Please use this identifier to cite or link to this item:
http://elea.unisa.it/xmlui/handle/10556/6449
Title: | Processi bioelettrochimici a membrane dinamiche autoformanti incapsulate per il trattamento sostenibile delle acque reflue |
Authors: | Castrogiovanni, Fabiano Fraternali, Fernando Belgiorno, Vincenzo Naddeo, Vincenzo Borea, Laura |
Keywords: | Mbr;Fouling;Depurazione |
Issue Date: | 1-Jul-2021 |
Publisher: | Universita degli studi di Salerno |
Abstract: | Access to water has become one of the main challenges of modern society due to the growing imbalance between the demand and availability of water resources. Studies carried out so far on wastewater treatment have greatly improved the quality of purified water and discharged into water bodies and, at the same time, minimizing the risks to human health and the aquatic environment. More stringent regulations on the quality of wastewater, with the scarcity of water resources, have determined over the years the development of advanced water treatments in order to ensure compliance with the limits to discharge into the receiving water body and, at the same time, make it possible to reuse the water treated. Among the significant innovations, membrane bioreactors (MBR), being characterized by significant advantages over conventional activated sludge processes (CAS) thanks to the combination of biological processes with membrane filtration systems, are finding more and more application for the treatment of wastewater. The biological unit of the MBR reactors allows the biodegradation of contaminants while the filtering membranes, integrated in it, allow the physical separation of the treated water from the biomass. Therefore, in addition to high removal efficiencies, substantially disinfected high quality effluent and reduced sludge production, these reactors have the advantage of significantly reducing space and, therefore, the required overall dimensions. Despite these advantages, the rapid fouling of the membranes, defined with the term fouling, and the high investment costs of the membranes still limit the widespread use of the technology on a large scale. ... [edited by Author] |
Description: | 2019 - 2020 |
URI: | http://elea.unisa.it:8080/xmlui/handle/10556/6449 http://dx.doi.org/10.14273/unisa-4521 |
Appears in Collections: | Rischio e sostenibilità nei sistemi dell'ingegneria civile, edile ed ambientale |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tesi di dottorato F.Castrogiovanni.pdf | tesi di dottorato | 10,98 MB | Adobe PDF | View/Open |
abstract in inglese e italiano F.Castrogiovanni.pdf | abstract in italiano e inglese a cura dell'Autore | 348,25 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.