Please use this identifier to cite or link to this item:
http://elea.unisa.it/xmlui/handle/10556/4276
Title: | Continuum and discrete approaches to the statics of masonry vaults |
Authors: | De Piano, Mariella Fraternali, Fernando Berardi, Valentino Paolo Fraternali, Fernando |
Keywords: | Masonry;Continuum;Discrete |
Issue Date: | 16-Apr-2019 |
Publisher: | Universita degli studi di Salerno |
Abstract: | This dissertation presents continuum and discrete approaches to the statics of masonry vaults. The thrust surface concept is introduced within Heyman’s safe theorem and extends the funicular curve to the3D case. A variational formulation of the truss network of masonry vaults is presented and allows to search a‘safe’ thrust surface within a design domain. Such a model is based on a scalar potential φ of the stress carried by the thrust surface S (Airy’s stress function) and polyhedral approximations to φ, by a predictor-corrector strategy based on the convex hull technique (no-tension model). In the same way, a static load multiplier for curved structures is iteratively obtained and validated, by increasing the live loads over several steps and verifying, for each interaction, the existence of a corresponding statically admissible state of equilibrium via lumped stress method. Using this approach, we can observe potential cracks,where the stress state is unidirectional. A tensegrity model of reinforced vaults is also proposed and allows to perform a design minimal mass reinforcements of masonry vaults under static and seismic loads. Several case studies of unreinforced and reinforced masonry vaults are presented and discussed. [edited by Author] |
Description: | 2017 - 2018 |
URI: | http://elea.unisa.it:8080/xmlui/handle/10556/4276 http://dx.doi.org/10.14273/unisa-2482 |
Appears in Collections: | Rischio e sostenibilità nei sistemi dell'ingegneria civile, edile ed ambientale |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tesi di dottorato M. De Piano.pdf | tesi di dottorato | 25,21 MB | Adobe PDF | View/Open |
abstract in inglese M. De Piano.pdf | abstract in inglese a cura dell’autore | 67,18 kB | Adobe PDF | View/Open |
abstract in italiano M. De Piano.pdf | abstract in italiano a cura dell’autore | 65,14 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.