
Università degli Studi di Salerno

Dipartimento di Informatica

Dottorato di Ricerca in Informatica
XXXIV Ciclo

Tesi di Dottorato / Ph.D. Thesis

Technical Debt in Software Development:
A Multi-Perspective Investigation

Fabiano PECORELLI

Supervisor: Prof. Andrea DE LUCIA

PhD Program Director: Prof. Andrea DE LUCIA

A.A 2020/2021

Al mio nipotino Giovanni.
La più grande gioia della mia vita.

— 20.12.2020 —

AC K NOW L E D G M E N T S - R I NG R A Z I A M E N T I

I’m sorry for the English readers but here I’m writing words that come
directly from my heart... And my heart speaks Italian.

Quando ho deciso di intraprendere il dottorato di ricerca ero sommerso
da mille dubbi: diverse aziende erano pronte ad offrirmi un contratto che mi
desse maggiore stabilità, molte delle persone a me vicine mi sconsigliavano
di intraprendere una carriera così lunga e complessa, sentivo dire in giro che
i dottorandi vengono tutti sfruttati e poi abbandonati a se stessi. Nonostante
tutto, sono andato avanti per la mia strada e ad oggi, al termine di questo
percorso, posso affermare di aver fatto la scelta giusta.
La mia fortuna più grande è stata quella di far parte di un gruppo di

ricerca eccezionale, formato da persone altrettanto eccezionali. Senza di loro
molto probabilmente non starei descrivendo un’esperienza così positiva. Ed
è proprio a loro che voglio rivolgere i primi e più sentiti ringraziamenti.

Nell’ormai lontano 2016, durante il corso di Ingegneria del Software, ho
incontrato per la prima volta Andrea. Dopo solo un mese e mezzo, a metà del
corso, con più di un intero semestre davanti e 8 esami ancora da sostenere,
gli ho chiesto di farmi da relatore per la Tesi Triennale. In quel momento,
inconsapevolmente, stavo avviando un percorso di vita che mi ha condotto
fin qui e che spero mi porterà ancora lontano.
Andrea è riuscito a diventare per me un punto di riferimento nel giro di

pochissimo tempo. Ho proseguito il mio percorso di studi principalmente
grazie a lui ed è ancora grazie a lui se ho deciso di intraprendere la strada del
dottorato di ricerca.

Il dottorato sotto la guida di Andrea è un’esperienza per cuori forti. Andrea
è una presenza costante che riesce a tenerti sotto pressione anche quando non
c’è fisicamente. Ti sprona a dare il 100% anche quando il 10% è sufficiente
per arrivare all’obiettivo, a volte anche con modi poco gentili. Perché Andrea
è così. Andrea è la classica persona che “ti vuole bene ma lo dimostra a modo

v

suo”. Commetti un piccolo sbaglio? Lui riesce a rendertelo estremamente
pesante. Fai qualcosa nel modo giusto? Lui ti spiega come avresti potuto farla
ancora meglio.
Non nego che, durante questi anni, a volte ho sofferto di periodi estrema-

mente stressanti per questo motivo. Però poi ogni tanto mi fermo e penso che
forse è proprio questo che fa la differenza. Gli importanti risultati ottenuti
finora non provengono unicamente dai miei sacrifici ma anche, in gran parte,
dalla guida ricevuta.
Caro Andrea, molte persone ti stimano semplicemente per il tuo nome,

per il tuo enorme peso in ambito accademico e di ricerca. Io ti stimo e ti
voglio un gran bene principalmente per la persona che sei, per la tua estrema
spontaneità, per il tuo modo di agire sempre nel bene delle persone a cui tieni,
per il tuo essere costantemente presente. GRAZIE!

Il secondo (solo per seniority) più doveroso e sentito grazie va a Fabio.
Fabio ha avuto un impatto fondamentale sulla mia crescita, rappresentando
il naturale complemento di Andrea nel guidarmi durante questi anni. Lui è
sempre riuscito a parlarmi in termini puramente pratici, come piace a me.
Mi ha dato una carica e una motivazione incredibile anche nei momenti più
duri, quando pensavo: “ma chi mo fa fa?”. Come un leader silenzioso, mi
è stato accanto in ogni momento di questo percorso, spesso sacrificando il
pochissimo tempo libero a sua disposizione.
Ma Fabio non è soltanto questo. Con lui ho condiviso ogni cosa durante

questi anni: notti insonni passate a lavorare, vacanze, partite di calcetto,
lunghe chiacchierate. Insomma, è riuscito ad essere allo stesso tempo un
grande advisor, un grande amico, e all’occorrenza anche un fratello maggiore.

Palò sono certo che ci sarai sempre per me, così come io per te. Il meglio
deve ancora venire.

Un altro enorme grazie va a Dario e Gemma, entrambi elementi impre-
scindibili di questo mio percorso. Sempre pronti e disponibili a dare consigli
e supportarmi in ogni momento.

Grazie alla mia compagna di viaggio, Marianna, per aver condiviso con
me ogni momento di questo percorso. Come promesso, abbiamo cominciato
e concluso insieme. Ora manca l’ultimo pezzo...

vi

Oltre ai già menzionati Fabio, Dario, Gemma e Marianna, in questi anni
ho avuto la fortuna di condividere le mie giornate con persone eccezionali.
Grazie a tutti i membri del SeSa Lab per ogni giornata passata insieme, per
ogni polletto, per ogni aperitivo. Purtroppo sono andato via sul più bello,
quando le cose iniziavano a farsi ancora più interessanti e questo mi lascia
un po’ di rammarico. So benissimo però che, in un modo o nell’altro, sarò
sempre parte di questo fantastico team.

Ringrazio la mia famiglia allargata: quella reale più i miei amici di sempre.
Avete sempre sostenuto ogni mia scelta, avete sempre compreso e accettato
(anche a malincuore) ogni mio rifiuto, ogni mia indisponibilità, perfino di
sera, nei giorni festivi e nei fine settimana. Vi ringrazio soprattutto per avermi
sempre tenuto incollato alle mie origini, alle mie abitudini, alle mie passioni.
Crescere è importante, ma farlo rimanendo se stessi lo è ancora di più.

Una menzione speciale va a mia sorella Luana. I motivi li conosciamo
entrambi benissimo. Senza la tua spinta tutto questo non avrebbe mai
nemmeno avuto inizio. Grazie infinitamente per tutto quello che hai fatto e
che continui a fare per me. Grazie per quelle azioni che fai quasi di nascosto,
che spesso passano inosservate agli occhi di tutti ma non ai miei. Grazie per
aver dato alla luce Giovanni, regalandomi la più grande gioia della mia vita.
La mia prima Tesi l’ho dedicata a te. Questa, la più importante, la dedico a
lui che è una parte di te.

Ringrazio infine Francesca per essere stata al mio fianco ogni giorno,
per avere ascoltato ogni mio sfogo e avermi continuamente motivato e fatto
sentire gratificato. So che in questi anni fin troppo spesso ti sei trovata a dover
affrontare situazioni molto più grandi di te. Grazie per essere sempre rimasta.
Grazie per aver lottato con le unghie e con i denti per non perdermi. Grazie
per avermi insegnato il vero significato del bene incondizionato.

vii

A B ST R AC T

Software products need to be constantly maintained and updated to keep
being useful and satisfying companies’ and users’ needs. Developers are
often required to perform software maintenance and evolution activities in
the shortest possible time in order to make the changes available as soon
as possible. As a result, they do not have the possibility to apply ideal
development practices, thus introducing the so-called technical debt, i.e., the
application of a quick and low-quality solution instead of a better one that
would take longer. This will cause a decrease in software quality and require
significant maintenance effort in the future.

For this reason, identifying the symptoms of technical debt in advance is of
fundamental importance for software companies. However, such symptoms
could appear in different forms and at different stages of development, making
harder their identification. In the context of this thesis, we face this challenge
from several perspectives.

First, we focus on bad code smells, poor design or implementation choices
applied in the source code by developers that have been associated with
maintainability and understandability degradation. Over the last years, sev-
eral researchers have been devising tools and techniques for the automatic
detection of these design flaws. However, unfortunately, all the proposed
detectors appear to be still too limited and inadequate to be applied in real
industrial contexts. The first part of this thesis focuses on experimenting with
the suitability of machine learning-based code smell detection techniques.
Preliminary results demonstrate that machine learning-based techniques still
have limited performance for automatic code smell detection, due to several
limitations such as (i) the strongly unbalanced nature of the problem, (ii) the
subjectivity of the results, and (iii) the limited set of metrics considered so far.
This thesis investigates these three limitations separately, proposing specific
solutions to overcome them. However, although some advantages have been

ix

reported, machine learning techniques still require more improvement to
provide reliable detection of code smells.
Other than studying technical debt in production code, we also consider

its presence, as well as its harmfulness, in test code. Testing activities seem
to receive way lower attention during software development: tests are often
developed without applying proper programming principles or automatically
generated with the support of specific tools. Therefore, resulting test suites are
often characterized by a low quality that could also reduce their effectiveness
in bug discovery. This thesis faces this challenge by presenting a large-scale
analysis of test code quality and effectiveness both in traditional systems
and in mobile applications in order to understand the test-related factors that
are most related to technical issues in production code. The main results
confirm that test suites are characterized by a very low code quality and
effectiveness, particularly with respect to mobile applications. Moreover,
differently from what was previously stated in the literature, some of the
quality aspects considered (e.g., size, test smells) have been shown to have a
stronger correlation with production code defects as compared to traditional
and widely-adopted coverage metrics.
Finally, we also include a discussion on the main lessons learnt and open

issues together with some indications about further research directions.

x

TA B L E O F C O N T E N T S

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Research Statement . 3
1.3 Research Contribution . 6

1.3.1 Research contribution on machine learning-based
code smell detection 6

1.3.2 Research contribution on technical debt in test code . 7
1.4 Structure of the Thesis . 7

i machine learning for code smell detection
2 Background & Related Work 11

2.1 Introduction, Motivation, and Related Work 11
2.2 Background . 17
2.3 Our Contribution on ML-based for Code Smell Detection . . 24

3 Heuristic vs. machine learning for code smell detection 27
3.1 Empirical Study Definition and Design 27

3.1.1 Context of the Study 28
3.1.2 Heuristic-Based Detection of Code Smells 29
3.1.3 Machine Learning-Based Detection of Code Smells . 31
3.1.4 Data Analysis and Metrics 33

3.2 Analysis of the Results . 34
3.2.1 Results for God Class 36
3.2.2 Results for Spaghetti Code 37
3.2.3 Results for Class Data Should Be Private 38
3.2.4 Results for Complex Class 38
3.2.5 Results for Long Method 39

3.3 Conclusions . 39
4 The role of data balancing in ML-based code smell detection 41

4.1 Detection of Object-Oriented Code Smells 42

xi

xii contents

4.1.1 Code Smells for Object-Oriented systems 42
4.1.2 Data Balancing Techniques for Machine Learning . . 43
4.1.3 Subject Systems 44
4.1.4 Model Building and Evaluation 45
4.1.5 Results of the Study 46

4.2 Detection of Model-View-Control Code Smells 49
4.2.1 Code Smells . 50
4.2.2 Data Balancing Techniques for machine learning . . 51
4.2.3 Subject Systems 51
4.2.4 Model Building and Evaluation 51
4.2.5 Results of the Study 53

4.3 Conclusion . 54
5 Static Analysis Warnings for Code Smell Detection 57

5.1 Research Methodology . 58
5.1.1 Context of the Study 61
5.1.2 Data Collection . 65
5.1.3 Data analysis . 68

5.2 Analysis of the Results . 73
5.2.1 RQ1. Distribution analysis. 74
5.2.2 RQ2. Contribution of static analysis warnings in code

smell detection. 75
5.2.3 RQ3. The role of static analysis warnings in code

smell detection. 78
5.2.4 RQ4. Orthogonality of the Prediction Models. 81
5.2.5 RQ5. Toward a Combination of Automated Static

Analysis Tools for Code Smell Detection. 83
5.2.6 RQ6. Comparison with a baseline machine learner. . 86
5.2.7 RQ7. Orthogonality between the warning- and

metric-based Detection Models. 88
5.2.8 RQ8. Combining static analysis warnings and code

metrics. 90
5.3 Conclusion . 93

6 Developer-driven code smell prioritization 95

contents xiii

6.1 Dataset Construction . 96
6.1.1 Selecting projects 96
6.1.2 Selecting code smells 97
6.1.3 Selecting code smell detectors 98
6.1.4 Collecting the criticality of code smells 99

6.2 A Novel Code Smells Prioritization Approach 102
6.2.1 Research Questions 102
6.2.2 RQ1. Defining and assessing the performance of the

prioritization approach 103
6.2.3 RQ2. Explaining the Proposed Approach 107
6.2.4 RQ3. Comparison with the state of the art 108

6.3 Analysis of the Results . 109
6.3.1 RQ1. The Performance of our Model 109
6.3.2 RQ2. Features Contributing to the Model 111
6.3.3 RQ3. Comparison with the state of the art 113

6.4 Conclusion . 115
7 Threats to Validity, Discussion, and Implications 117

7.1 Threats to Validity . 117
7.1.1 Threats to Construct Validity 117
7.1.2 Threats to External Validity 119
7.1.3 Threats to Conclusion Validity 119
7.1.4 Threats to Internal Validity 120

7.2 Discussion and Implications 120
7.2.1 RQa - The capabilities of machine learning-based

algorithms for code smell detection 121
7.2.2 RQb - The limitations of machine learning-based

algorithms for code smell detection 123

ii further research on technical debt: the testing
perspective

8 Background & Related Work 135
8.1 Introduction and Motivation 135
8.2 Related Work . 139

8.2.1 Test-related factors affecting source code quality . . 139

xiv contents

8.2.2 Test code quality in mobile applications 140
8.3 Our contribution on Technical Debt in Test Code 142

9 Collecting Test-Related Factors: A MLR 145
9.1 Research Methodology . 145

9.1.1 Research Question 145
9.1.2 Search Query Definition 146
9.1.3 Selecting the Source Engines 146
9.1.4 Exclusion and Inclusion Criteria Definition 147
9.1.5 Execution of the Multivocal Literature Review . . . 149
9.1.6 Quality Assessment and Data Extraction Process . . 151

9.2 Analysis of the Results . 153
9.3 Conclusion . 157

10 Test-Related Factors and Post-Release Defects 163
10.1 Research Methodology . 163

10.1.1 Research Questions and Methodological Sketch . . . 163
10.1.2 Context selection 165
10.1.3 Dependent Variable 167
10.1.4 Independent Variables 169
10.1.5 Confounding Factors 171
10.1.6 Statistical Modeling and Data Analysis 174

10.2 Analysis of the Results . 176
10.2.1 RQ1. The presence and executability of tests 176
10.2.2 RQ2. The impact of static test code indicators 178
10.2.3 RQ3. The impact of dynamic test code indicators . . 181

10.3 Conclusion . 185
11 Software Testing and Android Applications 187

11.1 Research Questions and Context Selection 188
11.1.1 Research Questions 188
11.1.2 Context of the Study 190

11.2 RQ1 - On the Prominence of Test Cases in Mobile Apps . . 191
11.2.1 Research Methodology 191
11.2.2 Analysis of the Results 193

11.3 RQ2 - On the Design Quality of Test Cases in Mobile Apps . 198

contents xv

11.3.1 Research Methodology 198
11.3.2 Analysis of the Results 201

11.4 RQ3 - On the Effectiveness of Test Cases in Mobile Apps . . 204
11.4.1 Research Methodology 204
11.4.2 Analysis of the Results 205

11.5 RQ4 - Test Cases and Post-Release Defects in Mobile Apps . 207
11.5.1 Research Methodology 207
11.5.2 Analysis of the Results 212

11.6 RQ5 - On the Developer’s Opinions on Mobile App Testing . 216
11.6.1 Research Methodology 216
11.6.2 Analysis of the Results 218

11.7 Conclusion . 223
12 Threats to Validity, Discussion, and Implications 225

12.1 Threats to Validity . 225
12.1.1 Threats to Construct Validity 225
12.1.2 Threats to External Validity 228
12.1.3 Threats to Conclusion Validity 229
12.1.4 Threats to Internal validity 230

12.2 Discussion and Implications 231
12.2.1 RQc - On the relation between test-related factors

and software code quality 231
12.2.2 RQd - Testing activities in mobile applications . . . 237

iii conclusion and further research directions
13 Conclusion 245

13.1 Lesson Learnt . 247
13.2 Open Issues . 249
13.3 Future Research Directions 251

13.3.1 Automatic Test Case Generation 2.0 251
13.3.2 From Technical Debt to Social Debt 252

A List of Publications 255

Bibliography 259

1
I N T RO D U C T I O N

1.1 context and motivation

Software is eating the world [8]. More and more tasks in our daily lives as
well as critical business processes are being taken over by software.

Over the last years, we have been witnessing a rapid digital transformation
in a large number of contexts. Just think about all the new digital services
that have been implemented, as well as the existing ones that have been
adapted to new contexts, due to the COVID-19 pandemic. In just over a year,
in-presence activities, such as school, meetings, and conferences, have been
moved to virtual platforms; public institutions have started providing new
digital services to facilitate remote operations, and so on.

Figure 1.1: Worldwide IT enterprise software spending in the period 2009-2022.
Image by Gartner [96].

1

2 introduction

Figure 1.1 reports information about the amount of money spent per year
on enterprise software from 2009 until today. As we can see, over the last ten
years the total expenses went from 269 to 601 billions USD, with a further
growth of 11% expected for the year 2022.
In such a scenario, software systems, are becoming more and more

fundamental for business purposes and for our daily lives. However, at the
same time, they are getting larger, more complex, and hard to maintain.
Furthermore, the continuous rising of new IT devices brought out the
need to constantly adapt software systems to new environments (e.g., big
companies are often required to let their software applications work on laptops,
smartphones, smartwatches, etc.). As a consequence, software systems are in
a continuous and constant change process that makes it difficult for developers
to satisfy all requirements in the right way and in the shortest possible time.
A common strategy during software development is to optimize develop-

ment times, even often neglecting good programming practices and standards.
On the one hand, this strategy allows having the software products ready
in a short time. On the other hand, such sub-optimal implementations can
lead to severe consequences to software quality making it harder to perform
maintenance and corrective operations over time.
This phenomenon, is known as technical debt [63], i.e., adopting (inten-

tionally or not) an easy, but limited, solution instead of a better one that would
take longer. Identifying and removing technical debt in a short time is a very
important activity that has attracted the attention of both practitioners and
researchers over the last years. However, it is not always easy to identify the
causes leading to technical debt.
Some of the most common causes are:

Market needs, i.e., the urgency of having a product to sell as soon as possible,
then released before the necessary changes are complete. This leads to the
implementation of quick and inadequate solutions.

Bad implementations of code modules, i.e., when software components
are developed ignoring good programming paradigms, leading developers to
provide equally poor implementations when adding new code or maintaining
the current one.

1.2 research statement 3

Absence of proper testing procedures, which encourages "on the fly" bug
fixes that do not contemplate possible side effects.

Lack of documentation, where the code is developed "off the cuff", with-
out documentation/specification of requirements. The work to produce the
aforementioned documentation a posteriori, and the necessary verification
of correspondence with what has already been coded, represents a debt that
must be paid sooner or later.

Lack of knowledge, when developers simply do not have the right skills to
write good-quality code.

Lack of collaboration, when wrong collaboration/cooperation structures are
adopted causing development process efficiency degradation.

This thesis mainly focuses on two of these aspects. First, we focus on the
identification of bad code implementations, intended as code smells, poor
design or implementation choices applied in the source code by developers
[88]. To this aim, we investigate the application of machine learning-based
techniques for code smells automatic detection. Then, we move our attention
to how developers behave with respect to test code implementation, both in
standard and in mobile applications.

1.2 research statement

Over the last decades, many researchers working in the field of software
engineering have put great interest in the topics covered in this thesis.
However, despite the considerable availability of high-quality contributions
in the literature, there are some aspects that have not been properly addressed
or can still be improved. As follows, we summarize the main limitations and
criticalities identified.

1. Automatic detection of code smells. Code smells are one of the main
symptoms of technical debt. Several code smell detection techniques
have been devised andmade available to developers and researchers over
time [197, 228, 234, 299]. Most of them rely on heuristic approaches,
discriminating code artifacts affected (or not) by a certain type of

4 introduction

code smell through the definition of detection rules that compare the
values of relevant metrics against some previously defined thresholds.
Despite the accuracy of these approaches has been empirically found
to be fairly high, there are some important limitations that threaten the
adoption of these heuristic approaches in practice [78, 339]. First, code
smells identified by these techniques are subjectively interpreted by
developers, meaning that they output code smell candidates that are not
considered as actual problems by developers [83, 181]. Furthermore,
the agreement between detectors is very low [82], which means that
different detectors are required to detect the smelliness of different code
components. At last, the performance of most of the current detectors
is strongly influenced by the thresholds needed to identify smelly and
non-smelly instances [78].

2. Machine learning for code smell detection. To overcome heuristic
approaches limitations, researchers recently adopted machine learning
(ML) to avoid the definition of thresholds and decrease the false
positive rate [85]: in this schema, a machine learning classifier is
trained on a set of independent variables (a.k.a., predictors) to calculate
the value of a dependent variable (i.e., the presence of a smell or the
likelihood of a code element to be affected by a smell). Although the
use of machine learning looks promising, its actual accuracy for code
smell detection is still under debate, as previous work has observed
contrasting results [71, 85]. More importantly, it is still unknown
whether these techniques actually represent a better solution with
respect to traditional heuristic ones. In other words, the problem of
assessing the feasibility of machine learning for code smell detection
is still open and requires further investigations.

3. Lack of attention to testing activities. Software testing is a crucial
activity that developers perform to produce high-quality and reliable
software. However, it is not properly applied in practice because of
two main reasons: (i) Determining the effectiveness of software tests is
an open research and practical challenge; (ii) Developers have limited
awareness with respect to how much testing they perform and how

1.2 research statement 5

much is instead required. As a result, resulting test suites are often hard
to understand and maintain as they are implemented without following
good programming practices and appear to contain low-quality code.
Many researchers in the past have associated some testing aspects to
the code quality of the corresponding production code. However, there
is still a lack of evidence on what are the test-related factors that really
influence software code quality.

4. Software testing: The mobile applications perspective. One of the
fundamental aspects of mobile applications development is time-to-
market. Even more than for standard applications developers, mobile
apps developers are always requested to release in the shortest possible
time. In such a scenario, code quality is often overshadowed and
testing is performed only superficially. Indeed, many bugs in mobile
applications are discovered by users when applications are already in
production.

This thesis aims to face this criticalities and address the main limitations
mentioned above. Specifically, we define four high-level research questions:

• RQa What are the capabilities of machine learning-based algorithm
for code smell detection?

• RQb How and to what extent can the limitation of machine learning
algorithm for code smell detection be overcome?

• RQc What is the relation of test-related factors on software code
quality?

• RQd Are testing activities performed properly in the context of mobile
applications development?

Lower-level research questions are defined in the next chapters.

6 introduction

1.3 research contribution

The contribution of this thesis can be divided into two parts. Specifically,
we report the research contribution achieved in the context of (i) machine
learning-based code smell detection, and (ii) technical debt in test code.

1.3.1 Research contribution on machine learning-based code smell detec-
tion

To answer our first two high-level research questions, we started comparing
the performance of machine learning-based algorithms with the one of
heuristic techniques for code smell detection. Preliminary results evidenced
that machine learning-based techniques do not outperform heuristic ones.
The reason for the low performance seems to be mainly related to three main
limitations that we treat separately as follows:

1. The high data imbalance makes it hard to perform a correct clas-
sification. To overcome this limitation we empirically evaluate the
performance variations due to the application of several data balancing
techniques, in order to understand whether and to what extent data
balancing can improve the performance of machine learning-based
code smell detection.

2. The set of metrics adopted so far does not allow to discriminate
smelly andnon-smelly instances.We face this limitation by presenting
a novel machine learning-based code smell detection approach that
uses static analysis tools’ warnings as predictors to classify smelly and
non-smelly instances.

3. Provided predictions are subjectively perceived by developers. To
this aim, we propose a novel developer-driven code smell detection
approach. Differently from a standard classification approach, our
model tries to rank code smells according to the perceived criticality
that developers assign to them.

1.4 structure of the thesis 7

1.3.2 Research contribution on technical debt in test code

To answer RQc and RQd, we conduct a multivocal literature review (MLR)
with the aim of collecting all the test-related factors that have been associated
to software code quality in the past. Then, we provide a large empirical study
to find statistical evidence of this relation, both in standard and in mobile
applications. Results of our study evidence that not only coverage-related
metrics relate to software code quality but also other intrinsic characteristics
(e.g., test case size, presence of test smells).

1.4 structure of the thesis

The remainder of this thesis is organized into three parts.
Part I groups the studies on machine learning for code smell detection:

• Chapter 2 provides a background and an analysis of the current state of
the art on code smell detection;

• Chapter 3 describes a comparative study we conducted between heuris-
tic and machine learning-based techniques for code smell detection;

• Chapter 4 provides a deep analysis of the application of data balancing
techniques for code smell detection;

• Chapter 5 presents a machine learning-based code smell detection
approach built on top of the warnings generated by static analysis tools;

• Chapter 6 presents a novel code smell prioritization approach based
on the way developers perceive the criticality of code smells in source
code;

• Chapter 7 discusses the main results in response to the high-level
research questions and reports all the major threats to validity.

Part II describes the studies related to technical debt from a testing perspec-
tive:

8 introduction

• Chapter 8 provides a background and an analysis of the related literature
on technical debt from a testing perspective;

• Chapter 9 reports a multivocal literature review aiming to extract all
the test-related factors related to software code quality;

• Chapter 10 reports an empirical investigation on the relation of test-
related factors to software code quality;

• Chapter 11 reports a large empirical investigation on the presence,
quality and effectiveness of test suites in android mobile applications;

• Chapter 12 discusses the achieved results in response to RQc and RQd
and reports all the major threats to validity.

Part III concludes the thesis and discusses the future directions and challenges
in technical debt research:

• Chapter 13 reports a summary of the work presented in this thesis
and discusses the main lesson learnt and open issues that need to
be addressed in the future other than delineating the future research
directions and reporting details about some preliminary analyses already
carried out.

Part I

M AC H I N E L E A R N I NG F O R C O D E S M E L L
D E T E C T I O N

2
BAC KG RO U N D & R E L AT E D WO R K

2.1 introduction, motivation, and related work

One of the foremost indications of the presence of technical debt is represented
by code smells [88], i.e., sub-optimal design solutions that developers apply
on a software system. Long methods implementing several functionalities,
classes having complex structures, or excessive coupling between classes are
just few examples of code smells typically observable in existing software
systems [226].

In recent years, code smells have been investigated under different perspec-
tives [15, 249]. Their introduction [302, 304] and evolution [14, 47, 219, 225,
252], their impact on reliability [239, 240] and maintainability [137, 226], as
well as the way developers perceive them [227, 288, 329] have been deeply
analyzed in literature and have revealed that code smells represent serious
threats to source code maintenance and evolution. Most notably, the impact
of code smells on program comprehension has been investigated by Abbes
et al.[1] and Yamashita and Moonen [331]. Both studies have demonstrated
that code smells negatively impact program comprehension by reducing the
maintainability of the affected classes.
For all these reasons, several techniques to automatically identify code

smells in source code have been widely investigated [78, 229]. Most of these
techniques rely on heuristics and discriminate code artefacts affected (or not)
by a certain type of smell through the application of detection rules that
compare the values of relevant metrics extracted from source code against
some empirically identified thresholds. As an example, Moha et al.[197]
introduced Decor, a method to specify and detect code and design smells
using a Domain-Specific Language (DSL). Following the general process

11

12 background & related work

described above, Decor uses a set of rules, called “rule card”1, that describe
the intrinsic characteristics of a class affected by a smell. For instance, a Blob
is detected when a class has an LCOM5 (Lack of Cohesion Of Methods)
[121] higher than 20, a number of methods and attributes higher than 20, a
name that contains a suffix in the set {Process, Control, Command, Manage,
Drive, System}, and it has a one-to-many association with data classes. The
authors showed that Decor can identify smells with an average F-Measure
of ≈80%.

Marinescu [186] proposed a metric-based mechanism to capture deviations
from good design principles and heuristics, called “detection strategies”.
Such strategies are based on the identification of symptoms characterizing a
particular smell and metrics for measuring such symptoms. Then, thresholds
on these metrics are defined in order to define the rules. Lanza and Marinescu
[157] showed how to exploit quality metrics to identify “disharmony patterns”
in code by defining a set of thresholds based on the measurement of the
exploited metrics in real software systems. Their detection strategies are
formulated in four steps. In the first step, the symptoms characterizing a
smell are defined. In the second step, a proper set of metrics measuring these
symptoms is identified. Having this information, the next step is to define
thresholds to classify the class as affected (or not) by the defined symptoms.
Finally, AND/OR operators are used to correlate the symptoms, leading to
the final rules for detecting the smells.

Tsantalis et al.[300] presented JDeodorant, a tool whose first version was
able to detect Feature Envy bad smells and suggest move method refactoring
opportunities. Afterwards, other code smells have been supported (i.e., State
Checking, Long Method, and Blob) [81, 299, 301]. The detection strategies for
these smells are based on code metrics that are then connected to each other
using supervised clustering algorithms and thresholds to cut the resulting
dendrograms. The empirical assessment of the performance of JDeodorant
showed its high accuracy (on average, ≈75%).

Bavota et al. [20] proposed the use of structural and conceptual analysis to
support the detection of God Classes through the identification of Extract

1 http://www.ptidej.net/research/designsmells/

2.1 introduction, motivation, and related work 13

Class Refactoring opportunities. In particular, a class of the system under
analysis is first parsed to build a method-by-method matrix. A generic entry
ci,j of the method-by-method matrix represents the likelihood that method
mi and method mj should be in the same class. This likelihood is computed
as a hybrid coupling measure between methods (degree to which they are
related) obtained through a weighted average of three structural and semantic
measures, i.e., the Structural Similarity between Methods (SSM) [109], the
Call-based Dependence between Methods (CDM) [21], and the Conceptual
Similarity between Methods (CSM) [184]. Once the method-by-method
matrix has been constructed, its transitive closure is computed in order to
extract chains of strongly related methods (each chain represents the set of
responsibilities, i.e., methods, that should be grouped in a new class).
Similarly, Tsantalis and Chatzigeorgiou [301] proposed a technique to

detect Long Method code smell instances throug the identification of Extract
Method Refactoring opportunities. Specifically, the technique employs a
block-based slicing technique [189] in order to suggest slice extraction
refactorings which contain the complete computation of a given variable. If
it is possible to extract a slice for a parameter, an Extract Method Refactoring
can be applied. Consequentely, a Long Method is identified.
Tsantalis et al. [300] also devised a technique to detect Feature Envy

instances by identifying Move Method Refactoring opportuniites. This tech-
nique uses structural information to suggest Move Method Refactoring
opportunities. However, there are cases where the Feature Envy and the
envied class are related by a conceptual linkage rather than a structural one.
Here the lexical properties of source code can aid in the identification of the
right refactoring to perform. This is the reason why Bavota et al. presented
MethodBook [24], an approach where methods and classes play the same role
of the people and groups, respectively, in Facebook. In particular, methods
represent people, and so they have their own information as, for example,
method calls or conceptual relationships with the other methods in the same
class as well as the methods in the other classes. To identify the envied
class, MethodBook use Relational Topic Model (RTM) [285]. Following
the Facebook metaphor, the use of RTM is able to identify “friends” of the

14 background & related work

method under analysis. If the class having the highest number of “friends” of
the considered method is not the current owner class, a refactoring operation
is suggested (i.e., a Feature Envy is detected).
Bavota et al. [23] also devised the use of game theory to find a balance

between class cohesion and coupling when splitting a class with different
responsibilities into several classes. Specifically, the sequence of refactor-
ing operations is computed using a refactoring game, in which the Nash
equilibrium [211] defines the compromise between coupling and cohesion.
Simon et al. [275] provided a metric-based visualization tool able to

discover design defects representing refactoring opportunities. For example,
a Blob is detected if different sets of cohesive attributes and methods are
present inside a class. In other words, a Blob is identified when there is the
possibility to apply an Extract Class refactoring.

Munro [203] presented a metric-based detection technique able to identify
instances of two smells, i.e., Lazy Class and Temporary Field, in the source
code. A set of thresholds is applied to some structural metrics able to capture
those smells. In the case of Lazy Class, the metrics used for the identification
are Number of Methods (NOM), LOC, Weighted Methods per Class (WMC),
and Coupling Between Objects (CBO).

Van Emden and Moonen [309] presented JCOSMO, a code smell browser
that visualizes the detected smells in the source code. In particular, they focus
their attention on two Java programming smells, known as instanceof and
typecast. The first occurs when there are too many instanceof operators in the
same block of code that make the source code difficult to read and understand.
The typecast smell appears instead when an object is explicitly converted
from one class type into another, possibly performing illegal casting which
results in a runtime error.
Ratiu et al. [264] proposed to use the historical information of the sus-

pected flawed structure to increase the accuracy of the automatic problem
detection. However, it is important to note that in this case the change history
information is not exploited to detect code smells (as done in Section 7), but
for understanding the persistance and the maintenance effort spent on design
problems.

2.1 introduction, motivation, and related work 15

Palomba et al.[228] presented HIST, an approach to detected code smells
by using source code evolution information. The method they propose extract
information about how the code has changed over a period of time. This
information is used by a detection model to detect code smells in the source
code.

Palomba et al.[234] also presented TACO (Textual Analysis for Code smell
detectiOn). TACO follows a three-step process: (i) first it extracts the textual
content of the component under analysus, (ii) then it applies Information
Retrieval (IR) normalization process, and (iii) finally it performs code smell
detection based on textual information and similarities by relying on specific
heuristics.
Despite the good performance achievable with the discussed techniques,

previous work [78, 339] pointed out three important limitations that might
preclude their use in practice: (i) subjectiveness of developers with respect to
code smells detected by these tools, (ii) scarce agreement between different
detectors, and (iii) difficulties in finding good thresholds to be used for
detection. The adoption of machine learning techniques may potentially
mitigate these problems, however there is limited evidence of whether and
how much machine learning actually improves the performance of traditional
approaches.

Nevertheless, there are some important limitations that threaten the adoption
of these heuristic approaches in practice [78, 339]. First, code smells identified
by these techniques are subjectively interpreted by developers, meaning that
they output code smell candidates that are not considered as actual problems
by developers [83, 181]. Furthermore, the agreement between detectors is
very low [82], which means that different detectors are required to detect the
smelliness of different code components. At last, the performance of most
of the current detectors is strongly influenced by the thresholds needed to
identify smelly and non-smelly instances [78].
To overcome these limitations, researchers recently adopted machine

learning (ML) to avoid thresholds and decrease the false positive rate [85]:
in this schema, a classifier (e.g., Logistic Regression [6]) exploits a set of
independent variables (a.k.a., predictors) to calculate the value of a dependent

16 background & related work

variable (i.e., the presence of a smell or degree of the smelliness of a code
element).
In this context, Kreimer [151] proposed a prediction model that, on the

basis of code metrics used as independent variables, can lead to high values of
accuracy. It adopts Decision Trees to detect two code smells (i.e., Blob and
Long Method). Later on, Amorim et al.[7] confirmed the previous findings
by evaluating the performance of Decision Trees on four medium-scale
open-source projects. Vaucher et al.[316] studied Blob’s evolution relying
on a Naive Bayes classifier, whereas Maiga et al.[177, 178] proposed the
use of Support Vector Machine (SVM) and showed that such a model
can reach an F-Measure of ≈80%. The use of Bayesian Belief Networks
to detect Blob, Functional Decomposition, and Spaghetti Code instances
on open-source programs, proposed by Khomh et al.[138, 139] lead to an
overall F-Measure close to 60%. Similarly, Hassaine et al.[118] defined an
immune-inspired approach for the detection of Blob smells, while Oliveto
et al.[221] used a B-Splines to detect them. More recently, some authors
investigated the feasibility of machine learning to detect code clones [318,
323, 332]. Arcelli Fontana et al.made the most relevant progress in this
field [85–87]. In their work, they (i) theorised that ML might lead to a
more objective evaluation of code smells hazardousness [87], (ii) provided a
ML method to assess code smell intensity [86], and (iii) compared 16 ML
techniques for the detection of four code smell types [85] showing that ML
can lead to F-Measure values close to 100%. Nevertheless, recently Di Nucci
et al.[71] demonstrated that, in a real use-case scenario, the results achieved
by Arcelli Fontana et al.[85] cannot be generalised, thus contrasting the real
effectiveness of machine learning for code smell detection.

Although the use of machine learning looks promising, its actual accuracy
for code smell detection is still under debate, as previous work has observed
contrasting results [71, 85]. More importantly, it is still unknown whether
these techniques actually represent a better solution with respect to traditional
heuristics. In other words, the problem of assessing the feasibility of machine
learning for code smell detection is still open and requires further investi-

2.2 background 17

Preprocessing Data analysis Classification EvaluationData Mining

Figure 2.1: Machine learning process for code smell detection.

gations. The next section reports details about the application of machine
learning techniques for code smell detection.

2.2 background

Figure 2.1 depicts the pipeline of a standard machine learning process for
code smell detection. Such a process, is generally characterized by 5 steps as
shown in the figure:

Step 1 - Data mining. This step consists of mining data from software
systems’ repositories in order to obtain all the information needed to train/test
machine learning classifiers. As the main outcome, this phase provides a
data set reporting the values of all the mined metrics for each of the code
components under analysis.

Step 2 - Preprocessing. Once mined all the necessary data, some prepro-
cessing steps are required to correct/remove possible biases contained in
the data. Common practices performed during this phase are the application
of data imputation techniques [307] to manage eventually missing values
or the evaluation of the multicollinearity between the mined variables in
order to avoid biased results. The most important aspect to deal with during
preprocessing is how to assign values to the target attribute, i.e., the attribute
that we are trying to predict. In code smell detection, usually, the target
attribute is represented by a binary value indicating if the specific code
component under consideration is affected or not by a code smell type. To
assign values to such an attribute, generally, a manual validation is performed,
i.e., some code inspectors are requested to read the source code and manually
label the presence/absence of code smells for all the components of a system.

18 background & related work

Step 3 - Data analysis. After the first two phases, we should now have a
curated data set containing both input and target attributes which can be
further analyzed and optimized. Two optimizations that are fundamental when
dealing with code smell detection are feature selection and data balancing.
Feature selection consists of extracting from the input variables the most
powerful predictors of the target attribute. Some of the most common feature
selection techniques that we have used in the studies presented in this thesis
are (i) the Correlation-based Feature Selection (CFS) approach [113], which
uses correlation measures and a heuristic search strategy to identify a subset of
actually relevant features for a model, or (ii) the Gain Ratio Feature Evaluation
technique [257], that establishes a ranking of the features according to their
importance for the predictions done by the different models. Given a set of
features F = {f1, ..., fn} belonging to the modelM , the Gain Ratio Feature
Evaluation computes the difference, in terms of Shannon entropy, between
the model including the feature fi and the model that does not include fi as
independent variable. The higher the difference obtained by a feature fi, the
higher its value for the model. The outcome is represented by a ranked list,
where the features providing the highest gain are put at the top.

Figure 2.2: An example of unbalanced dataset

Another aspect to deal with in the data analysis step is data balancing. In
the case of code smell detection, the distribution of the target attribute is
not uniform, for instance, the target attribute could be ‘true’ for 5% of the
dataset, while it is ‘false’ for the remaining 95%. If the training set does

2.2 background 19

not contain enough examples for all the values of a certain target attribute,
the ML model will not learn how to distinguishes it. In these cases, data
balancing techniques can solve the problem and allow the learner to get
enough examples to be trained. Figure 2.2 plots a simplified representation
of an imbalanced dataset in which most of the instances belong to the green
majority class. The descriptions of the data balancing techniques used in this
thesis are reported below:

Figure 2.3: Example of application of Oversampling

Oversampling [168]. This algorithm randomly adds samples of the minority
class. Figure 2.3 shows a representation of the effects of the algorithm. In
this representation, instances are not added or removed, but their weights
are modified in such a way that more importance is given to the instances
belonging to the minority class.

Undersampling. This algorithm randomly removes samples of the majority
class using either sampling with or without replacement. A common practice
is to replace instances of the majority class (i.e., clean classes) with instances
from the minority class (i.e., smelly classes) until obtaining an even number
of instances for both classes [72, 92] as shown in Figure 2.4. Please notice
that in the figure, the size of a point represents its frequency.

Synthetic Minority Oversampling TEchnique [48]. This technique increases
the number of instances from the minority class by generating new synthetic
instances based on the nearest neighbours belonging to that class. As shown

20 background & related work

Figure 2.4: Example of application of Undersampling

Figure 2.5: Example of application of SMOTE

in Figure 2.5, to create a new synthetic instance, SMOTE randomly selects
an element from the minority class and identifies its nearest neighbours: the
new instance is created between them. The number of nearest neighbours to
use is a parameter of the algorithm.

Cost-Sensitive Classifier [150]. A Cost-Sensitive Classifier is a meta-classifier
that renders a cost-sensitive version of the base classifier. The training
instances can be re-weighted according to the total cost assigned to each class,
i.e., the cost-sensitivity is considered during the training phase. Considering
that ML-based code smell detection exhibits many false negatives, we
configure the CostSensitiveClassifier provided by Weka [114] in such a
way that the cost of false negatives is twice the cost of false positives.

2.2 background 21

Figure 2.6: Example of application of One-Class Classifier

One-Class Classifier [297]. As shown in Figure 2.6, a One-Class Classifier
is trained only on the samples belonging to the minority class to learn the
unique features of this class and accurately identify an unseen sample of this
class as distinct from a sample of any other class. All instances belonging to
other classes are identified as outliers.

Step 4 - Classification. After having applied all the data optimizations, we
are now ready to perform the classification. In this phase, the input data are
split into two sets: the training set, which contains all instances used to train
the classifier, and the test set, which contains the instances for which we
want to perform the classification. Then, a machine learning classifier (e.g.,
Naive Bayes, Random Forest) is trained on the training set data in order to
find patterns between all the input variables and the target variable, which is
known within the training set. Once the classifier has found such patterns, it
performs a classification to predict the values of the target attribute for all the
instances contained in the test set.
Note that some machine learning classifiers require the specification of

hyper-parameters to be executed properly. Despite they usually rely on a
the default configuration, their performance may lose up to 30% of their
classification capabilities. As such, tuning hyper-parameters is key to obtain
a more accurate model. The available toolkits provide various configuration
algorithms. Example of configuration algorithms are: (i) GridSearch, which
exhaustively verifies how variations of hyper-parameters impacts the perfor-

22 background & related work

mance of the model, so that the best configuration can be found, and (ii)
MultiSearch [334], which implements a multidimensional search of the
hyper-parameter space to identify the best configuration of the model based
on the input data.

Step 4 - Evaluation. The last step consists in testing the performance of the
adopted machine learning technique. Depending on the problem domain and
specification, various methodologies are available:

Percentage Split. The idea is to split the labeled dataset in two parts. The first
is then used to train the machine learner, while the latter will be the test set.
In this way, you can measure how well the model predicts the instances of
the test set.

K-fold Cross Validation. The dataset is randomly partitioned in k folds (usually
ten). K-1 of them are then used as training set, while one is retained as test set.
The process is then repeated k times, so that each fold is used as test once.

Leave One Out Cross Validation. Similar to k-fold cross validation, but here
each fold contains only one instance. Therefore, iteratively, all the remaining
N-1 instances are used as training data to predict the value of a single instance
in the test set. One known and widely used variant of this validation strategy
is the leave on group out cross validation (LOGO), where each fold contains
data belonging to a different group. For instance, we could assign different
groups to data coming from different software projects, then we use data
coming from external projects to train a classifier that is tested on the project
we are interested in.

Finally, to actually assess the performance of the machine learning model
we need to measure some evaluation metrics. The definitions of the most
used evaluation metrics are reported below.
Let TP (True Positives) be the actual smelly instances that have been

correctly identified as smelly by a model, FP (False Positives) the non-smelly
instances that have been erroneously identified as smelly, TN (True Negatives)
the non-smelly instances that have been correctly identified as non-smelly,
and FN (False Negatives) the smelly instances that have been erroneously
identified as non-smelly, we can measure:

2.2 background 23

• Accuracy. This metric represents the fraction of instances that are
correctly classified:

Accuracy =
#TP + TN

#(TP + FP + TN + FN)
% (2.1)

• Precision. This metric represents the fraction of instances predicted as
smelly that are actually smelly, namely:

Precision =
#TP

#(TP + FP)
% (2.2)

• Recall. This metric represents the fraction of actually smelly instances
that have been correctly predicted as smelly:

Recall =
#TP

#(TP + FN)
% (2.3)

• F-measure. This metric is defined as the weighted harmonic mean of
the precision and recall, and it is computed as:

F −Measure = 2 ∗ precision ∗ recall
precision+ recall

% (2.4)

• MCC. MCC is a correlation coefficient between the observed and
predicted binary classifications. It has values in the range [-1,+1] where
a coefficient of +1 represents a perfect prediction and 1 indicates total
disagreement between prediction and observation:

MCC = #(TP∗TN−FP∗FN)

#
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(2.5)

24 background & related work

Table 2.1: Descriptions of the code smells considered in the thesis
Code Smell Description
God Class This smell characterises classes having a large size, poor cohesion,

and several dependencies on other data classes of the system [88]
Spaghetti Code Classes affected by this smell declare several long methods without

parameters [88]
Class Data Should Be Private This smell appears in cases where a class exposes its attributes,

thus violating the information hiding principle [88]
Complex Class Classes presenting an overly high cyclomatic complexity [191] are

affected by this design flaw
Long Method Methods implementing more than one functionality are affected

by this smell [88]
Feature Envy This smell arises when amethod communicates more with methods

that are inside another class than the ones in its
Inappropriate Intimacy This smell occurs when two classes are highly coupled [197, 226]
Lazy Class This smell targets classes that do not have enough responsibilities

within the system and that, therefore, should be removed to reduce
the overall maintainability costs [88]

Middle Man This smell arises when a class delegates to other classes most of
the methods it implements [88]

Refused Bequest A class which redefines most of its inherited methods, then making
the hierarchy wrong [88]

Speculative Generality This smell shows up when a class declared as abstract has very few
children using its methods [88]

Long Parameter List A method having a long list of parameters is harder to use [88]
Shotgun Surgery This smell arises when a change to a class (e.g., to one of its

fields/methods) triggers many little changes to other classes of the
system [88]

Brain Repository Repository classes that include complex business logic or
queries [10]

Fat Repository A Repository which deals with many Entity classes [10]
Promiscuous Controller Controller classes exhibiting this smell offer too many actions [10]
Brain Controller Controller classes with a complex control flow [10]

2.3 our contribution on ml-based for code smell detection

This part of the thesis aims at performing steps ahead toward the application
of machine learning for code smell detection. To this aim we conducted
empirical studies and experimented new techniques for the automatic detection
of different code smell types. Descriptions of the code smells considered in
this thesis are reported in Table 2.1.

2.3 our contribution on ml-based for code smell detection 25

First of all, we started addressing our first high-level research question (i.e.,
RQa) in order to provide a deeper knowledge on the capabilities of machine
learning for code smell detection.
To this aim, in Chapter 3 we conduct an empirical study comparing the

performance of machine learning-based and heuristic techniques for code
smell detection.
Our main findings report that heuristic techniques have slightly better

performance than machine learning approaches, thus indicating that ma-
chine learning-based techniques for code smell detection still need further
improvement to be applied in practice. In particular, we identified three
major limitations of these approaches that could strongly downsizing their
performance: (i) high data imbalance can lead machine learning algorithm to
misclassifications, (ii) the set of metrics adopted so far is still to limited, and
(iii) the outcoming results are subjectively perceived by developers. Therefore,
we moved our attention to the second high-level research question (i.e., RQb)
to understand whether and to what extent these limitations can be overcome.

First we focus on the data imbalance limitation. As code smell detection is
a problem in which training datasets usually have skewed class proportions
(i.e., highly imbalanced data) [71], data balancing is a key factor to improve
the reliability of such models. We face this issue in Chapter 4 by presenting
a comprehensive comparison of several data balancing techniques for the
automatic detection of Object-Oriented (OO) and Model-View-Controller
(MVC) code smells.

After having analyzed the data imbalance limitation, we consider the
exploration of new metrics as code smell predictors. In particular, in Chapter
5 we present a novel machine learning-based technique that relies on warnings
generated by by three static analysis tools, i.e., Checkstyle, FindBugs,
and PMD, as predictors for code smell detection. The choice of focusing
on those warnings was motivated by the type of design issues that can be
identified through static analysis tools. More particularly, while some of the
warnings they raise are not directly related to source code design and code
quality, there are several exceptions. For instance, let consider the warning
category called ‘bad_practice’ raised by FindBugs, one of the most widely

26 background & related work

used static analysis tools in practice [315]. According to the list of warnings
reported in the official documentation,2 this category includes a number of
design-related warnings. Similarly, the warning category ‘design’ provided by
Checkstyle and PMD is also associated with design issues. As such, static
analysis tools actually deal with the design of source code and pinpoint a
number of violations that may be connected to the presence of code smells. In
the context of this chapter, we first hypothesized that the indications provided
by the static analysis tools [320] can be potentially useful to characterize code
smell instances. Secondly, we conjectured that the incorporation of these
warnings within intelligent systems may represent a way to reduce the high
amount of false positives they output [127].

Finally, in Chapter 6, we focus on the third (and last) identified limitation,
i.e., the developers’ subjective interpretation of the results provided by
machine learning-based code smell detection techniques. To overcome this
limitation, we change theway to detect code smells in source code components.
In particular, instead of performing a binary classification to predict the
presence/absence of code smells based on a manual validated dataset, we
propose a novel technique that aims to predict the developers perceived
criticality of code smells in source code based on a dataset composed of
developers’ perception of the severity of 1,332 code smell instances collected
through a survey.

2 The FindBugs official documentation: http://findbugs.sourceforge.net/
bugDescriptions.html.

http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html

3
C O M PA R I NG H E U R I ST I C A N D M AC H I N E L E A R N I NG
A P P ROAC H E S F O R M E T R I C - BA S E D C O D E S M E L L
D E T E C T I O N

This chapter presents a large-scale empirical study—that features 125 releases,
13 software systems, and 5 code smell types—in which we compare the
performance of machine learning techniques and heuristic approaches for
code smell detection. We experiment with five code smell detection models
built using different algorithms and compare their performance with Decor
[197], a state-of-the-art heuristic-based approach that is the most adopted one
in literature [78, 249].
The main contributions of this chapter can be summarized as follow:

1. A large-scale empirical comparison of machine learning and heuristic
approaches for metric-based code smell detection, which highlighted
that heuristic approaches still perform better, yet have low performance.

2. The identification of limitations, such as data unbalancing or poor
precision, that make the application of both machine learning models
and heuristic approaches for code smell detection hard.

3.1 empirical study definition and design

The goal of the study is to compare heuristic withmachine learning approaches
for code smell detection, with the purpose of assessing the extent towhich code
smell detection models can be effectively used in practice. The perspective is
of both researchers and practitioners: both of them are interested in evaluating
the performance of machine learning for code smell detection, while the
former are interested also in understanding possible limitations of the current

27

28 heuristic vs. machine learning for code smell detection

approaches. More specifically, we aim at addressing the following research
question:

RQ1. How do machine learning-based techniques for code smell detection
perform when compared to a baseline heuristic-based approach?

The following sections report the methodological steps that we conducted
to address RQ1.

3.1.1 Context of the Study

The context of the study was represented by software systems and code smells.
As for the former, we exploited a publicly available dataset composed of
125 releases of 13 open source software systems [226], whose description
is reported in Table 3.1. The projects of the dataset are heterogeneous, have
different size, lifetime, and belong to various application domains: as such,
we could reduce threats to the generalizability of the empirical study. The
dataset contains a set of 8, 534 manually validated code smell instances of
five different types: thus, we could perform our study on a dataset of real
code smells, in contrast with the artificially created ones that were used in
previous research on code smell detection [15].

Table 3.1: Projects Considered in the Study
Project Description # Releases # Classes # Methods
Ant Build System 10 1,002-1,218 9,333-11,919
ArgoUML UML Modeling Tool 13 889-2,221 7,252-17,309
Cassandra Database Management System 8 470-727 4,422-7,901
Derby Relational Database Management System 9 1,733-2,920 23,107-421,183
Eclipse Integrated Development Environment 21 812-5,736 10,819-51,008
Elastic Search RESTful Search and Analytics Engine 8 1,785-2,466 12,393-18,225
Hadoop Tool for Distributed Computing 9 148-344 1,224-3,080
HSQLDB HyperSQL Database Engine 10 556-601 10,075-11,016
Incubating Codebase 6 497-787 4,210-5,767
Nutch Web-search Software 7 304-453 1,846-2,761
Qpid Messaging Tool 5 1,547-2,118 14,858-20,402
Wicket Java Application Framework 9 2,133-2,212 12,370-12,824
Xerces XML Parser 10 483-542 5,280-6,126

3.1 empirical study definition and design 29

Table 3.2: Descriptive statistics for smells distribution
Code Smell min mean median max total
God Class 0 5.5 4 24 509
Spaghetti Code 0 12.7 11 31 1443
Class Data Should Be Private 0 11.4 11 37 1150
Complex Class 0 6.4 4 20 669
Long Method 3 48.3 26 147 4763

With respect to code smells, we considered five different types defined in
the catalog by Fowler [88], namely God Class, Spaghetti Code, Class Data
Should be Private, Complex Class, and Long Method. Detailed descriptions
of code smells are reported in Table 2.1.

Table 3.2 reports the descriptive statistics related to the distribution of code
smells over the considered dataset. As it is possible to observe, the median
number of code smells in each considered release is pretty low (it ranges
from 4 to 26). The absolute numbers correspond to extremely low relative
percentages: as an example, we noticed that the maximum number of God
Class instances (24), in the project Apache Derby 10.3.3.0, only represents
the 1% of the total number of classes belonging to this system (2220). On the
one hand, the observed distribution confirms previous findings in the field
[226]. On the other hand, the extremely low number of code smells clearly
evidences that the problem in question is highly unbalanced.
In the remaining of this section, we explain the machine learning-based

and heuristic-based detection solutions exploited in our study to identify
instances of these code smells.

3.1.2 Heuristic-Based Detection of Code Smells

Among all the techniques and tools available for code smell detection [78,
249], we relied on Decor [197] as a metric-based heuristic baseline for
several reasons. First, this technique has been extensively used and showed
good detection performance (e.g., [138, 139, 228, 234]), thus representing
a valid candidate to be a baseline in our study. Furthermore, it is based on

30 heuristic vs. machine learning for code smell detection

detection rules that can be computed directly looking at the source code of a
class/method, without the need of computationally-expensive operations (e.g.,
the construction of the Abstract-Syntax Tree and the subsequent clustering
mechanism applied by JDeodorant [300]) that would have made the
detection phase unfeasible because of the amount of data we had to analyze.
Last but not least, DECOR is publicly available. It provided out-of-the-box
the detection rules able to identify two code smells considered in the study
(i.e., God Class and Spaghetti Code), while for the remaining ones we relied
on the definitions provided by Tufano et al. [304]

God Class. A smelly instance is detected when a class has a size higher
than 500 lines of code and either an LCOM5 (Lack of Cohesion Of
Methods) [121] higher than 20 or a number of methods and attributes
higher than 20.

Spaghetti Code. Decor identifies this smell in cases where a class has
a size higher than 600 lines of code and a number of long methods
(identified as explained later) without parameters higher than 0.

Class Data Should Be Private. In this case, Decor computes the Number
Of Public Attributes (NOPA) of a class and, if this is higher than 10,
then a smell is identified.

Complex Class. The detection rule for this smell considers the Weighted
Methods per Class (WMC) metric, namely the sum of the McCabe’s
cyclomatic complexity [191] of the methods of a class. If WMC is
higher than 50, a class is detected as affected by the smell.

Long Method. To detect this smell, the lines of code of the method
(LOC_METHOD) and the number of parameters of the method (NP)
are used. Decor indicates the presence of the smell is a method has
more than 100 lines of code and at least one parameter.

Table 3.3 reports the summary of all the detection rules. The full name of
the metrics is reported in Table 3.4. We ran Decor over all the 125 releases

3.1 empirical study definition and design 31

Table 3.3: Detection Rules Used by the Heuristic-Based Approach.
Code Smell Detection Rule
God Class ELOC > 500 ∧ (NOM+NOA > 20 ∨ LCOM > 20)
Spaghetti Code ELOC > 600 ∧ NMNOPARAM > 0
Class Data Should Be Private NOPA > 10
Complex Class WMC > 50
Long Method LOC_METHOD > 100 ∧ NP > 1

Table 3.4: Full Names of the Considered Metrics.
Acronym Full Name
ELOC Effective Lines Of Code
LCOM Lack of COhesion in Methods
LOC_METHOD Lines Of Code of METHOD
NOA Number Of Attributes
NOM Number Of Methods
NOPA Number Of Public Attributes
NP Number of Parameters
NMNOPARAM Number of Methods with NO PARAMeters
WMC Weighted Methods Count

and, on the basis of the output recommendations, we re-constructed the
confusion matrices. These were analyzed and compared with those obtained
with the machine learning models in terms of the evaluation metrics described
in Section 3.1.4.

3.1.3 Machine Learning-Based Detection of Code Smells

Once we had defined the heuristic-based baseline, we configured the machine
learning-based classifiers to detect the considered smells. This required
several steps, ranging from the definition of the dependent and the independent
variables to the pre-processing actions needed to avoid common problems
such as multi-collinearity and biased interpretation [217].

Dependent variable. Since in our work we were interested in detecting
code smells, we set the presence/absence of a certain code smell as

32 heuristic vs. machine learning for code smell detection

dependent variable of the machine learning model. This information
was already available in the considered dataset.

Independent variables.As the overall goal of the study was the comparison
between heuristic and machine learning-based detectors, we wanted to
avoid that such a comparison could have been biased by other co-factors.
For this reason, the independent variables of the model were exactly
the same used by the heuristic approach (see Table 3.3): in this way,
we avoid the possibility that different performance might be due to the
selected metrics rather than the technique exploited.

Selection of the classifier. While several classifiers have been previously
used for code smell detection, the related literature showed that it
is unclear which of them represents the best solution [15]. For this
reason, in this work we compared the five most commonly used ML
algorithms such as J48 [258], Random Forest [32], Naive Bayes
[126], Support Vector Machines [46], and JRip [58]. To perform a
fair comparison, we applied the same configuration, preprocessing, and
training strategies to all the classifiers, as described in the following.

Configuration and preprocessing steps. Before assessing the accuracy
of the machine learning-based models, we took into account two
aspects, i.e., classifier configuration and feature selection, that might
possibly bias their performance [176, 296, 328]. We configured the
hyper-parameters of the considered classifiers by exploiting the Grid
Search algorithm [29]. Secondly, we removed highly correlated
independent variables through the Correlation-based Feature
Selection (CFS) approach [113]. We applied the feature selection
algorithm on each release independently, so that the model took into
account only the features that are relevant for a specific release of the
considered systems. It is important to note that we consciously avoid
the application of balancing algorithms [48], i.e., techniques that ensure
a similar proportion of smelly and non-smelly classes/methods in the
training set. This decision was taken as a result of experimental tests,

3.1 empirical study definition and design 33

Table 3.5: Aggregate Results for Precision, Recall, F-Measure, and MCC
Precision Recall F-Measure MCC

NB Decor NB Decor NB Decor NB Decor
God Class 0.27 0.08 0.85 1 0.41 0.16 0.47 0.28
Spaghetti Code 0.15 0.11 0.30 0.47 0.20 0.18 0.20 0.22
Class Data Should Be Private 0.29 0.23 0.34 0.42 0.29 0.30 0.29 0.31
Complex Class 0.23 0.23 0.57 0.72 0.33 0.35 0.36 0.37
Long Method 0.15 0.57 0.56 0.37 0.23 0.44 0.30 0.42

where we observed that such algorithms can bias the interpretation of
the results in the context of code smell detection.

Validation strategy. To assess the capabilities of the machine learning
models, we adopted 10-Fold Cross Validation [286]. The process was
repeated 10 times, using each time a different fold as test set.

The result of the process described above consisted of a confusion matrix
for each code smell type, for each of the 125 releases of the considered
projects and for each experimented classifier. These matrices have been later
analyzed to measure the evaluation metrics described in the following section.

3.1.4 Data Analysis and Metrics

To assess the performance of the experimented detection techniques we
computed three well-known metrics [16], namely, precision, recall and F-
measure. In addition, we also computed theMatthews Correlation Coefficient
(MCC) [256]. Since we considered several releases of several systems, we
needed to aggregate the results achieved for each release to have a clearer
overview of the performance [12]. Therefore, we aggregated the obtained
confusion matrices before computing precision, recall, F-Measure, and MCC.
where i ranges over the entire dataset, including the releases with no smelly
instances. Aggregate metrics are more robust than the mean, which is biased
by the fact that datasets are unbalanced for different smell types in terms of
smelly and non smelly instances (in some cases the datasets do not contain
any smelly instance).

34 heuristic vs. machine learning for code smell detection

As a final step, we statistically verified the differences between the perfor-
mance obtained by the experimented approaches. To this aim, we exploited
the Wilcoxon test [324] computed on the distributions of MCC values of
machine learning-based and heuristic-based techniques over the different
releases and the different smell types. The results are intended as statistically
significant at α=0.05. Furthermore, we estimated the magnitude of the mea-
sured differences by using Cliff’s Delta (or d), a non-parametric effect size
measure [56] for ordinal data. We followed well-established guidelines to
interpret the effect size values: negligible for |d| < 0.10, small for |d| < 0.33,
medium for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474 [56].

