Abstract

This dissertation deals mainly with the discipline of Human-Computer Interaction (HCI), with particular attention on the role that it plays in the domain of modern mobile devices.

Mobile devices today offer a crucial support to a plethora of daily activities for nearly everyone. Ranging from checking business mails while traveling, to accessing social networks while in a mall, to carrying out business transactions while out of office, to using all kinds of online public services, mobile devices play the important role to connect people while physically apart. Modern mobile interfaces are therefore expected to improve the user's interaction experience with the surrounding environment and offer different adaptive views of the real world.

The goal of this thesis is to enhance the usability of mobile interfaces for spatial data. Spatial data are particular data in which the spatial component plays an important role in clarifying the meaning of the data themselves. Nowadays, this kind of data is totally widespread in mobile applications. Spatial data are present in games, map applications, mobile community applications and office automations. In order to enhance the usability of spatial data interfaces, my research investigates on two major issues:

1. Enhancing the visualization of spatial data on small screens

2. Enhancing the text-input methods

I selected the Design Science Research approach to investigate the above research questions. The idea underling this approach is “you build artifact to learn from it”, in other words researchers clarify what is new in their design.

The new knowledge carried out from the artifact will be presented in form of interaction design patterns in order to support developers in dealing with issues of mobile interfaces.

The thesis is organized as follows. Initially I present the broader context, the research questions and the approaches I used to investigate them. Then the results are split into two main parts. In the first part I present the visualization technique called Framy. The technique is designed to support users in visualizing geographical data on mobile map applications. I also introduce a multimodal extension of Framy obtained by adding sounds and vibrations. After that I present the process that turned the multimodal interface into a means to allow visually impaired users to interact with Framy. Some
projects involving the design principles of Framy are shown in order to demonstrate the adaptability of the technique in different contexts.

The second part concerns the issue related to text-input methods. In particular I focus on the work done in the area of virtual keyboards for mobile devices. A new kind of virtual keyboard called TaS provides users with an input system more efficient and effective than the traditional QWERTY keyboard. Finally, in the last chapter, the knowledge acquired is formalized in form of interaction design patterns.
Abstract

Questo lavoro di tesi tratta principalmente la disciplina dell’Interazione Uomo-Macchina (IUM), con particolare attenzione al ruolo che essa svolge nel dominio dei moderni dispositivi mobile.

I dispositivi mobile, oggi, offrono un supporto cruciale a una grande varietà di attività quotidiane per quasi tutti i tipi di utenti. Dalla lettura di email lavorative mentre si è in viaggio all’accesso di un social network mentre si cammina in un centro commerciale, dalle transazioni di affari lontano dall’ufficio all’uso di qualsiasi tipo di servizio pubblico disponibile su Internet tali dispositivi ricoprono il fondamentale ruolo di connettere le persone quando sono distanti fisicamente. Le moderne interfacce mobile, quindi, devono migliorare l’esperienza dell’interazione utente con l’ambiente circostante offrendo visualizzazioni adattive del mondo reale.

L’obiettivo di questa tesi è di migliorare l’usabilità delle interfacce mobile per i dati spaziali. I dati spaziali sono un tipo particolare di dato in cui la componente spaziale è indispensabile per chiarire il significato dei dati stessi. Oggi, questo tipo di dato è molto diffuso nelle applicazioni mobile. Essi, ad esempio, sono presenti in giochi, applicazioni con mappe, mobile community e programmi da ufficio. Al fine di migliorare l’usabilità delle interfacce per dati spaziali, la mia ricerca è stata focalizzata su due punti principali:

1. Migliorare la visualizzazione dei dati spaziali su piccoli schermi
2. Migliorare le metodologie di text-input

Ho selezionato l’approccio della Design Science Research per investigare i due punti menzionati. L’idea di questo approccio è di costruire un artefatto e di imparare da esso, in altre parole i ricercatori chiariscono che cosa c’è di nuovo nel loto progetto.

La conoscenza estratta dall’arteefatto sarà presentata sotto forma di interaction design patterns al fine di supportare gli sviluppatori quando devono affrontare problemi in ambiti simili.

La tesi è così organizzata: inizialmente è introdotto il contesto della ricerca, la research questions e gli approcci utilizzati per investigarle. I risultati, poi, sono divisi in due principali parti. Nella prima parte è presentata la tecnica visuale Framy. La tecnica è progettata per supportare gli utenti quando visualizzano dati geografici su applicazioni mobile. Successivamente, è descritta l’estensione multimediale della tecnica realizzata per supportare utenti diversamente abili. Alcuni progetti di applicazioni costruite con
questa tecnica sono stati presentati al fine di dimostrarne l’efficacia in diversi contesti.

La seconda parte presenta il lavoro svolto nell’ambito delle metodologie di text-input, con particolare attenzione sul lavoro svolto nell’area delle tastiere software. In questa tesi un nuovo tipo di tastiera software chiamata TaS è descritta. Essa fornisce un sistema di text-input più efficiente ed efficace rispetto alla tradizionale QWERTY.

In fine, nell’ultimo capitolo, la conoscenza acquisita dallo studio degli artefatti descritti è formalizzata sotto forma di interaction design patterns.