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Introduction and

methodology overview

The focus of this dissertation is the development and validation

of a novel method for supervised text classification to be used

effectively when small sized training sets are available. The pro-

posed approach, which relies on a Weighted Word Pairs (WWP)

structure, has been validated in two application fields: Query Ex-

pansion and Text Categorization.

By analyzing the state of the art for supervised text classifi-

cation, it has been observed that existing methods show a drastic

performance decrease when the number of training examples is

reduced. This behaviour is essentialy due to the following rea-

sons: the use, common to most existing systems, of the ”Bag of

Words” model where only the presence and occurrence of words

in texts is considered, losing any information about the position;

polysemy and ambiguity which are typical of natural language;

the performance degradation affecting classification systems when

the number of features is much greater than the available training

samples.

Nevertheless, manual document classification is a boring, costly
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and slow process: it has been observed that only 100 documents

can be hand-labeled in 90 minutes and this number may be not

sufficient for achieving good accuracy in real contexts with a stan-

dard trained classifier. On the other hand, in Query Expansion

problems (in the domain of interactive web search engines), where

the user is asked to provide a relevance feedback to refine the

search process, the number of selected documents is much less

than the total number of indexed documents. Hence, there’s a

great interest in alternative classification methods which, using

more complex structures than a simple list of words, show higher

efficiency when learning from a few training documents.

The proposed approach is based on a hierarchical structure,

called Weighted Word Pairs (WWP), that can be learned automat-

ically from a corpus of documents and relies on two fundamental

entities: aggregate roots i.e. the words probabilistically more im-

plied from all others; aggregates which are words having a greater

probabilistic correlation with aggregate roots. WWP structure

learning takes place through three main phases: the first phase

is characterized by the use of probabilistic topic model and La-

tent Dirichlet Allocation to compute the probability distribution

of words within documents: in particular, the output of LDA al-

gorithm consists of two matrices that define the probabilistic rela-

tionship between words, topics and the documents. Under suitable

assumptions, the probability of the occurrence of each word in the

corpus, the conditional and joint probabilities between word pairs

can be derived from these matrices. During the second phase, ag-

gregate roots (whose number is selected by the user as an external

parameter) are chosen as those words that maximize the condi-
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tional probability product between a given word and all others, in

line with the definition given above. Once aggregate roots have

been chosen, each of them is associated with some aggregates and

the coefficient of relationship between aggregate roots and aggre-

gates is calculated thanks to the joint probability between word

pairs (previously computed). The number of links between aggre-

gate roots and aggregates depends on another external parame-

ter (Max Pairs) which affects proper thresholds allowing to filter

weakly correlated pairs. The third phase is aimed at searching the

optimal WWP structure, which has to provide a synthetic repre-

sentation for the information contained in all the documents (not

only into a subset of them).

The effectiveness of the WWP structure was initially assessed

in Query Expansion problems, in the context of interactive search

engines. In this scenario, the user, after getting from the system

a first ranking of documents in response to a specific query, is

asked to select some relevant documents as a feedback, according

to his information need. From those documents (relevance feed-

back), some key terms are extracted to expand the initial query

and refine the search. In our case, a WWP structure is extracted

from the relevance feedback and is appropriately translated into

a query. The experimental phase for this application context was

conducted with the use of TREC-8 standard dataset, which con-

sists of approximately 520 thousand pre-classified documents. A

performance comparison between the baseline (results obtained

with no expanded query), WWP structure and a query expansion

method based on the Kullback Leibler divergence was carried out.

Typical information retrieval measurement were computed: preci-
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sion at various levels, mean average precision, binary preference,

R-precision. The evaluation of these measurements was performed

using a standard evaluation tool used for TREC conferences. The

results obtained are very encouraging.

A further application field for validating WWP structure is

documents categorization. In this case, a WWP structure com-

bined with a standard Information Retrieval module is used to

implement a document-ranking text classifier. Such a classifier is

able to make a soft decision: it draws up a ranking of documents

that requires the choice of an appropriate threshold (Categoriza-

tion Status Value) in order to obtain a binary classification. In

our case, this threshold was chosen by evaluating performance on a

validation set in terms of micro-precision, micro-recall and micro-

F1. The dataset Reuters-21578, consisting of about 21 thousand

newspaper articles, has been used; in particular, evaluation was

performed on the ModApte split (10 categories), which includes

only manually classified documents. The experiment was carried

out by selecting randomly the 1% of the training set available for

each category and this selection was made 100 times so that the

results were not biased by the specific subset. The performance,

evaluated by calculating the F1 measure (harmonic mean of preci-

sion and recall), was compared with the Support Vector Machines,

in the literature referred as the state of the art in the classification

of such a dataset. The results show that when the training set is

reduced to 1%, the performance of the classifier based on WWP

are on average higher than those of SVM.

This dissertation is structured as follows: in Chapter 1 the

state of art on text classification and retrieval methods is dis-
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cussed, together with a general modular framework for query ex-

pansion problems; in Chapter 2 the Weighted Word Pairs approach

is presented in detail; in Chapter 3 performance evaluation of the

proposed method is discussed in considered application fields; fi-

nally, in Chapter 4, conclusion and future works are drawn out.





“A goal is a dream with a finish

line.”

Duke Ellington

Chapter 1

Related Work

1.1 Text Classification problems

The problem of text classification has been widely studied in ma-

chine learning, database, data mining and information retrieval

communities [2]. There are several application fields where text

classification methods are usually employed: News Filtering and

Organization, where large volumes of news articles are created ev-

eryday and need to be correctly categorized; Document Organiza-

tion and Retrieval, which regards a broader range of cases such as

categorization of digital libraries, web collections, scientific litera-

ture, social feeds; Opinion Mining, which is a hot topic nowadays

because it regards classification of customer reviews and opinion

to extract useful information for marketing purposes; Email Clas-

sification and Spam Filtering, where the aim is to determine junk

email automatically. Several techniques have been proposed for

7
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text classification tasks. Some of them exist also for other data

domains such as quantitative data; in fact, text can be modeled

as quantitative data with frequencies on the word attributes, al-

though such attributes are tipically high dimensional with low

frequencies on most of the words. Most used methods for text

classification are: Decision trees, Pattern-based Classifiers, SVM

Classifiers, Neural Network Classifiers, Bayesian Classifiers and

other classifiers which can be adapted to the case of text data

(nearest neighbor classifiers, genetic algorithm-based classifiers).

An overview of such methods will be provided further in this chap-

ter together with the feature selection problem, which aims to de-

termine the features which are most relevant for the classification

process.

Following the definition introduced in [70], a supervised Text Clas-

sifier may be formalized as the task of approximating the unknown

target function Φ : D×C→ {T, F} (namely the expert) by means

of a function Φ̂ : D × C → {T, F} called the classifier, where

C = {c1, ..., c|C|} is a predefined set of categories and D is a set of

documents.

If Φ(dm, ci) = T , then dm is called a positive example (or

a member) of ci, while if Φ(dm, ci) = F it is called a negative

example of ci.

Categories are just symbolic labels: no additional knowledge

(of a procedural or declarative nature) regarding their meaning is

usually available, and it is often the case that no metadata (such as

e.g. publication date, document type, publication source) is avail-

able either. In these cases, the classification must be accomplished

only through knowledge extracted from the documents themselves,
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namely endogenous knowledge.

In practice, an initial corpus Ω = {d1, . . . ,d|Ω|} ⊂ D of doc-

uments pre-classified under C = {c1, ..., c|C|} is considered. The

values of the total function Φ are known for every pair (dm, ci) ∈
Ω× C.

The initial corpus has to be split into two sets, not necessarily

of equal size:

1. the training set: Ωr = {d1, . . . ,d|Ωr|}. The classifier Φ for

the categories is inductively built by observing the charac-

teristics of these documents;

2. the test set: Ωe = {d|Ωr|+1, . . . ,d|Ω|}, used for testing the

effectiveness of the classifiers.

In most problems, it can be simpler to consider the case of

single-label classification, also called binary, where, given a cat-

egory ci, each dm ∈ D has to be assigned either to ci or to its

complement ci.

In fact, it has been demonstrated that, through transformation

methods, it is always possible to transform the multi-label classi-

fication problem either into one or more single-label classification

or regression problems [70, 75].

Therefore, the classification problem for C = {c1, ..., c|C|} can

be solved dealing with |C| independent classification problems for

the documents in D under a given category ci, and so we have φ̂i,

for i = 1, . . . , |C|, classifiers. As a consequence, the whole problem

in this case is to approximate the set of function Φ = {φ1, . . . , φ|C|}
with the set of |C| classifiers Φ̂ = {φ̂1, . . . , φ̂|C|}.
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Since text cannot be directly interpreted by a classifier, an

indexing procedure, that maps a text dm into a compact repre-

sentation of its content, must be uniformly applied to the training

and test documents. Each document can be represented, following

the Vector Space Model [18], as a vector of term weights

dm = {w1m, . . . , w|T|m},

where T is the set of terms (also called features) that occur at least

once in at least one document of Ωr, and 0 ≤ wnm ≤ 1 represents

how much term tn contributes to semantics of document dmm.

Identifying terms with words, we fall into the bags of words

assumption where tn = vn, with vn being a word of the vocabulary.

The bags of words assumption claims that each wnm indicates the

presence (or absence) of a word, so that the information on the

position of that word within the document is completely lost [18].

To determine the weight wnm of term tn in a document dm,

the standard tf-idf (term frequency-inverse document frequency)

function can be used [69], defined as:

tf-idf(tn,dm) = N(tn,dm) · log
|Ωr|

NΩr(tn)

(1.1)

where N(tn,dm) denotes the number of times tn occurs in dm,

and NΩr(tn) denotes the document frequency of term tn, i.e. the

number of documents in Ωr in which tn occurs.

In order for the weights to fall in the [0, 1] interval and for

the documents to be represented by vectors of equal length, the

weights resulting from tf-idf are usually normalized by cosine nor-

malization, given by:
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(a) (b)

Figure 1.1 Features-documents matrix. 1.1(a) In this case the number of
features is much higher than the number of examples (|T| � |Ωr|). 1.1(b).

In this case |T| � |Ωr|.

wnm =
tf-idf(tn,dm)√∑|T|
n=1(tf-idf(tn,dm))2

(1.2)

Word stopping (i.e. topic-neutral words such as articles, prepo-

sitions, conjunctions, etc.) and stemming procedures 1 (i.e. group-

ing words that share the same morphological root) are often per-

formed during the indexing procedure so that a matrix |T| × |Ωr|
of real values is obtained instead of the training set Ωr. The same

procedure has to be applied to the test set Ωe.

Usually, machine learning algorithms are susceptible to the

problem named the curse of dimensionality, which refers to the

degradation in the performance of a given learning algorithm as

1Although stemming has sometimes been reported to hurt effectiveness,

the recent tendency is to adopt it as it reduces both the dimensionality of the

feature space and the stochastic dependence between terms.
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the number of features increases. In this case, the computational

cost of the learning procedure and overfitting of the classifier are

very common problems [8].

Moreover, from a statistical point of view, in the case of super-

vised learning, it is desirable that the number of labeled examples

in the training set should significantly exceed the number of fea-

tures used to describe the dataset itself.

