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This dissertation was carried out within the framework of the Quantum In-
formation (QI). This recent branch of quantum physics, involving elements of
quantum optics, can be schematically divided into four different and complemen-
tary subgroups: the protocol, the quantum states, the conditional measurements,
and the dechoerence (see Figure 1). They are different because of the pursued ob-
jectives and of the problems facing; on the other hand, they are complementary,
in the sense that in all areas of QI it is impossible to ignore even one of the four
subgroups.

Figure 1: Schematic representation of the key elements of the Quantum Informa-
tion.

In fact, the choice of the protocol automatically implies the preference of
some quantum states (resources) compared to others. In turn, the preparation of
quantum states is often made with conditional measures chosen ad hoc. Finally,
all the measurements have non-unitary efficiencies and each quantum property,
possessed by the resource and useful for the protocol, is afflicted by the effects of
the external environment (dechoerence).

In this dissertation, we have consedered each of the four subgroups:
The protocol. − A protocol consists of a set of rules to follow in order

to achieve a certain type of transmission of information. It defines the meth-
ods for the generation and preparation of the quantum states, compatibly to the
interaction of the system with the external environment.

In this dissertation within of the ’protocol’ subgroup, we have studied three
fundamental tools of the QI expressed in terms of the continuous variables (CV)
of the electromagnetic field:

• the teleportation protocol;
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• the entanglement swapping protocol;

• Bell’s theorem (which is the basis of some protocols such as the quantum
cryptography).

We have dealt with the maximization of the efficiency of each protocol, by
acting on the generation of the appropriate quantum states. In [1] Dell’Anno et
al have shown that the squeezed Bell (SB) states are, to date, the more efficient
theoretical states for the quantum teleportation. We have shown that even for the
entanglement swapping protocol [2] and for the violation of the Bell’s inequality
[3], the SB states exhibit better performance than all the other CV quantum
states.
Preparation of quantum states. − The quantum states represent the

essential ingredient of each protocol. There are two important distinct classes:
Gaussian and non-Gaussian states. The Gaussian states are described by a
Gaussian characteristic function, all other states are non-Gaussian. Both the
classes offer merits and defects, so the choice of using one or the other one depends
on the type of used protocol and on the goals being sought. In this dissertation,
we present an experimental scheme capable of generating, with good approxima-
tion, the SB states [4]. We have identified a scheme that is based on conditional
measures performed on ancillary quantum states. We have started to study an
ideal scheme (free by inefficiencies and decoherence), obtaining the reproduction
of the SB states. Then we introduced the inefficiencies of detection, of the optical
elements and of the conditional measurements. In the latter case, the scheme does
not exactly reproduces the SB states, but tunable quantum states are obtained,
which are very close to SB states. They exhibit a greater teleportation fidelity
than all other realistic quantum states that we have analyzed.

In addition, in collaboration with Prof. Salvatore Solimeno and Dr. Alberto
Porzio of University of Naples "Federico II", we have studied (the work is still at
a preliminary stage) the non-Gaussianity introduced by fluctuations in the pump
amplitude of the Optical Parametric Oscillator (OPO) below threshold and with
non-degenerate polarization. We have solved the coupled Langevin equations of
the three electromagnetic fields involved in the dynamic of the OPO system (i.e.
pump, idler, and signal). We have considered the following fluctuating quantities
[5]: optical length of the cavity OPO, the susceptibility of the crystal of second
harmonic generation, the frequency and amplitude of the pump field. The solution
is expressed in the phase space, in terms of the characteristic function or, equiv-
alently, of the Wigner’s function. We have calculated the fidelity of teleportation
of a coherent state, when the output state of the fluctuating OPO is used as a
resource for the teleportation. We have proved that such fluctuations lead to an
increase of fidelity of teleportation with respect to the case not fluctuating (and
gaussian). This suggests that the classic noise, introduced by the fluctuations,
can increase the value of a quantum quantity such as the fidelity of teleportation,
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making the non-Gaussian state, generated byOPO with fluctuating pump, better
than the Gaussian case (non-fluctuating pump).

Conditional Measurements. − In the context of the QI, conditional mea-
surements are used to prepare quantum states and to optimize the transfer of
information, as required by the specific protocol. Often, in order to generate the
states most suitable for a certain type of protocol, it is necessary to combine the
input states with a set of other quantum states, said ancillary states. Then the
latter are appropriately measured in order to obtain output states with the desired
characteristics.

We propose a rather general formulation of the method of conditioning through
ancillary measurements, in terms of the characteristic functions. In this formal-
ism, we have expressed both density operators describing the involved states,
both operators (POVM) describing the quantum measurements. Then, we have
considered the case of simultaneous measurements of single-photon, of homodyne
detection, and of on/off type (via ideal and realistic POVM). This approach is
used for the calculation of the state actually generated by the experimental scheme
of generation of the SB states.

Dechoerence. − The quantum properties are very sensitive to the interac-
tion of the quantum systems with the external environment. In quantum optics
even the vacuum is modeled as an set of infinite harmonic oscillators, each of
which interacts with the considered physical system. This circumstance requires
not to neglect the effects of deterioration that the environment determines on the
physical systems. For this reason, a part of this dissertation is devoted to analysis
of the evolution of some quantum quantities under the action of the dechoerence.
In particular, we have studied how the effects of decoherence acting on the follow-
ing quantities: the purity, the quantum correlations, the content of information,
the fidelity of teleportation of a coherent state [6], and the Bell’s inequality [7] of
a bi-partite Gaussian state that is transmitted through a realistic channel.

As regards the correlations, we have studied the different types of correlations
that can be observed in a bi-partite Gaussian state. The quantum correlations
arise from the superposition principle of the quantum mechanics and from the
collapse of the wave function (or, more generally, of the matrix density). Hence,
the correlations are dependent not only by the state, but also by the measures
which are performed on the state in order to derive informations. These differ-
ent aspects cause different types of correlation, so they are related to different
quantum markers. The issue is further complicated by the fact that for mixed
states there is not a satisfactory measure of entanglement. However, there are
some criteria which determine if the state is entangled or not. These demarcation
criteria are: the criterion of Duan, of PHS and of EPR-Reid.

In this context, we have added the experimental verification to the theoretical
study. In collaboration with the University of Naples "Federico II" and under the
guidance of Dr. Alberto Porzio and of Prof. Salvatore Solimeno, we carried out
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laboratory activities on [8]:

• Study of the generation of bi-partite Gaussian states produced by non-
degenerate polarization, below threshold OPO;

• Thermal stabilization through the realization of an electronic circuit (with
negative feedback control);

• Optimization of the electronic chain for the stabilization of the optical length
of two optical cavities through the Pound-Drever-Hall technique;

• Study of the homodyne detection technique. In particular, we have used a
single homodyne for the characterization of a bi-partite Gaussian state [78];

• Writing of programs, in LabviewPro8 language, for the management of ro-
tators, laminae of delay and for faster acquisition of the collected data, and
statistical analysis;

• Writing of programs, in Mathematica language, for the search of triple res-
onance temperature of the OPO;

• Simulation of a realistic transmission channel with an optical attenuator
with variable absorption coefficient.

In this dissertation, we have reported the results of the laboratory activities.
In particular, from the measurements performed for different absorption values,
we have calculated the quantum properties of the state and found an excellent
agreement with the theoretical expectations [6], even at high absorptions [9].

This dissertation is organized as follows:
In the Chapters 1 and 2, we have present a brief introduction on all the

fundamental concepts of QI and of quantum optics, more often mentioned during
the dissertation. We remark that in Chapter 1 it is reported the definition of the
SB states and the formalization, in terms of the characteristic function formalism,
of the method of the conditional measurements. In the Chapter 2 we present the
main properties of a quantum state. Moreover, we discuss the problem of the
entanglement quantification. We present also the CV teleportation protocol and
the type of non-locality introduced by the Bell’s inequality.

In the Chapter 3, we have explored the Bell’s inequality using the Gaussian
and non-Gaussian CV resources. In particular, we discuss two different ap-
proaches to inequality: the pseudospins approach (Sect. 3.1) and the Wigner’s
function approach (Sect. 3.2). In both formulations, the non-Gaussian SB re-
sources prove to be less suitable for a local classical description. In the case of
Gaussian resource (squeezed vacum state or twin beam), we emphasize the link
between the state purity, the entanglement (valued through the criterion of Duan)
and the violation of the Bell’s inequality.
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In the Chapter 4, we present the realistic entanglement swapping protocol
with Gaussian and non-Gaussian resources. In the realistic protocol we consider
the inefficiencies of detection and the interaction with the external environment.
In any case, we show that the non-Gaussian SB states are the best resource for
the entanglement swapping protocol, compared to other Gaussian (twin beam)
and non-Gaussian (e.g. the photon-subtracted squeezed states) states [2].

In the Chapter 5, we propose an experimentally feasible scheme for the real-
ization of the fundamental non-Gaussian SB resources. We show that in the ideal
case, the proposed scheme creates exactly the SB states; in the realistic case, the
producted states are very close to the SB states.

In the Chapter 6, we analyze the evolution of the "quantumness" of a Gaussian
state, when the system interacts with the environment (Gaussian channel). We
experimentally find that, even in presence of strong decoherence, the state gener-
ated by a sub–threshold OPO never disentangles, keeps breaking the quantum
limit for the discord and, as resource for quantum teleportation of a coherent state,
would allow, in principle, to realize quantum teleportation over an infinitely long
Gaussian channel.

In the Chapter 7, we rough out the calculation of the characteristic function
of the OPO with fluctuating pump. It exhibits a non-Gaussianity useful for the
teleportation protocol of a coherent state.

Eventually, in Appendix A, we present a nice discussion about the beam split-
ter, which is an essential element both for laboratory activities of QuantumOptics,
and as mathematical tool capable of modeling the interaction of a quantum state
with a thermal bath (and therefore with the quantum vacuum).



CHAPTER 1

ELEMENTS OF QUANTUM INFORMATION

In this Chapter, we analyze the foundations of the Quantum Optics that are the
basis of the main aspects of the modern Quantum Information. We start from
some primitive concepts: representation of the quantum states (Sect. 1.1) through
two different approaches (density matrix and characteristic function); observables
and uncertainty principle (Sect. 1.2); Gaussian and non-Gaussian quantum states
of the light radiation (Sect. 1.3). In particular, we discuss a general class of the
non-Gaussian quantum states (the SB states), to which we will often refer in the
following Chapters of this dissertation. In Sect. 1.4, we present a disquisition
on the concept of the conditional measures, proposing a formalization of a rather
general circumstances. In Sect. 1.5, we treat briefly the theory of the open
quantum systems, specializing the results to the realistic transmissions.

1.1 Density Matrix versus Characteristic Function

In this Section, we review the basic properties of the density matrix and we
discuss its connection with the characteristic function. We especially want to
highlight the properties that will be used later.

Each observable physical quantity of a quantum system is represented by a
Hermitian operator O. Its expectation value is

〈O〉 = 〈ψ |O|ψ〉 , (1.1)

where the ket |ψ〉 represents the wave function in the Dirac’s operatorial formalism
[10]. When the quantum system is in a mixture of states1, it is not expressible
with the simple ket |ψ〉. It becomes necessary to use the description of the state
through the density matrix ρ. The expectation value of O, Eq.(1.1), is given by
Tr[ρO]. The density matrix is a bounded positive Hermitian operator representing
the state of the system. It is definited by convex sum of the projector operators
Πn ≡ |ψn〉 〈ψn| of the normalized state |ψn〉 belonging to the Hilbert space HS of
the system,

ρS ≡
∑

n
pnΠn , (1.2)

1We will see that in nature there are no physical systems (strictly contained in the Universe)
which can be described by simple kets. This is because no system is isolated from its environment.
In fact for the interaction of the system with the vacuum, a pure state immediately becomes
mixed. Otherwise, not all the mixed states are born pure.

However, the pure states are a useful abstraction and they can be seen as the states to which
a realistic state tends asymptotically (at birth).

1
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where the real coefficients pn = p (Πn), represent a good probability measure over
the Hilbert space describing the quantum system. In fact, p is a map of each
projector operator, Πn, to a real number, p (Πn), onto the interval [0, 1],

p : Πn → p (Πn) ,

such that it satisfies the quantum version of the Kolmogorov probability axioms
[11]:

• ∑n pn = 1;

• p (O) = 0 and p (I) = 1 with O = |0〉 〈0| and I =∑∞
j=0 |j〉 〈j|, being |j〉

Fock state, j ∈ N;

• p
(∑

j Πj

)
=
∑

j p (Πj).

The fundamental Gleason’s theorem shows that all probability measure p (Πn)
are of the form

p (Πn) ≡ Tr [ρSΠn] ,

if the matrix ρS satisfies the following conditions

1. It is a unitary trace, 1 =Tr[ρS] = p (I);

2. It is hermitian, ρS = ρ†S;

3. It is semipositive, Tr[ρSΠn] ≥ 0 ∀n.

The coefficients p (Πn) are also interpreted as the probability that the system,
described by a mixture of states

∑
n pn |ψn〉 〈ψn|, is in the state |ψn〉.

Now, we can introduce the measure of the purity of a quantum state. The
state (1.2) is said pure if ∃! n = n̄ : pn̄ = 1 for which ρS = Πn̄ being pn = 0,
∀n 
= n̄. The state is mixed if ∀n we have that pn < 1, in this case the sum in
ρS, Eq.(1.2), can not be reduced to a single term. These properties of purity of a
quantum state, combined with the conditions 1, 2 and 3, suggest the introduction
of the following measure of purity:

µ = Tr
[
ρ2S
]

. (1.3)

The Eq. (1.3) is an appropriate measure of purity. In fact, calculating the quantity
ρ2S we obtain:

ρ2S =
∑

n,m

pnpmΠnΠm

=
∑

n

p2nΠn
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being ΠnΠm = δnmΠn, and therefore the Eq. (1.3) reduces to

Tr
[
ρ2S
]

=
∑

n

p2n

≤ 1 .

In particular, Tr[ρ2S] = 1⇔ ρS is pure (∃!n = n̄ : pn̄ = 1) .
We consider a system S composed by N bosonic sub-systems described by

annihilation operators ak, with k = 1, ..., N , and such that the commutation
relations are [ak, a

†
h] = δkh for k, h = 1, ...N . The system S is the union of the

N sub-systems, labelled with Sk, so S =
⋃N

k=1 Sk. It is described by vectors in

the Hilbert space HS =
⊗N

k=1Hk, being Hk the Hilbert space of the sub-system
k−th.

When it is known the density matrix, ρS, of the system, it is possible to deter-
minate the density matrix of the sub-system k using the partial trace operation.
It is defined as

ρk = Tr1,...,k−1,k+1,...N [ρS] , (1.4)

where Tr1,...,k−1,k+1,...N is the trace operation done on all N sub-systems exclud-
ing the k−th sub-system. The operators ρk satisfy all the properties of density
matrices. They are called reduced density matrices and describe the sub-systems
Sk.

Example 1 Purity of a bi-partite quantum state − In the case bi-partite state,
we have HS = H1 ⊗ H2.We suppose that the overall state, given by the density
matrix ρS, is the pure state ρS = |ψ〉12 12 〈ψ| with

|ψ〉12 =
∑

n1,n2

cn1,n2 |n1〉1 ⊗ |n2〉2

written as a linear combination of two-mode Fock states of two modes and such
that

∑
n1,n2
|cn1,n2 |2 = 1 for the normalization. We calculate the density matrix of

the sub-system 1(2), using the definition of Eq.(1.4). We have

ρ1(2) = Tr2(1) [ρS]

=
∑

n1n2

|cn1,n2 |2
∣∣n1(2)

〉
1(2) 1(2)

〈
n1(2)

∣∣ ,

so
ρ21(2) =

∑

n1n2

|cn1,n2|4
∣∣n1(2)

〉
1(2) 1(2)

〈
n1(2)

∣∣ ,

and
µ = µ1(2) = Tr

[
ρ21(2)

]
=
∑

n1,n2

|cn1,n2 |4 .
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So we can deduce that the purity µ is limitate to 1. In particular, µ1 = 1 iff ∃!
n1, n2 = n̄1, n̄2 : cn̄1,n̄2 = 1 so the state |ψ〉12 = |n̄1〉1 ⊗ |n̄2〉2 is factorizable in
the tensor product of the state |n̄1〉1and |n̄2〉 of the two sub-systems. Otherwise,
µ1 < 1, strictly; in latter case the state |ψ〉12 is not factorizable and the systems 1
and 2 are called quantum correlated or entagled [12]. As will be established later,
the purity can give indications on correlations between the two sub-systems of a
pure bi-partite system.

Another representation of the quantum state is in terms of the phase space
functions. The characteristic function is one of them. It is defined as

χρS (α) = Tr [ρSDN (α)] , (1.5)

where α is the complex column vector α =(α1, ...αN)
T , αk ∈ C, and

DN (α) =
N⊗

k=1

Dk (αk)

is the tensor product of N single mode dispacement operators

Dk (αk) = exp
{
αka

†
k − α∗kak

}
.

Then the characteristic function is the expectation value of the multimode oper-
ator DN (α) and, since DN (α) is unitary, the magnitude of each of its eigenval-
ues is limited from 1. Hence

∣∣χρS (α)
∣∣ ≤ 1 and its maximum value is given by

χρS (0) =Tr[ρSI] = 1 for the propriety 1 of the density matrix.
It is easy to prove some important properties of χρS (α). Let us O1 and O2

two generic operators acting on the Hilbert space HS, we have

Tr [O1O2] =
1

πN

∫

CN
d2NαχO1 (α)χO2 (−α) , (1.6)

where d2Nα = dα1...dαNdα
∗
1...dα

∗
N . To obtain this expression we have used the

property Tr[Dk (αk)] = πδ(2) (αk) and the completeness of the set of displacement
operators DN (α), for which any generic operator O can be expressed as

O =
1

πN

∫

CN
d2NαχρS (α)D

†
N (α) . (1.7)

The Eq.(1.6) allows to evaluate the expectation value, with respect to state ρS,
of an operator O acting on the Hilbert space HS

〈O〉ρS ≡ Tr [ρSO]

=
1

πN

∫

CN
d2NαχρS (α)χO (−α) ,
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where χO (−α) =Tr[ODN (−α)] is the characteristic function of the operator
O. From Eq.(1.6), we can also rediscover the purity µ of the quantum state ρS
expressed in the characteristic function formalism:

µ = Tr
[
ρ2S
]

=
1

πN

∫

CN
d2NαχρS (α)χρS (−α)

=
1

πN

∫

CN
d2Nα

∣∣χρS (α)
∣∣2 (1.8)

Using the property
∣∣χρS (α)

∣∣ ≤ 1 we see that the purity is a positive quantity and
it is bounded by 1 (so 0 ≤ µ ≤ 1).

Another useful property of the characteristic function is the simple connection
with the expectation values of the moments of symmetrically ordereding operators
of creation and annihilation. In fact,

(−)l ∂l+m

∂αlk∂α
∗m
h

χρS (α)

∣∣∣∣
α=0

= Tr

[
ρS

[(
a†k

)l
amh

]

Symm

]
, (1.9)

where the subscript Symm indicates the symmetric order, so

[
a†a
]
Symm

=
1

2

(
a†a+ aa†

)
,

[
a†a2

]
Symm

=
1

3

(
a2a† + a†a2 + aa†a

)
,

so on...

The Fourier transform of the characteristic function defines the so-calledWigner
function [13, 14]:

WρS (β) ≡
1

π2N

∫

CN
d2Nαeβ

∗α−α∗βχρS (α) .

It can be expressed also through the parity operator P =
⊗N

k=1 (−)a
†
k
ak of the

photon number for the mode k; we have:

WρS (β) =

(
2

π

)N

Tr
[
ρSD (β)PD† (β)

]
. (1.10)

1.2 Osservables and uncertainty principle

In this Section we briefly discuss the connection between observable physical
quantities and mathematical operators in quantum mechanics. In addition, we
present a general derivation of the uncertainty principle of Heisenberg. Eventually,
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we focus on quantum states that have minimum uncertainty, making some specific
examples.

In quantum mechanics, observable quantities are described by Hermitian op-
erators A, such that A = A†. What we measure of an observable operator are its
average value 〈A〉, its variance 〈∆A2〉, or, in general, the higher moments. Such
quantities can be calculated with the procedure introduced before: 〈O〉 =Tr[Oρ]
where ρ is the quantum state with respect to which to calculate the average value
of the operator O (= A, A2 − A, ...). However, in contrast to the classical case,
in quantum mechanics there is a restriction on the simultaneous observation of
the variances of non-commuting observables. In fact, they do not admit common
eigenvectors and thus it is impossible to measure simultaneously these observables
with arbitrary accuracy. The application of the Scwarz’s inequality, that is valid
in any Hilbert space, has an important consequence about the possibility to mea-
sure two non-commuting observables A and B such that [A,B] 
= 0, known as
uncertainty principle of Heisenberg. In order to prove this important theoretical
and experimental limitation, we start from the Schwarz inequality

〈
∆A2

〉 〈
∆B2

〉
≥ |〈σAB〉|2 + |〈CAB〉|2 (1.11)

≥ |〈CAB〉|2 ,

where σAB = 1
2
{A,B} − 〈A〉 〈B〉 is a measure of correlations between A and B,

being {A,B} = AB + BA, and CAB = 1
2
[A,B]. We can note that when the

operators are Hermitian (as it is for the all obsevables), the operators σAB and
CAB are also Hemitian. Let consider the two vector

|ψ1〉 = (A− 〈A〉) |ψ〉
|ψ2〉 = (B − 〈B〉) |ψ〉 .

The operator of the typeO−〈O〉 has the same variance of the operatorO but in the
first case the average value is shifted by the amount −〈O〉; so 〈(O − 〈O〉)〉 = 0.
The uncertainty relation is miminum when the two vectors are parallel in the
Hilbert space, |ψ1〉 = −iλ |ψ2〉, where λ is a complex number. In fact, in this way
we have

(A+ iλB) |ψ〉 = (〈A〉+ iλ 〈B〉) |ψ〉 . (1.12)

The state |ψ〉 that satisfies the Eq.(1.12) is called minimum uncetainty state. We
can prove that the states |ψ〉, that satisfy this property, are Gaussian [15]. We
can use the Eq. (1.12) in order to determine the relationship between variances
of two observables. We have that

〈
∆A2

〉
= −iλ (〈σAB〉+ i 〈CAB〉) ,

〈
∆B2

〉
=

i

λ
(〈σAB〉 − i 〈CAB〉) .
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Expliciting real part, λr, and imaginary part, λi, of the parameter λ = λr + iλi,
the above relations become

〈
∆A2

〉
= λi 〈σAB〉+ λr 〈CAB〉 ,

〈
∆B2

〉
=

1

|λ|2
〈
∆A2

〉
,

with λr 〈σAB〉 − λi 〈CAB〉 = 0. These relations imply the following cases:

1. |λ| = 1 and λi 
= 0. In this case 〈∆A2〉 = 〈∆B2〉 and the corresponding state
is aminimum uncertainty state with equal variance for both the observables.
The coherent state (see next Section) belongs to this case. For it the two
operators A and B are the observables, called field operators or quadra-
ture operators, definited as linear combination of creation and annihilation
operators

X ≡ X0 =
1√
2

(
a† + a

)
, (1.13)

Y ≡ Xπ/2 =
i√
2

(
a† − a

)
, (1.14)

where

Xθ ≡
1√
2

(
ae−iθ + a†eiθ

)

is the generalized field operator, such that [Xθ,Xθ′ ] = i sin (θ − θ′). We will
often use these important observables of the electromagnetic field in the
course of this dissertation.

2. λ = λr. In this case then 〈σAB〉 = 0. The operators A and B are uncorre-
lated, with the variances given by

〈
∆A2

〉
= λr 〈CAB〉 ,

〈
∆B2

〉
=

1

λr
〈CAB〉 ,

then λr ≷ 0 implies 〈∆A2〉 ≷ 1
2
[A,B] and 〈∆B2〉 ≶ 1

2
[A,B], simultane-

ously. This is case of the squeezed vacuum state [16] (see next Section).
The uncertainty principle is respected, but it happens that the single ob-
servable exhibits variance smaller of the variance of the vacuum state, fixed
by |〈CAB〉| = 1

2
.
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3. λr, λi 
= 0. In this case we have:

〈
∆A2

〉
=
|λ|2
λr
〈CAB〉 ,

〈
∆B2

〉
=

1

λr
〈CAB〉 ,

〈σAB〉 =
λi
λr
〈CAB〉 .

i.e. the variances and the correlations are expressed as function of the
average of the commutator 〈CAB〉. This is the case of the like-position and
-momentum operaotors (q, p), for which we have Cqp =

�
2
I and λr > 0.

A quantum state which violates the Heisenberg’s inequality is said non-physical.

1.3 Quantum states of CV light radiation

In this Section, we present some quantum states of CV light radiation in the
characteristic function formalism, dividing them into two main classes: Gaussian
and non-Gaussian class, respectively. At first, we define a generic Gaussian mul-
timodal system, and then specialize the obtained results for the bi-partite case.
Later we will briefly discuss two important Gaussian states: coherent states and
thermal states. Then we will present a general class of states typically non-
Gaussian: the SB states. Finally, we will analyze the variances of the quadrature
operators (Eqs. (1.13−1.14)) with respect to the SB states.

1.3.1 The Gaussian States

In this subsection we introduce an important peculiarity of some states of light
radiation: the Gaussianity. A quantum state is calledGaussian if its characteristic
function has a Gaussian form.

We consider a bosonic system composed by N sub-systems and we introduce
the column vector of the field quadratures for the N−modes of the field

K ≡ (X1, Y1, ..., XN , YN )
T ,

as we have defined them in Eqs.(1.13) and (1.14), such that

[Xk, Yk′ ] = iδkk′ ,

[Xk, Xk′ ] = [Yk, Yk′] = 0 ,

or equivalently

[Kk, Kh] = iΩkh, (k, h = 1, ..., 2N) ,
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where

Ω ≡
n⊕

k=1

ω , ω =

(
0 1
−1 0

)
,

and
⊕

denotes the diret sum.
The state ρ is said to be a Gaussian state if the corresponding characteristic

function is Gaussian,

χ (Λ) = Tr [ρDN (α)]

= exp

{
−1
2
ΛTΩσΩTΛ−iΛTΩ 〈K〉

}
,

with Λ =(a1, b1, ..., aN , bN)
T ∈ R2N such that αk = (ak + ibk) /

√
2 and 〈K〉, usu-

ally referred to as first moment, is the colunm vector of the average of the quadra-
ture operators. The Gaussian states are completely characterized by the first and
second moments of the field quadrature 〈K〉 and σ, respectively. Moreover, the
quantities that characterize the quantum properties of the state are invariant with
respect to a translation of the first moments. Therefore, the assumption 〈K〉 = 0
is lawful and, without loss of generality, it is possible to use the simple form

χ (Λ) = exp

{
−1
2
ΛTΩσΩTΛ

}
.

In spite of the infinite-dimensional Hilbert space, a complete description of an ar-
bitrary Gaussian state is therefore obtainable via the finite-dimensional covariance
matrix (2N × 2N). We define the covariance matrix (CM), where the moments
are calculated as in Eq.(1.11),

σkh≡ (σ)kh =
1

2
〈{Kk, Kh}〉 − 〈Kk〉 〈Kh〉 .

We can observe that the diagonal elements (k = h) of σ are the autocorre-
lations of the quadrature operators, while the off-diagonal elements (k 
= h) are
related to the correlations between quadratures of different modes. When the
matrix elements, σkh, are calculated with respect to the vacuum state, the covari-
ance matrix takes the diagonal form, σ = σvac=

1
2
I with 1

2
the value of the vacuum

variance.
The uncertainty relation imposes a restriction on the elements of the covari-

ance matrix; in terms of the operators of quadrature it becomes

σ +
i

2
Ω ≥ 0, (1.15)

and it expresses, in a compact form, the positivity of the density matrix of
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the state2. This inequality is known as the uncertainty relation of Robertson-
Schrodinger [17], [18].

In terms of quadrature operators of the field, we can write the average number
of photon in a system of N sub-systems as

N∑

k=1

〈
a†kak

〉
=

1

2

2N∑

h=1

(
σhh + 〈Kh〉2

)
. (1.16)

S we see that the diagonal terms σhh of the covariance matrix are proportional to
the number of average photons in the mode k, hence to the energy of the itself
mode.

The purity of state, defined in Eq.(1.8), can be easily expressed in terms of
the covariance matrix. We have

µ =
1

2N
√
det [σ]

. (1.17)

Hence a Gaussian state is pure iff

det [σ] =
1

22N
.

1.3.1.1 Bi-partite mixed case

We specialize the notations of the previous Section to the case of bi-partite
mixed Gaussian states [8]. When N = 2, the overall Hilbert H space is given by
tensor product of two Hilbert spaces HA ⊗HB. The covariance marix of system
is a 4× 4 square matrix which can be written as follows:

σ =

(
A C

CT B

)
. (1.18)

A and B, are the 2×2 square covariance matrices associated to the states of sub-
systems A and B, respectively, while the 2×2 matrix C describes the correlations
between the two sub-systems. Due to the Theorem of Williamson3 [19] for the
Gaussian states, it is possible to choose a generic symplectic transormation SA ⊕
SB, (SA,SB ∈ Sp (4,R)), that acts on σ and diagonalizes the matrices A, B, and
C:

A→ SAASTA =

(
n 0
0 n

)
,

2A quantum state which violates the inequality (1.15) is said not physical:
{
σ +

i

2
Ω ≥ 0

}
⇔ {phisical state} .

3The hypotheses of theorem dictates that the matrices A, B, and C must be square, real,
and strictly positive.
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B→ SBBSTB =

(
m 0
0 m

)
,

C→ SAASTB =

(
c1 0
0 c2

)
,

The quantities, n, m, c1 and c2 are determined by the four local symplectic
invariants

I1 ≡ det(A) = n2 , (1.19)

I2 ≡ det(B) = m2, (1.20)

I3 ≡ det(C) = c1c2 , (1.21)

I4 ≡ det(σ) =
(
nm− c21

) (
nm− c22

)
. (1.22)

Hence the covariance matrix is given in the standard form

σ =




n 0 c1 0
0 n 0 c2
c1 0 m 0
0 c2 0 m


 . (1.23)

In the Chapter 6 we will show some measured experimental matrices. They are
producted by sub-threshold type-II OPO (Optical Parametric Oscillator). We
will see that due to the symmetry of the Hamiltonian describing the OPO, the
covariance matrices produced in the laboratory are exactly in the standard form
Eq.(1.23). Moreover, at the time of their birth, states produced by an OPO show
n = m, so the matrix is called symmetric and represents a bi-partite state where
the energy is equally distributed between the two modes. In fact, with reference
to the Eq.(1.16) we have

n = m⇒
〈
a†1a1

〉
=
〈
a†2a2

〉
.

The condition expressed by Heisenberg uncertainty principle Eq.(1.15) can be
written in terms of the four symplectic invariants4

I1 + I2 + 2I3 ≤ 4I4 +
1

4
. (1.24)

The covariance matrix is also characterized by its symplectic eigenvalues

d± =

√√√√I1 + I2 + 2I3 ±
√
(I1 + I2 + 2I3)

2 − 4I4

2
. (1.25)

4For this reason, a quantum state is physical when it verifies the inequality (1.24) and the
assumptions of the Williamson’s theorem.
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The inequality (1.24) assumes a simple form in term of d−:

d− <
1

2
. (1.26)

So the covariance matrix σ represents a physical state iff it is valid the inequality
(1.24) or equivalently (1.26).

We also note that a pure Gaussian state is a minimum uncertainty state and
that the covariance matrix relative to a pure state necessary has det [σ] = I4 =
1/16 (see Eq. (1.17)) so that the case of c1 = −c2 ≡ c implies n = m (fully
symmetric states), to ensure a bona fide covariance matrix, and for a pure state
we have

c =
√
n2 − 1/4. (1.27)

Moreover, for the generic fully symmetric states c ≤
√
n2 − 1/4, with the inequal-

ity saturated only by pure states.

1.3.1.2 Coherent and Thermal states

In this subsection, we report the characteristic functions of coherent states
and thermal states. We do not discuss their physical properties in detail (for this
purpose it is possible to consult the texts [20, 21]).

The displacement operator, first introduced, is strictly connected with Glauber-
Surdashan’s states or coherent states. In fact, th single mode coherent state |β〉
is defined as

|β〉 = D (β) |0〉 ,
where D (β) = exp {βα∗ − β∗α} is the singlemode displacement operator. The
characteristic function is Gaussian, and it is given by

χcoh (α) = exp

{
−1
2
|α|2 + αβ∗ − α∗β

}
.

The thermal state of N bosonic systems at thermal equilibrium is represented by
density operator ρ =

⊗N
k ρk with

ρk =
1

1 + n̄k

∞∑

h=0

(
n̄k

1 + n̄k

)h

|m〉k k 〈m| ,

where n̄k =
(
e�ω/kBT − 1

)−1
is the average number of thermal photons in the k−th

mode at temperature T , and |m〉k is the Fock state with photon number m. The

characteristic function of the thermal state is χth (α) =
∏N

k=1 χ
th
k (αk) with

χthk (αk) = exp

{
−1
2
(2n̄k + 1) |αk|2

}
. (1.28)
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By Eq. (1.28) we see that even the thermal state is Gaussian.
However, at the optical frequency ω, �ω is always in the range 1.5 to 2.5 eV, so

at the enviroment temperature T ≃ 300K, the averange number n̄ is about 10−30.
The value of the n̄ is very smaller compared at the average number of photons
introduced by the other states involved in the schemes of this dissertation, in
which the thermal state tends to vacuum state and its characteristic function is
practically that of vacuum χvac (α) =

∏N
k=1 χ

vac
k (αk) with

χvack (αk) = exp

{
−1
2
|αk|2

}
.

1.3.2 Squeezed Bell state
In this subsection we discuss a important class of the bi-partite quantum states

of the light radiation: the squeezed Bell (SB) states. They were introduced by
Dell’Anno et al [1, 22], for finding the best resource for the CV teleportation
protocol. They found that with an appropriate choice of the free parameters,
the SB states represent, to date, the best available (quantum) resource. In the
Chapter 5, this aspect will be discussed in greater depth, and will be proposed an
optical scheme for their experimental generation; now, we see under what condi-
tion the SB state reproduces some known states as: squeezed vacuum, squeezed
number, photon-added squeezed, and photon-subtracted squeezed states. The SB
states are generally non-Gaussian, indeed only for a specific set of the free parame-
ters the SB state recovers an Gaussian state. Its properties are characterized by
the interplay between continuous-variable (CV) squeezing and discrete excited,
single-photons.

The SB state is a pure bi-partite CV quantum state defined as

|ψ〉
SB

= S12 (ζ) [c1 |0, 0〉12 + c2 |1, 1〉12] , (1.29)

where S12 (ζ) = exp
{
−ζa†1a†2 + ζ∗a1a2

}
is the bi-modal squeezing operator, |n, n〉12

is the tensor product of the two Fock states |n〉1 ⊗ |n〉2, and |c1|
2 + |c2|2 = 1 for

the normalization. In terms of the characteristic function it reads

χSB (α1, α2)

=
{
c21 + 2c1c2Re

[
eiθξ1ξ2

]
+ c22

(
1− |ξ1|2

) (
1− |ξ2|2

)}

× exp

{
−1
2

(
|ξ1|2 + |ξ2|2

)}
, (1.30)

where
ξk = αk cosh r + α

∗
he

iφ sinh r , (k, h = 1, 2; k 
= h) .

