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Introduction

Given a class of groups X , a group-theoretical property P is said to be

bigenetic [26] in the class X if an X -group G has property P whenever all

two-generator subgroups of G have property P. It is a well-known fact that

nilpotency is bigenetic in the class of all finite groups, and in [34] J.G. Thompson

also showed that a finite group is solvable whenever each pair of its elements

generates a solvable group. More recently, S. Dolfi, R.M. Guralnick, M. Herzog

and C.E. Praeger [10] proved that solvability of finite groups is ensured by a

seemingly weaker condition, namely a finite group G is solvable if for every pair

of elements a, b ∈ G there exists an element g ∈ G for which the subgroup 〈ag, b〉
is solvable. Moreover, it is possible to obtain a similar criterion also for the

class of nilpotent finite groups: a finite group G is nilpotent if for every pair of

elements a, b ∈ G there exists an element g ∈ G for which 〈ag, b〉 is nilpotent.

Let Y be the class of groups which cannot be covered by conjugates of any

proper subgroup. This class was investigated by J. Wiegold in [38] and [39].

In particular, it contains all finite and solvable groups. In [19], M. Herzog, P.

Longobardi and M. Maj observed that a group G which belongs to the class Y

is abelian if for every a, b ∈ G there exists g ∈ G such that the subgroup 〈ag, b〉
is abelian, or equivalently, if for every a, b ∈ G there exists g ∈ G for which

[ag, b] = 1.

In Chapter 2 of the thesis, which includes a work made in collaboration with

C. Nicotera [29], we consider the following problem:

Problem 1. Let G be a Y -group and w(x, y) be a word; if for every a, b ∈ G
there exists g ∈ G such that w(ag, b) = 1, then is it true that w(a, b) = 1 for all

a, b ∈ G, i.e. does G belong to the variety determined by the law w(x, y) = 1?
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In Section 2.4 we introduce for every g ∈ G the sets

Ww
L (g) = {a ∈ G | w(g, a) = 1}

and

Ww
R (g) = {a ∈ G | w(a, g) = 1} ,

where the letters L and R stand for left and right. Observe that if w is the

commutator word [x, y], then the set Ww
L (g) = Ww

R (g) is the centralizer of g in

G, and the result due to M. Herzog, P. Longobardi and M. Maj ensures that

the answer to Problem 1 is affirmative. In Theorem 2.3.1 we show that, more

generally, Problem 1 has a positive answer whenever each subset Ww
L (g) is a

subgroup of G, or equivalently, if each subset Ww
R (g) is a subgroup of G.

The sets Ww
L (g) and Ww

R (g) can be called the centralizer-like subsets associ-

ated with the word w. They need not be subgroups in general. In Chapter 3 we

examine some sufficient conditions on the group G ensuring that the sets Ww
L (g)

and Ww
R (g) are subgroups of G for all g in G. We denote by W w

L the class of

all groups G for which the set Ww
L (g) is a subgroup of G for every g ∈ G, and

in Theorem 3.1.1 we show that a group G belongs to the class W w
L if for every

g, h, k ∈ G, w(g, 1) = 1 and w(g, hk) is the product of a conjugate of w(g, h)

and a conjugate of w(g, k). A similar property holds for the class W w
R of all

groups G for which the set Ww
R (g) is a subgroup of G for every g ∈ G.

In Section 2.4 we begin our investigation with the n-Engel word

w(x, y) = [x,n y],

with n ≥ 2. We say that a group G is in the class Cn if for every pair of elements

a, b ∈ G there exists g ∈ G such that

[ag,n b] = 1.

L.-C. Kappe and P.M. Ratchford proved [24] that if G is a metabelian group,

then the centralizer-like subsets associated with the second variable of w is a

subgroup of G for every g ∈ G. From this property it follows Theorem 2.4.2,

which states that every metabelian Cn-group is n-Engel.
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If n = 2, we extend Theorem 2.4.2 by considering other classes of groups

which are contained in the class Y . In particular, we prove that any solvable

C2-group is 2-Engel. There are Tarski’s monsters G such that for every a, b ∈ G
there exists g ∈ G for which [ag, b] = 1. For every n ≥ 2, these are examples of

non-solvable Cn-groups which are not n-Engel. These examples also show that

the class Cn does not coincide with the class of n-Engel groups. If n > 2, then

we give a partial solution to the following problem:

Problem 2. Is it true that every solvable Cn-group is n-Engel?

We prove in Theorem 2.4.4 that a finite solvable Cn-group is nilpotent, and

in Corollary 2.4.2 that every finitely generated solvable Cn-group is nilpotent.

It follows that a finitely generated solvable Cn-group is m-Engel, for some

non-negative integer m. But the following problem remains open:

Problem 3. Is it true that every finitely generated solvable Cn-group is

n-Engel? At least, is it possible to find a function f(n) such that every finitely

generated solvable Cn-group is f(n)-Engel?

In Chapter 3 we consider the centralizer-like subsets associated with some

commutator words in two variables. These results can be found in [22]. First we

focus on two-variable words of the form

w(x, y) = Cn[y, x],

where Cn is a left-normed commutator of weight n ≥ 3 with entries from the set

{x, y, x−1, y−1}. N.D. Gupta [15] considered a number of group laws of the form

Cn = [x, y],

observing that any finite or solvable group satisfying such a law is abelian. The

question arises whether each group satisfying a law of the form Cn = [x, y]

is abelian. L.-C. Kappe and M.J. Tomkinson [25] solved the problem in the

case n = 3, by showing that the variety of groups satisfying one of the laws of

the form C3 = [x, y] is the variety of the abelian groups. In [30], P. Moravec

extended the result to the case n = 4.

We show in Corollary 3.2.1 that every locally nilpotent group belongs to the
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classes W w
L and W w

R associated with the word w. Moreover, if w(x, y) is one of

the 2n−1 words of the form

[y, xα1 , xα2 , . . . , xαn−1 ][y, x]

or one of the 2n−1 words of the form

[xα1 , y, xα2 , . . . , xαn−1 ][y, x],

where αi ∈ {−1, 1} for every i = 1, . . . , n−1, then any metabelian group belongs

to the class W w
L . In metabelian groups a symmetry of the centralizer-like subsets

associated with the words of the form w(x, y) = Cn[y, x] holds: if

w(x, y) = [r1, r2, r3, . . . , rn][y, x],

with ri ∈ {x, y, x−1, y−1} for every i = 1, . . . , n, then for every element g in a

metabelian group G we have

Ww
R (g) = Ww

L (g)

and

Ww
L (g) = Ww

R (g),

where w(y, x) = [r2, r1, r3, . . . , rn][x, y].

In Section 3.2.1 we more specifically investigate the word w when n = 3.

Excluding the trivial cases in which r and s are equal or inverses, there are

thirty-two remaining non-trivial words of the form

[r, s, t][y, x],

with r, s, t ∈ {x, y, x−1, y−1}. In [25], L.-C. Kappe and M.J. Tomkinson observed

that six of the thirty-two words are strongly equivalent to the simple commutator

word [x, y], i.e. for every g, h ∈ G the value of these words at (g, h) is 1 if and

only if the elements g and h commute. Therefore, if w(x, y) is one of these six

words, then for every element g in a group G the sets Ww
L (g) and Ww

R (g) are

exactly the centralizer of g in G. If G is a metabelian group, for the case n = 3
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we observe that G belongs to the class W w
L for exactly eleven of the thirty-two

words w, by exhibiting counterexamples for the remaining words.

We conclude Chapter 3 investigating the words of the form

w(x, y) = (xy)ny−nx−n,

for some integer n. The Collection Formula of Philip Hall (see Lemma 3.3.1)

ensures that w(x, y) = (xy)ny−nx−n is a commutator word. It is also called

the n-commutator word. In Theorem 3.3.2 and Theorem 3.3.3 we prove that

W w
L = W w

R , and if the centralizer-like subsets Ww
L (g) and Ww

R (g) are both

subgroups of G, then we also have Ww
L (g) = Ww

R (g).

R. Baer introduced the n-center Z(G, n) of a group G: it is defined as the

set of all elements g ∈ G which n-commute with every element h ∈ G, i.e.

(gh)n = gnhn and (hg)n = hngn.

A group G which coincides with its n-center is said to be n-abelian. For every

element g in a group G we define the n-centralizer CG(g, n) of g in G as the set

of all elements of G which n-commute with g, namely, with our notation,

CG(g, n) = Ww
L (g) ∩Ww

R (g)

when w is the n-commutator word. The n-centralizer CG(g, n) is not necessarily

a subgroup, even if the group is metabelian. However, we prove that if a group

G is 2-Engel, then CG(g, n) = Ww
L (g) = Ww

R (g) is a subgroup of G for every

g ∈ G.



Chapter 1

Preliminaries

The purpose of this chapter is to recall some basic notions and to establish

some of the notation and terminology which will be used in the sequel. In

particular, we will mention briefly some results on Engel groups.

1.1 Basic concepts and definitions

Let n be a positive integer and let x1, x2, . . . , xn be elements of a group G.

We remind that the commutator [x1, x2] of x1 and x2 is defined by

[x1, x2] = x−11 x−12 x1x2 = x−11 xx21 ,

while for n > 2 a left-normed commutator of weight n is defined inductively by

the rule

[x1, . . . , xn] = [[x1, . . . , xn−1], xn].

By convention [x1, . . . , xn] = x1 if n = 1.

For every x, y ∈ G we use the symbol

[x,n y]

to denote the left-normed commutator of weight n + 1 of x and y, where y

appears n times on the right. We also assume [x,0 y] = x.

In the following lemma we summarize the standard commutator identities,
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see [32], which will be used without further reference.

Lemma 1.1.1. Let x, y, z be elements of a group. Then:

1) [xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z];

2) [x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z];

3) [x, y−1] = [x, y]−y
−1

;

4) [x−1, y] = [x, y]−x
−1

;

5) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 (the Hall-Witt identity).

6) [x, y, zx][z, x, yz][y, z, xy] = 1 (the Jacobi identity).

Lemma 1.1.2. Let x, y, z be elements of a group G. Then the following proper-

ties are satisfied:

1) if [x, z] = 1 and [x, y, z] = 1, then

[x, yz, yz] = [x, y, y]z;

2) if [x, [y, z]] = 1 and [x, y, [y, z]] = 1, then

[x, yz, yz] = [x, y, y][y,z];

3) if [x, y, y] = 1, then

[x, yn] = [x, y]n,

for every non-negative integer n.

Proof. 1) If [x, z] = 1 and [x, y, z] = 1, then we have

[x, yz, yz] = [[x, z][x, y][x, y, z], yz] = [x, y, yz] = [x, y, z][x, y, y]z = [x, y, y]z.

2) Let [x, [y, z]] = 1 = [x, y, [y, z]]. Since y[y, z] = yz, from property 1) it

follows

[x, yz, yz] = [x, y[y, z], y[y, z]] = [x, y, y][y,z].



1.1 Basic concepts and definitions 9

3) Let us use induction on n, the case n ≤ 1 being clear. If n > 1 then we

may assume [x, yn−1] = [x, y]n−1 by inductive hypothesis. If [x, y, y] = 1 then

[x, y]y = [x, y], and so we have

[x, yn] = [x, yn−1y] = [x, y][x, yn−1]y = [x, y]
(
[x, y]n−1

)y
= [x, y]n.

If X and Y are nonempty subsets of a group G, then [X, Y ] denote the

commutator subgroup of X and Y , namely the subgroup generated by the set of

all commutators of elements of X with elements of Y . Moreover, we recall that

G′ = [G,G] is the derived subgroup of the group G, and the sequence

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ,

where G(n) = (G(n−1))′ for every n > 0, is termed the derived series of G.

A group G is said to be solvable of derived length at most n if G(n) = 1. In

particular, a solvable group with derived length at most 2 is said to be metabelian.

Lemma 1.1.3. Let G be a metabelian group, x, y, z, g ∈ G, and c ∈ G′. Then:

1) [x, y, z][z, x, y][y, z, x] = 1 (the Jacobi identity);

2) [cg, z] = [c, z]g;

3) [xg, c, yz] = [x, c, y].

Proof. If G is a metabelian group, then for every x, y, z, g ∈ G, c ∈ G′ we have

[cg, z] = [c, zg
−1

]g = [c, z[z, g−1]]g = [c, [z, g−1]]g[c, z]g = [c, z]g,

[xg, c, yz] = [x[x, g], c, y[y, z]] = [x, c, y],

and

[x, y, zg] = [x, y, z[z, g]] = [x, y, z].

We also obtain

[x, y, z][z, x, y][y, z, x] = [x, y, zx][z, x, yz][y, z, xy] = 1,
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by property 6) of Lemma 1.1.1.

Lemma 1.1.4. Let n > 1 an integer, G be a metabelian group and xi ∈ G for

every i = 1, . . . , n. Then we have

[x1, x2, x3, . . . , xn]−1 = [x2, x1, x3, . . . , xn].

Proof. We induct on the integer n. Certainly [x1, x2]
−1 = [x2, x1]. If n > 2, then

by induction we obtain

[x1, x2, x3, . . . , xn]−1 =
(
[x1, x2, x3, . . . , xn−1]

−1[x1, x2, x3, . . . , xn−1]
xn
)−1

= [x1, x2, x3, . . . , xn−1][x1, x2, x3, . . . , xn−1]
−xn

= [x2, x1, x3, . . . , xn−1]
−1[x2, x1, x3, . . . , xn−1]

xn

= [x2, x1, x3, . . . , xn].

We remind that the lower central series of a group G is the descending series

of subgroups

G = γ1(G) ≥ γ2(G) ≥ · · · ,

with γn(G) = [γn−1(G), G] for every n > 1. Instead, the upper central series of

a group G is the ascending sequence of subgroups

1 = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ · · · ,

defined by Zn(G)/Zn−1(G) = Z(G/Zn−1(G)) for every n > 0. Of course Z1(G) =

Z(G) is the center of G, whereas each Zn(G) is called the nth center of G. For

infinite groups, one can extend the two series to infinite ordinal numbers via

transfinite recursion: if α is a limit ordinal, then the subgroups γα(G) and Zα(G)

(also called the α-center of G) are defined by the rules

γα(G) =
⋂
λ<α

γλ(G)
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and

Zα(G) =
⋃
λ<α

Zλ(G).

Since the cardinality of G cannot be exceeded, there exists a cardinal β at which

the upper central series stabilizes. The terminal group Z(G) = Zβ is called the

hypercenter of G.

In addition, the following property holds (see, for example, [32]).

Lemma 1.1.5. If G is any group, then G(i) ≤ γ2i(G) for every integer i ≥ 1.

Let X be an alphabet of letters x1, x2, . . . to which we refer as variables, and

let F be the free group having X as a free basis. An element w = xl1i1 · · ·x
lm
im
∈ F

is called a word in n variables, where n ≤ m, if n distinct letters xj1 , . . . , xjn

occur in w. In this case, we also denote the word w by

w(xj1 , . . . , xjn).

