % of existence of the salt bridges between the two residues is > 50. 
 

3.2.3 MD Simulations—Arginine in the central cavity 

As for the simulations with arginine in the active site, also for these systems the starting 

point for MD simulations was the best docking results of arginine in the central cavity 

(see Supplementary Files 14, 15) reported above in Table 1. The MD simulations were 

conducted at 310 K, but given the size of the central cavity, we decided for these 

systems to run 200 ns-long simulations, in order to allow arginine to perform a deeper 

exploration of the conformational space.  

All the analyses of the energetic components (including the total energy, kinetic energy 

component, potential energy component, pressure, temperature, volume and density), 

of the minimum distance of the periodic images, of the RMSD, and of the atom 

distances for these simulations showed that the systems reached stabilization and that 

no major perturbation affected them (see Supplementary Files 31, 32, 33, 34). 

In all the simulations, arginine stably interacted with the protein, both in the presence 

and in the absence of the substrates (see Supplementary File 21). Additionally, G1P 

and H2U, in turn, stably interacted with the enzyme for all the simulations (see 

Supplementary Files 22). The detailed interactions of arginine and the substrates in 

these simulations are represented in Figure 3.9. In the absence of the ligands, as for the 

docking simulations, arginine mainly interacted with two negatively charged residues 

belonging to the two protomers of the enzyme, i.e., Glu40 and Asp197, which mainly 

formed interactions with the guanidinium group of the amino acid. These residues were 

located in proximity to the Zn-binding site, in a cavity that was putatively identified as 
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an allosteric site for the enzyme [McCorvie et al., 2016]. The interaction with these 

residues seems to be more stable and persistent in wtGALT than in p.Gln188Arg 

(Figure 3.9 a, b). In the presence of the ligands, arginine remained in stable contact 

with Glu40 and occasionally interacted with the other residues identified in the docking 

simulations (Figure 3.9 c, d). G1P maintained H-bonds and salt bridges with the 

residues Arg48 and Arg51, also seen in the absence of the arginine (see the paragraph 

3.1). Moreover, other interactions were maintained with residues belonging to the 

flexible loop 335-340. Additionally, it was possible to detect an interaction with 

Arg188 in the mutant p.Gln188Arg. H2U was mainly bound to Asn97 and Asp98 in 

wtGALT, and to His186 and Arg188 in p.Gln188Arg. Thus, as seen for the simulations 

of the GALT enzyme in the absence of arginine and in the previous simulation with 

arginine bound to the active site, the presence of the mutation is able to perturb the 

interactions of H2U with the active site residues (Figure 3.9 c,d), but the presence of 

arginine seems not to be able to modify this situation. 

Concerning the global state of the systems, the radius of gyration was constant 

throughout the simulations, indicating that the protein did not change its shape (see 

Supplementary File 23). In the presence of arginine, the SASA of both wtGALT and 

p.Gln188Arg shows a decreasing trend, whereas in the presence of the substrates, wt 

GALT shows an increasing trend (see Supplementary File 24). The analysis of the 

secondary structures by means of DSSP (Figure 3.10) showed no significant 

differences in the presence of arginine only, whereas when ligands were also bound to 

the active site, there was a higher content of irregular structures such as the π-helix 

(indicated as a 5-helix in the graph) in the p.Gln188Arg system. 
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Figure 3.9. Interactions of arginine in the central cavity with enzyme and ligands. (a) Interactions of 

arginine in the simulation wtGALT + arginine; (b) Interactions of arginine in the simulation 

p.Gln188Arg + arginine; (c) Interactions of arginine (top) and of the substrates in the two active 

sites(bottom) in the simulation wtGALT + G1P + H2U + arginine; (d) Interactions of arginine (top) 

and ofthe substrates in the two active sites (bottom) in the simulation p.Gln188Arg + G1P + H2U + 

arginine. Gray background indicates interactions that persisted for more than 50% of the simulation 

time. Graydashed lines indicate H-bonds. Red dashed lines indicate interactions between the ligands. 
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Figure 3.10. DSSP analysis for simulations with arginine in the central cavity. (a) wtGALT + 

arginine; (b) p.Gln188Arg +arginine; (c) wtGALT + G1P + H2U + arginine; (d) p.Gln188Arg + G1P 

+ H2U + arginine. 
 

Finally, the analysis of the RMSF (Figure 3.11) showed that, apart from N- and 

especially C-terminals, the more flexible segments of the protein were those around 

residues 40, 200 and 320, including portions of the active site. In the presence of 

arginine only, the mutant p.Gln188Arg showed higher flexibility in the segment around 

the position of the mutation, whereas, when ligands were also present, the flexibility 

of the mutant seemed to be decreased, contrarily to what happens to wtGALT. 

Similarly to previous simulations, in these graphs, it is also possible to detect an 

asymmetry in the flexibility of the two chains, especially concerning the segment 300–

320. 
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Figure 3.11. RMSF analysis. Simulations with arginine in the central cavity. (a) wtGALT + arginine; 

(b) p.Gln188Arg + arginine;(c) wtGALT + G1P + H2U + arginine; (d) p.Gln188Arg + G1P + H2U 

+ arginine. Blue lines represent RMSF fluctuation of chain A; red lines, that of chain B. 

 

 

We monitored the variation of stable intersubunit H-bonds in wtGALT and 

p.Gln188Arg during these simulations. The results are reported in Table 3.8. Several 

intersubunit H-bonds that were identified previously in the static models of wtGALT 

and of p.Gln188Arg [d’Acierno et al., 2018, McCorvie et al., 2016] appeared to be 

stable, and some of them were conserved in all the different systems. However, as we 

found in our results in the absence of arginine (see paragraph 3.1), several other 

persistent H-bonds, which were not detectable in the static models, were formed during 

the simulations and contributed to stabilizing the intersubunit interface. When arginine 

was present in the central cavity, the average number of H-bonds per timeframe was 

identical in wtGALT and in p.Gln188Arg, but when ligands were also in the active site, 

the mutant enzyme showed a notable increase in this parameter. Thus, it seems that 

arginine bound to the central cavity is able to tighten these interactions between the 

two subunits. 
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Table 3.8. Pairs of residues involved in stable intersubunit H-bonds in simulations with arginine in 

the central cavity. Dark gray background: intersubunit interactions identified in the initial models and 

conserved throughout the simulations; bold: stable interactions present in all systems. Pairs of 

residues are considered to have a stable H-bond interaction when the sum of % of existence of the H-

bonds between the two residues is >50. 
 

As for the previous simulations, only a few stable intersubunit salt bridges were 

detected throughout the simulations (Table 3.9), and most of them involved the residue 

Asp113 of one chain and Arg228 of the other chain. In the presence of the ligands, the 

number of these stable interactions was increased; however, the numbers were so small 

that they did not allow the evaluation of the significance of these data. 
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Table 3.9. Pairs of residues involved in stable intersubunit salt bridges in simulations with arginine 

in the central cavity. Pairs of residues are considered to have a stable salt bridge interaction when the 

sum of % of existence of the salt bridges between the two residues is >50. 

