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ABSTRACT 

The erosion, transport and deposition of pebbles in rivers have often 
been studied by considering the motion of tracer particles. There are 
reports of bedload tracing programs in field and laboratory since the late 
1930s. The theoretical basis for the study of the dispersal of sediment 
tracer particles was delineated for the first time in 1950 by Einstein, who 
formulated the problem in terms of a standard 1D random walk in 
which each particle moves in a series of steps punctuated by waiting 
times. Subsequent to Einsteinõs original work on tracers, the study of 
random walks has been extended to the case of continuous time random 
walks (CTRW). CTRW, accompanied by appropriate probability 
distribution functions (PDFs) for walker step length and waiting time, 
yields asymptotically the standard advection-diffusion equation (ADE) 
for thin-tailed PDFs, and the fractional advection-diffusion equation 
(fADE) for heavy-tailed PDFs, the latter allowing the possibilities of 
subdiffusion or superdiffusion of particles, which is often referred as 
non-local behavior or anomalous diffusion. 
In latest years, considerable emphasis has been placed on non-locality 
associated with heavy-tailed PDFs for particle step length. This appears 
to be in part motivated by the desire to construct fractional advective-
diffusive equations for pebble tracer dispersion corresponding to the 
now-classical fADE model. Regardless of the thin tail of the PDF, the 
degree of non-locality nevertheless increases with increasing mean step 
length. In the thesis, we firstly consider the general case of 1D 
morphodynamics of an erodible bed subject to bedload transport 
analysing the effects of non-locality mediated by both heavy- and thin-
tailed PDFs for particle step length on transient aggradational- 
degradational bed profiles.  
Then, we focus on tracers. (i) We show that the CTRW Master Equation 
is inappropriate for river pebbles moving as bed material load and (ii) by 
using the Parker-Paola-Leclair (PPL) framework for the Exner equation 
of sediment conservation, which captures the vertical structure of bed 
elevation variation as particles erode and deposit, we develop a new ME 
for tracer transport and dispersion for alluvial morphodynamics. 
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The new ME is derived from the Exner equation of sediment continuity 
and it yields asymptotic forms for ADE and fADE that differ 
significantly from CTRW. It allows a) vertical dispersion, as well as 
streamwise advection-diffusion, and b) mean waiting time to vary in the 
vertical. We also show that vertical dispersion is nonlocal (subdiffuive), 
but cannot be expressed with fractional derivatives. Vertical dispersion is 
the likely reason for the slowdown of streamwise advection of tracer 
pebbles observed in the field, which is the key result of our modeling 
when co-evolution of vertical and streamwise dispersion are considered. 
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1 INTRODUCTION  

Gravel-bed rivers have a surface median sediment size that is in the 
range of gravel or coarser material (2 < D50 < 256 mm). The particles 
that make up the bed are transported as bedload during floods. Their 
movement, as schematized in Figure 1.1b, consists of (i) rolling, (ii) 
sliding or (iii) saltation within a thin layer near the stream bed (Wong et 
al., 2007; Ganti et al., 2010). 
 

 a) 
 

b) 

Figure 1.1 Gravel-bed rivers: a) Elbow River, Alberta, Canada at low flow 
(Parker, 2004); b) Schematization of sediment transport (Copyright © 2006 
Pearson Prentice Hall inc) 
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Reliable and accurate estimates of the bedload transport rate are essential 
to evaluate the morphodynamic evolution of this kind of rivers (Parker, 
2004). In particular, sediment movement in gravel-bed rivers can be 
measured by direct sampling of the transport rate or by using tracer 
gravels, which can give insight into many different aspects of gravel 
transport such as entrainment rates, downstream dispersion (to 
determine grain displacement lengths and virtual velocities), downstream 
sediment sorting, vertical mixing, burial, and preferential storage in bars 
or other locations (Ferguson and Hoey, 2002; Wilcock, 1997).  
The working hypothesis is that tracers vertical and streamwise 
displacement history may serves as good indicator of the bedload 
transport response of a stream to given water discharge and sediment 
supply conditions (DeVries, 2000; Parker, 2004; Wong et al, 2007). 
There are reports of bedload tracing programs in field and laboratory 
since the late 1930s. Einstein (1937) was the first to use tracers in a 
flume, while Takayama (1965) and Leopold et al. (1966) were pioneers in 
using painted tracers in the field (Hassan and Ergenzinger, 2005). Since 
then, the techniques have improved, guaranteeing higher recovery rates, 
and pebble tracers have found increased use in field (for a close 
examination and summary about tracer techniques, recovery rates and 
field programs, refer to Hassan and Ergenzinger, 2005). Also in 
laboratory, the interest in tracers dispersion has increased in recent years 
(e.g. Ganti et al., 2010; Martin et al., 2012) because of a rediscovered 
concern about stochasticity in particle motion. Tracers are well suited to 
the stochastic and spatially variable nature of bedload transport because 
they are based on a predetermined bed sample composed of individual 
grains (Wilcock, 1997). They in fact provide a way of characterizing not 
only mean parameters pertaining to transport, but also the stochasticity 
of particle motion itself. This stochasticity was first elaborated by 
Einstein (1937). Einstein based his analysis on experimental observations 
of painted tracer particles. He noted that: òThe results demonstrated clearly 
that even under the same experimental conditions stones having essentially identical 
characteristics were transported to widely varying distances [é]. Consequently, it 
seemed reasonable to approach the subject of particle movement as a probability 
problemó (Ganti et al. 2010).  
Einstein (1937) considered the particle motion as a stochastic sequence 
of discrete steps interrupted by periods of rest. He quantified the 
problem in terms of the statistics of step length (distance that a particle 
travels once entrained before depositing) and resting period (waiting 
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time). Both step length and waiting time are stochastic variables and the 
shape of their probabilities densities affect advection and diffusion of 
river tracer pebbles (and, in general, sediment particles) in a way that, 
only recently, has been described by applying the ideas deriving from the 
standard formulation for Continuous Time Random Walk (CTRW).  
CTRW, accompanied by appropriate probability distribution functions 
(PDFs) for walker step length and waiting time, yields asymptotically the 
standard advection-diffusion equation (ADE) for thin-tailed PDFs, and 
the fractional advection-diffusion equation (fADE) for heavy-tailed 
PDFs, the latter allowing the possibilities of subdiffusion or 
superdiffusion of particles, which is often referred as non-local behavior 
or anomalous diffusion (e.g. Schumer et al., 2009). 

1.1 OBJECTIVES OF THE THESIS 

In latest years, considerable emphasis has been placed on non-locality 
associated with heavy-tailed PDFs for particle step length (e.g. Schumer 
et al., 2009; Bradley et al. 2010; Ganti et al. 2010). This appears to be in 
part motivated by the desire to construct fractional advective-diffusive 
equations for pebble tracer dispersion corresponding to the now-classical 
fADE model (e.g. Schumer et al., 2009). 
In the thesis, we firstly consider the 1D morphodynamics of an erodible 
bed subject to bedload transport and we focus on the case of non-
locality mediated by both heavy- and thin-tailed PDFs for particle step 
length. Regardless of the thin tail of the PDF, the degree of non-locality 
nevertheless increases with increasing mean step length.  
The first objective of the thesis is therefore analysing the effects of this 
non-locality on transient aggradational/degradational bed profiles and 
trying to give an explanation to anomalously flat aggradational long 
profiles that have been observed in some short laboratory flume 
experiments and, until now, modelled by considering fADE. 
The second objective is strictly related to pebble tracer dispersion: we 
show that the CTRW Master Equation is inappropriate for river pebbles 
moving as bed material load.  We want to develop a new Master 
Equation, for tracer transport and dispersion for alluvial 
morphodynamics, which is based on the Exner equation of sediment 
mass conservation as well as on the existence of a mean bed elevation 
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averaged over fluctuation, which precludes the possibility of streamwise 
subdiffusion mediated by a waiting time PDF with no mean. The new so 
called Exner-Based Master Equation (EBME)  yields asymptotic forms 
for ADE and fADE that differ significantly from CTRW. It allows a) 
vertical dispersion, as well as streamwise advection-diffusion, and b) 
mean waiting time to vary in the vertical. The possibility to look at the 
vertical exchanges is needed to describe the advective slowdown of 
tracer particles described by Ferguson and Hoey (2002). 
Then, the third objective is to construct a simplified model for showing 
the role of vertical dispersion on tracers motion. The vertical dispersion 
is another example of non-local behaviour, which cannot be expressed 
with fractional derivatives. 
The last objective is to show some numerical solutions of the proposed 
EBME for streamwise and vertical transport and dispersion of tracers. 

1.2 STRUCTURE  OF THE THESIS  

The thesis is organized in six chapters and here briefly the content of 
each chapter is presented.  
In Chapter 2, some basic and well-known notions are reported: different 
formulations of the Exner equation of sediment mass conservation are 
stated, with specific interest only in bedload transport which 
characterizes grave-bed streams. For completeness, some general 
definition for bedload transport relations are given as well. 
In Chapter 3, we consider the 1D morphodynamics of an erodible bed 
subject to bedload transport. We show all the results concerning the first 
objective of the thesis, looking at the effects of non-locality due to 
variable step length on bed evolution. 
In Chapter 4, we introduce the tracers problem providing some 
experimental and theoretical findings on advection and diffusion of river 
pebble tracers. 
In Chapter 5, we set the pebble tracer dispersion in the CTRW 
framework and we define a generalized (Exner- based) Master Equation 
for the case of bedload transport (moving as bed material load) in rivers, 
so as to include PDFs of particle step length and particle waiting time, as 
well as vertical exchange of particles, according to the above mentioned 
second objective. Then, we illustrate the key aspect of vertical dispersion 
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by means of a numerical solution of the simplified version of EBME, in 
which streamwise variation in neglected. 
In Chapter 6, using existing experimental data by Wong et al. (2007), we 
try to extract new information from time series of bed elevation about 
the structure functions of the parameters of the model EBME-N and 
then we report some numerical results for the case of vertical and 
streamwise transport and dispersion of tracers. 
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2 MORPHODYNAMICS OF RI VER BED 
VARIATION  

The field of morphodynamics consists of the class of problems for 
which the flow over a bed interacts strongly with the shape of the bed, 
both of which evolve in time (Parker, 2004). 
The flow field determines the sediment transport rate by means of 
sediment transport relations and the sediment transport rate controls the 
morphodynamics of the bed surface (e.g., slope, bedforms) by means of 
the equation of sediment mass conservation. If changes in flow field (or, 
directly, in sediment transport rate) occur, then, the morphodynamics of 
bed changes. This alteration induces a changed flow field, which, again, 
changes the bed until an equilibrium condition is reached.  
Felix Exner was the first researcher to state a morphodynamic problem 
in quantitative terms, thatõs why, in spite of the term òmorphodynamicsó 
itself evolved many decades afterward, he deserves credit as the founder 
of morphodynamics. In particular, in the early part of the 20th Century he 
derived one version of the various statements of conservation of bed 
sediment (Exner, 1920; 1925) that are now referred to as òExner 
equationsó (Parker, 2004). The equation was brought to the attention of 
the English-speaking world via the book by Leliavsky (1955), as pointed 
out by Paola and Voller (2005). 
In the current Chapter, some different formulations of the Exner 
equation of sediment mass conservation are presented, with specific 
interest only in bedload transport which characterizes grave-bed streams. 
For the sake of completeness, some general definition for bedload 
transport relations are given as well. 

