Utilizza questo identificativo per citare o creare un link a questo documento: http://elea.unisa.it/xmlui/handle/10556/1009
Titolo: Some group properties associated with two-variable words
Autore: Meriano, Maurizio
Longobardi, Patrizia
Longobardi, Patrizia
Nicotera, Chiara
Parole chiave: Group;Two-variable word;Engel conditions
Data: 3-apr-2013
Editore: Universita degli studi di Salerno
Abstract: Let w(x; y) be a word in two variables and W the variety determined by w. In this thesis, which includes a work made in collaboration with C. Nicotera [5], we raise the following question: if for every pair of elements a; b in a group G there exists g 2 G such that w(ag; b) = 1, under what conditions does the group G belong to W ? We introduce for every g 2 G the sets Ww L (g) = fa 2 G j w(g; a) = 1g and Ww R (g) = fa 2 G j w(a; g) = 1g ; where the letters L and R stand for left and right. In [2], M. Herzog, P. Longobardi and M. Maj observed that if a group G belongs to the class Y of all groups which cannot be covered by conjugates of any proper subgroup, then G is abelian if for every a; b 2 G there exists g 2 G for which [ag; b] = 1. Hence when G is a Y -group and w is the commutator word [x; y], the set Ww L (g) = Ww R (g) is the centralizer of g in G, and the answer to the problem is a rmative. If G belongs to the class Y , we show that, more generally, the problem has a positive answer whenever each subset Ww L (g) is a subgroup of G, or equivalently, if each subset Ww R (g) is a subgroup of G. The sets Ww L (g) and Ww R (g) can be called the centralizer-like subsets associated with the word w. They need not be subgroups in general: we examine some su cient conditions on the group G ensuring that the sets Ww L (g) and Ww R (g) are subgroups of G for all g in G. We denote by W w L and W w R respectively the class of all groups G for which the set Ww L (g) is a subgroup of G for every g 2 G and the class of all groups G for which each subset Ww R (g) is a subgroup... [edited by author]
Descrizione: 2011 - 2012
URI: http://hdl.handle.net/10556/1009
http://dx.doi.org/10.14273/unisa-3
È visualizzato nelle collezioni:Scienze matematiche, fisiche ed informatiche

File in questo documento:
File Descrizione DimensioniFormato 
tesi - M. Meriano.pdftesi di dottorato578,55 kBAdobe PDFVisualizza/apri
abstract in inglese M.Meriano.pdfabstract in inglese a cura dell’autore191 kBAdobe PDFVisualizza/apri
abstract in italiano M. Meriano.pdfabstract in italiano a cura dell’autore190,36 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.