An element of the commutator subgroup F ′ is termed a commutator word.

If g1, . . . , gn are elements of a group G and w(xj1 , . . . , xjn) is an n-variable

word, then the element w(g1, . . . , gn) in the group G, computed by substituting

each gi for the indeterminate xji , is called the value of w at (g1, . . . , gn). The

word w is said to be a law in the group G if the only possible value of w in

G is 1. Two words w1, w2 ∈ F are said equivalent if w1 is a law in a group G

whenever w2 is a law in G and vice versa. Moreover, if w1 and w2 are n-variable

words, then we define the two words strongly equivalent if, for every g1, . . . , gn

in a group G, w1(g1, . . . , gn) = 1 implies w2(g1, . . . , gn) = 1 and vice versa.

1.2 Engel elements

An element x of a group G is called a right Engel element of G if for all g ∈ G
there exists a non-negative integer n = n(g) such that [x,n g] = 1. Instead x is

said to be a left Engel element of G if for all g ∈ G there exists a non-negative

integer n = n(g) such that [g,n x] = 1. If in either case the integer n can be

chosen independently of g then we talk about right n-Engel or left n-Engel

element respectively.
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We say that a group G is an Engel group if every element of G is a left Engel

element or, equivalently, if every element of G is a right Engel element of G.

By an n-Engel group we mean a group G satisfying the law [x,n y] = 1, so that

every element of G is both a left and right n-Engel element of G. Obviously a

0-Engel group has order 1 and the variety of 1-Engel groups is the variety of all

abelian groups.

As an example, the variety of n-Engel groups contains every nilpotent group

whose nilpotency class is bounded by n. It is clear that every locally nilpotent

group is an Engel group, while the converse is not true in general. Indeed,

E.S. Golod [13] constructed for every prime p and for every integer d > 2 a

non-nilpotent d-generated p-group in which every (d− 1)-generated subgroup is

nilpotent. Every 2-generator subgroup of these groups is nilpotent; then, these

are all examples of Engel groups which are not locally nilpotent. It has been a

long-standing open question whether all n-Engel groups are locally nilpotent.

During the international conference “Algebraic groups and related structures”,

held on 17-22 September 2012 in Saint-Petersburg, Russia, in honour of Nikolai

Vavilov on the occasion of his 60th birthday, E. Plotkin announced that E.

Rips has constructed, for n sufficiently large, examples of non-nilpotent finitely

generated groups which are n-Engel.

The first main result on Engel groups is Zorn’s Theorem:

Theorem 1.2.1 (M. Zorn [40]). Every finite Engel group is nilpotent.

Moreover, the following theorems hold (see, for instance, [32]):

Theorem 1.2.2 (K.W. Gruenberg). Every finitely generated solvable Engel

group is nilpotent.

Theorem 1.2.3 (R. Baer). Every Engel group satisfying max is nilpotent.

Observe that if x is an element of the nth center Zn(G), then x is a right

n-Engel element of G. Indeed, x ∈ Zn(G) if and only if [x, a] ∈ Zn−1(G) for

every a ∈ G. Therefore, it follows [x, a, a] ∈ Zn−2(G) for every a ∈ G, and

proceeding in the same way, we get [x,n a] = 1 for every a ∈ G. Conversely, it is

not true in general that right n-Engel elements need to be in the hypercenter.

For instance, for every prime p the standard wreath product G of a group of
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order p and an infinite elementary abelian p-group is a (p+1)-Engel group whose

center is trivial. Hence all elements of G are right (p+ 1)-Engel elements, but

Z(G) = 1.

However, the converse is true for a number of classes of groups:

Theorem 1.2.4 (R. Baer [1]). In every finite group the right Engel elements

belong to the hypercenter.

Theorem 1.2.5 (C.J.B. Brookes [5]). In every finitely generated solvable group

the right Engel elements belong to the hypercenter.

1.3 2-Engel groups

For ease of reference, in this section we recall some well-known results on

2-Engel groups. See [33] for a more detailed treatment.

A 2-Engel group satisfies the commutator law [x, y, y] = 1 or equivalently

the law [xy, x] = 1, i.e. any two conjugates commute.

Theorem 1.3.1 (F.W. Levi). Let G be a 2-Engel group and let x, y, z, t be

elements of G. Then:

1) xG is abelian;

2) [x, y, z] = [z, x, y];

3) [x, y, z]3 = 1;

4) [x, y, z, t] = 1.

From Theorem 1.3.1 it follows that a 2-Engel group is nilpotent of class

at most 3. In particular every 2-Engel group without elements of order 3 is

nilpotent of class at most 2.

Theorem 1.3.2 (F.W. Levi). Every group of exponent 3 is a 2-Engel group. If

G is a 2-Engel group, then [G′, G]3 = 1.

If G is a 2-Engel group, then by Lemma 1.1.5 we have G′′ ≤ γ4(G) = 1.

Consequently, every 2-Engel group is metabelian.

In the following theorems we state some basic properties of right 2-Engel

elements and 2-Engel groups:
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Theorem 1.3.3 (F.W. Levi, W.P. Kappe). Let a be a right 2-Engel element

and let x, y, z be elements of a group G. Then:

1) a is a left 2-Engel element;

2) [a, x, y] = [a, y, x]−1;

3) [a, [x, y], z] = 1;

4) [a, x, y, z]2 = 1;

5) [a, [x, y]] = [a, x, y]2.

Theorem 1.3.4 (W.P. Kappe). The right 2-Engel elements of a group form a

characteristic subgroup.

Theorem 1.3.5 (I.D. Macdonald, B.H. Neumann). In an arbitrary group a

right 2-Engel element of odd order lies in the third term of the upper central

series.

Theorem 1.3.6 (W.P. Kappe). The following properties of a group G are

equivalent:

1) G is a 2-Engel group;

2) xG is abelian for every x ∈ G;

3) if x ∈ G, then CG(x) �G;

4) every maximal abelian subgroup of G is normal;

5) each 2-generator subgroup of G is nilpotent of class at most 2;

6) the identity [x, y, z] = [x, z, y]−1 holds in G.

1.4 n-Engel groups when n ≥ 3

If n is greater than 2, then an n-Engel group need not be nilpotent. For

example, the standard wreath product of the cyclic group of order 2 by an

infinite elementary abelian 2-group is a 3-Engel group which is not nilpotent,
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since it is centerless. H. Heineken [18] proved that if G is a 3-Engel group, then

G is locally nilpotent and γ5(G) is a torsion group in which the only primes that

can occur as orders of elements are 2 and 5. Hence a 3-Engel group without

elements of order 2 or 5 is nilpotent of class at most 4. G. Traustason [35]

observed that if a locally nilpotent 4-Engel group has no elements of order 2,

3 or 5, then it is nilpotent of class at most 7. In 2005, G. Havas and M.R.

Vaughan-Lee [17] showed that every 4-Engel group is locally nilpotent; thus,

4-Engel groups without elements of order 2, 3 or 5 are nilpotent of class at most

7.

Notice that a group G is 2-Engel if and only if the normal closure of every

element of G is abelian, or equivalently 1-Engel. Moreover, L.-C. Kappe and

W.P. Kappe [21] proved that a group is 3-Engel if and only if xG is nilpotent

of class at most 2, from which it follows that a group G is a 3-Engel group if

and only if the normal closure of every element of G is 2-Engel. Recently, M.R.

Vaughan-Lee [36] generalized this property to 4-Engel groups: a group G is a

4-Engel group if and only if xG is 3-Engel for all x ∈ G.

Little is known about n-Engel groups when n > 4.



Chapter 2

On a property of two-variable

laws

In this chapter we introduce a problem concerning laws in two variables

in the class of groups which cannot be covered by conjugates of any proper

subgroup. In particular, we focus on the case of the n-Engel word.

2.1 Bigenetic properties

The purpose of this section is essentially to illustrate some results which

show how the structure of a group can be influenced by properties satisfied by

its 2-generator subgroups. For a more detailed analysis, see [27].

A group-theoretical class X is said to be closed under the formation of

subgroups, or equivalently S-closed, if every subgroup of an X -group is still

in the class X . Obviously the classes of abelian groups, cyclic groups and

finite groups are all S-closed. Also the class of all n-Engel groups (for every

non-negative integer n) is closed under taking subgroups, while the class of all

finitely generated groups is an example of class of groups which is not S-closed: if

G is the free group on two generators a and b, and S is the subset consisting of all

elements of G of the form ab
n
, with n a natural number, then 〈S〉 is isomorphic

to the free group of countable rank and it cannot be finitely generated.

If a group G belongs to an S-closed class X , then 〈x, y〉 ∈X for every pair

of elements x, y in G. Therefore, one might ask whether it is true that a group
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G is in the class X whenever the 2-generator subgroup 〈x, y〉 belongs to X for

every x, y ∈ G.

A group-theoretical property P is said to be bigenetic if a group G has

property P, whenever all 2-generator subgroups of G have property P. This

terminology was first introduced by J.C. Lennox in [26]. For instance, the class of

n-Engel groups is bigenetic and, more generally, every variety of groups defined

by a word in two variables is bigenetic. The class of all cyclic groups, instead, is

not bigenetic, since a locally cyclic group need not be cyclic.

Consider now, for every integer n ≥ 1, the class Nn of all nilpotent groups

whose nilpotency class is bounded by n and let N = ∪n≥1Nn be the class

of all nilpotent groups. Clearly such classes are closed under the formation

of subgroups. By Theorem 1.3.6 a group G is 2-Engel if and only if each of

its 2-generator subgroups is in N2. As there exist 2-Engel groups which are

nilpotent of class 3, the class N2 is not bigenetic. In [3], S. Bachmuth and H.Y.

Mochizuki proved the existence of a non-nilpotent 3-Engel group of exponent

5 all of whose 2-generator subgroups are nilpotent of class at most 3; thus the

class N3 is not bigenetic. Also nilpotency is not a bigenetic property: M.R.

Vaughan-Lee and J. Wiegold [37] constructed, for each prime p ≥ 5, a countable

locally finite perfect group of exponent p for which 〈x, y〉 is nilpotent of bounded

class for every pair of elements x, y; thus, considering that a perfect group is not

solvable, such examples show that neither the class N nor the class of solvable

groups is bigenetic.

If a group property P is not bigenetic, in some cases it is possible to

determine some interesting class of groups X such that a group G is in X

whenever 〈x, y〉 ∈ P for every x, y in G. For example, if every 2-generator

subgroup of a group G is cyclic, then G is abelian. Furthermore, if 〈x, y〉 ∈ N2

for every x, y in G, then G is in N3 as a 2-Engel group is nilpotent of class ≤ 3.

In addition, when a property is not bigenetic one can try to establish if

there exists a sufficiently large class of groups in which the property is bigenetic.

Given a class of groups X , a property P is called bigenetic in the class X if

an X -group G has property P whenever all 2-generator subgroups of G have

property P.

Let us now consider the class of finite groups.
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Theorem 2.1.1. Nilpotency is bigenetic in the class of all finite groups.

Proof. If every pair of elements of a finite group G generates a nilpotent group,

then there exists a natural number c such that every 2-generator subgroup of G

is nilpotent of class bounded by c. It follows that [x,c y] = 1 for every x, y ∈ G;

hence G is a finite c-Engel group and so it is nilpotent.

A minimal simple group is a non-abelian simple group all of whose proper

subgroups are solvable. In [34], J.G. Thompson classified finite minimal simple

groups and showed that every finite minimal simple group is generated by two

elements. As a consequence, the author obtained that a finite group is solvable

if and only if every pair of its elements generates a solvable group.

Theorem 2.1.2. The property of solvability is bigenetic in the class of all finite

groups.

Proof. Suppose by contradiction that there exist finite non-solvable groups all

of whose 2-generator subgroups are solvable and let G be a counterexample of

minimal order. In particular, we may assume that G is not abelian. If G is

not simple, then there exists a non-trivial normal subgroup N of G. Observe

that every 2-generator subgroup of N and of G/N is still solvable. Therefore,

N and the quotient G/N are both solvable by the minimality of the order of G.

This means that G is solvable, a contradiction. If G is simple, then G is a finite

non-abelian simple group with every proper subgroup solvable by the minimality

of the order of G. Hence G is a minimal simple group and by Thompson’s

result it is 2-generated. Consequently G is solvable by hypothesis, but this is a

contradiction.

The result was later proved by P. Flavell [11] without using Thompson’s

classification of minimal simple groups. Also polycyclicity is bigenetic in the

class of finite groups. In fact, a group is polycyclic if and only if it is solvable

and satisfies the maximal condition. Thus for finite groups polycyclicity and

solvability are equivalent. Moreover, the following theorem holds:

Theorem 2.1.3 (R.W. Carter, B. Fischer, T. Hawkes [6]). The property of

supersolvability is bigenetic in the class of all finite groups.
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The next results show that nilpotency and polycyclicity are bigenetic in the

class of all finitely generated solvable groups.

Theorem 2.1.4. Nilpotency is bigenetic in the class of all finitely generated

solvable groups.

Proof. Let g be an element of a finitely generated solvable group G. If every

2-generator subgroup of G is nilpotent, then for every x ∈ G we have that 〈g, x〉
is nilpotent and so for every x ∈ G there exists a natural number c such that

[g,c x] = 1. Thus g is a right Engel element of G. It follows that G is an Engel

group and by Theorem 1.2.2 it is nilpotent.

Theorem 2.1.5 (J.C. Lennox [26]). If every 2-generator subgroup of a solvable

finitely generated group G is polycyclic, then G is polycyclic.

2.2 Some solvability criteria for finite groups

Theorem 2.1.2 states that a finite group is solvable if and only if every pair of

its elements generates a solvable group. Actually, several other weaker conditions

ensuring solvability of a finite group have appeared in the literature recently. For

instance, R.M. Guralnick and J.S Wilson [16] showed that solvability of a finite

group is guaranteed by solvability of a sufficient proportion of its 2-generator

subgroups. They proved that a finite group G is solvable if and only if more

than 11
30

of the pairs of its elements generates a solvable group.

Another solvability criterion for finite groups is due to N. Gordeev, F.

Grunewald, B. Kunyavskĭi and E. Plotkin [14]. It asserts that a finite group

G is solvable if and only if in every conjugacy class of G each pair of elements

generates a solvable subgroup.

The next extension of Theorem 2.1.2 was obtained in a paper published in

2012 [10].

Theorem 2.2.1 (S. Dolfi, R.M. Guralnick, M. Herzog, C.E. Praeger). Let G be

a finite group. The following are equivalent:

1) G is solvable;
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2) for every pair of elements a and b in G there exists an element g ∈ G for

which 〈ag, b〉 is solvable;

3) for every pair of conjugacy classes C and D of G there exist x ∈ C and

y ∈ D for which 〈x, y〉 is solvable.

