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Abstract

Photovoltaic (PV) systems have become one of the most promising renewable
energy sources in the last years. Inevitable, these systems face different
degradation effects associated with environmental and operative conditions,
manufacturing defects, and mismatch conditions that accelerate the degradation.
The diagnosis of degradation processes has become an important topic for
increasing the reliability and efficiency of PV devices. It seeks to maximize
the performance of solar devices and contribute to early detection processes for
enhancing the maintenance planning tasks saving energy and money losses.
The contribution of this thesis is aimed to propose methodological tools for
carrying out early detection tasks of degradation effects on PV devices. Online
implementations are in the spotlight since they bring the benefit of avoiding
modifying the nominal operative condition of the PV devices. For achieving that
goal, this thesis has addressed three main proposals for carrying out diagnosis of
degradation processes on PV devices.
The first approach analyzed a selection of analytical or explicit methods validated
in previous studies with good performance modeling photovoltaic devices in
healthy conditions. In this case, the aim was to test their capability to detect
degradation in photovoltaic modules. The study focused on the series resistance
estimation since many degradation phenomena occurring in photovoltaic devices
are reflected in a variation of the series resistance of the single diode equivalent
circuit. A comparison of different explicit methods, used to estimate the model
parameters from experimental I-V curves of a photovoltaic module operating in
normal as well as degraded states under outdoor conditions, is proposed. It showed
that only few methods exhibit enough reliability to estimate correctly the model
parameters in presence of degradation and low sensitivity to the environmental
operating conditions.
The second approach moved on to more complex parameter estimation methods
such as optimization techniques. Here, neural networks (ANNs) are used for
isolating faults and degradation phenomena occurring in photovoltaic (PV) panels.
In literature, it is well known that the values of the single diode model (SDM)
associated with the PV source are strongly related to degradation phenomena, and



their variation is an indicator of panel degradation. On the other hand, the values
of parameters that allow identifying the degraded conditions are unknown a priori.
They are different from panel to panel and strongly dependent on environmental
conditions, PV technology, and manufacturing process. For these reasons, to
correctly detect the presence of degradation, the effect of environmental conditions
and manufacturing processes must be properly filtered out.
This approach exploits the intrinsic capability of multilayer perceptron (MLP)
ANN to map in its architecture two effects: 1) the non-linear relations existing
among the SDM parameters and the environmental conditions, 2) the effect of
the degradation phenomena on the I-V curves and consequently on the SDM
parameters. The variation of each parameter, calculated as the difference between
the output of the two ANN stages, gives a direct identification of the type of
degradation occurring on the PV panel. The method has been initially tested by
using the experimental I-V curves provided by the National Renewable Energy
Laboratory (NREL) database where the degradation effects were introduced
artificially, and later tested by using some degraded experimental I-V curves.
The third approach is addressed to complement the aforementioned methodologies
by extending the analysis to frequency-domain techniques. Thus, it presents a
challenging and innovative approach for detecting degradation phenomena on
photovoltaic (PV) panels using the Electrochemical Impedance Spectroscopy
(EIS) technique. This technique has been applied to the chemistry field for a
long time ago, but, it has a short history with PV devices. Previous studies have
shown promising results with EIS as a tool for the diagnosis of PV devices but,
most of them were limited to cell level and controlled conditions in the laboratory.
The innovation of this proposal is supported by two basic aspects that differentiate
it from previous ones in the literature: the operating environmental conditions and
the operating point. First, this work is aimed to detect degradation phenomena
on photovoltaic (PV) devices at the panel level working under outdoor conditions
by using the EIS technique. Secondly, the impedance is measured by leaving the
PV panel in the real-operative status corresponding to the maximum power point
without altering its power production. The implementation of the analysis in
these conditions are innovative, but, at the same time mean a challenge due to it
requires a detailed and careful implementation of the methods in the right way
for characterizing the process.
As a preliminary step, the EIS technique is applied in simulation to analyze
the PV panel dynamic response through a detailed LTSpice model including
by-pass diodes. The degradation effect to analyze was partial shading conditions.
Simulation results showed particular changes in the impedance shape under partial
shading conditions only by performing the EIS with the panel operating in MPP
thus without scanning the whole I-V curve. This confirmed the usefulness of EIS
but also the necessity of going in deep with experimental data for obtaining a more



reliable representation of the device with its own representative element values.
As the experimental campaign had different challenges and required most careful
steps, the first experimental implementation used a single PV panel. Since
variations on the series resistance are associated with multiple degradation
phenomena, this first experimental campaign sought to estimate changes in
this parameter using a dynamic model fitted to the experimental impedance
measurements. Hence, the PV panel impedance measurements are compared in
nominal and degraded conditions. The results show that the dynamic model
provides higher accuracy in comparison with the series resistance variation
identified through the single–diode model, which is the most usual approach.
Thus, it is demonstrated the feasibility of detecting degradation effects by using
the dynamic model of PV panels working under outdoor conditions.
The next step consisted in extending the analysis to other effects as partial shading
with two PV panels in series connection. Here, the number of PV panels for
analyzing is restricted due to hardware limitations.
The objective of this stage was to compare the experimental impedance
measurements in two conditions, uniform operating conditions and partial shading
conditions. The preliminary results show that the partial shading conditions are
also detectable by using EIS. But, the complete characterization of the whole
effect requires extending the dynamic model to more complex models able to
represent both dynamics in a representative model. Due to the reduced database
with partial shading conditions currently available, a final assessment cannot be
discussed. Nevertheless, the achieved results are very encouraging with interesting
perspective for the future work.
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State of Art of static and
dynamic modelling of PV
panels for degradation analysis

1.1 Introduction

Photovoltaics (PV) is a key technology for the transition from fossil fuels toward
a decarbonized and sustainable energy supply [1]. Solar energy is available and
abundant in a large part of the world and cannot be monopolised, thus, the
development of PV systems, as well as other renewable sources is strategic for
many countries and societies. Moreover, the penetration of photovoltaic (PV)
generation in the urban environment is significantly growing owing to its ability to
reduce the power bills of the owners and support the grid with local generation[2].
Research activities in the field of PV cell technology, power electronics,
monitoring, control processes, and grid integration are generally focused on
improving the PV energy production and system reliability, thus increasing the
overall efficiency of PV installations and reducing the cost. However, despite a
very long lifetime (around 25 years) of PV modules, many studies [3] highlight
that some degradation effects can be accelerated by various unpredictable and
unavoidable phenomena which are related to the environmental and the operating
conditions, the type of electrical connections and the manufacturing processes,
among others [4]. For example, especially in urban area, residential PV plants
have high probability to be subject to panel mismatch, partial shading, hot spots,
and/or mechanical stress that accelerate the degradation phenomena. Another
example is shown in [5], where the authors prove that the combined effect of PV
delamination, water penetration into the delaminated area and high string voltage
operation, leads to many failures in PV panels and inverters. Since the severity
of delamination increases gradually, this phenomenon can be early detected so
that the affected PV panel can be replaced with a new one. This preventive
maintenance will reduce the risk of PV system outages, avoid further damages
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and consequently keep the PV plant up and running, thus increasing the PV
plant’s energy yield over the system lifetime.
Some of these degradation mechanisms induce visible negative effects on the
photovoltaic module, e.g discolouration of the encapsulation material, bubble
formation or snail tracks, with possible detrimental effects on the photovoltaic
electrical parameters [6]. Despite these visual defects, many faults and
degradation phenomena cannot be distinguished with a visual inspection thus
no information can be provided to users that could request the replacement of
the modules if they do not meet the warranty, especially if the degradation is
due to the manufacturing processes. Furthermore, PV modules also exhibit a
natural aging that reduces the annual PV energy production with a more or less
flat degradation rate. For crystalline silicon PV modules, it has been estimated
a reduction of [0.8-0.9]% over the year [7]. An exhaustive review of degradation
phenomena occurring in PV modules is reported in [8].
For these reasons, in the PV market there is an increasing interest into
non–invasive and cheap functionalities to be integrated into PV plants in order to
identify early degradation of PV panels, some smart products are already available
for residential applications [9]. An early detection of PV degradation allows to take
decisions about system maintenance and PV panel replacements. In some cases,
it can prevent catastrophic consequence like fires. On–site monitoring systems
are aimed to provide/report information about the energy production, operating
conditions and analysis of different faults. In this scenario, diagnostic functions
allow to detect quickly the faulty PV modules and to estimate the difference
between the produced energy and the expected one, thus supporting the owners of
PV plants to reduce the payback time and maximise the profit from the produced
energy. In [10] a review of effective, low cost, and viable PV monitoring systems
for small and medium scale PV plants is shown.
In the literature it is possible to find two different approaches to characterise a
photovoltaic panel (and hence having a tool to estimate the degradation). The first
type relies on the performing of a comparison between the solar energy received
by the PV module, and the electrical energy delivered through its terminals and
estimated by means of its electrical measurement [11, 12, 13]. The electrical
behaviour of a photovoltaic module under specific conditions of irradiance and
cell temperature is described in terms of its I-V curve [14]. In order to estimate
the energy input it is required a solar irradiance sensor and a cell temperature
sensor attached to the module, then the PV performance, in a given window of
time, is obtained by calculating an indicator denominated Performance Ratio [15].
The evolution of this performance indicator throughout time allows to detect the
possible degradation in terms of energy production [16]. The drawback of this
approach is that hardly the required sensors are available due to their high costs
[17], and in the case of having them, there are multiple associated problems related
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to the inaccuracy of measurement and their periodically calibration and cleaning
[18].
Other techniques, usually defined as “model–based” approaches, consist on the
identification of some parameters associated to models that are suitable to describe
accurately the electrical behaviour of the photovoltaic devices. Depending on the
evolution of these parameters, the degradation could be diagnosed and estimated
[19, 20, 21]. The identification of the values of these parameters could be done
from the data obtained only from its I-V curve without measuring the irradiance.
Moreover, some of these methods only require a few selected points of the I-V
curve.
Static and dynamic models are employed to detail specific characteristics of the PV
device that are commonly not present in the manufacturer datasheet. Regarding
static models, the most popular photovoltaic electrical models are the Single
Diode Model (SDM) and the Double Diode Model (DDM) [22], both derived from
Schottky diode equation with the addition of a series resistance and a parallel
resistance for taking into account the losses inside the PV device. For both
models the relationship between voltage and current (mathematical model of the
PV module) is described by a non–linear and implicit equation with five unknown
parameters for the SDM and seven unknown parameters for the DDM.
From the other side, dynamic models search to integrate the PV system as a whole.
The capacitance is the dominant effect that a PV cell/module has internally.
But additional effects that result from other elements as the parasitic inductance
or series conductance support the relevance of a model that covers the impact
of all these dynamic elements. The identification of that elements commonly
uses two approaches from the literature. Frequency-domain and time-domain
analysis implement different methodologies for describing the physical phenomena
governing the behavior of the PV solar cell, especially the phenomena that affect
its internal capacitance [23]. The analysis of the dynamic element variation is
another way that helps to depict different degradation phenomena present in the
PV cell/module that are not discernible using only static analysis. Thus, static
and dynamic model-based approaches can be complementary for diagnosing the
degradation effects growing in the PV device.
As described in literature [24], the diagnostic procedures could be classified into
“off–line” and “on–line” methods. The “off–line” methods require to disconnect
the module from the photovoltaic array to be measured and characterised
independently. On the contrary, “on–line” methods use information acquired
while the module is working without disconnecting it from the array. Due to their
low cost and flexible configurations, embedded systems installed on site are used
to perform the measurement and process the experimental data. As “on-line”
diagnostic methods are directly implemented on this type of devices, it is useful
that the algorithms or equations required to implement those methods are as
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simple as possible to speed up the data processing, avoiding implicit expressions
and iterative procedures.
Thus, the current thesis has taken into account the issues, the set
of methodologies, studies, theories, and models previously mentioned for
implementing methodological tools for the early identification of degradation
processes in solar PV devices. To confront this challenge, this work has proposed
methodologies addressing the problem to online implementations.
The methodologies are guided to keep the devices in nominal operative conditions
for power production. It means non-invasive methodologies, able to perform the
diagnosis in the field for avoiding energy and power losses.
The argument of the thesis is structured into four chapters. The first chapter
introduces the discussion of the problems to address. Here, a summary of the
main PV models and methods for analyzing PV degradation phenomena are
presented briefly. This information is expanded and duly explained in the specific
chapters where they are used. The second chapter is focused on the analysis of
the performance of model-based approximations for detecting degradation effects
using experimental data. The third chapter employs numerical algorithms and
computational intelligence approaches for creating an architecture that assesses
degradation effects in PV devices using the main characteristics of the static PV
model. Finally, chapter four exploits the frequency-domain techniques and the
dynamic PV model for mapping the relationship between degradation effects and
changes in the dynamic PV element values.

1.2 Modelling of Photovoltaic solar panels

1.2.1 PV static models: the Single Diode Model

Figure 1.1 shows the single–diode model (SDM) equivalent electrical circuit of a
PV device [22]. It can be scaled–up or down to be adapted to a single PV cell, a
PV module or a PV array, depending on the number of cells connected in series
and parallel. The corresponding SDM equation for a photovoltaic module is given
in (eq 1.1).

I = Iph − I0 ·
(

exp

{
V + I · Rs

ns · n · Vt

}
− 1

)
− V + I · Rs

Rsh
(1.1)

where V is the voltage between the terminals of the photovoltaic module (V), I
is the output current (A), Iph is the photo-generated current (A), I0 is the dark
saturation current (A), n is the diode ideality factor (dimensionless), Rs is the
series resistance (Ω), Rsh is the shunt or parallel resistance (Ω) and ns is the
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Figure 1.1. Equivalent circuit of the single diode model

number of cells in series.
In addition, Vt is the thermal voltage (V) given by kT /e, being k the Boltzmann
constant (1.380649 × 10−23 JK−1), e the elementary electric charge (1.602176634 ×
10−19 C) [25] and T the cell temperature expressed in kelvin (with T = 273.15 +
Tm if Tm is expressed in ◦C).
The SDM, shown in figure 1.1, is the most used PV model due to the trade-off
between simplicity and accuracy [26]. This model, together to double-diode
model (DDM), and triple-diode model (TDM) are widely used for modeling,
simulation, performance evaluation, design optimization of PV systems as
well as for monitoring and diagnosis purposes [27]. Indeed, the accurate
parameter identification of the equivalent PV electrical model allows to study
the characteristics of a PV source[28] in whichever operating conditions. So
that, instead of analysing the shape of each I − V curves, it is easier to detect
degradation by evaluating the variation of such parameters with respect their
values in healthy conditions.
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Figure 1.2. Generic voltage vs current relationship for a PV device

Figure 1.2 shows the characteristic relationship between the current and voltage
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(I-V curve) of a cell, module, or array at specific environmental conditions
(irradiance and temperature). Here, the main points of the curve are the
short-circuit current (Isc), the open-circuit voltage (Voc), and the maximum power
point (MPP). When the device is short-circuited (positive and negative terminals
connected directly), the voltage in the device is at the minimum value (zero), and
the current flowing out reaches the maximum. This point is named Isc. On the
other hand, when the device does not have connected any load (open-circuited),
the current goes to zero value and the voltage in the device terminals reaches the
maximum. This is called Voc. Finally, The MPP refers to the point when there is
a special combination of current and voltage where the electrical power generated
reaches the maximum.

1.3 Parameter identification approaches

1.3.1 Classification of methods

To reproduce accurately the I–V curve of a PV array, it is not enough to have
a good mathematical model (e.g. the SDM), but it is also necessary to correctly
determine or estimate its parameters. The lasts can vary from one cell/module
to another and depend on the operating conditions, thus resulting extracted
parameters influence the final accuracy of the adopted model [29].
In the literature, it is possible to find a lot of deterministic and stochastic methods
available to determine a valid set of the parameters values (Iph, I0, n, Rs and
Rsh) [30, 31, 32, 33]. There are also works that are only able to estimate a
reduced subset of the parameters [34, 35, 36], even some that are only focused
on the identification of the series and shunt resistances [37, 38], since internal
resistances are indicators of some degradation phenomena. For example, the series
resistance is affected by corrosion in the electrical contacts, soldering problems and
degradation of the cells, among others [39].
The paper [40] provides an extensive review of works related to the modelling
and parameter estimation of photovoltaic (PV) cells, mainly devoted to the PV
simulation. Among them, the explicit methods are strongly appreciated due to the
fact that they provide acceptable results with very few computational burden [41].
They usually exploit the three notable points that an I-V curve passes through:
the short–circuit current (Isc) , the open–circuit voltage Voc and the maximum
power point (VPmax, IPmax). In some cases, the slopes of the I–V curve calculated
in Isc and Voc are also needed.
The parameters identification is a relevant task since they are not available on the
PV panel manufacturer datasheet. Besides, there are variations associated with
the operating conditions, non-linear nature, and degradation phenomena [42].
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Methodologies for solving this task are commonly grouped into three categories
[43]: iterative (numerical), non-iterative (analytical), and AI-based optimization
approaches.

Numerical
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Analytical
(Non-Iterative)

Optimization
(Computational 

Intelligence)

Set of equations 
solved symbolically.

Datasheet information.

Numeric solutions, 
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  curve.
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  convergence.
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- Easy to implement.
- Computationally  
  efficient.
- Reasonable accuracy.
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- High computational
  complexity.
- Difficulties for tuning.
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  changes in weather 
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- High accuracy.
- Near - global
   optimality.
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the best result. Need a 
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Figure 1.3. Summary methodologies for parameter identification.

Analytical methods use equations solved symbolically or explicitly by using
key-points information from datasheet or I − V curve data. These approaches are
characterized by the simplicity of its implementation and computational efficiency
[44].
Numerical methods seek to fit the points of the I − V curve by using systems of
equations that are solved numerically. Commonly, trial and error approaches or
numerical solvers such as Newton-Raphson and curve-fitting methods are used.
The accuracy, reliability, and convergence of these methodologies are strongly
linked to the selection of the initial conditions [43, 45].
Optimization approaches group different kinds of algorithms based on artificial
intelligence and heuristics methods. The development of computational
intelligence has improved the implementation of these algorithms to solve highly
non-linear and complex problems. Many advantages are associated with these
approaches as no preliminary identification of the search space of parameters,
high accuracy, and in some cases they do not need of a mathematical model.
Nevertheless, it requires high computational complexity [28].

1.3.2 Relations among degraded PV panels and SDM parameters

In [46] the most common degradation effects and failures that are detectable by
the inspection of the I − V curve and the related SDM parameters variations are
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described. They are visually shown in Figure 1.4. A brief comment on these
effects is also reported in the following. It is worth to note that, for copyright
restrictions, any photo concerning degraded PV modules is reported in this thesis,
nevertheless the visual effects of degradation phenomena on PV modules are well
documented in [46] and related references.
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Figure 1.4. Module failures detectable from the I − V curve

• S1 effect: The I − V curve exhibits a lower short-circuit current (Isc) than
expected.
This degradation effect may be caused by the loss of transparency of the
encapsulation due to browning or yellowing, glass corrosion which reduces
the light trapping of the module, or delamination which causes optical
uncoupling of the layers. This is mainly reflected in the reduction of the
photoinduced current (Iph) parameter.

• S2 and S3 effects: The I − V curve has an open circuit voltage (Voc) lower
than expected, all points shift homogeneously to the left while the I − V
curve preserves its slope around Voc. This anomaly may be due to failed cell
interconnections, short circuits from cell to cell or a failure of the bypass
diode. Such kind of failure can be associated to the SDM ideality factor
(η) because the number of cells (ns) in a PV module directly appear in the
SDM equation (1.1). Thus, the effects of cells failures can be expressed as:

η = ηH
nH

ns
(1.2)
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where ηH is the healthy ideality factor and nH is the number of healthy cells
inside the PV panel made of ns cells. For example, if ns = 36, one failed
cell has an impact of almost -3% on the η parameter.
The open-circuit voltage of the module can be reduced also by the
light-induced degradation (LID) of crystalline silicon modules or potential
induced degradation (PID). Since the leakage current inside the PV cell is an
indicator of such phenomena, they can be directly associated to the variation
of saturation current Isat parameter. Small variation of Isat does not affect
significantly the I − V characteristic. It can be observed that the impact
of Isat and η is right opposite. This can cause multi-modal problem in the
parameter identification, which means that the same I − V curves may be
reproduced with different pairs of the Isat and η. Therefore, in some cases
the same degradation phenomena can be associated almost indifferently in
the Isat variation or η variation.

• S4 effect: The slope of the I − V curve near Voc is lower indicating an
increase of the series resistance Rs in the PV module.
Among the SDM parameters, Rs appears as a key parameter due to its
straightforward relation with several degradation effects in PV devices. Sera
et al. [37, 47] show that the series resistance is the main element that affects
the fill factor. Here, degrading welding points and malfunctioning cells are
linked to the variation in this parameter. Stein et al. [48] assume the series
resistance as a representation of all contacts, series–connected cell layers, and
wires. Therefore, a change in this element can be associated with corrosion
and UV degradation. Deceglie et al. [49] consider the series resistance as
an indicator of broken ribbons, broken solder bonds, and contact problems.
Finally, in [50] the Rs is viewed as a representation of all signs correlated to
the degradation processes.

• S5 effect: The slope around Isc is mostly associated to the parallel
resistance Rsh. The variation of this parameter is due to shunt paths in
the PV cells and/or the interconnections. Slight cell mismatch or slight non
uniform yellowing, may be another cause.

• S6 effect: The presence of steps in the curve is likely caused by the
activation of one or more by–pass diodes that are connected in parallel to
block of cells to protect them from inverse polarization during mismatched
operating conditions. It can be due to irregular soiling or shadow affecting
only few cells in the PV module or due to the breakage of one or more cells
protected by the same by pass diode. This effect cannot be reproduced with
a single diode model, thus the variations of the SDM parameters associated
to this effect have not a physical meaning.
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Since all degradation phenomena have an impact on the delivered power, the
normalised sensitivity (Sn) of the PV output power with respect to the SDM
parameters variation has been calculated as follows:

Sn = [sn,Iph
, sn,Isat , sn,η , sn,Rs , sn,Rsh

] =

=

[
∆Pmpp

∆Iph

Iph,H

Pmpp,H
, ∆Pmpp

∆Isat

Isat,H

Pmpp,H
, ∆Pmpp

∆η

ηH

Pmpp,H
, ∆Pmpp

∆Rs

Rs,H

Pmpp,H
, ∆Pmpp

∆Rsh

Rsh,H

Pmpp,H

]
(1.3)

where the sn,k is the normalised sensitivity calculated by introducing the variation
∆k to the k-parameter. The subscript H refers to the values in healthy conditions.
Due to the non-linearities of PV power with respect to the SDM parameters,
the sensitivity is not constant and it should be calculated locally and for the
different environmental operating conditions. The normalised sensitivity values
of the delivered PV power with respect to the five parameters variation shown in
figure 1.4 is reported in (1.4).

Sn = [1.04, -0.0606, 1.12, -0.158, 0.031] (1.4)

The results show that the PV output sensitivity with respect to the Iph and η is
close to one. As a consequence, few percentage variation of Iph and η is reflected
in a significant variation of PV power. Rsh and Isat have lower impact, less than
one order of magnitude. Sensitivity to Rs is somewhere in between. This means
that a small variation of these parameters can be tolerated since the corresponding
degradation process is not yet detrimental.

1.4 Methods for the on-line diagnosis of PV systems

The literature overview provided in this section is limited to the approaches which
are suitable to be implemented on board to the PV system, thus by using only
electrical and environmental measurements provided by on-field sensors. Much
more expensive and complex approaches, as for example PV diagnosis based on
electroluminescent or thermographic images of the PV panels, achievable by using
unmanned aerial vehicle [51] [52], are out of topic of this thesis work.
At present, there are many studies related to PV fault detection and diagnosis,
but most of them are focused at the PV system level. In [53], different
methods are reviewed and discussed in details by putting into evidence
their feasibility, complexity, cost-effectiveness and generalisation capability for
large-scale integration. In [54] the discussion is focused on the use of artificial
intelligence (AI) and internet of things (IoT) for remote sensing of solar
photovoltaic systems to improve the PV diagnosis.
The use of photovoltaic models in combination with AI methods has been already
proposed in literature for PV faults detection. In [55] an Artificial Neural
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Networks (ANN) is firstly trained with numerical simulation, provided by a PV
model, for classification and isolation of eight types of faults, then used with
on field measurements to identify possible faulty operating conditions. A Field
Programmable Gate Array (FPGA) implementation of the proposed method is
also proposed in the paper for the online operation. In [56] the kernel based
extreme learning machine (KELM) is employed to train the single hidden-layer
feed-forward neural network (SLFN) to classify the degradation fault, short-circuit
fault, open-circuit fault and partial shading faults in a PV array. The SLFN needs
as inputs electrical values taken from the I − V curve, environmental conditions
and the SDM parameters previously calculated starting from the whole I − V
curve. An ANN with radial basis function (RBF) requiring only irradiance and
PV output power as input has been developed in [57]. The results obtained
through the testing of the developed ANN on a PV installation of 2.2 kW capacity,
provided an accuracy of 97.9% in faults identifications. In this case no model has
been used but it took long-term data measurements for reproducing on the PV
installation different kind of faults.
The ANNs training phase usually require a large number of observations, which
are not always available. This problem might be mitigated by using probabilistic
neural networks (PNNs), that learn on-line with a small number of observations
[58, 59].
The explosion of the IoT technologies is expected to enable, with an acceptable
additional cost, the diagnosis at PV panel level. Moreover, by exploiting edge
computing sensors [60], it will be possible to elaborate on site the data and to
transmit to the final user only synthetic information related to the state of health
of each PV module. Module-level monitoring devices are already available in
the market for monitoring and controlling the single PV panel, thus improving
the system performance and the planning of system’s operation and maintenance
activities [61]. Such devices are also able to perform the I − V curve tracing but
the analysis of these data is in charge to the final user. Nevertheless, the offline
data analysis is time consuming and requires an operator with a specific PV
background. Moreover, the types of faults and degradation mechanisms that can
be identified are very limited. To solve this drawback, in [62] it has been proposed
an automatic fault detection method that elaborates online the I − V curves of
PV panels. The diagnosis is focused on the identification of current mismatch
due to the partial shading, hot spot, and cell cracks. The method calculates the
concavity and convexity along the I − V curves because the three analysed faults
produce steps on the I–V curve, thus not trivial data processing is required for
proper detection of the occurring fault.
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1.5 Frequency domain analysis

1.5.1 PV dynamic models

A PV solar cell is essentially a p–n junction modelled using resistance, capacitance,
and inductance. Figure 1.5 shows the equivalent small-signal ideal dynamic circuit
composed of Rd dynamic resistance of diode (Ω), Rs series resistance (Ω), Rsh

shunt resistance (Ω), Cd diffusion capacitance (F), and Ct transition capacitance
(F).