3.2 analysis of the results

Table 3.5 shows the aggregate results for precision, recall, F-measure, and
MCC achieved by the machine learning model (“NB” in the table) and
Decor. The overall results immediately highlight that the performance of
both the approaches is generally low: indeed, the maximum F-measure is
41% and 44% for the NB and Decor, respectively. This is especially due to
the extremely low precision achieved over the entire dataset. More in detail,
the high number of false positives is likely influenced by the fact that the
dataset contains instances of different code smell types that sometimes have
characteristics that may bias the detection approaches. As an example, let
consider the cases of God Class and Complex Class. While the detection
rules for these smells are different, it is reasonable to believe that some code
metrics tend to have a similar distributions in the classes affected by those
smells; for instance, being a God Class poorly cohesive and with a large
number of methods, it is likely that also the complexity of the class tends to
be high. This is the case of taskdefs.optional.net.FTP of the Apache
Ant 1.6.0 system, that is a God Class but has WMC=39. Such a value is not
that high to make the class affected by Complex Class too, but it is enough to
confound the machine learning technique, which wrongly signals the class
as complex, thus giving a false positive. This result seems to suggest that an
improved characterization of the symptoms behind specific code smell types

3.2 analysis of the results 35

●

●●●●●●●●●●0.00

0.25

0.50

0.75

1.00

DECOR

Naiv
e B

ay
es

M
C

C
 −

 G
od

 C
la

ss

0.00

0.25

0.50

0.75

1.00

DECOR

Naiv
e B

ay
es

M
C

C
 −

 S
pa

gh
et

ti
C

od
e

0.00

0.25

0.50

0.75

1.00

DECOR

Naiv
e B

ay
es

M
C

C
 −

 C
la

ss
 D

at
a

S
ho

ul
d

B
e

P
riv

at
e

●

●●●●0.00

0.25

0.50

0.75

1.00

DECOR

Naiv
e B

ay
es

M
C

C
 −

 C
om

pl
ex

 C
la

ss

0.00

0.25

0.50

0.75

1.00

DECOR

Naiv
e B

ay
es

M
C

C
 −

 L
on

g
M

et
ho

d

Figure 3.1: Boxplots representing the MCC values obtained by Decor and Naive
Bayesian (NB) for all the considered code smells

(e.g., by means of textual or historical analyses [170, 228, 234]) may make
code smell detection more effective.

It is also worth to discuss the values achieved when considering the recall.
In this case, we observed that Decor is superior to NB in most cases: this
confirms the experimental results obtained by the original authors [197] on
the high recall of the approach. Finally, the low MCC values of both the
approaches (see Figure 3.1) confirm that code metrics are not enough when
it turns to code smell detection [38, 276].

Table 3.6: Comparison between NB and Decor in terms of Wilcoxon and Cliff’s
Delta Effect Sizes. Significant p-values are reported in Bold Face.

p-value d Meaning
God Class <0.01 0.13 Negligible
Spaghetti Code 0.01 -0.29 Small
Class Data Should Be Private <0.01 -0.43 Medium
Complex Class 0.01 -0.41 Medium
Long Method <0.01 -0.33 Small

From a statistical point of view, Table 3.6 reports the results of theWilcoxon
and Cliff’s delta tests computed on the MCC values of the experimented
approaches. As shown, the difference between the techniques are statistically
significant in all cases (p−values lower than 0.05). With the exception of
God Class—where the machine learning model achieves higher MCC—all
the other cases show that Decor is statistically better than the baseline.

36 heuristic vs. machine learning for code smell detection

Table 3.7: Overlap between ML and DECOR in Absolute Terms and Percentages
NB \ Decor NB ∩ Decor Decor \ NB NB ∪ Decor ¬NB ∩ ¬Decor
% # % # % # % # %

God Class 0 0 435 85 74 15 509 100 0 0
Spaghetti Code 14 1 419 29 266 18 699 48 744 52
Class Data Should Be Private 91 8 298 26 186 16 575 50 575 50
Complex Class 50 8 329 49 155 23 534 80 135 20
Long Method 1577 33 1076 23 650 14 3303 70 1460 30

Nevertheless, these differences are mostly negligible or have at most a
medium effect.

In the following subsections, we discuss the findings achieved by consider-
ing each code smell independently and reporting qualitative examples aimed
at further analyzing the performance of the detectors. Also, we discuss the
complementarity between the sets of code smells correctly identified by the
detectors (see 3.7), namely the extent to which NB and Decor are able to
identify the same instances.

3.2.1 Results for God Class

Looking at the results in both Table 3.5 and Figure 3.1, we can say that this
smell is the easiest to detect and, in fact, all the instances affected by this smell
have been correctly classified as smelly by at least one of the experimented
techniques. In particular, we note that Decor reaches a recall of 100%, which
means that it is able to detect all God Class instances. Nevertheless, the high
recall has a cost in terms of precision, that is just 8%. On the one hand, our
findings are in line with those reported in previous studies [197, 228]. On the
other hand, they confirm the need for further methodologies able to improve
metric-based code smell detection.

When considering the complementarity of the approaches (Table 3.7), our
results indicate a high overlap (85%): this means that in the vast majority of
cases NB and Decor can identify the same instances. However, a total of 74
actual God Class cases, corresponding to 15%, were only correctly identified
by Decor and missed by NB. To better understand the reasons that enable the
heuristic approach to discover different instances than the machine learning

3.2 analysis of the results 37

model, we went manually over the outputs of the techniques to conduct a
manual analysis. As a result, we found that, while the heuristic approach can
logically combine them obtaining better results, in most cases the machine
learning model could be biased due to the characteristics of the training
set, i.e., if the distributions of the involved independent variables are not
representative in the training set a ML-based classifier could not be able to
distinguish cases where certain conditions hold. As an example, let consider
the class CBZip2OutputStream belonging to the project Apache Ant 1.6.3:
despite it is characterized by an LCOM < 20 (i.e., 19), it respects the rule
reported in Table 3.3, as it has an ELOC = 2346 and NOM+NOA = 161. As
such, the heuristic approach can still correctly identify its smelliness. On the
contrary, the machine learning model classifies the instance as non-smelly.

3.2.2 Results for Spaghetti Code

As opposed to the previous case, this smell does not seem to be easily
detectable automatically, as demonstrated by the results in Table 3.7, where
we can see that more than half of the instances affected by this smell are
not detected as smelly by any of the approaches. Overall, the performance
achieved by the machine learning technique is extremely low, both in terms
of precision and recall (15% and 30%, respectively). At the same time,
Decor has a higher recall (+17% with respect to other technique), but a
lower precision (-4%), which had the effect to make the overall results of
the two approaches comparable (F-Measure for DECOR is just 2% lower
than NB, while MCC is 2% higher). Thus, we can claim that the metric-
based detection is not able to provide good results, independently from the
underlying technique adopted. Once again, this may indicate the need for
further work aimed at improving the characterization of this smell type.
Looking at the complementarity, also in this case the overlap is higher than
the number of instances correctly detected by only one of the two. However,
in the remaining cases Decor is able to identify 266 code smell instances
(18%) that are not correctly detected by the machine learning model. For
example, the class MeridioAuthority of the Apache Incubating 0.3

38 heuristic vs. machine learning for code smell detection

project is correctly detected only by Decor. Basically, the reason is exactly
the same observed before: the value of the ELOC metric of this class is 661,
which is very close to the threshold (i.e., 600). While the heuristic technique
discriminates based on thresholds, thus identifying the smelly class, the ML
approach might be confounded by borderline metric values.

3.2.3 Results for Class Data Should Be Private

As for this smell, half of the smelly instances are not identified by any of
the two techniques: this seems to be a clear indication of the need for more
effective detection strategies. Between the two experimented techniques,
Decor is the one with the highest recall and this allows it to be slightly better
than the machine learning model, overall. This is likely due to the very simple,
yet clearer, detection rule applied by Decor to identify instances of this smell.
Conversely, the machine learning model seems to be less stable both in terms
of precision and recall because it may be confounded by borderline values.
The results shown in Table 3.7 confirm that the prediction model can only
identify a limited number of instances that are not identified by Decor (91),
while in most cases there is an overlap (298) or the heuristic approach works
better (186).

3.2.4 Results for Complex Class

The detection rule for this smell is only based on WMC, so the only factor
that can determine different predictions is the value of this metric. First, we
can confirm the results discussed so far, with Decor having a high recall but
a low precision. Moreover, the MCC of both the approaches is slightly in
favor of Decor (0.37 vs 0.36), indicating that (i) there is not a clear winner
between the two and (ii) more sophisticated techniques for the detection of
this smell would be worthwhile. The discussion of the overlap metrics is also
very similar to the other smells discussed above. In general, we observed
that the values that bring to an erroneous detection are the ones close to the
threshold boundaries. The impact of boundary values can be also analyzed by

3.3 conclusions 39

another point of view. Let consider the class ServerSession in the Apache
Cassandra 0.8.0 project, which shows a WMC = 47 that can be considered
high but does not exceed the threshold of 50. In this case, the ML technique
correctly detects the instance as smelly, while Decor cannot.

3.2.5 Results for Long Method

As for Long Method, this was the only case in which the machine learn-
ing technique had higher recall than Decor (i.e., +19%). Also for this
code smell, the differences between the two approaches mainly concern
instances with metric values close to the thresholds used by DECOR. An
example is provided by the method doSnapshot belonging to the class
BlobStoreIndexShardGateway of the Elasticsearch 0.17.0 project. The
method under considerations has 79 lines of code and takes only 1 parameter.
It is correctly detected by the prediction model as smelly but not by Decor
because it requires 100 or more lines of code and more than one parameter to
identify the smell.

3.3 conclusions

In this chapter we compared a machine learning approach with a heuristic one
for code smell detection, considering five different types of code smells over a
dataset composed of 125 releases of 13 open source software systems. Other
than providing evidence that heuristic approaches perform better thanmachine
learning ones, even if still with limited performance, our study highlighted
some limitations, such as data imbalance or poor precision, that make the
application of both machine learning models and heuristic approaches for
code smell detection hard.

4
A L A RG E E M P I R I CA L A S S E S S M E N T O F T H E RO L E O F
DATA BA L A N C I NG I N M AC H I N E - L E A R N I NG - BA S E D
C O D E S M E L L D E T E C T I O N

This chapter presents an extensive empirical study in which we compare the
performance of five data-balancing techniques for code smell detection with
respect to a no-balancing baseline. To increase the generalisability of the
results, we analyse two subsets of code smells extracted from two catalogues:
(i) the catalogue proposed by Fowler et al. [88] for Object-Oriented code, and
(ii) the catalogue proposed by Aniche et al. [10] for systems implementing
the Model-View-Controller pattern. Our goal is understanding to what extent
data balancing techniques can improve the accuracy of machine learning for
code smell detection and which algorithms practitioners should use. This
chapter provides the following contributions:

1. A large empirical study in which we exploit machine learning-based
techniques to detect 11 code smell types for Object-Oriented systems
on 125 releases of 13 software systems.

2. A second empirical study that includes four code smells to detect main-
tainability issues in Model-View-Controller systems [10]. Specifically,
we analyse 120 projects relying on the Spring framework to answer
two additional research questions.

3. A deep analysis on the role of balancing techniques and the impact of
metrics selection.

4. A performance analysis in which we inspect the overhead in terms of
efficiency caused by data balancing.

41

42 the role of data balancing in ml-based code smell detection

Table 4.1: Object-Oriented code smells along with the heuristics used to detect them
and the features used by the ML models

Code Smell Detection Rule ML Model Features
God Class ELOC > α ∧ (WMC +NOA) > β ∧ LCOM > γ ELOC,WMC, NOA, LCOM
Spaghetti Code ELOC > α ∧NMNOPARAM > β ELOC, NMNOPARAM

Class Data Should Be Private NOPA > α NOPA

Complex Class McCabe > α McCabe

Long Method LOC_METHOD > α ∧NP ≥ β LOC_METHOD, NP
Feature Envy MC > α ∧ATFD > β MC, ATFD
Inappropriate Intimacy (FanIn+ FanOut) > α FanIn, FanOut
Middle Man PDM > α PDM

Refused Bequest PRM > α PRM

Speculative Generality NOC > α NOC

Long Parameter List NP > α NP

4.1 detection of object-oriented code smells

The purpose of this study is to understand the impact of data balancing
techniques on the accuracy of machine learning algorithms in detecting the
design flaws from the catalogue designed by Fowler [88] who introduced
the term code smell and adopted it for Object-Oriented systems. We aim to
address the following research questions:

RQ1. Do data balancing techniques improve the effectiveness of machine
learning-based detectors of code smell defined for Object-Oriented

systems?

RQ2. Which data balancing technique is the most effective at improving the
effectiveness of machine learning-based code smell detectors for

Object-Oriented systems?

4.1.1 Code Smells for Object-Oriented systems

Code smells are “symptoms of poor design and implementation choices” [88]
that have been widely observed to both analyse their characteristics [14, 47,
219, 252, 302, 304] and assess their impact on software maintainability [1,

4.1 detection of object-oriented code smells 43

Table 4.2: Complete list of the consideredmetrics for the detection ofObject-Oriented
code smells.

Acronym Full Name Smells
ATFD Access To Foreign Data Feature Envy
ELOC Effective Lines Of Code God Class, Spaghetti Code
FanIn Max number of references to the subject class from another class

in the system
Inappropriate Intimacy

FanOut Max number of references from the subject class to another class
in the system

Inappropriate Intimacy

LCOM Lack of COhesion in Methods God Class
LOC_METHOD Lines Of Code of METHOD Long Method
McCabe McCabe’s Cyclomatic Complexity Complex Class
MC Method Calls Feature Envy
NOA Number Of Attributes God Class
NOC Number Of Children Speculative Generality
NOM Number Of Methods God Class
NOPA Number Of Public Attributes Class Data Should Be Private
NP Number of Parameters Long Method, Long Parameter List
NMNOPARAM Number of Methods with NO PARAMeters Spaghetti Code
PDM Percentage of Delegated Methods Middle Man
PRM Percentage of Refused Methods Refused Bequest
WMC Weighted Methods Count God Class, Complex Class

136, 224, 227, 288, 329, 331]. For many of these code smells heuristic
detection rules have been defined [88, 191, 197, 226] based on metrics and
thresholds to discriminate whether a component is smelly or not. We use
the same metrics used by these heuristic detection rules to build machine
learning models for code smell detection. In particular, we consider 11 code
smells defined by Fowler [88] that are reported in Table 4.1 along with their
detection rules, and lists of the metrics used in the Machine Learning models.
The full description of such metrics is shown in Table 4.2.

4.1.2 Data Balancing Techniques for Machine Learning

The goal of the experiment is to compare the accuracy of different data
balancing techniques, namelyOversampling [168],Undersampling, Synthetic
Minority Oversampling TEchnique [48], Cost-Sensitive Classifier [150],
and One-Class Classifier [297]. Descriptions of the adopted data balancing
techniques are reported in Section 2.2.

44 the role of data balancing in ml-based code smell detection

To this aim, we configure five different model variants based on the Naive
Bayes classifier [126] which in our previous study showed to be the most
effective in code smell detection. Our baseline consists of models trained
without applying any data balancing technique (No-balancing). A dataset is
imbalanced when its classes are not equally represented.

Table 4.3: Distribution statistics for Object-Oriented code smells
Code Smell Min Mean Median Max Total
God Class 0 5.5 4 24 509
Spaghetti Code 0 12.7 11 31 1443
Class Data Should Be Private 0 11.4 11 37 1150
Complex Class 0 6.4 4 20 669
Long Method 3 48.3 26 147 4763
Feature Envy 0 1.3 0 12 148
Inappropriate Intimacy 0 15.4 2 774 1788
Middle Man 0 0.9 0 6 107
Refused Bequest 0 6.5 4 22 750
Speculative Generality 0 9.5 7 38 1106
Long Parameter List 0 5 1 29 578

4.1.3 Subject Systems

We select software systems for which a validated dataset of code smells
exists. Specifically, we relied on 125 releases of 13 open-source software
systems [226]. We employed the same dataset that we used in our previous
study, presented in Chapter 3. The systems are heterogeneous since they have
different sizes, lifetimes, and belong to different application domains. Note that
the dataset consists of manually validated code smells instances (i.e., 8, 534).
Looking at the distribution of code smells in the dataset, reported in Table
4.3, we can observe that each considered release have a low median number
of code smells thus demonstrating once again that code smell detection is a
highly imbalanced problem.

4.1 detection of object-oriented code smells 45

4.1.4 Model Building and Evaluation

For each model we apply a Feature Selection step by using Correlation-
based Feature Selection (CFS) [113] to remove highly correlated inde-
pendent variables. Then, we tune the hyper-parameters of the classifier by
applying the Grid Search algorithm [29], therefore resulting in five models
that only differ for the choice of the data balancing technique to adopt.
As independent variables we consider the code metrics related to the

structural characteristics of the software instances (e.g., size, complexity). We
exploit the set of metrics originally adopted byMoha et al. [197]. In particular,
given the smell detection rule, we design a model where we employ as
independent variables only the metrics used in the detection rule. For example,
for God Class the detection rule is ELOC > 500 ∧ (WMC + NOA) >

20 ∧ LCOM > 350. Therefore, we train the model on the effective number
of lines of code (i.e., ELOC), the weighted methods per class (i.e.,WMC),
the number of attributes (i.e., NOA), and the lack of cohesion per class (i.e.,
LCOM). Table 4.1 reports the features used to detect each smell, while the
complete list, including the full name of the metrics, is depicted in Table 4.2.

Sincewe are interested in detecting code smells, we set the presence/absence
of a specific code smell as dependent variable of the machine learning model.
This information was already available in the considered dataset.

To assess the capabilities of each of the five resulting machine learning
models, we adopt 10-Fold Cross Validation [286]. The process is repeated
10 times, using each time a different fold as the test set. For each software
system and data balancing technique, we build a machine learning model
(i.e., within-project classification). The result consists of a confusion matrix
for each code smell type, for each of the 125 project releases and each
experimented classifier. Later, these matrices have been analysed to measure
the evaluation metrics described in the following parts of the section.
To assess the effectiveness of the experimented detection techniques we

compute four well-known metrics [16, 256], namely, precision, recall, F-
Measure, and Matthews Correlation Coefficient (MCC). We chose to discuss

46 the role of data balancing in ml-based code smell detection

results only in terms of MCC because this metric provides a better overview
with respect to the other metrics by considering all the confusion matrix [271].

Since we consider several datasets, we need to aggregate the results
achieved to have a more precise overview of the quality of results [12]. This
step has been performed in a two-fold manner (i) by aggregating the confusion
matrices and (ii) by plotting the results as boxplots. Boxplots are very useful
to describe the distribution of the results and provide preliminary outcomes
on the comparison of different techniques. However, to draw more reliable
conclusions, they need to be complemented with statistical tests. Therefore,
we use the Nemenyi test [214] for statistical significance and report its results
by mean of MCB (Multiple comparisons with the best) plots [148]. We set
the significance level to 0.05. The elements plotted above the gray band are
statistically larger than the others.

4.1.5 Results of the Study

For each code smell, we first discuss the results by displaying boxplots, and
then we evaluate their statistical significance relying on the results provided
by the Nemenyi test. Note that we discarded all the cases in which at least
one technique fails.
Figure 4.1 reports the boxplots for the MCC values obtained by applying

different balancing techniques. The results of the Nemenyi test, for the
statistical significance, are shown in Figure 4.2.

The first aspect we can observe is that, regardless of the balancing technique
and the code smell under analysis, MCC values are between 0 and 0,5 which
indicates that machine learning has limited accuracy for Object-Oriented
code smell detection.
The results show that SMOTE is the most effective technique. However,

in 7 out of 11 cases, none of the balancing techniques is significantly better
in terms of MCC. No-balancing provides good accuracy as well, since it
appears six times in the group containing the most effective techniques.

An important aspect to remark is that for 4 out of 11 object-oriented code
smells, SMOTE and No-balancing MCCs are significantly higher than all the

4.1 detection of object-oriented code smells 47

0.00

0.25

0.50

0.75

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.2

0.4

0.6

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.3

0.6

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.00

0.25

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.1

0.2

0.3

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.2

0.4

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.25

0.50

0.75

1.00

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

Figure 4.1: Boxplots representing the MCC values obtained by Naive Bayesian
trained applying different balancing strategies for Object-Oriented code
smells detection.

other balancing techniques. This is the case of two class-level code smells
(God Class, and Complex Class) and two method-level code smells (Long
Method, and Feature Envy). God Class and Complex Class are the easiest
class-level code smells to identify. Their detection rules are straightforward

48 the role of data balancing in ml-based code smell detection
M

C
C

 −
 G

od
 C

la
ss

●

●

●

●

●
●

O
C

C
 −

 2
.2

1

U
nd

er
sa

m
pl

in
g

−
2.

36

C
S

C
 −

 3
.0

1

O
ve

rs
am

pl
in

g
−

3.
23

N
o

B
al

an
ci

ng
 −

 5
.0

5

S
M

O
TE

 −
 5

.1
4

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 C
om

pl
ex

 C
la

ss

●

●

●

●

●

●

O
C

C
 −

 1
.5

6

C
S

C
 −

 2
.7

7

U
nd

er
sa

m
pl

in
g

−
3.

55

O
ve

rs
am

pl
in

g
−

3.
84

S
M

O
TE

 −
 4

.4
9

N
o

B
al

an
ci

ng
 −

 4
.7

8

1
2

3
4

5

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 C
la

ss
 D

at
a

S
ho

ul
d

B
e

P
riv

at
e

●

●

●

●

●

●

O
C

C
 −

 1
.3

4

C
S

C
 −

 2
.6

5

S
M

O
TE

 −
 3

.4
6

N
o

B
al

an
ci

ng
 −

 3
.7

1

U
nd

er
sa

m
pl

in
g

−
4.

71

O
ve

rs
am

pl
in

g
−

5.
13

1
2

3
4

5

●

●

●

● ●

●

●

●

●

●

●

●

●

M
C

C
 −

 S
pa

gh
et

ti
C

od
e

●

●

●

● ●

●

O
C

C
 −

 1
.2

3

C
S

C
 −

 2
.5

9

S
M

O
TE

 −
 4

.0
8

U
nd

er
sa

m
pl

in
g

−
4.

24

N
o

B
al

an
ci

ng
 −

 4
.2

7

O
ve

rs
am

pl
in

g
−

4.
59

1
2

3
4

5

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 L
on

g
M

et
ho

d

●

● ●
●

●

●

O
C

C
 −

 1
.0

2

O
ve

rs
am

pl
in

g
−

3.
09

U
nd

er
sa

m
pl

in
g

−
3.

12

C
S

C
 −

 3
.2

2

S
M

O
TE

 −
 4

.9
0

N
o

B
al

an
ci

ng
 −

 5
.6

4

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

● ●

●

●

M
C

C
 −

 F
ea

tu
re

 E
nv

y

●

●

●

●

●

●

O
C

C
 −

 1
.1

7

U
nd

er
sa

m
pl

in
g

−
2.

92

O
ve

rs
am

pl
in

g
−

3.
42

C
S

C
 −

 3
.5

8

S
M

O
TE

 −
 4

.5
0

N
o

B
al

an
ci

ng
 −

 5
.4

2

0
1

2
3

4
5

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 I
na

pp
ro

pr
ia

te
 In

tim
ac

y

●

●

●

●

●

●

O
C

C
 −

 2
.0

7

C
S

C
 −

 3
.0

7

S
M

O
TE

 −
 3

.2
8

N
o

B
al

an
ci

ng
 −

 3
.3

8

U
nd

er
sa

m
pl

in
g

−
4.

48

O
ve

rs
am

pl
in

g
−

4.
72

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 R
ef

us
ed

 B
eq

ue
st

●

●

●

●

●
●

C
S

C
 −

 2
.9

5

O
C

C
 −

 3
.1

4

N
o

B
al

an
ci

ng
 −

 3
.2

1

S
M

O
TE

 −
 3

.3
9

O
ve

rs
am

pl
in

g
−

4.
13

U
nd

er
sa

m
pl

in
g

−
4.

17

2.
5

3.
0

3.
5

4.
0

4.
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 M
id

dl
e

M
an

●

●

●

● ●

●

N
o

B
al

an
ci

ng
 −

 2
.0

0

S
M

O
TE

 −
 3

.2
9

O
C

C
 −

 3
.5

7

O
ve

rs
am

pl
in

g
−

3.
86

C
S

C
 −

 3
.8

6

U
nd

er
sa

m
pl

in
g

−
4.

43

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

M
C

C
 −

 S
pe

cu
la

tiv
e

G
en

er
al

ity

● ●

●

●

●
●

S
M

O
TE

 −
 2

.6
4

N
o

B
al

an
ci

ng
 −

 2
.6

5

C
S

C
 −

 3
.0

1

O
C

C
 −

 3
.8

9

O
ve

rs
am

pl
in

g
−

4.
38

U
nd

er
sa

m
pl

in
g

−
4.

44

2.
5

3.
0

3.
5

4.
0

4.
5

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

M
C

C
 −

 L
on

g
Pa

ra
m

et
er

Li
st

●

●

●

●

●

●

U
nd

er
sa

m
pl

in
g

−
1.

89

O
ve

rs
am

pl
in

g
−

2.
22

C
S

C
 −

 2
.8

6

S
M

O
TE

 −
 4

.2
4

N
o

B
al

an
ci

ng
 −

 4
.7

5

O
C

C
 −

 5
.0

4

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.2: Plots representing the results of Nemenyi test for statistical significance
between the MCC values obtained by Naive Bayesian trained applying
different balancing strategies for Object-Oriented code smells detection.

and based on easy-to-calculate metrics (e.g., size, complexity), leading to
a median MCC close to 0.5 regardless of the data balancing applied. As
for Long Method and Feature Envy, these are method-level smells; hence,
the total number of instances to predict is much higher. We could deem

4.2 detection of model-view-control code smells 49

SMOTE and No-balancing to have higher effectiveness where the detection
metrics are simple or a large number of instances is available. However,
LongParameterList is an exception. Indeed, although it is a method-level
smell, the best MCC values are achieved by One-Class Classifier. In this
specific case, SMOTE and No-balancing accuracy is slightly lower than
One-Class Classifier but still better than all the other techniques.

Two unusual cases for which a specific discussion is required areMiddle
Man and Speculative Generality.Middle Man represents one of the rare cases
in which data balancing techniques improve ML effectiveness. Indeed, No
Balancing is the least accurate technique, with a quite clear difference to the
others. As for Speculative Generality, results show that, regardless of the
adopted data balancing technique, MCC values are very low proving that
machine learning is still not applicable for the detection of this smell with
the set of metrics used in our study.

By and large, results suggest that there is no balancing technique which is
better than the others. Indeed, different balancing techniques could be more
suitable for different types of code smells. However, the highest accuracy
is achieved by No-balancing and SMOTE, except for some code smells in
which One-Class Classifier shows a higher MCC.

¤ Summing Up: The results show that the performance of current
machine learning-based approaches for detecting Object-Oriented code
smells is quite limited, regardless of the adopted balancing technique
(MCC < 0.50). Overall, SMOTE and No Balancing seem to be more
effective than the other techniques.

4.2 detection of model-view-control code smells

The purpose of the second study is to understand the impact of data balancing
techniques on the accuracy of machine learning algorithms in detecting the
design flaws from the catalogue designed by Aniche et al. [10] who defined
smells specific for systems implementing the Model-View-Control pattern.

50 the role of data balancing in ml-based code smell detection

Table 4.4: MVC code smells along with the heuristics used to detect them and the
features used by the ML models

Code Smell Detection Rule ML Model Features
Brain Repository McCabe > α ∧ SQLC > β McCabe, SQLC
Fat Repository CTE > α CTE

Promiscuous Controller NSR > α ∨NSD > β NSR, NSD
Brain Controller NFRFC > α NFRFC

Table 4.5: Complete list of the considered metrics for the detection of Model-View-
Controller code smells.

Acronym Full Name Smells
McCabe McCabe’s Cyclomatic Complexity Brain Repository
NOR Number of Routes Promiscuous Controller
NSD Number of Services as Dependencies Promiscuous Controller
NFRFC Non-Framework Response For a Class Brain Controller
SQLC SQL Complexity Brain Repository
CTE Calls to Entities Fat Repository

Specifically, we aim at addressing the same research questions as for the
Object-Oriented code smells:

RQ3. Do data balancing techniques improve the effectiveness of machine
learning algorithms in detecting code smells specific for systems
implementing the Model-View-Controller pattern?

RQ4. Which data balancing technique is the most effective at improving the
effectiveness of machine learning algorithms in detecting code smells
specific for systems implementing the Model-View-Controller pattern?

4.2.1 Code Smells

We analyse the code smells specific to systems adopting the Model-View-
Controller pattern [10]. Such a pattern is popular across many well-know

4.2 detection of model-view-control code smells 51

frameworks (e.g., Ruby on Rails, Spring MVC, ASP.NET MVC) [10]. In
particular, we consider four code smells for which we report the heuristics
needed to detect them and the metrics that we used to build the machine
learning models in Table 4.4. Such metrics are fully described in Table 4.5.

4.2.2 Data Balancing Techniques for machine learning

We experiment the same base classifier (i.e., Naive Bayes) and the same set
of data balancing techniques previously used in Section 4.1.

Table 4.6: Distribution statistics for MVC code smells
Code Smell Min Mean Median Max Total
Brain Repository 0 0.5 0 26 31
Fat Repository 0 1.2 0 28 126
Promiscuous Controller 0 6.7 0 478 682
Brain Controller 0 1.1 0 14 66

4.2.3 Subject Systems

We use the dataset developed by Aniche et al. [10], consisting of 120
open-source systems. We rely on this dataset because the approach used
to detect the smells has been validated with expert industrial developers
in software systems implemented using Spring. This widely adopted MVC
framework uses stereotypes to explicitly mark classes playing different roles
(e.g., Controller classes), thus facilitating identifying the role of each class.
The distribution of the smells is reported in Table 4.6.

4.2.4 Model Building and Evaluation

We build and evaluate the models by following the same procedure described
in Section 4.1.4 except the independent variables that were extracted from
the heuristics derived by Aniche et al. [10]. Table 4.4 reports the features

52 the role of data balancing in ml-based code smell detection

used to detect each smell, while the complete list, including the full name of
the metrics, is depicted in Table 4.5.

As for Object-Oriented code smells, we first discuss the results by analysing
the boxplots and then verify their statistical significance relying on the
Nemenyi test [214]. Please consider that, also in this case, we discarded all
the cases in which at least one technique fails.

0.0

0.1

0.2

0.3

0.4

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.0

0.2

0.4

0.6

0.8

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.25

0.50

0.75

1.00

SMOTE

0.0

0.2

0.4

0.6

0.8

Undersa
mpling

Oversa
mpling

Resample

SMOTE

Cost S
ensiti

ve

One Class

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

0.2

0.4

0.6

0.8

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

Figure 4.3: Boxplots representing the MCC values obtained by Naive Bayesian
trained applying different balancing strategies for MVC code smells
detection.

4.2 detection of model-view-control code smells 53

M
C

C
 −

 F
at

 R
ep

os
ito

ry

●

●

●

●

●

●

S
M

O
TE

 −
 1

.8
9

N
o

B
al

an
ci

ng
 −

 2
.2

2

C
S

C
 −

 2
.8

6

U
nd

er
sa

m
pl

in
g

−
4.

24

O
ve

rs
am

pl
in

g
−

4.
75

O
C

C
 −

 5
.0

4

2
3

4
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 B
ra

in
 R

ep
os

ito
ry

●

● ●

●

●

●

O
C

C
 −

 2
.9

8

O
ve

rs
am

pl
in

g
−

3.
14

C
S

C
 −

 3
.1

5

N
o

B
al

an
ci

ng
 −

 3
.2

2

U
nd

er
sa

m
pl

in
g

−
4.

06

S
M

O
TE

 −
 4

.4
5

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

M
C

C
 −

 B
ra

in
 C

on
tro

lle
r

●

●

●

● ●

●

U
nd

er
sa

m
pl

in
g

−
2.

15

O
ve

rs
am

pl
in

g
−

2.
29

O
C

C
 −

 3
.9

0

C
S

C
 −

 4
.0

8

N
o

B
al

an
ci

ng
 −

 4
.1

0

S
M

O
TE

 −
 4

.4
7

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

M
C

C
 −

 P
ro

m
is

cu
ou

s
C

on
tro

lle
r

●

●
●

●

●

●

O
C

C
 −

 1
.0

1

C
S

C
 −

 2
.5

9

U
nd

er
sa

m
pl

in
g

−
2.

67

O
ve

rs
am

pl
in

g
−

4.
18

S
M

O
TE

 −
 5

.0
6

N
o

B
al

an
ci

ng
 −

 5
.4

9

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.4: Plots representing the results of Nemenyi test for statistical significance
between the MCC values obtained by Naive Bayesian trained applying
different balancing strategies for MVC code smells detection.

4.2.5 Results of the Study

The results for MVC code smell detection reported in Figure 4.3 and Figure
4.4 show that ML has pretty higher accuracy when detecting this type of code
smells than when detecting Object-Oriented code smells (i.e., MCC values up
to ≈ 0.70). Similarly to the Object-Oriented case, SMOTE and No-balancing
show higher accuracy with respect to the other balancing techniques. As
already observed, these two balancing techniques seem to be more effective
where the ML algorithm has a higher prediction power. Indeed SMOTE
achieves significantly higher MCCs in all cases except for Fat Repository

54 the role of data balancing in ml-based code smell detection

in which MCC values are lower. Instead, No-balancing appears in the first
group in 2 out of 4 cases. A singular case is the Fat Repository smell, where
One-Class Classifier accuracy is significantly higher than the other balancing
techniques. A possible motivation behind this surprising result could be found
by analysing the smell distribution in Table 4.6. Indeed, the class distribution
for Fat Repository is almost uniform (i.e., the smelly instances are well spread
across the project). Therefore, in most of the cases there are enough instances
to build a reliable training set.
A final consideration is that MVC code smells are likely to be more

system-dependent. Boxplots indicate a high variability of results with respect
to the considered system showing very large distributions in most of the cases.

¤ Summing Up: With respect to the Object-Oriented case, machine
learning-based approaches are sharply more effective for the detection of
MVC related code smells. In three out of four cases, the results are pretty
good, achieving MCC values up to 0.67 and recall up to 1.00. Similarly to
Object-Oriented systems, No Balancing and SMOTE are the most effective
techniques.

4.3 conclusion

In this chapter, we have presented a large-scale empirical comparison between
six different balancing techniques for Machine-Learning-based code smell
detection. The study considered eleven code smells for Object-Oriented
systems and four code smells for systems implementing the Model-View-
Controller pattern. For the former, we relied on a manually-validated dataset
comprising 125 releases belonging to 13 open source systems. In contrast, for
the latter, our dataset consisted of 120 Spring Model-View-Controller Open
Source Systems.
The results suggest that Machine-Learning models relying on SMOTE

achieve the best accuracy. However, its training phase is not always feasible
in practice. Furthermore, avoiding balancing does not dramatically impact
effectiveness. Techniques which perform training only on the minority class

4.3 conclusion 55

(i.e., Cost-Sensitive Classifier and One Class Classifier), and resampling
techniques (i.e.,Class Balancer and Resample) are both not effective. Existing
data balancing techniques are therefore, inadequate for code smell detection.
Furthermore, the results indicate that structural metrics alone are not adequate
for code smell detection, confirming the previous work [228, 234] on the
necessity of textual and historical metrics as well as their combination with
structural metrics to achieve better accuracy. This hinders the feasibility of
the current Machine-Learning-based approaches.

5
O N T H E A D E Q UAC Y O F STAT I C A NA LYS I S
WA R N I NG S W I T H R E S P E C T T O C O D E S M E L L
D E T E C T I O N

In this chapter, we conduct a preliminary, motivational investigation into
the actual relation between static analysis warnings and code smells, also
attempting to assess the potential predictive power of those warnings.
Then, we analyze the performance of code smell detection techniques

based machine learners and using the static analysis warnings as features.
Then, we further investigate the problem by studying the overlap among
the predictions made by machine learning models built using the warnings
of different static analysis tools as features: such an analysis reveals a high
complementarity suggesting that a combination of those warnings could
potentially improve the code smell detection capabilities. As such, we define
and experiment a new combined model which significantly perform better
than the individual models.

In the last part of our study, we go beyond and analyze how this combined
model can be further combined with additional code metrics that have been
used for code smell detection in previous work [15]. While the performance
of the combined model significantly performs better than previous approaches
based on software metrics.
To sum up, this chapter provides the following contributions:

1. A preliminary analysis on the suitability of static analysis warnings in
the context of code smell detection;

2. An empirical understanding of how machine learning techniques for
code smell detection work when fed with warnings generated by
automated static analysis tools;

57

58 static analysis warnings for code smell detection

3. A machine learning-based detector that combines multiple automated
static analysis tools, improving on the performance of individual
detectors;

4. An empirical understanding of how warning-based machine learning
techniques for code smell detection work in comparison with metric-
based ones;

5. A machine learning-based detector that combines static analysis warn-
ings and code metrics, further improving detectors’ performance;

5.1 research methodology

In the context of this empirical study, we had the ultimate goal of assessing
the extent to which static analysis warnings can contribute to the identification
of design issues in source code. We faced this goal by means of multiple
analyses and research angles.
We defined three main dimensions. At first, we conducted a statistical

study aiming at investigating whether and to what extent can static analysis
warnings be actually used and useful in the context of code smell detection.
Such an analysis must be deemed as preliminary, since it allowed us to
quantify the potential benefits provided by those warnings: should this have
not provided sufficiently acceptable results, this would have already stopped
our investigation. On the contrary, a positive result would have provided
further motivations into the need for a closer investigation on the role of static
analysis warnings for code smell detection.

In this regard, we defined the first two research questions. In the first place,
we aimed at assessing if the distribution of static analysis warnings differs
when computed on classes affected and not affected by code smells. Rather
than approaching the problem from a correlation perspective, we preferred to
use a distribution analysis since the latter may provide insights on the specific
types of warnings that are statistically different in the two sets of classes, i.e.,
smelly or smelly-free—on the contrary, correlations might have only given an

5.1 research methodology 59

indication of the strength of association, without reporting on the statistical
significance when computed on smelly and non-smelly classes. We asked:

RQ1. How do static analysis warning types differ in classes affected and
not affected by code smells?

In the second place, we complemented the distribution analysis with
an additional investigation into the potential usefulness of static analysis
warnings for code smell detection. While the first preliminary analysis had
the goal to assess the distribution of warnings in classes affected or not by
code smells, this second step aimed at quantifying the contribution that such
warnings might provide to code smell detection models. In particular, we
asked:
RQ2. How do static analysis warnings contribute to the classification of

code smells?
Once we had ensured the feasibility of a deeper analysis, we then proceeded

with the investigation of the performance achieved by a code smell detection
model relying on static analysis warnings as predictors. This analysis allowed
us to provide quantitative insights on the actual usefulness of static analysis
warnings, other than understanding their limitations when considered in the
context of code smell detection. This led to the definition of three additional
research questions.
First, on the basis of the results achieved in the preliminary study, we

devised machine learning-based techniques—one for each static analysis
tool considered, as explained later in this section—that exploit the warnings
providing more contribution to the classification of code smells. Afterwards,
we assessed their performance by addressing RQ3:

RQ3. How do machine learning techniques that exploit the warnings of
single static analysis tools perform in the context of code smell
detection

Once we had assessed the classification performance of the individual
models created inRQ3, we discovered that these models had low performance,
especially due to false positives. To overcome this issue, we moved toward the
analysis of the complementarity between the individual models, namely the
extent to which different models could identify different code smell instances.

60 static analysis warnings for code smell detection

This was relevant because a positive answer could have paved the way to a
combination of multiple models. Hence, we asked:

RQ4. What is the orthogonality among the individual machine learning-
based code smell detectors?

Given the results achieved when addressing RQ4, we then devised a
combined model. The process required the identification of the optimal subset
of the static analysis warnings exploited by different tools. While investigating
the performance of such a combined model, we addressed RQ5:

RQ5. How do machine learning techniques that combine the warnings of
different static analysis tools perform in the context of code smell
detection?

The analyses defined so far could help understand how static analysis
warnings enable the identification of code smells. Yet, it is important to
remark that the research on machine learning for code smell detection has
been vibrant over the last years [15] and, as a matter of fact, a number
of researchers has been working on the optimization of machine learning
pipelines with the goal of improving the code smell detection capabilities. We
took into account this aspect when defining the third part of our investigation.
The last part of the empirical study consisted of the definition of the last three
research questions.
First, we compared the best machine learner coming from the previous

study, namely the one that combines the static analysis warnings coming from
different tools, with a machine learner that exploits structural code metrics,
namely a state of the art solution that has been used multiple times in the past
[15]. This led to the formulation of our RQ6:

RQ6. How does the combined machine learner work when compared to
an existing, code metrics-based approach for code smell detection?

Afterwards, we proceeded with a complementarity analysis involving the
two techniques (i.e., the combined machine learner and the metrics-based
approach for code smell detection) in order to understand to what extent the
models built on two different sets of metrics could identify identify different
code smell instances. In case of a positive answer, better performance could

5.1 research methodology 61

be achieved by combining these two sets of metrics together. In this regard,
we asked the following research question:

RQ7. What is the orthogonality among the combined machine learner
and the metrics-based approach for code smell detection?

Finally, after we have studied the complementarity between the two models,
we evaluated an additional combination, which aimed at putting together
static analysis warnings and code metrics. Hence, we asked:

RQ8. How do machine learning techniques that combine static analysis
warnings and code metrics perform in the context of code smell
detection?

The next sections report on the data selection, collection, and analysis
procedures adopted to address our research questions.

5.1.1 Context of the Study

The context of the study was composed of open-source software projects,
code smells, and static analysis tools.

5.1.1.1 Selection of Code Smells

The exploited dataset reports code smell instances pertaining to 13 different
types. However, not all of them are suitable for a machine learning solution.
For instance, let consider the case of Class Data Should Be Private: this
smell appears when a class exposes its attributes, i.e., the attributes have a
public visibility. By definition, instances of this code smell can be effectively
detected using simpler rule-based mechanisms, as done in the past [197].

For this reason, we first filtered out the code smell types whose definitions
do not require any threshold. In addition, we filtered out method-level
code smells, e.g., Long Method. The decision was driven by three main
observations. In the first place, the vast majority of the previous papers on
code smell detection have used a class-level granularity [15] and, therefore,
our choice allowed for a simpler interpretation and comparison of the results.
Secondly, our study focuses on the code smells perceived by developers

62 static analysis warnings for code smell detection

as the most harmful [227, 288], which are all at class-level. Thirdly, the
analyses performed in the context of our empirical study required the use of a
heuristic code smell detector (i.e., Decor [197]) that has been designed and
experimentally tested on class-level code smells. All these reasons led us to
conclude that considering method-level code smells would not be necessarily
beneficial for the study. Nonetheless, our future research on the matter will
consider the problem of assessing the role of static analysis warnings for the
detection of method-level code smells.
Based on these considerations, we focused our study on seven code

smells, namely God Class, Spaghetti Code, Complex Class, Inappropri-
ate Intimacy, Lazy Class, Refused Bequest, and Middle Man. Detailed
descriptions of code smells are reported in Table 2.1

The selected code smells are those more often targeted by related research
[15]. They have been also connected to an increase of change- and fault-
proneness of source code [42, 137, 226] as well as maintenance effort [277].
According to previous work [137, 226, 329], all the code smells considered
let the affected source code be more prone to changes and faults in different
manners. As an example, Palomba et al. [226] reported that the change-
proneness of classes affected by the God Class smell is around 28% higher
than classes not affected by the smell, while Spaghetti Code increases the
change-proneness of classes of about 21%. Other empirical investigations
provided different indications, e.g., Khomh et al. [135, 137] reported that
68% of the classes affected by a God Class are also change-prone. As a
matter of fact, our current body of knowledge reports that all the code smells
we considered are connected to change- and fault-proneness, but different
studies provided different estimations on the extent of such connection. In
addition, these code smells are highly relevant for developers that, indeed,
often recognize them as harmful for the evolvability of software projects [227,
288, 330].

5.1 research methodology 63

5.1.1.2 Selection of Automated Static Analysis Tools

In the context of our research, we selected three well-known automated static
analysis tools such as Checkstyle, Findbugs, and PMD. We provide a brief
description of these tools in the following:

• Checkstyle. Checkstyle is an open-source developer tool that eval-
uates Java code according to a certain coding standard, which is
configured according to a set of “checks”. These checks are classified
under 14 different categories, are configured according to the coding
standard preference, and are grouped under two severity levels: error
and warning. More information regarding the standard checks can be
found from the Checkstyle web site.1

• Findbugs. Findbugs is another commonly used static analysis tool
for evaluating Java code, more precisely Java bytecode. The analysis
is based on detecting “bug patterns”, which arise for various reasons.
Such bugs are classified under 9 different categories, and the severity
of the issue is ranked from 1-20. Rank 1-4 is the scariest group, rank
5-9 is the scary group, rank 10-14 is the troubling group, and rank
15-20 is the concern group.2

• PMD. PMD is an open-source tool that provides different standard
rule sets for major languages, which can be customized by the users,
if necessary. PMD categorizes the rules according to five priority
levels (from P1 “Change absolutely required” to P5 “Change highly
optional”). Rule priority guidelines for default and custom-made rules
can be found in the PMD project documentation.3

The selection of these tools was driven by recent findings reporting that
these are among the automated static analysis tools more employed in practice
by developers [159, 312, 315]. In particular, the most recent of these papers

1 https://checkstyle.sourceforge.io
2 http://findbugs.sourceforge.net/findbugs2.html
3 https://pmd.github.io/latest/

https://checkstyle.sourceforge.io
http://findbugs.sourceforge.net/findbugs2.html
https://pmd.github.io/latest/

64 static analysis warnings for code smell detection

[315] reported that Checkstyle, PMD, and FindBugs are actually the tools
that practitioners use more when developing in Java, along with SonarQube.
The selection was therefore based on these observations. In this respect, it
is also worth remarking that we originally included SonarQube as well.
However, we had to exclude it because it failed on all the projects considered
in our study (see Section 5.1.1.3).

5.1.1.3 Selection of Software Projects

To address the research goals and assess the capabilities of the machine
learning techniques for code smell detection, we needed to rely on a dataset
reporting actual code smell instances. Most previous studies [15] focused
on datasets collected using automated mechanisms, e.g., executing multiple
detectors at the same time to consider the instances detected by all of them
as actual code smells. Nonetheless, it has been shown that the performance
of machine learning-based code smell detectors might be biased by the
approximations done, other than by the false positive instances detected when
building the ground truth of code smells [71]. In this study, we took advantage
of these latter findings and preferred to rely on a manually-labeled dataset
containing actual code smell instances. Of course, this choice might have
had an impact on the size of the empirical study since there exist only a few
datasets of manually-labeled code smells [15]. Yet, we were still convinced
to opt for this solution, as this was the most appropriate choice to do in order
to have reliable results. Indeed, a dataset of real smell instances allowed us to
provide reliable results on the performance capabilities of the experimented
models and, at the same time, to present a representative case of a real
scenario where the code smells arise in similar amounts as in our study [226].
From a technical viewpoint, the selection of projects was driven by the

above requirement. We exploited a publicly available dataset of code smells
developed in previous research [226, 232]: this provides a list of 17,350
manually-verified instances of 13 code smell types pertaining to 395 releases
of 30 open source systems. Given this initial dataset, we fixed two constraints
that the projects to consider had to satisfy. First, the projects had to contain
data for the code smells selected in our investigation (see Section 5.1.1.1).

5.1 research methodology 65

Secondly, we required them to be successfully built so that they could be
later analyzed by the selected static analysis tools (see Section 5.1.1.2). These
two constraints were satisfied in 25 releases of the 5 open-source projects
reported in Table 5.1 along their main characteristics.

Table 5.1: Software systems considered in the project.
Project Description # Classes # Methods
Apache Ant Build system 1,218 11,919
Apache Cassandra Database Management

System
727 7,901

Eclipse JDT Integrated Develop-
ment Environment

5,736 51,008

HSQLDB HyperSQL Database
Engine

601 11,016

Apache Xerces XML Parser 542 6,126

For the sake of completeness, it is worth reporting that most of the ex-
cluded releases/projects were due to build issues, e.g., dependency resolution
problems [303]. This possibly remarks the need for additional public code
smell datasets composed of projects that can be analyzed through static or
dynamic tools.

5.1.2 Data Collection

The data collection phase aimed at gathering information related to dependent
and independent variables of our study. These concern the labeling of code
smell instances, namely the identification of real code smells affecting the
considered systems, and the collection of static analysis warnings from the
selected analyzer, which will represent the features to be used in the machine
learners designed in the empirical study.

5.1.2.1 Collecting information on actual code smell instances

This stage consisted of identifying real code smells in the considered software
projects. The data collection, in this case, was inherited by the dataset
exploited. While some previous studies relied on automated mechanisms for

66 static analysis warnings for code smell detection

Table 5.2: Descriptive statistics about the number of code smell instances.
Code Smell Min. Median Mean Max. Tot.
God Class 0.00 4.00 6.19 23.00 412
Complex Class 0.00 2.00 4.27 16.00 301
Spaghetti Code 0.00 11.00 12.40 32.00 773
Inappropriate Intimacy 0.00 2.00 3.03 10.00 206
Lazy Class 0.00 1.00 1.95 11.00 141
Middle Man 0.00 1.00 1.11 6.00 84
Refused Bequest 0.00 7.00 7.35 17.00 500

this step, e.g., by using metric-based detectors [85, 135, 177], recent findings
showed that such a procedure could threaten the reliability of the dependent
variable and, as a consequence, of the entire machine learning model [71].
Hence, in our study we preferred a different solution, namely considering
manually-validated code smell instances. For all the systems considered, the
publicly available dataset exploited in the empirical study report actual code
smell instances [226, 232] and has been used in recent studies evaluating the
performance of machine learning models for code smell detection [226]. For
each code smell, Table 5.2 reports the distribution of the code smells in the
dataset.

5.1.2.2 Collecting static analysis tool warnings

This step aimed at collecting the data of the independent variables used in
our study. Each tool required a different process to collect such data:

• Checkstyle. The jar file for the Checkstyle analysis was downloaded
directly from the Checkstyle’s website4 in order to engage the analysis
from the command line. The version of the executable jar file used
was the checkstyle-8.30-all.jar. In addition to downloading the
jar executable, Checkstyle offers two different types of rule sets
for the analysis. For each of the rule sets, the configuration file was

4 https://checkstyle.org/#Download

https://checkstyle.org/#Download

5.1 research methodology 67

downloaded directly from Checkstyle’s guidelines.5 In order to start the
analysis, the checkstyle-8.30-all.jar and the configuration file
in question were saved in the directory where all the projects resided.

• Findbugs. FindBugs 3.0.1 was installed by running the brew
install findbugs in the command line. Once installed, the GUI was
then engaged by writing spotbugs. From the GUI, the analysis was
executed through File→ New Project. The classpath for the analysis
was identified to be the location of the project directory. Moreover,
the source directories were identified to be the project jar executable.
Once the class path and source directories were identified, the analysis
was engaged by clicking Analyze in the GUI. Once the analysis finished,
the results were saved through File → Save as using the XML file
format. The main specifications were the "Classpath for analysis (jar,
ear, war, zip, or directory)" and "Source directories (optional; used
when browsing found bugs)" where the project directory and project
jar file were added.

• PMD. PMD 6.23.0 was downloaded from GitHub6 as a zip file. After
unzipping, the analysis was engaged by identifying several parameters:
project directory, export file format, rule set, and export file name. In
addition to downloading the zip file, PMD offers 32 different types of
rule sets for Java.7 All 32 rule sets were used during the configuration
of the analysis.

Using these procedures, we ran the three static analysis tools on the
considered software systems. At the end of the analysis, these tools extracted
a total of 60,904, 4,707, and 179,020 warnings for Checkstyle, FindBugs,
and PMD, respectively.

5 https://github.com/checkstyle/checkstyle/tree/master/src/main/
resources

6 https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/
pmd-bin-6.23.0.zip

7 https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/
rulesets/java

https://github.com/checkstyle/checkstyle/tree/master/src/main/resources
https://github.com/checkstyle/checkstyle/tree/master/src/main/resources
https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/pmd-bin-6.23.0.zip
https://github.com/pmd/pmd/releases/download/pmd_releases%2F6.23.0/pmd-bin-6.23.0.zip
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java
https://github.com/pmd/pmd/tree/master/pmd-java/src/main/resources/rulesets/java

68 static analysis warnings for code smell detection

5.1.3 Data analysis

In this section, we report the methodological steps conducted to address our
research questions.

5.1.3.1 RQ1. Distribution analysis.

To address the first research question, we first showed boxplots depicting the
distribution of the metrics and smells. Then, we computed the Mann-Whitney
and Cliff’s Delta tests to verify the statistical significance of the observed
differences and their effect size. With respect to other possible analyses
methods (e.g., correlation), studying the distribution of warnings into the
smelly and non-smelly classes not only allowed us to identify the warning
types that are more related to code smells, but also to quantify the extent
of the difference between the number of warnings contained in smelly and
non-smelly classes.

5.1.3.2 RQ2 Contribution of static analysis warnings in code smell detection.

In this RQ, we assessed the extent to which the various warning categories
of the considered static analysis tools can potentially impact the performance
of a machine learning-based code smell detector. To this aim, we employed
an information gain measure [257], and particularly the Gain Ratio Feature
Evaluation technique. This analysis method turned to be particularly useful
in our case, since it allowed us to precisely quantify the potential predictive
power of each warning category for the detection of code smells.

5.1.3.3 RQ3. The role of static analysis warnings in code smell detection.

Once we had investigated which warning categories relate the most to the
presence of code smells, in RQ3 we proceeded with the definition of machine
learning models. Specifically, we defined a feature for each warning type
raised by the tools, where each feature contained the number of violations
of that type identified in a class. For instance, suppose that for a class Ci

5.1 research methodology 69

Checkstyle identifies seven violations to the warning type called “Bad
Practices": the machine learner is fed with the integer value “7" for the feature
“Bad Practices" computed on the class Ci.

The dependent variable was, instead, given by the presence/absence of
a certain code smell. This implied the construction of seven models for
each tool, i.e., for each static analysis tool considered, we built a model that
used its warnings types as features to predict the presence of God Class,
Spaghetti Code, Complex Class, Inappropriate Intimacy, Lazy Class, Refused
Bequest, and Middle Man. Overall, this design led to the creation of 21
models per project, i.e., one for each code smell/static analysis tool pair. For
the sake of clarity, it is worth remarking that we considered each release of
the projects in the dataset as an independent project. This choice was taken
after an in-depth investigation of the differences among the releases available:
we indeed discovered that the releases that met our filtering criteria (see
Section 5.1.1.3) were too far in time from each other, making other strategies
unfeasible/unreliable—as an example, the excessive distance among releases
made not feasible a release-by-releasemethodologywhere subsequent releases
are considered following a time-sensitive data analysis [248, 293].
As for the supervised learning algorithm, the literature in the field still

misses a comprehensive analysis of which algorithm works better in the
context of code smell detection [15]. For this reason, we experimented
with multiple classifiers such as J48, Random Forest, Naive Bayes, Support
Vector Machine, and JRip. When training these algorithms, we followed
the recommendations provided by previous research [15, 293] to define a
pipeline dealing with some common issues in machine learning modeling. In
particular, we exploited the output of the Gain Information algorithm—used
in the context of RQ2—to discard irrelevant features that could bias the
interpretation of the models [293]: we did that by excluding the features not
providing any information gain. We also configured the hyper-parameters
of the considered machine learners using the MultiSearch algorithm
[334]Finally, we considered the problem of data balancing: since our previous
findings showed that data balancing may or may not be useful to improve the
performance of a model, before deciding on whether to apply data balancing,

70 static analysis warnings for code smell detection

we benchmarked (i) Class Balancer, which is an oversampling approach
(ii) Resample, an undersampling method (iii) Smote, an approach including
synthetic instances to oversample the minority class, and (iv) NoBalance,
namely the application of no balancing methods.
After training the models, we proceeded with the evaluation of their

performance. We applied a 10-fold cross-validation, as it allows to verify
multiple times the performance of a machine learning model built using
various training data against unseen data. For each test fold, we evaluated the
models by computing a number of performance metrics, such as precision,
recall, F-Measure, and Matthews Correlation Coefficient (MCC). Finally,
with the aim of drawing statistically significant conclusions, we applied the
post-hoc Nemenyi test [214] on the distributions of MCC values achieved by
the experimented machine learners, setting the significance level to 0.05.

5.1.3.4 RQ4. Orthogonality between the three single-tool Detection Models.

When addressing this research question, we were interested in understanding
whether the different machine learners experimented in the context of RQ3

were able to correctly identify the smelliness of different classes. If this was
the case, then it meant that different automated static analysis tools would
have had the potential to predict the smelliness of classes differently, hence
possibly enabling the definition of a combined machine learning mechanism
that it could have further improved the code smell detection capabilities. In
other terms, the analysis aimed at understanding how many true positives can
be identified by a specific model alone and how many true positives can be
correctly identified by multiple models. To this purpose, for each code smell
type, we compared the sets of correctly detected instances by a technique
mi with those identified by an alternative techniquemj using the following
overlap metrics [220]:

correctmi∩mj =
|correctmi ∩ correctmj |
|correctmi ∪ correctmj |

%

correctmi\mj
=
|correctmi \ correctmj |
|correctmi ∪ correctmj |

%

5.1 research methodology 71

where correctmi represents the set of correct code smells detected by the
approachmi, correctmi∩mj measures the overlap between the set of true code
smells detected by both approachesmi andmj , and correctmi\mj

appraises
the true smells detected by mi only and missed by mj . The latter metric
provides an indication of how a code smell detection technique contributes to
enriching the set of correct code smells identified by another approach.

We also considered an additional orthogonality metric, which computed the
percentage of code smell instances correctly identified only by the detection
model mi. In this way, we could measure the extent to which the warning
types of a specific static analysis tool contributed to the identification of all
correct instances identified. Specifically, we computed:

correctmi\(mj∪mk) =
|correctmi \ (correctmj ∪ correctmk

)|
|correctmi ∪ correctmj ∪ correctmk

|
%

5.1.3.5 RQ5. Toward a Combination of Automated Static Analysis Tools for
Code Smell Detection.

In this research question, we took into account the possibility to devise a
combined model that mixes together the outputs of different static analysis
tools.
Starting from all warning types of the various tools, we have proceeded

as follows. In the first place, we built a new dataset where, for all classes of
the systems considered, we reported all the warnings raised by all tools. This
step led to the creation of unique dataset that combined all the information
mined in the context of our previous research questions. In the second place,
we have re-run the Gain Ratio Feature Evaluation [257] in order to globally
rank the features and discard those that, in such a new combined dataset, did
not provide any information gain.

After discarding the irrelevant features, we have followed the same steps as
RQ3 with the aim of conducting a fair comparison of the combinedmodel with
the individual ones previously experimented. As such, we trained the model
using multiple classifiers appropriately configured using the MultiSearch
algorithm [334] and considering the problem of data balancing. Afterwards,

72 static analysis warnings for code smell detection

to verify the performance of the combined model, we adopted the same
validation strategy as RQ3 and compared it with the values of F-Measure,
and Matthews Correlation Coefficient obtained by the individual models.
Finally, we used the Nemenyi test [214] for statistical significance.

5.1.3.6 RQ6. Comparison with a baseline machine learner.

To address RQ6, we had to first select an existing solution to compare with.
Most of the previous studies [5, 15, 132] experimented with various machine
learning techniques, yet they all employed code metrics as predictors. As an
example, Maiga et al. [178] characterized God Class instances by means of
Object-Oriented metrics. Similarly, other researchers have attempted to verify
how different machine learning algorithms work in the task of code smell
classification without focusing on the specific features to use for this purpose
[15]. Hence, we decided to devise a baseline machine learning technique that
uses code metrics as predictors. In this respect, we computed the entire set of
metrics proposed by Chidamber and Kemerer’s suite [50] with our own tool
and use them as features.
After computing the code metrics, we followed exactly the same method-

ological procedure used in the context of RQ3 andRQ5. As such, the baseline
machine learner aimed at predicting the presence/absence of code smells.
Also in this case, we experimented with various machine learning algorithms,
finding Random Forest to be the best one. When training the baseline, we took
care of possible multi-collinearity by excluding the code metrics providing
no information gain, other than tuning the hyper-parameters by means of the
MultiSearch algorithm [334]. In terms of data balancing, we verified what
was the best possible configuration, benchmarking Class Balancer, Resample,
Smote, and NoBalance: Smote was found to be the best option.

We applied a 10-fold cross validation on the dataset, so that we could have
a fair comparison with the approach devised in RQ5—note that we did not
consider a full comparison with the individual models experimented in RQ3

since these were shown already to be less performing. The accuracy of the
baseline was assessed through F-Measure, and MCC. Finally, we executed

5.2 analysis of the results 73

the post-hoc Nemenyi test [214] on the distributions of MCC values achieved
by the baseline and the combined machine learner output by RQ5, setting the
significance level to 0.05.

5.1.3.7 RQ7. Orthogonality between the warning- and metric-based Detec-
tion Models.

In this research question we performed a complementarity analysis between
the warning- and the metric-based DetectionModels. In order to perform such
a complementarity analysis, we followed the same methodology applyed for
RQ4. In particular, for each actual smelly instance, we computed the overlap
metrics described in Section 5.1.3.4, i.e., correctmi∩mj and correctmi\mj

.