2.1 THE EXNER  EQUATION OF SEDIMENT CONTINUITY  

The Exner equation of sediment conservation, when combined with a 
hydrodynamic model and a sediment transport model (i.e. bedload 
transport relations), is a central tool to evaluate the bed evolution (e.g. 



Chapter 2 

 

8 

 

aggradation and degradation) in the field of morphodynamics of the 
Earthõs surface. 
Itõs 1D derivation can be easily shown considering mass conservation 
within a control volume with a unit width (Figure 2.1). 
Let q [L2T-1] denote the volume sediment transport rate per unit width, 

lp [1] denote bed porosity (i.e., fraction of bed volume that is pores 

rather than sediment) and rs [ML-3] the material density of sediment: the 

mass sediment transport rate per unit width is then rsq [ML-1T-1]. 
  
 

bed sediment + pores

water

Dx

1

x

x + Dx

h

qb

qb

 

Figure 2.1 Control volume for the derivation of the Exner equation od sediment 
mass conservation (Parker, 2004) 

 
Sediment mass conservation within the control volume requires that the 
variation in time of the sediment mass within the control volume is given 
by the difference between the sediment mass inflow rate and the 
sediment mass outflow rate: 

s p s x x x
(1 ) x 1 q q 1

t +D

µ
è øè ør -l h D Ö =r - Öê ú ê úµ

 (2.1) 

where h [L] denotes the bed elevation, t [T] denotes the time, x [L] 
denotes the streamwise distance. 
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From Equation 2.1, the 1D Exner equation of sediment conservation in 
its (classical) flux form (or equivalently in the 2D case, divergence 
formulation) can be written as: 

( )
( ) ( )

p

x, t q x, t
1

t x

µh µ
-l =-

µ µ
 (2.2) 

There is, however, a completely equivalent entrainment form of 
sediment conservation (e.g. Tsujimoto, 1978, Parker et al. 2000, Ganti et 
al. 2010; Pelosi and Parker, 2013):  

( )
( )

( ) ( )p

x, t
1 D x, t E x, t

t

µh
-l = -

µ
 (2.3) 

where E [LT-1] denotes the volume rate of entrainment of bed particles 
into bedload per unit area per unit time and D [LT-1] denotes the volume 
rate of deposition of bedload material onto the bed per unit area per unit 
time. 
The deposition rate can be related to the entrainment rate by means of 
the probability density of the step length ps(r) [L

-1], that is the probability 
density of the distance that an entrained particle moves before being re-
deposited.  
 

 

Figure 2.2 Particle step length 

 
Assuming that, once entrained, a particle undergoes a step with length r 
before depositing (Figure 2.2), and that this step length has the 
probability density ps(r) (pdf of step length), the volume deposition rate 
D can be specified as follows in terms of entrainment rate upstream and 
travel distance (e.g. Parker et al., 2000; Ganti et al. 2010), 

s
0

D(x) E(x r)p (r)dr
¤

= -ñ  (2.4) 

so that the entrainment form of sediment mass conservation can be 
written as:   

 
 

x 

r 
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() ( ) ()s
0

E x E x r p r dr
t

¤µh
=- + -

µ ñ  (2.5)  

As has been shown by Tsujimoto (1978), the two forms (2.2) and (2.3), 
are in principle completely equivalent in so far as the following equation 
precisely describes the bedload transport rate: 

( ) ()s
0 r

q(x) E x r p r ' dr 'dr
¤ ¤

= -ñ ñ  (2.6) 

Cases in which the two forms are not equivalent will be shown in 
Chapter 3, which is about the morphodymanics of bed river variation 
with variable step length. 
Many other different formulations for the Exner equation have been 
developed during the years in order to address more complex problems 
(Paola and Voller, 2005), such as modeling (i) the bed evolution and 
stratigraphy in rivers containing a mixture of grain sizes over a wide 
range (Hirano, 1971; Parker et al., 2000; Bloom et al., 2004; Parker, 2008) 
or (ii) the evolution of tracers particle moving as bedload into a stream 
(Parker et al., 2000; Ganti et al., 2010). The major advance in this regard 
was made by Hirano (1971), who introduced the concept of òactive 
layeró (Figure 2.3).  
 

 

 

Figure 2.3 Active layer concept  

 

According to his indication, the bed can be ideally divided into two parts: 
(i) a superficial well-mixed layer (i.e., the active layer) of thickness La , 
which exchanges actively (and equally) with the bedload layer and (ii) a 
deeper layer (i.e., the substrate), which exchanges with the bedload only 
in case of bed aggradation/degradation.  

 
La

h

bedload layer 

active 

layer 

substrate 
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The thickness of the active layer is supposed to be a function of D90, the 
diameter such that 90 percent of the bed sediment is finer (Parker, 2008). 
Considering a well-mixed active layer means giving to the particles 
contained in it, the same probability of entrainment into bedload, which 
sharply vanishes into the substrate (Figure 2.4b). 
The reality is that the deeper the particle is buried, the lower is its 
probability of being entrained into bedload, i.e., the probability of 
exposure of a grain decreases with depth as shown in Figure 2.4a (Parker 
et al., 2000).  
   
 

 

Figure 2.4 Variation in probability of Entrainment as in Parker et al. (2000): (a) 
actual variation; (b) approximation given by active layer formulation   

 

Parker et al. (2000), however, specified a general probabilistic 
formulation of the Exner equation of sediment continuity with no 
discrete layers. It is able to capture vertical exchange of sediment 
particles (and specifically tracer particles, as later) with no need of the 
relatively heavy-handed assumption of an active layer. Here we refer to 
this framework as PPL (Parker-Paola-Leclair). 

2.1.1 Parker-Paola-Leclair (PPL) Framework for Exner 
equation of sediment continuity 

Let z [L] denote a coordinate oriented upward normal to the local mean 

bed and ( )eP x,z, t [1] denote the probability that a point at elevation z is 

in the sediment bed (rather than the water above it; Figure 2.5). Thus 

( )eP x,z, t approaches unity when z ­-¤ (deep in the deposit) and zero 

when z­¤ (in the water column). Because of its definition, Pe also 
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indicates the probability that the bed surface elevation is higher than z, 
hence the probability density pe [L

-1] that instantaneous bed elevation is 
at level z is: 

() ()e
e e

P
p z , p z dz 1

z

¤

-¤

µ
=- =
µ ñ   (2.7a,b) 

 

Figure 2.5 Definition diagram for the Parker-Paola-Leclair framework for 
sediment and sediment tracer conservation.  

 

A new vertical coordinate system can now be introduced terms of the 
variable y [L], representing the deviation from the mean bed elevation ǥ: 

y z (x, t)= -h   (2.8)  

Consequently, Pe becomes function of y and (2.7a) takes the form: 

() e
e

P
p y

y

µ
=-
µ

 (2.9) 

Now let pJO (y) [L-1] be the probability density that a particle that is 
entrained into bedload comes from level y, and pJI (y) [L-1] be the 
probability density that a particle that is deposited is emplaced in the bed 
at level y. As shown in Figure 2.5, the volume of sediment per unit 
length and width contained in a strip with height dy is given as (1-

lp)Pedy, and the entrainment and deposition rates within this strip are 

given as (1-lp) pJO Edy and (1-lp) pJI Edy. A formulation of mass balance 
in correspondence with (2.3), then, yields the PPL elevation-specific 
form of the Exner equation of mass balance: 
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( ) () ( )e
JO JI s

0

P
E x, t p (y) p y E x r, t p (r)dr

t

¤µ
=- + -

µ ñ  (2.10)  

Thus particles can jump out from any elevation y with probability pJO, 
and jump back into the bed at any elevation y with probability pJI, after 
having been entrained at any distance r upstream from any level yõ. The 
above equation involves a simplification, in that it assumes that the 
elevation of deposition is uncorrelated with step length. 
In general, Pe is a function of x, y and t, where y is according to (2.8) the 

elevation relative to the mean bed. Thus Pe = Pe(x, z-h(t), t). Note that Pe 
can vary in time in two ways; the structure of Pe itself can vary in time, 
and the value of Pe can change at a given elevation due to bed 
aggradation. The chain rule applied to equations (2.8) and (2.9) yields: 

() ( ) ( )

()

e e e

e
e

P x, y t , t P x, y, t P x, y, t

t t y t

P
p y

t t

è øµ µ µ µhê ú
= - =

µ µ µ µ

µ µh
= +
µ µ

 (2.11) 

which substituted in (2.10) gives: 

( ) () ( )e
e JO JI s

0

P
p E x, t p (y) p y E x r, t p (r)dr

t t

¤µ µh
+ =- + -

µ µ ñ   (2.12) 

In the following, we make the simplification that the probability density 
that a particle is jumps  into the bed at level y is equal to the probability 
density that a particle jumps out from level y : 

() () ()JI JO Jp y p y p y= =  (2.13) 

so that (2.12) becomes 

( ) () ( )e
e J J s

0

P
p E x, t p (y) p y E x r, t p (r)dr

t t

¤µ µh
+ =- + -

µ µ ñ  (2.14) 

This assumption must be valid for a bed that is in macroscopic 

equilibrium (constant h), and is a first-order approximation for a bed 
that is only slowly aggrading or degrading (in which case bed elevation is 
driven by slow spatiotemporal variation in E). 
It is shown in Blom and Parker (2004) that integrating (2.12) in y 
recovers the Exner equation (2.5). 
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Equation (2.14) is, in and of itself, a fairly trivial extension of the Exner 
formulation. Its true value becomes apparent when applied to bedload 
tracers. The PPL framework is applied to this case in Chapter 4. Here, 
we just wanted to present the general framework and to show together 
the main different formulations of the Exner equation of sediment 
continuity, which will be recalled in the following sections. 