 

3.2.4 Comparison of the results of simulations in the presence of Arginine 

When arginine was simulated in the active site, the simulations revealed that this 

interaction was unstable and that arginine tended to leave the active site during the 

simulations. When present, it did not favorably affect any structural feature of the 

enzymes; rather, sometimes, it seemed to perturb them, such as in the case of secondary 

structuresin wtGALT. The mutation-perturbed intersubunit interactions also did not 

appear to be improved by the presence of arginine in the active site; indeed, the number 

of both H-bonds and salt bridges was slightly lower in the presence of arginine when 

compared to those for the corresponding simulations in the absence of this putative 

pharmacochaperone. Moreover, the presence of arginine in the active site, as could be 

expected, seemed to perturb the interactions between the enzyme and the substrates. 

This is more evident in the mutant than in the wtGALT, probably because the 

accumulation of positive charges in the binding site of p.Gln188Arg determined the 

formation of a repulsive force that could even result in the expulsion of arginine outside 

the binding site. 

The simulations with arginine in the central cavity showed that the amino acid found a 

favorable interaction with residues near a putative “allosteric site” [McCorvie et al., 

2016] and maintained it constantly for the whole simulations. This is interesting, 

considering that the central cavity of the enzyme is quite big, and that our simulations 

(both docking and MD simulations) allowed arginine to move freely in this cavity. The 

presence of arginine in the central cavity did not perturb the secondary structures of the 
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enzyme and seemed to slightly enhance the flexibility of those segments that were in 

contact with the substrates. This effect, however, was more visible in the absence of 

the substrates rather than in their presence, and it is difficult to associate this with a 

functional meaning. We also analyzed the intersubunit interactions in the simulations 

in the presence of arginine in the central cavity. When ligands were not present, the 

average number of H-bonds per timeframe decreased slightly with respect to the 

simulations in the absence of arginine. When ligands were bound to the enzymes, 

instead, this parameter decreased in wtGALT and increased in p.Gln188Arg. The 

number of intersubunit salt bridges was so low that the variations recorded in the 

different simulations cannot be considered significant. Finally, looking for a possible 

effect that the arginine bound in the central cavity could exert on the binding of the 

substrates in the active site, we noticed that the most stable interactions in wt hGALT 

were maintained with Arg48, Arg51, and residues of the loop 330–340, in addition to 

the catalytic residue His186. Additionally, in the simulations with arginine in the 

central cavity, two stable interactions with Asn97, Asp98, and, less frequently, with 

Ala81, Ser181, and Asn182 were formed. Thus, arginine bound to the central cavity 

seemed to affect the pattern of interactions of the substrates with the wildtype enzyme. 

In p.Gln188Arg, however, the stable interactions between the substrates and the 

enzyme were the same either in the absence or in the presence of arginine in the central 

cavity. In particular, in all the systems, Arg188 created a strong interaction with H2U, 

both with H-bonds and salt bridges, and this strong interaction, which persisted for all 

the simulation time, impaired the mutant enzyme in performing the correct catalysis. 

In our simulations, the presence of arginine was not able to alter this strong interaction; 

therefore, we predict that the binding of this amino acid is not able to rescue the 

enzymatic activity of the mutant enzyme. 
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3.3 Search for possible pharmacochaperones for GALT 

 3.3.1 Docking simulations of putative PCs on central cavity 

We started by searching the literature for PCs already in therapeutic use, selecting drugs 

approved for misfolding pathologies. At the end, five PCs were identified, which we 

will refer to as PC1-PC2-PC3-PC4-PC5. As reported in paragraph 2.6.2.2, we will not 

disclose here their molecular structures to protect possible patent opportunities.  

First of all, we decided to simulate the possibility that all five PCs could bind to the 

central cavity, in the same condition of arginine. These docking have been performed 

in two conditions: in the presence (table 3.10) and in the absence (table 3.11) of both 

ligands in the active site of the enzyme. 

The docking results for the central cavity of the enzymes gave less defined results, 

because the cavity is very large and, thus, all five PCs have a higher conformational 

freedom. For this, we report both the best energy and the most populated poses as 

representative results of docking. However, all the simulations predicted a negative 

binding energy, suggesting the possibility that all five PCs could also bind to this 

cavity. The predicted binding energies in all these conditions seem not to be 

significantly different, indicating that neither the mutation nor the presence of the 

substrate in the active site would affect the binding of all five PCs in the central cavity. 

However, the highest (less favorable) value of the interaction energy remains those of 

PC3 with both wtGALT and p.Gln188Arg mutant protein.  
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Table 3.10. Results of focused docking (central cavity) for all five PC (1,2,3,4,5) with wtGALT and 

p.Gln188Arg in the presence of natural substrates bound to the active site. 

BE=The binding energy of the best energy pose; MP=The binding energy of the most populated pose; 

N.P=number of poses in the cluster. 

 

PCs docking 
wtGALT+G1P

+H2U 

Predicted Interactions with 
Residues 

docking 
p.Gln188Arg+G1P+H2U  

Predicted Interactions with 
Residues 

PC1 
 

BE=MP  
Energy value: 
-7,5 kcal/mol 
N.P: 14 

GLU38A,GLU40A,TRP249A,TYR3
23A, MET336A; 
 
ARG197B,ILE198B, 
MET341B,ALA343B, GLN344B 

BE 
Energy value: -7,7 
kcal/mol 
N.P.: 1 

GLN58A, MET177A, MET178A, 
TRP249A, PRO325A, ARG333A, 
MET 336A; 
 
GLN56B, GLN58B, ARG333B, 
PHE335B,  
VAL337B, MET341B  

MP 
Energy value: -7.0 
kcal/mol 
N.P: 14 

GLN38A, GLU40A, THR248A, 
TRP249A, MET336A, GLU340A, 
MET341A, GLN344A, ALA345A; 
 
ILE198B, MET341B 

PC2 
 

BE 
Energy value: 
-5,7 kcal/mol 
N.P: 27 

MET177A, MET178A, TRP249A, 
ARG333A, MET336A, MET341A; 
 
 MET336 B, MET341 B 

BE=MP 
E: -6,7 kcal/mol 
N.P:73 
 

GLU40A, TRP41A; 
 
 ASP197B, ILE198B, GLU340B, 
MET341B, ALA343B, GLN344B, 
ALA345B 

MP 
Energy value: 
-5,0 kcal/mol 
N.P: 37 

MET336A, GLU340A, MET341A; 
 
 ILE198B, MET336B 
 

 

PC 3 
 

BE 
Energy value: 
-4,8 kcal/mol 
N.P: 30 

ASP197A, ILE198A, ARG201A; 
 
GLU 40B 

BE 
Energy value: -4,8 
kcal/mol 
N.P: 19 

ASP197A, ILE198A, ARG201A, 
GLU40B 

MP coincide 
con BE 

 MP 
E: -4,7 kcal/mol 
N.P: 20 

ASP197A, ILE198A, ARG201A; 
 