5.1.3.8 RQ8. Combining static analysis warnings and code metrics.

To study the performance of a machine learner that exploits both static analysis
warnings and code metrics, we have proceeded in a similar manner as the
other research questions, After combining all the metrics experimented so far
in a unique dataset, we re-run the Gain Ratio Feature Evaluation [257] to
understand the contribution provided by each of those metrics. As previously
done, we discarded the ones whose contribution was null. Afterwards, we
followed the same steps as RQ5 and compared the performance of the
combined model to the previously built models using F-Measure, and MCC,
other than the Nemenyi test [214] for statistical significance.

5.2 analysis of the results

In the following, we discuss the results achieved when addressing our research
questions. For the sake of understandability, we report the discussion by RQ.

74 static analysis warnings for code smell detection

Figure 5.1: Boxplots reporting warnings distributions in smelly/non smelly classes
for the seven code smells considered.

5.2.1 RQ1. Distribution analysis.

Figure 5.1 shows boxplots of the distributions of warning categories in smelly
and non-smelly classes for the seven code smell types considered in the
study. Regardless of the code smell and the warning category considered, the
distributions always contain higher values for smelly cases, i.e., smelly classes
are more likely to contain a higher number of warnings. The only exception
is represented by Lazy Class, in which the greater number of warnings arises
in classes that are not affected by this code smell. Although this result could
sound strange, it is fair to remember that Lazy Class refers to very short
classes that basically have no responsibility. Therefore, it is reasonable to
think that lazy classes are associated with few or no warnings. Table 5.3
reports results for the Mann-Whitney and Cliff’s Delta tests. Results indicate
that for most of the warning categories, there is a statistically significant
difference between the two distributions, thus indicating that those categories
represent relevant features to discriminate smelly and non-smelly instances.
Turning to the analysis of the categories related to each individual tool, we
can see that PMD yields the most relevant warnings. Indeed, except for
Middle Man and Lazy Class, all the warning categories belonging to this tool
resulted to be relevant. Similarly, Checkstyle’s warning categories are very

5.2 analysis of the results 75

Table 5.3: Mann Whitney and Cliff’s Delta Statistical Test Results. We use N, S,
M, and L to indicate negligible, small, medium and large effect size
respectively. Significant values are reported in bold.

God Class Complex Class Spaghetti Code Inapp. Intimacy Lazy Class Middle Man Refused Bequest
Tool Warning p-value δ p-value δ p-value δ p-value δ p-value δ p-value δ p-value δ

Checkstyle

regexp 3.2e-68 M 9.9e-66 M 4.1e-02 N 3.1e-04 N 2.5e-01 N 8.7e-08 S 9.9e-06 N
checks 1.6e-86 L 1.7e-57 L 3.3e-13 N 4.2e-23 M 1.8e-08 S 1.7e-04 S 1e-15 S
whitespace 3e-93 L 1.6e-69 L 2.6e-17 S 1e-25 M 8.5e-01 N 4.6e-05 S 1.1e-15 S
blocks 1.5e-100 L 3.8e-68 L 1.2e-20 S 1.6e-36 M 7.7e-01 N 3.3e-18 L 1.2e-18 S
sizes 3.2e-77 L 9.7e-50 L 1.7e-04 N 4.9e-23 M 8.7e-01 N 7.4e-01 N 6.4e-02 N
javadoc 2.2e-74 L 3.8e-46 L 1.4e-10 N 3.8e-23 M 7e-04 S 1e-09 M 2.2e-10 S
indentation 3.1e-60 M 1e-38 M 1.1e-12 N 2.6e-15 S 5.2e-03 N 1.7e-04 S 2.1e-04 N
naming 1.4e-128 L 2.8e-78 L 4.8e-39 S 2.3e-29 M 3.7e-02 N 9.9e-01 N 2.8e-11 N
imports 1.1e-40 M 5.7e-27 M 3.3e-02 N 4.2e-22 M 7.5e-02 N 5.8e-01 N 4.6e-06 N
coding 2.2e-114 L 2.3e-77 L 2e-43 S 1.2e-35 M 1.7e-01 N 1.8e-01 N 5.8e-08 N
design 1.2e-68 M 1.5e-39 M 2.5e-11 N 1e-23 M 3.8e-03 N 5.8e-12 M 3.4e-05 N
modifier 6e-136 M 4.9e-103 M 1.9e-17 N 1.3e-47 S 8.1e-01 N 3.4e-01 N 1.5e-01 N

Findbugs

style 1.1e-63 S 7.9e-20 N 2.2e-120 S 4.2e-19 N 4.9e-01 N 7.3e-02 N 9.2e-07 N
correctness 2e-07 N 1.7e-02 N 4.1e-25 N 4.7e-02 N 6.1e-01 N 5.6e-01 N 1.3e-01 N
performance 1.2e-13 N 2.5e-19 N 2.5e-23 N 1.5e-37 N 9.6e-01 N 2.8e-01 N 8.2e-07 N
malicious_code 1.1e-04 N 1.3e-01 N 1.2e-04 N 8.8e-12 N 5.2e-01 N 3.1e-01 N 4.2e-01 N
bad_practice 7.3e-23 N 5.6e-03 N 2.5e-112 N 2.4e-36 S 1.3e-01 N 3.4e-08 N 8.5e-03 N
i18n 3.5e-10 N 4e-03 N 4e-101 N 8.3e-08 N 4.1e-01 N 2.6e-01 N 1.8e-01 N
mt_correctness 2.1e-10 N 3e-01 N 2.9e-21 N 4.4e-26 N 5e-01 N 6.1e-01 N 1.9e-01 N
experimental 5.5e-01 N 6.2e-01 N 6.4e-18 N 6.6e-01 N 7.4e-01 N 8e-01 N 5.2e-01 N
security 7.7e-01 N 8.1e-01 N 1.1e-79 N 8.3e-01 N 8.7e-01 N 9e-01 N 7.5e-01 N

PMD

documentation 4.1e-233 L 2.9e-145 L 1.9e-190 L 7.7e-70 L 2.9e-09 S 3.2e-03 S 4.6e-31 S
code_style 6.5e-233 L 2e-160 L 1.5e-302 L 8.3e-73 L 1.3e-08 S 2.8e-05 S 3.3e-79 L
best_practices 3.6e-166 L 3.1e-120 L 1.3e-210 L 2e-43 L 9.9e-03 N 8.9e-01 N 1.2e-66 M
design 1.6e-236 L 1.1e-164 L 0e+00 L 1.8e-62 L 1.3e-06 S 7.4e-01 N 2e-63 M
error_prone 4.2e-239 L 1.9e-162 L 0e+00 L 2.1e-59 L 1.3e-04 S 1.7e-01 N 3.9e-67 M
multithreading 3.7e-177 M 5.3e-109 M 4.2e-93 S 1.3e-22 S 8.9e-01 N 3.6e-01 N 1.3e-16 N
performance 1.2e-285 L 4.7e-204 L 0e+00 L 2.2e-95 L 5.3e-08 S 6.8e-01 N 7.5e-62 M

relevant for six out of the seven code smells considered. Finally, the warnings
generated by Findbugs are those showing the smaller differences between the
two considered distributions.
¤SummingUp: Results of our distribution analysis indicate that warnings
generated by Automatic Static Analysis Tools could be good indicator of
the presence of code smell instances. While Checkstyle and PMD generate
a wide set of significant warnings, Findbugs’s warnings seem to be less
correlated with code smells.

5.2.2 RQ2. Contribution of static analysis warnings in code smell detection.

Table 5.4 reports the mean information gain values obtained by the metrics
composing the 21 models built in our study. For the sake of readability, we

76 static analysis warnings for code smell detection

Table 5.4: Information Gain of our independent variables for each static analysis
tool.

Checkstyle FindBugs PMD
Code Smell Metric Mean Metric Mean Metric Mean

God Class
Indentation 0.03 Style 0.02 Code Style 0.03
Blocks 0.03 Bad Practice 0.01 Documentation 0.03
Sizes 0.03 I18N 0.01 Error Prone 0.03

Complex
Class

Indentation 0.04 Style 0.02 Code Style 0.03
Blocks 0.04 Security 0.01 Design 0.03
Sizes 0.03 Malicious Code 0.01 Error Prone 0.03

Spaghetti
Code

Indentation 0.03 I18N 0.01 Error Prone 0.03
Blocks 0.02 Security 0.01 Code Style 0.03
Coding 0.02 Correctness 0.01 Design 0.03

Inappropriate
Intimacy

Whitespace 0.01 Bad Practice 0.02 Code Style 0.01
Indentation 0.01 Style 0.01 Error Prone 0.01
Javadoc 0.01 Correctness 0.01 Design 0.01

Lazy Class
Javadoc 0.01 Security 0.01 Code Style 0.01
Sizes 0.01 Malicious Code 0.01 Documentation 0.01
Indentation 0.01 Correctness 0.01 Design 0.01

Middle Man
Indentation 0.01 Security 0.01 Error Prone 0.01
Design 0.01 Malicious Code 0.01 Documentation 0.01
Checks 0.01 Correctness 0.01 Code Style 0.01

Refused
Bequest

Indentation 0.01 Style 0.01 Code Style 0.01
Checks 0.01 Security 0.01 Error Prone 0.01
Design 0.01 Malicious Code 0.01 Design 0.01

just reported the three most relevant warning categories for each model, i.e.,
one for each tool-smell combination.

Looking at the achieved results, the first thing to notice is that, depending
on the code smell type, the warning types could have different weights: this
practically means that a machine learner for code smell identification should
exploit different features depending on the target code smell rather than rely
on a unique set of metrics to detect them all. As an example, the Indentation
type of Checkstyle provides different information gain based on the specific
code smell type. This seems to suggest that not all warnings would have the
same impact on the performance of various code smell detectors.

When analyzing the most powerful features of Checkstyle and PMD, we
could notice that features related to source code readability are constantly
at the top of the ranked list for all the considered code smells. This is, for
instance, the case of the Indentation warnings given by Checkstyle or

5.2 analysis of the results 77

the Code Style metrics highlighted by PMD. The most relevant warnings
also seem to be strongly related to specific code smells: as an example, the
presence of a high number of blocks having a large size might strongly affect
the likelihood to have a God Class or or a Complex Class smell; similarly,
design-related issues are the most characterizing aspects of a Spaghetti Code
or a Middle Man. In other words, from this analysis, we could delineate a
relation between the most relevant warnings highlighted by Checkstyle and
PMD and the specific code smells considered in this study.
A different discussion should be done for FindBugs: in this case, the

most powerful metrics mostly relate to Performance or Security, which are
supposed to cover different code issues than code smells. As such, we expect
this static analysis tool to have lower performance when used for code smell
detection.
Finally, it is worth noting that the information gain of the considered

features seems to be generally low. On the one hand, this may potentially
imply a low capability of the features when employed within a machine
learning model. On the other hand, it may also be the case that such a little
information would already be enough to characterize and predict the existence
of code smell instances. The next sections address this point further.

¤ Summing Up: Generally, the considered features provide low infor-
mation gain. The most relevant features are related to readability issues
when relying on the models built on top of Checkstyle and PMD (e.g.,
Indentation, Code Style). As for FindBugs, the most relevant features
relate to other non functional aspects, e.g., Performance, Security.

Table 5.5: Aggregate results reporting the performance of the models built with the
warning generated by the three static automatic tools.

Checkstyle FindBugs PMD
Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.01 0.62 0.02 0.04 0.01 0.25 0.01 0.01 0.43 0.52 0.47 0.47
Complex Class 0.01 0.48 0.01 0.02 0.00 0.22 0.01 0.00 0.28 0.35 0.31 0.31
Spaghetti Code 0.02 0.43 0.03 0.05 0.01 0.19 0.02 0.00 0.26 0.22 0.24 0.23
Inappropriate Intimacy 0.01 0.44 0.01 0.03 0.00 0.31 0.00 -0.01 0.08 0.17 0.11 0.11
Lazy Class 0.01 0.13 0.01 0.02 0.00 0.63 0.00 -0.01 0.04 0.11 0.06 0.06
Middle Man 0.00 0.15 0.00 -0.02 0.00 0.66 0.00 0.01 0.08 0.03 0.04 0.05
Refused Bequest 0.01 0.38 0.01 0.00 0.01 0.50 0.01 0.00 0.27 0.14 0.18 0.19

78 static analysis warnings for code smell detection

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD

M
C

C
 −

 G
od

C
la

ss

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD
M

C
C

 −
 C

om
pl

ex
C

la
ss

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD

M
C

C
 −

 S
pa

gh
et

tiC
od

e

0.0

0.1

0.2

0.3

Checkstyle FindBugs PMD

M
C

C
 −

 L
az

yC
la

ss

0.0

0.1

0.2

0.3

0.4

Checkstyle FindBugs PMD

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD
M

C
C

 −
 R

ef
us

ed
B

eq
ue

st

−0.075

−0.050

−0.025

0.000

Checkstyle FindBugs PMD

M
C

C
 −

 M
id

dl
eM

an

Figure 5.2: Boxplots representing the MCC values obtained by Random Forest
trained on static analysis warnings for code smells detection.

5.2.3 RQ3. The role of static analysis warnings in code smell detection.

Figure 5.2 reports the performance capabilities in terms of MCC of the
models built using the warnings given by Checkstyle, FindBugs, and PMD,
respectively. In this section, we only discuss the overall results obtained with
the best configuration of the models, namely the one considering Random
Forest as classifier and Class Balancer as data balancing algorithm.

We can immediately point out that the models built using the warnings of
static analysis tools have very low performance. In almost all cases, indeed,
the MCCs show median values that are very close to zero, indicating a very
low, if not even null correlation between the set of detected and the set

5.2 analysis of the results 79

M
C

C
 −

 G
od

C
la

ss

C
he

ck
st

yl
e

−
1.

86

Fi
nd

bu
gs

 −
 1

.8
6

P
M

D
 −

 2
.2

9

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 C
om

pl
ex

C
la

ss

C
he

ck
st

yl
e

−
1.

99

Fi
nd

bu
gs

 −
 1

.9
9

P
M

D
 −

 2
.0

2

1.8

1.9

2.0

2.1

2.2

M
C

C
 −

 S
pa

gh
et

tiC
od

e

C
he

ck
st

yl
e

−
1.

96

Fi
nd

bu
gs

 −
 1

.9
6

P
M

D
 −

 2
.0

7

1.8

1.9

2.0

2.1

2.2

2.3

M
C

C
 −

 L
az

yC
la

ss

P
M

D
 −

 1
.7

0

C
he

ck
st

yl
e

−
2.

15

Fi
nd

bu
gs

 −
 2

.1
5

1.4

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

P
M

D
 −

 1
.7

4

C
he

ck
st

yl
e

−
2.

13

Fi
nd

bu
gs

 −
 2

.1
3

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

C
he

ck
st

yl
e

−
1.

91

Fi
nd

bu
gs

 −
 1

.9
1

P
M

D
 −

 2
.1

9

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 M
id

dl
eM

an

C
he

ck
st

yl
e

−
1.

93

Fi
nd

bu
gs

 −
 1

.9
3

P
M

D
 −

 2
.1

4

1.6

1.8

2.0

2.2

2.4

Figure 5.3: Plots representing the results of Nemenyi test for statistical significance
between the MCC values obtained by Random Forest trained on static
analysis warnings for code smells detection.

of actual smelly instances. This result is in line with previous studies on
the application of machine learning for code smell detection [71]. As an
example, we previously reported that models built using code metrics of
the Chidamber-Kemerer suite [50] work worst than a constant classifier that
always considers an instance as non-smelly.

The reasons behind the low MCC values could be various. This coefficient
is computed by combining true positives, true negatives, false positives, and
false negatives altogether; as such, having a clear understanding of the factors
impacting those values is not trivial. In an effort of determining these reasons,

80 static analysis warnings for code smell detection

Table 5.5 provides a more detailed overview of the performance of the models
for each of the considered tools and code smells.
The first aspect to consider is that, when considering Checkstyle and

FindBugs, the low performance could be due to the high false-positive
rate. Indeed, despite the moderately high recall, the results are negatively
influenced by the very low precision that is always close to zero. A different
conclusion must be drawn for PMD. The results show similar precision and
recall values when considering the code smells individually, but these values
are higher or lower depending on the specific code smell type. In other words,
our results indicate that the models built using the warnings provided by
this tool could achieve higher or lower performance, depending on the smell
considered—hence, the capabilities of these models cannot be generalized to
all code smells.

Another important aspect to take into account is the different behaviour of
the three models with respect to the code smell to detect. While Checkstyle
and PMD achieve better performance in detecting God Class, Complex Class,
and Spaghetti Code, FindBugs gives its best in the detection of Lazy Class,
Middle Man, and Refused Bequest.

Figure 5.3 confirms the discussion above. Indeed, by analyzing the statistical
difference between models with respect to code smells, we can notice that
PMD performance are statistically better than the other two models when
detecting God Class instances. In the cases of Lazy Class and Inappropriate
Intimacy code smells, instead, models built with warning generated by
Checkstyle, and FindBugs performs significantly better than those relying
on PMD warnings.
Nonetheless, despite the negative results achieved so far, it is worth

reflecting on two specific aspects coming from our analysis. On the one hand,
for each code smell there is at least one tool whose warnings are able to catch
a good number of smelly instances (i.e., recall ≈ 50%). On the other hand,
different warning categories achieve higher performance on different sets of
code smells. Based on these two considerations, we conjectured that higher
performance could be potentially achieved when combining the warnings

5.2 analysis of the results 81

generated by the three static analysis tools. Next paragraphs address this point
deeply.

¤ Summing Up: Machine-Learning based code smell detection ap-
proaches using static analysis warning as independent variables generally
achieve low performance. Specifically, in many cases, those approaches
achieve a good recall but a very bad precision, indicating a high false-
positive rate. Differences in the performance achieved by the three warning
categories with respect to the code smell analyzed could indicate that a
combination of these categories could help achieving higher performance.

Table 5.6: Overlap analysis between Checkstyle and Findbugs.

Code Smell CS ∩ FB CS \ FB FB \ CS
God Class 7% 47% 46%
Complex Class 11% 37% 52%
Spaghetti Code 5% 70% 25%
Inappropriate Intimacy 8% 23% 69%
Lazy Class 0% 7% 93%
Middle Man 8% 0% 92%
Refused Bequest 21% 25% 54%

5.2.4 RQ4. Orthogonality of the Prediction Models.

In the context of the fourth research question, we sought to move toward a
combination of warning types coming from different static analysis tools
for code smell detection. Let discuss the results by analyzing Table 5.6,
that reports the overlap between the model using the warnings generated by
Checkstyle and the one built on the FindBugs warnings. It is interesting to
observe that there is a very high complementarity between the two models,
regardless on the code smell considered. Indeed, only a small portion of smelly
instances are correctly identified by both the models, i.e., (CS ∩ FB) ≤

82 static analysis warnings for code smell detection

21%. Moreover, the percentage of instances correctly classified by only one
of the models is generally high, indicating such complementarity.

Table 5.7: Overlap analysis between Checkstyle and PMD.
Code Smell CS ∩ PMD CS \ PMD PMD \ CS
God Class 0% 98% 2%
Complex Class 0% 98% 2%
Spaghetti Code 2% 94% 4%
Inappropriate Intimacy 33% 60% 7%
Lazy Class 0% 100% 0%
Middle Man 0% 100% 0%
Refused Bequest 0% 100% 0%

Table 5.7 show the results of the overlap between the models built on
Checkstyle and PMD warnings. The table immediately suggests that PMD
provides a very limited contribution in terms of smelly instances detected.
Results suggest that for almost all code smells, Checkstyle alone could
achieve the same results, if not even better, of a possible combination of the
two tools.

Table 5.8: Overlap analysis between Findbugs and PMD.

Code Smell FB ∩ PMD FB \ PMD PMD \ FB
God Class 1% 98% 1%
Complex Class 0% 98% 2%
Spaghetti Code 2% 87% 11%
Inappropriate Intimacy 10% 84% 6%
Lazy Class 0% 100% 0%
Middle Man 0% 100% 0%
Refused Bequest 0% 100% 0%

Table 5.8 provides the overlap results for FindBugs and PMD. These results
deserve a discussion similar to the previous one. Indeed, as we discussed
above, also in this case PMD does not provide an important contribution.

5.2 analysis of the results 83

Most of the correctly classified instances are indeed provided by the model
built only on FindBugs warnings.

Table 5.9: Overlap Analysis considering each tool independently.
Code Smell CS \ (FB ∪ PMD) FB \ (CS ∪ PMD) PMD \ (CS ∪ FB) CS ∩ FB ∩ PMD
God Class 44% 56% 0% 0%
Complex Class 38% 59% 2% 0%
Spaghetti Code 74% 23% 2% 1%
Inappropriate Intimacy 40% 46% 1% 13%
Lazy Class 4% 95% 1% 0%
Middle Man 21% 79% 0% 0%
Refused Bequest 36% 62% 2% 0%

Finally, looking at the overlap results for all the three models, shown in
Table 5.9, we can confirm the above results. The low percentage of instances
that are simultaneously correctly detected as smelly by all three approaches
indicates a high complementarity between the instances detected by the
three tools, i.e., different tools are able to detect different sets of smelly
instances. Such complementarity is an indicator that better performance could
be achieved by combining the warnings generated by the three tools in a
unique, unified, detection model.

¤ Summing Up: Machine Learning code smell detection models built on
the warning generated by different tools are highly complementary. Both
Checkstyle and FindBugs are able to identify a great number of instances
that are not detected by the other. PMD detects instances undiscovered by
the others only in a limited number of cases.

5.2.5 RQ5. Toward a Combination of Automated Static Analysis Tools for
Code Smell Detection.

In the context of this RQ, we defined and evaluated a combined model. As
explained in Section 5.2.2, we faced the problem by first measuring the
potential information gain by the warning types when put all together and
then considering the most relevant warnings for the definition of a more
effective combination.

84 static analysis warnings for code smell detection

Table 5.10: Information Gain of our independent variables for the combined model.

Combined model
Code Smell Metric Mean

God Class
Code.Style 0.03
Documentation 0.02
Design 0.02

Complex Class
Code Style 0.03
Design 0.02
Error Prone 0.02

Spaghetti Code
Error Prone 0.03
Code Style 0.02
Design 0.02

Inappropriate
Intimacy

Code Style 0.01
Whitespace 0.01
Design 0.01

Lazy Class
Javadoc 0.01
Sizes 0.01
Code Style 0.01

Middle Man
Imports 0.01
Design 0.01
Checks 0.01

Refused Bequest
Code Style 0.01
Error Prone 0.01
Documentation 0.01

Table 5.10 reports the information gain values obtained by the metrics
composing the combined models. Also in this case, for the sake of readability
we only reported the three most relevant categories for each model.

5.2 analysis of the results 85

Looking at the table, the first consideration we can do is that readability-
related features remain relevant evenwhen considering all the features together.
Some examples are Code Style for God Class or Javadoc for Lazy Class.
Differently, features related to performance and security aspects, that have
been shown to be relevant in the models built only on FindBugs warnings,
are no longer important when combining the tools.
Another important aspect is related to the presence of design-related

features in the list of the most relevant predictors. Those features, that are the
more in-line with the definition of code smell, were surprisingly excluded
in the context of our RQ2. The fact that they become more relevant when
the three tools are combined may represent an indicator of the fact that a
combined model can outperform the models discussed in RQ3.

Table 5.11: Results reporting the performance of the model built by combining the
warning generated by the three static automatic tools.

Checkstyle FindBugs PMD Combined
Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.01 0.62 0.02 0.04 0.01 0.25 0.01 0.01 0.43 0.52 0.47 0.47 0.49 0.47 0.48 0.48
Complex Class 0.01 0.48 0.01 0.02 0.00 0.22 0.01 0.00 0.28 0.35 0.31 0.31 0.34 0.34 0.34 0.34
Spaghetti Code 0.02 0.43 0.03 0.05 0.01 0.19 0.02 0.00 0.26 0.22 0.24 0.23 0.31 0.19 0.24 0.24
Inappropriate Intimacy 0.01 0.44 0.01 0.03 0.00 0.31 0.00 -0.01 0.08 0.17 0.11 0.11 0.21 0.15 0.17 0.17
Lazy Class 0.01 0.13 0.01 0.02 0.00 0.63 0.00 -0.01 0.04 0.11 0.06 0.06 0.17 0.12 0.14 0.14
Middle Man 0.00 0.15 0.00 -0.02 0.00 0.66 0.00 0.01 0.08 0.03 0.04 0.05 0.56 0.07 0.13 0.20
Refused Bequest 0.01 0.38 0.01 0.00 0.01 0.50 0.01 0.00 0.27 0.14 0.18 0.19 0.39 0.09 0.15 0.18

Table 5.11 and Figure 5.4 show the performance of the combined model.
As we can see, there is a general improvement, particularly in terms of
precision—hence confirming our hypothesis on the potential of combining
features of different static analysis tools to reduce false positives. The MCC
values, ranging between 14% and 48% are clearly better than the one provided
by the single models, as discussed in RQ3. Results of Nemenyi test, reported
in Figure 5.5, evidenced a clear statistical difference between the MCCs
achieved by the combined model and the ones provided by single-tool models.
However, unfortunately, these results still indicate the unsuitability of machine
learning approaches for code smell detection, as already proven in previous
studies in the field [71].

86 static analysis warnings for code smell detection

0.00

0.25

0.50

0.75

Checkstyle FindBugs PMD Combined

M
C

C
 −

 G
od

C
la

ss

0.00

0.25

0.50

0.75

Checkstyle FindBugs PMD Combined
M

C
C

 −
 C

om
pl

ex
C

la
ss

0.0

0.2

0.4

0.6

0.8

Checkstyle FindBugs PMD Combined

M
C

C
 −

 S
pa

gh
et

tiC
od

e

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD Combined

M
C

C
 −

 L
az

yC
la

ss

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD Combined

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD Combined
M

C
C

 −
 R

ef
us

ed
B

eq
ue

st

0.0

0.2

0.4

0.6

Checkstyle FindBugs PMD Combined

M
C

C
 −

 M
id

dl
eM

an

Figure 5.4: Boxplots representing the MCC values obtained by Random Forest
trained on static analysis warnings for code smells detection.

¤ Summing Up: Design-related features become important when the
tool’s warnings are combined. The combined model outperforms the three
models described in RQ3. However, the overall performance is still quite
low, reinforcing past findings about the unsuitability of ML-based code
smell detection approaches.

5.2.6 RQ6. Comparison with a baseline machine learner.

Table 5.12 and Figure 5.6 report the results regarding the comparison of the
performance achieved by the model that uses the combination of the warnings

5.2 analysis of the results 87

M
C

C
 −

 G
od

C
la

ss

C
he

ck
st

yl
e

−
1.

92

Fi
nd

bu
gs

 −
 1

.9
2

P
M

D
 −

 2
.7

2

co
m

bi
ne

d
−

3.
44

1.5

2.0

2.5

3.0

3.5

M
C

C
 −

 C
om

pl
ex

C
la

ss

C
he

ck
st

yl
e

−
2.

13

Fi
nd

bu
gs

 −
 2

.1
3

P
M

D
 −

 2
.2

9

co
m

bi
ne

d
−

3.
44

2.0

2.5

3.0

3.5

M
C

C
 −

 S
pa

gh
et

tiC
od

e

C
he

ck
st

yl
e

−
1.

98

Fi
nd

bu
gs

 −
 1

.9
8

P
M

D
 −

 2
.2

4

co
m

bi
ne

d
−

3.
80

2.0

2.5

3.0

3.5

4.0

M
C

C
 −

 L
az

yC
la

ss

P
M

D
 −

 1
.8

9

C
he

ck
st

yl
e

−
2.

11

Fi
nd

bu
gs

 −
 2

.1
1

co
m

bi
ne

d
−

3.
89

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

P
M

D
 −

 1
.7

6

C
he

ck
st

yl
e

−
2.

12

Fi
nd

bu
gs

 −
 2

.1
2

co
m

bi
ne

d
−

4.
00

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

C
he

ck
st

yl
e

−
1.

90

Fi
nd

bu
gs

 −
 1

.9
0

P
M

D
 −

 2
.4

3

co
m

bi
ne

d
−

3.
77

1.5

2.0

2.5

3.0

3.5

4.0

M
C

C
 −

 M
id

dl
eM

an

C
he

ck
st

yl
e

−
1.

89

Fi
nd

bu
gs

 −
 1

.8
9

P
M

D
 −

 2
.2

2

co
m

bi
ne

d
−

4.
00

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 5.5: Plots representing the results of Nemenyi test for statistical significance
between the MCC values obtained by Random Forest trained on static
analysis warnings for code smells detection.

generated by the three ASATs considered, and the model using structural
information as predictors. The first consideration is that the model using the
warnings generated by the three ASATs seems to slightly outperform the
model using structural information for almost all the code smell types. In
particular, this is the case of Lazy Class, Inappropriate Intimacy, Refused
Bequest, and Middle Man. These four smells do not have a direct correlation
with structural information given to the structural classifier. For instance,
while we can use simple structural metrics such as size and complexity
to identify God Class and Spaghetti Code instances, the ML model using

88 static analysis warnings for code smell detection

Table 5.12: Aggregate results reporting the comparison of the warning-based model
with the metric-based one.

Warning Metric
Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.49 0.47 0.48 0.48 0.30 0.83 0.44 0.49
Complex Class 0.34 0.34 0.34 0.34 0.18 0.61 0.27 0.32
Spaghetti Code 0.31 0.19 0.24 0.24 0.15 0.34 0.21 0.22
Inappropriate Intimacy 0.21 0.15 0.17 0.17 0.10 0.23 0.14 0.15
Lazy Class 0.17 0.12 0.14 0.14 0.00 0.00 0.00 0.00
Middle Man 0.56 0.07 0.13 0.20 0.00 0.00 0.00 0.00
Refused Bequest 0.39 0.09 0.15 0.18 0.21 0.02 0.03 0.06

structural information does not include precise metrics describing other
aspects such as laziness or intimacy level between classes.

The results of the Nemenyi test depicted in Figure 5.7, confirm that in the
cases described above there is a statistically significant difference in the two
distributions. On the other hand, with respect to God Class, and Spaghetti
Code it is not possible to clearly establish which of the models perform better.

¤ Summing Up: TheMLmodel using ASATs warnings and the one using
structural information achieve very similar performance in detecting code
smells whose definition is strictly correlated with the structural information
involved. In all the other cases, the model using warning categories as
predictors appears to have better detection capabilities than the one using
only structural information.

5.2.7 RQ7. Orthogonality between the warning- and metric-based Detection
Models.

Table 5.13 reports results of the complementarity analysis conducted
between thewarning- and themetric-basedmachine learning detectionmodels.
The most evident result is that, regardless of the code smell considered, the
two techniques show a strong overlap, i.e., most of the smelly instances
identified by a technique are also identified by the other. Such a strong
overlap could indicate that using metrics and warnings in combination would

5.2 analysis of the results 89

0.00

0.25

0.50

0.75

Warning Metric

M
C

C
 −

 G
od

C
la

ss

0.00

0.25

0.50

0.75

Warning Metric

M
C

C
 −

 C
om

pl
ex

C
la

ss

0.2

0.4

0.6

0.8

Warning Metric

M
C

C
 −

 S
pa

gh
et

tiC
od

e

0.0

0.2

0.4

0.6

Warning Metric

M
C

C
 −

 L
az

yC
la

ss

0.0

0.2

0.4

0.6

Warning Metric

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

0.0

0.2

0.4

0.6

Warning Metric

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

0.0

0.2

0.4

0.6

Warning Metric

M
C

C
 −

 M
id

dl
eM

an

Figure 5.6: Boxplots representing the MCC values obtained by Random Forest
trained on static analysis warnings and structural metrics for code smells
detection.

not lead to performance improvements. This is particularly true for Lazy
Class, Refused Bequest, and Middle Man for which there is a very small
complementarity. However, as forGod Class, Complex Class, Spaghetti Code,
and Inappropriate Intimacy, results show that there exist a number of smelly
instances that only one of the techniques is able to detect, thus indicating a
complementarity, even if limited. Therefore, it could be still worth to assess
the performance achieved by a machine learner based on both warnings and
structural metrics.

90 static analysis warnings for code smell detection
M

C
C

 −
 G

od
C

la
ss

W
ar

ni
ng

 −
 1

.4
3

M
et

ric
 −

 1
.5

7

1.3

1.4

1.5

1.6

1.7

M
C

C
 −

 C
om

pl
ex

C
la

ss

M
et

ric
 −

 1
.2

4

W
ar

ni
ng

 −
 1

.7
6

1.2

1.4

1.6

1.8

M
C

C
 −

 S
pa

gh
et

tiC
od

e

M
et

ric
 −

 1
.4

2

W
ar

ni
ng

 −
 1

.5
8

1.3

1.4

1.5

1.6

1.7

M
C

C
 −

 L
az

yC
la

ss

M
et

ric
 −

 1
.0

0

W
ar

ni
ng

 −
 2

.0
0

1.0

1.5

2.0

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

M
et

ric
 −

 1
.1

5

W
ar

ni
ng

 −
 1

.8
5

1.0

1.2

1.4

1.6

1.8

2.0

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

M
et

ric
 −

 1
.0

0

W
ar

ni
ng

 −
 2

.0
0

0.5

1.0

1.5

2.0

2.5

M
C

C
 −

 M
id

dl
eM

an

M
et

ric
 −

 1
.0

0

W
ar

ni
ng

 −
 2

.0
0

1.0

1.5

2.0

Figure 5.7: Plots representing the results of Nemenyi test for statistical significance
between the MCC values obtained by Random Forest trained on static
analysis warnings and structural metrics for code smells detection.

¤ Summing Up: The warning- and the metric-based machine learning
code smell detection models have a strong overlap, regardless of the
smell considered. However, since in some cases the results showed a
complementarity, although limited, we think that a combination of these
two set of predictors could still lead to a performance improvement.

5.2.8 RQ8. Combining static analysis warnings and code metrics.

Table 5.14 and Figure 5.8 report the results of the performance achieved
by the two model based only on ASATs warnings and code metrics, and

5.2 analysis of the results 91

Table 5.13: Overlap analysis between the warning- and metric-based Detection
Models.

Code Smell Warning ∩Metric Warning \Metric Metric \Warning
God Class 81% 11% 6%
Complex Class 76% 16% 8%
Spaghetti Code 72% 18% 10%
Inappropriate Intimacy 64% 22% 22%
Lazy Class 98% 1% 1%
Middle Man 86% 9% 5%
Refused Bequest 89% 7% 4%

Table 5.14: Aggregate results reporting the comparison of the combined model with
the model combining warnings categories and structural metrics.

Warning Metric Combined
Prec. Recall FM MCC Prec. Recall FM MCC Prec. Recall FM MCC

God Class 0.49 0.47 0.48 0.48 0.30 0.83 0.44 0.49 0.53 0.58 0.56 0.55
Complex Class 0.34 0.34 0.34 0.34 0.18 0.61 0.27 0.32 0.39 0.43 0.41 0.41
Spaghetti Code 0.31 0.19 0.24 0.24 0.15 0.34 0.21 0.22 0.36 0.21 0.25 0.27
Inappropriate Intimacy 0.21 0.15 0.17 0.17 0.10 0.23 0.14 0.15 0.08 0.09 0.10 0.11
Lazy Class 0.17 0.12 0.14 0.14 0.00 0.00 0.00 0.00 0.19 0.12 0.15 0.15
Middle Man 0.56 0.07 0.13 0.20 0.00 0.00 0.00 0.00 0.17 0.06 0.10 0.13
Refused Bequest 0.39 0.09 0.15 0.18 0.21 0.02 0.03 0.06 0.34 0.14 0.20 0.21

the one combining warnings and structural information. Regardless of the
considered code smell type, the full model, i.e., the one considering both
warnings and structural metrics, appears to slightly outperform the other two.
This is particularly true for God Class, Complex Class, Spaghetti Code, and
Inappropriate Intimacy.
Nemenyi test results, reported in Figure 5.9, confirm that for God Class,

Complex Class, and Inappropriate Intimacy the full model performs signifi-
cantly better than the others. This result is in line with RQ7 findings. Indeed,
a higher complementarity has been shown for such smells, therefore the
combined model is able to significantly improve the performance of warning-
and metric-based machine learners.
The reported results clearly indicate that adding more information to ML

classifiers helps to improve the overall performance in most cases. However,
on the other hand, there is still the need of defining a set of metrics that

92 static analysis warnings for code smell detection

0.25

0.50

0.75

1.00

Warning Metric Combined

M
C

C
 −

 G
od

C
la

ss

0.25

0.50

0.75

1.00

Warning Metric Combined
M

C
C

 −
 C

om
pl

ex
C

la
ss

0.25

0.50

0.75

1.00

Warning Metric Combined

M
C

C
 −

 S
pa

gh
et

tiC
od

e

0.2

0.3

0.4

0.5

0.6

Warning Metric Combined

M
C

C
 −

 L
az

yC
la

ss

0.2

0.4

0.6

0.8

Warning Metric Combined

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

0.25

0.50

0.75

1.00

Warning Metric Combined
M

C
C

 −
 R

ef
us

ed
B

eq
ue

st

0.2

0.3

0.4

0.5

0.6

Warning Metric Combined

M
C

C
 −

 M
id

dl
eM

an

Figure 5.8: Boxplots representing the MCC values obtained by Random Forest
trained on static analysis warnings and on the combination of static
analysis warnings with structural metrics for code smells detection.

could further improve code smell detection techniques’ performance. Our
suggestion for future studies is to involve a wider set of predictors of various
kinds (e.g., structural, textual, historical) in order to give the classifiers as
much information as possible.

¤ Summing Up: The model combining warning categories and struc-
tural information significantly outperforms the one based only on ASATs
warnings in most of the cases. Adding other metrics to the model could be
a winning strategy for future improvements.

5.3 conclusion 93

M
C

C
 −

 G
od

C
la

ss

W
ar

ni
ng

 −
 1

.7
5

M
et

ric
 −

 1
.8

9

C
om

bi
ne

d
−

2.
36

1.6

1.8

2.0

2.2

2.4

2.6

M
C

C
 −

 C
om

pl
ex

C
la

ss

W
ar

ni
ng

 −
 1

.6
1

M
et

ric
 −

 1
.8

2

C
om

bi
ne

d
−

2.
57

1.5

2.0

2.5

M
C

C
 −

 S
pa

gh
et

tiC
od

e

W
ar

ni
ng

 −
 1

.7
4

M
et

ric
 −

 1
.7

7

C
om

bi
ne

d
−

2.
49

1.6

1.8

2.0

2.2

2.4

2.6

M
C

C
 −

 L
az

yC
la

ss

W
ar

ni
ng

 −
 1

.9
5

M
et

ric
 −

 2
.0

3

C
om

bi
ne

d
−

2.
03

1.6

1.8

2.0

2.2

2.4

M
C

C
 −

 In
ap

pr
op

ria
te

In
tim

ac
y

W
ar

ni
ng

 −
 1

.6
0

M
et

ric
 −

 1
.6

0

C
om

bi
ne

d
−

2.
81

1.5

2.0

2.5

3.0

M
C

C
 −

 R
ef

us
ed

B
eq

ue
st

W
ar

ni
ng

 −
 1

.9
7

M
et

ric
 −

 2
.0

0

C
om

bi
ne

d
−

2.
03

1.7

1.8

1.9

2.0

2.1

2.2

2.3

M
C

C
 −

 M
id

dl
eM

an

W
ar

ni
ng

 −
 1

.8
2

M
et

ric
 −

 2
.0

6

C
om

bi
ne

d
−

2.
12

1.4

1.6

1.8

2.0

2.2

2.4

Figure 5.9: Plots representing the results of Nemenyi test for statistical significance
between the MCC values obtained by Random Forest trained on static
analysis warnings and on the combination of static analysis warnings
with structural metrics for code smells detection.

5.3 conclusion

In this chapter, we assessed the adequacy of static analysis warnings in the
context of code smell detection. We started by analyzing the contribution
given by each warning type to the detection of seven code smell types.
Then, we measured the performance of machine learning models using static
analysis warnings as features and aiming at identifying the presence of code
smells.

94 static analysis warnings for code smell detection

The results achieved when experimenting the individual models revealed
low performance: this was mainly due to their poor precision. In an effort of
dealing with such low performance, we considered the possibility to combine
the warnings raised by different static analysis tools: in this regard, we first
measured the orthogonality of the code smell instances correctly identified
by machine learners exploiting different warnings; then, we combined these
warnings in a combined model.

The results of our study reported that, while a combined model can
significantly improve the performance of the individual models, it yields
a similar accuracy than the one of a random classifier. We also found out
that machine learning models built using static analysis warnings reach a
particularly low accuracy when considering code smells targeting coupling
and inheritance properties of source code.

6
D E V E L O P E R- D R I V E N C O D E S M E L L
P R I O R I T I Z AT I O N

This chapter presents the first step toward the concept of developer-driven
code smell prioritization as an alternative and more pragmatic solution to the
problem of code smell detection: Rather than ranking code smell instances
based on their severity computed using software metrics, we propose to
prioritize them according to the criticality perceived by developers.
In particular, we first perform surveys to collect a dataset composed

of developers’ perception of the severity of 1,332 code smell instances—
pertaining to four different types of design problems—for which original
developers rated their actual criticality and then propose a novel supervised
approach that learns from such labeled data to rank unseen code smell
instances. Afterwards, we conduct an empirical study to (1) verify the
performance of our prioritization approach, (2) understand what are the
features that contribute most to model the developer’s perceived criticality of
code smells, and (3) compare our approach with the state-of-the-art baseline
proposed by Arcelli Fontana and Zanoni [86]. The key differences between
our approach and the baseline considered for the comparison are (i) the usage
of different kinds of predictors (e.g., process metrics) rather than considering
only structural ones, and (ii) the definition of a dependent variable based on
the developers’ perception.
To sum up, this chapter provides the following contributions:

1. A new dataset reporting the criticality perceived by original developers
with respect to 1,332 code smell instances of four different types, which
can be further used by the community to build upon our research;

2. The first machine learning-based approach to prioritize code smells
according to the real developers’ perceived criticality;

95

96 developer-driven code smell prioritization

3. An empirical study that showcases the performance of our approach,
the importance of the employed features, and the reasons why our
technique goes beyond the state-of-the-art;

6.1 dataset construction

To perform our empirical study, we needed to collect a dataset reporting the
perceived criticality of a set of code smells large enough to train a machine
learning model. To this aim, we first defined the objects of the study, namely
(1) a set of software projects and (2) the code smell types we were interested
in with their corresponding detectors; Then, we inquired the subjects of our
study, namely the original developers of the considered projects, in order to
collect their perceived criticality of the code smell instances detected on their
codebase. The next subsections describe the various steps we followed to
build our dataset.

6.1.1 Selecting projects

The context of the study consisted of nine open-source projects belonging to
two major ecosystems such as Apache1 and Eclipse.2 Basic information and
statistics about the selected projects are summarized in Table 6.1. Specifically,
for each considered project, we report (i) the total number of commits available
in its change history, (ii) the total number of contributors, and (iii) the size as
the number of classes and KLOCs. The selection of these projects was driven
by a number of factors. In the first place, we only focused on open-source
projects since we needed to access source code to detect the considered design
flaws. Similarly, we limited ourselves to Java systems as most of the smells,
as well as code smell detectors, have been only defined for this programming
language [15, 229, 249]. Furthermore, we aimed at analyzing projects having
different (a) codebase size, (b) domain, (c) longevity, (d) activity, and (e)
population. As such, starting from the set of 2, 576 open-source systems

1 https://www.apache.org
2 https://www.eclipse.org/org/

6.1 dataset construction 97

Table 6.1: Software Projects in Our Dataset.
Project #Commits #Devs #Classes KLOCs

Apache Mahout 3,054 55 813 204
Apache Cassandra 2,026 128 586 111
Apache Lucene 3,784 62 5,506 142
Apache Cayenne 3,472 21 2,854 542
Apache Pig 2,432 24 826 372
Apache Jackrabbit 2,924 22 872 527
Apache Jena 1,489 38 663 231
Eclipse CDT 5,961 31 1,415 249
Eclipse CFX 2,276 21 655 106

Overall 32,889 436 5,506 542

written in Java and belonging to the two considered ecosystems available at
the time of the analysis on Github,3 we only took into account those having a
number of classes higher than 500, with a change history at least 5 years long,
having at least 1, 000 commits, and with a number of contributors higher than
20. This filter gave us a total of 682 systems: of these, we randomly selected
9 of them.

6.1.2 Selecting code smells

We focused on four class-level types of code smells, namely Blob (or God
Class), Complex Class, Spaghetti Code, and Shotgun Surgery (see Table
2.1 for descriptions.
Three specific factors drove the selection of these four code smell types.

First, they have been shown to be highly diffused in real software systems [226],
thus allowing us to target code smells that are relevant in practice. Second,
they are reported to negatively impact maintainability, comprehensibility,
and/or testability of software systems [104, 137, 226]: as such, we could
investigate design flaws that practitioners may be more able to analyze and
assess. Finally, previous findings [227, 288, 330] showed not only that they are

3 https://github.com

98 developer-driven code smell prioritization

actual problems from the developer’s perspective, but also that their criticality
can be accurately assessed by practitioners, thus mitigating potential problems
due to the presence of the so-called conceptual false positives [83], i.e., code
smell instances detected as such by automated tools but not representing
issues for developers.

6.1.3 Selecting code smell detectors

Once we had selected the specific code smells object of our investigation,
we then proceeded with the choice of automated code smell detectors that
could identify them. Among all the available solutions proposed so far by
researchers [78], we opted for Decor [197] and Hist [228]. The first was
selected to identify instances of Blob, Complex Class, and Spaghetti Code,
while the latter for the detection of Shotgun Surgery.

More specifically, Decor is an automated solution which adopts a set
of “rule cards”,4 namely rules able to describe the intrinsic characteristics
that a class must have to be affected by a certain code smell type. In the
case of Blob, the approach identifies it when a class has a Lack of Cohesion
of Method (LCOM5) [122] higher than α, a total number of methods and
attributes higher than β, it is associated to many data classes (i.e., classes
having just get and set methods), and has a name having a suffix in the set
{Process, Control, Command, Manage, Drive, System}, where α and β are
relative threshold values. When detecting Complex Class instances, Decor
computes the Weighted Methods per Class metric (WMC), i.e., the sum
of the cyclomatic complexity of all methods of the class [191], and marks
a class as smelly if the WMC is higher than a defined threshold. Finally,
Spaghetti Code instances are represented by classes presenting (i) at least
one method without parameters and having a number of lines of code higher
than a defined threshold, (ii) no inheritance, as indicated by the Depth of
Inheritance Tree metric (DIT) [50] which must be equal to 1, and (iii) a
name suggesting procedural programming, thus having as prefix/suffix a
word in the set {Make, Create, Exec}. There are two key reasons leading us

4 http://www.ptidej.net/research/designsmells/

6.1 dataset construction 99

to rely on Decor for the detection of these three smells. In the first place, this
detector has been employed in several previous studies on code smells [131,
138, 179, 236, 238], showing good results when considering both precision
and recall. At the same time, it implements a lightweight mechanism with
respect to other existing approaches (e.g., textual-based techniques relying
on information retrieval [234, 241]): the scalability of Decor allows us to
perform an efficient detection on the large systems considered in the study.
Turning our attention to the detection of Shotgun Surgery, the discussion

is different. Approaches based on source code analysis are poorly effective
for the detection of this smell [228]; for instance, the approach proposed by
Rao and Reddy [263]—which computes coupling metrics to build a change
probability matrix that is then filtered to detect the smell—was not able to
identify any Shotgun Surgery instance when applied in large-scale studies
[228]. For this reason, we relied on Hist [228], a historical-based technique
that (1) computes association rules [4] to identify methods of different classes
that often change together and (2) identifies instances of the smell if a class
contains at least one method that frequently changes with methods present in
more than 3 different classes. Such a historical-based approach has shown
an F-Measure close to 92% [228], thus representing a suitable solution for
conducting our study.
On a technical note, we relied on the original implementations of Decor

and Hist, hence avoiding potential threats to construct validity due to re-
implementations.

6.1.4 Collecting the criticality of code smells

The last step required to build our dataset was the actual detection of code
smells in the considered systems and the subsequent inquiry on their criticality.
We followed a similar strategy as Silva et al.[273]: in short, in a time period
of 6 months, from January 1st to June 30th, 2018, we monitored the activities
performed on the selected repositories and, as soon as a developer committed
changes to classes affected by any of the considered smells, we sent an e-mail
to that developer to ask (i) whether s/he actually perceived/recognized the

100 developer-driven code smell prioritization

presence of a code smell and (ii) if so, rate its criticality using a Likert scale
from 1 (very low) to 5 (very high) [163].
In particular, we built an automated mechanism that fetched—using the
git-fetch command—commits from the repositories to a local copy on a
daily basis. This gave us the possibility to generate the list of classes modified
during the workday. At this point, we performed the actual smell detection. In
the case of Decor, we parsed each modified class and run the detection rules
described in Section 6.1.3 to identify instances of Blob, Complex Class, and
Spaghetti Code. As for Hist, it requires information about the change history
of the involved classes: for this reason, before running the Shotgun Surgery
detection algorithm, we mined the log file of the projects to retrieve the set of
changes applied on the classes modified during the workday. Through the
procedure described so far, we obtained a list of smelly classes, and, for each
of them, we stored the e-mail address of the developer who committed changes
on it. Afterwards, we manually double-checked the smelly classes given
by the automated tools with the aim of discarding possible false positives,
thus avoiding asking developers useless information. Overall, the code smell
detection phase resulted in a total of 2, 675 candidate code smells. Of these,
we discarded 455 (≈17%) false positives.

Finally, we sent e-mails to the original developers. In the text, we first
presented ourselves and then explained that our analysis tool suggested that
the developer likely worked on a class affected by a design issue—without
revealing the exact code smell to avoid confirmation bias [216]. Then we
asked three specific questions:

1. Were you aware of the presence of a design flaw?

2. If yes to question (1), may you please briefly describe the type of design
flaw affecting the class?

3. If yes to question (1), may you please rate the criticality of the design
flaw from 1O (very low) to 5O (very high)?

We asked the first question to make sure that the contacted developers
perceived classes as affected by code smells. If not, they could not obviously

6.1 dataset construction 101

provide meaningful information on their criticality, and the answers were dis-
carded. Otherwise, we further asked to explain the design problem perceived,
so that we could understand if developers were actually aware of the specific
smell. When receiving the answers, we checked if the explanation given by
developers was in line with the definition of the smell: for instance, one
developer was contacted to rate the criticality of a Blob class and explained
that “[the class] is a well-known problem, it is huge in size and has high
coupling”, thus indicating that s/he correctly recognized the smell we were
proposing to him/her. In these cases, we considered the answer to the third
question valid, otherwise we discarded it. Note that if a code smell was
detected in the same class more than once, we did not send any e-mail to not
bother the developers multiple times for the same class.

As an outcome, we sent a total of 1, 733 e-mails to 372 distinct developers,
i.e., an average of 0.77 e-mails per month per developer, while 487 code
smells affected the same classes multiple times and, therefore, we avoided
sending e-mails for them. Moreover, we could not assess the criticality of 310
code smells because the 139 developers responsible for them did not reply to
our e-mails. Also, we had to discard 91 answers received since the contacted
developers did not perceive the presence of code smells, i.e., they answered
‘no’ to question (1).

Hence, we finally gathered 1, 332 valid answers coming from 233 de-
velopers: the high response rate (62%) is in line with previous works that
implemented a similar recruitment strategy [238, 273] and indicates that
contacting developers immediately after their activities with short surveys
not only increases the chances of receiving accurate answers [273], but also
helps increasing their overall responsiveness. As a final note, the 1, 332 code
smell instances evaluated were almost equally distributed among the four
considered types of design flaw: indeed, we had answers for 341 Blob, 349
Complex Class, 313 Spaghetti Code, and 329 Shotgun Surgery instances.
Also, the criticality values assigned by developers to each smell type were
almost uniformly distributed over the possible ratings (1O to 5O).

102 developer-driven code smell prioritization

6.2 a novel code smells prioritization approach and its
evaluation

The goal of our study is to define and assess the feasibility of using a machine
learning-based solution to prioritize code smells according to their perceived
criticality, with the purpose of providing developers with recommendations
that are more aligned to the way they actually refactor source code. The
perspective is of both practitioners and researchers: the former are interested
in adopting more practical solutions to prioritize refactoring activities, while
the latter are interested in assessing how well machine learning can be
employed to model developer’s criticality of code smells.

6.2.1 Research Questions

The empirical study revolves around three main research questions (RQs).
We started with the definition of a machine learning-based approach to model
the developer’s perceived criticality of code smells. Starting from the dataset
built following the strategy reported in Section 6.1, we defined dependent
and independent variables of the model as well as the appropriate machine
learning algorithms to deal with the problem. These steps led to the definition
of our first research question:

RQ1. Can we predict developer’s perception of the criticality of a code
smell?

Besides assessing the model as a whole, we then took a closer look at the
contributions given by the independent variables exploited, namely what are
the features that help the most when classifying the perceived criticality of
code smells. This step allowed us to verify some of the conjectures made
when defining the set of independent variables to be used. Hence, we asked:

RQ2. What are the features of the proposed approach that contribute most
to its predictive performance?

6.2 a novel code smells prioritization approach 103

As a final step of our investigation, we considered the literature in the field
to identify existing code smell prioritization approaches that can be used as
baselines, thus allowing us to assess how useful our technique can be when
compared to existing approaches. This led to our final research question:

RQ3. How does our approach perform when compared with existing code
smell prioritization techniques?

In the next sections, we describe themethodological details of the evaluation
of the proposed approach.

6.2.2 RQ1. Defining and assessing the performance of the prioritization
approach

To address RQ1, we defined a novel code smell prioritization approach
that aims at classifying smell instances based on the developer’s perceived
criticality using machine learning algorithms. This implied the definition of
an appropriate set of independent variables able to predict the dependent
variable, i.e., the developer’s perception, as well as the proper algorithms and
their configuration.
Dependent Variable. As a first step, we defined the developer’s perceived
criticality of code smells as a variable that the model has to estimate. The
dataset described in Section 6.1 reports, for each code smell instance, a value
ranging from 1 to 5 describing the perceived criticality of that instance. Thus,
we mapped the problem as a classification one [54], namely we took into
account the case in which the learner has to classify the criticality of code
smells in multiple categorical classes [54]. In this case, we converted the
integers of our dataset in nominal values in the set {low, medium, high}: if a
code smell instance was associated to 1 or 2 in the original dataset, then we
considered its perceived criticality as low; if it was equal to 3, we converted
its value in medium; otherwise, we considered its criticality as high. With
this mapping, we merged the values assigned by developers in order to build
three main classes. This was a conscious decision given by experimental
tests: indeed, when experimenting with a 5-point classification problem, we

104 developer-driven code smell prioritization

Table 6.2: Software metrics used as independent variables split by categories - The
motivations for their use are also reported.

Metric Acronym Description

Product metrics. Cohesion, coupling, and complexity may lower code quality and affect the perceived criticality of code smells [227, 283, 288].
Lines of Code LOC Amount of lines of code of a class excluding white spaces and comments.
Lack of Cohesion of Methods [50] LCOM5 Number of method pairs in a class having no common attribute references.
Conceptual Cohesion of Classes [183] C3 Average cosine similarity [16] computed among all method pairs of a class.
Coupling between Object Classes [50] CBO Number of classes in the system that call methods or access attributes of a class.
Message Passing Coupling [50] MPC Number of method calls made by a class to external classes of the system.
Response for a Class [50] RFC Sum of the methods of a class, i.e., number of methods that can potentially be executed in response

to a message received by an object of a class.
Weighed Methods per Class [50] WMC Sum of the McCabe cyclomatic complexity [191] computed on all methods of a class.
Readability [36] Read. Measure of source code readability based on 25 features, e.g., number of parentheses per lines of

code.
Process metrics. The amount of activities made on smelly classes may affect the developer’s perceived criticality [162, 174, 262].
Average Commit Size AVG_CS Average number of classes that co-changed in commits involving a class.
Number of Changes NC Number of commits in the change history of the system involving a class.
Number of Bug Fixes NF Number of bug fixing activities performed on a class in the change history of the system.
Number of Committers NCOM Number of distinct developers who performed commits on a class in the change history of the

system.
Developer-related metrics. Experience and workload of developers may affect the perceived criticality of code smells [30, 43, 44, 304].
Developer’s Experience [30] EXP Average number of commits of the committers of a class.
Developer’s Scattering Changes [68] DSC Average number of distinct subsystems in which the committers of a class made changes.
Development Change Entropy [119] CE Shannon’s entropy [269] computed on the number of changes of a class in the change history of the

system.
Code Ownership [30] OWN Number of commits of the major contributor of a class over the total number of commits for that

class.
Code smell-related metrics. Persistence of code smells and availability of refactoring opportunities may affect the developer’s perception [223, 243].
Persistence Pers. Number of subsequent major/minor releases in which a certain smell affects a class.
Intensity [187] Sev. Average distance between the actual metric values used for the detection of code smells and the

corresponding thresholds considered by the detectors to distinguish smelly and non-smelly elements.
Refactorable Ref. Existence of refactoring opportunities for a class, as detected by automated tools.
Number of Refactoring Actions NR Number of previous refactoring operations made by developers on a class.

observed that several misclassifications were due to the approach not able
to correctly distinguish (i) very-low from low and (ii) high from very-high.
Thus, we opted for a 3-point classification.

Independent Variables. To predict the perceived criticality of code smells,
we considered a set of features able to capture the characteristics of classes un-
der different angles. Table 6.2 summarizes the families of metrics considered,
the rationale behind their use, and the specific indicators measured.
Previous research has not only shown that product metrics can indicate

actual design problems in source code [42, 207], but also lead developers to
recognize the presence of sub-optimal implementation solutions that would
deserve some refactoring [227, 283, 288]. For these reasons, we considered
four types of product metrics, such as (i) size, (ii) cohesion, (iii) coupling, and
(iv) complexity metrics. For each of these types, we selected indicators having
different nature (e.g., structural aspects of source code rather than textual
components) and able to capture in different ways the considered phenomena

6.2 a novel code smells prioritization approach 105

(e.g., we computed source code complexity using both the McCabe metric
and readability, which targets a more cognitive dimension of complexity).

While product metrics can provide indications about the structure of source
code, we complemented them with orthogonal metrics that capture the way
the code has been modified as well as who was responsible for that, i.e.,
process and developer-related metrics. Indeed, the developer’s perception of
criticality may be not always due to the complex structure of source code,
but rather to the problems it causes during the evolution process [236, 262];
similarly, the criticality of code smells may be perceived differently depending
on whether the maintainer is an expert of the class or not [30, 44]. Hence,
we selected a number of metrics related to those aspects: for instance, we
computed the average number of co-changing classes for the smelly class
(AVG_CS) to assess whether smells that often change with several classes are
perceived as more critical by developers or the number of previous bug fixing
involving the smelly class to observe if classes that are more fault-prone
are actually those perceived more critical. We also computed measures of
experience and ownership of developers working on the smelly class to test
whether these factors influence the developer’s ability to work on it.

Finally, we took into account some specific metrics related to code smells:
the idea here is that a number of aspects connected to the smell itself may
be relevant for developers when assessing its criticality. In particular, the
continuous presence of smell over the history of the project (i.e., Pers.) may
influence the ability of developers to recognize its harmfulness better. Much
in the same way, the presence of refactoring opportunities (Ref.) or even
the number of previous refactoring actions done on the smelly class (NR)
may affect the perception of developers. Finally, we also considered the code
smell intensity, which is a measurable amount of intensity of a certain code
smell instance [187]: we included this metric to understand whether there is
a match between an “objective” measurement of code smell severity and its
real perceived criticality.
From a technical perspective, we employed the tool by Spinellis [282] to

compute product metrics, the one made available by Buse and Weimer [36]
for the computation of the readability index, and PyDriller [279] to compute

106 developer-driven code smell prioritization

process and developer-related metrics. As for the smell-related indicators,
we developed our own tool to compute Pers. and NR. Starting from the
release Ri of the projects taken into account, the former metric counts in how
many consecutive previous major and minor releases—identified using the
corresponding Git tags—the considered smell was present, according to the
employed detectors. The latter metric, instead, was computed by mining the
messages of commits involving the smelly classes and looking for the presence
of keywords recommended in [313], e.g., ‘refactor’ or ‘restructure’. The
intensity of code smells has been assessed using the tool by Marinescu [187],
which computes the average distance between the actual code metric values
of the smell instance and the thresholds fixed by the detection rules. Finally,
the Ref. metric was computed by (i) running JDeodorant [81], an existing
refactoring recommender that covers all refactoring actions associated to the
considered code smells, and (ii) putting the metric to 1 if the tool retrieved at
least one recommendation, 0 otherwise.

Machine Learning Algorithms. Once we had computed dependent and
independent variables, we proceeded with the definition of the machine
learning algorithms to be used.
In order to perform the classification, we investigated the use of multiple

algorithms [54], i.e., Random Forest, Logistic Regression, Vector Space
Machine, Naive-Bayes, and Multilayer Perceptron, in order to assess what
is the one giving the best performance. Note that, before running the algo-
rithms, we first applied a forward selection of independent variables using
the Correlation-based feature selection (CFS) approach [169], thus
mitigating possible problems due to multi-collinearity of features [215]. Then,
we configured classifiers’ hyper-parameters by exploiting the Grid Search
[29] algorithm.