With an appropriate choice of free parameters c1 and c2, we can recovered the
following states [1]:
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• squeezed vacuum state (or twin beam TB) [16]. If c1 = 1 , the SB state,
Eqs.(1.29 and 1.30) becomes, respectively

|ψ〉
TB

= S12 (ζ) |0, 0〉12 ,

χTB (α1, α2) = exp

{
−1
2

(
|ξ1|2 + |ξ2|2

)}
.

Only with this setting we get a Gaussian bi-partite state for all values of the
squeezing parameter r = |ζ|.

• squeezed number (PN) state of first excited Fock state : if c1 = 0 we have

|ψ〉
PN

= S12 (ζ) |1, 1〉12 ,

χPN (α1, α2) =
(
1− |ξ1|2

) (
1− |ξ2|2

)
exp

{
−1
2

(
|ξ1|2 + |ξ2|2

)}
.

• photon-added (PA) squeezed state. If c1 = −N e−iθ tanh r we have

|ψ〉AS = NASa
†
1a
†
2S12 (ζ) |0, 0〉12

= N e−iθS12 (ζ)
[
− tanh2 r |0, 0〉12 + eiθ |1, 1〉12

]
,

χAS (α1, α2) = N 2
{
tanh2 r − 2 tanh rRe

[
e−iθξ1ξ2

]
+
(
1− |ξ1|2

) (
1− |ξ2|2

)}

× exp

{
−1
2

(
|ξ1|2 + |ξ2|2

)}
,

with N =
[
1 + tanh2 r

]− 1
2 the normalization factor.

• photon-subtracted (PS) squeezed state. If c2 = N eiθ tanh r we have

|ψ〉
PS

= NPSa1a2S12 (ζ) |0, 0〉12
= N eiθS12 (ζ)

[
− |0, 0〉12 + eiθ tanh r |1, 1〉12

]
,

χPS (α1, α2) = N 2
{
1− 2 tanh rRe

[
e−iθξ1ξ2

]
+ tanh2 r

(
1− |ξ1|2

) (
1− |ξ2|2

)}

× exp

{
−1
2

(
|ξ1|2 + |ξ2|2

)}
.

In ref [1], Dell’Anno et al have studied the properties of entanglement, of
the affinity of squeezed vacuum, and of the non-Gaussianity as a function of the
parameters c1 and c2. In particular, they have adopted the useful parametrization

c1 = cos δ,

c2 = sin δ,

and in such way all the properties of the SB state are expressed as a function of
the parameter δ.
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1.3.3 Variances

In this subsection, we calculate the variances of the field quadrature operators
of the SB state, Eq.(1.29) or (1.30). We will see that such variances depend on
the parameters c1, c2, and φr (where φr is the phase of the parameter ζ) and that
the minimization of the squeezed variance is obtained with the setting c1 = 1
(c2 = 0) and φr = 2πj, (j ∈ N), i.e. for the TB states.

We invoke the propertie of the characteristic function Eq. (1.9) for calculating
the variances. We refer to a bi-partite state and for convenience we recall the
definition of the field quadrature operators:

(
Xk

Yk

)
=

1√
2

(
1 1
i −i

)(
a†k
ak

)

with k = 1, 2. We introduce two other observables, Xκ and Yκ with κ = c, d,
obtained by rotating the base of the operators a1 and a2:

(
c
d

)
=

1√
2

(
1 1
1 −1

)(
a1
a2

)
.

Then we define the field operators associated to the c, d by replacing ak with aκ :

(
Xκ

Yκ

)
=

1√
2

(
1 1
i −i

)(
a†κ
aκ

)
.

The importance of rotated operators Xκ , Yκ lies in the fact that the bi-modal
squeezing operator S12 (ζ), expressed in the basis c, d, is factorized in product of
two squeezing operators of single mode κ, in fact

S12 (ζ) = exp
{
−ζa†1a†2 + ζ∗a1a2

}

= exp

{
−ζ
2

(
c† + d†

) (
c† − d†

)
+
ζ∗

2
(c+ d) (c− d)

}

= exp

{
−ζ
2
c†2 +

ζ∗

2
c2
}
exp

{
−(−ζ)

2
d†2 +

(−ζ∗)
2

d2
}

= S1 (ζ)S2 (−ζ) ,

being [c, d] = 0. This factorization has suggested to realize experimentally the bi-
partite squeezed state S12 (ζ) |0, 0〉12 suitably combining two single squeezed state⊗

k=1,2

Sk

(
(−)k+1 ζ

)
|0〉k.

Using the Eq. (1.9), the averages and variances of field operators are given by

〈Xk〉
i 〈Yk〉 =

1√
2

(
∂χ (α)

∂α∗k
± ∂χ (α)

∂αk

)∣∣∣∣
α=0
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〈∆X2
k〉

〈∆Y 2k 〉
= ±1

2

(
∂2χ (α)

∂α2k
+
∂2χ (α)

∂α∗2k
∓ 2

∂2χ (α)

∂αk∂α∗k

)∣∣∣∣
α=0

.

For the SB state the quadrature average is zero

〈Xk〉 = 〈Yk〉 = 〈Xκ〉 = 〈Yκ〉 = 0 .

The variances of modes k = 1, 2 are given by

〈
∆X2

k

〉
=
〈
∆Y 2k

〉
=

1

2

(
c21 + 3c22

)
cosh (2r) ,

while the variances of modes c and d are

〈
∆X2

c

〉
=
〈
∆Y 2d

〉
=

1

2

(
c21 + 3c22

)
[cosh (2r)− cos (φr) sinh (2r)] ,

〈
∆Y 2c

〉
=
〈
∆X2

d

〉
=

1

2

(
c21 + 3c22

)
[cosh (2r) + cos (φr) sinh (2r)] .

where we have ζ = reiφr . We can see that the variances are not dependent on the
phase difference θ between the parameters c1 and c2. Moreover, for a fixed value
of r (> 0), the minimum of the squeezed variances (〈∆X2

c 〉 , 〈∆Y 2d 〉) is obtained
for φr = 2πj, (j ∈ N). In this case the above equations become

〈∆X2
c 〉

〈∆Y 2c 〉
=
〈∆Y 2d 〉
〈∆X2

d〉
=

1

2

(
c21 + 3c22

)
e∓2r.

Further minimizing the squeezed variance with respect to the free parameters c1
and c2, we obtain c1 = 1 (⇒ c2 = 0) and the variances

〈
∆X2

k

〉
=
〈
∆Y 2k

〉
=

1

2
cosh (2r) ,

〈∆X2
c 〉

〈∆Y 2c 〉
=
〈∆Y 2d 〉
〈∆X2

d〉
=

1

2
e∓2r,

are precisely the variances of the quadrature of the mode c and d of the bi-partite
squeezed vacuum state [16],[23]. This allows us to conclude that, in the search of
the states with smallest variance, the Gaussian states are extremal with respect
to all states that can be obtained by tuning the free parameters of the SB state,
i.e. de-Gaussified states. When the parameter of squeezing r is null, we find the
shot noise.

1.4 Quantum Measurements

The measurement theory is important in the applications of quantum informa-
tion to measure light fields or to detect a part of the radiation. In this Section, we
discuss some important measurements, the so-called conditional measurements,
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that can be performed on a part of a system composed of several sub-systems.
The formalism of the characteristic function is particularly suitable for this pur-
pose. Therefore, we see how to represent the main measurements in quantum
information through appropriate characteristic functions. Therefore we analyze
in some details three different measurement techniques: single-photon (sp), real-
istic Geiger (on/off), and homodyne detection (Hom).

1.4.1 Conditional Measurement

We briefly recall the basis tools needed in order to describe in the most general
way a quantum system and the possible measurements that can be performed on
it.

We introduce a general class of quantummeasurements in which an input state
of N sub-systems is mapped into a output state of 0 < M < N sub-systems (see
Fig.(1.1)). When the characteristics of the output state depend on measurements
made on N −M sub-systems we can say that the input system is composed of N
correlated (entangled5) sub-systems . Therefore this type of measurements affect
the final state and for this reason they are called conditional measurements. The
N −M measured sub-systems are called ancilla states.

In this feature of quantum physics there is the foundation of the holistic view of
physical reality: perfect knowledge of the components of a system is not sufficient
for knowledge of the entire system. The reason can be found in the existence
of physical properties that are not localized on a single physical system, but are
"distributed" between some systems. For example, the mass of a particle is a
physical characteristic that is located exactly in the region space where the particle
is. Otherwise, the quantum entanglement is a characteristic of system and it is
distributed among the sub-systems that compose it. This is one of the most
important novelties of quantum physics, compared to the classical one.

In this subsection we present a general experimental that allows to formal-
ize the concept of conditional measurements made on one part (ancilla) of the
system, using the operatorial approach (via matrix density), and the character-
istic function formalism. In Fig.(1.1) we report a schematic diagram of a tipical

conditional measurement device. We consider the system S
(
=
⋃N

k=1 Sk

)
as the

set of N sub-systems Sk and suppose, without loss of generality, to measure the
last N −M sub-systems with three different measurements : single-photon (sp),
realistic Geiger (on/off), and homodyne detection (Hom).

In particular, we can think to factorize the entire Hilbert space HS as prod-
uct of two Hilbert spaces: HC involving the input computing state (C) and HA

involving the input ancilla states (A),

HS = HC ⊗HA .

5this fundamental aspect will be discussed in the next chapter.
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Figure 1.1: Schematic representation of the mechanism of conditional measure-
ments: a system described by a factorizable density matrix undergoes the action of
a unitary operator U representing passive optical devices. The action of U makes
the state ρC (in HC) correlated with the ancilla state ρA (in HA). A measure de-
scribed by operators POVM is realized on the ancillary system; while the system
C ′ is left undisturbed. Because of the correlations introduced by the operator U ,
the state C ′ is modified by type-POVM measurements of A′, thereby providing
the desired output state ρout as result of the measurement process.

We suppose that the state of the system is described by the density matrix
espressed as tensor product of the density matrices, ρC and ρA, of the sub-systems
C and A, respectively. In this case the states ρC are non-correlated and no-
interacting with the ancilla states ρA,

ρS = ρC ⊗ ρA.

In this configuration it isn’t possible to carry out conditional measurements. Gen-
erally, in the protocols of the quantum information the computational input and
ancilla systems are subject to local unitary transformations U , which are im-
plementated with beam splitters (see appendix), optical lens, phase shifters, at-
tenuators and other passive optical devices. The operator U describes the pre-
measurement evolution and it maps the density operator ρS in the density operator
ρ′S = UρSU

†. Under the action of U , the sub-systems described by ρC and ρA can
become correlated, so that the overall system can not yet be factorized. However,
it is useful to continue to distinguish the two Hilbert spaces HC′ and HA′ such
as HS = HC′ ⊗HA′ where HC′ denotes the new Hilbert space of the computing
system and HA′ the new Hilbert space of ancilla system.

At this point we perform some measurements on the sub-system in the Hilbert
space HA′ and suppose that the measurement outcomes form a set Ω. A general
mathematical desciption of quantum observables can be carried out in terms of
the normalized positive operator value measures (POVM) operator. A POVM
is a application M which associates to each measurable sub-set X ⊆ Ω a po-



1.4. QUANTUM MEASUREMENTS 19

sivite operator M(X) acting on HA′ . For every state described by density matrix
ρA′ =TrC′ [ρ

′
S], a POVM operator produces a probability distribution given by

the map X → p (M (X)) =Tr[ρA′M (X)]. M satisfies the normalization condi-
tion M(Ω) = I, so the p (M (X)) =Tr[ρA′M (X)] sums to unity. The real number
Tr[ρA′M (X)] is the probability of getting the measurement outcome x belonging
to X, when the system is in the state ρA′ and a measurement of M is performed.
For this reason we give the following definition

Pr (X → x) = Tr [ρA′M (X)] ≡





The probability of obtaining x
as the result of the measurement M
of X made on the system described

by the density matrix ρA′





.

(1.31)
The POVM operator is the generalization of the projector operator. A POVM
operator M is called a projector value measure, or spectral measure, if M(X2)
=M(X). When Ω = R, the spectral measures correspond to self-adjoint operators.

So, referring to Fig. (1.1), we have N correlated sub-systems and N −M of
them are measured. For our purposes, it is not important to know which type
of correlation there is between the sub-systems and how it is structured between
them. Our goal is to calculate the output state ρout after we have measured the
N −M ancillary states. We suppose that N −M measurements are computed
with different types of detectors. In particultar, we assume that A1 sub-systems
are measured by detectors of single photons (sp), the subsequent A2 sub-systems
are measured by on/off detectors that record presence (on) or absence (off)
of photons, and the last A3 sub-systems are measured by homodyne detectors.
Overall A1 + A2 + A3 = N −M . We assume that each measurement is realized
simultaneously, i.e. the measurements are temporally delta correlated. Due of
the N −M measurements the output state is composed of M sub-systems, whose
properties are directly linked to the results of each measurement. So influencing
the measurement results we obtain a state ρout with suitable propieties to our
specific purposes.

In the formalism of the density matrix, the output state ρout, i.e. the con-
ditional density matrix, of the system C ′, given the result of the measurements
performed on the sub-system A′, is linked to the input state ρS′ through the
following expression:

ρout =
TrM+1,...,N [ρS′M (D)]

Tr [ρS′M (D)]
, (1.32)

where

M (D) =
M+A1⊗

k1=M+1

Π
(sp)
k1
⊗

M+A2⊗

k2=M+A1+1

Π
(on/off)
k2

⊗
M+A3=N⊗

k3=M+A2+1

Π
(Hom)
k3

, (1.33)
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with Π
(Dj)
kj

the POVM operators describing the measurement

D ≡ (sp, on/off , Hom)

and such that

Π
(Dj)
kj

(
Π
(Dj)
kj′

)†
= δkjkj′Π

(Dj)
kj

.

In the next subsection, we define exactly the operators Π
(Dj)
kj

in Eq. (1.33). The

denominator of the Eq.(1.32) ensures the normalization of the output state ρout,
in fact density matrix ρout is composed by the remaining modes 1, ...,M and its
trace becomes normalized to unity

Tr1,...,M [ρout] =
Tr1,...,M [TrM+1,...,N [ρS′M (D)]]

Tr [ρS′M (D)]
= 1.

From the definition (1.31) we can note that Tr[ρSM (D)] is just the proba-
bility of having the events sp, on/off , and Hom as a result of the simultaneous
measurement D

Tr [ρSM (D)] = Pr{D→ (sp, on/off, Hom)}

In terms of the characteristic function, the procedure of conditional measurements
can be traslated in resolutions of integrals involving the characteristic function
of the input state and of the characteristic function associated with operators
describing the measurements. We prove that the characteristic function of the
output state is given by

χout (α1, ...,αM) =
M (α1, ...,αM)

M (0, ...,0)
, (1.34)

where αk ≡ (αk, α
∗
k) , 0 =(0, 0) and

M (α1, ...,αM) =

∫

CN−M
dαM+1,...NχρS′ (α1, ...,αN)X (αM+1, ...,αN) , (1.35)

with dαM+1,...N = dαM+1...dαN , is the integration on the modesM+1, ..., N of the
input state χρS′ (α1, ...,αN) multiplied by the characteristic function describing
the measurements performed on the modes M + 1, ...,N,

X (αM+1, ...,αN) (1.36)

=
M+A1∏

k1=M+1

χ
(sp)
k1

(αk1)
M+A2∏

k2=M+A1+1

χ
(on/off)
k2

(αk2)
N∏

k3=M+A2+1

χ
(Hom)
k3

(αk4)(1.37)
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The χ
(Dj)
kj

(
αkj

)
, with αkj ≡

(
αkj , α

∗
kj

)
, is the characteristic function describing

the conditional measurements Dj. The functionM (0, ...,0), at the denominator
of the Eq.(1.34), ensures the normalization of the function χout. It is the equivalent
of

Pr {D→ (sp, on/off, Hom)} = Tr [ρSM (D)]

in the characteristic function formalism.

Proof. In order to prove the Eq.(1.34), we express the matrix density of the
input state ρS′ in the form suggested by Eq.(1.7)

ρS′ =
1

πN

∫

CN
dβ1...NχρS′ (β1, ...,βN)DN (−β) ,

where dβ1...N ≡ dβ1...dβN and DN (−β) = ⊗N
k=1Dk (−βk). Substituting it in

the partial trace of the Eq.(1.32), we have

ρout =
1

N TrM+1,...,N

[(∫

CN
dβ1...NχρS′ (β1, ...,βN)DN (−β)

)
M (D)

]

=
1

N

∫

CN
dβ1...NχρS′ (β1, ...,βN)

M∏

h=1

Dh (−βh)

·TrM+1,...,N

[
N∏

k=M+1

Dk (−βk)M (D)

]

=
1

N

∫

CM
dβ1...MM (β1, ...,βM)

M∏

h=1

Dh (−βh) , (1.38)

where the term N contains numerical factors and will be determined by the nor-
malization of the output state. The function M (β1, ...,βM) in Eq.(1.38) is the
result of integration on the complex variables (β1, ...,βM) of the modes measured
through the operator M:

M (β1, ...,βM) =

∫

CN−M
dβM+1...NχρS′ (β1, ...,βN )

·TrM+1,...,N

[
N∏

k=M+1

Dk (−βk)M (D)

]
.
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Using the factorization Eq.(1.33) of the operator M(D), we have

TrM+1,...,N

[
N∏

k=M+1

Dk (−βk) ΠM

]

=
M+A1∏

k1=M+1

Trk1

[
Dk1

(
−βk1

)
Π
(sp)
k1

]
·

M2∏

k2=M+A1+1

Trk2

[
Dk2

(
−βk2

)
Π
(on/off)
k2

]

N∏

k3=M+A2+1

Trk3

[
Dk3

(
−βk3

)
Π
(Hom)
k3

]

≡ X
(
βM+1, ...,βN

)

as definited by Eqs.(1.35) and (1.36), being

Trkj

[
Dkj

(
−βkj

)
Π
(Dj)
kj

]
= Trkj

[
Dkj

(
βkj

)
Π
(Dj)
kj

]
,

for reasons that will be clear after. In conclusion, the characteristic function of
the output state becomes

χout (α1, ...,αM)

= Tr1,...,M

[
ρout

M∏

h=1

Dh (αh)

]
(1.39)

=
1

N Tr1,...,M

[∫

CM
dβ1...MM (β1, ...,βM)

M∏

h=1

Dh (−βh)
M∏

h=1

Dh (αh)

]

=
1

N

∫

CM
dβ1...MM (β1, ...,βM)Tr1,...,M

[
M∏

h=1

Dh (−βh)
M∏

h=1

Dh (αh)

]

=
1

N

∫

CM
dβ1...MM (β1, ...,βM)

M∏

h=1

Trh [Dh (−βh)Dh (αh)]

=
1

NM (α1, ...,αM) , (1.40)

being

Trh [Dh (−βh)Dh (αh)] = πδ(2) (αh − βh) exp
{
1

2
(−βhα∗h + β∗hαh)

}
.

We have included all numerical factors (as for example π) in normalization con-
stant N . It is determined by the normalization of state ρout, or equivalently of
χout, in fact

1 = χout (0, ..., 0)

=
1

NM (0, ..., 0)

⇒ N = 1/M (0, ..., 0) .
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Replacing the factor N in Eq.(1.40) we obtain the desired Eq.(1.34).

1.4.2 Single-Photon photodetectors

The measurement of single photons consists of a projective measurement act-
ing on the k−mode of the system. The projector operator that describes this
measurement of the field k is given by

Π
(sp)
k = |1〉k k 〈1| ,

and its characteristic function results

χ
(sp)
k (αk) = Trk

[
Π
(sp)
k D (αk)

]

= k 〈1|D (αk) |1〉k
=
(
1− |αk|2

)
e−|αk|

2/2 ,

being

< m|D (−α) |n >=
(
n!

m!

)1/2
αm−ne−|α|

2/2Lm−n
n

(
|α|2
)

with Lm−n
n (|α|2) Laguerre polynomials and L01 (x) = L1 (x) = 1− x. The charac-

teristic functions χ
(sp)
k are invariant under flip of sign of αk.

1.4.3 On/off photodetectors

To date, there are no detectors able to resolve the photon number. The reason
lies in excitation mechanism of the photosensitive element of the detector. Gener-
ally, in a photodetector each incident photon excites a single atom, the generated
signal is too weak and, therefore, must be amplified to produce a measurable sig-
nal. Added to this, there is the efficiency not unitary of the photodetectors. This
implies that one cannot discriminate between a single photon or many photons as
the outcomes of a measurement.

However, in a realistic scenario the detection associated to mode k can be
modeled by the POVM operator, Π

(on)
k (ηk), taking account simply the threshold

detection of n ≥ 1 photons, given by

Π(on)k (ηk) = Ik − Π(off)k (ηk), (1.41)

where

Π(off)k (ηk) =
∞∑

m=0

(1− ηk)m |m〉k k 〈m| , (1.42)

and ηk is non-unitary efficient photon detection.
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The characteristic function is given by

χ
(on)
k (αk) ≡ Trk

[
D̂k (αk) Π

(on)
k

]

= πδ(2) (αk)−
1

ηk
exp

{
−2− ηk

2ηk
|αk|2

}
,

while

χ
(off)
k (αk) = Trk

[
D̂k (αk)Π

(off)
k

]

=
1

ηk
exp

{
−2− ηk

2ηk
|αk|2

}
,

such as
χ
(on)
k (αk) + χ

(off)
k (αk) = πδ(2) (αk) .

Clearly the characteristic functions χ
(on/off)
k are invariant under flip of sign of αk.

We can see that if the detection mechanism is free-losses, ηk = 1, the operators
(1.41) and (1.42) read

Π
(on)
k (1) = Ik − |0〉k k 〈0| ,

Π
(off)
k (1) = |0〉k k 〈0| .

The characteristic functions become

χ
(on)
k (αk)

∣∣∣
η=1

= πδ(2) (αk)− exp

{
−1
2
|αk|2

}
,

χ
(off)
k (αk)

∣∣∣
η=1

= exp

{
−1
2
|αk|2

}
.

1.4.4 Homodyne photodetectors
In this sub-section we report the characteristic function of the operator that

describes the homodyne measurement. This CV detection technique measures
the quadratures of the field. In terms of the density matrix, the homodyne mea-
surement is expressed by projectors on the quadrature eigenstates |Y 〉 and |X〉,
the its characteristc function is given by

χ
(Hom)
k (αk) = Tr

[
D̂k (αk)Π

(Hom)
k

]

=





exp
{
− i
2
XkYk + iXkỸk

}
δ (Yk) if Π

(Hom)
k = |Y 〉k k 〈Y |

exp
{
− i
2
XkYk − iX̃kYk

}
δ (Xk) if Π

(Hom)
k = |X〉k k 〈X|

,

where αk = 2−1/2 (xk + iyk), and X̃k and Ỹk the measured eigenvalues of the states
|xk〉 and |yk〉, respectively. However, in the Chapter 6, this powerful technique
for the reconstruction of quantum states of light radiation will be treated in more
detail.
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1.5 Quantum Open System

A quantum open system is a quantum system S interacting with external envi-
ronment R, called reservoir, composed by a large number of sub-systems (beam of
photons, heat bath, absorber transmission channels, etc...). The aim of quantum
open system theory is to study the behaviour of the coupled system to environment
and in particular the dissipation effect on the quantum system S. Decoherence
indicates the detrimental effect on a quantum system that stochastically interacts
with the external world. The state of system, initially pure, becomes mixed. In
the density matrix language it translates into the fact that while a pure state is
represented by an idempotent density matrix ρS (ρ2S = ρS) this is not true for a
decohered mixed state. The lossy transmission of an arbitrary optical quantum
state between two sites is an irreversible decoherence process that can be described
by using the open systems approach [24]. In it the enviroment is modeled as a
reservoir (thermal bath) made up of infinite modes at thermal equilibrium.

We want to determine the evolution of the state ρS of the systemHS. That is,
for an initial density matrix ρS (0) at time 0 on HS, we calculate the state ρS (t)
at time t on HS (see Fig. (1.2)). We assume the following general conditions for
the system S and the reservoir R:

• weak coupling (Born approximation) — the coupling between system and
environment is such that the density matrix ρR of the environment is neg-
ligibly influenced by the interaction (the thermal bath state is stationary).
This approximation allows to write the state ρSR (t) of the global system as
ρSR (t) ≈ ρS (t)⊗ ρR;
• Markovianity — there are not memory effects neither on the system and the

reservoir. It means that the state of the system at time t is not related to
the state in the past (being the reservoir in a stationary state this already
implies the absence of memory effect on the reservoir). This approximation
implies that the time scale τ over which ρS (t) changes appreciably under
the influence of the bath is large compared to the time scale τR over which
the bath forgets about its past, τ ≫ τR.

• Seculararity (rotating wave approximation)— the typical time scale τS of the
intrinsic evolution of the system S is small compared to the relaxation time
τ . For an optical field it implies that the reservoir reacts to the average field
and not to its istantaneous value.

Then the evolution of the state is give by the map

ρS (0)→ ρS (t) = Lt (ρS (0)) .

The state ρS (t) at time t determines the future states ρS (t
′) at time t′ > t, without

needing to know the whole past ρS (t
′′), with t′′ < t. Of course, the maps Lt are

trace-preserving and positivity-preserving.
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We note that in the absence of the external system the evolution of the state
ρS (0) is described by the unitary operator U (t) such that the map Lt reads

ρS (0)→ ρS (t) = U (t) ρS (0)U
† (t) .

We can see that if the initial state ρS (0) is pure (Tr [ρ2S (0)] = 1), under unitary
evolution, the state ρS (t) at time t > 0 remains pure

Tr
[
ρ2S (t)

]
= Tr

[
U (t) ρS (0)U

† (t)U (t) ρS (0)U
† (t)
]

= Tr
[
ρ2S (0)

]
.

More generally, the purity is conserved under unitary evolution. When there is
interaction with reservoir and the map Lt reads

ρS (t) = Lt (ρS (0))

= TrR
[
U (t) (ρS (0)⊗ ρR)U † (t)

]
.

Hence ρS (t) is given by partial trace operation over the degrees of freedom of the
reservoir and becomes generally mixed although initially pure.

Figure 1.2: Schematic representation of a quantum system closed (left) and open
(right). The closed system is characterized by an evolution that is not affected
by the action of the external environment on the system. In contrast, an open
system can not ignore the presence of the many enviromental modes.

In order to find the most general form of evolution of the state ρS (0) in the
bi-partite case, we write the interaction Hamiltonian as

HInt = a†B (t) eiωSt + aB† (t) e−iωSt ,

where B (t) = �
∑

k gkbke
−iωkt is the collective mode of the reservoir with constant

of weak coupling gk, annihilation operator of k−mode bk such that [bk, bh] = δkh,
frequency ωk, while ωS is the frequency of the optical system S. The dynamics of
the reduced density matrix ρS (t) is described by following Kossakowski-Lindblad
equation

ρ̇S (t) =
∑

k=1,2

Γk

2

{
(Nk + 1)L [ak] +NkL

[
a†k

]
−M∗

kD [ak]−MkD
[
a†k

]}
ρS (0) ,

(1.43)
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where Γk denotes the damping rate of the k—mode, the complex parameterMk ∈ C
is the correlation function of bath k−th, Nk ∈ R coincides with the average
number of thermal photons in bath:

〈b (ωk) b (ωh)〉R = Mkδ (2ωS − ωk − ωh) ,〈
b† (ωk) b (ωh)

〉
R

= Nkδ (ωk − ωh) .

Mk is usually referred to as the “squeezing” of the bath. Nk is instead a phe-
nomenological parameter related to the purity of the asymptotic stationary state.
The positivity of the density matrix imposes the constraint |Mk|2 ≤ Nk(Nk + 1).
At thermal equilibrium, i.e. for Mk = 0, the parameter Nk coincides with the
average number of thermal photons in bath.
L [O] andD [O] are Lindblad superatoroperators defined respectively byL [O] ρ ≡

2OρO† − O†Oρ − ρO†O and D [O] ρ ≡ 2OρO − OOρ − ρOO and describing, the
former, losses and linear, phase insensitive, amplification processes and, the latter,
phase dependent fluctuations.

Equation (1.43) is equivalent to the following equation for the characteristic
function in terms of the quadrature variables Xk and Yk :

χ̇S (K, t) = −
∑

k=1,2

Γk

2

[
(Xk, Yk)

(
∂Xk

∂Yk

)
+ (Xk, Yk)σ

(∞)
k

(
Xk

Yk

)]
χS (K, 0) ,

(1.44)
with

σ
(∞)
k =

(
1
2
+Nk +Re [Mk] Im [Mk]

Im [Mk]
1
2
+Nk +Re [Mk]

)
.

In optics the most common process leading to decoherence is the phase insen-
sitive loss of photons through diffusion and absorption mechanisms. In this case,
an optical two—mode field undergoing to a lossy transmission, R is made of an
infinite number of modes at room temperature in thermal equilibrium. For this
kind of reservoir we can assume Mk = 0 (no squeezing), Nk ≃ 0 (zero thermal
photons), so that the evolution of system S is described by the equation

ρ̇S (t) =
∑

k=1,2

Γk

2
L [ak] ρS (0) . (1.45)

From now on, we will consider symmetric channels Γk = Γ (for k = 1, 2). The
Eq.(1.45) can be translated into the formalism of the characteristic function ob-
taining the following Fokker-Planck equation for χS (K) [18],

χ̇S (K; t) =
Γ

2

[
(Xk, Yk)

(
∂Xk

∂Yk

)
+
1

2

(
X2

k + Y
2
k

)]
χS (K; 0) (1.46)

with σ
(∞)
k = σvac =

1
2
I, (I is the 4× 4 identity matrix) covariance matrix for the

vacuum state. It sets the standard quantum limit SQL.
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It is possible to show, [6], that the evolution of ρS (t) corresponds to the
transformation of the annihilation operators of k−mode given by

ak (0)→ ak (t) = e−
1
2
Γtak (0) +

(
1− e− 1

2
Γt
)
vk ,

or, equivalently, for the vector of the field quadratures K,

K (t) = e−
1
2
ΓtK (0) +

(
1− e− 1

2
Γt
)
Vk,

where V ≡ (Xvac,1, Yvac,1, Xvac,2, Yvac,2)
⊤ is the vector of the field quadratures of

the vacuum state and vk is the annihilation operator of the vacuum field (bath with
average number photon equal to zero) associated to the k−mode of the system.
In terms of the CM we have

σ(t)=
(
1− e−Γt

) 1
2
I+ e−Γtσ(0) , (1.47)

where σ(0) is the covariance matrix at t = 0.
This form is in all equal to the effects of a fictious beam—splitter (BS) that

mimicks the channel losses and couples into the system the vacuum quantum noise

through its unused port [6]. Being Uk (ζ) = exp
{
ζ
(
a†kvk − v†kak

)}
the SU(2)

transformation induced by the BS on the k—mode (with vk the modal operator for
the vacuum) and

T = e−Γt

the power transmission of the beam splitter (tan ζ =
√
(1− T ) /T ) the above

equations become

ak,T =
√
Tak,1 +

(
1−
√
T
)
vk

Kk,T =
√
TKk,1 +

(
1−
√
T
)
Vk.

In terms of the CM σ reads

σT=(1− T ) 1
2
I+Tσ1. (1.48)

In this form we can drop the temporal dependence and label the CM of the
initial state as σT=1 ≡ σ1.

Complete absorption, corrisponding to t → ∞ (infite transmission time)
and/or Γ→∞ (infinite channel damping), implies T → 0 and σT → 1

2
I, i.e. the

covariance matrix of the vacuum state becomes

lim
T→0

σT =
1

2
I .
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In the lossless case T = 1, corrisponding to t→ 0 (no transmission) and/or Γ→ 0
(no damping), the covariance matrix does not change compared to the initial σ1.

In the case of the Gaussian bi-partite states, the Eq. (1.48) implies the fol-
lowing evolution for the CM elements

nT =
1

2
+ T

(
n− 1

2

)
,

mT =
1

2
+ T

(
m− 1

2

)
,

c1(2),T = Tc1(2)

where n, m, and c1(2) are the covariance matrix elements expressed as in standard
form (1.23). The purity µ of the state can be calculated as a function of the
parameter T in the simple case of initial symmetrical diagonal state (n = m and
c = c1 = −c2). We suppose that the covariance matrix born pure (so that c =√
n2 − 1/4) and that is afflicted by losses represented by T . Then the evolution

of the purity is

µT (1.49)

=
1

4
√
det [σT ]

(1.50)

=
1/4√

1
42
+
(
n
2
− 1

4

)
T + (n− 1)

(
n− 1

2

)
T 2 − (2n− 1)2 T 3 +

(
n− 1

2

)2
T 4
(1.51)

We note that the vacuum state obtained for T = 0 (or t → ∞ or Γ → ∞) is a
pure one, i.e. µ0 = 1, obviously. Then, we can see that µT �=0,1 < µ0 but we cannot
assume a monothonic behaviour in T . We note that the state purity cannot be
considered a general entanglement marker (see Exemple 1 in the sub-Section 1.1,
also). As a matter of fact, any pair of physical system in a pure state has µ = 1
even if the systems of the pair are disentanlged. So µ is a measure of the of
decoherence that has afflicted the ideal state.

In the Figure (1.3), we plot the purity as a function of T for different initially
pure states. In each of them, we can see that µ = 1 for T = 0, 1 and that the
minimum value µ|T=0.5 is inversely proportional to the matrix element n1, i.e. to
the energy of the initial state.

1.5.1 Squeezed Bell in lossy environment
In this subsection, we want to study the realistic SB state obtained when the

effects of the losses and the dechoerence of the open system are consider. We
consider an environment composed by thermal bath, and we simulate the lossy of
the photons via two fictitious beam splitters (each one for the two beams). The
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Figure 1.3: (color online) − The trend of the purity of quantum state as a function
of the transmission coefficient T is shown. We plot the purity for different initially
pure states with c1 =

√
n21 − 1/4: n1 = 1 (orange line), n1 = 2 (red line), n1 = 3

(brown line), and n1 = 3 (purple line). We can observe that µT = 1 if T = 0 or 1,
while the minimum value is at T = 0.5 and we have µT=0.5 (n1) =

1
n1+0.5

.

beam splitter 1 (2), BS1 (BS2), is illuminated by mode 1 (2) of the SB state and
by the thermal state (of the reservoir) ρth3

(
ρth4
)
.

The density matrix of the output state is

ρSB12 = Tr34

[
Û13 (T ) Û24 (T ) Ŝ12 (ζ) |C〉12 ρth3 ⊗ ρth4 12 〈C| Ŝ†12 (ζ) Û †24 (T ) Û †13 (T )

]
,

(1.52)
where Û13 (T ) and Û24 (T ) are the beam splitter operators that mix the modes
1 − 3 and 2 − 4, respectively, with trasmittivity T ; the state Ŝ12 (ζ) |C〉12 with
|C〉12 = c1 |00〉12 + c2 |11〉12, is the ideal SB state; ρthk are the density matrix of
the thermal state of modes k = 3, 4:

ρthk =
1

1 + n̄k

∞∑

mk=0

(
n̄k

1 + n̄k

)mk

|mk〉k k 〈mk| ,

with |mk〉k is the Fock state of the k−mode, with photon number mk. In the
formalism of the characteristic function, we have

χSB (α1,α2;T ) = Tr12
[
ρSB12 D1 (α1)D2 (α2)

]
, (1.53)

with ρSB12 given by Eq.(1.52). We prefer calcutate the (1.53) with a alterna-
tive strategy. We start from the characteristic funcions of the ideal SB state
χSB (α1;α2) ,

χ
SB

(α1,α2) =
{
c21 + 2c1c2Re

[
eiθξ1ξ2

]
+ c22

(
1− |ξ1|2

) (
1− |ξ2|2

)}

× exp

{
−1
2

(
|ξ1|2 + |ξ2|2

)}
, (1.54)
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where

1 = c21 + c
2
2, with c1, c2 ∈ R

ξk = αk cosh r + α
∗
he

iφ sinh r (k, l = 1, 2; k 
= l) ,

and of the thermal state χth (α3;α4) ,

χth (α3;α4) = exp

{
−1
2
(2n̄+ 1)

(
|α3|2 + |α4|2

)}
.