GLU 40B, GLU340B, GLN344B, 
ALA345B 

PC4 
 

BE=MP 
Energy 
value:-7,1 
kcal/mol 
N.P: 75 

MET177A, MET178A, TRP249A, 
ARG333A; 
 
MET341B, ARG333B, PHE335B, 
MET336B, VAL337B 

BE=MP 
Energy value:-7,1 
kcal/mol 
N.P: 88 

MET177A, MET178A, TRP249A, 
ARG333A; 
 
MET341B, ARG333 B, PHE335B, 
MET336B, VAL337B 

PC5 
 

BE 
E:-
8,45kcal/mol 
N.P: 9 

GLN56A, GLU58A, ARG333A, 
PHE335A, MET336A, VAL337A; 
 
GLN56B, GLU58B, MET178B, 
ARG333B, PHE335B, MET336B 

BE 
Energy value:-8,4 
kcal/mol 
N.P:11 

GLN56A, GLU58A, ARG333A, 
PHE335A, MET336A, VAL337A; 
 
GLN56B, GLU58B, MET178B, 
ARG333B, PHE335B, MET336B 

MP 
E:-8,3 
kcal/mol 
N.P: 82 

GLU40A, GLU340A, MET341A, 
ALA343A, GLN344A, ALA345A; 
 
ASP197B, ILE198B, TRP249B 

BE 
Energy value:-8,2 
kcal/mol 
N.P: 83 

GLU40A, GLU340A, MET341A, 
ALA343A, GLN344A, ALA345A; 
 
ASP197B, ILE198B, TRP249B  
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PC docking wtGALT Predicted Interactions with 

Residues 
docking p.Gln188Arg  Predicted Interactions 

with Residues 

PC1 
 

BE  
Energy value: -7,6 
kcal/mol 
N.P: 9 

MET341A; 
 
ASN35B,GLN38B, 
GLU40B,ILE198B, 
THR248B,GLN252B, 
TYR323B,GLU340B, 
GLN344B,ALA345B 

BE 
Energy value: -7,6 
kcal/mol 
N.P: 5 

GLU340A, MET341A, 
GLN344A, ALA345A; 
 
ASN35B, GLU40B, 
TYR323B, ILE 398B, 
ASP197B, HIS301B 

MP 
Energy value: -7,4 
kcal/mol 
N.P: 11 

GLU340A, MET341A; 
 
THR248B, TRP249B, GLN252B, 
TYE323B, MET336B 

MP 
Energy value: -7,2 
kcal/mol 
N.P: 10 

THR248B, TRP249B, 
GLN252B, TYR323B, 
MET336B, GLU340B, 
MET341B 

PC2 
 

BE=MP 
Energy value: -7.0 
kcal/mol 
N.P 70 

GLU40A, TRP41A; 
MET341A, ALA343A,  
GLN344A,ALA345A; 
 
ASP197B, ILE198 B, GLU340B 

BE=MP 
Energy value: -6,8 
kcal/mol 
N.P: 78 

GLU40A, TRP41A, 
GLU340A, MET341A, 
ALA343A,GLN344A, 
ALA345A; 
 
 ASP197B, ILE198B 
 

PC3 
 

BE 
Energy value: -5,5 
kcal/mol 
N.P: 7 

PHE171A, ASN173A; 
 
ARG48B,LYS334B, PHE335B, 
VAL337B, TRYR339B, GLU349B 

BE 
Energy value:-5,1 
kcal/mol 
N.P: 18 

GLU40B, ASN35B, 
THR248B, GLN252B, 
TYR323B 

MP 
Energy value:: -5,1 
kcal/mol 
N.P: 20 

GLU40B, ASN35B, THR248B, 
GLN252B, TYR323B 

MP 
Energy value:: -4,8 
kcal/mol 
N.P: 25 

ASP197A, ILE198A,  
ARG201; 
 
GLU40B, GLU340B, 
GLN344B, ALA345 B 

PC4 
 

BE=MP 
Energy value: -7,1 
kcal/mol 
N.P: 74 

MET177A,MET178A, 
TRP249A, ARG333A; 
 
TRP249B, ARG33B, PHE335B, 
VAL337B 

BE=MP 
E: -7,1 kcal/mol 
N.P: 77 

MET177A, MET178A, 
TRP249A, ARG333A; 
 
TRP249B, ARG33B, 
PHE335B, MET336B 

PC5 
 

BE 
Energy value: -8,45 
kcal/mol 
N.P: 11 

GLN56A, GLU58A, ARG333A, 
PHE335A, MET336A, 
VAL337A; 
 
GLN56B, GLU58B, MET178B, 
ARG333B, PHE335B, MET336B 

BE 
Energy value: -8,4 
kcal/mol 
N.P: 8 

GLN56A, GLU58A, 
ARG333A, PHE335A, 
MET336A, VAL337A; 
 
 GLN56B, GLU58B, 
MET178B, ARG333B, 
PHE335B, MET336B 

MP 
Energy value: -8,45 
kcal/mol 
N.P: 83 
 

GLU40A, GLU340A, MET341A, 
ALA343A, GLN344A, ALA345A; 
 
ASP197B, ILE198B, TRP249B 

MP 
Energy value: -8,4 
kcal/mol 
N.P: 88 
 

GLU40A, GLU340A, 
MET341A, ALA343A, 
GLN344A, ALA345A; 
 
ASP197B, ILE198B, 
TRP249B 

Table 3.11: Results of focused docking (central cavity) for all five PC (1,2,3,4,5) with wtGALT and 

p.Gln188Arg in the absence of natural substrates bound in the active site. 

BE=The binding energy of the best energy pose; MP=The binding energy of the most populated pose; 

N.P=number of poses in the cluster. 
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3.3.2 Search of the allosteric site 

The strategy used to search for the allosteric site of hGALT was based on (i) the 

literature [McCorvie et al., 2013], (ii) docking results of the five PCs (see paragraph 

3.3) in the central cavity, and (iii) the results of both docking and MD of arginine (see 

paragraph 3.2). 

Based on the literature, McCorvie and coauthors in 2013 identified, using FTMap 

server (http://ftmap.bu.edu), a possible allosteric site for hGALT. In particular, it was 

defined as present at the dimer interface and in the side opposite the binding site, on 

the old model of hGALT (PDB: 1R3A). However, in that and also in other following 

study [McCorvie et al., 2016], the residues involved are not described.  

Therefore, we submitted the new model of hGALT enzyme (see paragraph 2.6.4) to 

the FTMap server, which fully automatically, generated 11 clusters. Among these, the 

cluster containing the largest number of probes per cluster was selected as primary 

hotspot (Figure 3.12). 

