Utilizza questo identificativo per citare o creare un link a questo documento: http://elea.unisa.it/xmlui/handle/10556/6450
Titolo: Multiple object tracking and face-based video retrieval: applications of deep learning to video analysis
Autore: Ciaparrone, Gioele
Antonelli, Valerio
Tagliaferri, Roberto
Parole chiave: Deep learning;Multiple object tracking;Video retrieval
Data: 11-ott-2021
Editore: Universita degli studi di Salerno
Abstract: In recent years, deep learning (DL) has obtained numerous successes in analyzing complex data, such as images or audio. A particularly recent area of application is the analysis of videos. This thesis focuses on the application of deep learning algorithm to two video analysis tasks: Multiple Object Tracking (MOT) and Face-based Video Retrieval (FBVR). The first main part of the thesis presents an in-depth survey of the state of the art of DL-based MOT algorithms. This is the first comprehensive survey specifically on the use of DL for MOT, focusing on 2D frames extracted from single-camera videos. I identify the four main steps of a MOT algorithm and describe the various DL techniques used in the literature in each of those four steps. I also collect and compare results obtained by existing algorithms on the most common MOT datasets and I analyze the most successful techniques employed. Finally, I present a discussion about the open issues of current MOT algorithms and the possible solutions and future directions of research. The second part of the thesis focuses instead on the task of FBVR. I present a novel pipeline for the retrieval of unconstrained multi-shot videos using faces, specifically in the context of television-like videos. Since no existing dataset in the literature is appropriate for an end-to-end evaluation of the proposed pipeline, I build a large-scale video dataset by adapting the VoxCeleb2 dataset to the task of FBVR. I compare and evaluate numerous DL-based approaches for the various steps in pipeline, such as shot detection, face detection and face recognition, and I describe the advantages and disadvantages of each employed technique. ... [edited by Author]
Descrizione: 2019 - 2020
URI: http://elea.unisa.it:8080/xmlui/handle/10556/6450
http://dx.doi.org/10.14273/unisa-4522
È visualizzato nelle collezioni:Big Data Management

File in questo documento:
File Descrizione DimensioniFormato 
tesi di dottorato G.Ciaparrone.pdftesi di dottorato4,05 MBAdobe PDFVisualizza/apri
abstract in italiano G.Ciaparrone.pdfabstract in italiano a cura dell'Autore248,7 kBAdobe PDFVisualizza/apri
abstract in inglese G.Ciaparrone.pdfabstract in inglese a cura dell'Autore238,12 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.