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Abstract

This thesis addresses multiple issues regarding the on-board im-
plementation of Lithium-Ion (Li-ion) batteries State-of-Health
(SoH) estimation. Even if in the literature multiple model- and
experiment-based SoH estimation methods are very well explored
under laboratory conditions, their suitability for implementation in
the framework of Battery Management Systems (BMSs) or battery
chargers is still an open research topic.

Initially, the thesis explores the topic of on-board implementa-
tion and identification of battery impedance models. First the issue
of impedance models fitting from Electrochemical Impedance Spec-
troscopy (EIS) data is addressed, by proposing an identification
method with a suitable procedure for setting the initial values of
the impedance model parameters. When tested using experimental
EIS data, the method guaranties the convergence of the identifica-
tion process, which is not always the case when considering fixed
initial conditions, as it is typical in the literature.

Then, discrete time representations for three approaches for
time domain response approximation of fractional-order battery
models are proposed and evaluated in terms of performance and
suitability for on-board implementation. Comparisons between the
methods are made in terms of accuracy, computational burden and
suitability for the identification of impedance parameters from time-
domain measurements. The study was performed in a simulation
framework and focused on a set of ZARC elements, representing the
middle frequency range of Li-ion batteries’ impedance. It was found
that the multiple RC approach offers the best accuracy–complexity
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compromise, making it the most interesting approach for real-time
battery simulation applications. As for applications requiring the
identification of impedance parameters, the Oustaloup approach
offers the best compromise between the goodness of the obtained
frequency response and the accuracy–complexity requirements.

Then, the Incremental Capacity (IC) analysis is proposed for
characterising the capacity and the SoH of batteries aged by using
cycling patterns built from current pulses with randomly selected
levels and durations. The batteries are periodically characterised
using a 1C charge, which is a high value with respect to the typ-
ical IC tests in pseudo-equilibrium condition. The high-current
IC curves generation from raw voltage/current data includes two
filtering stages, one for the input voltage and one for the IC curve
smoothing, which are optimised for the application on the basis
of the data characteristics. The correlations between the IC main
peak features and the battery full capacity, for 28 Lithium-Cobalt
oxide batteries with 18650 packaging, were evaluated, finding that
the main peak area is a general feature for the evaluation of the
SoH under high current tests and random usage patterns, and,
therefore, it can be used as a battery health indicator in practical
applications. The effects of the computational parameters on the
relationship between the peak area and the battery capacity are
also investigated. The results are confirmed by a further analysis
performed over two additional sets of cells with different techno-
logies, aged with a fixed driving profile and using fast charging
regimes. Additionally, the performance of the peak area as a health
indicator was compared with an ohmic resistance-based estimation
approach.

Finally, several linear multifeature models for battery SoH
estimation are proposed and their performance is evaluated. The
models combine high current IC and dynamic resistance features,
obtainable during partial constant current charges and discharges
respectively. The models are constructed by including fixed sets
of features or by applying features selection procedures based on
statistical criteria. The proposed models are fitted and evaluated
with data from two publicly available battery datasets, including
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batteries cycled using driving and randomised profiles. During
the test process, the estimation improvement introduced by each
multifeature model is evaluated by computing the reduction on
the mean squared error for the SoH estimation with respect to two
reference single-feature models already used in recent literature.
The collinearity for each model is quantified through the variance
inflation factor to indicate the prediction reliability of each model.
As main result of this analysis, a simple two-features model is
proposed as the best compromise between estimation improvement,
with respect to single feature models, and collinearity reduction.
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Chapter 1

Lithium-Ion Batteries
State-of-Health

1.1 Introduction

1.1.1 General Context

In order to mitigate the consequences of climate change, it has
been estimated by the Intergovernmental Panel on Climate Change
that it is necessary to halve the global greenhouse gas emissions
by 2030 and to reach net-zero emissions by mid-century [1]. Two
of the main strategies that may help to reach such goals are: the
increase of electrification in the transport sector, including the
migration towards electric vehicles (EVs), and the shift towards
renewable power generation, mainly in the form of solar and wind
plants.

The need for storing energy is one of the main issues that need
to be addressed when considering EVs or power generation based
on solar and wind technologies. Currently, those needs are normally
met by employing battery-based energy storage systems. During
the last three years, Lithium-Ion (Li-ion) batteries have represented
over 80 % of the global installed energy storage capacity, placing
them as the most widespread technology [2]. Li-ion technologies
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tend to be favoured over others, due to their higher energy density
and efficiency [3].

The main concerns about the widespread of Li-ion technologies,
on high power applications, are related to the fact that they must
operate between specific voltage and temperature ranges. Failing
to met these requirements will lead to accelerated performance
degradation and even to safety problems, as reaching temperatures
over 120 ◦C will generate exothermic reactions, increasing the risk
of fire [4]. Henceforth, a reliable Li-ion energy storage system
needs to include battery management systems (BMSs) capable of
monitoring the batteries operating conditions and reducing the
risk factors.

Besides the thermal and power management of the battery, a
BMS will also monitor the battery performance, mainly related
to its usable capacity and internal resistance, and their variations
over time. One of the main indicators quantifying the battery
performance is known as the battery State-of-Health (SoH). This
indicator is obtained by comparing the actual value of a specific
battery parameter, such as the battery full capacity, with its initial
value [5]. The estimation of the SoH and other battery perform-
ance indicators is an open research topic with great relevance for
all integrated energy systems involving batteries, especially for
their energy management and for the planning of the battery re-
placement [6, 7, 8]. Even if widely covered on the literature, SoH
estimation is often performed considering laboratory conditions
or with reliance on uncommon operating scenarios, such as full
charges and discharges at low constant currents. There is still a
gap concerning efforts oriented towards the implementation of SoH
estimation on practical scenarios.

1.1.2 Li-ion Batteries Operation Principles
and Ageing

Typically, battery cells contain four main components:

• Negative electrode: Often a pure metal or alloy. It gives
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up electrons to the external circuit during discharge and
accepts them while charging.

• Positive electrode: At this electrode the chemical reactions
are inverted, it accepts electrons during discharge and gives
them up at charge.

• Electrolyte: An ionic conductor that works as the medium
for ionic charge transfer between the electrodes.

• Separator: A material that physically isolates the elec-
trodes and prevents the direct internal conduction of elec-
trons between them. It must be a good ions conductor but
an electronic insulator.

Li-ion cells are insertion-electrode cells, meaning that, depend-
ing on the direction of the current flow, lithium is absorbed from the
electrolyte and inserted into the structure of the electrode material,
in a process called intercalation, or is taken from the electrode
material into the electrolyte, process referred as deintercalation [3].

When a Li-ion battery is being discharged, on one side, the
lithium atoms stored at the surface of the negative electrode oxidise,
then the free electrons flow through the external circuit. Those
lithium atoms become positive lithium ions and dissolve into the
electrolyte. On the other side, the positive lithium ions that
reach the positive electrode receive electrons from the external
circuit. The generated neutral lithium atoms are then stored on
the positive electrode structure. This whole process is reversible,
meaning that the lithium ions move between electrodes during
charge and discharge, with a reduction reaction taking place when
the lithium is reinserted on the negative electrode during charge.

As devices designed to store and to deliver electrical charge, bat-
teries are mainly characterised by their usable capacity Q defined
as the quantity of electric charge a cell is able to hold, often presen-
ted in ampere-hour (A h). Nominally, the battery manufacturer
specifies a rated value of Q, reported for the fresh cell under given
operating conditions, mainly at fixed temperature and discharge
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rate. The value of Q, at given operating conditions, will reduce
over time due to unwanted chemical side reactions and physical
changes to the components of the battery. For example, side reac-
tions between the negative electrode and the electrolyte will lead to
the creation of solid interphases between the two elements, which
in term will increase the cell impedance and capacity fade over
time [9]. The sum of the effects of these degradation processes will
manifest as a global battery impedance increase and a decrease of
the battery capacity.

Often the reduction on the battery performance due to ageing
can be quantified using the SoH, which can be defined in terms of
the battery capacity as:

SoH(k) = Q(k)
Q0

, (1.1)

where k is the point in time at which a new value of Q is
measured or estimated and compared to the reference capacity Q0,
which can be selected as the nominal value or as the capacity at a
given starting point. Ideally, the value of Q employed for the SoH
computation would be measured at a reference full discharge of
the battery, with fixed temperature and discharge current. During
the typical usage of a battery for an EV or a stationary storage
application, a full constant-current (CC) discharge is not a com-
mon occurrence. Hence, a direct measurement of the actual Q
will only be available under very particular conditions, such as a
reference discharge scheduled for characterisation purposes. Then,
for an effective regular monitoring of Q, indirect estimations are re-
quired. They can be performed using a large variety of approaches,
like model-based ones [10, 11], data-driven ones [12, 13, 14], and
experiment-based methods [15, 16], as shown in several recently
published survey papers [17, 18].

1.1.3 Battery Cell Frequency Response
The data obtained using electrochemical impedance spectroscopy
(EIS) can be employed to analyse the impedance of battery cells
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Figure 1.1: Qualitative impedance spectrum of a Li-ion cell and
an equivalent circuit with ZARC and Warburg elements that can
approximate it.

in a specific range of frequencies. In this way, it is possible to
draw conclusions about internal electrochemical processes with
different time constants. During a typical EIS test, the goal is
to record the amplitudes ratio and the phase difference between
the battery’s voltage and current signals, which characterise the
device impedance, at multiple frequencies. A general method for
performing such test requires to apply a sinusoidal signal, which
can be current (galvanostatic) or voltage (potentiostatic), and
measuring the response (voltage for the galvanostatic case, and
current for the potentiostatic case), repeating the process for all
the frequencies of interest.

From the obtained battery impedance, in terms of magnitude
and phase, it is possible to generate Bode plots and, by calculating
the impedance real and imaginary parts, a Nyquist plot, which
is often called impedance plot. If such procedure is performed
for multiple battery operating conditions (temperature, SoC and
DC operating point), it is possible to visualise and quantify their
influences over the frequency response. For a Li-ion battery cell,
a representation of a typical impedance plot is shown in figure
1.1[19].
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In the qualitative impedance plot shown in Figure 1.1, it is
possible to identify five sections that can be associated to particular
electrochemical processes [19]. In the first part, an inductive
behaviour can be seen at high frequencies, related to the inductive
reactances of metallic elements in the cell and wires. The presence
of an ohmic resistance is revealed by the intersection with the
real axis at a non zero value. This corresponds to the sum of
the current collectors, active material, electrolyte and separator
resistances. The first semi-circle like section is typically associated
with the solid electrolyte interface, which tends to be generated
during the battery cycling. The fourth part is characterised by
a second semi-circle that represents the double layer capacitance
and charge transfer resistance at the electrodes. Finally, at low
frequencies the main effect corresponds to the diffusion processes
in the active material of the electrodes, which manifest as a section
with a constant slope in the impedance plot.

It is worth noting that measured spectra often show variations
with respect to the qualitative curve presented. For example the
number of semi-circles can be reduced to one, or the inductive part
can exhibit a slope with increments in the real part for increasing
frequency. Moreover, the sections referred to as semi-circle like
tend to present a depression at its mid-point (not constant radius)
[9].

The form of the impedance spectrum plot can change signific-
antly with the operating point and the ageing of the battery. Low
temperatures widen both semi-circles, as consequence of slower
chemical processes, and corresponding higher cell impedance. For
elevated temperatures both semi-circles tend to merge. This means
that the time constants of the internal processes associated with
the semi-circles get closer. Moreover, it is worth noting that the
real axis crossing point increases with decreasing temperature [19].
The first semi-circle does not show a significant SoC dependency.
However, the radius of the second semi-circle increases strongly
with the reduction of the SoC (this is especially true for SoC values
under 30 %) [19]. The main effect of ageing over the frequency
response of the battery is the displacement of the plot towards the
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right, as a manifestation of the increase in series resistance. Some
other increments in the radius of the semi-circle like sections are
also reported in the literature [20, 21, 22].

1.1.4 Equivalent Circuit-Based Impedance
Models

Circuital models can be used to represent the frequency response of
a battery, but very often such impedance models can not be used
directly for time domain simulations. In the literature, equivalent
circuits like the one presented in Figure 1.1 are used for a relatively
accurate and meaningful reproduction of the battery cell’s imped-
ance spectrum [23]. The behaviour of the cell at high frequencies is
represented by an ideal inductor L and the resistor Rs represents
the ohmic resistance of the cell elements. The two semi-circles
can be represented using ZARC elements, which correspond to a
parallel connection between a resistor and a constant phase ele-
ment (CPE). The impedance of a CPE, ZCP E, is presented in (1.2),
where G corresponds to a generalised capacitance (in the literature
Q is normally used, but in order to avoid confusion with battery
capacity here G is employed instead), ϕ to the depression factor,
ω to the angular frequency and j to the imaginary unity [24]. The
response at low frequencies is represented by a Warburg element,
characterised by a constant phase angle of 45◦ and its impedance
can be represented using (1.3), in which Aw corresponds to the
diffusion or Warburg coefficient [24]. It is worth highlighting that
a Warburg element is a special case of a CPE, and therefore its
impedance can be rewritten in the form of (1.2), as presented in
(1.3). Then, Gw = 1/(

√
2Aw) and ϕw = 0.5 correspond to the

generalised capacitance and depression factor for the Warburg
impedance respectively.

ZCP E(ω) = 1
G (jω)ϕ (1.2)

ZW (ω) = Aw√
ω

(1 − j) =
√

2Aw√
jω

= 1
Gw (jω)ϕw

(1.3)
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CPEs are used instead of capacitors because, when connected in
parallel with a resistor forming a ZARC element, the variations in
ϕ allow to represent the depression often shown in the semi-circles
of the Li-ion cell impedance plot. ϕ can take values between zero
and one, when ϕ = 0 the ZARC element represents only an ohmic
resistance and with a value of ϕ = 1 the response of a RC element
is obtained. The ZARC impedance is represented by:

ZZARC(ω) = Rp

1 + RpG (jω)ϕ , (1.4)

where Rp, G and ϕ characterise the resistance and CPE parameters.
The impedance of the circuit presented in Figure 1.1 is defined

as:

Zbat(ω) =jωL + Rs + ZZARC1 + ZZARC2 + Aw√
ω

− Aw√
ω

j (1.5)

where ZZARC1 represents the impedance of the first ZARC
element, with resistance Rp1 and CPE parameters G1 and ϕ1.
Similarly, ZZARC2 corresponds to the second ZARC impedance,
with Rp2, G2 and ϕ2 as parameters.

1.2 Capacity and SoH Estimation
Methods

The SoH estimation methods presented in the literature may be
classified according to the nature of the employed SoH features
into the following categories:

• Model-based methods evaluate the SoH using the drift-
ing of some parameters of battery models, fitted at different
stages in the battery life. These models can be as simple
as circuit models, used both to track the time-domain bat-
tery response under normal usage [25, 26], as well as for
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frequency-domain impedance models, which have to be iden-
tified through specific experiments [27]. More complicated
models, tightly linked to physics and electrochemistry prin-
ciples, have been used also for SoH estimation [28]. Adopting
model-based optimal state estimation techniques, such as
least squares [29], Kalman filter and all its variants [10] and
particle filters [11], the identification of battery paramet-
ers can also be performed online, by minimising the error
between the considered model output and the operating data.
Then, the identified parameters, such as the battery capacity
or the model resistances, can be used for the estimation of
the battery SoH [30].

• Data-driven methods do not require a detailed knowledge
of the battery principles, nor of a battery model. Such ap-
proach is appealing for SoH estimation due to the complexity
of the battery internal principles, as well as the high un-
certainty on the operating conditions, which are difficult
challenges to address when using model-based approaches.
In this category, several methods have been implemented
successfully, for instance: support vector machines [31, 32],
Gaussian process regressions [33, 34], fuzzy logic [35], neural
networks [36], and machine learning [37, 38]. In order to en-
sure an accurate SoH assessment with this kind of approach,
a large amount of data, well representing a wide variety of
operating conditions is required. This is the typical frame-
work of a cloud-based centralised monitoring infrastructure,
which is available in principle only in large scale applications,
like EV fleets.

• Experiment-based methods are a third kind of estima-
tion approaches, complementary to the previous ones. These
methods do not need a battery model: they are based on
measurements that can be performed during a specific stage
of the battery operation or during a specific test. The meas-
urements are aimed to find features that can be directly
related to the battery SoH. This is done by analysing or
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performing specific operations on selected data sections and
studying the results. From this category, the length [39] or
time duration [40, 41, 42] of specific operating ranges, such
as voltage or current intervals, during charge or discharge
appear as the most straightforward features for SoH estima-
tion. Furthermore, additional features can be extracted from
the measured data through differentiation operations, such is
the case of the widely used IC and Differential Voltage (DV)
analyses [43]. These techniques do not need any additional
equipment beyond the usual voltage and current sensing
and control, which are normally required during the battery
charge and discharge cycles [44].

Table 1.1 lists the main methods and collects them into the
aforementioned categories, highlighting their benefits and draw-
backs. Unfortunately, in most cases the estimation methods have
been only evaluated under laboratory conditions, with some of
them requiring specialised tests such as EIS [20] or uncommon op-
erating conditions, such as the low constant current charge required
by traditional ICA [43]. In order to identify methods suitable for
on-board implementation under common usage conditions, a review
of methods implemented on automotive frameworks is presented
in the following section.

1.2.1 Automotive Examples of On-Board SoH
Estimation

The number of examples concerning real world applications of SoH
estimation methods in the automotive field is very limited. This is
the case due to market competition, leading to the non-disclosure by
manufacturers of the methods employed on real products. Table 1.2
summarises several examples of SoH estimation methods reported
in the literature and related to on-board implementation of SoH
estimation techniques performed in the framework of an electric or
hybrid vehicle, even if not in industrial-scale applications.

The examples listed hereinafter are based on on-board imple-
mentable approaches, and whose computations can be performed
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on a microcontroller, or a DSP, or a single-board computer in an
online fashion, that is, almost in real-time.

Internal resistance. The internal resistance has been used for
years to assess the SoH of an electrochemical cell, as shown in many
handbooks [45]. Such an approach is based on a direct measurement
of the internal resistance, taken under specific operating conditions
(e.g., with a pulsed current injection). The internal resistance is
still successfully used in the literature, e.g. in [46], for the SoH
assessment of a Volkswagen e-Golf by means of the identification
of an electric circuit parameters. The robustness of methods based
on the internal resistance estimation can be highly improved by
including current steps detection, averaging filters and temperature
dependencies, as illustrated in [30]. The main advantage of this
method is that it is very straightforward and simple, suitable for
real-time application. Moreover, it needs a small amount of data to
process in order to determine the SoH from the internal resistance,
and the obtained error reaches typical values of 2 %.

Kalman filter-based methods. Another class of SoH-assessment
methods, widely used for EV batteries at the research stage, are
the ones based on the Kalman Filter (KF). The KF is a well-known
model-based optimal state estimator for linear systems, which
works under very specific hypotheses. If the system is nonlinear,
a linearisation process at each time step helps approximating the
nonlinear system with a linear time-varying system, leading to
the so-called Extended KF (EKF). Although an EKF is not ne-
cessarily optimal, it is proven to work satisfactorily for battery
state estimation, especially in combination with a circuit model
for the battery, or a more general state-space model. The SoH is
often observed by tracking the electric resistances included in the
models. Several enhancements to the filter, like the unscented or
the sigma-point KFs have been successfully applied in the battery
framework [47]. Sometimes, the KF-based methods are hybridised
with other approaches [26]-[48]. The KF-based approaches have
been applied on marketed automobiles, as in the case of the BMW
i3, or on prototypes like a electric Fiat Panda [49]. Such a class of
methods is characterised by a fair errors, below 5 %. Their intrinsic
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closed-loop algorithm enables fast feedback. The algorithm is often
developed in combination with State-of-Charge (SoC) estimation,
as done, for instance, in [50].

Incremental Capacity. The ICA has been used for years to
study the electrochemical properties of the cells. It is implemented
basically through the differentiation of the battery capacity with
respect to voltage during a full or partial charge or discharge,
performed at low current levels in a laboratory environment. Some
attempts have been made to bring it on-board for their intrinsic
advantages: first, it is possible to extract information about battery
degradation from external electrical measurements; second, the
approach is suitable for describing battery ageing mechanisms over
its lifetime; and third, a high accuracy is expected, with absolute
errors below 1 %. This method has already been applied to vehicles
produced by well-known car manufacturers, like the Nissan Leaf
[4], [51], [52], the Chevrolet Volt [4], [53], [54], and the BMW i3
[52]. Furthermore, the ICA was also used in hybrid forms with the
differential voltage, like for instance in the study [55]. However, the
author clearly declares that the adoption of such hybrid method on
a commercial scale is still a hard task, and keeps being a primary
goal of car manufacturers. In is worth to notice that the ICA
experiments require a low current charge/discharge phase, which
is not so practical unless long stops are foreseen or programmable.
But the method is definitely interesting and on-board applicable.

It is worth highlighting that all the three aforementioned sets
of methods require a prior characterisation of the battery.

Data-driven approaches. Alternative methods include data-
driven approaches, like for instance artificial neural networks
(ANN), fuzzy logic, and Bayesian networks. They have a good
estimation capability even in the presence of partial data, such as
partial charges, and a good representation of battery non-linear
effects, which may achieve good accuracy, with absolute errors
below 2 %. Several attempts have been made to estimate battery
SoH using such methods in on-board applications in [56], [57],
and, [49] (such an approach is hybridised with EKF). A Bayesian
Network is implemented on-board to study a car prototype based
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on the BAIC EU260, produced by a Chinese car manufacturer
and used for years as taxis [58]. Data-driven methods may not
require a complicated model to represent a battery, but they need
big training datasets and, therefore, require much more than a few
characterisation tests to outperform model-based approaches.

Table 1.2: SoH estimation methods implemented on automotive
framework.