 

 
 

Figure 3.12 Output of FTMap. Purple spheres identify the primary hotspot. In sticks other probes 

forming the other CSs. Image obtained by PyMOL. 
 

http://ftmap.bu.edu/
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Once verified that the primary hotspot is “druggable", as per criteria described in 

Paragraph 2.3.2, the amino acids around 5 Å from the amino acids of the others CSs 

were selected using PyMOL. 

We submitted to FTMap analysis also the theoretical model of hGALT [Marabotti et 

al., 2005] used by McCorvie and coworkers in 2013. The FTMap server identified a 

total of 13 clusters for this model. Among them, the primary hotspot consists of 15 

probes. The residues 5 Å apart were also identified for this cluster. 

Figure 3.13 shows these residues, which in both cases correspond to a portion of the 

central cavity. 

 

Figure 3.13. A. Residues of central cavity and residues identified by FTmap and Pymol circled in red. 

B. Structure of hGALT with residues identified by FTmap and Pymol in pink spheres 
 

It is worth noting that the analysis of the interactions of all 5 PC docked into the central 

cavity showed that the most populated poses always identifies the same specific zone 

included in both hotspots found by FTMap Moreover, the arginine results from both 

docking and MD (see paragraph 3.2) reinforced the idea that the zone of interest 

includes the same residues.  
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On the basis of these results, we were able to identify these areas as the potential 

allosteric sites postulated by McCorvie et al. on chain A and on chain B of hGALT 

enzyme (Figure 3.14). 

 

Figure 3.14. Representation of the possible allosteric site identified by comparing FTMap, docking 

results between hGALT/p.Gln188Arg and all five PCs on the central cavity and docking ad MD 

results of arginine. In orange the allosteric cavity portion on chain A, in blue the allosteric cavity 

portion on chain B. Note that the two cavities are at the dimer interface, as indicated in the article by 

[McCorvie et al., 2013]; note that in sticks are G1P and H2U of both active site (A and B). 

 

3.3.2.1 Docking on the potential allosteric sites 

Once the two potential allosteric sites have been identified, we decided to simulate the 

possibility that all five PCs could bind to both these sites. 

These docking have been performed in the presence of both ligands for wtGALT and 

p.Gln188Arg bound to the active site of the enzyme, although their presence is not 

significant for these docking, as seen in tables 3.14 and 3.15. 

The docking results for the simulations focused on the allosteric site A (table 3.12) and 

B (table 3.13) of the enzymes gave more defined results than those performed in the 

central cavity. 
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Again for this dockings, it has been chosen to report both the best energy and most 

populated poses as a representative result of docking. 

 

PCs docking 
wtGALT 

Predicted 
Interactions with 

Residues 

docking 
p.Gln188Arg 

Predicted 
Interactions with 

Residues 

PC1 

BE/MP 
En: -7,6 kcal/mol 
N. in cluster:25 

GLN38A, GLU40A, 
THR249A, TYR323A, 
MET336A, ALA343, 

GLN344A, ALA345A, 
ASP197B, MET341B 

BE 
En:-7,5 kcal/mol 
N. in cluster:27 

GLN38A, GLU40A, 
MET336A, GLU340A, 
ALA343A, GLN344A, 
ALA345A, ASP197B, 
ILE198B, MET341B 

  MP 
En:-6,7 kcal/mol 
N. in cluster:30 

GLN38A, GLU40A, 
MET336A, GLU340A, 
MET341A, GLN344A, 
ALA345A, ASP197B, 

MET341B 

PC2 

BE/MP 
En: -6,8 kcal/mol 
N. in cluster:100 

GLU 40 A, TRP 41 A, 
GLU 340 A, MET 341 

A, ALA 343 A, ALA 
345 A, ASP 197B, ILE 

198 B 

BE/MP 
En:-6,7 kcal/mol 
N. in cluster:100 

GLU 40 A, TRP 41 A, 
GLU 340 A, MET 341 

A, ALA 343 A, 
GLN344 A, ALA 345 

A, ASP 197B, ILE 198 
B 

PC3 

BE 
En: -4,6 
kcal/mol 
N. in cluster:27 

GLN38 A, GLU 40 A, 
THR 248 A, ALA 
345A  

 

BE/MP 
En: -4,5 kcal/mol 
N. in cluster: 58 

GLU40 A, GLU 340 A, 
GLN344 A, ASP197 A 

MP 
En: -4,3 
kcal/mol 
N. in cluster:39 

GLU 40 A, GLU340 
A, GLN 344 A, 
ALA345 A, ASP197 B 

 

  

PC4 

BE/MP 
En: -5,3 
kcal/mol 
N. in cluster:52 

TRP249 A, MET336 
A, MET341 A, 
MET336 B,GLU340 
B, MET341 B 

BE 
En: -5,3 
kcal/mol 
N. in cluster:22 

THR248 A, TRP 249 
A, TYR323 A, MET336 
A, GLU340 A, ALA 
345 A, MET341 B 

  MP 
En: -5,3 
kcal/mol 
N. in cluster:46 

THR248 A, TRP 249 
A, TYR323 A, MET336 
A, GLU340 A, ALA 
345 A, MET341 B 

PC5 

BE/MP 
En: -8,4 kcal/mol 
N. in cluster:77 

GLU40A, TRP41A, 
MET336A, 
GLU340A, 
MET341A, ALA343A. 
GLN344A, ALA345A, 
ASP197B, ILE198B, 
TRP249B  

BE/MP 
En:-8,2 kcal/mol 
N. in cluster:78 

GLU40A, GLU340A, 
MET341A, ALA343A, 
GLN344A, ALA345A, 
ASP197B, ILE198B, 
TRP249B 

Table 3.12. Results of focused docking (potential allosteric site of chain A) for all five PC (1,2,3,4,5) 

with wtGALT and p.Gln188Arg in the presence of natural substrates bound in the active site. BE=The 

binding energy of the best energy pose; MP=The binding energy of the most populated pose; N. 

=number of poses in the cluster 
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PCs docking 
wtGALT 

Predicted 
Interactions with 

Residues 

docking 
p.Gln188Arg 

Predicted 
Interactions with 

Residues 

PC1 

BE 
En:-7,2 kcal/mol 
N. in cluster:28 

GLN38A, ASP197A, 
ILE198A, TRP249A, 
TYR323A, 
MET336A, GLU40B, 
GLU340B, 
MET341B, ALA345B 

BE/MP/MP 
En: -7,1 kcal/mol 
N. in cluster: 34 

GLN38A, ASP197A, 
ILE198A, ARG201A, 
TYR323A, GLU40B, 
GLU340B, MET341B 

PC2 

BE/MP 
En: -6,6 kcal/mol 
N. in cluster: 50 

GLU 40 A, TRP 41 A, 
GLU 340 A, MET 341 
A, ALA 343 A, 
GLN344 A, ALA 345 
A, TRP249 B 

BE/MP 
En:-6,1 kcal/mol 
N. in cluster:99 

ASP197 A, ILE198 

A, GLU 40 B, TRP 41 

B, MET 336 B, GLU 

340 B, MET 341 B, 

ALA345 B 

BE/MP 
En:-6,6 kcal/mol 
N. in cluster:50 

ASP 197 A, ILE 198 A, 
GLU 40 B, TRP 41B, 
MET 336 B, GLU 340 
B, MET 341 B, GLN 
344 B, ALA 345 B 

  