Training/Testing the Model. We built different models for each code smell
considered in the study, so the training data is represented by the set of
observations available for a certain smell in the collected dataset: the distri-
bution is almost uniform for all the criticality values. This aspect affected our
decision to not apply any balancing algorithm. On the one hand, there are no
classes requiring to be balanced with respect to the others. On the other hand,

6.2 a novel code smells prioritization approach 107

previous findings have shown that balancing code smell-related datasets can
even damage the performance of the resulting models.

To train the model, we employed a 10-fold cross-validation strategy [147].
The process is repeated ten times so that each fold will be the test set exactly
once.

Performance Assessment. We evaluated the performance of the experi-
mented model by analyzing confusion matrices, obtained from the testing
strategy described above, reporting the number of true and false positives as
well as the number of true and false negatives. We analyzed these matrices by
first computing precision, recall, F-Measure, and the Matthew’s Correlation
Coefficient (MCC) [16].

6.2.3 RQ2. Explaining the Proposed Approach

In the context of RQ2, we took a deeper look into the performance of
the best model coming from the previous research question. We aimed at
understanding the value of the individual metrics selected as independent
variables; this step could possibly help us explaining why the proposed
approach works (or not) when predicting the criticality of code smells. To
this aim, we employed an information gain algorithm [257].

To analyze the resulting rank and have statistically significant conclusions,
we finally exploited the Scott-Knott Effect Size Difference (ESD) test [295].
This is an effect-size aware variation to the original Scott-Knott test [268]
that has been recommended for software engineering research in previous
studies [129, 160, 294] as it (i) uses hierarchical cluster analysis to partition
the set of treatment means into statistically distinct groups according to their
influence, (ii) corrects the non-normal distribution of an input dataset, and
(iii) merges any two statistically distinct groups that have a negligible effect
size into one group to avoid the generation of trivial groups. As effect size
measure, the test relies on Cliff’s Delta (or d) [108]. To compute the test, we
used the publicly available implementation5 provided by Tantithamthavorn et
al.[295].

5 Link: https://github.com/klainfo/ScottKnottESD

108 developer-driven code smell prioritization

6.2.4 RQ3. Comparison with the state of the art

Finally, we investigated whether and to what extent the proposed code smell
prioritization approach overcomes the performance of existing techniques.
This step is paramount to understand the novelty of our solution and how it
may support developers better than the baseline approaches.
The two closest techniques with respect to the one proposed herein are

those by Vidal et al.[317] and Arcelli Fontana and Zanoni [86]: we set them
as initial baselines for the comparison. In the former, the authors proposed
SpIRIT, a semi-automated technique that relies on three main criteria, namely
(1) stability, i.e., number of previous changes applied on a smelly class over
the number of total changes applied on the system, (2) relevance, i.e., the
relative importance of the class within the system according to the feedback
given by a developer, and (3) modifiability scenarios, i.e., the number of
possible use cases of the application that risk to be impacted by the presence
of the smell according to the opinion of an expert. The three criteria are then
combined through a weighted average, where the weights are assigned by the
user of the tool. As the reader might have noticed, SpIRIT explicitly requires
the intervention of an expert to be employed in practice: indeed, the technique
has been tested in an industrial case study involving a Java project affected
by a total of 47 code smells and requiring the interaction of core developer
of the subject application. For this reason, we could not use it as a baseline
for a in-vitro assessment of our proposed approach and we plan to perform a
comparison with SpIRIT in our future research agenda.

As for the technique proposed by Arcelli Fontana and Zanoni [86], this is a
machine learning-based solution that relies on 61 product metrics to predict
how critical a certain code smell instance is. This technique can be fully
automated and, therefore, we could use it as the baseline for our study and
run it using the same dependent variable, training, validation strategy, and
dataset employed to validate our approach. Once obtained the output from
the baseline, we compared it with ours by means of the same set of metrics
used in RQ1, i.e., precision, recall, F-Measure, MCC, and AUC-ROC.

6.3 analysis of the results 109

Table 6.3: RQ1 - RQ3. Confusion matrices obtained when running the proposed
model against our dataset.

Model Class/Smell Blob Complex Class Spaghetti Code Shotgun Surgery

Non-severe Medium Severe Non-severe Medium Severe Non-severe Medium Severe Non-severe Medium Severe

Our approach
Non-severe 54 10 6 46 17 27 57 11 2 46 37 13
Medium 6 171 18 14 176 0 5 151 6 8 134 10
Severe 1 10 65 6 1 62 0 7 74 5 16 60

Baseline
Non-severe 16 40 14 45 43 2 37 19 21 11 83 6
Medium 12 174 9 21 161 8 0 172 0 18 122 12
Severe 8 23 45 7 48 14 13 0 79 6 79 4

Table 6.4: RQ1 - RQ3. Weighted Average of the performance achieved by the
experimented models against our dataset.
Code smell Model Prec. Rec. F-Meas. MCC AUC-ROC

Blob Our approach 86% 85% 85% 75% 89%
Baseline 66% 69% 66% 44% 78%

Complex Class Our approach 79% 81% 80% 71% 89%
Baseline 62% 63% 63% 33% 76%

Spaghetti Code Our approach 90% 88% 89% 83% 92%
Baseline 83% 85% 84% 77% 89%

Shotgun Surgery Our approach 74% 71% 72% 61% 78%
Baseline 33% 40% 35% 32% 61%

6.3 analysis of the results

This section reports the results of our study, presenting each research question
independently.

6.3.1 RQ1. The Performance of our Model

In the context of RQ1, we aimed at assessing how well can we predict the
perceived criticality of code smells. Table 6.3 reports the confusion matrices
obtained when running the proposed approach against our dataset of four
code smell types, while Table 6.4 presents the weighted average performance
for each code smell. For the sake of space limitations, we only report the
results achieved with the best classifier, i.e., Random Forest.

In the first place, it is worth noting that the performance values of our model
are rather high and, indeed, it has an F-Measure that ranges between 72%
and 85%. This indicates that, in most of the cases, our model can accurately

110 developer-driven code smell prioritization

classify the severity perceived by developers. The worst case is represented
by Shotgun Surgery, where the model has an F-Measure of 72% and an AUC-
ROC of 61%. On the one hand, the former metric still indicates that the model
is able to correctly classify most of the instances of our dataset. On the other
hand, the latter suggests that the ability of separating criticality classes may be
further improved; this is also visible when considering the confusion matrix
for this smell (Table 6.3), where we noticed that in 52% of cases the model
classified non-severe code smells as medium or severe cases. An example is
represented by the class security.JackrabbitAccessControlManager
of the Jackrabbit project. This class has 164 lines of code and has been
detected as smelly because every time it is changed an average of other 11
classes are also modified. Nevertheless, it has been subject to a relatively
low number of changes (19) and defects (1), likely being less harmful than
other instances of the smell. Analyzing the other misclassified cases, we
noticed a similar trend: the model tends to misclassify instances because it
is not always able to learn how to balance the information coming from the
number of classes to be modified with the smelly one and the actual number
of changes that involve the smelly instance. As such, we can claim that
possible improvements to the classification model may concern the addition
of combined metrics, e.g., the ratio between number of co-changing classes
and number of previous changes of the smelly class.

As for the other code smells considered, the performance values are higher
and all above 80% and 70% in terms of F-Measure and AUC-ROC. Hence, we
can claim that the proposed model can be effectively adopted by developers
to prioritize code smell instances. The best result is the one of Spaghetti Code
(F-Measure=89%, AUC-ROC=92%): in this case, the model misclassifies
only 31 cases (10% of the instances). By looking deeper at those cases, we
could not find any evident property of the source code leading to those false
positives. A similar discussion can be drawn when considering the Blob and
Complex Class code smells. Part of our future research agenda includes the
adoption of mechanisms able to better describe the functioning of the learners
used for the classification, e.g., explainable AI algorithms [110].

6.3 analysis of the results 111

¤ Summing Up: The proposed model has an F-Measure ranging between
72% and 85%, hence being accurate in the classification of the perceived
criticality of code smells. The worst case relates to Shotgun Surgery, where
the model misclassifies non-severe instances because of its partial inability
to take into account other process-related information like number of
changes involving the smelly classes.

Table 6.5: RQ2. Information Gain of the independent variables of our approach. For
space limits, only metrics providing significant contributions are reported.

Code smell Metric Mean SK-ESD

Blob

RFC 0.65 68
LCOM5 0.57 66
NF 0.56 66
DSC 0.55 64
CBO 0.45 64
WMC 0.42 64
C3 0.35 45
LOC 0.34 41

Complex Class

CBO 0.59 71
WMC 0.54 69
LCOM5 0.54 69
Read. 0.54 69
NC 0.50 54
DSC. 0.49 51
EXP 0.27 33
RFC. 0.25 31

Spaghetti Code
Read. 0.65 53
NF 0.57 46
C3 0.38 41

Shotgun Surgery

NC 0.32 44
LCOM5 0.31 39
AVG_CS 0.24 33
Pers. 0.17 21

6.3.2 RQ2. Features Contributing to the Model

Table 6.5 reports the list of features contributing the most to the performance
of the proposed model. As shown, each code smell has its own peculiarities.

112 developer-driven code smell prioritization

To classify Blob instances, the model mostly relies on structural metrics that
capture complexity (RFC, WMC), cohesion (LCOM5, C3), and coupling
(CBO) of the source code: basically, it means that the criticality of this code
smell is given by a mix of various structural factors and cannot be described
by just looking at them independently. At the same time, the number of
previous defects affecting those instances (NF) as well as the workload of
the committers (DSC) have a non-negligible effect. As such, on the one hand
we can confirm previous findings that showed historical and socio-technical
factors as relevant to manage code smells [228, 238]. On the other hand, our
findings suggest that these metrics may possibly be useful for detecting code
smells in the first place or even filtering the results of currently available
detectors, so that they may give recommendations that are closer to the
developer’s perceived criticality. Finally, the lines of code also contributes to
the model, being however not the strongest factor—confirming again previous
findings in the field [228, 234].
When considering Complex Class, a similar discussion can be done.

While the most impactful metrics concern with the structure of the code
(CBO, WMC, LCOM5), other metrics seem to have a relevant effect on the
classification model. In particular, readability is the strongest factor after code
metrics, indicating that developers consider comprehensibility important
when prioritizing this code smell. Other relevant factors are the number of
previous changes of classes (NC) and socio-technical aspects like experience
and workload of the committers (EXP, DSC): again, this result confirms
that the management of code smells may require additional information than
structural aspects of source code [304].
Surprisingly, when considering Spaghetti Code instances we noticed that

no structural factors strongly influence the classification. Readability is indeed
the key factor leading developers to prioritize instances of this smell, followed
by the number of previous defects affecting those classes (NF) and by the
conceptual cohesion of classes (C3). Hence, it seems that developers prioritize
instances of this smell that are semantically incoherent or that suffered from
defects in the past. Our findings could again be used by code smell detection

6.3 analysis of the results 113

and filtering approaches to tune the list of recommendations to provide to
developers.
Finally, the prioritization of the Shotgun Surgery smell is mainly driven

by process-related factors. Not only the number of changes (NC) is the most
powerful metric, but also the number of co-changing classes (AVG_CS)
turned out to be relevant. Also, this is the only case in which the persistence
of the smell (Pers.) appeared to impact the classification. These result seem
to confirm that developers assess the severity of this code smell based on
the intensity of the problem [227, 288], i.e., when number of changes or
co-changing classes is high or when the problem is constantly affecting
the codebase. Furthermore, the cohesion of the class (LCOM5) affects the
classification, even though at a lower extent if compared to the contribution
given for other code smell types.

¤ Summing Up: The developer’s perceived criticality of code smells
represents a multi-faceted problem that can be tackled considering a mix of
metrics having different nature (e.g., structural or historical) and working
at various levels of granularity (e.g., process or socio-technical aspects).

6.3.3 RQ3. Comparison with the state of the art

We compared the proposed model with a baseline. The results are reported
in Tables 6.3 and 6.4, where we show confusion matrices and weighted
performance values obtained when running the baseline against our dataset,
respectively. Also in this case, we report the results obtained with the best
classifier, that in this case was Logistic Regression—confirming the findings
of the original authors [86].
In the first place, we can notice that the baseline is decently accurate

and, indeed, its F-Measure values on Blob, Complex Class, and Spaghetti
Code range between 63% and 84%. The exception is Shotgun Surgery (F-
Measure=35%), where the baseline fails the classification in most of the
cases. Despite its performance, however, the baseline never outperforms our
technique. While this is especially true when considering Shotgun Surgery

114 developer-driven code smell prioritization

(-37% of F-Measure, -17% of AUC-ROC), also for the other code smells the
difference is non-negligible: the F-Measure is 19%, 17%, and 5% lower than
our model for Blob, Complex Class, and Spaghetti Code, respectively.
The main reason for these differences is likely imputable to the metrics

employed. As shown in RQ2, structural aspects of source code can only
partially contribute to the classification of the developer’s perceived criticality
of code smells and, as such, the inclusion of factors covering other dimensions
better fits the problem.
Of particular interest is the analysis of the results for the Spaghetti Code

smell, where the baseline has the highest performance despite the fact that
our findings in RQ2 reported structural aspects to be negligible. The baseline
employs a variety of metrics that can capture different aspects of source code
(e.g., coupling or cohesion) under different angles (e.g., by considering the
lines of code with and without access methods). Some of the complexity
metrics are highly correlated to readability of source code and its fault-
proneness and, as such, they have the effect of “simulating” the presence of
metrics like the one found to be relevant in RQ2. This claim is supported
by an additional analysis in which we compute the correlation (using the
Spearman’s test) between the metrics used by the baseline and those which
turned out to be relevant in our previous analysis (Read., NF, and C3): we
discovered that five of them (i.e., WMCNAMM_type, NOMNAMM_type,
AMW_type, CFNAMM_type, and num_final_static_attributes) are highly
correlated, i.e., ρ>0.7, to at least one of the variables found in RQ2.

In conclusion, based on our findings we can claim that an approach solely
based on structural metrics cannot be as accurate in the classification of the
perceived criticality of code smells as a technique that includes information
coming from other sources, confirming again that the problem of code smell
management should be tackled in a more comprehensive manner.

¤ Summing Up: The proposed model is, on average, 20% more accurate
than the baseline when classifying the perceived criticality of code smells.
Only in the case of Spaghetti Code the usage of multiple structural metrics
can lead to results similar to those of our model.

6.4 conclusion 115

6.4 conclusion

This chapter presented a novel code smell prioritization approach based on the
developers’ perceived criticality of code smells. We exploited several aspects
related to code quality to predict the criticality of code smells, computed by
collecting feedback from original developers about their perception of 1,332
code smell instances. Then, we applied several machine learning techniques
to classify the code smell criticality in a three-level variable, and compared
their results with a state-of-the-art tool. The results reported Random Forest
to be the best machine learning algorithm with an F-measure ranging between
72% and 85%. Moreover, we found that our approach is, on average, 20%
more accurate than the considered baseline when classifying the perceived
criticality of code smells.

7
T H R E AT S T O VA L I D I T Y, D I S C U S S I O N , A N D
I M P L I CAT I O N S

In this chapter we report some aspects that might have threaten the validity
of the results achieved in our empirical studies and in-depth discuss our main
findings to answer our first two high-level research questions.

7.1 threats to validity

This section discusses the main threats to validity and explains how we
mitigated them, following the guidelines provided by Wohlin [327].

7.1.1 Threats to Construct Validity

Threats in this category are related to the relation between theory and
observation. In our studies, a threat might be represented by the datasets used
for our empirical investigations. As for the first four studies (Chapter 3 to
Chapter 5) we considered several factors for the dataset selection such as
heterogeneity or the presence of manually-validated data, however we have to
consider that they may contain possible discrepancies or inaccuracies, such
as labeling errors or some positive instances that might have been overlooked.
For instance, some of our datasets contain multiple releases from the same
project. In such a context, it could happen that different systems have different
weights in the dataset: systems having more release have an higher weight,
therefore a higher impact on the overall performance. However, to mitigate
this aspect and, at the same time, avoid possible effects due to dependencies
among successive releases, we evaluated the models performance relying on
aggregated assessment metrics to have a clearer overview of the performance
[12].

117

118 threats to validity, discussion, and implications

In our last study, Chapter 6, we needed to collect the developer’s perceived
criticality of a set of code smells. To this aim, we followed a similar strategy
as previous work [238, 273]: we monitored nine large open-source systems
for 6 months and inquired the original developers as soon as they modified
smelly classes in order to let them rank how harmful the involved code
smells actually were. In so doing, we adopted some precautions. Firstly, we
detected code smells using state-of-the-art tools [197, 228] that showed high
accuracy, yet checking their output to remove false positives; in any case, we
cannot exclude the presence of false negatives since these detectors have been
validated on different datasets. Secondly, we asked preliminary questions on
whether they perceived the presence of a design issue in the proposed class
and recognized the same problem they were contacted for. These questions
aimed at ensuring that developers were really aware of the code smells they
were assessing and, thus, could provide us with reliable feedback. Of course,
we are aware that some of the developers might be peripheral contributors
without the experience required to assess the harmfulness of code smells. To
account for this aspect, we conducted a follow-up verification of the role of
the subject developers within their corresponding projects: to this aim, we
computed the number of commits they performed (i) over the entire change
history of their projects and (ii) on the specific classes they were contacted
for. As a result, we discovered that all our respondents have contributions that
exceed the median number of commits made by all project’s developers both
in terms of changes done over the history and on the smelly classes objects
of our inquiry. In conclusion, we can argue that the dataset collection method
is sound and allows a reliable analysis of the perceived code smells criticality.
Furthermore, the perceived criticality assigned by developers when building
the dataset might have been influenced by the co-occurrence of multiple code
smells [1]. We mitigated this problem by presenting to developers classes
affected by single code smell types among those considered in this chapter,
e.g., we only presented cases where a Blob did not occur with any of the
other smells considered in the study. Nevertheless, we cannot exclude the
presence of further design issues among those that we did not consider in the

7.1 threats to validity 119

study. As such, a larger experimentation would be desirable to corroborate
our observations.
Another common threat is related to the construction of the machine

learning models, for which we took several aspects into account that could
have possibly influenced the study, i.e., which features to consider, how to
train the classifier, etc.. However, we believe that the procedures followed in
this respect are precise enough to ensure the validity of the study.

Finally, it is worth remarking thatmost of the independentmetrics computed
as well as the algorithms exploited (e.g., the machine learners) were computed
by relying on well-tested, publicly available tools. This allowed us to reduce
biases due to re-implementation. Their selection was based on convenience,
and particularly on the skills that the authors have with them.

7.1.2 Threats to External Validity

With respect to the generalizability of our findings, we considered large
datasets consisting of systems belonging to different application domains and
having different characteristics. Another threat concerns the choice of the
machine learning techniques. To mitigate this threat, over the different studies
we always compared the top most commonly used classifiers in this field
[15]. Finally, also the selection of the code smell to analyze could represent
a threat to the external validity. We selected several code smell types that
represent a large variety of design issues (e.g., smells related to complexity
or excessive coupling between objects). This allowed us to better understand
the potential of machine learning techniques for code smell detection as well
as their limitations with respect to heuristic-based approaches. Of course,
further experiments performed on different datasets and techniques would be
desirable and already part of our future research agenda.

7.1.3 Threats to Conclusion Validity

As for concerns with the relationship between treatment and outcome, we
exploited a set of widely-used metrics to evaluate the experimented techniques

120 threats to validity, discussion, and implications

(e.g., precision, recall, MCC) and provided qualitative examples aimed at
showing the differences between the compared approaches. Furthermore,
we used appropriate statistical tests (e.g., Wilcoxon, Cliff’s delta) to support
our findings. As for the machine learning model, a possible bias related to
the interpretation of the results might have been due to the usage of the
10-fold cross validation. This strategy randomly partitions the set of data
to create training and test sets: such randomness might have possibly led
to the creation of biased training/test sets that have the consequence of
under- or over-estimate the model performance. To account for this aspect,
we performed additional analyses: as suggested by Hall et al.[115], we ran
the experimented model multiple times to assess how stable it is depending
on the random splits performed by the validation strategy. Thus, we ran 10
times 10-fold cross validations and, then, we measured the variability of the
predictions performed by the model; as a result, we observed that in the great
majority of the cases (more than 95%) the predictions do not change over
different runs. As such, we can conclude that the results achieved are not
influenced by the randomness of the validation strategy.

7.1.4 Threats to Internal Validity

These threats are related to the internal factors of the study that might have
affected the results. The results we discussed are characterised by a great
variability with respect to the smell under analysis. A possible reason could
be the metric selection for code smell detection. Indeed, some of the selected
metrics could represent a confounding factor threatening the internal validity
of the study. To mitigate this threat, we relied on previously defined and
validated metrics.

7.2 discussion and implications

This section provides the answers to our first two high-level research questions
(i.e., RQa and RQb) through a deep discussion of the results achieved in the
studies presented in Part I.

7.2 discussion and implications 121

Table 7.1: Type I and Type II Errors Achieved in the Overall Evaluation
Naive Bayes Optimistic Constant Pessimistic Constant Random
Type I Type II Type I Type II Type I Type II Type I Type II

God Class 1,263 (0.90%) 65 (0.10%) 144,798 (99.60%) 0 (0.00%) 0 (0.00%) 509 (0.40%) 72,683 (50.00%) 251 (0.20%)
Spaghetti Code 2,269 (1.40%) 1,009 (0.60%) 159,436 (99.10%) 0 (0.00%) 0 (0.00%) 1,443 (0.90%) 79,669 (49.50%) 690 (0.40%)
Class Data Should Be Private 874 (0.60%) 770 (0.50%) 142,558 (99.20%) 0 (0.00%) 0 (0.00%) 1,150 (0.80%) 71,221 (49.50%) 589 (0.40%)
Complex Class 1,303 (1.00%) 282 (0.20%) 127,538 (99.50%) 0 (0.00%) 0 (0.00%) 669 (0.50%) 63,507 (49.50%) 335 (0.30%)
Long Method 15,449 (1.20%) 2,101 (0.20%) 1,283,312 (99.60%) 0 (0.00%) 0 (0.00%) 4,763 (0.40%) 641,914 (49.80%) 2,431 (0.20%)

7.2.1 RQa - The capabilities of machine learning-based algorithms for
code smell detection

In our first high-level research question (RQa) we wondered about the
capabilities of machine learning-based algorithms for code smell detection.
The results of the study presented in Chapter 3 provided a number of insights
to answer RQa that deserve some further considerations.

On the Performance of Machine Learning Models As we have observed
in Section 3.2, the performance of machine learning techniques are not as
good as the one of heuristic approaches. To further investigate the potential
of these techniques, we performed an additional analysis aimed at comparing
the model with three simple baselines such as: (i) the optimistic constant
classifier, that always classifies an instance as smelly; (ii) the pessimistic
constant classifier, that always classifies an instance as non-smelly; and
(iii) a random classifier, which randomly classifies an instance as smelly
or non-smelly. Should the performance of the model be lower than any of
this baseline, it would indicate a major threat to the usability of the model in
practice. As previously done in literature [111], we performed this comparison
in terms of Type I and Type II errors, i.e., computed as the total number of
false positive and false negative errors.

Table 7.1 reports the results achieved. We can observe that, for each of the
classifiers, the total number of errors (i.e., Type I + Type II) is independent
from the smell to detect. The total number of errors in percentage is between
1% and 2% for Naive Bayes, higher than 99% for optimistic constant, less
than 1% for pessimistic constant and around 50% for random Classifier.
This means that the pessimistic constant outperforms all the other classifiers
producing a lower number of errors.

122 threats to validity, discussion, and implications

Of course, this result was due again to the unbalanced nature of the problem.
However, this has a key implication for the research community: based on our
results,machine learning seems still unsuitable for code smell detectionwhich
also involves practitioners who currently cannot use this approach in practice.
The inclusion of orthogonal metrics as independent variables (e.g., process
indicators), the adoption of ensemble techniques [69], the experimentation of
different training strategies (e.g., cross-project models) are just some of the
research fields that would require further attention in the future.

On the Performance of Heuristic Approaches One of the most surprising
result of our study in Chapter 3 concerns the fairly low performance achieved
by Decor over the considered dataset. Specifically, while the recall of the
approach was in line with the one stated in literature [197], we found its
precision to be extremely low. We see two main motivations behind this
result. First, in our study we employed Decor with a larger variety of code
smells with respect to previous work [139, 228, 234]: therefore, we tested its
performance in the wild, showing some limitations of the technique when
employed for the detection of certain code smell types. Secondly, we relied on
a manually-validated dataset containing real instances: as shown by previous
work [71], the composition of the dataset might influence the performance
of a technique; this is especially true in the case of code smell detection,
where a detector should recognize code smells over datasets that are both
unbalanced (i.e., limited number of actual instances) and noisy (i.e., the
presence of several smell types might interfere and make the detection rules
less effective).

Thus, while heuristic techniques still slightly outperform machine learning
models, the problem of detecting code smells using heuristics is still far from
being solved. We believe that our findings support the preliminary research
efforts conducted to filter code smell candidates output by the detectors to
reduce the false positive rate, thus improving their precision [84]. At the same
time, we also envision further research on how to limit the interaction of
multiple code smells with similar characteristics on the performance of code
smell detectors: to this aim, we envision the concept of local smell detection,
that, similarly to what has been done in defect prediction [193], would have

7.2 discussion and implications 123

●●●0.00

0.25

0.50

0.75

1.00

Clas
s b

ala
nc

er

No b
ala

nc
ing

SMOTE

M
C

C
 −

 G
od

 C
la

ss

●

0.00

0.25

0.50

0.75

1.00

Clas
s b

ala
nc

er

No b
ala

nc
ing

SMOTE

M
C

C
 −

 S
pa

gh
et

ti
C

od
e

●●

●
●

●

0.00

0.25

0.50

0.75

1.00

Clas
s b

ala
nc

er

No b
ala

nc
ing

SMOTE

M
C

C
 −

 C
la

ss
 D

at
a

S
ho

ul
d

B
e

P
riv

at
e

●

●●●●

●●●

●●●●0.00

0.25

0.50

0.75

1.00

Clas
s b

ala
nc

er

No b
ala

nc
ing

SMOTE

M
C

C
 −

 C
om

pl
ex

 C
la

ss

0.00

0.25

0.50

0.75

1.00

Clas
s b

ala
nc

er

No b
ala

nc
ing

SMOTE

M
C

C
 −

 L
on

g
M

et
ho

d

Figure 7.1: Boxplots representing the MCC values obtained by Naive Bayesian
trained applying different balancing strategies for all the considered code
smells

the goal of clustering similar classes first (possibly positively affecting the
interaction problem) and then apply the detector that is most suitable for the
classes of a cluster.

7.2.2 RQb - The limitations of machine learning-based algorithms for code
smell detection

While assessing the performance of machine learning-based approaches for
code smell detection in order to answer RQa, we found somemajor limitations
of these approaches. This section provides discussions about such limitations
and possible solutions to overcome them.

On the Role of Data Balancing In the study presented in Chapter 3, we
consciously chose to not use balancing techniques when building our code
smell detection model. This choice was due to experimental tests where we
compared the balanced version of the model with the non-balanced one. As
balancing algorithm, we applied the Synthetic Minority Over-sampling
TEchnique, (SMOTE) [48].

The results of our analyses are shown in Figure 7.1. At a first sight, it may
seem that the balanced model achieves better performance for most of the
considered smells (except the one created for Long Method). However, by
further investigating this result we realized that such performance is biased
by the high number of cases in which the data balancing algorithm failed,

124 threats to validity, discussion, and implications

not producing any valid predictions. In particular, the problem of code smell
detection is strongly unbalanced and, in many cases, SMOTE does not have
a feature space large enough to perform a balancing, thus producing a failure.
Such failures do not contribute to the computation of the evaluation metrics
used for performance assessment. As such, the interpretation of the results
would have been biased by the absence of many predictions.

To further investigate this aspect, we tried to reduce the failure rate by
considering the default Class Balancer provided by Weka: differently from
SMOTE, it performs a very simple balancing that has the goal of re-weighting
the instances in each class to obtain the same total class weight. Thus, it
theoretically reduces the number of failures as it does not require a large
feature space. As expected, the failure rate was actually reduced but, however,
the results (shown in Figure 7.1) showed lower performance than the ones
produced by the non-balanced model in most cases.

In Chapter 4 we conducted a deeper analysis on the role of data balancing.
However, since we described the results only in quantitative terms, herein we
provide a deeper discussion in qualitative terms. Specifically, we analyse the
overlap between the results achieved by the models using different balancing
technique to understand which instances they predict and whether these are
complementary.
Figure 7.2 shows the misclassified instances obtained by the five models

using the data balancing techniques and the No-balancing model. The axes
represent the features of the model: the x-axis is ELOC, while y-axis is
NMNOPARAM . ’+’ data points represent false negatives, while ’x’ data
points represent false positives. We describe this case because it nicely
explains the behaviours of the balancing techniques. The model is built with
two features, thus making it easier to analyse than models trained with many
more features.

The results confirm what we previously reported. In particular, One-Class
Classifier exhibited a high level of recall but a very low precision. This means
that for code smell detection training only on the instances belonging to the
minority class is not effective because these few instances poorly represent
the smelly classes. A similar result is obtained for Cost-Sensitive Classifier

7.2 discussion and implications 125

Figure 7.2: Scatterplots representing the misclassified instances obtained by Naive
Bayesian trained applying different balancing strategies for Spaghetti
Code. ’+’ data points are false negatives, while ’x’ are false positives.

which had poor precision. In particular, we notice that many points were
misclassified as true, even if they were false (i.e., false negative). We can argue
that giving higher weights to the instances belonging to the minority class
is not effective. When analysing at the Oversampling and Undersampling,
we observe that their accuracy is similar to that obtained by No-balancing.
Therefore, we deem that these techniques are ineffective but do not worsen the
accuracy achieved by the model trained without balancing. Finally, we note
that SMOTE can slightly improve accuracy. However, it is worth remarking

126 threats to validity, discussion, and implications

Table 7.2: Number of software systems not exhibiting instances of each smell (i.e.,
No Smells), along with the instances on which SMOTE could not be
executed because of lacking instances for that specific smell (i.e., SMOTE
Failures).

No Smells SMOTE FailuresCode Smell
% # %

Number of Systems

God Class 20 16 46 37 125
Spaghetti Code 7 6 16 13 125
Class Data Should Be Private 10 8 11 9 125
Complex Class 30 24 52 42 125
Long Method 68 54 89 71 125
Feature Envy 82 66 96 77 125
Inappropriate Intimacy 3 2 72 58 125
Middle Man 64 51 104 83 125
Refused Bequest 34 27 46 37 125
Speculative Generality 3 2 11 9 125
Long Parameter List 54 22 62 50 125
Brain Repository 90 75 95 79 120
Fat Repository 87 72 94 78 120
Promiscuous Controller 44 37 73 61 120
Brain Controller 52 43 75 62 120

that some balancing techniques can fail to balance the dataset when the
number of smelly instances is minimal. We tuned SMOTE to rely on the
minimum number of smelly neighbour instances (i.e., two). If these are not
available, then the algorithm fails, representing a clear disadvantage with
respect to the other techniques.

Table 7.2 reports the number and the percentage of failures for each of the
code smells under analysis. While for some code smells, there is a minimal
number of failures (e.g., Speculative Generality), there are also smells in
which the analysis fails in the majority of cases. As an example, let us consider
the case of Fat Repository. This is one of the less frequent code smells, as
also reported in Table 4.6: indeed, in 72% of cases, all data balancing fails
due to the total absence of smelly instances in the considered system. As for

7.2 discussion and implications 127

SMOTE, it fails in 78% of cases (i.e., 72% with no smelly instances and 6%
with not enough neighbours).

0.0

0.1

0.2

0.3

0.4

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− F
at

Re
po

sit
or

y

0.0

0.1

0.2

0.3

0.4

SMOTE

0.0

0.2

0.4

0.6

0.8

No−Balancin
g

Oversa
mpling

Undersa
mpling

SMOTE

Cost S
ensiti

ve

One Class

MC
C

− B
rai

n R
ep

os
ito

ry

Figure 7.3: Boxplots representing the MCC values obtained by Naive Bayesian
trained with different balancing strategies for the detection of Fat Repos-
itory code smell. The picture on the left includes the cases in which not
all the algorithms could be executed. These cases are filtered out in the
picture on the right.

Due to these failures, our analyses have been performed on a smaller
population for some code smells. To avoid threatening the significance of
results, we conducted a further evaluation in which we included all the
systems, regardless of the failures. Figure 7.3 reports an example for Fat
Repository.The boxplot including all cases is reported on the left of the figure,
while on the right side is reported the one excluding failures. Generally, there
are small differences in terms of accuracy. Indeed, for both cases, One Class
Classifier is the most effective data balancing technique.

Overall the results obtained on the different models show that there are
no sensible differences in applying or not balancing techniques. This result
suggests that tuning data balancing techniques could not be an adequate
solution for code smell detection with respect to what achieved in other
contexts such as defect prediction [3]. This aspect raises several issues about
the feasibility of current machine learning-based approaches. We deem that
the meagre number of instances from the minority class (i.e., smelly instances)
is the cause of this low effectiveness.

128 threats to validity, discussion, and implications

To sum up, data balancing does not significantly improve the effectiveness
of machine learning models for code smell detection. Training only on the
instances belonging to the minority class or giving them more weight (i.e., as
done by One-Class Classifier and Cost-Sensitive Classifier) is not effective
because these few instances poorly represent the minority class. Resampling
techniques such as Oversampling and Undersampling are ineffective but do
not worsen the accuracy achieved by the model trained without balancing.
Finally, SMOTE slightly improves the results, but in case of extremely
imbalanced datasets, the training phase fails.

●

●

●

●●

●

●

●

●

●

●

●

●

●

250

300

350

400

450

500

No B
ala

nc
ing

Ove
rsa

mpli
ng

Und
ers

am
pli

ng

SMOTE
CSC

OCC

C
om

pu
ta

tio
na

l t
im

e
(m

ill
is

ec
on

ds
)

C
om

pu
ta

tio
na

l t
im

e
(m

ill
is

ec
on

ds
)

●

●

●

●

●

●
N

o
B

al
an

ci
ng

 −
 1

.8
2

U
nd

er
sa

m
pl

in
g

−
2.

15

S
M

O
TE

 −
 2

.9
8

O
ve

rs
am

pl
in

g
−

3.
18

C
S

C
 −

 4
.9

0

O
C

C
 −

 5
.9

7

1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7.4: Boxplots and Nemenyi results representing the execution time of the
different data balancing techniques.

Furthermore, given that data balancing is an additional pre-processing step
in ML classification, we also conducted a further analysis to investigate the
overhead in terms of time consumption to apply this step. Specifically, we
compared the training time of the models configured with different balancing
techniques. We performed 30 independent runs training the models on the
most extensive system in our dataset, i.e., Eclipse 5.2.1. The selection is
motivated by a twofold reason. On the one hand, having a higher number
of instances should avoid (or at least reduce) failures. On the other hand, a
higher number of instances led to longer execution time for all the techniques,
and this may allow us to study the overhead better. We considered only one

7.2 discussion and implications 129

code smell (i.e., God Class). However, we believe that the results for the other
smells should not be very different.
The results in Figure 7.4 highlight that One-Class Classifier and Cost-

Sensitive Classifier take much more time than the others. This could be due
to the difficulties in carrying out the training phase using a limited number of
instances of the minority class. Also for the other techniques results show
an overhead, although less significant than the two mentioned above. In
particular Undersampling performance is very close to the No-balancing one.
Overall, except Undersampling, all data balancing techniques introduce

significant overhead in time consumption of ML algorithms. While the
two techniques based on meta-classification (i.e., One-Class Classifier and
Cost-Sensitive Classifier) take much more execution time, the other ones (i.e.,
Oversampling, Undersampling, and SMOTE) show performance pretty close
to No-balancing.

Our findings have two clear implications for the research community.
First, the problem of code smell detection is naturally unbalanced and, for
this reason, difficult to treat with machine learning techniques: as such,
researchers interested in this finding are called to devise novel effective
strategies to make machine learning really suitable for code smell detection.
Perhaps more importantly, the problem of code smell detection lends itself
to possible interpretation bias: thus, we advice researchers in the field
to carefully analyze the internal mechanisms of detection models before
interpreting their goodness. The results have implications for both researchers
and practitioners. Both are interested in understanding quantitatively the
effectiveness and efficiency of applying data balancing to Machine Learning
code smell detectors.

Analysing the Impact of Metric Selection
The study discussed in Chapter 4 also demonstrates that machine learning

models achieve good accuracy only for some code smells, regardless of the
adopted balancing technique. Hence we conducted an additional analysis
to assess the effectiveness of the heuristic-based techniques. Our main goal
is to investigate whether the low accuracy is due to the machine learning
techniques or caused by the reduced prediction power of the used metrics.

130 threats to validity, discussion, and implications

We hypothesise that metrics with low prediction power are detrimental for
both Machine Learning-based and heuristics-based approaches. This analysis
was conducted only for Object-Oriented code smells where the accuracy of
machine learning techniques is low.

Table 7.3: Aggregate Results for Heuristics-based and Machine-Learning-based
Code Smells Detection

Code Smells Detection Comparison
Precision Recall F-measure MCC
ML H ML H ML H ML H

God Class 0.26 0.08 0.93 1.00 0.41 0.16 0.49 0.28
Complex Class 0.26 0.23 0.65 0.72 0.37 0.35 0.40 0.37
Class Data Should Be Private 0.23 0.23 0.55 0.42 0.33 0.30 0.35 0.31
Spaghetti Code 0.16 0.11 0.34 0.47 0.22 0.18 0.22 0.22
Long Method 0.15 0.57 0.56 0.37 0.23 0.44 0.30 0.42
Feature Envy 0.03 0.05 0.44 0.46 0.05 0.10 0.11 0.15
Inappropriate Intimacy 0.27 0.04 0.15 0.43 0.19 0.07 0.19 0.12
Middle Man 0.16 0.04 0.87 0.43 0.28 0.07 0.37 0.12
Refused Bequest 0.12 0.04 0.05 0.40 0.07 0.07 0.07 0.11
Speculative Generality 0.01 0.04 0.65 0.43 0.02 0.08 0.02 0.13
Long Parameter List 0.35 0.04 0.95 0.41 0.51 0.08 0.58 0.12

Table 7.3 reports the aggregate results of the evaluation metrics for (i) the
machine learning-based technique executed with the best balancing technique
for each code smell (ML); (ii) the heuristic-based approach based on the
detection rules described in Table 4.1 (H).

MCC values are generally low for any of the considered code smells (lower
than 0.5). Except for LongMethod, recall is always much higher than precision
for heuristics-based approaches as well as for machine learning-based ones.
In other words, they tend to produce a large number of false positives when
these metrics are employed. Therefore, such metrics might not be adequate
to discriminate smelly or non-smelly instances. Looking at these results, we
note that heuristics do not outperform machine learning. On the contrary,
for six of the eleven object-oriented code smells, machine learning-based
approaches have a higher MCC. For instance, let us consider the case of Long
Parameter List in which Machine Learning shows MCC equal to 0.58 that

7.2 discussion and implications 131

is much higher than the one of the heuristics-based approach (i.e., 0.12). To
sum up, the results indicate that the employed set of metrics (i.e., structural
metrics) are not adequate in most of the cases, thus confirming previous work
that deems as necessary the introduction of novel metrics as well as their
combination with structural metrics to achieve better accuracy.

This motivation, led us to conduct the study presented in Chapter 5. The
results reported by this study have shown that a combination of features
can improve the performance of ML-based code smell detection. This was
true when combining static analysis warnings raised by different automated
tools, but also when combining the warnings with code metrics considered
by previous work. But is this enough? To further understand this point, we
have compared the performance of the proposed combined model with those
of three baselines: (i) the Optimistic Constant classifier, that classifies any
instance as smelly; (ii) the Pessimistic Constant classifier, that classifies
any instance as non-smelly; and (iii) a Random classifier, which classifies an
instance as smelly or non-smelly with a probability of 50%.

Table 7.4: Type I and Type II Errors Achieved in the comparison between the
combined model, the optimistic constant, the pessimistic constant, and a
random classifier

Combined model Optimistic Constant Pessimistic Constant Random
Code Smell Type I Type II Type I Type II Type I Type II Type I Type II
God Class 4034 (4.68%) 214 (0.25%) 85799 (99.53%) 0 (0.00%) 0 (0.00%) 403 (0.47%) 43156.5 (50.06%) 650.5 (0.75%)
Complex Class 4907 (7.15%) 183 (0.27%) 68375 (99.60%) 0 (0.00%) 0 (0.00%) 277 (0.40%) 34372.5 (50.07%) 26.5 (0.04%)
Spaghetti Code 5005 (5.71%) 669 (0.76%) 86886 (99.09%) 0 (0.00%) 0 (0.00%) 796 (0.91%) 44526 (50.78%) 391.5 (0.45%)
Inappropriate Intimacy 728 (1.10%) 175 (0.26%) 65879 (99.69%) 0 (0.00%) 0 (0.00%) 205 (0.31%) 33984 (51.43%) 1202.5 (1.82%)
Lazy Class 1698 (3.29%) 108 (0.21%) 51525 (99.76%) 0 (0.00%) 0 (0.00%) 123 (0.24%) 26419.5 (51.15%) 101.5 (0.20%)
Middle Man 3695 (9.10%) 62 (0.15%) 40537 (99.83%) 0 (0.00%) 0 (0.00%) 70 (0.17%) 21271.5 (52.38%) 221.5 (0.55%)
Refused Bequest 8837 (11.28%) 377 (0.48%) 77870 (99.40%) 0 (0.00%) 0 (0.00%) 467 (0.60%) 37824.5 (48.28%) 1698.5 (2.17%)

We performed this comparison in terms of Type I, that counts the number
of false positive errors, and Type II, that counts the number of false negative
errors. The selection of these two metrics was inspired by previous work in
the literature [111]. Table 7.4 reports the total number of Type I and Type II
errors. Results show that, regardless on the code smell under consideration,
the Pessimistic Constant achieves the best results in terms of total errors,
i.e., Type I + Type II, thus pointing out once again the low performance of
ML-based code smell detection techniques.

132 threats to validity, discussion, and implications

These results lead to clear implications: The problem of code smell
detection through machine learning still requires specific features that have
not been taken into account yet. Moreover, additional AI-specific instruments
should be considered in the future with the aim of improving the code smell
detection capabilities of these techniques.

The subjective interpretation of code smells. One of the best-known lim-
itations of code smell detection is the subjectivity of the results provided,
as perceived by developers. In Chapter 6 we devised a novel code smell
prioritization approach that is able to capture the real developer’s perception
of code smells in source code. The approach has been evaluated showing very
good performance, thus suggesting that it could represent a good solution
to overcome the limitation of the subjective interpretation of code smells.
While we are confident that this is true, we still suggest researchers further
investigate this limitation.

Part II

F U RT H E R R E S E A RC H O N T E C H N I CA L D E B T:
T H E T E ST I NG P E R S P E C T I V E

8
BAC KG RO U N D & R E L AT E D WO R K

8.1 introduction and motivation

Software testing is the activity that allows developers to check that the
source code works as expected [253]. Having high-quality software is a
vital requirement for developers to keep staying on the market. Over the last
years, a number of researchers have investigated the properties that make
test code more effective [37, 49, 102, 208, 209] as well as their relation to
the ability of catching defects in production code [44, 49, 154]. Researchers
have successfully demonstrated that the quality of test suites has a strong
correlation with the post-release defects that appear in the production classes
they test [49, 145], i.e., the higher the test quality the lower the likelihood
that the corresponding production code will be affected by defects. For
instance, Kochhar et al.[145] have shown that having a higher assertion
density (measured as the number of assert statements per test lines of code)
relates to a significantly lower number of defects in production code. Similarly,
other studies have investigated the correlation between different types of code
coverage and post-release defects metrics [37, 49] as well as test smells [280]
on software quality, always reporting that test-related factors are relevant
to explain the number of post-release defects in production code. It should
be noted that by test-related factors we mean the set of metrics that can
characterize the quality of tests, e.g., their design quality rather than their
ability to cover the production code.
To provide the reader with a clearer understanding of how researchers

in the past have studied the relation between the characteristics of tests
and post-release defects, let consider the example reported in Listing
8.1.1 It concerns with the test case named testAdd, which belongs to

1 The suite to which the test case belongs has 1,128 lines of code - we report only an exemplary
test case for the sake of understandability.

135

136 background & related work

Listing 8.1: Example of a test case.

1. @Test
2. public void testAdd() {

3. SparseGradient x = SparseGradient.
createVariable(0, 1.0);

4. SparseGradient y = SparseGradient.
createVariable(1, 2.0);

5. SparseGradient z = SparseGradient.
createVariable(2, 3.0);

6. SparseGradient xyz = x.add(y.add(z));

7. checkFOFl(xyz, x.getValue() + y.getValue()
+ z.getValue(), 1.0, 1.0, 1.0);

}

the SparseGradientTest test suite of the Apache Commons Math 3.3
system—one of the projects considered in our study. The test aims at verifying
that the addmethod of the corresponding production class SparseGradient
correctly sums a set of numbers; to this aim, it instantiates the variables to
be added (lines #3, #4, and #5 of Listing 8.1) and sums them using the add
method (line #6). Finally, it calls the method checkF0F1, implemented in the
same test suite, that verifies the sum and checks for the first order derivative
passed as additional parameters (line #7). The test case is able to entirely cover
the corresponding production method (line coverage=100%) and, similarly,
the entire test suite has a line coverage of 98%. In the subsequent release of
Apache Commons Math, the class SparseGradient did not exhibit any
defect: a possible reason lies in the ability of the corresponding test suite
to provide developers with an effective instrument to verify the presence of
defects and, as a matter of fact, previous work in literature have discovered
a correlation between code coverage of tests and post-release defects in
production code, i.e., the higher the coverage the lower the number of defects
in subsequent releases of system [37, 49].
Despite the effort made by the research community in understanding the

relations between test quality and post-release defects, we identify a key
common limitation in previous work: they analyzed the impact of various

8.1 introduction and motivation 137

test-related factors in isolation, controlling neither for other test-related factors
nor for additional known phenomena affecting the quality (measured in terms
of post-release defects) of production code (e.g., product metrics [19, 43]).
To clarify the practical effect of this common limitation, let consider

again the example reported in Listing 8.1. While the code coverage was
very high and suggested that the test suite could effectively help developers
in spotting post-release defects, the fact that the class SparseGradient
was actually defect-free in the subsequent release of Apache Commons
Math might have and might not have been due to the high code coverage
of SparseGradientTest. Other factors, for instance the low amount of
maintenance activities performed on the production class, may have played a
role. This is what actually happened to SparseGradient: it did not undergo
any modification in Apache Commons Math 3.4 and, therefore, this was
the reason making it defect-free—independently from the high value of code
coverage of the corresponding test suite. Should this example be generalizable,
it would mean that the findings reported in literature would not depict a clear
picture on the relation between the characteristics of tests and their ability to
foresee post-release defects.
As such, understanding this relation can have fundamental importance

to preserve code quality and reduce the number of defects that appear in
production.

Other than considering standard systems, could be even more important to
assess and verify these properties in mobile applications.
Over the last years, indeed, the need for mobile applications that could

connect people and support them when performing any kind of activities
[298] has increased rapidly; as a matter of fact, these days we have more
connected mobile devices (~7.94 billion) than people [13, 284].
The quality of mobile applications plays a central role for developers to

ensure that their apps stay on the market, keep gaining users, and have a high
commercial success [173, 188, 233].

Software testing is among the most relevant and well-established methods
to control for source code quality [204]. Its relevance is even more critical
in mobile computing [202], where continuous releases increase the risk

138 background & related work

of introducing defects [192, 212]. Furthermore, mobile applications have
peculiar characteristics, e.g., apps havemultiple sensors and users interact with
them through touch-screen, that make testing different and more challenging
than those of traditional systems [167]. For the above mentioned reasons,
the research community has been actively looking for solutions that could
improve the way developers test their applications: these efforts produced the
definition of several Graphical User Interface (GUI) testing approaches [101,
173, 182] and frameworks able to ease the verification of both functional and
non-functional requirements [70, 93] that can be used to automate some of
the developer’s activities.
While these approaches have shown to be somewhat actionable, there

are a number of limitations, e.g., poor ability to generate valid test data to
exercise specific program executions [53], that do not allow the definition
of comprehensive, effective, and practical automated testing approach [128].
These limitations make mobile developers reluctant to use automated testing
tools and more prone to keep writing tests manually [128, 146, 165].

Unfortunately, the nature of manually written tests has been barely analyzed
in literature: empirical studies focused on the characteristics of automated
tests [62, 146, 274], while little is known on (1) the extent to which mobile
applications contain manual tests, (2) how many of them can be actually
executed, (3) what is their quality, considering either test code design and
effectiveness metrics, and (4) what is their capabilities in foreseeing defects
in production code. An improved understanding of mobile app testing from
the perspective of manually written tests may provide important insights to
the research community. In fact, should mobile apps be well-tested and/or
manuallywritten tests be already effective, the urgency of designing automated
approaches could be toned down while focusing on how to complement
manually written tests and provide developers with information useful to
make tests more effective (e.g., which test data should be used to exercise
certain boundary conditions). On the other side, the empirically-grounded
results may serve to practitioners as an additional proof of the need for
using automatic solutions as well as further supporting the testing research
community.

8.2 related work 139

8.2 related work

This section analyzes and discusses the related literature about technical debt
in test code from two different perspectives: (i) test-related factors affecting
code quality and (ii) test code quality in mobile applications.

8.2.1 Test-related factors affecting source code quality

Nagappan et al.[209] used the Software Testing and Reliability EarlyWarning
(STREW-J) metric suite [209] to investigate the relation between in-process
testing metrics and software quality. This suite includes a variety of test
metrics belonging to three categories: (1) Test quantification, e.g., presence
of test cases or assertion density, (2) Complexity and OO metrics, e.g.,
complexity and coupling of tests, and (3) size, i.e., the lines of code of tests.
Their investigation—conducted on 54 small to large industrial companies—
showed a significant relation between metrics in the suite and the emergence
of post-release defects. These findings were later confirmed by Rafique and
Misic [261], who pointed out that these metrics are even more effective in the
context of test-driven development. With respect to these papers, our aim is to
contextualize their results when considering a wider set of test-related factors
known in literature to impact post-release defects. At the same time, we aim
to shed lights on how much the power of test-related factors increases/reduces
when additional factors related to production code are taken into account.

Other studies found a relation between test effort and product quality [208,
287] based on other testing metrics such as code coverage [37, 49, 208]
and other static metrics (e.g., number of assertions) [209]. Kudrjavets et
al.[154] showed the existence of a high correlation between assertion density
and defect-proneness of production code, while Catolino et al.[44] showed
that this relation may be due to the experience of the testing teams. In the
experimental setting, these papers verified the relation of the considered
test-related factors to post-release defects by considering the former alone,
i.e., without controlling for possible confounding factors influencing the
results. As such, the setting might lead to a limited view of the phenomenon.

140 background & related work

Chen and Wong [49] used code coverage for software failures prediction
and showed that this metric influences code quality. Later, Cai and Lyu [37]
confirmed this result. Nevertheless, a recent work by Kochhar et al.[145]
contradicts those findings, reporting that coverage has an insignificant relation
with the number of post-release defects. This cluster of papers shares the
analysis methods employed: they relied on linear and logistic regression
to understand how the considered test-related factors were correlated to
the presence of defects in future software releases. Also in this case, the
test-related factors were considered alone and without additional confounding
factors.

Spadini et al.[280] and Qusef et al.[260] studied the relation between test
smells and software quality in terms of post-release defects. The former set
the problem from a statistical perspective: test smells were controlled for the
presence of code smells in production code as well as additional CK metrics
computed on the exercised classes. While the key results of the study showed
that smelly test suites make the production code more fault-prone, Spadini
et al.[280] did not consider the effect of test smells when other test-related
factors are included. The latter first analyzed the evolution of test smells
in Apache Ant; then, they used correlation analysis to study the relation
between test smells and post-release defects, finding a positive correlation.
This paper shares the same limitations of the other previous works, hence not
considering neither other test-related nor confounding factors - which is the
object of our study.

8.2.2 Test code quality in mobile applications

The ever increasing complexity of mobile applications, given by their pecu-
liarities (e.g., ensuring that the application is downloadable, works seamlessly,
and gives the same experience across various devices and users) as well as by
their differences with respect to standard applications [319, 338], has pushed
the research community to define methods to support developers with testing
activities [202]. Researchers have been investigating how developers test
their mobile applications in comparison to standard systems [202], showing

8.2 related work 141

dissimilarities, peculiarity and possible effective practices. In this section we
mainly focus on the studies aiming at analyzing testing practices of mobile
developers by (i) surveying and/or interviewing practitioners [146, 165] and
(ii) performing mining software repository studies [62, 146].

Linares-Vásquez et al.[165] surveyed 102 open-source Android developers
on their habits when performing testing, focusing on (i) their practices and
preferences, (ii) automated testing methods employed, and (iii) perception
of code coverage as indicator of test code quality. As a result, they found
that developers rely on usage models (e.g., use cases, user stories) of their
applications when designing test cases and perceive code coverage not
necessarily important for measuring the quality of test cases. Subsequently,
the same authors [167] investigated current tools and frameworks that support
mobile testing practices, including benefits and trade-offs between different
approaches/tools. A similar work has been done by Choudhary et al.[53],
which benchmarked automated test input generation tools, discovering that
Monkey, the random testing tool integrated within Android Studio is still
among the best ones.
Along the same direction, the work of Kochhar et al.[146] surveyed 83

Android developers and 27 Windows app developers at Microsoft to study
techniques, tools, and types of testing used in the mobile context. At the same
time, they also analyzed 600 Android apps in terms of the extent to which
they are tested, assessing line and block coverage. The results showed that
Android apps are not properly tested (i.e., 86% do not present any test cases),
and this seems to be in line with the perception of developers, who are not
aware of many existing testing tools.

Erfani et al.[128] interviewed 191 mobile developers asking about current
testing practices. Results showed that there is a lack of robust monitoring,
analysis, and testing tools. The work of Silva et al.[274] showed similar
results. Indeed, they studied 25 open-source Android apps in terms of test
frameworks adopted, highlighting that mobile apps are not properly tested;
a possible reason behind this result may be related to the lack of effective
tools [274]. A recent study by Cruz et al.[62] investigated working habits
and challenges when testing mobile apps. In particular, they analyzed 1,000

142 background & related work

Android apps, showing that testing technologies (e.g., JUnit) are absent
in the 60% of the cases; however, when a mobile application is tested, the
authors observed an increment of contributors and commit, moreover they
noticed that mobile apps with tests have got an high number of minor code
issues. Finally, the most recent work was performed by Lin et al.[164]; in
particular, they conducted a large-scale analysis, over 12.000 mobile apps,
to understand how test automation works in this context, i.e., tendency to
write tests and practice itself. Moreover, they analyzed how test automation
impacted the popularity and surveyed 148 developers to have feedback about
automation test adoption.

8.3 our contribution on technical debt in test code

This part of the thesis aims at addressing the open issues about technical
debt in test code. To this aim, first of all we asked whether and to what
extent, test-related factors have a real impact on software code quality, hence
defining our third high-level research question (i.e., RQc). In this regard, in
Chapter 9 we provide a multivocal literature review aiming to identify all
test-related factors that have been associated to software code quality in the
past. Then, to statistically verify this relation, in Chapter 10 we present a case
study in which we explore how the test-related factors identified in literature
are related to software quality. In this study, we build statistical models, to
study how test-related factors relate to the number of post-release defects
in production code, even when we also consider other product and process
metrics as confounding factors. The main finding of our study is that most of
the test-related factors do not have a direct relation with software quality, as
opposed to factors such as production class LOCs and pre-release changes.

Other than studying technical debt from the testing perspective on standard
software system, we also wondered about testing in mobile applications
through the definition of the fourth high-level research question (i.e., RQd).

Chapter 11 reports a large-scale empirical study on the prominence, quality,
and effectiveness of the tests manually written by mobile developers. The
study revealed that mobile applications are not sufficiently tested, e.g., we

8.3 our contribution on technical debt in test code 143

found just 2 test suites per app on average. Most of the available tests were
at unit-level and related to the verification of the application logic, while
GUI-related classes and storage of the considered apps were mostly untested.
In addition, we discovered that the majority of tests have design issues, as
measured by test smells, even though their metric profile would not suggest a
low design quality. Finally, also test effectiveness has been proven to be low.

9
C O L L E C T I NG T E ST- R E L AT E D FAC T O R S : A
M U LT I VO CA L L I T E R AT U R E R E V I E W

This chapter presents a Multivocal Literature Review (MLR) [94] aiming
to identify the test-related factors that might influence the quality of the
exercised production code. An MLR is an enhanced version of systematic
literature reviews that not only considers white papers, i.e., those that have
been published in conferences and journals, but also gray documentation, i.e.,
the knowledge that can be extracted from online unpublished sources like
websites and blog posts. Next, we describe methodology and results achieved
from the literature review.

9.1 research methodology

The goal of the multivocal literature review is to collect the test-related
factors that have been analyzed and/or discussed in both previously published
work and online unpublished sources, with the purpose of providing a
comprehensive view of which factors have been associated to post-release
defects. The perspective is that of researchers who are interested in gaining
knowledge of test-related factors and their relation with software quality.

9.1.1 Research Question

To address the goal of our study, we set up the following research question:

RQ0. What are the test-related factors related to post-release defects,
according to the available white and gray literature?

As further reported in this section, we followed well-established research
guidelines to conduct systematic and multivocal literature reviews [94, 143].

145

146 collecting test-related factors: a mlr

9.1.2 Search Query Definition

The search query represents the set of keywords that are used to search reliable
sources on the phenomenon of interest [143]. In our case, we made two
main considerations before defining it. First, we noticed that multiple terms
could be used as synonym of ‘defect’: these are ‘bug’, ‘fault’, and ‘failure’.1

Secondly, the term ‘post-release’ could also be referred to in different ways,
namely ‘post-production’, ‘post-delivery’, and ‘post-verification’. According
to these considerations, we defined the following search query:

(‘test’) AND (‘post-release’ OR ‘post-production’ OR ‘post-delivery’ OR
‘post-verification’) AND (‘defect’ OR ‘bug’ OR ‘failure’ OR ‘fault’)

9.1.3 Selecting the Source Engines

The selection of relevant sources is a crucial activity to provide a compre-
hensive description of the state of the art [94, 143]. In our context, this
step consisted of selecting search engines that could cover both white and
gray literature. As for the former, we selected all major databases indexing
published papers: these are (1) the IEEEXplore Digital Library,2 (2) the
ACM Digital Library,3 (3) Science Direct,4 (4) SpringerLink,5 and (5)
Scopus.6

The selection of these search engines was driven by our willingness to
consider as many sources as possible when conducting our literature search.
These databases are widely recognized as the most representative for research
in the field of software engineering [35, 133] and contain a massive amount
of resources, i.e., journal articles, conference and workshop proceedings,
books, etc., concerned with the research question we posed.

1 We did not include the term ‘error’ since it refers to the action performed by a developer to
introduce a defect in source code rather than to the defect itself [253].

2 Link: https://ieeexplore.ieee.org/Xplore/home.jsp
3 Link: https://dl.acm.org
4 Link: http://www.sciencedirect.com
5 Link: https://link.springer.com
6 Link: https://www.scopus.com

9.1 research methodology 147

As for the gray literature, we followed a similar approach as othermultivocal
literature reviews (e.g., [95, 125]) and exploited the Google search engine.7

9.1.4 Exclusion and Inclusion Criteria Definition

Exclusion and inclusion criteria report the characteristics that a retrieved
source must not (or must) have to be considered useful for addressing the
research question [94, 143]. Also in this case, we needed to define criteria
depending on whether a resource comes from the white or the gray literature,
as some characteristics might not be applied for gray resources.
As for the white literature, we adopted the following exclusion criteria:

• Articles that were not focused on investigating the relation between
test-related factors and post-release defects, e.g., papers studying how
test smells relate to mutation coverage;

• Articles that have later been extended; particularly, in case of a con-
ference paper has been extended to journal, we only considered the
journal article as it is more complete.

• Articles not reporting any empirical validation of the relation between
test-related factors and post-release defects, e.g., non-validated con-
jectures of the existence of a relation between test smells and code
coverage;

• Articles that were not written in English;

• Articles whose full text was not available;

• Articles that did not undergo a peer-review process, e.g., M.Sc thesis;

• Duplicate papers retrieved by multiple databases.

We set one main inclusion criterion:

7 Link: https://www.google.com

148 collecting test-related factors: a mlr

• Articles reporting an empirical validation of the relation between
test-related factors and post-release defects, e.g., papers studying how
test smells relate to post-release defects.

It is worth noting that we did not set any temporal limit to our search,
as we were interested in retrieving all possible sources for conducting a
comprehensive analysis of test-related factors and post-release defects.
Turning the attention to the gray literature, the main challenge was repre-

sented by the assessment of the reliability of a source. Indeed, among the
resources retrieved, there might be some that did not have the minimum
quality to be considered reliable for our literature review. To take this aspect
into account, we assessed the reliability of gray resources by relying on the
guidelines provided by the University of Wisconsin8 and, according to them,
excluded unreliable resources. In particular, these guidelines are:

• Author. Information on the internet with a listed author is an indication
of a credible site. If an author is willing to stand behind the information
presented (and in some cases, include his or her contact information)
is a good indication that the information is reliable.

• Date. The date of any research information is important, including
information found on the Internet. By including a date, the website
allows readers to make decisions about whether that information is
recent enough for their purposes.