Rsh

Rs

VAC

IAC

RdCd Ct

Ls

Figure 1.5. Ideal small-signal PV dynamic model

In the small–signal model, the DC components as the module photo-induced
current and the diode polarisation current are ignored. Thus, the frequency
representation of the AC dynamic circuit is done through the equivalent
impedance (Zeq) as a function of the frequency [63].

Zeq(ω) = Rs +
Rp

(ωRpCp)2 + 1 + j

[
ωLs −

ωR2
pCp

(ωRpCp)2 + 1

]
(1.5)

where Cp is equal to the parallel between Cd and Ct and Rp the parallel between
Rd and Rsh [64], [65].
The effect of the inductance must be taken into account, especially by the impact
of the wires and connectors the system must utilize. These components suppose
stronger values compared to the internal inductance cell effect and could increase
to module/panel level [64]. Previous works [66, 67, 68, 69, 70] shown that the AC
small-signal electrical model shown in figure 1.5 fits in a good way the impedance
values obtained for photovoltaic devices. The value is generally determined using
time-domain or frequency-domain techniques [65].
In general, EIS spectra do not exhibit a perfect semicircle due to non–ideal
capacitances inside the PV p-n junctions. [66, 67, 71]. Therefore, the use of
the Constant Phase Element (CPE), especially for Si-based technologies, helps to
adjust some deviations of internal processes leading to modelling the experimental
impedance data using the circuit of Fig. 1.6, which is described by equation (1.6).
Moreover, for the frequency range adopted in this thesis work, the AC model of
a module is the same as for a single cell [67, 72].
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Besides, according to [73], R0 represents the series ohmic losses, R1 the junction
resistance, and the junction capacitance (composed of a transition Ct capacitance
and a diffusion Cd capacitance) is represented by the CPE element.

R1

R0L CPE

Figure 1.6. Dynamic model with a constant phase element (CPE).

Zeq(ω) = jωL + R0 +
R1

[(jω)βQR1 + 1] (1.6)

The impedance of the CPE has a particular interpretation. The β element can
have values from 0 to 1. If β tends to 1, CPE is a pure capacitance. If β tends to
0, CPE is a pure resistor. From [74] the value of the equivalent capacitor of the
CPE element can be calculated with equation (1.7).

C = Q

[ 1
β

]
R

[ 1
β

−1
]

1 (1.7)

1.5.2 Electrochemical Impedance Spectroscopy

Electrical Impedance Spectroscopy (EIS) methodology is a well–established
technique to characterize electrochemical devices (e.g. batteries, fuel cells,
supercap) in the frequency domain [70],[75]. This method injects a small
perturbation, with a variable frequency, superimposed to the system operating
point and the impedance spectra is calculated in that operating point, as shown
in figure 1.7. The EIS must be performed by using small voltage or current
perturbations, thus the response of the system under test is considered linear.
Since the perturbation amplitude is very small, the EIS technique should be not
invasive and applicable online during the normal operation of the system under
test.
In potentiostatic mode, a sinusoidal voltage perturbation is superimposed to the
system operation point v(t) = Vp + V0 sin(ωt) with amplitude V0 and angular
frequency ω by producing a current response i(t) = Ip + I0 sin(ωt + θ) with
amplitude I0 and the same angular frequency ω, but with a phase shift equal
to θ. In galvanostatic mode the perturbation is imposed on the current operating
point and the voltage response is measured. The sinusoidal perturbation might be
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replaced with more complex stimulation signal to speed up the EIS measurements
process [76, 77].
For both techniques, the impedance Z(ω) is calculated as a complex function
of the complex frequency ω (C → C) defined as the ratio between the Laplace
transform V (ω) of the input and the Laplace transform I(ω) of the output:

Z(ω) =
V (ω)

I(ω)
=

L {v(t)}
L {i(t)}

=
V0
I0

· e−jθ = |Z(ω)| · e−jθ (1.8)

Galvanostaic 
Mode

Potenziostatic Mode

Time  
Domain 

Vp, Ip

Frequancy  
Domain 

Figure 1.7. Identification of the impedance spectra through a sinusoidal stimulation of
Vp, Ip

The frequency range and the amplitude of the small signal are the main parameters
to configure for performing the EIS methodology.
As shown in Table 4.43, previous works have fixed these values from 0.01 Hz up
to 100 kHz for the frequency and usually 100 mV value is used for the voltage
amplitude [68, 73, 78]. In this thesis work, the frequency range was fixed from
10 Hz up to 50 kHz because the PV module under test responds successfully in
this range. Details on the EIS measurement equipment and panels under test are
reported in section 4.3.2.
Fig. 1.8 shows the measured impedance in the complex plane and through the
Bode diagram. Some basic characteristics can be straightforward associated to
the circuit in Fig. 1.6. At low frequency (ω → 0) the impedance value is given by
the sum of the series ohmic losses and the junction resistance. At high frequency,
the impedance value cross the x–axis and goes down almost vertically indicating
that the inductive effect is dominating. This is also evident in the Bode diagram
of Fig. 1.8 where, at high frequency, a 180◦ of phase change can be justified
only by an inductive effect. Indeed, the measured impedance shows an almost
straight line at high frequency, as highlighted by the dashed vertical asymptote in
Fig. 1.8(a) indicating the presence of an inductive effect, mainly due to the cables
and connectors used for the experimental setup.
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Figure 1.8. (a) Complex plane, (b) Bode magnitude diagram, and (c) Bode phase
diagram of the impedance values of the PV panel.

The asymptote is described by the equation Z(ω) = R0 + jωL which is the vertical
boundary for the impedance spectrum in the Complex plane. The variation of
L affects the resonance frequency, that is the frequency where the impedance
spectrum crosses the real axis close to the asymptote. The resistance R0, since it
is not depending on the frequency, only produces an horizontal translation of the
impedance spectrum without modifying its shape.
For the stimulation frequency range employed in the measurement setup, the solar
cells introduce mainly a capacitive effect due to their internal p–n junctions. They
exhibit inductive behavior for stimulation frequencies beyond 1 MHz, as indicated
in [64].
To confirm that the inductive effect visible in the impedance spectra of Fig. 1.8
is dominated by parasitic effects, the measurement setup has been tested on
a set of calibrated resistors within the same frequency range used for the PV
measurements and at the same testing conditions. The same inductive effect was
measured in each test with no significant error in the estimation of the calibrated
resistors. These tests corroborate that the inductive effect is mainly due to the
MC4 connectors used in commercial PV applications. Indeed, authors in [79], [80],
and [81] also reaffirm the presence of inductive parasitic effects generated by PV
connectors and wires, which is visible at the highest frequencies of the frequency
stimulation range. Although the estimated inductance L is not directly related
to the solar cells it is a further parameter that can be monitored for detecting
degradation in the cabling of PV panels. It is also worth to note that such parasitic
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effect does not appear in laboratory setup where the measurement equipment is
directly connected to the PV cells by using short cables [82].

1.5.3 Impedance spectroscopy on photovoltaics (PV) panels

EIS applied to PV systems is relatively new, but, despite it, good preliminary
results have been reached for the last few years, especially for the diagnosis
of degradation processes [67, 68]. One common limitation of these previous
works is their on–field applicability, because they are under controlled conditions
(irradiance and temperature) with single solar cells. Some of them have used
small solar panels, but still in a laboratory environment.
For instance, in Oprea et al [78], the EIS technique was implemented for
determining Potential-Induced Degradation (PID) effects over a residential PV
plant of 9.36 KW. The PID effect was confirmed by employing I-V and
electroluminescence measurements. To assess the level of degradation the series
resistance (Rs), shunt resistance (Rsh), and the equivalent capacitance were
approximated. The results showed the connection between the element values
and the level of degradation caused by the PID.

In Varnosfaderani and Strickland [83] the EIS technique is implemented in a
small-scale PV system with no additional electronic devices. Here the DC-DC
power electronic converter was utilized for generating and injecting a small AC
signal into the PV module without affecting his normal operation. The research
showed good accuracy in the impedance values calculated between the online test
against laboratory measurements. Thus, were shown some of the benefits and
applicability of the technique in online implementation.

Finally, in Katayama et al [68] some commercial polycrystalline silicon solar cells
were used to analyze mechanical stress, interconnection ribbon disconnection,
and potential-induced degradation processes. The cells were analyzed in normal
conditions, and subsequently, degraded with the aforementioned degradation
processes. The use of the EIS technique allowed calculating the impedance values
for building the model and get the Nyquist plot based on the series resistance,
shunt resistance, and equivalent capacitance. The experimental results showed
the variability of the elements that composed the model and showed a clear way
for differencing the three degradation processes. These works have shown good
performance and promising results on using the EIS methodology as a tool for
diagnosis in PV modules. Nevertheless, most of them were made at cell level using
laboratory tests for demonstrating novelties and benefits.

Table 4.43 summarizes the main information of different methods proposed in
the literature for analyzing the PV dynamic response. The techniques are
mainly devoted to the performance evaluation of PV cells for validating the
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PV manufacturing process, for studying physical phenomena occurring inside the
cell, for identifying parameters of dynamic models, as well as for the analysis of
degradation and fault detection inside PV cells and modules. Usually, the testing
conditions refer to PV cells or modules operating in dark conditions or under
controlled irradiance G and temperature T . Table 4.43 also shows the ranges of
the stimulation frequency used for testing the PV cells and modules made with
single–crystalline (sc–Si) and multi–crystalline (mc–Si) silicon PV technologies.
In this thesis the application of the EIS technique on PV panel operating in MPP
in outdoor conditions will be proven. The results are deeply discussed in chapter 4.

Table 1.1. Preliminary EIS studies on solar PV cells/modules

Characteristic Reference
[84] [79] [85] [86] [80] [87] [72] [68] [65] [78] [67] [88] [81]

Testing Condition
Dark • • • • • • •

Controlled G and T • • • • • • • • •
Outdoor conditions •

Technology
sc-Si • • • • • • • • •
mc-Si • • • • •

Technique
Square wave signal •

Impedance
Spectroscopy

• • • • • • • • • •

Reflectometry • •
Objective

Physics •
Manufacturing •

Modelling • • • • • •
Fault detection • • •

Degradation analysis • • •
Frequency Range

1Hz-30kHz •
1Hz-100kHz • • • •

0.1Hz-100kHz •
1Hz-1MHz •

150Hz-200kHz •
42Hz-5MHz •

20Hz-100kHz •
0.01Hz-1MHz •
20Hz-200kHz •

PV level
Cell • • • • • • • • •

Module/Array • • • • •
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Parameters Extraction of
Single Diode Model for
Degraded Photovoltaic
Modules

2.1 Introduction

The research activity shown in this chapter focuses on the on–line estimation of
the SDM parameters. As it is shown in [43] or in [89], many papers propose simple
procedures or explicit equations for calculating the parameters of the SDM model
[26, 90, 91, 92, 93, 94, 95, 96, 97]. Such approaches are potentially suitable to be
easily integrated in the on–line diagnostic function. Nevertheless they are tested
by using data coming from the PV panel datasheets or by using experimental
I–V curves acquired in normal operating conditions, thus by validating the
identification methods only in non–degraded conditions.
The main contribution of this work is aimed at investigating the reliability of
the aforementioned explicit methods, also said direct methods, to identify the
parameters of the photovoltaic panel that are indicators of possible degradation
phenomena, in particular the internal series and parallel resistances. In other
words, the goal is to study the reliability of such methods when they are used for
diagnostic purposes.
Among all the explicit approaches for parameter identification of the SDM model,
four methods have been selected to be compared and analysed (all of them based
on a reduced set of simple and direct formulas). By referring to the classification
given in [43], two methods have been selected among the ones that use only
information as given in the PV panel datasheet, and two methods based on the
slopes calculated in the short–circuit current and open–circuit voltage.
In order to have a reference value as accurate as possible for the identified
parameters, a non–explicit method based on an iterative fitting procedure has been
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also applied. All these methods will be tested by using measurements from several
experiments in which different levels of degradation are emulated by connecting
in series with the photovoltaic module external resistances with different nominal
values. The objective is to study the capability of the methods to detect this
simulated degradation effect added to the PV module that is operating for several
days under outdoor conditions.
The chapter is organised as follows: Section 2.2 describes briefly the selected
methods used for identifying the five parameters of the SDM model. Section 2.3
starts referring to the experimental system used for acquiring the outdoor I–V
curves of the photovoltaic module under study. In addition, the procedure to select
I–V curves and estimation of the main electrical parameters are explained. The
section ends describing how further degradation has been emulated by connecting
additional resistances in series. Section 2.4 is aimed at showing and comparing
the results obtained by the different methods in the nominal operating conditions
by using the numerical curve-fitting approach as the reference. The capability of
these approaches for reconstructing the measured I–V curve is also analysed. In
Section 2.5, the behaviour of the identification methods with I–V curves measured
in degraded condition is studied. Finally, in Section 2.6, the main conclusions of
this work are summarised.

2.2 Photovoltaic model and parameter identification
methods

The four explicit methods selected among the most promising ones analysed in
[43] are briefly recalled in the subsections 2.2.1–2.2.4. Since there is no way to
perform a direct measurement of the five parameters of the SDM model, in order
to have a reference value for each parameter, a non–explicit method has been used
to have a reference value for each parameter. Following the classification proposed
by [43], the fifth approach lies within the “optimisation methods”, because it uses
all the measured points of the I–V curve in order to construct an error function
to be minimised by means of an iterative procedure. This method is formalised
in section 2.2.5.

2.2.1 Explicit equations based on the LambertW function

This method exploits the Lambert W–function [98] for deriving the set of explicit
equations allowing a fast calculation of the SDM parameters. In [22, 41, 99] all
details about this approach are provided:
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Iph ≃ ISC (2.9)

Eg(T ) = Eg0 − a · T 2

T + b
(2.10)

I0 = ISC · exp
{(

VOC
VOC − β · T

)
·

(
α · T

ISC
− 3 − Eg(T )

Vt

)}
(2.11)

A =
VOC

ln
(

ISC
I0

+ 1
) B =

VPmax · ( VPmax − 2 · A )

A2 (2.12)

n =
A

Ns · Vt
(2.13)

C =
VPmax · (2 · IPmax − Iph)

A · I0
x = W0{ C · exp(B)} − B (2.14)

Rs =
x · A − VPmax

IPmax
(2.15)

Rsh =
x · A

Iph − IPmax − I0 · (exp(x) − 1) (2.16)

where α is the current–temperature coefficient of the module expressed in AK−1,
β is the voltage–temperature coefficient in VK−1 and W0{ · } is the main branch
of the Lambert−W function. Finally Eg(T ) is the band gap energy (eV) of the
semiconductor at temperature T (K); the constants Eg0 (band gap energy at 0 K),
a and b depend on the material. In the case of single–crystalline silicon (sc-Si)
the values are Eg0 = 1.16 eV, a = 7 × 10−4 eV K−1 and b = 1100 K [100]. This
approach will be identified in the following as LambertW method.
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2.2.2 Explicit equations by using the Serial–Parallel Ratio

In [95, 96] it has been shown that the 5–parameter SDM can be scaled
down to 4–parameter SDM without losing significant precision if only one
resistance is neglected. The method allows to classify the PV modules into two
groups on the basis of the value assumed by the performance indicator named
Serial–Parallel–Ratio (SPR):

Iph ≃ ISC γi =
IPmax
ISC

γv =
VPmax
VOC

(2.17)

r =
γi · (1 − γv)

γv · (1 − γi)
SPR = (1 − γi)· exp(r) (2.18)

Case (A) : SPR > 1 ⇒



Rsh = ∞
δ = ln(1 − γi)

Rs =
VOC
ISC

·

γv

γi
· (1 − γi)· δ + (1 − γv)

(1 − γi)· δ + γi

A =
IPmax · Rs − VOC + VPmax

δ

I0 = Iph · exp
(−VOC

A

)
(2.19)

Case (B) : SPR < 1 ⇒



Rs = 0 Ω

λ1 =
(1 − γv)· (2 · γi − 1)
(1 − γi)· (γi + γv − 1)

λ2 =
γv

1 − γi

ω = W-1{ − SPR · λ1 · exp(−λ1)}

Rsh =
VOC
ISC

· λ2 · ω + λ1
ω + λ1

A =
−VOC + VPmax

ln
{
(ISC − IPmax)· Rsh − VPmax

ISC · Rsh − VOC

}
I0 =

(
Iph − VOC

Rsh

)
· exp

(−VOC
A

)

(2.20)
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where W-1{ · } is the lower branch of the Lambert−W function and n could be
calculated as in the previous methods using (eq 2.13). This approach will be
identified in the following as SPRatio method.

2.2.3 Explicit equations based on the Phang’s method

The method proposed in [90] uses the values of the slopes at the short–circuit and
open–circuit points (Rsh0 and Rs0 respectively) as starting points. The regression
procedures to estimate these values can be performed over the set {Vi, Ii} or over
{Ii, Vi}:

Rs0 = − dV

dI


I=0

= − 1
dI

dV


V =VOC

(2.21)

Rsh = Rsh0 = − dV

dI


I=ISC

= − 1
dI

dV


V =0

(2.22)

B = ISC − VPmax
Rsh

− IPmax C = ISC − VOC
Rsh

(2.23)

A =
VPmax + Rs0 · IPmax − VOC

ln(B) − ln(C) +
IPmax

C

(2.24)

D = exp
(

−VOC
A

)
I0 = C · D Rs = Rs0 − A

I0
· D (2.25)

Iph = ISC ·
(

1 + Rs

Rsh

)
+ I0 ·

[
exp

(
ISC · Rs

A

)
− 1

]
(2.26)

Finally, for the estimation of the diode ideality factor n it is possible to use
(eq 2.13). This set of equations will be noted as Phang method.
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2.2.4 Explicit equations based on the Toledo’s method

The method proposed in [94] rewrites the SDM equation given in (eq 1.1)
differently. In this case, the general equation for the SDM is expressed as:

I = A − B · (CV · DI − 1) − E · V (2.27)

The method needs the set of values at the short–circuit point and three additional
points of the I-V curve {(V1, I1), (V2, I2), (V3, I3)}. These values are the starting
points for calculating the model of five parameters. Although the choice of these
points could be arbitrary, the author suggests choosing three set of points with
voltage greater than the maximum power-point and uniformly distributed. In the
analysis carried out in this chapter, these additional three points are the maximum
power point, the open-circuit point and the maximum of the α−power function
[32], that taking (α = 10) is a point between VPmax and VOC. The proposed set
of equations is:

E = − dI

dV


V =0

= − 1
dV

dI


I=ISC

(2.28)

F1 = ln(ISC − E · V1 − I1) (2.29)
F2 = ln(ISC − E · V2 − I2) (2.30)
F3 = ln(ISC − E · V3 − I3) (2.31)

D = exp
{
(F1 − F2)· (V2 − V3) − (F2 − F3)· (V1 − V2)

(I1 − I2)· (V2 − V3) − (I2 − I3)· (V1 − V2)

}
(2.32)

C = exp
{

F2 − F3 − (I2 − I3)· ln(D)

V2 − V3

}
(2.33)

B = exp {F1 − V1 · ln(C) − I1 · ln(D)} (2.34)

A = ISC − B (2.35)
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G =
ln(C)

ln(C) − E · ln(D)
(2.36)

Iph = A · G I0 = B · G (2.37)

Rs =
ln(D)

ln(C)
Rsh =

( 1
E

− Rs

)
(2.38)

n =
1

Ns · Vt · ln(C)
(2.39)

2.2.5 Identification method based on curve fitting

The algorithm used to find the optimal values of the SDM parameters is widely
known as trust–region–reflective. A comprehensive guide about this family of
techniques can be found in [101].
There is a specific type of trust–region algorithm able to work when the search
space is bound to a feasible region. This means that users can define an interval
for each parameter to estimate in addition to the required initial point. Fixing
an appropriate set of lower and upper limits is not an easy task but it is possible
to find some proposals in the literature that are suitable for the SDM [102, 103].
Specifically, the second of those works defines a feasible region taking into account
the information from a large database of photovoltaic modules and their features.
Table 2.2 presents the values of these intervals, that have been used in this chapter.
In addition, the table provides the start point that has been selected for each
parameter. The initial values for Rs and Rsh are the slopes of the I-V curve in
Voc and Isc respectively. They are calculated as shown in section 2.2.6. For Iph

the initial point is Isc due to their high correlation. For n and I0, without any
additional information, the centres of the proposed intervals have been adopted
as the starting points.

Table 2.2. Interval and start points for the five SDM parameters

Lower limit Upper limit Start point
Iph[A] 1/12 12 Isc
I0[nA] 1 × 10−3 1 × 10+4 5 × 10+3

n[/] 1 2 1.5
Rs[Ω] 0 100 Rs0
Rsh[Ω] 1 5 × 104 Rsh0
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The procedure minimises the following objective function, it describes the PV
generator as introduced in the equation (1.1):

f = Iph − Isat · [e
(
Vpv + Ipv · Rs

η · ns · Vt
)

− 1] − [
Vpv + Ipv · Rs

Rsh
] − Ipv (2.40)

The trust–region algorithm integrated into the Optimisation Toolbox of Matlab
[104] has been used in this thesis work. In the call to this function it is necessary to
pass some important tuning parameters in order to ensure a successful execution.
Among these input values, the maximum number of iterations (maxIter), the
minimum tolerance in the search space (tolX) and the minimum tolerance in the
target function (tolFun) have been settled. When any of these criteria is reached,
the function stops its execution. It is worth to note that, due to the strong
non-linearity of the SDM model, if the Matlab function uses default setting the
convergence to the optimal solution is not assured. Table 2.3 shows the difference
between the default values and the ones used in this work.

Table 2.3. Tuning parameters for the fitting procedure

Default value Used value
maxIter 400 2500
maxFunEvals 600 10000
tolX 1 × 10−6 1 × 10−12

tolFun 1 × 10−6 1 × 10−12

The numerical solving procedure provides not only an estimation for each
parameter of the SDM model, but also a confidence interval around that value.
In this analysis the confidence interval is referring to a confidence level of 99%,
which means that with a probability of 0.99 the true value of the parameter is
inside that interval. Error bars will be always attached to the plots referring to
this method in order to visualise this confidence interval.
This approach will be identified in the following as Fitting method.

2.2.6 Data extrapolation from experimental I-V curve

The typical experimental I–V curve is given by a sequence of discrete
current-voltage pairs starting in some point close to the short–circuit current
(ISC) and finishing in another point close to open–circuit voltage (VOC). However,
neither ISC nor VOC values might be measured accurately during the on-line
operation and both need to be estimated by linear interpolation. Even worse for
(VPmax, IPmax) point, that should be detected by using a non–linear interpolation.
For each I–V curve, the technique described in [105] is used to calculate notable
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points and slopes. A brief description of this method is reported in the following.
The measured point nearest to the Y − axis is identified being its current
value Ix and from the nearest one to the X − axis we get also the voltage
component Vy. Then a two–dimensional interval centred in Ix is made
[0, 20% · Vy] × [Ix − 4% · Ix, Ix + 4% · Ix]. The interpolation with all the
points inside the interval allows us to determine Isc and also the slope (dI/dV )
at I = Isc. Analogous, using linear interpolation again over the interval
[Vy − 10% · Vy, Vy + 10% · Vy] × [−20% · Ix, 20% · Ix] the value of VOC and
the slope (dI/dV ) when V = VOC are determined. Figure 2.9 and (eq 2.41) show
the concept of the slopes and their relationship with the I–V curve. The values
of Isc and Voc represent the cuts for the Y and X axes.
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Figure 2.9. Slopes approximation on the I–V curve

Rsh0 = −dV

dI


SC

, Rs0 = −dV

dI


OC

(2.41)

As suggested in [105], for estimating the maximum power point MPP, first the
P–V curve is computed with Pi = Ii · Vi. Then, the measured discrete point
with the greatest value Pz = Iz · Vz is considered and all the experimental
points (Vi, Pi) verifying Pi ≥ 85% · Pz are selected for a fifth-degree polynomial
interpolation. Next step is the derivation of the polynomial and the estimation
of its real root inside the selected X − range. As a result, we can obtain a very
good approximation of Pmax, VPmax and IPmax.
The point where the PV module produce the maximum amount of energy,
according to its physical properties and the relationship with the environmental
variables (irradiance and temperature), is called Maximum Power Point (MPP).
Under uniform environmental conditions, that means the same irradiance and
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temperature on all the PV cells, the PV array exhibits a unique MPP.
It is worth to note that during the normal operation of a PV array, a control
algorithm, called Maximum Power Point Tracking (MPPT), seeks to maintain
the PV operating point as close as possible to the MPP for whichever irradiance
and temperature conditions hitting on the PV array during the day.

Conventional MPPT algorithms have been adapted to identify the presence
of multiple MPPs and tracks the global maximum (GMPP) [106]. However,
in general, the modified approaches show high convergence time, require
PV parameters to be updated periodically due to degradation of solar cells.
Recent literature [107] also proposed MPPT controllers based on optimization
meta-heuristic (or bio-inspired) algorithms for tracking the GMPP accurately.
Despite high-steady-state efficiency, the performance is strongly dependent on
the tuning parameters by leading to scalability issues [108].

It is important to keep in mind that the main research activities carried out in
this thesis are focused to leave the PV panels operating in their MPP and at the
same time acquire information on its status of health.