2.2 BEDLOAD  TRANSPORT RELATIONS   

Bedload transport relations allow to relate the sediment transport rate q 
with the flow field. In particular, having defined (i) a dimensionless 
sediment transport rate q* (i.e., Einstein number) as follows 

p p

q
q

RgD D

*=    (2.15) 

where Dp [L] is the particle diameter, R [1] the submerged specific 
gravity of the sediment and g [LT-2] the acceleration of gravity and (ii) a 
dimensionless shear stress (i.e., Shields number):  

b

pRgD

* t
t =
r

  (2.16) 

where tb [ML-1T-2] is the shear stress and r [ML-3] is water density, a 
common approach is empirically relating q* with either the Shields stress 

t* or the excess of the Shields stress t* above some appropriately 

defined critical Shields stress tc*.   

cq f ( ) or q f ( )* * * * *= t = t -t (2.17a,b) 

Famous empirical bedload relations are the ones by Meyer-Peter and 
Müller (1948), Einstein (1950), Ashida & Michiue (1972), Wong and 
Parker (2006) and so on. In the following, as later specified, the relation 
by Wong and Parker (2006) is used for our numerical model of bed 
evolution with variable step length (cfr. Section 3.2.2) because it is well-
suited for gravel-bed rivers. 
The volume bedload transport rate per unit width q at equilibrium can 
also be written as: 
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q E r= Ö (2.18) 

Einstein (1950), where r  [L] is mean particle step length. The relation 
(2.18) is used to the define the entrainment rate E in our numerical 
model of bed evolution with variable step length (Section 3.2.2).
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3 MORPHODYNAMICS OF RI VER BED 
VARIATION WITH VARIA BLE BEDLOAD 
STEP LENGTH  

Here we consider the 1D morphodynamics of an erodible bed subject to 
bedload transport. Fluvial bed elevation variation is typically modeled by 
the Exner equation which, in its classical form, expresses mass 
conservation in terms of the divergence of the bedload sediment flux. 
An entrainment form of the Exner equation can be written as an 
alternative description of the same bedload processes, by introducing the 
notions of an entrainment rate into bedload and of a particle step length, 
and assuming a certain probability distribution for the step length. This 
entrainment form implies some degree of non-locality which is absent 
from the standard flux form, so that these two expressions, which are 
different ways to look at same conservation principle (i.e. sediment 
continuity), may no longer become equivalent in cases when channel 
complexity and flow conditions allow for long particle saltation steps 
(including, but not limited to the case where particle step length has a 
heavy tailed distribution) or when the domain of interest is not long 
compared to the step length (e.g. laboratory scales, or saltation over 
relatively smooth surfaces). We perform a systematic analysis of the 
effects of the non-locality in the entrainment form of Exner equation on 
transient aggradational/degradational bed profiles by using the flux form 
as a benchmark. As expected, the two forms converge to the same 
results as the step length converges to zero, in which case non-locality is 
negligible. As step length increases relative to domain length, the mode 
of aggradation changes from an upward-concave form to a rotational, 
and then eventually a downward-concave form. Corresponding behavior 
is found for the case of degradation. These results may explain 
anomalously flat aggradational long profiles that have been observed in 
some short laboratory flume experiments. 
The Chapter is a version of a recent paper (Pelosi and Parker, 2013), 
published on ESurfD journal, and under revision for the publication on 
ESurf journal. 
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3.1 INTRODUCTION  

The Exner equation, in its classical formulation, relates the bed evolution 
to the divergence of the bedload sediment flux (q), which is assumed to 
be a local function of the flow and the topography. However, certain 
sediment dynamics, such as (i) particle diffusion in river bedload (e.g. 
Nikora et al., 2002; Bradley et al., 2010; Ganti et al. 2010; Martin et al., 
2012), (ii) bed sediment transport along bedrock channels (Stark et al., 
2009) and (iii) particle displacements on hillslopes (Foufoula-Georgiou et 
al., 2010) may show non-local behaviour that is not easily captured by 
the classical form of the Exner equation. 
The non-locality of interest here is embedded in the step length r of a 
bedload particle, i.e. the distance that a particle, once entrained into 
motion, travels before depositing. The existence of a finite step length r 
implies a non-local connection between point x (where a particle is 
deposited) and point x ð r (where it was entrained). The degree of non-
locality can be characterized in terms of the probability density (PDF) of 
step lengths ps(r). This PDF can be hypothesized to be thin-tailed (e.g. 
exponential) or heavy-tailed (e.g. power). 
In recent years, considerable emphasis has been placed on non-locality 
associated with heavy-tailed PDFs for step length (e.g. Schumer et al., 
2009; Bradley et al. 2010; Ganti et al. 2010). This appears to be in part 
motivated by the desire to construct fractional advective-diffusive 
equations for pebble tracer dispersion corresponding to the now-classical 
fADE model (e.g. Schumer et al., 2009). 
Experiments conducted under the simplest possible conditions 
(including steady, uniform flow, single-sized sediment and the absence of 
bedforms) yield thin-tailed, and more specifically exponential 
distributions for step length PDF (Nakagawa and Tsujimoto, 1980; Hill 
et al., 2010). Ganti et al. (2010), however showed that were a) the bed to 
consist of a range of sizes, b) the PDF of size distribution to obey a 
gamma distribution and c) the PDF of for step length of each grain size 
to be exponential, the resulting PDF for step length would be heavy-
tailed. Hassan et al. (2013) analysed 64 sets of field data on pebble tracer 
dispersion in mountain rivers (which by nature contain a range of sizes). 
They found that all but 5 cases either showed thin-tailed PDFs, or could 
be rescaled as thin-tailed PDFs. Their results, combined with those of 
Ganti et al. (2010), however, do suggest that the gradual incorporation of 
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the many factors in nature that lead to complexity can also lead to non-
local behaviour mediated  by heavy-tailed PDFs. 
Here, however, we focus on the case of non-locality mediated by thin-
tailed (exponential) PDFs for step length. Regardless of the thin tail of 
the PDF, the degree of non-locality nevertheless increases with 
increasing mean step length r . This non-locality may become dominant 
when r  approaches the same order of magnitude as the domain length 
Ld under consideration. We show that patterns of bed aggradation and 

degradation are strongly dependent on the ratio dr / L , a parameter that 

may be surprisingly large in some small-scale experiments. Our results 
may explain anomalously flat aggradational long profiles that have been 
observed in some short laboratory flume experiments, without relying on 
either of the fractional partial differential equations or heavy-tailed 
distributions invoked or implied by Voller and Paola (2010). We use our 
framework to explore the consequences of heavy-tailed PDFs for step 
lengths as well.  
 

3.2 METHODS  

3.2.1 Theoretical framework 

The current Section recalls part of Section 2.1, to which itõs possible to 
refer for more details. 
1D river bed elevation variation is classically described, as pointed out in 
Chapter 2, by the 1D Exner equation of sediment conservation in flux 
form: 

( ) ( )x, t q x, t

t x

µh µ
=-

µ µ
 (3.1) 

where h [L] denotes the bed elevation, t [T] denotes the time, x [L] 
denotes the streamwise distance and q [L2T-1] is the volume bedload 
transport rate per unit width. (Here, the porosity of the bed sediment is 
set = 0 and bedload only is considered, both for the sake of simplicity). 
There is, however, a completely equivalent entrainment form of 
sediment conservation (e.g. Tsujimoto, 1978):  
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( )
( ) ( )

x, t
D x, t E x, t

t

µh
= -

µ
 (3.2) 

where E [LT-1] denotes the volume rate of entrainment of bed particles 
into bedload per unit area per unit time and D [LT-1] denotes the volume 
rate of deposition of bedload material onto the bed per unit area per unit 
time. 
The deposition rate can be related to the entrainment rate by means of 
the probability density of the step length ps(r) [L

-1]: 

s
0

D(x) E(x r)p (r)dr
¤

= -ñ  (3.3) 

so that the entrainment form of sediment mass conservation can be 
written as:   

() ( ) ()s
0

E x E x r p r dr
t

¤µh
=- + -

µ ñ  (3.4)  

As has been shown by Tsujimoto (1978), the two forms (3.1) and (3.4), 
are in principle completely equivalent in so far as the following equation 
precisely describes the bedload transport rate: 

( ) ()s
0 r

q(x) E x r p r ' dr 'dr
¤ ¤

= -ñ ñ  (3.5) 

Yet in any given implementation, they are rarely equivalent. More 
specifically, in most implementations of the flux form (3.1), q is taken to 
be a local function of the flow (e.g. bed shear stress), whereas in most 
implementations of the entrainment form (3.4), E is taken to be a local 
function of the flow (again, e.g. bed shear stress). The presence of the 
spatial convolution term in the entrainment form of (3.3) and (3.4) 
ensures non-locality in the entrainment form as compared to the flux 
form. This non-locality is present regardless of whether the PDF of step 
length ps(r) is thin-tailed or heavy-tailed, and vanishes only when ps(r) 

becomes proportional to d(r), where d denotes the Dirac function. 
Here we explore the consequences of non-locality, and compare the local 
and nonlocal forms (3.1) and (3.4) for Exner over a range of conditions. 
To do this, we assume that the PDF ps(r) has a mean step length, and 
consider the dimensionless parameter ǣ: 
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d

r

L
e=  (3.6) 

wherer [L] denotes the mean particle step length and Ld [L] denotes the 
length of the domain of interest (e.g. flume length or length of river 
reach). The flux and entrainment forms become strictly equivalent only 
under the constraint: 

d

r
1

L
e=  (3.7) 

Here we demonstrate that this equivalence for 1e  breaks down with 
increasing ǣ. This is because a finite mean step length r  in and of itself 
implies non-locality, regardless of whether or not the probabilistic 
distribution of particle step length ps(r) is thin- or heavy-tailed. A further 
degree of non-locality can be introduced by adopting a heavy-tailed 
distribution for ps(r). 
The standard thin-tailed form for the particle step length probability 
density function is the exponential distribution (e.g. Nakagawa and 
Tsujimoto, 1980; Hill et al., 2010): 

()s

1 r
p r exp

r r

å õ
= -æ ö

ç ÷
 (3.8) 

The heavy-tailed Pareto distribution with a shift, which ensures that the 
maximum value of the distribution is realized at r = 0, can be considered 
as an alternative: 

()
( )

00
s 1

0

r 0r
p r ,

0r r

a

a+

>ëa
= ì

a>+ í
 (3.9) 

where ǟ is the shape parameter and r0 [L] is the scale parameter. The 
mean value r of the distribution of Equation (3.9) can be written as: 

00
0

r 0r
r r ,

1 0

>ëa
= -ì
a- a>í

 (3.10) 
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3.2.2 Numerical model 

Here we solve the flux and entrainment formulations under parallel 
conditions, the only exception being the formulation for step length. To 
simplify the problem and focus on this point, we approximate the flow 
as obeying the normal (steady, uniform) approximation. Momentum 

conservation then dictates that bed shear stress tb [ML-1T-2] can be 
represented as proportional to the product of depth H [L] and slope S 
[1]: 

2

b *u gHS , S
x

µh
t =r =r =-

µ
  (3.11a,b) 

where *u [LT-1] is the shear velocity. 