We assumed that the average number of thermal photons n̄ is the same for both
modes. Befor the two fictitious beam splitters, the overall state is given by

χpreBS (α1;α2;α3;α4) = χ
SB

(α1;α2)χth (α3;α4) .

The beam splitters act on the state through a SU(2) trasformation such as

α1,2 −→
√
Tα1,2, (1.55)

α3,4 −→
√
1− Tα1,2, (1.56)

where we have trace out the modes α3,4, putting α3,4 = 0 in the characteristic
functions. In terms of the quantity ξ1,2, the (1.55) and (1.56) involve the following
trasformation

ξ1,2 −→
√
Tξ1,2.

Finally, the characteristic function of the realistic SB state becomes

χSB (α1,α2;T )

= e−
1
2 [T(|ξ1|

2+|ξ2|2)+(2n̄k+1)(1−T )(|α1|2+|α2|2)]

×
{
c21 + 2c1c2T Re

[
eiθξ1ξ2

]
+ c22

(
1− T |ξ1|2

) (
1− T |ξ2|2

)}
.

For the reasons set out before we can put n̄k ≃ 0, so we have

χ
SB

(α1,α2;T )

= e−
1
2 [T(|ξ1|

2+|ξ2|2)+(1−T )(|α1|2+|α2|2)]

×
{
c21 + 2c1c2T Re

[
eiθξ1ξ2

]
+ c22

(
1− T |ξ1|2

) (
1− T |ξ2|2

)}
. (1.57)

With a appropriate choice of parameters c1 and c2, from this function (1.57) we can
obtain the corresponding realistic versions of the squeezed vacuum, squeezed num-
ber, photon-added squeezed and photon subtracted sqeezed states. For exemple,
putting c2 = 0, we have the evolution of the squeezed vacuum state Ŝ12 (ζ) |00〉12
in terms of the characteristic function

χTB (α1;α2;T ) = e−
1
2 [T(|ξ1|

2+|ξ2|2)+(1−T )(|α1|2+|α2|2)].
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1.5.2 Realistic Variances

In this subsection, we calculate the averages and the variances of the quadra-
tures using the realistic SB state described by the characteristic function (1.57).
Even in case of a real channel, we have that the averages of the quadratures are
zero

〈Xk〉 = 〈Yk〉 = 〈Xκ〉 = 〈Yκ〉 = 0 ,

while the variances of modes k = 1, 2 are given by

〈
∆X2

k

〉
=
〈
∆Y 2k

〉
=

1

2

[
1− T + T

(
c21 + 3c22

)
cosh (2r)

]
,

and the variances of modes c and d are

〈
∆X2

c

〉
=
〈
∆Y 2d

〉
=

1

2

{
1− T + T

(
c21 + 3c22

)
[cosh (2r)− cos (φr) sinh (2r)]

}
,

〈
∆Y 2c

〉
=
〈
∆X2

d

〉
=

1

2

{
1− T + T

(
c21 + 3c22

)
[cosh (2r) + cos (φr) sinh (2r)]

}
.

The same procedure of minimization, used in the ideal case, leads to the condition

φr = 2kπ , with k ∈ N ,

So we have

〈
∆X2

c

〉
=
〈
∆Y 2d

〉
=

1

2

{
1− T + T

(
c21 + 3c22

)
e−2r
}

,

〈
∆Y 2c

〉
=
〈
∆X2

d

〉
=

1

2

{
1− T + T

(
c21 + 3c22

)
e2r
}

.

Further minimizing the squeezed variance with respect to the free parameters c1
and c2, we obtain c1 = 1 (⇒ c2 = 0) and the variances become

〈
∆X2

k

〉
=
〈
∆Y 2k

〉
=

1

2
[1− T + T cosh (2r)] ,

for k = 1, 2 and

〈
∆X2

c

〉
=
〈
∆Y 2d

〉
=

1

2

{
1− T

(
1− e−2r

)}
, (1.58)

〈
∆Y 2c

〉
=
〈
∆X2

d

〉
=

1

2

{
1− T

(
1− e2r

)}
, (1.59)

for the modes c and d. So, in the realistic case, the lower limit for the squeezed
variance is (1− T ) /2, correspondent to r →∞. When T tends to 1 (ideal case),
the variances (1.58) and (1.59) tend to ideal values given by e−2r/2 and e+2r/2,
respectively, and their lower limit approaches zero. For T → 0 (maximally ab-
sorption case) the variances tend to the vacuum state variances

(
1
2

)
, regardless of

the value of r.
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1.5.2.1 Effective parameter of squeezing

We can think of using the relations (1.58) and (1.59) to obtain a effective
parameter of squeezing r′. In fact, because of decoherence at the exit of the
source of squeezed vacuum, the effective parameter of squeezing is not r but a
parameter r′ which takes account of the losses, by means of coefficient T (see Fig.
(1.4)).

Figure 1.4: Schematic representation of a squeezed vacuum source subjected to
the degrading action of the external environment. A vacuum squeezed source
with ideal parameter of squeezing r, subjected to N attenuating stages, with
attenuation coefficients Tk, respectively, is equivalent to a single source of ideal

squeezing with squeezing parameter r′ = −1
2
ln
[
1−
(∏N

k=1 Tk
)
(1− e−2r)

]
.

Thus, the relation between the observable realistic parameter of squeezing r′,
after the losses, and the parameter of squeezing r of the ideal squeezed vacuum
state is given by

〈
∆X2

c

〉
=

1

2

[
1− T

(
1− e−2r

)]

=
1

2
e−2r

′

.

The inverse relation is

r′ = −1
2
ln
[
2
〈
∆X2

c

〉]

= −1
2
ln
[
1− T

(
1− e−2r

)]
. (1.60)

We also note that the relation (1.60) confirms the ’multiplicative nature’ of the
attenuation coefficients of the more sequential. In fact, observing the Fig. (1.4),
let r be the parameter of squeezing of the squeezed vacuum source and N the
number of consecutive attenuating stages, each characterized by an attenuation
coefficient 0 < Tk < 1, (k = 1, ...,N) and a parameter of squeezing rk. Then the
final parameter of squeezing r′ = rN is given by

rN = −1
2
ln
[
1− TN

(
1− e−2rN−1

)]
,
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where the generic parameter rk is

rk = −
1

2
ln
[
1− Tk

(
1− e−2rk−1

)]
,

with r0 = r.
Substituting these recurrence relations we obtain that the entire system is

equivalent to a single block with a effective parameter of squeezing r′ equal to

r′ = −1
2
ln
[
1− Teff

(
1− e−2r

)]
,

where

Teff =
N∏

k=1

Tk.

Then, a squeezed vacuum source with parameter of squeezing r, which transmits in
a lossy environment, is fully equivalent to a vacuum squeezed source with rescaled
parameter r′ given by Eq.(1.60). The link between r and r′ is shown in Fig. (1.5)
for different values of the effective transmittivity.

Figure 1.5: (color online) − Behavior of the parameter of effective squeezing r′

as a function of the parameter r of the ideal squeezed source for three different
values of the transmissivity: Teff = 0.6 (brown line), Teff = 0.8 (red line), and
Teff = 0.9 (orange line) .

We can note that if the observed realistic squeezing parameter r′ goes to zero,
then the ideal squeezing parameter r goes to zero as well ∀Teq. There is no value
of r > 0 and Teq such that the observed squeezing r′ is null. This implies that the
decoherence attenuates the size of squeezing but cannot make it null.



CHAPTER 2

QUANTUMNESS

In this Chapter, we present a quick overview of the main quantum features, whose
classical systems are lacking. The main peculiarity of quantum systems is the prin-
ciple of superposition of states, i.e. the possibility to describe a physical system
through a simultaneous superposition of more possible configurations. From this
principle it descends large part of the purely quantum physical characteristics, i.e.
the quantumness of a physical system. We are primarily interested in bi-partite
bosonic systems treatable with the approach of the continuous variables (CV).

In this scenario, the quantumness of a bi—partite CV state can be tested
by two classes of markers. The first is intimately related to the the state it-
self and includes inequalities that fix bounds for distinguishing among different
types of entangled and un—entangled states. They are called entanglement cri-
teria and are usually named by the authors that have theoretically found them.
They are the Duan, EPR—Reid (Einstein-Podolsky-Rosen—Reid) and PHS (Peres-
Horodecki-Simon) criteria.

The second has been translated into the quantum context from the classical
information theory and is related to the amount of quantum information carried
by the state. It includes quantitative measures such as mutual information, von
Neumann entropy, and quantum discord.

Another useful indicator of quantumness of a state is the teleportation fi-
delity of a coherent state. In fact, in [25] it is shown that when the fidelity F is
higher than the classical limit (F > Fclass = 0.5), the resource that realizes the
teleportation protocol is certainly quantum.

Finally, we discuss the Bell’s non-locality. We see that when an inequality,
called Bell’s inequality, is violated then the physical system can not be described
by classical theory.

The Chapter is organized as follows: in Section 2.1 we define the entanglement
and discuss briefly about the difficult problem inherent in its quantification. In
particular, we analyze the case of pure (sub-sect. 2.1.1) and mixed (sub-sect.
2.1.2) bi-partite states. In the second case (mixed states), we discuss the criteria
of Duan, EPR-Reid, and PHS for Gaussian bi-partite states described by the
covariance matrix written in the standard form Eq. (1.23). In Sect. 2.2 we
present the CV protocol of quantum teleportation of Braunstein, Kimble [26],
and Vaidman [27] in the characteristic function formalism. The analysis in this
Section has a twofold utility:

i. for Gaussian resources, the fidelity provides indications on the quantumness

35
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(entanglement) of the resource state;

ii. for non-Gaussian (SB) resources the fidelity of teleportation is maximized.

In Section 2.3 we discuss the mutual information and quantum discord. Fi-
nally, in Section 2.4 we present the non-locality of some bi-partite states expressed
by the Bell’s inequality.

2.1 Entanglement
As we have already said, a quantum state, described by density matrix ρS

acting in HS, is called separable if it can be represented as the tensor product of
its two sub-systems,

ρS = ρA ⊗ ρB, (2.1)

where ρA acts in HA and ρB acts in HB such that HS = HA ⊗ HB. When the
system is separable, the measurement results of the quantity A in HA are not
tied to the measurement results of the quantity B in HB. The knowledge of ρA
prescinds from knowledge of ρB. In this case we can write that

〈AB〉ρ
S

= 〈A〉ρA 〈B〉ρB ,

i.e. the correlation 〈AB〉ρ
S

between the observables A and B, in the overall

state ρ
S
, corresponds to the product of the expectation values of the operators

themselves. If ρS 
= ρA ⊗ ρB, the state is non-factorizable and the quantity

〈AB〉ρ
S

− 〈A〉ρA 〈B〉ρB , (2.2)

no longer disappears. In this case, the two sub-systems are correlated and a
measurement performed on a sub-system influences the measurements made on
the other. The knowledge of ρA can not ignore the knowledge of ρB. A non-
separable state is called entangled [12].

Although several entanglement measures E (ρ) have been proposed, it has not
been found a general solution to the problem of a quantitative measure of entan-
glement for a generic quantum state. However all researchers in this field seem to
agree on the following three conditions that a good entanglement measurament
E (ρ) must comply [28]:

1. E (ρS) = 0 iff ρS is separable, i.e. if the density matrix can be writen as

ρS =
∑

j pjρ
(A)
j ⊗ ρ(B)j ;

2. E (ρS) should not increse under local operations and classical communication

procedures (LOCC), i.e. E
(
UABρSU

†
AB

)
= E (ρS), with UAB = UA ⊗ UAB.

We intuitively know that such procedures (LOCC) cannot add non-locality
characteristics to the system;
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3. Convexity: E (αρ1 + (1− α) ρ2) ≤ αE (ρ1) + (1− α)E (ρ2), with α ∈ [0, 1];

Sometimes one impose further requirements:

4. Additivity: E (ρ1 ⊗ ρ2) = E (ρ1) + E (ρ2);

5. Continuity: E (ρS) is a continuous function of ρS,

or

5’. Asymptotic continuity: E (ρS) is a continuous function of the fidelity for n
copies of the same pure state |ψ〉 in the asymptotic limit n→∞.

The main problem resides in the fact that, in general, a measure of entangle-
ment, which satisfies all these conditions was not found. Several measures that
do not satisfy all the properties have been proposed, but the request of ordering
is not always respected. Given two different quantum states ρA and ρB, subjected
to two different (non-optimal) entanglement measures E1 and E2, the following
unpleasant circumstance can happen

E1 (ρA) < E1 (ρB) ,

E2 (ρA) > E2 (ρB) .

2.1.1 Pure bi-partite states: Schmidt’s decomposition and von Neu-
mann entropy

The problem of the entanglement measure is solved for bi-partite pure states
[29]. For these states the non-zero correlation, Eq. (2.2), implies entanglement.
The authors of reference [29] showed that the von Neumann entropy of the partial
traces of the sub-systems of the pure bi-partite system is a good entanglement
measure. In fact, referring to the situation discussed in Example 1 of subsection
1.1, we write the wave function of the state AB into the form given by the Schmidt
decomposition [30]

|ψ〉AB =
d∑

k=1

λk |φk〉A ⊗ |ηk〉B ,

with
∑d

k=1 |λk|
2 = 1. The number of nonzero amplitudes λk is known as the

Schmidt number (or Schmidt rank) and gives unique information on the separa-
bility of the state only in the case of bi-partite pure states. In fact, the Schmidt
number of a state is greater than 1 if and only if it is entangled: the state is maxi-
mally entangled and its Schmidt coefficients λk are all equal to d−1/2 (the Schmidt
number is maximum). We can write the density matrices of the two sub-systems
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A and B as

ρA =
∑

k

|λk|2 |φk〉A A 〈φk| , (2.3)

ρB =
∑

k

|λk|2 |ηk〉B B 〈ηk| , (2.4)

hence the partial traces of a maximally entangled state give the maximally chaotic
states in their respective Hilbert space.

This link between entanglement of a system and chaos of its sub-systems sug-
gests to introduce the von Neumann entropy as a entanglement measure. Another
consideration is related to the analogy between irreversible processes in thermo-
dynamic systems and quantum ones [29]. In fact, as it is impossible to build a per-
petuum mobile because the entropy can not decrease in thermodynamic processes,
in the same way the entanglement of a quantum system can not increase by local
operations (condition 2 for an entanglement measure).

So, introducing the von Neumann entropy [30] of the system ρ,

SvN (ρ) = −Tr [ρ ln ρ] , (2.5)

the entanglement measure is given by

E (ρAB) = SvN (ρk)

= −Trk [ρk ln ρk] ,

where ρk, k = A,B, is the (reduced) density matrix of the sub-system k. For the
states (2.3) and (2.4) we have

SvN (ρA) = SvN (ρB) =

{
−∑k |λk|2 ln |λk|2 for λk 
= 0

0 for λk = 0
.

It ranges from zero, for separable states (λk̄ = 1 and λk �=k̄ = 0), to one for
maximally entangled states (λk = d−1/2, ∀k).

2.1.2 Mixed bi-partite Gaussian states: entanglement criteria

For mixed states there isn’t a entanglement measure that satisfies all the
conditions given above. There are, however, criteria of separability which do
provide sufficient conditions for entanglement. However, in some circumstances,
for bi-partite Gaussian states such criteria become necessary and sufficient. In
this sub-Section we analyze some main criteria: the Peres-Horodecki-Simon [31],
Duan [32], and EPR-Reid [33] criterion. At first, we give the analogous of the
Eq.(2.1) for mixed states.



2.1. ENTANGLEMENT 39

A bi-partite quantum state is separable iff its density operator can be written
as a convex combination of the tensor product of density operators relative to the
two different sub—spaces [121]

ρ =
∑

j

pjρ
(A)
j ⊗ ρ(B)j , (2.6)

where
∑

j pj = 1 while ρ
(k)
j are the density matrices of sub-system k = A,B.

2.1.2.1 The Peres-Horodecki-Simon (PHS) criterion

The criterion of separability PHS uses the notion of positive map. We consider
the map

L : O1 → Õ1 ,

that associates the operator O1 to the operator Õ2 = L (O1). The map L is
called positive if it sends positive operators into positive operators. A transfor-
mation that has physical sense, in addition to being positive, must also satisfy the
following requirement:

if the transformation is applied to a only part of the system and the
other part is left undisturbed, after processing the overall state must
still be described by defined positive density operators.

This requirement is satisfied if the map is completely positive. In formulas,
the map L is completely positive if

L ⊗ I2 : O1⊗O2 → Õ1⊗O2,
is positive for the generic operator O1 acting on the sub-system 1, and I2 is the
identity map acting on the sub-system 2.

Amap positive, but not completely positive, allows to evaluate the separability
of the state. In fact, we consider the tensor product state ρ(A) ⊗ ρ(B), where ρ(k)

is the density matrix of the sub-system k = A,B, such that

L ⊗ IA : ρ(A) ⊗ ρ(B) = L
(
ρ(A)
)
⊗ ρ(B) ≥ 0, (2.7)

then the positive map sends product (separable) states in positive operators. Oth-
erwise, if the state is non-separable there is a positive map L for which the Eq.
(2.7),

L ⊗ IA : ρ(A) ⊗ ρ(B),
is not positive. The PHS criterion makes use of the partial transpose (PT ) map,
that realizes the operation of transposition of the density matrix with respect to
only one of the two density matrices ρ(A) or ρ(B), e.g. ρ(A). So we have:

PT : ρAB →
∑

j

pj
(
ρ
(A)
j

)T
⊗ ρ(B)j ,
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where we have assumed a priori that the state has factorized form Eq. (2.6).

Because
(
ρ
(A)
j

)T
is non-negative and preserves the unity of the trace, it is still a

density matrix. It follows that if the state ρAB is separable then ρPTAB = PT (ρAB)
should still represent a physical state so that any eigenvalue of ρPTAB is non-negative.
On the contrary if ρPTAB exhibits negative eigenvalues, it no more represents a
physical state and the system does not admit the form hypothesized a priori
(2.6). In this case, the factorized form of Eq. (2.6) is not adequate for the state
ρAB.

Thus, all separable states have a non-negative partially transposed density
operator. From this consideration it is possible to deduce a necessary condition
for separability or, viceversa, a sufficient condition for entanglement. In view of
this the criterion is sometime referred to as the ppt criterion (positivity under
partial transposition) [119, 120, 31]. In the following we prefer to indicate it as
the PHS criterion. It can be proven that it becomes a necessary and sufficient
condition for Gaussian states [31]. In terms of the characteristic function χAB of
a bi-partite system, the map PT corresponds to the transformation

PT : χAB (Xa, Ya, Xb, Yb)→ χAB (Xa,−Ya,Xb, Yb) ,

which is given by a change of sign of out—of—phase quadrature (usually indicated
as Y ). Partial transposition is, therefore, a “local time reversal” which inverts the
Y quadrature of only one sub-system, Ya → −Ya. It is defined as “time reversal”
(or mirror reflection) in the phase space, also:

PT : K→ ΛAK,

with ΛA ≡diag(1,−1, 1, 1) ≡ Z⊕I,

Z ≡
(

1 0
0 −1

)
, (2.8)

and I is the 2×2 identity matrix. In these terms, the PHS criterion can be stated
as follows:

if the state ρAB is separable, then when the map PT is applied the its
charactereristic function χAB (K) turns into one specularly reflected
χAB (ΛAK) in the phase space.

Both χAB (K) as χAB (ΛAK) are good characteristic functions. The specular
reflection of the type ΛA is, therefore, a symmetry in the subspace of separable
states [31]. This transformation acts, of course, also on the correlation matrix
(1.23)

σ → ΛAσΛA.
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In terms of the covariance matrix, the (separability) PHS criterion can be ex-
pressed by the inequality

ΛAσΛA +
i

2
Ω ≥ 0 ,

or equivalently

σ ≥ − i
2
ΛAΩΛA .

In terms of the symplectic invariants, Eqs. (1.19-1.22), partial transposition im-
plies the transformations

Ĩ1,2,4 = I1,2,4,

Ĩ3 = −I3,

where Ij and Ĩj are related to the correlation matrix σ and ΛAΩΛA, respectively.
As a result, a separable bi-partite Gaussian state must obey the uncertainty rela-
tion for σ and for ΛAΩΛA

∆̃ (σ) ≤ 4I4 +
1

4
,

with ∆̃ (σ) = ∆ (ΛAΩΛA) = I1 + I2 − 2I3. Then, the condition of separability of
the PHS criterion becomes: a bi-partite Gaussian state is separable iff

n2 +m2 + 2 |c1c2| − 4
(
nm− c21

) (
nm− c22

)
≤ 1

4
, (2.9)

I1 + I2 + 2 |I3| − 4I4 ≤
1

4
(2.10)

and it is entangled otherwise.

We also note that the PHS criterion is invariant under symplectic transforma-
tions. Finally, using the symplectic eigenvalues, defined in Eq.(1.25), the criterion
of separability becomes [18]

d̃± ≥
1

2
,

where

d̃± =

√√√√∆̃ (σ)±
√
∆̃ (σ)− 4I4

2
.

PHS criterion relies on the possibility of describing independently the two
sub-systems. If any true quantum correlation is set between Y1 and Y2 a sign flip
on Y1 (or Y2) will affect the sign of c1 (or c2) in Eq. (1.23) making ρPTAB no more
physical.
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2.1.2.2 The Duan criterion

For every CV entangled state there exists a pair of EPR—like conjugate oper-
ators defined by [32]

u = |a|x1 +
1

a
x2 and v = |a| p1 −

1

a
p2 , (2.11)

with a an arbitrary non—zero real number and [xj, pj′ ] =
i
2
δjj′ (j, j

′ = 1, 2) and
where subscript 1 (2) refers to the entangled sub-systems. In the ideal case the
variances of the above operators reduce to zero and the entangled system is in a
co—eigenstate of the above operators. Of course, these eigenstates of the whole
system, would require an infinite amount of energy and so they are not physical.
Then, for discussing the birth of non—classical correlation between sub—systems 1
and 2, we will consider states for which the variance of EPR—like operators will
reduce below the standard quantum limit (SQL) signalling the presence of non—
classical features. By calculating the total variance of such a pair of operators on
ρAB, a separable state of the form of Eq. (2.6), it can be proven [32] that the
inequality

〈
(∆û)2

〉
ρAB

+
〈
(∆v̂)2

〉
ρAB
≥ a2 + 1

a2
, (2.12)

sets a lower bound for separable states. Contrarily to the PHS criterion (see
Sect. 2.1.2.1) inequality (2.12) has been formulated as a sufficient condition for
separability so that it is a necessary condition for entanglement of a generic CV
state.

As shown in [32] it becomes a necessary and sufficient condition for entangled
CV Gaussian states. The sufficient and necessary condition can be expressed in
terms of the covariance matrix elements iff the matrix itself is expressed in the
form of Eq. (10) of Ref. [32]

σ =




n1 0 c1 0
0 n2 0 c2
c1 0 m1 0
0 c2 0 m2


 , (2.13)

with the matrix elements satisfying the constrains (11a) and (11b) of Ref. [32]
that, for the SQL equal to 1

2
, read

n1 − 1/2

m1 − 1/2
=

n2 − 1/2

m2 − 1/2
,

|c1| − |c2| =
√
(n1 − 1/2) (m1 − 1/2)−

√
(n2 − 1/2) (m2 − 1/2) . (2.14)

In this case the EPR operators pair of Eq. (2.11) are written as

u = a0x1 + sgn (c1)
1

a0
x2 and v = a0p1 − sgn (c2)

1

a0
p2 ,
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where a0 =
√

m1−1/2
n1−1/2 =

√
m2−1/2
n2−1/2 . With the sufficient and necessary Duan crite-

rion given by

a20 (n1 + n2 − 1) +
m1 +m2 − 1

a20
− 2 (|c1| − |c2|) < 0 . (2.15)

We note that, as proved in Ref. [32], any Gaussian state can be transformed
into the form (2.13) by local linear unitary Bogoliubov operations, i.e. by acting
independently on one or both the sub-systems by applying local squeezing and/or
rotations.

In a more general context it is possible to write the sufficient but not necessary
criterion for a generic CM in the standard form of Eq. (1.23) as

(2n− 1) a2 +
(2m− 1)

a2
− 2 (c1 − c2) < 0 ,

where a can be set by a2 =
√

m−1/2
n−1/2 to minimize the left hand side of the inequality:

√
(2n− 1) (2m− 1)− (c1 − c2) < 0 . (2.16)

We note that, while for symmetric states (m = n) |a| = 1 the EPR pair consists
of two orthogonal field quadratures, this is not true, in general.

The Duan criterion is strictly related to the Heisenberg principle for the single
sub—system. If the state is separable the indeterminacy on a single operator is
disjoint from the indeterminacy of the twin operator on the second sub—system;
so that the total indeterminacy cannot violate the Heisenberg limit. This has
nothing to do with conditional measurement and with the possibility of gaining
information on one sub—system measuring the other. As we will see this approach
leads to a stricter criterion: the so—called EPR−Reid criterion.

2.1.2.3 The EPR−Reid criterion

A stronger bound can be found by analysing a bi—partite state under the
shadow of conditional measurements. This concept descends directly from the
original EPR gedanken experiment [34]. For this reason this criterion is usually
indicated as the EPR criterion and was firstly introduced by Reid in 1989 [33],
in the very early days of quantum information. It describes the ability to deduce
the expectation value of an observable on a sub—system by measuring the EPR
companion observable on the second sub—system. Contrarily to the Duan and PHS
criteria EPR-Reid one sets, by principle, only a sufficient condition for assessing
entanglement.

Mathematically this criterion can be deduced by calculating the conditional
variance for an observable on sub—system A given the result of a measurement on
sub—system B and comparing it with the standard quantum limit:

Va|b < 1/2 , (2.17)
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with
Va|b =

〈
∆X2a

〉 (
1− C2ab

)
,

where Cab is the correlation coefficient related to the simultaneous measurements
of the field generalized quadrature XaXb:

Cab ≡
〈∆XaXb〉√
〈∆X2a〉 〈∆X2b〉

. (2.18)

For Gaussian states the Eq. (2.17) can be written in terms of CM elements:

n2
(
1− c21

nm

)(
1− c22

nm

)
<

1

4
. (2.19)

We note that, being based on conditional variances (and thus on conditional
states) this last criterion is not symmetric under the exchange of the two sub-
systems. So that the criterion itself can be recast if sub—system A is measured
and the conditional variance on B is given

m2

(
1− c21

nm

)(
1− c22

nm

)
<

1

4
.

The two definitions of the EPR criterion can make it ambiguous if one of
the relations are not satisfied. This is not the case of balanced systems (m = n).
Moreover, it can be proved that no pure state can asymmetrically violate the EPR
criterion. It is easy to see that the above two expressions for the EPR criterion
are invariant for symplectic transformations like the PHS one (see Eq. (2.9)). In
particular,

I4
I2
<

1

4

(
I4
I1
<

1

4

)

For a pure state I4 = 1/16 so that the two definitions lead to

I2 >
1

4

I1 >
1

4
,

Being for the uncertainty principle, written for the single sub—system, I1,2 ≥ 1/4
for a pure state they cannot be violated asymmetrically.

2.1.2.4 Witnesses

All the above criteria (2.9), (2.16), and (2.19) cannot be used other than
as bounds. They are not suitable for measuring entanglement in a quantitative
way. They are only useful to determine the quality of the correlations when the
conditions of separability are violated.
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However, it may be useful to introduce the concept of witness that provides
a method to verify whether a certain state is entangled or not [35]. We have the
following theorem of entanglement witness:

A density matrix ρAB is entangled if and only if there exists a her-
mitian operator W , acting on the Hilbert space of ρAB, with the
properites

• Tr[ρABW ] < 0;

• Tr[ρsepABW ] ≥ 0, for all separable states ρsepAB.

The operator W is called an entanglement witness.

This is a necessary and sufficient condition for separability. A state ρAB
is entangled if and only if there exists an entanglement witness that detects it.
Entanglement witnesses do not really solve the problem of separability because
we have to construct all possible entanglement witnesses for checking wether ρAB
is entangled or not.

Another problem is to find the “best” entanglement witness, called optimal
entanglement witness. In order to get a little more in detail, we define

ΩW = {ρAB ≥ 0 : Tr [ρABW ] < 0} ,

the set of all "detected" entangled states by W . So an entanglement witness W1

is finer than W2 if and only if ΩW2 ⊂ ΩW1, that is the set of states ΩW2 classified
as entangled by W2 is strictly contained in the set of states ΩW1 judged by W1.
In other words, the ability to detect entangled states of W1 is greater than W2.
Then, an entanglement witness is optimal if there exists no other entanglement
witness which is finer. This means a finer entanglement witness can detect more
states and an optimal one detects all states that are possible. Moreover, there
is a unique correspondence between positive maps and entanglement witnesses
[36]. The map PT , viewed in the sub-sect. 2.1.2.1, is an explicit example of such
correspondence.

Then, we can consider the inequalities obtained for the PHS, Duan, and EPR—
Reid criteria (Eqs. (2.9), (2.16) and (2.19), respectively) as three entanglement
witnesses, one for each criterion.:

wPHS = 4
(
nm− c21

) (
nm− c22

)
+
1

4
−
(
n2 +m2

)
− 2 |c1c2| ,

wDUAN = 2

√(
n− 1

2

)(
m− 1

2

)
− (c1 − c2) ,

wEPR = n2
(
1− c21

nm

)(
1− c22

nm

)
− 1

4
. (2.20)
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In summary, for a Gaussian bi—partite state the three criteria (see Eqs. (2.9),
(2.16), and (2.19)) reduce to

ρ is entangled





⇐⇒ wPHS < 0

⇐=
{
wDUAN < 0
wEPR < 0

. (2.21)

The three w’s don’t satisfy the requirements for being a measure of entanglement.
For example they don’t verify the basic axiom stating that a good measure should
be equal to 0 for any separable state [37].

However, once the state ρ is entangled wPHS, wDUAN and wEPR provide suit-
able markers for evaluating how far the state is from being separable. Somehow
measuring the robustness of the entanglement. In the Chapter 6, we will verify
experimentally the effects of decoherence on entanglement "detected" by these
witness. According to the definition of optimal entanglement witness given above
and according to what said for each criterion, it is already possible to assert that
the wPHS and wDUAN witnesses are better than wEPR witness.

We note that for diagonal fully symmetric states (n = m and c1 = −c2 = c in
Eq. (1.23)) wPHS, wDUAN and wEPR read

wPHS = 4
(
n2 − c2

)2
+
1

4
− 2n2 − 2c2 ,

wDUAN =

(
n− 1

2

)
− c ,

wEPR = n2
(
1− c2

n2

)2
− 1

4
;

and the two bounds (c > n− 1/2) for wPHS and wDUAN coincide while the bound

for wEPR is c >
√
n
(
n− 1

2

)
so that the EPR criterion is stricter than the PHS

and Duan ones for any allowed value of n. We’ll see it in more detail in Fig. (2.2)
reported in the next Section.

2.2 Quantum Teleportation protocol with CV

The teleportation fidelity can be a useful indicator of quantumness of the
states involved in the protocol. In particular, it is possible to show that in the
case of Gaussian resources, the teleportation fidelity of a coherent state exceeds
the maximum classical level, set to Fclass = 0.5, only if the resource is entagled.
So

{F >0.5} ⇒ {resource is entangled state} ,
the inverse logical implication is not guaranteed. In this sense, therefore, the
fidelity gives precise indications on quantumness of a state.
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Instead, in order to find the quantum resources that maximizes the fidelity of
teleportation, it is necessary to take into account non-Gaussian resources. In this
Section, we discuss the importance of the SB states [22]. They exhibit a fidelity
of teleportation exceeds that of all quantum states known to date. In Chapter 5,
we propose a feasibility study for the experimental realization of SB states. In
this Section we give a description of the CV teleportation protocol BKV [38] in
terms of the characteristic functions of the quantum states involved.

As a matter of fact, the quality of a teleportation protocol can be evaluated
by looking at the fidelity between the teleportated output state ρout and input
state ρin:

F =Tr [ρinρout]

that in terms of the characteristic functions reads

F =
1

2π

∫
dx2dy2χin (x2, y2)χout (−x2,−y2) (2.22)

where χin and χout represent the respective characteristic functions in phase space
and where αk = (xk + iyk) /

√
2. In this Section we refer always to the teleporta-

tion of a coherent state. The results obtained with other input states (for example
the Fock states) are not dissimilar to the coherent state case, for a suitable settings
of the free parameters of the quantum resource involved [22].

The output characteristic function χout can be directly obtained by appropri-
ate manipulation of the characteristic functions of the resource states and of the
input state of the protocol [75].

A scheme of teleportation is described in Fig. (2.1).
The input state ρin is initially separated from two-mode entangled resource

ρres, so that the overall initial state is ρ0 = ρin ⊗ ρres and the its characteristic
function is given by

χ0 (α;α1;α2) = χin (α)χres (α1;α2) .

where
χin (α) = e−

1
2
|α|2+(αβ∗−α∗β)

is the characteristic function of the coherent state of amplitude β. At a first step
Alice combines the input mode ”in” with one of the entangled mode, let’s say
mode ”1”, at a balanced beam splitter, so that the characteristic function of the
whole state becomes

χ
′

0 (x
′
in, y

′
in; x

′
1, y

′
1; x2, y2)

= χin

(
x′in + x

′
1√

2
,
y′in + y

′
1√

2

)
χres

(
x′in − x′1√

2
,
y′in − y′1√

2
; x2, v2

)
.