In the case of text documents the number of features is usu-

ally high and particularly it is usually higher than the number

of documents. In Fig. 1.1(a) we show the case of a training set

composed of 100 documents and about 20000 features; note that

|T| � |Ωr| while it is desirable to have the opposite condition, that

is |T| � |Ωr|, as represented in Fig. 1.1(b).

To deal with these issues, dimension reduction techniques are

applied as a data pre-processing step or as part of the data anal-

ysis to simplify the whole data set (global methods) or each docu-

ment (local methods) of the data set. As a result we can identify

a suitable low-dimensional representation for the original high-

dimensional data set, see Fig. 1.1(b).

In literature, we distinguish between methods that select a

subset of the existing features or that transform them into a new

reduced set of features. Both classes of methods can rely on a

supervised or unsupervised learning procedure [8, 70, 18, 39]:

1. feature selection: Ts is a subset of T. Examples of this are

methods that consider the selection of only the terms that

occur in the highest number of documents, or the selection of

terms depending on the observation of information-theoretic
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functions, among which we find the DIA association fac-

tor, chi-square, NGL coefficient, information gain, mutual

information, odds ratio, relevancy score, GSS coefficient and

others.

2. feature transformation: the terms in Tp are not of the same

type as the terms in T (e.g. if the terms in T are words,

the terms in Tp may not be words at all), but are obtained

by combinations or transformations of the original ones. For

example, there are methods that extract from the original a

set of “synthetic” terms that maximize classification effec-

tiveness; these are based on term clustering, latent seman-

tic analysis, latent dirichlet allocation, principal component

analysis and others. After a transformation we could need

to reduce the number of the new features through a selection

method thus obtaining a new set Tsp that is a subset of Tp.

In the following section, some common feature selection meth-

ods are discussed in detail.

1.1.1 Feature selection

As introduced before, feature selection is very important in text

classification due to the high dimensionality of text features and

the existence of noise (irrelevant features). Typically, we can rep-

resent text in two ways: as a bag of words, where a document is

represented as a set of words, each having an occurrence frequency,

without minding the sequence; as strings, where each document

is a sequence of words. However, most text classification methods
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use the bag of words representation cause it’s simpler. A common

procedure used in both supervised and unsupervised application

regards stop-words removal and stemming. In the first case, com-

mon words, which are not specific or discriminatory to different

classes, are not indexed. In the second case different forms (sin-

gular, plural, different tenses) of the same word are consolidated

into a single word.

One of the most common methods to quantify the discrimination

level of a feature is the use of the gini-index measure. The gini-

index G(w) for the word w is defined as:

G(w) =
k∑
i=1

pi(w)2

where pi(w) is the conditional probability that a document belongs

to class i, given that it contains the word w. Higher value of the

gini-index indicate a great discriminative power of the word w

(when all documents containing w belong to a class, we have the

maximum value G(w) = 1 ).

Another common measure used for text feature selection is

information gain or entropy. If F (w) is the fraction of documents

containing the word w, the information gain measure I(w) for a

given word w is defined as follows:

I(w) = −
k∑
i=1

Pi · log(Pi) + F (w) ·
k∑
i=1

pi(w) · log(pi(w))+

+ (1− F (w)) ·
k∑
i=1

(1− pi(w)) · log(1− pi(w))

where Pi is the global probability of class i, and pi(w) is the

probability of class i, given that the document contains the word
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w. Also in this case, a greater value of the information gain means

a greater discriminative power.

The mutual information measure is another important measure

for feature selection that derives from information theory. It is

related to the level of co-occurrence between the class i and the

word w. Specifically, we have:

Mi(w) = log

(
pi(w)

Pi

)
Since Mi(w) is specific to a particular class i, the overall mutual

information as a function of the mutual information of word w with

different classes has to be computed. This can be accomplished

with the use of the average and maximum values of Mi(w) over

different classes:

Mavg(w) =
k∑
i=1

Pi ·Mi(w)

Mmax(w) = maxMi(w)

Either of these measures can be used to determine the relevance of

the word w. A different way to compute the lack of independence

between the word w and a particular class i is the χ2 statistic. It

is defined as follows:

χ2(w) =
n · F (w)2 · (pi(w)− Pi)2

F (w) · (1− F (w)) · Pi · (1− Pi))
Also for the χ2 statistic a global value can be computed with

the use of average and maximum value.

1.1.2 Feature Transformation

The aim of the feature transformation process is to create a new

and smaller set of features as a function of the original set of
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features. A typical method to accomplish this dimensionality re-

duction is Latent Semantic Indexing (LSI) and its probabilistic

variant PLSA. The LSI method is able to transform a text space

of few hundred thousand word features to a new axis system (com-

posed of a few hundred features) which are a linear combination

of the original word features. The axis system retaining more in-

formation about the variations in the underlying attribute values

is determined through Principal Component Analysis techniques.

Being an unsupervised technique, features found by LSI could not

be the directions along which the class distribution of documents

can be best separated. Better results for classification accuracy

have been observed using boosting techniques in conjunction with

the conceptual features obtained through pLSA and LDA (which

is a Bayesian version of pLSA). A number of different methods

have been proposed to adapt LSI to supervised classification. One

common approach is to perform local LSI on the subsets of data

representing the individual classes, and identify the discriminative

eigenvectors from the different reductions with the use of an iter-

ative approach [74]. This method is known as SLSI (Supervised

Latent Semantic Indexing), and the advantages of the method

seem to be limited; in fact the experiments in [74] show poor im-

provements over a standard SVM classifier, which did not use a

dimensionality reduction process. A combination of class-specific

LSI and global analysis is used in [76], where class-specific LSI

representations are created. Test documents are compared against

each LSI representation in order to create the most discriminative

reduced space. Note that the different local LSI representations

use a different subspace, so it is difficult to compare the similarities



1.1. Text Classification problems 17

of the different documents across the different subspaces. Further-

more, both the methods in [74] [76] tend to be computationally

expensive. The ”sprinkling” method is proposed in [17], in which

artificial terms are added to the documents, which correspond to

the class labels. In other words, a term corresponding to the class

label is created and added to the document. LSI is then performed

on the document collection with these added terms. The sprin-

kled terms can then be removed from the representation, once the

eigenvectors have been determined. The sprinkled terms help in

making the LSI more sensitive to the class distribution during the

reduction process. In [17] an adaptive sprinkling process is also

proposed, where all classes are not necessarily treated equally, but

the relationships between the classes are used in order to regulate

the sprinkling process. Text clustering is often used for feature

transformation [57][72] . Clusters are created from a text collec-

tion thanks to supervision from the class distribution. Words that

frequently occur in the supervised cluster can be used to create

the new set of dimensions and classification can be performed ac-

cording to this new feature representation. This approach retains

interpretability with respect to the original words of the docu-

ment collection but the optimum directions of separation may not

be represented in the form of clusters of words and the underly-

ing axes are not necessarily orthonormal to one another. Another

common method is Fisher’s linear discriminant [38]. This method

is aimed to determine the directions in the data along which the

points are as well separated as possible. The power of such a di-

mensionality reduction approach has been illustrated in [16], where

it is shown that a simple decision tree classifier has better perfor-



18 1. Related Work

mance on this transformed data when compared to more sophisti-

cated classifiers. The Topical Difference Factor Analysis method

also attempts to determine projection directions that maximize

the topical differences between different classes and, when used

with a k-nearest neighbor classifier, shows a great improvement of

accuracy compared to the original set of features. A generalized

dimensionality reduction method has been proposed in [45] [44]

as an unsupervised method; it preserves the underlying structure

assuming that data has been clustered in a pre-processing phase.

1.1.3 Dimension reduction methods

The clustering process is aimed at placing documents into groups

relying on similarity information about them (if each document

can be assigned to different clusters, we have soft clustering) [29].

A low dimensional representation for documents is then obtained

since each cluster can be viewed as a dimension which is function

of all original features. Topic modeling integrates soft clustering

with dimension reduction: each document is assigned to a set of

latent topics that correspond to both document clusters and com-

pact representations identified from a corpus. The degree of mem-

bership between a document and the cluster is assessed through a

weight which represent also a coordinate of the document in the

reduced dimension space. Given a corpus of M documents, there

will be W distinct terms of vocabulary and a term-document ma-

trix X of size W ×M can be defined: it encodes the occurrences

of each term in each document. A multinomial distribution is

commonly used for text modeling since it captures the relative
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frequency of terms in a document with l1-norm standardization.

Since Dirichlet distribution is the conjugate distribution to multi-

nomial, it is often used as a prior for multinomial models. In the

following sections, Latent Semantic Indexing and Latent Dirichlet

Allocation methods are briefly introduced as the most used meth-

ods for dimensionality reduction and topic modeling.

Latent Semantic Indexing

LSI projects both documents and terms into a low dimensional

space which represents the semantic concepts in the document.

This projection enables search engine to find documents contain-

ing the same concepts but different terms, overcoming issues of

synonym and polysemy. LSI relies on singular value decompo-

sition (SVD) of term-document matrix X : a low rank approx-

imation of X, which has the effect of propagating co-occurring

terms in the document corpus, is computed so that the dimen-

sions of the approximation are interpreted as semantic concepts.

The projections into latent semantic space can be used to perform

several tasks more efficiently; in information retrieval, for exam-

ple, a query can be viewed as a short document and projected

in the latent semantic space: its similarity with the document is

then measured in that space, mitigating problems of synonym and

polysemy. Since real documents tend to be bursty, an uncommon

term is likely to occur multiple times in a document if it occurs at

all[19]. The use of term frequency would boost the contribution

of such a term. There are two ways to address this problem. The

first is to use a binary representation which takes into account if a

term occurs in a document, ignoring its frequency. The second is to
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use a global term-weight methods where term frequency is scaled

with inverse document frequency (IDF)[18]. A language pyramid

model [78] can also be used to provide a matrix representation for

documents where not only term occurrence is taken into account

but also spatial information such as term proximity, ordering, long

distance dependence and so on. In order to handle changes in the

corpus, which are frequent in real world applications, two tech-

niques are often employed so that SVD does not need to be fully

recomputed. The Fold-in method aims to compute the projection

of the new documents and terms into an existing latent semantic

space: it is very efficient but over time the outdated model be-

comes increasingly less useful. In [79] an interesting approach to

update a LSI model is proposed and it is based on performing LSI

on [X̂X ′] instead of XX ′, where X ′ is the term-document matrix

for the new documents. In the same work, the authors show that

this approximation don’t introduce unacceptable errors. A good

study about the optimal dimension of the latent semantic space

can be found in [36], where the author shows how LSI can deal

with the problem of synonymy and provides an upper bound for

the dimension of latent semantic space, which allows to represent

the corpus correctly.

Probabilistic Latent Semantic Indexing

PLSI [43] extends LSI in a probabilistic context using a proba-

bilistic generative process to generate a word w in the document

d of a corpus. An unobservable topic variable z is associated

with each observation (v, d), where v is a term sample for token

w. The joint probability distribution p(v, d) can be expressed as
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p(v, d) = p(d)p(v|d), where

p(v|d) =
K∑
i=1

p(v|z = i)p(z = i|d)

The generative process assumes that: a document d is sampled

from multinomial distribution p(d); a topic i is sampled from the

topic distribution θdi = p(z = i|d); a term v for token w is sampled

based on φiv = p(w = v|z = i). Typically, a different formulation

(called simmetric formulation) is used to express the joint proba-

bility p(v, d), which models documents and terms in a simmetric

manner.