PC3 

BE/MP 
En:-7.0 kcal/mol 
N. in cluster:55 

ASP197 A; ILE 198A, 
ARG201 A, GLU40 B, 
GLU340 B, GLN344 
B, ALA345 B 

BE/MP 
En:-4,8 kcal/mol 
N. in cluster:44 

ASP197 A, ILE198 A, 
ARG201 A, GLU40 B 
 

PC4 

BE 
En:-5,9 kcal/mol 
N. in cluster:1 

MET 178 A, ARG333 
A, MET 336 A, 
ARG333 B, PHE 335 
B, MET 336 B, MET 
341 B 

BE 
En:-5,9 kcal/mol 
N. in cluster:1 

MET 178 A, TRP249 
A, ARG 333 A, MET 
336 A, ARG333 B, 
PHE 335 B, 
MET336B, VAL 337 B, 
MET 34 1 B 

MP 
En:-5,3 kcal/mol 
N. in cluster:51 

GLN38 A, TRP249 A, 
TYR 323 A, GLU340 
B, MET341 B, 
ALA345 B 

BE 
En:-5,3 kcal/mol 
N. in cluster:62 

GLN38 A, TRP 249 A, 
TYR 323 A, GLU 340 
B, MET341 B, ALA 
345 B 

PC5 

BE 
En:-7,3 kcal/mol 
N. in cluster:1 

GLU40A, TRP41A, 
TRP249A, 
MET336A, 
GLN344A, 
ALA345A, 
ASP197B, MET341B 

BE/MP 
En: -7,0 kcal/mol 
N. in cluster: 99 

ASP197A, ILE198A, 
TRP249A, GLU40B, 
GLU340B, MET341B, 
GLN344B, ALA345B  

MP 
En:-7,2 kcal/mol 
N. in cluster:99 

ASP197A, ILE198A, 
TRP249A, GLU40B, 
GLU340B, 
MET341B, 
GLN344B, ALA345B 

  

Table 3.13. Results of focused docking (potential allosteric site of chain B) for all five PC (1,2,3,4,5) 

with wtGALT and p.Gln188Arg in the presence of natural substrates bound in the active site. 

BE=The binding energy of the best energy pose; MP=The binding energy of the most populated pose; 

N=number of poses in the cluster. 
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All the simulations predicted a negative binding energy, suggesting the possibility that 

all five PCs could indeed bind to this potential allosteric site. The predicted binding 

energies in all these conditions seem not to be significantly different, indicating that 

neither the mutation nor the presence of the substrate in the active site would affect the 

binding of all five PCs in the central cavity (Figure 3.15 and Figure 3.16).  

  

Figure 3.15. Left: representation of the best docking conformations of PC2 in blue within wtGALT. 

Right: representation of the best docking conformations of PC4 in blue within wtGALT. The putative 

allosteric site of chain A is shown in orange. The analysis of the interactions showed that PC4 is not 

bound inside the putative allosteric site, rather it accommodates in a cavity of the protein close to it. 

 

Figure 3.16. Left: representation of the best docking conformations of PC2 in magenta within 

p.Gln188Arg. Right: representation of the best docking conformations of PC4 in magenta within 

p.Gln188Arg. The putative allosteric site of chain A is shown in orange. The analysis of the 

interactions showed that PC4 is not bound inside the putative allosteric site, rather it accommodates 

in a cavity of the protein close to it.  
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3.3.3 Receptor-based pharmacophoric modelling for GALT  

The best docking conformations of the PCs on both potential allosteric sites (A and B) 

were used as a starting point to generate the pharmacophoric models according to the 

receptor-based method (see paragraph 2.2.3). 

Discovery Studio takes as input the best docking conformations and creates all possible 

combinations of pharmacophoric models. As reported in paragraph 2.2.3, among the 

generated pharmacophore models, the best one (which generally corresponds to the 

first one) is selected, with a better selectivity score. Notably, no pharmacophoric 

models were generated from the best docking conformations of PC4 and PC2. Instead, 

PC1, PC3, and PC5 generated pharmacophoric models from which we started the 

search for pharmacophoric hits.  

3.3.4 Search of pharmacophoric hits and virtual screening  

The best selected pharmacophoric models were used for the searching for 

pharmacophoric hits in DrugBank.  

As reported in the paragraph 2.6, only pharmacophoric hits with a value ≥ 3 and only 

pharmacophoric hits found from the pharmacophore model generated by the docking 

conformations of the p.Gln188Arg mutant were selected. 

As result, a total of 19 hits were selected (table 3.14) and all hits have the same 

pharmacophoric features identified as AHHHP [hydrogen bond acceptor (A), cation 

(P), and hydrophobic (H)]. 

 Again, their names and molecular structures are not disclosed to protect possible future 

patent applications of these compounds. 
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PHARMACOPHORIC 

HIT 

 
FITVALUE 

GROUPS LIPINSKI 
RULE 

 
FEATURE 

HIT 1 3,0731 experimental SI  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AHHHP 

HIT 2 3,20849 experimental SI 

 
HIT 3 

 
3,18965 

Approved/investigational 
vet_approved 

 
SI 

HIT 4 3,122 experimental SI 

 
HIT 5 3,38402 

approved 
investigational 

 
SI 

HIT 6 3,18336 investigational SI 

 
HIT 7 3,15195 

approved 
investigational 

 
SI 

HIT 8 3,21927 experimental SI 

HIT 9 3,06716 experimental SI 

HIT 10  4,01559 investigational SI 

HIT 11 3,00595 approved SI 

 
HIT 12 3,18988 approved investigational 

 
SI 

 
HIT 13 3,25559 approved investigational 

 
SI 

 
HIT 14 3,51184 

experimental 
investigational 

 
SI 

HIT 15 3,36574 investigational SI 

HIT 16 3,5515 vet_approved SI 

HIT 17 3,20016 approved SI 

 
HIT 18 3,62319 approved investigational 

 
SI 

HIT 19 3,02465 experimental SI 

 

Table 3.14: The 19 pharmacophoric hits with a value ≥ 3 and only found from the pharmacophore 

model generated by the docking conformations of the p.Gln188Arg mutant were selected. 