Then Alice performs a Bell measurement on her state consisting of two simultane-
ous homodyne measurements of the quadratures at beam splitter (50:50) outputs
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Figure 2.1: Schematic representation of a BKV CV quantum teleportation pro-
tocol. In the first step, the input mode is mixed by Alice with one of the two
modes of the entangled resource; the ensuing state is then subject to a ideal (
or realistic) Bell measurement. The result of the measurement is communicated
to Bob through a classical channel. In the second step, a unitary transformation
(displacement), determined by the previous measurement, is applied to the sec-
ond mode of the entangled resource, that is affected by dechoerence during the
propagation in a noisy channel. The ensuing output state is the final teleported
state.
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y′in and x′1. If the results of the Bell measurements are y′in = ỹ and x′1 = x̃, the
characteristic function transforms into

χBm (x2, y2) =
P−1 (y, x)
(2π)2

∫
dx′indy

′
1e

i(x′inỹ−x̃y′1)χ
′

0 (x
′
in, 0; 0, y

′
1;x2, y2) ,

where

P (y, x) =
1

(2π)2

∫
dx′indy

′
1e

i(x′inỹ−x̃y′1)χ
′

0 (x
′
in, 0; 0, y

′
1; 0, 0)

is the distribution function of the outcomes ỹ and x̃ [22]. After recovering the
classical information, Bob performs on mode 2 the displacement λ = (x̃+ iỹ). It
can be proved that the characteristic function of the teleportated state is

χout (x2, y2) = χin (x2, y2)χres (x2,−y2;x2, y2) , (2.23)

So the fidelity of teleportation, Eq. (2.22), takes the simple form

F =
1

2π

∫
dx2dy2χin (x2, y2)χin (−x2,−y2)χres (−x2, y2;−x2,−y2) . (2.24)

In a realistic scenario, the propagation occurs with loss of photons and the
modes involved in the teleportation protocol interact with the thermal modes of
the external environment. The characteristic function of the output state, Eq.
(2.23), becomes [22]

χout (x2, y2) = χin (gTx2, gTy2)χres
(
gTx2,−gTy2; e−τ/2x2, e−τ/2y2

)

× exp

{
−1
2
Γτ,R

(
x22 + y

2
2

)}
,

where τ = Υt, with damping rate Υ, the scale factor T expresses the effects of
imperfections in Bell’s measurements, g is the gain factor of the displacement, λ =
g (x̃+ iỹ), that Bob performs on mode 2 and the thermal phase-space covariance
Γτ,R is defined as

Γτ,R =
(
1− e−τ

)
(1 + nth) + g

2R2,

where nth is the average number of thermal photons and R = 1− T is the reflec-
tivity that quantifies the weight of the effects of decoherence.

The ideal case is rediscovered by placing R = 0 (T = 1) ,Υ = 0 (τ = 0), and
g = 1.

2.2.1 Gaussian resources

In this subsection we analyze the fidelity of teleportation protocol of a coher-
ent state by using Gaussian quantum resources. We highlight its ability to be
entanglement marker by comparing it with the criteria presented in the Section
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2.1.2. In fact, F for a Gaussian resource depends only on the entanglement quality
of the used resource.

When the resource of teleportation is a Gaussian state, the fidelity (2.24) can
be written in simple matrix form [25]

F =
1√

det [Γ]
,

where
Γ =2σcoh + ZAZ+B− ZC−CTZ ,

and σcoh =
1
2
diag(1, 1) is the covariance matrix of the coherent state, A, B, and

C are the three 2 × 2 matrices that define the covariance matrix of the resource
Eq.(1.18)1, and the matrix Z is given in Eq.(2.8). In terms of the CM in Eq.
(1.23), F is given by

F =
1√

(1 +m+ n− 2c1) (1 +m+ n+ 2c2)
. (2.25)

It is possible to show that the teleportation protocol of a coherent state, fully
based on classical strategies, provides F ≤1/2. Then, one can simply prove that

F > F class = 1/2

implies that the resource is entangled. In this sense, the value of F becomes an
indicator of the quality of the entanglement. We note that for diagonal states
(n = m and c1 = −c2 = c) we have

F =
1

1 + 2n− 2c
(2.26)

=
1

2 + wDUAN
. (2.27)

In this particular case, perfect fidelity would be obtained for n = c, or forwDUAN =
−2 that would implies an unphysical CM so that Gaussian resources, as the state
produced by OPOs, cannot guarantee perfect teleportation. In fact, the purity
imply the limit Eq. (1.27)

c ≤
√
n2 − 1/4. (2.28)

We want to highlight an imprecision that is often reported in the literature in this
regard. In fact, it is said that when the squeezing parameter r tends to infinity
(n ≃ c→∞), we obtain a perfect fidelity. In this way the impossibility of perfect
fidelity (F = 1) is attributed to the practical impossibility of achieving infinite
values of r. This is not exactly correct: F = 1 is unable to occur due to the

1
A ≡diag(n, n), B ≡diag(m,m) and C ≡diag(c1, c2)



2.2. QUANTUM TELEPORTATION PROTOCOL WITH CV 51

limitations imposed by the purity of the state, Eq.(2.28). Nevertheless it remains
true that for large n, c the factor 1/4 in Eq.(2.28) becomes negligible with respect
to n.

Moreover, F > 1/2 , see Eq.(2.26), give c > n− 1/2 and coincides with both
the Duan and PHS bounds for such diagonal states. We note that, similarly to
the Duan (Eq. (2.16)) but contrarily to the PHS and EPR criteria (Eqs. (2.9)
and (2.19)) F is not invariant under symplectic transformations.
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Figure 2.2: Region plot (color online) of the different entaglement witnesses of
Eq. (2.20) and teleportation fidelity (Eq. (2.25)) as an entanglement marker.
The light blue (labelled with (II)) area indicates un-physical CM (i.e. violating
inequality (1.24)). The different criteria highlight different region of entanglement
(see text for details).

As already mentioned, only the PHS criterion can be written for a genericCM
as a sufficient and necessary condition while the Duan and the EPR one set only
sufficient bounds. In order to discuss the relations between the different bounds
and the teleportation fidelity, as an entanglement marker, it is possible to draw a
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region plot, similar to the one drawn in Ref. [39] for a different case. In Fig. 2.2,
we have visualized the different bounds set by the three entanglement witnesses
of Eq. (2.20)) and the region for which F > 1/2 (see Eq. (2.25)). The plot has
been computed considering a CM in the standard form of Eq. (1.23) with m = n
(balanced system). The axes report the value of c̃1 (below) and c̃2 (left), the
two correlation terms of the covariance matrix normalized to cMAX =

√
n2 − 1/4

so that c̃1 = −c̃2 = 1 will represent a pure maximally entangled state (i.e. the
state showing the maximum quantum correlation for a given total energy of the
system). We note that fully symmetric states, that we indicated as diagonal
states, lay on the plot diagonal (top—left to bottom—right). These states, besides
their symmetry, represent states that can be obtained at the output of a lossy
propagation, described by Eq. (1.47), of an initially pure state. On the contrary,
states outside the diagonal, having c̃1 
= −c̃2, cannot be obtained by propagating
pure states.

The light gray (labelled with (VI )) area indicates un—physical states, i.e. CM
violating inequality (1.24).

The state lying on the diagonal starting in c̃1 = −c̃2 = 1 satisfies the conditions
(see Eq. (2.14)) for which the Duan criterion become also necessary so that the
coincidence between the Duan and the PHS bounds, along the diagonal, is not a
surprise. Being both necessary and sufficient they coincide. For these diagonal
states entanglement (seen as non—separability property) implies F > 1/2. So that
entanglement is a pre—requisite for using the state as a resource in the teleportation
of a coherent state.

There are two pairs of interesting regions in the plot that deserve some com-
ments. The first one, encompassing area labelled as (III ) and (IV ) in the plot
(light green and yellow), represents regions where the states violate the PHS bound
(wPHS < 0) while they do not the Duan one (wDUAN ≥ 0). This apparent am-
biguity can be solved noting that the CM represented by these regions does not
respect the condition (2.14) so that the non—negativity of wDUAN does not imply
a separability of the state. On the other hand for such states wPHS < 0 implying
that they are effectively entangled and that their density matrix ρ cannot factorize
into a convex combination of the tensor product of density operators relative to
the two different sub—systems. By transforming by local squeezing operations, as
outlined in Ref. [32], these CM into a form that respect conditions (2.14) it is
possible to see that the transformed states show wDUAN < 0. We have numerically
done a few tests on such odd matrices, verifying that once taken into that form,
the states violate the Duan bound (2.15) as well, so confirming that the Duan and
PHS criterion are equivalent. We note that, being the latter written in a more
general form, it is more useful from the practical point of view. Moreover, such a
matrix transformation take states lying outside of the diagonal on the plot, com-
pletely out from the plot itself. Indeed, the transformed CM has the form given
in Eq. (2.13) different from the one in Eq. (1.23) and represented in the plot.
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We also note that the referred transformation change also the EPR operators pair
(see Eq (2.11)).

The second interesting region, labelled with (IV ) (light green) in Fig. 2.2,
represents states that, although entangled, cannot be used for teleporting coherent
states. CM lying inside this area will not give F > 1/2. It is interesting to note
that such states fall also inside the region for which the Duan criterion (2.16) is
not fulfilled. As above mentioned, once the relative CM is transformed into the
form (2.13) by local squeezing the transformed state will fulfill the Duan criterion
in the form (2.15) so that, in this new scenario, the system is surely entangled. At
the same time, if this novel state is used as a quantum resource for teleportation
of a coherent state it will give F > 1/2 [25] so that the local squeezing acts
as entanglement unveiling. The initial state lying in this area is entangled for
PHS, being wPHS < 0, but, form the point of view of teleportation, entanglement
manifests itself in an useless way. This entanglement can be made useful by locally
transforming the two sub-systems.

We can see that the EPR criterion (region (I ), light brown) offers a more
restrictive condition with respect to the other two criteria even for diagonal states.

Region (II ) (salmon) represents the bound fixed by the Duan criterion as
a sufficient but not necessary condition. While region (V ) (white) represents
separable states.

2.2.2 Non-Gaussian Resources: Squeezed Bell states

In order to find the best resource for the CV BKV teleportation, we can rea-
sonably conjecture that the use of non-Gaussian resources may be more efficient.
In fact, for the Gaussian resources, type the squeezed vacuum state, the parame-
ter of squeezing is the only free parameter to be manipulated in the procedure of
maximizing of the teleportation fidelity. For the non-Gaussian resources the pos-
sibility of having additional degrees of freedom could be profitable, in principle.
Of course, apart from additional degrees of freedom it is necessary that the state
is an efficient resource for the success of the teleportation protocol. In literature,
the authors of the reference [40, 41, 42] have shown that non-Gaussian states, used
as a resource for teleportation, exhibit higher fidelity compared to the Gaussian.
In particular, in [1], Dell’Anno et al. have proposed a new class of sculptured re-
sources, the SB states, defined in Sect.(1.3.2), which interpolates between different
degaussified states, and can be optimized acting on an independent free parameter
in addition to the squeezing. At present, these states are the best theoretically
drawn resource of teleportation. The various Gaussian and degaussified states are
defined from a theoretical point of view by applying squeezing and ladder oper-
ators on the two-mode vacuum. Inside this theoretical context the teleportation
fidelity is improved, in a significant range of the parameters, by the optimized
SB states if compared both to Gaussian and other non-Gaussian resources, in-
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cluding the (theoretically defined) photon-subtracted squeezed states. This has
been verified for different inputs (including coherent states, squeezed states, and
squeezed number states), and also if losses are present [1],[22]. The deep reason is
that the optimized SB states realize the best balance among three properties that
influence the teleportation fidelity: entanglement content, non-Gaussianity, and
squeezed-vacuum affinity [1]. In particular, the third property (squeezed-vacuum
affinity) is crucial; expressed in a simple way, it means that a resource must con-
tain a contribution, with a relevant weight, given by the two-mode vacuum, plus
symmetric non Gaussian corrections.

There are essentially two alternative strategies to generate experimentally non-
Gaussian states. It is possible to generate non-Gaussian states from Gaussian
ones by performing conditional measurements or, introducing non-linearities in
the source.

In the Chapter 5 we will use the first strategy proposing a new class of bi-
partite non-Gaussian states, which approximates, well also in realistic conditions,
the class of the SB states. The scheme has the advantage of being versatile, in
the sense that a tuning of the free experimental parameters allows the generation
of many non-Gaussian states, as photon-added (PA) squeezed states, photon-
subtracted (PS) squeezed states, squeezed number states (PN) and, obviously,
also Gaussian Twin Beams (TB). Furthermore, the free experimental parameters
can be exploited to optimize, in different situations, the performance in the real-
ization of quantum protocols. So, one can generate powerful nonclassical resources
for quantum information, quantum communication and quantum computation.

In the Chapter 7, we will exploit the second strategy for the generation of the
non-Gaussian states. We will solve the Langevin equations describing the dynam-
ics of the Optical Parametric Oscillators (OPO) without to neglect, as done to
date in the literature, the sources of noise (as pump amplitude and phase fluctu-
ations, deviation from the cavity resonance, δχ and fluctuation of the non—linear
coupling parameter). All the quantum processes are driven by a classical pump
field and the quantum noise coupled into the cavity through loss mechanisms.
The presence of these extra noise sources modifies the statistical properties of the
state and switches unexpected, in a quite OPO, cross—correlations. We will see
that as a first consequence of the presence of extra noise terms the generated state
looses its Gaussian character so that its characteristic function becomes slightly
non-Gaussian. Moreover, the fidelity of various CV teleportation schemes will be
evaluated by giving for granted the Gaussian character of the resources provided
by physical OPO sources. Thus, it is rather intuitive that loosing the Gaussian
character the fidelity that the state can provide changes. In particular, we found
that the fidelity increases in presence of extra fluctuations.
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2.3 Mutual Information and Quantum Discord

Recent studies have shown that some particular classes of separable corre-
lated states, traditionally considered classical, show quantum features useful for
application in quantum technology [43].

The von Neumann entropy satisfies several important mathematical proper-
ties. In the scenario of statistical theory of particular importance is the subaddi-
tivity :

H (AB) ≤ H (A) +H (B)

where H (X) is the Shannon entropy (the classical analogue of the von Neumann
entropy SvN (ρ) defined in Eq.(2.5)) associated to the statistical distribution of
the variable X ("X, Y " indicates the joint probability distribution and "X|Y "
the conditional distribution of Y given the value of X). It is evident, then, we
can use the property of subadditivity to quantify the separability of a quantum
state. Any correlation between two random variables A and B can be measured
by their mutual information defined by two equivalent expressions:

I (A;B) ≡ H (A) +H (B)−H (A,B)

≡ H (A)−H (A|B) = H (B)−H (B|A) . (2.29)

The mutual information quantifies the information that one have on the overall
state observing the system in its entirety, and evaluating the information that is
possible to extract separately observing the two sub-systems.

These two definitions translate into the quantum language by substituting
H with SvN (ρ). They do not coincide anymore if non-classical correlations are
present between the two systems [44, 45]. Moreover, while the translation of the
first one into the quantum language is straightforward and univocal, this is not
true for the second one.

The first of the two definitions (2.29), is unambiguously referred to as the
quantum mutual information [123] between state 1 and 2 (ρ representing the
state of the bi—partite system as a whole)

I (ρ12) ≡ SvN (ρ1) + SvN (ρ2)− SvN (ρ12) . (2.30)

being ρk the reduced density matrix, ρk =Trh �=k [ρhk], associated to the sub-system
k = 1, 2. In a bi-partite system, described by a density matrix ρ, I(ρ) quantifies
the total correlation between the sub-systems ρ1 and ρ2. When the state ρ12 is
separable, i.e. the density matrix is factorizable as ρ12 = ρ1 ⊗ ρ2, then the sub-
additivity property becomes SvN (ρ1 ⊗ ρ2) = SvN (ρ1) + SvN (ρ2) and the mutual
information is null, I(ρ1⊗ ρ2) = 0. So it is strictly = 0 for separable states, while
it is > 0 for entangled states.

It can be written in terms of the covariance matrix invariants (see Sect.
1.3.1.1) and symplectic eigenvalues (see Eqs. (1.19),(1.20),(1.21) and (1.22))

I (σ) = f
(√

I1

)
+ f
(√

I2

)
− f

(
d+
)
− f

(
d−
)
, (2.31)
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with
f (x) = (x+ 1/2) ln (x+ 1/2)− (x− 1/2) ln (x− 1/2) . (2.32)

The second definition of Eq. (2.29), translated into the quantum world, nec-
essarily involves the conditional state of a sub-system after a measurement per-
formed on the other one. So that, the symmetry between the two sub-systems is
broken. Since the conditional entropy H (A|B) requires us to specify the state of
B given the state of A, its definition, in quantum theory is ambiguous until the
to—be—measured observables on A are selected so that the conditional state of B
can be defined.

This discrepancy has lead to the concept of quantum discord D (ρ12) [46]. A
non zero quantum discord signals the presence of quantum features in the correla-
tion between the two sub—systems notwithstanding their separabile or entangled
nature. D (ρ12) is a measure of all genuine quantum correlations. It is defined
as a difference between total correlations as given by the quantum information in
Eq.(2.30) and the classical correlation,

D (ρ12) = I (ρ12)− C (ρ12) ,
where C (ρ) is the amount of genuinely classical correlation, given by

C (ρ12) = SvN (ρ1)− inf{
M
(k)
2

}
{
SvN

(
ρ1|2
)}

,

where SvN
(
ρ1|2
)
=
∑

k p
(k)SvN

(
ρ
(k)
1

)
is the conditional entropy of sub-system 1

and inf{
M
(k)
2

}
{
SvN

(
ρ1|2
)}

represents the minimal value of the entropy with respect

to a complete set of local measurement
{
M
(k)
2

}
performed on the sub-system 2..

Originally the quantum discord was defined mainly for finite dimensional sys-
tems. Very recently [44, 45] the concept of discord has been extended to the
domain of CV system, in particular, to the analysis of the quantum correlation
of bi-partite system described by two-mode Gaussian states. Closed formulas
have been derived for bi-partite thermal squeezed states [44] and for all two-mode
Gaussian states [45].

For a Gaussian state described by the covariance matrix (1.23), D becomes

D (σ)=f(
√
I2)−f

(
d+
)
− f

(
d−
)
+ f

(√
I1 + 2

√
I1I2 + 2I3

1 + 2
√
I2

)
. (2.33)

We note that, as for the EPR criterion, in quantum discord there is an asymmetry
in the exchange of the two sub—systems. Again this is due to the use of the concept
of conditional states. We can note some properties [47]: D ≥0, which is a direct
consequence of the concavity of the conditional entropy [48]. Discord is invariant
under local unitary transformations, i.e.

D (ρ12) = D ((U1 ⊗ U2) ρ12 (U1 ⊗ U2)) ;
D =0 iff the state is a classical state.
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2.4 Bell’s Non-locality

In 1935, EPR [34] presented an insidious problem, to date not fully resolved,
suggesting a dilemma between two mutually exclusive assertions. They showed,
in fact, that the quantum correlations (which we have previously called EPR-
correlations) are incompatible with a local theory of the physical world. Therefore
in order to not declare false the assumption of locality, quantum theory must be
regarded as non-complete theory. EPR proposed a solution in terms of hidden
variables, i.e. they supposed that some (hidden) variables had been neglected
and that only after they have been inserted into the theory, it is possible to have a
complete and unambiguous description of the physical world. The discussion that
has succeeded the paper [34] is quite articulated and complex, and often involve
aspects of the metaphysics field. Major contributions were made by Borh [49],
Bohm [50], Jarrett [52], Bell [51], Clauser-Horn-Shimon-Holt (CHSH) [53], and
others (see for exemple [54, 55, 56, 57]).

In particular, in 1964 Bell published a theorem that allows us to distinguish
between quantum mechanics theory and all variables-hidden theories that restore
the classical mechanics theory, proposing an inequality (Bell’s inequality), whose
violation is obtained if and only if the system can not be described by hidden-
variables classical theories. In other words, a system that violates Bell’s inequality
admits only a purely quantum, and non-local description.

In order to discuss the Bell’s inequality we consider a bi-partite system (com-
posed by sub-systems 1 and 2). We suppose that two different experiments can
be performed on each system, indicated by A,A′ (for subsystem 1), and by B,B′

(for subsystem 2). The measurement outcome of the experiment A(B) is labelled
by sA(sB), and it has values dichotomous sA,B = ±1. Let:

(1) p (sA, sB|A,B) ≡





the probability that the results
of the joint measurements A and B

are respectively sA and sB



 ;

(2) p (sA, |A,B, sB) ≡





the probability that the outcome
of the measurement performed

on the system 1 is sA
when the measurements performed

on 1 and 2, respectively, are A and B, and the
result of the experiment on 2 is sB;





.

The fundamental hypothesis, on which it is based the Bell’s theorem is based
, is the factorization (or Bell’s locality) of the probability p (sA, sB|A,B) as

p (sA, sB|A,B) = p (sA|A) p (sB|B) ,

i.e the results of measurements on the two systems are independent (and uncor-
related). If this hypothesis is true, the lack of correlation in one of the possible
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types of measurement may not exceed the lack of correlation in the remaining
three types. For example:

∑

sA,sB=±
:sA �=sB

p (sA, sB|A,B) ≤
∑

sA,sB=±
:sA �=sB

p (sA, sB|AB′)+p (sA, sB|A′B)+p (sA, sB|A′B′) .

(2.34)
The hypothesis of factorization incorporates two different conditions:

• (I) Sub-hypothesis of Outcome Indipendence. The (statistical) re-
sults of the measurement performed on the sub-system 1 does not de-
pend on those performed on the system 2. In terms of the conditional
probabilities of above type (1) and (2), we have:

p (sA|A,B, sB) = p (sA|A,B)→ independence from the results sB and

p (sB|A,B, sA) = p (sB|A,B)→ independence from the results sA.

This assumption of indipendence of the results obtained on each sub-systems
adheres to the idea that the separability of two space-time events is a sufficient
condition for regarding as distinct and independent events. Under this hypoth-
esis, the assumption of factorization is strengthened. This assumption, typical
of the classical mechanics, claims that a composed system is equivalent, at least
in principle, to the sum of the parts. The outcome sA of the experiment on the
first sub-system provides no additional information regarding the outcome of the
experiment on the other one.

• (II) Sub-hypothesis of Type-context Indipendence. The results of
measurement on a sub-system does not depend on the type of mea-
surement performed on the other sub-system:

p (sA|A,B) = p (sA|A)→ independence from the measurement B and

p (sB|A,B) = p (sB|B)→ independence from the measurement A.

The locality is related at the impossibility of simultaneous (or superluminal)
actions at a distance.

Jarrett (1984) and Bell (1990) demonstrated that the factorization hypothesis
is equivalent to the logical union of the two Sub-hypotheses (I) and (II).

When inequality is verified, two circumstances may occur: i. there is not
correlation ⇒ p (sA, sB|A,B) = p (sA|A) p (sB|B); ii. there is correlation. In the
latter case, the factorization hypothesis becomes

p (sA, sB|A,B) =
∫
dλp (sA|A;λ) p (sB|B;λ)S (λ) ,
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where the function S (λ) expresses the classic correlation, as a function of the
hidden variables λ =(λ1, ...λN) that complete the description of describe the sys-
tem.

Now, since the inequalities of the type (2.34), called Bell’s inequalities, are
empirically violated, then the factorization hypothesis is falsified in both cases.
In this (quantum) circumstance, we can say that no theory that satisfies the
principles of the Bell’s locality is suitable for a correct description of the world.

In the scientific community there is not unanimous agreement about the role
that the individual sub-hypotheses of separability and locality have on the vio-
lation of Bell’s inequality. The main problems lie in the definitions of locality,
separability and causality and in their connections with the principle of relativity
of Einstein. In fact, for relativity theory:

• no object or signal can be transmitted at superluminal speed and

• the simultaneity of distinct events depends on the reference system.

Here we adopt the definition of locality given by EPR and then put on trial by
the violation of Bell’s inequality. EPR (and Bell) assume local causality, namely.
They consider that the interactions between objects are pointlike (local) interac-
tions whose immediate effects are confined to a single location and the actions
at one location do not immediately have effect at a separate location. This as-
sumption, when combined with the conclusions of special relativity, implies that
no "effect" can travel faster than the speed of light in vacuum. This notion of
locality is very close to (but not exactly the same as) the meaning of relativis-
tic causality, which imposes important restrictions on the theory but, however it
does not exclude the possibility of some kind of effect superluminal, such as the
quantum collapse. In other words, an object or a signal, that travels faster than
light, violates special relativity and involves encountering an unpleasant paradox
of the arrow of time; on the contrary the collapse of the density matrix after a
measurement (which assigns the result and type of the measure) respects still the
causality.

We emphasize that the quantum correlations emerge from the superposition
principle of states of quantum mechanics and from the instantaneous quantum
collapse of the density matrix caused by a appropriate measurement. For this rea-
son, such quantum correlations do not violate relativistic causality. In a schematic
form:
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local relativistic causality ≡





no physical entity (object and/or signal)
can travel faster than light in the vacuum,

and simultaneous events
does not exist in absolute




,

EPR-Bell local causality ≡





the interaction between objects are pointlike
(local) interactions whose immediate effects

are confined to the space-time regions
of the objects themselves.




.

The first notion of causality no concerns the violation of Bell’s inequality. This
is because the quantum collapse of the state does not fall under the relativistic
causality assertion (being neither an object nor a signal). The two quantum corre-
lated sub-systems are a single system. Therefore, to think that the measurement
of a part of it has effects on the entire system is reasonable (there isn’t simultane-
ity of distinct events, because there are not two distinct events). Otherwise, the
EPR-Bell locality is falsified by the Bell’s inequality.



CHAPTER 3

EVALUATION OF THE BELL’S INEQUALITY

In this Chapter we explore the Bell’s inequality specializing the observation in-
troduced in Sect. 2.4 to the case of Gaussian and non-Gaussian CV states. In
particular, we discuss two different approaches to inequality: the first is that of
the pseudospins (Sect. 3.1) and the second is that of the Wigner function (Sect.
3.2).

3.1 Bell-CHSH’s inequality in the psuedospin representation

Chen et al. [58] introduced a pseudospin operator S =(Sx, Sy, Sz) for a non-
locality CV test with a direct analogy to a spin-1/2 system:

Sz =
∞∑

n=0

|2n+ 1〉 〈2n+ 1| − |2n〉 〈2n| ,

Sx = S+ + S−,

Sy = S+ − S−,

where

S+ =
∞∑

n=0

|2n+ 1〉 〈2n| , S− =
∞∑

n=0

|2n〉 〈2n+ 1| ,

and |n〉 is the Fock state with average photon number n (∈ N). The Bell’s function
B is the value of expectation of the operators E (θ1, θ2) [53, 58]

B = E (θ1, θ2) + E (θ′1, θ2) + E (θ1, θ
′
2)− E (θ′1, θ

′
2) , (3.1)

where

E (θ1, θ2) =
〈
s
(1)
θ1
⊗ s(2)θ2

〉
,

and

s
(k)
θk

= S(k)z cos θk +
(
S
(k)
+ + S

(k)
−

)
sin θk.

The inequalities of the type (2.34) are expressed in terms of the Bell’s function B,
and become

|B| ≤ 2.

Hence a local state verifies the above condition.

61
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So, we must calculate the quantity

E (θ1, θ2) =
〈
s
(1)
θ1
⊗ s(2)θ2

〉
(3.2)

= cos θ1 cos θ2
〈
S(1)z ⊗ S(2)z

〉
+ cos θ1 sin θ2

〈
S(1)z ⊗

(
S(2)+ + S(2)−

)〉

+sin θ1 cos θ2

〈(
S
(1)
+ + S

(1)
−

)
⊗ S(2)z

〉

+sin θ1 sin θ2
〈(
S
(1)
+ + S

(1)
−

)
⊗
(
S
(1)
+ + S

(1)
−

)〉
. (3.3)

For the sake of generality, we calculate the averages in Eq. (3.3) with respect
to the generic (pure) bi-partite state

|ψ〉 =
∞∑

n=0

Cn |n, n〉 , (3.4)

where
∑∞

n=0 |Cn|2 = 1 for the normalization, and |n, n〉 = |n〉⊗|n〉 is the bi-modal
Fock states. We can see that the terms

〈
S(1)z ⊗

(
S
(2)
+ + S

(2)
−

)〉
,

〈(
S
(1)
+ + S

(1)
−

)
⊗ S(2)z

〉

of the Eq.(3.3) vanish. Thus the function E (θ1, θ2) becomes

E (θ1, θ2) = cosθ1cosθ2

∞∑

n=0

(
|C2n+1|2 + |C2n|2

)
+ sin θ1sinθ2

∞∑

n=0

Re
[
2C2nC

∗
2n+1

]

= cosθ1cosθ2 + sin θ1sinθ2

∞∑

n=0

Re
[
2C2nC

∗
2n+1

]
.

3.1.0.1 Squeezed Vacuum state case

For the squeezed vacuum (TB) states the coefficients Cn in the Eq.(3.4) reads
[21]

C(TB)n =
tanhn r

cosh r
, (3.5)

and the function E (θ1, θ2) becomes

E (θ1, θ2) = cosθ1cosθ2 + sinθ1sinθ2 tanh 2r,

as has been proven in [58]. Choosing θ1 = 0, θ′1 = π/2, and θ2 = −θ′2 the Bell’s
function B results

B (θ2)=2 (cos θ2 + sin θ2 tanh 2r) ,
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and maximizing with respect to θ2, we have

Bmax (r) ≡ max
θ2
B (θ2)

= 2

√
1 + tanh2 (2r).

Then, the squeezed vacuum bi-partite state (Eq. (3.4) with Cn = C
(TB)
n ) exhibits

a violation of the Bell’s inequality soon as the parameter of squeezing is differ-
ent from zero (r > 0). This confirms the connection between entanglement and
violation of Bell’s inequality for pure states. In fact, Gisin and Peres [59] proved
that every violation of the inequality is necessary and sufficient condition of the
entanglement for pure states. The maximum of violation maxr Bmax (r) occurs for
r tending to infinity, and assumes the value Bmax (r)|r→∞ = 2

√
2. In this case, in

fact, the TB state tends to the maximally EPR-correlated state.

3.1.0.2 Squeezed Bell state case

Now we analyze the case of the SB states,

|ψSB〉 = S12 (ζ) [c1 |00〉+ c2 |11〉]
= S12 (ζ)

[
c1 + c2a

†
1a
†
2

]
|00〉 ,

with S12 (ζ) = exp
{
−ζa†1a†2 + ζ∗a1a2

}
, ζ = reiφ, c1 = cos δ, and c2 = sin δ. It is

convenient to use the two-mode Bogoliubov transformations,

S12 (ζ) a
†
1S

†
12 (ζ) = S†12 (−ζ) a†1S12 (−ζ) = ca†1 + e

−iφsa2, (3.6)

S12 (ζ) a
†
2S

†
12 (ζ) = S†12 (−ζ) a†2S12 (−ζ) = ca†2 + e

−iφsa1, (3.7)

where c = cosh r, s = sinh r, and r = |ζ|; so we can write the state |ψ
SB
〉 in the

form

|ψSB〉 =
[
c1 + c2

(
ca†1 + e

−iφsa2

)(
ca†2 + e

−iφsa1

)]
S12 (r) |00〉

=

∞∑

n=0

[
c1C

(TB)
n + e−iφc2cs (2n+ 1)

]
|n, n〉+ c2c2

∞∑

n=0

C(TB)n (n+ 1) |n+ 1, n+ 1〉

+e−2iφc2s
2

∞∑

n=0

C(TB)n n |n− 1, n− 1〉

=
∞∑

n=0

[
c1C

(TB)
n + e−iφc2csC

(TB)
n (2n+ 1) + e−2iφc2s

2C
(TB)
n+1 (n+ 1)

+c2c
2C

(TB)
n−1 n (1− δn,0)

]
|n, n〉

=
∞∑

n=0

C(SB)n |n, n〉
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Thus, the coefficients Cn of the state (3.4) for the SB state become

C(SB)n = c1C
(TB)
n +e−iφc2cs (2n+ 1)+e−2iφc2s

2C(TB)n+1 (n+ 1)+c2c
2C(TB)n−1 n (1− δn,0)

where δn,0 is the Kronecker’s Delta function. The funciton E (θ1, θ2) results, then,

E (θ1, θ2) = cosθ1cosθ2 + sin θ1sinθ2

∞∑

n=0

Re
[
2C

(SB)
2n C

(SB)∗
2n+1

]
. (3.8)

Unlike the case TB, for the SB state the expression of E (θ1, θ2), Eq. (3.8),
is rather long and for clarity we do not report it explicitly. Of course the case
δ = 0 returns the results obtained above for the TB. Using the Eq. (3.8) in
the Eq. (3.1), we can then compare the function B for all states obtainable by
SB, after the maximization on the free parameters. For this purpose, we observe
that the function B depends on the squeezing parameter ζ = reiφ, the relative
weight δ of the Fock states |00〉 and |11〉, and the angles of orientation θ1, θ2 of
the measurements, i.e. B = B (r, φ, δ, θ1, θ2, θ′1, θ′2). However, following [58] we fix
some values of orientations θ1, θ2, θ

′
1, θ

′
2:

θ1 = 0 θ′1 = π/2

θ2 = θ θ′2 = −θ.

So we obtain B = B (r, φ, δ, θ), and the maximization procedure is made on the
parameters (φ, δ, θ), i.e.

max
φ,δ,θ
B (r, φ, δ, θ) ≡ B(SB)opt (r) .

We can see that the result of the maximization provides the following settings:

φ = π,

δopt = δ (r) and θopt = θ (r) .

Now, we compare B(SB)opt (r) with the Bell’s functions of other quantum states
(TB, TB, PA, TB, and PN), reported in Table (3.1).

In Fig. (3.1) we compare the following Bell’s functions: B(SB)opt (r) for the

optimized SB state (blue solid line), B
(PS)
opt (r) for the PS state (green dot-dashed

line), B
(TB)
opt (r) for the TB state (orange dashed line), B

(PA)
opt (r) for PA state

(purple dotted line), and B
(PN)
opt (r) for the PN state (red double dot-doshed line).

We can observe that the optimized SB states are more non-local than everyone
state. In particular, we note that Bopt reaches the maximum value, 2

√
2, for r

tends to infinity, asymptotically, and for r = 0 with δ = π/2, i.e. when the SB
state becomes the well-known Bell state 1√

2
(|00〉+ |11〉). However, for r→∞ all

states are approaching the same violation.
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Figure 3.1: (color online)−In Figure it is shown the Bell’s function of the opti-
mized state (blue solid line), the PS state (green dot-dashed line), the TB state
(orange dashed line), PA state (purple dotted line), and PN state (red double dot-
dashed) for r ranging from 0 to 2. The small figure in the bottom right emphasizes
the trends for r ∈ [0.2, 1.0].

state Bopt (r)

TB B
(TB)
opt (r) = maxθ Bopt (r, 0, θ)

PS B
(PS)
opt (r) = maxθBopt

(
r, δ(PS), θ

)

PA B
(PA)
opt (r) = maxθBopt

(
r, δ(PA), θ

)

PN B
(PN)
opt (r) = maxθBopt (r, π/2, θ)

Table 3.1: Definition of the Bell’s functions optimized for the TB, PS, PA, and
PN states.

3.2 Bell-CHSH’s inequality in the Wigner representation

Another approach consists in considering the connection between the Wigner’s
function of the state and the parity measurement performed on the quantum state
displaced by αk. In order to show this correspondence we refer to the experimental
proposal by Banaszek [60], [61]. We consider the diagram of measurement shown
in Fig. 3.2.