The dimensionless Shields number governing particle mobility defined as 

b

pRgD

* t
t =
r

  (3.12) 

where r [ML-3] is water density, Dp [L] is characteristic bed particle size 
(here taken to be uniform for simplicity) and R denotes the submerged 
specific gravity of the sediment (~ 1.65 for quartz).  
The flow can be computed by introducing the Manning-Strickler 
resistance relation:  

1 6

r

c

U H

u k*

å õ
=aæ ö
ç ÷

 (3.13) 

where U [LT-1] is the depth-averaged flow velocity, ǟr is a dimensionless 
coefficient between 8 and 9 (Chaudhry, 1993), and kc denotes a 
composite roughness height. In absence of bedforms, kc is equivalent to 
the roughness height ks which is proportional to grain size Dc by means 
of a dimensionless coefficient with typical values between 2 and 5 
(Parker, 2004). Here, ǟr is set equal to 8.1, as suggested by Parker (1991) 
for gravel-bed streams, while kc, in absence of bedforms, is taken to be 
2.5 times the grain size Dc (Parker, 2004). 
The equation for water conservation for quasi-steady flow is: 

wQ UBH=  (3.14) 
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where Qw [L3T-1] is the water discharge and B [L] denotes the channel 
width.  
Combining Equations (3.11) - (3.14), we relate the dimensionless Shields 
number to the flow properties: 

( )
3 10

1 3 2 7/10
c w

2 2

r p

k Q S

gB RD

*
è ø

t =é ù
aé ùê ú

 (3.15) 

The basis for our morphodynamic calculations is the form of Meyer-
Peter and Müller (1948), as modified by Wong and Parker (2006). It 
takes the form: 

( )
3 2

* *

p p cq RgD D=g t -t (3.16) 

where g [LT-2] denotes the gravitational acceleration. The parameter t*c 
denotes the threshold Shields number and ǡ is a coefficient of 
proportionality; these parameters take the respective values 0.0495 and 
3.97 (as specified by Wong and Parker, 2006). 
The volume bedload transport rate per unit width q at equilibrium can 
also be written as: 

q E r= Ö (3.17) 

(Einstein, 1950), so that the entrainment rate takes the form: 

( )
3 2

* *

p c

p

r
E RgD ,

D

g
= t -t b=
b

 (3.18) 

Here Ǡ is a dimensionless parameter. Einstein (1950), suggested, based 

on a simple flume-like configuration, that pr / D  takes a value on the 

order of 100 ~ 1000, so that a step length is about 100 ~ 1000 grain 
sizes. This order of magnitude has been confirmed by the experiments of 
Nakagawa and Tsujimoto (1980), Wong et al. (2007) and Hill et al. 
(2010). 

In systems with higher degrees of complexity, however, b is likely to vary 
over a wide range. Combinations of multiple grain sizes, bedforms, scour 
and fill and partially exposed bedrock are likely to give rise to connected 
pathways along which particles may travel for an extended distance, so 
giving rise to larger values of r  (e.g. Parker, 2008). In order to capture 
this effect in a simplified 1D model, we allow the ratio r , and thus 
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pr / Db=  to vary freely, so that the ratio r /L d of step length to domain 

length can vary from 0 (in which case the flux and entrainment 
formulations become equivalent) to unity (in which a particle starting at 
the upstream end of the domain reaches the downstream end in a single 
step)..  
Linking Equations (3.16) - (3.18), the following relation arises at 
equilibrium conditions:  

p p p

q E

RgD D RgD
=b  (3.19) 

Our formulation is such that increased step length is adjusted against 
reduced entrainment, so that the equilibrium bedload transport rate is 
the same whether the flux or entrainment formulation is used. A 
difference, however, arises under disequilibrium conditions, in which 
case Equation (3.16) is solved in conjunction with Equation (3.1) in the 
flux case, and Equation (3.18) is solved in conjunction with Equation 
(3.4) in the entrainment case. This allows us to capture the difference 
between the two formulations in a comparable way. 
The flux formulation, Equation (3.1) corresponds to a nonlinear 
diffusion equation, i.e. 

( )x, t

t x x

µh µ µhå õ
= næ ö

µ µ µç ÷
 (3.20) 

where according to Equations (3.11), (3.15) and (3.16), the kinematic 

diffusivity n is a function of bed slope S = - µh/µx: 
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 (3.21) 

The governing equation is second order in x, and thus requires two 
boundary conditions. Here we require that the bed elevation at the 
downstream end is zero, and that the sediment transport rate at the 
upstream end is given as a constant, specified feed rate: 

d
fx L x 0

0 , q q
= =

h = = (3.22a,b) 
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The entrainment formulation of Equation (3.4), however, is only first 
order in x, in so far as the entrainment rate E is a specified function of 

bed slope S = - µh/µx according to Equations (3.4) and (3.18). Thus 
there can be only one boundary condition in x; here we use Equation 
(3.22a) for this, so that both the flux and entrainment formulations 
satisfy the condition of vanishing bed elevation (corresponding to set 
base level) at the downstream end. 
Although no boundary condition can be set at the upstream end for the 
entrainment formulation, it is still possible to choose conditions so that 
the sediment transport rate at the upstream equals the feed value under 
equilibrium conditions. 
To do this, we assume that the entrainment rate everywhere upstream of 
x = 0 equals a specified value Ef, specified as follows: 

f
f

q
E

r
=  (3.23) 

The deposition rate D(x) of Equation (3.3) can then be re-written in 

terms of the sum of particles that originate within the domain (x - r ² 0) 
and those that originate upstream of the domain (x ð r < 0): 

x

s s s
0 0 x

x
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where 

ls s
x

p (x) p (r)dr
¤

=ñ  (3.25) 

is the probability [L-1], that a particle travels at least a distance x.  
The entrainment form of sediment mass conservation thus takes the 
ultimate form: 

()
x

s f ls
0

E x E(x r)p (r)dr E p (x)
t

µh
=- + - +

µ ñ  (3.26) 

For the numerical computation, we non-dimensionalize Equations (1) 
and (26). We assume that the computation begins from some equilibrium 
initial condition with spatially constant slope Sin, bedload transport rate 

and entrainment rate in inq r E= . At t = 0, however, the supply of 

(3.24) 

(3.24) 
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sediment is impulsively altered, causing subsequent bed aggradation or 
degradation, but with an altered sediment feed rate for t > 0. We 
normalize against initial equilibrium conditions using the following 
definitions: 

d in d d

x r
x r

L S L L

h
h= = =

Ö
Ĕ ĔĔ, ,  (3.27a,b,c) 

in

d in in

E S
t t s

L S S

Öe
= =
Ö

Ĕ Ĕ,  (3.27d,e) 

In addition, we non-dimensionalize the entrainment rate (for the 
entrainment formulation) and the bedload transport rate (for the flux 
formulation) as 

in

E
E q E

E
= =eÖĔ ĔĔ,  (3.27f) 

Then, the non-dimensional flux and entrainment forms of the sediment 
mass conservation, Equations (3.1) and (3.26) take the respective forms: 

ĔĔ Ĕ1 q E

Ĕ Ĕ Ĕt x x
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 (3.28) 
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is the dimensionless step length PDF for the exponential distribution, 
and 

( )
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is the corresponding form for the Pareto distribution, where 
0
Ĕr is the 

dimensionless scale parameter equal to
0 dr L . 

These are the upstream conditions, for the entrainment formulation 
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( ) f
Ĕx 0

Ĕ ĔE x, t E
¢
=  (3.32a) 

and for the flux formulation 

( ) fĔx 0

ĔĔq x, t E
¢
=e (3.32b) 

The downstream boundary condition is the same for both 

( )
Ĕx 1

Ĕx, t 0
=

h = (3.32c) 

Here 
fEĔis an imposed upstream entrainment rate, and 

fEĔe  is an 

imposed upstream bedload feed rate, chosen to be different from the 
initial equilibrium values so that the bed is forced to aggrade (or degrade) 
toward a new equilibrium state.  
Manipulating the relations (3.15) and (3.18), with the definitions of 

Equations (3.27), EĔ, can be at any given time as: 

3 2
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where *

int is the dimensionless Shields number, calculated from (3.15) 

with the initial flow and bed conditions and sĔis the local dimensionless 
slope. 
The key parameter of interest here in describing the difference between 

the entrainment and flux formulations is e. In the case 1e , both 

formulations become identical. We show below, however, that as e 
increases, the response to change in sediment supply differs between the 
two cases. 
We discretize the relation between dimensionless slope and 
dimensionless bed elevation as follows: 
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Chapter 3 

 

28 

 

The discretization of the domain is schematized in Figure 3.1: a central 
finite-difference scheme is used to solve Equations (3.28) and (3.29).  
 

 

Figure 3.1 Discretization of the domain 

 

3.3 RESULTS  

Here we compare the results for aggradation and degradation for the 

entrainment formulation with varying values of e against those for the 
flux formulation. In Figure 3.2, bed elevation profiles are shown, having 

set as an upstream boundary condition fE 2Ĕ= , so forcing the bed to 

aggrade. Case (a) is the solution for the flux form of Equation (3.28), 
while cases (b), (c) and (d) are the solutions for the entrainment form of 
Equation (3.29), solved, respectively for ǣ = 0.01, 0.5, and 1. 
As expected, the solutions of Equation (3.28) and Equation (3.29) 

collapse to the same results in the case of 0.01e= , i.e. when the mean 
particle step length is short compared to the length of the domain. Thus 
under this condition the local (flux) form, essentially coincides with the 

non-local form. For higher values of e, however, the differences between 
the results increase because the entrainment form is able to capture the 
non-local feature of the particle movement. For the flux form and the 

case e = 0.01, the aggradational profile is strongly upward concave, with 
bed slop declining downstream. The transient aggradational bed profiles 
tend to assume a nearly linear profile, and thus the bed rotates upward, 
for values of ǣ close to 0.5. For higher values a downward-concave form 
profile is realized. 
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Figure 3.2 Bed profile evolution for the case 
f
ĔE 2= : a) flux form; b) entrainment 

form for 
dr / Le= = 0.01, c) entrainment form for e = 0.5 and d) entrainment 

form for e = 1., using the thin-tailed exponential step length function of 

Equation (3.8). Increasing e, the differences between the results from the two 
forms increase because of the non-locality of particle movement: from upward 
concave transient profiles to downward concave ones. 

 
To highlight and quantify this change in shape, we introduce a concavity 
parameter Ǣ, which measures the deviation, in the centre of the profile, at 
Ĕ 0.5x=  relative to thea constant initial slope: 

Ĕ Ĕx 0 x 0.5

Ĕx 0

Ĕ Ĕ0.5

Ĕ
= =

=

Öh -h
d=

h
 (3.35)  

where 
Ĕx 0
Ĕ
=

h denotes the dimensionless bed elevation at Ĕ 0x= and 

Ĕx 0.5
Ĕ
=

h denotes the same quantity in the center of the profile (Ĕx 0.5= ). 

Positive Ǣ indicates upward concavity, while negative d indicates 
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downward concavity. In Figure 3.3, the variation in time of Ǣ is shown 
for the flux case, and different values of ǣ for the entrainment case. It is 
seen that Ǣ is positive for smaller ǣ and but becomes negative for ǣ 
greater than 0.5. The results for the flux form overlap with the form for 

e = 0.01. 

 
 

Figure 3.3 Aggradation case: variation in time of the concavity parameter d in 
the case of the flux formulation and in the cases of the entrainment formulation 

for different values of e ranging from 0.01 to 1. The result for the flux form 

overlaps with the result for the entrainment form with e = 0.01. 

 
In Figure 3.4, the slope evolution is plotted: the typical upward concave 

shape for the flux case and 0.01e=  is due to the preferential proximal 
deposition of sediment, which causes the sediment load, and thus the 

Shields number t* to decrease downstream (Parker, 2004). Thus, 
according to Equation (3.15), a downstream decreasing slope is realized 

(Figure 3.4a,b). On the other hand, a downward concave shape for e = 1 
is characterized by an increasing slope downstream (Figure 3.4d). This 
corresponds to bedload particles that can jump from the upstream end 
of the domain to the downstream end in one step. 