This is obtained by writing p(z = i|d) = p(z = i)p(d|z = i) so

that

p(v|d) =
K∑
i=1

p(z = i)p(v|z = i)p(d|z = i)

Note that p(d|z = i) and p(w|z = i) represent the projection

of documents and terms into the latent semantic spaces (connec-

tion to LSI). Unknown parameters (probability distributions) are

estimated by maximizing log-likelihood of observed data or mini-

mizing Kullback-Liebler divergence [80] between the measured dis-

tribution p̂(v|d) and the model distribution p(w|d). Since this is

non-convex, expectation-maximization [30] is used to seek a lo-

cally optimal solution. Updating is usually obtained through fold-

in method as in LSI: an EM algorithm is used to obtain p(z|d)

[42], while p(w|z) and p(z) are not updated.

Latent Dirichlet Allocation

In order to reduce the number of parameters to be learned and

to provide a well defined probability for new documents, Latent
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Dirichlet Allocation [7] has been proposed as an alternative to

PLSI for text analysis: it includes a process for generating the

topics in each document. According to LDA model (Figure 1.2),

the distribution of terms for each topic i is represented as a multi-

nomial distribution Φi drawn from a symmetric Dirichlet distribu-

tion with parameter β:

p(Φi|β) =
Γ(Wβ)

[Γβ]W

W∏
v=1

φβ−1
iv

The topic distribution for document d is also represented as a

multinomial distribution Θd drawn from a Dirichlet distribution

with parameters α:

p(Θd|α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

θαi−1
di

In this way, the topic zdn for each token index n can be chosen

from the document topic distribution as

p(zdn = i|Θd) = θdi

and each token w is chosen from the multinomial distribution as-

sociated with the selected topic

p(wdn = v|zdn = i,Φi) = φiv

LDA aims to find patterns of term co-occurrence in order to

identify coherent topics. Note that if we use LDA to learn a topic

i and we have that p(w = v|z = i) is high for a certain term v,

then any document d that contains term v has a high probability

for topic i. We can say that all terms that co-occur with term v

are more likely to have been generated by topic i.
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Figure 1.2 A diagram of LDA graphical model

In [60] influences of symmetry or asymmetry of Dirichlet pri-

ors on the mechanism are discussed. Authors show that a sym-

metric prior provides smoothing for topic-specific term distribu-

tions so that unseen terms don’t have zero probability. Otherwise,

an asymmetric prior for the document-specific topic distribution

makes LDA more robust to stopwords and less sensitive to the se-

lection of the number of topics resulting in more stable behaviour.

Standard LDA tends to learn broad topics. If a topic has several

aspects, each of them will co-occur frequently with the main con-

cept and LDA will come out with a topic including the concept and

all aspects. Other concepts are progressively added to the same

topic if they share the same aspects and the topics become diffuse.

When sharper topics are needed, a hierarchical topic model could

be more appropriate.

In order to train an LDA model, it is necessary to find the optimal

set of parameters to maximize the probability of generating the

training documents. Such a probability is called empirical likeli-

hood and it is hard to optimize directly since the topic assignments

zdn cannot be observed. Therefore, two approximations for LDA
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are commonly used where as exact inference is intractable: Col-

lapsed Gibbs and Variational Approximation. In Gibbs sampling,

random values are first assigned to each variable, which is then

sampled in turn conditioned on the value of the other variables.

The process explores several configurations according to the num-

ber of iterations and estimates underlying distributions. Collapsed

Gibbs sampling is proposed in [41] with Θ and Φ marginalized. A

topic is selected for a word if it is frequently used in the document

or if is frequently assigned for the same term corpus-wide. After

a burn in period, where a large number of samples is rejected, the

procedure keep statistics of the number of times that each topic

is selected for each word and, after an aggregating and normal-

izing phase, topic distributions for each document are estimated.

An alternative to Gibbs sampling in training LDA models is rep-

resented by the variational approximation. Variational inference

approximates the true posterior distribution of the latent variables

by a fully factorized distribution (the variational model) where all

the latent variables are independent of each other. The variational

distribution can be viewed as a simplification of the original LDA

graphical mode shown in Figure 1.2, where the edges between the

nodes Θ and Z are ignored. A detailed discussion of LDA model

can be found in [7].

1.1.4 Feature selection and Classification

It is well known that classification and feature selection processes

are dependent upon one another, so it can be useful to investigate

how the feature selection process interacts with classification algo-
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Figure 1.3 LSA and LDA representations.

rithms. Common issues in this context regard: the use of interme-

diate results form classification algorithms to create feature selec-

tion methods that can be used by other classification algorithms;

the performance comparison of different feature selection methods

used in conjunction with different classification algorithms. In [60]

is shown that feature selection derived from linear classifiers pro-

vides very effective results. Moreover, the sophistication of the

feature selection process itself is more important than the specific

pairing between the feature selection process and the classifier.

In Linear Classifiers for example, the output of the linear pre-

dictor is defined as p = A ·X + b, where X = (x1, . . . , xn) is the

normalized document word frequency vector, A = (a1, . . . , an) is

a vector of linear coefficients with the same dimensionality as the

feature space and b is a scalar. If the coefficient ai is close to zero,

then the corresponding feature is assumed not to have a significant

effect on the classification process. Otherwise, large values for aj

suggest that such a feature should be selected for classification. It

has been shown that feature selection methods derived from linear
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classifiers, perform well also when used with non linear classifiers.

1.1.5 Decision Tree Classifiers

In decision trees, a predicate or a condition on the attribute value

is used to divide the data space hierarchically. As regards classifi-

cation of text data, such predicates are typically condition on the

presence or absence of one or more words in the documents. The

division of the data space, performed recursively, terminates when

the leaf nodes contain a certain minimum number of records or

some condition on class purity; the majority class label is used for

the task classification. The sequence of predicates is applied at the

nodes in order to traverse a path of the tree from top to bottom

and determine the relevant leaf node. Some of the nodes may be

pruned in order to reduce overfitting, by holding out a part of the

data not used to construct the tree. If the class distribution in

the training data differs significantly from the class distribution

in the data used for pruning, then it is assumed that the node

overfits the training data and it has to be pruned. In the case of

text data, the predicates for the decision tree are defined by con-

sidering the terms in the underlying text collection: a node could

be partitioned into its children because of the presence or absence

of a particular term in the document. There are different kind of

possible splits: in Single Attribute Splits, the presence of a word,

which provides the maximum discrimination between classes, at a

particular node is used to perform the split (measures such as the

gini-index or information gain are also used to perform the split);

in Similarity-based multi-attribute split, similarity of documents to
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frequent word clusters is typically used, where documents are fur-

ther partintioned into groups and ordered by similarity value; in

Discriminant-based multi-attribute split, the Fisher discriminant is

often used to provide the directions in the data along which the

classes are best separated. A detailed discussion of decision tree

methods is found in [9, 1, 46, 64].

1.1.6 Rule based Classifiers

Rule based classifiers attempt to model the data space with a set

of rules, where the left hand side is a condition on the underlying

feature set and the right hand side is tthe class label. The rule

set is extracted from the training data. A predicted class label

is determined as a function of the class labels of the rules which

are satisfied by the test instance. In most cases, the condition

on the left side represents a set of terms which must be present

in the document for the condition to be satisfied. Note that the

set intersection of conditions on term presence is much more used

than the union. In fact, in the case of union between conditions,

each rule can be always split in two separate rules, each containing

more information. While decision trees attempt to partion data

space in a hierarchical fashion, rule based classifiers allow overlaps

in the decision space. The idea is to create a rule set , such as all

points in the decision space are covered by at least one rule. This

can be achieved with the generation of a set of targeted rules which

are related to the different classes and one default rule which can

cover the remaining instances.

The two most common criteria to generate rules from training
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data are support and confidence. Support quantifies the absolute

number of instances in the training data which are relevant to

the rule. Confidence quantifies the conditional probability that

the right hand side of the rule is satisfied if the left hand side

is satisfied. Since overlaps are allowed, it is possible that more

than one rule is relevant to test the instance. In such a case, a

rank-ordering of the rules is needed [58]. A common approach is to

rank-order the rules by their confidence and pick the top-k rules as

the most relevant. As regards text data, an interesting proposal for

rule-based classification is in [3], where an iterative methodology is

used for generating rules. Another important rule-based technique

is RIPPER [25, 24], which treat documents as set-valued objects

and generate rules based on the co-presence of the words in the

documents. This method has been shown to be especially effective

in scenarios where the number of training examples is relatively

small.

1.1.7 Probabilistic and Naive Bayes Classifier

In probabilistic classifiers, an implicit mixture model for gener-

ation of the underlying documents is used. This mixture model

assumes that each class is a component of the mixture, where a

component is a generative model providing the probability of sam-

pling a particular term for that component or class. The Naive

Bayes classifier is the most commonly used generative classifier:

the distribution of documents in each class is modeled using a

probabilistic model where indipendence assumptions about the

distributions of terms is made. Typically, models used for Naive
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Bayes Classification compute the posterior probability of a class

relying on the distribution of the words in the documents. The

already discussed ”bag of words” assumption is made so that the

models ignore the actual position of the words in the document.

The two mainly used model in Naive Bayes Classification differs

for the assumption of taking or not taking word frequencies into

account and also for the approach used for sampling the proba-

bility space. In the Multivariate Bernoulli Model, the presence or

absence of words in a text document is used as a feature for doc-

ument representation. Therefore, we don’t use word frequencies

to model the document, but the word features are assumed to be

binary, we only have to indicate presence or absence of a word in

the text. In the Multinomial Model, term frequencies are captured,

representing the document as a bag of words. The document in

each class can the be modeled as samples drawn from a multino-

mial word distribution. The conditional probability of a document

given a class is the product of the probability of each observed

word in the corresponding class. Once documents in each class

have been modeled, the component class models together with

the Bayes rule are used to compute the posterior probability of

the class for a given document, and the class with the highest pos-

terior posterior probability can be then assigned to the document.

Note that methods which generalize the naive Bayes classifier by

not using independence assumption don’t work well because they

have higher computational costs and are not able to estimate the

parameters accurately and robustly in presence of limited data

[66]. Although the indipendence assumption is a practical ap-

proximation, [27, 31] show that such an approach has theoretical
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merit and naive classification work well in practice. Several pa-

pers [15, 49, 53, 56] show the use of Naive Bayes approach in a

number of different application domain, also in cases where the

importance of a document may decay with time [68]. A particular

domain shown in [67] regards the filtering of junk mail. For this

problem, we may have some additional knowledge to be incorpo-

rated in the process to help us determine if a particular message

is junk or not. Some characteristics could be: a particular domain

in sender address; the presence of emphasized punctuation follow-

ing phrases such as ”Free Money”; the recipient of the message

was a particular user or mailing list. Bayesian Methods allow to

incorporate such additional information by creating new features

for each of these characteristics. Note that also hyperlink informa-

tion can be incorporated into the classification process as shown in

[14, 62]. In hierarchical classification problems, a Bayes classifier

can be built at each node, providing the next branch to follow for

the classification task. It has been observed that context-sensitive

feature selection generally provides more useful classification. An

information-theoretic approach [28] is used in work [53] for fea-

ture selection: it takes into account the dependencies between the

attributes and features are progressively eliminated. An exten-

sive comparison between the bernoulli and the multinomial mod-

els on different dataset has been performed in the work [59]. The

multi-variate Bernoulli model sometimes performs better than the

multinomial model when the size of the vocabulary is small. The

multinomial model outperforms the multivariate Bernoulli model

for large vocabulary sizes and has a better behaviour than the

multi-variate Bernoulli when vocabulary size is chosen optimally
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for both.