EV model SOH estimation method References
Nissan Leaf EV ICA [4] [51] [52]
Chevrolet Volt ICA [4] [53] [54]
VW e-Golf Discharge test (Ampere counting)

and Internal resistance method
(ECM fit)

[46]

Undefined BEV Extended Kalman Filter (EKF) [47]
BMW i3 ICA [52]
300 BEVs 400 HEVs
(unspecified)

ANN (feedforward neural network) [56]

BAIC EU260 Bayesian network [58]
10 FCHEV (Moby-
post project)

Embedded (raw data on-board +
EKF)

[26] [48]

Jaguar Land-Rover
(undefined)

pOCV, IC-DV and EIS [55]

Fiat Panda Extended Kalman Filter (EKF)
and Non-linear AutoRegressive with
eXogenous input Neural Network
(NARX-NN)

[49]

Volvo C30 ANN (artificial neural network) [57]

According to the results of this review ICA is one of the main
methods considered for on-board SoH estimation, but its limitations
are related to the use of low current values during charge. Also the
Coulomb counting between two known SoC values is still highly
used. This requires of reference discharges of the battery. There
is still a need for identifying methods capable of working under
battery common usage, and in particular three lines of work are
identified:

• When considering model based approaches, impedance mod-
els have shown to be an interesting bridge between time and
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frequency domain behaviour of the batteries, allowing to
characterise the battery ageing behaviour with higher accur-
acy. Even if observers and estimators are able to successfully
identify the models parameters, little attention has been
given to the implementation aspects of impedance models on
time domain.

• In the case of methods such as ICA, exploration of applic-
ation at conditions closer to normal usage of the battery
have been performed, but always under standard CC-CV
charge profiles and for very reduced numbers of batteries. A
clear identification of SoH indicators at more general usage
conditions is still missing.

• The combination of features extracted from different com-
mon usage conditions has not been addressed, multifeature
approaches tend to rely on indicators extracted under un-
common or laboratory conditions.

Specific reviews for these particular lines of work are presented
on the following section, aiming to identify possible research gaps.

1.3 Challenges for On-Board SoH
Estimation

1.3.1 Challenges on Battery Modelling
State estimation and control algorithms in a BMS may require
battery models capable of approximating the battery’s response
under given operating conditions [59]. Equivalent circuit models
(ECMs) are preferred over electrochemical or empirical models,
as they approximate the dynamic behaviour of a battery with
relatively high accuracy [60], while offering simplified descriptions
of the complex physical and chemical processes occurring within
batteries, by representing them with a set of lumped elements,
including resistors, capacitors and inductors. ECMs have been
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widely used as parts of battery state estimation and charging control
strategies. The adoption of ECM-based optimal state estimation,
by directly solving the model-constrained optimisation problem [11]
or using techniques such as the Kalman filter and all its variants [10],
has enabled the implementation of online SoC and SoH estimations
in battery systems frameworks. The implementation of online
optimal charging strategies, known for their high computational
burden, has also been enabled by algorithms including ECMs,
by profiting from the accuracy–complexity trade off offered by such
models [61].

The parameters of an ECM can be fitted from voltage and
current data obtained during specific operating conditions [60].
However, these circuit components are often insufficient for mod-
elling the dynamics of electrochemical processes such as charge
and mass transfers and double layer capacitance in a battery, due
to the spatial distribution of those processes [62]. This lack of
physical significance may compromise the identification of rela-
tionships between health estimation and ECM parameters. Said
drawback may be overcame by substituting capacitors in the ECM
with CPEs, defined in the frequency domain and analytically de-
rived from the electrochemical principles of the diffusion processes.
Such elements are often used to fit EIS data [63]. The reduced
number of parameters in ECMs using CPEs instead of capacitors
is mainly attractive for SoH estimation approaches based on the
analysis of variations in the parameters associated with specific
electrochemical processes [64].

The direct time-domain implementation of such models is par-
ticularly challenging, because they represent dynamic systems with
non-integer-order derivative operations, hence the name fractional
order models (FOM) [62].
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1.3.2 Challenges on Experiment-Based
Methods

1.3.2.1 Incremental Capacity Analysis

In an IC analysis, the battery ampere-hour (A h) charge, or partial
capacity, is computed using the Coulomb counting method for a
charge or discharge process at low current, usually a fraction of the
1C current [65] (1C stands for a current whose value is numerically
equal to the battery full capacity), as only at such low currents
it is possible to properly identify the different electrochemical
processes using IC analysis. The most significant information
can be extracted from IC curves obtained at pseudo-equilibrium
thermodynamic conditions, in the range of C/20 (that stands for
a current equal to one twentieth of the battery capacity) [66].
Then, these data are differentiated with respect to the battery
voltage, obtaining the so-called IC. The plot of IC against the
battery voltage is characterised by the presence of peaks. The
peak positions and areas are promising indicators for the SoH
estimation [67, 68, 69], because they are very sensitive to specific
electrochemical processes [70], including the various phases of the
lithium ion insertion process [71] or some degradation mechanisms,
like the loss of lithium inventory or active materials [72, 73, 74],
and the conductivity loss [75]. As a general rule, Riviere et al.
highlighted that a shift towards the right in all the peak positions
can obviously be associated with an internal resistance increase
[66].

The IC analysis technique is particularly useful for those bat-
teries showing a particularly flat open circuit voltage (OCV)– SoC
curve, such as the Lithium-Iron-Phosphate (LFP) cells. In this
case, the IC analysis allows one to focus on the shape of the voltage
curve, mainly in the curve slopes and plateaus [66].

Unfortunately, methods based on traditional ICA, performed
under pseudo-equilibrium conditions [67, 68, 69], cannot be applied
easily outside of a laboratory environment, as the required condi-
tions can only be reached during laboratory tests such as a charge
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process at a very low current value and for batteries aged with a
uniform cycling, like a CC–constant voltage (CV) full charge/full
discharge cycling profile. These conditions are rarely met in prac-
tical applications, such as smart grids or EVs. Furthermore, even
for cases at which on-board EV application had been considered
[66], the number of considered battery cells is always reduced.

Some authors had the intuition to go beyond the pseudo-
equilibrium condition for battery diagnosis [70] or for the estimation
of the capacity and SoH, extending the low current IC-based res-
ults beyond C/5, and up to 1C current, always in the presence of
uniform battery cycling. For example, the area of the IC curve
under one of its peaks obtained for C/3 current levels was used
in [71]. Tang et al. [76] proposed to compute the IC curves at
multiple degradation stages for a 1C CC charge of the battery. In
[77], the peak area of the IC curve obtained with a C/2 charge
current, computed in a fixed voltage range including the peaks,
was used as one of the inputs to a fuzzy logic based SoH estimator.
In [78], a fixed set of points including the main peak of the IC
curve, extracted during a 0.75C charge, are used as the input of a
capacity degradation model generated using a Gaussian process re-
gression. For a set of batteries cycled using a fixed uniform pattern,
the authors in [79] trained a support vector machine for health
estimation using the peak features of IC curves obtained from a
1C charge as input. In a similar way, the authors of [80] define
procedures for the estimation of the battery SoC and capacity from
three specific points, namely peaks and valleys, of SoC against
IC and DV curves obtained at C/2 for batteries cycled with fixed
CC-CV charge and discharge profiles.

These kind of analyses are still far from being conclusive for
the definition of a widely-applicable battery capacity indicator of
practical interest. Two main limiting factors affect all the previously
cited works using IC analysis for capacity estimation beyond low-
current levels. First, very few batteries were considered (five or
less), and, second, their usage pattern is always uniform among
batteries, employing fixed rates during full charge and discharge
ageing cycles. Therefore, the application domain of IC-related
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capacity indicators, and the choice of the optimal one, still needs to
be extended to batteries aged under more general usage patterns,
and studied using a dataset with a higher number of batteries. The
usage pattern could be far from the pseudo-equilibrium condition
characterising typical laboratory tests.

1.3.2.2 Experiment-Based Multifeature Models

Experiment-based approaches are particularly interesting for on-
board implementation, because they employ features extracted from
the operating data and allow to develop models for Q estimation
with low complexity, making them easy to implement and to
interpret. They exploit the correlation between Q and features
extracted from voltage, current and/or temperature data during
specific usage stages. For instance, time durations of the CC charge
over fixed voltage ranges have been explored as easy to extract
SoH indicators [81]. Another well-known feature, is the dynamic
resistance computed at fixed time intervals during a discharge
current step [79, 82]. A family of features often mentioned in the
most recent literature, are the IC features, such as the area under
the main peak of an IC curve, which is obtained during a partial
CC charge of a battery [15, 16]. Furthermore, the parameters of
voltage-capacity models for IC curves have been recently explored
as accurate SoH indicators [83]. Sometimes, features coming from
different usage stages are used together in multifeature approaches
[84, 85]. Despite their good accuracy, the on-board application of
multifeature approaches is very limited at present.

In recent past, each feature has been used as an individual
capacity indicator, obtaining single-feature models with acceptable
estimation errors [15, 82]. Recent literature efforts are targeted to
improve the estimation accuracy by using multiple Q indicators
at once. The study in [85] considers 0.5C IC features as health
indicators. These features are used for training and testing a
Support Vector Regression (SVR) model for SoH estimation for
2 batteries on the PL Sample CALCE dataset [86]. RMSE with
values under 1 % were obtained. Models based on multiple features
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extracted from IC curves have also been proposed in [84, 78].
Mean RMSE results of 1.18 % were reported in [84] for 4 batteries
from the CS2 Battery CALCE dataset [87]. For 4 batteries in the
NASA Battery Data Set RMSE results in the order of 0.02 Ah are
reported by [78]. The results in these works may be limited by the
use of features coming from the same usage stage, namely a CC
charge, and by the high uniformity in the cycling of the considered
batteries.

The mean, maximum and minimum values of the charged capa-
city and temperature during different voltage ranges are considered
as SoH indicators by the authors of [88]. A genetic algorithm
(GA) is employed for feature selection and a SVR is used for SoH
estimation. The method is tested for 3 batteries from the Toyota
Research Institute fast charging dataset [89], obtaining a RMSE of
0.24 %. Even if these results are promising in the framework of Q
estimation for batteries cycled using fast charging, the approach
needs to be evaluated on a higher number of batteries. Paper [90]
proposes three parameters from a model for the battery voltage
during a reference CC charge as residual capacity indicators. A
SVR model is evaluated using the charge voltage curves for 920
batteries retired from EVs (not available publicly). RMSE values
for residual capacity estimation of the order of 2.2% are obtained.
This study stands out due to the number of involved batteries, but
is limited due to the fact that a reference discharge is required, as
the proposed method is aimed as a characterisation experiment
after retiring the batteries from their application.

Paper [91] considers multiple health indicators: the charged
capacity, time duration and area under the temperature curves
during both the CC and also CV stages of the battery charge.
Features selection is performed by applying grey relational analysis
and further dimensional reduction is obtained by using principal
components analysis. These features are used for training and
testing a Relevance Vector Machine (RVM) for the batteries on
the NASA Battery Data Set [92]. The study considers a total of
18 batteries, which is a step up in terms of statistical units with
respect to previous works, but the models are tested by employing
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either single batteries or groups of three batteries. In general,
they achieved capacity estimation errors under 10 %. Even if
a fair accuracy is reached, considering the number of analysed
batteries, the practicality of the resulting models is reduced by the
dependency of the employed features on full CC-CV charges.

Lin et al. proposed a multi-model fusion approach for SoH
estimation. The fused models are a multiple linear regression
(MLR), SVM and GPR [93]. The three models are combined using
a random forest regression (RFR). The considered features include:
the voltage values and slope in a given time interval, and the peaks
of the differential temperature and IC curves during a CC charge.
The approach is evaluated on the Oxford Battery Degradation
Dataset 1 [94], using a leave-one-out cross-validation procedure.
In general mean absolute error and RMSE results are under 1 %
for the proposed approach.

Table 1.3 summarises the features introduced in the literature
discussed above. IC features are the most widely adopted Q
indicators, being used alone [85, 84, 78] or mixed with voltage
and temperature features [93]. For models including such features,
the performance evaluation is done using the data from a limited
number of batteries, between 2 and 8 batteries, with highly uniform
cycling profiles. Only the work presented by [90] considers a high
amount of batteries, 920 decommissioned cells, but the capacity
estimation method is developed in the framework of laboratory
characterisation for second life applications, relying on a model
fitted during a battery full charge. The approaches presented by
[91, 93] mix features coming from different sources, namely different
charge stages or type of signals, but the results are severely limited
by the dependency on a full charge or the number and variety of
the considered batteries respectively.

Such approaches achieve a good accuracy in capacity estimation
by employing models with multiple features extracted from battery
cycling data. However, three major issues limit their applicability
on-board battery systems. First, most of the features depend
on data from full charge or discharge cycles, making it difficult
to extract them from normal usage data. Second, the models
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are normally trained and tested using the data of few batteries,
typically between 1 and 4. Finally, usually the considered batteries
share laboratory cycling profiles, which highly limits the extension
of the obtained results to real battery usage profiles.

1.4 Thesis Overview

The overview of recently published works on Li-ion batteries SoH
estimation, presented on the precedent sections, revealed some
critical issues when considering methods employing battery models
and features that can be extracted during the battery normal usage.

In the case of model-based estimation methods, recently, FO
impedance models have been adopted for the representation of the
battery electrical behaviour. Such models, are still ECMs that
include CPEs, defined in the frequency domain and analytically
derived from the electrochemical principles of the diffusion processes
[63]. FOMs represent a compromise between the lack of physical
significance often encountered when using simpler equivalent circuit
models, and the higher computational complexity of electrochemical
models. FO models have been successfully used for SoH estimation
in laboratory, often using computers for the model implementation,
but little consideration has been given to how to implement such
models on embedded systems suitable for on-board applications.
This issue is addressed in Chapter 2, where three approaches for the
implementation of the time domain response of FOMs are proposed
and compared in terms of accuracy, complexity and suitability for
parameters identification from time domain data. Additionally,
when facing the problem of identifying impedance models directly
in the frequency domain, there is still a lack of consensus on how
to assign the initial values of the model parameters. Such decision
is critical for the convergence of the identification processes and
very often it is performed manually, limiting the applicability of
EIS identification on automated characterisation campaigns. This
issue is also faced on Chapter 2, where a method for the definition
of the initial values is proposed.
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Multiple methods for the analysis of the battery behaviour such
as ICA and EIS are successfully used as battery diagnosis tools
on laboratory environments. Unfortunately, these methods are
not applicable when the batteries operate under cycling conditions
typical of EV or stationary applications, mainly due to their specific
operational requirements. In particular the success of ICA analysis
for battery diagnosis depends on charging or discharging the battery
using a very low constant current after a long rest period, conditions
that will be rarely met on real applications. Recently some authors
have considered employing higher currents [70, 71, 76, 77, 78,
79, 80], in order to make ICA suitable for battery performance
assessment on-board, but those studies are limited to reduced sets
of batteries under standard cycling profiles. The work presented
on Chapter 3 aims to extend the applicability of ICA as a tool for
on-board SoH estimation when considering batteries aged using
profiles closer to real applications such as randomised cycling and
fast charging scenarios.

Finally, Chapter 4 proposes several simple linear models that
combine multiple features extracted during normal usage of the
battery, including ICA and internal resistance features. Even, if
similar models have been considered on the literature, they often
rely on features that could be extracted with little periodicity on
real applications, as they use the data from full battery charges
and discharges. Evaluating models with features that could be
extracted under common usage conditions enables a more consistent
SoH monitoring over time.



Chapter 2

Battery Frequency and
Time Domain Modelling for
State-of-Health Estimation

Impedance models including CPEs are of particular interest for SoH
estimation, as they are ECMs capable of accurately representing the
battery frequency response. Such characteristics allow their use for
bridging information coming from time and frequency domains. On
the one hand, an impedance model fitted using frequency domain
data, such as EIS spectra, can be used directly to represent the
battery dynamic response to a particular current profile [23]. On
the other hand, the parameters of the impedance elements identified
from time domain data can be used to analyse the frequency domain
response of the battery, which has been extensively linked to specific
electrochemical processes in the literature [9, 95]. From the SoH
estimation perspective, impedance models have been exploited
using two approaches:

• After a characterisation process for the specific application,
the relationships between impedance parameters, such as the
model resistances, and SoH can be exploited for estimation.
This requires a periodic estimation of the impedance model
parameters at specific operating conditions, which can be
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performed using frequency or time domain data. Such ap-
proach is often performed on laboratory conditions due to
the need for EIS data at fixed SoC and rest conditions or the
lack of methods for the implementation of FOM on-board
[95].

• The implementation of state observers such as the EKF has
previously allowed the on-board estimation of SoC and SoH
[96, 97]. The most commonly used models are multiple RC
ECMs, as their state space representation is very well known,
but such models can fall short in representing the frequency
domain response of the battery, often requiring multiple RC
elements in series in order to fully capture the dynamics
of the electrochemical processes on the battery, which may
lead to model identification issues [98]. Recently FO and
electrochemical models have been considered for use with
state estimators, but their implementation on-board is still
an open research issue.

For the first estimation approach, the accurate identification of
the impedance model parameters is of paramount importance,
when using either frequency or time domain data. When starting
from frequency data, for the identification, a suitable selection of
the initial values of the parameters has shown to be one of the
critical issues for a successful identification [24]. This issue, is
addressed on Section 2.1 of this chapter, where a fitting method
with a suitable selection of the initial values is proposed and
evaluated. Conversely, when the aim is to fit impedance FOMs
from time domain data, there is still a lack of a clear method for
their numerical implementation on-board, regardless of the recent
interest on FO states observers [64]. Section 2.2 proposes three sets
of state equations for the implementation of FOMs using different
approximation methods: multiple RC, Oustaloup and Grünwald–
Letnikov. The three implementation methods are then evaluated
and compared in simulation, in order to identify their suitability
for on-board implementation.
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2.1 Method for the Identification of
Battery Impedance Models from
EIS Data

The implementation of an impedance model and a curve fitting
procedure of its parameters are presented in this section. The
proposed curve fitting procedure is based on the minimisation of the
distance, in the complex plane, between the measured impedance
and the impedance model. In this kind of procedures the selection of
an adequate initial set of parameters is important, for convergence
reasons. A set of initial model parameters is proposed, which
improves the convergence of the procedure.

In order to simplify the implementation of the proposed fitting
procedure, the impedance presented in (1.5) can be separated into
its real and imaginary parts as follows:

Re{Zbat(ω)} = Rs +
Rp1 + R2

p1G1ω
ϕ1 cos ϕ1π

2
a1(ω)

+
Rp2 + R2

p2G2ω
ϕ2 cos ϕ2π

2
a2(ω) + Aw√

ω
(2.1)

Im{Zbat(ω)} = Lω −
R2

p1G1ω
ϕ1 sin ϕ1π

2
a1(ω)

−
R2

p2G2ω
ϕ2 sin ϕ2π

2
a2(ω) − Aw√

ω
(2.2)

in which a1 and a2 can be obtained by replacing i for 1 or 2 in
(2.3) respectively.

ai(ω) =
(

1 + RpiGiω
ϕi cos ϕiπ

2

)2

+
(

RpiGiω
ϕi sin ϕiπ

2

)2

(2.3)

The equations for the real and imaginary parts of the impedance
of the circuit presented in Figure 1.1 were implemented in Matlab®
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Figure 2.1: Impedance plots generated with the implemented model
for two different sets of parameters.

using some parameters values within the ranges reported in the
literature [99]. These kind of data, generated by simulation, may
be useful for tests of identification algorithms. The addition of
Gaussian noise to the data can be considered in order to get a better
simulation of experimental data. Figure 2.1 presents the impedance
plots generated using the implemented impedance model in the
range of frequencies 10m-10k Hz for two different sets of parameters,
introduced in Table 2.1. The curves obtained in both cases after
adding Gaussian noise with a signal to noise ratio of 30 dB are also
included in Figure 2.1. It is worth highlighting that a next step in
this regard could be to add temperature, SoC, electric operating
point and ageing dependencies to this model. Such improvements
would allow to generate impedance plots for a given cell under
multiple operating conditions.

Table 2.1: Parameters used for the generation of Nyquist plots
with the implemented impedance model

Case L
(µH)

Rs

(mΩ)
Rp1
(mΩ)

G1
(Ssϕ1)

ϕ1 Rp2
(mΩ)

G2
(Ssϕ2)

ϕ2 Aw

(mΩ/
√

s)
1 5 38 167.5 0.235 0.62 650 0.139 0.9 270.8
2 5 38 450 0.02 0.62 650 0.4 0.9 270.8
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2.1.1 Circuit Parameters Estimation
Procedure

The parameters of the circuit-based impedance model can be es-
timated by making use of a curve fitting procedure of equations
(2.1) and (2.2) to experimental impedance data, obtained by per-
forming an EIS test for a given set of cell operating conditions. A
least squares-based fitting procedure was implemented in order to
estimate the value of the parameters of the circuit in Figure 1.1
from experimental impedance results.

The proposed procedure works on data obtained from an EIS
test performed for a set of N frequency values:

ω =
[
ω1 ω2 · · · ωN

]
, (2.4)

where the frequencies ωi are sorted in an increasing order. The
data obtained during the EIS test can be organised in a matrix as
follows:

Y =
[
z1 z2 · · · zN

]
=
[

Rez1 Rez2 · · · RezN

Imz1 Imz2 · · · ImzN

]
(2.5)

where zi correspond to the impedance measurement taken
at frequency ωi with real and imaginary parts Rezi

and Imzi

respectively. Considering the model of the real and imaginary
parts of the impedance:

Zbat(ω,θ) =
[

Rebat(ω,θ)
Imbat(ω,θ)

]
(2.6)

in which Rebat(ω,θ) and Imbat(ω,θ) correspond to equations
(2.1) and (2.2) respectively evaluated for the parameters in vector
θ, defined as:

θ =
[
L Rs Rp1 G1 ϕ1 Rp2 G2 ϕ2 Aw

]T
(2.7)

where the operator xT corresponds to the transpose of array
x. The problem of finding the values of the circuit parameters
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that approximate the experimental data can be established as the
problem of minimising:

min
θ

N∑
i=1

(
[zi − Zbat(ωi,θ)]T · [zi − Zbat(ωi,θ)]

)

= min
θ

N∑
i=1

(
(Rezi

− Rebat(ωi,θ))2 + (Imzi
− Imbat(ωi,θ))2

)
(2.8)

which basically correspond to minimising the sum of the squares
of the euclidean distances between the experimental data and the
complex point obtained by evaluating the impedance model at the
same frequency. This optimisation problem can be solved using
a non-linear least squares method, such as trust region reflective.
The selection of the initial parameters is crucial for the convergence
of the solution.