2.3 Experimental methodology

2.3.1 Measurement system and setup

In order to analyse and compare the explicit methods for SDM parameter
identification, a PV measurement system has been configured for acquiring a
large number of I–V curves under outdoor conditions. The equipment is installed
on the roof of the Department of Applied Physic II at the University of Málaga
(latitude: 36.715◦ N ; longitude: 4.478◦ W; elevation: 60 m). The PV module
under test is the model I–53 from the manufacturer Isofotón and its data-sheet
specifications are summarised in Table 2.4. In [109] there is a detailed description
of the measurement system used and a deep analysis of uncertainties. This
equipment is able to acquire simultaneously the I–V curves and other external
variables such as the in-plane irradiance GI (solar power per square metre incident
on the module plane) and the temperature of the module. The system is
controlled by a software running in a personal computer in order to take automatic
measurements every three minutes from the sunrise to the sunset. This software
stores the measurements in a relational database and the data is available to be
downloaded throughout a web page accessible from any computer in Internet. A
full description of this application can be found in [110].
A first analysis has been done for calculating the actual SDM parameters to be
assumed the baseline for estimating the capability of explicit methods to evaluate
correctly additional degradation induced artificially. Indeed, to simulate further
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Table 2.4. Isofotón I-53 main specifications

Parameter Symbol Value
Maximum Output Power at STC (W) Pmax STC 53

Voltage at Maximum Power (V) VPmax STC 17.4
Current at Maximum Power (A) IPmax STC 3.05

Short Circuit Current at STC (A) Isc STC 3.27
Open Circuit Voltage at STC (V) Voc STC 21.6

ISC STC temperature coefficient (AK−1) α 0.001326
VOC STC temperature coefficient. (VK−1) β −0.07704

Series resistance (new module) (Ω) Rs 0.288
Number of Cells in series ns 36

Cell Type sc − Si mono
Cell Area (cm2) Ac 104.4

levels of degradation in the real PV system, some resistors with different nominal
values are connected in series to the PV module terminals. Figure 2.10 shows the
electrical connections of the external resistors and measurement points.
The system has been programmed to perform several days of measurements for
each different configuration, in order to ensure a perfect clear sky day for each
of the experiments: 0 Ω (no additional series resistor), 0.3 Ω, 1 Ω and 1.5 Ω.
The highest values of the additional series resistor have been selected according to
the analysis given in [111] where it has been shown that Rs reaches values up to
2.3 Ω over an operation period of 20 year. The experiments have been performed
during a period of time between June and July 2018.

Figure 2.10. SDM with additional series resistance

2.3.2 Data pre–processing

As a result of the four performed experiments, there are available hundreds of I–V
curves at different levels of irradiance and module temperature conditions, as well
as with different additional series resistances.
Once all the experiments have been finished all the I–V curves have been
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downloaded from the server and the files have been imported in Matlab workspace
format for their further processing.
The first step is to remove all the measurements that do not satisfy the following
criteria:

• The irradiance is measured before and after the measurement of each I–V
curve. If the difference between both readings is greater than 5 Wm−2 the
curve is rejected.

• All the measurements done with an irradiance lower than 700 Wm−2 have
been removed because the single diode model is more accurate for high
irradiance levels [112].

• In order to be sure that all the I–V curves have a suitable shape, a visual
inspection of all selected curves has been done by using a plotting function
in Matlab. If it is noticed that a particular curve presents a weird shape
(due to a shadow or a measurement error), it is eliminated from the dataset.

The second step is the calculation of the notable points (0, ISC), (VOC, 0) and
(VPmax, IPmax) from the experimental I–V curves in addition to the slopes of the
curves in ISC and VOC. This process is detailed in the section ??.
It is worth to note that the accurate calculation of such values from the
experimental data is crucial for not introducing additional errors in the SDM
parameter estimation, since the identification of SDM parameters by means of
explicit methods is strongly dependent on I–V notable points and slopes.
Before analysing the results of the parameter identification methods, the effect of
the additional series resistances on the experimental I–V is shown in Figure 2.11.
The plotted I–V curves are at the same irradiance and temperature conditions. In
the figure it is evident how the increase of the series resistance affects significantly
the knee of the I-V curves where is located the maximum power point and the
slope in right part of the I-V curves.

2.4 Comparison of the identification methods in
nominal conditions

The starting point for the comparative analysis of the methods is to estimate the
five parameters at fixed conditions of in–plane irradiance and module temperature.
From the pre-processed dataset of measured I–V curves, only those with cell
temperature around a fixed value have been selected (a range of [43,44] ◦C has
been chosen in order to maximise the number of measurements).
The set of I–V curves is then identified with {C[i]}r

i=1 and their respective
measurements of irradiance and module temperature are {GI[i]}r

i=1 and {T [i]}r
i=1
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Figure 2.11. Experimental curves of PV panel under study with different added series
resistances

respectively, r is the number of selected curves. Over each curve C[i] it is possible
to run all the proposed methods ( let m ∈ {Fitting, Phang, SPRatio, Toledo,
LambertW}) by providing the five values vector:

{Iph[i], I0[i], n[i], Rs[i], Rsh[i]}(m) i ∈ [1, ..., r] (2.42)

The restricted range of temperature allows to make negligible the dependency
of SDM parameters on temperature since it is almost constant. Differently, the
measured irradiance range has a wide variation because it only fulfils the criterion
GI ≥ 700 Wm-2, thus a linear regression analysis is applied on the calculated
SDM values in order to account the dependency of parameters with respect to
in-plane irradiance GI. The regression analysis is performed for all the explicit
methods shown in Section 2.2. The results of the fitting method are considered
as reference.
For all the methods, the dark saturation current I0 and diode ideality factor n
do not exhibit significant dependency on the irradiance, since the coefficient of
determination, usually denoted with R2, is very low. In general, a high R2 value
indicates that the regression model fits with the experimental data. In [113], it is
stated that a value of R2 lower than 0.25 means that between the studied variables
there is a very low or no correlation. The parameters I0 and n are considered not
dependent on the irradiance GI because this condition occurs in both cases.
For the other three parameters (Iph, Rs and Rsh), the coefficient of determination
and the corresponding equations of regression lines are reported in Figures 2.12
and 2.13. The figures also show the SDM parameter values calculated with each
method by using the selected I–V experimental curves. The regression lines have
been expressed as function of the standard irradiance condition GSTC = 1000
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Wm−2 as follows:

Iph = δ
(m)
Iph

(GI − GSTC) + I
(m)
ph STC (2.43)

Rs = δ
(m)
Rs

(GI − GSTC) + R
(m)
s STC

Rsh = δ
(m)
Rsh

(GI − GSTC) + R
(m)
sh STC

where, for a specific method m, δ
(m)
Iph

, δ
(m)
Rs

and δ
(m)
Rsh

are the angular coefficient of
the regression lines and I

(m)
ph STC, R

(m)
s STC and R

(m)
sh STC are the offsets of these lines

at GI = GSTC

By referring to the Figure 2.12, it is evident that the estimated Iph values are
strongly dependent on GI since R2 is almost equal to 1 for each method. This is
an expected result because the photo-generated current depends linearly on the
irradiance reaching the PV panel surface.

Figure 2.12. Iph estimation at different irradiance conditions with respective regression
lines

The regression lines of Figure 2.13 show that the series and parallel resistance
dependency on the irradiance is also affected by the applied identification method.
Indeed, by considering the results of the fitting method as reference, the other
methods exhibit different angular coefficients and offsets. In some cases, the
coefficient of determination R2 is too low, meaning a non-dependency on GI.
In addition to the regression analysis, the comparison of the calculated values
by the explicit methods with respect to the results of the fitting method put
into evidence that Phang method gives better results in Rs identification, while
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LambertW method is more effective in the Rsh identification. It is also evident
that for the SPRatio method the identified Rs is always zero because SPR < 1.

(a) Rs estimation with respective regression lines

(b) Rsh estimation with respective regression lines

Figure 2.13. Estimations of series and parallel resistances at different irradiance
conditions by using the selected identification methods

Table 2.5 collects the average values µ(· ) and the standard deviation σ(· ) of
all SDM parameters calculated with the explicit methods and the fitting one.
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Results show that each method converges towards different SDM parameters
solutions, especially for the dark saturation current I0. This issue has been already
discussed in [114], where it has been shown that very dissimilar sets of the SDM
parameters lead to either identical or very close I-V characteristics. For this

Table 2.5. Mean value µ and standard deviation σ of the 5 SDM calculated by different
methods

Fitting Phang SPRatio Toledo LambertW
µ(Iph) [A] 2.677 2.659 2.655 2.658 2.655
σ(Iph) [A] 0.006 0.006 0.006 0.007 0.006
µ(I0) [µA] 0.52 1.8 25 3.0 0.0079
σ(I0) [µA] 0.11 0.7 13 1.0 0.0007
µ(n) 1.282 1.39 1.69 1.44 1.004
σ(n) 0.010 0.03 0.07 0.03 0.002
µ(Rs) [Ω] 0.336 0.312 0.000 0.260 0.452
σ(Rs) [Ω] 0.005 0.009 0.000 0.012 0.005
µ(Rsh) [Ω] 105.8 182 206 182 86.3
σ(Rsh) [Ω] 2.1 13 10 13 1.3

reason, once the five parameters have been estimated for any experimental curve,
the MAPE (Mean Absolute Percentage Error) of the main electrical parameters
(ISC , VOC, Pmax, IPmax and VPmax) is estimated by the following equation:

MAPE =
100
r

·
r∑

i=1

∣∣∣∣yi − ỹi

yi

∣∣∣∣ (2.44)

where yi is the value of ISC , VOC, Pmax, IPmax or VPmax calculated directly from
the experimental curve and ỹi is the same electrical parameter extracted by the
I–V curve calculated with the single diode model by using the five parameters
estimated by each explicit and fitting methods.
A Global Curve Error (GCE) based on the similarity between experimental and
analytical I-V curves is also computed. The GCE takes into account the error in
all the current-voltage pairs in the first quadrant of the I-V plane, it is calculated
by considering the area enclosed between the two curves. The relative percentage
curve error (GCE [%]) is obtained dividing the global error by the area below the
experimental curve. As described in [115], this procedure is not depending on the
distribution of the experimental points along the curve and the numerical result
is more precise. The MAPE errors as well as the relative curve error for each
method are shown in Table 2.6.
It is noticeable that all the explicit methods, except LambertW, have approximated
the short-circuit current ISC with much more accuracy than the fitting method.
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Table 2.6. MAPE of electrical parameters and global curve error (GCE)

LambertW Phang SPRatio Toledo Fitting
ISC [%] 0.5 0.0003 0.0015 0.00010 0.4
VOC [%] 0.4 0.13 0.11 0.11 0.14
Pmax [%] 0.10 0.15 0.08 0.11 0.08
IPmax [%] 0.6 0.9 0.3 0.6 0.3
VPmax [%] 0.7 0.7 0.3 0.5 0.21
GCE [%] 1.4 0.3 0.9 0.3 0.3

This can be easily justified by the fact that the fitting method performs a global
optimisation while explicit methods are working by using only notable points and
slopes. For the open-circuit voltage all of them achieves similar results, being
LambertW the less accurate. The case is the same when predicting the maximum
power, but for this case, Phang method is slightly worse than the other ones. It
is very interesting the behaviour of SPRatio to estimate the exact location of the
MPP, because it not only achieves a very precise maximum power estimation, but
also is almost as good as the fitting procedure for obtaining the pair (VPmax,IPmax).
When analysing the global curve error (similarity between curves), Fitting, Phang
and Toledo get very good results.

2.5 Results with additional series resistance

Once the ability of the different methods to estimate the values of the parameters
at nominal conditions has been tested, the next step is to study their behaviour
when additional resistance is connected in series to the module terminals.
Specifically, we want to compare the capacity of the different methods to detect
correctly the emulated variation of the PV series resistance. In other words, when
a series resistance of a nominal value ρ is added, a particular method m estimates a
value of serial resistance equal to R

(m)
s (ρ) that is expected to account the emulated

variation. The objective would be to calculate how much greater is this value
with respect to R

(m)
s (0 Ω) that is the value without additional resistance, then

∆R
(m)
s (ρ) = R

(m)
s (ρ) − R

(m)
s (0 Ω) is the estimation of ρ provided by the method

m.
In order to compare the Rs estimation belonging to different experiments (ρ =
0 Ω, ρ = 0.3 Ω, ρ = 1 Ω, ρ = 1.5 Ω), they should be referred to the same level
of irradiance GI. However, each experiment has been performed under outdoor
conditions on different days, being the sequence of the values of incident irradiance
GI different from one experiment to other. Therefore, it is very difficult to find
two estimations of Rs from different experiments but with the same irradiance.
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This issue has been solved by using the regression lines of Rs estimated in the
previous experiments (eq 2.43) without PV degradation. Indeed, for each method
the corresponding regression line allows to estimate the value of Rs for a given
irradiance GI when ρ = 0 Ω. In this way, for each experimental I-V curve
measured with an additional series resistance ρ and under an irradiance GI[i], the
R

(m)
s (ρ)[i] is estimated directly with the method m whereas the value R

(m)
s (0 Ω)[i]

in GI[i] is calculated by using the regression line.
The regression lines are then calculated for the points {GI[i], ∆R

(m)
s (ρ)[i]}, to

study if there is any correlation between the detected resistance variation ∆R
(m)
s

and the incident irradiance GI. The values ∆R
(m)
s (ρ) should be as close as possible

to the added resistance ρ and independent on the irradiance (the regression line
should be flat and R2 very close to zero).
The results of these calculations for the different methods can be seen in
Figure 2.14 and Figure 2.15. In every figure, six lines have been plotted but
three of them are common: the regression lines of ∆R

(F )
s (0.3 Ω), ∆R

(F )
s (1.0 Ω)

and ∆R
(F )
s (1.5 Ω) where (F ) stands for the Fitting method that is still representing

the reference. The other three lines of each figure correspond to ∆R
(m)
s (0.3 Ω),

∆R
(m)
s (1.0 Ω) and ∆R

(m)
s (1.5 Ω), being m ∈{Phang, Toledo, LambertW, SPRatio}

in the different figures.
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(a) Phang vs. Fitting

(b) Toledo vs. Fitting

Figure 2.14. Detection of additional series resistance ∆Rs for Phang and Toledo methods
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(a) LambertW vs. Fitting

(b) SPRatio vs. Fitting

Figure 2.15. Detection of additional series resistance ∆Rs for LambertW and SPRatio
methods
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By comparing the four explicit methods with respect to the fitting results it is
shown that Phang and Toledo methods are very effective in the identification of
∆Rs. LambertW method gives always an underestimation of ∆Rs. Moreover,
the higher the added resistance the higher the error ∆Rs − ρ, hence LambertW
method is not suitable to identify the SDM parameters for a highly degraded PV
panel. As concerns the SPRatio, the assumption that Rs is neglected when the
coefficient SPR < 1 says that the method is not able to detect degradation when
the PV series resistance is low. Nevertheless, SPR is itself a potential discrete
indicator of degradation because when the series resistance increases the SPR
indicators becomes higher than 1 indicating that the Rs cannot be neglected.

Table 2.7. Mean value µ and standard deviation σ of the parameters with additional
Rs = 1.5 Ω

Fitting Phang SPRatio Toledo LambertW
µ(Iph) [A] 2.688 2.659 2.624 2.659 2.624
σ(Iph) [A] 0.004 0.004 0.003 0.004 0.003
µ(I0) [µA] 0.34 0.92 57 1.2 0.0086
σ(I0) [µA] 0.03 0.07 5 0.1 0.0004
µ(n) 1.240 1.323 1.829 1.347 1.0027
σ(n) 0.01 0.02 0.01 0.02 0.002
µ(Rs) [Ω] 1.858 1.831 1.532 1.809 1.722
σ(Rs) [Ω] 0.003 0.003 0.004 0.003 0.002
µ(Rsh) [Ω] 89.4 137 ∞ 135 58.4
σ(Rsh) [Ω] 1.2 4 4 0.4

Table 2.8. MAPE of electrical parameters and global curve error (GCE) with ∆Rs =
1.5 Ω

LambertW Phang SPRatio Toledo Fitting
ISC [%] 3 0.004 0.007 0.0014 0.3
VOC [%] 0.6 0.22 0.12 0.11 0.15
Pmax [%] 0.6 0.3 0.12 0.12 0.10
IPmax [%] 3 0.6 0.015 0.4 0.11
VPmax [%] 4 0.3 0.10 0.24 0.09
GCE [%] 4 0.4 1.2 0.3 0.20

Table 2.7 shows the identified SDM parameters while Table 2.8 reports the MAPE
of the main electrical parameters and global curve error for the experimental cases
performed with the additional series resistance ρ = 1.5 Ω. Again LambertW does
not give satisfying results in terms of global curve error. Focusing on the others
explicit methods, is confirmed that although they do not provide a set of identified
parameters close to the results obtained by the Fitting Method, they are able to
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reproduce the I–V curves with a global curve error very small, providing a good
similarity between experimental and analytical I–V curves. Indeed, the I–V curves
shown in Figure 2.16 are almost overlapped with experimental results except for
the LambertW method that provides an I-V plot slightly different. This happens
in both normal and degraded conditions by confirming that such comparison is
not enough to verify which methods are more effective to estimate correctly the
Rs variation and, as a consequence, to detect the PV degradation properly.
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Figure 2.16. Comparison between experimental and simulated curves for different
experiments

2.6 Conclusions

An experimental validation of explicit methods used for the SDM parameter
identification has been carried out in this chapter. The analysis has been focused
on the series resistance identification in presence of degraded I-V curves. Among
them Phang method exhibits good capability to estimate both the Rs resistance
as well as the emulated additional series resistance ∆Rs.
Toledo method gives an underestimation in the Rs calculation but it is strongly
accurate in ∆Rs estimation because the error of Rs calculated in nominal is almost
totally compensated by the error of Rs calculated in degraded condition.
LambertW method is less accurate in Rs calculation and moreover the ∆Rs

estimation worsens as the additional series resistance increases. This method
seems more effective in the evaluation of Rsh parameter.
SPRatio method gives bad results in Rs and ∆Rs calculation, nevertheless the

39



Parameters Extraction of Single Diode Model for Degraded Photovoltaic Modules

SPR coefficient could be used as discrete indicator for degradation since it strongly
depends on the Rs variation. SPRatio method gives also and almost exact location
of the MPP point both in nominal and degraded conditions.
The analysis, although is not exhaustive, allows to assess that some set of explicit
equations provide accurate evaluation of PV series resistance therefore suitable to
be implemented on embedded systems for online parameters identification.
The main results of this chapter are published in J1 and B1 documents referenced
in the list of publication.
Since the objective of this thesis is to investigate the effectiveness of different
approaches to detect PV panel degradation, the study will continue in the
next chapter where some approaches belonging to the optimisation methods are
analysed.
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Early Detection of Photovoltaic
Panel Degradation through
Artificial Neural Network

3.1 Introduction

Inside the category of optimization approaches, artificial neural networks have
been proven to be an effective tool for SDM parameters identification. In [116]
a multilayer perceptron (MLP) for identifying the Iph, Rs, and Isat parameters
has been implemented. The method requires an input vector composed by
Isc, Voc, Impp, Vmpp and Pmpp. Since these values are provided by the PV panel
datasheet, the effectiveness of this method is limited to healthy operating
conditions. The study shown [117] instead is focused on identifying the most
important points of the I − V curve such as Voc, Isc, Pmpp, Vmpp, and Impp

at the panel level. The method needs as inputs only the irradiance and
temperature values and the proposed ANN is realised with a two-hidden layer
MLP configuration. In [118], a recurrent neural network was implemented for
predicting the output current of the cell by using temperature, irradiance, and
voltage as inputs. In [119] the input vector is composed by a mix of environmental
and electrical variables such as irradiance, temperature, Voc, Isc, Vmpp, Impp, and
Pmpp. In this case, the parameters identified were Rs, Rsh, and η for an application
at panel level. A comparison provided in this paper, shows that ANN outperforms
ANFIS in estimating the required parameters. Finally, authors in [120] and [121]
proposed configurations based on feed-forward neural networks for identifying the
full-set of five parameters by means of a two-stage identification. Both works only
use irradiance and temperature as inputs, but the work in [121] was focused on
a single cell while the other [120] concentrated on an entire PV panel. From the
literature analysis has been verified that ANN architectures are valid tool for SDM
parameters estimation but, as for the explicit methods discussed in the previous
chapter, very few information related to the SDM parameters estimation of PV
panel in degraded conditions are available in the literature.
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For this reason, in the following section a numerical method is presented that
combines I − V curve fitting process performed off-line with a simple ANN
architecture operating on-line for estimating the variation of PV panels’ SDM
parameters when the PV panels are subject to degradation.
With respect to existing approaches, the technique introduced in this chapter
has the advantage of providing in run-time the trend of PV degradation through
the quantification of the SDM parameters variation with respect to the healthy
conditions, thus suitable for predictive maintenance. Moreover, the proposed
method uses only three points of the I − V curve around the maximum power
point, irradiance and panel temperature thus without using the whole I − V
curve that could not be always available during the normal operation of the PV
system. Finally, due to the fast elaboration of the ANN results, it can be easily
implemented on an embedded system for the online elaboration, once the training
phase is performed off-line.

3.2 Description of the proposed approach

In section 1.3.2 the strictly correlation among PV panel degradation and SDM
parameters variation have been put into evidence by analysing the I − V curves.
On the other hand, the parameters of the PV equivalent circuit change with
respect to the irradiance and the temperature of the solar cells. The relationship
between them is nonlinear and cannot be easily expressed by analytical equations
and nonlinear regression methods can fails when any preliminary information
about the input-output relationships are provided. Many papers tried to
characterize such behavior. However, it is strongly dependent on the PV panel
under test and no general rules can be applied. Some examples are reported
in [122]; in [123] authors highlight that the fitting curve, that maps each SDM
parameter as function of environmental condition, also varies along the seasons
due to the influence of the variable weather and environmental conditions.

As a consequence, a reliable identification of PV degradation phenomena cannot
be achieved if relationships among SDM parameters and the environmental
condition are not properly accounted for.
The capability of the ANN to train non-linear and unknown relations among
variables and to generalize these relationships when new input is provided to
the ANN, will be exploited for solving this task. Since ANN does not required
knowledge of internal system parameters, it implies reduced computational effort
and represents a compact solution for multivariable problems. It is also a good
candidate to be implemented on embedded system for online operation.
Figure 3.17 shows the flow chart of the procedure proposed in this chapter. In
particular it describes the main steps for selecting the ANN input and target
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datasets and performing the ANN training phases.
In stage 1, the ANN will predict the equivalent circuit parameters by only
measuring the irradiance and temperature. Such parameters will be assumed as
reference values for the healthy operating condition. Indeed for training this ANN,
a proper number of healthy I − V curves, acquired in different environmental
conditions, has been selected and the corresponding SDM parameters are used
as target dataset. As shown in [120], ANN can provide very good estimation
of healthy SDM parameters for every environmental condition. This SDM
parameters estimation will be used as baseline for detecting possible presence
of degradation.
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Figure 3.17. Flow chart for training the proposed ANN architecture

In stage 2, a more complex ANN architecture is trained to account for the different
types of degradation. For achieving this task, a modified set of I − V curves has
been generated by using the single diode model with different sets of parameters
that are associated to realistic degradation phenomena. In this stage the ANN
receives as input not only the irradiance and cell temperature but also some points
of the I − V curve, which are necessary to take into account the modification of
the I − V curve shape due to the degradation.
It is worth to note that in this paper only three points around the maximum
power point will be used. This allow to monitor the PV source’s state of health
during normal operation, without the need of a complete scan of the I − V curve:
measurement of voltage and current around the MPP will suffice for the detection
of degradation. More details on the generation of degraded dataset are given in

43



Early Detection of Photovoltaic Panel Degradation through Artificial Neural Network

section 3.3.2.

The two training phases are completely independent, having in common only
part of the input data (G and T ) and providing two sets of SDM parameters.
The output of stage 1 represents the vector of estimated SDM parameters under
the hypothesis that the PV panel is not degraded, thus in healthy condition. The
output of stage 2 is the vector of estimated SDM parameters associated with real
operating condition, thus representing the real status of health. The difference
between the two estimations will give a measure of which parameter is changing
and consequently which type of degradation is occurring inside the PV panel.
Details on how to configure the ANN architectures are reported in section 3.4.

It is worth to note that the ANN stages are representing the regression models
used to estimate the value of a dependent variable (SDM parameters) based on its
relationship to one or more independent (predictor) variables (e.g environmental
and electrical values associated to a specific operating condition). As discussed in
the last part of this chapter the reliability of the estimated results is depending
not only on the ANN performances but also on the quality of fitting procedure
employed to generate the input-output examples used to train the ANNs.

3.3 Description of Experimental I − V curves
Database

For covering as much as possible the different outdoor operating conditions
of a real PV arrays, a large database of experimental data has been
selected. The I − V curve dataset provided by the National Renewable Energy
Laboratory (NREL) is used at beginning to develop the proposed method.
NREL has a public database with data measured for flat-plate photovoltaic
(PV) modules installed in three different cities in the USA (Cocoa-Florida,
Eugene-Oregon, and Golden-Colorado). The experimental process collected PV
module current-voltages curves and meteorological data samples from 2010 until
2014 [124]. The work employed different PV technologies such as Single-crystalline
silicon (c-Si), Multi-crystalline silicon (m-Si), Cadmium telluride (CdTe), Copper
indium gallium selenide (CIGS), Amorphous silicon (a-Si) tandem and triple
junction, Amorphous silicon/crystalline silicon or heterojunction with intrinsic
thin layer (HIT), and Amorphous silicon/microcrystalline silicon. The database
does not report specific commercial or manufacturer information for avoiding any
legal conflict. To describe the procedure proposed in this manuscript, without
losing of generality, the Multi-crystalline silicon PV module information will be
used.

The variables extracted and used for the procedure were the plane-of-array
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irradiance (W/m2), the PV module back surface temperature (◦C), and the
corresponding current-voltage curve represented with a numbers of points ranging
from 180 to 190 samples, depending on the voltage resolution settled on the tracer
device.
Table 3.9 shows the features and ranges of measurements of the panel chosen for
performing the current analysis.

Table 3.9. Characteristics of the PV panel under study and ranges of the data measured.

Parameter Value

Technology Multi-crystalline silicon
Number of cells 36

Module Area 0.647 [m2]
STC Parameters

Isc 4.937 [A]
Voc 21.357 [V]
Imp 4.533 [A]
Vmp 17.072 [V]

Plane of Array irradiance (200 - 1300) [W/m2]
Range of Temperature (20 - 65) [◦ C]

Number of points for each I − V curve [180 - 190]

The irradiance and temperature ranges also have a high impact over the
performance of the PV model. From the literature is well known that the single
diode model is not suitable for characterizing the PV devices at low irradiance
values [125]. For this reason, in this work will refer to irradiance values in the range
from medium to high irradiance and only I − V curves acquired with irradiance
level above 200 [W/m2] will be used.
When it comes to the temperature, the single-diode model has not particular
restrictions about the ranges. Therefore, there is not any restriction about
the ranges of temperature. This work took I − V curves acquired in a wide
temperature range of [20-65]◦C degrees.

High quality datasets is a key factor for training efficiently the ANN. To achieve
this, the data must first be collected and cleaned to remove errors (bad data),
outliers, and samples with excessive noise. If these practices are skipped or poorly
executed, it will be difficult for the ANN to detect the true underlying models.
In certain cases, partial shading or measurement issues in the tracer device
provided I − V curves shapes that generate wrong SDM parameters. For this
reason the I − V curves in the NREL database have been preliminary analysed
and the ones having abnormal profile have been discarded. At the end more than
20,000 I − V curves are available in the filtered database.
It is worth to note that only a part of the available NREL database is necessary for
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the ANN training phases, thus the proposed approach can be applied in practical
applications where enough I − V curves are available for different irradiance and
temperature conditions. More details on the used I − V curve are given in sections
discussing the simulation and experimental cases.