1.1.8 SVM Classifiers

Support Vector Machines are Linear Classifiers which attempt to

determine linear separators between different classes. Typically,

linear classifiers are strictly related to many feature transforma-

tion methods which use directions to transform the feature space

and use other classifier on the transformed feature space. The

SVM method attempts to determine the optimum direction of

discrimination in the feature space by examining the appropriate

combination of features, so it is quite robust when dealing with

high dimensionality. Text data is well suited for SVM classification

because of the sparse high-dimensional nature of text: features are

highly correlated and organized in categories which can be linearly

separated. Linear SVM is often used thanks to its simplicity and

ease of interpretability. The first use of SVM in text classification

was proposed in [49, 50] while a theoretical study is shown [51]

and emphasizes why SVM classifier is expected to work well in

different conditions. It has been shown that SVM approach pro-

vides better performance in spam classification when compared to

other techniques such as boosting decision trees, the rule based

RIPPER method and the Rocchio method [32]. It can also be

combined with interactive user-feedback methods. Since the aim

of these methods is to find the best separator, we have to deal

with an optimization problem that can be reduced in most cases

to a Quadratic Programming (QP) Problem. Newton’s method

for iterative minimization of a convex function is often used al-
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though it can be slow for high dimensional domains (text data).

Anyway, a large QP problem can be break into a set of smaller

problems in order to find a solution in a more efficient manner

[35]. The SVM approach has been used successfully in context of

hierarchical organization of the classes [33] and in scenarios where

a large amount of unlabeled data and a small amount of labeled

data is available [71].

1.1.9 The Rocchio Framework

Distance-based measures can be used for classification purposes.

This is the case of proximity-based classifiers, where measures such

as the dot product or the cosine metric are used in order to assign

a document to a class or to its complement [69]. More in gen-

eral, in the domain of text classification, two main methods are

often used: the first one aims to determine the k-nearest neighbors

in the training data to the test document. The class label is se-

lected by evaluating the majority class from the k neighbors, with

k typically varying between 20 and 40 [23]; the second method re-

lies on a pre-processing phase where clusters of training document

belonging to the same class are created. After a representative

meta-document is obtained from each group, the k-nearest neigh-

bor approach is applied to the set of meta documents [54].

The most basic among methods which use grouping techniques for

classification has been proposed by Rocchio in [65]. After a sin-

gle representative meta-document is extracted from each class, the

weight of a term tk, for a given class, is the normalized frequency

of the term tk in the documents belonging to that class, minus the
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normalized frequency of the term in documents which do not be-

long to that class. Being fkp the expected weight of the term tk in a

randomly chosen document belonging to the positive class, and fkn

the corresponding for the negative class, for weighting parameters

αp and αn, the weight fkrocchio is defined as follows:

fkrocchio = αp · fkp − αn · fkn

The weighting parameters αp and αn are chosen so that the posi-

tive class has a greater impact than the negative class. For the rele-

vant class, a vector representation of the terms (f 1
rocchio, . . . , f

n
rocchio)

is then obtained. Once the approach has been applied to each

class obtaining |C| meta-documents, the closest meta-document

to the test document can be determined by using a vector-based

dot product or other similarity metric. This class of methods,

which create a profile for an entire class, is referred as the Roc-

chio Framework. This method is very simple and efficient but

has a main drawback: if a single class occurs in multiple disjoint

clusters (not well connected in the data), the centroid of these

examples may not represent the class behaviour well. A detailed

analysis of the Rocchio algorithm can be found in [49].

1.2 Text Retrieval problems

In the field of text retrieval the main problem is: “How can a

system tell which documents are relevant to a query? Which re-

sults are more relevant than others?” To answer these questions,

several Information Retrieval models have been proposed: set-

theoretic (including boolean), algebraic and probabilistic models
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[18][4]. Although each method has its own properties, there is a

common denominator: the bag of words approach to document

representation.

As explained in a previous section, the “bag of words” assump-

tion claims that a document can be considered as a feature vector

where each element indicates the presence (or absence) of a word,

so that the information on the position of that word within the

document is completely lost [18]. The elements of the vector can

be weights (computed in several ways) so that a document can

be viewed as a list of weighted features. The term frequency-

inverse document (tf-idf) model is a commonly used weighting

model: each term in a document collection is weighted by mea-

suring how often it is found within a document (term frequency),

offset by how often it occurs within the entire collection (inverse

document frequency). Note that a query can be viewed as a docu-

ment, so it can be represented as a vector of weighted words too.

So the relevance of a document to a query can be measured as a

distance between the corresponding vector representations in the

features space. Unfortunately, queries performed by users may

not be long enough [48][47] to avoid the inherent ambiguity of

language (polysemy etc.). This makes text retrieval systems, that

rely on a term-frequency based index, generally suffer from low

precision, or low quality document retrieval.

To overcome this problem, scientists proposed methods to ex-

pand the original query with other topic-related terms. The idea

of taking advantage of additional knowledge to retrieve relevant

documents has been largely discussed in the literature, where

manual, interactive and automatic techniques have been proposed
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[37][18][4]. A better specialization of the query can be obtained

with additional knowledge, that can be extracted from exogenous

(e.g. ontology, WordNet, data mining) or endogenous knowledge

(i.e. extracted only from the documents contained in the collec-

tion) [5][18].

1.2.1 The Relevance Feedback

In this dissertation, the focus is mainly on those query expansion

techniques which make use of the Relevance Feedback (in the case

of endogenous knowledge). In the literature we can distinguish

between three types of procedures for relevance assignment: ex-

plicit feedback, implicit feedback, and pseudo feedback [4]. The

feedback is usually obtained from assessors and indicates the rel-

evance degree for a document retrieved in response to a query. If

the assessors know that the provided feedback will be used as a

relevance judgment then the feedback is called explicit. Implicit

feedback is otherwise inferred from user behavior: it takes into

account which documents they do and do not select for viewing,

the duration of time spent viewing a document, or page browsing

or scrolling actions. Pseudo relevance feedback (or blind feedback)

assumes that the top “n” ranked documents obtained after per-

forming the initial query are relevant: this approach is generally

used in automatic systems. Since human labeling task is enor-

mously boring and time consuming [52], most existing methods

make use of pseudo relevance feedback. Nevertheless, fully auto-

matic methods suffer from obvious errors when the initial query is

intrinsically ambiguous. As a consequence, in recent years, some
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hybrid techniques have been developed which take into account a

minimal explicit human feedback [63][34] and use it to automati-

cally identify other topic related documents: such methods achieve

a mean average precision of about 30% [63].

However, whatever the technique that selects the set of docu-

ments representing the feedback, the expanded terms are usually

computed by making use of well known approaches for term se-

lection as Rocchio, Robertson, CHI-Square, Kullback-Lieber etc

[13]. In this case the reformulated query consists in a simple

(sometimes weighted) list of words. Although such term selec-

tion methods have proven their effectiveness in terms of accuracy

and computational cost, several more complex alternative methods

have been proposed, which consider the extraction of a structured

set of words instead of simple list of them: a weighted set of clauses

combined with suitable operators [12][26][55]. Since the aim of this

dissertation is to validate a novel feature extraction approach in

text retrieval problems, a general query expansion framework will

be presented in detail through the next section.

1.2.2 A general query expansion framework

A general query expansion framework can be described as a mod-

ular system including one or several instances, properly combined,

of:

• an Information Retrieval (IR) module;

• a Feedback (F) module;

• a Feature Extraction (FE) module;
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Figure 1.4 General framework for Query Expansion.

• a Query Reformulation (QR) module.

A common framework is represented in Figure 1.4 and can be

explained as follows. The user initially performs a search task on

the dataset D by inputting a query q to the IR system. A set of

documents RS = (d1, · · · ,dN) is obtained as a result.

The module F identifies a small set of relevant documents

RF = (d1, · · · ,dM) from the hit list of documents RS returned

by the IR system. In case of explicit relevance feedback, we as-

sume that module F requires user interaction. Given the set of

relevant document RF, the module FE extracts a set of features

g that must be added to the initial query q. The extracted fea-

tures can be weighted words or more complex structures such as

weighted word pairs. So the obtained set g must be adapted by

the QR module to be handled by the IR system and then added

to the initial query. The output of this module is a new query

qe which includes both the initial query and the set of features
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extracted from the RF. The new query is then performed on the

collection so obtaining a new result set RS′ = (d′1, · · · ,d′K), ob-

viously different from the one obtained before.

Considering the framework described above is possible to take

into account any technique of feature extraction that makes use

of relevance feedback and any IR systems suitable to handle the

resulting expanded query qe. In this way it is possible to imple-

ment several techniques and make objective comparisons with the

proposed one.

Following the theory behind these IR systems, queries and doc-

uments representation is based on the Vector Space Model [18],

that considers vectors of weighted terms belonging to a vocabu-

lary T:

d = {w1, . . . , w|T|}.

Each weight wn is such that 0 ≤ wn ≤ 1 and represents how

much the term tn contributes to the semantics of the document

d (in the same way for q). Although each system has its own

weighting function, tf-idf [40] for Lucene and statistical language

modeling [61] for Indri, the weight is typically proportional to the

term frequency and inversely proportional to the frequency and

length of the documents containing the term.

Given a query, the IR system assigns the importance to each

document of the collection by using the similarity function as de-

fined in the following:

sim(q,d) =
∑
t∈q∩d

wt,q · wt,d, (1.3)

where wt,q and wt,d are the weights of term t in the query q and

document d.
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In the following chapter a novel feature extraction approach, called

Weighted Word Pairs, is presented and discussed in detail. Such

a method, when employed in query expansion problems, makes

use of explicit relevance feedback and achieves good performance

even when few documents are selected as user feedback; it is

based on a structured representation that can be automatically

extracted from the documents of the minimal explicit feedback

using a method of term extraction [22][21] based on the Latent

Dirichlet Allocation model [7] implemented as the Probabilistic

Topic Model [41].

The proposed approach has been validated using IR systems that

allow to handle structured queries composed of weighted word

pairs. For this reason, the following open source tools were consid-

ered: Apache Lucene [40] which supports structured query based

on a weighted boolean model and Indri Lemur Toolkit [61] which

supports an extended set of probabilistic structured query opera-

tors based on INQUERY.





“Anyone can make the simple

complicated. Creativity is

making the complicated simple.”

Charles Mingus

Chapter 2

The Weighted Word Pairs

Approach

2.1 Introduction

The aim of the proposed method is to extract from a corpus of

documents a compact representation, named Weighted Word Pairs

(WWP), which contains the most discriminative word pairs to be

used in text retrieval or classification tasks. The Feature Extrac-

tion module (FE) is represented in Fig. 2.1. The input of the

system is the set1 of documents:

RF = Ωr = (d1, · · · ,dM)

1The relevance feedback RF can be interpreted as the training set Ωr for

the feature extraction module.