Morphodynamics of river bed variation with variable bedload step length 

 

 31 

 
 

Figure 3.4 Slope profile evolution for the case 
f
ĔE 2= : a) flux form; b) 

entrainment form for 
dr / Le=  = 0.01, c) entrainment form for e = 0.5 and d) 

entrainment form for e = 1., using the thin-tailed exponential step length 
function of Equation (3.8). 

 
For completeness, the case of degradation, due to an imposed 

entrainment and feed rate upstream fE 1 2=Ĕ / , is described by Figure 

3.5, Figure 3.6 and Figure 3.7. The results show a congruent behavior 

with the aggradation case. In Figure 3.5, for 0.01e=  and fE 1 2Ĕ /= , it is 

seen that the two profiles more or less agree.  
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Figure 3.5 Bed profile evolution for the case 
f
ĔE 1/ 2= : a) flux form; b) 

entrainment form for 
dr / Le= = 0.01, c) entrainment form for e = 0.5 and d) 

entrainment form for e = 1., using the thin-tailed exponential step length 

function of Equation (3.8). Increasing e, the differences between the results 
from the two forms increase because of the non-locality of particle movement: 
from upward concave transient profiles to downward concave ones. 
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In Figure 3.6, the concavity parameters d also more or less agree for this 
case. When ǣ increases to 1, the concavity of the transient degradational 
profiles changes from downward to upward.  

 

Figure 3.6 Degradation case: variation in time of the concavity parameter d in 
the case of the flux formulation and in the cases of the entrainment formulation 

for different values of e ranging from 0.01 to 1. The result for the flux form 

overlaps with the result for the entrainment form with e = 0.01. 

 

In Figure 3.7, slope changes from increasing downstream  to decreasing 
upstream. When ǣ = 0.5, it is shown in Figure 3.7 that the transient 
profile tend to keep a straight shape, and the evolution of the bed is 
essentially rotational about the downstream end. 
Summarizing i) the flux model and the entrainment model yield 

essentially the same results for e = 0.01; ii) for e = 0.5, nearly rotational 

aggradation and degradation are obtained; and iii) for e = 1, the pattern 
of concavity is reversed compared to the flux case. 
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Figure 3.7 Slope profile evolution for the case 
f
ĔE 1/ 2= : a) flux form; b) 

entrainment form for 
dr / Le=  = 0.01, c) entrainment form for e = 0.5 and d) 

entrainment form for e = 1., using the thin-tailed exponential step length 
function of Equation (3.8). 

 
Then, a Pareto distribution with a shift, i.e. Equation (3.9) for particle 
step length distribution is considered as well, so as to compare the case 
of heavy tail of the PDF of step length with the thin-tail exponential 

form. In the calculations for the entrainment rate with fE 2Ĕ= , two cases 

are evaluated , (a) ǣ = 0.015 and (b) ǣ = 1. It is seen that the two profiles 
more or less agree for the case (a). A more substantial difference is seen 
for case (b), but the concavity is quite small for both the cases of thin-
tailed and heavy-tailed PDF for step length. Assuming L = 200 m, with a 
thin-tailed PDF the value ǣ = 0.015 corresponds to a mean step length 
equal to 3 m, and the value ǣ = 1 corresponds to 200 m. We have set the 
shape parameter ǟ is in the Pareto PDF equal to 1.5, and the scale 
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parameter r0 equal to 1.5 m for case (a), and t100 m for case (b). This 
yields values of r  from Equation (3.10), that are respectively equal to 3 
m and 200 m, i.e. the same values as the thin-tailed case. 

 

Figure 3.8 Bed profile evolution for the case 
f
ĔE 2= . i) e = 0.015: a) Thin-tailed 

exponential step length PDF; b) heavy-tailed Pareto step length PDF (a =1.5, 

r0=1.5m). ii) e = 1 a) Thin-tailed exponential step length PDF; b) heavy-tailed 

Pareto step length PDF (a =1.5, r0=100m). 

 
The analysis shows that the shape of the tail of the step length PDF does 

not significantly change the results for e = 0.015 but does result in some 

change compared to the thin-tailed case e = 1. Figure 3.8 shows the long 
profiles resulting from both the thin-tailed and heavy-tailed case, and 
Figure 3.9 shows the corresponding evolution of concavity. As seen 
from Figure 3.9 (c) and (d) corresponding to the case of aggradation with 

e = 1, the profiles are downward-concave for the thin-tailed PDF of step 
length, and upward-concave for the heavy-tailed case. The concavity in 
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both cases, however, is so small that the same rotational behavior for 
profile adjustment is seen, as documented in Figure 3.8(c) and (d). 

 
 

Figure 3.9 Variation in time of the concavity parameter d for the case of the thin-
tailed exponential distribution for step length, and the case of heavy-tailed 

Pareto distribution for step length. The parameter 
dr / Le=  takes the value 

0.015 in a) and 1.0 in b). 

3.4 DISCUSSION AND CONCLUDING REMARKS  

The main goal of the Chapter is to show how the entrainment form of 
the Exner equation of sediment continuity diverges from the flux form 
of the Exner equation when non-local behavior in particle motion arises: 
(i) as the mean particle step length r  increases from 0 to the order of 
magnitude of the domain length Ld for a thin-tailed step length PDF and 
(ii) as a heavy-tailed PDF for particle step length is used. 

The dimensionless parameter e is defined as the ratio between the mean 
step length r and the length of the domain of interest Ld. We analyzed 

the effect of variation of e on bed aggradational/degradational profiles 
by solving the entrainment form of the Exner equation, with the 
assumption of thin-tailed PDF for particle step length. As expected, the 

two forms collapse in the case 1e . 

For high values of e, however, the differences between the results from 
the two forms increase because of the non-locality of particle movement 
which is not captured by the classical flux form of the Exner equation: 
the transient aggradational (degradational) bed profiles tend to assume, 
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for ǣ greater than 0.5, a downward (upward) concave shape, rather than 
the upward (downward) concave shape of the flux form. When the value 
of ǣ is close to 0.5, an interesting behavior for both the cases of 
aggradation and degradation has been found: the transient profiles tend 
to rotate around the downstream point, keeping almost a straight shape. 
For value of ǣ in the range [0,0.5), the concavity of the bed profiles is still 
upward for aggradation and downward, for degradation, but by 
increasing ǣ to 0.5, the concavity is nearly vanishing. . These results may 
serve as an explanation for relatively  flat aggradational bed profiles 
which have been achieved in some short laboratory experiments (e.g. 
Muto, 2001 and Voller and Paola, 2010, Falcini et al., 2013), where the 
value of the ratio between mean particle step length and length of the 
domain of interest may not be negligible. At the laboratory scale, the 
mean step length becomes comparable to domain length so that the 
inclusion ofnon-local effects in the PDF of step length which this 
circumstance entails, should clearly be evaluated in order to properly 
model the bed evolution. 
The analysis also investigates the effect of the heavy tailedness in the 
PDF of step length on bed profile. For the case studied, we show that 
the variation of the shape of the step length distribution from thin- to 
heavy-tailed does not significantly influence the results when step length 
is small. This is probably due to the òshortó domain length compared to 
the tail of the power law distribution. There is a somewhat larger 
difference in the case when step length equals domain length, but the 
bed elevation profiles are nearly linear for both thin-tailed and heavy-
tailed PDF. Voller and Paola (2010) introduced heavy-tailed behavior to 
explain profiles that evolve with concavity that is small compared to the 
standard flux case of Equation (3.1). Here we find that a heavy-tailed 
behavior is not necessary to obtain this result. 
Long step lengths of bedload particles in the field may result from any 
bed pattern that induces preferential paths for transport, including grain 
size mixtures (Ganti et al, 2010), bedforms, scour and fill, and 
intermittent bedrock exposure (Stark et al, 2009). Thus our results may 
be applicable to these cases. The case of sediment suspension can also be 
represented in entrainment form (e.g. Parker, 2004). This case is 
generally associated with much longer mean path lengths than the case 
of bedload. As a result, the suspension-dominated case may show much 
more non-local behavior than the bedload case. This case deserves 
further investigation. 
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4 ON ADVECTION  AND DI FFUSION  OF 
RIVER PEBBLE TRACERS  

The erosion, transport and deposition of pebbles in rivers have often 
been studied by considering the motion of tracer particles. Such studies 
have been staple components of field research (e.g. Ferguson and Hoey, 
2002; Hassan et al., 2013) as well as experimental investigations (e.g. 
Wong et al., 2007; Martin et al., 2012). The existing knowledge and 
research intuition suggest that tracer particles motion could be 
considered as an advective-diffusive phenomenon (Nikora et al., 2002). 
While migrating downstream the particles tend to slowdown because of 
several circumstances (e.g. reallocation in more stable locations, such as 
deeper layers in the bed) and to diffuse with different regimes, depending 
on the observed spatial and temporal scale. 

4.1 STREAMWISE ADVECTION SLOWDOWN OF  TRACERS 

The short-term behavior of tracers seeded on the surface differs from 
the longer-term behavior of tracers that have undergone vertical mixing, 
local spatial redistribution, and larger-scale advection.  
For instance, in rivers with bar-pool-riffle morphology there may be a 
tendency for tracers to be reallocated into more stable locations (e.g. 
riffles and bars), and in some cases into long-term storage in abandoned 
channels, inactive bars, or even the floodplain. This leads to a longðterm 
reduction in mobility. Then, advection of tracers for substantial distances 
along a river whose character alters downstream can (i) alter the size of a 
tracer relative to the bed it is traveling over, or (ii) expose it to 
systematically different hydraulic conditions. In particular, tracers 
traveling along a river with strong downstream fining toward a local base 
level will become relatively coarser and less mobile. Finally, there may be 
vertical mixing, that results in progressive burial of tracers at a range of 
depths. Buried tracers move less often than those on the surface (the 
probability of entrainment decreases with depth, as shown in Section 
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2.1), so there is again a reduction in overall long-term mobility (Ferguson 
and Hoey, 2002). 
The first quantitative evidence of the amount of tracer slowdown 
through the combined effects of these processes was presented by 
Ferguson et al. (2002) who compared the short- and long-term 
movement of 1220 magnetic tracer pebbles seeded in 1991 at six sites 
along a 2.5-km-long reach of Allt Dubhaig, a small gravel bed river in 
Scotland, UK. 
Ferguson et al. (2002) compared movement to 1999, after more than 100 
competent flow events, with results from the first two years of the 

experiment (1991ð1993; ~ 30 floods). In Figure 4.1, the observed 
percentage of slowdown for the six different sites is shown with the 
simulated slowdown by two different models, suggested by Ferguson 
and Hoey (2002). 
The models consider the tracer-pebble slowdown (i) through only 
advection of any given size Di from a relatively coarse upstream site to a 
finer downstream site where tracers have higher relative grain size and so 
less mobility and (ii) through advection and vertical mixing, which entails 
reaching portion of the bed with less chance of entrainment in bedload. 
 