The two modes of a bi-partite generic quantum state, represented by the
density matrix ρin, impingue two high transmissivity beam splitters (BS1 and
BS2) where they are mixed with two coherent states, |α1〉 and |α2〉, coming in two
other ports of beam splitters. This arrangement (highly transmitter beam splitter,
and interaction with coherent states) produces the displacement of the two input
modes. Subsequently, the output states of the beam splitters are detected by two
photodetectors able to resolve the photon number (n1 and n2, respectively). Now,
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Figure 3.2: Schematic representation of the parity measurement. The BS1 and
BS2 have the transmission coefficient close to one. Strong coherent states impact
into the free ports. Two photodetectors are able to resolve the photon number.

we can assign to each event the value +1 or −1, depending on whether an even
or an odd number of photons has been registered. This measurement is described
by a pair of projection operators for the single mode:

Π(+) (α) = D (α)
∞∑

n=0

|2n〉 〈2n|D† (α) ,

Π(−) (α) = D (α)
∞∑

n=0

|2n+ 1〉 〈2n+ 1|D† (α) ,

where α =(α,α∗). If we consider the difference of the operators above we obtain

Π(+) (α)− Π(−) (α) = D (α)
∞∑

n=0

(|2n〉 〈2n| − |2n+ 1〉 〈2n+ 1|)D† (α)

= D (α) (−1)n̂D† (α) ,

where n̂ = a†a is the number photon operator. In fact, we note that the expecta-
tion value of

∑∞
n=0 (|2n〉 〈2n| − |2n+ 1〉 〈2n+ 1|) with respect to a quantum state

with photon number m is given by
〈 ∞∑

n=0

(|2n〉 〈2n| − |2n+ 1〉 〈2n+ 1|)
〉

= 〈m|
∞∑

n=0

(|2n〉 〈2n| − |2n+ 1〉 〈2n+ 1|) |m〉

=

{
+1 if m is even
−1 if m is odd

.
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Expressing the relation above for the bi-partite case we define the operator

W (α1,α2) =
2⊗

k=1

Dk (αk) (−)n̂k D†
k (αk) .

In this way, we express the correlations between the two modes in terms of a
dichotomous variable (+1→ even, and −1→ odd) by measuring the expectation
value of the operator W (α1,α2) respect to the state ρin:

〈W (α1,α2)〉 = Tr

[
ρin

2⊗

k=1

Dk (αk) (−)n̂k D†
k (αk)

]
. (3.9)

The Bell’s function B can be expressed in terms of this expectation value, condi-
tioning suitably the different values of the displacements. For example [60],

B = 〈W (0,0)〉+ 〈W (α1,0)〉+ 〈W (0,α2)〉 − 〈W (α1,α2)〉 . (3.10)

The local theories impose the bound

|B|≤2. (3.11)

The quantity (3.9) is exactly the definition of the Wigner functionW (α1,α2)
describing the state ρin (see Eq. (1.10)). It is also the Fourier transform of the
characteristic function, and contains all the information about the quantum state
ρin. The description of ρin through the Wigner function is equivalent to that of
the characteristic function. So, we have

W (α1,α2) ≡
4

π2
〈W (α1,α2)〉 .

This correspondence allows us to calculate the four expectation values of the Eq.
(3.10), once we know the Wigner function of the state, that is once we know the
state ρin to be analyzed. Otherwise, to determine (3.10), we should do a repeated
measures with the scheme of Fig. (3.2), and then a statistical analysis of the
results considering all the necessary constraints. In other words, the use of the
Wigner function allows us to "simulate" the measurement apparatus.

If the correlation function W (α1,α2) is measured for the combination α1 =√
I, α2 = −

√
I, with I magnitude of the displacement, we can write the quantity

B as

B = 〈W(0,0)〉+
〈
W(
√
I,0)

〉
+
〈
W(0,−

√
I)
〉
−
〈
W(
√
I,−
√
I)
〉
. (3.12)
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3.2.0.3 Bi-partite Gaussian state case

For a bi-partite Gaussian state, described by the covariance matrix σ,

σ =




n 0 c 0
0 n 0 −c
c 0 n 0
0 −c 0 n


 , (3.13)

the quantity (3.10) becomes

B (I, n, c) =
1 + 2 exp

{
− n

n2−c2I
}
− exp

{
− n+c

n2−c22I
}

4 (n2 − c2) .

The maximal violation in respect to the displacement amplitude is given by

B̃ (n, c) ≡ max
I
B (I, n, c) .

We obtain the maximum value of B, i.e. the maximal violation of the inequality
(3.11), by solving the equation with respect to I

∂B (I, n, c)
∂I = 0.

We find that the maximum is given for I equal to

Ĩ (n, c) = 1

4 (n+ 2c)µ
ln

[
n+ c

n

]
.

So B̃ reads

B̃ (n, c) = µ

[
1 + 2

(
n+ c

n

)− n
n+c

−
(
n+ c

n

)−2 n+c
n+2c

]

= µ

[
1 + 2 (1 + Cab)

− 1
1+Cab − (1 + Cab)

−2 1+Cab
1+2Cab

]

= µ

[
1 + (1 + 2Cab) (1 + Cab)

−2 1+Cab
1+2Cab

]

= B̃ (µs, Cab) ,

where

µ =
1

4 (n2 − c2) =
µ2s

1− C2ab
is the purity of the overall state, µs is the purity of sub-system (µs ≡ µa = µb =
1/ (2n)) and

Cab ≡
〈∆XaXb〉√
〈∆X2

a〉 〈∆X2
b 〉

=
c

n

is the correlation coefficient defined in EPR-Reid criterion, Eq. (2.18). Now, we
want to prove the following equivalence for pure states:
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Proposition 2 For pure Gaussian bi-partite states, described by the covariance
matrix of the form (3.13), the following three conditions are equivalent:

(I) The sub-systems a and b are correlated if only if the correlation coefficient is
such that Cab > 0;

(II) Duan’s criterion: The system ab is entangled if only if wDUAN ≡
(
n− 1

2

)
−

c < 0;

(III) Bell’s violation: The Bell’s locality is violated if only if
∣∣∣B̃ (µ,Cab)

∣∣∣ > 2.

In particular, we show that for pure states the system is entangled if only if it
violates the Bell’inequality.

Proof. We observe that because the state is pure we have that

1 =
µ2s

1− C2ab
=⇒ µ2s = 1− C2ab. (3.14)

In order to prove the equivalence of the three above assertions, it is sufficient
to verify the implication system:

{
(I)⇐⇒ (II)
(I)⇐⇒ (III)

}
,

that implies (II)⇐⇒ (III).
(I) =⇒ (II). If Cab > 0 (and Cab < 1 for definition) then

1− Cab <
√
(1− Cab) (1 + Cab) (3.15)

is verified. We note that the above inequality corresponds to the Duan’s
condition. In fact, the condition wDUAN < 0 is equivalent to

(
n− 1

2

)
− c < 0

n

(
1− 1

2n
− c

n

)
< 0

1− µs − Cab < 0.

Recalling that µs =
√
(1− Cab) (1 + Cab), Eq. (3.14), it is proved that if the

condition (3.15) is true then the Duan’s condition 1−
√
(1− Cab) (1 + Cab)−

Cab < 0 is verified, i.e. the state is entangled.
(I) ⇐= (II). We solve the Duan’s inequality 1−

√
1− C2ab − Cab < 0. It is

immediate to verify that the solutions are: (1) Cab < 0∩Cab > 1 (impossible),
and (2) Cab > 0∩Cab < 1. The solution (2) is compatible with the domain of
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definition of correlation coefficient Cab and it is equivalent to the assertion
(I).
(I) ⇐⇒ (III). If only if the sub-systems a and b are correlated (Cab > 0)
then the system ab violates the Bell’inequality, i.e. the Bell’s function of the
pure state (ps) B̃ps

B̃ps (Cab) = B̃ (µs, Cab)
∣∣∣
µs=1−C2ab

(3.16)

=

[
1 + (1 + 2Cab) (1 + Cab)

−2 1+Cab
1+2Cab

]
(3.17)

assumes values greater than 2. From Eq. (3.17), we can see B̃ps = 2 if only
if Cab = 0, and ∄Cab = C̄ab ∈ [0, 1] : B̃ps < 2. Indeed, ∀ Cab ∈ ]0, 1], we have
B̃ps > 2. In particular, for Cab = 1, we have

B̃maxps = lim
Cab→1

B̃ps (Cab) = 1 +
3

24/3
≃ 2.19,

according to the reported maximum value in [61].
In conclusion, we have shown that, for pure states, the entanglement is a
necessary and sufficient condition to the violation of Bell’s theorem. In other
words, a pure entangled state does not allow a phisical description in terms
of hidden variable theories.

In the mixed states case, we can see the uniqueness relationship between
entanglement and Bell’s violation no longer exists. In the following, we clarify
this link. In particular, we prove that given a mixed system, µ2s < 1− C2ab, with
the correlation coefficient Cab, it is possible to distinguish three different regimes.
In Fig. (3.3) it is reported the region plot of B̃, wDUAN in terms of Cab and µs.
We distinguish three main regions. These regions are bounded by three purities
µs of sub-systems, defined as

µD ≡ 1− Cab,

µB ≡
[

2 (1− C2ab)
1 + (1 + 2Cab) (1 + Cab)

−2 1+Cab
1+2Cab

]1/2
,

µP ≡
[
1− C2ab

]1/2
.

They are defined by the states that occur the Duan’s criterion (µD), Bell’s in-
equality (µB) and the uncertainty principle (µP ), with the sign of equality.

We report schematically the three areas in table:
Region wDUAN B̃ (µs, Cab)

I > 0 < 2
II < 0 < 2
III < 0 > 2
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Observing the Fig. (3.3) we identify the following regions:

(White area) Region I) It is populated by states such that µs < µD. This
area includes separable states (wDUAN > 0) and compatible with the hidden
variables theory (B̃ (µs, Cab) < 2).

(White Pink area) Region II) It is populated by states such that µD < µs <
µB. This area includes entangled states (wDUAN < 0) and compatible with
the hidden variables theory (B̃ (µs, Cab) < 2).

(Salmon area) Region III) It is populated by states such that µB < µs < µP .
This area includes entangled states (wDUAN < 0) and incompatible with the
hidden variables theory (B̃ (µs, Cab) > 2).

(Brown area) no-physical Region It is populated by no-physical states with
µs > µP .

It is clear that there aren’t separable states that violate the Bell’s inequal-
ity. Instead, a locally describable state (i.e. compatible with a theory in hidden
variables) can also be entangled. This confirms the existence of different forms of
quantum correlations and localities. Clearly, there are quantum states (belong-
ing to the region II) that, although they admit a local-classical description, they
exhibit quntum behaviors as the entanglement.

At this point, we can evaluate the Bell’s function of a bi-partite system sub-
jected to the attenuated action of a passive Gaussian channel. We start (at t = 0)
from an initially pure state and we analyze the evolution of B̃ (at t > 0) as a
function of the coefficient of transmissivity T . For this purpose, we resume the
behavior of the elements of the covariance matrix as a function of T :

nT =
1− T
2

+ Tn1,

cT = Tc1,

where n1 and c1 are the matrix elements of the initial state. So the Bell’s func-
tion B̃ becomes a function B̃T depending on the initial (pure) state and on the
transmissivity T of the channel.

In Fig. (3.4), we can observe that when a state, that initially violate the
inequality (B̃ >2), is transmitted through a passive Gaussian channel, it ends up
with verify the Bell’s inequality (B̃ <2). In particular, we see that a more energetic
quantum state, more quickly loses its Bell’s non-local. This fact is not surprising:
a more energetic quantum state is closer to a classical state with respect to one less
energetic. In other terms, the quantum coherence properties of a very energetic
state are more perishable compared to those of a less energetic state [62].
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Figure 3.3: (Color online) Region plot of B̃ as function of purity µs and the
correlation coefficient Cab. The brown area indicates unphysical states.
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Figure 3.4: (Color online) Evolution of the Bell’s function, in a realistic transmis-
sion channel, for different initial pure states.



CHAPTER 4

ENTANGLEMENT SWAPPING PROTOCOL WITH

NON-GAUSSIAN RESOURCES

The CV entanglement swapping protocol has the task to establish quantum cor-
relations between two remote parties through the entanglement transfer. It plays
a fundamental role in long-distance quantum communications [63], e.g. in the
building of quantum repeaters connecting distant communicating parties [64]. In
general, the efficient teleportation of entanglement is a necessary requirement for
the realization of a quantum information network based on multi-step informa-
tion processing [65]. The experimental demonstration of CV van Loock and
Braunstein (vLB) entanglement swapping protocol [66] has been already achieved
[67, 68]. A detailed analysis of the optimal Gaussian entanglement swapping has
been performed in Ref. [69].

We study the CV entanglement swapping protocol using non-Gaussian states
as entangled input states and/or resources. We express the swapping protocol in
the characteristic function representation, taking into account losses and decoher-
ence due to the inefficiencies of the detectors. As a criterion for quantifying the
performance of the swapping protocol, we exploit, both in the ideal and in the
realistic instance, the fidelity of teleportation of single-mode coherent states using
two-mode swapped states as entangled resources. Therefore, we analyze a cas-
caded quantum information scheme, including as a first step an ideal or realistic
swapping protocol, and subsequently an ideal teleportation protocol. Specifically,
the swapping protocol is feeded by a general class of optimized non-Gaussian
states, i.e. the SB states introduced in Sect.1.3.2. By means of a controllable
free parameter, such a class of entangled states allows a continuous tuning from
Gaussian twin beams to (maximally non-Gaussian) squeezed number (PN) states,
and contains as intermediate states as photon-added (PA) squeezed states and
photon-subtracted (PS) squeezed states. The final teleportation fidelity is opti-
mized over the free experimental parameters. The exploitation of non-Gaussian
SB resources yields a sensible enhancement of the performance levels of the en-
tanglement swapping protocol both in the ideal and in the realistic instances.

4.1 Entanglement Swapping protocol

In this Section, we exploit the characteristic function formalism for the descrip-
tion of the realistic CV entanglement swapping protocol, which is schematically
depicted in Fig. 4.1.

73
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The task of entanglement swapping protocol is the transfer of the entangle-
ment between a couple of modes, e.g. 1 and 2, prepared in a entangled state,
to the couple of modes, e.g. 1 and 4, initially unentangled; such a task is ac-
complished by exploiting a further resource entangled in the modes 3 and 4, a
Bell measurement, and a final unitary transformation. A schematic picture of the
CV swapping protocol is depicted in Fig. 4.1. Specifically, mode 2 of the input
two-mode entangled state is mixed to mode 3 of the entangled resource at a bal-
anced beam splitter. A Bell measurement, consisting in homodyne detections, is
performed on the obtained state of mode 2 and 3. In order to model a non-ideal
measurement, or equivalently to simulate the inefficiencies of the photodetectors,
a further fictitious beam splitter is placed in front of each ideal detector [70]. After
the realistic Bell measurement, the result is transmitted to the locations of modes
1 and 4 through classical channels. It is assumed that both the input state and
the resource are produced close to the Charlie’s location (Bell measurement), and
far from Alice’s and Bob’s locations (remote users). Therefore, it is supposed that
the modes 2 and 3 are not affected by the decoherence due to propagation; on the
contrary, the modes 1 and 4 propagate through noisy channels, e.g. optical fibers,
towards Alice’s and Bob’s locations, respectively. At these locations, according
to the result of the Bell measurement, unitary displacements are performed on
mode 1 of the input state and on mode 4 of the resource. The resulting two-mode
swapped (entangled) state of modes 1 and 4 is the output state of the protocol.

Let ρ0 = ρA12 ⊗ ρB34 the input biseparable four-mode state; such a state is
described, in the phase space (xi, yi) , i = 1, . . . 4, by the characteristic function
χ0(x1, y1; x2, y2; x3, y3;x4, y4):

χ0(α1;α2;α3;α4) = Tr[
4∏

j=1

Dj(αj)ρ0]

= χ12(α1;α2) χ34(α3;α4) , (4.1)

where Tr denotes the trace operation, Dj(αj) denotes the displacement operator
of mode j (j = 1, . . . , 4), χ12 is the characteristic function of the two-mode input
state, and χ34 is the characteristic function of the two-mode resource. By intro-
ducing the quadrature operators Xj =

1√
2
(aj + a

†
j) and Yj =

i√
2
(a†j − aj), and the

corresponding phase space variables xj =
1√
2
(αj + α

∗
j) and yj =

i√
2
(α∗j − αj), the

characteristic function can be written in terms of xj, yj, i.e. χ0(α1;α2;α3;α4) ≡
χ0(x1, y1; x2, y2; x3, y3;x4, y4). The first step of the protocol consists of the Bell
measurement at the first user’s location. The mode 2 and 3 are mixed at a bal-
anced beam splitter; the effects of the inefficiencies of the photodetectors and of
the photon losses are simulated by two additional fictitious beam splitters, with
transmissivity T 2j (reflectivity R2j = 1− T 2j ), j = 2, 3, placed in front of the detec-
tors. Let us denote by x̃ and ỹ the homodyne measurements of the first quadrature
of the mode 3 and of the second quadrature of the mode 2, respectively. The re-
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Figure 4.1: (Color online) Pictorial representation of the non-ideal CV entangle-
ment swapping protocol. Initially, two parties, i.e. Alice and Bob, share entangled
states with a third party, i.e. Charlie; Alice shares the input two-mode entangled
state of modes 1 and 2 with Charlie, and Bob shares the two-mode entangled re-
source of modes 3 and 4 with Charlie. In the first step, at Charlie’s location, the
mode 2 of the input two-mode entangled state is mixed with the mode 3 of the en-
tangled resource; the ensuing state is then subject to a realistic Bell measurement
(imperfect photodetection). The result of the measurement is communicated by
Charlie to Alice and Bob through classical channels. The modes 1 and 4 prop-
agate towards the corresponding locations through noisy channels, i.e. optical
fibers. In the second step, two unitary transformations, determined by the pre-
vious measurement, are applied by Alice and Bob to mode 1 and 4, respectively.
The ensuing output state of modes 1 and 4 is the final swapped (entangled) state.
Such a state is shared by the two final users Alice and Bob.
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alistic Bell measurement is described in full details, by using the formalism of
the characteristic function, in Ref. [22]. Here we give the final expression of the
characteristic function χBm(x1, y1; x4, y4) associated with the whole measurement
process:

χBm(x1, y1; x4, y4) =
P−1(ỹ, x̃)
(2π)2

∫
dξdυ eiξỹ−ix̃υ

×χ12
(
x1, y1;

T2ξ√
2
,
T3υ√
2

)
χ34

(
T2ξ√
2
,−T3υ√

2
;x4, y4

)

× exp

[
−R

2
2

4
ξ2 − R

2
3

4
υ2
]
, (4.2)

where the function P(ỹ, x̃) is the distribution of the measurement outcomes ỹ and
x̃, i.e.

P(ỹ, x̃) = 1

(2π)2

∫
dξdυ eiξỹ−ix̃υe−

R22
4
ξ2−R23

4
υ2

×χ12
(
0, 0;

T2ξ√
2
,
T3υ√
2

)
χ34

(
T2ξ√
2
,−T3υ√

2
; 0, 0

)
. (4.3)

Afterwards, modes 1 and 4 propagate in noisy channels, like optical fibers, towards
Alice’s and Bob’s locations, respectively. The dynamics of a multimode system
subject to decoherence is described, in the interaction picture, by the following
master equation for the density operator ρ :

∂tρ =
∑

i=1,4

Γi

2

{
nth,iL[a

†
i ]ρ+ (nth,i + 1)L[ai]ρ

}
, (4.4)

where the Lindblad superoperators are defined as L[O]ρ ≡ 2OρO†−O†Oρ−ρO†O,
Γi is the mode damping rate, and nth,i is the number of thermal photons of mode
i. Because of the effect of decoherence due to propagation in the noisy channels,
the characteristic function (4.2) rewrites:

χt(x1, y1; x4, y4) =

χBm(e
−1
2
Γ1tx1, e

− 1
2
Γ1ty1; e

− 1
2
Γ4tx4, e

− 1
2
Γ4ty4)

× e−1
2

∑
i=1,4(1−e−Γit)( 12+nth,i)(x2i+y2i ). (4.5)

Being related to the technical specifics of the experimental apparatus, e.g. the
efficiency of the photodetectors, the characteristics as the length of the chan-
nels (fibers), the temperature of the environment, we will assume to possess full
knowledge on the following quantities: Tj (equivalently Rj, j = 2, 3), Γi and nth,i
(i = 1, 4). Therefore, we will consider Tj, Γi and nth,i fixed to certain values. In
the last step of the protocol, two displacements λ1 and λ4 are performed at Alice’s
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and Bob’s locations; a displacement λ1 = −g1(x̃ − iỹ) is performed on mode 1,
and a displacement λ4 = g4(x̃+ iỹ) is performed on mode 4. The real parameters
g1 and g4 are the gain factors of the displacement transformations [80]. After such
transformations, the characteristic function writes:

χD(x1, y1;x4, y4) = e−i
√
2x̃(g1y1−g4y4)−i

√
2ỹ(g1x1+g4x4)

×χt(x1, y1;x4, y4) . (4.6)

Finally, in order to obtain the output characteristic function χout(x1, y1; x4, y4),
describing the output state of the entanglement swapping protocol, one must take
the average of all the possible outcomes ỹ and x̃ of the Bell measurements:

χ
(swapp)
out (x1, y1; x4, y4) =

∫
dx̃dỹP(ỹ, x̃)χD(x1, y1; x4, y4), (4.7)

where τ i = Υit. The above integral yields the final expression for the characteristic
function associated with the swapped resource:

χ
(swapp)
out (x1, y1; x4, y4) =

χ12

(
e−

τ1
2 x1, e

− τ1
2 y1;T2(g1x1 + g4x4), T3(−g1y1 + g4y4)

)

χ34

(
T2(g1x1 + g4x4),−T3(−g1y1 + g4y4); e−

τ4
2 x4, e

− τ4
2 y4
)

e−
1
2
(1−e−τ1 )(12+nth,1)(x21+y21)−

1
2
(1−e−τ4 )( 12+nth,4)(x24+y24)

e−
R22
2
(g1x1+g4x4)2−

R23
2
(−g1y1+g4y4)2 , (4.8)

In order to give an immediate correspondence, we list in Tab. 4.1 all the
parameters associated with the experimental apparatus, that appear in Eq. (4.8).
Such parameters are taken as fixed constants; indeed, we assume a complete
knowledge about the technological components and devices that are the building
blocks of the protocol.

gi , i = 1, 4 gains associated with unitary displacements
Ti (Ri) , i = 2, 3 transmissivities (reflectivities) of beam splitters
Υi , i = 1, 4 damping factors
nth,i , i = 1, 4 average numbers of thermal photons

τ i ≡ Υit , i = 1, 4 dimensionless times

Table 4.1: Parameters characterizing the experimental apparatus.
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In the instance of ideal protocol (Ri = 0 , Ti = 1 , τ i = 0) and for g1 = 0,
g4 = 1, Eq. (4.8) reduces to:

χ
(swapp)
out (x1, y1; x4, y4) =

χ12 (x1, y1; x4, y4) χ34 (x4,−y4; x4, y4) . (4.9)

This last formula offers a clear interpretation of the task of the swapping protocol.
For instance, assuming the entangled resource to be a twin beam with squeezing
parameter r34, in the limit of large r34 the function χ34 (x4,−y4; x4, y4) tends to
one; correspondingly, the output characteristic function χout coincides with χ12,
with the complete swapping of mode 2 with the mode 4.

4.2 Swapping protocol with Non-Gaussian entangled states
In order to analyze the performance of the swapping protocol implemented

with Gaussian or non-Gaussian resources for the swapping of input Gaussian or
non-Gaussian entanglement, we exploit the following criterion: we study the per-
formance of the two-mode entangled states, at the output of the swapping protocol
(swapped states), using them as entangled resources of a protocol of teleportation
of an input single-mode coherent state. Thus, given the input two-mode entangled
state χ12(x1, y1; x2, y2) and the two-mode entangled resource χ34(x3, y3; x4, y4), we
compute the two-mode entangled output (swapped) state of the swapping protocol

χ
(swapp)
out (x1, y1; x4, y4), given by Eq. (4.8) for the realistic protocol (or Eq. (4.9) for

the ideal protocol). Then such a two-mode entangled state is used as a resource for
the ideal teleportation protocol of input single-mode coherent states. So, we com-
pute the single-mode state output (teleported) state of the teleportation protocol

χ
(telep)
out (x4, y4), given by the formula:

χ
(telep)
out (x4, y4) = χ

(coh)
in (x4, y4)χ

(swapp)
out (x4,−y4;x4, y4),

(4.10)

where χ
(coh)
in (x4, y4) is the characteristic function of the input coherent state of

complex amplitude β. Finally, we compute the fidelity of teleportation:

FXswY =
1

2π

∫
dx4dy4 χ

(coh)
in (x4, y4)χ

(telep)
out (−x4,−y4) ,

(4.11)

where the subscript XswY specifies the features of the swapped entangled state
used as a resource, i.e. it stands for X resource swapped with Y resource, with
X,Y = TB,PS,SB. Concerning the achievements of current quantum tech-
nology, a reasonable hypothesis is the assumption of on-demand availability of
Gaussian TB with finite squeezing, and hardly, costly producible non-Gaussian
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states. Therefore, we may assume to have at disposal many copies of TB and
few copies of SB states. With such a constraint, the most convenient approach
would be to swap the non-Gaussian entanglement, and thus to use the TB and
the SB states as resources and input states of the swapping protocol, respec-
tively. For example, in a long-distance communication scheme, the entanglement
swapping and entanglement purification protocols can be performed to transfer
the non-Gaussian entanglement along the quantum channel, divided into several
segments. On the other hand, by removing the above constraint, one would have
on-demand availability of TB states. In this desirable instance, one could use SB
states both as input and as resources of the swapping protocol. In conclusion,
we will compute the fidelity FSBswSB, which contains as particular cases all the
fidelities of interest, i.e. FSBswTB, FPSswTB, and FTBswTB. We fix the phases
φhk and θhk at the optimal values φhk = π and θhk = 0. With such a choice,
the dependence of the fidelity FSBswSB on the two gains g1 and g4 simplifies to
only one degree of freedom g̃ = g1 + g4, which is an optimizable parameter. In
particular, the optimized fidelities are defined as:

F (opt)XswY = max
P
FXswY , (4.12)

where P denotes the set of free parameters available for optimization. In the most
general case, i.e. SB resources swapped with SB resources, the free parameters
available for optimization are P = {δ12, δ34, g̃}.

4.2.1 Ideal swapping protocol

We consider the ideal swapping protocol. Before proceeding in the analysis, let
us assume some simplifications and assumptions. Without any loss of generality,
as in Refs.[1, 22], we fix the phases of the SB states: specifically, we put the
non-Gaussian phases θ12 = θ34 = 0 and the squeezing phases φ12 = φ34 = π in
Eq. (1.29). Due to such a choice, the dependence of the teleportation fidelity on
the two gains gi (i = 1, 4) reduces to the unique parameter g̃ = g1 + g4 both the
ideal and in the realistic instances.

Here, we report some analytical results for the teleportation fidelities in the
instance of ideal swapping protocol, i.e. τ1 = τ 4 = 0, nth,1 = nth,4 = 0, R2 =
R3 = 0 (T2 = T3 = 1). We assume the Gaussian TB resources as on-demand
swapping resources, and non-Gaussian SB states as the resources to be swapped.
In order to provide significant examples, we report the analytical expressions for
FTBswTB and FSBswTB. Given the general analytical expression for FSBswSB, the
fidelity FTBswTB can be computed by letting δ12 = δ34 = 0:

FTBswTB =

{
1 +

1

4
(1 + g̃)2(e−2r12 + e−2r34)

+
1

4
(1− g̃)2(e2r12 + e2r34)

}−1
. (4.13)
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For fixed r12 and r34, FTBswTB can be maximized over the free parameter g̃; the
optimal value g̃opt and the corresponding optimized fidelity Fopt

TB
sw
TB

write

g̃opt =
1− e−2(r12+r34)
1 + e−2(r12+r34)

, (4.14)

F (opt)
TB

sw
TB

=
1 + e−2(r12+r34)

(1 + e−2r12)(1 + e−2r34)
, (4.15)

By looking at Eq. (4.15), it appears evident that the fidelity F (opt)
TB

sw
TB

is invariant
under the exchange of r12 with r34. In the limit of r34 →∞ Eq. (4.15) reduces to
the well known relation:

FTB = [1 + e−2r12 ]−1, (4.16)

corresponding to teleportation with twin beam resources of squeezing r12. More-
over, it is worth noticing that, for growing values of the quantity (r12 + r34), see
Eq. (4.14), the optimal parameter g̃opt rapidly goes to one.

If we let δ34 = 0 in FSBswSB, we get FSBswTB:

FSBswTB = FTBswTB ×{
1 +

e−4r12

8
F2
TB

sw
TB

[
(1 + g̃)2 − e4r12(1− g̃)2

]
sin2 δ12

+
e−2r12

2
FTBswTB

[
(1 + g̃)2(cos δ12 − sin δ12)

−e4r12(1− g̃)2(cos δ12 + sin δ12)
]
sin δ12

}
, (4.17)

where FTBswTB is given by Eq. (4.13). Obviously, for δ12 = 0 Eq. (4.17) reduces
to Eq. (4.13).

At fixed g̃, the maximization of the fidelity (4.17) yields the optimal angle

δ
(opt)
12 given by the relation

tan 2δ
(opt)
12 =

1

∆

[
e−2r12G2+ − e2r12G2−

] {
4e2(r12+r34) + (e2r12 + e2r34)

×
[
G2+ + e2(r12+r34)G2−

]}

where

∆ = G2+
[
4e2r34 +G2+

]
+ e2(2r12+r34)G2−

[
1 + 4e2r34G2−

]

+G2+G
2
−
(
e4r12 + 4e2(r12+r34) + e4r34

)
,

and
G± = (1± g̃) .

Note that, if we let g̃ = 1 in Eq. (4.18), and take the limit of the corresponding
reduced expression for r34 → ∞, then we recover the optimal angle given by
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tan 2δ
(opt)
12 = [1+ e−2r12 ] associated with optimized teleportation of input coherent

states with (non-swapped) SB states used as resources (see Ref. [1]). Finally the

optimized fidelity F (opt)
SB

sw
TB

is given by:

F (opt)
SB

sw
TB

= max
g̃
FSBswTB

∣∣∣∣
δ12=δ

(opt)
12

. (4.18)

Furthermore, if the angle δ12 is a specific function of r12, i.e. δ12 = δ12(r12) the
SB states reduce to the PS states, and the optimized fidelity is simply given by

F (opt)
PS

sw
TB

= max
g̃
FSBswTB

∣∣∣∣
δ12=δ12(r12)

. (4.19)

The optimization over g̃ in Eqs. (4.18) and (4.19) is carried out numerically.
Now, we analyze the behavior of teleportation fidelity associated with en-

tangled resources swapped with Gaussian TB resources. In Fig. 4.2, we plot
the optimized fidelities F (opt)

SB
sw
TB

, F (opt)
PS

sw
TB

, and F (opt)
SB

sw
TB

as functions of r12 , at a

fixed value of r34; we also report for comparison the corresponding fidelities F (opt)
SB

,

F (opt)
PS

, and F (opt)
SB

associated with the same non-swapped resources.
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Figure 4.2: (Color online) Optimized fidelity of teleportation F (opt)XswTB with X =
SB (full line), X = PS (dashed line), and X = TB (dotted line), as a function
of the squeezing parameter r12 of the swapped input state, and at fixed r34 = 1.5
of the swapping TB resource. For comparison, we also report the plots of the
teleportation fidelities associated with the corresponding non-swapped resources
(same plot style, but with tinier and lighter lines). While the fidelities associ-
ated with non-swapped resources saturate to one, the fidelities associated with
swapped resources saturate to a lower level, depending on the swapping squeezing
parameter r34.

Obviously, for large value of the swapping squeezing parameter r34, the fi-
delities F (opt)XswTB

tend to the ideal fidelities F (opt)X . Indeed, the saturation level,
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exhibited for large values of the squeezing of the swapped resource r12, is higher,
and tends to the ideal value one, for growing r34.

In order to emphasize the improvement in the teleportation performance when
non-Gaussian resources are used, in Ref. [1] it is introduced a suitable relative
fidelity defined as:

∆F (X)
SB

=
F (opt)
SB
−F (ref)X

F (ref)X

, (4.20)

where F (opt)
SB

is the optimized fidelity of teleportation associated with a SB re-

source, and F (ref)X is the reference (optimized) fidelity associated to a resource
X. In order to quantify the enhancement in the teleportation performance when
(swapped) non-Gaussian SB resources are used with respect to reference swapped
resources, we generalize Eq. (4.20) and define the following relative fidelity:

∆F (Y swZ)
SB

swX =
F (opt)
SB

swX −F
(ref)
Y swZ

F (ref)Y swZ

, (4.21)

where F (opt)
SB

swX is the optimized fidelity of teleportation associated with a SB

resource swapped with a resource X, and F (ref)Y swZ is the reference (optimized) fi-
delity of teleportation associated with a resource Y swapped with a resource Z.
In particular, we analyze the behavior of ∆F (TBswTB)

SB
sw
TB

and ∆F (PSswTB)
SB

sw
TB

. These
quantities are plotted in Fig. 4.3 as functions of the squeezing parameter r12 of
the swapped resource.
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Figure 4.3: (Color online) Relative teleportation fidelities ∆F (Y swTB)
SBswTB with Y =

TB (full line) and Y = PS (dashed line), as a function of the squeezing parameter
r12 of the swapped input state, and at fixed r34 = 1.5 of the swapping TB resource.
For comparison, we also report the relative fidelities ∆F (X)SB associated with the
corresponding non-swapped resources (same plot style, but with tinier and lighter
lines).
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It is worth noticing that the percentage improvement corresponding to swapped
resources is practically equal to that corresponding to non-swapped resources. A
high enhancement is obtained with respect to the Gaussian instance. Moreover,
the swapped SB resources perform better that the swapped PS resources too,
especially for low values of r12; however, a significant improvement is also evident
for r12 ∈ [1, 2]. In Figs. 4.4 and 4.5, there are given the three-dimensional plots of

∆F (Y swTB)
SB

sw
TB

, with Y = TB and Y = PS respectively, as functions of r12 and r34.

∆F (TBswTB)
SB

sw
TB

, see Fig. 4.4, is monotone both as a function of r12 and as a function
of r34. However the performance supremacy of swapped SB resources is evident
with respect to swapped TB resources for low values of r12 as r34 
= 0.

0

3
r34

0

3
r12

0.3

DF

Figure 4.4: (Color online) Three-dimensional relative teleportation fidelity

∆F (TBswTB)
SBswTB as a function of the squeezing parameter r12 of the swapped in-

put resource, and of the squeezing parameter r34 of the swapping TB resource.
∆F (TBswTB)

SBswTB is monotone in r12 and r34.

Looking at Fig. 4.5, i.e. ∆F (PSswTB)
SB

sw
TB

, we see that the swapped SB resources
perform better than the swapped PS resources for low values of r12; then the
improvement, i.e. the relative fidelity, vanishes (as the resources coincide) for

a specific value of r12, depending on r34; at last, for growing r12, ∆F (PS
sw
TB)

SB
sw
TB

exhibits a revival till it goes to zero for large r12.
Let us now assume that also the swapping resource can be a non-Gaussian

resource as well. Then, we consider the optimized fidelities F (opt)XswX with X =
SB, PS, TB. Although we have computed the analytical expression for FXswX ,
the optimization of these fidelities is carried out numerically. In Fig. 4.6, F (opt)XswX

is plotted as a function of r12, for a fixed value of r34. As expected, a sensible en-
hancement of the teleportation fidelity can be observed for the fully non-Gaussian
instances with respect to the fully Gaussian instance; such an improvement is more
pronounced for the case of swapped SB resources. In Fig. 4.7, the relative tele-
portation fidelities ∆F (TBswTB)

SB
sw
SB

and ∆F (PSswPS)
SB

sw
SB

are plotted as functions of r12.
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Figure 4.5: (Color online) Three-dimensional relative teleportation fidelity

∆F (PSswTB)
SBswTB as a function of the squeezing parameter r12 of the swapped input

resource, and of the squeezing parameter r34 of the swapping TB resource.