• Sources. Credible websites, like books and scholarly articles, should
cite the source of the information presented.

• Domain. Some domains such as .com, .org, and .net can be purchased
and used by any individual. However, the domain .edu is reserved for
colleges and universities, while .gov denotes a government website.
These two are usually credible sources for information. Websites using
the domain .org usually refer to non-profit organizations which may
have an agenda of persuasion rather than education.

8 Link: https://uknowit.uwgb.edu/page.php?id=30276

9.1 research methodology 149

• Site Design. This can be very subjective, but a well-designed site can
be an indication of more reliable information. Good design helps make
information more easily accessible.

• Writing Style. Poor spelling and grammar are an indication that the site
may not be credible. In an effort to make the information presented
easy to understand, credible sites watch writing style closely.

Of course, we only considered resources written in English and that were
fully available for reading. At the same time, to include a resource in our
study we defined the following two criteria:

• The resourcemust report on practitioner’s experiences and/or discussion
of using test-related factors to establish the likelihood to have defects
in production code;

• The resource must describe the test-related factor(s) it refers to, i.e., it
must clearly mention that the test executability represents an important
factor to assess post-release defects.

9.1.5 Execution of the Multivocal Literature Review

Once defined the ground for our multivocal literature review, we proceeded
with its execution. Figure 9.1 overviews the process, reporting the input-
s/outputs of each stage as well as summarizing the number of resources
retrieved from each search engine and considered for our study. For the
sake of understandability, the figure reports in white background the steps
referring to the white literature review, while in gray the parts related to the
gray literature.

The entire process was jointly executed by two of the authors in the period
between May 11 to June 10, 2020. Whenever possible, the two authors met
physically to perform the tasks; otherwise, they conducted the review through
Skype. The entire execution took around 80 person/hour: the inspectors

150 collecting test-related factors: a mlr

 
ACM
(903)

 
ScienceDirect 

(3834)

 
IEEE Xplore

(55)

 
Scopus 

(106)

 
Google 
(210)

 
SpringerLink 

(3773)

Total articles
retrieved

(8671)

Exclusion Criteria

Initial
selection

(72 articles)

Snowball &
Manual
search

(88 articles)

Inclusion Criteria

Grey
Literature

Identification
(26 articles)

Final literature
(37 articles)

Exclusion Criteria

Figure 9.1: Steps performed when conducting the multivocal literature review.

started analyzing the white literature, as this was supposed to take longer.
Upon completion, they then focused on the gray literature.

As shown, when executing the search query on the white literature search
engines, we obtained a total of 8,671 hits: most of them came from Science
Direct and SpringerLink, which returned 3,834 and 3,773 results, respec-
tively. The other databases were instead more restrictive when returning
results.
The inspectors applied the exclusion criteria on the initial set of papers

retrieved. In so doing, they mainly focused on title and abstract; nevertheless,
in cases where the exclusion criteria could not be applied solely looking at
these pieces of information, they explored the content of the paper more, for
instance by reading the research questions, methodology, or conclusion of
the paper. The exclusion criteria led to the removal of the vast majority of the
initial sources (8,599 papers), giving as output a candidate set of 72 papers.

At this point, the inspectors adopted a backward and forward snowballing
approach as recommended by Wohlin [326]. This was based on one iteration
which consists of examining (i) the outcoming citations, namely the list of

9.1 research methodology 151

papers cited by the article under investigation and (ii) the incoming citations,
namely the list of papers citing the article under investigation, with the aim
of augmenting the candidate set of papers with additional resources that were
not identified through the search engines. In the first case, the inspectors went
over the citations reported in the candidate papers. In the second case, they
used Google Scholar9 to retrieve the list of papers citing the candidate ones.
As previously done, the inspectors first focused on the title of a cited/citing
paper: if it was not possible to establish the actual relevance of a new resource,
they downloaded it and started reading its content. At the end of this stage, the
inspectors included 16 papers to the candidate set, which reached 88 sources.
Finally, the inclusion criterion was applied: 11 papers passed the exam-

ination, forming the final set of white resources to be considered in our
study.

As for the gray literature review, the inspectors followed a similar method-
ology. When executing the search query on Google, it returned a total of
210 results, distributed on 21 pages. It is worth noting that the inspectors
performed the entire gray literature identification process using the ‘incognito’
mode to avoid that their personal navigation history could bias the results of
the search process. Given the limited amount of results, the inspectors could
browse each of them and apply the specific exclusion criteria established for
the gray literature search. The joint work allowed them to immediately discuss
the suitability and reliability of the resources analyzed: as an outcome, they
identified a set of 26 candidate resources. Interestingly, all of them passed the
inclusion criteria, composing the final set of gray resources and contributing
to the grand total of 37 sources included in our multivocal literature review.

9.1.6 Quality Assessment and Data Extraction Process

As a final step of our multivocal literature search, we assessed the quality of
the retrieved literature sources and extract data about the test-related factors
associated with post-release defects.

9 Link: https://scholar.google.com

152 collecting test-related factors: a mlr

In particular, after the selection process of both white and gray literature,
we defined a checklist to assess the reliability and thoroughness of the selected
sources. The checklist included the following questions, which have been
defined with the goal of determining whether the considered sources actually
treated test-related factors and their relation with software quality:

1. Are the test-related factors mentioned in the source clearly defined?

2. When considering white papers, are the test-related factors actually
assessed against post-release defects?

3. When considering white papers, is the research methodology clearly
stated?

4. Are the conclusions stated supported by data (for white papers) or clear
motivations (for gray sources)?

To each of these questions, the inspectors could reply with ‘Yes’, ‘No’,
‘Partially’. The inspectors considered a study as partial in cases where the
methodological details could have been derived from the text, even if they
were not clearly reported. These answers were scored as follows: ‘Yes’=1,
‘Partially’=0.5, and ‘No’=0. For each primary study, its quality score was
computed by summing up the scores of the answers to all the four questions.
At the end of the process, the inspectors classified the quality level into High
(score = 4 for white papers, score = 3 for gray articles since they did not
include point 3 of the quality assessment), Medium (2 ≤ score < 4 for white
papers, score = 2 for gray literature), and Low (score = 1). According to our
assessment, 2 resources were classified asMedium and 34 as High. Therefore,
we could be able to extract data from all the selected sources.

As for the actual extraction process, the inspectors proceeded as follow. For
white papers, they looked at the experimental design in order to identify (1)
the test-related metrics used as independent variables and (2) the dependent
variable adopted (i.e., post-release defects). Hence, in this case the data
extraction was only based on these two elements. As for gray sources, the
inspectors looked at the entire text to interpret the practitioner’s opinions and

9.2 analysis of the results 153

elicit the test-related factors they were referring to. For example, let consider
the following case, which comes from the source [S03] in the list of sources
reported at the end of the chapter:

“Under the assumption that tests are of good quality, [code coverage] can
uncover which parts of the software have a known level of defects vs.

unknown.”

As reported, in the text above the practitioner refers to code coverage and
how it can be used as an indicator for the location of faults in production
code.

9.2 analysis of the results

This section summarizes the results of our multivocal literature review. It is
worth remarking that we report the entire list of sources considered when
performing the review at the end of this chapter.

Year

N
um

be
r o

f a
rti

cl
es

0

2

4

6

8

10

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

grey white

Figure 9.2: Total number of articles retrieved over years. Red bars refer to the gray
resources, blue ones to white papers.

154 collecting test-related factors: a mlr

Figure 9.2 depicts the distribution over years of the resources retrieved in
our review. There are two key observations to report by looking at the figure.
In the first place, we observe that the number of papers published on this
topic is particularly low (11) and most of them are rather recent: indeed, in
the last three years we observe a slightly increasing trend. In the second place,
it is surprising to see that the number of gray resources is higher than the one
of white literature papers: this aspect seems to suggest that the problem of
assessing the power of test-related factors to forecast post-release defects has
been neglected by the research community, while it represents something
important for practitioners. Also in this case, we notice that the number of
gray articles increases in the last few years. Intuitively, this aspect may be due
to the steady raise of development models that require the frequent execution
of tests (e.g., continuous integration) and that somehow enforce developers
in keeping the characteristics of tests into consideration, hence creating a
growing interest into the relation between tests and software quality.

Topic

N
um

be
r o

f a
rti

cl
es

0

5

10

15

20

Presence & Executability Static factors Dynamic factors Test smells

grey white

Figure 9.3: Total number of retrieved articles divided per theme. Red bars refer to
the gray resources, blue ones to white papers.

Turning the attention to the types of test-related factors mentioned in the
retrieved resources, Figure 9.3 overviews the themes extracted by analyzing

9.2 analysis of the results 155

each of them. Interestingly, most of the gray articles mentioned presence and
executability of test classes: in particular, a number of practitioners point out
that having a properly set environment represents a crucial factor that enables
the prompt identification of defects in source code. As an example, in the
resource [S25], the Chief Technology Officer of the Cockroach Labs—a
well-known company that develops relational databases for cloud-native
applications—reports on a two-year experience with using an open-source
framework for testing distributed databases, i.e., Jepsen.10 He explains that
an effective method to make tests actionable is to have a strong environment
and, indeed, quoting from [S25]: “every night we start up a 5-node cluster
and run each test+nemesis combination for 6 minutes each”.
Another aspect deemed as important by most practitioners is represented

by dynamic factors, e.g., code coverage. We can notice that this type of
factors has attracted most of the attention of the research community, which
frequently investigated how these factors can influence post-release defects.
At the same time, from the gray literature emerged the value of static
factors, e.g., test code metrics—an aspect that seems to be overlooked by
the research community. For instance, in the resource [S16], the founder of
SoftwareTestingMaterial—a blog reporting and discussing on testing
practices and methodologies—reports that test code metrics can “monitor
and control process and product. [They] help to drive the project towards
our planned goals without deviation”.
Finally, the last type of test-related factor emerging from our multivocal

literature review concerns with test smells, namely sub-optimal design or
implementation solutions applied when developing test code [195]. This
aspect was, however, only mentioned and investigated by researchers in the
past, while we did not observe gray literature reporting on it. This possibly
corroborates previous findings in the field reporting that practitioners do not
perceive test smells as actual problems [302].
To conclude the discussion of the results for the multivocal literature

review, Table 9.1 reports the specific metrics identified for each category of
test-related factors. As shown, we identified 14 test-related factors. First, we

10 Link: https://jepsen.io

156 collecting test-related factors: a mlr

Table 9.1: Test-related factors resulting from the multivocal literature review.
Group Name Description

Presence and Executability

Availability of test classes The availability of a test suite for
a production class.

Executability of test classes The ability to run a test case for a
given production class.

Static factors

TLOC Number of lines of code of the
Test Suite.

TWMC Weighted Method Count of the
Test Suite.

TEC Efferent coupling of the Test
Suite.

Assertion Density Percentage of assertion state-
ments in the test code (i.e., num-
ber of assertions / T_LOC).

Test smells

Assertion Roulette A test containing several asser-
tions with no explanation.

Eager Test A test case testing more methods
of the production target.

Indirect Testing A test interacting with the target
via another object.

Resource Optimism A test that make optimistic as-
sumptions on the existence of ex-
ternal resources.

Mystery Guest A test that use external resources
(e.g., files or databases).

Dynamic factors

Line Coverage Percentage of statement in pro-
duction class that are covered by
the test.

Branch Coverage Percentage of branches in produc-
tion class that are covered by the
test.

Mutation Coverage Percentage of mutated statement
in production class that are cov-
ered by the test.

extracted metrics related to presence and executability of test classes, which
are connected to the testing environment. Secondly, we identified structural
metrics [50] such as test lines of code (LOC), test complexity (WMC), test
coupling (EC), and assertion density. Also, we found classical metrics like
line and mutation coverage [9]. Finally, we found five test smell types, i.e.,

9.3 conclusion 157

Assertion Roulette, Eager Test, Indirect Testing, Resource Optimism, and
Mystery Guest: these were the test smells associated to defect-proneness in
previous work [260, 280].

¤ Summing Up: From the multivocal literature review, we discovered
four categories of test-related factors that have been associated to post-
release defects in white and/or gray literature. These are connected to
presence and executability of tests, static and dynamic test code metrics,
and test smells.

9.3 conclusion

The main contribution of this chapter is represented by the extraction of a
comprehensive set of test-related factors possibly influencing post-release
defects. To this aim, we conducted a multivocal literature review on the
test-related factors that have been associated to post-release defects in both
white and gray literature, in an effort of eliciting a comprehensive set of
metrics to consider in our study.

list of sources

S01 - Mockus, Audris, Nachiappan Nagappan, and Trung T. Dinh-Trong.
"Test coverage and post-verification defects: A multiple case study."
2009 3rd International Symposium on Empirical Software Engineering
and Measurement. IEEE, 2009.

S02 - Pecorelli, Fabiano. "Test-related factors and post-release defects: an
empirical study." Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2019.

S03 - Tosun, Ayse, et al. "Predicting defects using test execution logs in an
industrial setting." 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 2017.

158 collecting test-related factors: a mlr

S04 - Qusef, Abdallah, Mahmoud O. Elish, and David Binkley. "An Ex-
ploratory Study of the Relationship Between Software Test Smells and
Fault-Proneness." IEEE Access 7 (2019): 139526-139536.

S05 - Spadini, Davide, et al. "On the relation of test smells to software code
quality." 2018 IEEE International Conference on SoftwareMaintenance
and Evolution (ICSME). IEEE, 2018.

S06 - Bach, Thomas, et al. "The impact of coverage on bug density in
a large industrial software project." 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 2017.

S07 - Gren, Lucas, and Vard Antinyan. "On the relation between unit testing
and code quality." 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2017.

S08 - Chen, M-H., Michael R. Lyu, and W. Eric Wong. "Effect of code
coverage on software reliability measurement." IEEE Transactions on
reliability 50.2 (2001): 165-170.

S09 - Del Frate, Fabio, et al. "On the correlation between code coverage and
software reliability." Proceedings of Sixth International Symposium
on Software Reliability Engineering. ISSRE’95. IEEE, 1995.

S10 - Malaiya, Yashwant K., et al. "The relationship between test coverage
and reliability." Proceedings of 1994 IEEE International Symposium
on Software Reliability Engineering. IEEE, 1994.

S11 - Kochhar, Pavneet Singh, Ferdian Thung, and David Lo. "Code cov-
erage and test suite effectiveness: Empirical study with real bugs in
large systems." 2015 IEEE 22nd international conference on software
analysis, evolution, and reengineering (SANER). IEEE, 2015.

S12 - Neha, “How To Perform Post-Release Testing Effectively And Min-
imize Impact Of The Release To Live Clients.” https://www.
softwaretestinghelp.com/post-release-testing, 2020.

https://www.softwaretestinghelp.com/post-release-testing
https://www.softwaretestinghelp.com/post-release-testing

9.3 conclusion 159

S13 - “Post Release Testing.” https://www.professionalqa.com/
post-release-testing, 2020.

S14 - Harekal, Divakar, and V. Suma. "Implication of Post Production Defects
in Software Industries." International Journal of Computer Applications
975 (2015): 8887.

S15 - Pavneet Singh Kochhar, David Lo, Julia Lawall, Nachiappan Nagappan.
Code Coverage and Postrelease Defects: A Large-Scale Study on
Open Source Projects. IEEE Transactions on Reliability, Institute of
Electrical and Electronics Engineers, 2017, 66 (4), pp.1213 - 1228.
10.1109/TR.2017.2727062. hal-01653728.

S16 - Rajkumar, "Software Test Metrics – Product Metrics & Pro-
cess Metrics" https://www.softwaretestingmaterial.com/
test-metrics/, 2018.

S17 - "What Are Test Metrics?" https://www.sealights.io/

agile-testing/test-metrics/, 2020.

S18 - Antinyan, Vard, et al. "Mythical unit test coverage." IEEE Software
35.3 (2018): 73-79.

S19 - King, "Tester’s Diary: Getting Ahead With Post-Release Testing"
https://blog.gurock.com/post-release-testing/, 2019.

S20 - Hallowell, "Six Sigma Software Metrics, Part 1" https:
//www.isixsigma.com/tools-templates/software/

six-sigma-software-metrics-part-1/, 2020.

S21 - Peters, "Product Managers, do you know how much
your bugs cost?" https://deanondelivery.com/

product-managers-do-you-know-how-much-your-bugs-cost\

-72b6e36e7684, 2018.

S22 - Elish, Mahmoud O., and David Rine. "Design structural stability
metrics and post-release defect density: An empirical study." 2006 30th

https://www.professionalqa.com/post-release-testing
https://www.professionalqa.com/post-release-testing
https://www.softwaretestingmaterial.com/test-metrics/
https://www.softwaretestingmaterial.com/test-metrics/
https://www.sealights.io/agile-testing/test-metrics/
https://www.sealights.io/agile-testing/test-metrics/
https://blog.gurock.com/post-release-testing/
https://www.isixsigma.com/tools-templates/software/six-sigma-software-metrics-part-1/
https://www.isixsigma.com/tools-templates/software/six-sigma-software-metrics-part-1/
https://www.isixsigma.com/tools-templates/software/six-sigma-software-metrics-part-1/
https://deanondelivery.com/product-managers-do-you-know-how-much-your-bugs-cost\-72b6e36e7684
https://deanondelivery.com/product-managers-do-you-know-how-much-your-bugs-cost\-72b6e36e7684
https://deanondelivery.com/product-managers-do-you-know-how-much-your-bugs-cost\-72b6e36e7684

160 collecting test-related factors: a mlr

Annual International Computer Software and Applications Conference
(COMPSAC’06 Supplement). IEEE, 2006.

S23 - Vinke, L., P. Klint, and M. Pil. "Estimate the post-release Defect
Density based on the Test Level Quality." (2011).

S24 - Rothman, Johanna. "What does it cost you to fix a defect? and why
should you care." Retrieved March 13 (2000): 2010.

S25 - Darnell, "Lessons Learned from 2+ Years of Nightly
Jepsen Tests" https://www.cockroachlabs.com/blog/

jepsen-tests-lessons/, 2019.

S26 - Bach, Thomas, et al. "The impact of coverage on bug density in
a large industrial software project." 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 2017.

S27 - "How to measure Defect Detection Efficien-
cy/Rate?" https://club.ministryoftesting.com/t/

how-to-measure-defect-detection-efficiency-rate/

15313, 2018.

S28 - Sridharan, "Testing in Production, the safe
way" https://medium.com/@copyconstruct/

testing-in-production-the-safe-way-18ca102d0ef1,
2017.

S29 - Sharma, "Why Are Bug Tracking Tools so Important
for Testing Teams?" https://dzone.com/articles/

why-is-bug-tracking-tool-so-important-for-the-test,
2019.

S30 - "Root Cause Analysis" http://www.helpingtesters.com/

root-cause-analysis/, 2017.

https://www.cockroachlabs.com/blog/jepsen-tests-lessons/
https://www.cockroachlabs.com/blog/jepsen-tests-lessons/
https://club.ministryoftesting.com/t/how-to-measure-defect-detection-efficiency-rate/15313
https://club.ministryoftesting.com/t/how-to-measure-defect-detection-efficiency-rate/15313
https://club.ministryoftesting.com/t/how-to-measure-defect-detection-efficiency-rate/15313
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://dzone.com/articles/why-is-bug-tracking-tool-so-important-for-the-test
https://dzone.com/articles/why-is-bug-tracking-tool-so-important-for-the-test
http://www.helpingtesters.com/root-cause-analysis/
http://www.helpingtesters.com/root-cause-analysis/

9.3 conclusion 161

S31 - Capgemini, "Capgemini’s Quality Blueprint" https:

//www.capgemini.com/br-pt/wp-content/uploads/sites/

8/2017/07/Capgemini___s_Quality_Blueprint.pdf, 2011.

S32 - "Defect Metrics – An indicator of quality of
product under test" https://qainfotech.com/

defect-metrics-an-indicator-of-quality-of-product\

-under-test/, 2010.

S33 - "Quality metrics: Defect tracking throughout the software life-
cycle" https://searchsoftwarequality.techtarget.com/

tip/Quality-metrics-Defect-tracking-throughout-the-\

software-lifecycle, 2011.

S34 - Cummings-John, "How continuous testing supercharges your devel-
opment process" https://techbeacon.com/app-dev-testing/
use-continuous-testing-supercharge-your-development\

-process, 2019.

S35 - Riley, "Don’t Hate the Tester, Hate the
Test Process" https://applitools.com/blog/

dont-hate-the-tester-hate-the-test-process/, 2020.

S36 - Starling, "You don’t have enough tests and you never will!" https:
//www.bugsnag.com/blog/better-software-testing, 2017.

S37 - "What to do when defect is found in production but not during the QA
phase?" https://sqa.stackexchange.com/questions/27680/
what-to-do-when-defect-is-found-in-production-but-\

not-during-the-qa-phase, 2017.

https://www.capgemini.com/br-pt/wp-content/uploads/sites/8/2017/07/Capgemini___s_Quality_Blueprint.pdf
https://www.capgemini.com/br-pt/wp-content/uploads/sites/8/2017/07/Capgemini___s_Quality_Blueprint.pdf
https://www.capgemini.com/br-pt/wp-content/uploads/sites/8/2017/07/Capgemini___s_Quality_Blueprint.pdf
https://qainfotech.com/defect-metrics-an-indicator-of-quality-of-product\-under-test/
https://qainfotech.com/defect-metrics-an-indicator-of-quality-of-product\-under-test/
https://qainfotech.com/defect-metrics-an-indicator-of-quality-of-product\-under-test/
https://searchsoftwarequality.techtarget.com/tip/Quality-metrics-Defect-tracking-throughout-the-\software-lifecycle
https://searchsoftwarequality.techtarget.com/tip/Quality-metrics-Defect-tracking-throughout-the-\software-lifecycle
https://searchsoftwarequality.techtarget.com/tip/Quality-metrics-Defect-tracking-throughout-the-\software-lifecycle
https://techbeacon.com/app-dev-testing/use-continuous-testing-supercharge-your-development\-process
https://techbeacon.com/app-dev-testing/use-continuous-testing-supercharge-your-development\-process
https://techbeacon.com/app-dev-testing/use-continuous-testing-supercharge-your-development\-process
https://applitools.com/blog/dont-hate-the-tester-hate-the-test-process/
https://applitools.com/blog/dont-hate-the-tester-hate-the-test-process/
https://www.bugsnag.com/blog/better-software-testing
https://www.bugsnag.com/blog/better-software-testing
https://sqa.stackexchange.com/questions/27680/what-to-do-when-defect-is-found-in-production-but-\not-during-the-qa-phase
https://sqa.stackexchange.com/questions/27680/what-to-do-when-defect-is-found-in-production-but-\not-during-the-qa-phase
https://sqa.stackexchange.com/questions/27680/what-to-do-when-defect-is-found-in-production-but-\not-during-the-qa-phase

10
ST U DY I NG T H E R E L AT I O N B E T W E E N
T E ST- R E L AT E D FAC T O R S A N D P O ST- R E L E A S E
D E F E C T S

In this chapter, we present a case study conducted on eight systems of the
Apache ecosystem in which we explore how test-related factors are related
to software quality. As done in previous studies, we operationalize software
quality at software component level (in our case, file level) and by measuring
the component’s post-release defects. To this aim, we build statistical models
to study how test-related factors relate to, i.e., (i) presence and executability
of test suites, (ii) statically computable test code factors, and (iii) dynamically
computable test code factors, relate to the number of post-release defects in
production code, when also considering several product and process metrics.

10.1 research methodology

The goal of the empirical study is to investigate how test-related factors are
related to post-release defects, with the purpose of measuring the explanatory
power of having a good test suite on software code quality. The perspective is
of both researchers and practitioners: the former are interested in assessing
the relation between test-related factors and post-release defects, while the
latter are interested in understanding the extent to which good quality test
suites can help them to reduce post-release defects.

10.1.1 Research Questions and Methodological Sketch

Our study is structured around three main research questions. Figure 10.1
synthesizes the levels of our analyses. In an ideal scenario, all production
classes in a software project have corresponding tests that can be successfully

163

164 test-related factors and post-release defects

executed. However, in practice this is rarely the case, which represents an
interesting scenario for us, because it creates a natural experiment where we
can compare software quality (measured as post-release defects) in both tested
and untested classes. Therefore, we started our empirical study by investigating
the role played by the presence of test classes and their executability with
respect to software quality.

RQ1. How do presence and/or executability of test classes relate to
post-release defects of production code?

We further investigated the role of testing on source code quality at a finer
level of granularity. We restricted our analysis to those test-related factors
that can be statically computed (e.g., test size)

RQ2. How do statically computable test code factors relate to post-release
defects of production code?

The final part of our empirical study was focused on the understanding of
how dynamic factors (e.g., code coverage [9]) relate to software quality. This
maps a scenario in which production classes are exercised by executable tests.

RQ3. How do dynamically computable test code factors relate to
post-release defects of production code?

From an experimental design perspective, for each research question we
established a set of subjects, factors, and treatments - as also illustrated in
Figure 10.1. As for RQ1, we considered all the classes of the considered
systems as subjects, taking into account the presence and executability of
tests as factors, with the aim of assessing the extent to which they affect
source code quality (i.e., the treatment). In RQ2, we narrowed the subjects of
the study so that we could only consider the classes having at least one test
associated to compute factors computable using static analysis (i.e., metrics
and code quality indicators) and assess their impact on post-release defects.
Finally, in RQ3, the subjects are represented by the set of classes having at

10.1 research methodology 165

9JXYJI�HQFXXJX

(QFXXJX�YJXYJI�
G^�

J]JHZYFGQJ�YJXYX

9JXYJI�FSI�STS�YJXYJI�
HQFXXJX

Figure 10.1: The three levels of investigation considered in our empirical study, by
research question.

least one executable test, while the factors are the dynamically computable
metrics: these are used to establish a relation between dynamic test factors
and software quality. The following sections report on the subject dataset as
well as the steps conducted to answer our RQs.

Table 10.1: Systems from Apache Commons considered in the study

Name # Commits # Releases # Contributors # Production
Classes

Test
Classes

Defects

Codec 1,792 45 39 26 31 134
Collections 3,091 49 51 270 139 341
DBCP 1,983 62 34 53 21 367
DbUtils 656 29 21 25 20 56
IO 5,400 54 58 100 47 281
Lang 2,141 89 140 119 98 634
Math 6,395 65 34 804 404 684
Pool 1,879 168 38 41 14 205

10.1.2 Context selection

The context of the study consisted of eight open-source software systems,
whose characteristics are shown in Table 10.1. Their selection was driven by

166 test-related factors and post-release defects

three main requirements of both our tooling and data analysis procedures. In
the first place, we focused on Java because most of the test-related factors
experimented can be only computed for this programming language (e.g.,
test smells are only defined and validated by our community for Java [308]).
Secondly, we restricted our analyses to systems having a large change history
information, as it is our willingness to have projects with (i) a number of
post-release defects to allow significant analyses—we excluded systems with
less than 50 defects reported in the corresponding issue tracker1—and (ii)
a number of previous changes—we excluded systems with less than 500
commits—that can be used to control for our results, as detailed in Section
10.1.5. Finally, we required the selected systems to have at least one compilable
release to use for our study [303], as some of the considered test-related
factors can only work with compilable source code (e.g., dynamic information
like line and mutation coverage). Moreover, to allow the application of the
state-of-the-art tool for line and mutation coverage (i.e., PiTest), we checked
for projects having no sub-modules and built with Maven, using the default
Maven directory structure (i.e., the production classes are located in the
‘src/main’ package, while the test classes are in the ‘src/test’ package). As a
result of this selection procedure, we found a family of eight projects that
met all the aforementioned requirements, i.e., apache-commons.
In an effort of providing more details about the context of our study, as

recommended by a recent work [33], we manually dived into the information
reported in the repositories analyzed, particularly looking at (1) contribution
guidelines, which may indicate some relevant information of how contributors
are supposed to perform testing as well as on the development process in place
and (2) the change history, which reports data related to frequency of releases,
number of contributors, and so on. In cases where contextual information
were not minable looking at the above mentioned sources (e.g., testing type),
we also analyzed online documentation (e.g., guidelines of the Apache
Software Foundation) or directly looked at the source code and extracted
the remaining data. As a result, we discovered that the eight selected projects
share similar characteristics as well as a similar development community—as

1 We retrieve the link to the issue tracker adopted by a certain project through the analysis of
the developer’s contribution guidelines.

10.1 research methodology 167

somehow expected, since they belong to the same family of projects. Apache
Commons is a commit-then-review community, so developers who want to
contribute should follow Apache’s code of conduct2 and announce their
intentions and plans on the developers mailing list before committing code.
Releasing a new version of the system requires the vote of a PMC (Project
Management Committee) according to theApacheRelease Creation Process.3

For this reason, new code is not released at regular time intervals but its
release depends on several aspects. Tests are written and committed together
with production code indicating that developers adopt a test-as-you-write
development strategy. All the tests available in the considered systems are
written at unit-level, following a black box strategy.

10.1.3 Dependent Variable

The dependent variable of our study is the number of post-release defects. To
compute it, we first determined whether a commit fixed a defect. This was
done by employing the textual-based approach proposed by Fischer et al.[80],
which is based on the analysis of commit messages. Such an approach has
been extensively used in the past [130, 141] and was assessed to have an
accuracy close to 80% [80, 236]. Specifically, we searched for issue IDs in
commit messages by finding matches with the prefix used in the bug tracker
system. Once retrieved a commit referencing an issue, we queried the apache
issue tracker system’s APIs in order to filter only issues related to resolved
bugs. Then, we searched for keywords indicating fixing activities in the
commit message, such as ‘bug’, ‘fix’, or ‘defect’, in order to select only the
bug-fixing commits. Once we detect all bug fixing commits, we employed the
SZZ algorithm [278] to obtain the commits where the defect was introduced.
In particular, the SZZ algorithm relies on the annotation/blame feature of
versioning systems [278]: given a defect-fix activity identified by the defect
ID k, the approach works as follows:

2 http://www.apache.org/foundation/policies/conduct.html
3 https://infra.apache.org/release-publishing.html

http://www.apache.org/foundation/policies/conduct.html
https://infra.apache.org/release-publishing.html

168 test-related factors and post-release defects

• For each file fi, i = 1 . . .mk involved in a defect-fix k (mk is the
number of files changed in the defect-fix k) and fixed in its revision
rel-fixi,k, we extracted the file revision just before the defect fixing
(rel-fixi,k − 1).

• Starting from the revision rel-fixi,k − 1, for each source line in fi
changed to fix the defect k, we identified the production class Cj to
which the changed line belongs. Furthermore, the blame feature of Git
is used to identify the revisionwhere the last change to that line occurred.
In doing that, blank lines and lines that only contain comments are
identified and excluded using an island grammar parser [199]. This
produces, for each production class Cj , a set of ni,k defect-inducing
revisions rel-defecti,j,k, j = 1 . . . ni,k. Thus, more than one commit
can be indicated by the SZZ algorithm as responsible for inducing a
bug.

Once retrieved the list of defect-inducing commits, we computed post-
release defects of a class as the number of defect-inducing activities involving
the class in the period after the selected release rj . To compute the depen-
dent variable, we use the spadini2018pydriller framework [279], which
implements the SZZ algorithm. Some recent work has reported that the SZZ
algorithm has a low accuracy, in particular concerning precision [59, 265];
should these observations be verified on our dataset, this would threat the
validity of our results. For this reason, we manually validated the performance
of the SZZ algorithm on our dataset. Specifically, two of the authors (the
inspectors) jointly analyzed all the 251 total defect-inducing commits output
by SZZ. In doing so, they relied on the source code of both defect-fixing and
defect-inducing versions of the projects: the task was performed to understand
whether a change in the defect-inducing version actually introduced the
defect that was fixed in the defect-fixing version. The inspection pointed
out a precision of 92% (231 correct defect-inducing commits): this result
diverges from previous findings [265] and suggests that the performance
of the algorithm is strongly dependent on the considered projects. As a

10.1 research methodology 169

consequence of this validation, we excluded the 20 false positives from the
analysis to have a more accurate dataset.

10.1.4 Independent Variables

We defined a different set of independent variables for the three RQs.

Independent variables for RQ1. In the first research question, we defined
two independent variables. The first one was represented by the presence
of a test class for each production class of the selected systems. We defined
a variable named ‘is-tested’ that assumes the value ‘true’ if the production
class has a test class that exercise it, ‘false’ otherwise. With respect to the
selection of this independent variable, there are two observations to be
done. Intuitively, the presence of test classes alone cannot affect software
quality—having a test does not imply the identification of defects. However,
having them is a necessary condition: the conjecture behind the selection of
‘is-tested’ as independent variable was that the availability of a test suite may
allow developers to promptly identify defects, hence affecting the number
of post-production defects. Hence, we conjectured an indirect relation and
aimed at verifying it. In this respect, it is also worth noting that the presence
of tests was one of the factors mentioned by practitioners when analyzing
the gray literature: this means that the availability is actually perceived as
a relevant factor for software quality. This supports the idea of an indirect
relation of this factor with post-release defects.
A key point for the computation of the independent variable was related

to linking each test class to each of the considered production class. All the
selected projects rely on Maven as build tool. Thus, to perform the linking,
we relied on the pom file, which contains the rules to identify the test classes
to execute when the projects need to be built or packaged. In particular, we
first identified all production and test classes by scanning the pom file and
looking for the sourceDirectory and testSourceDirectory fields, that
indicate the location of production and test code, respectively. When the
fields were not reported explicitly, we considered the default source and test
directories. Afterwards, we used a patternmatching approach based on naming

170 test-related factors and post-release defects

conventions to find the production class related to a certain test class, as it has
been done in previous work [104, 171, 302]: given the name of a production
class (e.g., ‘ClassName’) belonging to the sourceDirectory folder, it
checks for the presence of a test class having the same name as the production
class but with the prefix or postfix “Test” in the testSourceDirectory
(e.g., ‘ClassNameTest’ or ‘TestClassName’). In case the approach cannot
identify a test for a certain class, the variable ‘is-tested’ for the considered
production class is “false”, “true” otherwise. The accuracy of this linking
approach has been previously assessed [310]: it showed an accuracy close to
85% and is comparable with more sophisticated (but less scalable) techniques
(e.g., slicing-based approaches [259]).

The second independent variable is named ‘are-tests-executable’: it as-
sumes the value “true” if the tests exercising the production class can be
ran, “false” otherwise. Also in this case, the selection was supported by the
results achieved when analyzing the gray literature: indeed, multiple times
practitioners reported that having tests that can be actually run against the
production code is an important factor to assess post-release defects. In this
sense, we aim at providing evidence of the effect of having runnable tests on
software quality. To determine the value of the variable, for each considered
project we ran the mvn verify command, which executes all the available
tests. If the execution of a test proceeds without errors,4 then we considered
the test as executable. Otherwise we marked it as non-executable.
With respect to the executability of tests, it is worth noting that we

considered the building environment directly used by developers of the
considered Apache projects. In other words, the methodology we used to
run tests is exactly the same as the one used by the actual developers. Hence,
we considered a real-case scenario of use of the tests, i.e., we considered a
natural experiment that considers what actually happens in practice.

Independent variables for RQ2. In the second research question, we
studied the relation between static test-related factor and post-release defects.
So, we considered test-related factors that can be computed without executing

4 Note that a Maven error explicitly indicates that the test cannot be run for some reasons, as
opposed to a failure, which instead reports that the test has found an anomalous behavior in
the production code.

10.1 research methodology 171

test classes: these are test code metrics and smells. To compute the former, we
relied on the tool by Spinellis [282]. As for the latter, we used the code-metrics
based tool developed by Bavota et al. [25]. The detector is able to identify
instances of five test smell types, namely Mystery Guest, Resource Optimism,
Eager Test, Assertion Roulette, and Indirect Testing. All the considered smells
have been related to defect-proneness by previous work in the field [260, 280].
The selection of the test smell detector was driven by the high accuracy it
showed in previous studies, with F-Measure close to 86% [25, 239, 241].

Independent variables for RQ3. In the context of the third research
question, we also included the metrics that can be computed only when
executing the test classes: the dynamic factors (i.e., Line Coverage, Branch
Coverage, and Mutation Coverage). As for line and branch coverage, we used
Cobertura.5 For mutation coverage, we used PiTest.6 It is worth noting
that the choice of using PiTest was not only driven by the fact that this is the
state-of-the-art tool for mutation testing [104, 161], but also by the relatively
low number of equivalent mutants, i.e., mutants having a semantically similar
behavior [2], it generates: indeed, a recent study by Fernandes et al.[79]
reported that only 20% of the mutants generated by PiTest can be considered
equivalent, which is substantially lower than other mutation testing tools
available in literature.

10.1.5 Confounding Factors

In addition to the test-related factors we collected from our MLR (see Chapter
9), the number of post-release defects may be due to other factors related to
the structure of production code [19]. Thus, to avoid a biased interpretation
of the results, we introduced a set of well-known source code and process
metrics as confounding factors, which are summarized in Table 10.2. All of
them have been previously related to defect-proneness, as further explained
in the following:

5 Link:https://cobertura.github.io/cobertura/
6 Link: http://pitest.org

172 test-related factors and post-release defects

• We considered the Lines Of Code (PLOC) metric, that measures the
size of production classes. According to previous findings [149, 242,
337], the larger a class the higher its fault-proneness. As such, the
number of post-release defects might be a reflection of the production
code size and, therefore, we computed LOC to control our findings on
the impact of the presence of test suites. To measure PLOC, we used
the tool devised by Spinellis [282].

Table 10.2: List of confounding factors used in the study.
Group Name Description

Static factors
PLOC Number of lines of code of the

Production Class
PWMC Weighted Method Count of the

Production Class
PEC Efferent coupling of the Produc-

tion class

Code smells God Class A class having a large size, poor
cohesion, and several dependen-
cies with other data classes of the
system

Class Data Should Be Private A class exposing its attributes,
thus violating the information hid-
ing principle

Complex Class A class presenting a overly high
cyclomatic complexity

Functional Decomposition A class implemented as a func-
tion

Spaghetti Code A class that exhibit a functional-
style programming structure,
declaring a number of long meth-
ods without parameters

Process Metrics Pre-release Changes Number of changes involving the
Production class before the re-
lease date of the considered snap-
shot

• We computed Weighted Method per Class (PWMC) [50] as a way
to measure the complexity of production code. A number of previous

10.1 research methodology 173

studies has shown the metric to be related to the number of defects in
which a production class will incur [68, 210, 341]. The tool by Spinellis
[282] was used to compute the metric on our dataset.

• We measured the Efferent Coupling (PEC) of production classes
because, as reported by previous research [19, 65, 91, 144, 272], the
higher the coupling of a class the higher its fault-proneness. Also in
this case, we employed the tool by Spinellis [282] to compute PEC.

• We considered code smells, i.e., symptoms of the presence of poor
implementation choices [34, 88], since they are reported to be connected
to the fault-proneness of production code [64, 116, 137, 225, 226, 243,
304]. We considered five code smells from the catalog by Fowler
[88] that have different characteristics, namely God Class, Class Data
Should Be Private, Complex Class, Functional Decomposition, and
Spaghetti Code. These code smells have been analyzed by previous
work studying their effect on source code defect-proneness [137, 226].
Therefore, our selection was driven by these findings. As for the actual
detection of these code smells, we relied on Decor [197], a state-
of-the-art detection tool which has shown an accuracy close to 80%
[197]. In our work we re-evaluated the precision of Decor. The two
authors previously involved in the validation of the test smells also
conducted this analysis: they manually validated all the 137 code smell
instances output by the tool. The task was to understand whether a
certain code smell candidate given by Decor actually revealed the
existence of a design problem in source code. After the first assessment,
the two inspectors compared their evaluations, reaching an agreement
of 95%. The remaining 5% of cases (i.e., seven code smell candidates)
were discussed and, finally, four of them turned to be real code smells.
Following this validation, we (i) confirmed the good accuracy and the
suitability of Decor in our context and (ii) excluded the false positive
smells from our analysis.

• We computed the number of pre-release changes and pre-release
defects because metrics capturing the previous history of production

174 test-related factors and post-release defects

classes can reveal relevant evolution aspects [119, 262]. To compute
the number of pre-release changes, we mined the change log of the
considered projects and count how many times a certain production
class has been modified. As for the pre-release defects, we relied again
on the SZZ algorithm implemented in PyDriller [279].

10.1.6 Statistical Modeling and Data Analysis

After collecting the data for all the considered projects, we defined three
groups of hypothesis, related to the three research questions.
As forRQ1, we defined two pairs of null (Hn) and alternative (An) hypotheses:

Hn1. There is no correlation between the presence of test classes and software
quality, as measured by post-release defects.

An1. There is a correlation between the presence of test classes and
software quality, as measured by post-release defects.

Hn2. There is no correlation between the executability of test classes and
software quality, as measured by post-release defects.

An2. There is a correlation between the executability of test classes
and software quality, as measured by post-release defects.

Regarding RQ2, we defined the following hypotheses:

Hn3. There is no correlation between test code metrics and software quality,
as measured by post-release defects.

An3. There is a correlation between test code metrics and software
quality, as measured by post-release defects.

Hn4. There is no correlation between test smells and software quality, as
measured by post-release defects.

An4. There is a correlation between test smells and software quality,
as measured by post-release defects.

10.1 research methodology 175

Finally, we report below the hypotheses to address RQ3:

Hn5. There is no correlation between code coverage metrics and software
quality, as measured by post-release defects.

An5. There is a correlation between code coveragemetrics and software
quality, as measured by post-release defects.

Hn6. There is no correlation between mutation coverage and software quality,
as measured by post-release defects.

An6. There is a correlation between mutation coverage and software
quality, as measured by post-release defects.

To test the hypotheses, we built a statistical model relating the independent
and confounding factors to the post-release defects. A first key design decision
regarded the proper choice of the statistical approach to fit our observations.
We built a Generalized Linear Model (GLM) [213]. This method models the
relationship between a scalar response (i.e., number of post-release defects
in our case) and one or more explanatory variables (i.e., the selected set
of independent and confounding factors) by fitting a linear function whose
unknownmodel parameters are estimated from the data.We use the ‘Gaussian’
family when implementing the model.
We relied on this approach for two main reasons. First, it simultaneously

analyzes the effects of both confounding and independent variables on the
response variable [112]. Second, it does not require distribution of data
to be normal: indeed, in our case, the Shapiro-Wilk test [270] rejects the
null-hypothesis, i.e., our data is not normally distributed.

To avoid multicollinearity [217], which may bias the interpretation of the
results [201, 217], we first applied a hierarchical clustering based on the
Spearman’s rank correlation coefficient [281] of the studied variables (done
using the varclus function available in the R statistical toolkit7), then, if two
variables had a correlation higher than 0.6, we excluded the more complex one
from the model. We interpreted the output of the Generalized Linear Model

7 https://bit.ly/2YFltBU

176 test-related factors and post-release defects

by considering the statistical significant codes it assigns to each explanatory
variable, i.e., if a certain variable is deemed as statistically significant, the
chances of the effect on the number of post-release defects being random is
sufficiently low. We also computed the Adjusted R-squared [73] to assess the
goodness of fit of the model, a metric indicating how close the data is to the
fitted regression line.

10.2 analysis of the results

For each RQ, we build the models in a progressive manner, so that we can
measure the explanatory power of different factors step-by-step. In particular,
for each analysis we define three models: (i) the first only considers the effects
of test-related factors, (ii) the second considering both production and test
metrics, and (iii) a full model that includes production metrics, test-related
factors and the selected process metric.

10.2.1 RQ1. The presence and executability of tests

Table 10.3 reports the results of our first analysis. From the total set of
variables employed within the model, we had to exclude (i) PWMC and PEC
because they were too correlated with PLOC and (ii) the one signaling the
presence of the Spaghetti Code smell, which in this case had high correlation
with the presence of Blob instances. In conclusion, the model was composed
of a total of seven metrics whose distributions are described in Table 10.4. The
Adjusted R-squared measured 0.264: the value can be considered “moderate”
[51, 57], namely the statistical model can fit the data with amoderate precision:
≈ 85% of variation is still unexplained. Results of the first model led us to
reject the two null hypotheses related to our first research question (i.e., Hn1
and Hn2) in favor of the alternative hypotheses (i.e., An1 and An2), indicating
that the presence and the executability of test classes have a correlation
with the number of post-release defects. However, when adding confounding
factors, the hypotheses cannot be rejected nor confirmed.

10.2 analysis of the results 177

Table 10.3: Results for RQ1 - The impact of the presence and executability of tests
on the number of post-release defects. N = 1, 457

Test Test + Prod. Full
Estimate S.E. Sig. Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 0.11 0.05 * -0.03 0.05 -0.17 0.04 ***
is-tested 0.57 0.12 *** 0.14 0.12 -0.09 0.11
are-tests-executable -0.49 0.13 *** -0.23 0.12 . -0.05 0.11
PLOC 0.00 0.00 *** 0.00 0.00
isGodClass 0.24 0.16 0.17 0.15
isClassDataShouldBePrivate 0.39 0.38 0.70 0.34
isComplexClass -1.12 0.30 *** -0.29 0.27
pre-release changes 0.05 0.00 ***
pre-release defects 0.10 0.01 ***

Multiple R-squared: 0.268; Adjusted R-squared: 0.264
significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

Table 10.4: Descriptive statistics for variables used in RQ1. N = 1, 457

Variable name Minimum Maximum Mean SD
PLOC 2.00 6291.00 211.00 359.90
isGodClass 0.00 1.00 0.10 0.30
isClassDataShouldBePrivate 0.00 1.00 0.01 0.09
isComplexClass 0.00 1.00 0.02 0.14
is-tested 0.00 1.00 0.49 0.50
are-tests-executable 0.00 1.00 0.38 0.49
pre-release changes 0.00 201.00 7.32 12.26
pre-release defects 0.00 35.00 1.03 3.37
post-release defects 0.00 23.00 0.20 1.33

Looking at the table, the variable which mostly influences post-release
defects is the number of pre-release changes. Thus, we can confirm previous
findings in the field [106, 142] on the relevance of this variable: the information
coming from the past history of a class is a valuable predictor of its future
quality. At the same time, the contribution given by this metric somehow hides
the value of other product-based confounding variables: more specifically,
factors like production code size and code smells—that were found to be
highly relevant to explain the future defect-proneness of source code [137, 206,

178 test-related factors and post-release defects

226]—are subsumed by this change history-based metric. Indeed, observing
the results of the other two models which do not contain the process metric,
we notice that some aspects related to the production code result to be highly
significant (i.e., PLOC, Complex Class).
In the full model, the two independent variables selected for RQ1, i.e.,

is-tested and are-tests-executable are not statistically related to the number of
post-release defects that will incur in source code classes. This result suggests
that the mere existence of tests and/or their executability does not affect the
number of post-release defects in the exercised production code.

From another perspective, our results can be also interpreted as a sign that
the quantity of tests is not enough, and that perhaps their quality can serve
as better indicators of post-release defects. In the next research question, we
investigate whether the quality of tests is related to post-release defects.

¤ Summing Up: Neither the executability nor the presence of tests are
statistically significant variables to explain post-release defects when other
confounding factors are taken under consideration. We confirm that the
number of pre-release changes has the highest explanatory power.

10.2.2 RQ2. The impact of static test code indicators

While in the first research question we considered the entire set of instances
belonging to our dataset, in RQ2 we have to consider on a smaller set of
cases (as also seen in Figure 10.1), because we focus on the relation of
statically computable test-related indicators to post-release defects, therefore
the presence of tests is required to compute these indicators. The dataset
we consider for the second research question has 774 observations and 184
post-release defects (as opposed to the 231 of the dataset used in RQ1). The
descriptive statistics for all the variables are reported in Table 10.5. When
removing untested classes from the dataset, the mean of the considered
process metric (i.e., ‘pre-release changes’) increases (see Tables 10.4 and
10.5). This may suggest that the number of changes tends to be lower when
tests are not available, perhaps because developers are less confident with

10.2 analysis of the results 179

Table 10.5: Descriptive statistics for variables used in RQ2. N = 774

Variable name Minimum Maximum Mean SD
PLOC 13.00 6291.00 311.00 460.00
isGodClass 0.00 1.00 0.17 0.38
isClassDataShouldBePrivate 0.00 1.00 0.01 0.12
isComplexClass 0.00 1.00 0.04 0.19
TLOC 5.00 2210.00 168.00 248.10
Assertion Density 0.00 0.83 0.19 0.15
isAssertionRoulette 0.00 1.00 0.87 0.34
isEagerTest 0.00 1.00 0.61 0.49
isMysteryGuest 0.00 1.00 0.07 0.26
isResourceOptimism 0.00 1.00 0.02 0.14
isIndirectTesting 0.00 1.00 0.06 0.24
pre-release changes 1.00 201.00 10.00 16.21
pre-release defects 0.00 35.00 1.73 4.54
post-release defects 0.00 23.00 0.29 1.65

modifying the source code in such a circumstance or because tests are added
when more changes are needed on certain files.

The multicollinearity analysis led us to remove (i) PWMC, PEC, TWMC,
and TEC, as they were too correlated with the PLOC and TLOC metrics, and
(ii) the variable related to the Spaghetti Code smell, as this still has a high
correlation with the Blob code smell. Therefore, the model was composed of a
total of 12 variables and reached an Adjusted-R squared of 0.282 (moderate).8

This means that the model only explains ≈ 15% of variation.
In the first place, the results, reported in Table 10.6, show that TLOC, is

highly significant when test-related factors are considered in isolation, thus
allowing to reject Hn3 in favor of An3. However, this relation cannot be
extended to the full model since the addition of confounding factors led to

8 Note that the three statistical models for the different research questions are not comparable
in terms ofR2, since they operate on different datasets (see Figure 10.1). We report the values
for the R2 only to give an idea of the statistical models’ explanatory power.

180 test-related factors and post-release defects

Table 10.6: Results for RQ2 - The impact of static test-related factors on the number
of post-release defects. N = 774

Test Test + Prod. Full
Estimate S.E. Sig. Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -0.02 0.18 -0.08 0.18 -0.19 0.16
TLOC 0.00 0.00 *** 0.00 0.00 -0.00 0.00
Assertion Density 0.16 0.44 0.02 0.43 -0.38 0.39
isAssertionRoulette -0.06 0.20 -0.04 0.19 0.05 0.17
isEagerTest 0.12 0.14 0.03 0.14 -0.05 0.13
isMysteryGuest -0.19 0.28 -0.20 0.28 -0.54 0.25 *
isResourceOptimism 0.73 0.53 0.54 0.52 -0.22 0.47
isIndirectTesting -0.01 0.27 -0.04 0.27 0.09 0.24
PLOC 0.00 0.00 *** 0.00 0.00
isGodClass 0.36 0.23 0.32 0.21
isClassDataShouldBePrivate 0.27 0.56 0.93 0.50 .
isComplexClass -0.97 0.41 * -0.22 0.38
pre-release changes 0.03 0.00 ***
pre-release defects 0.09 0.02 ***

Multiple R-squared: 0.294; Adjusted R-squared: 0.282
significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

a decrease of the significance of test code metrics, namely Hn3 cannot be
rejected nor confirmed.
The results of the full model confirm the previous ones: there is a strong

relation between the process metric we considered (i.e., pre-release changes)
and post-release defects even when adding factors quantifying the properties
of test code. On the one hand, this finding reinforces the idea that the change
process underwent by production classes is among the most valid indicators
for software quality. On the other hand, statically computable properties of
test code do not impact the future defect-proneness of production classes.

The only exception is the variable measuring the presence of the test smell
Mystery Guest, which allowed to reject the null hypothesis Hn4 in favor of the
alternative hypothesis An4.Mystery Guest is a test smell that appears when a
test relies on external resources (e.g., files) [308]. To understand the reasons
behind this finding, two of the authors jointly looked at the tests affected by
this smell, trying to understand the characteristics of those tests that could
justify a similar result. In the end, the two researchers come to the conclusion
that there may exist an indirect relation between this smell and production

10.2 analysis of the results 181

code quality. Specifically, one of the main negative consequences of having
Mystery Guest instances is the non-deterministic behavior of the affected test
code [308]. Intuitively, test classes that intermittently pass/fail cannot properly
exercise the corresponding production code and find defects: thus, one likely
reason behind the achieved result is the direct relation between this test smell
and test flakiness [308], which therefore turns to be indirect when considering
Mystery Guest and post-release defects. To some extent, our findings also
confirm what reported by Spadini et al. [280] on the relation between test
smells and defect-proneness of production code. This observation has to be
confirmed through further empirical investigations.

The results obtained when considering the first two models (i.e., ‘test’, ‘test
+ prod’) also confirm the ones reported in RQ1; indeed, PLOC and presence
of Complex Class instances are statistically significant factors only when the
process variable is not taken into account.

¤ Summing Up: The size of the test classes relates to post-release defects
only if no production and process metrics are considered. We also found
that Mystery Guest is a statistically significant factor, but a fine-grained
analysis only highlighted its possible indirect relation to software quality.

10.2.3 RQ3. The impact of dynamic test code indicators

In the last research question, we measure how dynamically computable test
code indicators are related to post-release defects. To compute these indicators,
we needed to analyze tests that are executable. This restricted the scope to a
dataset including 103 post-release defects. To study the effect of dynamic test
code indicators, we computed and integrated them in the model coming from
RQ2, thus building a Generalized Linear Model with 15 variables whose
descriptive statistics are reported in Table 10.7. To avoid collinearity, we had
to exclude PWMC, PEC, TWMC, TEC, and Spaghetti Code. The goodness
of fit of the resulting full model was 0.225, which indicates that the model has
a weak explanatory power—this because the percent by which the standard

182 test-related factors and post-release defects

Table 10.7: Descriptive statistics for variables used in RQ3. N = 577

Variable name Minimum Maximum Mean SD
PLOC 13.00 5077.00 259.00 342.20
isGodClass 0.00 1.00 0.12 0.38
isClassDataShouldBePrivate 0.00 1.00 0.01 0.11
isComplexClass 0.00 1.00 0.02 0.14
TLOC 5.00 2210.00 135.90 194.40
Assertion Density 0.00 0.83 0.20 0.16
isAssertionRoulette 0.00 1.00 0.86 0.34
isEagerTest 0.00 1.00 0.62 0.49
isMysteryGuest 0.00 1.00 0.06 0.23
isResourceOptimism 0.00 1.00 0.02 0.12
isIndirectTesting 0.00 1.00 0.04 0.20
Line Coverage 0.00 1.00 0.90 0.14
Branch Coverage 0.00 1.00 0.75 0.32
Mutation Coverage 0.00 1.00 0.70 0.32
pre-release changes 1.00 139.00 8.49 10.91
pre-release defects 0.00 29.00 1.37 3.66
post-release defects 0.00 23.00 0.19 1.23

deviation of the errors is less than the standard deviation of the dependent
variable is pretty low: ≈ 13%.

Table 10.8 reports the results. When analyzing the model that only in-
cludes test-related factors, Test LOCs and Mutation Coverage are statistically
significant. On the one hand, this result may indicate that larger test classes,
which likely contain more tests, represent a better guard to the introduction
of post-release defects. On the other hand, mutation coverage measures the
ability of tests to identify artificially created defects; looking at the sign of
the relation, our findings suggest that having a lower mutation coverage is
related to a higher number of post-release defects, which is expected given
the goal of mutation testing. Nevertheless, this variable is significant only
when considering test-related factors in isolation, while its explanatory power
decreases as additional factors are added to the model. In particular, the

10.2 analysis of the results 183

Table 10.8: Results for RQ3 - The impact of dynamic test-related factors on the
number of post-release defects. N = 577

Test Test + Prod. Full
Estimate S.E. Sig. Estimate S.E. Sig. Estimate S.E. Sig.

Intercept 0.17 0.38 -0.16 0.37 -0.18 0.36
Line Coverage 0.27 0.45 0.41 0.44 0.21 0.43
Branch Coverage -0.08 0.17 -0.08 0.17 -0.17 0.16
Mutation Coverage -0.55 0.18 ** -0.35 0.19 . -0.12 0.18
LOC (test suite) 0.00 0.00 *** -0.00 0.00 -0.00 0.00 *
Assertion Density 0.38 0.36 0.15 0.35 -0.12 0.34
isAssertionRoulette -0.10 0.17 -0.04 0.16 0.01 0.16
isEagerTest 0.09 0.12 0.03 0.12 -0.04 0.11
isMysteryGuest -0.14 0.27 -0.02 0.27 -0.22 0.26
isResourceOptimism 0.67 0.50 0.54 0.49 0.32 0.47
isIndirectTesting 0.23 0.26 0.16 0.26 0.18 0.25
LOC (production class) 0.00 0.00 *** 0.00 0.00 **
isGodClass -0.08 0.23 -0.14 0.22
isClassDataShouldBePrivate 1.22 0.54 * 1.49 0.52 **
isComplexClass 0.26 0.45 0.37 0.43
pre-release changes 0.03 0.01 ***
pre-release defects 0.04 0.02 *

Multiple R-squared: 0.244; Adjusted R-squared: 0.225
significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

number of pre-release changes is among the most important factors related to
software quality, while line and branch coverage do not relate to post-release
defects, meaning that the amount of production code lines touched by a test
does not reduce the likelihood to have faults in source code: this is in line
with the recent findings of Kochhar et al.[145].

Line and branch coverage are not significant, regardless of the model
considered. This does not allow us to reject the null hypothesis Hn5. Mutation
coverage, instead, is significant only when test-related factors are considered
in isolation. Also in this case we cannot reject the null hypothesis Hn6.

In this part of the dataset, with the addition of dynamic factors and process
metrics, some of the previously not significant statically computable variables
assumed a higher relevance. This is the case of LOC of production and test
code. We extensively analyzed and discussed our data to understand the
reasons behind this result and further discuss them in the following.

184 test-related factors and post-release defects

In RQ2, we considered both tests that could and could not be executed
(see Figure 10.1): as such, the dataset possibly included non-executable tests
having a large size which, clearly, could not exercise the production code and
find defects. This might have limited the effect of TLOC on the dependent
variable; conversely, when considering only executable test suites (RQ3),
the variable turned to be significant. This statement is supported by the fact
that 71% of the tests excluded from RQ2 have a LOC higher than the third
quartile of the distribution of all test LOCs of the dataset.
A similar discussion can be done when considering the statistical signif-

icance of production code LOC. The dataset employed in RQ3 may have
filtered out small classes exercised by non-executable tests that lead to post-
release defects. To verify this hypothesis, we performed an additional analysis
in which we assessed how the results of RQ3 change when running a model
only based on statically computable test code indicators (i.e., the setting used
in RQ2): as a result, we found that PLOC remains significant, meaning that
the different statistical findings are indeed due to the specific composition of
the exploited dataset. Another interesting observation concerns the relation be-
tween test and production size metrics. The directions of the two distributions
(i.e., column “Estimate” in Table 10.8) are opposite, which means that: (i) the
larger the TLOCs, the fewer the number of post-release defects, and (ii) the
larger the PLOCs, the higher the number of post-release defects. This result
is quite expected and can be better explained analyzing two relevant qual-
itative examples. The first one is the class ClassDerivativeStructure
belonging to the Commons-Math project; it shows a high number of PLOCs
(i.e., 1,011) but at the same time a high number of TLOCs (i.e., 1,172).
This class has no post-release defects, perhaps due to the robustness of the
test suite. The second example is the class BaseGenericObjectPool in
the project Commons-Pool; like the previous one, it is characterized by a
high PLOCs (i.e., 849) but, the low number of TLOCs (i.e., 43) may have
led to 23 post-release defects (the maximum number of defects among the
instances we analyzed). These two examples, together with the results of the
statistical model, suggest that the size of test suites can be a proxy metric to
assess how robust a test is. Differently from the other research questions, the

10.3 conclusion 185

considered variables remain significant across the four models. Indeed, also
adding the process metrics, the PLOC and ‘isClassDataShouldBePrivate’ are
still significant.

¤ Summing Up: Mutation coverage statistically relates to post-release
defects only when test-related factors are considered in isolation. When
considering both static and dynamic test code indicators, we observed
production and test code size to be statistically significant in explaining
post-release defects. Furthermore, our findings suggest that TLOC can be
a proxy metric to assess the quality of the test.

10.3 conclusion

In this chapter, we have presented an empirical study we conducted to
investigate the role of test-related factors on software quality, operationalized
as the number of post-release defects of production source code files. We
considered eight Apache-Commons systems as our case study, as they satisfy
important selection criteria. We found that neither the executability nor the
presence of tests is a significant factor to explain post-release defects in a
statistical model. In addition, other, finer-grained test-related factors seem to
have a limited effect on the number of post release defects, while we confirm
the value of process factors as indicators of future software quality.

11
S O F T WA R E T E ST I NG A N D A N D RO I D A P P L I CAT I O N S :
A L A RG E - S CA L E E M P I R I CA L ST U DY

This chapter presents a large-scale empirical study on the prominence, quality,
and effectiveness of the tests manually written by mobile developers. Starting
from a dataset composed of 1,693 open-source Android apps, we first
extracted manually written test cases and computed how many and which
types of tests are actually available as well as which kinds of production
classes are more exercised. Secondly, we focused on the design quality of
those tests, computing test code quality metrics and smells. Finally, we
measured test code coverage and assertion density as proxy metrics to assess
test code effectiveness. In this chapter, we provide insights into the nature of
manually written tests of Android apps. More specifically, we deliver the
following contributions:

1. A large-scale empirical study on the prominence, design quality, and
effectiveness of test cases manually written by developers in the context
of mobile applications;

2. A statistical analysis into the relation of test cases to the actual defects
in production code, with the aim of shedding lights into the practical
usefulness of manually written tests with respect to the discovery of
issues in production;

3. A qualitative investigation, in which we recruit five Android testing
experts and ask them to be part of a focus group [325] aimed at
commenting our findings and eliciting what are the current limitations
that led to them, in an effort of providing concrete insights into the new
research avenues that need to be undertaken by both testing community
and tool vendors to better assist developers in their daily activities;

187

188 software testing and android applications

11.1 research questions and context selection

The goal of the empirical study is twofold: on the one hand, it aims to
assess prominence, quality, and effectiveness of test cases written by mobile
developers; on the other hand, it aims at identifying the key limitations
of mobile testing as perceived by experts when commenting the current
status of testing in mobile applications. These two goals have the purpose
of understanding testing practices, properties, and limitations in the wild,
i.e., to what extent mobile apps are tested in practice, what is the outcome
of such testing, and what are the factors influencing it. The perspective is
of both practitioners and researchers: the former are interested in observing
how effective are their testing practices, while the latter are interested in
understanding whether developers need new instruments to improve the
quality of their test suites. In this section, we provide an overview of the
research questions driving our empirical investigation and present the dataset
employed to address them.

