Please use this identifier to cite or link to this item: http://elea.unisa.it/xmlui/handle/10556/3859
Abstract: The class of Multivariate BiLinear GARCH (MBL-GARCH) models is proposed and its statistical properties are investigated. The model can be regarded as a generalization to a multivariate setting of the univariate BLGARCH model proposed by Storti and Vitale (2003a; 2003b). It is shown how MBL-GARCH models allow to account for asymmetric effects in both conditional variances and correlations. An EM algorithm for the maximum likelihood estimation of the model parameters is provided. Furthermore, in order to test for the appropriateness of the conditional variance and covariance specifications, a set of robust conditional moments test statistics are defined. Finally, the effectiveness of MBL-GARCH models in a risk management setting is assessed by means of an application to the estimation of the optimal hedge ratio in futures hedging.
Appears in Collections:DiSES Working Papers

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.