In the same paper [10] the authors generalized this property to every class

X of finite groups which is closed under taking subgroups, quotient groups,

and forming extensions: a finite group G is in X if and only if for every pair

of conjugacy classes C and D of G there exist x ∈ C and y ∈ D for which the

subgroup 〈x, y〉 is in X . Moreover, from the following result it is possible to

state that a similar criterion is true also for the class of finite nilpotent groups.

Theorem 2.2.2 (S. Dolfi, R.M. Guralnick, M. Herzog, C.E. Praeger). A finite

group G is nilpotent if and only if for every pair of distinct primes p and q and

for every pair of elements x and y in G with x a p-element and y a q-element,

x and yg commute for some g ∈ G.

Corollary 2.2.1. Let G be a finite group. The following are equivalent:

1) G is nilpotent;

2) for every pair of elements a and b in G there exists an element g ∈ G for

which 〈ag, b〉 is nilpotent;

3) for every pair of conjugacy classes C and D of G there exist x ∈ C and

y ∈ D for which 〈x, y〉 is nilpotent.

Proof. The implications 1) ⇒ 2) and 2) ⇒ 3) are obvious.

3) ⇒ 1). Let p and q be distinct primes and consider a pair of elements x

and y in G with x a p-element and y a q-element. In view of the former theorem,

to prove that G is nilpotent it suffices to show that xg and y commute for some

element g in G. By hypothesis there exist a, b ∈ G such that the 2-generator

subgroup
〈
xa, yb

〉
is nilpotent. The conjugate of x by a and the conjugate of y

by b have still orders which are powers respectively of p and q. Since a finite

nilpotent group is the direct product of its nontrivial Sylow subgroups, the

elements xa and yb are in two distinct factors of the direct product, and so they

commute. It follows that the conjugate of x by ab−1 and y commute.
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2.3 Groups which cannot be covered by conju-

gates of any proper subgroup

Denote by Y the class of all groups which cannot be written as the union of

the conjugates of any proper subgroup, i.e. if H is a subgroup of a Y -group G,

then H is the whole group G when G =
⋃
g∈GH

g. This class was investigated

in [38] and [39] by J. Wiegold, who observed that a Y -group can be characterized

in the following way:

Observation 2.3.1. Let G be a non-trivial group. The following statements

are equivalent:

1) G is a Y -group;

2) for every transitive action of G on a set Ω, |Ω| > 1, there is an element of

G displacing every element of Ω;

3) if S is any subset of G containing at least one representative of every

conjugacy class of G, then S generates G.

Proof. 1) ⇒ 2). First consider the transitive action of G on the set of the right

cosets of a proper subgroup H of G. If G belongs to the class Y , then there

is an element x ∈ G which is not contained in the union of the conjugates of

H. Since x ∈ Hg if and only if Hgx = Hg, we have Hgx 6= Hg for every g ∈ G.

Hence, there is an element of G which displaces every right cosets of H.

The result follows from the fact that every transitive action of G is equivalent

to an action on the right cosets of a subgroup of G.

2) ⇒ 3). Let S be a subset of G which contains a representative of every

conjugacy class of G. The subgroup H generated by S cannot be proper,

otherwise, considering the transitive action of G on the set of the right cosets of

H, by condition 2) there would exist an element x ∈ G for which Hgx 6= Hg

for every g ∈ G, i.e. x /∈ ∪g∈GHg. This would be a contradiction because H

contains a conjugate of x in G. Thus, G is generated by the subset S.

3) ⇒ 1). Let G be the union of the conjugates of a subgroup H. Then

for every x ∈ G there exists g ∈ G such that x ∈ Hg. In particular, for every

element x of a conjugacy class C of G the element xg
−1

of C is in H. Therefore,
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H contains representatives of every conjugacy class of G, and it follows by 3)

that H is the whole group G. Thus, G is in Y .

In [39], J. Wiegold showed that the class Y is not closed under subgroups

by exhibiting an example of Y -group whose commutator subgroup is not in Y .

Moreover, this class is closed under extensions and restricted direct products,

but it is not closed under cartesian products.

Observation 2.3.2. Every finite group belongs to the class Y .

Proof. Let H be a proper subgroup of a group G. If r > 1 is the index of H in

G, then the index s of the normalizer of H in G is the number of the conjugates

of H in G and it is bounded by r. As all the conjugates of H have the same

order and contain the identity, we have

|∪g∈GHg| ≤ s(|H| − 1) + 1 ≤ r(|H| − 1) + 1 = |G| − (r − 1) < |G| .

It follows that
⋃
g∈GH

g � G; hence G ∈ Y .

It is also known [38] that the class Y contains every solvable group, as

well as all hypercentral groups. In particular, Y contains the classes of groups

considered in Theorem 2.2.1 and Corollary 2.2.1.

In [19], M. Herzog, P. Longobardi and M. Maj proved that in Y the following

property holds:

Theorem 2.3.1 (M. Herzog, P. Longobardi, M. Maj). A Y -group G is abelian

if for every a, b ∈ G there exists g ∈ G for which [ag, b] = 1.

Notice that equivalently a Y -group G is abelian if for every a, b ∈ G there

exists g ∈ G such that 〈ag, b〉 is abelian, or if for every pair of conjugacy classes

C and D of G there exist x ∈ C and y ∈ D for which the 2-generator subgroup

〈x, y〉 is abelian. Therefore, this theorem may be restated in a form analogous

to the statements of Theorem 2.2.1 and Corollary 2.2.1.

Theorem 2.3.1 is not true in general for a group which does not belong to

the class Y . G. Cutolo, H. Smith and J. Wiegold showed [7] that there are

non-abelian groups of finitary permutations which are the union of the conjugates

of an abelian subgroup. Moreover, there exist Tarski’s monsters Tp, with p a
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large enough prime, in which all the subgroups of order p are conjugate. These

are all examples of non-abelian groups G which do not belong to the class Y

and in which for every pair of elements a, b there exists g ∈ G such that ag and

b commute. In fact, if G is the union of the conjugates of an abelian subgroup

H, then for every a, b ∈ G there exist g1, g2 ∈ G such that ag1 , bg2 ∈ H, and so

[ag1 , bg2 ] = 1 implies [ag1g
−1
2 , b] = 1.

2.4 On a property of two-variable laws

This section deals with some results recently obtained in collaboration with

C. Nicotera [29]. The theorems of the previous sections (Theorem 2.2.1, Corol-

lary 2.2.1 and Theorem 2.3.1) suggest the study of the following problem:

Problem 1. Let G be a Y -group and w(x, y) be a word; if for every a, b ∈ G
there exists g ∈ G such that w(ag, b) = 1, then is it true that w(a, b) = 1 for all

a, b ∈ G, i.e. does G belong to the variety determined by the law w(x, y) = 1?

Let w a word in two variables, G a group, and g ∈ G. Then, we define

Ww
L (g) = {a ∈ G | w(g, a) = 1}

and

Ww
R (g) = {a ∈ G | w(a, g) = 1} ,

where the letters L and R stand respectively for left and right.

Theorem 2.3.1 guarantees that the answer to Problem 1 is affirmative when

w is the commutator word. Notice that if w(x, y) = [x, y], then the subset

Ww
L (g) = Ww

R (g) is the centralizer of g in G. More generally, the problem has

a positive answer if each subset Ww
L (g) is a subgroup of G, or if each subset

Ww
R (g) is a subgroup of G. In this case Ww

L (g) and Ww
R (g) can be called the

centralizer-like subgroups associated with the word w.

Theorem 2.4.1. Let G be a Y -group and w(x, y) be a word; assume that for

all a, b ∈ G there exists g ∈ G such that w(ag, b) = 1. If one of the conditions

i) Ww
L (g) is a subgroup of G for every g ∈ G,
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ii) Ww
R (g) is a subgroup of G for every g ∈ G,

is satisfied, then G belongs to the variety determined by the law w(x, y) = 1.

Proof. For every pair of elements a, b of G we have w(ag, b) = 1 for some g ∈ G.

Thus, for all a, b ∈ G there exists g ∈ G such that b ∈ Ww
L (ag) = (Ww

L (a))g. But

then

G =
⋃
g∈G

(Ww
L (a))g .

If condition i) is satisfied, the hypothesis implies G = Ww
L (a) for every a ∈ G.

Hence w(a, b) = 1 for all a, b ∈ G.

Observe that the word w(x, y) is a law in G if and only if the word v(x, y) =

w(y, x), which switches x and y, is a law. Since

W v
L(g) = {a ∈ G | v(g, a) = 1} = Ww

R (g)

for every g ∈ G, the property is also true when condition ii) is satisfied.

2.4.1 n-Engel law

Let us now consider the word w(x, y) = [x,n y], which determines the variety

of n-Engel groups. While the right 2-Engel elements of a group form a subgroup,

I.D. Macdonald has shown in [28] that there exists a finite 2-group in which

the set of right 3-Engel elements is not a subgroup. The set of right n-Engel

elements of a group G coincides with the intersection of all the sets

Ww
R (g) = {a ∈ G | [a,n g] = 1} ,

with g ∈ G. Then, when n ≥ 3 the set Ww
R (g) cannot be a subgroup of G in

general, but property ii) of Theorem 2.4.1 holds in metabelian groups. Indeed,

L.-C. Kappe and P.M. Ratchford proved [24] that if G is a metabelian group,

then Ww
R (g) is a subgroup of G for every g ∈ G. Moreover, they showed a

slightly stronger result for n = 2: for every group G and for every g ∈ G the set

Ww
R (g) = {a ∈ G | [a, g, g] = 1}
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is a subgroup of G if and only if [a, g, b, g] = 1 for all a, b ∈ Ww
R (g). Therefore,

from Theorem 2.4.1 the next theorem follows.

Theorem 2.4.2. Let G be a metabelian group. If n ≥ 2 and for all a, b ∈ G
there exists g ∈ G such that [ag,n b] = 1, then G is an n-Engel group.

2.4.2 2-Engel law

The goal of this section is to generalize Theorem 2.4.2, in the case n = 2.

We say that a group G is in the class C2 if for every pair of elements a, b ∈ G
there exists g ∈ G such that

[ag, b, b] = 1.

Obviously the class C2 is closed under taking quotients. Instead, at least

apparently, a subgroup of a C2-group is not necessarily a C2-group, even if it is

a normal subgroup.

Theorem 2.4.2 states that a metabelian C2-group is 2-Engel. Our aim is to

extend this result by considering other classes of groups which are contained in

the class Y . We begin by proving that nilpotent C2-groups are 2-Engel.

Observation 2.4.1. A nilpotent C2-group is 2-Engel.

Proof. Let G be a nilpotent C2-group and let

R = {a ∈ G | [a, x, x] = 1 ∀x ∈ G}

be the subgroup of the right 2-Engel elements of G. By contradiction, assume

that R is a proper subgroup of G. The quotient G/R being nilpotent has a

non-trivial center, and thus there exists c ∈ G r R such that cR ∈ Z(G/R).

Therefore, for every g ∈ G we have cR = (cR)gR = cgR and [c, g] = c−1cg ∈ R,

and so there exists r ∈ R such that cg = cr. By hypothesis for every x ∈ G
there exists an element g ∈ G for which [cg, x, x] = 1. Hence we obtain

1 = [cg, x, x] = [cr, x, x] = [[c, x]r[r, x], x] = [[c, x]r, x][r,x] [r, x, x] = [c, x, xr
−1

]r[r,x],

from which it follows [c, x, xr
−1

] = 1. By properties of right 2-Engel elements we

have

1 =
[
r−1, [c, x], x

]
=
[
r−1, x, [c, x]

]−1
=
[
[c, x], [r−1, x]

]
.
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Therefore [c, x, [x, r−1]] = 1 and

1 = [c, x, xr
−1

] =
[
c, x, x[x, r−1]

]
=
[
[c, x], [x, r−1]

]
[c, x, x][x,r

−1] = [c, x, x][x,r
−1],

from which it follows [c, x, x] = 1. Hence c ∈ R, and this is a contradiction.

Using this result we can show that every solvable C2-group is 2-Engel. First,

we need a few preliminary remarks.

Lemma 2.4.1. Let G be a C2-group. If G′′ is an abelian group which has no

element of order 2 or 3, then G is nilpotent.

Proof. Let G be a C2-group for which G′′ is abelian. The quotient G/G′′ is

a metabelian C2-group. Then it is 2-Engel by Theorem 2.4.2, and thus it is

nilpotent of class at most 3. By a well-known nilpotency criterion due to P.

Hall (for instance, see [32]), to show that G is nilpotent it is enough to prove

that G′ is nilpotent. Since G/G′′ is 2-Engel, we obtain [G′, G]3 ≤ G′′ and

[G′, G,G] ≤ G′′. For all a ∈ [G′, G] and b ∈ G′′ we have a3 ∈ G′′, and so

[b, a3] = 1 by the commutativity of G′′. By hypothesis there exists an element

g ∈ G such that [b, ag, ag] = 1. As b, [b, a], [b, a, a] are all elements of G′′, from

[a, g] ∈ [G′, G,G] ≤ G′′ it follows

[[a, g], b] = [[a, g], [b, a]] = [[a, g], [b, a, a]] = 1.

In light of property 2) of Lemma 1.1.2 we have

1 = [b, ag, ag] = [b, a, a][a,g] = [b, a, a],

and property 3) of Lemma 1.1.2 assures us that

[b, a]3 = [b, a3] = 1.

If G′′ has no element of order 3, then [b, a] = 1 for every b ∈ G′′, a ∈ [G′, G]. This

means that G′′ ≤ Z([G′, G]), namely G′′ lies in the center of [G′, G]. Moreover,

for every b ∈ G′′ and x ∈ G′ there exists y ∈ G such that [b, xy, xy] = 1. From

b, [b, x], [b, x, x] ∈ G′′ it follows [b, [x, y]] = 1 = [b, x, [x, y]], and using property 2)
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of Lemma 1.1.2 we get

1 = [b, xy, xy] = [b, x, x][x,y] = [b, x, x].

This shows that every element of G′′ is a right 2-Engel element of G′. If G′′ has

no elements of order 2, then G′′ lies in the third term of the upper central series

of G′ by Theorem 1.3.5, and thus G′ is nilpotent.

Lemma 2.4.2. Let G be a C2-group. If G′′ is an abelian 2-group, then G is

nilpotent.

Proof. Let G be a C2-group for which G′′ is abelian. As G/G′′ is a metabelian C2-

group, by Theorem 2.4.2 it is 2-Engel. In particular, we have [G′, G]3 ≤ G′′ and

[G′, G,G] ≤ G′′. By P. Hall’s criterion it suffices to show that G′ is nilpotent. In

the proof of Lemma 2.4.1 we have already observed that if G′′ has no element of

order 3, then G′′ ≤ Z([G′, G]) and for every b ∈ G′′, x ∈ G′ we have [b, x, x] = 1.