During the normal operation only few values of voltage and current (Vpv, Ipv)
around the MPP, irradiance (G), and PV panel temperature (T ) measurements
are used as the inputs to the neural network. They have been chosen since they
are already measured on photovoltaic installations. Therefore, it is possible to
take advantage of such information for online monitoring of the PV source’s state
of health by means of the proposed ANN architecture.

3.3.1 Generation of training set and validation set for a healthy
PV panel

The reference values of the SDM parameters, representing for the ANNs the
target values, must be calculated for each experimental I − V curve that will be
used during the ANN training and validation processes. Since the ANN training
phase is performed offline, the target dataset can be generated by using the
nonlinear least-square solver of Matlab to assure an high-quality fitting among
the experimental I − V curves and the ones generated by the single diode model.
Details on the fitting procedure are reported in section 2.2.5.

For every selected experimental I − V curve, thus for known (G, T ), the fitting
procedure calculates the set of five parameters p = [Iph, Isat, η, Rs, Rsh] that
minimize the mean square error between the experimental data and the I − V
curve generated by using the single-diode model. In this way, the p vector
associated to the healthy I − V curve will be the target used to train the neural
network.

It is worth to highlight that, while the single diode model allows to describe the
electrical constraint between I − V measurements (Vpv, Ipv) and SDM parameters
in the form:

f(Vpv, Ipv, p) = 0 (3.45)

the ANN allows to detect the unknown relations:

pH(G, T ) = [Iph, Isat, η, Rs, Rsh]H = FH(G, T ) (3.46)

or

pdeg(G, T , V, I) = [Iph, Isat, η, Rs, Rsh]
deg = Fdeg(G, T , V, I) (3.47)

where the vector pH(G, T ) is the estimation of the healthy SDM parameters for
the environmental conditions G, T . The vector pdeg(G, T , V, I) is the estimation

46



Early Detection of Photovoltaic Panel Degradation through Artificial Neural Network

of the SDM parameters for the same environmental condition but also accounting
PV degradation through the voltage and current values (V, I) measured around
MPP.

3.3.2 Generation of training set and validation set for a degraded
PV panel

Although the NREL database collects I − V curves of PV panels operating in
outdoor conditions, there are no information if some of them can be classified
as degraded I − V curves. For this reason each available I − V curve has been
analysed in terms of I − V curve shape, slopes and operation conditions in order to
take from the NREL database only healthy I − V curves. Experimental degraded
I − V curves are not easily detectable because of the difficulty of reproducing the
large variety of degraded conditions and the long time the measurement process
will take for registering these kinds of phenomena. For these reasons, in the
development of the proposed approach the I − V degraded curves are reproduced
artificially by still using the single diode model where variations on the SDM
parameters are fixed and know a priory. In this way it will be easy to generate
enough I − V curves useful for the ANN training process. This is a similar
approach already adopted for emulating PV faults and mismatched operating
conditions in others fault identification methods [56, 58, 126].
The degraded I − V curves database have in common with the healthy I − V
curves database the same environmental conditions. The new database is
generated by applying the pseudo code shown in table 3.10. Nhealthy is the number
of experimental I − V curve taken from the healthy database.

for n = 1 : Nhealthy

load irradiance and temperature G, T
load I − V curve as vectors Vpv, Ipv
load the vector p of healthy SDM parameters

for k = 1 : 5
assign a random variation (αk ∈ [αk,min, αk,max]) to

the k-th parameter: p(k)deg = αk · p(k)
calculate the I − V degraded curve by using equation (??)

Ipvdeg = f (Vpv, pdeg)
save G, T , Ipvdeg , Vpv and pdeg in the degraded database

end
end

Table 3.10. Pseudo code for generating degraded I − V curves

It is worth to note that a degradation effect is applied separately to each
parameter, thus the database containing the degraded I − V curves is five times
larger than the healthy database. Moreover, to introduce different levels of
I − V curve deformation, the parameters degradation effect is randomly chosen
according to the boundaries shown in table 3.11. Such boundaries have been
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chosen by taking into account that the sensitivity of the I − V curve with respect
to each SDM parameter is strongly different, as highlighted in section 1.3.2.
An example of degraded I − V curve obtained artificially by starting from a
healthy experimental I − V curve is reported in Figure 3.18. The figure also
shows the only three points that will be used by the ANN to estimate the SDM
parameters.

degradation factor αk,min αk,max

Ideg
ph = α1Iph 0.95 0.9

Ideg
sat = α2Isat 2 10
ηdeg = α3η 0.98 0.9

Rdeg
s = α4Rs 2 6

Rdeg
sh = α5Rsh 1/3 1/20

Table 3.11. SDM parameters variation for generating degraded I − V curves
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Figure 3.18. Healthy and degraded I − V curves with the selected points passed to the
ANN

3.4 Configuration of the proposed double level ANN
architecture

This work uses a multi-layer feed-forward neural network. It is conformed by one
input layer, one hidden layer, and one output layer. The number of neurons in the
input layer is equal to the number of parameters that compound the input vector.
The number of neurons in the output layer is fixed by the number of parameters
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to identify, in this case, five neurons (equal to the set of five parameters). The
number of neurons in the hidden layer depends on the complexity of the problem, a
rule of thumb is to choose the smallest configuration that reaches the performance
and accuracy wished [120].

The developed ANN is shown in figure 3.19, it is composed of two levels trained
independently. The first level is devoted to estimate the parameters of the single
diode model by using as input only the irradiance and the PV panel temperature.
It is trained by using as target values the SDM parameters extracted with the
MATLAB fitting procedure associated to the healthy I − V curve. A number
of Ntrial = 5000 experimental curves are selected randomly from the NREL
database in order to cover the different environmental conditions. The selected
dataset is distributed as 70% for training set, 15% for validation set and 15% for
testing set. An inner layer with 20 neurons is used.

G, T,

V1, V2, V3

I1,  I2,  I3

Iph, Isat

Eta, Rs, Rsh
50 5

IphH, IsatH

etaH, RsH, RshH20 5

Level #1 ANN estimates healthy SDM parameters  

Level #2 ANN estimates degraded SDM parameters  

G, T

Figure 3.19. Proposed ANN architecture

The second level of the ANN architecture is trained by using as target values the
SDM parameters associated to the degraded I − V curves. In this case, the input
is a vector of eight elements including the irradiance, temperature, and voltages
and currents of the three points around MPP. They are equally spaced of 1 Volt
with respect to the MPP, as shown in figure 3.18.
A number of 5 · Ntrial curves are selected randomly from the degraded database
in order to cover the different environmental conditions and different kind of
parameter degradation. Also in this case, the selected dataset is distributed as
70% for training set, 15% for validation set and 15% for testing set. An inner
layer with 50 neurons is used.
The MATLAB Neural Network Toolbox® is employed for configuring, training
and testing the proposed architecture.
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It is worth to note that, although in this manuscript all the elaborations have
been performed on a PC, the trained ANNs can be exported in the Open Neural
Network Exchange files [127] and executed by the most common open-source
platforms (eg. TensorFlow®) thus for running on embedded systems.
Alternatively, the MATLAB Compiler SDK® [128] could be used for compiling the
MATLAB® functions into a shared library for C/C++, .NET, Java, or Python
projects and executed on the most common development boards, eg. Raspberry®,
BeagleBone® or DSP/FPGA-based architectures.
Moreover, microcontroller manufactures allow to train ANNs and develop
optimized codes directly by using their programming tools, thus to optimize
performance and reduce development costs [129].

3.4.1 Dataset Normalization

Before passing the inputs and targets to the neural network architecture, it is
necessary to preprocess the dataset values for improving the performance of the
training process. The normalization process is important for neural network
training because it adjusts the different inputs and outputs ranges to a normalized
range before applying them to the neural network. In MATLAB the normalization
process is set by default and adjust the values to fall in a range between [-1,1]. But
in this case, it was found a small bug associated with the default normalization
process. It was found that the default normalization process has problems with
inputs or targets too small producing errors in the training process. For instance,
the common range for the saturation current Isat is in the order of micro and nano
amperes. These ranges of values do not allow that the training process found a
suitable fit for the targets.

For solving this issue, the normalization process was implemented manually and
the inputs and targets will be adjusted in this way:

input =

[
G

Gmax
, T

Tmax

]
for ANN level #1

input =

[
G

Gmax
, T

Tmax
, Vi

Vmax
, Ii

Imax

]
i ∈ [1, 2, 3] for ANN level #2

target =

[
Iph

Iph,max
, log10(Isat)

log10(Isat,max)
, η

ηmax
, Rs

Rs,max
, Rsh

Rsh,max

]

for the saturation current the normalization is given on a logarithmic scale for
better representing the large range of variation of this parameter.

Since the neural network will approximate its outputs inside the same range, it
is also necessary to convert the ANN results back into the same range than the
originals inputs and targets.
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3.4.2 Overfitting and Generalization

Another common problem of the neural network training process is overfitting.
This concept is associated with the way the neural network learns the process
and adjust a model for representing it. In a training process with overfitting, the
neural network finds a model that fits the set of data. Although the error in this
process could be set very small, the neural network builds a too complex model
that is unable to identify the right outputs for new data presented to the input.
Therefore, the neural network has memorized the behavior of the training data
instead of building a model that generalizes the outputs for testing or validation
data.

A regularization method consists of modifying the performance function. In this
case, the default performance function used by the toolbox of Matlab is the mean
square error (MSE) defined as in (3.48). This performance function can be tuned
for focusing on generalization by using the weights and bias of the neural network.
Here, it is necessary to add the mean values of the sum of weights (MSW) of the
neural network to the performance function. Equation 3.50 expresses the way for
tuning this configuration. The parameter γ (performance ratio) allows the user to
define the level of impact of the regularization. This parameter must be defined
in a range between [0-1]. In this case, the user must use his expertise to find a
trade-off between generalization and performance [130],[131].

MSE =
1
N

N∑
i=1

e2
i =

1
N

N∑
i=1

(ti − ai)
2 (3.48)

MSW =
1
n

n∑
j=1

w2
j (3.49)

Ẽ = γ ∗ MSW + (1 − γ) ∗ MSE (3.50)

Where N is the number of trials, n is the total number of weights wi for all the
ANN nodes.
Here, the challenge is to choose the correct value for the performance ratio
parameter (γ). If the user uses a parameter too large has the risk of overfitting. On
the contrary, if the performance ratio parameter is too small, the neural network
will not fit the training data adequately.

Bayesian regularization is a neural network training algorithm that updates the
weights and bias values. The main characteristic of this algorithm is that it
automatically determines the optimal regularization parameters and the correct
combination for making up neural networks that generalize well. In the toolbox of
Matlab, this function uses Jacobian for calculation, then, the performance must
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be mean or sum of square errors. As a consequence, the training process must
be assessed by MSE or by the sum square error (SSE) performance functions
[116, 131].

The Bayesian regularization method does not need to configure a performance
ratio parameter. On the contrary, it automatically calculates the best parameters
focusing on generalization.

In the following the results concerning the ANN trained with Bayesian
regularization is proposed, they exhibit a good identification of SDM parameters
both in healthy and degraded conditions.

3.5 ANN identification results for healthy conditions

The continuous lines in the figures 3.20-3.24 are the estimated SDM parameters
provided by ANN, they refer to the healthy conditions and put into evidence the
intrinsic relationships among SDM parameters with the environmental conditions
for the PV panel under test. It is worth to note that, apart from Iph that is
almost linear with G and practically insensitive with respect to the temperature,
the behaviour of remaining parameters is completely different from the cases
analysed in [120] and [123]. This result is not so much surprising, given that
the relationships among parameters and the environmental conditions change
significantly from panel to panel.
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Figure 3.20. ANN identification of the photoinduced current in healthy condition.
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Figure 3.21. ANN identification of the saturation current in healthy condition.
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Figure 3.22. ANN identification of the ideality factor in healthy condition.

200 400 600 800 1000 1200

Irradiance  G [W/m2]

0.05

0.1

0.15

0.2

0.25

S
e

ri
e

s
 r

e
s
is

ta
n

c
e

  
R

s
 [

]

ANN @  T=35°C

ANN @  T=40°C

ANN @  T=45°C

ANN @  T=50°C

Experimental @  T=35°C

Experimental @  T=40°C

Experimental @  T=45°C

Experimental @  T=50°C

Figure 3.23. ANN identification of the series resistance in healthy condition.
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Figure 3.24. ANN identification of the shunt resistance in healthy condition.

To demonstrate the goodness of the ANN parameters estimation, in figures
3.25-3.26 the plots of experimental data, selected randomly from the NREL
database, in comparison with the reconstructed I − V curves obtained with the
estimated parameters at low and high irradiance conditions are shown.

The Error Area, defined as the difference among the area below the reconstructed
I − V curves and the area below the corresponding experimental I − V curve,
has been calculated for the tested cases and only for few cases, referring to the
low irradiance conditions, a 5% of maximum error has been found. In figure 3.25
the corresponding I-V plots is shown. Nevertheless, this error can be considered
acceptable since, as already remarked in [125], the single-diode model is less precise
for low irradiance conditions.
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Figure 3.25. Comparison of experimental data and reconstructed single-diode I − V
curve with estimated ANN parameters in healthy condition. In this case the error area
is 5%
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Figure 3.26. Comparison of experimental data and reconstructed single-diode I − V
curve with estimated ANN parameters in healthy condition. In this case the error area
is 0.5%

3.6 ANN results with simulated degradation on I − V
curves

The capability of ANN to detect the degraded SDM parameters is tested in this
section by still using emulated degraded curves. Even if this is a limitation with
respect to using real degraded curves it allows to corroborate the methods with
a well controlled degradation effect introduced artificially. For each k parameter
(k ∈ [1, .., 5]), the analysis is carried out by using the following procedure:
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• Select randomly Ntest experimental healthy I − V curves from
the NREL database (not used during the ANN training phases)
and save the related SDM parameters as the vector p and
environmental conditions (G, T ).

• For each selected case

1. Apply a fixed degradation factor αk to the k-th parameter
of p.

2. Generate the degraded I − V curve by using equation (??)
3. From the degraded I − V curve select the voltage and

current of 3 points equally spaced around MPP and
ordered in the vector [V1, V2, V3, I1, I2, I3].

4. ANN(level #1) estimates the healthy SDM parameters
pH with [G, T ] as input vector.

5. ANN(level #2) estimates the degraded SDM parameters
pdeg with [G, T , V1, V2, V3, I1, I2, I3] as input vector.

6. Calculate the percentage of parameters variation as
follows:

∆p% =
pdeg − pH

pH
· 100 (3.51)

Figures 3.27-3.30 show some comparison between the degraded I − V curves (blue
lines) and the reconstructed I − V curves (light blue lines) obtained by using the
pdeg parameters estimated by means of ANN. In each figure the healthy I − V
curves (red lines) used to generate the degraded curves and the 3 points passed
to the ANN for estimating the SDM degraded parameters are also reported. Of
course, in on board operation only steps 3-4-5-6 of the previous procedure are
necessary since all ANN input are provided by the real-time measurements.
As mentioned in section 1.3.2, the sensitivity of I − V curve with respect to
each SDM parameter, especially close to the maximum power point, is strongly
different. In particular variation of few percents on Iph and η produce a significant
modification of the I − V curves, while the effect of Isat, Rs and Rsh is visible on
the I − V curve only for larger percentage variations. For this reason, different
percentages of degradation have been considered in the examples shown in figures
3.27-3.30. In Tables 3.12-3.16 the corresponding ANN identification results are
reported. The vector (pdeg) of degraded SDM parameters estimation is compared
with the healthy SDM parameters estimation vector (pH) to calculate (∆p%) and
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find out which parameter has the most significant percentage variation.

It is worth to note that, in order to establish which kind of degradation is
most relevant the vector of maximum power variations ∆Pmpp,%, due to each
parameter variation, has been also shown in the tables. It has been estimated
numerically as follows:

• Calculate the maximum power in healthy condition P H
mpp by using the single

diode model and healthy parameters (pH).

• For k ∈ [1, 5]

– replace the parameter pH(k) with the corresponding degraded values
pdeg(k)

– estimates the maximum power P k
mpp by still using the SDM.

– calculate the ∆P (k)mpp,% =
P k

mpp−P H
mpp

P H
mpp

· 100

The percentage error evaluation allows to appreciate rapidly the ANN capability
to detect the degradation on each SDM parameter and the related impact on the
Pmpp.
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Figure 3.27. ANN identification of degraded curve with -5% of variation on Iph for two
different irradiance and temperature conditions.
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Table 3.12. SDM parameters estimated with ANN for I − V curves of figure 3.27

applied degradation: Ideg
ph

= 0.95Iph (-5%)

G [ W
m2 ] T [◦C] Iph[A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

695 49
pH 3.476 0.996 1.296 0.242 490

pdeg 3.297 0.900 1.284 0.255 277
∆p% -5.13 -9.6 -0.92 5.4 -43.5

∆Pmpp,% 0.9 -5.37 0.85 -0.96 -0.26 -0.77

955 53
pH 4.782 0.1562 1.296 0.247 466

pdeg 4.526 0.1480 1.295 0.238 356
∆p% -5.36 -5.3 -0.04 -3.8 -23.6

∆Pmpp,% 0.9 -5.47 0.39 -0.08 0.22 -0.27
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Figure 3.28. ANN identification of degraded curve with 200% of variation on Isat for
two different irradiance and temperature conditions.

Table 3.13. SDM parameters estimated with ANN for I − V curves of figure 3.28

applied degradation: Ideg
sat = 3Isat (200%)

G [ W
m2 ] T [◦C] Iph[A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

1020 55
pH 5.083 2.001 1.300 0.248 491

pdeg 5.090 5.730 1.256 0.254 511
∆p% 0.13 186 -3.39 2.4 4.0

∆Pmpp,% 0.9 0.14 -9.13 -3.62 -0.19 0.03

435 42
pH 2.150 0.645 1.328 0.224 520

pdeg 2.175 1.882 1.288 0.229 559
∆p% 1.16 192 -3.02 2.1 7.4

∆Pmpp,% 0.9 1.25 -8.68 -3.05 -0.07 0.11
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Figure 3.29. ANN identification of degraded curve with -3% of variation on η for two
different irradiance and temperature conditions.

Table 3.14. SDM parameters estimated with ANN for I − V curves of figure 3.29

applied degradation: ηdeg = 0.96η (-4%)

G [ W
m2 ] T [◦C] Iph[A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

445 31
pH 2.194 0.204 1.331 0.219 496

pdeg 2.192 0.222 1.290 0.252 538
∆p% -0.07 8.8 -3.06 15.0 8.4

∆Pmpp,% 0.9 -0.1 -0.63 -3.1 -0.37 0.14

865 41
pH 4.311 0.445 1.296 0.240 449

pdeg 4.283 0.432 1.239 0.243 446
∆p% -0.67 -2.8 -4.41 0.85 -0.6

∆Pmpp,% 0.9 -0.67, 0.23, -4.61 -0.07 -0.01
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Figure 3.30. ANN identification of degraded curve with 70% of variation on Rs for two
different irradiance and temperature conditions.
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Table 3.15. SDM parameters estimated with ANN for I − V curves of figure 3.30

applied degradation: Rdeg
s = 1.7Rs (+70%)

G [ W
m2 ] T [◦C] Iph[A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

755 51
pH 3.791 1.195 1.293 0.244 490

pdeg 3.834 1.377 1.295 0.390 446
∆p% 1.16 15.2 0.175 59.6 -8.9

∆Pmpp,% 0.9 1.18 -1.19 0.16 -3.24 -0.09

795 26
pH 3.907 0.094 1.305 0.232 511

pdeg 3.963 0.090 1.294 0.367 449
∆p% 1.44 -4.0 -0.84 58.6 -12.2

∆Pmpp,% 0.9 1.48 0.31 -0.87 -2.58 -0.14
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Figure 3.31. ANN identification of degraded curve with -80% of variation on Rsh for
two different irradiance and temperature conditions.

By analysing the results shown in Tables 3.12-3.16, in particular ∆p%, it is evident
that the ANN allows to associate, with a good approximation, the degradation
effect introduced on the I − V curve to the corresponding SDM parameter.
Nevertheless, in some cases, the results of ANN parameters identification are
not completely satisfactory. For instance, in the first example of Table 3.12, the
ANN estimates a −43.5% reduction of Rsh reduction that does not correspond
to a real degradation of such parameter. The wrong estimation of Rsh, that may
occur also for the other SDM parameters, is due to the intrinsic nature of the
ANN to provide generalized results when the input data change. Moreover since
the I − V curve sensitivity with respect to some parameters is very low, errors
on the estimation of these parameters are more likely and more frequent. The
results can be improved if the proposed procedure is repeated and the parameters
degradation is detected by considering their average values. Some examples are
reported in the following section.
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Table 3.16. SDM parameters estimated with ANN for I − V curves of figure 3.31

applied degradation: Rdeg
sh

= 0.2Rsh (-80%)

G [ W
m2 ] T [◦C] Iph[A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

835 44
pH 4.165 0.615 1.297 0.240 454

pdeg 4.170 0.614 1.304 0.247 107
∆p% 0.12 -0.1 0.55 2.7 -76.4

∆Pmpp,% 0.9 0.12 0.013 0.57 -0.16 -3.04

1000 53
pH 5.023 1.670 1.301 0.246 493

pdeg 5.051 1.791 1.298 0.243 191
∆p% 0.56 7.3 -0.18 -1.1 -61.2

∆Pmpp,% 0.9 0.57 -0.6 -0.24 0.09 -1.06

3.6.1 Improving the ANN results with repeated tests

By assuming that a degradation phenomenon is occurring permanently, the ANN
parameters identification method can be executed frequently (e.g. more than one
time per day) without affecting the normal operation of the PV system and the
∆p% can be estimated for all cases. Since the effective degradation of the PV
panel is not related to the changes in the environmental conditions, the average
values of ∆p% is considered for all tests collected in a short period (e.g one
day). Table 3.17 shows the average percentage variation of the SDM parameters
estimated with the ANN when the process described in the previous section is
repeated for a number of trials Ntest = 100 selected randomly among different
environmental conditions. Each row in the table is referring to the parameters
variation reported in the first column. For example for the first row, a -4% of
induced degradation on Iph is estimated in average with -3.73%.

It worth to note that some residual cross-coupled variations appears in the
estimation of the other parameters. Nevertheless if we take into account the
different sensitivity of I − V curve with respect to each parameter, these crossed
variations can be acceptable. Indeed by considering the sensitivity values reported
in (1.4) and by referring to the first row of Table 3.17, the -3.73% reduction in
Iph is reflected in a reduction of 3.76% in the delivered power, while a -22.3% of
variation in Rsh corresponds to 0.69% power reduction.

Another small anomaly is in the second row where the identification of the
variation of the saturation current is not detected accurately (+103 %) with
respect to an induced degradation of +150% on Isat. In this case part of the
induced degradation on Isat is translated in a variation of η. This can be easily
justified by the fact that variations on Isat and on η parameters produce the same
deformation on the I − V curve (see S2 and S3 effects in figure 1.4), thus for
the ANN is more difficult to detect the origin of degradation when they produce
similar deformation on the I − V curve.
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Table 3.17. Average of SDM parameters variation (in %) estimated with ANN

degradation factor estimated param. variation
∆Iph,% ∆Isat,% ∆η% ∆Rs,% ∆Rsh,%

Ideg
ph

= 0.96Iph (-4%) -3.73 -0.9 0.09 10.5 -22.3
(1.52) (8.8) (0.68) (13.7) (20.4)

Ideg
sat = 2.5Isat (+150%) 0.57 103.0 -2.96 14.0 0.7

(1.39) (25.2) (0.63) (16.0) (3.8)

ηdeg = 0.97η (-3%) -0.29 2.8 -3.30 4.8 0.1
(1.74) (8.0) (0.77) (10.6) (5.3)

Rdeg
s = 1.7Rs (+70%) 0.64 10.1 -0.12 61.1 -3.0

(1.18) (8.3) (0.58) (13.3) (7.4)

Rdeg
sh

= 0.2Rsh(-80%) 0.06 5.9 0.30 10.4 -64.9
(0.85) (8.0) (0.54) (15.7) (13.7)

without deg. -0.87 -3.3 -0.76 -2.2 2.3
(1.62) (6.2) (0.44) (15.4) (11.1)

(*) in the brackets the standard deviation of the SDM parameter percentage variation

Finally, the last row indicates the average errors on the estimated SDM parameters
when no degradation has been applied. Here is evident that in presence of healthy
curves the estimation of the SDM parameters variation tends to small values
confirming that no degradation is occurring.

3.6.2 Comparison with other ANN solutions

In table 3.18 the main characteristics of the proposed ANN architecture is
compared with other ANN solutions proposed in the last years and briefly
commented in the introduction. The table includes only the methods suitable
for on-line diagnosis and faults detection of PV sources.

The comparison is done in terms of ANN architecture, Inputs required during
on-line operation, Data for the training phase - usually performed in off-line
mode, PV granularity, which means the level of applicability of the method
(panel-, string- or array-level). The different types of Detected faults and the
level of Complexity, that could have a significant impact on the embedded system
implementation, have been also included in the comparison.
It is worth to note that the solution described in [59] uses two independent
ANNs, thus similar to the approach developed in this manuscript, but the ANNs
architecture and the type of detected faults are completely different. The other
methods are mainly devoted to string or array diagnosis, thus not suitable for
detecting degradation in a single PV panel.