2.1.1.1 Definition of Initial Values for the Impedance
Model Parameters

The proposed procedure for the estimation of the initial impedance
parameters relies on the identification of a few critical points on
the impedance plot. Once identified, the critical points can be used
for defining initial parameters values as follows:

• For L and Rs the initial values, L0 and Rs0, are determined
from the imaginary and real parts of the impedance measured
at the highest frequency value ωmax = ω[N ]. L0 and Rs0 can
be taken from the impedance data matrix Y (2.5) as follows:

L0 = Y [2, N ]
ω[N ] = ImzN

ωmax

(2.9)

Rs0 = Y [1, N ] = RezN
, (2.10)
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it is worth mentioning, that this relations will only apply if
the imaginary part of the impedance data includes a zero
crossing. Otherwise, if only negative values of ImZbat

are
available L needs to be fixed as zero and (2.10) can still be
used as an initial value for Rs.

• For defining an initial value for Aw, namely Aw0, first the
low frequencies inflection point, at frequency ωLF , needs to
be identified. This can be done by computing the numerical
derivative dImzi

/dRezi
, then ωLF can be identified as the

first value for which the derivative approaches zero. Then the
initial approximation can be calculated as the mean value of
the slope in the plot Rezi

vs 1/
√

w at frequencies under ωLF .
Numerically, from the experimental data, namely ω and Y,
Aw0 can be computed as:

Aw0 = 1
iLF

iLF −1∑
i=1

si, (2.11)

where iLF is the index of ωLF in ω, and si is the numerical
derivative:

si = Rezi+1 − Rezi

1√
wi+1

− 1√
wi

. (2.12)

• The two CPE elements are initially approximated as RC
parallel elements by assuming ϕ1 = ϕ2 = 1, which allows
to approximate initial values of the respective Rp and G
by making use of the imaginary part and frequency values
at the highest point in the corresponding semi-circle in the
impedance plot.

2.1.2 EIS Fitting Results
The procedure was tested using EIS results taken from the Sandia
Cell EIS Testing Data repository [100]. The data corresponds to
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a LiCoO2 cell LGDBHE21865, with a nominal capacity of 2.5 Ah.
The considered impedance measurements were obtained for the cell
with a SoC of 0 % using sine signals with an amplitude of 5 mV
around to open circuit condition at five different cell temperatures.
In this work only the impedance values in the range between 0.1
and 10000 Hz, considering 10 points per decade, were used for the
tests performed under 25, 35 and 45◦C.

The fitting results for the described experimental EIS data are
presented in Figure 2.2. For the three temperature values a good
approximation of the experimental data was found when the initial
parameters were set according to the proposed considerations. In
the other hand, when the initial condition was set with all the
parameters equal to zero a solution with high errors in the approx-
imation was reached as seen in Figure 2.2. It is worth mentioning
that even when considering more practical fixed initial parameters,
such as the average between the maximum and minimum expected
values for each parameter, the proposed method with dynamic
initial values reaches solutions with lower errors. For the three
temperatures, the euclidean distance between the experimental
and the estimated impedance points was calculated. For all the
impedance points in the three cases, the relative values of the
distances with respect the experimental impedance values were
under 1.6%, evidencing the goodness of the reached fittings. The
main differences between the experimental and approximated data
are observed at low frequencies, at which the experimental data
presents a curvature that can not be fully represented using the
Warburg element.

2.2 Time-Domain Implementation of
Fractional-Order Battery
Impedance Models

Time-domain implementations of FOMs’ electrical responses have
been employed in applications such as online SoC estimation using
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Figure 2.2: Results obtained for the proposed fitting procedure
using the described experimental EIS data: a) Results obtained
using the proposed initial parameters b) Results obtained using
zero as initial condition for all the parameters.

FO KFs [101] and time-domain characterisation of battery diffusion
dynamics [102]. Three main implementation approaches have been
identified in the literature: the multiple RC (mRC) circuit [98],
the high-order integer transfer function [103] and the Grünwald–
Letnikov (GL) fractional derivative [104] approximations. However,
the literature is rather obscure about the implementation consider-
ations for the three approaches as well as about the motivation for
the selection of one approach over the others. This section aims to
fill this gap by proposing discrete equations for the implementation
of the three approaches. Furthermore, a comparative study of the
three approaches is also performed. The comparisons are made in
terms of:

• Accuracy: by analysing the error of each implementation
with respect to a reference analytical model for given input
signals;

• Complexity: by writing the sets of equations required by each
approach using similar structures and comparing the sizes of
the arrays involved and the numbers of required additions
and multiplications, in view of an embedded use of the FOMs;

• Suitability for identification of impedance parameters from
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time-domain measurements.

The comparison was performed using a simulation environment
with a set of FOMs representing the middle-frequency range imped-
ance of Li-ion batteries, normally represented by ZARC elements
as discussed on Section 1.1.3. This study identifies which of the
analysed approaches offers the best compromise between accur-
acy and computational burden for applications such as real-time
simulations. The second goal was to understand for which of the
three cases the time-domain identification of the FOM leads to a
correct frequency-domain response, keeping the impedance model
meaningful. This analysis may serve as a guide for the selection of
implementation approaches for FOMs in BMS applications.

For the sake of simplicity, the discussion that follows focuses on
the computation of the voltage v(t) of one of the ZARC elements
in (1.5) for a given current signal i(t). The presented results can
easily be extended to the Warburg element using similar principles,
and from there, to the whole battery’s impedance.

2.3 Time-Domain Implementation of
the ZARC Element Response

In the framework of battery modelling, three main approaches
for approximating the time-domain response of elements with FO
transfer functions have been proposed.

1. Approximation (1). The FO impedance is approximated with
a series of parallel RC branches [105, 106, 107]. In [105],
the mRC approximation was used for the implementation
of two battery diffusion impedance models. A comparison
in terms of the accuracy of the two models is presented.
Similarly in [106], a CPE was used for approximating the
diffusion dynamics of Li-ion batteries. A comparison of the
identification performances of multiple implementations of
the CPE based on the mRC approach is presented. The au-
thors of [107] used the mRC approach for the approximation
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of the response of a ZARC element, in the framework of
time-domain-based identification of impedance models for
batteries.

2. Approximation (2). The approximation of the FO transfer
function with a high-degree integer-order system, the Ousta-
loup (OU) approach being the most widely adopted [62,
108, 102]. In [62] and [108], this implementation was used for
FOM identification with time-domain measurements. In [102],
the approximation was used for studying and identifying the
diffusion dynamics of Li-ion batteries.

3. Approximation (3). The approximation of a derivative of
FO with a specific definition that allows one to implement
difference equations, mainly based on the GL definition of
the FO derivative [99, 101, 96]. The study presented in [99]
analysed the performance of a FOM, implemented using the
GL definition of the FO derivative, for the approximation
of the battery voltage, and compared the results with a
typical single RC model. Additionally, a method for the
time-domain identification of the FOM was provided to the
readers. In [101], the implementation was used in conjunction
with a FO KF for online SoC estimation. Similarly, in [96],
a GL-based implementation was used with an EKF scheme
for online estimation of SoC and SoH.

Flowcharts for the three implementation approaches are given in
Figure 2.3. In the three approaches, the time response of the FOM
is approximated by a set of discrete equations, corresponding to dis-
crete state-space representations for the mRC and OU approaches
and to a difference equation for the GL approach. These discrete
implementations were evaluated in a simulation environment in
terms of accuracy and complexity, as presented in the following
sections. The main differences between the approaches lie in the
parametrisation processes. For the GL approach, the coefficients in
the difference equation are computed directly from the impedance
parameters using predefined mathematical relationships, which are
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introduced in Section 2.3.3. As illustrated in Figure 2.3, the other
two approaches require an initial approximation of the FO transfer
function with an integer-order system, for which a discrete state-
space representation can be obtained. The main difference between
the mRC and OU approaches is the structure of the integer-order
transfer function and the method used for the approximation of
the FO transfer function, which are introduced in Sections 2.3.1
and 2.3.2, respectively.

Initially, this work focuses on defining difference equations for
the computation of the ZARC voltage v(t) for each one of the
mentioned approaches. The resulting expressions have the form
given by:

v[k] = Cx[k] + Di[k]. (2.13)

Equation (2.13) allows one to compute the ZARC element
voltage in the discrete instant k as a function of the input value i
and the vector x. The vector x may be the states’ vector or a set
of previous values of v, depending on the implementation approach.
The values of vector C and scalar D are functions of the parameters
of each approximation, as is discussed in the following subsections.

2.3.1 Approximation (1): Multiple RC
In the literature, series connections of multiple parallel RC circuits
have been considered for the approximation of the ZARC element
impedance [98]. The values of the components for this kind of
approximations are normally fitted from time measurements dir-
ectly, by minimising the differences between experimental data
and the model voltage output. However, for the case in which the
initial point for the model identification is an impedance model,
the process requires fitting the impedance spectra. The idea is to
approximate the transfer function of the ZARC element with a set
of RC parallel elements:

ZZARC(s) = Rp1

1 + Rp1G1sϕ1
≈

nRC∑
h=1

Rh

1 + RhChs
= ZRC(s). (2.14)
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Figure 2.3: A summary of the considered FOM implementation ap-
proaches.

In (2.14), a transfer function representation is used for the
impedance, using s as the Laplace complex variable. The approx-
imation of the ZARC impedance ZRC(s) employs a set of nRC RC
branches. The parameters Rh and Ch represent the resistance and
capacitance of the h-th RC parallel branch in the approximation
of the ZARC impedance presented in (2.14), accounting for 2nRC

parameters to fit.
The values for the resistance and capacitance in (2.14) can

be computed by minimising the difference between the ZARC
impedance, given in (1.4), and the mRC approximation.

Once the values for Rh and Ch have been fitted, the continuous
time response of the mRC circuit can be written in state-space
representation:

ẋRC(t) = ARCxRC(t) + BRCi(t) (2.15)
vRC(t) = CRCxRC(t) + DRCi(t), (2.16)

where the states’ vector xRC contains the RC elements voltages, ẋRC
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represents the states’ derivatives and vRC is the approximation
of the ZARC voltage using the mRC approach. Additionally,
the matrices ARC , BRC , CRC and DRC are nRC × nRC , nRC × 1,
1 × nRC and 1 × 1 matrices, respectively, given by:

ARC = diag
(

− 1
R1C1

, − 1
R2C2

, · · · , − 1
RnRC

CnRC

)
(2.17)

BRC =
[ 1

C1
1

C2
· · · 1

CnRC

]⊤
(2.18)

CRC =
[
1 1 · · · 1

]
(2.19)

DRC = 0. (2.20)

For the discretisation of this set of equations, the derivatives
are approximated using the backward Euler approximation for
stability reasons [109]. The obtained set of difference equations
can be rewritten and used for estimating the value of the ZARC
element voltage in a discrete instant k, vRC [k], as a function of the
current i[k] and the RC elements voltages xRC [k]:

xRC [k] = (InRC
− TARC)−1 xRC [k − 1]

+ T (InRC
− TARC)−1 BRCi[k] (2.21)

vRC [k] = CRCxRC [k] + DRCi[k], (2.22)

in which InRC
is the nRC × nRC identity matrix, and T is the

sampling period. Equations (2.21) and (2.22) can be used for
implementing the response of the RC approximation given a current
signal and a set of initial values for the RC branch voltages.

2.3.2 Approximation (2): Oustaloup
This approach relies on approximating the transfer function of
the CPE in the ZARC element using a transfer function with
integer order nOU (the same number of zeros and poles) in a
given frequency range. One of the most popular methods for
the approximation of the CPE transfer function with a rational
transfer function of odd order nOU was presented by Oustaloup et al.
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[103]. The approximation is valid in the frequency range ω ∈
[ωl, ωh], where ωl and ωh are the lower and higher frequency limits,
respectively. Following this method, the transfer function of the
CPE can be rewritten as:

ZCP E(s) = 1
G1sϕ1

= KCP E

(
s

ωc

)−ϕ1

≈ KCP E

(
ωl

ωc

)−ϕ1 N∏
h=−N

1 + s
ωz(CP E)h

1 + s
ωp(CP E)h

= ZOU(CP E)(s), (2.23)

where ZOU(CP E)(s) is the integer-order approximation of the CPE
impedance using the OU approach; ωc = √

ωlωh is the central
frequency between the bounds of the range of interest; and KCP E

and N are given by KCP E = 1
G1ω

ϕ1
c

and N = nOU −1
2 . In order to

estimate the nOU zeros ωz(CP E)h and nOU poles ωp(CP E)h in (2.23),
Oustaloup et al. proposed [103]:

ωz(CP E)h = ωl

(
ωh

ωl

)h+ nOU +ϕ1
2

nOU
,

ωp(CP E)h = ωl

(
ωh

ωl

)h+ nOU −ϕ1
2

nOU
. (2.24)

The transfer function can be used to approximate the frequency
response of the CPE. Then, the approximation ZOU (s) of the whole
ZARC impedance using the OU approach is:

ZZARC(s) = Rp1

1 + Rp1G1sϕ1
≈ Rp1

1 + Rp1
ZOU(CP E)(s)

= ZOU(s). (2.25)

In order to obtain a time representation of the response of this
approximation, the transfer function ZOU (s) needs to be rewritten
in zero-pole-gain form, as expressed in:

ZOU(s) = KZARC

nOU∏
h=1

(s − ωzh)
(s − ωph) , (2.26)
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where KZARC , ωzh and ωph represent the gain, zeros and poles of
the ZOU(s) transfer function, respectively. A time-domain state-
space representation for the OU approximation with the structure
presented in (2.26) was introduced in [109]:

ẋOU(t) = AOUxOU(t) + BOU i(t) (2.27)
vOU(t) = COUxOU(t) + DOU i(t), (2.28)

where xOU and ẋOU represent the system states and their derivat-
ives, and vOU is the approximation of the ZARC element voltage.
The matrices AOU nOU × nOU , BOU nOU × 1, COU 1 × nOU and
DOU 1 × 1, are given by:

AOU =


ωp1 0 0 · · · 0

(ωp2 − ωz2) ωp2 0 · · · 0
(ωp3 − ωz3) (ωp3 − ωz3) ωp3 · · · 0

...
...

...
. . .

...
(ωpnOU − ωznOU ) (ωpnOU − ωznOU ) · · · (ωpnOU − ωznOU ) ωpnOU


(2.29)

BOU = KZARC

[
(ωp1 − ωz1) (ωp2 − ωz2) · · · (ωpnOU

− ωznOU
)
]⊤

(2.30)
COU =

[
1 1 · · · 1

]
(2.31)

DOU = KZARC . (2.32)

Again, the backward Euler approximation was used to discretise
the obtained state-space system. This discrete representation is
obtained by replacing ARC , BRC , CRC and DRC with AOU , BOU ,
COU and DOU in (2.21) and (2.22).

2.3.3 Approximation (3): Grünwald–Letnikov
The ZARC element response can be approximated by adopting a
FO derivative definition in the time domain. The FO differential
equations representing the ZARC voltage can be obtained from
the transfer function (1.4) by replacing ZZARC(s) = V (s)/I(s) and
rewriting the equation as:

sϕ1V (s) = I(s)
G1

− V (s)
Rp1G1

, (2.33)



2.3. Time-Domain Implementation of ZARC Response 43

where V (s) and I(s) represent the Laplace transform of the ZARC
voltage and current, respectively. Then, by applying inverse
Laplace transform, the FO differential equation is rewritten as:

Dϕ1v(t) = i(t)
G1

− v(t)
Rp1G1

. (2.34)

Dϕ1 represents the derivative of ϕ1 order. Among the multiple
definitions of the FO derivative, the GL one is of particular interest,
as it allows one to directly obtain difference equations, which can be
used for the approximation of the FO system’s time response [104].
The considered definition is:

Dαf(t) = lim
T →∞

1
T α

⌊ t
T ⌋∑

h=0
(−1)h

(
α

h

)
f(t − hT ), (2.35)

where the derivative of FO α of the causal function f(t) is computed
between 0 and t. In (2.35), T is the sampling period,

⌊
t
T

⌋
represents

the integer part of t/T and
(

α
h

)
represents the Newtonian binomial

coefficients generalised to real numbers, computed as:(
α

h

)
= α(α − 1)(α − 2) · · · (α − h + 1)

h!

= Γ(α + 1)
Γ(h + 1)Γ(α − h + 1) , (2.36)

where Γ(·) stands for the gamma function, which works as a gener-
alisation of the factorial operator for real numbers.

It is worth noting that, according to the GL definition in (2.35),
the derivative of order α of the function at time t depends on all
the values of that function in [0, t], which is due to the non-local
property of fractional derivatives [110].

By fixing the value of T to an appropriately low value for the
application, and adopting the discrete variable k instead of the
continuous time t, it is possible to obtain the first order discrete
approximation of the FO derivative:

Dαf [k] = 1
T α

k∑
h=0

(−1)h

(
α

h

)
f [k − h]. (2.37)
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This approximation may be used to obtain a difference equation
for the numerical evaluation of function f [k]. The discrete version
also requires all the data points of f [k] since k = 0 for the com-
putation of the derivative approximation, which may imply large
memory requirements for simulations using this approach. This
drawback may be addressed by applying the short-memory prin-
ciple reported in reference [104], taking into account the behaviour
of the signal in only the recent past, i.e., in the interval [k−L, k−1],
where L is the memory length. Applying this principle, (2.37) can
be rewritten:

Dαf [k] = 1
T α

L∑
h=0

(−1)h

(
α

h

)
f [k − h]. (2.38)

This short-memory approximation allows one to implement nu-
merical difference equations in cases in which the required memory
is a critical constraint. Obviously, this introduces some inaccuracy,
mostly manifested in the form of static error [111].

By replacing (2.38) in (2.34), the following difference equation
is obtained:

vGL[k] =T ϕ1
Rp1

Rp1G1 + T ϕ1
i[k]

− Rp1G1

Rp1G1 + T ϕ1

L∑
h=1

(−1)h

(
ϕ1

h

)
vGL[k − h], (2.39)

which allows one to compute the approximation of the ZARC
element voltage using the GL approach vGL. For the sake of
comparison with the other implementation approaches, (2.39) can
be written in matrix form:

vGL[k] = CGLxGL[k] + DGLi[k], (2.40)

where xGL[k] is a L × 1 vector with the L previous values of the
ZARC voltage:

xGL =
[
vGL[k − 1] vGL[k − 2] · · · vGL[k − L]

]⊤
. (2.41)
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The matrices CGL and DGL, having size L × 1 and 1 × 1,
respectively, are given by:

CGL = − Rp1G1

Rp1G1 + T ϕ1
[−
(

ϕ1
1

) (
ϕ1
2

)
· · · (−1)h

(
ϕ1
h

)
· · · (−1)L

(
ϕ1
L

)
]

(2.42)

DGL = T ϕ1
Rp1

Rp1G1 + T ϕ1
. (2.43)

It is worth noting that for the matrix CGL, the coefficients
(−1)h

(
ϕ1
h

)
for the previous samples can be precomputed for the

implementation of the ZARC voltage equation.

2.3.4 Accuracy Comparison

Ideally, the data required for the validation of approximations of
the responses of FO battery impedance models must consider EIS
and pulsed current tests, both performed under similar SoC, SoH
and temperature conditions. Due to the lack of availability of
such data in the known datasets, and in order to perform accuracy
comparisons between the analysed approximations, a reference
model based on the analytical solution of FO differential equations
was utilised for the generation of the reference data.

2.3.4.1 Reference Data Generation from the Analytical
Solution of Fractional Differential Equations

Assuming that the current signal can be written as a set of steps:

i(t) =
Nu∑
h=1

Uhu(t − tuh), (2.44)

where u(t) corresponds to the unit step function. Each one of the
Nu current steps in i(t) is characterised by an amplitude Uh and
application time tuh.



46 2. Battery Modelling for SoH Estimation

The ZARC element voltage can be expressed as [104]:

v(t) =
Nu∑
h=1

Uh

G1
(t − tuh)ϕ1Eϕ1,ϕ1+1

(
− 1

Rp1G1
(t − tuh)ϕ1

)
u(t − tuh),

(2.45)
where the function Eα,β is the two-parameter Mittag–Leffler func-
tion, defined by a series expansion:

Eα,β (t) =
∞∑

h=0

th

Γ (αh + β) , (2.46)

and it can be seen as a generalisation of the exponential function et,
which can be considered as a particular case of the Eα,β(t) function
with α = β = 1 [104].

Equation (2.45) was implemented in Matlab® for the generation
of the reference data. For the Mittag–Leffler function, the imple-
mentation introduced in [112] was employed. It is worth mentioning
that such an analytical voltage representation is not suitable for
online implementation, due to the limitations imposed by the as-
sumed input signal and to the iterative nature of the Mittag–Leffler
function computation, which makes the evaluation of a single data
point highly demanding from a computational point of view.

2.3.4.2 Analysis of the Voltage Approximation Signals

The evaluation of the accuracy of the considered approximations
requires one to perform an analysis of the differences between the
responses of the reference model and the approximation of interest,
for given ZARC element parameters and while using the same
input current signal, as illustrated in Figure 2.4.

The test proposed in Figure 2.4 requires one to define an input
current signal, a set of ZARC elements parameters and the order or
memory length of the approximations. Tests such as this one were
performed for six sets of ZARC element parameters, for currents
generated with different sampling and dynamic characteristics and
with variations of nRC , nOU and L. In order to generate the input
currents and select the ZARC elements to be employed, first, the
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Figure 2.4: A schematic diagram representing the accuracy tests
performed.

analysis is focused on the typical middle-frequency range of the
dynamic response of Li-ion batteries, namely, the range between
0.01 and 200 Hz. This dynamic range is normally associated with
the response of the double layer capacitance and the charge transfer
resistance [19].

The considered input signals contained two stages: one aimed at
evaluating the transient responses of the different approximations,
and the second stage was for testing the steady state error. An input
signal sample is presented in Figure 2.5. In this signal, the first
stage has a total duration of 200 s, for which the amplitude and
duration of each current pulse were selected randomly in the ranges
[−1, 1] A and [0.5, 10] s, respectively. The second stage contains
one single 0.5 A step with a duration of 500 s, with fixed 150 s
rests before and after the step.

The six sets of ZARC parameters used for the analysis are
presented in Table 2.2. The ZARC parameters were selected for
obtaining characteristic frequencies ω0 = (1/(Rp1G1))1/ϕ1 covering
the frequency range of interest, with ω0 = 2πf0, while keeping the
parameters’ values inside typical ranges—namely, Rp1 ∈ [0.1, 100]
mΩ, G1 ∈ [1, 1000] F sϕ1−1 and ϕ1 ∈ [0.5, 0.9] [113, 114].
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Figure 2.5: An example of the current profiles used during the
accuracy tests.