Moreover, from G′′ ≤ Z([G′, G]) it follows

γ3([G
′, G]) ≤ [G′′, [G′, G]] = 1,

and thus [G′, G] is nilpotent of class at most 2. Since [G′, G]3 is contained in

the 2-group G′′, we can deduce that [G′, G] is a torsion group, and being also

nilpotent, we have [G′, G] = S × T , where S is a 3-group and T is a 2-group.

Observe that S is a normal subgroup of G. Consequently, we have [S,G] ≤ S.

As [S,G] ≤ [G′, G,G] ≤ G′′ and G′′ is a 2-group, we obtain [S,G] ≤ S ∩G′′ = 1,

and therefore S ≤ Z(G). Besides, from T 3 ≤ [G′, G]3 ≤ G′′ it follows T ≤ G′′,

because T is a 2-group. Hence, for every a ∈ [G′, G], x ∈ G′ there exist s ∈ S,

t ∈ T such that a = st, and by previous observations we have

[a, x, x] = [st, x, x] = [[s, x]t[t, x], x] = [t, x, x] = 1.

This shows that [a, x, x] = 1 for every a ∈ [G′, G] and x ∈ G′. Let now x and

y be elements of G′. There exists an element g ∈ G such that [yg, x, x] = 1.

Since [y, g] ∈ [G′, G], x ∈ G′ and [y, x] ∈ G′′ we have [y, g, x, x] = 1 and
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[y, x][y,g] = [y, x], from which it follows

1 = [yg, x, x] = [y[y, g], x, x] = [[y, x][y,g][y, g, x], x]

= [[y, x][y,g], x][y,g,x][y, g, x, x] = [y, x, x][y,g,x],

which implies [y, x, x] = 1. This means that G′ is a 2-Engel group, and so it is

nilpotent.

Lemma 2.4.3. Let G be a C2-group. If G′′ is an abelian 3-group, then G is

nilpotent.

Proof. Let G be a C2-group for which G′′ is an abelian 3-group. By Theorem 2.4.2

the quotient G/G′′ is a 2-Engel group, and hence it is nilpotent and we have

[G′, G,G] ≤ G′′. Then by P. Hall nilpotency criterion all that remains is to

establish that G′ is nilpotent. Firstly, observe that G′′ lies in the third term

Z3([G
′, G]) of the upper central series of [G′, G]. Indeed, for every a ∈ [G′, G],

b ∈ G′′ there exists g ∈ G such that [b, ag, ag] = 1, and from property 2) of

Lemma 1.1.2 it follows

1 = [b, ag, ag] = [b, a, a],

because [a, g] ∈ [G′, G,G] ≤ G′′ and [b, a], [b, a, a] ∈ G′′. This shows that every

element of G′′ is a right 2-Engel element of [G′, G]. Since G′′ does not have

elements of even order, by Theorem 1.3.5 we obtain G′′ ≤ Z3([G
′, G]). Conse-

quently, for all b ∈ G′′ and a1, a2 ∈ [G′, G] we have [b, a1, a2] ∈ Z([G′, G]). Now

for every x1 ∈ G′ there exists an element g of G such that [b, a1, a2, x
g
1, x

g
1] = 1.

From [b, a1, a2] ∈ Z([G′, G]) it follows [b, a1, a2, x1], [b, a1, a2, x1, x1] ∈ Z([G′, G]),

and since [x1, g] ∈ [G′, G] we get

1 = [b, a1, a2, x
g
1, x

g
1] = [b, a1, a2, x1, x1]

by property 2 ) of Lemma 1.1.2. This means that the element [b, a1, a2] is

a right 2-Engel element of G′. As [b, a1, a2] ∈ G′′, which is a 3-group, we

have [b, a1, a2] ∈ Z3(G
′) by Theorem 1.3.5, and thus modulo Z3(G

′) we have

[b, a1, a2] = 1 for every a2 ∈ [G′, G]. It follows [b, a1] ∈ Z([G′, G]) modulo

Z3(G
′). Proceeding in a similar manner as above, for every x2 ∈ G′ we obtain

[b, a1, x2, x2] = 1 modulo Z3(G
′), which implies [b, a1] ∈ Z6(G

′). Similarly, for
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every x3 ∈ G′ we have [b, x3, x3] = 1 modulo Z6(G
′), and so b ∈ Z9(G

′). This

shows that G′′ ≤ Z9(G
′), from which it follows G′ = Z10(G

′), and hence G′ is

nilpotent.

Theorem 2.4.3. Let G be a C2-group. If G′′ is an abelian group, then G is

2-Engel.

Proof. Let G be a C2-group for which G′′ is abelian and denote by T the

torsion-subgroup of G′′. The quotient G′′/T is a torsion-free abelian group

and G/T ∈ C2. Hence G/T is nilpotent by Lemma 2.4.1 and it is 2-Engel by

Observation 2.4.1. Since a 2-Engel group is metabelian, it follows G′′ = T and

thus G′′ is a torsion abelian group. Then G′′ is the direct product of its primary

components and we can write

G′′ = A×B × C,

where A is a 2-group, B is a 3-group, and C is a {2, 3}′-group. Now G′′/(A×B) '
C has no element of order 2 or 3 and G/(A × B) ∈ C2. Hence G/(A × B) is

2-Engel by Lemma 2.4.1 and Observation 2.4.1, and so it is metabelian. This

means that G′′ = A × B. Since G′′/A ' B is a 3-group and G′′/B ' A is

a 2-group, in light of Lemma 2.4.2 and Lemma 2.4.3 from G/A,G/B ∈ C2 it

follows that G/A and G/B are both nilpotent. In particular, they are 2-Engel

by Observation 2.4.1, and so for every x, y ∈ G we have [x,2 y] ∈ A ∩ B = 1,

which allows us to conclude that also G is 2-Engel.

We are now in position to extend Theorem 2.4.2 to solvable C2-groups.

Corollary 2.4.1. Every solvable C2-group is 2-Engel.

Proof. Let G be a solvable C2-group. Suppose that G is not metabelian. Then

the solvability of G assures us that G′′′ � G′′ 6= 1. From G/G′′′ ∈ C2 with

G′′/G′′′ abelian it follows that G/G′′′ is 2-Engel by Theorem 2.4.3. Then it is

metabelian and we have G′′ = G′′′, a contradiction. Therefore, G is a metabelian

C2-group, and by Theorem 2.4.2 it is 2-Engel.
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2.4.3 Generalization

Let n be an integer greater than 2. We say that a group G is in the class Cn

if for every pair of elements a, b ∈ G there exists g ∈ G such that

[ag,n b] = 1.

We have already observed that there are Tarski’s monsters G such that for

every a, b ∈ G there exists g ∈ G for which [ag, b] = 1. These are examples of

non-solvable Cn-groups, for every n ≥ 2. In addition, these groups cannot be

n-Engel, otherwise satisfying max they would be nilpotent by Theorem 1.2.3.

Therefore, the class Cn does not coincide with the class of n-Engel groups.

A natural problem is to investigate whether it is possible to generalize

Theorem 2.4.2 to the class of all solvable groups when n > 2.

Problem 2. If n > 2, then is it true that every solvable Cn-group is n-Engel?

A partial solution to the problem is given by the next theorem. First we

need a technical lemma.

Lemma 2.4.4. Let G be a finite Cn-group and let H be a subgroup of G such that

H ≤ γi+1(G), for some integer i ≥ 0. If for some integer j, with 2 ≤ j ≤ i+ 1,

there exists a non-negative integer r for which H ≤ Zr(γj(G)), then there exists

a non-negative integer s for which H ≤ Zs(γj−1(G)).

Proof. Let us argue by induction on r. Firstly, assume r = 1. For every

a ∈ H, b ∈ γj−1(G) there exists an element g of G such that [a,n b
g] = 1.

Since [b, g] ∈ [γj−1(G), G] = γj(G) and a ∈ H ≤ Z(γj(G)), by property 2) of

Lemma 1.1.2 we obtain

1 = [a,n b
g] = [a,n b].

This means that every element of H is a right n-Engel element of γj−1(G), and

as G is finite we have H ≤ Z(γj−1(G)) by Theorem 1.2.4. It follows the existence

of an integer s ≥ 0 such that H ≤ Zs(γj−1(G)).

Now assume r > 1. From H ≤ Zr(γj(G)) we get [H, γj(G)] ≤ Zr−1(γj(G)),

and by inductive hypothesis we have [H, γj(G)] ≤ Zt(γj−1(G)), for some integer

t ≥ 0. Thus it follows H ≤ Z(γj(G)) modulo Zt(γj−1(G)). For every a ∈ H
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and b ∈ γj−1(G) there exists g ∈ G for which [a,n b
g] = 1. Then [b, g] ∈ γj(G),

a ∈ H ≤ Z(γj(G)) modulo Zt(γj−1(G)), and using Lemma 1.1.2 we obtain

1 = [a,n b
g] = [a,n b] (mod Zt(γj−1(G))) .

This shows that modulo Zt(γj−1(G)) every element ofH is a right n-Engel element

of γj−1(G). By Theorem 1.2.4 it follows that there exists an integer s ≥ 0 such

that H ≤ Zs(γj−1(G)) modulo Zt(γj−1(G)), and so H ≤ Zt+s(γj−1(G)).

Theorem 2.4.4. Let G be a finite solvable group. If G ∈ Cn, then G is nilpotent.

Proof. Use induction on the derived length d of G. If d ≤ 2, then the result is

true by Theorem 2.4.2. Suppose d > 2 and let A = G(d−1) be the last non-trivial

term of the derived series of G. Then A is abelian and the quotient G/A is

nilpotent by induction hypothesis. Hence there exists a positive integer i such

that γi+1(G) ≤ A. Consequently, γi+1(G) is abelian and in particular we have

γi+1(G) ≤ Z(γi+1(G)). It follows from Lemma 2.4.4 the existence of an integer

r ≥ 0 for which γi+1(G) ≤ Zr(γi(G)). Again by Lemma 2.4.4 there exists an

integer s ≥ 0 such that γi+1(G) ≤ Zs(γi−1(G)), and applying i− 2 more times

Lemma 2.4.4 we get γi+1(G) ≤ Zt(G), for some non-negative integer t. Then it

follows G ≤ Zt+i(G), which yields the nilpotency of G.

Notice that Theorem 1.2.5 ensures that Lemma 2.4.4 is satisfied also in the

class of finitely generated solvable groups, and hence in the same way we can

show that a finitely generated solvable Cn-group is nilpotent. This result can

also be obtained as a corollary of Theorem 2.4.4.

Corollary 2.4.2. Every finitely generated solvable Cn-group is nilpotent.

Proof. By contradiction, assume that G is a finitely generated solvable Cn-group

which is not nilpotent. It follows from a theorem due to D.J.S. Robinson and

B.A.F. Wehrfritz (see [32, p. 477]) that there exists a finite quotient of G which

is not nilpotent. This is a contradiction since Theorem 2.4.4 states that a finite

solvable Cn-group is nilpotent.

Being nilpotent, a finitely generated solvable Cn-group is m-Engel, for some

non-negative integer m. But the following problem remains open.
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Problem 3. Is it true that every finitely generated solvable Cn-group is n-Engel?

At least, is it possible to find a function f(n) such that every finitely generated

solvable Cn-group is f(n)-Engel?



Chapter 3

Centralizer-like subsets

associated with two-variable

words

Let w be a word in two variables and let G be a group. In [24], L.-C. Kappe

and P.M. Ratchford introduced for every element g in G certain centralizer-like

subgroups of G associated with the word w. The terminology is justified by the

fact that for w(x, y) = [x, y] these subgroups coincide with the centralizer of g

in G. In the following, we consider for every g ∈ G the centralizer-like subsets

Ww
L (g) = {a ∈ G | w(g, a) = 1}

and

Ww
R (g) = {a ∈ G | w(a, g) = 1}

associated with the word w which have been introduced in Section 2.4. We have

already observed that these subsets need not be subgroups in general. In this

chapter we examine some sufficient conditions on the group G ensuring that

the sets Ww
L (g) and Ww

R (g) are subgroups of G for all g in G. Hereinafter, we

investigate whether the sets Ww
L (g) and Ww

R (g) are subgroups for some given

commutator words in two variables. The results of this chapter can be found

in [22]: it is a joint research project with Professor Luise-Charlotte Kappe.

Most of this work was done while I was a visiting scholar in the Department
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of Mathematical Sciences at the State University of New York at Binghamton

from January through May 2012.

3.1 The class W w
L

Let w(x, y) be a two-variable word and denote by W w
L the class of all groups

G for which the set Ww
L (g) is a subgroup of G for every g ∈ G. In light of

Theorem 2.4.1, we are interested in finding conditions which guarantee that a

group belongs to the class W w
L .

Example 3.1.1. Let w(x, y) = [y,n x], for some positive integer n. In [24], L.-C.

Kappe and P.M. Ratchford proved that if G is a metabelian group, then Ww
L (g)

is a subgroup of G for every g ∈ G. We can observe by induction on n that if G

is metabelian, then we get

[hk,n g] = [h,n g]k [k,n g] ,

for every g, h, k ∈ G. Obviously the property is true if n = 1. Let n > 1 and

assume that [hk,n−1 g] = [h,n−1 g]k [k,n−1 g]. By Lemma 1.1.3 we have

[hk,n g] = [[hk,n−1 g], g] = [[h,n−1 g]k [k,n−1 g], g]

= [[h,n−1 g]k , g] [[k,n−1 g], g] = [[h,n−1 g] , g]k [k,n g]

= [h,n g]k [k,n g] .

Hence w(g, hk) = w(g, h)kw(g, k), for every g, h, k ∈ G.

More generally, the following sufficient condition holds.

Theorem 3.1.1. Let w be a two-variable word and assume that the following

two conditions are satisfied:

i) w(g, 1) = 1, for every g ∈ G;

ii) for every g, h, k ∈ G there exist c1, c2 ∈ G for which

w(g, hk) = w(g, h)c1w(g, k)c2 .
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Then G belongs to the class W w
L .

Proof. By condition i) the identity is an element of Ww
L (g) for every g ∈ G.

Now let a, b ∈ Ww
L (g). We obtain w(g, a) = 1 = w(g, b), from which it follows

w(g, ab) = 1, i.e. ab ∈ Ww
L (g). Moreover, using conditions i) and ii) we get

1 = w(g, 1) = w(g, a−1a) = w(g, a−1)c,

for some c ∈ G. It follows w(g, a−1) = 1, and so we have a−1 ∈ Ww
L (g). Hence

Ww
L (g) is a subgroup of G for every g ∈ G.