The comparison also put into evidence that the selection of the appropriate
method will strongly depend on the size of the PV source and on what type
of faults must be detected.
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Table 3.18. ANN techniques for PV diagnosis and faults identification

Ref.
ANN

Inputs
Data for the PV

Detected faults Complexity
structure training

phase
granularity

[55]
MLP-ANN

or
Vmpp,
Impp,

simulated
PV string

shadow, cell in
open circuit,

Medium

RBF-ANN Voc I − V curves shunted bypass
diode,

in faulty
conditions

short circuit

[56]
KELM +

SLFN
Vmpp,
Impp,

experimental
and

PV string, partial shading, High

Voc, Isc,
η,Rs

simulated
I − V curves

in

PV array string
degradation,

healthy and
faulty

operation

short circuit,
open circuit

[57] RBF-ANN
PV power, long-term

measure PV array
PV panel

disconnection,
Low

irradiance of PV
production,

partial shading

irradiance

[126]
Deep

Learnig
down

sampled
simulated or

PV array
Rs degradation, High

ANN I − V

curves,
experimental partial shading,

G, T I − V curves short circuit,
open circuit

[58] PNN
per unit
values of

simulated and
PV array

Rs degradation, High

Vmpp,
Impp

experimental partial shading,

Voc, Isc I − V curves short circuit,
open circuit

[59]
2 PNN

irradiance, experimental large number of Medium
array’s

temperature
healthy I − V

curves,
PV array short-circuited

panels
Vmpp,Impp simulated

I − V curves
in faulty

conditions

2 MLP-ANN

3 points Datasheet
curves or

PV panel

panel
degradation,

Low

Proposed around
MPP,

healthy I − V

curves,
partial shading,

method irradiance simulated
I − V curves

hot spots,

panel
temperature

in degraded
conditions

by-pass diode
failure
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3.7 ANN results with experimental degraded I − V
curves

The developed method has been also tested with experimental I − V curves
where the series resistance degradation is applied by connecting in series to the
PV module a small resistance of value (∆Rs). The experimental data refer to
a Isofotón I-53 PV module installed on the roof of the Department of Applied
Physic II at the University of Málaga. The measurement setup is discussed in
section 2.3.1 and the main data of PV panel are summarised in Table 2.4. The
measurement equipment acquires simultaneously the I − V curves, the in-plane
irradiance (G) and the PV module temperature (T ).
Figure 3.32 shows the effect of the induced Rs degradation on the I − V curves
at the same environmental conditions. We assume that the acquired I − V curves
with ∆Rs = 0 correspond to the healthy conditions. The red points on the curves
are the only values passed to the ANN together with G and T for estimating the
degraded SDM parameters.
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Figure 3.32. Experimental I − V curves with added series resistance for the same
environmental conditions

The ANN is trained only by using the healthy I − V curves in combination with
the single diode model for emulating the degraded curves, as described in the
flowchart of figure 3.17.
The experimental degraded curves are obtained with ∆Rs = 300mΩ, ∆Rs = 1Ω
and ∆Rs = 1.5Ω. For the healthy conditions Rs = 364mΩ thus the induced
degradation is 82%, 274%, 412% respectively. The SDM parameters variation
estimated with the proposed ANN architecture are reported in figure 3.33 for
different irradiance conditions. In that figure, the Rs parameter shows a trend
that is in agreement with the expected values. The saturation current is a little
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bit changing only at high irradiance, thus cannot be associated to a permanent
degradation effect, while the other parameters do not exhibit a significant variation
with respect to the values estimated in healthy conditions.
It is worth to note that the variation of Isat for high irradiance values, that is
not associated to a real degradation effect, could be due to a limited dataset
used to train the ANN. Indeed, only 75 healthy experimental I − V curves are
available for this experimental example and they are not enough to cover all the
operating conditions. An exhaustive experimental campaign should be executed
that could lead to further improvement of the performance of the proposed
method. Nevertheless also for this reduced dataset the proposed approach is able
to isolate the main degradation effects by using the SDM parameters estimation
as indicators of possible faults that could happen in the PV modules.
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Figure 3.33. ANN identification of series resistance for different induced degradation
effect and for different environmental conditions

3.8 Extending the methodology to other PV panels
and technologies

The ANN architecture proposed in section 3.3 uses the data targets that are
generated with a fitting procedure for obtaining the set of five parameters
representing every I-V curve. Therefore this procedure impacts positively or
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negatively the performance of the neural network. Since the set of five parameters
identified in section 3.5 presented a variation particularly concentrated from low
up to medium irradiance level, this section seeks to analyze this behavior for
improving the quality of the target values generated as reference for the ANN.
Figure 3.34 shows the trends for the set of five parameters in a temperature
range of [35-36] ◦C. Here, it is visible a pronounced non-linear behavior in four
parameters (Isat, η, Rs, and Rsh), especially at low irradiance (from 200 to 500
[W /m2]). Additionally, it associates the percentage confidence interval error
for every parameter. The Isat and the Rsh parameters show high error in the
whole irradiance range, while the Rs error is notable at low irradiance. Iph and
η illustrate high reliability based on their low errors along the whole irradiance
range. Table 3.19 presents the minimum and maximum values of the percentage
CI error for every parameter. Here it is evident the high variations previously
associated to Isat, Rs, and Rsh.

Figure 3.34. Trend of the set of five parameters and their percentage confidence interval
error for a temperature range of [35-36] ◦C

Figure 3.34 demonstrates the high complexity of identifying the set of five
parameters since they present a combination of non-linear behaviours. However,
it also remarks the relevance in the reliability of the targets since they are the
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Table 3.19. CI error ranges for the set of parameters (Fig.3.34)

CI Error range [%]
Parameter min max mean

Iph 0.06 0.17 0.09
Isat 13.64 45.93 24.53

η 1.00 2.65 1.52
Rs 2.48 56.52 7.33
Rsh 6.61 33.49 15.21

samples from which the system will learn. Thus, some refinements are proposed
for enhancing the quality of the targets and, as a consequence, the accuracy of
the solution.
Since the database has data under outdoor conditions, it is possible to guess
that some outliers could be present in the available data. A deep analysis of the
samples has shown that some valid and stable I-V curves with same G and T have
a considerable difference in the expected current value. This issue could be a result
of dust or shadowing effect affecting the normal operation of the PV panel, thus,
an additional condition can be applied for filtering the input data. In this way,
the neural network will take clean information avoiding noisy data that will not
contribute in the learning process. The database provides the measured values of
Isc of every I-V curve, moreover, the value of Isc at standard test conditions (STC).
Therefore, assuming that Iph ≊ Isc, the expected current could be approximated
by using equation 3.52 given specific G and T values [41].

Iph expected =

(
G

GST C

)
∗ [Iph,ST C + αi(T − TST C)] (3.52)

Thus, the value of the Iph expected can be compared against the Isc value measured
for every I-V curve in the database. A range of 5% of the Iph expected is configured
for filtering the I-V curves that fulfil the condition 3.53:

0.975 ∗ Iph expected < Isc < 1.025 ∗ Iph expected (3.53)

An additional improvement has been investigated regarding the cost function
of the problem. In the current implementation, the MSE was used as the cost
function to minimize searching for the solutions to the parameter identification
using an iterative solution as the fitting approach. An additional revision has
shown that in [132], [133],[134], and [44] the authors used the root mean square
error (RMSE) as the cost function with good results on the parameter estimation
using iterative and optimization approaches.Therefore, the cost function was
updated to use the RMSE (Eq 3.54) for performing the fitting approach.
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RMSE =

√∑N
i=1(Ii,experimental − Ii,estimated)

2

N
(3.54)

Figure 3.35 illustrates the trends obtained for the set of five parameters using
the RMSE as the cost function and the additional filter implemented by means
of equations 3.52 and 3.53. The assessment was implemented using the same
conditions (G and T ranges) applied in Figure 3.34. Here, it is worth noting that
the new set of parameters has more stable values, especially in the Isat and η
parameters. The strong non–linear effect in the irradiance level of 200 to 500
[W /m2] has been smoothed in all parameters. In the same line, the percentage
CI error has also been reduced. Figure 3.35 depicts a more reliable CI error for
the Isat and the Rs.

Figure 3.35. Percentage confidence Interval error for every parameter in a temperature
range of [35-36] ◦C

Although the Rsh parameter continues to have a considerable non-linearity,
this condition is in agreement with the results obtained in [135] where the
approximation of this parameter shows high variability from low to high irradiance
levels. Thus, it is considered an acceptable representation for the parameter
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Table 3.20. CI error ranges for the set of parameters (Fig.3.35) calculated with the
RMSE cost function

CI Error range [%]
Parameter min max mean

Iph 0.08 0.28 0.14
Isat 0.25 1.16 0.48

η 0.02 0.10 0.04
Rs 1.06 10.91 3.54
Rsh 9.52 25.77 14.36

despite the visible non-linear trend. In fact, it remarks again on the non-linearity
behavior of the PV panels through their characteristic parameters. Table 3.20
confirms a notorious reduction in the CI error for the Isat, η, and Rs parameters.
It validates the good reliability of the new set of parameters for describing the
behaviour of the PV panel under study by using the RMSE cost function.
The methodology previously presented for the experimental campaign in section
3.3 focused on data from a particular PV panel. To assess the robustness of the
proposed solution, especially the improved steps applied in the current section,
the analysis could be extended to other PV panels with the same or different
technology. Thus, the methodology is assessed with two additional PV panels
presented in Table 3.21. PV panel B has the same type of technology as the PV
panel studied in section 3.3 with the half area, while PV panel C differentiates in
the kind of technology (Single-crystalline).

Table 3.21. Characteristics of the PV panel under study and ranges of the data
measured.

Parameter PV panel B PV panel C
Technology Multi-crystalline silicon Single-crystalline silicon

Number of cells 36 36
Module Area 0.342 [m2] 0.647 [m2]

STC Parameters
Isc 2.666 [A] 4.983 [A]
Voc 22.040 [V] 21.946 [V]
Imp 2.455 [A] 4.487 [A]
Vmp 18.064 [V] 17.39 [V]

Plane of Array irradiance (200 - 1300) [W/m2]
Range of Temperature (20 - 65) [◦ C]

Number of points for each
I − V curve

[180 - 190]

Figures 3.36 and 3.37 show that the data filtered and modeled with the RMSE cost
function have smooth trends in almost the whole set of parameters. Tables 3.22
and 3.23 confirm the reliability of the parameters in terms of the low percentage CI
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error for every parameter. In general, Iph, Isat, and η present a short percentage
CI error. The Rs and the Rsh depict clear non-linear trends with a low CI error,
which means good reliability on the value given to the parameter.

Figure 3.36. Percentage confidence Interval error for the set of five parameters of PV
panel B in a temperature range of [35-36] ◦C

Table 3.22. CI error ranges for the set of parameters (Fig.3.36) calculated for the PV
panel B

CI Error range [%]
Parameter min max mean

Iph 0.05 0.27 0.11
Isat 0.14 1.16 0.46

η 0.01 0.10 0.04
Rs 1.22 29.66 7.04
Rsh 5.57 16.73 9.66
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Figure 3.37. Percentage confidence Interval error for the set of five parameters of PV
panel C in a temperature range of [37-38] ◦C

Table 3.23. CI error ranges for the set of parameters (Fig.3.37) calculated for the PV
panel C

CI Error range [%]
Parameter min max mean

Iph 0.03 0.16 0.08
Isat 0.08 0.57 0.26

η 0.01 0.05 0.02
Rs 0.79 5.80 2.38
Rsh 4.37 20.78 9.55

The current improvement shows a better way of getting the targets representing
every I-V curve analyzed. It has the possibility of extending to other types of PV
panels preserving a good representation of the SDM as targets of the system. It
will enhance the ANN performance due to the high reliability of the parameters
and the reduced non–linearities, especially in some of them, for being used as
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targets for the learning process. In general, the improvement in the way of
representing the problem leads to make easier the use even of other types of
regressors for representing the problem.

3.8.1 Performance analysis of ANN used as regression model

The general schema (Figure 3.17) proposed for getting the estimation of the
parameters in two stages used neural networks as regressors and obtained good
performances. However, each stage could use a different technique for obtaining
the corresponding representation. The Regression Learner tool of Matlab gives
the possibility of having a fast assessment of the performance of multiple common
machine learning techniques for having a preliminary view of the performance of
the regression implemented for each technique. This tool helped to analyze other
alternatives. Figures 3.38 and 3.39 show the performance of different machine
learning techniques for estimating the series resistance Rs parameter for stage
2 of flowchart 3.17, it means, data in degraded conditions. This data has been
chosen because is more challenging in terms of complexity.

Figure 3.38. Performance of different machine learning techniques for characterizing
the degradation effect on the set of five parameters: Stage 2 of the figure 3.17

The list is ordered by the smaller MSE values. Figure 3.38 shows a situation
where the application assesses multiple regressors with a basic configuration.
A particular architecture of ANN reached the best performance in terms of
MSE. But, it is clear that the different methodologies require optimizing their
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Figure 3.39. Performance of different machine learning techniques with a optimized
procedure for detecting the degradation effect on the set of five parameters: Stage 2 of
the figure 3.17

internal hyperparameters for obtaining better outcomes. Figure 3.39 shows
the assessment of different regressors in a training phase where the software
optimizes automatically the hyperparameters of each method by using bayesian
optimization. Again, the neural networks show good performance at the same
level that other methods.

Table 3.24. Summary of the main characteristics of the regressors assessed

Validation stage
Method General Configuration RMSE R-Squared MSE Training

Time [s]
Neural Network Three layers: [266 6 3] 0.0842 0.99 0.00709 926.09

Gaussian Process
Regression (GPR)

Kernel function: Isotropic
Rational Quadratic

0.088 0.98 0.00775 4610.9

Kernel scale: Automatic
Suport Vector Kernel function: Gaussian 0.1289 0.97 0.0825 12037

Machine (SVM) Kernel scale: Automatic

Table 3.24 reports the general outcomes of the three best performances obtained
by the software. Here, it is worth noting that neural networks obtained
similar performance to the second-best regressor, but, with a notable difference
in the training time, which means less complexity with high performance.
It demonstrates again the applicability of neural networks in systems with
medium-low computational resources.
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3.9 Conclusions

In this chapter, the MLP artificial neural network is used for isolating faults
and degradation phenomena affecting photovoltaic panels. The parameters of
the single diode model have been used as indicators of the main degradation
phenomena. The SDM parameters are strongly different from panel to panel
and depend on environmental conditions, PV technology and manufacturing
process. To identify the PV degradation through the SDM parameters, the
proposed method exploits two independent MLP-ANN architectures. The first
one is trained to estimate the SDM parameters of the healthy PV panel for the
measured environmental conditions. Since only G and T are the inputs for this
MLP-ANN, it is able to reproduce the non-linear relations existing among the
SDM parameters of the healthy PV panel and the environmental conditions.
The second MLP is trained to estimate the SDM parameters of the PV panel
in presence of degradation phenomena affecting the I − V curve for the measured
environmental conditions. This second MLP-ANN requires as inputs G,T and
3 points of the I − V curve measured close to the MPP, thus it estimates the
SDM parameters including environmental and degradation effects. To isolate the
degradation effect the difference among the two MLP-ANNs is used.
The main benefits of the proposed solution are:

• simple ANN architectures that allows an easy implementation on embedded
system

• the ANN training process requires only experimental healthy I − V curves

• does not require the complete I − V scan during the online operation since
the ANN accept as input only 3 experimental points measured around the
MPP.

• The methodology exploits the reliability of the SDM for generating data able
to emulate reliable degraded conditions. This kind of data is not present
in generic databases since it requires long-time experimental campaigns and
high investment of money.

The method has been validated with simulation and experimental results showing
a good agreement between induced and estimated degradation.
In line with the recent expansion of IoT technologies for PV monitoring, the
proposed approach represents a useful and relevant AI-based diagnosis tool that
can be used to optimize operation and maintenance activities as well as enhance
decision making processes, thus facilitating the integration of PV systems in smart
grids.
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It is worth noting that the idea proposed in the current chapter has inspired other
research published later in different aspects. In [136] is presented a methodology
that uses the closest information around the MPP as the starting point. In this
case, the goal is to determine the presence of mismatch conditions for classifying
the I–V curve as healthy or faulty. Furthermore, it exploits the reliability of the
SDM for generating synthetic data. Finally, this paper agrees with the use of ANN
as a suitable tool able to process the inputs and targets generated. Additionally,
the paper COOP1 (from list of publications) also exploits points around MPP
for detecting mismatch, especially due to partial shading conditions. Here,
different machine learning techniques were used for assessing their performance
in approximating the solution to this problem. The current thesis collaborated
with the development of this paper with some basic ideas about the foundation of
the problem and methodologies for taking experimental data. But, this paper is
not covered in this document since the current thesis will aboard the same type
of issues by applying a different innovative approach that uses frequency–domain
techniques such as impedance spectroscopy.
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Impedance Spectroscopy for
Diagnosis of Photovoltaic
Modules under Outdoor
Conditions

4.1 Introduction

Photovoltaic (PV) panels operating under outdoor conditions inevitably generate
degradation processes due to multiple reasons, such as operation in non–optimal
conditions (e.g. partial shading, hot spots), and environmental conditions. These
processes gradually decrease the performance of the PV devices leading to the
reduction in power production, lifetime, and money earnings. These undesirable
effects support the importance of early detection for planning the minimization
of such outcomes [137].
In chapters 2 and 3, the proposed methodologies exploited the SDM for addressing
the detection of degradation effects. Although the SDM can reproduce correctly
the static I–V characteristic of a PV device, it cannot deal with its dynamic
response, which requires an analysis in the frequency domain [138]. This analysis
should provide additional information helping to better identify the degradation
phenomena.
Many studies on PV panel degradation are performed in laboratory at cell level
(Table 4.43), they have great validity, but only cover controlled conditions. In
contrast, outdoor implementations have to deal with arbitrary meteorological
conditions meaning a true–operating environment. Those operating conditions
generate challenges linked to the temperature, irradiance, wind, humidity, and
other factors that impact the PV performance, giving great importance to outdoor
research studies. They will confront and assess the PV panel to the true–operative
conditions while producing power [139, 140].
Thus, this chapter mainly contributes to validate the using of the EIS methodology
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for commercial PV panels for detecting degradation effects under real–operating
outdoor conditions. It means, there is no control over the environmental variables
that continuously modify the PV panel operating point. Due to the strong
sensibility of the PV panel impedance regarding the operating point, a method
to correlate the measured impedance with the outdoor–operating condition is
proposed. Hence, this work concentrates on performing the EIS methodology at
the maximum power point (MPP) of the system since its impedance spectrum
exhibits a particular correlation with the PV current and voltage measured in
MPP.
This chapter has assessed the EIS methodology as a diagnosis tool by using
simulations and experimental campaigns. The methodology has included series
resistance degradation and mismatch conditions as the situations to study.
Mismatching or mismatch conditions are referred to situations where the PV
panels operate in non-optimal conditions leading to energy losses and reduced
profit inducing early degradation of PV cells [141].
The mismatched effects, associated to the non-uniform operation of a single
cell or groups of cells, can be induced by internal or external effects. Internal
issues are associated with poor solder bonds, impurities in the silicon crystal,
and failures. External problems could be linked to converter losses, irregular
heat dissipation, obstructions such as trees, buildings, bird droppings, clouds, or
dirt and dust accumulation. However, the main mismatch problems can appear
with the shadows between panels or part of the same panel. Since shaded cells
operate in the negative voltage region, thus with power dissipation, by-pass diodes
are usually connected in parallel to small groups of cells inside the PV panel for
mitigating the power dissipation. The presence of by-pass diodes leads to multiple
MPPs and the MPPT tracker can stick in a local maximum by reducing the power
production and accelerating the PV degradation process [142].

4.2 Impedance Spectroscopy simulations for partial
shading detection

This section is aimed to demonstrate the usefulness of the EIS methodology
for detecting and analyzing the mismatch conditions at the panel level without
the scan of the I-V curve but only operating close the local MPP. The main
benefit of this analysis is to detect the presence of multiple MPPs as soon as they
appear, thus to perform the tracking of the GMPP only when is strictly necessary.
Moreover, even if not afforded in this thesis, since the EIS spectra of PV panel
is also affecting by the presence of by-pass diodes, the EIS analysis in presence
of mismatch can be also used for the diagnosis of the by-pass diodes that are the
mandatory devices to prevent the power dissipation of mismatched PV cells.
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To the best author’s knowledge this is the first attempt to apply the EIS
methodology on these operating conditions, for this reason the initial analysis
is carried out by electrical simulations. Thus, it will allow a fast assessment of the
advantages and disadvantages of the methodology. Hence, this information will
be relevant in a subsequent experimental stage.

This section is composed of three pieces that give a complete review of the
argument described in the previous introduction. Subsection 4.2.1 is devoted
to the construction of the dynamic model used to represent the PV panel
including by-pass diodes. Subsection 4.2.2 shows the simulations of the equivalent
electrical circuit representing the PV panel in uniform and mismatched conditions.
Finally, subsection 4.2.3 reports the main results and discussion related to the
analysis of partial shading conditions using EIS in simulations. Conclusions and
improvements close the discussion of the arguments developed in this section.

4.2.1 PV panel modelling and circuit configuration

In order to analyse the dynamic behaviour of the PV panel, by-pass diodes must be
also included. The analysis was carried out by using LTSpice because it accounts
for all the electric characteristics of each element representing the circuit, including
their intrinsic non-linearities. It is important because in this way the simulation
will deliver trends and results close to the real behaviours.

In LTSpice, the SDM electrical circuit is used for representing the groups of cells
connected in parallel to each by-pass diode. Fig. 4.40 illustrates the electrical
configuration that represents a single panel composed of three groups of cells with
their own by-pass diode used for protecting the cells from reverse polarisation.

Table 4.25. Kyocera KC175GHT-2 datasheet characteristics at STC and SDM
parameters.

Voc 29.2 [V] Iph 8.09 [A]
Isc 8.09 [A] Is 2.0722 [nA]

MP P 23.6 [V], 7.42 [A] η 1.0730
Thermal

Coefficients
αv = −109 [mV /◦C],
αI = 3.18 [mA/◦C] S

D
M

Rs 0.2185 [Ω]

Number of
Cells 48 Rsh 93.0571 [Ω]

The parameters of the equivalent electric circuit shown in Fig. 4.40 are configured
for modelling the Kyocera KC175GHT-2 PV panel and have been fixed according
to the information given by the datasheet. Table 4.25 describes the electric
characteristics given by the manufactures and the five parameters of the SDM
tuned for representing 16 cells grouped in each module. Table 4.26 summarises
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Figure 4.40. Module configuration by using SDM for simulation on LTSpice

Table 4.26. Characteristics of the by-pass diode VSB2045 (PV solar cell protection
Schottky rectifier)

Characteristic Value
Reverse breakdown voltage 45 [V]
Reverse breakdown current 23.4 [µA]

Zero-bias junction capacitance 2050 [pF]
High-injection knee current 20 [A]

the main characteristics of the by-pass diode model employed for this simulation.
The VSB2045 by-pass diode is typically used inside the solar cell junction box for
protection using DC forward current without reverse bias.It is worth to note that
in this preliminary analysis, we used the parameters of a well know commercial
panel which is used in several papers, thus the SDM static parameters might be
considered well assessed.
The capacitance Cd has been chosen according to the values reported in Kumar
et al [79]. Here, a single-crystalline silicon solar cell of (2x2) [cm2] has been used
for detecting the capacitance value. A Cp of 229.1 [nF] is obtained after different
tests under multiple irradiance conditions. By assuming similar behaviour for
the PV panel Kyocera KC175GHT-2 its internal capacitance can be estimated
by accounting the linear dependency of capacitance with respect to the PV cell
surface. Since the Kyocera KC175GHT-2 is characterised by cells of (15x15.5)
[cm], a scaling factor of 58.125 must be applied. Moreover the SDM model is
representing a series connection of 16 PV cells, thus the equivalent capacitance is
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given by:
Cd = Cp ∗ 58.125

16 ≃ 832nF (4.55)

Although the estimated capacitance is not corresponding to the real capacitance
of the selected panel, in absence of experimental data it will be considered a good
approximation since it is referring to a PV cell of the same technology.
Fig. 4.41 depicts the outcome of the simulation for the LTSpice electric circuit
in blue points and the SDM output (red points) calculated by means of equation
(1.1). The small difference in the I-V curves obtained respectively with the model
and the electrical circuit is justified by the fact that the model only uses the ideal
behaviour of the diode while electric device simulation considers all the dynamics
of it.
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e
n
t 

[A
]

Figure 4.41. I-V curves of the Kyocera KC175GHT-2 using the SDM equation (red)
and the LTSpice circuital setup (blue)

4.2.2 Simulation of the PV Module under Mismatched
Conditions

For performing the EIS it is necessary to inject an AC stimulus into the device.
Commonly, the amplitude must be in the range of few millivolts and the
frequencies in a scale from 10 [Hz] to 100 [KHz]. This very small stimulus does not
affect the normal operation of the device, thus for each frequency stimulus, the
PV impedance value is calculated with equation (1.8) as described in section 1.5.2.
The PV impedance spectrum can be then plotted for analyzing its behaviour and
intrinsic characteristics [68], [66].

Although circuital solution for the EIS implementation on a PV panel are
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appearing in literature [143], the analysis of the mismatching effects has been
never faced. The PV circuit of fig.4.40 is configured as shown in Fig. 4.42 to
perform the EIS in mismatched condition. In the scheme the sinusoidal current
source is used for injecting the AC stimulus (S2). It was set to 0.150 [A] with
a range of frequencies between 10 [Hz] and 100 [KHz] on a logarithmic scale.
The DC source (S1) is used for polarizing the PV panel at different operating
conditions.
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Figure 4.42. Scheme for the PV panel stimulation for performing the EIS.

The main contribution of this section is to show how it is possible to detect the
presence of partial shading on the PV panel only by analysing the EIS spectra
calculated around the MPP. It is worth to note that this information can be very
useful for avoiding that the MPPT algorithm could be trapped in a local maximum
[142]. For explaining this concept three cases with different working conditions
have been fixed.
Table 4.27 summarises the information and parameters values for the three cases.
In particular the first configuration refers to the uniform conditions where the
currents of all modules have the same value. The second case illustrates a partial
shading condition where one of the modules is generating the half value of the
current compared against the other two modules. This could be associated to
the typical condition induced by the partial shading where the shadowed part
of the panel is subjected only to the diffuse solar radiation, that is significantly
lower than the direct solar radiation. Finally, a case in a uniform low irradiance
condition where the MPP point is similar to the one with mismatch conditions is
tested.
Fig. 4.43 shows the simulated I-V curves of Kyocera KC175GHT-2 in uniform and
mismatched condition. For the case #1 the PV panel is configured at the STC.
It means that the whole panel receives homogeneous irradiation and the modules
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Table 4.27. Testing cases for analysing the effect of mismatch on the EIS spectra.

Case Condition Configuration MPP [V,A] Power [W]

1 (STC) IIph1 = Iph2 = Iph3=8.09A [23.9, 7.38] 176,48

2 (Mismatch)
Iph1 = Iph3=8.09A,

Iph2 =
Ih3
2

[15.10, 7.36],
[25.8, 3.74] 111.28, 96.62

3 (Low
irradiance) Iph1 = Iph2 = Ih3=4.1A [23.7, 3.62] 85.94
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Figure 4.43. Simulated I-V curves of Kyocera KC175GHT-2 in uniform and mismatched
condition.

generate the same amount of energy. In case #2 the low mismatch condition of
module 2 is generating half of its nominal capacity. Here, the by-pass diode is
active for protecting the panel and it generates an I-V curve with two possible
MPP values (two knees). This deformation of the curve can affect the MPPT
algorithm for searching the global maximum. For this analysis, the MPP was
fixed at the second knee of the curve. Finally, case 3 represents a condition where
all modules receive a homogeneous irradiance with low intensity. It is different
from the mismatch case because the amount of energy produced is under normal
conditions depending only on the amount of irradiance at that specific moment.