11.1.1 Research Questions

Our study was structured around five main research questions (RQs). We
started by considering some recent findings in the field of mobile software
testing [41, 101, 128, 167, 196, 202], which showed that writing tests may
be challenging for developers because of (i) the lack of appropriate testing
tools and (ii) limited knowledge of testing practices or even willingness of
developers to write tests. As such, we first analyzed the prominence of test
cases in mobile applications, particularly looking at how many tests are
actually developed, which types of tests are implemented and what are the
kind of production classes whose functionalities tend to be exercised more.
Thus, we asked:

RQ1. To what extent are test suites developed in mobile apps?

It is worth noting that, by addressing the first research question, we also
provided a larger ecological validity to some preliminary findings [62, 128] on

11.1 research questions and context selection 189

the extent to which mobile apps are tested. After this first analysis, we started
a finer-grained investigation of test cases. First, we considered their design,
as measured by test code readability and quality metrics [50, 105, 235] and
test smells [195, 302, 308]. Second, we took into account the effectiveness of
test cases in terms of code coverage [100] and assertion density [44, 154].
Third, we assessed the relation between test cases and post-release defects
[49, 208, 209], in an effort of understanding how well can tests prevent the
introduction of defects in production code. For these reasons, we defined the
following research questions:

RQ2. What is the design quality of test cases developed in mobile apps?

RQ3. What is the effectiveness of test cases developed in mobile apps?

RQ4. What is the relation between test cases and post-release defects in
mobile apps?

The analyses of these research questions allowed us to provide a detailed
overview of the extent, quality, effectiveness, and fault detection capabilities
of tests available in mobile applications. Such an overview was then presented
to testing experts with the goal of assessing the quantitative findings against
their opinion/expertise and identifying the major reasons behind the current
state of testing in mobile applications. This led to our final research question:

RQ5. What is the developer’s take on the current state of mobile apps
testing?

By definition, our methodology followed a mixed-method research ap-
proach [61] where the insights derived by mining mobile app data are
complemented with qualitative cues coming from experts working on mobile
app testing on a daily basis and that can contribute to the development of a
comprehensive state of the practice on the matter.

190 software testing and android applications

11.1.2 Context of the Study

The context of the empirical study consisted of mobile application data
(RQ1-RQ4) and testing experts (RQ5).

As for the former, we considered a set of 1,693 open-source Android apps
gathered by mining F-Droid,1 a repository of free and open-source mobile
applications that has been widely employed in the past [53, 134, 198, 237,
267] and that contains a set of applications that enables a good generalizability
of the findings with respect to the overall population of free and open-source
mobile apps [70, 146, 153, 267]. It is important to note that, while F-Droid
contains over 3,000 apps, we narrowed our selection in order to only consider
repositories on Github;2 furthermore, we manually excluded duplicated apps
and forks of those already existing in the repository. Based on these filters,
we ended up with the final 1,693 open-source mobile apps. Our analyses
have been conducted on test cases written in Java. We are aware that this is
not the only language available to develop tests in mobile applications but
it is certainly among the most diffused. In order to reinforce the validity of
our study, we sift through our dataset in order to count the number of tests
written in Kotlin, a language that has continued to gain adoption in mobile
apps testing over the last year [190]. As a result, we found that only 139 out
of the 1,693 applications (< 1%) contain at least one Kotlin test. Even if a
few applications contain a reasonably high number of Kotlin tests (≈100),
we decided not to conduct further analyses, since these just represent rare
and isolated cases over the considered dataset.

As for the testing experts, we recruited five professional mobile developers
with an Android programming experience ranging between 5 and 10 years.
They all work in industry and, on average, they have been developing or
contributing as testers to the creation of 25 apps each.While all the participants
currently work in industry, two of them still contribute to open-source
Android applications, while the other three have worked on open-source
applications in the past. The size of the population of developers considered
was driven by the specific research approach employed to address RQ5: focus

1 https://f-droid.org
2 https://github.com

11.2 rq1 - on the prominence of test cases in mobile apps 191

groups are a form of qualitative research that involves a small number of
people sampled conveniently and that can provide expert judgments on the
subject of interest [325]. According to well-established guidelines, the ideal
size of a focus group is five to eight participants [55]: indeed, larger focus
groups are difficult to control and, more importantly, limit each participant’s
opportunity to share insights and observations [55]. More details on the
selection of this research approach as well as on the methodology employed
to recruit participants are reported in Section 11.6.

11.2 rq1 - on the prominence of test cases in mobile apps

This section discusses the research methodology and the results achieved
when investigating the prominence of test cases in the considered set of
mobile apps.

11.2.1 Research Methodology

To address RQ1, we first quantified the number of test classes available for
each of the apps in our dataset. Starting from their Github repositories,
we cloned the apps locally and, afterwards, we performed an exhaustive
search through their packages in order to extract classes having “Test” as
prefix or suffix. As a result of this search process, we computed the number
of test classes and methods per app, which corresponds to the number of
test suites and test cases available in a mobile application. Furthermore, we
proceeded with a more detailed analysis of test suites that aimed at classifying
them according to their granularity (e.g., unit vs. integration) and type (e.g.,
performance). As an automatic classification was not possible, we manually
analyzed all the 5,292 extracted test suites using a grounded theory-based
methodology [255] which involved two of the authors (from now on, the
inspectors). It is worth noting that, in order to exclude false positive tests,
during this manual investigation we also checked if the considered classes
were actually test classes. No false positives came out from this analysis.

The process consisted of two steps:

192 software testing and android applications

Tuning phase. Initially, the inspectors independently classified the same set
composed of 500 test suites and annotated in a spreadsheet their granularity
and type(s). Whenever possible, the inspectors relied on the available docu-
mentation (e.g., code comments) to understand the properties of a certain
test: for instance, if developers explicitly stated that the test suite covered the
corresponding production class, then the inspectors marked it as a unit test.
In the other cases, the inspectors relied on the name of the class as well as
analyzed its content to check if (i) only a production class was exercised, i.e.,
it was a unit test, (ii) more classes were involved to verify the interactions
among components, i.e., it was an integration test, or (iii) otherwise, it was
a system test. A similar strategy was employed when classifying the type:
whenever possible, the inspectors relied on the documentation, while in other
cases they manually went over the code to understand which functional or
non-functional requirement was exercised. Particularly hard was the case
of energy-related tests, for which the inspectors verified whether the test
code contained any identifier, API of a third-party library, or profilers of the
Android platform connected to energy management. To provide the reader
with a concrete example of the classification made, let consider the case
of the ProgramMemoryTest class of the Finneypoker app. This test suite
aims at assessing the memory consumed by the animations implemented in
the Animator class, which is used by the PokerActivity, i.e., the main UI
class of the app. As such, the (i) granularity of the test suite was categorized
as ‘integration’, since it did not involve one class in isolation nor the system
as a whole, and (ii) the type was associated to ‘performance’, as the goal was
to assess the consumption of the app in certain conditions.

Through the classification of the same test suites, the inspectors could tune
their judgments, find a common way to classify granularity and type of the
considered test suites, and discuss their disagreements to better understand
the reasoning done by the other inspector. Furthermore, they could compute
an initial coding agreement using the Krippendorff’s alphaKrα [152]. This
measured to 0.92, that is considerably higher than the 0.80 standard reference
score [11] forKrα.

11.2 rq1 - on the prominence of test cases in mobile apps 193

Classification phase. Once completed the tuning phase, the inspectors
classified the remaining 4,795 test suites, by analyzing 2,397 and 2,398
each. The outcome allowed the creation of a test suite granularity and type
taxonomy for Android apps, which we discussed in Section 11.2.2.

As an additional analysis aiming at addressing our first research question,
we quantified how many and which types of production classes are tested. In
this way, we could understand whether developers tend to test only certain
specific types of classes (e.g., Activity or Fragment classes) as well as
how much of the production code is covered by a test suite.
To enable this analysis, we first needed to link production to test classes.

We relied on the pattern-matching approach designed by Van Rompaey and
Demeyer [310]: for each test class, it removes the string “Test” from its name
and search the production class that matches the remaining part of the name.
For instance, using this strategy the test suite MainActivityTest would be
linked to the production class namedMainActivity. It is worth mentioning that
this linking approach is lightweight in nature and can scale up to the number
of apps considered in our study; yet, it has shown similar performance with
respect to more sophisticated test-to-code traceability techniques [310].
Afterwards, we computed the number of production classes having a

corresponding test suite. As for the type of production classes tested, we
performed a first automatic classification, based on keywords, and then we
double-checked the classification manually. Specifically, we defined a set of
keywords that can distinguish GUI, application logic, and storage components
of an Android app. For instance, the GUI keywords included “activity” and
“fragment”, which generally characterize Activity and Fragment classes
used by developers to develop the graphical interface of the app. Since this
automatic classification may be erroneous in some cases, one of the authors
double-checked it and corrected the labels assigned whenever required.

11.2.2 Analysis of the Results

Table 11.1 reports descriptive statistics on the number of test suites and test
cases available in the considered dataset as well as the overall number of

194 software testing and android applications

Table 11.1: Descriptive Statistics of the mobile apps analyzed.
#Test Suites #Test Cases

Min 0 0
Max 205 2045
Average 3.24 63.30
Median 0 5
Standard Deviation 14.07 202.80

%Apps Tested % Apps Not Tested
40 60

mobile applications containing at least one test class. As shown, the first
thing that leaps to the eye is that 60% of apps do not present any test case: as
such, we can confirm the results obtained by previous work which proved
that mobile apps, and in particular Android ones, generally lack tests [62,
146, 274]. This finding reinforces the need for further research on the topic
of mobile app testing and, specifically, how to convince developers—who
may be non-experienced with the development of source code [319]—of the
importance of testing their apps, e.g., by means of empirical evidence showing
how lack of testing may worsen the quality of mobile apps. For instance, our
results motivate and promote investigations aimed at relating test code quality
to change/fault-proneness of the apps [22, 267] or the commercial success of
mobile applications [40, 233].

Narrowing our attention to the applications that are actually tested, i.e., the
40% of the apps in our dataset, we computed descriptive statistics related to
both test suites and test cases. Table 11.1 reports the results of this analysis.
Looking at the minimum and maximum number of test cases, we found a high
variability among the considered applications: indeed, the minimum size of
test suites is zero, while it reaches 205 in the best case, with a mean of about
three test classes. This result clearly highlights that even apps having Java test
suites are in general poorly exercised and would need further support in this
activity. The standard deviation value (202.80) confirms the high variability
among the considered apps.
As a second part of our analysis aimed at addressing RQ1, we classified

test suites according to their granularity and type. Table 11.2 summarizes our

11.2 rq1 - on the prominence of test cases in mobile apps 195

Table 11.2: Granularity and type of test suites developed in the dataset.
Granularity

Name Abs. Rel.
Unit 3,872 73%
Integration 1,273 24%
System 147 3%

Type
Name Abs. Rel.
Functional 4,619 87%
Performance 190 4%
Energy 145 3%
Portability 133 3%
Security 104 2%
Usability 101 1%

results. In the first place, we can notice that most of the test suites analyzed
are at unit-level: 73% of the tests in our dataset are indeed at this granularity.
Interestingly, we discovered that 3,605 of them are directly related to a single
production class, while the remaining 268 unit tests exercise more classes
at the time. For instance, tests named IntentTest or SwipeTest indicate
generic tests that exercise common functionalities of certain classes without
focusing on some of them specifically.
Furthermore, we found that 24% of the test suites pertain to integration

testing and aim at exercising how components behave when working together.
Finally, a small portion of the considered tests (3%) consists of system tests
that aim at testing the application as a whole. Perhaps more interestingly,
our investigation into the types of test classes written by developers revealed
the existence of a taxonomy composed of six types. As expected, most of
the test suites refer to functional tests (87%), namely tests that exercise the
input/output of production code classes: this confirms the findings of previous
researchers who found that functional testing is the most widely spread type
of testing [28, 45]. Subsequently, our categorization shows that performance
tests represent the 4% of the available tests: while this number is way lower

196 software testing and android applications

than the functional tests, this seems to indicate that (1) developers care, even
if in a lower extent, of performance of mobile apps, thus confirming previous
findings in the field [67, 140] and (2) performance testing is a more delicate
problem than for traditional applications [156, 205], suggesting the need
of more research to understand better why this happens and what are the
consequences.

Furthermore, we found the energy testing is the third more popular type of
exercising mobile apps. Also in this case, the number of tests is substantially
lower than the one of functional tests; these results are in line with previous
findings that highlighted that more automated support to this type of testing
would allow developers to better exercise the energy aspects of mobile apps
[200, 231]. A small percentage of test suites in our dataset relates to portability
testing, namely the types of tests that verify whether the functionalities of an
application is compatible with previous versions of the Android operating
system [321]: the small amount of tests in this category suggests that more
research would be needed in order to understand the reason behind these
achievements [194]. Finally, security and usability testing represent the least
prominent types of tests in the exploited dataset. On the one hand, the very
small amount of tests in these categories clearly highlight that developers
are not properly aware of how to cover these aspects [93, 99, 254]: this is
particularly worrying in the case of security, also considering the recent data
provided by NowSecure3, which showed that (i) 35% of communications
sent by mobile devises are un-encrypted, (ii) 25% of apps have high-risk
security flaws, e.g., expose private or sensitive data about a user or their
activity, and (iii) 82% of Android devices use an outdated version of the
operating system. On the other hand, our findings support and motivate the
research done on usability and GUI testing [101, 182], which has been an
active field over the last years.
Finally, we focused on the production classes that are actually exercised.

Table 11.3 reports the results achieved: specifically, we split the classes based
on their role in the system and, according to this classification, we identified
three main categories, namely, GUI, Storage, and Application Logic: the first

3 A well-known security company targeting mobile apps: https://tinyurl.com/rdhrszc

https://tinyurl.com/rdhrszc

11.2 rq1 - on the prominence of test cases in mobile apps 197

Table 11.3: Types of production classes tested. Abs. = Absolute number; Rel. =
Relative number.

Activity Intent Fragments Storage Application Logic
Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.
202 6% 9 1% 52 1% 114 3% 3,228 89%

Table 11.4: Percentage of tested classes per production class type.
Type # tests # production_classes tests/production_classes %
Activity 202 8,202 2%
Intent 9 38 24%
Fragments 52 5,362 1%
Storage 114 1,713 7%
Application Logic 3,228 14,109 23%

refers to production classes implementing the logic behind the graphical user
interface of mobile apps, the second to the classes that manage the storage
of the apps, while the latter to the classes having the single responsibility of
implementing business logic of the apps. For the sake of comprehensibility,
we split the GUI category in the three main class types, namely Activity,
Intent, and Fragment. These are the class types that Android developers
use to develop the user interface of their applications.
Looking at Table 11.4, we can observe that most tests in the dataset

exercise the application logic of mobile apps. Behind this result, there might
be different explanations: First, developers are not properly supported nor
aware of current techniques when it comes to the testing of other aspects of
their apps [62]. Second, mobile developers are sometimes junior or with less
experience than programmers working in other domains and, as shown by
previous researchers, they might be less aware of the importance of testing,
hence limiting themselves to exercise a limited amount of classes [254].

198 software testing and android applications

¤ Summing Up: Mobile applications contain very few java tests, indeed,
only 40% of the apps contain at least one test suite. As for the tested apps,
most of the tests pertain to unit tests that exercise the functionalities of
the app, while other aspects are not widely considered, like for instance,
performance of GUI testing.

11.3 rq2 - on the design quality of test cases in mobile
apps

This section reports methodology and results of our analyses to address RQ2.

11.3.1 Research Methodology

Given our original dataset, we had to exclude all the apps without tests from
this second research question. This process led us to focus on 673 mobile apps.
To assess the design of the considered test cases we covered three macro-
aspects that can characterize their maintainability and understandability.
Table 11.5 summarizes the metrics adopted to address RQ2. The selection
of these metrics was based on the findings reported by Grano et al.[102],
which presented a taxonomy of metrics deemed significant by developers
to measure test code quality. More specifically, such a taxonomy includes
behavioral, structural, and execution high-level concerns that developers
consider relevant when developing tests and that can be mostly quantified
using the metrics in Table 11.5.
In the first place, we considered test code quality metrics, relying on the

metric suite originally defined by Chidamber and Kemerer [50] and other
metrics related to code quality. According to Grano et al.[102], this set of
metrics addresses or helps addressing aspects like scope, size, reusability,
and independence of test cases. We computed the Lines of Code (LOC):
according to previous achievements [149, 242, 337], having higher size may
cause issues for developers with respect to the maintainability of tests as
well as to their fault-proneness [280, 306]. For similar reasons, we computed

11.3 rq2 - on the design quality of test cases in mobile apps 199

Table 11.5: List of factors considered in order to measure the design quality of test
cases.

Group Name Description

Code Metrics

LOC Number of lines of code of the
Test Class

WMC Weighted Method Count of the
Test Class.

RFC Response for a Class.
IFC Information Flow Coupling.
LCOM5 Lack of Cohesion of Test Meth-

ods.
TCC Tight Class Cohesion.
LCC Loose Class Cohesion.

Textual Metrics
Readability The readability level of the test.
Comment ratio Ratio between lines of comments

and lines of source code.

Test smells

Eager Test A test exercising more methods
of the production target.

Indirect Testing A test interacting with the target
via another object.

Resource Optimism A test that makes optimistic as-
sumptions on the existence of ex-
ternal resources.

Mystery Guest A test that uses external resources
(e.g., files or databases).

Assertion Roulette A test method containing several
assertions with no explanation.

cohesion metrics such as Lack of Cohesion of Test Methods (LCOM5 [122]),
Tight Class Cohesion (TCC), and Loose Class Cohesion (LCC) [60]; we
measured different metrics as they can provide orthogonal information that
may be useful to analyze the cohesion of tests better [305]. Furthermore,
we considered the coupling between tests, which is one of the most critical
problemswhen comprehending test code [102, 335]. To this aim, we computed
the Information Flow Coupling (IFC), a metric that captures the relations
between tests in terms of information exchanged [305] and is among the
best suited for assessing the quality of tests [91]. Finally, we considered
the complexity of test code. In this case, the rationale comes from previous
studies [68, 102, 210, 341] which showed that complexity metrics may be

200 software testing and android applications

related to both scope and defectiveness of test code as well as may lower the
overall understandability of the target of tests [335]. We quantified complexity
by computing Weighted Methods per Class (WMC) and Response for a Class
(RFC): the former represents the sum of the complexity of the test cases
included in a suite, while the latter estimates complexity by considering
the number of methods that can potentially be executed in response to a
message received by an object of a class. All the metrics were computed at
test suite-level, as they can be only extracted at this granularity.
The second set of metrics relate to textual aspects of source code. These

can be helpful when quantifying the readability and diagnosability (i.e., the
ability of developers to understand faults detected by a test) of test code [102].
First, we computed the overall readability of test cases by relying on the
automated approach proposed by Buse and Weimer [36] - we employed the
original tool proposed by the authors. Such an approach employs a machine
learning-based solution that internally computes 19 metrics covering various
aspects of source code that may influence its readability, like the number
of keywords or the number of spaces in a piece of code to name a few. The
output of the readability tool consists of a readability index ranging between
0 and 1, where 0 indicates an unreadable code and 1 a perfect readability. We
also computed the comment ratio, namely the percentage of comments per
test method lines of code - the higher this ratio the higher the documentation
available for developers and, therefore, the higher its understandability.
To complement the analysis of test code quality metric profiles, we

considered test smells, i.e., poor design or implementation choices applied by
programmers during the development of test cases [308]. On the one hand, test
smells make test code more change- and fault-prone [280] as well as harder
to comprehend and maintain [25]. On the other hand, test smells have been
shown to be one of the primary causes behind test instability, thus making
them extremely harmful for developers [74]. We focused on five forms of test
smells widely investigated by the research community, namelyMystery Guest,
Resource Optimism, Eager Test, Assertion Roulette, and Indirect Testing.
Their definitions are provided in Table 11.5. To detect them, we employed
the code metrics-based tool developed by Bavota et al.[25], which has shown

11.3 rq2 - on the design quality of test cases in mobile apps 201

Table 11.6: Descriptive statistics for all metrics considered in RQ2. Outliers have
been removed from distributions.

Metric Min. 1st Qu. Median Mean 3rd Qu. Max.
LOC 2.00 14.00 32.00 46.40 66.00 181.00
WMC 0.00 2.00 4.00 4.80 7.00 17.00
RFC 0.00 6.00 17.00 26.30 39.00 112.00
IFC 0.00 0.19 0.36 0.37 0.53 1.00

LCOM 0.00 0.27 0.50 0.50 0.75 1.00
TCC 0.00 0.00 0.00 0.26 0.50 1.00
LCC 0.00 0.00 0.50 0.50 1.00 1.00

Readability 0.00 0.00 0.00 0.13 0.01 1.00
Comment ratio 0.00 0.00 0.00 0.04 0.03 0.40

to have high accuracy, close to 86% of F-Measure [25, 241] and has been
validated several times in previous work [95, 230, 235, 280], thus making us
confident of its suitability for our study. The detector identifies test smells
at class-level granularity, which is the same as the other considered metrics.
In particular, for each test suite and test smell type, the detector provides a
boolean value reporting whether the suite contains at least one instance of
the test smell type under investigation.

11.3.2 Analysis of the Results

Table 11.6 reports the distributions for all the quality metrics considered in
our second research question—note that outliers have been removed from the
table for the sake of comprehensibility.

Looking at the table, we first noticed that the LOC metric, which computes
the size of test suites, has a median value of 32.00, meaning that the vast
majority of the considered tests have a limited size. There are, however,
several outliers: we manually analyzed them to better understand how are
they composed. From this analysis, we found that all the outliers refer to
apps having only one big test class containing several test methods that

202 software testing and android applications

exercise production code belonging to different classes. As an example, the
test MainActivityTest, belonging to the package opencamera.test of
the OpenCamera app, has 12,637 lines of code and implements 1,188 test
methods.
When considering complexity metrics like WMC and RFC, our findings

suggest that the complexity of tests is generally low (median of 4.00 and
17.00 for WMC and RFC, respectively). The discussion for coupling is more
interesting: indeed, the IFC metric has a median of 0.36: this indicates that
there exist a non-negligible number of test suites containing methods that
depend on other methods of the same class. Besides making such tests less
comprehensible [335], this phenomenon may potentially lead to undesired
issues like, for instance, potential flakiness due to a test ordering problem,
which arises when the execution of a test depends on the execution of another
one [172].

Turning the attention to the test case cohesion, we can provide a number of
observations. First, the LCOM is almost equally distributed over the spectrum
of possible values for this metric. Given its definition, this result indicates
that there is a fairly similar amount of test cases that use and not use instance
variables defined in the test suite; from a practical perspective, this possibly
indicates that the design of tests and their inter-dependence may be affected
by the way specific developers implement test cases (e.g., their experience or
knowledge of the domain [44, 254]).
The analysis of TCC and LCC provided us with further insights into the

cohesion of tests. While the former measures the number of test pairs that
directly share instance variables of the test suite, the latter indicates how
many of them are either directly or indirectly connected (i.e., share the same
variables or are directly connected to the same test). The distribution of those
metrics tell us that, while test methods are not always directly connected,
they have more often an indirect connection. As such, they follow a similar
trend as the one shown in previous studies done on the code quality profile of
production classes [75]—there seems to be no peculiarities of these metrics
that distinguish tests written by mobile developers.

11.3 rq2 - on the design quality of test cases in mobile apps 203

Finally, we could observe that both the textual metrics considered have
a median equals to 0, with a third quartile of 0.01 and 0.03 for readability
and comment ratio, respectively. On the one hand, these results suggest that
mobile developers spend almost no time addressing documentation concerns
in test cases: the low distribution of values for the comment ratio, indeed,
reports that only in a few cases developers add comments that explain the
responsibilities of the test. On the other hand, the analysis of readability is
somewhat even more worrisome: not only tests are not documented, but also
potentially hard to comprehend for developers - note that previous literature
has shown that poor test readability is often connected to a decrease of bug
detection capabilities [105, 333].

Table 11.7: Absolute and relative number of test smells detected. AR = Assertion
Roulette; ET = Eager Test; MG = Mystery Guest; RO = Resource
Optimism; IT = Indirect Testing.

AR ET MG RO IT
Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.
2,508 50% 1,556 31% 439 9% 123 3% 371 7%

As for the test smells, Table 11.7 reports the distribution of design issues
over the considered set of mobile apps. In the first place, we can confirm
previous findings in the field [25, 26, 103] and claim that test smells have
a high diffuseness also when considering the mobile context. Most of the
instances found (50%) refer to Assertion Roulette, namely the smell that arises
when there are multiple assert statements without explanation—this smell
lowers understandability and maintainability of test suites [308]. Instances
of Eager Test are also quite diffused and affect 31% of the test suites in our
dataset. According to previous results [280], this smell type is associated
with a lower effectiveness of the affected test in terms of fault detection
capabilities. The other test smells are less diffused: Mystery Guest appears in
9% of the considered tests, while Resource Optimism and Indirect Testing
in 3% and 7% of the cases, respectively. These percentages are in line with
those found in traditional systems by Bavota et al.[26] and Grano et al.[103],

204 software testing and android applications

thus indicating that test smells have similar diffusion and relevance in both
contexts.

More in general, from our empirical analyses we observed that, while the
structural metric profile of tests would not show potential problems affecting
their design, the quality of tests is still threatened by the presence of test
smells [280]. Despite the fact that they capture two different concepts, this
contradiction may potentially indicate that currently available metrics are not
enough to measure the actual quality of test suites and, as such, new, different
test code metrics that better capture the design quality and understandability
of test suites should be further studied and defined.
¤ Summing Up: The metric profile of the considered test suites does
not always indicate the presence of possible issues in test code. However,
tests are often affected by test smells that may possibly negatively influence
their effectiveness, for instance by leading them to miss faults in production
code. Our findings suggest the need for new test code metrics that can
better measure the actual quality of test suites.

11.4 rq3 - on the effectiveness of test cases in mobile apps

This section details the methodological steps conducted to address our third
research question and the results achieved.

11.4.1 Research Methodology

Test code effectiveness can be estimated in different ways. In the context of
our study, we focused on two complementary aspects that have been shown
to influence the ability of tests to catch defects in production code, namely
line coverage [322] and assertion density [154]. The former measures the
amount of code that has been exercised based on the number of Java byte code
instructions called by the tests: from a practical perspective, we employed
the JaCoCo Android plug-in,4 a popular code coverage tool, to compute the

4 https://github.com/arturdm/jacoco-android-gradle-plugin

11.4 rq3 - on the effectiveness of test cases in mobile apps 205

value for each of the considered test suites. As for the assertion density, this
is defined as follow:

assertion.density(tc) =
#assertions(tc)

LOC(tc)
(11.1)

where tc is the test case under consideration,#assertions(tc) is the number
of assert statements in tc and LOC(tc) is the number of lines of code of the
test. Note that we employed the definition of assertion density introduced by
Kudrjavets et al.[154]. We considered this metrics since it has been associated
in the past with a reduction of defect density in production code [44, 154],
hence providing an indication of how good a test suite can actually be. To
compute assertion density, we developed our own tool.

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Line Coverage Assertion Density

Figure 11.1: Distribution of test code quality metrics in our dataset.

11.4.2 Analysis of the Results

Figure 11.1 reports the distribution of line coverage and assertion density
among all the applications of the dataset. As the figure shows, the values
of both the metrics are between 0 and 0.5, excepting for some outliers. The
median for line coverage is equal to 0.23, while the one of assertion density

206 software testing and android applications

is 0.17. We also observe a notable number of outliers, especially when
considering the assertion density. Nonetheless, we can claim that these values
relate to low effectiveness [185]: their effect on the post-release defects of
mobile applications is investigated in the context of RQ4.
When considering line coverage, the discussion is similar. The vast ma-

jority of the test suites have low coverage and cannot properly exercise the
corresponding production code. Unlike assertion density, for line coverage we
noticed something peculiar and worth of discussion: in some cases, developers
discuss about code coverage on the issue trackers and, particularly, on the way
they can increase it. For instance, let consider the AnySoftKeyboard app:
the developers in this case adopt a pull-based development process where
all changes must pass through a pull request before being merged. In most
of the cases where new code is committed, developers explicitly ask to the
author of the change to verify that the code coverage of unit tests is high
enough. As an example, in the issue #551, one developer applied multiple
changes to the test code in order to increase its coverage up to 87%. We
found similar cases when considering other applications, thus leading us to
claim that the developer’s perception of code coverage is sometimes pretty
high and reflected into the way test cases are developed—this result partially
contradicts what reported by Linares-Vásquez et al.[165] through their study
on the developer’s perception of code coverage and indicates that further
experiments would be desirable to understand the real value of code coverage
for developers. Nevertheless, our findings suggest that mobile programmers
still experience troubles when developing effective tests.

¤ SummingUp: Themedian code coverage and assertion density are 0.23
and 0.17, respectively. The effect of these low values is analyzed in the next
research question. Furthermore, we found that in some cases developers
perceive code coverage as highly relevant to accept pull requests.

11.5 rq4 - test cases and post-release defects in mobile apps 207

11.5 rq4 - on the relation of test cases to post-release
defects in mobile apps

In this section, we describe methodology and results pertaining to RQ4, i.e.,
the relation between test cases and post-release defects of mobile apps.

11.5.1 Research Methodology

In the context of this research question, we adopted a statistical approach
with the aim of relating and assessing how test-related metrics characterizing
the goodness of the manually written test cases in mobile applications can
indicate the statistical likelihood to have defects in production code. In more
practical terms, while in RQ3 we measured the effectiveness of test cases
only based on metrics computable considering the test code itself, in RQ4 we
assessed whether and how the goodness of test cases is reflected to the quality
of production code, as measured by the number of post-release defects.

The statistical approach employed consisted of multiple steps and method-
ological choices. The remainder of this section explains our approach in
terms of model dependent and independent variables as well as of methods
applied to enable valid statistical conclusions and interpretations.

Dependent variable. The dependent variable considered in RQ4 is the
number of post-release defects, namely the amount of bugs affecting the
mobile applications in our study after the snapshot considered for the analysis.
The Github repositories pertaining to those apps offer the entire change
history in form of commits. We first determined if a commit fixed a defect.
In this regard, we searched for issue IDs in commit messages by finding
matches with the prefix used in the bug tracker system. Once retrieved a
commit referencing an issue, we queried the mobile app’s issue tracker system
in order to filter only issues related to resolved bugs. Then, we relied on
the keyword-matching technique devised by Fischer et al.[80] to analyze
the commit message and search for the presence of specific keywords, e.g.,
‘bug’, ‘fix’, or ‘defect’, that are typically used by developers to mark defect-
fixing activities. The application of this technique allowed us to filter out all

208 software testing and android applications

those commits that referred to issues in the issue tracker but were related to
other maintenance and evolution activities. Despite the technique might be
considered naive, empirical assessments have shown an accuracy of ≈80%
[80, 236] and, for this reason, often been used by previous research [130,
141].

After detecting all defect-fixing commits, we applied the Śliwerski-
Zimmerman-Zeller (SZZ) algorithm [278], which is able to identify the
defect-inducing commits, namely those modifications that likely introduced
defects. The algorithm relies on basic Git features such as annotation and
blame. Given a defect-fixing commit k as input, SZZ works as follows:

• For each file fi, i = 1 . . .mk involved in a defect-fix k (mk is the
number of files changed in the defect-fix k) and fixed in its revision
rel-fixi,k, SZZ extracts the file revision just before the defect fixing
(rel-fixi,k − 1).

• Starting from the revision rel-fixi,k − 1, for each source line in fi
changed to fix the defect k, SZZ identifies the production class Cj to
which the changed line belongs. Furthermore, the blame feature of
Git is used to identify the revision where the last change to that line
occurred. In so doing, blank lines and lines that only contain comments
are identified and excluded using an island grammar parser [199]. This
produces, for each production class Cj , a set of ni,k defect-inducing
revisions rel-defecti,j,k, j = 1 . . . ni,k. As such, more than one commit
can be marked by SZZ as defect-inducing.

Once extracted the defect-inducing commits, we finally computed the
post-release defects of a production class as the number of defect-inducing
activities involving the class after the release date of the snapshot of the
mobile apps considered. From a technical perspective, we employed the
SZZ algorithm implemented within PyDriller5 to compute the dependent
variable.

5 Link: https://pydriller.readthedocs.io/.

11.5 rq4 - test cases and post-release defects in mobile apps 209

Independent variables. Our aim was to verify the extent to which the
goodness of test cases implemented by mobile developers relate to post-
release defects. As such, the independent variables of the statistical model
comprise the set of metrics considered in RQ2 and RQ3. This way we could
analyze the impact of various features, i.e., static and dynamic factors, textual
metrics as well as test code design, on the ability of tests to act as a guard for
the introduction of defects in forthcoming versions of mobile apps.

Confounding factors. Other than to test-related features, the number of post-
release defects might be due to additional aspects pertaining to production
code quality or the development process. As an example, larger production
code classes might be more defect-prone independently from the test cases
exercising it. To account for this aspect and avoid a biased interpretation of
the results, we computed a set of confounding features that have been shown
to influence the defect-proneness of source code. These are summarized in
Table 11.8. As shown, they cover four main characteristics of product and
process quality:

• Among the structural metrics, we first take the Production Lines
Of Code (PLOC) metric into account. It measures the size of the
production classes. Its selection was driven by the fact that PLOC has
been often associated to an increase of fault-proneness [149, 242, 337].
To compute it, we employed the automated tool developed by Spinellis
[282].

• The Weighted Method per Class (PWMC) and Re-
sponse for a Class (PRFC) metrics [50] measure the complexity of
production code, which is something that naturally influences the
defect-proneness of source code [68, 210]. The tool by Spinellis [282]
is able to compute this metric too.

• Coupling is another aspect strongly connected to software quality [91].
In our work, we computed the Information Flow Coupling (PIFC) of
production classes, i.e., a metric describing the relation between classes
in terms of information exchanged.

210 software testing and android applications

Table 11.8: List of confounding factors used in the study.
Group Name Description

Structural metrics
PLOC Number of lines of code of the

production class.
PWMC Weighted Method Count of the

production class.
PRFC Response for a production class.
PIFC Information FlowCoupling of the

production class.
PLCOM5 Lack of Cohesion of Methods of

the production class.
PTCC Tight Class Cohesion of the pro-

duction class.
PLCC Lose Class Cohesion of the pro-

duction class.

Code smells God Class A class having a large size, poor
cohesion, and several dependen-
cies with other data classes of the
system.

Class Data Should Be Private A class exposing its attributes,
thus violating the information hid-
ing principle.

Complex Class A class presenting a overly high
cyclomatic complexity.

Functional Decomposition A class implemented as a func-
tion.

Spaghetti Code A class that exhibit a functional-
style programming structure,
declaring a number of long meth-
ods without parameters.

Android-specific smells Durable Wakelock A class acquiring a wake-lock
without releasing it.

Inefficient Data Structure A class that declares a HashMap
local variable whose first type
argument (i.e., key) is an Integer.

Internal Setter A class containing one (or more)
non-static method(s) that calls a
setter having only a single assign-
ment.

Leaking Thread A class exhibiting a Thread that
is started but not interrupted.

Member Ignoring Method A class containing a non-static
and non-empty method that (i)
does not access any instance vari-
able; (ii) does not use this and su-
per keywords; (iii) does not over-
ride an inherited method.

Development process Pre-release changes Number of changes involving the
production class before the re-
lease date of the considered snap-
shot.

11.5 rq4 - test cases and post-release defects in mobile apps 211

• Cohesion has also been associated to fault proneness in the past
[19]. In this respect, we measured cohesion of production classes by
mean of Lack of Cohesion of Methods (PLCOM5), Tight Class Cohe-
sion (PTCC), and Lose Class Cohesion (PLCC).

• Code smells are indicators of sub-optimal design/implementation
choices in source code [88]. A number of previous papers have es-
tablished that those smells heavily increase the chance of production
code being faulty [64, 116, 137, 225, 226, 243, 304]. On the one hand,
we considered five traditional code smells from the catalog by Fowler
[88]. These have different characteristics and cover various program
entities, i.e., God Class, Class Data Should Be Private, Complex Class,
Functional Decomposition, and Spaghetti Code. On the other hand, we
took the peculiarities of mobile applications into account and computed
the so-called Android-specific code smells, i.e., design flaws that are
specific of mobile apps and that can impact on defect-proneness in
different manners, e.g., by increasing the chance of functional and
energy-related defects. In this regard, we computed the 5 code smells
mentioned in Table 11.8.

As for the actual detection of these code smells, we relied on Decor
[197] for the traditional ones and on aDoctor [124] for the Android-
specific ones. Both tools have been extensively validated by the research
community and showed an excellent accuracy [124, 228], hence repre-
senting valid tools to use for our purposes.

• Finally, we computed the number of pre-release changes. This metric
captures the quality of the development process [119] and can highlight
relevant complementary evolutionary aspects. The metric was com-
puted by mining the change log of the considered apps and counting
how often a certain production class has been modified.

Statistical approach. As last step to address our research question, we built
a statistical model relating independent and confounding metrics to post-
release defects. We opted for the construction of a Generalized Linear Model

212 software testing and android applications

(GLM) [213]: it models the relationship between a scalar response, like the
number of post-release defects, and one or more explanatory variables, i.e.,
the set of independent and confounding factors, by fitting a linear function
whose unknown model parameters are estimated from the data; we used
the ‘Gaussian’ family when implementing the model. The reason behind
the choice of this statistical approach was twofold. At first, it simultaneously
analyzes the effects of both confounding and independent variables on the
response variable [112]. Secondly, it does not require the normality of data
distribution: in our case, the Shapiro-Wilk normality test [270] rejected the
null-hypothesis, hence indicating that our data is not normally distributed.
To properly interpreting the statistical results, we accounted for possible

issues with multicollinearity [217]. In doing so, we run a hierarchical
clustering based on the Spearman’s rank coefficient [281] to cluster together
variables at different levels of correlation. Afterwards, if two of them had
a correlation higher than 0.6, we excluded the more complex one from the
model.
Finally, we interpreted the output of GLM by analyzing the statistical

significant codes it assigns to each explanatory variable: if a certain metric
is statistically significant, this implies that the chances of the effect on the
number of post-release defects being random is sufficiently low. We also
computed the Adjusted R-squared [73] to assess the goodness of fit of the
model, a metric indicating how close the data is to the fitted regression line.

11.5.2 Analysis of the Results

Table 11.9 reports the statistical results obtained. Before discussing them,
it is worth pointing out that from the total set of variables employed within
the model, we had to exclude (i) the variable signaling the presence of the
Functional Decomposition code smell because it was too correlated with
p_lcc, (ii) p_wmc due to its high correlation with p_loc, and (iii) t_wmc
and t_rfc, which in this case had high correlation with t_loc. In addition, the
statistical model could not consider the Member Ignoring Method, Inefficient
Data Structure, and Leaking Thread smells because the Android-specific

11.5 rq4 - test cases and post-release defects in mobile apps 213

Table 11.9: Results for RQ4 - Factors influencing post-release defects in mobile
apps.

Estimate S.E. Sig.
Intercept -1.18 1.14
TLOC -0.01 0.01
TIFC 1.67 1.11
TLCC 0.04 0.67
TTCC 1.91 0.56 ***
Assertion Roulette -0.23 0.53
Eager Test -0.34 0.46
Mystery Guest 1.03 0.81
Resource Optimism -2.73 1.37 *
Indirect Testing 1.29 0.63 *
Readability 3.74 2.30
Comment Ratio -15.43 7.07 *
Line Coverage 0.31 0.94
Assertion Density 1.48 1.61
PLOC -0.06 0.02 **
PIFC 0.60 1.00
PLCC 1.94 1.19
PRFC 0.33 0.99
PTCC -0.51 0.71
God Class 2.51 1.32 .
Class Data Should Be Private 6.91 5.25
Complex Class 11.49 4.32 **
Durable Wakelock 1.00 4.30
Internal Setter 2.84 3.51
Pre-release Changes 0.78 0.05 ***

Multiple R-squared: 0.169; Adjusted R-squared: 0.114
significance codes: ’***’p <0.001, ’**’p <0.01, ’*’p <0.05, ’.’p <0.1

code smell detector, i.e., aDoctor, did not detect any instance for these
smells.
Overall, the model was composed of a total of 24 metrics. The Adjusted

R-squared measured 0.114: the value is pretty low, meaning that the input
variables, i.e., the set of independent and control factors taken into account,
cannot determine well the value of the dependent variable. From a practical

214 software testing and android applications

perspective, this means that there might exist additional metrics that cover
peculiar aspects of mobile applications and that can contribute to the expla-
nation of the statistical power of the model—this seems to suggest the need
for more extensive and comprehensive studies on the factors making mobile
applications more defect-prone.
Looking at the table, a first aspect to discuss is the high significance of

pre_release_changes (ρ-value <0.001). The estimate is positive, meaning
that the higher the number of changes done before releasing the higher
the likelihood that classes will be subject to defects. The result is not really
surprising since the past history of a class has been found to strongly influence
its future quality in a number of previous work [106, 142]. In this sense, our
findings corroborate what discovered in the available literature.
Analyzing the effects of the other confounding factors, we found that (i)

the presence of code smells and (ii) the size of production code can influence
the number of post_release_defects. As for the former, our results still
confirm that the presence of design issues in production code, and of God
Class and Complex Class instances in particular, leads the affected classes
to be more defect-prone [137, 226]. As for the latter, it is worth noticing
that the estimate is slightly negative (-0.06): this indicates that the lower
the number of production code lines, the higher the number of post release
defects. While at first glance this could sound counter-intuitive, there are
two observations to do. In this first place, the estimate is close to zero and,
therefore, there might not be evident reasons making the metric connected
to the dependent variable. In the second place, however, the result could be
explained by a larger adoption of third-party libraries [267] that has the effect
of sensibly reducing the amount of code in the app but, at the same time,
increasing the likelihood of developers introducing defects because of API
misinterpretation or the usage of defect-prone APIs—as shown in literature
[22].
Turning the attention to our core interest, namely the impact of tests on

post_release_defects in mobile applications, we found that cohesion of test
cases is a very relevant aspect (ρ-value<0.001) that influences the dependent
variable with a positive estimate, i.e., the higher the cohesion the higher

11.5 rq4 - test cases and post-release defects in mobile apps 215

the number of defects. Also in this case, the result is counter-intuitive. The
findings of RQ1 have shown that mobile applications are characterized by
a few number of tests with a limited size: having a high cohesion in these
cases may indicate that the test exercises only few and strongly cohesive
functionalities in production code, hence neglecting others. The low coverage
observed in RQ3 seems to confirm that the few tests available are not able to
verify the production code in an appropriate manner.

The significance of test smells confirm previous results achieved in the
context of traditional applications [280]. Interestingly, we noticed that the
Indirect Testing smell has an estimate of 1.29, hence directly affecting
the number of post-release defects. This smell arises when a test exercises
multiple classes of the production code, not being able to focus on a specific
target class. As previously shown [280], the lack of focus is among the key
test-related problems increasing the defect-proneness of production code.
Last but not least, the Comment ratio of test cases was found to be

statistically significant, with an estimate of -15.43. This means that the lower
the amount of documentation in tests the higher the number of defects in
production. Our results in RQ2 revealed that test cases of the considered
applications are indeed poorly documented: the statistical analysis suggests
that such a lack of documentation represents a serious threat to the reliability
of source code. This is in line with previous findings [245] showing that
non-commented tests cause a decrease of program comprehensibility and,
for this reason, developers might encounter difficulties in detecting defects in
production code.

¤ Summing Up: Post-release defects are mainly influenced by the
number of changes performed on production code. A few test-related-
factors negatively contribute to the phenomenon as well. The cohesion of
test cases is one of the most significant factors influencing the number of
post-release defects. Other aspects such as the comment ratio and presence
of test smells are still important but with a lower significance.

216 software testing and android applications

11.6 rq5 - on the developer’s opinions on mobile app testing

This section reports on methodology and results that address RQ5.

11.6.1 Research Methodology

The analyses done so far provided a quantitative view on the state of the
practice inmobile application testing.While we could provide some additional
insights through our manual investigation of the considered apps, these are
clearly not generalizable and would require further investigation. Being aware
of that, our last research question sought to elicit the opinions of developers
having a solid experience in the context of mobile app testing.
Previous work in the field have exploited survey research to complement

mining studies (e.g., [212, 233]): by nature, surveys provide quantifiable data
that can be used to establish, on a large scale, the maturity of a technology
or, in the software engineering field, of novel instruments. Yet, surveys are
not interactive and the data coming from them are likely to lack details or
depth on the topic being investigated [266]. As the goal of RQ5 was to gather
insights and in-depth opinions on the findings achieved in the mining study,
we then preferred not to go for a survey, favoring a more qualitative approach
like the one of focus groups, which are rarely large enough to draw definitive
conclusions, but have the advantage of fostering discussions and uncovering
ideas that otherwise would have been missed [266, 325].
More specifically, focus group research is defined as a small group of

carefully selected participants who contribute to open discussions for research
[325]. In the context of our study, a focus group enables a joint discussion on
current testing practices and limitations among the recruited experts. From
a methodological standpoint, the participants were invited to join an online
Zoom meeting6—note that at the time of the study we were not allowed to
run a physical meeting because of the COVID19 pandemic.
Two of the authors acted as moderators. At the beginning of the meeting,

a 2-minute presentation of the participants was allowed, so that all of them

6 https://www.zoom.us/en/

https://www.zoom.us/en/

11.6 rq5 - on the developer’s opinions on mobile app testing 217

got to know the others. Then, we provided an overview of the main goals
of the study, a brief explanation of the research methods employed, and a
detailed discussion of the results achieved in the context of RQ1-RQ4. To this
purpose, a 10-minute slideshow was prepared: the last slide was designed to
contain a summary of the main findings of the study and was kept shared with
the participants till the end to allow them to always bear in mind the achieved
results. It is worth noting that, while summarizing the results, we highlighted
that these came out exclusively from open-source applications—this was
done with the aim of setting the participants’ expectations on the open-source
side.

In the second part of the focus group, participants were asked to comment
on the results and report experiences with respect to the testing of mobile
applications that might explain the quantitative results of the study. This part
of the meeting lasted 45 minutes and was kept by the moderators highly
interactive: they did not simply leave the word to each participant, but asked
others to comment and reflect on the possible reasons behind what s/he was
reporting. The entire discussion was recorded and stored for analysis.
Upon completion of the recording, Zoom provided as output both the

video registration and a text file reporting the transcript of the meeting. We
reviewed the transcript together in order to identify the main insights and
comments left by the participants. We finally addressed RQ5 by reporting
the most relevant insights from the focus group.

Table 11.10: Background of the focus group participants.
ID Dev. Exp. Mobile Exp. Working context
P1 13 10 Software Corporation
P2 11 6 Airline company
P3 11 6 Mobile Software House
P4 10 6 Researcher & Spin-off CTO
P5 11 6 Testing researcher

218 software testing and android applications

11.6.2 Analysis of the Results

Table 11.10 reports the background of the five experts to the focus group.
As shown, all of them have a similar development experience and, since at
least five years actively work on the development of mobile applications.
Three participants (P1, P2, and P3) have a full-time appointment in large
software companies of different nature: P1 works within a well-known US
software and technology corporation founded in 1975, P2 is employed in a
Dutch airline company, while P3 works for a multinational corporation that
develops mobile applications. The fourth participant (P4) is a Senior Research
Associated in an Italian university, but also has a partial appointment as Chief
Technology Officer of a technological spin-off operating in the context of
big data analytics. Finally, P5 is a researcher in the field of software testing
having, however, experience in the development of mobile applications, i.e.,
P5 was employed within a mobile software company before starting the
academic career.

For the sake of readability, in the followingwe report the key insights coming
from the focus group by discussing each research question independently.

Commenting RQ1.After the introductory part, the two moderators started
the focus group by asking whether the presented results were in line with
the participant’s expectations of how mobile testing is applied in practice.
All participants agreed on the fact that, based on their experience, mobile
apps are poorly tested and that, unfortunately, our results for RQ1 provide
a representative overview of what happens in practice. In this respect, P1
commented that “the majority of mobile developers have poor testing skills
and, indeed, they mostly perform manual testing by adding pre- and post-
conditions in the production code”. In other words, according to P1’s opinion,
developers tend not to develop test cases but verify the behavior of their apps
by crafting specific statements within the production code to verify pre- and
post-conditions while developing or evolving the code. It also turned out that
these statements might be even opportunistically disabled, i.e., test code is
activated for debugging purposes and then commented when the app is finally
released. The other participants agreedwith the P1’s take, yet they also pointed

11.6 rq5 - on the developer’s opinions on mobile app testing 219

out that this is a typical behavior observed with small applications developed
by a few number of developers having low or no software engineering skills.
P4 also found another motivation for the low amount of tests: in some cases,
s/he said, “testing specific usage scenarios is challenging, since mobile
apps can interact with various hardware components and sensors (like the
Bluetooth)”. Hence, the overall discussion not only highlighted education
challenges, e.g., how to address the problem of testing mobile applications
at an education level, but also that developers sometimes need specific test
beds or mocking strategies to simulate the behavior of external hardware
components.

When it comes to the classification of test cases reported inRQ1 (see Table
11.2), the participants unanimously agreed that the higher percentage of unit
tests discovered in our study is due to the higher simplicity of performing
unit testing with respect to the other types. Furthermore, P1 pointed out that
“the lower amount of integration and system tests might be also explained
with developers writing tests that cover very specific, domain- and context-
dependent use cases of their applications”. Reasoning around this statement,
it seems that the small number of integration and system tests may not
necessarily be a problem in practice, since developers might have a deeper
knowledge of the use cases that users will more frequently apply. Perhaps
more importantly, P2 and P5 highlighted that mobile developers have the
opportunity to test apps as a whole by employing established behavioral
testing framework like Cucumber7 and others—which are actually widely
used in practice [167]. Interestingly, however, P2 reported that: “behavioral
tests provide developers with the perception that everything is working
properly, but there must still be uncaught bugs. Nevertheless, in most cases
developers accept those bugs since the cost of writing integration and system
tests would be excessive”. These observations allowed us to provide two
main conclusions. On the one hand, having a few integration and system
tests might not necessarily be an issue as long as they are complemented
with testing frameworks that can exercise the app in different manner. On
the other hand, our findings further support the work done by the research

7 https://cucumber.io

https://cucumber.io

220 software testing and android applications

community around automatic test case generation: as a matter of fact, writing
tests remain a costly activity that should be appropriately supported with
automated mechanisms, especially in a context where continuous releases
are expected to be delivered.

Our participants also actively discussed the results reporting non-functional
attributes to be poorly tested. P3 argued that “while there exist some frame-
works to assist developers while exercising, for instance, performance and
energy constraints, software companies do not often care about these types
of testing”, i.e., companies focus on functional requirements, neglecting
non-functional ones. Moreover, P3 explained that “it is hard to create
non-functional tests because the definition of oracles is challenging and
developers do not often have expertise to deal with the complexity of these
tests”. The other participants also pointed out a lack of tools able to measure
non-functional aspects. To draw a conclusion, the discussion raised two main
challenges for researchers: the need for more research on oracles and the need
for more techniques/tools able to properly assess non-functional attributes of
mobile applications - especially when these depend on external events.

Commenting RQ2. Moving the attention to the developer’s take on the
results achieved when considering the design quality of the manual tests object
of our investigation, the participants were quite interested in commenting
on the documentation of those tests. P2 pointed out that “is it not really
surprising that amount of comments is low. There is a growing trend in
industry for which developers should not spend too much time in documenting
test cases since they will not frequently change over time”. P5 confirmed this
line of thinking and added that “in the company I worked, the governance
used to employ a strict naming convention to enforce developers write test
names that clearly define the goals of the test and its target; in this way,
failing tests could be easily retrieved and diagnosed”. These observations led
us to first argue that the documentation strategies for test cases are drastically
different from those of production code, i.e., the focus is on names that can
quickly evoke the responsibilities of the tests rather that on code comments
that are more costly to write and may possibly become outdated. At the same
time, we still see room for better assisting developers by means of improved

11.6 rq5 - on the developer’s opinions on mobile app testing 221

automatic code comment generators as well as refactoring instruments that
can update tests and their documentation when new changes to production
code are applied.
When addressing the readability of test code, participants were instead

reluctant to consider this as a relevant aspect for design quality. In this
respect, P2 reported that “the readability of tests is much lower than the
one of production code, but this is quite normal given the different goal that
testing has”. In other words, the participant argued that the main objective
of test cases is to find defects, independently from how good the test code
is readable. Additionally, P4 claimed that “the readability values are really
low considering that tests are usually short pieces of code. Perhaps, the
metric employed does not appropriately capture the readability of tests”. This
statement led to the formulation of a hypothesis: the currently available test
metrics do not properly measure the desirable properties of test cases. We
further investigated such a hypotheses in the remainder of the discussion.
The participants also had concerns when discussing the structural code

metrics. P3 reported that “in my experience, low cohesion and high coupling
in tests indicate that there is something wrong in production code”; the other
participants agreed with this statement and confirmed that the status of test
cases often simply reflects the quality of production code. Going deeper into
the discussion of the specific metrics, P2 added that “the coupling values
are particularly worrisome, it is likely that tests only exercise a few methods
of the production code”, while P1 reported that “the test cohesion must not
necessarily be high, yet this may indicate that there exist poorly cohesive
test suites exercising more production classes”. Based on these observations,
it seems clear that there is a strong relation between production and test
quality and, therefore, our results can reflect the more general poor quality of
mobile applications—hence corroborating the findings by Linares-Vásquez
et al.[166].
To conclude the discussion on RQ2, the moderators explicitly asked

participants whether the available test code metrics are actually suitable to
provide developers with relevant information about the design quality of tests.
In response, P2 explained that “there are some good metrics, like LOC, while

222 software testing and android applications

others are quite meaningless in practice, like the comment ratio”. More in
general, P1 reported that “the level and goal of the metrics that we expect to
assess tests is different from those of production code”. Although our findings
in this respect are not conclusive, we believe they raise the need for further
investigations into the real usefulness of the current metrics.

Commenting RQ3. The participants went through the results achieved
when computing code coverage and assertion density. In the first place, all
participants agreed that the results are not surprising: these are, indeed, in
line with their expectations since “it is a standard, yet unhealthy practice
that of considering test cases as second-class citizens", said P5.
P2 added that “most of the tests analyzed are at unit-level, which makes

the low coverage even more worrisome: they are likely to exercise only the
easiest parts of the production code”. More in general, P3 commented that
“even if the coverage is objectively low, this metric does not necessarily imply
that the tests cannot catch defects”.On the one hand, this confirms recent
findings by Grano et al.[102], i.e., test case effectiveness is a multifaceted
concept that should be assessed by combining multiple metrics. On the other
hand, the participants’ opinions led us to further push the need for additional
investigations into the definition of novel metrics to assess test code quality
and effectiveness.

The discussion on assertion density led to a similar conclusion. P1 reported
that “some tests might be useful even when they have no assertions; the
assertion density is a metric, but not necessarily good”. In addition, P1 and
P4 observed that the metric computation is naturally biased by the amount
of code required to setup the test environment, i.e., if a test requires more
code to prepare the environment the denominator will be higher, leading to a
lower density that does not necessarily indicate the poor quality of the test.
Concluding the discussion for these results, we could confirm that the

general feeling of our participants was that the available testing metrics are
not enough to provide a comprehensive view of test code effectiveness.

Commenting RQ4.When discussing the results on the relation between
test code properties and post-release defects, participants basically confirmed
the opinions given for the previous research questions. In the first place, they

11.7 conclusion 223

pointed out that test cases of such a poor quality cannot provide any significant
indication to developers and are, naturally, going to fail in catching defects in
production code. They also clarified how the continuous changing nature of
mobile apps make the testing development process particularly challenging,
since tests must be frequently updated and, as a matter of fact, there is typically
not enough workforce, time nor experience to write effective tests and deal
with the intrinsic complexity given by the environmental constraints (e.g.,
hardware components and sensors).

¤ Summing Up: The quantitative results of our study reflect the ex-
pectations that developers have of the status of mobile app testing. The
participants provided further explanations and insights into the matter, e.g.,
by raising specific education and technical challenges that the research
community should carefully look at. In addition, our focus group let emerge
the need for additional/novel metrics able to better measure both quality
and effectiveness of test cases.

11.7 conclusion

In this chapter, we conducted a large-scale investigation into the character-
istics of test suites written by developers of mobile applications under four
perspectives, namely (1) whether and to what extent these apps are tested
and which kind of tests are developed, (2) what is the design quality of the
test suites, in terms of code metrics and test smells, (3) what is the effective-
ness of tests, considering assertion density and code coverage, and (4) how
test-related metrics are associated to the defect-proneness of production code.
The quantitative insights coming from the analysis of these aspects were then
discussed in the context of a focus group involving 5 mobile testing experts,
who commented the achieved results and provided practical explanations and
experience reports useful for understanding the status of testing in mobile as
well as the key limitations that must be addressed.

The main results of the study highlight that 40% of the considered apps
have at least one test suite; developers mostly test source code to exercise its
functionalities, while other types of testing are less widespread. Test smells

224 software testing and android applications

represent a key problem for most of the test suites, since some of them
exhibit characteristics making them possibly flaky. Their effectiveness is low
when considering all the computed metrics. Finally, the characteristics of
test cases lead to a negative impact on production code and, indeed, most
of the statistically significant test-related factors in our study are correlated
to a higher defect-proneness of the corresponding classes. These findings
reflected the expectations that the involved experts had when thinking of the
status of mobile testing. Furthermore, from the focus group discussion we
could delineate a number of education and technical challenges that future
research should address.

12
T H R E AT S T O VA L I D I T Y, D I S C U S S I O N , A N D
I M P L I CAT I O N S

This chapter reports some aspects that might have threaten the validity of the
results achieved in our empirical studies and discusses our main findings to
answer RQc and RQd.

12.1 threats to validity

The results of our studies might have been biased by a number of factors. In
this section, we overview the main threats to validity and how we mitigated
them.

12.1.1 Threats to Construct Validity

Threats in this category are concerned with the relation between theory and
observation. A key point in this regard is related to the accuracy of the tools
used to compute the metrics for the two studies. This threat has been mitigated
by the selection of tools that are (i) well established in the field (e.g., Decor
[197] for the detection of code smells) and (ii) accurate enough for conducting
our study, according to the manual validations conducted in the context of
our work. However, it is worth mentioning that the manual analyses could
only deal with false positives but not with false negatives.
A partially different discussion should be made when considering test

smells. To detect them, we relied on the detector made available by Bavota et
al.[25]. While previous studies have shown that its F-Measure is close to 86%
[25, 239, 241], the detector could have had a different accuracy in our context.
Recognizing this as a possible threat to validity, we conducted an additional

225

226 threats to validity, discussion, and implications

investigation aimed at measuring the precision of the detector.1 Unlike the
case of code smells, we could not validate all the 1,217 instances output by
the test smell detector as a manual analysis would have been excessively
expensive. Instead, we focused on a stratified statistically significant sample
(confidence level=95%, confidence interval=5%) composed of 169 instances.
The task was jointly conducted by two inspectors and consisted of assessing
whether each test smell candidate presented a certain design issue. At the end
of the process, 86% of the instances were considered as real test smells - thus
confirming the high precision of the detector.

We are also aware of the possible limitations of the SZZ algorithm that we
adopted to identify commits where defects were introduced, as highlighted
in recent works [265]: in this respect, we conducted a manual validation of
the results of the SZZ algorithm that aimed at excluding false positives. Of
course, we are aware that this analysis could not cope with false negatives.
Another discussion point relates to the methodology employed to link

production classes to test cases: in particular, we employed a traceability
technique based on naming conventions, i.e., it identifies the test corresponding
to a certain production class by looking at the name of the test and verifying
whether it is the same as the production class expect with the prefix ‘Test’.
While the accuracy of the technique has been previously assessed [310]
showing a good compromise between accuracy and scalability, the linking
proceduremay have introduced some bias in cases tests exercising a production
class are not all included in the test suite retrieved by the technique but put in
other test suites. In our case, this may have been happened, as mentioned by
the interviewed developer of Apache Commons-Pool who commented on
our findings in the context of our additional qualitative analysis.