The relative fidelities clearly show a marked enhanced performance of swapped
SB resources with respect to swapped PS and TB resources. Remarkably, in
the fully non-Gaussian instance, the optimized (swapped) SB resources never col-
lapse onto optimized (swapped)PS resources; correspondingly, the relative fidelity
never vanishes.

4.2.2 Realistic swapping protocol

Let us now investigate the behavior of the swapped resources in the instance
of realistic swapping protocol. As previously discussed, we assume to know the
values of the parameters associated with imperfections and decoherence effects.
From an operational point of view, the knowledge of these parameters is equivalent
to assume a control on the characteristics of the experimental apparatus, including
the inefficiency of the photo-detectors and the length and damping rate of the noisy
channels. Fixed the parameters associated with the experimental apparatus, the
optimization of the fidelities is carried out numerically. In Fig. 4.8, we plot the
optimized fidelities F (opt)XswY for several choices of the swapped resource X and of
the swapping resource Y . We observe that the (swapped) SB resources perform
better than the (swapped) PS and TB resources, even when they are swapped
with TB resources. Indeed, FSBswSB shows the best performance for any value of
r12 (at fixed r34). Furthermore, also FSBswTB maintains above FPSswPS, FPSswTB,
and FTBswTB for any r12. Let us notice that the PS resources perform better than
theTB resources for low values of r12, and as the squeezing parameter grows, both
the fidelities FPSswPS and FPSswTB decrease going even below the fully Gaussian
instance FTBswTB. In order to emphasize the percentage improvement obtained in
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Figure 4.6: (Color online) Optimized fidelity of teleportation F (opt)XswX withX = SB
(full line) X = PS (dashed line) and X = TB (dotted line), as a function of the
squeezing parameter r12 of the swapped input state, and at fixed r34 = 1.5 of the
swapping resource. For comparison, we also report the plots of the teleportation
fidelities associated with the corresponding non-swapped resources (same plot
style, but with tinier and lighter lines). The swapped SB resources show a sensibly
higher saturation level with respect to the swapped PS and TB resources.

the instance of SB input states and/or resources, in Fig. 4.9, we plot the relative

fidelity ∆F (Y swZ)
SB

swX for several choices of the swapping and swapped resources.
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Figure 4.7: (Color online) Relative teleportation fidelities ∆F (XswX)
SBswSB with X =

TB (full line) andX = PS (dashed line), as a function of the squeezing parameter
r12 of the swapped input state, and at fixed r34 = 1.5 of the swapping resource.
∆F (PSswPS)

SBswSB never vanishes for any r12.
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Figure 4.8: (Color online) Optimized fidelity of teleportation F (opt)XswY with X =
Y = SB (full line), X = Y = PS (dashed line), X = SB, Y = TB (dot dashed
line), X = PS, Y = TB (double-dot dashed line), and X = Y = TB (dotted
line), as a function of the squeezing parameter r12 of the swapped input state, and
at fixed r34 = 1.5 of the swapping resource. The parameters of the experimental
apparatus are fixed as: τ 1 = 0.1, nth,1 = 0, τ4 = 0.2, nth,4 = 0, R2 =

√
0.05,

R3 =
√
0.05. The swapped SB resources show a sensibly higher saturation level

with respect to the swapped PS and TB resources.
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Figure 4.9: (Color online) Relative teleportation fidelities ∆F (Y swZ)
SBswX with X =

SB, Y = Z = PS (full line), X = SB, Y = Z = TB (dotted line), X = Z =
TB, Y = PS (dashed line), X = Y = Z = TB (dot-dashed line), as a function of
the squeezing parameter r12 of the swapped input state, and at fixed r34 = 1.5 of
the swapping resource. The parameters of the experimental apparatus are fixed
as in Fig. 4.8.



CHAPTER 5

TUNABLE NON-GAUSSIAN RESOURCES BY

ANCILLARY SQUEEZING AND CONDITIONING.

Based on the encouraging theoretical results shown in the previous chapter, the
ultimate goal would be thus to build an experimental set up that is able to gener-
ate the new quantum states that contain the SB states (seen in the sub-Sect. 1.5.1
and 1.3.2 ), with enhanced performance with respect to, e. g., the (experimen-
tically generated) photon-subtracted state [26, 71]. However, before proceeding
to do that, some preliminary steps are required. First of all, one must be able
to introduce a basic scheme of generation, taking into account further imperfec-
tions introduced by a real generation with respect to the pure theoretical instance.
Then, one must check if, despite these imperfections, the performance of the gener-
ated state gives an appreciable advancement that justifies the experimental effort.
After this preliminary analysis, one must design more in details the experimental
device, and then one must provide a method to reconstruct the states (being the
generated states non Gaussian, this last step is not trivial). Only once these steps
have been performed one can possibly proceed to organize an experiment.

Then, we introduce the basic scheme of generation and perform the prelim-
inary analysis, while in a subsequent article we will face with the design of the
experimental device, and the method of reconstruction of the states. Therefore,
here we introduce an experimental scheme to generate a new class of non-Gaussian
states. This class approximates, in realistic conditions, the class of the (theoreti-
cally defined) SB states. The scheme shows a versatile character, in the sense that
a variation of the free experimental parameters allows the generation of known
non-Gaussian states, as Photon-Added (PA) squeezed states, Photon-Subtracted
(PS) squeezed states, squeezed photon-number states (PN) (and, obviously, also
Gaussian Twin Beams (TB)). Furthermore, the free experimental parameters can
be exploited to optimize, in different situations, the performance in the realization
of quantum protocols.

The usefulness of a state is estimated by investigating its performance as a
resource for the quantum teleportation of a coherent state [27, 26] (see Sect. 2.2).
Based on this criterion, we show that the optimized state generated by our realistic
scheme provides, in a significant range of the parameters, a better performance
than the other realistically generated states, including the PS state.

The Chapter is organized as follows. In Section 5.1 we introduce, in two
steps, the basic generation scheme of the new class of entangled states: at first we
consider a very ideal case of generation in order to emphasize the connection with

88
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State Definition

PS squeezed state NPS a1a2S12(ζ)|0, 0 >12
PA squeezed state NPA a

†
1a
†
2S12(ζ)|0, 0 >12

Squeezed number states S12(ζ)|1, 1 >12
Twin Beam S12(ζ)|0, 0 >12

Table 5.1: Theoretical (operatorial) definition of particular states included in the
SB class.

the theoretical SB states, and then we discuss the realistic instance. In Section 5.2
we investigate the usefulness of the states introduced in Section 5.1 by checking
their performance as resources of the teleportation protocol, both in ideal and in
realistic generation.

5.1 Generation schemes and corresponding states

The (normalized) form of the SB states which have been Sect. 1.3.2 is

|Ψ >SB≡ S12 (−r) {cos δ|0, 0 >12 +sin δ|1, 1 >12} , (5.1)

where |0, 0 >12 and |1, 1 >12 denote the tensor products of the two vacua and of
the two one-photon states, respectively, associated to the modes 1, 2, S12 (−r) is
the two-mode squeezing operator, and δ is a free parameter allowing optimization
(a more general form of the SB states could include a relative phase between the
two terms inside the braces, but this inclusion results to be not stricly necessary).
At some suitably chosen values of the parameter δ, the SB superposition coincides
with PA states, with PS states, with PN states, and with TB [1], where addi-
tion/subtraction, as well the number state, are referred to the case of 1 photon.
In TABLE 5.1, we present anew a listeof the theoretical definitions of all these
states.

In this Section we introduce a scheme to generate a general class of non-
classical, two-mode states of the electromagnetic field which provides the best
approximation to the shape and/or to the performance of the theoretically defined
SB states. The whole class can be experimentally obtained manipulating, by
linear optical components and conditional measurements, two independent (two—
mode) squeezed states. The basic generation scheme is illustrated in Fig. 5.1.

In this scheme we start by two independently generated Gaussian twin beams,
|ζ >12= S12(ζ)|0, 0 >12 and |ξ >34= S34(ξ)|0, 0 >34, i. e. by the initial proto-state

|ζ >12 |ξ >34= S12(ζ)S34(ξ)|0 >1234, (5.2)

where |0 >1...n=
⊗n

k=1 |0 >k is the tensor product of n vacuum states. The twin
beams feed the input ports of two beam splitters of transmissivity T1 and T2,
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Figure 5.1: Sketch of the ideal scheme for generating the class of states of Eq.
(5.4): two independently generated two-mode squeezed vacuum states, |ζ〉12 and
|ξ〉34, mix onto two beam splitters BSI and BSII of transmissivity T1 and T2,
respectively. State generation is triggered by two simultaneous detections realized
by the single photon projective detectors (D3 and D4).

respectively. Specifically, modes 1, 3 mix themselves at the beam splitter (BSI),
and modes 2, 4 at the beam splitter (BSII). The resulting state is the four-mode
entangled state |Φ >1234 described by:

|Φ >1234= U13(κ1)U24(κ2)|ζ >12 |ξ >34
= U13(κ1)U24(κ2)S12(ζ)S34(ξ)|0 >1234 . (5.3)

Here the squeezing operators, with complex squeezing parameters ζ = r exp
{
i φζ
}

(i = 1, j = 2) and ξ = s exp
{
i φξ
}

(i = 3, j = 4), respectively, are given

by Sij(µ) = exp
{
−µâ†i â†j + µ∗âiâj

}
(µ = ζ, ξ). Furthermore, the beam-splitter

operators are given by Ulk(κl) = exp
{
κl

(
a†lak − ala†k

)}
, l = 1, 2, k = 3, 4, where

tanκl =
√
(1− Tl) /Tl.

The basic idea is that, starting by the four-mode state |Φ >1234, the conditional
measurements provided by the simultaneous "cliks" of detectors D3, D4, and the
restriction to suitable ranges of the beam-splitters parameters and of the squeezing
parameters, will lead to the generation of two-mode states which well approximate
the theoretical SB states. Obviously, the experimental generation implies non
ideal conditions, including inefficiency of detection, and losses. However, here
we will proceed by steps. At first, we consider the ideal situation, i. e. single-
photon conditional measurements without inefficiency and losses. This allows,
to the benefit of the reader, to describe the basic elements of the scheme, and
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the connection with the theoretical SB states. In a second step, we discuss the
full realistic instance: we add detection inefficiency and losses, whose values are
choosen as those at present experimentally accessible.

5.1.1 Single-photon conditional measurements

We will discuss this simplified instance a little big more in details, in order
to make more clear the connection between the theoretically defined SB states
and the generated SB states obtainable by our scheme (for further details on the
postselection procedure in this ideal instance, see Sect. 1.4). At first we suppose
that losses are not present, that the detectors are perfectly photon-resolving, and
that the apparatus is able to perform simultaneous detections of single photons
in modes 3 and 4. Thus, simultaneous detections project the state of Eq. (5.3)
onto the tunable state (T)

|ΨT >= N34 < 1, 1|U13(κ1)U24(κ2)S12(ζ)S34(ξ)|0 >1234, (5.4)

with N a normalization constant.

Varying the free parameters, κ1, κ2, r, s, φζ, φξ we can obtain different
Gaussian or degaussified states. On the other hand, being the role of the two
beam splitters inside the scheme indistinguishable, transmissivities T1, T2, and
thus parameters κ1, κ2, can be taken equal (T1 = T2 ≡ T ). Indeed, we will see
that the simplified instances: κ1 = κ2 = κ ∈ R, and ξ real, are sufficient for
our purposes. We fix also φζ = π; thus, S12(ζ) ≡ S12(−r). Furthermore, we will
make the assumption that κ2 << 1, and that the value of the strength |ξ|(≡ s)
of the ancillary squeezing S34 is at most of the same order of κ2 (this will be
clarified by the procedure below). Therefore, we exploit beam splitters with a
high transmissivity T = cos2 |k|, and the ancillary squeezing S34 with a weak
squeezing strength. As a consequence of such assumptions, the unitary operators
U13(κ), U24(κ) can be expanded in power series and truncated to order κ2, while
S34(|ξ|) can be truncated to order |ξ|.

Therefore, we have:

|Φ〉1234 ≈[
1 + κ(a†1a3 − a1a†3) +

κ2(a†1a3 − a1a†3)2
2

+O(κ3)
]
×

[
1 + κ(a†2a4 − a2a†4) +

κ2(a†2a4 − a2a†4)2
2

+O(κ3)
]
×

[
1 + (−ξ(a†3a†4 − a3a4) +O(ξ2))

]
×

S12(−r)|0, 0, 0, 0〉1234. (5.5)
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Next, the postelection strategy is applied. Specifically, by using coincidence
photodetection, the conditional measurements of simultaneous detections of sin-
gle photons in mode 3 and 4 project the non-normalized state Eq. (5.5) onto

34 < 1, 1|Φ >1234, which writes:

34 < 1, 1|Φ >1234≈ (−ξ + κ2a1a2)S12(−r)|0, 0 >12 . (5.6)

Due to our assumptions on κ2 and |ξ|, in the above equation we have implicitly
neglected terms proportional to |ξ|κ2, i.e. contributions of the form ξκ2(a†1a1 +
a†2a2)S12(ζ)|0, 0 >12, and of higher degree. Using the two-mode Bogoliubov trans-
formations

S†12(−r) ai S12(−r) = cosh r ai + sinh r a†j ,

(i 
= j = 1, 2) , (5.7)

Eq. (5.6) yields the non-normalized state:

S12(−r)
{
(−ξ + κ2 sinh r cosh r)|0, 0〉12

+κ2 sinh2 r|1, 1 >12
}
, (5.8)

whose form, apart from normalization, reduces to that of the SB state (5.1).
Performing normalization, we obtain:

|ψT >12= S12(−r) {c00|0, 0 >12 +c11|1, 1 >12} , (5.9)

c00 =
−λ+ sinh r cosh r

[(−λ+ sinh r cosh r)2 + (sinh2 r)2]1/2
, (5.10)

c11 = (1− c200)1/2 , (5.11)

where λ = ξ/κ2. Obviously, the state can be written in the form (5.1), where it
is simple to see that (recall that |ξ| = s)

δ = arctan

(
κ2 sinh2 r

s+ κ2 sinh r cosh r

)
. (5.12)

Note that, being the expression (5.9) of the state generated by the scheme of Fig.
5.1 practically identical to that of the theoretical state (5.1), the particular cases of
the PA, PS, PN and TB states generated in this ideal instance can be obtained
by choosing the experimental parameters in such a way that δ (Eq. (5.12)) is led
to assume, from time to time, the corresponding special values described in [1].

The ideal instance here discussed allows to well understand the general idea,
showing that the basic scheme can generate states close to theoretical SB states.
On the other hand, the constraint that the shape of the generated states must
be just that of the SB states is not strictly necessary for our aims, the previous
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procedure being only addressed to emphasize the connection with the theoretical
SB states. In fact, we aim simply to generate states which perform better thanTB
and generated PS squeezed states. If our scheme, in some conditions, generates
a state that is not of the SB form (5.1), but that satisfies this last requirement,
it is not a problem. Therefore, in the analysis of Section III, while retaining the
condition κ2 << 1, we will allow instead the parameter s to assume any value.

We now move to discuss the inclusion of unavoidable experimental imperfec-
tions to gain insight on a realistic realization of our scheme.

5.1.2 Realistic State

In realistic experimental conditions the state |ΨT > takes trace of decoher-
ence mechanisms which affect the squeezing sources: cavity output coupling and
propagation losses [72, 73].

In this context, the four-mode squeezed vacuum proto—state |ζ >12 |ξ >34
becomes the four-mode squeezed thermal state described by the input density
matrix

ρ1234 = S12 (ζ)S34 (ξ) ρ
th
1234S

†
12 (ζ)S

†
34 (ξ) , (5.13)

where ρth1234 =
⊗4

k=1 ρ
th
k , with ρthk the density matrix of the thermal state associated

to the k—mode. On the other hand, at typical temperatures (300 K) the thermal
density matrix ρth1234 tends to the vacuum state, so that ρ1234 coincides practically
with the projection operator associated to the previous pure state |Φ >1234 (see
Sect. 1.3.1.2, at the end of the characteristic function formalism).

Figure 5.2: Realistic scheme: two independently generated two-mode squeezed
vacuum states, |ζ〉12 and |ξ〉34, mix into two beam splitters BSI and BSII of
transmissivity T1 and T2, respectively. Four fictitious beam splitters with trans-
missivity Tℓ, mimic decoherence mechanisms. In a realistic scenario single photon
projective measurements are replaced by POVMs (Π

(on)
3 and Π

(on)
4 ) with quantum

efficiencies η < 1.
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A possible realistic scheme is sketched in Fig. 5.2. We model the decoher-
ence mechanisms by introducing four fictitious beam-splitters (each one for every
starting mode) with equal transmissivity Tℓ (= 1−Rℓ). Each beam-splitter has
the empty port illuminated by a vacuum mode υk. As already mentioned, at
room temperature the thermal contribution to the decoherence is negligible, and
thus we must simply replace the state |Φ >1234 of Eq. (5.3) with the state

|Φ′ >1234=
4⊗

k=1

Ûk (Tℓ) |Φ >1234, (5.14)

where the beam splitter operator that mixes mode âk with the respective vacuum

v̂k is given by Uk (Tℓ) = exp
{
κℓâ

†
kv̂k − κ∗ℓ âkv̂†k

}
, and κℓ is such that tanκℓ =

√
(1− Tℓ) /Tℓ. Now we proceed with the postselection procedure (also in this

case, see Sect. 1.4 for further details).
The detection associated to mode k = 3, 4, is now modeled by the POVM

Π
(on)
k (ηk), taking account simply of the threshold detection of n ≥ 1 photons, and

given by
Π
(on)
k (ηk) = Ik − Π

(off)
k (ηk), (5.15)

where

Π
(off)
k (ηk) =

∞∑

m=0

(1− ηk)m |m >k k< m|, (5.16)

and ηk is the k−mode non-unit detection efficiency. So that the relative density
matrix becomes

ρ
(on)
T (Tℓ, η3, η4) =

Tr34
[
ρ′1234 ⊗ Π

(on)
3 (ηk)⊗ Π

(on)
4 (ηk)

]

N (on)
T (η3, η4)

, (5.17)

where ρ′1234 is the density matrix relative to the state |Φ′ >1234 , and the normal-
ization constant

N (on)
T (η3, η4) = Tr1234

[
ρ1234 ⊗ Π

(on)
3 (ηk)⊗ Π

(on)
4 (ηk)

]
, (5.18)

depending on η3, η4, represents the success rate in a real scenario [74]. Applying
this scheme, we can obtain approximately SB states, PS and TB states under
a realistic situation of presence of losses (Tℓ < 1) and of not perfect quantum
efficiencies (η3, η4 < 1), simply by inserting the values of the ancillary parameters
which provide these states in the theoretical instance [1]:

ρ
(on)
PS (Tℓ, η3, η4) = ρ

(on)
T (Tℓ, η3, η4)

∣∣∣
s=0,κ≃0

,

ρ
(on)
SB (Tℓ, η3, η4) = ρ

(on)
T (Tℓ, η3, η4)

∣∣∣
s≃κ2≪1,φ=π

,

ρ
(on)
TB (Tℓ, η3, η4) = ρ

(on)
T (Tℓ, η3, η4)

∣∣∣
ξ=ζ≡ε

.
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In addition, it is to be considered a further practical restriction: due to deco-
herence, the effective value of the squeezing parameters is reduced. In fact, in
Sect.1.5.2.1 , we show that the real squeezing parameter r′ is related to the free-
losses parameter r according to

r′ = −1
2
ln
[
1− Tℓ

(
1− e−2r

)]
. (5.19)

So, e.g., if in the block scheme (Fig. 5.1) the squeezing is fixed at r = 2 (≃ 17.4
dB), the realistic scheme, affected by 15% losses (Tℓ = 0.85), corresponds to a
beam with r′ of about 0.90 (≃ 7.81 dB).

Once established the generation scheme, and the form of the generated states,
the criterion we will assume in the next Section to test their usefulness will be
their efficiency (measured by fidelity) in implement quantum protocols as quantum
teleportation. However, we will compare only fidelities associated to optimized SB
states, PS states and TB. In fact, the performance of the PA states and, more,
of the PN states when used as resources in quantum teleportation protocols is
even worst than that of the Gaussian TB: the deep reason is that these states do
not satisfy the crucial requirement of Gaussian affinity [1].

5.2 Generated states as resources
Preliminaries — In this Section we seek to optimize the fidelity of the BKV

teleportation protocol for a coherent state [27, 26] using, as the bi—partite en-
tangled resource, the states generated by the proposed scheme. To this end, it
is convenient to express the above depicted class of states in the formalism of
the characteristic function ([75]), particularly suited for analyzing non-Gaussian
states, because it simplifies the computational strategies, in particular if the non
Gaussian state is used as a resource for the BKV teleportation protocol [1].

In Sect 1.4 we have shown the relationship between the characteristic function
of the output state and the the conditional measurement type performed on the
initial state. Here, we are interested to specialize the results of Sect. 1.4 to the
case of conditional measures performed on the 2-modes of the initial 4-modes
state. Furthermore, conditional measures are of the same type: single-photon
projector or on / off POVM. Then, given a four—mode state represented by the
characteristic function χ1234 (β1;β2;β3;β4), the state achieved after conditional
measurements on the two ancillaries modes (3 and 4) (depicted by detectors D in

Fig.5.1) is given by the characteristic function χ
(D)
T (β1;β2),

χ
(D)
T (β1;β2) =

1

Nπ2 ×∫
d2β3d

2β4χ1234 (β1;β2;β3;β4)

×χ(D)3 (β3)χ
(D)
4 (β4) , (5.20)
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where βk is a vector of the complex coherent amplitude, d2βk = dβkdβ
∗
k, while

χ1234 (β1;β2;β3;β4) is the characteristic function of the initial state. It will cor-
respond to |Φ >1234 (see Eq.(5.3)), for the ideal scheme, or to |Φ′ >1234 (see Eq.

(5.14)), for the realistic scheme. In the above formula, χ
(D)
k (βk) denotes the char-

acteristic function of the conditional measurement realized by detectors D on the
modes k = 3, 4 (its definition is provided in Sect. 1.4).

We note now that we can consider the following states:

• Theoretical states — the ones given by their operatorial definition (see TA-
BLE I) and not always exactly attainable by our scheme. Their performance
has been considered in [1, 22] both in absence and with the presence of losses.

• Generated states: ideal case — the ones outing our scheme when we assume
that losses are absent, detectors are perfectly photon-resolving, and projec-
tive measurements are performed.

• Generated states: realistic case — the ones outing our scheme when losses
are considered, and only on/off measurements are allowed, described by a
non—ideal POVM.

In the next Section we will discuss then at first the performance of the gen-
erated states in the ideal instance, by making also a comparison with the perfor-
mance of the theoretically defined states. Later, we discuss the performance of
the generated states in realistic conditions. As announced, we measure the perfor-
mance of a given state by considering the teleportation fidelity. In the formalism
of the characteristic function, the teleportation fidelity is given by [75]

F =
1

π

∫
d2λχin(λ)χout(−λ), (5.21)

where λ is the vector of the complex coherent amplitude for a generic state, and
d2λ = dλdλ∗. Being the input state a coherent state |α >, the characteristic
function χin is

χin(λ) = e−
1
2
|λ|2+2iℑ[λα∗], (5.22)

while for the output state we have [1]

χout(λ) = χcoh(λ)χres(λ
∗;λ), (5.23)

where χres (λ
∗;λ) denotes the characteristic function of the two-mode entangled

state used as resource for the protocol. From time to time, it will be specialized
to the characteristic function of each considered state.

However, we have focused our proposal on both an approximation (κ2 << 1),
and on the possibility of an improvement provided by an optimization procedure.
The only unconditioned parameter is the strength r of the squeezing operator
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S12(ξ); once fixed r, the fidelity for the state outing our generation scheme will de-
pend on the two squeezing parameters, and on transmissivity: FT(ζ, ξ, T ). Thus,
the optimization must be performed with respect to the phases (φζ , φξ) of the
two squeezing operators, the transmissivity T (recall that T1 = T2 = T ) and the
strength s of S34(ξ). In the following we will show that optimization with respect
to phases and transmissivity are compatible with the assumptions exploited in
order to generate SB states.

In general, at fixed squeezing intensity |ζ| = r for mode 1, 2 (see Fig. 5.1), we
define the optimal fidelity as

Fopt(r) = max
φζ ,ξ,T

FT(ζ, ξ, T ) =

FT(r, φζ,opt, ξopt, Topt), (5.24)

where φζ,opt, ξopt = ξopt (ζ) and Topt = T (opt) (ζ) are the parameters of the phase of
ζ, of the ancillary squeezing, and of the transmissivity that optimize the fidelity
FT(ζ, ξ, T ).

Starting from this rather general formula, we have at first solved the optimiza-
tion problem with respect to the squeezing phases; in fact, the analysis of several
cases shows that the optimization procedure always returns φζ = φξ = π, thus
implying that the optimal building bricks for our scheme (see Fig. 5.1) are two in-
dependent two—mode squeezed states with ζ = −r, and ξ = −s; this agrees, for the
first phase, with the position assumed a priori when we implemented our scheme
in the previous Section. From now on, we modify our notation for the squeez-
ing operators by replacing the dependence of fidelity on ζ, ξ with the dependence
only on r, s: S12(−r), S34(−s). The optimization on T must take into account
the role that the transmissivity plays in setting the distillation success rate (see
Eq. (5.18)). Furthermore, the result of this analysis must be congruent with the
assumption κ2 << 1 (i. e. high transmissivity T = cos2 |k|) that is needed for our
generation scheme. We have found that the fidelity is monotonically increasing
with T . The optimal value would have thus been obtained for T → 1, a limiting
value that, however, will make the success rate to drop to zero. Therefore, we set,
in all what follows, T = 0.99 (a value experimentally obtainable), and drop the
dependence on T . In this way, we satisfy the assumption κ2 ∼ 0.01 << 1 and, de
facto, we realize optimization with respect to transmissivity.

Finally, regarding optimization with respect to the ancillary parameter s, as
we have announced in the previous Section we allow this parameter to cover a
wide range, and we identify, from time to time, the value of s that, at any given r,
maximizes the fidelity. We will see that, when the ideal generation is considered,
this value corresponds to SB states for not too large values of r, while for values of
r which exceed a given threshold this is no more true; despite this, the generated
states associated to the maxima perform better than TB and PS states. In the
realistic instance, obviously, we do not mind to compare the optimized states with
the SB states, but focus our attention only on their performance.
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5.2.1 Ideal case of the single-photon measurement

Figure 5.3: (Color on line) Fidelity of teleportation of the state generated from
our scheme in the ideal instance (single-photon conditional measurements) plotted
vs. s (≤ r), the ancillary squeezing parameter, for different values of the main
squeezing parameter r: (a) r = 0.6 (brown full line); (b) r = 0.8 (purple dashed
line); (c) r = 1 (red large—dashed line); (d) r = 1.2 (blue dotted line); (e) r = 1.4
(green large—dotted line); (f) r = 1.6 (black dotted—dashed line); (g) r = 1.8
(magenta double dotted—dashed line); (h) r = 2 (orange triple dotted—dashed
line). The point at s = 0 corresponds to the fidelity relative to the PS squezed
state generated in ideal conditions, while at s = r we obtain the fidelity relative
to the TB, as well generated in ideal conditions

As a testbench for the proposed scheme, we have considered the teleportation
fidelity, Eq.(5.24), for the most ideal case where the detectors D, Fig. 5.1, realize
simultaneus projective single photon measurements, and the system is loss free.
The resulting state is, then, pure and described by the wave function given in Eq.
(5.4).

Fig. 5.3 shows plots for the teleportation fidelity using, as a resource, states
that can be generated by the most ideal version of the proposed scheme. In
particular, we have plotted the fidelity vs. s (≤ r), the squeezing of the ancillary
modes (3, 4), for eight different values of r (= 0.6 , 0.8 , 1, 1.2, 1.4, 1.6, 1.8, and 2).
For every curve, the value at s = 0 corresponds to the fidelity for the generated
PS state, while s = r corresponds to the fidelity obtained with TB.

It can be seen that for every r there is a maximum in the fidelity that moves
toward higher s for increasing r; at the same time the maximum becomes less
pronounced. We see that:

• For low main squeezing the optimal resource state is obtained for s close to
0. In particular, for the first lower values r = 0.6, 0.8, 1 the generated SB
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r s

0.6 0.00057
0.8 0.0046
1.0 0.011
1.2 0.022
1.4 0.036
1.6 0.056
1.8 0.082
2.0 0.12

Table 5.2: Values of s corresponding to the maximum performance of the gener-
ated states for the considered values of r.

state, as approximated by our scheme, provides the best performance (the
strength s does not exceed the order of magnitude of κ2 ∼ 0.01, see TABLE
II).

• For values of r greater than 1 the generated state corresponding to the
maximum deviates increasingly, as r grows, from the SB state (the value
of s exceeds sensibly the order of magnitude of κ2 ∼ 0.01, see TABLE II);
however, this state still performs better than TB and generated PS states.

• In this same region TB states performs better than generated PS (and SB)
states.

We now compare the optimal fidelity that can be obtained by the class of
states we have introduced, i.e. the value for the maximum in Fig. 5.3 (see Eq.
(5.24), with that of the theoretical states. In Fig. 5.4 we plot the optimal fidelity
corresponding to states generated in the ideal case vs. r, and we compare it to the
fidelity of the theoretically defined TB, PS, and SB states. In the same figure
we also report the fidelity of the PS states (s = 0) generated in the ideal case.

On one hand, we can see that, in this pretty ideal contest, the best telepor-
tation fidelity, for all the considered range of r, is achieved by the (optimized)
theoretical SB states as found in Ref. [1]. On the other hand, the optimal fidelity
for the class of states we have introduced gets closer to that of the theoretical
SB states as r increases. It has to be stressed that while the fidelities of the
theoretical states and of the generated PS state can be analitycally computed as
functions of r, the optimal fidelity for the whole class of generated states must be
computed numerically point by point, so that the plot of this optimized fidelity,
if seen in greater details, looks as a broken—line.

In the plot range 0 < r � 2, representing experimentally feasible levels of
squeezing, we can distinguish two different regimes:
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Figure 5.4: (Color online) Comparison between the optimized fidelity on the class
of generated states in the ideal instance of generation (red dashed), the fidelity of
the PS squeezed state generated in the ideal instance (green large—dashed), the
optimized fidelity of the theoretical SB states (cyan continuous), the fidelity of
the theoretical PS squeezed states (purple dotted—dashed), and the fidelity of the
theoretical TB (black dotted).

a) r � 0.5 — the procedure of maximization Eq. (5.24) gives s ≃ 0, i.e. the
best teleportation resource generated by the presented scheme is given by states
that well approximate the generated PS states. On the other hand, the three
curves corresponding to the optimal fidelity on generated states, to the fidelity of
generated PS states and to to the fidelity of theoretical PS states, respectively,
are superimposed and lye in between the fidelity of the optimized theoretical SB
state (above) and the fidelity of TB (below).

b) r > 0.5 — the performance of the optimized resource generated by the
scheme overcomes both that of the genrated PS state and that of the theoret-
ical PS state, while offering a performance very close to that of the optimized
theoretical SB state. In Fig. 5.5 we report the behaviours in the range 1 ≤ r ≤ 2.

As an example, if we fix r = 1.6, we obtain the value 0.974 (at s = 0.056) for
the optimized fidelity of the generated states. While, for the same r, the fidelities,
given by theoretical resources, are 0.977 (optimized theoretical SB state), 0.965
(theoretical PS state), and 0.961 (TB). Therefore, in the ideal generation the
performance of the generated states is very close to that of the theoretical ones.

5.2.2 Realistic lossy scenario

As pointed out previously, a realistic scenario for the generation of these class
of states can be modeled by accounting for an inefficient photon detection and
a lossy environment for the starting pair of two—mode squeezed states. In what
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Figure 5.5: (Color online) Details of Fig. 5.4 in the range 1 ≤ r ≤ 2 for: the opti-
mized fidelity on the class of generated states in the ideal instance of generation
(red dashed), the fidelity of the PS squeezed state generated in the ideal instance
(green large—dashed), the optimized fidelity of the theoretical SB states (cyan con-
tinuous) the fidelity of the theoretical PS squeezed states (purple dotted—dashed),
and the fidelity of the theoretical TB (black dotted).

follows we have considered the value η = 0.15 for the detection efficiency (that is
the value at present obtainable in real experiments) .

In Fig. 5.6 we have plotted the optimized teleportation fidelity of the gener-
ated states, (that depends on the squeezing strengths r, s) assuming at first an
overall level of (fictitious) transmissivity Tℓ = 0.85 (i. e. a level of loss equal
to 0.15) in Eq. (5.14). In the figure we have plotted the optimized fidelity as a
function of the squeezing parameter s (≤ r), for r assuming the same values of
Fig. 5.3. We can observe that:

a) the behavior of the fidelities does not change very much apart from a
smoothing of the curves around their maximum;

b) as expected, the fidelities further deteriorate due to the combined effect of
non—ideal single photon detection processes and losses.

In this first plot the level of losses equal to 0.15 has been taken as a reference,
being at present this level experimentally accessible by properly choosing optical
components for the squeezing source. On the other hand, very recently an out-
standing source with an overall loss of less than 0.08 has been reported [76]. In
view of this result, we are led to investigate the behavior of the fidelities when
the level of losses is varied. Therefore, we fix again the detection efficiency to
be η = 0.15, we select for the squeezing parameter r the value r = 1.6, and we
report, in Fig. 5.7, the optimized fidelity on the generated states as a function of
the loss parameter (denoted by ℓ). The plot is compared with the curves relative
to the fidelity associated to the generated PS state and to the fidelity associated
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Figure 5.6: (Color online) Fidelity of teleportation of the generated state in a
realistic lossy scenario (level of losses equal to 0.15, i. e. Tℓ = 0.85, and η = 0.15).
The fidelity depends on the squeezing parameters s, r, and has been plotted vs.
s (≤ r) for the same values of r used in Fig. 5.3: (a) r = 0.6 (brown full line);
(b) r = 0.8 (purple dashed line); (c) r = 1 (red large—dashed line); (d) r = 1.2
(blue dotted line); (e) r = 1.4 (green large—dotted line); (f) r = 1.6 (black dotted—
dashed line); (g) r = 1.8 (magenta double dotted—dashed line); (h) r = 2 (orange
triple dotted—dashed line).

to TB, where also in these last two cases we have fixed η = 0.15, r = 1.6. As it
can be seen, for losses up to ℓ = 0.30 the optimized state that can be obtained
by our scheme can lead to the best fidelity. It has to be noted that, at a fixed r,
the value of s corresponding to the maximum does not change very much. In the
reported case this value is included in the interval (0.048, 0.050).

Summing up, as remarked in point b) above the values of the fidelities in
this realistic instance sensibly deteriorate. On the other hand, for values of r
between 1.2 and 1.6 the optimized fidelities takes again appreciable values which
looks better than those obtained when generated PS states and TB are exploited.
Furthermore, as we see by the Fig. 5.7, a (foreseeable) improving in the control
of losses could improve the performance to levels comparable with those of the
theoretical instance.

In conclusion, our preliminary analysis shows that our scheme can generate
non Gaussian states which performs better than other generated states, including
the PS squeezed states. In a forthcoming work we will design in details the
experimental set up needed to realize our scheme. To this end, we will consider
the two possible instances: continuous wave and pulsed regime. In the same work
we will show how we will reconstruct the generated states by performing suitable
homodyne detections.