 

3.3.4.1 Docking results of pharmacophoric hits on potential allosteric site A  

We docked all 19 hits on the potential allosteric site of chain A of both wtGALT and 

p.Gln188Arg. Results are reported in table 3.15. By analyzing the interactions of the 

best conformations of hits 5, 7, 10 and 11 within the putative allosteric site of wtGALT 

and p.Gln188Arg, the residues with which most of the ligands interact are the same: 

Glu40A, Met336A, Glu340A, Met341A, Ala343A, Ala345A, Asp197B, Ile198B, 

Trp249B (Figure 3.17 and 3.18). 
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HIT wtGALT (Kcal/mol) p.Gln188Arg (Kcal/mol) 

HIT 1 6,7 -6.6 

HIT 2 -6.7 -6.8 

HIT 3 -9.0 -9.0 

HIT 4 -9.3 -8.5 

HIT 5 -9.5 -9.5 

HIT 6 -7.5 -7.7 

HIT 7 -10.9 -10.9 

HIT 8 -8.6 -8.7 

HIT 9 -7.8 -7.8 

HIT 10 -8.0 -8.3 

HIT 11 -9.6 -9.0 

HIT 12 -6.2 -6.4 

HIT 13 -8.5 -7.1 

HIT 14 -7.5 -7.6 

HIT 15 -8.4 -8.0 

HIT 16 -8.4 -8.3 

HIT 17 -7.8 -7.8 

HIT 18 -6.0 -6.1 

HIT 19 -7.9 -7.8 

 

Table 3.15: The results of the docking simulations focused on the possible allosteric site of chain A 

in p.Gln188Arg and wtGALT models with the pharmacophoric hits identified in the virtual screening. 

Results are displayed in terms of energy to allow for initial screening. The drugs selected for further 

analysis are highlighted in bold and underlined. 
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Figure 3.17. Representation of the interactions of the best docking conformations of the 4 hits selected 

within wtGALT models on the putative allosteric site of chain A. In sticks we visulize the interacting 

amino acids, in yellow spheres the above-mentioned ligands. Images obtained through BIOVIA 

Discovery Studio. 
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Figure 3.18: Representation of the interactions of the best docking conformations of the 4 hit 

selected within p.Gln188Arg models on the putative allosteric site of chain A. In sticks we visualize 

the interacting amino acids, in yellow spheres the above-mentioned ligands. Images obtained 

through BIOVIA Discovery Studio. 

 

From the structural superpositions of the selected conformations, it can be seen that all 

the 4 hits fit well into the putative allosteric cavity of GALT enzyme, wtGALT (Figure 

3.19) and p.Gln188Arg (Figure 3.20). 
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Figure 3.19: Left: representation of the best docking conformations of HIT5 in blue within wtGALT. 

Right: representation of the best docking conformations of HIT10 in blue within wtGALT. The 

putative allosteric site of chain A is shown in orange. The analysis of the interactions showed that 

both hits are bound inside the putative allosteric site. 

 

 

Figure 3.20: Left: representation of the best docking conformations of HIT5 in magenta within 

p.Gln188Arg. Right: representation of the best docking conformations of HIT10 in magenta within 

p.Gln188Arg. The putative allosteric site of chain A is shown in orange. The analysis of the 

interactions showed that both hits are bound inside the putative allosteric site. 
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3.3.4.2 Docking results of selected pharmacophoric hits on potential allosteric site 

B 

The docking performed on the potential allosteric site of chain A was repeated on that 

of chain B. We choose to perform the docking only for the best 4 identified from 

previous docking simulation on chain A, namely hits 5, 7, 10 and 11. Also in this case, 

the docking simulations were performed on wtGALT and p.Gln188Arg in the presence 

of the G1P and H2U ligands bound into the active site. The result are reported in Table 

3.16 for wtGALT and in Table 3.17 for p.Gln188Arg. 

 

 BE MP 

HIT 5 RUN 87 -7,6 (N.42) RUN 87 -7,6 (N.42) 

HIT 7 RUN 10 -10,5 (N.23) RUN 93 -9,8(N.28) 

HIT 10 RUN 91 -7,7 (N.1) RUN 59 -7,0 (N.19) 

HIT 11 RUN 97 -7,9 (N.4) RUN 82 -7,4 (N.11) 

 wtGALT 

 Table 3.16: Docking results focused on the allosteric B-chain site for wtGALT systems. 

BE=The binding energy of the best energy pose; MP=The binding energy of the most populated pose; 

N.=number of poses in the cluster. 
 

 BE MP 

HIT 5 RUN 51 -7,6 (N.35) RUN 51 -7,6 (N.35) 

HIT 7 RUN 8 -10,5 (N.28) RUN 3 -9,6(N.31) 

HIT 10 RUN 62 -7,8 (N.8) RUN 3 -6,9(N.20) 

HIT 11 RUN 82 -6,9 (N.9) RUN 17 -5,6 (N.11) 

 Q188R 

Table 3.17: Docking results focused on the allosteric B-chain site for p.Gln188Arg systems. 

BE=The binding energy of the best energy pose; MP=The binding energy of the most populated pose; 

N.=number of poses in the cluster 

 

The values obtained on chain B are similar to those obtained on chain A (see Table 

3.15). By analyzing the best conformations of the hits, both for the wtGALT and 

p.Gln188Arg, the residues of interactions are again the same as those for chain A 

(Figure 3.21 and Figure 3.22). 
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Figure 3.21: Representation of the interactions of the best docking conformations of the 4 hit 

selected within wtGALT models on the putative allosteric site of chain B. In sticks we visualize the 

interacting amino acids, in yellow spheres the above-mentioned ligands. Images obtained through 

BIOVIA Discovery Studio. 
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Figure 3.22: Representation of the interactions of the best docking conformations of the 4 hit 

selected within p.Gln188Arg models on the putative allosteric site of chain B. In sticks we visulize 

the interacting amino acids, in yellow spheres the above-mentioned ligands. Images obtained 

through BIOVIA Discovery Studio 

 

Preliminary tests of PC1, PC2, PC4, and hits 7 and 10 on fibroblasts from galactosemic 

patients showed the ability of all 5 PCs to lower galactose-1-phosphate concentration 

when fibroblasts are stressed by galactose (personal communication). These 

preliminary data were made by Prof. Kent Lai of Utah University, USA, and obviously 

they need to be confirmed, but they are promising data towards the development of 

pharmacochaperone therapy for galactosemia. 
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3.4 Optimization of MD protocol for long simulations and for 

simulations with pharmacochaperones and selected pharmacophoric 

hits  

Once PC1, PC2, PC4 and HIT 5, 7, 10, 11 were selected as promising ligands for 

hGALT, we decided to set up studies from a dynamic point of view at the level of the 

two potential allosteric sites. 

To do this, we decided to set up a suitable protocol for long MD in order to study 

possible allosteric paths for hGALT. In fact, the search for allosteric pathways in 

proteins by means of MD simulations requires to perform long simulations in 

conditions that allow to detect the fine movements that occur in a macromolecule in 

the presence of these molecular phenomena. The setting of the new MD protocol 

resulted from the combination of a literature study, from which it was possible to 

identify the methods used to study communication in proteins in some works [Genoni 

et al., 2012; Sanchez-Martin et al., 2020] and from several experimental tests that 

differed in some conditions. 

Long MD concerned the following systems: wtGALT; wtGALT + ligands; 

p.Gln188Arg; p.Gln188Arg + ligands at 310 K. 