Observe that condition ii) is satisfied if, for every g, h, k ∈ G, there exist

some d1, d2 ∈ G for which

w(g, hk) = w(g, k)d1w(g, h)d2 .

Indeed, for all a, b ∈ G we have ab = ba
−1
a, and so there exists an element c ∈ G

such that ab = bca. Therefore, if w(g, hk) = w(g, k)d1w(g, h)d2 , then we also

have w(g, hk) = w(g, h)cw(g, k)d1 for some c ∈ G.

The following example shows that the two conditions of Theorem 3.1.1 are

not necessary for an arbitrary group to stay in the class W w
L .

Example 3.1.2. Consider the word w(x, y) = x6y2x6 and let G be the semidirect

product of C3 and C4, namely the cyclic groups respectively of order 3 and 4, the

latter group acting on C3 by inversion. Assume C3 = 〈r〉 and C4 = 〈s〉. Then

the group G = 〈s〉n 〈r〉 is a non-abelian group of order 12, and we get rs = r−1,

sr = r2s and sr2 = rs. Moreover, the center of G is the subgroup generated by

s2, the only involution of G. Hence for every g ∈ G we have w(g, 1) = g12 = 1

and the set

Ww
L (g) =

{
a ∈ G | g6a2g6 = 1

}
=
{
a ∈ G | a2 = 1

}
=
〈
s2
〉

is a subgroup of G. Thus G ∈ W w
L . However, condition ii) of Theorem 3.1.1 is

not satisfied because, for example, we have w(1, s) = s2,

w(1, r2s) = (r2s)2 = (sr)2 = s(rs)r = s(sr2)r = s2,
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and

w(1, s · r2s) = w(1, rss) = (rs2)2 = rs2rs2 = rs3rss = rs−1r−1s = r(rs)−1 = r2.

Since Z(G) = 〈s2〉 is a normal subgroup of G, the element r2 cannot be a

conjugate of s2, and so w(1, s · r2s) does not belong to the normal closure of the

set {w(1, s), w(1, r2s)}.

Assume that there exists a word u in three variables such that for all elements

g, h, k in the group G there exist c1, c2 ∈ G for which the following two conditions

are satisfied:

i) w(g, 1) = 1,

ii) w(g, hk) = w(g, h)c1w(g, k)c2u(g, h, k).

If the residual word u(x, y, z) is a law in G, then G is in the class W w
L by

Theorem 3.1.1. This allows us to obtain a method to recognize groups which

are in the class W w
L .

Example 3.1.3. Let G be a group and consider the word

w(x, y) = [x, y2] = [x, y][x, y]y.

Certainly w(g, 1) = 1 for all g ∈ G. By commutator expansion, for every g, h, k

we have

w(g, hk) = [g, hk][g, hk]hk = [g, k][g, h]k[g, k]hk[g, h]khk

= [g, k][g, k]k[g, k]−k[g, h]k[g, h]hk[g, h]−hk[g, k]hk[g, h]khk

= w(g, k)[g, k]−kw(g, h)k[g, h]−hk[g, k]hk[g, h]khk

= w(g, k)w(g, h)k[g,k]
k

[g, k]−k[g, h]−hk[g, k]hk[g, h]khk

= w(g, h)[g,k]kw(g,k)
−1

w(g, k)u(g, h, k),
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where

u(g, h, k) = [g, k]−k[g, h]−hk[g, k]hk[g, h]khk

= ([g, k]−1[g, h]−h[g, k]h[g, h]kh)k

= ([g, k]−1[g, k]h[g,h]
h

[g, h]−h[g, h]kh)k

= [g, k, [g, h]h]k[g, h, k]hk.

The word u is a law in G if and only if G is a 2-Engel group. Indeed, if G is a

2-Engel group, then it is metabelian and for every g, h, k we have

u(g, h, k)k
−1

= [g, k, h][g, h, k]h = [g, h, k]−1[g, h, k]h = [g, h, k, h] = 1,

by property 6) of Theorem 1.3.6 and property 4) of Theorem 1.3.1. Hence the

identity u(x, y, z) = 1 holds in G. Conversely, if u(x, y, z) = 1 for all x, y, z ∈ G,

then for every g, h ∈ G we obtain

u(g, h, g) = [g, h, g]hg = 1,

from which it follows [g, h, g] = 1. Then the two-variable word [x, y, x] is a law in

G, and thus G is 2-Engel. Therefore, by the previous observations every 2-Engel

group belongs to the class W w
L when w(x, y) = [x, y2].

Notice that the word u is not univocally determined, and so there might be

groups in W w
L for which the word u is not a law.

Now we analyze the behaviour of the class W w
L under some closure operations.

Theorem 3.1.2. Let w be a two-variable word. Then:

1) if G ∈ W w
L and H ≤ G, then H ∈ W w

L ;

2) if G/N,G/M ∈ W w
L , then G/(N ∩M) ∈ W w

L ;

3) if H,K ∈ W w
L , then H ×K ∈ W w

L .

Proof. 1) If G ∈ W w
L , then for every h ∈ H ≤ G the set

Ww
L (h) = {a ∈ G | w(h, a) = 1}
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is a subgroup of G. Therefore Ww
L (h)∩H, namely the set of all elements a ∈ H

for which w(h, a) = 1, is a subgroup of H for every h ∈ H. Hence H belongs to

W w
L .

2) Observe that if H is a normal subgroup of G, then aH ∈ Ww
L (gH) if and

only if w(g, a) ∈ H, because w(gH, aH) = w(g, a)H. Let N and M normal

subgroups of G, and suppose that G/N,G/M ∈ W w
L . Then for every g ∈ G

we have that Ww
L (gN) and Ww

L (gM) are subgroups respectively of G/N and

G/M . Thus, from N ∈ Ww
L (gN) and M ∈ Ww

L (gM) it follows w(g, 1) ∈ N ∩M ,

which means N ∩M ∈ Ww
L (g(N ∩M)). Now let a(N ∩M) and b(N ∩M) be

elements of Ww
L (g(N ∩M)). Then w(g, a), w(g, b) ∈ N ∩M , and we obtain

aN, bN ∈ Ww
L (gN) and aM, bM ∈ Ww

L (gM). Since we get abN ∈ Ww
L (gN) and

abM ∈ Ww
L (gM), it follows w(g, ab) ∈ N∩M , which implies that ab(N∩M) is an

element of Ww
L (g(N ∩M)). Moreover, if a(N ∩M) ∈ Ww

L (g(N ∩M)), then from

w(g, a) ∈ N ∩M we obtain aN ∈ Ww
L (gN) and aM ∈ Ww

L (gM), from which we

have a−1N ∈ Ww
L (gN) and a−1M ∈ Ww

L (gM). It follows w(g, a−1) ∈ N ∩M ,

which means a−1(N ∩M) ∈ Ww
L (g(N ∩M)). This shows that Ww

L (g(N ∩M))

is a subgroup of G/(N ∩M) for every g ∈ G, and thus G/(N ∩M) ∈ W w
L .

3) This property follows immediately from property 2) when G = H×K.

The next example shows that the quotient of a W w
L -group need not be a

W w
L -group.

Example 3.1.4. Let G be the group considered in Example 3.1.2 and let

w(x, y) = x6y2x6. Then G = 〈s〉 n 〈r〉 ∈ W w
L , with rs = r−1, and the center

Z(G) = 〈s2〉 has order 2. Denote by N the center of G. As G/N is isomorphic

with the symmetric group of degree 3, it contains three involutions. Hence the

set

Ww
L (N) = {aN ∈ G/N | w(N, aN) = N} =

{
aN ∈ G/N | a2 ∈ N

}
has order 4, and so it is not a subgroup of G/N . Thus G/N /∈ W w

L , although

G ∈ W w
L .

However, if the two conditions of Theorem 3.1.1 are satisfied, then the class

W w
L is closed under homomorphic images, and since property 2) of Theorem 3.1.2

holds, it is a formation of groups (see, for instance, [9]).
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Theorem 3.1.3. Let w be a two-variable word. Every quotient of a W w
L -group

satisfying conditions i) and ii) of Theorem 3.1.1 is a W w
L -group.

Proof. Let N be a normal subgroup of a group G which satisfies conditions i)

and ii) of Theorem 3.1.1. Then for every g ∈ G we have w(g, 1) = 1, and thus

N ∈ Ww
L (gN). For all a, b ∈ G there exist c1, c2 in G for which

w(g, ab) = w(g, a)c1w(g, b)c2 .

Consequently, if aN, bN ∈ Ww
L (gN), then w(g, a), w(g, b) ∈ N and we obtain

w(g, ab) ∈ N , from which it follows abN ∈ Ww
L (gN). In addition, for every

aN ∈ Ww
L (gN) we have w(a, g) ∈ N , and so we get

1 = w(g, 1) = w(g, aa−1) = w(g, a)c1w(g, a−1)c2 ,

for some c1, c2 ∈ G. Hence w(g, a−1) ∈ N , and a−1N ∈ Ww
L (gN). This assures

us that Ww
L (gN) is a subgroup of G/N for every g ∈ G.

If w is a word in two variables, denote by W w
R the class of all groups G for

which the set Ww
R (g) is a subgroup of G for every g ∈ G. Properties analogous

to those given in Theorem 3.1.1 and Theorem 3.1.2 hold for the class W w
R .

3.2 Some commutator words in two variables

Let G be a group, n an integer greater than 2, and x, y elements of G. In [15],

N.D. Gupta considered group laws of the form

Cn = [x, y],

where Cn is a left-normed commutator of weight n with entries from the set

consisting of x, y and their inverses. N.D. Gupta showed that any finite or

solvable group satisfying such a law is abelian and he exhibited some examples of

commutators Cn for which the restrictions on the structure of G are unnecessary.

Clearly if n ≤ 2 the group G might not be abelian.

L.-C. Kappe and M.J. Tomkinson [25] investigated the case n = 3, for which

they completely solved the problem. They proved that the variety of groups
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satisfying one of the laws of the form C3 = [x, y] is the variety of the abelian

groups. Moreover, they raised the following question.

Problem 4. Is each group satisfying a law of the form Cn = [x, y] abelian when

n > 3? In case the answer is no, what is the smallest integer n for which one of

the laws Cn = [x, y] is not equivalent to the commutative law?

In [30], P. Moravec extended the result to the case n = 4, by proving that

also the laws of the form C4 = [x, y] imply the commutative law.

Now we return to the study of the centralizer-like subsets. Let

v(x, y) = Cn[y, x],

where Cn is a left-normed commutator of weight n > 2 with entries drawn from

the set {x, y, x−1, y−1}.

Problem 5. Under what conditions a group belongs to the classes W v
L and W v

R

associated with the word v(x, y) = Cn[y, x]?

We say that two words w1(x, y) and w2(x, y) are strongly equivalent in a

group G if for every g, h ∈ G, w1(g, h) = 1 if and only if w2(g, h) = 1. P.M.

Ratchford [31] observed, in his Ph.D. thesis, that if G is a nilpotent group, then

the word v is strongly equivalent to the simple commutator word [x, y], i.e. for

every g, h ∈ G the value of the word at (g, h) is 1 if and only if the elements g

and h commute.

Theorem 3.2.1. If G is a nilpotent group, then v(x, y) is strongly equivalent to

[x, y] in G.

Proof. Assume

v(x, y) = [r1, r2 . . . , rn][y, x],

with ri ∈ {x, y, x−1, y−1}, for every i = 1, . . . , n. Clearly if two elements g, h

commute, then v(g, h) = 1. Now let g, h be elements of G for which v(g, h) = 1.

We will argue by induction on the nilpotency class c of G. If c < n, then every

commutator of weight n in G is trivial, and so 1 = v(g, h) = [h, g]. Let c ≥ n.

Since Z(G) 6= 1, the quotient G/Z(G) is nilpotent of class at most c, and by

induction [g, h] ∈ Z(G). By commutator identities the word w(x, y) = [r1, r2] is
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conjugate to either [x, y] or [x, y]−1. Consequently, w(g, h) ∈ Z(G). It follows

that the value of the word [r1, r2 . . . , rn] at (g, h) is 1, and so 1 = v(g, h) =

[h, g].

Corollary 3.2.1. Every locally nilpotent group belongs to the classes W v
L and

W v
R associated with the word v(x, y).

Proof. Let G be a locally nilpotent group. Then for every pair of elements g, h

in G the subgroup 〈g, h〉 is nilpotent, and it follows from the previous result

that v(g, h) = 1 if and only if g and h commute. Hence, for every g ∈ G the

subset W v
L(g) = W v

R(g) is the centralizer of g in G.

In particular, any 2-Engel, 3-Engel, or 4-Engel group belongs to the classes

W v
L and W v

R .

3.2.1 Centralizer-like subsets of words of the form C3[y, x]

We now investigate more closely the centralizer-like subsets associated with

two-variable words of the form C3[y, x]. If n = 3, then there are thirty-two

non-trivial laws of the form

[r, s, t] = [x, y],

where r, s, t ∈ {x, y, x−1, y−1}. Indeed, we can exclude the trivial cases in which

r = s or r = s−1. For convenience of reference we list the possibilities for the

commutator [r, s, t] in the Table 3.1.

Table 3.1

1. [x, y, y] 9. [x−1, y, y] 17. [y, x, x] 25. [y−1, x, x]
2. [x, y, y−1] 10. [x−1, y, y−1] 18. [y, x, x−1] 26. [y−1, x, x−1]
3. [x, y−1, y] 11. [x−1, y−1, y] 19. [y, x−1, x] 27. [y−1, x−1, x]
4. [x, y−1, y−1] 12. [x−1, y−1, y−1] 20. [y, x−1, x−1] 28. [y−1, x−1, x−1]
5. [x, y, x] 13. [x−1, y, x] 21. [y, x, y] 29. [y−1, x, y]
6. [x, y, x−1] 14. [x−1, y, x−1] 22. [y, x, y−1] 30. [y−1, x, y−1]
7. [x, y−1, x] 15. [x−1, y−1, x] 23. [y, x−1, y] 31. [y−1, x−1, y]
8. [x, y−1, x−1] 16. [x−1, y−1, x−1] 24. [y, x−1, y−1] 32. [y−1, x−1, y−1]
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In the following, we refer to the two-variable word [r, s, t][y, x] as vi(x, y),

where the integer i is the number of the list corresponding to the commutator

[r, s, t], so that for example v1(x, y) = [x, y, y][y, x], v2(x, y) = [x, y, y−1][y, x]

and so forth.

L.-C. Kappe and M.J. Tomkinson showed in [25] that six of the thirty-two

laws vi(x, y) = 1 directly imply the abelian law, namely six of the thirty-two

words vi(x, y) are strongly equivalent to the commutator word [x, y]. Therefore,

if w(x, y) is one of these six words, then for every element g in a group G the sets

Ww
L (g) and Ww

R (g) are exactly the centralizer of g in G; thus they are subgroups.