41
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Figure 2.1 Proposed feature extraction method. A Weighted Word Pairs
g structure is extracted from a corpus of training documents.

and the output is a vector of weighted word pairs:

g = {w′1, · · · , w′|Tp|}

where Tp is the number of pairs and w′n is the weight associated

to each pair (feature) tn = (vi, vj). Note that a feature transfor-

mation process is involved: it turns word pairs, instead of single

words, into basic features. Being |T| the basic feature set, a new

space |Tp| ∝ |T|2 of features is obtained and need to be properly

reduced to a subset Tsp such that |Tsp| � |Tp|. The pre-processing

phase helps reduce the size of the basic feature set (vocabulary)

by performing stopwords filtering and stemming. As further ex-

plained, the method used to select the most representative word

pairs among all the |Tp| is based on the Latent Dirichlet Allocation

[7] implemented as the Probabilistic Topic Model [41].
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A WWP structure can be suitably represented as a graph g of

terms (Fig. 2.2). Such a graph is made of several clusters, each

containing a set of words vs (aggregates) related to an aggregate

root (ri), a special word which represents the centroid of the clus-

ter. How aggregate roots are selected will be clear further. The

weight ρis can measure how a word is related to an aggregate root

and can be expressed as a probability: ρis = P (ri|vs). The re-

sulting structure is a subgraph rooted on ri. Moreover, aggregate

roots can be linked together building a centroids subgraph. The

weight ψij can be considered as a degree of correlation between

two aggregate roots and can also be expressed as a probability:

ψij = P (ri, rj). Being each aggregate root a special word, it can

be stated that g contains pairs of features lexically denoted as

words.

Given the training set Ωr of documents, the term extraction pro-

cedure is obtained first by computing all the relationships between

words and aggregate roots ( ρis and ψij), and then selecting the

right subset of pairs Tsp from all the possible ones Tp. Before ex-

plaining in detail the learning procedure of a WWP graph, some

aspects of this representation are clarified.

2.1.1 Graph and document representation in

the space Tsp

As introduced before, a WWP structure g can be viewed, following

the Vector Space Model [18], as a vector of features tn:

g = {b1, . . . , b|Tsp|},
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Figure 2.2 Graphical representation of a Weighted Word Pairs structure.

where |Tsp| represents the number of pairs and each feature tn =

(vi, vj) can be a word/aggregate root or aggregate root/aggregate

root pair. The weight bn is named boost factor and is equal to

ψij for both word/aggregate root or aggregate root/aggregate root

pairs.

Moreover, by following this approach, each document of a cor-

pus can be represented in terms of pairs:

dm = (w1m, . . . , w|Tsp|m),

where wnm is such that 0 ≤ wnm ≤ 1 and represents how much

term tn = (vi, vj) contributes to a semantics of document dm. The

weight is calculated thanks to the tf-idf model applied to the pairs

represented through tn:

wnm =
tf-idf(tn,dm)√∑|Tsp|
n=1 (tf-idf(tn,dm))2

(2.1)
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2.1.2 WWP-based classifier definition in the

space Tsp

If we learn a graph gi from documents that are labeled as ci, then

gi is a representation of such labeled set of documents and can be

considered as the expert φ̂i for the category ci:

gi = φ̂i = {b1i, . . . , b|Tsp|i}.

Using the expert we can perform a classification task by using

a linear method that measures the similarity between the expert

φ̂i and each document dm represented in the space Tsp.

A text-ranking classifier, also called soft decision based classi-

fier, is then obtained: for the category ci ∈ C we define a function

(the cosine similarity) which, given a document dm, returns a cat-

egorization status value CSVi(dm) ∈ [0, 1]:

CSVi(dm) =

∑|Tsp|
n=1 bni · wnm√∑|Tsp|

n=1 b
2
ni ·
√∑|Tsp|

n=1 w
2
nm

(2.2)

Such a number represents the evidence for dm ∈ ci; it is a

measure of vector closeness in a |Tsp|-dimensional space.

2.2 Building a WWP graph

A WWP graph g is learnt from a corpus of documents as a re-

sult of two important phases: the Relations Learning stage, where

graph relation weights are learnt by computing probabilities be-

tween word pairs (see Fig. 2.1); the Structure Learning stage,

where the shape of an initial WWP graph, composed by all pos-

sible aggregate root and word levels, is optimized by performing



46 2. The Weighted Word Pairs Approach

an iterative procedure. The algorithm, given the number of aggre-

gate roots H and the desired max number of pairs as constraints,

chooses the best parameter settings τ and µ = (µ1, . . . , µH) de-

fined as follows:

1. τ : the threshold that establishes the number of aggregate

root/aggregate root pairs of the graph. A relationship be-

tween the aggregate root vi and aggregate root rj is relevant

if ψij ≥ τ .

2. µi: the threshold that establishes, for each aggregate root

i, the number of aggregate root/word pairs of the graph. A

relationship between the word vs and the aggregate root ri

is relevant if ρis ≥ µi.

2.2.1 Relations Learning

Since aggregate roots and aggregates are lexically represented as

words of the vocabulary, we can write ρis = P (ri|vs) = P (vi|vs),
and ψij = P (ri, rj) = P (vi, vj).

Considering that P (vi, vj) = P (vi|vj)P (vj), all the relations

between words result from the computation of the joint or the

conditional probability ∀i, j ∈ {1, · · · , |T|} and P (vj) ∀j.
An exact calculation of P (vj) and an approximation of the

joint, or conditional, probability can be obtained through a smoothed

version of the generative model introduced in [7] called Latent

Dirichlet Allocation (LDA), which makes use of Gibbs sampling

[41].

The original theory introduced in [41] mainly proposes a se-

mantic representation in which documents are represented in terms
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of a set of probabilistic topics z.

Formally, we consider a word um of the document dm as a

random variable on the vocabulary T and z as a random vari-

able representing a topic between {1, · · · , K}. A document dm

results from generating each of its words. To obtain a word, the

model considers three parameters assigned: α, η and the num-

ber of topics K. Given these parameters, the model chooses θm

through P (θ|α) ∼ Dirichlet(α), the topic k through P (z|θm) ∼
Multinomial(θm) and βk ∼ Dirichlet(η). Finally, the distribution

of each word given a topic is P (um|z, βz) ∼ Multinomial(βz).

The output obtained by performing Gibbs sampling on a set

of documents Ωr consists of two matrixes:

1. the words-topics matrix that contains |T| ×K elements rep-

resenting the probability that a word vi of the vocabulary is

assigned to topic k: P (u = vi|z = k, βk);

2. the topics-documents matrix that contains K×|Ωr| elements

representing the probability that a topic k is assigned to

some word token within a document dm: P (z = k|θm).

The probability distribution of a word within a document dm of

the corpus can be then obtained as:

P (um) =
K∑
k=1

P (um|z = k, βk)P (z = k|θm). (2.3)

In the same way, the joint probability between two words um

and ym of a document dm of the corpus can be obtained by as-

suming that each pair of words is represented in terms of a set of
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topics z and then:

P (um, ym) =
K∑
k=1

P (um, ym|z = k, βk)P (z = k|θm) (2.4)

Note that the exact calculation of Eq. 2.4 depends on the

exact calculation of P (um, ym|z = k, βk) that cannot be directly

obtained through LDA. If we assume that words in a document

are conditionally independent given a topic, an approximation for

Eq. 2.4 can be written as:

P (um, ym) '
K∑
k=1

P (um|z = k, βk)P (ym|z = k, βk)P (z = k|θm).

(2.5)

Moreover, Eq. 2.3 gives the probability distribution of a word

um within a document dm of the corpus. To obtain the probability

distribution of a word u independently of the document we need

to sum over the entire corpus:

P (u) =
M∑
m=1

P (um)δm (2.6)

where δm is the prior probability for each document ( note that∑|Ωr|
m=1 δm = 1).

In the same way, if we consider the joint probability distribu-

tion of two words u and y, we obtain:

P (u, y) =
M∑
m=1

P (um, yv)δm (2.7)

Concluding, once we have P (u) and P (u, y) we can compute

P (vi) = P (u = vi) and P (vi, vj) = P (u = vi, y = vj), ∀i, j ∈
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{1, · · · , |T|} and so the relations learning can be totally accom-

plished.

2.2.2 Structure Learning

Once each ψij and ρis is known ∀i, j, s, aggregate root and word

levels have to be identified in order to build a starting WWP

structure to be further optimized. The first step is to select

from the words of the indexed corpus a set of aggregate roots

r = (r1, . . . , rH), which will be the nodes of the centroids subgraph.

Aggregate roots are meant to be the words whose occurrence is

most implied by the occurrence of other words of the corpus, so

they can be chosen as follows:

ri = arg max
vi

∏
j 6=i

P (vi|vj)

Since relationships’ strenghts between aggregate roots can be

directly obtained from ψij, the centroids subgraph can be easily

determined. Note that not all possible relationships between ag-

gregate roots are relevant: the threshold τ can be used as a free

parameter for optimization purposes. As discussed before, several

words (aggregates) can be related to each aggregate root, obtain-

ing H aggregates’ subgraphs. The threshold set µ = (µ1, . . . , µH)

can be used to select the number of relevant pairs for each ag-

gregates’ subgraph. Note that a relationship between the word vs

and the aggregate root ri is relevant if ρis ≥ µi, but the value ρis

cannot be directly used to express relationships’ strenghts between

aggregate roots and words. In fact, being ρis a conditional prob-

ability, it is always bigger than ψis which is a joint probability.
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Therefore, once pairs for the aggregates’ subgraph are selected

using ρis, relationships’ strenghts are represented on the WWP

structure through ψis.

Given H and the maximum number of pairs as constraints (i.e.

fixed by the user), several WWP structure gt can be obtained by

varying the parameters Λt = (τ,µ)t.

As shown in Fig.2.1, an optimization phase is carried out in

order to search the set of parameters Λt which produces the best

WWP graph. This process relies on a scoring function and a

searching strategy [6] that will be now explained.

As we have previously seen, a gt is a vector of features gt =

{b1t, . . . , b|Tsp|t} in the space Tsp and each document of the training

set Ωr can be represented as a vector dm = (w1m, . . . , w|Tsp|m) in

the space Tsp. A possible scoring function is the cosine similarity

between these two vectors:

S(gt,dm) =

∑|Tsp|
n=1 bnt · wnm√∑|Tsp|

n=1 b
2
nt ·
√∑|Tsp|

n=1 w
2
nm

(2.8)

and thus the optimization procedure would consist in searching

for the best set of parameters Λt such that the cosine similarity is

maximized ∀dm.

Therefore, the best gt for the set of documents Ωr is the one

that produces the maximum score attainable for each document

when used to rank Ωr documents.

Since a score for each document dm is obtained, we have:

St = {S(gt,d1), · · · , S(gt,d|Ωr|)},

where each score depends on the specific set Λt = (τ,µ)t.
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To compute the best value of Λ we can maximize the score

value for each document, which means that we are looking for

the graph which best describes each document of the repository

from which it has been learned. It should be noted that such an

optimization maximizes at the same time all |Ωr| elements of St.