Obviously, at the end of this route we aim to obtain our most ambitious goal,
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Figure 5.7: (Color online) Optimized fidelity of the states generated in realistic
conditions (with η = 0.15) plotted as a function of the loss parameter ℓ, for r = 1.6
(blue full line). The plot is compared with those relative to the fidelity of the PS
squezed states (s = 0, black full line)) and to the fidelity of the TB (s = r, green
large—dashed line), both as well generated in realistic conditions with η = 0.15.

the actual realization of the experimental generation.



CHAPTER 6

EXPERIMENTAL ANALYSIS OF DECOHERENCE OF

THE BI-PARTITE GAUSSIAN STATES

The aim of this Chapter is to discuss and experimentally analyse the effects of
the transmission, in a lossy channel, over the quantumness of bi-partite Gaussian
CV optical entangled states [6]. While these effects on CV entangled states
obtained by above threshold OPOs have been already investigated [77], we focus
our analysis on the states generated by a type-II sub—threshold OPO [78],[8].

The investigated CV entangled state represents one of the possible quantum
resources in CV teleportation protocols [27]. The experimental data we present
extend the analysis of Ref. [79] discussing the behaviour of the CV entangled
system to the strong decoherence regime (up 99% of loss).

Optical entangled states can be obtained in non—linear processes such as para-
metric amplifiers that, depending on their operating regime, can prepare either
single photon [81] or CV Gaussian entangled states [82, 83, 84, 85]. In the latter
case the non—linear medium is allocated in a optical cavity and the OPOs, below
the oscillation threshold and in a semiclassical approach, are described by bilin-
ear Hamiltonians so realising the paradigm for Gaussian state generation [86]. In
particular below threshold a single continuous wave OPO, generating squeezing
in a fully degenerate operation [87], can give raise to a pair of bright CV en-
tangled beams in the non—degenerate case [84, 85, 89, 90, 91]. Both the cases
lead to states that represent robust resources for implementing different quantum
communication tasks [92].

In this Chapter, we briefly analyze the physics of the source of the Gaussian
bi-parite state and the experimental method used for its detection: the homo-
dyne technique. We experimental discuss the behaviour, under strong loss, of a
bright bi—partite CV Gaussian entangled state outing a sub—threshold type—II
OPO. In particular, we analyse the trends of different quantumness and entan-
glement markers in order to discuss the limit at which the examined state can
be transmitted before loosing its quantum ability of being employed in quantum
communication protocols. More in details, we show: the state purity (seen in
Sect. 1.5); three different entanglement criteria (seen in Sect. 2.1.2.4): Peres—
Horodechi—Simon, Duan, EPR—Reid; the mutual information (seen in Sect. 2.3),
and quantum discord (seen in Sect. 2.3). In addition we relate these criteria to
the teleportation fidelity F , i.e. the state ability of overcoming the quantum limit
in a teleportation protocol of a coherent state (seen in Sect. 2.2).

104



6.1. THE EXPERIMENT 105

6.1 The Experiment

The transmission over a Gaussian channel is described by Eq. (1.46). As al-
ready mentioned this evolution is equivalent to a fixed amount of loss introduced
by the transmissivity < 1 of a fictitious beam splitter (seen in Sect. 1.5). From the
point of view of experimental implementation, instead, the realistic transmission
channel can be simulated via a optical variable absorber (attenuator filter).The
actual experimental apparatus is made of the CV entangled state source, a vari-
able attenuator (mimicking the BS), and a state characterization stage. A block
diagram of the experimental setup is presented in Fig. 6.1

Figure 6.1: (color online) Block diagram of the experimental setup. The details
on the OPO source are given in Ref. [96], while the characterization stage, based
on a single homodyne detector, is fully described in Ref. [99].

The attenuation of a light beam, which passes through a attenuating sample,
can be described by the action of the beam splitter matrix, of the type

UBS =

(
t r
−r t

)
, (6.1)

on the input beam. The real coefficients t and r, in Eq. (6.1), represent the Fres-
nel coefficients of transmission and reflection, respectively. The element t of the
matrix UBS can be associated to the transmission coefficient of a attenuator fil-
ter. This allows we to describe the filter through the UBS matrix itself. In this
sense, it is proposed a description of the filter, that simulates the deteriorating
action of decoherence, in terms of BS. We have seen how the covariance matrix
σ, that describes the Gaussian bi-partite state, under the attenuator action of the
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environment is transformed as, Eq. (1.48) of Sect.(1.4.4):

σT =

(
AT CT

CTT BT

)
(6.2)

= (1− T ) 1
2
I+ Tσ1 (6.3)

=




(1−T )
2

+ Tn 0 Tc1 0

0 (1−T )
2

+ Tn 0 Tc2
Tc1 0 (1−T )

2
+ Tm 0

0 Tc2 0 (1−T )
2

+ Tm


 , (6.4)

where AT = diag (nT , nT ), BT = diag (mT ,mT ), CT = diag (c1,T , c2,T ), and T =
t2.

Consequently the different quantum markers (purity, teleportation fidelity,
PHS criterion, Duan criterion, EPR criterion, mutual information and quantum
discord) evolve as:

µT =
1

4
√

det [σT ]
,

FT =
1√

1 + (mT + nT )
2 + 2 (c2,T − c1,T ) (1 +mT + nT ) + 2 (mT + nT − 2c1,T c2,T )

wPHS,T = n2T +m2
T + 2 |c1,T c2,T | − 4

(
nTmT − c21,T

) (
nTmT − c22,T

)

wDUAN,T =
√
(2nT − 1) (2mT − 1)− (c1,T − c2,T )

wEPR,T = n2T

(
1− c21,T

nTmT

)(
1− c22,T

nTmT

)
− 1

4

IT = f (nT ) + f (mT )− f (d+,T )− f (d−,T )

DT = f(mT )−f (d+,T )− f (d−,T ) + f
(
nT + 2nTmT + 2c1c2

1 + 2mT

)
(6.5)

where the subscript T indicates the quantity undergone to a lossy transmission.
We note that the vacuum state obtained for T = 0 is a pure one i.e. µ0 = 1.

Moreover, in the ideal case (no loss), theOPOwould generate a pure state as well.
Being µT < µ0,1, for T 
= 0, 1, the evolution of µT is not monotonic. The purity of
the composite system cannot be considered a general entanglement marker [93].
As a matter of fact, any pair of physical systems in a pure state have µ = 1 even
if they are disentangled. On the other hand, in our specific case, having a precise
hypothesis on the ideal state (a pure twin—beam diagonal state) outing the OPO
crystal allows us to consider µ as a measure of the total decoherence that has
affected the state.

It is easy to see that FT , wPHS,T , and wDUAN,T describe properties very robust
under decoherence. Once F > 1/2, wPHS < 0 and wDUAN < 0 for T = 1 they
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will keep breaking the respective bounds for every level of loss. Both mutual
information and quantum discord show, with respect to loss, the same feature
even if decoherence affects their amount. On the contrary a state that show
EPR—like correlation (wEPR < 0) for T = 1 will not keep this property along the
propagation so that some particular protocol based on this property cannot be
reproduced. Under a total loss greater than 50% any state looses this correlation
property.

We see from Eq. (6.4) that the dynamics of the system is described by a
single parameter, T . However, it may happen that the damping rates of the two
distinguishable beams of a bi-partite system might be much different. For this
reason, we want to briefly analyze the case of unbalanced absorption of the modes.
In this case, in the Master Equation (1.45),

ρ̇S (t) =
∑

k=1,2

Γk

2
L [ak] ρS (0) ,

we have two different damping rates, Γ1 and Γ2, for the modes 1 and 2 corre-
sponding to two different transmission coefficients, T1 and T2, respectively. The
CM (6.2) becomes

σT =

(
AT1 CT1T2

CTT1T2 BT2

)
. (6.6)

The matrices of type (6.4) and (6.6) completely describe the Gaussian bi-
partite state (Sect. (1.3.1)) and they can be measured by homodyne detection
technique.

6.1.1 Homodyne detection technique

The homodyne technique allows to measure the generalized quadrature X (θ)
of the quantum field. In Fig. 6.1 is presented the block diagram. Input 1 impact
the beam under analysis, represented by the operator a1. The second entrance
is illuminated by an intense coherent beam αLO ≡ |αLO| eiθ, said local oscilla-
tor (LO), with relative phase equal to θ. Outputs 3 and 4 are collected by two
detectors that convert the input light intensity in the photocurrents i3 and i4,
respectively. In a ideal process each incident photon is converted into a photo-
electron. In the realistic case, indeed, conversion process occurs with quantum
efficiency η non-unitary [94],

η = ζ (1−Ra)
(
1− e−αd

)
,

with ζ the fraction of electron-hole pairs which effectively contribute to the pho-
tocurrent generated by the photodetection process, Ra is the reflectance of the
surface of the photodetector active area, α is the absorption coefficient of the ma-
terial of which is composed the detector and d is the thickness of the photodetector
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active area. From the definition of η it is evident that the quantum efficiency may
never exceed unity (corresponding to ideal detectors). For the homodyne tech-
nique we use two separate photodetectors with equal quantum efficiencies.

Subsequently, the two photocurrents are subtracted, i34 = i3− i4. This allows
to eliminate the fluctuations correlated. In fact, referring to Appendix, Eq. (9.4),
the average number of photons to output 3 is the sum of three terms

〈n3〉 = T 〈n1〉+ (1− T ) |αLO|2 +
√
2T (1− T ) |αLO| 〈X (θ + π/2)〉 (6.7)

≃ (1− T ) |αLO|2 +
√
2T (1− T ) |αLO| 〈X (θ + π/2)〉 ,

being the local oscillator much more intense of the mode 1,

|αLO|2 ≫
T

1− T 〈n1〉 . (6.8)

The first two terms, in Eq.(6.7), depend on the number of photons of the incident
light beams on the beam splitter, while the third is a term of interference given
by

2
√
T (1− T ) 〈I〉 =

√
2T (1− T ) |αLO|

〈
a†1e

i(θ+π/2) + a1e
−i(θ+π/2)

〉

=
√
2T (1− T ) |αLO| 〈X (θ + π/2)〉 .

Under the approximation Eq. (6.8), we can neglect the variance of the input
beam 1, so that the variance of the output signal 3 is linked to the variance of
the local oscillator (LO) and of the interference term, being null the covariance
between the beam 1 and the LO. We have

〈
∆n23

〉
= (1− T ) |αLO|2

[
(1− T ) + 2T

〈
∆X (θ + π/2)2

〉]
.

In the case of balanced beam splitter (T = 1/2), the photocurrent i34 = eη (〈n3〉 − 〈n4〉)
and the corresponding variance 〈∆i234〉 are

i34 =
√
2eη |αLO| 〈X (θ + π/2)〉 ,〈

∆i234
〉

= 2
(
eη |αLO|2

) 〈
∆X (θ + π/2)2

〉
,

where e is the electronic charge. The photocurrent variance is therefore directly
linked to the variance of the quadrature, through the intensity of the beam LO.
The homodyne detection technique allows, therefore, to measure the quadrature
〈X (θ + π/2)〉 and its variance and to assess whether the signal is squeezed or not
[95]. Furthermore, it should be noted that in the expressions of the photocur-
rent, the amplitude of the beam LO is attenuated by an amount equal quantum
efficiency η.

Becouse of the attenuating nature of the quantum efficiency, we can represent
a realistic photodiode with quantum efficiency η < 1, as a ideal photodiode (η = 1)
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preceded by a beam splitter with transmittivity T =
√
η. With this assumption,

the detected covariance matrix ση2 is modified from the covariance matrix of the
state σ1 before the photodetection. We have

ση2 =
(
1− η2

) 1
2
I+ η2σ1.

Combining the attenuating action and the efficiency of the detection system, the
evolution of the covariance matrix becomes

σTeq =
(
1− η2

) 1
2
I+ η2σT

=
(
1− η2

) 1
2
I+ η2

[
(1− T ) 1

2
I+ Tσ1

]

= (1− Teq)
1

2
I+ Teqσ1,

where Teq = η2T .

6.1.2 Non-degenerate optical parametric oscillator (OPO)
In this Section, we introduce briefly the optical process of second harmonic

which is at the base of each source of squeezed states. A pump beam ap of fre-
quency ωp is injected into a non-linear cristal. To effect of non-linearity, the input
beam produces two beams, signal as and idler ai, such that ωs + ωi = ωp, where
ωs(ωi) is the signal(idler) frequency. The setup used for the experiment is such as,
ωs = ωi and the two generated beams are collinear and distinguishable for the or-
thogonal polarizations. Generally, the generated fields would be weak without the
use of a resonance cavity, which reinforces the two signals. Such a system (non-
linear cristal + resonance cavity) takes the name of Optical Parametric Oscillator
(OPO).

For the sake of simplicity, let us consider a non-linear crystal in the absence
of optical cavity and invested by a field ap with amplitude αp, frequency ωp and
wavevector kp. The conservation of energy and momentum ensure that

ωs + ωi = ωp,

ks + ki = kp,

where ks(ki) is the wavevector of the signal(idler) beam. We analyze the case of
the non-degenerate OPO, in which the two output beams are distinguishable in
polarization. The Hamiltonian H of the system is

H = Hs + Hi + HNL (6.9)

= �
ωp

2

(
a†sas + a

†
iai
)
− i�χ

(2)

2
αp
(
a†sa

†
i + asai

)
, (6.10)
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where Hk is the Hamiltonian of the field k (= s, i), and αp is the amplitude of
the pump beam. Typically, the pump beam is intense enough to be able to be
treated classically. The non-linear Hamiltonian HNL, proportional to the non-
linear susceptibility, generates squezeed states. In fact, the Heisenberg equations
of motion for the operators as and ai are

das
dt

=
1

i�
[as,H] = ℘a†i , (6.11)

dai
dt

=
1

i�
[ai,H] = ℘a†s, (6.12)

with ℘ = χ(2)αp. The system of equations (6.11, 6.12) provides the following
coupled solutions

as (t) = as cosh (℘t) + a
†
i sinh (℘t) ,

ai (t) = ai cosh (℘t) + a
†
s sinh (℘t) ,

which recall the evolution of the operators under the application of two-mode
squeezed operator, Eq.(3.6, 3.7),

S12 (ζ) = exp
{
−ζa†b† + ζ∗ab

}
,

with the substitutions a→ as, b→ ai, and ζ → i�χ(2)αp/2.
In our detection scheme, we make use of a beam (local oscillator) with fre-

quency equal to that of the signal and idler, but with a relative phase θ. Fur-
thermore, one can show that although the modes a and b are not squeezed, a
combination of them is squeezed. Introducing, then, the generalized quadrature
operator

Xc,d (θ) =
1√
2
(Xa (θ)± Xb (θ)) ,

it is possible to show that

〈
∆Xc,d (θ)

2〉 = 1

2
[cosh (2r)∓ cos (2θ) sinh (2r)] ,

with r = |ζ| =
∣∣i�χ(2)αp/2

∣∣, so we have

〈
∆X2

c,d

〉
=

1

2
e±2r,

〈
∆Y 2c,d

〉
=

1

2
e∓2r.

As a matter of fact, CV entangled states produced by type—II OPO, show, in
view of the symmetry in the interaction Hamiltonian Eq.(6.9, 6.10), c1 = −c2.
This is not true for CV entangled states obtained by mixing the outputs of two
independent type—I OPOs. In such a case the two fields have disjoint Hamiltonians
and the symmetry is broken.
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6.1.3 CV entangled state source

The state source relies on a CW internally frequency doubled Nd:YAG laser
(Innolight Diabolo) whose outputs @532nm and @1064nm are respectively used
as the pump for a non degenerate OPO and the local oscillator (LO) for the
homodyne detector. The OPO is set to work below the oscillation threshold and
it provides at its output two entangled thermal states (the signal a and the idler
b): the aim is indeed to measure the CM of these two beams under losses.

The OPO is based on an α-cut periodically poled KTP non linear crystal
(PPKTP, Raicol Crystals Ltd. on custom design) which allows implementing
a type II phase matching with frequency degenerate and cross polarized signal
and idler beams, for a crystal temperature of ≈ 53◦C. The transmissivity of the
cavity output mirror, Tout, is chosen in order to guarantee, together with crys-
tal losses (κ) and other losses mechanisms (Tin), an output coupling parameter
ηout = Tout/(Tin + κ) @1064 nm of ≈ 0.73, corresponding to an experimental
linewidth of 15 MHz @1064 nm. In order to obtain a low oscillation threshold,
OPO cavity geometry is set to warrant simultaneous resonance on the pump, the
signal and the idler [96]. the pump resonance is guaranteed by servo-assisting the
OPO cavity with a Drever Pound Hall system [97], while the resonance of other
beams is induced by exploiting the natural birefringence of the KTP to tune the
optical path of each beam inside the cavity, through a fine control of the crystal
temperature and tilt [96]. The OPO is equipped with a handmade control sys-
tem able to stabilize the nonlinear crystal temperature up to 0.1 mK. Measured
oscillation threshold is around 50 mW; during measurement runs the system has
been operated at ≈60% of the threshold power to avoid unwanted non—Gaussian
effects [98].

The two beams outing the OPO are transmitted through a filter of variable
optical density that mimics the BS. The loss level introduced by the filter is
polarization independent and can be tuned from a few percent up to more than
99%.

6.1.4 Characterization stage

The signal and idler modes are then sent to the covariance matrix measure-
ment set-up: this consists in a preliminary polarization system, that allows choos-
ing the beam to be detected and a standard homodyne detector. The polarization
system is made of an half-wave plate (λ/2) followed by a polarizing beam splitter
(PBS); the different wave-plate orientations allow choosing the beam to be trans-
mitted by the PBS: the signal (a), the idler (b) or their combinations c = 1√

2
(a+b)

or d = 1√
2
(a− b). Two other combinations, e = 1√

2
(ia+ b) and f = 1√

2
(ia− b), can

be obtained by inserting before the PBS an additional quarter wave plate (λ/4)
[99]. Acquisition times are considerably short thank to pc-driven mechanical ac-
tuators that allow setting the λ/2 and λ/4 positions in a fast and well calibrated
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manner.

Once a beam is selected, it goes to an homodyne detector put downstream
the PBS. This exploits, as local oscillator, the laser output @1064 nm, previously
filtered and adjusted to match the geometrical properties of the OPO output: a
typical interferometer visibility is 0.98. The LO phase θ is spanned to obtain a 2π
variation in 200 ms. The homodyne photodiodes (PDs) (model Epitaxx ETX300)
have both nominal quantum efficiencies of 0.91 and each is matched to a low-
noise trans-impedance ac (>few kilohertz) amplifier. The difference photocurrent
is eventually further amplified by a low-noise high gainamplifier (MITEQ AU
1442).

In order to avoid low frequency noise the homodyne current is demodulated
at Ω=3 MHz and low-pass filtered (B=300 KHz). Then it is sampled by a PCI
acquisition board obtaining 106pts/run, with 14-bit resolution. The electronic
noise floor is 16 dBm below the shot noise level, corresponding to SNR ≈40. Data
are analysed by a c©Mathematica routine that extract from the six homodyne
traces the relevant quadrature variances necessary for reconstructing the whole
covariance matrices [99].

6.2 Experimental results

We have performed different sets of measurement under lossy transmission in
order to investigate different loss regimes. Each experimental CM comes from
seven homodyne traces: the shot noise calibration trace, obtained by obscuring
the OPO output, six traces each for one of the six modes required for a full state
characterization. Contrarily to other previous experiments, where quantum to-
mographic routine were used in order to retrieve experimental CMs [78], we have
evaluated CMs by a simpler c©Mathematica routine that calculates relevant sec-
ond order moments of homodyne distributions in a faster way without enhancing
the experimental indeterminacy on the CM elements. We have tested on a few
CMs that this procedure gives results in all compatible with quantum tomogra-
phy. We have also checked, with the standard procedure outlined in [100], that
the states under scrutiny were effectively Gaussian.

Once a CM is obtained the different entanglement witnesses (wPHS, wDUAN ,
and wEPR), state purity (µ), teleportation fidelity (F), quantum discord (D),
and mutual information (I) are calculated (Eqs. (6.5)). Then, the overall deco-
herence, i.e. the total level of loss that includes OPO cavity escape efficiency,
propagation loss, filter absorption, homodyne efficiency, is assigned as a label to
the measurement [79]. This expected level of decoherence is then compared to
the theoretical one obtained by inverting Eq. (6.2) and solving for T under the
condition det(σ1) = 1/16; thus requiring that σ1 represents a pure state. We
have verified that, even if experimental CMs do not reproduce exactly diagonal
states, all of them respect the Duan conditions (2.14) within experimental indeter-
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minacies. So that for the analysed matrices the Duan witness wDUAN represents
a sufficient and necessary condition for entanglement.

In all the reported plots we have considered the less decohered datum (ob-
tained for T = 0.63) as a reference so that all the reported theoretical curves
are obtained imposing that Eqs. (6.4) and (6.5) evaluted for T = 0.63 give the
measured values.

The total losses we have measured span the interval 37 − 99% (0.01 ≤ T ≤
0.63). We note that T = 0.63, in absence of extra loss and having a cavity
escape efficiency of ≈ 0.73, implies an overall state detection efficiency of ≈ 0.86
in agreement with an homodyne visibility of 0.98± 0.01, a photodiode (nominal)
efficiency of 0.90± 0.01 and residual transmission loss between the OPO output
mirror and the detector surface of 0.01± 0.01.
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Figure 6.2: (color online) behaviour of the averaged correlation term |c1,T | +
|c2,T | /2 in Eq. (6.2). As expected the correlation reduces linearly with T . The
full (dark orange) line represents the linear behaviour calculated starting from
the first experimental point we have measured (T = 0.63). Error bars are smaller
than data points and amount to ±0.01.

In Fig. 6.2 we report the behaviour vs. T of the averaged correlation term
((|c1,T |+ |c2,T |) /2 see Eq. (6.4)). As expected the correlation between the two
sub—systems degrades linearly with the total loss (T → 0). The expected be-
haviour (full dark orange line), obtained by considering the less absorbed CM
(T = 0.63) as a reference, follows quite well the reported data. Actually, data
refer to acquisition taken on different days so that, the scattering of the point
around that line is more due to source long—term dynamics then to actual devi-
ation from the Lindblad model. At the same time the fact that the points are
reasonably close to that line proves that the long term stability of the source can
be considered quite good.

As already mentioned, wPHS and wDUAN describe a physical property of the
state that is strong under decoherence as proved for lower loss (below 90%) in Ref.
[79]. They are symptoms of un—separability, in the sense that the system state
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Figure 6.3: (color online) wPHS vs. T . The full (dark orange) line represents the
expected behaviour calculated by the third of Eqs. (6.5) setting the first experi-
mental point at T = 0.63 as the intial datum. Error bars, obtained by propagating
the experimental indeterminacies in Eq. (2.20a), range between 10−4 and 0.1. In
the inset we report the high loss regime (T < 0.15) for better enlightning the
un—separability, as witnessed by wPHS, even in presence of strong decoherence.
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Figure 6.4: (color online) wDUAN vs. T . The full (dark orange) line represents
the expected behaviour calculated by the fourth of Eqs. (6.5) setting the first
experimental point at T = 0.63 as the intial datum. Error bars, obtained by
propagating the experimental indeterminacies in Eq. (2.20b), range between 0.01
and 0.06. In the inset we report the plot for T < 0.15 in order to better visualize
the persistence of entanglement, as witnessed by wDUAN , even in presence of strong
decoherence.
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cannot be described by a density matrix in the form of Eq. (2.6) [121]. This can
be seen in Figs. 6.3 and 6.4 where wPHS and wDUAN are plotted vs. T . We have
also enlarged, in the insets the region for strong loss (T < 0.15) to prove that,
even if the analysed state is very close to a two mode vacuum (the total average
number of photon ((n+m− 1) /2) reduces to 0.02±0.01) it is still experimentally
possible to prove that the state is non—separable. It has to be noted that, while,
for T → 0, wPHS approaches its classical limit non—linearly (see the third of Eqs.
(6.5)), wDUAN (see the fourth of Eqs. (6.5)) is linear. Thus, in the very high loss
regime it becomes more reliable to assess entanglement using the latter than the
former.
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Figure 6.5: (color online) wEPR vs. T . The full (dark orange) line represents
the expected behaviour calculated by the fifth of Eqs. (6.5) setting the first
experimental point at T = 0.63 as the intial datum. Error bars, obtained by
propagating the experimental indeterminacies in Eq. (2.20c), range between 2×
10−4 and 0.02. They are considerably larger for point at low losses. As expected
for total losses larger than 0.5 wEPR > 0 and the state does not show EPR
correlation.

wEPR < 0 indicates that the state exhibits EPR—like correlation so that it is
possible to gain information on the expectation value of one observable on one
sub—system with a precision better than the standard quantum limit once the
EPR companion is measured on the other sub—system. This feature is by far
the most fragile under decoherence: for T < 0.5 no state can keep this quantum
feature. This can be understood from the fact that loss, a stochastic process,
affects directly the degree of correlation between the two sub—systems while the
system representation (i.e. its un—separability) is only smoothed by this process.
It is relevant to note that T = 0.5 also corresponds to the minimum state purity
µ. So that, loosing the EPR character coincides with the maximum mixedness for
the state during its propagation. In Fig. 6.5 we report the experimental behaviour
found for wEPR for our system. MeasuredCMs for T < 0.5 all show wEPR > 0. A
positive wEPR indicates that, for these states, any attempt to gain information on
one sub—system by measuring the other would result less precise than the standard
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quantum limit.
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Figure 6.6: (color online) F vs. T . The full (dark orange) line represents the
expected behaviour calculated by the second of Eqs. (6.5) setting the first experi-
mental point at T = 0.63 as the intial datum. Error bars, obtained by propagating
the experimental indeterminacies in Eq. (2.25), range between 10−4 and 0.01. In
the inset we report the plot for T < 0.15 in order to underline the persistence of a
quantum teleportation regime even in presence of strong decoherence (high loss)
thus proving that even for, in principle, infinite distance this class of states would
allow to perform the teleportation of a coherent state with a fidelity above 1/2.

An important signature for an entangled CV state is its ability of acting
as a quantum resource in the CV teleportation protocol for coherent state. In
Eq. (2.25) we have expressed the fidelity F as a function of the CM elements.
F , as wPHS and wDUAN , represents a robust signature of quantum properties
for the state undergoing to a lossy transmission. In particular, in Fig. 6.6, we
see that even in the high loss regime, F remains above the classical limit of 0.5
(see the inset for greater details). Thus proving that CV entangled state, as the
one produced by our source, could be used as resource for realising teleportation
protocol of coherent state, in principle, at an infinite distance.

Eventually we have retrieved, from our CMs, the value for the quantum mu-
tual information I (σ) (Eq. (2.31)) and quantum discord D (σ) (Eq. (2.33)).

In Fig. 6.7 we report the experimental data together with the expected behav-
iours, as usually calculated considering the less decohered matrix as a reference,
for I and D vs. T . As it can be seen the quantum discord follows very well its the-
oretical line while quantum mutual information is a little more scattered around
it. Moreover, our data prove that even in presence of strong decoherence, it is
possible to evaluate that D keeps > 0, within the experimental indeterminacies,
all the way down to an highly absorbed state. We note that Gaussian quantum
discord is attracting, very recently, a lot of experimental interest [101, 102, 103]. In
particular, in Ref. [101], the authors give an operational significance to quantum
discord as the possibility of encoding quantum information in separable states.
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Figure 6.7: (color online) I and D vs.T . The full (dark orange) and dashed (blue)
lines represent the expected behaviours calculated by the sixth and seventh of Eqs.
(6.5) setting the first experimental point at T = 0.63 as the intial datum. Error
bars, obtained by propagating the experimental indeterminacies in Eqs. (2.31)
and (2.33), respectively, range between 3× 10−3 and 0.02 for I and 10−4 and 0.03
for D. In the inset we report the D data for T < 0.15 in order to underline the
persistence of true quantum correlation even in presence of strong decoherence
(high loss). Note that the data for I scatter more from the expected behaviour
may be signalling extra classical correlations.

In Ref. [102] the optimal strategy for evaluating D (σ) in homodyne measure-
ment is presented. It is interesting to compare our experimental plot with the
one reported in Ref. [103] where the authors analyse the quantum discord under
the lossy transmission of one of the two sub—systems. We note that in their case
the scattering of the experimental points around the theoretical curve is almost
equivalent for I and D while in our case there is a clear difference.

6.3 Conclusions

Gaussian bi—partite states are one of the most renown resources for implement-
ing CV quantum communication protocols such as CV teleportation of coherent
states. In this chapter we have experimentally analysed how decoherence affects
different entanglement criteria and quantum markers for a CV bi—partite state
outing a sub—threshold type—II OPO. The decoherence is experimentally intro-
duced by transmistting the quantum state through a variable attenuator. Before
illustrating our experimental results we have discussed in details the relationship
between the three different entanglement criteria used in the CV framework and
linked them to the teleportation fidelity and quantum discord. The latters rep-
resent two possible quantum signatures for evaluating the ability of this class of
states in quantum communication protocols.

On one hand, our findings prove that the Lindblad approach for describing
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lossy transmission is valid all the way down to strongly decohered states. On
the other hand, with this chapter, we prove that the particular class of states we
have analysed keeps, within the experimental indeterminacies, its main quantum
signatures, i.e. the possibility of realizing quantum teleportation of coherent states
with a fidelity above 0.5 and a quantum discord above 0 for a total loss of ≈ 99%.
This proves that the class of CV entangled states, we analysed, would allow,
in principle, to realize quantum teleportation over an infinitely long Gaussian
channel.

In analysing how quantum discord (see Fig. 6.7) and quantum mutual infor-
mation behave under decoherence we interestingly found that the scattering of the
points around the theoretical curve is significantly more evident for the quantum
mutual information may be signalling that a key role, in our case, is played by
unexpected classical correlations. This point will be subject of further theoretical
and experimental investigation.



CHAPTER 7

NON-DEGENERATE TYPE II OPOWITH

FLUCTUATING PARAMETERS

The fields generated by optical parametric oscillators (OPOs) are widely used in
quantum communication as resource states for different protocols as the teleporta-
tion one. The reason for this lies in the fact that ideal OPOs generate of Gaussian
CV entangled states. OPOs can be divided into two types depending on the type
of interaction realized in the non—linear crystal. Type—I refer to crystals in which
the downconverted signal and idler beams have the same polarization, type—II to
cross—polarized beams. In the latter case, below threshold and at frequency de-
generacy [104] a single type—II OPO generates a bi—partite entagled state. In the
former a single OPO generates a squeezed vacuum state [86] and entagnlement
is obtained by mixing at a balanced beam—splitter two independently generated
squeezed vacuum field. In the case these two type—I OPOs are pumped by the
same field the two generation schemes are completely equivalent and the equations
ruling the dynamics of the entangled state are in all equal.

Aim of this chapter is to analyse such a dynamics in presence of noise sources
other from the quantum noise entering the OPO cavity through different loss
mechanisms. In particular, we describe the dynamic of a type—II frequency degen-
erate OPO by a set of Langevin equations by including in the model introduced
by Graham and Haken in the late 60s [105] different classical noise sources like
pump amplitude fluctuations, laser phase diffusion, cavity resonance fluctuations
and fluctuations in the non-linear effective coefficient. The presence of extra noise
sources modifies the statistical properties of the state and switches unexpected,
in a quite OPO, cross—correlations. The effects of fluctuating terms propagates
all the way down to the quantum property of the bi—partite state affecting the
ability of such a state of being a resource for quantum communication protocols.

As a matter of fact, in recent years, the quest for entangled states sharing
an high level of correlation has pushed up the level of measured squeezing. So
that starting from a squeezing level of −6.0 dB established by Polzik et al.[106]
a breakthrough of −7.2 dB, was brought by Aoki et al. [107] using periodically
poled KTiOPO4 crystals. Almost contemporarily Suzuki et al.[108] and Takeno
et al.[109] have reported a squeezing of −9 dB. Recently Eberle et al.[110] have
reported a squeezing of 12.7 dB. On one hand, this squeezing levels require
extremely challenging experimental techniques. On the other hand, these levels
can only be obtained getting closer to the oscillation threshold. A regime, as
already proved experimentally in a type—I OPO [98], where the role of these
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fluctuating terms become more evident. As discussed by Chaturvedi et al [111]
the fields generated by the OPO contribute increasingly to the fluctuations of
the pump giving rise to a phase transition. Even if the latter begins for relative
distances from the threshold of the order of 10−6, and squeezing above 10 dB,
the impact of amplitude fluctuations must be brought into account earlier [112].
Moreover, once a type—II OPO or a pair of type—I OPO driven by the same laser
are considered, the frequency fluctuations of the pump laser and optical modes
of the cavity induce a coupling between the quadrature X and Y giving rise to
correlations unexpected in ideal systems.

More generally, the output of an OPO depends on the fluctuations of the
quantum noise entering the system due to the interaction with the continuum
of e.m. modes of the outer space. This truly quantum noise adds itself to the
fluctuations of the pump and other device parameters as the mechanical stability of
the optical cavity and/or the temperature fluctuations of the non-linear medium.
The latter ones can be described as classical stochastic processes with correlation
times much longer than the quantum one.

As we mentioned in the course of this dissertation, the proper use of the fluctu-
ating parameters of the OPO system can adequately be addressed to engineering
of non-Gaussian states. In fact, a first consequence of the presence of extra noise
terms the generated state looses its Gaussian character so that its Wigner function
become slightly non-Gaussian. Moreover, the fidelity of various CV teleportation
schemes have been evaluated by giving for granted the Gaussian character of the
resources provided by physical OPO sources. Thus, it is rather intuitive that
loosing the Gaussian character the fidelity that the state can provide changes.
In particular, we found that the fidelity is increased in presence of extra fluctu-
ations. This is not surprising being well known that, as proved in Ref. [1], that
the teleportation fidelity can be increased by using non—Gaussian resource.

In the present chapter, under the guidance of Prof. Salvatore Solimeno and
Dott. Alberto Porzio of the Università degli Studi di Napoli "FedericoII", we
present an initial discussion on the effects of the presence of extra noise sources
onto the characteristic characteristic functions, of the field quadratures, for the
quantum state as a function of the pump strength quantified by the relative dis-
tance from the oscillation threshold. Due to these influences the state becomes
non-Gaussian. Moreover, the introduction of phase dependent noises, as pump
frequency and cavity resonance condition, leads to the coupling between the dif-
ferent Langevin equations for the field quadratures so that a certain degree of
correlation appear in the out-of-diagonal elements of the quantum state covari-
ance matrix. Once the fluctuating Langevin equations are solved, the net effect on
the bi—partite state covariance matrix and on the effective teleportation fidelity
are calculated.

The weight of these sources in determining the deviation from the Gaussian
statistics was discussed in Ref. [112] where it was shown that the OPO is mainly
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dependent on the pump amplitude relative fluctuations µ(t). In view of the promi-
nent role of the pump amplitude fluctuation and in order to properly evaluate the
contribution of the different noise sources to the changes in the covariance ma-
trix and the teleportation fidelity, we have solved exactly the equation for what
concern the pump fluctuation and treated all the other sources in a perturbative
fashion. To clearly indicate this hierarchy in the formulas we have indicated with
a bar ”” quantities averaged on the pump amplitude noise and with 〈〉i (i a label
indicating the noise under consideration) all the other averages.