By comparing case #2 and #3 it is evident that they have very similar MPPs
thus, without any additional information, the mismatched condition cannot be
detected. The idea proposed in this thesis is to profit of the EIS analysis around
the MPP to seek additional features able to differentiate remarkably the two cases,
since they are completely different with respect to the environmental conditions.
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4.2.3 EIS analysis and discussion of simulation results

The Nyquist plot in Fig. 4.44 illustrates the resulting impedance from case #1
at STC. According to the results achieved by Olayiwola et al [87], this behavior
is in agreement with the typical conduct of a solar cell due to the curved shape
obtained and the association of the trend and the frequency scale. Analyzing
only the x-axis, points close to the origin represent outcomes for high frequency
(until 100 [KHz]), while, the furthest points from it represent the values at low
frequencies (from 10 [Hz]). The highest values in the real part of the impedance
values are grouped at low frequencies. In contrast, this real part will decrease
with higher frequency values.
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Figure 4.44. Impedance diagram at STC of the PV panel simulated with LTSpice

This response represents the ideal condition where the PV panel should remain for
an optimal operation. But, environmental variations and mismatch conditions will
always appear and will affect the behavior of the PV panel. Fig. 4.45 illustrates
the comparison of the responses of the ideal case (Fig. 4.44) against the cases
presented in Table 4.27 and Fig. 4.43.

Despite the MPP point of cases #2 (red points) and #3 (green points) are placed
around the same coordinates in the I-V plane, the corresponding EIS spectra in
the Nyquist plot exhibit different trends. For cases subjected to uniform condition
(blue and green lines) the EIS spectrum changes due to uniform environmental
fluctuations (irradiance variations). In particular the decrease in the irradiance
level extends the arc and the impedance components (real and imaginary) will
grow. In contrast, in presence of mismatch, the imaginary impedance component
will decrease especially from medium to high frequencies. There is a considerable
difference in the values of the imaginary components at STC or low-irradiance
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Figure 4.45. Comparison of impedances resulting from the studied cases of mismatching.
Blue points represent the ideal state at STC. Green points show a normal operation under
low irradiance conditions. Red points depict the mismatch condition presented in table
4.27.

conditions (blue and green points) against the mismatched points (red).

Another important aspect is related to the ending of the semicircles or arcs. The
cases with uniform conditions (blue and green points) show a clear arc ending
with close real and imaginary components at the highest frequencies. In contrast,
the mismatch condition changes the ending of his semicircle and finishes with a
different impedance value far from the typical values in uniform conditions.
Finally, Fig. 4.46 shows the EIS spectra for different irradiance conditions and
mismatch levels. The red arcs refer to the mismatched cases, while the green ones
are for the uniform conditions. The nominal current (In) represents the current
at STC. For the cases with uniform conditions (green points), the In is the same
for all the modules but divided by a factor. On the other hand, for mismatch
cases (red points), the In expresses the current in the module affected by the
shaded effect. Fig. 4.46 shows different trends between uniform and mismatched
cases at the highest frequency points. There are two regions. The first one
where all the uniform conditions arrive. The second one where the different levels
of mismatch conditions converge. Therefore, there is a possibility of using the
convergence of the values at medium and high frequencies for recognizing the
state of mismatching.
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Figure 4.46. Variation of EIS for different levels of mismatch and low irradiance cases

In general, simulations of the PV modules based on the dynamic model of the
SDM have allowed differentiating uniform operation from mismatch conditions.
First, in uniform operation, the PV impedance increases its values according to
the reduction of irradiance. This tendency is highlighted in Fig. 4.46 where the
green arcs rise with decreasing values of current. In contrast, the red curves
depict the characteristic trend of mismatching cases. Thus, a clear reduction
of the impedance values is concentrated in a specific region at high frequencies.
These two tendencies can help to separate and identify the mismatch cases for
taking action about it.

The electrical simulations showed that the effects of partial shading conditions
were notable in the impedance spectra captured using the EIS methodology.
But, it is necessary to move forward to experimental analysis that supports the
promising results obtained in simulations. The use of experimental campaigns
could help to describe and connect the true values of the dynamic model elements
with the degradation effects.
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4.3 Measurement setup and EIS data validation

4.3.1 Configuration of the EIS instrumentation

The measurement system, provided by Biologic manufacturer [144], is composed
of a EIS analyzer (SP-200) able to perform EIS analysis from 10 µHz up to
7 MHz interfaced with a booster (HCV-3048) supplying up to 30 A at a voltage
of 48 V. It is equipped with a visual interface that must be programmed with
the measurement setup for performing the sequence of tests. Unfortunately, this
interface did not offer the facility to perform automatically the EIS in MPP
because it requires setting in advance the references (voltage for potentiostatic
tests or current for galvanostatic tests) corresponding to the operating point in
which the EIS has to be performed.
This issue has been fixed by adding a Python script that searches the MPP on
the acquired I-V curve and set the corresponding voltage for the experimental
EIS measure executed in sequence. It is worth noting that, manual identification
of MPP might delay too much the EIS test by making it not coherent with the
measured I-V curve.
Figure 4.47 presents the interface configuration box and the graphical results at
the end of each test. Table 4.28 shows how the developed Python “Automator”
works .

Figure 4.47. Biologic configuration tool

At the end of each test, a Matlab script is used to export the experimental data,
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Execute Automator
step 1 Configure the Biologic instrumentation for scanning

the reference I-V curve
step 2 Search on the acquired I-V curve the point corresponding to

the maximum power in which must be performed the EIS
step 3 Configure the Biologic instrument with VMP P as reference voltage

for the EIS measurement
step 4 Save data in an assigned folder

Table 4.28. Python Automator functions

which are available by the instrumentation software in a proprietary format, in
a MATLAB data structure. Table 4.29 shows an example of the data structure
associated with each I-V curve scan. Table 4.30 shows how are collected the data
for the EIS experiment. The environmental conditions (G and T ) are reported
in both data structures because they are acquired at the beginning and the end
of each test, and they could vary during the I-V scan and EIS measure. The
comparison among that environmental data are used to validate the coherence
among the two types of experimental test. If the environmental conditions are
changing during two consecutive tests, the I-V curve and the corresponding EIS
spectrum are discarded.
The data structures also contain two vectors with the results of the parameters
identification process associated respectively to the PV static model (SDM=Single
Diode Model) and the one associated to the dynamic model (CPE=Constant
Phase Element). Details on the methods used to calculate the parameters of the
static and dynamic model have been provided in the modelling sections.

dataIV
panelName: ’PV Series’
NameIVFile: ’Test 43 01 IVC C01.txt’
Date: ’20/12/2021’
Voltage: [312×1 double]
Current: [312×1 double]
Isc: 3.0294
Voc: 19.923
Vmpp: 17.305
Impp: 1.9324
numCells: 32
timestamp initial final: {2×1 cell}
G IV PV1 initial final: [557.72 559.57]
T IV PV1 initial final: [38.912 38.915]
G IV PV2 initial final: [395.51 396.88]
T IV PV2 initial final: [35.072 35.065]
SDM Params: [5×1 double]

Table 4.29. Data structure for the I-V curve measurements
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dataEIS
panelName: ’PV Series’
NameEIS: ’Test 43 03 PEIS C01.txt’
Date: ’20/12/2021’
frequency: [74×1 double]
real: [74×1 double]
imaginary: [74×1 double]
Voltage: [74×1 double]
Current: [74×1 double]
timestampEIS init middle final: {3×1 cell}
G EIS PV1 init middle final: [560.5 557.35 554.9]
T EIS PV1 init middle final: [38.968 38.318 37.991]
G EIS PV2 init middle final: [397.01 394.99 393.16]
T EIS PV2 init middle final: [35.106 34.534 34.37]
CPE Params: [6×1 double]

Table 4.30. Data structure of the Impedance Spectroscopy measurements

4.3.2 Experimental Platform Description

(a) General diagram (b) Physical
PV arrangment

Figure 4.48. Hardware setup arranged for the experimental process.

Fig. 4.48 presents the setup employed for characterizing a commercial
single-crystalline silicon PV module placed on the roof of the Engineering Building
of the University of Salerno (Italy). The main features of this PV module can
be seen in Table 4.31 [145]. A sensor for measuring the irradiance G [W/m2] on
the plane of the solar module is connected to the measurement system (see the
technical information in [146]). In addition, a temperature probe [147] is also
attached on the module back surface to measure the cell temperature T [◦C].
Table 4.32 summarizes the technical information of these sensors.
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Table 4.31. Nominal parameters of the Solbian FLEXSP50L PV panel

Parameter Value
Peak Power (+/- 5%) - Pmax 51 [W]

Rated Voltage - Vmpp 9.0 [V]
Rated Current - Impp 5.7 [A]

Open–Circuit Voltage - Voc 10.9 [V]
Short–Circuit Current - Isc 6 [A]

Temp. coeff. Pmpp −0.38 [%/◦C]
Temp. coeff. Voc −0.27 [%/◦C]
Temp. coeff. Isc 0.05 [%/◦C]

Lenght 43.66” (1109 mm)
Width 11.50” (292 mm)

Thickness 0.079” (2 mm)
Weigth 1.76 lbs (0.8 kg)

Number of cells 16

Table 4.32. Basic information of the environmental sensors used for sensing the ambient
conditions.

Sensor Litemeter LM1-10V PRO
Output 2 analog channels

Input Range
Irradiance 0 → 1200 [W/m2]
Spectral Range 0.3 → 1.1 [µm]
Temperature (−30) → (+85) [◦C]

Output Irradiance 0 → 10 [V] for 0 → 1200 [W/m2]
Temperature 0→10 [V] for (−20)→(+80) [◦C]

Output precision
Irradiance ±3.5%
Temperature ±1.5 [◦C]
Response time <100 [ms]

Supply 12 → 30 VDC
Sensor Texas Instruments LM35
Output 1 analog channel
Input Range Temperature (−55) → (+150) [◦C]

Output Voltage (−1) → (+6) [V]
Current 10 [mA] (max)

Output precision Temperature ±0.5 [◦C]
Supply 4 → 30 VDC

A DAQ system monitors the environmental variables and saves them in a database
placed on a local server with a sampling frequency of 1 s. Additionally, the EIS
analyzer is connected to the local server through an Ethernet communication for
controlling the test and saving the data.
It is worth to note that, although the EIS equipment is a laboratory testing system,
the proposed configuration performs an impedance analysis in a real scenario.
Firstly, using an outdoor experimental platform for providing the EIS spectrum
under non–controlled environmental conditions (irradiance and temperature) that
a solar panel could find in a real PV system. Secondly, utilizing low–cost sensors
for acquiring the data. Naturally, for arriving to the on–board implementation
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of the EIS technique the lab equipment must be replaced with another hardware
implementation.
Currently, different works have demonstrated that the EIS technique can be
carried out using the same DC–DC converter present in standard PV installations
[73, 83, 143]. Thus, the spotlight of this research work is not focused on hardware
development. On the contrary, it seeks to exploit the EIS analysis for diagnosis
purposes and degradation effects in real systems at the PV panel level working in
real–outdoor conditions.

4.3.3 Selection of the operating point for measuring stable EIS
spectra

During the outdoor EIS measurements, the environmental conditions are not
controlled, thus, some preliminary analysis are performed for discarding noisy
spectra. EIS measurements are considered reliable if were acquired in stable
environmental conditions. This is checked by verifying that current and voltage
are confined in a small range of variation during the EIS test, nevertheless the PV
operating point could be different for each EIS test. Additionally, as discussed
in section 4.3.4, the well-known Kramers–Kronig test was used for validating the
quality of the experimental impedance measurements [66, 70, 148].

-

-
MPP (Vmpp,Impp)

Figure 4.49. Relationship between the I–V curve and the impedance values in the
complex plane with different operating points at a particular environmental condition
(G = 951 W/m2 and T = 52 ◦C).

Fig. 4.49 shows four PV panel operating points of the I–V curve (upper plot)
where the EIS methodology is applied and their respective impedance spectra are
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measured (lower plot). The inductive effect, as shown in Fig. 1.8, is not plotted for
a better visualization of impedance semi–arcs appearing in the first quadrant of the
complex plane. In these tests the reduction in the real and imaginary parts visible
in the impedance spectra is only related to the operating point changes from Vmpp

to the Voc. In fact, [149] demonstrates that increments in the polarization voltage
increase the junction capacitance and decrease the cell dynamic resistance. The
cell dynamic resistance decrement is evident in the measurements close to zero
frequencies (ω ≈ 0), while the increment in the junction capacitance produces
smaller impedance values due to the equivalent impedance of the capacitance
(Zc = 1/jωC).
The obtained impedance spectra are not comparable among them since the
working conditions affect significantly the parameters of the PV dynamic model
[66]. In [148], a study performed in perovskite solar cells showed the same trend,
reaching huge impedance values when the system was setting very close to the
Isc.
In Fig. 4.49, no EIS spectrum was measured at the left side of the MPP point
because at outdoors is almost impossible to have a perfectly constant irradiance
condition and, as a consequence, a clean EIS measurement in the left part of the
I–V curve. Here the current is almost independent on the voltage and strongly
sensible to the irradiance, thus EIS will provide noisy spectra not useful for
diagnostic purposes.
The choice of the operating point is the first issue that must be solved when the
EIS technique is applied for outdoor measurements instead of lab test.
In [148], an analysis concerning the relationship between solar cell operating points
and the EIS methodology is carried out. It concludes that the open–circuit voltage
(Voc) is the most suitable point because it fulfills the best conditions in terms of
linearity and stability. Although the Voc is the most recommended operating point
for assessing the EIS methodology, it is not convenient in practical applications
where PV panels are usually connected to power electronics for performing the
Maximum Power Point Tracker (MPPT) algorithm that allows to maximize the
power production. Therefore, useless modifications of its working conditions are
not justified since the system could have power and money losses when it goes far
from the MPP state. Regarding the MPP, it is stated that it is the most interesting
but challenging point due to the high sensibility of the impedance spectra with
respect to the operating point. Indeed, by comparing the impedance spectra in
OP1 and OP2 of Fig. 4.49, there is a significant change in the impedance response
over a small variation of the operating point. From a diagnostic point of view, the
exact knowledge of the EIS operating point is fundamental for distinguishing the
variations in the impedance parameters due to the PV degradation phenomena
with respect to the intrinsic variation caused by the environmental conditions or
to the changes in the operating point.
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In this sense, the MPP is the best choice since in normal operation of the PV
systems the voltage and current are constantly measured and the MPPT algorithm
operates for staying continuously close to the Vmpp and Impp values.
Moreover, MPP is the only point that benefits of the property that the differential
resistance (∂V /∂I), which in the static PV small signal model, is equal to the ratio
Rmpp = Vmpp/Impp. This property is a direct consequence of the maximum power
condition ∂P /∂V = 0 that is valid only in MPP. In whichever other operating
point, the differential resistance is a complicated expression derived by the SDM
equation. More details on the PV panel differential resistance can be found in
[150].
The MPP property can be exploited to verify if the EIS spectra is effectively
measured in that operating point. Indeed, under the assumption that the
impedance value, associated to the PV dynamic model of Fig. 1.6 and calculated
at zero frequency (Zeq(0)), must converge to the differential resistance Rmpp, the
following condition must be fulfilled:

Zeq(0) = R0 + R1 ≃ Rmpp =
Vmpp

Impp
(4.56)

In this work it will be verified that the previous test allows to validate that different
spectra, acquired along the time, are always associated to the MPP operating
point. The choice of the operating point is also linked to the configuration of the
perturbation signal. According to [66], a rule for fixing the amplitude of the small
input signal is 1%–2% of the Vbias. In this work, taking into account that Vbias

corresponds to the Vmpp, 100 mV was the amplitude established for performing
the EIS analysis.

4.3.4 Reliability of the spectra at MPP

Previously, the condition for assuring the reliability of the spectra regarding the
operating point was defined. However, it is also necessary to evaluate the quality
of the impedance spectra estimated at that operating point.
Kramers–Kronig test is a consolidated method for validating the quality of
the experimental impedance measurements based on four criteria as Linearity,
Causality, Stability, and Finiteness. If the system fulfills these criteria, the
relations (4.57)-(4.58) allow calculating the real part of a complex system using
only the imaginary part and vice-versa [66, 70, 148].

ZIm(ω) = −2ω

π

∫ ∞

0

ZRe(x) − ZRe(ω)

x2 − ω2 dx (4.57)
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ZRe(ω) = R∞ +
2
π

∫ ∞

0

xZIm(x) − ωZIm(ω)

x2 − ω2 dx (4.58)

The difficulty of covering the infinitive integration limits in these equations
for experimental measurements has made the authors search for alternative
approaches for overcoming these issues. The “Lin–KK tool” [151] is an alternative
tool that allows assessing the experimental data for qualifying the integrity of the
data [152], [153]. This tool evaluates the reproducibility of the experimental
impedance data using a KK compliant equivalent circuit model (ECM) of series
connected RC elements. If there is a combination of RC circuits able to fit
the experimental data, then this data describes a time–invariant system. The
quantification of the data integrity is expressed using the percentage of residuals
that are deviations between the experimental data and the Kramers–Kronig ideal
fitted spectrum for the real and imaginary parts. In general, some cases can
appear for assessing the data. First, the smaller the residuals, the better the
spectrum quality. Secondly, noise–like residual can emerge and indicate noise in
the measurements, but, this is a normal condition in experimental measurements.
On the contrary, if biased residuals arise especially at low frequencies, it could
mean time–variances in the system and the spectrum is likely invalid [154].
Then, for assessing the validity of the measurements at the chosen operating point,
the Kramers–Kronig analysis was tested using the Lin–KK tool at Voc and MPP.
The Voc point is used as a reference since this operating point theoretically is the
most suitable point.

Figure 4.50. Validation of the Lin-KK tool for a impedance measurement at Voc

Fig. 4.50 illustrates the validation of an experimental measurement at Voc. The
real and imaginary parts are well–fitted. The semicircle is well reconstructed using
11 RC circuits. The residuals are small, and the trends do not show considerable
bias deviation. It indicates a good quality of the experimental impedance
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measurement. This behavior is in line with the considerations expressed in [154]
and the aforementioned features regarding the suitability of Voc as operating point
for implementing EIS measurements.

Figure 4.51. Validation of the Lin-KK tool for a impedance measurement at MPP.

Fig. 4.51 display the Lin–KK test at the MPP. In this case, the residuals are higher
than the ones obtained with Voc as operating point. Both residual trends (real
and imaginary) show noise in the measurements, especially at low frequencies,
but still acceptable since they are less than 1% for almost all the frequency range.
However, there is not a biased tendency because all data is around zero. According
to the technical report of the Lin–KK tool [154], noisy spectra are normal, and
they can represent a time–invariant system. Thus, the data captured for this work
is valid for continuing to analyze the dynamic of the PV panel.

Figure 4.52. Validation of the Lin-KK tool for impedance measurements at (MPP +
1 [V])

Fig. 4.52 presents an operating point placed 1 [V] ahead of the MPP. In general,
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there is no bias tendency, and the residual percentage is small. There are a few
points that contain noise. As a result, the system can be considered time–invariant
and fulfill the Kramers–Kronig conditions. Thus, the Lin–KK tool helped to verify
the quality of all the measured impedance spectra of this implementation.

4.4 Impedance spectroscopy for online series
resistance monitoring

Section 4.2 simulated the study of partial shading conditions employing PV
modules in series, but, before arriving at that level of complexity, the first
EIS experimental campaigns are referred to a single PV module. The first
experimental analysis not only allowed to understand the most basic implications
of the dynamic behaviour for the PV module under test, but also to connect the
dynamic analysis provided in this chapter with the research activity discussed
in the previous ones, where the performance evaluation of PV panel is done
through the static Single Diode Model [155, 156]. In particular section 1.3.2
shown the relevance of estimating the Rs as a parameter that can reveal important
degradation effects in PV devices.
This section shows that the measured impedance spectrum in MPP allows for
building an accurate identification of the series resistance (Rs) degradation by
using the PV small–signal dynamic model and the EIS technique.
As already highlighted previously, methods proposed in the literature commonly
need to measure the whole I–V curve or part of it to estimate Rs through static
models, e.g, the SDM. These methods require to bias the system far from the MPP
with energy and money losses, as well as negative impact on the electronic system
equipment due to the frequently changes in the operating conditions. On the
contrary, the EIS methodology estimates the series resistance without changing
the operating point, thus still working in MPP. To the best of authors’ knowledge,
this is the first time that the series resistance degradation is estimated by using
only the impedance spectrum measured at MPP.

4.4.1 Analisys of experimental EIS for a single PV module

For analyzing the degradation effects caused for variations in the series resistance,
an external resistor of ∆R = 0.175 Ω was connected to the PV module terminals.
This value has been chosen as a testing case because it produces a PV power loss
of about 8% at high irradiance (G ≥ 750 W/m2), thus might be assumed, for
the module under test, as a reference value for considering the PV module in a
degraded condition. The experimental EIS spectra obtained by the PV module at
nominal conditions (without the external resistor) against the EIS measurements
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with the external resistance was analyzed and fitted with the PV dynamic model
for detecting the ∆R value.
Just before every EIS measurement, an I–V curve measurement is acquired.
This is used for settling the EIS system to operate at MPP. Additionally, the
experimental I–V curve allows to identify the parameters of the classical SDM
and, in particular, the series resistance value (Rs) that is used as reference for
comparing the resistance variation obtained with the EIS analysis.

Table 4.33. Parameter estimation by using the CPE model at MPP under different
irradiance levels.

Environmental Data EIS (Dynamic Model) I–V Curve Data
# G

[W/m2]
T [◦C] L [H] ±

CI[%]
R0 [Ω] ±

CI[%]
R1 [Ω] ±

CI[%]
Q ± CI[%] β ± CI[%] Ceq [F] Vmpp[V] Impp[V] Rs [Ω] ±

CI[%]
1 245 23.2 2.19E-06 ±

1.7
0.270 ± 4.2 10.917 ± 1.1 4.04E-05 ±

5.8
0.955 ±

0.7
2.80E-05 8.669 0.840 0.305 ± 10.2

2 286 23.4 2.28E-06 ±
2.2

0.232 ± 7.5 9.149 ± 3.3 6.59E-05 ±
11.8

0.913 ±
1.3

3.26E-05 8.783 1.044 0.258 ± 9.5

3 348 25.2 2.23E-06 ±
1.7

0.200 ± 13.7 6.481 ± 3.6 7.77E-05 ±
15.4

0.934 ±
1.7

4.55E-05 8.784 1.422 0.217 ± 6.5

4 400 25.6 2.12E-06 ±
3.8

0.188 ± 5.8 4.956 ± 1.7 9.73E-05 ±
12.6

0.939 ±
1.4

5.90E-05 8.778 1.724 0.175 ± 7.1

5 448 28.9 2.13E-06 ±
2.2

0.169 ± 2.8 3.823 ± 1.2 1.19E-04 ±
8.6

0.948 ±
1.0

7.84E-05 8.660 2.176 0.133 ± 6.0

6 482 28.7 2.17E-06 ±
2.8

0.166 ± 2.3 3.337 ± 0.9 1.31E-04 ±
6.3

0.949 ±
0.7

8.61E-05 8.602 2.435 0.146 ± 6.2

7 535 30.7 2.16E-06 ±
2.4

0.168 ± 2.4 3.025 ± 1.2 1.79E-04 ±
6.8

0.902 ±
0.8

7.95E-05 8.472 2.705 0.108 ± 5.6

8 599 33.6 2.01E-06 ±
2.8

0.154 ± 9.9 2.766 ± 2.1 3.86E-04 ±
16.7

0.817 ±
2.1

8.35E-05 8.385 3.022 0.070 ± 5.7

9 631 33.8 2.02E-06 ±
2.7

0.154 ± 8.7 2.613 ± 2.8 3.64E-04 ±
17.2

0.835 ±
2.1

9.18E-05 8.351 3.163 0.071 ± 4.2

10 754 34.2 2.04E-06 ±
2.5

0.148 ± 5.5 2.065 ± 1.9 3.68E-04 ±
19.0

0.852 ±
2.3

1.06E-04 8.364 3.863 0.055 ± 4.5

11 878 37.2 1.84E-06 ±
2.3

0.145 ± 1.7 1.679 ± 1.7 2.34E-04 ±
8.6

0.935 ±
1.1

1.36E-04 8.272 4.502 0.050 ± 3.0

12 908 42.3 2.10E-06 ±
2.3

0.143 ± 2.0 1.657 ± 1.7 1.93E-04 ±
10.8

0.973 ±
1.3

1.55E-04 8.143 4.794 0.046 ± 3.3

Table 4.33 and Table 4.34 show the parameters of the dynamic model of Fig. 1.6
found by using a fitting procedure. The first column is the identifier of every test.
For each testing condition, the confidence intervals of the parameters (expressed
as a percentage of variation with respect to the nominal value) are relatively low
by assuring a well fitted model. Table 4.33 presents the parameters values at
nominal conditions whereas Table 4.34 represents the parameters values with the
additional external resistance ∆R. The information regarding the environmental
conditions, the MPP coordinates and Rs estimated by fitting the I–V curve with
the single-diode model are also listed in the tables.
By comparing the estimated inductance in the two testing conditions is easy to
justify the increase of L in presence of the external resistance. Indeed, the ∆R is
connected to the commercial PV module through a further MC4 connector that
is in series to the system under test, thus by increasing the parasitic inductive
effect.
For confirming that the EIS spectra have been really performed at MPP, the
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Table 4.34. Parameter estimation by using the CPE model at MPP under different
irradiance levels with an additional external resistor.