The evaluation of accuracy was performed for:

• Nine mRC-based approximations, employing nRC values cor-
responding to the odd numbers between 3 and 19;

• Nine OU-based implementations, with odd orders nOU between
3 and 19;

• Fourteen GL-based approximations, with L values between
5 and 10,000 samples (which correspond to time windows
between 0.05 and 100 s).

Figures 2.6 and 2.7 present some examples of the voltage com-
puted by mRC, OU and GL approximations for ZARC 4 employing
T = 0.01 s. The plots in Figure 2.6a present the reference voltage
and the voltages obtained for three mRC-based approximations
during the first 20 s of the random stage of the accuracy test.
In general, all the implementations were able to approximate the
dynamics of the reference signal, with only appreciable differences
for the approximation being of the lowest order. The error signals,
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Table 2.2: Values of the parameters for the ZARC elements con-
sidered during the accuracy tests.

ZARC id f0 (Hz) Rp1 (mΩ) G1 (F sϕ1−1) ϕ1

1 0.034 59.2 55 0.77
2 0.090 8.4 193 0.86
3 0.487 60.4 8 0.65
4 0.787 5.8 55 0.72
5 2.444 0.3 722 0.56
6 8.215 0.8 122 0.59

presented in Figure 2.8a for this set of implementations, show
spikes always under a few hundreds of microvolts during all the
current steps, which reduce in magnitude as the order increases.
Similar results can be observed for the OU-based implementations,
as shown in Figure 2.6b and the first 200 s of the error signal in
Figure 2.8b. The low-order OU approximations resulted in higher
error magnitudes than the mRC ones. In the case of the GL ap-
proximations, as seen in Figure 2.6c, the lower L values caused
higher offset errors. This is further illustrated by the error signal
in Figure 2.8c during the first 200 s on which the spikes, at least
for the lower memory lengths, seem to be wider than those in the
mRC and OU approximations. An increase in L led to decreases in
the magnitudes of the error signal, showing that adding terms to
the sum in (2.39) leads to a better approximation of the analytical
response, as expected.

As it is shown in the static state results presented in Figure 2.7a
for three mRC-based implementations, increasing the order of the
approximation reduced the errors during this stage. A higher value
of nRC allowed a better approximation of the distribution of time
constants represented by the FO element, leading to an extension
of the validity of the approximation over a wider frequency range.
Similar considerations apply for the OU approximations, presented
in Figure 2.7b, except for the worse performance at low orders,
under nine, with respect to the mRC case. The offset error for the
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Figure 2.6: Examples of ZARC 4 voltages during the dynamic
stage of the accuracy test. (a) mRC; (b) OU; (c) GL.
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Figure 2.7: Examples of ZARC 4 voltages during the static stage
of the accuracy test. (a) mRC; (b) OU; (c) GL.
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Figure 2.8: Examples of ZARC 4 voltage errors during the accuracy
test. (a) mRC; (b) OU; (c) GL.
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GL approximations is more evident during the static stage of the
test, as shown in Figures 2.7c and 2.8c. The static error obtained
for GL implementations with L under a few thousand for ZARC
4 is considerably higher than the errors obtained for the other
approximations. This highlights the main drawback of the GL
approximations using the short memory principle: by reducing the
number of previous samples that are used for the computation, some
level of inaccuracy appears, particularly in static state. For the
sake of completeness, it is worth mentioning that Podlubny [104]
proposed a relationship for estimating a suitable memory length
for the approximation of the FO derivative presented in (2.37),
given an expected error level.

2.3.4.3 Effects of the Approximation Order and Memory
Length on The Accuracy

In order to analyse the effects of the parameters in each implement-
ation approach, namely, nRC , nOU and L, on the approximation
accuracy, the mean relative errors during the dynamic and the
static stages were used as indicators. For ZARCs 1, 3 and 6,
the mean relative errors during the dynamic and the static stages
are presented in Figures 2.9a and 2.10a, respectively. The very
similar results for the other ZARC elements are not reported for
the sake of brevity.

The error during the static stage of the tests for the RC approx-
imations remained under 1%, even for the approximations with
fewer RC branches. This result was expected, as in the fitting
procedure adopted in this work for the mRC approach, the sum
of the resistances in the mRC approximation was set to match
the value of Rp1, leading to similar voltage drops in the response
after the initial transitory. On the other hand, even if the values
of the relative error during the dynamic stage tended to decrease
with the number of employed RC elements, considerable improve-
ments were only obtained up to nRC = 9. After that point, further
improvements could be achieved by decreasing the value of T .
The observed behaviour at the highest orders may be associated
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Figure 2.9: Average relative errors during the dynamic stage of the
test. (a) mRC; (b) OU; (c) GL.
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Figure 2.10: Average relative errors during the static stage of the
test. (a) mRC; (b) OU; (c) GL.
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with the variability introduced by the fitting procedure required
for the computation of the parameters of the mRC case from the
ZARC parameters. Nevertheless, for cases over nRC = 5, the mean
relative errors were always under 5%.

In the case of the OU-based approximations, the mean relative
errors during the dynamic and the static stages are presented in
Figures 2.9b and 2.10b, respectively. In general, for the OU approx-
imations during the dynamic stage, orders nOU higher than nine are
required for reaching average relative errors under 5%. It is worth
noting that, compared with the mRC approach, similar average
relative errors were achievable in general, but with approximations
of higher order. Again, the average relative errors for the static
tests were almost always below 1%. For both stages of the accuracy
tests, a monotonic reduction in the errors could be observed with
increases in the approximation order, highlighting the advantage
of computing the integer order approximation of the FO transfer
function with a set of predefined equations instead of perform-
ing a fitting. This behaviour can be useful when trying to select
the approximation order by analysing the accuracy–complexity
trade off.

Then, for a set of GL-based approximations, with L values
between 5 and 10,000 samples (which correspond to time windows
between 0.05 s and 100 s), a similar accuracy analysis was per-
formed. Figures 2.9c and 2.10c show the results obtained for the
dynamic and static average relative errors obtained for this set of
approximations. Regarding the results in the dynamic stage, only
the higher memory lengths, over 500 samples, allowed to reach
values in the same order of magnitude as the ones obtained for
the other approaches. In the case of the static stage, the aver-
age relative error is always about one order for magnitude higher,
and it is evident that higher memory lengths or sampling times
need to be considered for reducing the static error to a similar
range. The errors were higher for the ZARC elements with slower
dynamics, showing that slower systems require longer memory
lengths to reach an acceptable accuracy level.
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2.3.5 Computational Burden Comparison
A battery ECM can be used as a part of the BMS state estimation
structure or for battery simulation purposes during validation of
energy management algorithms, particularly in real-time simulation
scenarios. In both cases, considering that normally middle to
low-end processing devices are often favoured due to budgetary
restrictions, care needs to be taken in regard to the computational
requirements of the battery model implementation. Here, those
requirements are analysed in a general sense, by addressing the
sizes of the matrices and the number of operations for each FOM
implementation approach as indicators of required memory and
computational complexity, respectively, in a possible deployment.

For the three approaches, the time implementation relies on
a set of matrix additions and multiplications. For mRC and OU-
based approaches, the implementations consist of sets of equations
in the form of (2.47) and (2.13) for the state and output equations,
respectively. The discrete state equation established for the mRC
approach can be generalised as:

x[k] = Adx[k − 1] + Bdi[k], (2.47)

where Ad and Bd, namely, the discrete state and input matrices,
are given by:

Ad = (InRC
− TARC)−1 (2.48)

Bd = T (InRC
− TARC)−1 BRC . (2.49)

Conversely, the GL-based implementation relies only on a dif-
ference equation with the structure of (2.13), but in which x[k]
does not represent the system states vector but a vector with L
previous values of the ZARC voltage.

Table 2.3 presents the sizes of the matrices and vectors used in
the three approaches. Even if the mRC and OU approaches seem
to be equivalent in terms of memory requirements, the simpler
structure of the mRC can be exploited for the reduction of its
memory requirements. Additionally, even if the number of arrays
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required for a GL implementation is lower and its size dependency
given L seems simpler than those for the matrices in the other
approaches, it is worth keeping in mind that in general for a
given accuracy level L will take values in the range of hundreds or
thousands, while nRC or nOU will be under 20.

Table 2.3: Sizes of the matrices in the state and output equations
in the analysed implementations.

Element mRC OU GL

Ad nRC × nRC (Diag-
onal)

nOU × nOU (Lower
triangular)

−

Bd nRC × 1 nOU × 1 −
C 1 × nRC (All-ones) 1 × nOU (All-ones) L × 1
D 1 × 1 (zero) 1 × 1 1 × 1

Table 2.4 summarises the numbers of additions and multiplic-
ations required by each implementation approach. The specific
structures of the matrices can be also exploited in the mRC and OU-
based implementations, to refine the results presented in Table 2.4
by skipping the multiplications by zero and expressing the mul-
tiplication of column vectors by row vectors full of ones as an
addition. The new operations count with this considerations is
presented in Table 2.5.

Table 2.4: Numbers of additions and multiplications required for
the analysed implementations.

Approach Additions Multiplications Total

RC n2
RC + nRC n2

RC + 2nRC + 1 2n2
RC + 3nRC + 1

OU n2
OU + nOU n2

OU + 2nOU + 1 2n2
OU + 3nOU + 1

GL L L + 1 2L + 1

Similarly to what was concluded for the array dimensions dis-
cussion, the expressions in Table 2.5 show that for the same order,
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Table 2.5: Numbers of additions and multiplications with simpli-
fications.

Approach Additions Multiplications Total

RC 2nRC − 1 2nRC 4nRC − 1
OU n2

OU +3nOU

2
n2

OU +3nOU +2
2 n2

OU + 3nOU + 1
GL L L + 1 2L + 1

a mRC implementation will require fewer operations than an OU
one. It is worth mentioning that for the GL approach, even if
there is not dependence on the square of L in the expressions for
the number of operations required, the value of L needs to be
considerably higher than the order for the other approaches to
reach a given accuracy level.

The number of multiplications required for the evaluation of
each type of implementation was used for assessing the computa-
tional burden in each case. Figure 2.11 plots the accuracy against
the computational burden in terms of the number of multiplications
for ZARC 4. The errors in static and dynamic stages are shown in
Figure 2.11a,b, respectively.

The curves for T = 0.01 s in Figure 2.11a show clearly how for a
fixed mean relative error level in the dynamic stage of the accuracy
tests, the number of required multiplications is always lower for the
mRC approach, followed by the OU one. It is worth mentioning
that the three approaches converge to values in the same order of
magnitude for the mean relative error when increasing the com-
plexity of the implementation; this may be an effect of the local
truncation error due to the discretisation process. The asymptotic
values of the analysed errors are comparable for a fixed sampling
time. This can be ascribed to the fact that both the backward
Euler and the GL derivative approximations are first-order approx-
imations, leading to an O(T ) local truncation error, using big O
notation [104]. To show the dependency on the sampling time
of the identified error asymptotic values, the accuracy test was
repeated using the current signal in Figure 2.5, but downsampled
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Figure 2.11: Average relative errors vs. numbers of multiplications
for mRC, OU and GL. (a) Dynamic stage; (b) static stage.
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using T = 0.1 s. Those results are also summarised in Figure 2.11a,
showing how the limit in the mean relative error is reached at a
higher value, confirming the relationship between the sampling
time and the maximum achievable accuracy.

The results presented in Figure 2.11b show that an increase in
complexity has a more pronounced effect on the accuracy under
static conditions, which tracks back to the requirement of higher
orders or memory lengths for covering a wider time-constant range
in the response approximation. In this case the previously observed
oscillatory behaviour for higher orders in the mRC implementations
is more evident for the two considered values of T . The effect
of the local truncation error due to the discretisation process is
also observed in this case, even if for lower values of the mean
relative error.

From the results of the accuracy against complexity analysis, it
can be clearly observed that the best accuracy–complexity com-
promise is offered by the mRC approach, allowing one to reach
low error levels with a small computational burden. It is worth
mentioning that this is the case provided good fitting of the ZARC
element in the frequency domain can be performed. This is true
for applications in which the model is used for battery simulation,
but it is not the case when identification of impedance models
from time measurements is required. In such instances, a good
relationship between the parameters fitted from time-domain exper-
iments with the frequency response is required. Thus, it is worth
checking the suitability of the implementations for the time-domain
identification of impedance parameters.

2.3.6 Suitability for Time-Domain
Identification

One of the main reasons for adopting battery FOMs is the capability
of accurately approximate the voltage response while requiring a
low number of parameters, which is of interest for tasks such as state
estimation and battery characterisation. For this reason, in order to
illustrate the applicability of the considered FOM implementation
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approaches in the framework of battery model identification using
time-domain measurements, a set of time-domain FOM fitting tests
were performed.

For the fitting tests, the reference voltage data v[k] correspond
to the random stage of the accuracy tests as the reference voltage
signals presented in Figure 2.6. For all the ZARC elements and
the implementations considered in the accuracy analysis, the as-
sociated parameters were fitted by minimising the mean square
error between the reference voltage v[k] and vx[k], which corres-
ponded to vRC [k], vOU [k] or vGL[k] depending on the evaluated
approximation. For all cases, the minimisation problem was solved
in Matlab® using the default particle swarm optimisation (PSO)
algorithm, implemented by the Matlab® function ”particleswarm”.
The default PSO algorithm employs a number of particles auto-
matically selected as the minimum between 10 times the number
of parameters to be fitted and 100 particles; a function tolerance of
10−6; and a maximum iteration number of 200 times the number
of parameters to find [115].

The set of identified parameters changes depending on the ap-
proach evaluated. In the case of the GL-based implementations,
the three parameters of the ZARC element, namely, Rp1, G1 and ϕ1,
can directly be identified due to the nature of this implementation,
where the time response of the FO element is directly approxim-
ated, as presented in Section 2.3.3. This can be observed in the
schematic of the identification procedure presented in Figure 2.12c,
where the parametrisation process takes the identified values of
the ZARC parameters as inputs for generating the vectors required
for the time-domain implementation. Similarly, for the OU ap-
proach, the direct identification of the ZARC element parameters
from time measurements is possible due to the direct relationship
between Rp1, G1, ϕ1 and the poles and zeros of the implemented
integer-order transfer function, as introduced in Section 2.3.2. Fig-
ure 2.12b shows the implementation based on the OU approach,
which was not modified for the fitting tests; only the source of the
ZARC element parameters’ changes, now being generated by the
minimisation algorithm.
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For the mRC approach, an initial frequency-domain fitting
of the FO element impedance is required. For identification us-
ing time-domain measurements, this step cannot be performed.
The resistance and capacitance values need to be fitted directly,
as represented in the flowchart in Figure 2.12a.

On the one hand, for the OU and the GL approaches, the
number of parameters to be identified was always 3, independently
of the order nOU or memory length L. On the other hand, the num-
ber of parameters to identify with the mRC approach increased
with the order, being equal to 2nRC . This highlights the main
drawback of the mRC approach: when fitting the time response
of the FO element, overfitting issues may arise due to the high
number of parameters.

For all the fitting tests, the mean of the relative error between
the reference voltage and the response of the fitted approximation
was computed as an indicator of the goodness of the time-domain fit.
Additionally, the indicator of how close the obtained impedance is
to the expected one in the range from 0.01 to 20 Hz is the following:

δZ(ω) = |ZZARC(ω) − Zapp(ω)|
|ZZARC(ω)| . (2.50)

Here, δZ corresponds to the relative distance between the im-
pedance of the fitted approximation, called Zapp, and the one of
the original ZARC element, ZZARC .

The results obtained for ZARC 3 are summarised in Figure 2.13
as a plot of the relative error in time against the one in frequency.
Even if relative errors in time under 5% were obtained for multiple
instances of each approach, similar results in frequency were only
reached for OU and GL approximations. In the case of mRC-based
approximations, a good fitting in time is not necessarily trans-
lated to a low distance between the approximation impedance and
the original one. It is worth mentioning that the minimisation
algorithm was not optimised, but despite this, good accordance
between the original and approximated impedance was reached for
the OU and the GL approximations and not for the mRC case.
Similar results were reached for all the other ZARC elements, illus-
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(a)

(b)

(c)

Figure 2.12: Block diagrams of the fitting procedures for the (a)
mRC, (b) OU and (c) GL approximations.
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trating how for the mRC approach, the lack of a direct relationship
between the approximation parameters—namely, the resistance
and capacitance values—and the ZARC impedance parameters
reduces the possibility of identifying an approximation in time
domain that also has a frequency response close to the real one.

An on-board-oriented implementation of these identification
methods should address additional issues. One of them is the noise
affecting the current and voltage measurements. Such noise con-
tributes to causing a bias in the identified parameters, which should
be compensated for with advanced fitting algorithms, as shown,
for instance, in reference [116]. The noise compensation is worthy
to be a matter of future study.
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Figure 2.13: Fitting ZARC 3: average relative voltage error vs.
average relative impedance distance.

2.4 Conclusions
In this chapter, initially, a fitting procedure for the parameters
of impedance models was presented. This procedure is based
on the minimisation of the sum of the squares of the euclidean
distances between experimental and approximated values for the
impedance points at the frequencies of interest. Approximations
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with maximum relative distances to the experimental values under
2% were obtained, when the procedure with the proposed initial
conditions was tested using experimental EIS data from the “Sandia
Cell EIS Testing Data” repository.

Additionally , the three main approaches adopted in the lit-
erature for the implementation of the time-domain response of
battery FOMs were introduced and compared in terms of accuracy,
computational requirements and suitability for the time-domain
identification of battery impedance. The study was performed in a
simulation framework with six different ZARC elements, which are
normally used for the approximation of battery impedance in the
middle-frequency range. The reference solution was an analytical
expression for the response of a ZARC element under a multiple-
step current. The proposed expression, obtained using FO calculus
theory, was used for generating the reference data required for the
accuracy analysis of the considered implementations. Even if the
discussion focused on ZARC elements, the results can be extended
to the Warburg element and to the total battery impedance.

The primary results of the study can be summarised as follows.

• In terms of accuracy under static conditions, average relative
errors under 0.1% were reached for all the evaluated ZARC
elements using the three evaluated approaches. From the com-
putational complexity viewpoint, these results were achieved
with the mRC and OU approaches having similar computa-
tional requirements, whereas the GL approach often required
a number of multiplications two orders of magnitude higher.

• In terms of accuracy under dynamic conditions, the mean
relative errors converged to values in the same order of mag-
nitude for the three approaches, when increasing the com-
plexity of the implementation. The asymptotic errors were
comparable for a fixed sampling time. For instance, the best
mean relative error was around 2% using a sampling time of
0.01 s for all the methods.

• In terms of suitability for identification from time-domain
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data, all approaches well fit the time-domain voltage responses
of the ZARC elements, with errors under 5%.

• However, in terms of suitability to reproduce the frequency-
domain impedance spectrum from the parameters achieved in
the time-domain identification, only OU and GL approxima-
tions reached errors of a few percent.

• The best accuracy–complexity relationship is offered by the
mRC approach. It reached low error levels with the smallest
computational burden. This should be the case as long as
good fitting of the ZARC element in the frequency domain
can be performed. This conclusion does not hold up if the
starting point for the ZARC identification is time-domain
measurements. In this latter case, the RC parameters may not
lead to a correct frequency-domain response, and therefore,
the best compromise for identification from time-domain data
is represented by the OU approximation, which outperforms
GL in terms of computational complexity.

The selection of the FOM implementation method depends on
the application requirements. On the one hand, if the interest
is only in the battery response simulation, the mRC approach
offers the best accuracy–complexity compromise, which is desir-
able for real-time simulations oriented towards the validation of
energy management algorithms. On the other hand, if the applica-
tion requires accurate identification of the impedance parameters
from time-domain measurements, the OU approach offers the best
compromise among identifying the impedance model parameters,
the complexity and the accuracy requirements.
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Chapter 3

Application Domain
Extension of Incremental
Capacity-Based Battery
SoH Indicators

This chapter addresses the open issues identified for the application
of the IC analysis under normal usage conditions. In this study,
the technique is applied under the following conditions that, to the
best of author’s knowledge, have never been used before for this
kind of analysis.

• The current levels used for the IC are significantly higher than
those used in the pseudo-equilibrium condition, and higher
than the large majority of those used in all the previously
cited works. These charging currents levels are closer to the
ones used in practical applications. For the sake of brevity,
hereinafter, these currents will be referred as High-Current
IC (HCIC) to highlight that they are far beyond the pseudo-
equilibrium condition.

• The battery cycling is characterised by a randomised current
profile that differs among batteries, with battery groups shar-
ing only the probability distribution of the ageing patterns.
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This kind of usage profile is much more general than the
uniform one used in the literature and it is more suitable to
identify a general and robust HCIC-related health indicator.

• The number of batteries included in the considered dataset
is much higher than those used in all the works cited above.

More specifically, the analysis focuses on various randomised usage
batteries ageing experiments, in which the batteries are cycled
with charge and discharge current levels varying with time by
taking randomly selected values. Periodically, a high-current char-
acterisation test is performed, allowing us to compute the battery
actual capacity during discharge and the HCIC at 1C current level
in charge mode. The reference dataset is the NASA randomised
battery usage dataset [117], including tests on 28 batteries subject
to 7 different randomised cycling patterns. On the basis of the
HCIC curves, computed for batteries from fresh state down to aged
around 80 %, some IC-curve features are extracted from raw bat-
tery data. The adopted feature extraction procedure is inspired by
the techniques used for low-current IC in laboratory environment,
taking benefits of the results on [34] and [67] for the filtering stages.
Two filtering stages are included, one for the voltage signal and the
other for the partial capacity derivative with respect to the voltage,
deeply affecting the IC curve shape. An IC curve characterised by
only one main peak is obtained, after tuning the two stages for
the NASA dataset. From this curve, three features are extracted:
the peak position, peak height and peak area. The sensitivity of
the features with respect to various computational parameters is
also investigated, optimising the extraction. Then, the correlation
between the features and the capacity change due to battery ageing
under various cycling conditions is studied, finding that the area
under the main peak of the HCIC curve is the most promising
battery capacity indicator for the health assessment in the presence
of random cycling patterns.