The chapter is organized as follows. In Sec. 7.1 the OPO Langevin system
is derived by taking into account the set of four parameters µp (relative pump
amplitude fluctuation), ̟p (pump frequency deviation from the mean value), δν
(deviation of the cavity resonance ferquency), δχ (fluctuation of the non—linear
coupling parameter). In Sec. 7.2 the field equations of motion are integrated.
The relative covariance matrix σ for the field transmitted through a noisy channel
and the characteristic function are obtained in Sec. 7.3. In particular for what
concerns σ it is shown that as a consequence of the fluctuations of ̟p, δν and δχ
off-diagonal terms σxy are generally not zero. On the other hand the characteristic
function coincide formally with that relative to Gaussian states with classically
fluctuating σ (τ). Eventually the effects of the source parameter fluctuations on
the fidelity of a coherent state teleported is analyzed in Sec. 7.4.

7.1 Graham-Haken-Langevin system
Type II OPOs rely on parametric down—conversion: a strong pump beam

at frequency ωp interacts in a non—linear crystal with the vacuum fields thus
generating two mutually orthogonal beams, signal and idler, at frequency ωs =
ωi =

1
2
ωp respectively [105],[111]. The three OPO cavity modes ak (a0 pump at

frequency ωp, as and ai respectively signal and idler) evolve under the action of
the Hamiltonian

Hint = i�2χ
(
bsbib

†
0 − b0b†sb†i

)
+ i�

(
E∗b0 − Eb†0

)
(7.1)

where χ is the coupling parameter proportional to the crystal second order sus-
ceptibility χ(2). The pump field E = e−iφpǫ

(
1 + µp

)
is treated in the rotating

frame e−iωpt as a complex quantity with a constant amplitude ǫ modulated by
a fluctuating factor 1 + µp (t) (

〈
µp
〉
= 0) times a phase factor e−iφp, where

φp (t) is a slowly diffusing phase, i.e. in accordance with the usual laser theory〈(
φp (t)− φp (t′)

)〉2
= 2∆yℓ |t− t′| with ∆ℓ the laser linewidth [113]. In particular

d
dt
φp = ̟p a stationary Gaussian process with 〈̟p (t)̟p (t

′)〉 = 2∆ℓδ (t− t′) .
µp (t) will be treated as a stationary Gaussian process. Analogously as, ai are

defined in the frame e−iωpt/2.
The cavity modes are characterized by damping factors γj,M , γj,x

(
γj = γj,M + γj,x

)

due respectively to the output mirror (M) and the other loss mechanisms (x:
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crystal absorption and scattering, absorption of the two mirrors, etc.). Modes
are assumed to be slightly detuned by ̟k =

πc
Lk

[
Lk

ωk
πc

]
− ωk, [x] standing for the

closest integer to x. Lk = L̄k+δLk with L̄k the averageOPO cavity optical length
(Lk = nkL) at frequency ωk while δLk is due to the mirror position fluctuations.
Moreover, in view of the condition ωs = ωi =

1
2
ω0 we have ̟s = ̟i =

1
2
̟0.

The evolution of the cavity mode operators is rooted in the theoy of Langevin
equations with quantum sources developed by Graham-Haken[105]. Namely it is
described by the Graham-Haken Langevin equations (GHLE) :

d

dt
bj =− κbj + 2χb0b

†
j′ +Rj j = s, i and j 
= j′

d

dt
b0 =− κ0b0 − 2χ∗bsbi + E +R0 (7.2)

where κ = γ − i̟s, κ0 = γ0 − i2̟s. The parameter χ is proportional to the
crystal susceptibility χ(2) through the phase—matching factor[114], the focusing
parameter and the crystal absorption. Under this assumption χ will be replaced
in the following by χ̄e−iφχ (1 + δχ) with χ̄ depending on the slow variations of T
while φχ is a phase depending on the position of the beam waist with respect to
the crystal center. With an accurate alignment φχ can be set equal to 0.

Besides other the system (7.2) contains the fluctuating forcesRk (t) =
√
2γk,Mbk,M+√

2γk,xbk,x which take into account the delta correlated vacuum fluctuation fields,〈
bk,M,x (t) b

†
k,M,x (t

′)
〉
= δ (t− t′), entering the OPO cavity.

Next, replacing bs and bi with the modes bς = (ςbs + bi) /
√
2, ς = +/−1, Eqs.

(7.2-a) transform into
d

dt
bς = −κbς + ς2χb0b†ς +Rς (7.3)

This change in the reference frame for the downconverted modes uncouples the
equations for the signal and idler modes. The two equations in b+ and b− represent
two distinct fully degenerate type—I OPO pumped by the same field and working
out of phase. Each of these type—I generates a squeezed vacuum state. As a matter
of fact, it is possible to obtain an entangled CV system by mixing two independent
squeezed vacua on a beam splitter. This operation is in all equivalent to going
back to the previous rederence frame. With an accurate tuning the systematic
deviation fom resonance can be removed so that ̟ reduce to the contribution of
the residual mirror vibrations.

The OPO admits a threshold value for the amplitude ǫ

ǫth =
γ0γ

2 |χ̄| =
√
γ0γ√
2gχ̄

with

gχ̄ =
2|χ̄|√
2γ0γ



7.1. GRAHAM-HAKEN-LANGEVIN SYSTEM 123

an adimensional parameter, of the order of 10−6, describing the non—linear inter-
action strength χ̄ of the OPO crystal[111].Below threshold, a0 has a non—zero
mean value r0 proportional to the driving field amplitude ǫ (= γ0r0).

Now, it is worth replacing ǫ with the parameter E:

E =
ǫ

ǫth
=
√
2γ̂0r0gχ̄

with the caret labeling hereafter quantities divided by γ. Separating the aver-
age part r0 from the fluctuating one δb0 = r0a0 we put b0 = e−iφpr0 (1 + a0)
(a0 = X0 + iY0). Conversely the modes bς have zero mean value and will be ex-
pressed in terms of rescaled operators bς = rςaς , with rς =

√
γ̂0r0. Hence, ignoring

the contribution of the term proportional to bsbi the system (7.2) reduces to

ȧς = −κ̂aς + ςEe−iφp (1 + a0 + δχ) a†ς +
R̂ς

rς

ȧ0 = − (κ̂0 − i ˆ̟ p) a0 + γ̂0µp + i ˆ̟ + eiφp
R̂0
r0
,

with ̟ = 2̟s +̟p and a dot indicating the derivative d/d (γt) . In particular

〈
R̂ς (τ) R̂

†
ς (τ

′)
〉

r2ς
=

4

E2
g2χ̄δ (τ − τ ′) .

Introducing now the vectors

Ẋ0 = −γ̂0X0 − ˆ̟ Y0 + γ̂0µp + X̂R0 ,

Ẏ0 = −γ̂0Y0 + ˆ̟X0 + ˆ̟ + ŶR0, (7.4)

and

Ẋς = − [λς − ςE (X0 + δχ)]Xς −
(
ˆ̟

2
− ςEY0

)
Yς + X̂Rς ,

Ẏς = − [λ−ς + ςE (X0 + δχ)]Yς +

(
ˆ̟

2
+ ςEY0

)
Xς + ŶRς , (7.5)

and defining the vector variables

Ψς =

[
Xς (τ )
Yς (τ )

]
, Nς (τ) =

[
X̂Rς (τ)

ŶRς (τ )

]



7.1. GRAHAM-HAKEN-LANGEVIN SYSTEM 124

with Xς (τ) , Yς (τ) signal and idler quadratures, measured by homodyne detectors
using Ehom ∝ e−iωpt/2−iφp/2 as local oscillator,

Xς =
E

2
√
2gχ̄

(
eiφp/2aς + e

−iφp/2a†ς
)

Yς =
E

2
√
2gχ̄

(
−ieiφp/2aς + ie−iφp/2a†ς

)

and doing the same for the analogous quantities X0, Y0 relative to the pump mode
and the vacuum fluctuationsX̂Rς , ŶRς , X̂R0 , ŶR0 ,

Ψ0 =

[
X0

Y0

]
, N0 =

[
γ̂0µp + X̂R0

ˆ̟ + ŶR0

]

the system (7.3) can be recast as

Ψ̇ς = −H ·Ψς +Nς

Ψ̇0 = −H0·Ψ0 +N0 (7.6)

where

Hς =

[
λς 0
0 λς̄

]
+

[
ςE (X0 + δχ) − ˆ̟

2
− ςEY0

ˆ̟
2
− ςEY0 −ςE (X0 + δχ)

]
= H(0)

ς + εWς

H0 = −γ̂01+ ˆ̟

[
0 −1
1 0

]
= H(0)

ς + εW0

with ˆ̟ = ˆ̟ s + ˆ̟ i + ˆ̟ p = 2 ˆ̟ s + ˆ̟ p, λς = 1− ςE.
In particular

〈
X̂Rς (τ)X̂Rς (τ

′)
〉

=
〈
ŶRς (τ )ŶRς (τ

′)
〉
= δ(τ − τ ′),

〈
X̂R0(τ )X̂R0(τ

′)
〉

=
〈
ŶR0(τ )ŶR0(τ

′)
〉
= γ̂20δ(τ − τ ′).

In conclusion, the OPO analyzed in the following is characterized by classi-
cal fluctuating parameters µp, ̟p, ̟k and δχ, all together determining the OPO
dynamics. For typical operating conditions, (σµp ≃ 10−3 ÷ 10−2, gχ̄ ≃ 10−6,

γ ≃ 10 ÷ 20 MHz, σ̟p
≃ 1 ÷ 1000 Hz, σT ≃ 1 ÷ 10 mK, ∂n/∂T ≈ 10−6 ÷ 10−4

and σχ ≈ 10−5÷10−4) σ ˆ̟ p and σν̂ respectively range in the intervals 10−6÷10−4
and 10−5 ÷ 10−3.

We note that the presence of phase noises (̟p and ̟k) implies that the
X quadrature is dynamically coupled to Y . As we will see, this circumstance
introduces in the downconverted field cross—correlation terms that are absent in
an ideal system.
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7.2 Integration of the GHL system

Integrating (7.4) yields

X0 (τ ) =

∫ τ

−∞
e−γ̂0(τ−τ

′) ·
[
cosϕ (τ , τ ′)

(
γ̂0µp (τ

′) + X̂R0 (τ
′)
)
− sinϕ (τ , τ ′)

(
ˆ̟ (τ ′) + ŶR0 (τ

′)
)]
dτ ′

Y0 (τ ) =

∫ τ

−∞
e−γ̂0(τ−τ

′) ·
[
cosϕ (τ , τ ′)

(
ˆ̟ (τ ′) + ŶR0 (τ

′)
)
+ sinϕ (τ , τ ′)

(
γ̂0µp (τ

′) + X̂R0 (τ
′)
)]
dτ ′

with ϕ (τ , τ ′) =
∫ τ
τ ′
ˆ̟ dτ ′′.

Analogously we have

Ψς (τ) =

∫ τ

−∞
Gς (τ , τ

′) ·Nς (τ
′)

with

Gς (τ , τ
′) = T̂ e−

∫ τ
τ ′
Hςdτ ′′ = 1−

∫ τ

τ ′
Hςdτ

′′ +

∫ τ

τ ′
Hςdτ

′′
∫ τ ′′

τ ′
Hςdτ

′′′ − · · ·

T̂ being the time ordering operatorand. NextGς (τ , τ
′) can be expabded in a power

series in ε :

Gς (τ , τ
′) = G(0)

ς (τ , τ ′) + εG(1)
ς (τ , τ ′) + ε2G(2)

ς (τ , τ ′)

where

d

dτ
G(0)

ς (τ , τ ′) = −H(0)
ς ·G(0)

ς

d

dτ
G(1)

ς (τ , τ ′) = −H(0)
ς ·G(1)

ς +Wς ·G(0)
ς

d

dτ
G(2)

ς (τ , τ ′) = −H(0)
ς ·G(2)

ς +Wς ·G(1)
ς

that is

G(0)
ς (τ , τ ′) = e−

∫ τ
τ ′
H
(0)
ς dτ ′′ ,

G(1)′
ς (τ , τ ′) =

∫ τ

τ ′
G(0)

ς (τ , τ ′′) ·Wς (τ
′′) ·G(0)

ς (τ ′′, τ ′) dτ ′′,

G(2)′
ς (τ , τ ′) =

∫ τ

τ ′
G(1)

ς (τ , τ ′′) ·Wς (τ
′′) ·G(1)

ς (τ ′′, τ ′) dτ ′′.
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7.3 Covariance matrix and characteristic function

In order to find the covariance matrix, we average the quantity

Ψς (τ)Ψ
T
ς (τ ) =

∫ τ

−∞
dτ ′
∫ τ

−∞
dτ ′′Gς (τ , τ

′) ·Nς (τ
′)NT

ς

(
τ ′
′
)
·GT

ς (τ , τ
′′) (7.7)

with respect to the quantum noise Nς (τ
′). We obtain

σς (τ) =

∫ τ

−∞
Gς (τ , τ

′) · ρth ·GT
ς (τ , τ

′)

with
ρth =

〈
Nς (τ

′)NT
ς (τ

′)
〉

the density matrix of the quantum noise entering the cavity.
From (7.7) it descends for the covariance matrix [115] σςij averaged with re-

spect to the quantum noise sources X̂Rς , ŶRς

σςxx (τ ) =
〈
X2

ς (τ )
〉
= σς̄yy (τ ) =

〈
Y 2ς̄ (τ )

〉

=

∫ τ

−∞

[
e2λςτ

′

G2ςxx (τ , τ
′) + e2λς̄τ

′

G2ςxy (τ , τ
′)
]
dτ ′

σςxy (τ ) = 〈Xς (τ )Yς (τ )〉 = 〈Yς (τ)Xς (τ)〉

=

∫ τ

−∞

[
−e2λςτ ′Gςxx (τ , τ

′)Gς̄xy (τ , τ
′) + e2λς̄τ

′

Gςxy (τ , τ
′)Gς̄xx (τ , τ

′)
]
dτ ′.

In particular, the variance
〈
X2

θς

〉
= σθς of Xθς = Xς cos θ + Yς sin θ reads

σθς (τ) = σςxx (τ) cos
2 θ + 2σςxy (τ ) sin 2θ + σςyy (τ) sin

2 θ.

Depending Xς (τ) , Yς (τ ) on the Gaussian quantum processes X̂Rς (τ
′) , ŶRς (τ

′) we
have more in general

〈
X2n

θς (τ)
〉
=

{
(2n− 1)!!σnθς (τ)

0 othervise
. (7.8)

In the following we will neglect the quantum fluctuations of X̂R0, ŶR0 with
respect to µp (τ

′) and ˆ̟ (τ ′). In this way the covariance matrix elements can be
written as

σςxx (τ) =
2gχ̄
E2

2 〈n (τ)〉+ 1

2
[cosh (2r (τ))− sinh (2r (τ )) cos 2ϕ (τ)] ,

σςyy (τ) =
2gχ̄
E2

2 〈n (τ)〉+ 1

2
[cosh (2r (τ)) + sinh (2r (τ)) cos 2ϕ (τ )] ,

σςxy (τ) =
2gχ̄
E2

2 〈n (τ)〉+ 1

2
sinh (2r (τ)) sin 2ϕ (τ ) .
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The quantum density matrix ρ (t) of theOPOmodes is asociated to the Weyl
characteristic function

χ (uς , vς) = Tr[D̂ (uς , vς) ρς ] =
〈
D̂ (uς , vς)

〉
,

which can be constructed starting from the set of moments
〈
a†man

〉
. In view of

(7.8) we have

χ (uς , vς) = exp
[
−
(
σςxxu

2
ς + 2σςxyuςvς + σςyyv

2
ς

)]
(7.9)

averaged with respect the classical processes ̟p, ν, and χ and depending on time
through the fluctuation induced by the pump amplitude in σ (τ ).

Analogously we have for the Wigner function

W (Xς , Yς) =
1

detσς (τ)

〈
exp

[
−
(

X2
ς

σςxx (τ )
+ 2

XςYς
σςxy (τ )

+
Y 2ς

σςyy (τ )

)]〉

̟,χ

.

We have seen that the covariance matrix of the mixed state σς propagating
through a noisy channel is given by

σς (τ ) = σ∞
(
1− e−Γτ

)
+ σς (0) e

−Γτ

with σ∞ the asymptotic covariance matrix

σ∞ =

[
2N+1+2M1

2
M2

M2
2N+1−2M1

2

]

being M = M1 + iM2 the bath correlation function and N a phenomenological
parameter related to the purity of the asymptotic state. Hence,

σς (τ ) =

[
2Neff+1+2M1eff

2
M2eff

M2eff
2Neff+1−2M1eff

2

]

where

Neff = N +
σςxx (0) + σςyy (0)− 2N − 1

2
e−Γτ

M1eff = M1 +
σςxx (0)− σςyy (0)− 2N − 1

2
e−Γτ

M2eff = M2 + (σςxy (0)−M2) e
−Γτ

Accordingly at zeroth order χ (ξς ; τ) reduces to

χ (ξς ; τ ) =

〈
exp

[
−
(
Aς̄ (τ)

Eς̄
u2ς +

Aς (τ )

Eς
v2ς

)]〉

µp

(7.10)
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while

tanh (2r (τ)) =

Aς(τ)
Eς
− Aς̄ (τ)

Eς̄
Aς (τ)
Eς

+ Aς̄ (τ)
Eς̄

〈n (τ)〉+ 1

2
=

E2

2gχ̄

√
Aς (τ)

Eς

Aς̄ (τ)

Eς̄

7.4 Teleportation

The fidelity of the teleportation of a coherent state.|β〉 using a two-mode
squeezed vacuum (Gaussian) state as a resource reads [25]

F =
1

e−2r + 1
.

where r is the degree of effective squeezing available. So that a perfect fidelity
(F = 1) can be approached only in the limit of infinite squeezing.

We aim at calculating the fidelity of a teleportation protocol [26] of a coherent
state using, as a resource, the two—mode state generated by a type—II OPO with
fluctuating parameters described in the above sections and compare the result
with the fidelity attainable by the same resource in the absence of fluctuations.

In a more general fashion the fidelity can be expressed in terms of the char-
acteristic functions of the input and output state [75, 1]

F =
1

2π

∫
du2dv2χin (u2, v2)χout (−u2,−v2) (7.11)

where χin (x, v) is the characteristic function of the input state, in our case coher-
ent state |β〉,

χin (x, v) = exp

[
−1
2
|α|2 + [(x+ iv)β∗ − (x− iv) β] /

√
2

]

and χout is the characteristic function of the teleportated state that can be ex-
pressed in terms of the resource state characteristc function

χout (u2, v2) = χin (u2, v2)χres (u2,−v2; u2, v2) , (7.12)

This general approach allows to calculate the fidelity even if the state is non-
Gaussian. Moreover, in Ref. [1], the performance of the a non-Gaussian state,
used as resources in the teleportation protocol, is proven to be given by a fine inter-
play among entanglement, non-Gaussianity, and the state affinity to a two—mode
squeezed-vacuum. In our case, the balance among these quantities is determined
precisely by the amount of fluctuations in phase and amplitude.
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As we have shown the presence of fluctuating terms in the equations ruling
the OPO induces a modification in the characteristic functions of the entangled
squeezed state acting as the resource state for the teleportation protocol. So that
χres (u2,−v2; u2, v2) in Eq. (7.12) is given by

χres (u1, v1; u2, v2) = χ (u+, v+; t)χ (u−, v−; t) ,

where χ (u+, v+; t) is given in Eq. (7.9) and

uς =
ςu1 + u2√

2
, (7.13)

vς =
ςv1 + v2√

2
,

So the characteristic function (7.12) becomes

χout (u2, v2; τ ) = χin (u2, v2) exp

[
− E

2

4gχ̄

(
σ+xx (τ) u

2
2 + σ−yy (τ ) v

2
2

)]
.

Therefore, the fidelity F , Eq.(7.11), is given by averaging on the time-dependent
quantities

F ≡f(τ),
where

f (τ ) =
1

2π

∫
du2dv2χin (u2, v2; τ)χout (−u2,−v2; τ )

=
1√(

E2

2gχ̄
σ+xx (τ ) + 1

)(
E2

2gχ̄
σ−yy (τ ) + 1

) (7.14)

Expanding in terms of the fluctuating quantities σ+xx (τ ) and σ−yy (τ), and re-
taining only even non—zero moments, we have

F =
∞∑

k=0

F (k)

with

F (k) =
∑

n:
n+m=k

δk,0√(
E2

2gχ̄
σ+xx + 1

)(
E2

2gχ̄
σ−yy + 1

)

+
δm,0Σ

(n−1)
+xx√

E2

2gχ̄
σ−yy + 1

+
δn,0Σ

(m−1)
−yy√

E2

2gχ̄
σ+xx + 1

+ Σ
(n−1)
+xx Σ

(m−1)
−yy
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where

Σ(ℓ)ςqq = Θ [ℓ]
(2ℓ)!! (4ℓ+ 3)!!

(4ℓ+ 4)!!

(
E2

2gχ̄

)2(ℓ+1) (
σ2ςqq (τ)− σςqq2

)ℓ+1

(
E2

2gχ̄
σςqq + 1

)(4ℓ+5)/2 .

The parameters Σ
(ℓ)
ςqq are the averages of the fluctuating quantities σ2ςqq (τ). In

particular, we have

F (0) = 1√(
E2

2gχ̄
σ+xx + 1

)(
E2

2gχ̄
σ−yy + 1

) , (7.15)

F (1) =
Σ
(0)
+xx√

E2

2gχ̄
σ−yy + 1

+
Σ
(0)
−yy√

E2

2gχ̄
σ+xx + 1

(7.16)

=
3

8
F (0)




(
σ2+xx (τ)− σ+xx2

)

(
σ+xx +

2gχ̄
E2

)2 +

(
σ2−yy (τ )− σ−yy2

)

(
σ−yy +

2gχ̄
E2

)2




F (2) =
Σ
(1)
+xx√

E2

2gχ̄
σ−yy + 1

+
Σ
(1)
−yy√

E2

2gχ̄
σ+xx + 1

+ Σ
(0)
+xxΣ

(0)
−yy (7.17)

=
35

64
F (0)




(
σ2+xx (τ )− σ+xx2

)2

(
σ+xx +

2gχ̄
E2

)4 +

(
σ2−yy (τ)− σ−yy2

)2

(
σ−yy +

2gχ̄
E2

)4

+
9

64

(
σ2+xx (τ )− σ+xx2

)2 (
σ2−yy (τ)− σ−yy2

)2

(
σ+xx +

2gχ̄
E2

)4 (
σ−yy +

2gχ̄
E2

)4


 . (7.18)

It is worth noting that the even moments all have positive coefficients so that
any fluctuation of σ+xx (τ) and σ−yy (τ ) will improve the overall fidelity.

At zeroth order in ̟p, δχ, i.e. considering pump amplitude fluctuation only,
the resource characteristic function χres reduces to

χout (u2, v2; τ) = χin (u2, v2) exp

[
− E

2

4gχ̄

Aς (τ)

Eς

(
u22 + v

2
2

)]
.

So that, the fluctuating fidelity f (τ ) Eq. (7.14) becomes

f (τ ) =
1

E2

2gχ̄

Aς(τ)
Eς

+ 1
.
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Expanding in terms of the fluctuating quantity Aς (τ) and retaining only even
non—zero moments, gives

F =
∞∑

n=0

F (n)

F (n) =

(
E2

2gχ̄Eς

)2n (
A2ς (τ )−Aς

2
)2n

(
E2

2gχ̄

Aς
Eς

+ 1
)2n+1

with

F (0) =
1

E2

2gχ̄

Aς
Eς

+ 1
,

F (1) = F (0)
(
A2ς (τ )− Aς

2
)2

(
Aς +

2gχ̄
E2
Eς

)2 ,

F (2) = F (0)
(
A2ς (τ )− Aς

2
)4

(
Aς +

2gχ̄
E2
Eς

)4 .

It is worth noting that the even moments all have positive coefficients so that any
fluctuation of Aς (τ ) will improve the overall fidelity.



CHAPTER 8

CONCLUSION

We have developed some important aspects of quantum information, often us-
ing the characteristic function formalism, particularly suitable for the study of
non-Gaussian quantum states. For example, in the Chapter 1, we have used the
formalism of the characteristic function for calculating the action of the condi-
tional measurements on multipartite systems in very general circumstances. This
description is found to be very useful in Chapter 5 , where we have introduced
a suitable generation scheme capable to produce a class of non-Gaussian tunable
states which well approximates the class of SB states proposed in [1]. A prelimi-
nary analysis showed that the state generated by our scheme, used as a resource,
provides the maximum fidelity of teleportation of a coherent state in the most
interesting range of the experimentally accessible values of squeezing r at present.
The obtained performance is better both of generated TB and of generated PS
squeezed states (these last representing the best resources till now experimentally
obtained). This result is given in both ideal and realistic conditions. In particular,
in ideal conditions of generation (no losses, perfect photon-resolving detection),
for r > 0.5 the performance of the proposed optimal states lies very near to that
of the optimized theoretical SB state. In realistic conditions (presence of losses,
only on/off measurements allowed), obviously, the fidelities sensibly deteriorate,
but, as remarked, the optimal generated state provides again, in a large zone of
interesting values of r, the best performance with respect to TB and PS squeezed
states.

It is interesting to note that the performance can be even further improved
with a slight improvement in reducing the level of losses and in increasing the
detection efficiency. Regarding the problem of increasing the efficiency in photon-
resolving it can be solved by the implementation of superconducting wires at very
high efficiency. If these improvements are achieved, the optimal realistic tunable
state will approach ideal instance.

In any case, our preliminary analysis shows that our scheme can generate
non-Gaussian states which perform better than other generated states, including
the PS squeezed states. In a forthcoming work we will design in details the
experimental set up needed to realize our scheme. To this aim, we will consider
the two possible instances: continuous wave and pulsed regime. In the same work
we will show how we will reconstruct the generated states by performing suitable
homodyne detections.

Obviously, at the end of this route we aim to obtain our most ambitious

132
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goal, the actual realization of the experimental generation. The realization of this
states is very important for the development of the new technologies in Quantum
Information. We have found also that the SB states were found to be the best
resources for protocol Swapping too. In fact, in the Chapter 4 we have studied
the efficiency of the vLB CV quantum swapping protocol for the transmission
of quantum states and entanglement. As a preliminary task, we have expressed
the entanglement swapping protocol in the characteristic function representation.
In order to evaluate the performance of the swapping protocol the teleportation
fidelity of a coherent state has been assumed as convenient indicator to quantify
the performance levels, using the swapped states as entangled resource. We have
shown that the optimization procedures of the squeezed Bell resource allow to
have high values of the fidelities both in the ideal and the realistic instances.

Also for the violation of Bell’s inequality, the SB states offer the best per-
formance in respect with all the other considered states. In particular, in the
Chapter 3 we have used two different approaches for evaluating the entity of in-
equality violation: that of psudo-spin and that of the Wigner function. In both
cases, the SB states maximize the violation of inequality with respect to other
non-Gaussian and Gaussian states. This supports the project of an experimen-
tal scheme of generation of this important class of non-Gaussian quantum states
(Chapter 5).

Another important non-Gaussian quantum state, that can be generated eas-
ily, is produced by OPO with fluctuating pump. Squeezed beams generated by
parametric oscillators operating under threshold are widely used as resources for
the teleportation of quantum states. From the moment that the fidelity of these
processes increases with the degree of squeezing these devices are designed in such
a way as to bring the amplitude of the pump to the oscillation threshold. As it
approaches the component antisqueezed the field suffers from increasingly of the
fluctuations of the pump, the oscillation frequency of the optical cavity and effec-
tive coupling parameter of nonlinear crystal used. In the chapter 7 we have got
an expression of the correlation matrix of the field by introducing three stochastic
mutually correlated functions. These are obtained the moments to the various
orders by assuming that the noise of the amplitude of the pump is uniform in a
given band. It is also shown that the fluctuations of the pump frequency and the
resonance of the cavities have the effect of coupling the two quadratures X and Y .
Due to the presence of these fluctuating factors the characteritic function looses
its Gaussian character. Such non-Gaussianity leads to an increase in fidelity of
teleportation of a cohrent state.

Finally, in the Chapter 6, we have experimentally analysed how decoherence
affects different entanglement criteria and quantum markers for a CV bi—partite
state outing a sub—threshold type—II OPO. The decoherence is experimentally
introduced by transmistting the quantum state through a variable attenuator.
Before illustrating our experimental results we have discussed in details the rela-
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tionship between the three different entanglement criteria used in the CV frame-
work and linked them to the fidelity of teleportation and quantum discord. The
latters represent two possible quantum signatures for evaluating the ability of this
class of states in quantum communication protocols.

On one hand, our findings prove that the Lindblad approach for describing
lossy transmission is valid all the way down to strongly decohered states. On the
other hand, we have proved that the particular class of states we have analysed
keeps, within the experimental indeterminacies retains, its main quantum signa-
tures, i.e. the possibility of realizing quantum teleportation of coherent states
with a fidelity above 0.5 and a quantum discord above 0 for a total loss of ≈ 99%.
This proves that the class of CV entangled states, we analysed, would allow,
in principle, to realize quantum teleportation over an infinitely long Gaussian
channel.

In analysing how quantum discord (see Fig. 6.7) and quantum mutual infor-
mation behave under decoherence we interestingly found that the scattering of the
points around the theoretical curve is significantly more evident for the quantum
mutual information may be signalling that a key role, in our case, is played by
unexpected classical correlations. This point will be subject of further theoretical
and experimental investigation.



CHAPTER 9

APPENDIX A: BEAM SPLITTER

The beam splitter (BS) has an important role in the study of quantum aspects
of the light radiation and is the main component of homodyne detection. It is an
optical device with two inputs and two outputs (see Fig. 9.1).

Figure 9.1: Schematic representation of a Beam Splitter.

Recalling that the electromagnetic fields can be expressed through the opera-
tors of annihilation and creation, the output fields a3 and a4 of the BS are related
to the input fields a1 and a2 by linear relations of the type:

(
a3
a4

)
= S

(
a1
a2

)

=

(
S11 S12
S21 S22

)(
a1
a2

)
,

where S is the BS matrix. The element S11 (S22) is interpretable as the trans-
mission coefficient for the beam that enters in the port 1 (2), and emerges from
3 (4). The terms off-diagonal of S, indeed, represent the reflection coefficients. We
assume the BS lossless. In general, the elements of the matrix S are complex and
may be expressed in terms of amplitude |Sij|, and phase φij, i.e.

Sij = |Sij| eiφij .
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We note that it is necessary that the operators a3 and a4 verify the commutation
relations. So that they may actually represent the fields if

[
aj , a

†
j

]
= 1, for j = 3, 4,

[aj, aj′] =
[
a†j , a

†
j′

]
= 0.

Such commutation relations impose a restriction to the elements of the matrix,

|S11| |S21| = |S12| |S22| , (9.1)

φ11 − φ12 = φ21 − φ22 ± π, (9.2)

from which we obtain the following relations

|S11|2 = |S22|2 = T = cos2 θ,

|S21|2 = |S12|2 = R = sin2 θ,

T and R being the transmittance and reflectance, respectively, of the beam split-
ter, such that T +R = 1. The above relations show that the dynamics of the BS
is established by a single parameter

θ = arctan

√
1− T
T

.

Starting from (9.2) it is convenient to define the phases

φT ≡ (φ11 − φ22) /2,
φR ≡ (φ12 − φ21 ∓ π) /2,
φ0 ≡ (φ11 + φ22) /2,

so that we have the most general form of the matrix S

S = eiφ0
(

eiφT cos θ eiφR sin θ
−e−iφR sin θ e−iφT cos θ

)

= eiφ0
(

t r
−r∗ t∗

)
,

where t = eiφT
√
T , and r = eiφR

√
R. Its determinant is

det [S] = e2iφ0 ,

and the transformation is unitary. The number of photons, between the input
modes and output modes, is conserved,

n3 + n4 = n1 + n2. (9.3)
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It is clear that imposing energy conservation (9.3) does not determine uniquely
the transformation realized by the BS. There are three independent phases: φT ,
φR, and φ0, that remain indeterminate, as well as the transmissivity T . The
presence of many degrees of freedom makes possible to build different types of
beam splitter:

• BS with real coeffiients: φT = φR = 0. In this case, the incident fields are
not out of phase, with the consequent conservation of the polarization;

• symmtric BS: we have S11 ∈ Re and S12 ∈ Im, i.e. φT = 0 and φR = π/2;

• balanced BS: it is a symmetric BS with T = R = 1/2.

Moreover, without loss of generality, we can set the phase factor global φ0
equal to zero. This is justified if the input beams of the BS propagate in the same
plane.

Now, we want to evaluate the number of photons and the variance of the
output fields. Combining the results obtained for the matrix S, we obtain

a3 =
√
TeiφT a1 +

√
1− TeiφRa2,

a4 = −
√
1− Te−iφRa1 +

√
TeiφT a1,

so the photon number operator of the two modes is

n3 = Tn1 + (1− T )n2 + 2
√
T (1− T )Î ,

n4 = (1− T )n1 + Tn2 − 2
√
T (1− T )Î ,

where Î is the interference operator

Î =
1

2
a†1a2e

−i(φT−φR) + h.c.

The expectation values of the number of photons are

〈n3〉 = T 〈n1〉+ (1− T ) 〈n2〉+ 2
√
T (1− T )

〈
Î
〉
, (9.4)

〈n4〉 = (1− T ) 〈n1〉+ T 〈n2〉 − 2
√
T (1− T )

〈
Î
〉
. (9.5)

For the coherent states |αi〉 such that αi = |αi| eiφi, with i = 1, 2, the expectation
value of the interference operator is

〈
Î
〉
|α1,α2〉

=
〈
α1, α2

∣∣∣Î
∣∣∣α1, α2

〉

= |α1| |α2| cos (φ1 − φ2 + φT − φR) ,
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and it corresponds to the interference pattern for classical state. We can see that〈
Î
〉
|n1,n2〉

= 0 for the Fock states |n1, n2〉.
In order to calculate the variances, we denote the covariance classical with the

symbol
cov (A,B) ≡ 〈A,B〉 − 〈A〉 〈B〉 ,

and the quantum one as

Ξ (A,B) =
1

2
[cov (A,B) + cov (B,A)]

so that if [A,B] = 0 then Ξ (A,B) =cov(A,B). The variance of the sum of two
generic operators can be, thus, expressed distinguishing the classical contribution
from the quantum one,

〈
∆(A+B)2

〉
=
〈
(A+B)2

〉
− 〈A+B〉2

=
〈
∆A2

〉
+
〈
∆B2

〉
+ Ξ (A,B) .

In this notation the variances of photon number of the output modes become [142]

〈
∆n23

〉
= T 2

〈
∆n21

〉
+ (1− T )2

〈
∆n22

〉
+ 2T cov (n1, n2)

+4T (1− T )
〈
∆Î2
〉
+ T 3/2 (1− T )1/2 Ξ

(
n1, Î

)

+(1− T )3/2 T 1/2Ξ
(
n2, Î

)
,

〈
∆n24

〉
= (1− T )2

〈
∆n21

〉
+ T 2

〈
∆n22

〉
+ 2T cov (n1, n2)

+4T (1− T )
〈
∆Î2
〉
− (1− T )3/2 T 1/2Ξ

(
n1, Î

)

−T 3/2 (1− T )1/2 Ξ
(
n2, Î

)
,

The first three terms depend on the fluctuations of the input fields. The other
three terms, instead, are are proportional to the fluctuations introduced by the
beam splitter.
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