 

Figure 4.1 Observed and simulated slowdown of recovered tracers (with relative 
errors bands) ð from Ferguson and Hoey (2002)  
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4.2 PARTICLES DIFFUSION  

Mathematically, diffusion processes are described by the scaling growth 
in time, t [T], of the central moments of the coordinates of a patch of 
particles. More, specifically, to describe such processes, it is often 

considered the growth in time of the spatial standard deviation s [L]: 

/2tcs´  (4.1) 

In case of normal (Fickian) diffusion, we have c equal to unity, while 

diffusion with c  ̧1 is known as anomalous diffusion, which can be (i) 

ballistic diffusion, when c = 2, (ii) superdiffusion, when c > 1 and (iii) 

subdiffusion, when c < 1.  
It is important to note that the diffusion exponents directly relate to 
parameters of probability distributions of particle motion characteristics 
such as step length and/or rest periods (as clarified in the following 
Chapter). For now, what we want to point out is that there may 
potentially be several diffusion regimes in bed particle motion (Nikora et 
al, 2002). 
In particular, Nikora et al. (2002) provided an useful conceptual 
framework for understanding different scaling regimes in bed load 
particle diffusion, suggesting that the character of sediment diffusion 
may change with time scale (Figure 4.2). Considering saltating particles, 
they firstly identified three ranges of spatial and temporal scales: (i) local 
range, which corresponds to ballistic particle trajectories between two 
successive collisions with the bed; (ii) intermediate range, which 
corresponds to particle trajectories between two successive rests and it 
may consist of many local trajectories; (iii) global range, which 
corresponds to particle trajectories consisting of many intermediate 
trajectories. Then, in their conceptual model, they hypothesized ballistic 
diffusion at short time scales (local regime), caused by correlated particle 
motions arising from particle inertia, and subdiffusion at long time scales 
(global regime) resulted from periods of particle immobility. Over 
medium time scales (intermediate regime), they suggested that the 
character of diffusion may depend on system properties. For instance, at 
this scale the bed topography and near-bed turbulence may have 
opposite effects on bed particle diffusion. A ôôfractalõõ bed may slow 

down diffusion processes (c < 1), while turbulence may enhance them (g 

> 1) or they can mutually cancel their effects (c = 1). 
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Figure 4.2 Conceptual representation of a particle trajectory consisting of three 
distinct ranges of scale: (i) local; (ii) intermediate; (iii) global. Nikora et al. 
hypothesized ballistic diffusion regime for the local range, normal or anomalous 
diffusion regime for the intermediate range and subdiffusion regime for the 
global range ð from Nikora et al. (2002) 
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5 EXNER BASED MASTER EQUATION FOR 
TRANSPORT AND DISPERSION OF 
RIVER PEBBLE TRACERS. PART 1. 
DERIVATION, ASYMPTOT IC FORMS, 
AND QUANTIFICATION O F NONLOCAL 
VERTICAL DISPERSION  

 
Ideas deriving from the standard formulation for Continuous Time 
Random Walk (CTRW) based on the Montroll-Weiss Master Equation 
(ME), have been recently applied to transport and diffusion of river 
tracer pebbles. CTRW, accompanied by appropriate probability 
distribution functions (PDFs) for walker step length and waiting time, 
yields asymptotically the standard advection-diffusion equation (ADE) 
for thin-tailed PDFs, and the fractional advection-diffusion equation 
(fADE) for heavy-tailed PDFs, the latter allowing the possibilities of 
subdiffusion or superdiffusion. Here we show that the CTRW Master 
Equation is inappropriate for river pebbles moving as bed material load: 
a deposited particle raises local bed elevation and an entrained particle 
lowers it, so that particles interact with the òlatticeó of the sediment-
water interface. Here we use the Parker-Paola-Leclair (PPL) framework, 
which captures the Exner equation of sediment conservation, to develop 
a new ME for tracer transport and dispersion for alluvial 
morphodynamics. The formulation is based on the existence of a mean 
bed elevation averaged over fluctuation, which precludes the possibility 
of streamwise subdiffusion mediated by a waiting time PDF with no 
mean. The new ME yields asymptotic forms for ADE and fADE that 
differ significantly from CTRW. It allows a) vertical dispersion, as well as 
streamwise advection-diffusion, and b) mean waiting time to vary in the 
vertical. Vertical dispersion is nonlocal, but cannot be expressed with 
fractional derivatives. In order to illustrate the new model, we apply it to 
the restricted case of vertical dispersion only, with both thin and heavy 
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tails for relevant PDFs. Vertical dispersion show  subdiffusive behavior, 
as quantified by the time variation of the vertical variance of tracer 
distribution. 
The current Chapter is a version of a manuscript that is ready to submit 
for publication in a refereed journal: òExner Based Master Equation for 
transport and dispersion of river pebble tracers. Part 1. Derivation, 
asymptotic forms, and quantification of nonlocal vertical dispersion.ó  

5.1 INTRODUCTION  

The theoretical basis for the study of the dispersal of sediment tracer 
particles was delineated by Einstein (1950), who formulated the problem 
in terms of a standard 1D random walk in which each particle moves in a 
series of steps punctuated by waiting times (see also Nakagawa and 
Tsujimoto, 1976; Tsujimoto, 1978). More specifically, each particle 

moves a step of length r [L] after waiting time t [T], the statistics of 
which govern tracer particle dispersal. 

Let ps(r) [L
-1] and pw(t) [T-1] denote the probability distribution functions 

(PDFs) of step length and waiting time. When both these PDFs have 

thin tails, such that ps(r) decays exponentially as r ­ ¤ and pw(t) decays 

exponentially as t ­ ¤, the formulation can be reduced asymptotically 
to a standard advection-diffusion equation (ADE), according to which 

the streamwise spatial standard deviation s [L] of a patch of tracer 
particles increases with the square root of time t [T], i.e. as t1/2. 
Subsequent to Einsteinõs original work on tracers, the study of random 
walks has been extended to the case of continuous time random walks 
(CTRW; Montroll and Weiss, 1965). This more general formulation, 
which derives from a Master Equation (ME) governing the statistics of a 
walker, leads to a much richer range of behaviors. More specifically, the 
CTRW formulation allows exploration of the consequences of heavy-

tailed PDFs for ps(r) or pw(t), i.e. PDFs that decay in r or t according to 
a power law rather than exponentially. In such cases, moments above 
some value fail to exist. The asymptotic consequence of such a 
formulation is a fractional advection-diffusion equation (fADE) allowing 

for the possibility of anomalous diffusion, such that s~ t
c/2, where c [1] 

can deviate from unity. The case encompassing anomalously long step 
length r corresponding to heavy-tailed ps(r) gives rise to superdiffusion, 
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for which c > 1, and the encompassing anomalously long waiting time t 

corresponding to heavy-tailed pw(t) gives rise to subdiffusion, for which 

c < 1 (e.g. Schumer et al., 2009).  Various combinations of heavy-tailed 
jump length and waiting time distributions can lead to non-intuitive 
ballistic, super-diffusive, or sub-diffusive behavior, particularly in the 
case of asymmetric random walks (Weeks et al, 1996).  
In recent years, the concepts of CTRW and fADE have filtered into the 
study of tracer sediment transport in rivers, as well as the study of 
particle tracer transport in the more general context of Earth surface 
processes (e.g. Nikora et al., 2002; Schumer et al., 2009; Furbish et al., 
2009; Bradley et al., 2010; Ganti et al., 2010; Furbish et al., 2012; Martin 
et al., 2012; Zhang et al., 2012). To provide context for these 
applications, we here summarize some results of Schumer et al. (2009) 
pertaining to Montroll-Weiss CTRW. The standard random walk model 

with thin-tailed functions for ps(r) and pw(t) applied in the context of 
CTRW gives rise to ADE, i.e. 

2

a a a
d 2

f f f
c D

t x x

µ µ µ
+ =

µ µ µ
 (5.1) 

In the above equation x [L] denotes the streamwise coordinate, t [T] 
denotes time, fa(x,t) [1] denotes the fraction of particles within some 
reservoir layer near the bed surface (active layer; see Ganti et al., 2010) 
that are tracers at (x, t), c [LT-1] denotes a particle advection velocity and 
Dd [L

2T-1] denotes a particle diffusivity (or more properly, dispersivity). 
When ps(r) is heavy-tailed such that it has a mean but no standard 
deviation, i.e. 

sp (r) r , 1 2-a <a< (5.2a,b) 

or pw(t) is heavy-tailed such that it has no mean, i.e. 

wp ( ) , 0 1-gt t <g< (5.3a,b) 

the relation governing tracer particle dispersal obtained from the ME of 
CTRW is no longer (5.1), but rather the more general fADE 
formulation; 

a a a
d

f f f
c D

t x x

g a

g a

µ µ µ
+ =

µ µ µ
 (5.4) 
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Strictly speaking, in the above equations c is no longer an advection 
velocity and Dd is no longer a diffusivity, because the respective 

dimensions are LT-g and L2T-g, but they can be treated as such in a 
general sense. It can be found from (5.4) that the growth rate of the 

streamwise standard deviation s of a patch of tracers now obeys the 
relation 

~ t
g

as  (5.5) 

The case of standard ADE is captured by the choices g = 1 and a = 2. 
In the anomalous formulation, the derivatives are fractional; the choices 

g = 1 and a < 2 lead to superdiffusion, and the choices g < 1 and a = 2 
lead to subdiffusion. 
Superdiffusive behavior of particle tracer dispersion might be generated 
by mechanisms which allow for some particles to travel very long 
distances in a single step. One example of such a mechanism is that of 
preferential connected lanes of transport (Parker, 2008); Ganti et al. 
(2010) present another example associated with step length variation in 
grain size mixtures. Subdiffusion might be generated by burial of 
particles in zones where re-exhumation is unlikely (e.g. Voepel et al., 
2013); Stark et al. (2009) have considered related problem in which long 
residence time of alluvium inhibits bedrock incision. Both these 
behaviors can be studied directly by analyzing data for dispersal patterns, 
without invoking either the framework of CTRW or a governing Master 
Equation (e.g. Nikora et al., 2002; Bradley et al., 2010; Martin et al., 
2012). 
The above notwithstanding, a deeper understanding of tracer particle 
dispersion in the context of CTRW requires the delineation of an ME 
suitable to the problem. To date, there have been two notable attempts 
to do so for the case of sediment transport in rivers, i.e. those of Ganti et 
al. (2010) and Furbish et al. (2012). Both of these expositions helped 
motivate the research presented here. This notwithstanding, neither 
include a) the concept of waiting time and b) the degree of freedom 
associated with particle deposition and entrainment from an arbitrary 
bed elevation. Here we tackle the problem of delineating a generalized 
ME for the case of bedload transport in rivers. Our model, the Exner-
based Master Equation (EBME) encompasses both thin-and heavy-tailed 
step length and waiting time behavior. More importantly, it considers the 
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entrainment and deposition of particles on an elevation-specific basis, a 
key feature needed to describe the exchange of particles in the vertical 
direction as they disperse downstream. This feature is needed to describe 
the advective slowdown of tracer particles described by Ferguson and 
Hoey (2002) as particles are buried ever more deeply. 
 