To further confirm these results, the HCIC analysis is applied
to another set of 8 batteries, from The University of Oxford Bat-
tery Intelligence Laboratory, differing from the ones in the NASA
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dataset in terms of the cell technology, shape, and capacity, and
aged with a fixed cycling pattern typical of a driving schedule.
Despite the strong differences, the results confirm the robustness
of the peak area as a general IC-related battery capacity indicator.
The performance of the HCIC peak area as health indicator is
compared with an ohmic resistance-based method, highlighting
the higher robustness of the proposed approach. The advantages
and drawbacks of the proposed method are briefly summarised in
Table 1.1 with respect to the state of the art.

3.1 The Reference Dataset

The randomised battery usage dataset [117], from the NASA Ames
Prognostics Data Repository, contains cycling data considering a
random usage of batteries under various operating conditions. 28
Lithium-Cobalt oxide-graphite (often called LCO) 18650 cells from
LG Chem, having cutoff voltages of 3.2 V/4.2 V, are grouped in 7
sets of 4 batteries each. The cells are characterised by high energy
density, a short lifetime and a nominal capacity Qn = 2100 mA h.
The full capacity is close to its nominal value for all cells in fresh
state, and it decreases to a minimum value of 800 mA h in about
150 days.

The main load profile for each battery is called Random walk
(RW). In each particular RW, the current levels are randomly
selected in a specific current range, for instance between −4.5 A
and 4.5 A, or between 0.5 A and 4 A. The duration of the current
pulses can either be fixed a priori, or randomly selected in a specific
time range. Within the same set, the RW current profile of the cells
differs the one another, even if they are all generated according
to the same rule. Due to the restrictions imposed by the current
profile generation rules, an acceptable degree of uniformity in the
obtained degradation tendencies is expected between the batteries
in each group.

Periodically, a set of Characterisation tests is performed after
a number of RW cycles, which is variable depending on the experi-
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ment. It usually consists of at least one full charge or one reference
discharge. The reference charge/discharge cycles are aimed at
computing the actual battery full capacity in a reference condi-
tion. This study uses the A h battery full capacity Q, obtained by
numerically integrating the battery current with the trapezoidal
integration rule. Table 3.1 presents brief descriptions of the test
protocols used for the seven battery groups.

It is worth mentioning that the RW profiles employed for cyc-
ling battery groups 2 and 4-7 include full 1C CC-CV charge and
randomised full CC discharge subcycles, the profiles for group 3
include partial 1C CC-CV charges (with randomly selected dur-
ation) and randomised full CC discharges and the batteries in
group 1 are cycled with a sequence of charge and discharge steps
randomly selected, accounting for a sequence of partial charges
and discharges.

In order to evaluate the average impact of the load profile
(and, therefore, of the operating mode) on the battery degradation
tendency, the total Ampere-hour throughput computed at 80 %
capacity is used as a reference number. The throughput of batteries
belonging to groups 1 and 3 overtakes 1000 A h, which is much
greater than the one for groups 4-7. This fact can be ascribed to
the specific operating mode characterising groups 1 and 3, which
avoids consecutive full-charge and full-discharge phases thanks to
the presence of partial charges and discharges. Conversely, batter-
ies in groups 4-7 work with a regular Depth-of-Discharge (DoD)
ranging from 0 to 100 %, with deep charge and discharge, which
appears as the most important battery stress factor, leading to a
faster degradation in terms of equivalent full cycles [118]. Average
temperature and discharge rate variations were also introduced in
groups 4-7, but the differences between them were not sufficient to
produce such a deep degradation effect.
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3.2 High-Current Incremental
Capacity Analysis and Features
Extraction

3.2.1 High-Current Incremental Capacity
Computation

In order to find a suitable IC-related indicator of the overall capacity
degradation with practical interest for batteries in random usage,
the HCIC computed during the CC phase of the battery charge
process is employed. This kind of charging process is used in many
applications, from EV-charging to stationary systems.

The HCIC curve is computed and processed by taking inspira-
tion from what is done for the low-current IC applications, both in
terms of features computation approaches as well as of signal filter-
ing. Various stages are required to generate the HCIC curve from
the voltage v and current i signals, acquired during the CC sec-
tion of the battery charge. The HCIC curve extraction procedure
proposed in this work can be described as follows:

• Initially, a Savitzky-Golay (SG) filter is applied to the voltage
data. The SG filter operates as a moving window filter by
replacing each data point with the result of a least-squares fit
of an order N -polynomial function performed in a neighbour-
hood of the same point, namely the window. This approach
filters out the noise, preserving the position of crucial points
of the curve [119]. The application of this filter to the voltage
signal is particularly suitable for IC analysis due to the high
sensitivity of differential curves to the discretisation resolu-
tion and measurement noise [43]. In the NASA dataset, the
voltage data of the reference charge CC stage are affected by
very little noise, but often consecutive voltage samples have
the same numerical value due to discretisation. It was found
empirically that a window of 5 samples was enough for solving
this problem without major modifications of the other data
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points. A higher value of this window may be necessary in
the presence of more significant measurement noise. Schafer
et al. in [119] pointed out that an under-smoothing problem
may occur when the order of the SG filter approaches the
window size. Therefore, in our case, a second-order polyno-
mial function optimises the filter performance while keeping
the lowest possible order.

• The battery A h charge q (or, alternatively, partial capacity)
is computed by numerically integrating the battery current i
by a trapezoidal scheme.

• Once the filtered voltage vSG and the partial capacity q
vectors are available, the IC points are computed using the
following backward difference approximation for the capacity
derivative with respect to the voltage:

IC0(k) = dq

dvSG
(k) = q(k) − q(k − 1)

vSG(k) − vSG(k − 1) . (3.1)

where k is the discrete time step.

• In order to extract useful information from the obtained IC
data, such as the peaks positions and heights, a smoothing
stage is required. In the proposed framework, this smoothing
stage corresponds to a Gaussian-Weighted Moving Average
filter (GWMA). The GWMA outperformed simpler altern-
atives, like the moving average one or the SG, because it
reaches the desirable smoothing levels with a very low distor-
tion of the IC curve features, such as the peaks, by suitably
tuning its window. The effectiveness of such an approach is
confirmed by [67] for low-current IC.

For the analysis presented hereafter, the HCIC curve extrac-
tion procedure was implemented using Matlab®. The SG filtering
stage is implemented with the function smoothdata, employing the
second-order Savitzky-Golay method: sgolay. The same function
was used for the implementation of the GWMA filter, but employ-
ing the Gaussian smoothing method: gaussian. This function
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takes as argument the window w over which the moving average is
performed. The relationship between the GWMA filter window w
and the standard deviation σ of the Gaussian distribution used for
computing the weights of the filter is: w = 5σ [120].

3.2.2 High-Current Incremental Capacity
Peak Features Extraction

The procedure described above can be repeated for all CC charge
curves of the same battery. Each HCIC curve must be taken from a
different Characterisation test and, therefore, it will be associated
to a specific value of the battery full capacity Q. Figure 3.1 (a)
shows seven smoothed IC curves ICG, corresponding to seven
decreasing battery full capacity values for battery RW9. Each of
them is above the 80 % of the initial full capacity Q0.

The curves allow one to identify three main features that change
with the capacity fading:

• the peak position PP;

• the peak height PH;

• the area PA under the peak, evaluated on an interval centered
on PP and having semi-width ∆V , that is:

PA =
∫ PP+∆V

PP−∆V
ICG(vSG) dvSG. (3.2)

Again, the integral is numerically evaluated with the trapezoidal
integration rule. The features are represented in a pictorial way in
Figure 3.1 (b).

It is worth to notice an important aspect of the peak area
feature. Taking the area under the IC curve in a given voltage
range, that is the integral of the IC curve over the same range, is
in fact an inversion of the derivative defining the IC. Hence, the
computed integral is an approximation of the partial A h capacity
injected into the battery while its voltage is within the considered
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Figure 3.1: (a) IC plots obtained before reaching 0.8Q0 for RW9.
(b) Peak position, peak height and peak area of a HCIC curve.
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voltage range. The GWMA filtering stage may obviously affect this
approximation, and its influence must be carefully investigated.

The flow chart of Figure 3.2 summarises the procedure used for
extracting a HCIC curve and, from it, the features. The first part,
highlights how to process the v and i signals to achieve the filtered
IC curve, while the second part, including one stage, allows one to
extract the proposed features (PH, PP, and PA) from the filtered
IC curve.

SG Filter

Capacity derivative:

GWMA Filter

Features extraction

Constant current section of battery charge

Incremental

Capacity 

Data

Equation (1)

Ampere hour charge 

computation by trapezoidal 

numerical integration

Figure 3.2: Block diagram of the proposed method for the HCIC
features extraction
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3.3 Application of the Method to the
NASA Random Walk Dataset

3.3.1 Peak Features: Position, Height and
Area

The IC curves obtained from the 1C reference charge cycles in the
NASA random walk dataset contain one major peak, as shown in
Figure 3.1. For all the 28 batteries considered in the RW tests, and
for all the Characterisation test cycles available for each battery,
the battery discharge capacity Q and the three IC features were
evaluated. The PA was computed using ∆V = 50 mV. The choice
of this value will be motivated in Section 3.3.2.

On the basis of these computations, a regressions analysis was
performed to investigate how each feature PH, PP, and PA, is
linearly related to the battery full capacity Q. In other words, a
search for the most reliable capacity degradation indicator for the
considered set of batteries was conducted.

Table 3.2 summarises the R2 coefficient, that is the square
of the correlation coefficient ρ, obtained for each linear fit of a
capacity feature with respect to the battery full A h capacity Q in
the typical battery first-life range. The coloured cell on each row
highlights the maximum R2 achieved in the line, that is also the
best linear fit. Concluding that, for the large majority of batteries,
19 over 28, the PA feature clearly outperforms the others in terms
of correlation with the capacity degradation. In some of the cases
in which the PP is better correlated to Q with respect to PA, the
PA fit R2 coefficients are still over 0.75. Therefore, PA can be used
as the main indicator of the battery degradation in the presence of
a randomised load. In particular, the PA shows a good correlation
coefficient for almost all batteries of the groups from 3 to 7.

The PA R2 for batteries in group 2 are the lowest in Table 3.2.
The feature PP seems to have a better correlation with Q for this
group, but the values achieved are far below the best cases in the
table. After checking the data points for the batteries in group 2,
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an outlier point in the Q − PA data was identified, for Q ≃ 1.6 A h.
The plot is not shown here for the sake of compactness. This value
deeply affects the quality of the obtained linear fit, ending up with
such low R2 values. Removing manually this outlier point would
produce results comparable to those of the other battery groups,
rising up the R2 over 0.9. This phenomenon can be due to errors in
measurements of the capacity for that specific point in the battery
group. In the following, rather than presenting modified data, the
original values are still reported, discarding further discussion on
the poor results achieved by this battery group.

3.3.2 Evaluating the Peak Area
The reference voltage window used in Table 3.2 for the PA com-
putation is 2∆V = 100 mV. Considering the right-shift of the
peak with ageing, a higher value of ∆V may cause the integration
interval to fall out of the available voltage range for an aged battery.
Indeed, the peaks are located at relatively high voltages, very close
to the upper voltage threshold that determines the transition from
CC to CV charge control. In this zone, the higher ∆V the higher
the probability of exceeding the voltage threshold. Therefore, in
this latter case the PA cannot be computed, and it is worth not to
use values of ∆V ≥ 50 mV, to ensure an accurate computation of
the PA for all available curves, without loosing any point.

In order to investigate the sensitivity of the PA fit to the
voltage integration window, the following three values for ∆V are
considered: 25 mV, 37.5 mV, and 50 mV. The values of R2 achieved
in the fitting of the full capacity Q with respect to PA, Q(PA),
are compared in Table 3.3. Here, the highest value on each row is
highlighted.

From a practical point of view, the fits for PA1, PA2, and PA3
are computed on the same number of points. In these three cases,
Table 3.3 shows that the larger the voltage interval considered,
the better the fit, making PA3, that is for ∆V = 50 mV, the most
suitable option for the estimation of the full capacity in the majority
of cases.
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Table 3.2: Square of the correlation coefficient (R2) obtained for
the linear fits of the capacity Q as a function of PH, PP, and PA,
computed with ∆V = 50 mV.

Group Battery PH PP PA
1 RW9 0.8712 0.9761 0.8783
1 RW10 0.907 0.9726 0.9117
1 RW11 0.9662 0.9775 0.9589
1 RW12 0.5593 0.5954 0.7793
2 RW3 0.7367 0.9248 0.8145
2 RW4 0.7153 0.8843 0.7645
2 RW5 0.681 0.9426 0.7738
2 RW6 0.8451 0.7989 0.8799
3 RW1 0.8211 0.1324 0.9861
3 RW2 0.9912 0.9566 0.9975
3 RW7 0.935 0.9581 0.9491
3 RW8 0.9508 0.9216 0.9525
4 RW25 0.9101 0.08292 0.9353
4 RW26 0.9488 0.8937 0.9657
4 RW27 0.9348 0.0262 0.9423
4 RW28 0.98 0.9231 0.991
5 RW17 0.9629 0.8592 0.9794
5 RW18 0.8896 0.9504 0.9509
5 RW19 0.91 0.7856 0.95
5 RW20 0.9803 0.818 0.9872
6 RW21 0.978 0.814 0.9927
6 RW22 0.9624 0.8002 0.9804
6 RW23 0.9816 0.2988 0.9832
6 RW24 0.9417 0.06529 0.9917
7 RW13 0.9837 0.9695 0.9868
7 RW14 0.9939 0.9765 0.9944
7 RW15 0.973 0.9795 0.9779
7 RW16 0.9713 0.9885 0.985
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Table 3.3: Linear fit of the battery capacity Q as a function of PA
for multiple ∆V values: R2 coefficient.

Group Battery PA1 PA2 PA3
25 mV 37.5 mV 50 mV

1 RW9 0.8731 0.8753 0.8783
1 RW10 0.9078 0.9094 0.9117
1 RW11 0.964 0.9617 0.9589
1 RW12 0.5286 0.5127 0.7793
2 RW3 0.7588 0.7836 0.8145
2 RW4 0.7267 0.7424 0.7645
2 RW5 0.7038 0.7337 0.7738
2 RW6 0.8417 0.8409 0.8799
3 RW1 0.8278 0.8352 0.9861
3 RW2 0.993 0.9953 0.9975
3 RW7 0.9402 0.9451 0.9491
3 RW8 0.9518 0.9524 0.9525
4 RW25 0.9208 0.9293 0.9353
4 RW26 0.9535 0.9566 0.9657
4 RW27 0.9424 0.9446 0.9423
4 RW28 0.985 0.9888 0.991
5 RW17 0.9693 0.9744 0.9794
5 RW18 0.91 0.9302 0.9509
5 RW19 0.9212 0.934 0.95
5 RW20 0.9828 0.9856 0.9872
6 RW21 0.985 0.9897 0.9927
6 RW22 0.9695 0.9754 0.9804
6 RW23 0.9833 0.9834 0.9832
6 RW24 0.9495 0.9554 0.9917
7 RW13 0.9856 0.9864 0.9868
7 RW14 0.9941 0.9944 0.9944
7 RW15 0.9731 0.9752 0.9779
7 RW16 0.9757 0.9807 0.985
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3.3.3 Effectiveness of Using Peak Features

From its definition, the peak area can be considered as an approx-
imation of a partial capacity, and the fit Q(PA) can be seen as a
way of evaluating the battery full capacity from an estimation of
a partial one. Besides, the partial capacity evaluated as a peak
feature, PA, is much more effective that other kinds of partial capa-
cities evaluated in other voltage ranges far from the peak. Indeed,
for these areas, the IC analysis could not be required, because the
integration of the current can be carried out in a specific voltage
window whose bounds could be fixed a priori.

In order to show that the choice of a peak-related area PA is
the most effective one for a capacity fit, the NASA random walk
dataset is analysed, computing IC curve areas in various off-peak
voltage windows. These areas are denoted as S−3, S−2, S−1, while
S0 stands for PA. All areas are computed on voltage windows
A−k having semi-width ∆V = 50 mV, and located before PP. The
area S1 is located after PP, but for some curves it sometimes
exceeds the voltage range and cannot be evaluated. A graphical
representation of the range selection and area computation is given
in Figure 3.3(a) on a sample IC curve.

First of all, for a sample battery (RW9), the distribution of
data points is checked for all the considered voltage ranges. The
distribution is plotted in Figure 3.3(b). The large majority of
points, that is, the highest information density, is located around
the peak. Considering the ranges from A−3 to A0, the analysis is
carried out by computing the area for all the available 1C IC curves.
The results of the linear fit of Q with respect to these new features
are summarised in Table 3.4, where, again, the R2 of each fit is
reported. The Table clearly shows that, again, for the majority
of batteries, 21 over 28, the peak area S0 = PA keeps being the
best feature for the fit. This may be explained by thinking of the
areas under the HCIC curve as partial capacities. In this case
the partial capacity associated to the curve main peak covers the
highest fraction of the full capacity. Comments on group 2 results
have already been provided in the previous subsection, so there is
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Figure 3.3: (a) Example of the voltage range split considered for
the area position analysis. (b) IC curve points distribution between
the considered voltage areas for RW9.

no reason to be worried by the poor results achieved by group 2 in
Table 3.4.

3.4 Battery Capacity Degradation as a
Function of HCIC Features

The results of the previous section show that the most promising
battery health-related HCIC feature in the presence of RW profiles
is PA, that is the area under the main peak covering a voltage
range of 2∆V = 100 mV centred on the peak position. With the
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Table 3.4: Linear fit of the battery capacity Q as a function of
areas computed in correspondence of various 100 mV-width voltage
ranges: R2 coefficient.

Group Battery S−3 S−2 S−1 S0
1 RW9 0.6794 0.7113 0.7676 0.8783
1 RW10 0.4104 0.5112 0.7298 0.9117
1 RW11 0.3381 0.5074 0.7479 0.9589
1 RW12 0.2618 0.1303 0.497 0.7793
2 RW3 0.9233 0.939 0.7541 0.8145
2 RW4 0.907 0.9237 0.7956 0.7645
2 RW5 0.8323 0.8848 0.6059 0.7738
2 RW6 n.a. n.a. 0.9213 0.8799
3 RW1 0.03076 < 0.01 0.8994 0.9861
3 RW2 0.5839 0.7846 0.8991 0.9975
3 RW7 0.6269 0.8388 0.8785 0.9491
3 RW8 0.9014 0.8791 0.9067 0.9525
4 RW25 n.a. n.a. 0.9275 0.9353
4 RW26 n.a. n.a. 0.6454 0.9657
4 RW27 n.a. n.a. 0.7751 0.9423
4 RW28 n.a. n.a. 0.83 0.991
5 RW17 n.a. n.a. 0.953 0.9794
5 RW18 n.a. n.a. 0.9943 0.9509
5 RW19 n.a. n.a. 0.9536 0.95
5 RW20 n.a. n.a. 0.9741 0.9872
6 RW21 n.a. n.a. 0.8644 0.9927
6 RW22 n.a. n.a. 0.9226 0.9804
6 RW23 n.a. n.a. 0.8078 0.9832
6 RW24 n.a. n.a. 0.9234 0.9917
7 RW13 n.a. n.a. 0.9923 0.9868
7 RW14 n.a. n.a. 0.9108 0.9944
7 RW15 n.a. n.a. 0.9505 0.9779
7 RW16 n.a. n.a. 0.9189 0.985
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goal of battery health estimation in mind, an investigation of all the
relationships of Q with PA was conducted for all available batteries
in the NASA random walk dataset. In the following graphs, for
each battery, the values of PA are normalised by computing the
ratio between PA and PA0, that is the fresh-state PA value. This
normalisation allows to compare the results and superimpose the
graphs of different batteries. The symbol PA is also used for the
normalised quantity.

3.4.1 Peak Area as a Feature for the Capacity
Estimation

From the NASA dataset, all the HCIC curves are processed to
evaluate PA values, and associate them to the actual full capacity
Q, getting several Q − PA pairs and, in whole, a Q(PA) function
for each battery. Then, for each battery, a linear fit using the
polyfit Matlab® function is performed for the Q(PA) function
for each battery. The results of the fitting are summarised in
Table 3.5, where the linear fit slope, intercept and R2 are shown
for each battery. Obviously, the R2 column coincides with the one
in Table 3.2. For 22 out of the 28 batteries, the fit is very good,
with R2 values over 0.9, showing a satisfactory correlation between
Q and the normalised PA in 78.57 % of the cases. This number rise
up to over 90 % when excluding group 2, for the reasons discussed
in Section 3.3.1.

The Q(PA) fits are plotted in Figure 3.4. For the sake of
compactness, the odd plot of group 2 is omitted. The linear
fitting lines are almost parallel the one another for various battery
groups, especially for groups 1 and 4-7. The slopes of the fits for
batteries in group 3 are much more dispersed, causing intersections
in their plots. This could be due to the peculiar charge pattern,
characterised by frequent partial charges of randomised duration.
From a practical point of view, the batteries are rarely fully charged,
and operate on different average DoD, possibly yielding drastically
different degradation rates.

Table 3.6 shows the average and standard deviation of the
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Table 3.5: Experimental data and linear fits of the battery capacity
Q as function of the normalised PA computed with ∆V = 50 mV.

Group Battery Slope Intercept R2

1 RW9 0.8518 1.3061 0.8783
1 RW10 0.9088 1.2440 0.9117
1 RW11 0.9648 1.1718 0.9589
1 RW12 0.8881 1.2878 0.7793
2 RW3 1.0858 0.8698 0.8145
2 RW4 1.0920 0.8543 0.7645
2 RW5 1.0912 0.8456 0.7738
2 RW6 1.0354 0.9217 0.8799
3 RW1 0.9070 1.0671 0.9861
3 RW2 1.1908 0.8047 0.9975
3 RW7 1.1627 0.8606 0.9491
3 RW8 1.3875 0.6197 0.9525
4 RW25 1.5603 0.6358 0.9353
4 RW26 1.5353 0.6270 0.9657
4 RW27 1.5845 0.5962 0.9423
4 RW28 1.6868 0.4053 0.9910
5 RW17 1.4592 0.6833 0.9794
5 RW18 1.5483 0.6201 0.9509
5 RW19 1.6422 0.5121 0.9500
5 RW20 1.5705 0.5609 0.9872
6 RW21 1.5807 0.5669 0.9927
6 RW22 1.5941 0.5652 0.9804
6 RW23 1.5266 0.6104 0.9832
6 RW24 1.5036 0.6006 0.9917
7 RW13 1.6951 0.4188 0.9868
7 RW14 1.5714 0.5291 0.9944
7 RW15 1.4888 0.6019 0.9779
7 RW16 1.7539 0.3374 0.9850
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Figure 3.4: Linear fits for capacity Q as a function of the normalised
peak area PA. Plots for Group 2, also characterised by an outlier
point that affects the presented results, are not shown for the sake
of compactness.
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Table 3.6: Analysis of the battery group slope of the linear fitting
of Q as function of the normalised PA. Average and standard
deviation of the capacity.