Environmental Data EIS (Dynamic Model) I–V Curve Data
# G

[W/m2]
T [◦C] L [H] ±

CI[%]
R0 [Ω] ±

CI[%]
R1 [Ω] ±

CI[%]
Q ± CI[%] β ± CI[%] Ceq [F] Vmpp[V] Impp[V] Rs [Ω] ±

CI[%]
1 250 22.4 3.61E-06 ±

1.7
0.456 ± 4.7 9.940 ± 5.1 4.43E-05 ±

14.1
0.949 ±

1.4
2.93E-05 8.505 0.853 0.479 ± 4.4

2 334 25.4 3.57E-06 ±
1.3

0.396 ± 3.3 6.012 ± 1.0 6.79E-05 ±
6.0

0.966 ±
0.7

5.18E-05 8.421 1.344 0.381 ± 3.4

3 420 27.5 3.58E-06 ±
1.0

0.365 ± 1.4 4.172 ± 1.0 9.34E-05 ±
5.8

0.968 ±
0.6

7.20E-05 8.315 1.877 0.326 ± 2.6

4 520 30.3 3.28E-06 ±
5.9

0.343 ± 3.8 2.975 ± 1.5 1.42E-04 ±
10.6

0.960 ±
1.4

1.02E-04 8.182 2.511 0.297 ± 2.0

5 650 30.5 3.30E-06 ±
1.1

0.330 ± 1.5 2.232 ± 1.1 1.84E-04 ±
7.7

0.958 ±
0.9

1.31E-04 8.037 3.267 0.269 ± 1.9

6 755 34.6 3.39E-06 ±
2.8

0.325 ± 1.8 1.867 ± 1.2 2.30E-04 ±
8.8

0.953 ±
1.0

1.57E-04 7.801 3.860 0.252 ± 1.2

7 828 39.7 3.36E-06 ±
3.3

0.317 ± 2.3 1.583 ± 1.8 2.81E-04 ±
13.5

0.943 ±
1.8

1.77E-04 7.616 4.220 0.248 ± 1.0

8 886 35.6 3.35E-06 ±
3.6

0.319 ± 2.3 1.416 ± 1.5 2.38E-04 ±
13.2

0.968 ±
1.7

1.83E-04 7.676 4.487 0.242 ± 0.8

9 975 38.6 3.24E-06 ±
4.6

0.318 ± 1.8 1.259 ± 1.1 3.11E-04 ±
13.4

0.949 ±
1.9

2.04E-04 7.517 4.836 0.229 ± 0.4

10 1028 38.5 3.17E-06 ±
5.6

0.318 ± 1.9 1.219 ± 1.5 2.71E-04 ±
15.2

0.969 ±
1.7

2.10E-04 7.487 5.084 0.231 ± 0.6

condition expressed in Eq. 4.56 is evaluated by using the values reported in
Table 4.33 and Table 4.34. Fig. 4.53 shows the Rmpp values calculated by using
the experimental (Vmpp, Impp) data (red points). Blue markers are the values of
the dynamic CPE model calculated at zero frequency Zeq(0) = R0 + R1.

Figure 4.53. Comparison of the experimental Rmpp values and the impedance ad zero
frequency using the CPE model. Upper plot: PV module at nominal conditions. Lower
plot: PV module with the external resistor.

The percentage error among Rmpp and Zeq(0) for the medium and high irradiance
is very small, less than 2% for both nominal condition and in presence of ∆R.
At low irradiance, as visible in the Fig. 4.53, the maximum percentage error is
respectively 11.5% for the nominal condition and 8.4% with ∆R. This discrepancy
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is justified by the difficulty of finding exactly the MPP at low irradiance because
the power versus voltage curve is flat around the MPP and, due to the finite
resolution of the measurement system, small differences can be introduced in
settling the operating point during the EIS. If the error at low irradiance is
considered unacceptable such measure should be discarded. In the following,
all the measurements shown in Fig. 4.53 are assumed to be valid, thus the
dynamic CPE model is considered properly tuned for describing the behavior of
the PV module at MPP for both cases, nominal condition, and with the additional
resistance in the full range of the environmental conditions. It is worth to note
that the data required to perform this test are only the EIS spectra and the
measured voltage and current, thus it is suitable for the on-board execution giving
the possibility to guarantee the coherence of the experimental EIS data with the
MPP operation with a simple check.

4.4.2 Identification of the series resistance degradation

R0

R0

Figure 4.54. Comparison of test cases #10 (red markers) and #6 (blue markers) from
Tables 4.33 and 4.34 respectively.

Fig. 4.54 graphically illustrates the effect of series resistance degradation in
the I–V curves (upper plot) and the impedance values measured with the EIS
methodology (lower plot) in the same environmental conditions. It is well-known
that an increase in the series resistance impacts on the slope of the I–V curve in
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proximity of Voc, which is reflected on a displacement of the MPP. Differently, the
impact of the series resistance variation produces an horizontal translation on the
impedance spectra, that is visible at high frequency and mainly affects the R0
value.
The identification of the series resistance degradation by using the I–V curves
requires to measure voltage and current around Voc for calculating the slope of
the I–V curves and then estimates the Rs variation. On the contrary, the EIS
methodology requires only to estimate the parameters of the PV dynamic model
by using the impedance spectra measured at MPP and then approximate the
series resistance degradation through the R0 parameter variation.
A further experimental campaign has been carried out on the PV panel under test
by performing the impedance measurement in different points of the right part of
the I–V curve. Both healthy (nominal) and degraded conditions were analyzed.
Fig. 4.55 shows the values of the CPE dynamic model parameters for the PV
panel operating in healthy and degraded condition for different operating points
spreading from Voc up to the left of MPP.

Figure 4.55. Parameters variation of the CPE dynamic model as function of the
operating point of the I–V curve

It is worth to note that the additional series resistance change the slope of the
I–V curve by making not comparable the impedance spectra for the same testing
point when the panel operates in healthy or emulated degraded condition, for this
reason the parameters have been plotted as function of the normalized current
flowing in the p–n junction. The latter is calculated as the difference between the
short–circuit current and the current delivered by the PV panel for each point of
the I–V curve where the impedance spectrum has been measured.
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The graphs clearly show how the additional resistance only impact on the R0
parameter how already confirmed by the analysis performed only in the MPP
point.
For forward biased solar cells the capacitive effect is dominated by the diffusion
capacitance [63], which is linear with respect to the current flowing in the p–n
junction, as confirmed by C1 plot in Fig. 4.55. As concerns the resistive effect of
the p–n junction, which is described by the R1 parameter, the plot of Fig. 4.55
clearly put into evidence that its variation is much more pronounced around the
MPP, thus it is expected that it could be a further indicator for detecting other
degradation phenomena when the solar cells operate in MPP.
Table 4.35 shows a comparison of the series resistance for the cases with
and without the external resistor having similar irradiance and temperature
conditions. These three values gives a preliminary analysis at low, medium,
and high irradiance levels. The change expressed by the dynamic CPE model
in its R0 parameter shows a better estimation of the true additional resistance
(∆R = 0.175 Ω).

Table 4.35. Preliminary comparison of the series resistance variation found by the SDM
and the dynamic CPE model.

Additional Resistance Nominal Case Variation
G [W/m2] T [◦C] Rs[Ω] R0[Ω] G [W/m2] T [◦C] Rs[Ω] R0[Ω] ∆Rs[Ω] ∆R0[Ω]

250 22.4 0.479 0.456 245 23.2 0.305 0.270 0.174 0.186
520 30.3 0.297 0.343 535 30.7 0.108 0.168 0.189 0.175
886 35.6 0.242 0.319 878 37.2 0.050 0.145 0.192 0.174

Figure 4.56. Left plot: Rs estimated by using SDM. Right plot: R0 estimated by using
EIS spectra. The asterisks refer to the parameters in nominal conditions. The square
markers refer to the tests with the external resistance.

Fig. 4.56 shows the trend of the series resistance parameters Rs and R0
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evaluated by fitting the static model (SDM) and the dynamic model (CPE
model) respectively with the I–V curves and the EIS spectra in the different
environmental conditions reported in Table 4.33 and Table 4.34. All the values
display the confidence interval given by the fitting procedure. Despite the
resistance values obtained from the static (SDM) and dynamic models cannot
be directly compared because derived from different experimental data, both
recognize a similar degraded effect introduced by the external series resistance.
The difference in the series resistance estimation is also justified by the fact that
the two models describe different characteristics of the PV module. Indeed the
SDM reproduces the static non-linear behavior and its I–V profile using some
non-linear elements as a diode. In contrast, the CPE model is a dynamic small
signal model used for representing the dynamic response of the PV module at a
specific operating point thus the meaning of Rs and R0 is not exactly the same,
nevertheless both refer to the ohmic losses and then exploitable for detecting
degradation phenomena in the PV module.
A comparison by using all the experimental cases reported in Table 4.33 and
Table 4.34 has been done by introducing a regression curve for describing the
parameters (Rs) and (R0) as function of the irradiance. Eq. (4.59) shows the
general expression that best fits the experimental data. It is worth to note that
the actual outdoor experimental campaign is referring to a short period (few
weeks) that did not allow to cover a wide combination of different irradiance and
temperature conditions. Indeed, the outdoor environmental conditions are strictly
correlated during the days of the same season and only by considering long testing
period it is possible to have an experimental campaign covering a large range of
temperature (e.g. by considering summer and winter period). For this reason,
the temperature variation encountered in the actual experimental tests has been
considered having a negligible impact on the series resistance estimation and not
accounted in the regression function as an additional predictor. Table 4.36 shows
the parameter values of the regression curves describing the series resistance found
by the static (SDM) and dynamic (CPE) models.

R = a +
( b

G

)
(4.59)

Table 4.36. Parameters of the regression curves for the series resistance values found
using the SDM and the dynamic model (EIS).

Model Regression Parameters
a b

Static Model (SDM) Regression 1 -0.066 93.040
Regression 2 0.147 80.374

Dynamic Model (EIS) Regression 3 0.090 40.774
Regression 4 0.266 44.975

Fig. 4.57 displays the resistance values of the models for every irradiance level. The
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regression curves modelled using the SDM show two not–aligned tendencies that
generate unbalanced approximations for the series resistance variations, especially
at low irradiance. In contrast, the regression curves calculated with the dynamic
CPE model show a more uniform difference throughout the whole irradiance
range. It indicates a more stable and reliable approximation of the series resistance
variation at all irradiance levels.

Figure 4.57. Regression process for the values calculated using the SDM and the
dynamic model in the two test cases.

Figure 4.58. Percentage error estimation between the nominal delta value (∆R =
0.175 Ω) and the value given by the SDM and the dynamic model using the regression
curves for the whole irradiance range.

In fact, the error between the physical resistance value and each estimation
(Fig. 4.58) shows that the dynamic (CPE) model approximates in a good way the
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resistance variation (∆R), even better than the static model (SDM), especially
in the range from medium to high irradiance. The dynamic (CPE) model also
shows a positive attribute since it displays an estimated error always positive
(overestimation) and tends to stabilize from low to high irradiance levels. In
contrast, the SDM depicts under and overestimations from low to high irradiance.
This behavior reveals a technical weakness and supports the idea that the
dynamic (CPE) model is most reliable for approximating the series resistance
variations in all irradiance levels. As an additional test, the external resistance
is changed to ∆R = 0.35 Ω. Table 4.37 compares some similar irradiance values
and corroborates the results previously discussed. Although the available data
only covers from low to medium irradiance range, it again shows that the dynamic
(CPE) model, calculated by using the EIS methodology, estimates the degradation
of series resistance better than the SDM.

Table 4.37. Preliminary comparison of the series resistance variation found by the SDM
and the CPE model(∆R = 0.35 Ω).

Additional Resistance Nominal Case Variation
G [W/m2] T [◦C] Rs[Ω] R0[Ω] G [W/m2] T [◦C] Rs[Ω] R0[Ω] ∆Rs[Ω] ∆R0[Ω]

297 29.2 0.481 0.541 286 23.4 0.258 0.232 0.223 0.309
361 27.2 0.446 0.529 347 25.2 0.217 0.200 0.229 0.329
414 27.5 0.435 0.537 400 25.6 0.175 0.188 0.260 0.349
479 29.6 0.425 0.516 482 28.7 0.146 0.166 0.279 0.350
542 31.4 0.402 0.504 535 30.7 0.108 0.168 0.294 0.336
596 34.3 0.402 0.496 599 33.6 0.070 0.154 0.332 0.342

4.5 Impedance spectroscopy for partial shading
detection

4.5.1 Setup of series connected PV panels

The objective of this experimental campaign is to identify the relationship between
the partial shading conditions occurring on the PV panels and the EIS spectra.
For testing the EIS methodology on series-connected PV panels, the structure
shown in figure 4.59 have been implemented. Only two PV panels are used in the
PV string due to voltage limitations of the impedance spectroscopy equipment.
In order to emulate and keep under control the partial shading effect, a
semi-transparent sheet with different shadow degrees is mounted over the PV
structure as shown in figure 4.59b.
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(a) Uniform irradiance
condition

(b) Simulated partial
shading condition

Figure 4.59. PV panel disposition.
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(a) I-V curves. In red the maximum power point.
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(b) Impedance spectra measured in MPP

Figure 4.60. Static (a) and dynamic (b) response of two series connected PV panels
under uniform environmental conditions.

Figure 4.60 shows the experimental I-V curves and the impedance spectra
measured in each corresponding MPP (fig. 4.60b), with the two PV panels
operating in outdoor uniform conditions.
The measurement system executes the procedure described in section 4.3 for
acquiring periodically the I-V curve and the corresponding EIS spectra in MPP.
For these tests, the amplitude of the signal perturbation for performing the EIS is
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fixed at 100 mV, as for the test on the single PV panel. It corresponds, in average,
to 0.7% of Vmpp.
As already discussed in the previous sections referring to the single panel analysis,
the shape of the impedance spectra is well approximated by an semi-circle and
can be modelled with a dynamic model with an unique constant phase element
(CPE), representing the small-signal circuit shown in figure 1.6.
By comparing the trend of the I-V curves against the corresponding impedance
spectra, the arc is enlarging as the irradiance is reducing. In red are reported the
spectra reconstructed with the CPE model adjusted on the experimental data.
The measured impedance spectra does not show considerable noise, then the
fitting procedure (adjusted as advises [70]) is used for calculating the parameters
of the CPE dynamic model, which is now representing the whole PV string. The
identified parameters are shown in table 4.38.
For each test, the table 4.38 reports the environmental conditions of the two
panels (G1, G2; T1,T2) corresponding to the average values of the sensor measures
acquired during the tests; the MPP operating point (Vmpp,Impp) where the
impedance analysis is performed; the CPE parameters values (L, R0, R1, Q,β,
Ceq) with the corresponding interval of confidence given in percentage [%]. Finally,
the mean square error (MSE) calculated with equation (4.60).

MSE =

∑N
k=1[ℜ(Zexp,k − ZCP E,k)]

2 + [ℑ(Zexp,k − ZCP E,k]
2

N
(4.60)

In almost all the cases, the difference between the irradiance and temperature
values of the two PV panels is very small. Moreover, the interval of confidence
and the MSE associated with each test is acceptable. Thus, all the proposed
experimental tests, which have been performed in uniform conditions are
considered valid.
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Table 4.38. Estimated parameter of the CPE model for different environmental conditions.

Test Environmental Data Operating point CPE dynamic model parameters
# G1 [W/m2] G2 [W/m2] T 1[◦C] T 1[◦C] Vmpp[V] Impp[A] L [µH] ± [%] R0 [Ω] ± [%] R1 [Ω] ± [%] Q ± [%] β ± [%] Ceq [µF] MSE
7 243.43 242.58 21.69 23.21 16.79 1.19 4.26 4.54 0.58 7.57 14.51 1.80 7.8E-05 9.40 0.78 1.36 11.70 0.0383
8 244.12 243.30 23.90 25.02 16.66 1.20 4.42 4.78 0.59 9.07 15.00 3.45 7.2E-05 13.76 0.79 1.97 11.60 0.0468

36 244.98 243.88 24.73 25.87 16.66 1.20 4.14 3.55 0.60 7.87 13.54 1.25 7.3E-05 9.66 0.80 1.30 12.30 0.0330
10 329.94 328.58 26.90 27.38 16.69 1.66 4.25 2.04 0.49 4.24 9.91 1.02 6.5E-05 7.37 0.85 0.89 18.10 0.0093
12 331.20 329.53 27.39 27.55 16.69 1.66 4.26 1.30 0.49 3.28 9.79 1.22 6.7E-05 6.27 0.85 0.76 18.30 0.0060
9 333.63 332.46 27.05 27.43 16.72 1.66 4.20 1.40 0.48 2.39 9.47 0.85 6.7E-05 7.05 0.85 0.86 19.10 0.0052

14 418.54 417.08 28.18 27.93 16.80 2.12 4.26 1.19 0.42 3.62 7.81 2.47 7.1E-05 10.02 0.88 1.12 25.00 0.0046
16 420.41 418.19 27.18 27.44 16.88 2.13 4.27 1.53 0.42 6.94 7.85 1.95 6.9E-05 10.44 0.88 1.23 23.60 0.0046
15 420.89 419.05 27.34 26.98 16.86 2.13 4.18 1.39 0.42 2.57 7.58 0.98 7.4E-05 7.96 0.87 0.96 24.20 0.0033
13 421.60 419.53 26.39 26.14 16.96 2.14 4.31 1.41 0.41 4.03 7.59 2.34 7.4E-05 10.07 0.87 1.17 24.30 0.0027
17 484.39 481.30 29.70 29.34 16.85 2.47 4.38 8.84 0.40 10.16 6.51 2.85 6.9E-05 21.14 0.90 2.62 29.00 0.0249
19 563.19 557.88 35.10 34.35 16.57 2.89 4.31 8.17 0.36 7.53 5.32 1.64 8.2E-05 18.43 0.91 2.44 37.30 0.0114
20 563.67 558.25 32.34 32.98 16.62 2.90 4.35 3.95 0.38 4.60 5.61 1.73 7.5E-05 12.32 0.91 1.51 34.30 0.0076
21 564.02 558.79 33.45 33.18 16.62 2.90 4.32 8.50 0.37 8.14 5.52 1.89 8.1E-05 22.50 0.91 3.03 36.30 0.0112
22 580.15 572.41 26.57 27.73 16.90 2.18 3.86 4.35 0.45 11.16 7.45 2.78 2.0E-04 18.94 0.77 2.67 27.60 0.0262
23 580.58 572.97 28.99 29.83 16.78 2.18 4.06 4.43 0.44 8.36 7.76 2.67 1.8E-04 15.31 0.77 2.31 25.90 0.0256
24 594.03 587.16 32.03 33.12 16.59 2.25 3.96 6.37 0.46 6.77 7.65 6.10 1.5E-04 18.03 0.80 2.49 28.50 0.0224
25 673.09 669.28 37.48 38.30 16.26 3.52 4.23 6.33 0.33 5.40 4.45 1.27 8.7E-05 15.88 0.94 1.90 50.10 0.0055
26 676.82 672.80 32.80 34.64 16.47 3.54 4.31 6.40 0.33 7.24 4.59 1.68 8.6E-05 14.23 0.93 1.86 49.00 0.0065
27 685.50 682.24 38.06 38.82 16.27 3.58 4.24 4.89 0.33 7.50 4.37 1.72 8.4E-05 14.51 0.94 1.88 51.60 0.0047
28 728.20 725.35 40.60 41.83 16.14 3.87 4.16 2.49 0.32 3.07 4.01 1.17 8.4E-05 7.60 0.96 0.93 57.60 0.0025
29 735.03 731.39 39.59 41.17 16.20 3.88 4.10 3.49 0.32 3.57 3.81 1.43 8.6E-05 11.03 0.96 1.35 58.90 0.0032
31 740.03 736.27 40.82 42.17 16.15 3.91 4.11 3.89 0.33 3.90 3.91 1.67 9.0E-05 10.13 0.95 1.24 57.20 0.0027
32 794.67 795.18 40.62 43.25 16.16 4.31 3.96 4.36 0.31 3.17 3.57 1.39 1.0E-04 10.31 0.94 1.27 62.20 0.0024
30 796.56 797.19 40.19 42.37 16.18 4.31 3.95 5.21 0.32 3.99 3.66 1.31 8.4E-05 14.28 0.96 1.75 58.80 0.0036
33 800.52 801.16 41.87 44.54 16.03 4.36 3.93 3.48 0.32 5.20 3.75 1.60 9.3E-05 11.50 0.95 1.40 61.30 0.0035
34 802.70 803.91 43.58 45.49 15.98 4.37 4.03 3.02 0.32 5.02 3.69 1.67 8.4E-05 10.89 0.96 1.23 59.70 0.0033
5 856.93 856.44 45.12 47.00 15.99 4.63 4.10 3.50 0.30 2.35 3.20 0.95 9.7E-05 9.67 0.96 1.17 66.40 0.0012

11 864.05 863.19 43.91 46.17 15.98 4.68 4.13 3.22 0.30 2.59 3.34 1.18 1.0E-04 9.34 0.95 1.11 67.20 0.0019
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4.5.2 Series connected panels operating in partial shading
conditions

The setup described in subsection 4.5.1 is also used for testing the dynamic
behavior of the two series-connected PV panels operating under partial shading
conditions. The latter are emulated as shown in figure 4.59b.
Figure 4.61 shows the corresponding experimental I-V curves and the EIS spectra
for different irradiance levels. Depending on the angle of incidence of the sun, the
degree of the shadow change during the experimental campaign in average a 30%.
The exact shadowing factor can be easily obtained by the ratio of the two solar
sensor values provided for each test.
Figure 4.61b illustrates that, using the same perturbation amplitude of the
uniform case, the experimental EIS data showed high variability, especially for
low irradiance conditions. As consequence, the reconstructed semi-arcs obtained
using the CPE dynamic model are considered not representative at low irradiance
tests. This is also justified by a significant increase of the MSE and the confidence
intervals resulting from the CPE dynamic model parameters, as shown in table
4.39.
It is also worth noting that a large part of this research activity has been performed
during the winter season thus has been difficult to do several experimental
campaigns because it was necessary to have regular and stable environmental
conditions. For this reason, although the experimental campaign is not completely
useful, at least the tests performed at higher irradiance levels should be considered
reliable, thus to have a first comparison with the uniform irradiated cases.
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(a) I-V curves. In red the local maximum power
point at the right side of the I-V curves.
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(b) Impedance spectra measured in MPP

Figure 4.61. Static (a) and dynamic (b) response of two series-connected PV panels
under partial shading conditions.
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Table 4.39. Estimated parameter of the CPE dynamic model in partial shading conditions.

Test Environmental Data Operating point CPE dynamic model parameters
# G1 [W/m2] G2 [W/m2] T 1[◦C] T 1[◦C] Vmpp[V] Impp[A] L [µH] ± [%] R0[Ω] ± [%] R1[Ω] ± [%] Q ± [%] β ± [%] Ceq [µF] MSE
4 547.14 384.76 38.00 34.61 17.32 1.89 3.66 22.45 0.54 36.14 21.01 6.38 2.4E-05 55.08 0.90 6.50 9.60 3.7548
5 557.58 395.06 38.43 34.67 17.32 1.93 3.95 14.92 0.50 63.40 20.44 5.88 1.9E-05 62.56 0.90 7.38 8.20 3.3174
3 546.51 390.32 35.73 33.48 17.40 1.90 3.49 35.46 0.60 26.30 19.91 8.00 2.1E-05 68.10 0.91 8.15 9.70 2.9122

11 605.77 430.60 39.06 35.00 17.34 2.13 3.80 16.19 0.51 37.82 18.18 6.97 3.3E-05 46.43 0.89 5.87 13.20 2.8261
10 601.78 420.06 41.09 37.69 17.14 2.13 4.00 19.14 0.48 39.33 16.92 7.58 3.6E-05 62.76 0.87 7.89 12.10 1.4494
15 645.35 445.82 40.77 36.90 17.15 2.33 4.22 16.72 0.46 27.81 14.22 7.14 4.8E-05 59.53 0.88 7.51 17.70 1.2931
14 642.01 443.53 42.99 39.11 17.04 2.31 3.76 19.92 0.54 32.13 14.45 6.62 2.8E-05 59.07 0.90 7.24 11.80 1.1301
12 607.80 431.91 40.68 36.76 17.21 2.15 4.23 9.06 0.46 29.36 16.45 4.84 3.2E-05 37.96 0.87 4.43 10.40 1.1035
9 597.61 416.78 43.38 39.78 17.01 2.11 3.65 15.02 0.50 22.45 14.86 6.73 4.7E-05 42.39 0.86 5.55 14.60 0.6381

13 641.61 442.87 42.58 38.74 17.04 2.30 3.71 14.90 0.50 24.67 13.65 5.50 4.0E-05 48.86 0.88 6.17 14.50 0.6024
2 513.85 335.20 31.92 30.27 17.34 1.86 3.58 28.45 0.55 9.46 11.65 7.33 4.2E-05 38.00 0.93 4.54 22.30 0.4121

17 654.41 451.73 41.76 37.66 17.09 2.38 4.10 12.27 0.42 14.19 11.20 4.67 6.1E-05 32.21 0.89 3.99 23.70 0.2514
16 651.60 450.21 41.67 37.67 17.13 2.36 3.87 30.71 0.40 29.80 8.89 8.17 6.8E-05 61.01 0.89 7.96 26.00 0.2120
1 504.81 326.24 31.46 29.75 17.42 1.84 3.69 11.82 0.46 33.51 11.09 4.39 4.9E-05 35.78 0.88 4.06 18.20 0.1855
6 559.58 373.69 34.34 31.39 17.21 2.08 3.75 27.92 0.46 20.67 8.95 4.24 6.3E-05 41.04 0.88 5.82 23.10 0.1349
7 561.50 367.32 28.76 27.26 17.40 2.04 3.07 12.17 0.47 27.78 9.31 3.96 1.8E-04 29.12 0.72 4.58 14.30 0.0998
8 567.76 375.80 33.20 30.56 17.27 2.10 3.67 19.77 0.41 24.34 8.00 3.58 7.1E-05 29.87 0.88 3.94 26.40 0.0736