We have used as a starting point the models of wtGALT and of the mutant 

p.Gln188Arg obtained as described previously.  

Unexpectedly, some of the possible PCs and HT selected in the previous steps could 

not be parameterized with the Amber force field. For this reason, we had to select 

another force field that was suitable for the correct parameterization of both the protein 

and different molecules. We selected CHARMM [Vanommeslaeghe et al., 2010], 

which, in addition to being a widely used force field for the study of proteins [Brooks 

et al., 2009], also has the advantage of making available to the scientific community 

CHARMM-GUI [Sousa da Silva et al., 2012], a Web interface that allows easy 

parameterization of molecules other than proteins. 
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The critical steps in order to perform the long MD simulations are the minimization of 

the starting structure, and the equilibration of the systems. The minimization protocol 

applied for our previous studies (see paragraph 2.6.3) is sufficient for general purposes, 

but to detect allosteric paths, it is necessary that the structure is deeply minimized 

[Moroni et al., 2018]. Therefore, in order to optimize this step, we performed several 

tests to assess the effect of different minimization protocols on the structure of the 

protein. As a reference, we analyzed the Ramachandran plot of GALT enzyme before 

and after the minimization process, and we selected the protocol that allowed to obtain 

a structure with no residues in the disallowed areas of this plot. 

The analysis of the Ramachandran plot after the first minimization showed Asp90 as a 

residue with non-favorable dihedral angles. Therefore, we decided to carry out an 

additional minimization cycle. In this second cycle, the minimization has stopped when 

the maximum force reached a value lower than 1.0 kJ/mol/nm. In this way, the analysis 

of the Ramachandran plot after the second minimization showed no residues with non-

favorable dihedral angles (Figure 3.23).  

 

Figure 3.23. Left: Ramachandran plot analysis after minimization stopped when the maximum force 

reached a value lower than 10.0 kJ/mol/nm, with residues in disallowed regions shown as red circles: 

1 (0.309%), is ASP90. Right: Ramachandran plot analysis after minimization stopped when the 

maximum force reached a value lower than 1.0 kJ/mol/nm. No residues in disallowed regions are 

visible.  
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Also, regarding minimization, a further test was carried out following the double 

minimization cycle (just discussed) with the conjugate gradient algorithm, stopped 

when the maximum force reached a value less than 10.0 kJ/mol/nm, and a further cycle 

stopped when the maximum force reached a value less than 4.0 kJ/mol/nm. These tests 

were made by running 100 ns simulations on wtGALT at 310 K, in the presence of the 

substrates. The analyses of these two simulations confirmed that the two protocols 

don’t have any significant difference. Therefore, we concluded that our system had 

already achieved the best possible minimization after steepest descent algorithm. As 

representative of all the analyses performed, we report the RMSD of atom distances, 

showed that both minimization protocols allowed the systems to reach quickly the 

stabilization without significant differences (Figure 3.24). 

 

Figure 3.24: In blue, RMSD of atom distances analysis after minimization with steepest descent 

gradient; in black, RMSD of atom distances analysis after minimization with conjugate gradient 

algorithm. 
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In the second part of this study, the modified protocol for the equilibration phase was 

decided, considering either NVT and NPT mdp file. The new combination of 

thermostats in the NVT ensemble and thermostats and barostats in the NPT ensemble 

is particularly necessary in the case of long MD. In this respect, several tests were 

performed, each differing in a different combination of thermostats (Berendsen, V-

rescale and Nosè-Hoover) and of barostats (Berendsen and Parrinello-Rahman). To 

evaluate a correct NPT equilibration, we based on two parameters. The first is the 

average pressure, to be never higher than 1.5 bar; the second is the value of the total 

drift (Tot-Drift). This last is calculated by performing a least-squares fit of the data to 

a straight line. The reported total drift is the difference of the fit at the first and last 

point. This value is considered acceptable when it does not exceed 2 [Abraham et al., 

2015]. Then, to give the optimal condition for the pressure equilibration, we considered 

as variables:  

1. different combinations of thermostats and barostats  

2.  several groups in the system can be coupled separately, as specified in the tc-

grps of .mdp file 

3. Length of nvt and npt equilibration 

The different tests made are summarized in table 3.18. The best result was represented 

by test 9 in the table. This result highlighted how the groups coupled separately, the 

time, the right combination of thermostat/barostat affects a good equilibration. 

We confirmed that, for our system, the best results were obtained with the V-rescale 

thermostat, in agreement with the MD protocol used in our previous protocol 

(paragraph 2.6.3). On the contrary, the use of Nosè-Hoover thermostat during NVT 

ensemble have shown the worst results (tests 1, 2, 3). 

Concerning the different coupling groups, we observed the best result when the ligands 

and the Zn ions are grouped together with the enyme (wtGALT or p.Gln188Arg) as the 

first group, and water + ions are separated in the second group. In fact, if we compare 

test 8 with test 9, in which we operate under the same conditions of NVT and NPT but 

https://manual.gromacs.org/documentation/2018/user-guide/mdp-options.html#mdp-tc-grps
https://manual.gromacs.org/documentation/2018/user-guide/mdp-options.html#mdp-tc-grps
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with different groups, the result deteriorates dramatically when ligands are grouped 

together with water and ions, with an average pressure of -0.01. 

 

TEST Average 

of Energy 

pressure 

Tot-

Drift 

NVT: 

Thermostat 

NPT: 

Thermostat 

NPT: 

Barostat 

 

TC-GROUPS 

TIME 

NVT/NPT 

TEST 1 5.78 14.3  

NOSE-

HOOVER 

 

NOSE-

HOOVER 

PARRINELLO  

 

Protein and Non Protein 

(Ligand+cofactor+water+ions) 

 

i.e: GROUP 1: Protein; GROUP 2: 

G1P+H2U+ZN(2ATOMS)+WATER+Cl/Na 

 

 

 

 

100ps/ 1ns 

TEST 2 -0.16 10.5 V-RESCALE BERENDSEN 

TEST 3 2.20 -10.6 V-RESCALE PARRINELLO 

TEST 4 1.56 -13.6  

 

 

V-RESCALE 

NOSE-

HOOVER 

PARRINELLO 

TEST 5 0.99 5.4 V-RESCALE BERENDSEN 

TEST 6 -6.89 0.6 V-RESCALE PARRINELLO 

TEST 7 0.6 0.8 V-RESCALE PARRINELLO  

500ps /3ns TEST 8 -0.01 7.2 V-RESCALE BERENDSEN Protein+Ligand+cofactor and 

water+ions 

i.e: GROUP 1: Protein; GROUP 

G1P+H2U+ZN(2ATOMS)+  

2: WATER+Cl/Na 

TEST 9 0.9 0.5 V-RESCALE PARRINELLO 

 

Table 3.18: Test to evaluate the best combination of thermostat and barostat during NVT and NPT 

equilibration 

 

To evaluate how the time of equilibration has contributed to achieve the best result, we 

compared test 6 with test 7. If we consider only the mean value of pressure, we went 

from a value of -6.89 to a value of 0.6, which is far close to 1. 