Alternatively, in order to reduce the number of the objectives

being optimized, we can at the same time maximize the mean value

of the scores and minimize their standard deviation, which turns

a multi-objective problem into a two-objective one. Additionally,

the latter problem can be reformulated by means of a linear combi-

nation of its objectives, thus obtaining a single objective function,

i.e., Fitness (F), which depends on Λt,

F(Λt) = E [St]− σ [St] ,

where E is the mean value of all the elements of St and σm is

the standard deviation. By summing up, the parameters learning

procedure is represented as follows,

Λ∗ = argmax
t
{F(Λt)}.

We will see next how the searching strategy phase has been con-

ducted.

Since the space of possible solutions could grow exponentially,

|Tsp| ≤ 300 2 has been considered. Furthermore, the remaining

space of possible solutions has been reduced by applying a clus-

tering method, that is the K-means algorithm, to all ψij and ρis

values, so that the optimum solution can be exactly obtained after

the exploration of the entire space.

2This number is usually employed in the case of Support Vector Machines.
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2.3 From WWP to expanded query

As discussed before, a query expansion framework can be de-

scribed as a modular system that essentially includes: a standard

text retrieval module which, given a query (plain or expanded),

returns a ranked set of documents out of an indexed corpus; a

custom query expansion module which given a set of feedback

documents, builds an expanded query to feed the text retrieval

module. The proposed method can be summarized into three fun-

damental steps: initial user query and first search; user selection

of relevant documents (minimal feedback); query expansion with

subsequent search and retrieval of other relevant documents. In

the first phase, user inputs a query to the text retrieval module,

which performs an initial search and ranks results by using default

similarity measures (for example Lucene standard tf-idf ). Dur-

ing the second phase, the user checks the first pages of retrieved

results and selects feedback documents. Once the optimal WWP

structure has been extracted out of feedback documents (feature

extraction phase), it has to be translated into an expanded query.

This process, according to Fig.1.4, is called query reformulation

and is carried out by considering a WWP graph (Fig.2.3) as a

simple set of weighted word pairs (see plain WWP representation

in Fig.2.4).

In fact, at this stage there’s no more need to distinguish be-

tween aggregate roots and aggregates, although this hierarchical

distinction was fundamental for the structure building process.

Note that the query reformulation process is IR module depen-

dant. There are several open source libraries providing full-text
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Figure 2.3 Example of a Weighted Word Pairs graph (Topic 402 TREC-8,
”Behavioral genetics”).
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word1 word2 relation factor

condit behavior 0.029258633

studi behavior 0.05521098

genet condit 0.019349499

genet studi 0.021024829

genet behavior 0.0048710075

studi condit 0.026697233

includ behavior 0.029998844

famili studi 0.054471035

Figure 2.4 Fragment of plain WWP representation for the example in
Fig. 2.3

search features among which Apache Lucene and Lemur Project

[61] have been chosen since they handle complex query expansions

through custom boolean weighted models. When using Lucene as

IR [40] module, the WWP plain representation (Fig.2.4) is trans-

lated according to Lucene boolean model as follows:

(behavioral genetics)^1 OR (condit AND behavior)^0.02925

OR (studi AND behavior)^0.05521 ...

Every word pair is searched with a lucene boost factor chosen

as the corresponding WWP relation factor, while the initial query

is added with unitary boost factor (default).

When Lemur is used as IR module, WWP plain representation

is translated into an expanded query using Indri query language.

Inference networks, combined with language feature models, give
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a solid theoretical basis for expressing information needs. In or-

der to harness this model, Indri provides a query language that

can express complex concepts [73]. The Indri query language is

based on the successful Inquery structured query language. Both

query languages are composed of operators, each of which can be

considered a query node in an inference network. The Indri lan-

guage contains the most popular operators from Inquery, along

with many new operators that express concepts related to docu-

ment structure. It also includes the window operators which allow

the user to indicate that the location of query terms in a document

affects relevance. The ordered window operator expresses that the

terms should appear in a particular order in the document, while

the unordered window operator merely requires terms to appear

close together. Both operators have a distance parameter, N, that

defines how close the terms need to be to each other. Indri also

includes the #combine and #weight operators, which are similar

in usage to the #sum and #wsum operators from Inquery. These

terms allow users to combine beliefs from a variety of other query

nodes effectively. Mathematically, the #combine operator cor-

responds to the #and operator from Inquery, while the #weight

operator corresponds to the #wand operator proposed by Metzler.

Indri also incorporates the filter-require (#filreq) and filter-

reject (#filrej ) operators from Inquery, which are useful for filter-

ing operations. The filter-require operator indicates that all rele-

vant documents match a particular pattern; filter-reject indicates

that relevant documents do not match a pattern.

In our case, we are mainly interested in belief operators from

Lemur toolkit [61]. These allow to combine beliefs (scores) about
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terms, phrases, etc. and can be both unweighted and weighted.

With the weighted operators, weights can be assigned to certain

expressions in order to control how much of an impact each ex-

pression within the query has on the final score. So if we choose to

assign an equal impact to both the original query and the WWP

graph, WWP plain representation can be formulated as follows:

#weight( 0.50 #combine(behavioral genetics)

0.50 #weight(0.02925 #band( condit behavior )

0.05521 #band( studi behavior ) ...

Here we recognize a weighted combination of original query and

WWP graph. The weight “0.50” indicates that the same impor-

tance is given to the original query and the graph. The graph itself

is translated as a weighted combination of “binary and” between

word pairs where each weight corresponds to the WWP relation

factor.

Next chapter shows results obtained from validating WWP ap-

proach with both IR modules in Text Retrieval and Text Catego-

rization problems.



“I’m ... a rather simple person

with a limited talent and

perhaps a limited perspective.”

Bill Evans

Chapter 3

Experimental Results

WWP approach has been validated in two application fields: Query

Expansion (in the domain of interactive text search engines) and

Text Categorization. Standard datasets have been used for per-

formance evaluation in both fields and results will be discussed in

detail through the following sections.

3.1 WWP for Query Expansion

In Section 1.2.2 a modular query expansion framework has been

introduced. Referring to such a scheme, performance compari-

son was carried out testing several FE/IR combinations. Two

IR modules (Apache Lucene and Lemur) have been used for the

evaluation, so that each of the following combination has been

performed two times:

57
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• IR only Unexpanded queries were performed. Only the

first line of the chain in Figure 1.4 is involved, considering

RS = (d1, · · · ,dN) as output. Results obtained for these

cases are referred as baseline.

• FE(WWP) + IR. A WWP-based feature extraction (FE)

method was used to expand the initial query and feed the

IR module.

• FE(KLD) + IR. A Kullback Leibler Divergency [13] based

feature extraction method was used to expand initial query

and feed the IR module.

3.1.1 Datasets and Ranking Systems

The dataset from TREC-8 collections (minus the Congressional

Record) was used for performance evaluation. It contains about

520,000 news documents on 50 topics (no.401-450) and relevance

judgements for the topics. Figure 3.1 shows the number of relevant

judged documents for each topic of the dataset. Word stopping

and word stemming with single keyword indexing were performed.

Query terms for each topic’s initial search (baseline) were obtained

by parsing the title field of a topic. For the baseline and for the

first pass ranking (needed for feedback document selection) the

default similarity measures provided by Lucene and Lemur has

been used. Performance was measured with TREC’s suggested

evaluation measures, briefly discussed in next section: precision at

different levels of retrieved results (P@5,10...1000), mean average

precision (MAP), R-precision and binary preference (BPREF).
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no. Topic Title # of Relevant Docs

401 foreign minorities, Germany 300
402 behavioral genetics 80
403 osteoporosis 21
404 Ireland, peace talks 142
405 cosmic events 38
406 Parkinson’s disease 13
407 poaching, wildlife preserves 68
408 tropical storms 118
409 legal, Pan Am, 103 22
410 Schengen agreement 65
411 salvaging, shipwreck, treasure 27
412 airport security 123
413 steel production 69
414 Cuba, sugar, exports 39
415 drugs, Golden Triangle 136
416 Three Gorges Project 42
417 creativity 75
418 quilts, income 116
419 recycle, automobile tires 19
420 carbon monoxide poisoning 33
421 industrial waste disposal 83
422 art, stolen, forged 152
423 Milosevic, Mirjana Markovic 21
424 suicides 171
425 counterfeiting money 162
426 law enforcement, dogs 202
427 UV damage, eyes 50
428 declining birth rates 118
429 Legionnaires’ disease 11
430 killer bee attacks 6
431 robotic technology 130
432 profiling, motorists, police 28
433 Greek, philosophy, stoicism 13
434 Estonia, economy 347
435 curbing population growth 117
436 railway accidents 180
437 deregulation, gas, electric 72
438 tourism, increase 173
439 inventions, scientific discoveries 219
440 child labor 54
441 Lyme disease 17
442 heroic acts 94
443 U.S., investment, Africa 102
444 supercritical fluids 17
445 women clergy 62
446 tourists, violence 162
447 Stirling engine 16
448 ship losses 46
449 antibiotics ineffectiveness 67
450 King Hussein, peace 293

Figure 3.1 Topics from TREC dataset with number of judged relevant
documents available for each topic.
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Evaluation measures

The two most frequent and basic measures for information re-

trieval effectiveness are precision and recall. Precision (P) is de-

fined as the fraction of retrieved documents that are relevant:

P =
#(relevant items retrieved)

#(items retrieved)

If we consider relevant retrieved items as true positives (tp) and

non-relevant retrieved items as false positives (fp), precision can

be also written as follows:

P =
tp

tp+ fp

Recall (R) is the fraction of relevant documents that are re-

trieved:

R =
#(relevant items retrieved)

#(relevant items)

In this case, if we refer to relevant not retrieved documents as

false negatives and not retrieved non-relevant documents as true

negative, the previous definition can be written as follows:

R =
tp

tp+ fn

The measures of precision and recall emphasize the return of true

positives; they take into account what percentage of the relevant

documents have been found and how many false positives have

also been returned. These measures, typically computed using

unordered sets of documents, can be extended to ranked results

if evaluated for different sets of top k retrieved documents. For

example, Precision at k (P@k) is computed after k documents
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have been retrieved. In the TREC community the Mean Average

Precision measure (MAP) is often used: it provides a single-figure

measure of quality across recall levels with good discrimination

and stability. Given a single information need, Average Precision

is the average of the precision value obtained for the set of top k

documents existing after each relevant document is retrieved: in

MAP this value is averaged over information needs. If the set of

relevant documents for an information need qj ∈ Q is {d1, . . . dmj
}

and Rjk is the set of ranked retrieval results from the top result

until you get to document dk, then

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk)

Since the number of relevant documents has a strong influ-

ence on precision at k, another measure called R-Precision is also

used in TREC community. In order to compute R-precision it

is required to know a set of relevant document Rel and calculate

the precision of the top Rel documents returned. This measure

de-emphasizes the exact ranking of the retrieved relevant docu-

ment, which is useful in cases where large numbers of documents

are available (TREC). The average R-Precision for a run can be

computed by taking the mean of the R-Precisions of individual

topics in the run. For example, we can assume a run consist-

ing of two topics, one with 50 relevant documents and another

with 10 relevant documents. If the retrieval system returns 17

relevant documents in the top 50 documents for the first topic,

and 7 relevant documents in the top 10 for the second topic, then

the run’s R-Precision would be
17
50

+ 7
10

2
= 0.52. The Binary Pref-
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erence (bpref) measure has been introduced for situations where

relevance judgments are not complete. It computes a preference

relation of whether judged relevant documents are retrieved ahead

of judged irrelevant documents. Thus, it emphasizes the relative

ranks of judged documents only. The bpref measure can be defined

as follows:

bpref =
1

R

∑
r

(1− |n ranked higher than r|
min(R,N)

)

where R is the number of judged relevant documents, N is the

number of judged irrelevant documents, r is a relevant retrieved

document and n is a member of the first R irrelevant retrieved

documents.