5.2 MASTER EQUATION FOR THE STAN DARD CTRW 

MODEL  

As noted above, fADE was originally derived in terms of a specific ME 
governing CTRW. This Master Equation, while of historical value in the 
development of CTRW, is inappropriate for the description of bedload 
tracer particle dispersion in rivers. In order to illustrate this, it is useful to 
briefly review the formulation. In the process of doing so, we introduce 
the tools necessary to develop our Exner-based Master Equation 
(EBME). The analysis presented here mostly follows that of Schumer et 
al. (2009); standard results from fractional calculus are used without 
specific citation. 
In the standard 1D CTRW formulation (Montroll and Weiss, 1965; 
Klafter and Sibley, 1980; Klafter et al., 1987) the ME takes the following 

form: where r(x,t) [L-1] denotes the probability density that a particle is at 
x at time t, 

t t

s w w
0 0 0

(x, t) (r, )p (x r)p (t )drd 1 p ( )dt (x)
¤ è ør = r t - -t t+ - t d

é ùê úññ ñ  (5.6) 

In fact (5.6) involves two simplifications of Klafter et al. (1987); a) step 
length and waiting time are taken to be uncoupled processes, and b) 
particles are assumed to move only downstream, so that ps(r) vanishes 
for r < 0. The above equation is nonlocal in so far as the kernel in the 
convolution integral is not concentrated at a single point (Du et al., 
2012). Here we distinguish between two kinds of nonlocality; simple 
nonlocality associated with a thin-tailed form for ps or pw, and 
asymptotic nonlocality associated with the corresponding heavy-tailed 
form. At t = 0, (5.6) reduces to 

(x,0) (x)r =d (5.7) 
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so that a particle originates from the origin. 
Laplace transforms in time and Fourier transforms in space are used to 
reduce (5.6) and (5.7). Where A(t) is any function of time and B(x) is any 
function of space, their Laplace and Fourier transforms are given 
respectively as 

st ikx

0

ĔA(s) A(t)e dt , B(k) B(x)e dx
¤ ¤

- -

-¤
= =ñ ñ  (5.8a,b) 

Applying (5.8b) to (5.7) yields 

Ĕ(k,0) 1r = (5.9) 

Applying (5.8a,b) to (5.6) yields, 

w

s w

1 p 1
Ĕ(k,s)

Ĕs 1 p p

-
r =

-
 (5.10) 

corresponding to (21) of Klafter et al. (1987) and (30) of Schumer et al. 
(2009). 

The case of thin tails is considered first. Taylor expansions of s
Ĕp (k)  to 

second order and sp (s) to first order give 

2

s 2 w

1
Ĕp (k) 1 ikr (ik) , p (s) 1 s

2
@ - + m + = -t + (5.11a,b) 

where r  [L] and t [T] denote mean step length and waiting time, and 

m2 [L
2] is the second moment of ps; 

2

s 2 s
0 0

r rp (r)dr , r p (r)dr
¤ ¤

= m =ñ ñ  (5.12a,b) 

w
0

p ( )d
¤

t= t t tñ  (5.12c) 

Substituting (5.11) into (5.10), using the following properties of Fourier 
and Laplace transforms, 

n
n

n

dA d B ĔsA A(0) , (ik) B
dt dx
= - =  (5.13a,b) 

reducing with (5.9) and truncating the expansions yields the formulation: 
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2 2

2
d d2

r
c D r , c , D

t x x x t 2

mµr µr µ r µ r
+ = + = =

µ µ µ µ µ t t
 (5.14a,b,c) 

Writing r c= t and assuming that c and Dd remain finite in the limit as 

0t­  allows the cross-derivative in x and t to be dropped. so resulting 
in the ADE formulation. In work below, the cross-derivatives are 
retained for consistency, and to allow for the case of large mean waiting 
time. 
For the case of heavy tails, we now replace (5.11a,b) with the forms 
(resulting from fractional Taylor expansion) 

s w
Ĕp (k) 1 ikr c (ik) , p (s) 1 c sa g

a g@ - + = - + (5.15a,b) 

where 0 < g < 1 (subdiffusive waiting time) and 1 < a < 2 
(superdiffusive step length). Substituting (5.15) into (5.10), using the 
following properties of fractional Fourier and Laplace transforms, 

dA d B Ĕs A A(0) , (ik) B
dt dx

g a
g a

a
= - =  (5.16a,b) 

reducing with (5.9) and truncating the expansions yields the formulation: 

d d

cr
c r D , c , D

t x x t x c c

g g a

a

g g a

g g

µ r µr µ µ r µ r
+ = + = =

µ µ µ µ µ
 (5.17a,b,c) 

Dropping the cross-derivate in x and t yields the fADE formulation. 
Equations (5.14) and (5.17) might be applied to the case of bedload 
tracers by assuming that a) bedload particles exchange only with an 
òactive layeró of bed material at the surface of thickness La [L] (Parker, 
2008; Ganti et al., 2010), and b) the bed undergoes no aggradation or 

degradation, i.e. change in mean bed elevation h (averaged over an 
appropriate window). Let Ntr [1] denote the total number of tracer 

particles released, lp [1] denote the porosity of the bed, Vp [L
3] denote 

particle volume and B [L] denote the width of the channel. The fraction 
of grains fa(x,t) [1] that are tracers at (x,t) is then given as 

tr p

a

a p

N V
f (x, t)

L B(1 )
= r

-l
 (5.18) 
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5.3 PROBLEMS ASSOCIATED WITH APPLICATION  OF THE 

CRTW ME  TO BEDLOAD TRACERS  

CRTW was originally derived as the continuous limit for a random 
walker on a lattice. The lattice simply defines streamwise locations where 
the particle might come to rest or pass through. The particle does not 
interact with the lattice.  
Bedload transport in a river functions differently. Sediment transport can 
be divided into two components. Bed material load interacts with the 
bed by changing its elevation as each grain deposits or erodes. Wash load 
or throughput load either a) passes through the reach of interest without 
changing bed elevation, or b) exchanges between the water column and 
the bed only via the pores of the bed material, again without changing 
bed elevation. Here we consider the case of bedload moving as bed 
material load. 
In the case of bedload, the lattice has vertical as well as streamwise 
location, and its structure interacts strongly with the particles. A 
previously moving particle that comes to rest (deposits) raises the bed, 
and a previously resting particle that moves (is entrained) lowers the bed. 
Since bedload transport itself is a random process, the lattice structure 
through which particles move, and in particular bed elevation at a lattice 
point, also becomes a random variable. The ME of CTRW is incapable 
of handling this interaction. 
The starting point for the Exner-based Master Equation (EBME) is the 
analysis of Parker et al. (2000), here referred to as the Parker-Paola-
Leclair (PPL) framework. This framework provides a statistically-based 
equation of sediment conservation that captures the vertical structure of 
bed elevation variation as particles erode and deposit. Integral of this 
equation in the vertical yields the standard Exner equation of sediment 
mass conservation. As opposed to the formulation in Ganti et al. (2010), 
the formulation of Parker et al. (2000) does not invoke the simplification 
of an active layer. 

5.4 PPL FRAMEWORK FOR EXNER EQUATION OF 

SEDIMENT CONTINUITY : SOME MORE COMMENTS  

Here we apply (2.3) in the context of bedload transport of particles with 
uniform size Dp [L] and material density. 
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The formulation of (2.3) is predicated on the assumption that bed 
elevation, while fluctuating locally as particles are entrained or deposited, 

does indeed have a mean value h (averaged over an appropriate 
window). And in order for this mean value to exist, waiting time must 
also have a mean value, so precluding the possibility of subdiffusion. 
This can be illustrated as follows. 
For simplicity, the particles are assumed to be arranged in a rectangular 
lattice, so that the removal  or deposition of one particle of diameter Dp 
results in a precise change in vertical elevation of Dp. This corresponds 

to a bed porosity lp of 1 - p/4. Other configurations can be considered 
by including an order-one multiplicative factor. The mean waiting time 

tmean [T] (averaged over all possible positions of a particle, as illustrated 
below) for a particle to be entrained can be used to define the frequency 
J [T-1] of entrainment: 

( )
mean

1
J x, t =

t
 (5.19) 

This mean waiting time may slowly vary of time, in so far as it correlates 
with mean flow parameters. The entrainment rate of sediment volume is 
then given as: 

( ) ( )p pE x, t (1 )D J x, t= -l  (5.20) 

The deposition rate D can in turn be related to the entrainment rate, E 
as shown in equation (2.4) so   
From equation (5.20) and (2.4), the deposition rate takes the form: 

( ) p p s

0

D x, t (1 )D J(x r, t)p (r)dr

¤

= -l -ñ  (5.21) 

Combining (2.3), (5.20) and (5.21) yields the integral form of the Exner 
equation: 

( )
( )p p s

0

x, t
D J x, t D J(x r, t)p (r)dr

t

¤µh
=- + -

µ ñ  (5.22) 

Pelosi and Parker (2013) have studied the behavior of (5.22) in the 
context of the ratio of mean step length r to the length of the reach 
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under consideration. They considered both thin-tailed and heavy-tailed 
PDFs ps for step length. 
When extended to the case of tracer particles in uniform sediment or to 
mixtures of grain sizes, the equation (5.22) is usually implemented in the 
context of an active layer of thickness La, as described above (Parker, 
2008; Ganti et al., 2010; Section 2.1). Thus, the erodible bed is ideally 
divided into layers: (i) an upper layer (active layer), which has no vertical 
structure and actively exchanges with the bedload and (ii) a deeper layer 
(substrate), that exchanges with the bedload only when aggradation or 
degradation, occurs (e.g. Viparelli et al., 2011). 
Parker et al. (2000), however, specified a general probabilistic 
formulation of the Exner equation of sediment continuity with no 
discrete layers. It is able to capture vertical exchange of sediment 
particles, and specifically tracer particles, with no need of the relatively 
heavy-handed assumption of an active layer. Here we refer to this 
framework as PPL (Parker-Paola-Leclair) and as deeply shown in Section 
2.1, we have the following formulation: 

( ) () ( )e
e p J J p s

0

P
p D J x, t p (y) p y D J x r, t p (r)dr

t t

¤µ µh
+ =- + -

µ µ ñ  (5.23) 

5.5 EXNER -BASED MASTER EQUATIONS  FOR RIVERS 

CARRYING BEDLOAD  

Equation (5.23) is, in and of itself, a fairly trivial extension of the Exner 
formulation. Its true value becomes apparent when applied to bedload 
tracers. The PPL framework is now applied to this case. 
Let f(x,y,t) [L-1] denote the fraction density of tracers at elevation y, such 
that fdy defines the fraction of bed particles that are tracers between 
elevations y and y + dy. The same formulation that yields (5.23) gives the 
following result for tracer conservation: 

( )( )

() ( )( )

e
e e J p

J p J s
0

f f P
P f p p (y)D J x, t f x, y, t

t y t t t

p y D J x r, t f x r, y , t p (y )p (r)drdy
¤ ¤

-¤

å õµ µ µh µ µhå õ
- + + =- +æ öæ ö

µ µ µ µ µç ÷ç ÷

¡ ¡ ¡- -ñ ñ

 (5.24) 

