Utilizza questo identificativo per citare o creare un link a questo documento: http://elea.unisa.it/xmlui/handle/10556/3809
Titolo: A locally adaptive bandwidth selector for kernel based regression
Autore: Giordano, Francesco
Parrella, Maria Lucia
Parole chiave: Nonparametric regression;Variable bandwidth selection;Derivative estimation;Neural networks;Local polynomials;Dependent data
Data: 2009
Citazione: Giordano, F. and Parrella, M. L. (2009). “A locally adaptive bandwidth selector for kernel based regression”. DISES Working Paper 3.209, Università degli Studi di Salerno, Dipartimento di Scienze Economiche e Statistiche.
Abstract: The selection of the smoothing parameter represents a crucial step in the local polynomial regression, because of the implications on the consistency of the nonparametric regression estimator and because of the difficulties in the implementation of the selection procedure. Moreover, to capture the complexity of the unknown regression curve, a local variable bandwidth is needed, which determines an increase in the efficiency and computa- tional costs of such algorithms. This paper focuses on the problem of the automatic selection of a local bandwidth. We propose a slightly different approach with respect to the traditional ones, which does not require ad- ditional computational effort. The empirical performance of the method is shown in the paper through a simulation study.
URI: http://elea.unisa.it:8080/xmlui/handle/10556/3809
http://dx.doi.org/10.14273/unisa-2031
ISSN: 1971-3029
È visualizzato nelle collezioni:DiSES Working Papers

File in questo documento:
File Descrizione DimensioniFormato 
3.209_Giordano_Parrella_A_locally_adaptive_bandwidth_selector_for_kernel_based_regression.pdfworking paper442,62 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.