There are two observations to make with respect to this potential bias. First,
it has been pointed out by only one developer and was related to only one of
the considered projects: as such, we are not able to estimate the extent of this
bias in other systems as well as to verify whether this may have represented a
general problem for Commons-Pool or if it was instead focused on a subset
of classes of the project—it is worth noting that a manual examination of this

1 The recall cannot be assessed because of the lack of an oracle.

12.1 threats to validity 227

bias would have not only been prohibitively expensive, but also error-prone
given our lack of expertise on the project. Second, we could not identify
an alternative traceability technique which may have provided better results
than the one employed: indeed, while some more sophisticated test-to-code
traceability techniques have been proposed [247], these are likely to suffer
from similar issues as the one based on naming convention. As an example,
the slicing-based approach proposed by Qusef et al.[259] exploits slicing
and conceptual coupling to identify the set of test suites associated with a
production class. By design, this approach may have higher recall, since it
is able to model the case in which more test suites exist for a production
class. At the same time, however, this may not be enough. The involved
developer mentioned a finer-grained problem where specific test cases are
included in other suites, as opposed to the existence of multiple test suites for
a production class. As such, the technique by Qusef et al.[259] may lead to
overestimate the number of tests for a certain class, decreasing the precision
of the analysis. In other words, such a fine-grained linking between test suites
and production classes would have needed a traceability approach able to
cluster the test cases connected to a production class: unfortunately, to the best
of our knowledge, such a technique is not available in literature—we hope
that this additional finding may serve as an input for the software traceability
research community.
Furthermore, to extract a comprehensive list of test-related factors to

experiment, in the fist study we applied a MLR [94]. In this regard, possible
threats refer to the soundness and completeness of the review. With respect
to the former, two inspectors followed well-established guidelines [143, 326]
to search, analyze, and select relevant sources; moreover, the joint work
conducted by the two authors have reduced the risk of subjective evaluations
of the resources to include as well as allowed a quick solving of possible
disagreements. As for the latter, we defined a search query targeting the
research goals of the study; at the same time, we targeted databases that
allow searching for most of the white papers published in our community.
Furthermore, we analyzed all the relevant Google pages when gathering
gray literature, also performing it using the incognito mode to avoid biases

228 threats to validity, discussion, and implications

due to previous navigation history. However, it is worth noting that, being
very specific, our search query could have led to overlooking some potential
sources; indeed, the resulting number of retrieved sources is quite limited.
Anyway, we think that this just represents a marginal threat to the study
validity since a wide set of heterogeneous factors was retrieved by the MLR
process.
Finally, previous work has found that some of the applications available

in the F-Droid repository are very basic projects [97, 98], thus possibly
biasing the conclusions of our second study. To overcome this limitation,
we manually went over each of the initially downloaded apps in order to
discard those that appeared to be too trivial to be considered. In particular, we
looked at their repository in order to check whether they result active, e.g., in
terms of commits, conjecturing that trivial apps are not updated and actively
developed, e.g., since could be part of a university project for an exam.

12.1.2 Threats to External Validity

With respect to the generalizability of our findings, in our first study we
analyzed eight open-source Java projects. Analyzing only a small number of
systems could threat the external validity of our study. However, during the
context selection, we had to deal with a set of constraints that have significantly
limited the list of candidate systems. In particular, we restricted our search to
Maven projects with no sub-modules and a standard Maven structure. We
made this choice to allow the employment of the PiTest command-line tool
for the calculation of the dynamic factors (i.e., line and mutation coverage).
Nevertheless, further replications of our study, conducted in different contexts
overcoming the constraints mentioned above (e.g., by aggregating the results
of multiple submodules) might be worthwhile to corroborate our findings. In
the second study, instead, we targeted a large set of open-source applications,
thus allowing the verification of the characteristics of tests on a large scale.
Nevertheless, it is worth pointing out that our findings may differ in different
contexts, e.g., in closed-source apps testing practice results different, as well
as settings, e.g., when considering test smells other than those taken into

12.1 threats to validity 229

account. As such, further replications of our study would be desirable and
are already part of our future research agenda.

Moreover, it is worth remarking that the statistical models were built over
the specific independent, control, and dependent variables adopted in the two
studies. Despite our effort in taking into account all factors known to have
an impact on post-release defects, we are aware that different results may
arise when considering different/additional variables. Similarly, our findings
on the relation between test smells and software quality are deemed to be
valid for the five test smell types considered in the study: other results may
be achieved with other design issues.
Another aspect to consider when interpreting our results is that some

post-release defects may be discovered with unit testing, while others can be
found only at higher-levels (e.g., with integration or system testing) [66]. We
are aware of this point and recognize that our study is limited to the analysis
of the behavior and the relation that unit tests have with post-release defects.
Replications of our studies targeting different test levels would provide a
more comprehensive view of how tests can forecast post-release defects. On
a similar note, our study investigated the role of the tests actually available in
the considered software projects: it may be possible that different results could
be achieved in cases where the diversity of test cases, i.e., the extent to which
a test is different from the others in the suite [76, 77], is higher. Understanding
the impact of diversity on both test and production code quality is part of our
future investigations.

12.1.3 Threats to Conclusion Validity

As for the relationship between treatment and outcome, a first possible threat
is connected to the statistical models built in our studies. Throughout our
research, we controlled the impact of independent variables for possible
confounding effects due to the characteristics of production code, considering
both product and process metrics that have been shown to be connected with
the dependent variable.

230 threats to validity, discussion, and implications

Another threat is related to the actual suitability of the employed statistical
method, i.e., Generalized Linear Model. In this regard, before selecting it
we verified the assumptions that the model makes on the underlying data.
Nevertheless, it may still be possible that the statistically significant variables
discovered through the use of linear regression may be due to the specific
data manipulation and analysis done by the statistical model [120].
Another potential threat could be related to the manual analysis we

performed to classify granularity and type of tests in mobile applications. To
this aim, we followed a grounded-theory approach [255] where two authors
first classified an identical set of tests in order to tune their judgment and
proceeded with the classification process smoothly. Of course, we still cannot
exclude the presence of some imprecision in the classification, however the
high agreement reached by the inspectors makes us confident of the reliability
of the process conducted.

As a final remark, in our second study we follow a focus groupmethodology.
This is a qualitative research method that, by nature, does not require the
participation of a large amount of experts — it is explicitly designed to
have a small group of participants able to foster discussion and provide
insights/recommendations on the phenomenon of interest [266, 325]. The
conclusions reached might not be definitive: we are aware of that, yet we
preferred to have in-depth opinions on the findings achieved in the mining
study rather than more generic results that might have achieved using other
instruments, e.g., surveys. As usual, however, replications are desirable and
might provide complementary insights into the testing of mobile applications.

12.1.4 Threats to Internal validity

This category of threats concern with intrinsic factors of our studies that
could have influenced the reported results. In this regard, there are some
intrinsic issues when computing some of the test-related factors, like mutation
coverage. In particular, there are two relevant aspects when measuring this
metric: the problem of equivalent mutants and the one of live mutants. As for
the former, it arises when two generated mutants are semantically equivalent.

12.2 discussion and implications 231

Unfortunately, determining whether a mutant is equivalent is an undecidable
problem. Furthermore, detecting them is also hard - there is still no mature
tool available for this task [175] - and computationally expensive [218]. For
these reasons, equivalent mutants represent a common threat to the validity
of the results of studies concerned with mutation testing. In our study setup
we took into account the equivalent mutants problem when selecting the
mutation testing tool. Among the available ones, PiTest has shown better
performance than others: specifically, less than 20% of the mutants generated
by the tool are deemed to be equivalent, which represents an important step
forward in the context of mutation testing [79]. Other control mechanisms,
e.g., manual removal of equivalent mutants, would not be feasible in our case
because of the high number of mutants generated by PiTest.
As for the live mutants, these represent the mutants generated by the tool

but not detected by the available tests. Live mutants allow the mutation score
computation (i.e., mutants detected over mutants generated). On average,
these mutants represent around 30% of all mutants generated, as shown in
Section 10.2.3, meaning that most of the tests in our dataset have a rather
high mutation score. This suggests that the study takes into account valuable
tests that can actually be used to investigate post-release defects.

12.2 discussion and implications

This section discusses the main findings of the studies presented in Part II in
response to RQc and RQd.

12.2.1 RQc - On the relation between test-related factors and software code
quality

The results of the studies in Chapter 9 and 10 provided two main findings to
be further discuss.

On the (limited) importance of test-related factors for software code
quality. The main outcome of our research reports that—surprisingly—most
of the considered test-related factors do not have a significant explanatory

232 threats to validity, discussion, and implications

power with respect to post-release defects. Despite this could seem strange,
it is possible to reason on why this could happen. Let consider a scenario
in which tests have good quality and effectiveness: these tests are likely to
accurately identify defects present in the same snapshot of the production
code, however they do not necessarily predict the future defect-proneness of
the class under test. So, probably the test-related factors commonly known
and used in literature are not appropriate enough to catch the defect proneness
of the exercised code. Proposing new metrics able to describe the relation
between tests and software quality could be an interesting cue for future
works.

From another point of view, there are some exceptions that may allow us to
claim that keeping test code design under control might still help developers
in reducing the number of post-release defects. In the first place, the test
LOC metric not only appears as highly significant, but it is also inversely
proportional to the dependent variable: this indicates that larger tests (that are
likely to exercise deeper the production code) reduce the risk of having defects
in future versions of the system. Thus, our findings seem to indicate that
the lines of code of a test suite may represent a proxy measure for test-code
effectiveness.

Furthermore, while other test-related factors investigated in the study (e.g.,
line coverage or assertion density) are not correlated enough to test LOC
to cause collinearity, it is reasonable to believe that they have some sort of
relations with the size of the test: for instance, the assertion density generally
tends to increase with the size of the test [154]. On the one hand, these
relations should be further assessed in the future. On the other hand, this
observation may further suggest that high-quality tests lead to post-release
defect reduction: the results achieved on the role of test smells, particularly
Mystery Guest, also go toward this conclusion.

In order to better comment on our results, we performed an additional qual-
itative analysis in which we contacted the top contributors of the considered
projects. In so doing, we followed a similar experimental design as Mäntylä
et al.[180]. In particular, we sent direct e-mails to the two top developers of
the systems, i.e., the two having the highest amount of commits, asking them

12.2 discussion and implications 233

to comment on our findings and provide feedback on some boundary cases
we discovered when analyzing their systems—this means that developers
were inquired only on the matters related to their own projects. Unfortunately,
we received an answer for just one of the considered systems—even tough
they were insightful to better contextualize and understand the findings of the
study. The answers was related to Commons-Pool. In this specific case, we
asked the developer to comment on the release 2.3 of the project, in which
the class named BaseGenericObjectPool had 849 lines of code, while the
corresponding test suite BaseGenericObjectPoolTest had just 43 lines of
code. After release 2.3, the class BaseGenericObjectPool had 23 defects.
At a first sight, this may suggest that the test suite was not robust enough in
preventing or diagnosing the introduction of defects. However, the developer
found that just considering the test suite BaseGenericObjectPoolTest
could potentially be not enough. He pointed out to us that when code is
refactored, the tests are left in the original test suites to help detect re-
gressions during the refactoring. So, there could exist a subset of tests
in other classes, that we did not consider, which exercise the production
class BaseGenericObjectPool—the test-to-code traceability technique ex-
ploited in the study may have under-estimated the number of tests connected
to the production class.
To sum up, our findings reveal that the problem of understanding the

effect of tests on post-release defects is still open and would require further
investigations—especially in the lights of the potential threat to validity related
to the test-to-code traceability technique raised by the involved developer.
At the same time, the results provide some hints of the importance of (i)
test-related factors for software quality, even though other aspects, e.g.,
the number of changes to production code, are still primarily connected to
post-release defects and (ii) continuously keep test suites up to date with the
changes applied to production code.

On the comparison with previous studies. A number of researchers have
investigated the role of test-related factors on post-release defects in the past,
finding them as highly relevant. While our results do not tell the opposite,

234 threats to validity, discussion, and implications

we found that most of the considered factors have a lower explanatory power
than the one previously reported.
The key to explain the difference between our outcomes and the ones

previously provided is in the presence of confounding factors that possibly
balanced the effect of test-related factors. This is particularly true in the
case of LOCs of production class and pre-release changes, that are the most
relevant metrics to explain the future defect-proneness of source code and
are directly proportional to the dependent variable, i.e., the higher the size
and the number of pre-release changes, the higher the number of post-release
defects. This suggests a pretty straightforward interpretation: classes having
large size or being involved in several changes over the history are more prone
to have defects in the future.

Our results provide a number of implications for both research community
and practitioners.

Keep the change process under control. The most important finding of
our study is the very high influence of pre-release changes on post-release
defects. This relation indicates that the change frequency of classes impacts
the future defect-proneness of production code more than other aspects,
confirming previous findings on the relationship between change- and defect-
proneness [52, 119]. In this respect, it may be possible that high-quality
pre-release changes prevent the emergence of post-release defects: we indeed
noticed that the LOC of production code—which has been often used as
a proxy metric for code quality—and pre-release defects are statistically
significant factors for the future defect-proneness of source code. Based
on these observations, we can claim that keeping the change process under
control would be worthwhile and that the definition of mechanisms supporting
developers when dealing with software evolution represents a key challenge
for the research community. While a number of attempts in this direction
have been performed during the last years, e.g., through the definition of of
just-in-time quality assurance mechanisms [130, 246, 248], we believe that
further research effort should be invested. In particular, most of the approaches
developed so far should be considered as prototypes and, as such, are still not
mature enough to be used in practice. For example, researchers have been

12.2 discussion and implications 235

working on just-in-time defect prediction models (e.g., [130, 248]), but up
to now there are no fully-available tools that enable their practical usage.
This clearly represents a key threat to the adoption of these tools in practice
that the research community should investigate more. As a consequence,
we argue that continuous integration pipelines as well as typical software
development practices should be empowered with additional instruments
that allow developers to promptly assess the quality of the changes made on
production code: for instance, we refer to defect localization tools that can be
integrated within CI environments or code smell detectors and refactoring
recommenders that allow an agile quality improvement of source code during
the code review process.
At the same time, tool vendors have been spending effort in providing

developers with tools that can help them spotting defects. The main outcome
is represented by automated static analysis tools, which are generally used
in open-source systems as highlighted by a number of papers in literature
[315, 320, 336]. One of these tools is FindBugs, which is the one employed
by the Apache Software Foundation and, as a consequence, by the
projects considered in our study (this tool is configured within the Apache
Continuum server they have in place). On the one hand, static analysis
tools suffer from a high rate of false positive alerts [127]: this aspect has the
effect of reducing the trust of developers with respect to the outcome of these
tools, possibly leading them to ignore relevant defect warnings. On the other
hand, it has been shown that open-source systems (including those of the
Apache Commons family) do not apply continuous code quality practices
[314], meaning that they do not run quality checks at every build they do:
this is an additional limitation of the current quality assurance practices.
According to these observations, our work further stimulates the research
effort around the definition of techniques able to reduce the number of false
positives given by static analysis tools as well as mechanisms enabling the
adoption of continuous code quality.

Test-related factors and defect prediction. The results of the study revealed
that, in some cases, test-related factors are related to post-release defects.
While we cannot speculate on whether there exist specific types of defects

236 threats to validity, discussion, and implications

that can be better analyzed through the exploitation of test-related factors,
we still see some value in this finding. More specifically, from our study we
observed that test-related factors become relevant especially when process
metrics are not considered. This represents an interesting case for defect
prediction: indeed, new projects interested in deploying these models might
not have enough historical data to enable the computation of process metrics.
In these cases, there are two solutions. On the one hand, developers may
rely on cross-project information to train defect prediction models [340]:
nevertheless, the adoption of this strategy does not still provide accurate
results, hence limiting its applicability. On the other hand, developers can
create prediction models based on product information coming from the
analysis of their own systems: our results can be useful in this context, as
test-related factors may complement other product metrics and potentially
improve the quality of the predictions. In the recent past, researchers have
started looking at the role of tests in defect prediction [31], however we
believe that our study may inspire further research on the matter, especially
based on the factors that turned to be important for post-release defects, e.g.,
test size or presence of five test smells considered in the study.

Test-related factors and automatic test case generation.Our findings point
out that other test-related factors, namely test size and test smells, are more
related to post-release defects than metrics generally considered relevant,
i.e., code or mutation coverage. This seems to suggest that the design of
test suites matter. This may possibly pave the way for the next generation
of automatic test case techniques that do not consider anymore (or decrease
the importance of) code and mutation coverage as main metrics to optimize
during the creation process: such a generation mechanism would possibly
allow automatic tools to focus on the creation of tests around factors that are
more connected to post-release defects (as also proved by Kochhar et al.[145]).
Furthermore, our results also highlight the existence of production-related
factors, and specifically production code size and presence of code smells,
that have a relation with post-release defects. It would be worth to consider
how these production-related factors can contribute to the generation of
effective test classes: for example, existing automated tools may exploit these

12.2 discussion and implications 237

metrics within their fitness function and balance them with other metrics
with the aim of refining or further optimizing the generated test suites around
the metrics that are more connected to post-release defects.

12.2.2 RQd - Testing activities in mobile applications

We addressed RQd in Chapter 11. The achieved results provided a number
of insights and practical implications for the research community that need
further discussion.

Mobile apps contain very few numbers of Java tests. The first evident,
worrisome result of our study clearly indicated the lack of tests in mobile
applications: not only the mean number of tests is≈ 3, but also the percentage
of apps without any test is rather high (60%). There are multiple factors
possibly contributing to this finding. First, our dataset is composed of open-
source mobile applications that can be developed under different conditions
with respect to other applications: as an example, they can be developed
by inexperienced or novice programmers with little knowledge on testing
practices [319]. During the focus group discussion, our participants also raised
this point and commented on how the lack of software engineering/testing
expertise can have a significant impact on how mobile applications are tested.
At the same time, the developers involved reported that test cases are typically
seen as second-class citizens, especially in a dynamic environment like the
one of mobile development, where a continuous release model might soon
make tests outdated other than increasing the cost required to maintain and
evolve them. In this respect, our findings corroborate previous results obtained
by Beller et al.[27] on the lack of developer’s willingness in successfully
evolving tests. As an exemplary case appearing in our dataset, let consider
the case of Acastus Photon,2 an online address/POI search for navigation
apps. Looking deeper at its issue tracker and the developer’s comments, we
noticed that the developers of the app have consciously postponed some
testing activities with the aim of entering the market faster or because of the
lack of time to dedicate to testing. For instance, in one of the issues still open

2 https://f-droid.org/en/packages/name.gdr.acastus_photon/

238 threats to validity, discussion, and implications

on the issue tracker (#2), one of the core developers of the app posted the
following comment:

“[...] I’m probably going to merge the build changes later on
too. [...] I don’t have time to test them right now so just merging
master.”

As shown, in this case the developer decided not to test the newly committed
code change because of the need to other modifications to the production code.
Even without an extensive search, we found similar cases in other apps of our
dataset. Finally, our findings can be also due to the limited automated support
that developers have when testing their apps. As pointed out in the context
of our focus group, mobile developers experience very specific challenges
when developing test cases, like the need for considering external events
coming from hardware components or sensors. By looking at the state of the
art, there exist a number of tools to automate GUI testing (e.g., Monkey or
Sapienz [182]), other than some frameworks for behavioral-driven testing,
yet only a few automated and practical mechanisms are available for the
generation of functional and non-functional test cases (e.g., Evosuite [89]).
In addition, these tools do not explicitly take into account the problem of
mocking hardware components. As such, our findings do not only support
the research in the field of automatic test case generation, but also call for the
definition of mobile-specific instruments.

On integration and system testing. According to our findings, most of the
test suites present in mobile apps pertain to unit testing, while we discovered
only a limited amount of them referring to integration and system testing [17].
This result might be due to various reasons. While the lack of automated tools
and/or support mechanisms might influence the way mobile developers verify
their apps for integration- and system-level faults, it is also worth remarking
that different verification mechanisms, like manual validation, crowd-testing
[158], or even the use of external tools that can exercise the apps to verify
certain specific properties (e.g., energy consumption [70, 123]), might be put
in place. As an example, our study highlighted that, depending on the context,
the lack of automated integration and system Java tests might not necessarily

12.2 discussion and implications 239

be a problem because developers may want to test the use cases that users
perform more often when using the app, hence leading to the application
of non-systematic or opportunistic testing strategies that are not automated,
e.g., crowd-testing [158]. On the one hand, our findings may possibly pave
the way for novel smart techniques that can analyze runtime usage logs to
recommend when to add test cases or suggest modifications to the current
ones. On the other hand, we point out the need for additional investigations
into the methodologies employed by developers to perform integration and
system testing.

Enabling testing of non-functional attributes.Most of the tests developed
in mobile apps relate to functional aspects of production code, while few of
them refer to testing of non-functional attributes like, for instance, energy
consumption, security, or performance. The developers involved in our focus
group clearly pointed out how hard the development of these tests can be.
There are two key limitations of the state of the art in this respect. In the first
place, defining an oracle for these types of test is a challenging or even a
non-deterministic task, e.g., the oracle of an energy test must necessarily take
into account the non-determinism of energy measurements. In the second
place, our study highlighted a worrisome lack of instruments that support
developers when measuring non-functional aspects: these have been often
connected to the commercial success of mobile applications [22, 233, 237],
making the lack of testing a threat for the overall sustainability of these apps.
On the basis of these results, we therefore argue that more methods to manage
the complexity of non-functional attribute testing should be designed: while
the research community has been working already on the measurement side
(e.g., [70]), to the best of our knowledge there is no study targeting the oracle
problem when considering non-functional testing.

The design quality of mobile apps is low. Our findings report that most
of the tests analyzed are affected by some form of test smells. Previous
researches have shown how these problems can turn into critical threats to the
effectiveness of tests [280]. To identify them, some test smell detectors have
been developed in the past [107, 241, 311] and experimented in the context
of mobile applications [250, 251]. Yet, there is no empirically-assessed

240 threats to validity, discussion, and implications

technique available to automatically refactor test code. As such, the practical
support provided to mobile developers is still very limited.

On the need of novel metrics for test code quality. When analyzing the
quality of test suites, we also computed code metrics capturing cohesion,
coupling, complexity, and documentation aspects. Our quantitative analyses
revealed a contradiction between the metric profile of tests and the actual
presence of design issues. While the values of the metrics would not indicate
problems with the design of test cases, we discovered that test smells are
often present and lower the maintainability and understandability of tests. By
contrasting these results with those achieved in our qualitative investigation,
we discovered that the meaningfulness of these metrics is limited. The
involved developers not only presented practical scenarios where the metrics
could not be relevant (e.g., companies may implement guidelines for naming
conventions, discouraging developers to write code comments), but also
pointed out that the level and scope of test metrics are different from those
of production code. Our findings indicate that researchers should go beyond
the currently available code metrics and define novel indicators that can
better quantify the quality of test cases. Furthermore, on the basis of our
results we argue that both available and prospective quality metrics should
be re-contextualized for mobile applications, for instance by providing an
easy way to quantity how much the quality of tests depend on the quality of
production code.

On the effectiveness of test suites. Another relevant finding is the low
effectiveness of the test cases analyzed when considering both code coverage
and assertion density. On the one hand, these metrics have been previously
positively correlated to the fault detection capabilities of tests: as such, their
low value is somewhat worrisome and depict a critical situation for the mobile
applications considered. On the other hand, however, developers raised some
practical critiques to thosemetrics: the assertion density computationmight be
biased by the amount of code required to setup the test environment, while the
coverage only provides a part of the whole story. These observations further
confirm the need to establish novel methods to evaluate test cases. Moreover,
the results corroborate recent findings showing that the effectiveness of tests

12.2 discussion and implications 241

represent a phenomenon that goes way beyond the currently available methods
[102]: as such, we argue that newly proposed metrics should consider the
aspects deemed important for developers and, more importantly, possibly be
directly assessed against the developer’s perception of test code effectiveness.

Teaching software testing. To some extent, both the quantitative and quali-
tative findings of our study showed that mobile developers do not have proper
testing skills. This is even worse when considering the constraints that mobile
apps might have, e.g., the interaction with sensors. As a consequence, our
study highlights the need for interventions on an educational level. This
concerns both software engineering courses covering basic testing skills,
and more sectoral courses on mobile development providing students with
specific mobile-oriented skills: we not only argue that the focus on testing
practices should increase from a technical perspective, but educators should
further pushed on the value of having quality and effective test suites in
practice, for instance by showing the extent to which testing is connected to
the failure of software engineering projects [291] or by designing additional
seminars on the matter, trying to engage students with practitioners.

Part III

C O N C LU S I O N A N D F U RT H E R R E S E A RC H
D I R E C T I O N S

13
C O N C LU S I O N

The software engineering research community has been dedicating more
and more attention to technical debt, its consequences, and the cause that
lead to its introduction. Despite the noticeable effort spent so far, there are
some aspects that are still unexplored, as well as some limitations that are not
been overcame yet. In this thesis, we put our focus on two specific technical
debt-related topics, namely code smell detection and technical debt in test
code.
We firstly deal with the detection of code smells, which represent one

of the most common forms of technical debt. Our aim was to mitigate
the limitation of existing code smell detection heuristic techniques, i.e., (i)
subjective developers’ interpretation of their outcomes, (ii) low agreement
between different detectors, and (iii) performance strictly related to thresholds
definition. In this regard, our solution was to investigate the application of
machine learning-based techniques for code smell detection. This led us to
our first study [C01] (Chapter 3), in which we compared the performance
of heuristic and machine learning-based techniques on a manually-validated
dataset composed of 125 releases of 13 open source projects, considering five
code smell types in a within-project scenario. Results of these preliminary
studies highlighted that machine learning-based approaches are still immature
to be applied in practice.
More importantly, our preliminary results also highlighted three main

limitations of ML-based code smell detection techniques:

1. ML-based techniques suffer from the highly unbalanced nature of code
smell datasets;

2. The set of metrics exploited so far could be too limited to allow
automatic identification of code smells;

245

246 conclusion

3. Similarly to heuristic techniques, also with machine learning, there is
still a developers’ subjective interpretation of the results provided.

This thesis faces these three limitations separately. In particular, to address
the first limitation, we conducted a large empirical assessment on the role
of data balancing for code smell detection [C02, J01] (see Chapter 4). In
this study, we experimented with five different data balancing techniques
and compared their performance also with a baseline ML classifier trained
without the application of any data balancing technique. Results reported that
SMOTE is the data balancing technique that leads to the best, but still limited,
performance improvement. However, considering the limited improvement
together with the overhead introduced by data balancing, in some cases could
be preferable to not apply data balancing at all.
With respect to the set of metrics to use as predictors, we considered

the introduction of other, not yet explored, metrics to predict the presence
of code smell instances in the source code component. In Chapter 5 we
presented a machine learning-based code smell detection technique that uses
the warnings generated by three static analysis tools (i.e., Checkstyle, PMD
and Findbugs) as predictors [C04, J06]. The results that emerged from a first
preliminary analysis were really promising, indicating a drastic improvement
in detection capabilities. However, more in-depth analyses conducted on a
larger dataset have shown strong limitations also for this technique, as for the
previous ones. Despite the poor limitation capabilities of the models built
on the warnings generated by a single static analysis tool, the results show a
significant improvement when these warnings are combined with each other
or with other metrics used in the past.
Finally, to tackle the problem of subjectivity, we adopted an alternative

strategy, presenting a technique able to predict the presence of code smell as
actually perceived by developers [C03] (Chapter 6). In this study we used
a set of 20 factors, related to different aspects of software development (ie,
Product metrics, process metrics, developer metrics, and code smell metrics),
to predict the criticality of code smells as perceived by developers. To measure
this aspect, over a period of 6 months we sent a total of 1,733 e-mails to
372 different developers asking them if they perceived the presence of code

13.1 lesson learnt 247

smells within newly modified classes and if so, to evaluate their criticality.
on a scale of 1 (very low) to 5 (very high). The prediction, calculated through
the use of different machine learning techniques, showed results, on average,
20% more accurate than the considered baseline.
After having conducted a comprehensive analysis of the problem of

code smell detection using machine learning, we moved our attention to
technical debt in test code. Specifically, in Chapter 10, we first conducted a
multivocal literature review (MLR) aimed at collecting all the test-related
factors associated with software code quality in the past [C06, J03]. Then, we
built a statistical model to find significant relations between those factors and
software code quality, in terms of post-release defects. Results of this statistical
analysis evidenced that test-related factors generally have a way lower impact
on software code with respect to other process-related aspects. Furthermore,
a more important outcome provided by this study is that some intrinsic
characteristics of tests, such as size and presence of test smells, have a higher
impact on production code quality with respect to other coverage metrics
considered important in the past. Other than analyzing standard systems,
we also wondered about the attention that developers pay to test in mobile
applications [C07, J04]. Chapter 11 reports a large empirical assessment in
which analyzed a dataset composed of 1,780 Android applications to assess
(i) the quantity and type of test cases present in Android applications, (ii)
the quality of the test cases, and (iii) the effectiveness of the tests. From the
results obtained, it appears that over 60% of the applications analyzed do
not contain any test cases, highlighting little attention to testing activities by
mobile application developers. As for applications containing at least one
test suite, results show that developers pay more attention to functionality
testing rather than other aspects (e.g., performance, GUI). Furthermore, it
has been shown that the analyzed test cases have low effectiveness, with code
coverage percentages around 20%.

13.1 lesson learnt

The main lessons learnt from this thesis can be summarized as follows:

248 conclusion

1. Lesson 1. Heuristic techniques for code smell detection are too limited
to be applied in practice. One of the main and most surprising results
of the study in Chapter 3 relates to the low performance of existing
heuristic code smell detectors. Specifically, while they are able to
achieve a very good recall, i.e., a high number of actually smelly
instances are detected as smell, we found the precision to be extremely
low, i.e., they generate a high number of false positive instances. These
detectors are all built on the definition of detection rules in which a set
of metrics is compared with strict thresholds. However, defining either
the metrics to use and the thresholds before is a very subjective activity
and, as also results demonstrate, it appears not to be generalizable
enough.

2. Lesson 2. Machine learning-based techniques are still immature for
code smell detection. This thesis provides a very deep analysis of the
adoption of machine learning for code smell detection. We conducted
a preliminary study in which we compared machine learning with
heuristic techniques and then we individually treated all the major
limitations identified. Despite the great effort spent so far, none of the
proposed solutions seems to work properly to be applied in practice. A
possible explanation of the low performance could be related to the
subjectivity of the problem itself. Indeed, even humans could not be
able to objectively define a ground truth of actual smells to be used as
training set for Machine Learning-based algorithms. As such, even the
manually validated data sets of code smell instances could suffer from
a subjective interpretation by the human rater.

All these consideration let us think that it might make sense to com-
pletely change the route and consider the adoption of new techniques
for detecting code smell instances in source code (e.g., deep learning).

3. Lesson 3.Developers pay low attention to testing activities. Regardless
of the context, open-source developers appear to payway lower attention
to testing activities with respect to other development activities. The
repositories we analyzed are generally characterized by few tests,

13.2 open issues 249

having low quality and low effectiveness both in the context of standard
and mobile applications.

4. Lesson 4. Test code quality matters. Despite the low attention develop-
ers spend in testing activities, our results evidenced that developing
good-quality test suites can provide important benefits for preventing
future faults in software systems. Indeed, in some cases, test code
quality appears to be even more impactful than other metrics consid-
ered important in the past for preventing bugs. This finding suggests
researchers give more prominence to test code quality, by taking into
account this aspect also in other areas such as defect prediction or au-
tomatic test case generation. Moreover, practitioners should be pushed
to pay more attention to test suites development.

13.2 open issues

Despite the effort devoted by the research community and despite the advances
proposed in this thesis, the current state of the art still propose a number of
open issues and challenges that need to be addressed in the future.

1. Open Issue 1. Machine learning for code smell detection. This thesis
demonstrates that machine learning can overcome the limitations of
heuristic techniques for code smell detection. However, at the same
time, machine learning comes with its own limitations that do not
allow its application in practice. Although this thesis already tries to
mitigate such limitations, there is still the need to design new solutions.
First of all, it is necessary to mitigate the problem of data imbalance
by proposing alternative data balancing techniques or making the
existing ones more sophisticated. Furthermore, given that our results
report that combining different sets of metrics leads to a performance
improvement, it could be worth exploring even more metrics and also
considering the combination between heuristics and machine learning-
based techniques (e.g., a classifier could detect an instance as smelly
based on the prediction provided by different heuristics). Should even

250 conclusion

these alternatives do not lead to acceptable performance, it should
be considered a complete change of route, abandoning the idea of
solving the problem of code smell detection with machine learning
and exploring the suitability of other alternative techniques such as
deep learning, search-based optimization, or anomaly detection.

2. Open Issue 2. Cross-project code smell detection. The ultimate goal of
our research on machine learning for code smell detection is to devise
a technique having high detection capabilities, being at the same time
generalizable. However, the studies proposed in this thesis adopted
a within-project model, i.e., they learn from a system to detect code
smell instances on the system itself. Clearly, these studies have the only
goal of assessing the feasibility of machine learning for code smell
detection, therefore, they cannot be applied in practice. Differently, in
a cross-project scenario, classifiers are trained on a set of systems to
detect code smell instances on another system external to the set used for
training. This wouldmakemachine learning-based code smell detection
applied in practice since it makes it possible to use known validated
data to detect code smells on an unseen project. In this regard, we have
recently performed a comparison between within- and cross-project
approaches for machine learning-based code smell detection with the
aim of discovering if a transfer learning approach (cross-project) could
bring some benefits in machine learning code smell detection research.
Our preliminary results show that there is no statistically significant
difference between the two approaches. However, since the transfer
learning approach does not perform worse than the “traditional” one,
it may be worth to keep investigating on this topic, for instance by
accurately tuning the cross-project machine learning pipeline or by
defining ad hoc software engineering for AI techniques. In our future
research agenda we plan to conduct a larger study, involving other
machine-learning models that we have not employed so far. Moreover,
whenever a new and larger code smell dataset will be available, we
plan to replicate this study in order to deepen our knowledge on this
topic.

13.3 future research directions 251

3. Open Issue 3. Defining new metrics to measure test quality and
effectiveness. Our research on technical debt in test code have provided
important insights to the research community. Specifically, our findings
report that, with respect to what previously stated in the literature,
existing metrics describing test code quality and effectiveness have a
way lower relation to software code quality. Moreover, as an outcome
from a focus group we organized with real software developers, it
came out that the set of metrics currently available to describe test
code quality and effectiveness is quite limited, therefore novel metrics
should be defined to better describe these testing attributes.

13.3 future research directions

In the following, we delineate the future research directions and report some
preliminary analyses that we already carried out to face the experienced
issues.

13.3.1 Automatic Test Case Generation 2.0

To support developers during unit testing activities, the research commu-
nity has been developing automated mechanisms that aim at generating
regression test suites targeting individual units of production code. However,
these approaches often fail to generate tests that are well-designed, easily
understandable, and maintainable [90].
One of the causes behind the poor maintainability of automatically gen-

erated test cases might be connected to the fact that existing approaches
do not explicitly follow well-established methodologies or guidelines that
suggest taking the problem of test case granularity into account [253]. In
particular, when developing unit test suites, two levels of granularity should
be preserved [117, 222, 253]: first, the creation of tests covering single
methods of the production code should be pursued, i.e., intra-method testing
[253] or basic-unit testing [222]; afterwards, tests exercising the interaction
between methods of the class should be developed in order to verify additional

252 conclusion

execution paths of the production code that would not be covered otherwise,
i.e., intra-class testing [253] or unit testing [222]. Besides producing test
cases of higher quality, a structured strategy might potentially lead to the
generation of tests whose oracle would be easier to be find for developers,
as they would be required to check smaller portions of code to identify the
expected behavior [18].

Recently, we have faced the problem of granularity in automatic test case
generation, advancing the state of the art by pursuing the first steps toward
the integration of a systematic strategy within the inner-working of automatic
test case generation approaches that might possibly support the production of
better and more comprehensible test suites [J07]. We build on top of Mosa
[244] to devise an improved technique, coined Granular-Mosa (G-Mosa
hereafter), that implements the concepts of intra-method and intra-class
testing. Our technique splits the overall search budget in two. In the first half,
G-Mosa forces the search-based algorithm to generate intra-method tests
by limiting the number of production calls to one. In the second half, the
standard Mosa implementation is executed so that the generation can cover
an arbitrary number of production methods, hence producing intra-class test
cases that exercise the interaction among methods.

Our key findings show that the defined systematic strategy actually allows
G-Mosa to create intra-method and intra-class test cases. More importantly,
the resulting suites have a lower size per test and a higher maintainability
than those generated by Mosa, yet having a statistically similar level of code
and mutation coverage.

13.3.2 From Technical Debt to Social Debt

One of the aspects that is often taken lightly while developing software
relates to the social structure organization, i.e., the structures adopted for
communication and collaboration during development phases. However, these
aspects have been found to be highly relevant factor for the success of software
systems [39, 155, 238, 289, 292]. As an example, Kwan et al. [155] showed
that the alignment between social and technical structure of the community,

13.3 future research directions 253

i.e., the so-called socio-technical congruence [39], has an effect on the build
success, while Palomba et al. [238] found that community-related factors
can increase the criticality of source code quality issues. As such, studying
software communities does not only represent a way to understand and
learn how to reduce social debt, i.e., the unforeseen cost given by a wrong
management of the communication/coordination between developers [290],
but also to possibly improve the overall quality of the technical products
being developed [155, 238].
During the last years, we have started working on these aspects by con-

ducting an empirical study on 25 open-source development communities to
evaluate (i) the relationship between community patterns (ie, recurring types
of organizational or social structures) and community smells (ie, sub-optimal
organizational models within the organizational structure that could indicate
the presence of problems related to communication and collaboration), and (ii)
the impacts of community patterns on software processes and products [C08,
J05]. Our results have shown the presence of some relationships between
community pattern and community smell as well as demonstrating that com-
munity patterns impacts both products and processes. These findings provide
important indications, useful for preventing the occurrence of problems if a
community is aware that it is following a certain communication model.

In the future, we plan to go more in-depth on this topic building just-in-time
mechanisms to make developers aware of these social aspects in real-time
and give them more information for deciding how to implement their pieces
of code.

A
L I ST O F P U B L I CAT I O N S

The complete list of publications is reported below. The * symbol highlights
the publications discussed in this dissertation.

international journal papers

J01 - F. Pecorelli, D. Di Nucci, C. De Roover and A. De Lucia (2020), “A
large empirical assessment of the role of data balancing in machine-
learning-based code smell detection”, Journal of Systems and Software,
110693. *

J02 - F. Pecorelli, D. Di Nucci (2020), “Adaptive Selection of Classifiers for
Bug Prediction: A Large- Scale Empirical Analysis of Its Performances
and a Benchmark Study”, Science of Computer Programming.

J03 - F. Pecorelli, F. Palomba and A. De Lucia (2020), “The Relation of
Test-Related Factors to Software Quality: A Case Study on Apache
Systems”, Empirical Software Engineering. *

J04 - F. Pecorelli, G. Catolino, F. Ferrucci, A. De Lucia and F. Palomba,
“Software Testing and Android Applications: A Large-Scale Empirical
Study”, Empirical Software Engineering. *

J05 - M. De Stefano, E. Iannone, F. Pecorelli, D. A. Tamburri, “Impacts of
Software Community Patterns on Process and Product: An Empirical
Study”, Science of Computer Programming. *

J06 - F. Pecorelli, S. Lujan, V. Lenarduzzi, F. Palomba, and A. De Lucia,
“On the Adequacy of Static Analysis Warnings with Respect to Code
Smell Prediction”, Submitted to the Journal of Empirical Software
Engineering. *

255

256 list of publications

J07 - F. Pecorelli, G. Grano, F. Palomba, H. C. Gall, and A. De Lucia,
“Toward Granular Automatic Unit Test Case Generation”, Submitted
to the Journal of Systems and Software. *

J08 - M. De Stefano, F. Pecorelli, D. Di Nucci, F. Palomba, and A. De Lucia,
"Software Engineering for Quantum Programming: How Far Are We?",
Submitted to the Journal of Systems and Software.

J09 - X. Li, S. Moreschini, F. Pecorelli, and D. Taibi, "OSSARA: Aban-
donment Risk Assessment for Embedded Open Source Components",
Submitted to the IEEE Software Journal.

J10 - V. Lenarduzzi, F. Pecorelli, N. Saarimäki, S. Lujan, and F. Palomba,
"A Critical Comparison on Six Static Analysis Tools: Detection,
Agreement, and Precision", Submitted to the Journal of Empirical
Software Engineering.

J11 - M. De Stefano, F. Pecorelli, D. Di Nucci, F. Palomba, and A. De
Lucia, "Training Code Smell Detection Models with Cross-Project
Information: An Empirical Assessment", Submitted to the Journal of
Empirical Software Engineering.

international conference papers

C01 - F. Pecorelli, F. Palomba, D. Di Nucci and A. De Lucia, “Comparing
Heuristic and Machine Learning Approaches for Metric-Based Code
Smell Detection”, In Proceedings of the IEEE/ACM International Con-
ference on Program Comprehension (ICPC 2019), Montreal, Canada,
2019. *

C02 - F. Pecorelli, D. Di Nucci, C. De Roover and A. De Lucia, “On the Role
of Data Balancing forMachine Learning-Based Code Smell Detection”,
In Proceedings of the 3rd ACM SIGSOFT International Workshop
on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE 2019), Tallinn, Estonia, 2019. *

list of publications 257

C03 - F. Pecorelli, F. Palomba, F. Khomh and A. De Lucia (2020, May),
“Developer-Driven Code Smell Prioritization”, In International Confer-
ence on Mining Software Repositories. *

C04 - S. Lujan, F. Pecorelli, F. Palomba, A. De Lucia andV. Lenarduzzi (2020,
November). “A preliminary study on the adequacy of static analysis
warnings with respect to code smell prediction”, In Proceedings of
the 4th ACM SIGSOFT International Workshop on Machine-Learning
Techniques for Software-Quality Evaluation (pp. 1-6). *

C05 - M. De Stefano, F. Pecorelli., F. Palomba, and A. De Lucia, (2021,
August). Comparing within- and cross-project machine learning algo-
rithms for code smell detection. In Proceedings of the 5th International
Workshop on Machine Learning Techniques for Software Quality
Evolution (pp. 1-6). *

C06 - F. Pecorelli, (2019, August). Test-related factors and post-release
defects: an empirical study. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (pp. 1235-
1237). *

C07 - F. Pecorelli, G. Catolino, F. Ferrucci, A. De Lucia and F. Palomba
(2020, July), “Testing of Mobile Applications in the Wild: A Large-
Scale Empirical Study on Android Apps”, In Proceedings of the 28th
International Conference on Program Comprehension(pp. 296-307).

C08 - M. De Stefano, F. Pecorelli, D. A. Tamburri, F. Palomba and A. De
Lucia (2020, June), “Splicing Community Patterns and Smells: A Pre-
liminary Study”, In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops(pp. 703-710). *

C09 - M. De Stefano, F. Pecorelli, D. A. Tamburri, F. Palomba, and A.
De Lucia (2020, September). Refactoring Recommendations Based
on the Optimization of Socio-Technical Congruence. In 2020 IEEE
International Conference on Software Maintenance and Evolution
(ICSME) (pp. 794-796). *

258 list of publications

C10 - S. Lambiase, A. Cupito, F. Pecorelli, A. De Lucia and F. Palomba
(2020, July), “Just-In-Time Test Smell Detection and Refactoring: The
DARTS Project”, In Proceedings of the 28th International Conference
on Program Comprehension (pp. 441-445).

C11 - E. Iannone, F. Pecorelli, D. Di Nucci, F. Palomba and A. De Lucia
(2020, July), “RefactoringAndroid-specificEnergy Smells: APlugin for
Android Studio”, In Proceedings of the 28th International Conference
on Program Comprehension (pp. 451-455).

C12 - F. Pecorelli, G. Di Lillo, F. Palomba andA. De Lucia (2020, September),
“VITRuM: A Plug-In for the Visualization of Test-Related Metrics”,
In Proceedings of the International Conference on Advanced Visual
Interfaces (pp. 1-3).

C13 - M. De Stefano, M.S. Gambardella, F. Pecorelli, F. Palomba and A. De
Lucia (2020, September), “cASpER: A Plug-in for Automated Code
Smell Detection and Refactoring”, In Proceedings of the International
Conference on Advanced Visual Interfaces (pp. 1-3).

C14 - H. Nguyen, F. Lomio, F. Pecorelli, and V. Lenarduzzi, "PANDORA:
Continuous Mining Software Repository and Dataset Generation",
Submitted to the 29th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER 2022).

B I B L I O G R A P H Y

[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano
Antoniol. “An empirical study of the impact of two antipatterns, blob
and spaghetti code, on program comprehension.” In: Software main-
tenance and reengineering (CSMR), 2011 15th European conference
on. IEEE. 2011, pp. 181–190.

[2] Konstantinos Adamopoulos, Mark Harman, and Robert M Hierons.
“How to overcome the equivalent mutant problem and achieve tailored
selective mutation using co-evolution.” In: Genetic and evolutionary
computation conference. Springer. 2004, pp. 1338–1349.

[3] Amritanshu Agrawal and Tim Menzies. “Is better data better than
better data miners?: on the benefits of tuning smote for defect
prediction.” In: Proceedings of the 40th International Conference on
Software engineering. ACM. 2018, pp. 1050–1061.

[4] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. “Mining
association rules between sets of items in large databases.” In: Acm
sigmod record. Vol. 22. 2. ACM. 1993, pp. 207–216.

[5] Ahmed Al-Shaaby, Hamoud Aljamaan, and Mohammad Alshayeb.
“Bad smell detection using machine learning techniques: a systematic
literature review.” In: Arabian Journal for Science and Engineering
45.4 (2020), pp. 2341–2369.

[6] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

[7] Lucas Amorim, Evandro Costa, Nuno Antunes, Baldoino Fonseca,
and Marcio Ribeiro. “Experience report: Evaluating the effectiveness
of decision trees for detecting code smells.” In: Software Reliability
Engineering (ISSRE), 2015 IEEE 26th International Symposium on.
IEEE. 2015, pp. 261–269.

259

260 bibliography

[8] Marc Andreessen. “Why software is eating the world.” In:Wall Street
Journal 20.2011 (2011), p. C2.

[9] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami
Namin. “Using mutation analysis for assessing and comparing testing
coverage criteria.” In: IEEE Transactions on Software Engineering
32.8 (2006), pp. 608–624.

[10] Maurício Aniche, Gabriele Bavota, Christoph Treude, Marco Au-
rélio Gerosa, and Arie van Deursen. “Code smells for Model-View-
Controller architectures.” In: Empirical Software Engineering 23.4
(2018), pp. 2121–2157. issn: 1573-7616.

[11] Jean-Yves Antoine, Jeanne Villaneau, and Anaïs Lefeuvre. “Weighted
Krippendorff’s alpha is a more reliable metrics for multi-coders
ordinal annotations: experimental studies on emotion, opinion and
coreference annotation.” In: 2014.

[12] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De
Lucia, and Ettore Merlo. “Recovering traceability links between code
and documentation.” In: IEEE transactions on software engineering
28.10 (2002), pp. 970–983.

[13] Business of Apps. There are 12 million mobile developers worldwide,
and nearly half develop for Android first.

[14] Roberta Arcoverde, Alessandro Garcia, and Eduardo Figueiredo.
“Understanding the longevity of code smells: preliminary results of
an explanatory survey.” In: Proceedings of the 4th Workshop on
Refactoring Tools. ACM. 2011, pp. 33–36.

[15] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang.
“Machine learning techniques for code smell detection: A systematic
literature review and meta-analysis.” In: Information and Software
Technology 108 (2019), pp. 115–138.

[16] Ricardo Baeza-Yates, Berthier de Araújo Neto Ribeiro, et al.Modern
information retrieval. New York: ACM Press; Harlow, England:
Addison-Wesley, 2011.

bibliography 261

[17] Gergő Balogh, Tamás Gergely, Árpád Beszédes, and Tibor Gy-
imóthy. “Are my unit tests in the right package?” In: 2016 IEEE
16th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE. 2016, pp. 137–146.

[18] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. “The Or-
acle Problem in Software Testing: A Survey.” In: IEEE Transactions
on Software Engineering 41.5 (2015), pp. 507–525. issn: 0098-5589.
doi: 10.1109/TSE.2014.2372785.

[19] Victor R Basili, Lionel C. Briand, andWalcélio LMelo. “A validation
of object-oriented design metrics as quality indicators.” In: IEEE
Transactions on software engineering 22.10 (1996), pp. 751–761.

[20] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco
Oliveto. “Automating extract class refactoring: an improved method
and its evaluation.” In: Empirical Software Engineering 19.6 (2014),
pp. 1617–1664.

[21] Gabriele Bavota, Andrea De Lucia, and Rocco Oliveto. “Identifying
extract class refactoring opportunities using structural and semantic
cohesion measures.” In: Journal of Systems and Software 84.3 (2011),
pp. 397–414.

[22] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-
Cardenas, Massimiliano Di Penta, Rocco Oliveto, and Denys Poshy-
vanyk. “The impact of api change-and fault-proneness on the user
ratings of android apps.” In: IEEE Transactions on Software Engi-
neering 41.4 (2014), pp. 384–407.

[23] Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, Giuliano Antoniol,
and Yann-Gaël Guéhéneuc. “Playing with refactoring: Identifying
extract class opportunities through game theory.” In: 2010 IEEE
International Conference on Software Maintenance. IEEE. 2010,
pp. 1–5.

[24] Gabriele Bavota, RoccoOliveto,MalcomGethers, Denys Poshyvanyk,
and Andrea De Lucia. “Methodbook: Recommending move method

https://doi.org/10.1109/TSE.2014.2372785

262 bibliography

refactorings via relational topic models.” In: IEEE Transactions on
Software Engineering 40.7 (2013), pp. 671–694.

[25] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and Dave Binkley. “Are test smells really harmful? An empirical
study.” In: Empirical Software Engineering 20.4 (2015), pp. 1052–
1094.

[26] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and David Binkley. “An empirical analysis of the distribution of unit
test smells and their impact on software maintenance.” In: Software
Maintenance (ICSM), 2012 28th IEEE International Conference on.
IEEE. 2012, pp. 56–65.

[27] Moritz Beller, Gousios Georgios, Annibale Panichella, Sebastian
Proksch, Sven Amann, and Andy Zaidman. “Developer Testing in
The IDE: Patterns, Beliefs, And Behavior.” In: IEEE Transactions
on Software Engineering (2017).

[28] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy
Zaidman. “When, How, and Why Developers (Do Not) Test in
Their IDEs.” In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ESEC/FSE 2015. Bergamo,
Italy: ACM, 2015, pp. 179–190. isbn: 978-1-4503-3675-8. doi:
10.1145/2786805.2786843. url: http://doi.acm.org/10.
1145/2786805.2786843.

[29] James Bergstra and Yoshua Bengio. “Random search for hyper-
parameter optimization.” In: Journal of Machine Learning Research
13.Feb (2012), pp. 281–305.

[30] Christian Bird, Nachiappan Nagappan, BrendanMurphy, Harald Gall,
and Premkumar Devanbu. “Don’t touch my code!: examining the
effects of ownership on software quality.” In: Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ACM. 2011, pp. 4–14.

https://doi.org/10.1145/2786805.2786843
http://doi.acm.org/10.1145/2786805.2786843
http://doi.acm.org/10.1145/2786805.2786843

bibliography 263

[31] David Bowes, Tracy Hall, Mark Harman, Yue Jia, Federica Sarro,
and Fan Wu. “Mutation-aware fault prediction.” In: Proceedings of
the 25th International Symposium on Software Testing and Analysis.
ACM. 2016, pp. 330–341.

[32] Leo Breiman. “Random forests.” In:Machine learning 45.1 (2001),
pp. 5–32.

[33] Lionel Briand, Domenico Bianculli, Shiva Nejati, Fabrizio Pastore,
and Mehrdad Sabetzadeh. “The case for context-driven software en-
gineering research: Generalizability is overrated.” In: IEEE Software
34.5 (2017), pp. 72–75.

[34] William J Brown, Raphael C Malveau, Hays W McCormick III, and
Thomas J Mowbray. Refactoring software, architectures, and projects
in crisis. 1998.

[35] David Budgen and Pearl Brereton. “Performing systematic litera-
ture reviews in software engineering.” In: Proceedings of the 28th
international conference on Software engineering. 2006, pp. 1051–
1052.

[36] Raymond PL Buse and Westley R Weimer. “Learning a metric for
code readability.” In: IEEE Transactions on Software Engineering
36.4 (2010), pp. 546–558.

[37] Xia Cai and Michael R Lyu. “Software reliability modeling with test
coverage: Experimentation and measurement with a fault-tolerant
software project.” In: The 18th IEEE International Symposium on
Software Reliability (ISSRE’07). IEEE. 2007, pp. 17–26.

[38] Ivan Candela, Gabriele Bavota, Barbara Russo, and Rocco Oliveto.
“Using cohesion and coupling for software remodularization: Is
it enough?” In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 25.3 (2016), p. 24.

[39] Marcelo Cataldo, James D Herbsleb, and Kathleen M Carley. “Socio-
technical congruence: a framework for assessing the impact of tech-
nical and work dependencies on software development productivity.”

264 bibliography

In: Proceedings of the Second ACM-IEEE international symposium
on Empirical software engineering and measurement. 2008, pp. 2–11.

[40] Gemma Catolino. “Does source code quality reflect the ratings of
apps?” In: Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems. ACM. 2018, pp. 43–44.

[41] Gemma Catolino, Dario Di Nucci, and Filomena Ferrucci. “Cross-
Project Just-in-Time Bug Prediction for Mobile Apps: An Empirical
Assessment.” In: 2019 IEEE/ACM 6th International Conference on
Mobile Software Engineering and Systems (MOBILESoft). IEEE.
2019, pp. 99–110.

[42] Gemma Catolino, Fabio Palomba, Francesca Arcelli Fontana, Andrea
De Lucia, Andy Zaidman, and Filomena Ferrucci. “Improving change
predictionmodels with code smell-related information.” In:Empirical
Software Engineering 25.1 (2020).

[43] Gemma Catolino, Fabio Palomba, Andrea De Lucia, Filomena Fer-
rucci, and Andy Zaidman. “Enhancing change prediction models
using developer-related factors.” In: Journal of Systems and Software
143 (), pp. 14–28.

[44] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena
Ferrucci. “How the Experience of Development Teams Relates to
Assertion Density of Test Classes.” In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE.
2019, pp. 223–234.

[45] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena
Ferrucci. “Not all bugs are the same: Understanding, characterizing,
and classifying bug types.” In: Journal of Systems and Software 152
(2019), pp. 165–181.

[46] Chih-ChungChang andChih-Jen Lin. “LIBSVM: a library for support
vector machines.” In: ACM transactions on intelligent systems and
technology (TIST) 2.3 (2011), p. 27.

bibliography 265

[47] Alexander Chatzigeorgiou and Anastasios Manakos. “Investigating
the evolution of bad smells in object-oriented code.” In: Quality
of Information and Communications Technology (QUATIC), 2010
Seventh International Conference on the. IEEE. 2010, pp. 106–115.

[48] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. “SMOTE: synthetic minority over-sampling technique.”
In: Journal of artificial intelligence research 16 (2002), pp. 321–357.

[49] M-H Chen, Michael R Lyu, and W Eric Wong. “Effect of code
coverage on software reliability measurement.” In: IEEE Transactions
on reliability 50.2 (2001), pp. 165–170.

[50] Shyam R Chidamber and Chris F Kemerer. “Ametrics suite for object
oriented design.” In: IEEE Transactions on software engineering
20.6 (1994), pp. 476–493.

[51] Wynne W Chin et al. “The partial least squares approach to structural
equation modeling.” In:Modern methods for business research 295.2
(1998), pp. 295–336.

[52] Garvit Rajesh Choudhary, Sandeep Kumar, Kuldeep Kumar, Alok
Mishra, and Cagatay Catal. “Empirical analysis of change metrics for
software fault prediction.” In: Computers & Electrical Engineering
67 (2018), pp. 15–24.

[53] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso.
“Automated test input generation for android: Are we there yet?”
In: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering ASE. IEEE. 2015, pp. 429–440.

[54] William J Clancey. Classification problem solving. Stanford Univer-
sity Stanford, CA, 1984.

[55] Michelle Cleary, Jan Horsfall, and Mark Hayter. “Data collection
and sampling in qualitative research: does size matter?” In: Journal
of advanced nursing (2014), pp. 473–475.

[56] Norman Cliff. “Dominance statistics: Ordinal analyses to answer
ordinal questions.” In: Psychological bulletin 114.3 (1993), p. 494.

266 bibliography

[57] Jacob Cohen. Statistical power analysis. Vol. 1. 3. Sage Publications
Sage CA: Los Angeles, CA, 1992, pp. 98–101.

[58] William W. Cohen. “Fast Effective Rule Induction.” In: Twelfth
International Conference on Machine Learning. Morgan Kaufmann,
1995, pp. 115–123.

[59] Daniel Alencar daCosta, ShaneMcIntosh,Weiyi Shang, UiráKulesza,
Roberta Coelho, and Ahmed E Hassan. “A framework for evaluat-
ing the results of the szz approach for identifying bug-introducing
changes.” In: IEEE Transactions on Software Engineering 43.7
(2017), pp. 641–657.

[60] Steve Counsell, Stephen Swift, and Jason Crampton. “The interpreta-
tion and utility of three cohesion metrics for object-oriented design.”
In: ACM Transactions on Software Engineering and Methodology
(TOSEM) 15.2 (2006), pp. 123–149.

[61] John W Creswell. “Mixed-method research: Introduction and appli-
cation.” In: Handbook of educational policy. Elsevier, 1999, pp. 455–
472.

[62] Luis Cruz, Rui Abreu, and David Lo. “To the attention of mobile soft-
ware developers: guess what, test your app!” In: Empirical Software
Engineering (2019), pp. 1–31.

[63] Ward Cunningham. “The WyCash portfolio management system.”
In: ACM SIGPLAN OOPS Messenger 4.2 (1993), pp. 29–30.

[64] Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. “On the im-
pact of design flaws on software defects.” In: 2010 10th International
Conference on Quality Software. IEEE. 2010, pp. 23–31.

[65] Marco D’Ambros, Michele Lanza, and Romain Robbes. “On the
relationship between change coupling and software defects.” In:
2009 16th Working Conference on Reverse Engineering. IEEE. 2009,
pp. 135–144.

bibliography 267

[66] Lars-Ola Damm, Lars Lundberg, and Claes Wohlin. “Faults-slip-
through—a concept for measuring the efficiency of the test process.”
In: Software Process: Improvement and Practice 11.1 (2006), pp. 47–
59.

[67] Teerath Das, Massimiliano Di Penta, and Ivano Malavolta. “A quanti-
tative and qualitative investigation of performance-related commits in
android apps.” In: 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2016, pp. 443–447.

[68] Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota,
Rocco Oliveto, and Andrea De Lucia. “A developer centered bug
prediction model.” In: IEEE Transactions on Software Engineering
44.1 (2018), pp. 5–24.

[69] Dario Di Nucci, Fabio Palomba, Rocco Oliveto, and Andrea De
Lucia. “Dynamic Selection of Classifiers in Bug Prediction: An
Adaptive Method.” In: IEEE Transactions on Emerging Topics in
Computational Intelligence 1.3 (2017), pp. 202–212.

[70] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella,
Andy Zaidman, and Andrea De Lucia. “Software-based energy
profiling of android apps: Simple, efficient and reliable?” In: 2017
IEEE 24th international conference on software analysis, evolution
and reengineering (SANER). IEEE. 2017, pp. 103–114.

[71] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Sere-
brenik, and Andrea De Lucia. “Detecting code smells using machine
learning techniques: are we there yet?” In: 25th IEEE International
Conference on Software Analysis, Evolution and Reengineering
(SANER2018): REproducibility Studies and NEgative Results (RENE)
Track. Institute of Electrical and Electronics Engineers (IEEE). 2018.

[72] David J Dittman, Taghi M Khoshgoftaar, Randall Wald, and Amri
Napolitano. “Comparison of data sampling approaches for imbalanced
bioinformatics data.” In: The twenty-seventh international FLAIRS
conference. 2014.

268 bibliography

[73] Norman R Draper and Harry Smith. Applied regression analysis.
Vol. 326. John Wiley & Sons, 2014.

[74] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bac-
chelli. “Understanding Flaky Tests: The Developer’s Perspective.” In:
(2019), to appear.

[75] Letha H Etzkorn, Sampson E Gholston, Julie L Fortune, Cara E Stein,
Dawn Utley, Phillip A Farrington, and Glenn W Cox. “A comparison
of cohesion metrics for object-oriented systems.” In: Information and
Software Technology 46.10 (2004), pp. 677–687.

[76] Robert Feldt. “Do system test cases grow old?” In: 2014 IEEE
Seventh International Conference on Software Testing, Verification
and Validation. IEEE. 2014, pp. 343–352.

[77] Robert Feldt, Richard Torkar, Tony Gorschek, and Wasif Afzal.
“Searching for cognitively diverse tests: Towards universal test diver-
sity metrics.” In: 2008 IEEE International Conference on Software
Testing Verification and Validation Workshop. IEEE. 2008, pp. 178–
186.

[78] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva,
and Eduardo Figueiredo. “A review-based comparative study of bad
smell detection tools.” In: Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering.
ACM. 2016, p. 18.

[79] Leonardo Fernandes, Márcio Ribeiro, Luiz Carvalho, Rohit Gheyi,
MelinaMongiovi, André Santos, AnaCavalcanti, Fabiano Ferrari, and
José Carlos Maldonado. “Avoiding useless mutants.” In: Proceedings
of the 16th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences. 2017, pp. 187–198.

[80] Michael Fischer, Martin Pinzger, and Harald Gall. “Populating a
release history database from version control and bug tracking sys-
tems.” In: Software Maintenance, 2003. ICSM 2003. Proceedings.
International Conference on. IEEE. 2003, pp. 23–32.

bibliography 269

[81] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexan-
der Chatzigeorgiou. “Identification and application of extract class
refactorings in object-oriented systems.” In: Journal of Systems and
Software 85.10 (2012), pp. 2241–2260.