Observation 3.2.1. If w(x, y) = vi(x, y), for i ∈ {17, 18, 19, 21, 22, 29}, then

the word w(x, y) is strongly equivalent to [x, y].

Proof. This follows immediately from the fact that the word w(x, y) is a conjugate

of the commutator [y, x]. Indeed, we have

v17(x, y) = [y, x, x][y, x] = [y, x]−1[y, x]x[y, x] = [y, x]x[y,x];

v18(x, y) = [y, x, x−1][y, x] = [y, x]−1[y, x]x
−1

[y, x] = [y, x]x
−1[y,x];

v19(x, y) = [y, x−1, x][y, x] = [y, x−1]−1[y, x−1]x[y, x]

= [y, x]x
−1

[y, x]−1[y, x] = [y, x]x
−1

;

v21(x, y) = [y, x, y][y, x] = [y, x]−1[y, x]y[y, x] = [y, x]y[y,x];

v22(x, y) = [y, x, y−1][y, x] = [y, x]−1[y, x]y
−1

[y, x] = [y, x]y
−1[y,x];

v29(x, y) = [y−1, x, y][y, x] = [y−1, x]−1[y−1, x]y[y, x]

= [y, x]y
−1

[y, x]−1[y, x] = [y, x]y
−1

.

Hence for every pair of elements g, h of a group G, we have w(g, h) = 1 if and

only if g and h commute.

In the other cases the centralizer-like subsets are not subgroups in general.

Example 3.2.1. Consider the word w(x, y) = v9(x, y). Setting G = S3, i.e. the

symmetric group of degree 3, and g = (12). Then the subsets

Ww
L (g) =

{
a ∈ G | [g−1, a, a] = [g, a]

}
= {1, (12), (23), (13)}
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and

Ww
R (g) =

{
a ∈ G | [a−1, g, g] = [a, g]

}
= {1, (12), (23), (13)}

are not subgroups of G.

In addition, some of the conditions vi(x, y) are strongly equivalent, as our

next result shows.

Observation 3.2.2. The words v2(x, y) and v3(x, y) are strongly equivalent, as

well as the words v6(x, y) and v13(x, y).

Proof. It suffices to observe that we have

v2(x, y) = [x, y, y−1][y, x] = [x, y]−1[x, y]y
−1

[y, x] = [y, x][x, y]y
−1

[y, x];

v3(x, y) = [x, y−1, y][y, x] = [x, y−1]−1[x, y−1]y[y, x]

= [x, y]y
−1

[x, y]−1[y, x] = [x, y]y
−1

[y, x]2;

v6(x, y) = [x, y, x−1][y, x] = [x, y−1]−1[x, y]x
−1

[y, x] = [y, x][x, y]x
−1

[y, x];

v13(x, y) = [x−1, y, x][y, x] = [x−1, y]−1[x−1, y]x[y, x]

= [x, y]x
−1

[x, y]−1[y, x] = [x, y]x
−1

[y, x]2.

Hence, for every g, h in a group G, we obtain v2(g, h) = 1 if and only if

v3(g, h) = 1, and v6(g, h) = 1 if and only if v13(g, h) = 1.

As a consequence, for every element g in a group G we get W v2
L (g) = W v3

L (g)

and W v2
R (g) = W v3

R (g). Similarly, we have W v6
L (g) = W v13

L (g) and W v6
R (g) =

W v13
R (g).

Now we restrict our attention to metabelian groups. Let G be a metabelian

group, and let r, s, t ∈ {x, y, x−1, y−1}. By the Jacobi identity the law

[r, s, t][s, t, r][t, r, s] = 1

holds in G. Hence, by Lemma 1.1.4, if r = tα, with α ∈ {−1, 1}, then the

two-variable words [r, s, t] and [t, s, r] are equal in G; instead, if s = tα, with

α ∈ {−1, 1}, then the word [r, s, t] is equal in G to the word [r, t, s]. It follows

immediately that some of the words vi(x, y) are equal in metabelian groups. For

instance, we have v8(x, y) = v15(x, y) and v10(x, y) = v11(x, y) as [x, y−1, x−1] =

[x−1, y−1, x] and [x−1, y, y−1] = [x−1, y−1, y] in a metabelian group.
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It was shown in [31] that a metabelian group lies in the class W w
L when

w(x, y) = v20(x, y) or w(x, y) is one of the four words of the form

[xα, y, xβ][y, x],

where α, β ∈ {−1, 1}.

Theorem 3.2.2. Let w(x, y) = vi(x, y), for i ∈ {5, 6, 13, 14, 20}. Then any

metabelian group belongs to the class W w
L .

Proof. Let G be a metabelian group. First observe that if w(x, y) = v20(x, y),

then for every g, h, k ∈ G we get

w(g, hk) = [hk, g−1, g−1][hk, g] = [[h, g−1]k[k, g−1], g−1][h, g]k[k, g]

= [[h, g−1]k, g−1][k, g−1, g−1][h, g]k[k, g]

= [h, g−1, g−1]k[k, g−1, g−1][h, g]k[k, g] = w(g, h)kw(g, k).

Suppose now w(x, y) = vi(x, y), for i ∈ {5, 6, 13, 14}. Then

w(x, y) = [xα, y, xβ][y, x],

for some α, β ∈ {−1, 1}, and for every g, h, k ∈ G we have

w(g, hk) = [gα, hk, gβ][hk, g] = [[gα, k][gα, h]k, gβ][h, g]k[k, g]

= [gα, k, gβ][[gα, h]k, gβ][h, g]k[k, g]

= [gα, k, gβ][gα, h, gβ]k[h, g]k[k, g] = w(g, h)kw(g, k).

Since vi(g, 1) = 1 for every g ∈ G and for every i, the two conditions of

Theorem 3.1.1 are satisfied.

Observe that the five words considered in Theorem 3.2.2 are not strongly

equivalent to the commutative word in a generic group. Hence in these cases the

centralizer-like subgroup Ww
L (g) does not coincide with the centralizer CG(g).

Example 3.2.2. Let w(x, y) = vi(x, y), for i ∈ {5, 6, 13, 14}. Setting G = S3
and g = (12), we obtain w(g, a) = [g, a, g][a, g] = [g, a]g[g, a]−2 for all a ∈ G, and
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so we have

Ww
L (g) =

{
a ∈ G

∣∣ [g, a]g = [g, a]2
}
.

Since G′ = 〈(123)〉, we get [g, a]g = [g, a]−1 = [g, a]2 for every a ∈ G. Then we

obtain Ww
L (g) = G, while the centralizer CG(g) = 〈g〉 is strictly contained in G.

Similarly, if G = A4, i.e. the alternating group of degree 4, g = (123), and we

consider the word w(x, y) = v20(x, y), then the centralizer of g in G has order 3,

whereas Ww
L (g) is the whole group G. Indeed, for all a ∈ G we have

v20(g, a) = [a, g−1, g−1][a, g] = [a, g−1]−1[a, g−1]g
−1

[a, g]

= [a, g]g
−1

[a, g]−g
−2

[a, g] = [a, g]g
2

[a, g]−g[a, g].

As the commutator subgroup of G is the Klein four-group and g = (123) does

not commute with the products of two transpositions, we get

v20(g, a) = [a, g]g
2

[a, g]g[a, g] = 1,

from which it follows W v20
L (g) = G.

If vi(x, y) is not one of the five words of Theorem 3.2.2 or one of the six

words strongly equivalent to the simple commutator word considered in Obser-

vation 3.2.1, then a metabelian group need not belong to the class W vi
L .

Observation 3.2.3. A metabelian group is not necessarily a W w
L -group when

w(x, y) = vi(x, y), for i /∈ {5, 6, 13, 14, 20} ∪ {17, 18, 19, 21, 22, 29}.

Proof. We will find counterexamples of metabelian groups which are not in

the class W w
L , when w(x, y) is one of the remaining words vi(x, y). If i 6= 32,

then these examples can be found considering the symmetric group of degree

3 or the alternating group of degree 4. First let G = S3 and g = (12). If

w(x, y) = vi(x, y), for i ∈ {1, 2, 3, 4, 9, 10, 11, 12}, then for all a ∈ G we have

w(g, a) = [g, aα, aβ][a, g],

where α, β ∈ {−1, 1}. Since G′ = 〈(123)〉 is abelian, for every 3-cycle a in G we

get [[g, aα], aβ] = 1 and w(g, a) = [g, aα, aβ][a, g] = [a, g] 6= 1. Instead, if a2 = 1,
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then we have

w(g, a) = [g, a, a][a, g] = [g, a]−1[g, a]a[g, a]−1 = [g, a]a[g, a]−2,

and as [g, a] ∈ 〈(123)〉, we obtain [g, a]a = [g, a]−1 = [g, a]2 and w(g, a) = 1.

Hence

Ww
L (g) = {1, (12), (23), (13)}

is not a subgroup of G.

Let now w(x, y) = vi(x, y), for i ∈ {7, 8, 15, 16}. Setting G = S3 and g = (12),

for all a ∈ G we have [g, a]g = [g, a]−1, and thus

w(g, a) = [g, a−1, g][a, g] = [g, a−1]−1[g, a−1]g[a, g] = [g, a−1]−2[a, g].

If a is a 3-cycle, then we have [g, a−1]−1 = [g, a]a
−1

= [g, a], which implies

w(g, a) = [g, a−1]−2[a, g] = [g, a]2[a, g] = [g, a] 6= 1,

while if a2 = 1, then from [a, g] ∈ 〈(123)〉 it follows

w(g, a) = [g, a−1]−2[a, g] = [g, a]−2[a, g] = [a, g]3 = 1.

Consequently, the centralizer-like subset

Ww
L (g) = {1, (12), (23), (13)}

is not a subgroup.

If w(x, y) = vi(x, y), for i ∈ {25, 26, 27, 28}, considering again G = S3 and

g = (12), for every a ∈ G we obtain

w(g, a) = [a−1, g, g][a, g] = [a−1, g]−1[a−1, g]g[a, g] = [a−1, g]−2[a, g]

because [a−1, g]g = [a−1, g]−1. For every a ∈ G′ = 〈(123)〉 we have [a−1, g]−1 =

[a, g]a
−1

= [a, g], and so we get

w(g, a) = [a−1, g]−2[a, g] = [a, g]2[a, g] = [a, g]3 = 1.
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Certainly w(g, g) = 1, whereas if a is a 2-cycle in G r {g}, then [a−1, g]−1 =

[a, g]−1 and it follows

w(g, a) = [a−1, g]−2[a, g] = [a, g]−2[a, g] = [a, g] 6= 1.

Therefore, we obtain

Ww
L (g) = {1, (12), (123), (132)} .

Consider now the group G = A4. Let g be the element (123) and w(x, y) =

v23(x, y) = [y, x−1, y][y, x]. For all elements a in the commutator subgroup V4 of

G we have [[a, g−1], a] = 1, and so if a 6= 1 we obtain

w(g, a) = [a, g−1, a][a, g] = [a, g] 6= 1.

Observe that if a = (124), then

w(g, a) = [a, g−1, a][a, g] = [(124), (132), (124)][(124), (123)]

= [(13)(24), (124)](12)(34) = ((12)(34))2 = 1.

Clearly also g and g−1 are elements of Ww
L (g). Since G has no proper subgroups

of order greater than 4, Ww
L (g) cannot be a subgroup.

Similarly, if w(x, y) = v24(x, y) = [y, x−1, y−1][y, x], setting G = A4 and

g = (123), for all a ∈ V4 r {1} we have [[a, g−1], a−1] = 1 and

w(g, a) = [a, g−1, a−1][a, g] = [a, g] 6= 1.

If a = (134), then

w(g, a) = [a, g−1, a−1][a, g] = [(134), (132), (143)][(134), (123)]

= [(13)(24), (143)](12)(34) = ((12)(34))2 = 1.

Being a proper subset of G which contains at least 4 elements, the centralizer-like

subset Ww
L (g) is not a subgroup.

We have already observed that the law [y, x−1, y−1] = [y−1, x−1, y] holds in
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every metabelian group. It follows that the words v24(x, y) and v31(x, y) are

equal in a metabelian group, and so A4 provides a counterexample also for the

word v31(x, y).

Let now w(x, y) = v30(x, y) = [y−1, x, y−1][y, x]. Considering again G = A4

and g = (123), then for all a ∈ V4 we have [[a−1, g], a−1] = 1 and if a 6= 1 we

obtain

w(g, a) = [a−1, g, a−1][a, g] = [a, g] 6= 1.

Instead, if a is a 3-cycle, then we can observe that [a, g]a
2
[a, g]a[a, g] = 1. Indeed,

as G′ = V4 is the Klein four-group and a does not commute with the non-trivial

elements of V4, the elements [a, g], [a, g]a and [a, g]a
2

are the three products of

transpositions. Hence we have

w(g, a) = [a−1, g, a−1][a, g] = [a−1, g]−1[a−1, g]a
−1

[a, g]

= [a, g]a
−1

[a, g]−a
−2

[a, g] = [a, g]a
2

[a, g]a[a, g] = 1,

and thus Ww
L (g) does not contain the elements of G which have order 2, but it

contains all the 3-cycles. In particular, it is not a subgroup of G.

Finally, we give a detailed description of the counterexample of minimal

order for i = 32. This group has been found with the help of GAP [12]. Consider

the word w(x, y) = v32(x, y), and let

G =

〈
c, e1, e2, e3

∣∣∣∣∣ e21 = e22 = e23 = c7 = 1 = [ei, ej] , 1 ≤ i < j ≤ 3,

ec1 = e2, e
c
2 = e3, e

c
3 = e1e2

〉
.

The group G can be seen as the semidirect product N o 〈c〉, where N is an

elementary abelian 2-group of rank 3 generated by the elements e1, e2 and e3,

〈c〉 is the cyclic group of order 7, and c induces an automorphism on the group

N given by ec1 = e2, e
c
2 = e3 and ec3 = e1e2. G is a metabelian group of order 56

in which the equalities e1c = ce2, e2c = ce3, e3c = ce1e2, and ce1 = e3ce2 hold.