Group Average slope Standard deviation (%)
1 0.9034 5.2272
2 1.0761 2.5341
3 1.1620 16.9728
4 1.5917 4.1766
5 1.5551 4.8501
6 1.5512 2.7798
7 1.6273 7.3510

slopes within each battery group. For the five battery groups 1,
2, 4, 5 and 6, the standard deviation is below 6 %. This enables
the generalisation of the relationship Q(PA) from the battery level
to the group level, with a single linear equation. This statement
is further reinforced by the inspection of the Q(PA) plots for the
batteries in each group shown in Figure 3.4. This result also
highlights that the PA is a good capacity indicator even in the
presence of the various degradation stress factors mentioned in
Section 3.1.

Furthermore, considering the groups from 4 to 7, the overall
standard deviation of the slopes falls to 5.01 %, showing that a
further grouping can be made to obtain a single model representing
the whole set of 16 batteries. These groups are rather similar in
terms of load and recharge, but take into account a change in
the temperature and average current, with a limited impact on
the Q(PA) relationships. The full capacity Q estimated using the
relationship Q(PA) can be used for the computation of the SoH,
using (1.1), where Q is the actual battery capacity, and Q0 is a
reference value. For instance, Q0 can be chosen as the nominal
capacity Qn. This value is the same for all the batteries in the
dataset, and its use in (1.1) yields to a scale change in all graphs
of Figure 3.4. A more accurate definition of SoH, much more
related to each battery, could be obtained by choosing Qref as the
battery fresh-state capacity Q0. This value is computed for the
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first available reference discharge cycle. In this case, the same
normalisation factor holds for all points of a single battery, but
each battery has its own normalisation factor, and they differ from
one another. This makes the fresh state point of each battery curve
the point at normalised PA = 1 and SoH = 1.

Assuming Qref = Q0 for all batteries, the linear fits for the
SoH(PA) relationships are generated. Obviously, ending up with
the same R2 factor already computed for Q(PA) relationship and
reported in Table 3.5. The reason of this perfect match is that
Q and SoH differs from one another from a y-axis scale change.
Therefore, the slope and the intercept change from Q to SoH, but
the fit accuracy is kept equal. The detailed results, that from a
graphical point of view look very similar to those presented for
the capacity, are omitted for brevity. By computing the slope
dispersion for the SoH(PA) fits for all battery groups, very similar
results to those reported in Table 3.6 for Q(PA) fits were found.
The differences with respect to Table 3.6 are within 1 %.

3.4.2 Sensitivity of the Fit with Respect to
the GWMA Filter Window

Finally, it is worth to investigate the sensitivity of the Q(PA) rela-
tionship with respect to the computation parameters. In particular,
let us analyse the impact of a variation in the value of the GWMA
filter window w over PA. For all the unfiltered HCIC curves ob-
tained from the dataset, filtered versions using voltage windows
w = 75 mV, 100 mV, and 125 mV are computed. Then, for each
filtered HCIC curve, the peak feature PA, considering a voltage
integration window equal to 2∆V = 100 mV, is computed. In this
way, three values for PA are obtained and used to compute the
corresponding linear fits.

The results achieved for one of the battery groups (group 6) are
depicted in Figure 3.5. They look very similar to those achieved
for all other groups, not reported here for the sake of compactness.
The tendencies in the variation of PA with battery degradation
are very well preserved. Both slopes and intercepts are affected
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by tiny variations, such that the linear fits are extremely close
the one another for each battery. This allows us to conclude that
the PA feature is almost insensitive with respect to the GWMA
window in a neighbourhood of the voltage range used to compute
the peak area. After a similar analysis for the other peak features:
PH and PP, analogous sensitivity results were obtained. It is
worth mentioning that the validity of these results is limited to the
analysed dataset. In the case of HCIC curves with narrower peaks,
the GWMA window should be tuned according to the typical peak
width to avoid an undesirable peak flattening.
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Figure 3.5: Linear fits for Capacity as a function of the selected
peak area normalised obtained for HCIC filtered using different
windows for the Gaussian filter - Group 6.

3.5 Evaluation of the Method
Performance

3.5.1 Application of the Method to a Second
Dataset

The presented HCIC analysis technique was also applied to the Ox-
ford Battery Degradation Dataset 1 [121, 122], in order to illustrate
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the suitability of the peak feature PA as a capacity indicator also
for batteries cycled and tested under conditions different from the
ones present in the NASA dataset. The Oxford dataset contains
battery ageing data from 8 small Lithium-Nickel Manganese Cobalt
oxide pouch cells reference Kokam SLPB 533459H4, with a nominal
capacity of 740 mAh. All the cells were tested in a thermal cham-
ber at 40 ◦C and exposed to the same cycling profile: a CC-CV
charging stage, followed by a drive cycle discharging stage that
was obtained from the urban Artemis profile. Characterisation
measurements were taken every 100 cycles, by performing 1C and
C/20 CC charge and discharge cycles.

For the 8 cells in the Oxford dataset the procedure introduced
in subsection Section 3.2.1 was applied, taking the 1C reference
charge cycles data as input and obtaining HCIC curves as the
ones presented in Figure 3.6 for each battery. A visual comparison
between the IC curves presented in figure Figure 3.6 with those
in Figure 3.1, allows one to conclude that the main peaks for the
Oxford cells curves are in general narrower and appear at lower
voltage values, highlighting the effects of the differences in the used
cells and test conditions. In terms of ageing the effects over the
curves are the same in both datasets, the main peak presents a
shift towards higher voltages and a height decrease.
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Figure 3.6: IC plots obtained for the cell 1 in the Oxford dataset

It is worth mentioning that the value for the SG filter window
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had to be increased to 15 samples, due to the higher noise content
of the voltage measurements in the Oxford dataset. Additionally,
as the peaks obtained in the Oxford dataset are narrower, in order
to have a filtered IC curve that represents better the area under
the curve of the original data, a smaller window size of 40 mV is
used for the GWMA filter.

The same procedure applied in subsection 3.3.1 for the batteries
in the NASA dataset, was also applied to all cells in the Oxford
dataset, by evaluating the discharge capacity Q, and the peak
features PP, PH, and PA computed with ∆V = 50 mV, and invest-
igating the correlation between Q and the peak features. Again,
the PA is characterised by the best correlation with Q for this set
of batteries, with R2 coefficients over 0.99 for all the cells but cell
2 (0.97) and cell 5 (0.92).

For the sake of comparison, Figure 3.7 depicts the values of
the SoH versus the normalised PA taken from both datasets. For
the range of SoH over 0.8, the relationship between the normalised
peak area and the SoH is similar for the batteries in both datasets.
Indeed, the slopes of the linear fits of the Oxford dataset cells are
close to those of the NASA dataset groups 1-2-3, characterised by
fully random stages. The cycling profiles of these groups in the
NASA dataset are the closest ones to the Artemis driving profile.
The low dispersion of the Oxford data can be ascribed to the same
cycling profile being used in a repeated way, with no randomisation,
for all batteries in this set. The obtained results demonstrate the
possibility of extracting the studied peak feature and using it as a
promising capacity indicator for batteries of a different technology
and with a different usage pattern with respect to those initially
considered in this thesis. Only a few modifications of the filter
parameters are required to successfully repeat the procedure.

It is worth mentioning that, in the stream of Section 3.4.2, the
sensitivity analysis performed on this new dataset confirms the
previously obtained results, provided that the analysis is performed
with GWMA window values proportional to those ones reported
in Section 3.4.2.

The usage pattern adopted in the Oxford dataset is based



94 3. HCIC Battery SoH Indicators

0.5 0.6 0.7 0.8 0.9 1

PA
norm

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

S
o

H
NASA - group 1

NASA - group 2

NASA - group 3

Oxford dataset

Figure 3.7: SoH vs normalised PA from the Oxford dataset (grey
circles) compared with those from the NASA dataset, groups 1-2-3.

on a driving profile, highlighting the good applicability of the
methods also in vehicular applications. Vehicles may interact with
modern power grids according to the well-known vehicle-to-grid
(V2G) and grid-to-vehicle schemes, including additional discharge
or charge phases. According to Petit et al. [123], a strong V2G
scenario is characterised by a full discharge of the battery due to
the driving and grid requirements, a rest and, then, a full charge.
Such a profile is far from the ones of the Oxford Dataset 1, but
resembles the cycling profiles employed in groups 4-7 of the NASA
RW dataset used in the previous Sections. The main difference
between them lies in the length of the rests, which are longer in
the strong V2G scenario. Then, the results obtained in this work,
associated to the effect of the average operating DoD on the battery
degradation and over the PA capacity estimation, may be extended
to a V2G scenario where the cycle ageing is dominant, that is, the
PA keeps being valid as a capacity indicator. Unfortunately, the
calendar ageing associated to the rest periods, which is integral
to the discussion of the effect of V2G schemes on the battery life
[123, 124], cannot be evaluated on the available dataset, as the
rest periods are short and fixed, and no conclusion can be drawn
in this regard.
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3.5.2 Comparison Between HCIC and Ohmic
Resistance

The effectiveness of the HCIC PA as SoH indicator was additionally
assessed by comparing its performance with the battery ohmic
resistance method, listed in Table 1.1 as one of the experiment-
based methods. For given SoC and temperature conditions, the
approximated battery ohmic resistance is well-known to be directly
related to the capacity fade [27].

Several methods are available to evaluate the ohmic resistance:
pulsed current tests, EIS, dynamic model fitting, and observer-
based estimation are some of the popular ones. For this study,
the characteristics of the available battery usage data allowed us
to use the pulsed current test-based approach, as introduced in
[125]. This method is very simple, but requires a fast sampling
of the voltage and current signals, which is actually met by the
available experimental data. Alternative approaches have more
complex requirements in terms of the operating conditions and
signal characteristics, and therefore have not been chosen. The
ohmic resistance RΩ is approximated by the ratio between the
variations in voltage ∆v and current ∆i, when the current pulse
is applied: RΩ = ∆v/∆i. Barai et al. suggest that a good ap-
proximation requires a short sampling time, typically below 100 ms
[125]. The periodic characterisation of the NASA RW dataset
batteries include a CC 1 A discharge, performed immediately after
the reference charge employed for the HCIC computation, with a
typical sampling time of 40 ms. As the current pulse of interest
is always applied after a full charge, a SoC condition of 100 % is
always met for the resistance computation. These conditions are
good to compute RΩ at 100 % SoC.

The computation of RΩ was performed for almost all batteries
in correspondence with the HCIC computation, thanks to the
high uniformity of the sampling time, normalising the results with
respect to the initial value of RΩ for each battery. For the sake of
example, a plot of Q as a function of RΩ for batteries in Group
6 is shown in Figure 3.8, where the inverse linear relationship is
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evidenced. Similar results were obtained for almost all the battery
groups, but they are not shown for the sake of compactness.
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Figure 3.8: Linear fits for capacity as a function of the normalised
ohmic resistance computed in a reference discharge pulse (group
6).

Table 3.7 summarises the average results for all battery groups.
A few batteries were excluded from this analysis due to an evident
inconsistency in the sampling time, which is far from the 40 ms that
characterises the majority of cases (RW7, RW19, RW28). For those
atypical cases, it was not possible to compute RΩ in a consistent
way. For almost all groups, the average R2, which is obtained for
the linear fittings of Q as a function of the RΩ, is always under
the average one obtained for the PA fittings of Table 3.5. The
mismatch from the two is always under 6%, except for group 1,
where the results for RW12 are considerably lower than those for
all the other batteries within the group.

On average, the PA seems to slightly outperform RΩ as a capa-
city indicator. This average behaviour can be ascribed to the high
sensitivity to noise of the RΩ computation, which brings down the
average R2. In most cases, lower values for the standard deviation
of the fittings slopes were observed for PA (this holds in particular
for groups 4-7), showing that the proposed HCIC PA has a higher
generalisation potential in each group. Despite the advantages
shown by the PA indicator, it is worth mentioning that the ohmic
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Table 3.7: Analysis of the battery groups slope and R2 of the linear
fitting of Q as function of the normalised ohmic resistance.

Group Average R2 Average slope Slope standard deviation (%)
1 0.7729 -1.6892 34.9945
2 0.8017 -3.2188 10.2868
3 0.9329 -3.3799 14.2894
4 0.9090 -2.3782 41.8735
5 0.9093 -2.6683 31.4144
6 0.9869 -2.6470 20.6562
7 0.9299 -2.4608 25.6150

resistance method offers complementary advantages for health es-
timation. Indeed, even if it has shown higher sensitivity to noise,
its simplicity both in terms of implementation and requirements
make it attractive for a more reliable combined estimation.

3.5.3 Application on a Fast Charging Scenario
In order to extend the performance evaluation of PA as a SoH
indicator, the method was also applied to a set of batteries aged
under a multistep fast charging scenario. The study is conducted
over 94 batteries from a publicly available dataset shared by the
Toyota research institute, including the data from 140 batteries
cycled under fast-charging conditions [37].

3.5.3.1 Toyota fast charging dataset description

The dataset includes data for 140 Lithium-Iron-Phosphate (LFP)
/graphite battery cells cycled under fast-charging conditions [37,
126]. The cells have a nominal capacity of 1100 mA h and a nominal
voltage of 3.3 V. The upper and lower cutoff voltages are 3.6 V and
2.0 V, respectively.

The batteries underwent a cycling profile characterised by the
presence of fast charging, while placed in a forced convection
thermal chamber set to 30 ◦C. An example of a typical cycling
profile is shown in Figure 3.9 (the example refers to battery 36 of
the dataset). The profile includes the following phases.
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1. Fast charging in CC mode using one or two current steps
(red and green steps in Figure 3.9);

2. rest phase (very small current) lasting typically around a
minute;

3. 1C CC charging followed by a constant voltage (CV) stage,
ending when the current is sufficiently low;

4. discharge at 4C down to the lower cutoff voltage;

5. rest phase before the next cycling step, having typical lengths
in the order of some minutes.

Phase 1 characterises the experiment. Each policy is described by
a string with the format:

{C1}C-{q1}PER {C2}C.

Here, the three fields {·} define the experiment policy for each
battery. The CC value C1 is used to charge the battery in the first
step up to the SoC value q1, which is expressed as a percentage.
The second CC step current C2 brings the battery up to 80 % SoC.
In the case of a single charging step, C1 is set equal to C2, and
q1 = 80 %. The values for C1 and C2 are formatted as x d, where
x is the integer part and d is the decimal part.

Figure 3.10 shows a typical cycle for battery 1, which is char-
acterised by a single fast charging step of 3.6C up to 80 % SoC
(3 6C-80PER 3 6C).

The dataset is divided into three “batches” of 46, 48 and 46
batteries each. In this work, only the first two batches are used,
because they include tests showing the main peak of the IC curves.
So, the analysis focuses on 94 batteries, cycled under 63 different
fast-charging policies, with first-step currents from 1C to 8C, and
second-step currents from 3C to 6C. The batteries have a widely
varying cycle life ranging from 148 to 1227 cycles.

Figure 3.9 shows an example of the charging and discharging
cycles for battery 36, which has a 7C-30PER 3 6C policy. Consid-
ering the string defining the policy, the cycle is characterised by a
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Figure 3.9: Two step charge and discharge policy of battery 36
cycle 10.
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cycle 100.

first step current at 7C up to 30 % SoC and a second step current
at 3.6C up to 80 % SoC.

In order to analyse the ageing trends in the dataset, it is
worth to group batteries characterised by similar cycling conditions.
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Therefore, the 94 batteries are divided into 15 groups with similar
fast charging policies. The groups labelled 1, 2 and 3 have a one-
step charging policy, whose current increases with the group id.
The other groups have a two-step charging policy with a first-step
current that grows with group id. Groups 1, 8, 9, 11, 12 and 15 are
characterised by equal values for both C1 and C2; for groups 7, 10,
13 and 14, C1 is the same within each group, while C2 varies. The
remaining groups collect the remaining batteries (2-6). Table 3.8
collects all the information about the groups.

3.5.3.2 Incremental Capacity Features as Capacity
Indicators Under Fast Charging

The procedure introduced in Section 3.2 was applied to the data
available on the fast charging dataset. The filters parameters have
been adjusted for the dataset. The window of the SG filter is set
equal to 5 samples, the window for the GWMA filter is 35 mV,
and ∆V = 25 mV. The value of ∆V was selected empirically, by
aiming to maximise the correlation between PA and SoH while
avoiding that the voltage range used for the area computation fell
outside of the available voltage data points. Furthermore, it is
worth highlighting that the use of a fixed ∆V during the whole
battery first life aims to enable the PA computation even when
the data for the whole peak is not available. A sample IC curve
obtained for this set of batteries is presented in Figure 3.11 for
battery 30, during its 10th cycle.

3.5.3.3 Ageing Models

The procedure described in the previous subsection is applied to all
the cycles for all the batteries. Obviously, some cycles are affected
by errors, like missing sections of time-domain data, and must
not be processed for IC extraction to avoid unnecessary outlier
points. After the removal of the irregular cycles, the discharge
capacity Q of the battery, computed in the 4C-discharge phase,
can be related, cycle by cycle for each battery, to the IC peak
area PA. It is worth noting that the computation of Q through
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Figure 3.11: IC curve and peak features for battery 30, cycle 10.

a 4C CC discharge current, which is the only one available in all
tests, leads to lower capacity values that those expected using
typical characterisation currents, such as 1C or C/20. Nevertheless,
despite the underestimation, it is expected that the conclusions
obtained for this scenario, regarding the PA-Q relation, hold for
typical characterisation cases.

The ageing trend of the function Q = Q(PA) is analysed by
using four different models. The first model links PA and Q in a
linear way:

Q = aPA + b, (3.3)

where a and b are the fitting coefficients, representing respectively
the slope and intercept of the line. The second is a second degree
polynomial function:

Q = aPA2 + bPA + c, (3.4)

where a, b and c are the fitting coefficients. The third model is a
power law model:

Q = aPAb + c, (3.5)

with fitting coefficients a, b, and c. The shape of the ageing curve
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suggests to consider also the logarithmic model:

Q = a + b log PA. (3.6)

The model is again characterised by two fitting coefficients a and
b.

Figure 3.12 shows an example of the performance of the four
fitting models for battery 36. In this case, as well as in the large
majority of the others, the linear model has the worst fitting
performance.
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Figure 3.12: Example of linear, 2nd order polynomial, power law
and logarithmic (solid line) fitting of battery no. 36 data (markers).

Fitting coefficients are computed for each battery in Matlab®,
by using the built-in function fit. The function gives as output
the fitting coefficients of the models, the square of the correlation
coefficient R2, and the Root Mean Squared Error (RMSE). In order
to show the results of the fit for all models and compare them,
aggregated indicators for the fitted parameters were computed, for
the R2 and RMSE: the mean over all batteries, and the standard
deviation, reported in Table 3.9.

The linear models performance is the worst one, showing the
lowest values of average R2, which does not reach 0.9, and the
highest values of average RMSE (around 12 mA h).
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Table 3.9: Average values and standard deviation of the parameters
of the linear, polynomial, power and logarithmic models of all 94
batteries.

Parameter Mean Standard deviation
Linear
model
a 1.384 24.1 %
b 0.958 2.4 %
R2 0.889 8.2 %
RMSE (mA h) 11.896 46.3 %
Polynomial
model
a -17.217 −48.8 %
b 3.193 25.8 %
c 0.921 2.4 %
R2 0.98 2.2 %
RMSE (mA h) 4.442 65.1 %
Power law
model
a 0.185 1488.2 %
b 0.088 438.5 %
c 1.192 218.2 %
R2 0.99 1.7 %
RMSE (mA h) 2.879 52.2 %
Logarithmic
model
a 1.218 2.4 %
b 0.06 17.9 %
R2 0.976 4.3 %
RMSE (mA h) 4.573 47.8 %

The average R2 is satisfactorily high for the polynomial (0.98),
the power law (0.99) and logarithmic models (0.98). The power law
model is also characterised by very low RMSE (less than 3 mA h).
Unfortunately, its coefficients deeply vary among batteries, as
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shown by the highest values of standard deviation for the fitting
coefficients (overtaking 200 %). Such values indicate that the
parameter values are strongly dispersed, and this model has poor
generalisation capabilities. Conversely, the logarithmic model has
acceptable values for R2 and RMSE, and, in addition, the values of
the standard deviations for a and b are relatively low. This result
suggests to use the logarithmic model to represent the link Q-PA
under the considered fast charging scenario.

3.5.3.4 Numerical Results

In order to analyse in detail the performance of the model for
the representation of aggregated sets of data, the data from each
battery group listed in Table 3.8 is fitted. Table 3.10 shows the
results of the logarithmic fit for each battery group, and Table 3.11
reports on the average results, which are similar to the aggregated
results reported above. Figure 3.13 shows the plots of Q as a
function of PA for six battery groups (4, 5, 6, 7, 15, 1). For the
sake of compactness, the plots related to the remaining groups are
not included, being them very similar to what is already shown in
the figure.

In Figure 3.13, it can be observed that he logarithmic model well
approximates experimental data for groups 4-7. Similar results are
achieved for groups 8-9, although they are not shown. In particular,
for groups 4-5, which have two-step policies and C1 < 4.5C, the
model is better at approximating the data points at the top of the
curve (initial cycles) and at the bottom (final cycles), while a larger
deviation affects the central part of the fit. A larger deviation for
6 and 7 at the top of the curve is observed. The value of the fast
charge current C1 is never above 5.5C for groups 4-9. Group 15
collects batteries characterised by the highest value of C1 (8C).
The output data is less homogeneous. Similar results are observed
for high C1 battery groups 10-14. Such results suggest that the use
of higher fast-charging currents, over 6C, leads to higher variations
in the IC curves among batteries. Group 1 is characterised by a
single fast charging step. In this case, the ageing trend is more
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Figure 3.13: Capacity Q as a function of peak area PA in various
battery groups. Experimental results (markers); logarithmic fit
(solid line).
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linear, and the results of the logarithmic model are less satisfactory,
as clearly shown by the figure as well as by the largest RMSE and
lowest R2 among groups. The same results hold for group 2 and
group 3.