All the evaluation measures on TREC dataset were computed

using the trec eval program written by Chris Buckley [10].

3.1.2 Parameter Tuning

The two most important parameters involved in the computation

of WWP, given the number of documents for training, are the

number of aggregate roots H and the number of pairs. The number

of aggregate roots can be chosen as a trade off between retrieval

performances and computational times (see Fig.3.2); our choice

was H = 4 since it seemed to be the best compromise (about

6 seconds per topic)1. However, we want to emphasize method

effectiveness more than algorithm efficiency since algorithm coding

has not been completely optimized yet.

1Results were obtained using an Intel Core 2 Duo 2,40 GHz PC with 4GB

RAM with no other process running.
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H MAP(%) P@5(%) Time (s)

2 26,00 72,00 3,98

3 27,95 73,60 4,6

4 29,09 76,00 6,06

5 29,17 76,24 9,5

6 30,04 73,60 12,04

Figure 3.2 The number of aggregate roots H can be chosen as a trade off
between retrieval performances and computational times. Our choice was

H = 4.

Fig.3.3 shows results of baseline and WWP method when chang-

ing number of pairs from 20 to 100 where the number of documents

is fixed to 3: in this analysis, Lucene IR module is used. Accord-

ing to the graph, our system always provides better performances

than baseline; the change in number of pairs has a great impact es-

pecially on precision at 5 where 60 pairs achieve the best results.

Anyway, if we consider precision at higher levels together with

map values, 50 pairs seem to be a better choice also for shorter

computational times. Fig.3.4 shows results of baseline and WWP

method when changing number of training documents (Lucene IR

Module used): here we can see that the overall behaviour of the

system is better when choosing 3 relevant documents for training.

Once again the system outperforms baseline especially at low pre-

cision levels.

Since a relevance feedback based method is proposed, it was use-

ful to analyze precision@10 evaluated for each topic in response

to the base query. Such an analysis, performed using both Lucene
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(Fig.3.5) and Lemur (Fig.3.6) as IR modules, allows to check how

many relevant documents are retrieved for each topic in the first

ten results. For each IR module, we can summarize outcomes as

follows:

• Lucene IR. In the first ten results, there’s no set of 2 rele-

vant documents for 12 topics and no set of 3 relevant docu-

ments for 19 topics (see Figure 3.5)

• Lemur IR. In the first ten results, there’s no set of 2 relevant

documents for 7 topics and no set of 3 relevant documents

for 13 topics (as shown in Fig. 3.6).

Therefore, a pseudo relevance approach for this dataset could

be not recommended when Lucene and Lemur are used as IR mod-

ules, since performance is compromised by the lack of relevant sets

in top k retrieved for certain topics. Discussed analysis led to

choose the following settings for the experimental stage: 4 aggre-

gate roots, 50 pairs, 3 training documents.

3.1.3 Comparison with other methods

Figure 3.7 shows a first performance comparison between WWP

method, baseline (unexpanded query) and a random weighted

WWP when using both Lucene and Lemur as IR modules. A ran-

dom weighted WWP is obtained by “corrupting” the building pro-

cess of a standard WWP structure so that random probabilities are

considered instead of those coming from LDA computation; this

allows to check the strength of the method in both term extraction

and relations learning. In Fig.3.8 WWP method is compared with
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Figure 3.3 WWP performance when changing number of pairs

Figure 3.4 WWP performance when changing number of training
documents
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Figure 3.5 Precision@10 analysis of baseline results obtained for each topic
with Lucene IR

Figure 3.6 Precision@10 analysis of baseline results obtained for each topic
with Lemur IR
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IR Lucene Lemur

FE WWP WWP(rand) WWP WWP(rand)

relret 3068 1472 3285 1577

map 0,2909 0,1236 0,3069 0,1319

Rprec 0,3265 0,1625 0,3324 0,1628

bpref 0,3099 0,1985 0,3105 0,1987

P@5 0,76 0,564 0,736 0,5446

P@10 0,602 0,404 0,58 0,3886

P@100 0,2612 0,1202 0,2562 0,1178

P@1000 0,0614 0,0294 0,0657 0,0315

Figure 3.7 Results comparison for WWP against random weighted WWP
with 3 training documents.

baseline and Kullback-Leibler divergence based method [13]. Here

we see that WWP outscores KLD, random weighted WWP and

baseline especially for low level precision while having good per-

formances for other measures. However these results are obtained

without removing feedback documents from the dataset, which is

a common behaviour for text retrieval systems. One could argue

that a big improvement in low level precision is essentially due

to feedback documents being better ranked for the use of WWP.

Therefore, another performance evaluation was carried out using

only the residual collection (RSD) where feedback documents are

removed. Results for this evaluation are shown in Fig.3.9: here we

see that WWP method provides better global performance also

with residual collection.
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IR Lucene Lemur

FE - KLD WWP - KLD WWP

relret 2267 2304 3068 2780 2820 3285

map 0,1856 0,1909 0,2909 0,2447 0,2560 0,3069

Rprec 0,2429 0,2210 0,3265 0,2892 0,2939 0,3324

bpref 0,2128 0,2078 0,3099 0,2512 0,2566 0,3105

P@5 0,3920 0,5200 0,7600 0,4760 0,5720 0,7360

P@10 0,4000 0,4300 0,6020 0,4580 0,4820 0,5800

P@100 0,1900 0,1744 0,2612 0,2166 0,2256 0,2562

P@1000 0,0453 0,0461 0,0614 0,0556 0,0564 0,0657

Figure 3.8 Results comparison for unexpanded query, KLD and WWP
(FE) using Lucene and Lemur as IR modules.

Since we are interested in finding out strengths and weaknesses

of the proposed approach, a detailed analysis of Average Preci-

sion, Binary Preference and Precision@10 for each topic has been

also reported in this dissertation. Figures 3.10 and 3.11 show an

Average Precision analysis for each topic when using Lucene and

Lemur IR respectively. The bar charts (which are not stacked!)

allow higher values to hide lower ones so that we can easily identify

cases where WWP performs worse than KLD and/or baseline. For

example, Figure 3.10 shows that the use of an unexpanded query

on Lucene for topic 423 achieve better average precision perfor-

mance than both KLD and WWP; the use of expanded terms in

this case seems to introduce noise in the retrieval task. A com-

parative analysis shows how different IR modules can react to the
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IR Lucene Lemur

FE - KLD WWP - KLD WWP

relret 2117 2178 2921 2630 2668 3143

map 0,1241 0,1423 0,2013 0,1861 0,1914 0,2268

Rprec 0,1862 0,1850 0,2665 0,2442 0,2454 0,2825

bpref 0,1546 0,1716 0,2404 0,1997 0,2044 0,2471

P@5 0,2360 0,3920 0,4840 0,3880 0,4120 0,5120

P@10 0,2580 0,3520 0,4380 0,3840 0,3800 0,4560

P@100 0,1652 0,1590 0,2370 0,1966 0,2056 0,2346

P@1000 0,0423 0,0436 0,0584 0,0526 0,0534 0,0629

Figure 3.9 Results comparison for unexpanded query, KLD and WWP
using Lucene or Lemur with RSD.

same problem. Note that, when Lemur is used (Fig. 3.11), WWP

is able to achieve the best performance in terms of average pre-

cision for topic 423 but here we find some issues for topic 430.

Figures 3.12 and 3.13 show a similar analysis for Binary Prefer-

ence. Also in this case, we find that both WWP and KLD have

poor performance for topic 423 when Lucene is used (Fig. 3.12)

and the topic 430 reveals a performance issue too. Anyway, the

use of Lemur allows WWP to obtain the best performance on topic

423, but KLD is still to prefer for topic 430. Another interesting

comparative analysis has been reported for Precision@10. Figure

3.14 shows that, when Lucene is used, the use of expansion terms

compromise performances for some topics; in particular for topics

423, 425, 441 baseline performs significantly better than WWP
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Figure 3.10 MAP analysis of WWP, KLD, and baseline for each topic
with Lucene IR

and KLD. However, when Lemur is used, we see that WWP gives

better results for most topics in terms of Precision@10.

As seen before, in some cases the use of query expansion can have

the drawback of lowering performances. Such a behaviour can

be due to different factors, so that some considerations need to

be made. First of all, if we check the number of judged relevant

documents available for each topic ( Fig. 3.1), we realize that,

for certain topics, such a number is very small compared to the

size of the whole dataset. Moreover, not every document in the

considered dataset has been judged and there is a large subset of

negative examples (document judged as non relevant) which our

system doesn’t take into account to build the graph. Finally, a

deep analysis of the documents selected for graph building could

reveal the presence of bad formed periods or inconsistent docu-

ment structures. Since such an analysis could be very subjective,

this aspect has not been considered for the evaluation.
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Figure 3.11 MAP analysis of WWP, KLD, and baseline for each topic
with Lemur

Figure 3.12 Binary Preference analysis of WWP, KLD, and baseline for
each topic with Lucene IR
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Figure 3.13 Binary Preference analysis of WWP, KLD, and baseline for
each topic with Lemur IR

Figure 3.14 Precision@10 analysis of WWP, KLD, and baseline for each
topic with Lucene IR
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Figure 3.15 Precision@10 analysis of baseline results obtained for each
topic with Lemur IR

3.2 WWP for Text Categorization

As discussed before, a binary classifier, also known as hard classi-

fier, is mostly used in text categorization problems where the task

is to assign each document to each class. Unfortunately, the pro-

posed approach behaves more as a document-ranking text classi-

fier, namely a soft decision based classifier. In fact, once a WWP

structure has been learnt from the training set for a class, that

structure is used to query the test set through a IR module ob-

taining a set of ranked documents as output.

A way to turn a soft classifier into a hard one is to define a

threshold γi such that the CSVi(dm) ≥ γi (Categorization Status

Value) is interpreted as T while CSVi(dm) ≤ γi is interpreted as

F . An experimental method, known as CSV thresholding [70] has

been adopted and consists in testing different values for γi on a

subset of the training set (the validation set) and choosing the

value which maximizes effectiveness.
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3.2.1 Datasets and Ranking Systems

Performance evaluation was carried out using Reuters-21578 repos-

itory which is a collection of 21,578 newswire articles, originally

collected and labeled by Carnegie Group, Inc. and Reuters, Ltd..

Classes from a set of 118 topic categories have been associated to

each article: a document may belong to several classes or none,

but the commonest case is a single assignment (documents with

at least one class received an average of 1.24 classes).

For this task the ModApte split has been used: it includes only

documents that were viewed and assessed by a human indexer, and

comprises 9,603 training documents and 3,299 test documents.

The distribution of documents in classes is very uneven so eval-

uation was conducted using only documents belonging to the 10

largest classes [18]2.

