Utilizza questo identificativo per citare o creare un link a questo documento:
http://elea.unisa.it/xmlui/handle/10556/1009
Titolo: | Some group properties associated with two-variable words |
Autore: | Meriano, Maurizio Longobardi, Patrizia Longobardi, Patrizia Nicotera, Chiara |
Parole chiave: | Group;Two-variable word;Engel conditions |
Data: | 3-apr-2013 |
Editore: | Universita degli studi di Salerno |
Abstract: | Let w(x; y) be a word in two variables and W the variety determined by w. In this thesis, which includes a work made in collaboration with C. Nicotera [5], we raise the following question: if for every pair of elements a; b in a group G there exists g 2 G such that w(ag; b) = 1, under what conditions does the group G belong to W ? We introduce for every g 2 G the sets Ww L (g) = fa 2 G j w(g; a) = 1g and Ww R (g) = fa 2 G j w(a; g) = 1g ; where the letters L and R stand for left and right. In [2], M. Herzog, P. Longobardi and M. Maj observed that if a group G belongs to the class Y of all groups which cannot be covered by conjugates of any proper subgroup, then G is abelian if for every a; b 2 G there exists g 2 G for which [ag; b] = 1. Hence when G is a Y -group and w is the commutator word [x; y], the set Ww L (g) = Ww R (g) is the centralizer of g in G, and the answer to the problem is a rmative. If G belongs to the class Y , we show that, more generally, the problem has a positive answer whenever each subset Ww L (g) is a subgroup of G, or equivalently, if each subset Ww R (g) is a subgroup of G. The sets Ww L (g) and Ww R (g) can be called the centralizer-like subsets associated with the word w. They need not be subgroups in general: we examine some su cient conditions on the group G ensuring that the sets Ww L (g) and Ww R (g) are subgroups of G for all g in G. We denote by W w L and W w R respectively the class of all groups G for which the set Ww L (g) is a subgroup of G for every g 2 G and the class of all groups G for which each subset Ww R (g) is a subgroup... [edited by author] |
Descrizione: | 2011 - 2012 |
URI: | http://hdl.handle.net/10556/1009 http://dx.doi.org/10.14273/unisa-3 |
È visualizzato nelle collezioni: | Scienze matematiche, fisiche ed informatiche |
File in questo documento:
File | Descrizione | Dimensioni | Formato | |
---|---|---|---|---|
tesi - M. Meriano.pdf | tesi di dottorato | 578,55 kB | Adobe PDF | Visualizza/apri |
abstract in inglese M.Meriano.pdf | abstract in inglese a cura dell’autore | 191 kB | Adobe PDF | Visualizza/apri |
abstract in italiano M. Meriano.pdf | abstract in italiano a cura dell’autore | 190,36 kB | Adobe PDF | Visualizza/apri |
Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.