Table 3.10: Values of a, b, R2, and RMSE of the logarithmic model;
calculated for the 15 groups.

Group a b R2 RMSE (mA h)
1 1.2282 0.0706 0.9418 10.7255
2 1.229 0.0688 0.9464 10.0125
3 1.2449 0.0708 0.9491 9.9996
4 1.2161 0.0572 0.9715 7.849
5 1.2176 0.0567 0.9787 6.4867
6 1.2157 0.0549 0.9747 6.6205
7 1.2163 0.055 0.9829 5.2962
8 1.2197 0.064 0.9626 7.2232
9 1.2362 0.0687 0.9742 6.267
10 1.2144 0.0534 0.956 8.7128
11 1.2211 0.0631 0.9804 5.8037
12 1.2362 0.0684 0.9818 5.1812
13 1.212 0.0525 0.9616 7.93
14 1.2221 0.0622 0.9854 4.0221
15 1.2221 0.0635 0.9633 7.7653

Table 3.11: Mean value and standard deviation of parameters a, b,
R2, and RMSE calculated by groups.

Parameter Mean Standard deviation
a 1.223 0.8 %
b 0.062 10.6 %
R2 0.967 1.5 %
RMSE (mA h) 7.33 26.5 %
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3.5.4 Towards an On-Board Implementation

In the perspective of a real-life application, where the signals are
acquired on-board, the data quality could be worse than the one
obtained in a laboratory environment, due to the lower performance
of the voltage and current sensors and the lower resolution of the
analog-to-digital converters. The signals may be affected by higher
noise levels and discretisation errors, adding further challenges to
the operation. As far as voltage signals are concerned, the SG filter
should address this issue, by properly selecting the filtering window,
in the stream of what has been done for the Oxford dataset analysis
in Section 3.5.1.

In combination with the two proposed filtering stages, an ac-
curate selection of a battery monitoring chip, which are typically
marketed with voltage resolutions in the order of 1 mV using rep-
resentations of around 16 bit, will help to mitigate the impact of
the reduced quality of the available voltage signal (see, for instance,
the ST Microelectronics chip L9963E, [127]).

In the case of current measurement, as the proposed HCIC
technique works during the CC charge stage, the accuracy of
the Coulomb counting performed for the capacity computation
will fully depend on the accuracy of the acquisition hardware,
including analog-to-digital converter resolution and the quality of
the employed shunt resistors. If the measurement of the constant
current is affected by high noise levels, the addition of a moving
average filter for the current signal may be considered. Furthermore,
in order to increase the reliability of the capacity estimation, the
Coulomb counting modules included in high-end battery monitoring
devices may be employed. If the method runs on the same device
performing a SoC estimation based on feedback voltage signals, it
is possible to take advantage of this feedback to reduce or virtually
cancel the Coulomb counting errors.
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3.6 Conclusions

In this chapter, the IC analysis at 1C current was successfully
used for a set of batteries aged using a cycling regime of random
nature. The batteries are charged and discharged with randomly
selected current levels and pulse durations in various operating
conditions and load/charge profiles. Such current levels are referred
to as high currents, because they are significantly higher than the
ones used in typical IC analyses, in which the batteries are in
pseudo-equilibrium condition.

An analysis of the correlation between three peak features
extracted from the high current IC curves and the battery full
capacity, proves that the most robust capacity indicator is the area
under the main peak of the high current IC curve, called PA and
computed in a voltage range of 100 mV centred on the IC curve
main peak.

The computational aspects related to the extraction of the
high-current IC peak features were also reported, with particular
attention to the two filtering stages needed in the extraction of the
peak features from the rough voltage and current measurements,
for which a second-order Savitsky-Golay and a Gaussian Weighted
Moving Average filters were adopted.

The computation of the capacity indicator PA was optimised,
in the sense that the best integration interval for its computation
was found. The PA outperforms other indicators based on the area
evaluated under off-peak voltage intervals, and the PA is insensitive
to the window of the Gaussian weighted moving average filter used
to smooth the IC curve.

The PA is shown to be linearly related to the battery full
capacity in the range of the battery first life, that is from 100 %
down to 80 % of the battery initial capacity. The square of the
correlation coefficient achieved from the fits goes over 0.95 for the
large majority of batteries. For batteries belonging to the same
group, that is, tested according to similar load and charge profiles,
the dispersion of the linear fits is rather low for most of the battery
groups, with a standard deviation of the slopes that, in several cases,
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goes below 6 %, enabling the generalisation of the relationship from
the battery level to the group level, with a single linear equation. A
further grouping of battery groups from 4 to 7 could be considered,
as the overall standard deviation of the slopes was found to be
5.01 %. This enables the use of the high-current IC PA feature
as a general capacity indicator for batteries operating in a well-
defined family of operating conditions including random charge
profiles. A further proof of the applicability of the high-current
IC peak features as capacity indicators was presented by applying
the method to another set of batteries, cycled using typical driving
profiles. The relationships between PA and the battery SoH is
again linear, with a lower scattering among batteries that in the
previous case, due to the usage of the same cycling policy for all
the cells in the dataset and for the absence of any randomisation
of the charging/discharging profile. Then, the method is compared
with a ohmic resistance-based SoH assessment approach, showing
its advantages in terms of higher generalisation potential.

The IC analysis of the Toyota dataset shows that the peak area
PA of the IC curve is a very good indicator to estimate the 4C
discharge capacity for batteries cycled with multistep fast charging
profiles ending with a 1C CC -CV charge, and, therefore, a good
SoH indicator for Lithium-Iron-Phosphate batteries. The non
linearity in the PA-Q relationship may be ascribed to the presence
of high-current charging steps beyond 5.5C.

The 1C constant current charging, on which the IC curve was
computed in this chapter, is compatible with some charge phases of
a battery in an integrated energy system, such as a smart grid or in
an EV in a long rest. Moreover, the computational burden required
by the procedure is suitable for implementation on low-cost devices,
which could be easily embedded in the battery charger or in the
BMS. In the perspective of an application in an energy system,
where the knowledge of the battery SoH is of paramount importance
for an accurate energy management and for the planning of the
battery replacement, this will enable the on-board battery health
estimation based on the proposed feature, performed any time the
IC requirements are met during charge.



Chapter 4

Battery State-of-Health
Estimation Based on
Multiple Charge and
Discharge Features

Features coming from different usage stages are used together in
multifeature approaches [84, 85]. Despite their good accuracy, the
on-board application of multifeature approaches is very limited at
present. An analysis of recent literature on multifeature approaches,
reported on Section 1.3.2.2, highlights the following three major
limiting factors.

1. Typically, the features used in literature can rarely be extrac-
ted during the normal usage of a battery. For instance, the
time duration of CC and constant-voltage (CV) phases, or
charged capacities in CC and CV.

2. The number of batteries used to train and test the models
is very low. Indeed, most of the evaluation processes were
performed using 1 to 4 batteries [128, 90].

3. Batteries undergo ageing by using uniform cycling profiles,
with simple laboratory CC-CV charge-discharge cycles. Such
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cycling profiles are very far from real battery usage profiles
in stationary or EV applications.

In order to overcome the aforementioned limitations, a set of simple
linear multifeature models are proposed for the capacity estimation
and, therefore, for the SoH assessment. Those models are based
on features that can easily be extracted during any battery partial
charge or discharge. The first advantage of such approach with
respect to literature approaches is that neither full charges nor
full discharges are required to extract the features. Capacity
indicators extracted from two different stages of battery usage data
are considered. On th one hand, during partial charges at 1C, the
HCIC features introduced in Chapter 3 are computed. On the
other hand, during a CC discharge phase, starting from a fixed SoC
condition, like full-charge state, dynamic resistances are computed
[82, 129]. Employing such features, linear multifeature models
are build, by starting with all the available features and applying
several features selection methods based on statistical criteria.
Then, an analysis of their SoH prediction performance is done
in terms of MSE minimisation, while tracking their capability for
reducing the multicollinearity among the features used in the model.
The features selection aims to keep models easily interpretable
and computationally affordable for implementation on embedded
battery systems.

Additionally, two datasets are used, including a total of 36
Li-ion batteries, for the evaluation of the models. The batteries
are cycled employing specific driving profiles or randomly-built CC
profiles, and are grouped in such a way that the validation includes
different degrees of cycling uniformity, in deep contrast to the high
uniformity of the batteries employed in previous works.

4.1 Reference Datasets and Discharge
Capacity Extraction

In order to extract full capacity indicators from partial charge/discharge
data, two of the publicly available battery degradation datasets
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employed in the previous chapter are considered. Namely, the
NASA Random Walk and Oxford Battery Degradation datasets,
introduced in Section 3.1 and Section 3.5.1 respectively. Both
of them include characterisation stages, made of reference CC
charge/discharge cycles, which periodically break battery random
or automotive-like cycling.

4.1.1 Grouping
These sets of batteries can be grouped by considering different
degrees of uniformity in terms of cycling profile. In the case of the
batteries in the NASA dataset, a first subset with a moderate level
of uniformity is constructed by considering the 16 batteries in the
groups from 4 to 7. The batteries in those groups share cycling
profile policy, with a fixed charge stage and random discharge.
The groups among the subset differ from one another by operat-
ing temperature and by the parameters of the discharge current
probability distribution, as indicated in Table 3.1.

A second subset with low level of uniformity is constructed by
considering the whole NASA dataset. The batteries in groups from
1 to 3 have fully random charge and/or discharge profiles during
cycling, an so, a much less uniform cycling than groups from 4 to
7, as pointed out in Table 3.1, leading to an overall less uniform
subset.

Finally, one single group containing the 8 batteries in the Ox-
ford dataset, which underwent the same cycling profile, constitutes
a third subset with a high level of uniformity. These three bat-
tery subsets will be used throughout this study to evaluate the
performance of the SoH models.

4.1.2 Computation of the Full Capacity as a
Function of Ageing

The reference discharge cycles at 0.5C and 1C for the NASA and
Oxford datasets respectively were used for the computation of Q.
As both are CC discharges after a full charge and go down to a
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fixed voltage limit, Q can be computed by integrating the current
over time. The integral of the current signal was computed by
employing a trapezoidal approximation. The process was repeated
for all the available reference discharges for the 36 batteries.

Then, for each battery, the SoH was computed as introduced
by (1.1). The SoH values, down to 80 % for all batteries, are
used from now on as the output of the proposed linear models,
selected over Q in order to enable the combination of the data
from different batteries for both training and testing procedures.
The number of SoH values changes among batteries, due to the
differences on available characterisation experiments. Between 4
and 49 SoH values per battery are available, for a total of 499
total data points, after outliers removal based on a moving median
approach. This number of available data points is clearly too low
for an effective application of complex data-driven strategies to the
battery capacity estimation problem.

4.2 Discharged Capacity Indicators
Figure 4.1 shows an example, taken from cycling data of battery
RW25 from the NASA dataset, where a partial 1C CC-CV charge
is highlighted in between two randomised discharge profiles. Such
partial charges could easily be found in normal usage of battery in
any application. Therefore, if capacity indicators are extracted on
such a stage, the capacity estimation can be performed regularly
in a real battery application.

4.2.1 Full-Charge Capacity as Discharged
Capacity Indicator

For the LCO and NMC batteries considered in this study, during
first life, the charge capacity starting from a full-discharge state
is expected to be one of the most straightforward indicators of
the capacity available in discharge mode. In order to show this,
the charge capacity Qc is computed during all reference charges in
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Figure 4.1: Example of a partial CC-CV charge during battery
cycling taken from NASA dataset, battery RW25. The charge
stage is highlighted. (a) current and (b) voltage as functions of
time.
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the NASA dataset. Such a charge stage starts from full-discharge
state, which was previously detected by reaching the lower voltage
threshold; then, a 1C CC charge is applied up to the upper voltage
threshold; and, finally, the charge process ends with a CV charge
down to C/200 current. The Qc is normalised with respect to its
value at the beginning of life (initial value).

Figure 4.2 shows how good is the correlation among Qc and SoH
for all the batteries in the NASA dataset. The points in the scatter
plot are very close to the regression line in the full range of the
battery first life (down to 80 %). The percentage error distribution
in the inset shows that for over 60 % of the available Q values the
approximation with Qc presents errors under 1 %. Such results
confirm that Qc is a very good capacity indicator, and that it can
be considered as an indirect measurement of Q.
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Figure 4.2: Normalised charged capacity as an indicator of the
SoH for NASA dataset. The bar plot shows the percentage error
distribution for Qc with respect Q.

Unfortunately, a properly managed battery would rarely reach
full discharge. Despite the strong correlation between Qc and Q,
this feature can rarely be computed during real use of a battery.
Therefore, it is suggested to use it as a reference or calibration
point, when its computation can be performed, rather than as a
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SoH indicator.

4.2.2 Battery Capacity Indicators Based on
Incremental Capacity

During battery common usage scenarios, the battery often under-
goes partial charges, starting from an arbitrary SoC, like the one
in Figure 4.1. For the computation of an IC curve, the data from
a partial CC charge can be used, starting from an arbitrary SoC
value up to the voltage threshold for CV charge. If the current
levels approach 1C, then the IC data can be referred as the HCIC
curve, computed as detailed in Chapter 3. The HCIC curve can
be computed as:

IC(n) = dq

dv
(n) ∼=

q(n) − q(n − 1)
v(n) − v(n − 1) , (4.1)

where n represents a discrete time step, v the battery voltage and q
the A h charge (or, alternatively, partial capacity) and is computed
by numerically integrating the battery current using a trapezoidal
scheme.

Figure 4.3 illustrates that the HCIC curves are characterised by
one or more peaks. The information associated to the main peak is
typically summarised by three indicators: the peak position (PP),
its height (PH), and the area in the neighbourhood of the main
peak (A0). Such indicators, when available, are characterised by
a high correlations with Q and, in particular, A0 has the highest
correlation with Q, with reference to the datasets presented in
Section 4.1 [16].

By definition, the area under a charge IC curve during a given
voltage range is an approximation to the partial capacity charged
during that voltage range. Partial capacities during fixed voltage
intervals have been used as Q indicators before [88]. Then, in order
to increase the number of available HCIC features, two additional
areas before the main peak are also considered. The voltage ranges
for the computation of such areas are defined using the same
voltage variation ∆V value that the one used for A0. The position
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of the two areas is defined with respect the main peak position
as illustrated in Figure 4.3, which presents a sample HCIC curve
for battery 1 in the Oxford dataset. These additional areas are
labelled as A1 and A2 for the closest and farthest from the main
peak, respectively.
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Figure 4.3: Example of an HCIC curve obtained for battery 1 in
the Oxford dataset. The HCIC features PP, PH, A0, A1 and A2
are highlighted.

Referring to the NASA and Oxford datasets, the scatter plots
in Figure 4.4 show the correlation with SoH for the normalised
PP and A0, for capacity degradation within 20 %. A clear inverse
relation between PP and SoH and a direct one when considering A0
and SoH, for all the batteries in both datasets, can be observed. In
both cases, a lower dispersion exists for the batteries in the Oxford
dataset (red markers) with respect to those in the NASA dataset.
Such a difference should be ascribed to the higher uniformity in the
cycling profile for the batteries in the Oxford dataset. Additionally,
it is worth highlighting the higher sensitivity to variations in SoH
displayed by A0 when compared to PP, making it more useful as a
SoH indicator.
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Figure 4.4: SoH as a function of the HCIC features (a) PP and (b)
A0.
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4.2.3 Dynamic Resistance as a Battery
Capacity Indicator

In many applications, after a charge phase ending with at a specific
SoC value, the battery is often let at rest. Such scenario is, for
example, very common for EVs charged at home overnight. This
condition is very useful for measuring the dynamic resistance during
the first discharge current step after the rest. The resistance R∆t

can easily be computed within a certain time window ∆t, as the
ratio among the changes in voltage, ∆V , and the constant current
Id over a given time window:

R∆t = ∆V

Id

. (4.2)

Such a ratio, having the physical dimensions of a resistance, can
be used as a capacity indicator, as often done in literature [125].

The time windows ∆t available for the resistance computation
are restricted by the data sampling time Ts and the duration of
the discharge current step. Although resistances obtained with
short ∆t values —in the order of milliseconds —are closer to the
battery ohmic resistance, their high sensitivity to noise reduces
their practical interest. In this work, resistances with higher ∆t are
evaluated as Q indicators, in order to reduce the effects of noise.

With reference to both NASA and Oxford datasets, the res-
istances Rs, R30 and R300 were computed in correspondence to
Ts, 30 s, and 300 s, respectively, during CC discharge stages at 1C
current. The scatter plots of Figure 4.5 summarise the results of
the computations. This figure shows how well the three normal-
ised resistances are linked to Q. For the 3 resistances, an inverse
correlation with SoH is observed. This is expected, as the battery
impedance at fixed operating conditions tends to increase with
ageing [129]. The dispersion of the normalised resistance points
among batteries is reduced with the increase in ∆t, this is particu-
larly evident for the batteries in the Oxford dataset, highlighting
once again the effects of the uniformity in the cycling profiles used
for ageing. Hereinafter, a total of 8 features are considered, 5 of
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them related to HCIC, and 3 dynamic resistances: PP, PH, A0,
A1, A2, Rs, R30 and R300.

4.2.4 Correlation Between Capacity Features

The capacity indicators introduced above were extracted only
on two data segments, and obviously they are highly correlated
among them. Such a correlation can highly reduce the quality of
degradation models combining more than one of those features.
Figure 4.6 shows the correlation matrices for the three batteries
subsets introduced in Section 4.1. Almost all indicators show a
high correlation with Q. In particular, PH, A0 and R300 have
correlation coefficients ρ with absolute values over 0.8 for the three
subsets, when comparing them with Q, as expected. Two main
differences between the batteries in the Oxford and NASA datasets
appear: the higher correlations among the capacity features in the
Oxford dataset, and the change from direct to inverse relationship
with Q for A1 and A2. The first difference can be explained by the
higher uniformity in the cycling profiles employed in the Oxford
dataset. These higher correlations between features mean high
redundancy in the information available for Q estimation. The
change in sign for the ρ values associated to A1 and A2, may be
related to the difference in battery chemistries included in each
dataset, LCO for NASA and NMC for Oxford.

It is worth mentioning that additional features obtained during
the CC and CV charge stages were also considered, but their
inclusion in this paper would not bring any substantial improvement
to the discussion, nor to the results discussed hereinafter.
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Figure 4.5: SoH as a function of the considered dynamic resistance
features: (a) Rs, (b) R30 and (c) R300.
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Figure 4.6: Correlation matrices between HCIC and dynamic
resistance features for the three subsets: (a) Oxford, (b) NASA
4-7 and (c) full NASA. Red/blue colour stands for direct/inverse
correlation; the largest the radius, the highest the correlation.
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4.3 Modelling Capacity Degradation
Through Partial Charge and
Dynamic Resistance Features

Taking as input the subset of 8 features introduced in Section 4.2,
and with reference to data related to first life of batteries, linear
models were build up to estimate the actual discharge capacity Q
of a battery as a function of features fj, in the shape:

Q(f1, . . . , fp) = β0 +
p∑

j=1
βjfj, (4.3)

where the coefficients βj must be obtained by minimising the MSE
between the model and the available values of Q in the training
set.

4.3.1 Linear Models Based on Individual
Indicators (Reference Models)

The most simple models, widely used in the literature, are single-
feature models. In the following, the single-feature models of
interest employ two specific features: the area under the main peak
A0 from the HCIC curve and one dynamic resistance feature, R300.
Inference results for individual batteries shown in [16] suggested
A0 as a robust capacity indicator, but its estimation performance,
in the sense of prediction capability, needs to be addressed when
considering a wide set of batteries. The indicator R300 is considered
as a representative of the dynamic resistance class of indicators.
This choice is motivated by a compromise between its acquisition
time, which is compatible with real-world battery usage, and per-
formance of the indicator for Q estimation. So, the linear models
based on A0 and R300, from now on referred as PA and R models,
respectively, will be considered as the reference ones for comparison
with the multiple-feature models.
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4.3.2 Linear Models With a Fixed Number of
Features

The full model including all the 8 features, henceforth FL model,
lies on the other side of the model complexity scale with respect
to single-feature ones. The FL model is considered for the sake
of completeness, despite the strong collinearity (|ρ| close to 1)
among features. In order to face the collinearity issue, which
can compromise the quality of the estimation, and to reduce the
computational complexity brought by managing a large number
of features, models with intermediate complexity are considered.
The first one is obtained by combining the two features considered
as reference: A0 and R300, namely PA-R model.

4.3.3 Linear Model Fitted After a Statistical
Features Selection Procedure

An alternative way to reduce the complexity of the models is to
start from a given model, such as the FL or a constant value, and
then select the features to keep or to add, and exclude the ones that
poorly contribute to describe Q, according to a hypothesis test or
a given statistical metric. In this work, the main feature selection
goals are: first, to reduce the prediction errors with respect to the
ones of the individual indicators; second, to reduce the collinearity
among the included indicators. Even if both, multiple stepwise and
regularisation-based methods were evaluated, only the two best
performing approaches are reported, which are simply referred to as
Backward stepwise selection (BW) and Belsley approaches (BEL),
briefly summarised below. The first approach is a stepwise feature
selection, which starts from the FL model and sequentially deletes
the feature that has the smallest impact on a predefined statistical
metric [130]. In this case, a feature is removed if the decrease in
R2 obtained by its removal is over a threshold. In this work, the
threshold of R2 decrease was fixed at 0.05. Features are removed
one by one in an iterative procedure, which is stopped when all the
R2 variations obtained by removing any of the available features
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are under the threshold.
The second method is based on the collinearity diagnostic

procedure proposed by Belsley et al. in [131]. This diagnostic
procedure assess the strength and sources of collinearity among
variables in a multiple linear regression model. The diagnostic pro-
cedure aims to identify the near dependencies among the columns
of the data matrix F defined as:

F =


f

(1)
1 f

(1)
2 . . . f

(1)
8

f
(2)
1 f

(2)
2 . . . f

(2)
8

... ... . . . ...
f

(N)
1 f

(N)
2 . . . f

(N)
8

 , (4.4)

where column j contains the N observations for the fj feature. In
this work, each column is scaled by its first value. The diagnostic is
done by identifying the singular values of F with a high condition
index. The number of conditions indexes deemed high, over 30 in
this work, corresponds to the number of possible near dependencies
among the features. Then, for each possible near dependency, the
variance-decomposition proportions of all the features are checked:
if two or more features have values over a threshold, 0.5 in this
work, a near dependency among the involved features is confirmed.