We finally confirmed that the best combination of thermostat and barostat results in V-

rescale and Parrinello-Rahman, respectively, in agreement with tutorial of A. Lemkul 

version 2018 (http://www.mdtutorials.com/gmx/lysozyme/index.html). 

Following this very careful and detailed study, a new protocol of MD (Figure 3.25) 

was created, through which we performed 600 ns-long MD simulations with two 

replicas. The analysis of these simulations is presently (September 2022) still ongoing. 
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Figure 3.25: Worfkflow of the phase of new protocol for long MD simulations. 

 

  



 
 

 
128 

 
 

4. CONCLUSIONS 

During this Ph.D. project, we focused on the deepening of the knowledge about 

wtGALT and p.Gln188Arg, the most common pathogenic mutant form of GALT 

enzyme [Timson, 2016], which is associated with the most severe phenotype and to a 

poor outcome of the classic galactosemia disease. This mutant enzyme has no or barely 

detectable enzymatic activity in the erythrocytes and liver of homozygous patients, and 

less than 50% activity in heterozygous individuals [Marabotti et al., 2005]. It has been 

proposed that this partial dominant effect could be related to the perturbation of the 

molecular interface between the two subunits forming the quaternary structure of the 

enzyme, considering that Gln188 is not only a residue of the active site but also a 

residue located at the interface between the two subunits [Marabotti et al., 2005, 

d’Acierno et al., 2018; McCorvie et al., 2016]. 

In the past, and more recently, the structural effects of this mutation were deduced on 

the static structure of the wild-type human enzyme; however, as first stage, we felt that 

a dynamic view of the proteins is necessary to deeply understand their behavior and 

obtain tips for possible therapeutic interventions. To carry out this study, we have 

performed MD of wtGALT enzyme and of its pathogenic mutant p.Gln188Arg under 

different experimental conditions, using as starting point the best conformation of 

docking. From our results, at body temperature (310 K) it appears that the negative 

effects of the mutation on the intersubunit interactions are more evident in the presence 

of the ligands (G1P and H2U). Indeed, the wild-type enzyme bound to the substrates 

shows an increased number of intersubunit H-bonds, most of which are not predicted 

in the static structure but are formed and persist during the MD simulations. On the 

contrary, the mutant p.Gln188Arg shows a marked decrease of the number of 

intersubunit H-bonds in the presence of the substrates. The number of intersubunit salt 

bridges is very small and it is not possible to infer if the variations detected are 

significant or not, but their trend in both wtGALT and pGln188Arg is analogous to that 

of H-bonds. It is also interesting to see that, despite this being an homodimeric enzyme, 
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the flexibility of the same segments in the two subunits is not of the same extent. This 

is intriguing, considering that the zones characterized by higher flexibility are either at 

the subunit interface or are involved in the stabilization of Zn, which is considered to 

have an important structural role for this enzyme [d’Acierno et al., 2018, McCorvie et 

al., 2016]. The higher temperature used to perturb our systems (334 K) seems to have 

few effects on the overall structure of the enzyme, but in these simulations, it is also 

possible to see that the mutation perturbs the quaternary assembly of the enzyme. 

Overall, our simulations confirm the importance of the intersubunit interactions of 

GALT for its correct functioning and suggest that their preservation in the mutant could 

improve the functioning of the enzyme, thereby rescuing, at least partially, its activity.  

Simultaneously, the lack of information about molecular interactions of arginine amino 

acid with respect to the protein prompted us to investigate its binding in the active site 

and central cavity of both wild type and p.Gln188Arg mutant. In this work, we did not 

find clear evidence about the ability of arginine to counteract the unfavorable effects 

of the mutation p.Gln188Arg in the mutant most often associated with classic 

galactosemia. In particular, the putative binding of arginine to the active site in the 

mutant enzyme is predicted to create a cluster of positive charges that further 

destabilizes the quaternary structure, and that, at last, can result in the expulsion of the 

arginine itself from the site. The putative binding of arginine to the central cavity is 

predicted to have more favorable effects on the overall structure and function of the 

enzyme, but also, in this case, we have no clear evidence of a stabilization of the 

enzymatic structure. Thus, the favorable effect (if any) of arginine on this enzyme is 

not predicted to be due to an activity similar to that of other pharmacochaperones. 

Notably, however, arginine is predicted to stably bind to some residues, one of which 

belongs to a cavity of the enzyme that was previously identified as an allosteric site. 

This cavity could be considered as a possible target for the development of true 

pharmacochaperones, also taking into account the interactions identified as crucial in 
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this study and in the other reported above that we conducted on this system [Verdino 

et al., 2021a].  

These two parallel works prompted us to ask whether there really is an allosteric site 

in GALT enzyme, as also speculated in the literature [McCorvie et al., 2013], and if 

this allosteric site could be used as a target to develop new PCs for this enzyme. We 

were able to identify a potential allosteric site on chain A and one on chain B of GALT 

enzyme. 

The identification of the potential allosteric sites occurred simultaneously with the 

search for new PCs already in therapeutic use, selecting drugs approved for pathologies 

due and not to misfolding. This search is resulted in the selection of five putative PCs 

(PC1, PC2, PC3, PC4, PC5). The next step, the search for pharmacophores starting 

from the best docking conformations of previous PCs, led to the identification of new 

hits, which were selected for further docking on the allosteric site. Other ligands, in 

particular HIT5, HIT7, HIT10 and HIT11, seem to interact with hGALT. Preliminary 

experimental tests performed at Utah University in collaboration with prof. Kent Lai 

seem to highlight the ability of some of these compounds to lower the levels of 

galactose-1-P in fibroblasts extracted from galactosemic patients (personal 

communication); further experiments will be needed to confirm this preliminary 

evidence. 

The future prospects include the search for potential allosteric pathways in hGALT. To 

achieve this objective, the MD protocol was improved, testing the best experimental 

conditions for the hGALT system and ensuring the most reliable results starting from 

longer dynamics. 

In details, the future analyses will consider the allosteric communication paths on sets 

of structures derived from these long MD simulations. To achieve this, we plan to 

perform principal component analysis (PCA) [David and Jacobs, 2014] to reveal the 

most important motions in proteins. Moreover, in order to capture the multi-modal 

behaviors of some atoms, which often play essential roles, particularly at the interfaces 
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of macromolecules, just like GALT enzyme, the dynamic cross correlation (DCC) 

analysis has been planned as subsequent essential analysis. Moreover, the protein 

motion could be represented as a linear combination of mutually independent normal 

mode vectors, throughout a normal mode analysis. This analysis gives results similar 

to those produced by PCA of a molecular dynamics simulation, but with only a fraction 

of the computational effort. It is also possible to represent the effect of external 

perturbations, e.g., ligand binding or tightly packed amino acid residues interacting 

with each other. 
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