20 702.16 497.40 45.90 41.05 16.87 2.60 3.89 7.31 0.38 10.36 7.58 2.15 4.9E-05 18.21 0.96 2.06 34.70 0.0594
24 746.68 535.96 47.37 41.63 16.72 2.79 3.76 10.27 0.41 8.87 7.24 2.09 5.3E-05 22.15 0.94 2.68 32.00 0.0393
19 701.53 496.94 43.70 39.12 17.00 2.60 3.87 4.49 0.35 8.12 7.22 1.73 6.1E-05 14.41 0.94 1.62 37.80 0.0373
23 744.32 532.47 47.56 42.06 16.80 2.78 3.76 24.35 0.37 13.51 6.28 4.46 4.9E-05 33.45 0.97 4.06 38.90 0.0338
18 701.35 497.11 42.31 37.65 17.11 2.59 3.78 12.44 0.34 13.68 6.64 2.94 6.2E-05 25.74 0.95 3.23 39.50 0.0330
21 710.34 503.36 42.60 37.97 17.09 2.63 3.83 10.24 0.35 14.34 6.87 2.30 5.5E-05 19.25 0.95 2.14 36.80 0.0279
26 750.28 538.27 46.95 41.56 16.81 2.80 3.69 9.98 0.36 11.25 6.05 1.96 5.8E-05 23.77 0.96 2.83 40.70 0.0244
25 750.01 537.36 46.47 40.70 16.89 2.79 3.78 12.41 0.34 13.54 6.04 2.17 7.2E-05 29.19 0.94 3.54 41.60 0.0240
22 740.30 529.83 47.31 41.87 16.85 2.76 3.80 4.98 0.35 8.10 6.21 1.70 6.3E-05 14.78 0.95 1.73 41.90 0.0170
27 750.34 537.96 46.78 41.02 16.85 2.79 3.63 5.99 0.37 7.67 6.06 1.82 5.7E-05 18.08 0.96 1.97 41.40 0.0167
35 856.88 654.65 49.03 42.65 16.67 3.28 3.27 5.92 0.37 5.93 5.17 2.18 1.8E-04 16.21 0.84 2.15 44.50 0.0124
46 932.10 695.56 44.50 40.21 16.72 3.72 3.66 4.39 0.33 6.83 4.89 2.37 1.8E-04 15.21 0.84 2.14 50.20 0.0112
41 896.87 710.34 47.16 41.23 16.69 3.49 3.33 5.66 0.36 6.18 4.86 1.88 1.7E-04 17.23 0.85 2.32 44.90 0.0110
37 858.43 657.12 47.81 40.96 16.80 3.28 3.23 5.49 0.37 6.33 4.92 2.44 1.6E-04 16.77 0.85 2.20 42.90 0.0103
36 858.16 657.60 49.47 42.15 16.71 3.28 3.29 4.63 0.35 6.25 5.01 1.66 1.8E-04 14.66 0.84 1.98 46.90 0.0095
39 860.23 656.87 48.32 42.06 16.73 3.29 3.24 4.38 0.36 6.24 4.94 2.08 1.8E-04 18.81 0.84 2.36 46.20 0.0090
31 801.69 587.57 49.42 42.96 16.70 3.01 3.70 4.64 0.35 5.49 5.39 1.44 1.1E-04 13.06 0.89 1.67 43.50 0.0087
45 930.88 694.26 43.32 40.26 16.79 3.71 3.57 4.37 0.33 7.33 4.51 2.80 1.6E-04 15.94 0.86 2.10 49.10 0.0087
47 933.92 696.17 43.42 38.54 16.85 3.72 3.70 5.04 0.33 7.82 4.67 2.52 1.7E-04 19.16 0.85 2.59 47.30 0.0084
42 897.72 708.51 44.21 38.69 16.90 3.49 3.40 3.94 0.35 5.59 4.89 1.84 1.8E-04 15.29 0.83 2.01 43.10 0.0083
43 898.96 710.67 45.50 39.55 16.84 3.50 3.48 3.60 0.34 7.64 5.14 2.07 1.7E-04 14.71 0.83 2.15 42.30 0.0082
38 859.67 657.18 48.44 42.10 16.69 3.29 3.24 4.34 0.37 5.93 5.00 2.37 1.8E-04 16.08 0.84 2.08 44.70 0.0080
44 901.39 713.71 47.44 41.88 16.64 3.51 3.32 5.16 0.35 4.82 4.88 1.73 1.7E-04 11.82 0.84 1.65 45.20 0.0074
34 856.17 653.48 47.73 41.67 16.77 3.28 3.38 2.73 0.35 4.63 5.18 1.89 1.5E-04 12.47 0.85 1.70 45.40 0.0058
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4.5.3 Uniform vs. partial shading condition operation

A graphical comparison of two I-V curves and the corresponding EIS spectra is
shown in figure 4.62. The plots have been selected among the reliable tests and
refer to an uniform operating condition and to a partial shading condition having
similar MPP respectively. Specifically, the data of test #21 of table 4.38 and test
#35 of table 4.39 have been used.
First of all, this comparison put into evidence how the knowledge of only the
Vmpp and Impp values is not enough to distinguish if the PV system is operating
in uniform or partial shading conditions (if the I-V scan is not performed and
the irradiance values are not known). In these cases, the EIS spectra should
provide additional information to distinguish the uniform from the partial shading
operation..
When the two PV panels operate in uniform conditions, the dynamic behavior of
each one is similar, thus it is expected that the whole string could be modeled
as a single EIS semi-arc using a simple CPE dynamic model as already verified
in the previous subsection. Differently, in partial shading conditions, the not
shaded PV panel is working at a point not corresponding to its MPP. Figure 4.63
proves that it operates closer to its own open-circuit voltage. As discussed in
section 4.3.3, the PV operating point has a strong impact on its internal junction
capacitance and resistance, thus the two PV panels connected in series should
exhibit a different dynamic behavior that should affect the impedance spectra of
the PV string. Unfortunately, this difference is not visible in figure 4.62b where
the CPE dynamic model gives a good fitting also for the partial shading condition.
Since this result is in contrast with the simulation analysis shown in subsection
4.2, a further experimental campaign has been conducted and discussed in the
next section.

4.6 Double arc identification on the impedance
spectra

4.6.1 Analysis of EIS experimental data with improved quality

A second campaign of measurements has been performed by adjusting some
configuration parameters of the impedance spectroscopy instrumentation. In
particular, the perturbation amplitude has been increased step by step until
regular shapes was appearing for the EIS spectra. For the measures analysed
in these sections, the perturbation amplitude has been fixed to 500 mV, it gives
satisfactory results both in uniform and mismatched conditions. This amplitude
corresponds, in average, to about 3% of PV operating voltage. In order to have
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(a) I-V curves.
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(b) Impedance spectra measured in MPP

Figure 4.62. Comparison of static a) and dynamic response b) of two series connected
PV panels under uniform and partial shading conditions.

a comparison with the previous test, the same shadowing factor of 30% has been
applied. Figure 4.64 shows the I-V curves and EIS plots acquired in uniform
conditions. A small improvement is obtained with respect to the previous cases,
since they were already satisfactory.
The most interesting results are appeared in partial shading conditions. Indeed,
as shown in figure 4.65, the experimental impedance spectra now exhibit a double
curvature at high frequency. This effect is usually due to the combination of two
arcs, thus correctly representing the dynamic behavior of each one of the two
panels operating in different environmental conditions. In these cases,the fitted
curve obtained with a single CPE branch is not able to reconstruct this more
complex EIS shape. In the figure only one case has been shown for a better
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Figure 4.63. Different operating points for PV panels operating in partial shading
conditions

visualization, but the EIS shape modification is evident in every test performed
in partial shading condition.

4.6.2 PV dynamic models for PV string operating in partial
shading conditions

As reported in literature the complex shapes of EIS spectra can be modelled in
different way [70], [73], [80]. The three dynamic circuits shown in figure 4.66,
which are potentially able to reproduce the double semi-arcs, will be analysed for
verifying their capability to fit with the experimental measurements.
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(a) I-V curves. In red the maximum power point.
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(b) Impedance spectra measured in MPP

Figure 4.64. Static (a) and dynamic (b) response of two series connected PV panels
under uniform environmental conditions with optimised perturbation amplitude.
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Figure 4.66. PV dynamic models for representing PV string operating in partial shading
condition.

The identified parameters are reported in table 4.40 for the model with two RC
branches, in table 4.41 for the model with an RC branch and a CPE branch, in
table 4.42 for the model with two CPE branches.
In each table the columns corresponding to the capacitive effects is highlighted
to put into evidence the different dynamic behavior of the two panels connected
in series.
Figure 4.67 shows the graphical comparison of the impedance spectra fitted with
the three selected model. This example is referring to the same experimental
impedance shown in figure 4.65b. As it is evident in the graphics, the first model,
composed with two RC branches, does not perform accurately while the other
two models exhibit similar results.
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(a) I-V curves. In red the local maximum
power point at the right side of the I-V curves.
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(b) Impedance spectra measured in MPP

Figure 4.65. Static (a) and dynamic (b) response of two series connected PV panels
under partial shading conditions with optimised perturbation amplitude.

Moreover, although the experimental impedance spectra are well fitted with
the R-RC-CPE and R-CPE-CPE models, the parameters identification method
does not give satisfactory results in terms of interval of confidence. This is
in part justified by the fact that the procedure developed for the parameters
identification in partial shading condition, is based on the deterministic approach
implemented in the MATLAB identification toolbox and not yet optimised.
As already did in section 3.8 for the static model, it is expected a significant
improvements if a customised procedure is developed. Or investigating different
approaches based on stochastic methods, as for example genetic algorithms, that
might be much more effective for such kind of application. Indeed, in [157] and
[42] has been already proven that optimised stochastic methods are suitable for
the parameters identification of both static and dynamic models we are using
for PV characterisation. Moreover stochastic methods can be implemented on
embedded systems in more easy way since usually are characterised by low
computational complexity, then more suitable for the on board applications.
Nevertheless, due to the limited number of tests currently available in partial
shading conditions, a final assessment concerning the best model cannot be
provided at this time. More complex models could be also analysed for achieving
better results, if the proposed solutions are not satisfactory when an enriched
experimental dataset will be available.
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Table 4.40. Estimated parameter of a double RC branch

Test Environmental Data Operating point L+R0 + R1//C1 parameters additional R2//C2 branch
# G1 [W/m2] G2 [W/m2] T 1[◦C] T 2[◦C] Vmpp[V] Impp[A] L [µH] ± [%] R0 [Ω] ± [%] R1 [Ω] ± [%] C1[µF] ± [%] R2 [Ω] ± [%] C2[µF] ± [%] MSE
1 619.96 389.79 46.14 44.96 16.49 1.99 3.57 5.29 0.41 37.38 4.10 53.67 85.70 48.13 1.93 40.93 23.80 11.25 0.0437
2 617.70 397.32 46.62 44.80 16.51 1.98 3.55 5.57 0.40 38.24 4.55 28.35 72.30 51.33 1.67 54.68 27.80 17.78 0.0600
3 775.06 532.75 46.36 46.08 16.61 2.67 4.02 9.18 0.22 45.60 3.83 8.90 45.70 29.07 0.39 30.60 23.80 60.30 0.0162
4 827.03 576.39 48.92 46.28 16.56 2.93 4.06 9.07 0.21 46.48 3.70 10.14 50.80 31.04 0.43 30.14 23.80 50.57 0.0197
5 910.00 650.49 47.61 47.44 16.59 3.35 4.33 8.53 0.19 57.55 3.15 6.46 52.90 17.71 0.32 26.94 27.80 82.33 0.0143
6 959.39 687.10 50.04 48.04 16.47 3.57 4.26 10.53 0.18 90.52 2.88 7.59 55.30 14.43 0.28 46.18 27.80 120.52 0.0139
7 968.00 706.04 48.91 48.17 16.48 3.65 4.24 7.67 0.20 48.09 3.10 5.24 59.10 17.46 0.27 31.32 32.40 77.94 0.0105
9 1043.15 768.71 52.49 51.25 16.31 3.88 4.11 9.48 0.19 69.96 2.78 6.18 57.70 13.65 0.25 43.24 32.40 114.43 0.0122

10 1053.80 769.92 50.05 50.02 16.50 3.85 4.15 11.29 0.19 98.65 2.65 6.05 57.90 11.41 0.22 72.16 32.50 170.74 0.0114
11 1066.96 777.00 49.55 48.34 16.51 3.86 3.82 11.13 0.20 91.92 2.82 6.16 56.90 19.60 0.23 75.37 32.50 139.24 0.0128

Table 4.41. Estimated parameter of the CPE model plus with an additional RC branch
Test Environmental Data Operating point L+R0+CPE parameters additional R2//C2 branch

# G1 [W/m2] G2 [W/m2] T 1[◦C] T 2[◦C] Vmpp[V] Impp[A] L [µH] ± [%] R0 [Ω] ± [%] R1 [Ω] ± [%] Q1 ± [%] β1 ± [%] C1eq [µF] R2 [Ω] ± [%] C2[µF] ± [%] MSE

1 619.96 389.79 46.14 44.96 16.49 1.99 3.08 9.05 0.51 7.89 0.47 38.88 1.3E-06 139.05 1.34 10.81 47.25 5.20 6.74 39.53 15.38 0.0207

2 617.70 397.32 46.62 44.80 16.51 1.98 3.10 9.00 0.50 7.24 0.41 40.23 8.2E-07 125.84 1.39 9.39 53.71 5.61 6.61 39.05 15.94 0.0337

3 775.06 532.75 46.36 46.08 16.61 2.67 3.32 6.22 0.45 5.44 0.25 24.53 5.2E-07 53.85 1.46 3.91 78.20 3.89 6.54 52.16 8.30 0.0037

4 827.03 576.39 48.92 46.28 16.56 2.93 3.36 6.19 0.44 6.36 0.28 27.60 5.2E-07 72.45 1.46 4.87 71.56 3.75 6.72 54.80 10.81 0.0075

5 910.00 650.49 47.61 47.44 16.59 3.35 3.66 5.39 0.39 4.87 0.22 25.43 1.1E-06 75.02 1.42 5.74 98.40 3.19 5.26 64.13 7.81 0.0022

6 959.39 687.10 50.04 48.04 16.47 3.57 3.57 5.47 0.38 4.92 0.18 24.98 5.2E-07 46.66 1.51 3.53 119.65 2.92 7.20 69.08 8.86 0.0016

7 968.00 706.04 48.91 48.17 16.48 3.65 3.66 4.92 0.37 4.85 0.20 37.67 1.9E-06 100.53 1.39 8.24 119.92 3.11 3.66 69.75 10.96 0.0035

9 1043.15 768.71 52.49 51.25 16.31 3.88 3.50 5.18 0.37 4.55 0.19 29.22 9.7E-07 73.16 1.46 5.63 124.79 2.80 5.56 72.10 9.59 0.0016

10 1053.80 769.92 50.05 50.02 16.50 3.85 3.56 5.33 0.36 4.63 0.17 30.14 1.3E-06 82.92 1.45 6.41 142.19 2.65 5.74 74.08 8.30 0.0014

11 1066.96 777.00 49.55 48.34 16.51 3.86 3.24 5.60 0.36 4.87 0.19 27.95 1.1E-06 87.82 1.45 6.53 124.15 2.82 4.87 71.13 8.39 0.0026

Table 4.42. Estimated parameter of a double CPE model
Test Environmental Data Operating point L+R0 + CPE parameters additional CPE branch

# G1 [W/m2 ] G2 [W/m2 ] T 1[◦ C] T 2[◦ C] Vmpp [V] Impp [A] L [µH] ± [%] R0 [Ω] ± [%] R1 [Ω] ± [%] Q1 ± [%] β1 ± [%] C1eq [µF] R2 [Ω] ± [%] Q2 ± [%] β2 ± [%] C2eq [µF] MSE

1 619.96 389.79 46.14 44.96 16.49 1.99 3.11 9.24 0.49 12.76 0.30 55.20 5.0E-07 97.09 1.46 7.76 68.22 5.46 9.01 6.0E-05 67.66 0.95 8.69 37.33 0.0188

2 617.70 397.32 46.62 44.80 16.51 1.98 3.15 8.81 0.48 12.11 0.28 50.99 3.8E-07 84.54 1.49 6.59 74.14 5.86 8.31 5.8E-05 62.05 0.95 7.75 37.63 0.0310

3 775.06 532.75 46.36 46.08 16.61 2.67 3.31 9.31 0.45 12.18 0.25 44.56 5.0E-07 53.74 1.47 4.18 78.19 3.87 7.69 5.0E-05 103.72 1.00 11.64 51.87 0.0041

4 827.03 576.39 48.92 46.28 16.56 2.93 3.33 9.39 0.44 13.49 0.28 44.71 4.6E-07 70.45 1.46 4.61 69.96 3.72 8.57 4.9E-05 120.41 1.01 13.19 54.60 0.0081

5 910.00 650.49 47.61 47.44 16.59 3.35 3.64 7.73 0.39 10.90 0.21 45.21 8.6E-07 70.77 1.45 5.94 102.89 3.19 6.93 6.4E-05 94.28 1.00 10.90 63.37 0.0025

6 959.39 687.10 50.04 48.04 16.47 3.57 3.53 8.85 0.39 10.24 0.18 33.13 4.6E-07 45.40 1.52 3.52 119.04 2.90 7.06 6.2E-05 82.83 1.01 9.03 68.41 0.0021

7 968.00 706.04 48.91 48.17 16.48 3.65 3.68 4.86 0.36 7.83 0.12 44.03 7.5E-07 67.89 1.51 5.87 184.01 3.24 4.81 1.0E-04 46.62 0.95 5.87 66.97 0.0029

9 1043.15 768.71 52.49 51.25 16.31 3.88 3.50 7.52 0.37 11.59 0.18 50.72 8.8E-07 70.69 1.47 6.11 128.93 2.80 7.44 7.3E-05 100.69 1.00 11.62 71.61 0.0018

10 1053.80 769.92 50.05 50.02 16.50 3.85 3.56 6.67 0.35 8.90 0.14 45.48 7.3E-07 67.40 1.52 5.75 176.26 2.69 6.83 8.4E-05 55.20 0.98 6.84 71.52 0.0014

11 1066.96 777.00 49.55 48.34 16.51 3.86 3.23 6.89 0.36 9.02 0.16 45.02 7.5E-07 77.39 1.49 6.32 140.03 2.85 7.44 7.7E-05 63.61 0.99 7.74 69.63 0.0027
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(a) Dynamic model with two RC branch
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(b) Dynamic model with a RC branch and a
CPE branch
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(c) Dynamic model with two CPE branch

Figure 4.67. Fitted impedance spectra with models of fig.4.66 for two series connected
PV panels under partial shading conditions.
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(b) Impedance spectra measured in MPP

Figure 4.68. Static (a) and dynamic (b) response of two series connected PV panels
under partial shading conditions with optimised perturbation amplitude.

4.6.3 Detection of small partial shading effect

Unfortunately few experimental cases are available with different environmental
and shadowing conditions. As already mentioned, since the measurement
equipment has been delivered by the manufacturer with a strong delay due to the
pandemic emergency, it has been possible to start with the outdoor experiments
during the winter season when many measurements have been not considered
reliable due to the wrong setup, as the cases discussed in section 4.5.2, or for
unstable environmental conditions.
Nevertheless the plots shown in figure 4.69 are very encouraging since they put
into evidence how, with the proposed approach is possible to identify the presence
of very small partial shading condition with a good reconstruction of the double
arc.

4.6.4 EIS measurement vs. simulation data

In this section a comparison among experimental EIS and simulated EIS is
provided. The LTspice model discussed in section 4.2.2 has been adapted to
reproduce the static and dynamic behaviour of the two panels operating under the
environmental conditions reported in the test #1 of table 4.42. The simulations
have been performed with the schemes shown in figure 4.40 and 4.42 scaled to
two panels. The SDM parameters of each panel have been identified by using
the fitting procedure introduced in section 2.2.5. As concerns the p-n junction
capacitive effects, the values C1eq and C2eq of test #1 in table 4.42 are used.
The corresponding inductive and series resistive effects are also included. The
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Figure 4.69. Static (a) and dynamic (b) response of two series connected PV panels
under partial shading conditions with optimised perturbation amplitude.

p-n junction resistive effects that are accounted as differential resistances (R1
and R2) in the PV dynamic model, are self included in the LTspice circuit since
they correspond to the non-linear effect of PV cell diodes when operate around
their own polarisation point. The parameters of a commercial by-pass diode are
also included in the LT spice model.

Figure 4.70a shows a very good agreement among experimental and simulated
data. On the contrary the EIS spectra, shown in figure 4.70b, are not in perfect
agreement, this is mainly due to the fact that LTspice circuit is not configured to
reproduce the non linear effects of the two constant phase element associated to the
PV panels. Indeed in the same figure are also reported the EIS impedance spectra
of the double CPE model and double RC model fitted with the experimental data.
It is well evident that the CPE-based model is converging to the experimental data
while the RC-based model is almost perfectly fitted with the simulation data,
thus confirming the previous assertion. This analysis opens the space for future
improvement of LTspice model for a better modelling of PV dynamic behaviour.
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Figure 4.70. Comparison of experimental vs. simulation data of two partial shaded PV
panels.
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4.7 Conclusion

In this chapter, the EIS methodology and the dynamic model of the SDM have
been useful for analysing the behaviour of a PV panel under different conditions.
The obtained outcomes have illustrated the high potential EIS methodology has
for real–time monitoring conditions. The EIS based diagnostic method can be
fruitfully employed in PV systems working at MPP in outdoor conditions without
altering the standard operation of the system. Therefore, it avoids power losses
and undesirable changing in the PV system operation. The dynamic model
built with the impedance measurements provided better approximations than
the classic static model (SDM) for a specific degradation process such as series
resistance variations.
It has been also demonstrated and validated the feasibility of mismatching
analysis using the EIS methodology for finding the wrong functionalities inside
the PV panels. It will allow taking care of the PV panel health for improving
their functionalities and the performance of the whole PV installation or plant,
e.g by improving the tracking capability of MPPT algorithms to reach the global
maximum.

Finally it is important to remark that this work is the first attempt to apply the
EIS methodology for detecting the PV degradation phenomena in real–operative
outdoor conditions. The validation of experimental results demonstrated the
potentiality of the proposed approach to detect other PV degradation phenomena
as well as by-pass diode failure, potential induced degradation and hot–spot that
usually happen in PV sources operating in outdoor conditions.
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General Conclusions

This thesis proposed advances in models and methods for the early detection of
degradation effects on PV devices. The research activity has been mainly focused
on approaches suitable for online implementation with the additional benefit of
avoiding changing the nominal operative condition of the PV devices.
The analysis performed in this work took advantage of two properties of the
static model (SDM). Firstly, the good representation of the PV characteristics in
healthy conditions. Secondly, the effect that degradation processes have on the set
of parameters that compound it. These attributes have been exploited by using
particular developed methods that additionally complement the SDM attributes
with the dynamic model features of PV devices.

• As concerns the analytical approach, the most significant results achieved
in this thesis work is the experimental validation and comparison of
some methods that, although have been well-validated in the literature
for estimating the SDM parameters in healthy conditions, could fail
into detecting the SDM parameters when the PV panels operate in
degraded conditions. Indeed, since these methods are based on some
assumptions/simplifications that could be valid only in healthy conditions,
it has been proven that among the selected methods, only few of them are
able to identify correctly the SDM parameters in presence of degradation
phenomena. In particular to estimate the variations of the internal series
and shunt resistances.

• In the second part of the thesis is proposed a method for detecting the SDM
parameters through the combination of numerical algorithms and ANN. In
this approach the ability of the ANN of modelling the strong non-linear
relationships among the SDM parameters, the I-V characteristics and the
environmental conditions is used. The numerical algorithm is employed
during the training phase for providing the target values to the ANN. A
comparison of the ANN performance with respect to other regression model
approaches has been also provided for confirming the best result of ANN for
this kind of applications.
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The main novelties of the proposed method are in the information used
for the diagnosis. Firstly it does not need of experimental degraded I-V
curves for the training phase. This aspect is very important since the
degraded I-V curves are usually not available because of the difficulty of
reproducing the large variety of degraded conditions and the long time the
measurement process will take. Secondly during the online operation it
only needs to measure few points of the I-V curve close the MPP and the
environmental information for determining the degradation effect. Thus the
proposed approach can run on board without affecting the normal operation
of the PV system.

• Finally, in the third part of the thesis work, is developed an innovative
method for PV diagnosis based on the analysis in the frequency-domain
by exploiting the Impedance Spectroscopy technique. The implementation
of this methodology combined with modelling using PV dynamic models
allowed the detection of degradation effects in PV panels such as the
increment in the series resistance and effects of partial shading conditions.
The experimental results proven that the proposed method outperform
the other approaches, which are generally based on the static model, in
the estimation of some parameters variation, e.g. series resistance. The
innovation around this approach lies in the fact that it can be applied to
commercial PV panels under real-operating outdoor conditions. In fact,
previous literature shows few works that analyzed the characteristics of PV
cells and some on PV panels in the frequency domain, but they were applied
at the laboratory level in controlled environmental conditions.

In conclusion, we can affirm that the main relevance of this thesis lies in providing
to the researchers and operators working in the PV field, valuable analytical
and experimental information related to methods for the identification of PV
degradation. Indeed, it has been demonstrated that some well-known approaches,
used for analyzing the PV panel in healthy conditions, are not so effective for
studying degraded PV panels.
Table 4.43 summarizes the three methodologies presented in this thesis having
into account two elements, the complexity of performing the methodology
and the information needed for applying each analysis. The applicability
of each methodology depends on the resources and information available for
implementing the solution. For instance, although the analytical methods require
a set of information from different sources, it has a low complexity for their
implementation. On the other hand, the implementation using Impedance
Spectroscopy only requires to assure that the PV device is working on MPP,
situation that assures the correct functionality of the system for power production.
Thus, this methodology has a great advantage over the other two (requiring less
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Table 4.43. Summary of the methodologies proposed

Analytical Methods ANN based model Impedance
Spectroscopy

Complexity
Low: Based on a set of
explicit equations and

approximations

Medium: The training
phase could demand

medium computational
resources. After this stage,

it requires less
computational effort.

High: Require specialized
hardware for an on-field

application (under
development)

Required
information

Isc, Voc, Vmpp, Impp.
Datasheet parameters.

Environmental
information (G,T)

3 points (V,I) around
MPP. Environmental
information (G,T)

MPP. NO environmental
information.

information), but, at this moment, it needs specialized equipment for performing
the analysis. This type of equipment currently is under development.
It is important to highlight that the proposed approach of operating in the
frequency domain for PV degradation analysis opens a new perspective for
PV system manufacturers interested in developing online-diagnostic functionality
employing embedded systems.
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Future Works

The promising results of the methodology working on the frequency domain have
taken the attention for increasing the efforts of improving it for the next steps.
The development proposed and addressed for enhancing the methodology goes
around two aspects. The extension of the analysis to other degradation effects
and the onboard implementation. In the first line, this methodology showed
great potential for detecting degradation effects such as increments in the ohmic
resistance and partial shading conditions. But, it could be extended to other types
of effects as hot spots or potential induced degradation (PID).
Finally, the onboard implementation activity is necessary for integrating the
analysis with the equipment that allows the implementation of the technique in
the field.
Both activities will be also carried out in the frame of the “A Holistic Monitoring
and Diagnostic Tool for Photovoltaic Generators” (HOTSPHOT) PRIN 2020
National Project.
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P. Hrzina, “Pv panel and pv inverter damages caused by combination of
edge delamination, water penetration, and high string voltage in moderate
climate,” IEEE Journal of Photovoltaics, vol. 11, no. 2, pp. 561–565, 2021.

[6] P. Sánchez-Friera, M. Piliougine, J. Peláez, J. Carretero, and M. Sidrach
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