The R2 values between Q and each feature involved in the most
severe near dependency (the one with the highest condition index)
are evaluated, and the feature with the lowest value is removed
from the model. This process is repeated in an iterative way until
no more near dependencies among features are identified.

4.3.4 Framework for the Evaluation of
Estimation Performance

For the evaluation procedure, each subset is divided into two parts.
The first part, namely the training set, is used to estimate the
βj coefficients by applying the features selection procedure, when
required, and ordinary least squares. The remaining data of the
subset is used for the evaluation of the estimation performance
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in terms of MSE. Additionally, in order to quantify the severity
of the linear dependencies between the features in the resulting
models, the variance inflation factor (VIF) is employed. The VIF
associated to feature fj, can be computed as:

VIFj = 1
1 − R2

j

, (4.5)

where R2
j is the coefficient of determination obtained for the linear

regression of all the other features on fj. In the next section, for
each model, only the maximum VIF value for the features involved
in the model is reported.

The data split is performed as follows.
Subset 1, NASA groups 4-7 Since each group is made of 4

batteries, a leave-one-out strategy is adopted, that is, only 1 battery
per group is put in the test set, while the remaining 3 go in the
training set. Ending up with 75 % of the batteries in the training
set.

Subset 2, Full NASA dataset Same rule as Subset 1.
Subset 3, Oxford dataset To keep the same percentage of bat-

teries in the training set, 6 batteries are used for training and 2
for the test set.

This data split aims to emulate a real fitting and estimation frame-
work, on which models are trained on a given set of batteries,
and the estimation is performed on new batteries, once deployed.
For each subset (low, moderate, and high uniformity), the fea-
tures selection and model fitting procedures were performed for
all the possible battery data splits, thus leading to an exhaustive
cross-validation analysis.

4.4 State-of-Health Estimation Results
Initially the evaluation procedure is applied to the batteries in
the groups 4-7 of the NASA RW dataset, in order to compare
the models performance in the presence of batteries cycled with a
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moderated level of uniformity. Then, the analysis is extended to
the whole NASA dataset, in order to check and compare the results
to a subset with a lower uniformity level. Finally, the Oxford
dataset is analysed, whose battery technology and cycling profile
differ from the NASA ones but are highly uniform in terms of
ageing, because the cycling profile is the same for all batteries.

4.4.1 Subset 1. NASA RW Groups 4-7.
Moderate Uniformity Level

The performance of the models for all 256 training/test possible
splits is analysed. For all the trained models, the VIF and the
minimised number of features are recorded, and their averages
µVIF and pav are computed (when the number of features is fixed,
p is reported instead of pav). In order to evaluate the models
performance, the MSEs achieved in each test are collected, their
average µMSE and their standard deviation σMSE are computed. In
order to quantify the improvement introduced by each model with
respect to the reference ones, the indicator IPA is computed as the
relative improvement:

IPA = µMSE(x) − µMSE(PA)
µMSE(PA) (4.6)

where µMSE(PA) is the average MSE achieved by using the PA
model, µMSE(x) is the average MSE achieved by the model x.
Similarly, the indicator IR is defined by a comparison with the
model R.

Table 4.1 summarises the results achieved for subset 1. In terms
of MSE, all multiple features models improve the average estimation
capability by reducing the average MSE with respect to both single
feature reference models. In this case the best single-feature model
is PA, the one based on HCIC. The best performance is obtained
by the Backward selection-based model BW, with more than 50 %
improvement with respect to R and more than 35 % improvement
with respect to PA. All the other models with an average of around
2 features (BEL and PA-R) showed similar performance, despite
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Method µMSE σMSE
σMSE
µMSE

pav µVIF IPA IR
(10−4) (10−4) (%) (%) (%)

PA 9.352 6.111 65.35 1 − − 26.64
R 12.748 4.166 32.68 1 − -36.31 −
PA-R 6.766 5.731 84.70 2 2.532 27.65 46.92
BW 5.992 4.984 83.17 1.992 2.645 35.92 52.99
BEL 7.412 5.534 74.66 1.996 2.685 20.75 41.86
FL 6.583 4.150 63.05 8.000 611.291 29.61 48.36

Table 4.1: Average results over 256 tests for subset 1. Light green
highlights improvements with respect to reference models, while
dark green highlights the best result.

not an optimal one, keeping the maximum VIF values under 5.
Such a threshold is often considered the warning threshold for
significant collinearity [132]. Even if the FL model presented a
good average performance in terms of MSE, the high value of
average maximum VIF indicates severe multicollinearity issues,
which may become a problem when trying to generalise this result.

Figure 4.7 plots the MSE values for all the considered 256
battery splits. To improve the readability of the plot, the tests are
sorted to obtain an increasing MSE for reference PA model. The
higher performance of the multiple features models with respect to
the reference ones is confirmed by the plot, as lower MSE values
are observed for the multiple regression models in the majority of
the data splits. Figure 4.7 clearly shows that the MSE values step
up around the 190th test. A check of the data splits revealed that
battery RW25 was always used for training before this step, and for
testing after it. With this analysis it can stated that battery RW25
should be considered as a peculiar statistical unit, and even if the
correlation among the features and Q is still high, the data points
are the ones farthest from the average tendency. Its exclusion from
the dataset improves all results on average, as shown in Table 4.2.
In this case, the overall best result in terms of average MSE is
achieved by the PA-R model. This model reaches a reasonable
compromise between features reduction (fixed at 2), low maximum
VIF below the warning threshold, and “augmented” information.
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Figure 4.7: Summary of MSE results on the groups 4-7 from the
NASA dataset for all the possible splits of batteries.

Method µMSE σMSE
σMSE
µMSE

pav µVIF IPA IR
(10−4) (10−4) (%) (%) (%)

PA 5.849 1.650 28.21 1 − − 48.92
R 11.451 3.632 31.72 1 − -95.77 −
PA-R 3.112 1.473 47.33 2 2.536 46.79 72.82
BW 3.663 1.945 53.10 1.969 2.546 37.37 68.01
BEL 4.027 2.238 55.58 1.964 2.700 31.15 64.83
FL 4.380 1.933 44.13 8 472.398 25.11 61.75

Table 4.2: Average results over 192 tests for subset 1 with RW25
removed. Colours: see Table 4.1.
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In order to illustrate how these average results translate into
individual SoH estimation cases, an specific example is presented.
Figure 4.8 depicts the estimation of SoH on some batteries be-
longing to the test set, where all models have been fitted using
data from the remaining ones. The figure shows how multifeature
approaches improve the estimation with respect to both single-
feature models, depicted with hidden grey lines as a reference.
Evident errors affecting single-feature models, like those ones for
RW19 and 28, are compensated by all the multifeature approaches,
improving the reliability of the estimation. BW and PA-R models,
that is two-variables models, outperform FL, being closer to the
experimental curve (for instance, see the results for RW19). This
result could be ascribed to the strong maximum VIF characterising
the FL model. It is worth remarking that the BEL model, which
results are similar to the BW ones, has not been plotted for the
sake of figure readability.

4.4.2 Subset 2. Full NASA RW Dataset. Low
Uniformity Level

In order to test the SoH estimation capabilities of the multifeature
models in the least uniform subset of batteries in terms of cycling
profiles, the NASA RW dataset is analysed as a whole. Here, the
effects of multicollinearity are expected to be mitigated by the
lower uniformity of the battery set.

Method µMSE σMSE
σMSE
µMSE

pav µVIF IPA IR
(10−4) (10−4) (%) (%) (%)

PA 11.775 4.225 35.879 1 − − 13.671
R 13.639 4.089 29.979 1 − -15.836 −
PA-R 9.986 4.542 45.480 2 4.327 15.19 26.79
BW 12.089 5.665 46.858 2.229 15.979 -2.669 11.37
BEL 11.667 5.401 46.294 2.173 3.134 0.92 14.46
FL 9.181 3.553 38.695 8 739.064 22.02 32.68

Table 4.3: Average results over 16384 tests for subset 2. Colours:
see Table 4.1
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Figure 4.8: Example of SoH estimation for a particular training-
test batteries split. Test set: {RW14, RW19, RW21, RW28}
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Table 4.3 summarises the average results. The averaged results
show that the model with the highest improvement in terms of
MSE with respect the reference models is the FL one, despite high
values of maximum VIF, which highlight collinearity issues. The
statistical features selection does not help in this case, indeed the
BW approach no longer improves with respect to the PA model.
The best two-features model keeps being PA-R, always mixing
information from partial charge and dynamic resistances.

4.4.3 Subset 3. Oxford Dataset. High
Uniformity Level in the Presence of
Cycling Through a Fixed Driving Profile

A different cycling profile, and highly uniform tests, may impact
the performance of the models. In order to test this, the Oxford
dataset is analysed, where all 8 batteries were cycled using the
same regularly-repeated driving profile discharge and a fixed charge
policy. Significant collinearity issues are expected, which should
yield poor performance for the FL model in particular.

Table 4.4 summarises the average results obtained in the 28
tests. In this scenario, the FL model does not outperform the R
approach, which seems very good in this case. Indeed, similar bad
results are achieved by methods with reduced number of features,
because the statistical selection procedure does not help to reduce
the maximum VIF below the severe collinearity threshold, that
is equal to 10 [132]. An acceptable compromise is represented by
the PA-R model, which is a minimal-order, low-VIF multifeature
approach by nature. It outperforms both reference indicators. In
this particular case, a single indicator obtained during common
usage training may be enough for an accurate SoH estimation.
However, such scenario is rarely met in practice.

Nevertheless, it is worth highlighting that the PA-R model is
the only one whose average MSE reduces with respect both PA
and R reference models, for all datasets.

In general, under the studied prediction framework, which
deeply differs from inference, features selection procedures do not



134 4. Battery SoH Estimation Based on Multiple Features

Method µMSE σMSE
σMSE
µMSE

pav µVIF IPA IR
(10−4) (10−4) (%) (%) (%)

PA 1.118 0.757 67.710 1 − − -32.622
R 0.843 0.288 34.164 1 − 24.597 −
PA-R 0.747 0.477 63.855 2 19.975 33.184 11.388
BW 1.0461 0.483 46.171 1 − 6.431 -24.093
BEL 0.971 0.547 56.334 3.82 131.204 13.148 -15.184
FL 1.029 0.628 61.030 8 2721.2 7.961 -22.064

Table 4.4: Mean results over 28 tests for subset 3. Colours: see
Table 4.1

bring any substantial advantage. On average, the most reliable
choice is to combine two strong indicators, such as the peak area
A0 and the dynamic resistance R300, in the PA-R model to obtain
best results.

4.5 Conclusions

This chapter presented the performance evaluation for battery
SoH estimation of linear models based on multiple capacity indic-
ators, suitable for on-board implementation in battery systems.
The charge-capacity, associated to a complete constant current
charge from empty state, was identified as a strong indicator in
terms of SoH prediction capability. However, the requirement of a
full charge process is clearly unpractical. Then, the multifeature
models, based on 8 indicators coming from high current IC and
dynamic resistances data, were fitted and tested using a wide set of
data collected on 36 batteries from two different publicly available
battery degradation datasets.

A single-feature model can be enough for capacity estimation
in very homogeneous cycling conditions. In this case, batteries in
the test set behave similarly to the batteries in the training set.
For this scenario, adding new features may degrade the estimation
performance due to the collinearity among features. On such case,
the models using the 8 features (FL) and features selection failed
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to outperform the single-feature models. In order to improve the
estimation in very homogeneous cycling conditions, a model named
PA-R is proposed by combining the best performing features: the
main peak area A0 from IC analysis, and the dynamic resistance
R300. With this model, looking at the mean squared errors, an
improvement of the estimation was achieved, namely 33.184 % and
11.388 % with respect the single feature models using only A0 (PA)
or R300 (R), respectively, despite moderate collinearity issues.

Linear multifeature models improve the SoH estimation in the
presence of random cycling and moderate variations in temperat-
ures and current levels. Two-features models introduced a major
reduction on the MSE of the SoH estimation (over 30 % and 60 %
with respect the PA and R models respectively), keeping low collin-
earity among the employed features, with average variance inflation
factor (VIF) values under 2.7. Such a value is definitely below
the so-called warning threshold. The FL model also improved the
estimation over the reference models, but with high VIF values,
over 400, which is beyond the limits for a reliable estimation.

Furthermore, even when considering a set of batteries with high
heterogeneity in terms of cycling profiles, the PA-R model keeps
improving the SoH estimation performance with low VIF values
and improvements similar to the obtained by the FL model.

Collecting the results, the simple two-features model PA-R,
combining A0 and R300, can be considered as the best linear mul-
tifeature model to improve the estimation of SoH. The choice is
motivated by several factors: first, its capability to outperform
single-feature models in any considered scenario; second, the wide
validation set considered with respect to previous literature works;
third, its inherent low maximum VIF; and last but not least, the
reduced number of involved features to be used in computations,
which is an additional benefit for on-board implementation in any
batteries system.
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Conclusion

This thesis aimed to address several methodological gaps identified
for the implementation of State-of-Health (SoH) estimation on-
board energy storage applications. The studies presented in this
work focused on experiment and model based approaches. Three
main research paths were considered: the proposal of methods for
the implementation and identification of impedance fractional order
(FO) models in on-board systems from frequency and time domain
data, the proposal of 1C Incremental Capacity (IC) features as
SoH indicators for batteries aged under randomised, driving profile
and fast charging cycling and finally, the development of simple
multifeature models reliant on features that can be extracted dur-
ing the normal usage of the battery.

For the estimation of battery impedance parameters starting from
Electrochemical Impedance Spectroscopy (EIS) data, a fitting pro-
cedure was presented. This procedure is based on the minimisation
of the sum of the squares of the euclidean distances between ex-
perimental and approximated values for the impedance points at
the frequencies of interest. A proper selection of the initial values
of the model parameters, was identified as the most critical issue
of the identification process. Hence, a procedure for an initial
estimation of such values from the available EIS data was proposed.
The method uses the values of the impedance at critical points,
namely local maximum and minimum values, and employs the
analytical equations for the real and imaginary parts of the battery
impedance as functions of the frequency for establishing initial
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approximations to the values of the resistances and constant phase
elements in the model. When compared with fixed initial values,
the proposed initialisation method guaranties the convergence of
the identification algorithm.

Approximations with maximum relative distances to the exper-
imental values under 2% were obtained, when the procedure with
the proposed initial conditions was tested using experimental EIS
results from the “Sandia Cell EIS Testing Data” repository.

Such method can be integrated to a characterisation process
oriented to identifying the evolution of the impedance parameters
over time. This would require a dataset including the ageing of
multiple batteries under different conditions with periodic EIS char-
acterisation tests, over which the identification of parameters using
the proposed method could be applied and used for establishing
relations with SoH and ageing mechanism. Furthermore, with cur-
rent research trends aiming to implement EIS acquisition on-board,
the availability of frequency domain data during rest periods of
the battery may also enable the implementation of on-board SoH
estimation and ageing diagnosis based on parameters fitted from
EIS data.

When considering the issue of implementation of Fractional
Order Models (FOMs) on-board, this work established that the
selection of an implementation method can be addressed as follows:
On the one hand, if the interest is only in the battery response sim-
ulation, the multiple RC (mRC) approach offers the best accuracy–
complexity compromise, which is desirable for real-time simulations
oriented towards the validation of energy management algorithms.
On the other hand, if the application requires accurate identifica-
tion of the impedance parameters from time-domain measurements,
the Oustaloup (OU) approach offers the best compromise among
identifying the impedance model parameters, the complexity and
the accuracy requirements.

Subsequent efforts in this front should be aimed to the imple-
mentation of FOMs using the OU approach on embedded systems
for the identification of impedance parameters using normal usage
data of Li-ion batteries or for the online estimation of State-of-
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Charge (SoC) and SoH when used in conjunction with Extended
Kalman Filters or any other observer adapted to FOMs.

Aiming to identify SoH indicators that could be obtained dur-
ing a Constant Current (CC) charge of a Li-ion battery, this work
analysed the correlation between three peak features extracted
from the high current IC curves and the battery full capacity, prov-
ing that the most robust capacity indicator is the area under the
main peak of the high current IC curve, called PA and computed
in a voltage range of 100 mV centred on the IC curve main peak.

The computational aspects related to the extraction of the
high-current IC peak features were also reported, with particular
attention to the two filtering stages needed in the extraction of the
peak features from the rough voltage and current measurements,
for which a second-order Savitsky-Golay and a Gaussian Weighted
Moving Average filters were adopted.

The computation of the capacity indicator PA was optimised, in
the sense that the best integration interval for its computation was
found. It was also proven that the PA outperforms other indicators
based on the area evaluated under off-peak voltage intervals, and
that the PA is insensitive to the window of the Gaussian weighted
moving average filter used to smooth the IC curve.

The PA is shown to be linearly related to the battery full
capacity in the range of the battery first life, that is from 100 %
down to 80 % of the battery initial capacity.

Further proofs of the applicability of the high-current IC peak
features as capacity indicators were presented by applying the
method to other sets of batteries, cycled using typical driving and
fast charging profiles. In the first case the relationships between PA
and the battery SoH was again linear, with a lower scattering among
batteries that in the previous case, due to the usage of the same
cycling policy for all the cells in the dataset and for the absence
of any randomisation of the charging/discharging profile. Under
a fast charging framework non-linear relationships were found on
most cases, due to the higher charge currents employed before the
1C CC charge used for the IC analysis. Finally, the method was
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compared with a ohmic resistance-based SoH assessment approach,
showing its advantages in terms of higher generalisation potential.

Further evaluation of the applicability of this method needs to
be performed. In particular the effects of the temperature during
the CC charge and both the SoC and rest time before the interest
CC charge need to be fully understood in order to make the SoH
estimation obtained with 1C IC more robust. Such task will require
of specific datasets with batteries cycled considering variations on
the mentioned variables during charge.

The study of models employing multiple common usage features,
allowed to identify a simple two-features model PA-R, combining
the area under the main peak of a 1C IC curve, A0, and a resistance
computed after 300 seconds in discharge, R300, as the best linear
multifeature model to improve the estimation of SoH. The choice
is motivated by several factors: first, its capability to outperform
single-feature models in any considered scenario; second, the wide
validation set considered with respect to previous literature works;
third, its inherent low maximum VIF; and last but not least, the
reduced number of involved features to be used in computations,
which is an additional benefit for on-board implementation in any
batteries system.

A next step for the development of multifeature models for
SoH estimation should be oriented towards the identification and
inclusion of new features coming from other sections of normal
usage profiles of the batteries, this may include categorical features
describing the distribution of critical variables during discharge
of the battery, such as SoC, temperature and current. Another
potential set of features may come from the parameters of imped-
ance models identified on-board using the identification methods
proposed in this work.

For both the IC and multifeature approaches validation steps
with implementations on embedded systems need to be conducted
during battery cycling experiments.
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[118] T. Nemeth, P. Schröer, M. Kuipers, and D. U. Sauer,
“Lithium titanate oxide battery cells for high-power automotive
applications - electro-thermal properties, aging behavior and cost
considerations,” Journal of Energy Storage, vol. 31, p. 101656,
2020. [Online]. Available: https://www.sciencedirect.com/scienc
e/article/pii/S2352152X20314936

[119] R. W. Schafer, “What is a savitzky-golay filter? [lecture notes],”
IEEE Signal Processing Magazine, vol. 28, no. 4, pp. 111–117,
2011.

[120] C. Turnes, “How does ”smoothdata” function using ”gaussian”
method define the standard deviation for different window size?”
2018. [Online]. Available: https://it.mathworks.com/matlabcentr
al/answers/406563-how-does-smoothdata-function-using-gauss
ian-method-define-the-standard-deviation-for-different-w

[121] C. Birkl, “Oxford battery degradation dataset 1,” 2017.

[122] ——, “Diagnosis and prognosis of degradation in lithium-ion
batteries,” Ph.D. dissertation, University of Oxford, 2017.

[123] M. Petit, E. Prada, and V. Sauvant-Moynot, “Development of
an empirical aging model for li-ion batteries and application to
assess the impact of vehicle-to-grid strategies on battery lifetime,”
Applied Energy, vol. 172, pp. 398–407, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.apenergy.2016.03.119



BIBLIOGRAPHY 157

[124] K. Uddin, T. Jackson, W. D. Widanage, G. Chouchelamane, P. A.
Jennings, and J. Marco, “On the possibility of extending the
lifetime of lithium-ion batteries through optimal v2g facilitated
by an integrated vehicle and smart-grid system,” Energy, vol.
133, pp. 710–722, 2017. [Online]. Available: https://www.scienc
edirect.com/science/article/pii/S0360544217306825

[125] A. Barai, K. Uddin, W. D. Widanage, A. McGordon, and
P. Jennings, “A study of the influence of measurement timescale
on internal resistance characterisation methodologies for lithium-
ion cells,” Scientific Reports, vol. 8, no. 1, pp. 1–13, 2018. [Online].
Available: http://dx.doi.org/10.1038/s41598-017-18424-5

[126] Dataset TOYOTA. [Online]. Available: https://data.matr.io/1/

[127] ST-Microelectronics, “L9963e: Automotive chip for battery
management applications with daisy chain up to 31 devices,”
2021, accessed: 7th June 2021. [Online]. Available: https:
//www.st.com/en/automotive-analog-and-power/l9963e.html

[128] X. Li, C. Yuan, and Z. Wang, “Multi-time-scale framework for
prognostic health condition of lithium battery using modified
Gaussian process regression and nonlinear regression,” Journal
of Power Sources, vol. 467, no. May, p. 228358, 2020. [Online].
Available: https://doi.org/10.1016/j.jpowsour.2020.228358

[129] A. Guarino, W. Zamboni, and E. Monmasson, “A battery resid-
ual capacity indicator based on the battery internal resistance:
An experimental study,” Proceedings - 2020 2nd IEEE Interna-
tional Conference on Industrial Electronics for Sustainable Energy
Systems, IESES 2020, pp. 15–20, 2020.

[130] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, 2nd ed. Stanford, CA, USA: Springer, 2009.

[131] D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics -
identifying influential data and sources of collinearity. Hoboken,
NJ, USA: John Wiley & Sons, 1980.

[132] T. Hastie, R. Tibshirani, G. James, and D. Witten, An intro-
duction to statistical learning, 2nd ed. New York, NY, USA:
Springer, 2021.



 