Let g = c and a = e2c. Then we obtain a−1 = e3c
6, because

e3c
6 · e2c = e3c

6ce3 = e23 = 1.
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A straightforward computation shows that

w(g, a) = [a−1, g−1, a−1][a, g] = [e3c
6, c6, e3c

6][e2c, c]

= [(e3c
6)−1c−6e3c

6c6, e3c
6](e2c)

−1c−1e2cc = [e2cce3c
5, e3c

6]e3c
6c−1e2c

2

= [e2ce2cc
5, e3c

6]e3c
5ce3c = [e2e1cc

6, e3c
6]e3c

6ce1e2 = [e1e2, e3c
6]e1e2e3

= (e1e2)
−1(e3c

6)−1e1e2e3c
6e1e2e3 = e1e2e2ce1e2e3c

6e1e2e3

= e1e3ce2e2e3c
6e1e2e3 = e1e3ce3c

6e1e2e3 = e1e3e2cc
6e1e2e3

= e1e3e2e1e2e3 = 1

and

w(g, a−1) = [a, g−1, a][a−1, g] = [e2c, c
6, e2c][e3c

6, c]

= [(e2c)
−1c−6e2cc

6, e2c](e3c
6)−1c−1e3c

6c = [e3c
6ce2cc

6, e2c]e2cc
6e3

= [e3e2, e2c]e2e3 = (e3e2)
−1(e2c)

−1e3e2e2ce2e3

= e3e2e3c
6e3ce2e3 = e2c

6ce1e2e2e3 = e2e1e3 = e1e2e3 6= 1.

It follows a ∈ Ww
L (g), while a−1 /∈ Ww

L (g). Thus G does not belong to the class

W w
L .

Observe that the group G of order 56 considered in the proof of the previous

Observation has a presentation similar to that of the alternating group of degree

4, namely

A4 =

〈
c, e1, e2

∣∣∣∣∣ e21 = e22 = c3 = 1 = [e1, e2] ,

ec1 = e2, e
c
2 = e1e2

〉
.

It was shown in [8] that a group of the form

G(p, n, k) = N o 〈c〉 ,

where N is an elementary abelian p-group of rank n and 〈c〉 is the cyclic group

of order k, which operates faithful and irreducibly on N , is uniquely determined

up to the choice of the parameters p, n and k, and the possible values for k are

the divisors of pn−1 which are not divisors of pi−1, for i < n. In particular, the

groups A4 and G coincide respectively with the group G(2, 2, 3) and G(2, 3, 7).
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Symmetry of the centralizer-like subsets in metabelian groups

As regards the centralizer-like subsets W vi
R (g) of a metabelian group G, with

g ∈ G, the next property holds:

Theorem 3.2.3. Consider one of the words vi(x, y) = [r, s, t][y, x]. If G is a

metabelian group, then for every g ∈ G we have

W vi
R (g) = W vi

L (g)

and

W vi
L (g) = W vi

R (g),

where vi(y, x) = [s, r, t][x, y].

Proof. Since G is a metabelian group, by Lemma 1.1.4 we get

vi(x, y) = 1⇔ [x, y] = [r, s, t]⇔ [y, x] = [s, r, t]⇔ vi(y, x) = 1.

Hence for every a ∈ G we have that vi(a, g) = 1 if and only if vi(g, a) = 1,

and so W vi
R (g) = W vi

L (g). Clearly vi(x, y) = vi(x, y), and so we have also

W vi
L (g) = W vi

R (g).

Therefore, in metabelian groups there is a kind of symmetry of the centralizer-

like subsets associated with the words vi and vi: for example, if i = 1, then

we obtain v1(x, y) = [x, y, y][y, x] and v1(y, x) = [y, x, y][x, y]; thus v1 = v5, and

it follows W v1
L (g) = W v5

R (g) and W v1
R (g) = W v5

L (g) for every element g ∈ G.

Bearing in mind that some of the words vi coincide in metabelian groups, in

Table 3.2 we list the pairs of words (vi, vi), or (vi, vi), for which this type of

symmetry holds.

Observe that from Theorem 3.2.2 it follows that if w(x, y) = vi(x, y), for

i ∈ {1, 2, 3, 4, 30}, then any metabelian group belongs to W w
R . In light of

Observation 3.2.1 and Theorem 3.2.2, a metabelian group belongs to the class W vi
L

or to the class W vi
R for sixteen of the thirty-two words vi; hence by Theorem 2.4.1

we can state that Problem 1 has an affirmative answer for at least sixteen of the

thirty-two conditions.
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Table 3.2

vi vi

v1 v5
v2 = v3 v6 = v13
v4 v14
v9 v7

v10 = v11 v8 = v15
v12 v16
v17 v21

v18 = v19 v22 = v29
v20 v30
v25 v23

v26 = v27 v24 = v31
v28 v32

Turning our attention to a generic group, the following property of the words

vi can be proved similarly to the case of metabelian groups.

Theorem 3.2.4. Consider one of the words vi(x, y) = [r, s, t][y, x]. Then for

every element g in a group G we have

W vi
R (g) = W vi

L (g)

and

W vi
L (g) = W vi

R (g),

where vi(y, x) = [r, s, t]−1[x, y].

Note that if G is a generic group, then the word vi(y, x) = [r, s, t]−1[x, y] is

not in general one of the thirty-two of the form C3[y, x]. However, the symmetry

which holds in metabelian groups can be extended to a generic group for some

of the words vi(x, y).

Theorem 3.2.5. Let G be a group, and g ∈ G. Then the following equalities

hold:

1) W v1
L (g) = W v5

R (g) and W v1
R (g) = W v5

L (g);

2) W vi
L (g) = W

vj
R (g) and W vi

R (g) = W
vj
L (g), for i ∈ {2, 3}, j ∈ {6, 13};
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3) W vi
L (g) = W

vj
R (g), for i, j ∈ {17, 18, 19, 21, 22, 29}.

Proof. First observe that we have

v1(x, y) = [x, y, y][y, x] = [[y, x]−1, y][y, x]

= [y, x, y]−[y,x]
−1

[y, x] = [y, x][y, x, y]−1

= [x, y]−1[y, x, y]−1 = v5(y, x)−1

and

v2(x, y) = [x, y, y−1][y, x] = [[y, x]−1, y−1][y, x]

= [y, x, y−1]−[y,x]
−1

[y, x] = [y, x][y, x, y−1]−1

= [x, y]−1[y, x, y−1]−1 = v6(y, x)−1.

This means that, for every g, h ∈ G, v1(g, h) = 1 if and only if v5(h, g) = 1,

and v2(g, h) = 1 if and only if v6(h, g) = 1. Hence we obtain the equalities of

property 1), and since by Observation 3.2.2 the words v2(x, y) and v3(x, y) are

strongly equivalent, as well as the words v6(x, y) and v13(x, y), also property 2)

holds. Finally, the equalities of property 3) are true by Observation 3.2.1.

The class Z

Denote by Z the variety of all groups which satisfy the law

[x, y, y]2 = 1.

Z contains every 2-Engel group, as well as the alternating group A4 and the

metabelian group of order 56 considered in the proof of Observation 3.2.3. But

it also contains some non-metabelian group: there are examples of Z -groups G

in which γ3(G) has exponent 2 and G′ is not abelian.

Theorem 3.2.6. Let G be a group which belongs to the class Z . If w(x, y) =

vi(x, y), for i ∈ {1, 2, 3, 5, 6, 13}, then the word w(x, y) is strongly equivalent to

[x, y] in G.
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Proof. Note that since

[x, y, x]2 = [[y, x]−1, x]2 = ([y, x, x]2)−[y,x] = 1,

in every Z -group G the laws [x, y, y]−1 = [x, y, y] and [x, y, x]−1 = [x, y, x] hold.

It follows

v1(x, y) = [x, y, y][y, x] = [x, y, y]−1[y, x] = ([x, y]−1[x, y]y)−1[y, x] = [x, y]−y;

v2(x, y) = [x, y, y−1][y, x] = [x, y, y]−y
−1

[y, x] = [x, y, y]y
−1

[y, x]

= ([x, y]−1[x, y]y)y
−1

[y, x] = [x, y]−y
−1

;

v5(x, y) = [x, y, x][y, x] = [x, y, x]−1[y, x] = ([x, y]−1[x, y]x)−1[y, x] = [x, y]−x;

v6(x, y) = [x, y, x−1][y, x] = [x, y, x]−x
−1

[y, x] = [x, y, x]x
−1

[y, x]

= ([x, y]−1[x, y]x)x
−1

[y, x] = [x, y]−x
−1

.

Bearing in mind that by Observation 3.2.2 the word v3(x, y) is strongly equivalent

to the word v2(x, y) and v13(x, y) is strongly equivalent to v6(x, y), we obtain

that the word vi(x, y) is strongly equivalent to the commutator word in G, for

each i ∈ {1, 2, 3, 5, 6, 13}.

Consequently, if w(x, y) = vi(x, y), for i ∈ {1, 2, 3, 5, 6, 13}, then for every

element g in a Z -group G the subset W vi
L (g) = W vi

R (g) is the centralizer of g

in G; so G belongs to the classes W w
L and W w

R . Remember that the six words

considered in Observation 3.2.1 are strongly equivalent to the commutative

law in every group. Except for these twelve words, the centralizer-like subsets

W vi
L (g) and W vi

R (g) associated with the remaining words vi(x, y) in a Z -group

G do not coincide with the centralizer of g in G in general. However, we do

not have counterexamples of Z -groups which do not belong to the class W vi
L ,

for i ∈ {14, 20}, nor counterexamples of Z -groups which are not in W vi
R , for

i ∈ {4, 30}.
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3.2.2 Centralizer-like subsets of words of the form Cn[y, x]

in metabelian groups

To conclude the section, we investigate the centralizer-like subsets associated

with a two-variable word of the form Cn[y, x], with n greater than 3, in a

metabelian group. In particular, we can generalize some of the properties which

hold in the case n = 3.

Theorem 3.2.7. Let w(x, y) be one of the 2n−1 conditions of the form

[y, xα1 , xα2 , . . . , xαn−1 ][y, x]

or one of the 2n−1 conditions of the form

[xα1 , y, xα2 , . . . , xαn−1 ][y, x],

where αi ∈ {−1, 1} for every i = 1, . . . , n − 1. Then any metabelian group

belongs to the class W w
L .

Proof. We will prove that for every g, h, k ∈ G,

w(g, hk) = w(g, h)kw(g, k).

Since w(g, 1) = 1 for every g ∈ G, the result will follow from Theorem 3.1.1.

Let w(x, y) = [y, xα1 , . . . , xαn−1 ][y, x]. For every g, h, k ∈ G we can observe, by

applying induction on n, that

[hk, gα1 , . . . , gαn−1 ] = [h, gα1 , . . . , gαn−1 ]k[k, gα1 , . . . , gαn−1 ].

For n = 3 the property is true by Observation 3.2.1 and Theorem 3.2.2. If n > 3,

then by property 2) of Lemma 1.1.3 we get

[hk, gα1 , . . . , gαn−1 ] = [[h, gα1 , . . . , gαn−2 ]k[k, gα1 , . . . , gαn−2 ], gαn−1 ]

= [[h, gα1 , . . . , gαn−2 ]k, gαn−1 ][k, gα1 , . . . , gαn−1 ]

= [h, gα1 , . . . , gαn−1 ]k[k, gα1 , . . . , gαn−1 ],
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from which it follows

w(g, hk) = [hk, gα1 , . . . , gαn−1 ][hk, g]

= [h, gα1 , . . . , gαn−1 ]k[k, gα1 , . . . , gαn−1 ][h, g]k[k, g]

= w(g, h)kw(g, k)

as G is metabelian. Suppose now w(x, y) = [xα1 , y, xα2 , . . . , xαn−1 ][y, x]. Then

we can show by induction that for every g, h, k ∈ G we have

[gα1 , hk, gα2 , . . . , gαn−1 ] = [gα1 , h, gα2 , . . . , gαn−1 ]k[gα1 , k, gα2 , . . . , gαn−1 ].

If n = 3, then the property follows from Theorem 3.2.2. If n > 3, then by

property 2) of Lemma 1.1.3 we obtain

[gα1 , hk, gα2 , . . . , gαn−1 ] = [[gα1 , h, gα2 , . . . , gαn−2 ]k[gα1 , h, gα2 , . . . , gαn−2 ], gαn−1 ]

= [[gα1 , h, gα2 , . . . , gαn−2 ]k, gαn−1 ][gα1 , k, gα2 , . . . , gαn−1 ]

= [gα1 , h, gα2 , . . . , gαn−1 ]k[gα1 , k, gα2 , . . . , gαn−1 ];

thus

w(g, hk) = [gα1 , hk, gα2 , . . . , gαn−1 ][hk, g]

= [gα1 , h, gα2 , . . . , gαn−1 ]k[gα1 , k, gα2 , . . . , gαn−1 ][h, g]k[k, g]

= w(g, h)kw(g, k).

In the case n = 4, if w(x, y) = C4[y, x] is not one of the sixteen words

considered in the previous Theorem, a metabelian group does not necessarily

belong to the class W w
L : counterexamples can be found considering the symmetric

group S3, the alternating group A4 or the dihedral group of order 10.

Furthermore, in light of Lemma 1.1.4, the symmetry of the centralizer-like

subsets associated with the words w(x, y) = Cn[y, x], which holds in metabelian

groups for n = 3, continue to hold when n > 3.

Theorem 3.2.8. Let w(x, y) = [r1, r2, r3, . . . , rn][y, x], with ri ∈ {x, y, x−1, y−1}
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for every i = 1, . . . , n. If G is a metabelian group, then for every g ∈ G we have

Ww
R (g) = Ww

L (g)

and

Ww
L (g) = Ww

R (g),

where w(y, x) = [r2, r1, r3, . . . , rn][x, y].

3.3 On the n-commutator word

Let n be an integer. In [1], R. Baer termed two elements g and h in a group

n-commutative if

(gh)n = gnhn and (hg)n = hngn,

and he defined the n-center Z(G, n) of a group G as the set of all elements of

G which n-commute with every element in the group. Moreover, a group G is

said to be n-abelian if it coincides with its n-center. Obviously, every group is

0-abelian and 1-abelian. Z(G, 2) is exactly the center of G, and it is contained

in the n-center of G for any integer n.

The n-center Z(G, n) is a characteristic subgroup of G which shares many

properties with the center of G: for instance, if G/Z(G, n) is cyclic then the

group G is n-abelian, just as a group with a cyclic central quotient is abelian.

For further properties on the n-center see [23].

In this section we consider the word

w(x, y) = (xy)ny−nx−n,

where n is an integer. We first observe that w is a commutator word. Since for

all elements x, y in a group we have xy = yx[x, y], then

x2y2 = xxyy = xyx[x, y]y = (xy)2[x, y][x, y, y].

For every n ≥ 2 the following Collection Formula of Philip Hall (also called the

Hall-Petrescu formula) holds (see [4, Appendix 1]):



3.3 On the n-commutator word 57

Lemma 3.3.1. If x and y are elements of a group G and n ≥ 2 is an integer,

then

xnyn = (xy)nc
(n
2)

2 c
(n
3)

3 · · · c(
n
n)
n ,

where ci ∈ γi(〈x, y〉), for any i = 2, . . . , n.

Observation 3.3.1. The word w(x, y) = (xy)ny−nx−n is a commutator word

for every integer n.