Note that WWP structure is more complex than a simple list

of keywords since it takes into account relations between terms

and the hierarchical differentiation between aggregate words and

aggregate roots. To demonstrate the discriminative property of

such features and justify the overhead in complexity coming from

their introduction, we have to prove that results obtained with the

proposed approach are significantly better than results obtained

when the same classification task is performed using a simple list

of weighted words.

In single label or binary classification we usually have a training

set containing examples that are labeled as ci or ci. A typical

2Note that considering the 10 largest classes means 75% of the training set

and 68% of the test set.
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classifier learns from both sets of examples and is capable to assign

a new document to the category ci or ci.

But a standard WWP structure is learned only from docu-

ments labeled as ci (positive examples) so documents belonging

to the category ci are not used: this would make the proposed ap-

proach not directly comparable with existing methods. Anyway,

a comparison has been performed with linear Support Vector Ma-

chines (SVM) learned on the same percentage of the training set

(both positive and negative examples) with a mutual information

based term selection.

The aim of the evaluation phase is twofold: to demonstrate the

discriminative property of WWP compared with a simpler method

using the same keywords selected by WWP but neglecting rela-

tions (named the Words List); to demonstrate that WWP achieves

a good performance when 1.4% of the training set is employed for

each class. The any-of problem and 10 two-class classifiers, one

for each class, have been considered where a two-class classifier

for class ci is the classifier for the class c and its complement ci.

Defining tpi as true positive, tni as true negative, fpi as false pos-

itive and fni as false negative for the category ci ( [70, 18]), for

each classifier several measures were evaluated: precision and re-

call; micro-average precision and recall; F1 measure; micro-average

F1; macro-average F1. Some details about such measures will be

discussed in the next section.

Evaluation measures

In order to evaluate classification performances for each category

ci, precision and recall were computed following the definitions



76 3. Experimental Results

previously provided: Pi = tpi
tpi+fpi

and Ri = tpi
tpi+fni

.

A single measure that trades off precision versus recall was also

considered, the F-measure. It is defined as the weighted harmonic

mean of precision (P) and recall (R):

F =
1

α 1
P

+ (1− α) 1
R

=
(β2 + 1)PR

β2P +R

where β2 = 1−α
α

. Since α ∈ [0, 1], we have that β2 ∈ [0,∞].

For a balanced F-measure, where precision and recall are equally

weighted, α = 1/2 or β = 1 are often chosen obtaining the common

F1 measure. For a given category ci:

F1i = 2 · Pi ·Ri

Pi +Ri

Note that global measures are usually required to properly tune

and evaluate a text categorization system. Such methods makes

use of micro-averaging and macro-averaging. Micro-averaged val-

ues are calculated by constructing a global contingency table (for

true/false positives and true/false negatives) and calculating pre-

cision, recall and f-measure using those sums:

Pmicro =

∑|C|
i=1 tpi∑|C|

i=1 tpi + fpi

Rmicro =

∑|C|
i=1 tpi∑|C|

i=1 tpi + fni

F1micro = 2 · Pmicro ·Rmicro

Pmicro +Rmicro

where |C| is the number of categories. Macro-averaged scores are

obtained by first calculating precision and recall for each category

and then taking the average of these:
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Pmacro =

|C|∑
i=1

Pi

Rmacro =

|C|∑
i=1

Ri

F1macro =
1

|C|

|C|∑
i=1

F1i

The main difference between these two methods is that micro-

averaging gives equal weight to every document (it is also called

a document-pivoted measure) while macro-averaging gives equal

weight to every category (category-pivoted measure).

3.2.2 Parameter Tuning

The threshold γ for the categorization status value has been set by

evaluating aggregate measures: micro-precision, micro-recall and

micro F1 (see Fig. 3.16); γ = 0.1 was the choice for all the topics.

After tuning the classifier, macro-F1 measure was evaluated for

different sizes of the reduced training set Υr. Since document

lenght can vary strongly across different documents of the dataset,

every subset was extracted from the corresponding training set

as a fraction of its size in KB. Fig.3.17 shows the behavior of

the classifier: there’s a degradation of performance as the size

of the training set increases. This suggests that WWP becomes

less discriminative as the number of labeled examples increases.

For this reason, Υr was chosen as about 1.4% of Ωr. In Fig.

3.18 is reported the comparison between the dimension of Υr and

the original training set Ωr. The selection was performed 100
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Figure 3.16 Tuning of the threshold for γ.

times in order to make the results independent from the particular

document selection. As a result, 100 repositories were available

and 100 WWP structures were extracted out of them performing

the parameters learning described above.

3.2.3 Comparison with other methods

Since each optimization procedure leads to a different WWP struc-

ture, we have a different number of pairs for each structure. The

average number of pairs for each topic and the corresponding aver-

age number of terms have been calculated. Note that the average

size of |Tsp| is 116, while the average size of |Ts| is 33. The over-

all number of features used by our method is, independently of

the topic, less than the number considered in the case of Sup-

port Vector Machines where the term selection process results in

|T|s = 300. In Figure 3.18 F1 measure, micro-F1 and macro-F1

obtained by the WWP graph g, word list w and support vector

machines (SVM). The best values and the average values obtained
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Figure 3.17 Different values of macro-F1 for different percentages of the
training set Υr.

by performing the classification of all 100 examples of the reduced

training set has been reported. It is surprising how the proposed

method, even if the training set is smaller than the original one,

is capable of classifying in most cases with an accuracy some-

times comparable and mostly better than Support Vector Ma-

chines. Note that the performance of the proposed method is,

independently of the topic, better than the simple word list, so

demonstrating that WWP representation has a better discrimina-

tive power. Finally, it should be noticed that even if good perfor-

mances are obtained when a simple word list is employed, such a

list is however composed of WWP terms. This demonstrates that

WWP could be useful also to select the most discriminative words

from the space Ts.
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“...and incidentally, I am not

self-taught. Everybody who has

given me a moment of beauty,

significance or excitement has

been a teacher.”

George Russell

Chapter 4

Conclusions and future

works

In this dissertation an alternative method for supervised text clas-

sification, relying on a Weighted Word Pairs (WWP) structure,

has been presented. Such a method, which has shown to be effec-

tive when small training sets are available, was validated in both

Text Retrieval (Query Expansion) and Text Categorization fields

using standard datasets.

The experimental phase for Query Expansion field was con-

ducted with the use of TREC-8 dataset, containing approximately

520 thousand pre-classified documents. A performance compar-

ison between the baseline (results obtained with no expanded

query), WWP structure and query expansion method based on the

Kullback Leibler divergence was carried out by computing typi-

cal information retrieval measurement: precision at various levels,

81
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mean average precision, binary preference, R-precision. Results

are very encouraging: Weighted Word Pairs hierarchical represen-

tation seems capable of retrieving a greater number of relevant

documents than a less complex representation based on a list of

weighted words (KLD). Then, it can be employed in all those

text mining tasks that consider matching between patterns repre-

sented as textual information as well as in sentiment analysis and

detection tasks. Note that the proposed approach computes the

expanded queries considering only endogenous knowledge. It is

well known that the use of external knowledge, for instance Word-

Net, could clearly improve the accuracy of information retrieval

systems and this integration for WWP could be considered an in-

teresting future work. WWP structure has been also validated in

the context of document categorization. In this case, the struc-

ture WWP combined with a module of Information Retrieval has

been used to implement a document-ranking text classifier, which

is able to make a soft decision: it draws up a ranking of documents

that requires the choice of an appropriate threshold (Categoriza-

tion Status Value) in order to obtain a binary classification. This

threshold was chosen by evaluating performance on a validation

set in terms of micro-precision, micro-recall and micro-F1. The

dataset Reuters-21578, consisting of about 21 thousand newspaper

articles, has been used; in particular, evaluation was performed on

the ModApte split (10 categories), which includes only documents

classified manually by humans . The experiment was carried out

by selecting the 1% randomly in the training set for each cate-

gory and this selection was made 100 times so that the results

are not biased by the specific subset. The performance, evaluated
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by calculating the F1 measure (harmonic mean of precision and

recall), was compared with the Support Vector Machines, in the

literature referred as the state of the art in the classification of

such a dataset. The results show that when the training set is re-

duced to 1%, the performance of the classifier based on WWP are

on average higher than those of SVM. Note that most text clas-

sifiers are trained using both positive and negative examples. An

interesting future work could be the use of two WWP structures

(positive and negative) to observe if there is any improvement in

classification performance. Since a WWP-based classifier is a doc-

ument ranking classifier, the combined use of two WWP structure

requires a proper choice of the categorization status value. For

example, given the document rankings for each WWP (positive

and negative), scores of documents appearing in both cases, could

be properly combined to refine results.

Another challenging work, which is in progress for the author,

is the use of a WWP graph as a starting point to build a prob-

abilistic terminological ontology out of a corpus of documents.

Note that ontology learning from text is the process of identifying

terms, concepts, relations and axioms from textual information

and using them to construct and maintain ontology [77]. It can

be viewed essentially as the process of deriving high level con-

cepts and relations as well as axioms from information to form

an ontology. It’s like a problem of reverse engineering: the au-

thor of a document or a text has a domain model in her mind

which shares with other authors writing texts about the same do-

main. The ontology learning from text is generally composed by

five phases that aim to return five outputs: terms, concepts, tax-
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onomic relations, non-taxonomic relations and axioms [11]. To

obtain each output, some tasks have to be accomplished and the

techniques employed for each task may change among systems.

Starting from the terms is possible to derive the concepts that

can be formed by grouping similar terms and labeling them. The

grouping phase involves discovering the variants of a term and

grouping them together, while the concept’s label can be inferred

by the use of existing background knowledge, such as WordNet,

that may be used to find the name of the nearest common an-

cestor. The relations model the interactions among the concepts

in ontology: in general, two types of relations can be recognized

in ontology: taxonomic and non-taxonomic relations. Taxonomic

relations, that are hypernym, build hierarchies and can be labeled

as ”is-a” relations [20]. This kind of relations can be performed in

various ways such as using predefined relations from existing back-

ground knowledge, using statistical subsumption models, relying

on semantic similarity between concepts and utilizing linguistic

and logical rules or patterns. The non-taxonomic relations are the

interactions among the concepts other than hypernymy and their

extraction is a challenging task. In this context verbs play a sig-

nificant role such as the support of domain experts. Axioms are

propositions or sentences that are always taken as true and are the

starting point for deducing other truth, verifying the correctness

of the ontological elements and defining constraints. The process

of learning axioms is still complex and there are few examples

in literature. That said, a local terminological ontology can be

build out of a WWP graph as a taxonomy of discovered concepts

for a single topic and for a given aggregate root node with a set



85

of generic relationships among the root node and other semantic

nodes, using WordNet as general lexical vocabulary. A possible

approach, which will be developed as a future work, could be this:

determine common hypernyms between the aggregate root node

and aggregated words; add hypernyms to the ontology as seman-

tic nodes if they are semantically similar to the root node; update

ontology by computing the correct IS A relationships among the

concepts, corresponding to the ancestor and leave nodes. Some

research activities in this field are already being carried out by

the author’s research group. More in general, the use of both sta-

tistical and semantic techniques allows to obtain effective domain

ontologies particularly suitable for a number of applications such

as topic detection and tracking, opinion and sentiment analysis,

text mining and classification and so on.
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