[82] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. “Auto-
matic detection of bad smells in code: An experimental assessment.”
In: Journal of Object Technology 11.2 (2012), pp. 5–1.

[83] Francesca Arcelli Fontana, Jens Dietrich, Bartosz Walter, Aiko
Yamashita, and Marco Zanoni. “Antipattern and code smell false pos-
itives: Preliminary conceptualization and classification.” In: Software
Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd
International Conference on. Vol. 1. IEEE. 2016, pp. 609–613.

[84] Francesca Arcelli Fontana, Vincenzo Ferme, and Marco Zanoni.
“Filtering code smells detection results.” In: Proceedings of the 37th
International Conference on Software Engineering-Volume 2. IEEE
Press. 2015, pp. 803–804.

[85] Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni, and
Alessandro Marino. “Comparing and experimenting machine learn-
ing techniques for code smell detection.” In: Empirical Software
Engineering 21.3 (2016), pp. 1143–1191.

[86] Francesca Arcelli Fontana and Marco Zanoni. “Code smell severity
classification using machine learning techniques.” In: Knowledge-
Based Systems 128 (2017), pp. 43–58.

[87] Francesca Arcelli Fontana, Marco Zanoni, Alessandro Marino, and
Mika VMantyla. “Code smell detection: Towards a machine learning-
based approach.” In: Software Maintenance (ICSM), 2013 29th IEEE
International Conference on. IEEE. 2013, pp. 396–399.

[88] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

270 bibliography

[89] Gordon Fraser and Andrea Arcuri. “EvoSuite: Automatic Test Suite
Generation for Object-oriented Software.” In: Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering. ESEC/FSE ’11. Szeged,
Hungary: ACM, 2011, pp. 416–419. isbn: 978-1-4503-0443-6. doi:
10.1145/2025113.2025179. url: http://doi.acm.org/10.
1145/2025113.2025179.

[90] Gordon Fraser and Andrea Arcuri. “Whole Test Suite Generation.”
In: IEEE Trans. Softw. Eng. 39.2 (Feb. 2013), pp. 276–291. issn:
0098-5589. doi: 10.1109/TSE.2012.14. url: http://dx.doi.
org/10.1109/TSE.2012.14.

[91] Enrico Fregnan, Tobias Baum, Fabio Palomba, and Alberto Bacchelli.
“A survey on software coupling relations and tools.” In: Information
and Software Technology (2018).

[92] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto
Bustince, and Francisco Herrera. “A review on ensembles for the
class imbalance problem: bagging-, boosting-, and hybrid-based ap-
proaches.” In: IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 42.4 (2011), pp. 463–484.

[93] Jerry Gao, Wei-Tek Tsai, Ray Paul, Xiaoying Bai, and Tadahiro Ue-
hara. “Mobile Testing-as-a-Service (MTaaS)–Infrastructures, Issues,
Solutions and Needs.” In: 2014 IEEE 15th International Symposium
on High-Assurance Systems Engineering. IEEE. 2014, pp. 158–167.

[94] Vahid Garousi, Michael Felderer, and Mika VMäntylä. “The need for
multivocal literature reviews in software engineering: complementing
systematic literature reviews with grey literature.” In: Proceedings of
the 20th international conference on evaluation and assessment in
software engineering. 2016, pp. 1–6.

[95] Vahid Garousi and Barış Küçük. “Smells in software test code: A
survey of knowledge in industry and academia.” In: Journal of systems
and software 138 (2018), pp. 52–81.

https://doi.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
http://doi.acm.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2012.14
http://dx.doi.org/10.1109/TSE.2012.14
http://dx.doi.org/10.1109/TSE.2012.14

bibliography 271

[96] Gartner. Information technology (IT) spending on enterprise software
worldwide, from 2009 to 2022 (in billion U.S. dollars). Oct. 2021.

[97] Franz-Xaver Geiger and Ivano Malavolta. “Datasets of Android Ap-
plications: a Literature Review.” In: arXiv preprint arXiv:1809.10069
(2018).

[98] Franz-Xaver Geiger, Ivano Malavolta, Luca Pascarella, Fabio
Palomba, Dario Di Nucci, and Alberto Bacchelli. “A graph-based
dataset of commit history of real-world android apps.” In: Pro-
ceedings of the 15th International Conference on Mining Software
Repositories. ACM. 2018, pp. 30–33.

[99] Peter Gilbert, Byung-Gon Chun, Landon P Cox, and Jaeyeon Jung.
“Vision: automated security validation ofmobile apps at appmarkets.”
In: Proceedings of the second international workshop on Mobile
cloud computing and services. ACM. 2011, pp. 21–26.

[100] Rahul Gopinath, Carlos Jensen, and Alex Groce. “Code coverage
for suite evaluation by developers.” In: Proceedings of the 36th
International Conference on Software Engineering. ACM. 2014,
pp. 72–82.

[101] Giovanni Grano, Adelina Ciurumelea, Sebastiano Panichella, Fabio
Palomba, and Harald C Gall. “Exploring the integration of user
feedback in automated testing of android applications.” In: 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE. 2018, pp. 72–83.

[102] Giovanni Grano, Cristian De Iaco, Fabio Palomba, and Harald C Gall.
“Pizza versus Pinsa: On the Perception and Measurability of Unit
Test Code Quality.” In: (2020), to appear.

[103] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia,
and Harald C Gall. “Scented since the beginning: On the diffuseness
of test smells in automatically generated test code.” In: Journal of
Systems and Software 156 (2019), pp. 312–327.

272 bibliography

[104] Giovanni Grano, Fabio Palomba, and Harald C Gall. “Lightweight
Assessment of Test-Case Effectiveness using Source-Code-Quality
Indicators.” In: IEEE Transactions on Software Engineering (2019).

[105] Giovanni Grano, Simone Scalabrino, Rocco Oliveto, and Harald
Gall. “An Empirical Investigation on the Readability of Manual and
Generated Test Cases.” In: Proceedings of the 26th International
Conference on Program Comprehension, ICPC. 2018.

[106] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy.
“Predicting fault incidence using software change history.” In: IEEE
Transactions on software engineering 26.7 (2000), pp. 653–661.

[107] Michaela Greiler, Arie Van Deursen, andMargaret-Anne Storey. “Au-
tomated detection of test fixture strategies and smells.” In: Software
Testing, Verification and Validation (ICST). 2013, pp. 322–331.

[108] Robert J. Grissom and John J. Kim. Effect sizes for research: A broad
practical approach. 2nd Edition. Lawrence Earlbaum Associates,
2005.

[109] Gui Gui and Paul D Scott. “Coupling and cohesion measures for
evaluation of component reusability.” In: Proceedings of the 2006
international workshop onMining software repositories. 2006, pp. 18–
21.

[110] David Gunning. “Explainable artificial intelligence (xai).” In:Defense
Advanced Research Projects Agency (DARPA), nd Web 2 (2017).

[111] Sonia Haiduc, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia,
and Andrian Marcus. “Automatic query performance assessment
during the retrieval of software artifacts.” In: Proceedings of the
27th IEEE/ACM international conference on Automated Software
Engineering. ACM. 2012, pp. 90–99.

[112] Ulrich Halekoh, Søren Højsgaard, Jun Yan, et al. “The R pack-
age geepack for generalized estimating equations.” In: Journal of
Statistical Software 15.2 (2006), pp. 1–11.

bibliography 273

[113] Mark A. Hall. Correlation-based feature selection for machine learn-
ing. Tech. rep. 1998.

[114] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. “The WEKA data mining software:
an update.” In: ACM SIGKDD explorations newsletter 11.1 (2009),
pp. 10–18.

[115] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve
Counsell. “Developing fault-prediction models: What the research
can show industry.” In: IEEE software 28.6 (2011), pp. 96–99.

[116] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. “Some code smells
have a significant but small effect on faults.” In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 23.4 (2014),
p. 33.

[117] Mary Jean Harrold, John D McGregor, and Kevin J Fitzpatrick. “In-
cremental testing of object-oriented class structures.” In: Proceedings
of the 14th international conference on Software engineering. 1992,
pp. 68–80.

[118] Salima Hassaine, Foutse Khomh, Yann-Gaël Guéhéneuc, and Sylvie
Hamel. “IDS: An immune-inspired approach for the detection of soft-
ware design smells.” In: Quality of Information and Communications
Technology (QUATIC), 2010 Seventh International Conference on
the. IEEE. 2010, pp. 343–348.

[119] Ahmed E Hassan. “Predicting faults using the complexity of code
changes.” In: Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on. IEEE. 2009, pp. 78–88.

[120] Andrew F Hayes. “Beyond Baron and Kenny: Statistical mediation
analysis in the new millennium.” In: Communication monographs
76.4 (2009), pp. 408–420.

[121] Brian Henderson-Sellers. Object-oriented metrics: measures of com-
plexity. Prentice-Hall, Inc., 1995.

274 bibliography

[122] Brian Henderson-Sellers, Larry L Constantine, and Ian M Graham.
“Coupling and cohesion (towards a valid metrics suite for object-
oriented analysis and design).” In:Object oriented systems 3.3 (1996),
pp. 143–158.

[123] Abram Hindle, Alex Wilson, Kent Rasmussen, E Jed Barlow, Joshua
Charles Campbell, and Stephen Romansky. “Greenminer: A hardware
based mining software repositories software energy consumption
framework.” In: Proceedings of the 11th working conference on
mining software repositories. 2014, pp. 12–21.

[124] Emanuele Iannone, Fabiano Pecorelli, DarioDiNucci, Fabio Palomba,
and Andrea De Lucia. “Refactoring Android-specific Energy Smells:
A Plugin for Android Studio.” In: Proceedings of the 28th Inter-
national Conference on Program Comprehension. 2020, pp. 451–
455.

[125] Chadni Islam, Muhammad Ali Babar, and Surya Nepal. “A Multi-
Vocal Review of Security Orchestration.” In:ACMComputing Surveys
(CSUR) 52.2 (2019), pp. 1–45.

[126] George H John and Pat Langley. “Estimating continuous distributions
in Bayesian classifiers.” In: Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc. 1995, pp. 338–345.

[127] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert
Bowdidge. “Why don’t software developers use static analysis tools
to find bugs?” In: 35th International Conference on Software Engi-
neering (ICSE). IEEE. 2013, pp. 672–681.

[128] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. “Real
challenges in mobile app development.” In: 2013 ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and
Measurement. IEEE. 2013, pp. 15–24.

[129] Suhas Kabinna, Weiyi Shang, Cor-Paul Bezemer, and Ahmed E
Hassan. “Examining the stability of logging statements.” In: Software

bibliography 275

Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd
Int’l Conf. on. Vol. 1. IEEE. 2016, pp. 326–337.

[130] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
andN.Ubayashi. “A large-scale empirical study of just-in-time quality
assurance.” In: IEEE Transactions on Software Engineering 39.6
(2013), pp. 757–773. issn: 0098-5589. doi: 10.1109/TSE.2012.70.

[131] Amandeep Kaur, Sushma Jain, and Shivani Goel. “A support vector
machine based approach for code smell detection.” In: 2017 Interna-
tional Conference on Machine Learning and Data Science (MLDS).
IEEE. 2017, pp. 9–14.

[132] Amandeep Kaur, Sushma Jain, Shivani Goel, and Gaurav Dhiman. “A
review on machine-learning based code smell detection techniques
in object-oriented software system (s).” In: Recent Advances in
Electrical & Electronic Engineering (Formerly Recent Patents on
Electrical & Electronic Engineering) 14.3 (2021), pp. 290–303.

[133] Staffs Keele et al. Guidelines for performing systematic literature
reviews in software engineering. Tech. rep. Technical report, Ver. 2.3
EBSE Technical Report. EBSE, 2007.

[134] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E
Hassan. “What do mobile app users complain about?” In: IEEE
Software 32.3 (2014), pp. 70–77.

[135] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc.
“An Exploratory Study of the Impact of Code Smells on Software
Change-proneness.” In: Proceedings of the 2009 16th Working Con-
ference on Reverse Engineering. WCRE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 75–84. isbn: 978-0-7695-3867-9.
doi: 10.1109/WCRE.2009.28.

[136] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and
Giuliano Antoniol. “An exploratory study of the impact of antipat-
terns on class change- and fault-proneness.” In: Empirical Software
Engineering 17.3 (2012), pp. 243–275.

https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/WCRE.2009.28

276 bibliography

[137] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and
Giuliano Antoniol. “An exploratory study of the impact of antipat-
terns on class change-and fault-proneness.” In: Empirical Software
Engineering 17.3 (2012), pp. 243–275.

[138] FoutseKhomh, StéphaneVaucher, Yann-Gaël Guéhéneuc, andHouari
Sahraoui. “A bayesian approach for the detection of code and design
smells.” In: International Conference on Quality Software. IEEE.
2009, pp. 305–314.

[139] FoutseKhomh, StephaneVaucher, Yann-Gaël Guéhéneuc, andHouari
Sahraoui. “BDTEX: A GQM-based Bayesian approach for the de-
tection of antipatterns.” In: Journal of Systems and Software 84.4
(2011), pp. 559–572.

[140] Heejin Kim, Byoungju Choi, and W Eric Wong. “Performance
testing of mobile applications at the unit test level.” In: 2009 Third
IEEE International Conference on Secure Software Integration and
Reliability Improvement. IEEE. 2009, pp. 171–180.

[141] Sunghun Kim, E. James Whitehead, and Yi Zhang. “Classifying
software changes: Clean or buggy?” In: IEEE Transactions on Soft-
ware Engineering 34.2 (2008), pp. 181–196. issn: 00985589. doi:
10.1109/TSE.2007.70773.

[142] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and
Andreas Zeller. “Predicting faults from cached history.” In: Proceed-
ings of the 29th international conference on Software Engineering.
IEEE Computer Society. 2007, pp. 489–498.

[143] Barbara Kitchenham. “Procedures for performing systematic re-
views.” In: Keele, UK, Keele University 33.2004 (2004), pp. 1–26.

[144] Patrick Knab, Martin Pinzger, and Abraham Bernstein. “Predicting
defect densities in source code files with decision tree learners.” In:
Proceedings of the 2006 international workshop on Mining software
repositories. ACM. 2006, pp. 119–125.

https://doi.org/10.1109/TSE.2007.70773

bibliography 277

[145] Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan
Nagappan. “Code coverage and postrelease defects: A large-scale
study on open source projects.” In: IEEE Transactions on Reliability
66.4 (2017), pp. 1213–1228.

[146] Pavneet Singh Kochhar, Ferdian Thung, Nachiappan Nagappan,
Thomas Zimmermann, and David Lo. “Understanding the test au-
tomation culture of app developers.” In: 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation ICST.
IEEE. 2015, pp. 1–10.

[147] Ron Kohavi et al. “A study of cross-validation and bootstrap for
accuracy estimation and model selection.” In: Ijcai. Vol. 14. 2.
Montreal, Canada. 1995, pp. 1137–1145.

[148] Alex J Koning, Philip Hans Franses, Michele Hibon, and Herman O
Stekler. “The M3 competition: Statistical tests of the results.” In:
International Journal of Forecasting 21.3 (2005), pp. 397–409.

[149] A Güneş Koru, Dongsong Zhang, Khaled El Emam, and Hongfang
Liu. “An investigation into the functional form of the size-defect
relationship for softwaremodules.” In: IEEETransactions on Software
Engineering 35.2 (2009), pp. 293–304.

[150] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al.
“Handling imbalanced datasets: A review.” In: GESTS International
Transactions on Computer Science and Engineering 30.1 (2006),
pp. 25–36.

[151] Jochen Kreimer. “Adaptive detection of design flaws.” In: Electronic
Notes in Theoretical Computer Science 141.4 (2005), pp. 117–136.

[152] Klaus Krippendorff. Content analysis: An introduction to its method-
ology. Sage publications, 2018.

[153] Daniel E Krutz, Mehdi Mirakhorli, Samuel A Malachowsky, Andres
Ruiz, Jacob Peterson, Andrew Filipski, and Jared Smith. “A dataset
of open-source Android applications.” In: Proceedings of the 12th
Working Conference on Mining Software Repositories. IEEE Press.
2015, pp. 522–525.

278 bibliography

[154] Gunnar Kudrjavets, Nachiappan Nagappan, and Thomas Ball. “As-
sessing the relationship between software assertions and faults: An
empirical investigation.” In: 2006 17th International Symposium on
Software Reliability Engineering. IEEE. 2006, pp. 204–212.

[155] Irwin Kwan, Adrian Schroter, and Daniela Damian. “Does Socio-
Technical Congruence Have an Effect on Software Build Success?
A Study of Coordination in a Software Project.” In: IEEE Trans.
Softw. Eng. 37.3 (May 2011), pp. 307–324. issn: 0098-5589. doi:
10.1109/TSE.2011.29.

[156] Christoph Laaber and Philipp Leitner. “An evaluation of open-
source software microbenchmark suites for continuous performance
assessment.” In: Proceedings of the 15th International Conference
on Mining Software Repositories. ACM. 2018, pp. 119–130.

[157] Michele Lanza and Radu Marinescu. Object-oriented metrics in prac-
tice: using software metrics to characterize, evaluate, and improve
the design of object-oriented systems. Springer Science & Business
Media, 2007.

[158] Niklas Leicht, Ivo Blohm, and Jan Marco Leimeister. “Leveraging
the power of the crowd for software testing.” In: IEEE Software 34.2
(2017), pp. 62–69.

[159] V. Lenarduzzi, A. Sillitti, and D. Taibi. “A Survey on Code Anal-
ysis Tools for Software Maintenance Prediction.” In: 6th Interna-
tional Conference in Software Engineering for Defence Applications.
Springer International Publishing, 2020, pp. 165–175.

[160] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E Hassan. “Towards
just-in-time suggestions for log changes.” In: Empirical Software
Engineering (2016), pp. 1–35.

[161] Nan Li, Upsorn Praphamontripong, and Jeff Offutt. “An experimental
comparison of four unit test criteria: Mutation, edge-pair, all-uses and
prime path coverage.” In: Proceedings of the IEEE International Con-
ference on Software Testing, Verification, and Validation Workshops.
2009, pp. 220–229.

https://doi.org/10.1109/TSE.2011.29

bibliography 279

[162] Wei Li and Sallie Henry. “Maintenance metrics for the object oriented
paradigm.” In: [1993] Proceedings First International Software
Metrics Symposium. IEEE. 1993, pp. 52–60.

[163] Rensis Likert. “A technique for the measurement of attitudes.” In:
Archives of psychology (1932).

[164] Jun-Wei Lin, Navid Salehnamadi, and Sam Malek. “Test automation
in open-source android apps: A large-scale empirical study.” In: 2020
35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE. 2020, pp. 1078–1089.

[165] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and
Denys Poshyvanyk. “How do developers test android applications?”
In: 2017 IEEE International Conference on Software Maintenance
and Evolution ICSME. IEEE. 2017, pp. 613–622.

[166] Mario Linares-Vásquez, Sam Klock, Collin McMillan, Aminata
Sabané, Denys Poshyvanyk, and Yann-Gaël Guéhéneuc. “Domain
matters: bringing further evidence of the relationships among anti-
patterns, application domains, and quality-related metrics in Java
mobile apps.” In: Proceedings of the 22nd International Conference
on Program Comprehension. 2014, pp. 232–243.

[167] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. “Con-
tinuous, evolutionary and large-scale: A new perspective for auto-
mated mobile app testing.” In: 2017 IEEE International Conference
on SoftwareMaintenance andEvolution ICSME. IEEE. 2017, pp. 399–
410.

[168] Charles X Ling and Chenghui Li. “Data mining for direct marketing:
Problems and solutions.” In: Kdd. Vol. 98. 1998, pp. 73–79.

[169] Huan Liu and Hiroshi Motoda. Feature selection for knowledge
discovery and data mining. Vol. 454. Springer Science & Business
Media, 2012.

280 bibliography

[170] Angela Lozano, Michel Wermelinger, and Bashar Nuseibeh. “As-
sessing the impact of bad smells using historical information.” In:
Ninth international workshop on Principles of software evolution:
in conjunction with the 6th ESEC/FSE joint meeting. ACM. 2007,
pp. 31–34.

[171] Zeeger Lubsen, Andy Zaidman, and Martin Pinzger. “Using associa-
tion rules to study the co-evolution of production & test code.” In:
Mining Software Repositories, 2009. MSR’09. 6th IEEE International
Working Conference on. IEEE. 2009, pp. 151–154.

[172] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov.
“An empirical analysis of flaky tests.” In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM. 2014, pp. 643–653.

[173] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. “Dynodroid:
An input generation system for android apps.” In: Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering.
ACM. 2013, pp. 224–234.

[174] Lech Madeyski and Marian Jureczko. “Which process metrics can
significantly improve defect prediction models? An empirical study.”
In: Software Quality Journal 23.3 (2015), pp. 393–422.

[175] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz
Jozala. “Overcoming the equivalent mutant problem: A systematic
literature review and a comparative experiment of second order
mutation.” In: IEEE Transactions on Software Engineering 40.1
(2013), pp. 23–42.

[176] Zaheed Mahmood, David Bowes, Peter CR Lane, and Tracy Hall.
“What is the impact of imbalance on software defect prediction
performance?” In: Proceedings of the 11th International Conference
on Predictive Models and Data Analytics in Software Engineering.
ACM. 2015, p. 4.

bibliography 281

[177] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabane,
Yann-Gael Gueheneuc, and Esma Aimeur. “SMURF: A SVM-based
incremental anti-pattern detection approach.” In: Reverse engineering
(WCRE), 2012 19th working conference on. IEEE. 2012, pp. 466–475.

[178] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabané,
Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Esma Aïmeur. “Sup-
port vector machines for anti-pattern detection.” In: Automated Soft-
ware Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM
International Conference on. IEEE. 2012, pp. 278–281.

[179] Usman Mansoor, Marouane Kessentini, Bruce R Maxim, and Kalyan-
moy Deb. “Multi-objective code-smells detection using good and
bad design examples.” In: Software Quality Journal 25.2 (2017),
pp. 529–552.

[180] Mika V Mäntylä, Bram Adams, Foutse Khomh, Emelie Engström,
and Kai Petersen. “On rapid releases and software testing: a case
study and a semi-systematic literature review.” In: Empirical Software
Engineering 20.5 (2015), pp. 1384–1425.

[181] Mika V Mäntylä and Casper Lassenius. “Subjective evaluation of
software evolvability using code smells: An empirical study.” In:
Empirical Software Engineering 11.3 (2006), pp. 395–431.

[182] Ke Mao, Mark Harman, and Yue Jia. “Sapienz: Multi-objective
automated testing for Android applications.” In: Proceedings of the
25th International Symposium on Software Testing and Analysis.
ACM. 2016, pp. 94–105.

[183] Andrian Marcus and Denys Poshyvanyk. “The conceptual cohesion
of classes.” In: 21st IEEE International Conference on Software
Maintenance (ICSM’05). IEEE. 2005, pp. 133–142.

[184] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. “Using
the conceptual cohesion of classes for fault prediction in object-
oriented systems.” In: IEEE Transactions on Software Engineering
34.2 (2008), pp. 287–300.

282 bibliography

[185] Brian Marick et al. “How to misuse code coverage.” In: Proceedings
of the 16th Interational Conference on Testing Computer Software.
1999, pp. 16–18.

[186] Radu Marinescu. “Detection strategies: Metrics-based rules for de-
tecting design flaws.” In: Software Maintenance, 2004. Proceedings.
20th IEEE International Conference on. IEEE. 2004, pp. 350–359.

[187] Radu Marinescu. “Assessing technical debt by identifying design
flaws in software systems.” In: IBM Journal of Research and Devel-
opment 56.5 (2012), pp. 9–1.

[188] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark
Harman. “A survey of app store analysis for software engineering.” In:
IEEE transactions on software engineering 43.9 (2016), pp. 817–847.

[189] Katsuhisa Maruyama. “Automated method-extraction refactoring by
using block-based slicing.” In: Proceedings of the 2001 symposium
on Software reusability: putting software reuse in context. 2001,
pp. 31–40.

[190] Bruno Gois Mateus and Matias Martinez. “An empirical study on
quality of Android applications written in Kotlin language.” In:
Empirical Software Engineering 24.6 (2019), pp. 3356–3393.

[191] Thomas J McCabe. “A complexity measure.” In: IEEE Transactions
on software Engineering 4 (1976), pp. 308–320.

[192] Stuart McIlroy, Nasir Ali, and Ahmed E Hassan. “Fresh apps: an
empirical study of frequently-updated mobile apps in the Google play
store.” In: Empirical Software Engineering 21.3 (2016), pp. 1346–
1370.

[193] Tim Menzies, Andrew Butcher, David Cok, Andrian Marcus, Lucas
Layman, Forrest Shull, Burak Turhan, and Thomas Zimmermann.
“Local versus global lessons for defect prediction and effort estima-
tion.” In: IEEE Transactions on software engineering 39.6 (2013),
pp. 822–834.

bibliography 283

[194] Ali Mesbah and Mukul R Prasad. “Automated cross-browser compat-
ibility testing.” In: Proceedings of the 33rd International Conference
on Software Engineering. ACM. 2011, pp. 561–570.

[195] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[196] Roberto Minelli and Michele Lanza. “Software Analytics for Mobile
Applications–Insights & Lessons Learned.” In: 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE.
2013, pp. 144–153.

[197] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-
Francoise Le Meur. “DECOR: A method for the specification and
detection of code and design smells.” In: IEEE Trans. on Software
Engineering 36.1 (2010), pp. 20–36.

[198] Israel J Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst,
Thorsten Berger, and Ahmed E Hassan. “A large-scale empirical
study on software reuse in mobile apps.” In: IEEE software 31.2
(2013), pp. 78–86.

[199] Leon Moonen. “Generating Robust Parsers Using Island Grammars.”
In: Proceedings of the Eighth Working Conference on Reverse En-
gineering, WCRE’01, Stuttgart, Germany, October 2-5, 2001. 2001,
p. 13.

[200] Rodrigo Morales, Ruben Saborido, Foutse Khomh, Francisco Chi-
cano, and Giuliano Antoniol. “Anti-patterns and the energy efficiency
of Android applications.” In: arXiv preprint arXiv:1610.05711 (2016).

[201] Catriona M Morrison. “Interpret with caution: multicollinearity in
multiple regression of cognitive data.” In: Perceptual and motor skills
97.1 (2003), pp. 80–82.

[202] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. “Soft-
ware testing of mobile applications: Challenges and future research
directions.” In: Proceedings of the 7th International Workshop on
Automation of Software Test. IEEE Press. 2012, pp. 29–35.

284 bibliography

[203] Matthew James Munro. “Product metrics for automatic identification
of" bad smell" design problems in java source-code.” In: 11th IEEE
International Software Metrics Symposium (METRICS’05). IEEE.
2005, pp. 15–15.

[204] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of
software testing. John Wiley & Sons, 2011.

[205] Meiyappan Nagappan and Emad Shihab. “Future trends in software
engineering research for mobile apps.” In: 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER). Vol. 5. IEEE. 2016, pp. 21–32.

[206] Nachiappan Nagappan and Thomas Ball. “Use of relative code churn
measures to predict system defect density.” In: Proceedings of the
27th international conference on Software engineering. ACM. 2005,
pp. 284–292.

[207] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. “Min-
ing metrics to predict component failures.” In: Proceedings of the
28th international conference on Software engineering. ACM. 2006,
pp. 452–461.

[208] Nachiappan Nagappan, E Michael Maximilien, Thirumalesh Bhat,
and Laurie Williams. “Realizing quality improvement through test
driven development: results and experiences of four industrial teams.”
In: Empirical Software Engineering 13.3 (2008), pp. 289–302.

[209] Nachiappan Nagappan, Laurie Williams, Mladen Vouk, and Jason
Osborne. “Early estimation of software quality using in-process
testing metrics: a controlled case study.” In: ACM SIGSOFT Software
Engineering Notes. Vol. 30. 4. ACM. 2005, pp. 1–7.

[210] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim
Herzig, and Brendan Murphy. “Change bursts as defect predictors.”
In: 2010 IEEE 21st International Symposium on Software Reliability
Engineering. IEEE. 2010, pp. 309–318.

bibliography 285

[211] John F Nash et al. “Equilibrium points in n-person games.” In:
Proceedings of the national academy of sciences 36.1 (1950), pp. 48–
49.

[212] Maleknaz Nayebi, Bram Adams, and Guenther Ruhe. “Release Prac-
tices for Mobile Apps–What do Users and Developers Think?” In:
2016 ieee 23rd international conference on software analysis, evo-
lution, and reengineering (saner). Vol. 1. IEEE. 2016, pp. 552–
562.

[213] John Ashworth Nelder and Robert WMWedderburn. “Generalized
linear models.” In: Journal of the Royal Statistical Society: Series A
(General) 135.3 (1972), pp. 370–384.

[214] Peter Nemenyi. “Distribution-free multiple comparisons.” In: Biomet-
rics. Vol. 18. 2. International Biometric Soc 1441 I ST NW SUITE
700, WASHINGTON DC 20005-2210. 1962, p. 263.

[215] JohnNeter,MichaelHKutner, Christopher JNachtsheim, andWilliam
Wasserman. Applied linear statistical models. Vol. 4. Irwin Chicago,
1996.

[216] Raymond S Nickerson. “Confirmation bias: A ubiquitous phe-
nomenon in many guises.” In: Review of general psychology 2.2
(1998), pp. 175–220.

[217] Robert M O?brien. “A caution regarding rules of thumb for variance
inflation factors.” In: Quality & Quantity 41.5 (2007), pp. 673–690.

[218] A Jefferson Offutt and Roland H Untch. “Mutation 2000: Uniting
the orthogonal.” In:Mutation testing for the new century. Springer,
2001, pp. 34–44.

[219] Steffen Olbrich, Daniela S Cruzes, Victor Basili, and Nico Zazworka.
“The evolution and impact of code smells: A case study of two
open source systems.” In: Empirical Software Engineering and
Measurement, 2009. ESEM 2009. 3rd International Symposium on.
IEEE. 2009, pp. 390–400.

286 bibliography

[220] Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea
De Lucia. “On the equivalence of information retrieval methods
for automated traceability link recovery.” In: 2010 IEEE 18th In-
ternational Conference on Program Comprehension. IEEE. 2010,
pp. 68–71.

[221] Rocco Oliveto, Foutse Khomh, Giuliano Antoniol, and Yann-Gaël
Guéhéneuc. “Numerical signatures of antipatterns: An approach
based on b-splines.” In: Software maintenance and reengineering
(CSMR), 2010 14th European Conference on. IEEE. 2010, pp. 248–
251.

[222] Alessandro Orso and Sergio Silva. “Open Issues and Research Di-
rections in Object-Oriented Testing.” In: Proceedings of the 4th
International Conference on” Achieving Quality in Software: Soft-
ware Quality in the Communication Society”(AQUIS’98). 1998.

[223] Juliana Padilha, Juliana Pereira, Eduardo Figueiredo, JussaraAlmeida,
Alessandro Garcia, and Cláudio Sant’Anna. “On the effectiveness of
concern metrics to detect code smells: an empirical study.” In: Inter-
national Conference on Advanced Information Systems Engineering.
Springer. 2014, pp. 656–671.

[224] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto
Fasano, Rocco Oliveto, and Andrea De Lucia. “On the Diffuseness
and the Impact on Maintainability of Code Smells: A Large Scale
Empirical Study.” In: Empirical Software Engineering (2017), to
appear.

[225] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto
Fasano, RoccoOliveto, andAndreaDeLucia. “A large-scale empirical
study on the lifecycle of code smell co-occurrences.” In: Information
and Software Technology 99 (2018), pp. 1–10.

[226] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto
Fasano, Rocco Oliveto, and Andrea De Lucia. “On the diffuseness
and the impact on maintainability of code smells: a large scale

bibliography 287

empirical investigation.” In: Empirical Software Engineering 23.3
(2018), pp. 1188–1221.

[227] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Andrea De Lucia. “Do they really smell bad? a study on
developers’ perception of bad code smells.” In: Software maintenance
and evolution (ICSME), 2014 IEEE international conference on. IEEE.
2014, pp. 101–110.

[228] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Denys Poshyvanyk, and Andrea De Lucia. “Mining ver-
sion histories for detecting code smells.” In: IEEE Transactions on
Software Engineering 41.5 (2015), pp. 462–489.

[229] Fabio Palomba,AndreaDeLucia, Gabriele Bavota, andRoccoOliveto.
“Anti-pattern detection: Methods, challenges, and open issues.” In:
Advances in Computers. Vol. 95. Elsevier, 2014, pp. 201–238.

[230] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto,
and Andrea De Lucia. “On the diffusion of test smells in automatically
generated test code: An empirical study.” In: Proceedings of the 9th
International Workshop on Search-Based Software Testing. ACM.
2016, pp. 5–14.

[231] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman,
and Andrea De Lucia. “On the impact of code smells on the energy
consumption of mobile applications.” In: Information and Software
Technology 105 (2019), pp. 43–55.

[232] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota,
Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. “Landfill:
An open dataset of code smells with public evaluation.” In: Min-
ing Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on. IEEE. 2015, pp. 482–485.

[233] Fabio Palomba, Mario Linares-Vásquez, Gabriele Bavota, Rocco
Oliveto, Massimiliano Di Penta, Denys Poshyvanyk, and Andrea
De Lucia. “Crowdsourcing user reviews to support the evolution

288 bibliography

of mobile apps.” In: Journal of Systems and Software 137 (2018),
pp. 143–162.

[234] Fabio Palomba,Annibale Panichella, AndreaDeLucia, RoccoOliveto,
and Andy Zaidman. “A textual-based technique for smell detection.”
In: Program Comprehension (ICPC), 2016 IEEE 24th International
Conference on. IEEE. 2016, pp. 1–10.

[235] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto,
and Andrea De Lucia. “Automatic test case generation: What if test
code quality matters?” In: Proceedings of the 25th International
Symposium on Software Testing and Analysis. ACM. 2016, pp. 130–
141.

[236] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto,
and Andrea De Lucia. “The scent of a smell: An extensive comparison
between textual and structural smells.” In: IEEE Transactions on
Software Engineering 44.10 (2018), pp. 977–1000.

[237] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano
Panichella, Harald Gall, Filomena Ferrucci, and Andrea De Lucia.
“Recommending and localizing change requests for mobile apps
based on user reviews.” In: Proceedings of the 39th international
conference on software engineering. IEEE Press. 2017, pp. 106–117.

[238] Fabio Palomba, DamianAndrewAndrewTamburri, Francesca Arcelli
Fontana, Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik.
“Beyond technical aspects: How do community smells influence
the intensity of code smells?” In: IEEE transactions on software
engineering (2018).

[239] Fabio Palomba and Andy Zaidman. “Does refactoring of test smells
induce fixing flaky tests?” In: Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on. IEEE. 2017, pp. 1–
12.

[240] Fabio Palomba and Andy Zaidman. “The Smell of Fear: On the
Relation betweenTest Smells and FlakyTests.” In:Empirical Software
Engineering Journal (2019), in press.

bibliography 289

[241] Fabio Palomba,AndyZaidman, andAndreaDeLucia. “Automatic test
smell detection using information retrieval techniques.” In: 2018 IEEE
International Conference on Software Maintenance and Evolution
(ICSME). IEEE. 2018, pp. 311–322.

[242] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia.
“An exploratory study on the relationship between changes and
refactoring.” In: Program Comprehension (ICPC), 2017 IEEE/ACM
25th International Conference on. IEEE. 2017, pp. 176–185.

[243] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea
De Lucia, and Rocco Oliveto. “Toward a Smell-aware Bug Prediction
Model.” In: IEEE Transactions on Software Engineering (2017).

[244] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.
“Reformulating Branch Coverage as a Many-Objective Optimization
Problem.” In: ICST. IEEE Computer Society, 2015, pp. 1–10.

[245] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy
Zaidman, and Harald C. Gall. “The impact of test case summaries on
bug fixing performance: an empirical investigation.” In: Proceedings
of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016. 2016, pp. 547–558. doi:
10.1145/2884781.2884847. url: http://doi.acm.org/10.
1145/2884781.2884847.

[246] Jevgenĳa Pantiuchina, Gabriele Bavota, Michele Tufano, and Denys
Poshyvanyk. “Towards just-in-time refactoring recommenders.” In:
Proceedings of the 26th Conference on Program Comprehension.
2018, pp. 312–315.

[247] Reza Meimandi Parizi, Sai Peck Lee, and Mohammad Dabbagh.
“Achievements and challenges in state-of-the-art software traceability
between test and code artifacts.” In: IEEE Transactions on Reliability
63.4 (2014), pp. 913–926.

[248] Luca Pascarella, Fabio Palomba, andAlberto Bacchelli. “Fine-grained
just-in-time defect prediction.” In: Journal of Systems and Software
150 (2019), pp. 22–36.

https://doi.org/10.1145/2884781.2884847
http://doi.acm.org/10.1145/2884781.2884847
http://doi.acm.org/10.1145/2884781.2884847

290 bibliography

[249] Elder Vicente de Paulo Sobrinho, Andrea De Lucia, and Marcelo
de Almeida Maia. “A systematic literature review on bad smells—5
W’s: which, when, what, who, where.” In: IEEE Transactions on
Software Engineering (2018).

[250] Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed
Wiem Mkaouer, Ali Ouni, and Fabio Palomba. “On the distribution
of test smells in open source Android applications: an exploratory
study.” In: CASCON. 2019, pp. 193–202.

[251] Anthony Peruma, Christian D Newman, Mohamed Wiem Mkaouer,
Ali Ouni, and Fabio Palomba. “An Exploratory Study on the Refac-
toring of Unit Test Files in Android Applications.” In: Conference on
Software Engineering Workshops (ICSEW’20). 2020.

[252] Ralph Peters and Andy Zaidman. “Evaluating the lifespan of code
smells using software repository mining.” In: Software Maintenance
and Reengineering (CSMR), 2012 16th European Conference on.
IEEE. 2012, pp. 411–416.

[253] Mauro Pezzè and Michal Young. Software testing and analysis:
process, principles, and techniques. John Wiley & Sons, 2008.

[254] Raphael Pham, Stephan Kiesling, Olga Liskin, Leif Singer, and
Kurt Schneider. “Enablers, inhibitors, and perceptions of testing in
novice software teams.” In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering.
ACM. 2014, pp. 30–40.

[255] Nick Pidgeon and Karen Henwood. Grounded theory. na, 2004.

[256] David Martin Powers. “Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and correlation.” In:
(2011).

[257] J. Ross Quinlan. “Induction of decision trees.” In: Machine learning
1.1 (1986), pp. 81–106.

[258] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier,
2014.

bibliography 291

[259] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia,
and Dave W. Binkley. “Recovering test-to-code traceability using
slicing and textual analysis.” In: Journal of Systems and Software
88 (2014), pp. 147–168. doi: 10.1016/j.jss.2013.10.019. url:
https://doi.org/10.1016/j.jss.2013.10.019.

[260] Abdallah Qusef, Mahmoud O Elish, and David Binkley. “An Ex-
ploratory Study of the Relationship Between Software Test Smells
and Fault-Proneness.” In: IEEE Access 7 (2019), pp. 139526–139536.

[261] Yahya Rafique and Vojislav B Mišić. “The effects of test-driven
development on external quality and productivity: A meta-analysis.”
In: IEEE Transactions on Software Engineering 39.6 (2013), pp. 835–
856.

[262] Foyzur Rahman and Premkumar Devanbu. “How, and why, pro-
cess metrics are better.” In: 2013 35th International Conference on
Software Engineering (ICSE). IEEE. 2013, pp. 432–441.

[263] A Ananda Rao and K Narendar Reddy. “Detecting bad smells in
object oriented design using design change propagation probability
matrix 1.” In: (2007).

[264] DRapu, StéphaneDucasse, TudorGîrba, andRaduMarinescu. “Using
history information to improve design flaws detection.” In: Eighth
European Conference on Software Maintenance and Reengineering,
2004. CSMR 2004. Proceedings. IEEE. 2004, pp. 223–232.

[265] Gema Rodríguez-Pérez, Gregorio Robles, and Jesús M González-
Barahona. “Reproducibility and Credibility in Empirical Software
Engineering: A Case Study based on a Systematic Literature Review
of the use of the SZZ algorithm.” In: Information and Software
Technology 99 (2018), pp. 164–176.

[266] Peter H Rossi, James D Wright, and Andy B Anderson. Handbook of
survey research. Academic Press, 2013.

[267] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Andrea De Lucia,
and Filomena Ferrucci. “Third-party libraries in mobile apps.” In:
Empirical Software Engineering (2019), pp. 1–37.

https://doi.org/10.1016/j.jss.2013.10.019
https://doi.org/10.1016/j.jss.2013.10.019

292 bibliography

[268] A. J. Scott and M. Knott. “A cluster analysis method for grouping
means in the analysis of variance.” In: Biometrics 30 (1974), pp. 507–
512.

[269] Claude E Shannon. “Prediction and entropy of printed English.” In:
Bell system technical journal 30.1 (1951), pp. 50–64.

[270] Samuel Sanford Shapiro and Martin BWilk. “An analysis of variance
test for normality (complete samples).” In: Biometrika 52.3/4 (1965),
pp. 591–611.

[271] Martin Shepperd, David Bowes, and Tracy Hall. “Researcher bias:
The use of machine learning in software defect prediction.” In: IEEE
Transactions on Software Engineering 40.6 (2014), pp. 603–616.

[272] Emad Shihab, Zhen Ming Jiang, Walid M Ibrahim, Bram Adams, and
Ahmed E Hassan. “Understanding the impact of code and process
metrics on post-release defects: a case study on the eclipse project.”
In: Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement. 2010, pp. 1–10.

[273] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. “Why we
refactor? confessions of github contributors.” In: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM. 2016, pp. 858–870.

[274] Davi Bernardo Silva, Andre Takeshi Endo, Marcelo Medeiros Eler,
and Vinicius HS Durelli. “An analysis of automated tests for mobile
Android applications.” In: 2016 XLII Latin American Computing
Conference CLEI. IEEE. 2016, pp. 1–9.

[275] Frank Simon, Frank Steinbruckner, and Claus Lewerentz. “Metrics
based refactoring.” In: Proceedings fifth european conference on
software maintenance and reengineering. IEEE. 2001, pp. 30–38.

[276] Chris Simons, Jeremy Singer, and David R White. “Search-based
refactoring: Metrics are not enough.” In: International Symposium
on Search Based Software Engineering. Springer. 2015, pp. 47–61.

bibliography 293

[277] Dag IK Sjoberg, Aiko Yamashita, Bente CD Anda, Audris Mockus,
and Tore Dyba. “Quantifying the effect of code smells onmaintenance
effort.” In: IEEE Transactions on Software Engineering 8 (2013),
pp. 1144–1156.

[278] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. “When
do changes induce fixes?” In: ACM sigsoft software engineering notes.
Vol. 30. 4. ACM. 2005, pp. 1–5.

[279] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. “Pydriller:
Python framework for mining software repositories.” In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering. ACM. 2018, pp. 908–911.

[280] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink,
and Alberto Bacchelli. “On the relation of test smells to software
code quality.” In: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE. 2018, pp. 1–12.

[281] Charles Spearman. “The proof and measurement of association
between two things.” In: American journal of Psychology 15.1 (1904),
pp. 72–101.

[282] Diomidis Spinellis. “Tool writing: a forgotten art?(software tools).”
In: IEEE Software 22.4 (2005), pp. 9–11.

[283] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Geor-
gios L Bleris. “Code quality analysis in open source software de-
velopment.” In: Information Systems Journal 12.1 (2002), pp. 43–
60.

[284] Statista. Number of smartphone users worldwide. Mar. 2020.

[285] Mark Steyvers and Tom Griffiths. “Probabilistic topic models.”
In: Handbook of latent semantic analysis. Psychology Press, 2007,
pp. 439–460.

294 bibliography

[286] Mervyn Stone. “Cross-validatory choice and assessment of statistical
predictions.” In: Journal of the royal statistical society. Series B
(Methodological) (1974), pp. 111–147.

[287] Jaymie Strecker and Atif M Memon. “Accounting for defect charac-
teristics in evaluations of testing techniques.” In: ACM Transactions
on Software Engineering and Methodology (TOSEM) 21.3 (2012),
p. 17.

[288] Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. “How de-
velopers perceive smells in source code: A replicated study.” In:
Information and Software Technology 92 (2017), pp. 223–235.

[289] Damian A. Tamburri, Rick Kazman, and Hamed Fahimi. “The
Architect’s Role in Community Shepherding.” In: IEEE Software
33.6 (2016), pp. 70–79.

[290] Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van
Vliet. “What is social debt in software engineering?” In: Cooperative
and Human Aspects of Software Engineering (CHASE), 2013 6th
International Workshop on. 2013, pp. 93–96. doi: 10.1109/CHASE.
2013.6614739.

[291] Damian A Tamburri, Fabio Palomba, and Rick Kazman. “Success and
Failure in Software Engineering: A Followup Systematic Literature
Review.” In: IEEE Transactions on Engineering Management (2020).

[292] DamianAndrewAndrewTamburri, Fabio Palomba, andRickKazman.
“Exploring Community Smells in Open-Source: An Automated
Approach.” In: IEEE Transactions on Software Engineering (2019).

[293] Chakkrit Tantithamthavorn and Ahmed E Hassan. “An experience
report on defect modelling in practice: Pitfalls and challenges.”
In: Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice. 2018, pp. 286–295.

[294] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, Aki-
nori Ihara, and Kenichi Matsumoto. “The impact of mislabelling
on the performance and interpretation of defect prediction mod-

https://doi.org/10.1109/CHASE.2013.6614739
https://doi.org/10.1109/CHASE.2013.6614739

bibliography 295

els.” In: Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on. Vol. 1. IEEE. 2015, pp. 812–823.

[295] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and
Kenichi Matsumoto. “An empirical comparison of model validation
techniques for defect prediction models.” In: IEEE Transactions on
Software Engineering 43.1 (2017), pp. 1–18.

[296] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and
Kenichi Matsumoto. “The impact of automated parameter optimiza-
tion on defect prediction models.” In: IEEE Transactions on Software
Engineering 45.7 (2018), pp. 683–711.

[297] David Martinus Johannes Tax. “One-class classification: Concept
learning in the absence of counter-examples.” In: (2002).

[298] New York Times. How COVID19 has changed social interactions.
Mar. 2020.

[299] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeor-
giou. “JDeodorant: Identification and removal of type-checking bad
smells.” In: Software Maintenance and Reengineering, 2008. CSMR
2008. 12th European Conference on. IEEE. 2008, pp. 329–331.

[300] Nikolaos Tsantalis and Alexander Chatzigeorgiou. “Identification of
move method refactoring opportunities.” In: IEEE Transactions on
Software Engineering 35.3 (2009), pp. 347–367.

[301] Nikolaos Tsantalis and Alexander Chatzigeorgiou. “Identification
of extract method refactoring opportunities for the decomposition
of methods.” In: Journal of Systems and Software 84.10 (2011),
pp. 1757–1782.

[302] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di
Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. “An
empirical investigation into the nature of test smells.” In: Proceed-
ings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. ACM. 2016, pp. 4–15.

296 bibliography

[303] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano
Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk.
“There and back again: Can you compile that snapshot?” In: Journal
of Software: Evolution and Process 29.4 (2017), e1838.

[304] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto,
Massimiliano Di Penta, Andrea De Lucia, and Denys Poshyvanyk.
“When and Why Your Code Starts to Smell Bad (and Whether the
Smells Go Away).” In: IEEE Transactions on Software Engineering
(2017).

[305] Bela Ujhazi, Rudolf Ferenc, Denys Poshyvanyk, and Tibor Gyimothy.
“New conceptual coupling and cohesion metrics for object-oriented
systems.” In: 2010 10th IEEE Working Conference on Source Code
Analysis and Manipulation. IEEE. 2010, pp. 33–42.

[306] ArashVahabzadeh,AminMilani Fard, andAliMesbah. “An empirical
study of bugs in test code.” In: 2015 IEEE international conference on
software maintenance and evolution (ICSME). IEEE. 2015, pp. 101–
110.

[307] Stef Van Buuren and Karin Groothuis-Oudshoorn. “mice: Multivari-
ate imputation by chained equations in R.” In: Journal of statistical
software 45 (2011), pp. 1–67.

[308] Arie Van Deursen, Leon Moonen, Alex van den Bergh, and Gerard
Kok. “Refactoring test code.” In: Proceedings of the 2nd interna-
tional conference on extreme programming and flexible processes in
software engineering (XP2001). 2001, pp. 92–95.

[309] Eva Van Emden and Leon Moonen. “Java quality assurance by
detecting code smells.” In: Ninth Working Conference on Reverse
Engineering, 2002. Proceedings. IEEE. 2002, pp. 97–106.

[310] Bart Van Rompaey and Serge Demeyer. “Establishing traceability
links between unit test cases and units under test.” In: 2009 13th
European Conference on Software Maintenance and Reengineering.
IEEE. 2009, pp. 209–218.

bibliography 297

[311] Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and Matthias
Rieger. “On the detection of test smells: A metrics-based approach
for general fixture and eager test.” In: IEEE Transactions on Software
Engineering 33.12 (2007), pp. 800–817.

[312] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman,
and H. C. Gall. “Context is king: The developer perspective on the
usage of static analysis tools.” In: 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER) (2018).

[313] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald C Gall,
and Alberto Bacchelli. “A large-scale empirical exploration on refac-
toring activities in open source software projects.” In: Science of
Computer Programming 180 (2019), pp. 1–15.

[314] Carmine Vassallo, Fabio Palomba, Alberto Bacchelli, and Harald
C Gall. “Continuous code quality: are we (really) doing that?” In:
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM. 2018, pp. 790–795.

[315] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian
Proksch, Harald C Gall, and Andy Zaidman. “How developers engage
with static analysis tools in different contexts.” In: Empirical Software
Engineering 25.2 (2020), pp. 1419–1457.

[316] Stephane Vaucher, Foutse Khomh, Naouel Moha, and Yann-Gaël
Guéhéneuc. “Tracking design smells: Lessons from a study of god
classes.” In: Reverse Engineering, 2009. WCRE’09. 16th Working
Conference on. IEEE. 2009, pp. 145–154.

[317] Santiago A Vidal, Claudia Marcos, and J Andrés Díaz-Pace. “An
approach to prioritize code smells for refactoring.” In: Automated
Software Engineering 23.3 (2016), pp. 501–532.

[318] Xiaoyin Wang, Yingnong Dang, Lu Zhang, Dongmei Zhang, Erica
Lan, and Hong Mei. “Can I clone this piece of code here?” In:
Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. ACM. 2012, pp. 170–179.

298 bibliography

[319] TonyWasserman. “Software engineering issues formobile application
development.” In: (2010).

[320] Fadi Wedyan, Dalal Alrmuny, and James M Bieman. “The effec-
tiveness of automated static analysis tools for fault detection and
refactoring prediction.” In: International Conference on Software
Testing Verification and Validation. 2009, pp. 141–150.

[321] Lili Wei, Yepang Liu, and Shing-Chi Cheung. “Taming Android
fragmentation: Characterizing and detecting compatibility issues for
Android apps.” In: 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2016, pp. 226–237.

[322] Yi Wei, Bertrand Meyer, and Manuel Oriol. “Is branch coverage
a good measure of testing effectiveness?” In: Empirical Software
Engineering and Verification. Springer, 2012, pp. 194–212.

[323] Martin White, Michele Tufano, Christopher Vendome, and Denys
Poshyvanyk. “Deep learning code fragments for code clone detec-
tion.” In: Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering. ACM. 2016, pp. 87–
98.

[324] Frank Wilcoxon. “Individual comparisons by ranking methods.” In:
Biometrics bulletin 1.6 (1945), pp. 80–83.

[325] Sue Wilkinson. “Focus group methodology: a review.” In: Interna-
tional journal of social research methodology 1.3 (1998), pp. 181–
203.

[326] Claes Wohlin. “Guidelines for snowballing in systematic literature
studies and a replication in software engineering.” In: Proceedings
of the 18th international conference on evaluation and assessment in
software engineering. 2014, pp. 1–10.

[327] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineer-
ing. Springer Science & Business Media, 2012.

bibliography 299

[328] Zhou Xu, Jin Liu, Zĳiang Yang, Gege An, and Xiangyang Jia. “The
impact of feature selection on defect prediction performance: An
empirical comparison.” In: Software Reliability Engineering (ISSRE),
2016 IEEE 27th International Symposium on. IEEE. 2016, pp. 309–
320.

[329] Aiko Yamashita and LeonMoonen. “Do code smells reflect important
maintainability aspects?” In: 2012 28th IEEE international conference
on software maintenance (ICSM). IEEE. 2012, pp. 306–315.

[330] Aiko Yamashita and Leon Moonen. “Do developers care about code
smells? an exploratory survey.” In: Reverse Engineering (WCRE),
2013 20th Working Conference on. IEEE. 2013, pp. 242–251.

[331] Aiko Yamashita and Leon Moonen. “Exploring the impact of inter-
smell relations on software maintainability: An empirical study.”
In: Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press. 2013, pp. 682–691.

[332] Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji
Kusumoto. “Classification model for code clones based on machine
learning.” In: Empirical Software Engineering 20.4 (2015), pp. 1095–
1125.

[333] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. “Better
test cases for better automated program repair.” In: Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering.
2017, pp. 831–841.

[334] Tao Ye and Shivkumar Kalyanaraman. “A recursive random search
algorithm for large-scale network parameter configuration.” In: Pro-
ceedings of the 2003 ACM SIGMETRICS International conference on
Measurement and modeling of computer systems. 2003, pp. 196–205.

[335] Chak Shun Yu, Christoph Treude, and Mauricio Aniche. “Compre-
hending Test Code: An Empirical Study.” In: (2019), to appear.

300 bibliography

[336] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Can-
fora, and Massimiliano Di Penta. “How open source projects use
static code analysis tools in continuous integration pipelines.” In:
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE. 2017, pp. 334–344.

[337] Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn Seaman.
“Investigating the impact of design debt on software quality.” In:
Proceedings of the 2ndWorkshop onManaging Technical Debt. ACM.
2011, pp. 17–23.

[338] Jack Zhang, Shikhar Sagar, and Emad Shihab. “The evolution of
mobile apps: An exploratory study.” In: Proceedings of the 2013 In-
ternational Workshop on Software Development Lifecycle for Mobile.
ACM. 2013, pp. 1–8.

[339] Min Zhang, Tracy Hall, and Nathan Baddoo. “Code bad smells: a
review of current knowledge.” In: Journal of Software Maintenance
and Evolution: research and practice 23.3 (2011), pp. 179–202.

[340] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel
Giger, and Brendan Murphy. “Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process.” In: Proceedings of
the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering. 2009, pp. 91–100.

[341] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. “Pre-
dicting defects for eclipse.” In: Third International Workshop on
Predictor Models in Software Engineering (PROMISE’07: ICSE
Workshops 2007). IEEE. 2007, pp. 9–9.

	Dedication
	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Context and Motivation
	1.2 Research Statement
	1.3 Research Contribution
	1.3.1 Research contribution on machine learning-based code smell detection
	1.3.2 Research contribution on technical debt in test code

	1.4 Structure of the Thesis

	 Machine Learning for Code Smell Detection
	2 Background & Related Work
	2.1 Introduction, Motivation, and Related Work
	2.2 Background
	2.3 Our Contribution on ML-based for Code Smell Detection

	3 Heuristic vs. machine learning for code smell detection
	3.1 Empirical Study Definition and Design
	3.1.1 Context of the Study
	3.1.2 Heuristic-Based Detection of Code Smells
	3.1.3 Machine Learning-Based Detection of Code Smells
	3.1.4 Data Analysis and Metrics

	3.2 Analysis of the Results
	3.2.1 Results for God Class
	3.2.2 Results for Spaghetti Code
	3.2.3 Results for Class Data Should Be Private
	3.2.4 Results for Complex Class
	3.2.5 Results for Long Method

	3.3 Conclusions

	4 The role of data balancing in ML-based code smell detection
	4.1 Detection of Object-Oriented Code Smells
	4.1.1 Code Smells for Object-Oriented systems
	4.1.2 Data Balancing Techniques for Machine Learning
	4.1.3 Subject Systems
	4.1.4 Model Building and Evaluation
	4.1.5 Results of the Study

	4.2 Detection of Model-View-Control Code Smells
	4.2.1 Code Smells
	4.2.2 Data Balancing Techniques for machine learning
	4.2.3 Subject Systems
	4.2.4 Model Building and Evaluation
	4.2.5 Results of the Study

	4.3 Conclusion

	5 Static Analysis Warnings for Code Smell Detection
	5.1 Research Methodology
	5.1.1 Context of the Study
	5.1.2 Data Collection
	5.1.3 Data analysis

	5.2 Analysis of the Results
	5.2.1 RQ1. Distribution analysis.
	5.2.2 RQ2. Contribution of static analysis warnings in code smell detection.
	5.2.3 RQ3. The role of static analysis warnings in code smell detection.
	5.2.4 RQ4. Orthogonality of the Prediction Models.
	5.2.5 RQ5. Toward a Combination of Automated Static Analysis Tools for Code Smell Detection.
	5.2.6 RQ6. Comparison with a baseline machine learner.
	5.2.7 RQ7. Orthogonality between the warning- and metric-based Detection Models.
	5.2.8 RQ8. Combining static analysis warnings and code metrics.

	5.3 Conclusion

	6 Developer-driven code smell prioritization
	6.1 Dataset Construction
	6.1.1 Selecting projects
	6.1.2 Selecting code smells
	6.1.3 Selecting code smell detectors
	6.1.4 Collecting the criticality of code smells

	6.2 A Novel Code Smells Prioritization Approach
	6.2.1 Research Questions
	6.2.2 RQ1. Defining and assessing the performance of the prioritization approach
	6.2.3 RQ2. Explaining the Proposed Approach
	6.2.4 RQ3. Comparison with the state of the art

	6.3 Analysis of the Results
	6.3.1 RQ1. The Performance of our Model
	6.3.2 RQ2. Features Contributing to the Model
	6.3.3 RQ3. Comparison with the state of the art

	6.4 Conclusion

	7 Threats to Validity, Discussion, and Implications
	7.1 Threats to Validity
	7.1.1 Threats to Construct Validity
	7.1.2 Threats to External Validity
	7.1.3 Threats to Conclusion Validity
	7.1.4 Threats to Internal Validity

	7.2 Discussion and Implications
	7.2.1 RQa - The capabilities of machine learning-based algorithms for code smell detection
	7.2.2 RQb - The limitations of machine learning-based algorithms for code smell detection

	 Further Research on Technical Debt: The Testing Perspective
	8 Background & Related Work
	8.1 Introduction and Motivation
	8.2 Related Work
	8.2.1 Test-related factors affecting source code quality
	8.2.2 Test code quality in mobile applications

	8.3 Our contribution on Technical Debt in Test Code

	9 Collecting Test-Related Factors: A MLR
	9.1 Research Methodology
	9.1.1 Research Question
	9.1.2 Search Query Definition
	9.1.3 Selecting the Source Engines
	9.1.4 Exclusion and Inclusion Criteria Definition
	9.1.5 Execution of the Multivocal Literature Review
	9.1.6 Quality Assessment and Data Extraction Process

	9.2 Analysis of the Results
	9.3 Conclusion

	10 Test-Related Factors and Post-Release Defects
	10.1 Research Methodology
	10.1.1 Research Questions and Methodological Sketch
	10.1.2 Context selection
	10.1.3 Dependent Variable
	10.1.4 Independent Variables
	10.1.5 Confounding Factors
	10.1.6 Statistical Modeling and Data Analysis

	10.2 Analysis of the Results
	10.2.1 RQ1. The presence and executability of tests
	10.2.2 RQ2. The impact of static test code indicators
	10.2.3 RQ3. The impact of dynamic test code indicators

	10.3 Conclusion

	11 Software Testing and Android Applications
	11.1 Research Questions and Context Selection
	11.1.1 Research Questions
	11.1.2 Context of the Study

	11.2 RQ1 - On the Prominence of Test Cases in Mobile Apps
	11.2.1 Research Methodology
	11.2.2 Analysis of the Results

	11.3 RQ2 - On the Design Quality of Test Cases in Mobile Apps
	11.3.1 Research Methodology
	11.3.2 Analysis of the Results

	11.4 RQ3 - On the Effectiveness of Test Cases in Mobile Apps
	11.4.1 Research Methodology
	11.4.2 Analysis of the Results

	11.5 RQ4 - Test Cases and Post-Release Defects in Mobile Apps
	11.5.1 Research Methodology
	11.5.2 Analysis of the Results

	11.6 RQ5 - On the Developer's Opinions on Mobile App Testing
	11.6.1 Research Methodology
	11.6.2 Analysis of the Results

	11.7 Conclusion

	12 Threats to Validity, Discussion, and Implications
	12.1 Threats to Validity
	12.1.1 Threats to Construct Validity
	12.1.2 Threats to External Validity
	12.1.3 Threats to Conclusion Validity
	12.1.4 Threats to Internal validity

	12.2 Discussion and Implications
	12.2.1 RQc - On the relation between test-related factors and software code quality
	12.2.2 RQd - Testing activities in mobile applications

	 Conclusion and Further Research Directions
	13 Conclusion
	13.1 Lesson Learnt
	13.2 Open Issues
	13.3 Future Research Directions
	13.3.1 Automatic Test Case Generation 2.0
	13.3.2 From Technical Debt to Social Debt

	Publications

	A List of Publications
	 Bibliography