Proof. Let F be the free group on x and y. We will prove that w(x, y) ∈ F ′

for any n. Certainly, if n ∈ {0, 1} we get w(x, y) = 1 ∈ F ′. If n = −1 then

w(x, y) = (xy)−1yx = [y, x] ∈ F ′. Let n ≥ 2. By the Hall-Petrescu formula

we have that (xy)n and xnyn are equal modulo F ′. It follows xnyn = (xy)nc

for some c ∈ F ′, and thus w(x, y) = c ∈ F ′. Let now n ≤ −2 and denote

−n by m. We obtain w(x, y) = (xy)ny−nx−n = (xy)−mymxm. As m ≥ 2, by

the Hall-Petrescu formula we get xmym = (xy)mc for some c ∈ F ′. Hence we

obtain ymxm = xmym[ym, xm] = (xy)mc[ym, xm] and w(x, y) = (xy)−mymxm =

c[ym, xm] ∈ F ′.

The word w(x, y) = (xy)ny−nx−n is called the n-commutator word.

For every element g in a group G we define the n-centralizer CG(g, n) of g in

G as the set of all elements of G which n-commute with g. Since for all elements

a ∈ G we have (ga)n = gnan if and only if w(g, a) = 1, and (ag)n = angn if and

only if w(a, g) = 1, with our notation we obtain

CG(g, n) = Ww
L (g) ∩Ww

R (g).

Clearly, the 2-centralizer of g coincides with the centralizer CG(g), while CG(g, 0)

and CG(g, 1) are the whole group G. Notice that the n-center of a group G is

the intersection of the sets CG(g, n), with g ∈ G. But in general an n-centralizer

CG(g, n) need not be a subgroup, as our next example shows for n = 3.

Example 3.3.1. Consider the 3-commutator word w(x, y) = (xy)3y−3x−3. Let

G be the alternating groupA4, g = (123) and a = (142). Since ga = (123)(142) =

(234) and ag = (142)(123) = (143), we have (ga)3 = 1 = g3a3 and (ag)3 =

1 = a3g3, and thus a ∈ CG(g, 3). Instead, the element a−1 does not belong to
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CG(g, 3): from ga−1 = (123)(124) = (14)(23) and a−1g = (124)(123) = (13)(24)

it follows

(ga−1)3 = (14)(23) 6= 1 = g3a−3

and

(a−1g)3 = (13)(24) 6= 1 = a−3g3.

This shows that neither the 3-centralizer CG(g, 3) nor the centralizer-like subsets

Ww
L (g) and Ww

R (g) are subgroups of G.

R. Baer observed that Z(G, n) = Z(G, 1−n) for any integer n. An analogous

property holds for the n-centralizers.

Theorem 3.3.1. Let g be an element of a group G. Then

CG(g, n) = CG(g, 1− n)

for any integer n.

Proof. Let n be an integer. Consider the n-commutator word w1(x, y) =

(xy)ny−nx−n and the (1 − n)-commutator word w2(x, y) = (xy)1−nyn−1xn−1.

Observe that for every g, a ∈ G, w1(g, a) = 1 if and only if w2(a, g) = 1. Indeed,

(ga)n = gnan if and only if (ag)n−1 = gn−1an−1, which holds if and only if

(ag)1−n =
(
(ag)n−1

)−1
=
(
gn−1an−1

)−1
= a1−ng1−n.

In particular, it follows Ww1
L (g) = Ww2

R (g) and Ww1
R (g) = Ww2

L (g) for every

g ∈ G. Hence, we get

CG(g, n) = Ww1
L (g) ∩Ww1

R (g) = Ww2
R (g) ∩Ww2

L (g) = CG(g, 1− n).

Theorem 3.3.2. Let w(x, y) = (xy)ny−nx−n. Then W w
L = W w

R .

Proof. Observe that for all elements g, a in a group G we have (ga)n = gnan if

and only if

(a−1g−1)n = (ga)−n = (gnan)−1 = a−ng−n.
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It follows w(g, a) = 1 if and only if w(a−1, g−1) = 1; hence a ∈ Ww
L (g) if and only

if a−1 ∈ Ww
R (g−1). In particular, if Ww

L (g) is a subgroup, thenWw
L (g) = Ww

R (g−1).

Therefore, if Ww
L (g) is a subgroup of G for every g ∈ G, then also Ww

R (g) is a

subgroup of G for every g ∈ G, and vice versa.

It was shown in [23] that

Z(G, n) = {a ∈ G | (ga)n = gnan ∀ g ∈ G} = {a ∈ G | (ag)n = angn ∀ g ∈ G} .

A similar argument shows that if the centralizer-like subsets Ww
L (g) and Ww

R (g)

are both subgroups of G, then CG(g, n) = Ww
L (g) = Ww

R (g), namely

CG(g, n) = {a ∈ G | (ga)n = gnan} = {a ∈ G | (ag)n = angn} .

This property follows from the next result.

Theorem 3.3.3. Let w(x, y) be the n-commutator word. For every element g

in a group G the following properties hold:

i) if Ww
L (g) is a subgroup of G, then CG(g, n) = Ww

L (g) ⊆ Ww
R (g);

ii) if Ww
R (g) is a subgroup of G, then CG(g, n) = Ww

R (g) ⊆ Ww
L (g).

Proof. We have already observed in the proof of Theorem 3.3.2 that if Ww
L (g)

is a subgroup, then Ww
L (g) = Ww

R (g−1). Let a ∈ Ww
L (g) = Ww

R (g−1). In order

to show that a ∈ Ww
R (g), we will prove that an and gn−1 commute. Since

g−1 ∈ Ww
L (g) we obtain ag−1 ∈ Ww

L (g) and (gag−1)n = gn(ag−1)n, from which

it follows

gang−1 = (gag−1)n = gn(ag−1)n = gnang−n.

Therefore, we get angn−1 = gn−1an. Observing that (ga)n = gnan if and only if

(ag)n−1 = gn−1an−1, we obtain

angn = angn−1g = gn−1ang = gn−1an−1ag = (ag)n−1ag = (ag)n,

which demonstrates that a ∈ Ww
R (g). In an analogous way it is possible to show

property ii).
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The following example shows that the centralizer-like subsets Ww
L (g) and

Ww
R (g) do not necessarily coincide if they are not both subgroups. Actually, we

do not have examples in which only one of the two is a subgroup.

Example 3.3.2. Consider the 3-commutator word w(x, y) = (xy)3y−3x−3. Let

〈r〉 and 〈s〉 be the cyclic groups respectively of order 5 and 4, and let G = 〈r〉o〈s〉,
where rs = r2. In particular, it follows rs = sr2,

r2s = r(rs) = rsr2 = sr2r2 = sr4,

and

r3s = r(r2s) = rsr4 = sr2r4 = sr.

A straightforward computation shows that

w(s, r) = (sr)3r−3s−3 = s(rs)rs(r3s) = s(sr2)rs(sr) = s2r3s2r

= (r3)s
2

r = (r6)sr = rsr = r3 6= 1,

w(r, s) = (rs)3s−3r−3 = (rs)rsrs2r2 = (sr2)rsrs2r2 = s(r3s)rs2r2

= s(sr)rs2r2 = s2r2s2r2 = (r2)s
2

r2 = (r4)sr2 = r8r2 = 1,

w(s, r2s3) = (sr2s3)3(r2s3)−3s−3 = sr2s3sr2s3sr2s3(s−3r−2)3s

= s(r2)3s3(sr3)3s = srs3sr3sr3sr3s = (sr4)sr3s(r3s)

= r2s2r3s2r = r2(r3)s
2

r = r2(r6)sr = r2rsr = r5 = 1,

w(r2s3, s) = (r2s3s)3s−3(r2s3)−3 = (r2)3s−3(s−3r−2)3 = rs(sr3)3

= rs2r3s(r3s)r3 = rs2r3s2r4 = r(r3)s
2

r4 = r(r6)sr4

= rrsr4 = r2 6= 1.

This assures us that if g = s, then r2s3 ∈ Ww
L (g) and r ∈ Ww

R (g), while

r /∈ Ww
L (g) and r2s3 /∈ Ww

R (g). Therefore, the centralizer-like subsets Ww
L (g)

and Ww
R (g) are distinct. Moreover, neither of the two is contained in the other:

in light of Theorem 3.3.3 the two sets are not subgroups.
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The following lemma, which can be found in [20], will be used to prove that

a 2-Engel group belongs to W w
L = W w

R , for any n-commutator word w(x, y).

Lemma 3.3.2. If x and y are elements of a metabelian group and n is an

integer, then

(xy−1)n = xn

( ∏
0<i+j<n

[x,i y,j x]mi,j

)
y−n,

where mi,j =
(

n
i+j+1

)
.

Theorem 3.3.4. Let w(x, y) = (xy)ny−nx−n. If G is a 2-Engel group, then for

every g ∈ G we obtain that CG(g, n) = Ww
L (g) = Ww

R (g) is a subgroup of G.

Proof. Let v(x, y) = (xy−1)nynx−n. Since a 2-Engel group is metabelian, we can

use the expansion formula stated in Lemma 3.3.2. We have

(xy−1)n = xn

( ∏
0<i+j<n

[x,i y,j x]mi,j

)
y−n,

where mi,j =
(

n
i+j+1

)
. Considering that [x,0 y,j , x] = [x,j x] = 1 and G is 2-Engel,

we can assume i > 0 and i, j < 2. Moreover, in every 2-Engel group the law

[x, y, x] = 1 holds. Hence, from 0 < i+ j ≤ 2 it follows that the only possible

choice for the pair (i, j) is (1, 0). Denoting m1,0 =
(
n
2

)
by p, in the group G we

have

(xy−1)n = xn[x, y]py−n,

and so we get

v(x, y) = (xy−1)nynx−n = xn[x, y]px−n = ([x, y]p)x
−n

.

Therefore, for every g, h, k ∈ G we have v(g, 1) = 1 and

v(g, hk) = ([g, hk]p)g
−n

= (([g, k][g, h]k)p)g
−n

= ([g, k]p)g
−n

([g, h]p)kg
−n

= v(g, k)v(g, h)g
nkg−n

= v(g, h)g
nkg−n

v(g, k)v(g,h)
gnkg−n

.

Then G belongs to W v
L by Theorem 3.1.1.

For all elements a, g ∈ G we have v(g, a) = w(g, a−1), and thus a ∈ W v
L(g)

if and only if a−1 ∈ Ww
L (g). As W v

L(g) is a subgroup of G for every element
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g ∈ G, we get Ww
L (g) = W v

L(g). It follows G ∈ W w
L , and by Theorem 3.3.2 and

Theorem 3.3.3 we obtain

CG(g, n) = Ww
L (g) = Ww

R (g)

for any g ∈ G.

In particular, it follows from the proof that the word w(x, y) = (xy)ny−nx−n

is strongly equivalent to the word [x, y](
n
2) in a 2-Engel group.
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theorem for solvable radical of a finite group. Comptes Rendus Acad. Sci. Paris,

Ser I. 347 (2003), 217-222.

[15] N.D. GUPTA, Some group-law equivalent to the commutative law. Arch. Math.,

17 (1966), 97-102.

[16] R.M. GURALNICK, J.S. WILSON, The probability of generating a finite soluble

group. Proc. London Math. Soc. (3), 81 (2000), 405-427.

[17] G. HAVAS, M.R. VAUGHAN-LEE, 4-Engel groups are locally nilpotent. Int. J.

Algebra and Comp. 15 (2005), 649-682.

[18] H. HEINEKEN, Engelsche Elemente der Länge drei. Illinois J. Math. 5 (1961),

681-707.

[19] M. HERZOG, P. LONGOBARDI, M. MAJ, On a commuting graph on conjugacy

classes of groups. Communications in Algebra, 37:10 (2009), 3369-3387.

[20] G.T. HOGAN, W.P. KAPPE, On the Hp-problem for finite p-groups. Proc. Amer.

Math. Soc. 20 (1969), 450-454.

[21] L.-C. KAPPE, W.P. KAPPE, On three Engel groups. Bull. Austral. Math. Soc. 7

(1972), 391-405.

[22] L.-C. KAPPE, M. MERIANO, On centralizer-like subgroups associated with some

commutator words in two variables. In preparation.

[23] L.-C. KAPPE, M.L. NEWELL, On the n-center of a group. Groups St. Andrews

1989, LMS Lecture Notes 160 (1991), 339-352.

[24] L.-C. KAPPE, P.M. RATCHFORD, On centralizer-like subgroups associated with

the n-Engel word. Algebra Colloq. 6 (1999), 1-8.

[25] L.-C. KAPPE, M.J. TOMKINSON, Some conditions implying that a group is

abelian. Algebra Colloquium, 3 (1996), 199-212.



BIBLIOGRAPHY 65

[26] J.C. LENNOX, Bigenetic properties of finitely generated hyper-(abelian-by-finite)

groups. J. Austral. Math. Soc. 16 (1973), 309-315.

[27] P. LONGOBARDI, M. MAJ, Groups satisfying conditions on 2-generator sub-

groups. Rend. Sem. Mat. Fis. Milano, 69 (1999-2000), 171-181.

[28] I.D. MACDONALD, Some examples in the theory of groups. In Mathematical

essays dedicated to A.J. MacIntyre. Ohio University Press (1970), pp. 263-269.

[29] M. MERIANO, C. NICOTERA, On groups with a property of two-variable laws.

Submitted (2013).

[30] P. MORAVEC, Some commutator group laws equivalent to the commutative law,

Communications in Algebra, 30(2) (2002), 671-691.

[31] P.M. RATCHFORD, On centralizer-like subgroups, Ph.D. Thesis, State University

of New York at Binghamton, 1997.

[32] D.J.S. ROBINSON, A course in the theory of groups. Springer-Verlag, 1996.

[33] D.J.S. ROBINSON, Finiteness conditions and generalized soluble groups, 2 vols.

Springer-Verlag, 1972.

[34] J.G. THOMPSON, Nonsolvable finite groups all of whose local subgroups are

solvable. Bull. Amer. Math. Soc. 74 (1968), 383-437.

[35] G. TRAUSTASON, On 4-Engel groups. J. Algebra 178 (1995), 414-429.

[36] M.R. VAUGHAN-LEE, On 4-Engel groups. LMS J. Comput. Math. 10 (2007),

341-353.

[37] M.R. VAUGHAN-LEE, J. WIEGOLD, Countable locally nilpotent groups of finite

exponent without maximal subgroups. Bull. Amer. London Math. Soc. 13 (1981),

45-46.

[38] J. WIEGOLD, Transitive groups with fixed-point-free permutations. Arch. Math.

27 (1976), 473-475.

[39] J. WIEGOLD, Transitive groups with fixed-point-free permutations II. Arch. Math.

29 (1977), 571-573.

[40] M. ZORN, Nilpotency of finite groups. Bull. Amer. Math. Soc. 42 (1936), 485-486.