Equation (5.24) defines the first of two Exner-based Master Equations 
(EBME) for the tracer problem obtained from the PPL framework. 
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Note that this formulation is nonlocal in x and y (Du et al., 2012). 
According to the above relation, a tracer particle may be entrained from 
any level yõ and deposited at a different level y. The model thus 
incorporates vertical exchange of tracers, a feature that is captured 
neither in the ME of CTRW or the active layer formulation of the Exner 
equation. In addition, tracers are conserved as the bed aggrades and 
degrades, allowing burial and exhumation to be driven not only by 
random processes inherent in the density pJ(y), but also through mean 
bed elevation variation. 
Equation (5.24) contains the assumption that particle entrainment is 
determined as a local function of time, without considering the 
possibility of a waiting time. As a result, it is referred to below as EBME-
N, i.e. Exner-based Master Equation with No waiting. The generalization 

to include waiting time is, however, straightforward. Let pw(t|y) [T-1] 
denote the elevation-specific probability density of waiting time, i.e. the 
conditional PDF of waiting time at elevation y. The mean waiting 

time (y )t [T] at any elevation y is given as 

( )w

0

(y) p | y d

¤

t = t t tñ  (5.25) 

The jump-weighted average waiting time tmean is given as 

meant = t (5.26) 

where the brackets define òjump averagingó such that for any parameter 
G(y), 

JG G(y)p (y)dy
¤

-¤
=ñ  (5.27) 

The parameter tmean specifically defines jump frequency in (5.19), again 
underlining the condition that the assumption of a mean bed elevation 
precludes the possibility of waiting time PDFs with no mean. 
The direct extension of (5.24) to include waiting time is 
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() ( )( ) ( )

() ( )( ) () ( ) ()

e
e e

p J W
0

p J J W S
0 0

Pf f
P f p

t y t t t

D p y J x, t f x, y, t p | y d

D p y J x r, t f x r, y ', t p y ' p | y ' p r dy 'd dr

¤

¤ ¤ ¤

-¤

å õ µµ µ µh µhå õ
- + + =æ öæ ö

µ µ µ µ µç ÷ç ÷

- -t -t t t+

+ - -t - -t t t

ñ

ñ ñ ñ
 

The above formulation is referred to below as EBME-W, i.e. Exner-
based Master Equation with Waiting based on the PPL framework. 
For the sake of comparison, it is useful to delineate Master Equation 
associated with the active layer formulation used in Ganti et al. (2010). 
The general form is given in Parker et al. (2000): where fI [1] denotes the 
fraction of tracers in the bed material that is exchanged between the 
active layer and substrate as the bed aggrades or degrades, 

( ) ( )
( ) ( )

( )

a

I a p a

p a s

0

x, t f x, t
f L D J x, t f x, t

t t

D J(x r, t)f x, t p (r)dr

¤

µh µ
+ =- +

µ µ

+ -ñ

 (5.29) 

We refer to the above relation as EBME-A (Exner-based Master 
Equation, Active layer formulation) below. 

5.6 VERTICAL AND STREAMWI SE DISPERSAL OF TRACERS 

WITHIN  AN EQUILIBRIUM BED  

The physical contents of the above three formulations are best grasped 
in the context of macroscopic equilibrium conditions, for which the bed 
neither aggrades nor degrades. For this case,  

 eP t t 0µ µ =µh µ =, and the parameters J, pJ(y), ps(r) and pw(t|y) are 

assumed to change neither in x nor in t. The respective forms for 
EBME-N, EBME-W and EBME-A are shown below in order of 
complexity.  From (5.29), EBME-A becomes; 

( )
( ) ( )a

a p a p a s
0

f x, t
L D Jf x, t D J f x r, t p (r)dr

t

¤µ
=- + -

µ ñ  (5.30) 

(5.28) 
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From (5.24), EBME-N becomes; 

( ) () ()

e p J

p J J S
0

f (x, y, t)
P (y) D Jf (x, y, t)p (y)

t

D Jp (y) f x r, y ', t p y ' p r dy 'dr
¤ ¤

-¤

µ
=- +

µ

+ -ñ ñ

 (5.31) 

From (5.28), EBME-W becomes; 

() ( ) ( )

() ( ) () ( ) ()

e p J W
0

p J J W S
0 0

f (x, y, t)
P (y) D Jp y f x, y, t p | y d

t

D Jp y f x r, y ', t p y ' p | y ' p r dy 'd dr

¤

¤ ¤ ¤

-¤

µ
=- -t t t+

µ

+ - -t t t

ñ

ñ ñ ñ

 (5.32) 

The difference between the EBME-N and EBME-A formulations is best 
illustrated by writing (5.31) and (5.32) in forms that are as close as 
possible to (5.30), and then correcting with residual terms. In this way, 
(5.31) can be expressed as 
 

( ) ()

( ) () ()

e c J c J S
0

c J J S
0

f (x,y, t)
P (y) D Jf (x,y, t)p (y) D Jp (y) f x r, y, t p r dr

t

D Jp (y) x r, y ', t p y ' p r dy 'dr

¤

¤ ¤

-¤

µ
=- + -

µ

- j -

ñ

ñ ñ
 

where 

J(x,y, t) f (x,y, t) f , f f (x,y, t)p (y)dy
¤

-¤
j = - =ñ  (5.33b) 

Here f  denotes the jump-averaged value of f, and j is a deviatoric 

tracer fraction density. A comparison of (5.30) and (5.33a) reveals that 
(5.33a) captures a nonlocal feature that (5.30) cannot, i.e. the vertical 

dispersal of tracers. That is, the term µf/µt is driven by (among other 

things) the difference j= f - f  between local tracer fraction and jump-

averaged fraction. The minus sign in front of the terms containing the 

deviatoric term j in (5.32) ensure that particles disperse in the vertical 
from zones that are higher than the jump-averaged mean to those that 
are lower than it. This dispersion is nonlocal and therefore non-Fickian. 
The corresponding form for EBME-W (5.32) that isolates the vertical 
dispersion terms is given below; 

(5.33a) 
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where 

w w w w w Jfp fp , fp f (x, y, t)p ( | y)p (y)dy
¤

-¤
j = - = tñ  (5.34b,c) 

Here it is seen that the deviatoric term jw that drives vertical dispersion 
specifically involves the vertical variation of the PDF of waiting time. 

Equation (5.33a) is recovered from (5.34a) by assuming that pw = d(t). 
 

5.7 ASYMPTOTIC FRACTIONAL  FORMULATIONS  

The convolution forms of EBME-A, EBME-N and EBME-W are all 
easy to solve numerically in a straightforward way. Their corresponding 
asymptotic fractional forms, however, are not easily solved numerically. 
This notwithstanding, the relevant forms are presented here for the 
purpose of illustration and comparison with the CTRW ME formulation. 
The results given below follow from the analysis given in Section 5.2 

with one exception: the case 0 < g < 1, which is associated with waiting 
times with no mean, and which gives rise to subdiffusion, is omitted, in 
so far that EBME is predicated upon the existence of a finite value of 

tmean. 
EBME-A yields the following asymptotic result for the thin- and heavy-
tailed cases, respectively, based on the spatial Fourier transform (5.8b) 
and the expansions (5.11a) or (5.15a) for ps. The thin-tailed, or ADE 
form is 

2
p c 2

d d2

a a

D J rf f f 1 D J
c D , c , D

t x x L 2 L

µ µ µ m
+ = = =

µ µ µ
 (5.35) 

and the heavy-tailed, or fADE form is 

(5.34a) 
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a a

D J rf f f 1 D Jc
c D , c , D

t x x L 2 L

a

a

a

µ µ µ
+ = = =

µ µ µ
 (5.36a,b,c) 

The above relations correspond to the results of Ganti et al. (2010). 
Similarly reducing EBME-N yields the thin-tailed form 

( ) ()
( ) ( )

2

d 2

2

d 2

d 2

p J

J

e

f f f
c(y) D (y)

t x x

f f f f
K f f c y D (y)

x x

1
c(y) K(y) r , D (y) K(y) ,

2

D Jp (y)
K(y) , f fp dy

P (y)

¤

-¤

µ µ µ
=- +

µ µ µ

µ - µ -
- - + -

µ µ

= = m

= =ñ

 (5.37a-e) 

and the heavy-tailed form 

( ) ()
( ) ( )

d

d

f f f
c(y) D (y)

t x x

f f f f
K f f c y D (y)

x x

a

a

a

a

µ µ µ
=- +

µ µ µ

µ - µ -
- - + -

µ µ

 (5.38a) 

where c and K are given in (5.37b,d) and 

dD (y) K(y)ca=  (5.38b) 

Now (5.37a) does not define a standard ADE, and (5.38a) does not 
define a standard fADE. The advection speed and diffusivity are 
functions of the vertical coordinate y in this case. More importantly, 

vertical mixing is driven by the deviatoric term j. This deviatoric term 
captures mixing in the vertical, driven by the difference between the local 

value f and its jump-averaged value Jf f (x,y, t)p (y)dy
¤

-¤
=ñ . In 

addition, j can be both advected and diffused downstream, and this 
diffusion can be either normal or anomalous. 
In order to reduce, EBME-W, it is advantageous to use Fourier 
transforms in time rather than Laplace transforms. This can be done 
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because a) the lower limit it time in the integrals of (5.34a) can be 

changed from 0 to - ¤ by the simple artifice of specifying that pw = 0 for 

t < 0, and b) as opposed to the Montroll-Weiss CTRW, i.e. (5.6) and 
(5.7), the initial condition is not built into EBME-W. With this in mind, 
we define the time Fourier transform of A(t) as follows: 

istA(s) A(t)e dt
¤

-¤
=ñ  (5.39)  

and modify (11b) and (15b) to the respective form 

wp (s) 1 is (y)= - t (5.40) 

Upon Fourier-transformation in both space and time, application of 
(5.11a) and (5.40), inverse transformation, and truncation so that the sum 
of the orders of derivatives in time and space does not exceed 2, the 
thin-tailed asymptotic form for EBME-W reduces to 

( ) ()
( ) ( )

( )
()

2 2

d 2

2

2

d 2

f f f f
c(y) K r D (y)

t x x t x

f f f f
K f f c y K r

x x t

f ff f
D (y) K f f c y

t xx

µ µ µ µ
=- + t +

µ µ µ µ µ

µ - µ -
- - + - t -

µ µ µ

ë ûµèt - t øµ - µî îê ú
- + èt - t ø-ì üê úµ µµ î îí ý

 (5.41) 

where c, Dd and K are specified in (5.37b,c,d). The corresponding heavy-
tailed form is 

( ) ()
( ) ( )

( )
()

2

d

2

d

f f f f
c(y) K r D (y)

t x x t x

f f f f
K f f c y K r

x x t

f ff f
D (y) K f f c y

t xx

a

a

a

a

µ µ µ µ
=- + t +

µ µ µ µ µ

µ - µ -
- - + - t -

µ µ µ

ë ûµèt - t øµ - µî îê ú
- + èt - t ø-ì üê úµ µµ î îí ý

 (5.42) 

where c, K and j are specified in (5.37b,c,d) and Dd is specified in 
(5.38b). In the above equation, the vertical variation in mean waiting 
time is seen to contribute to vertical dispersion via the last two term on 
the right-hand side. 
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5.8 SIMPLIFIED MODEL FOR VERTICAL DISPERSION : THIN -
VERSUS HEAVY-TAILED  PROBABILITY DENSITIE S FOR 

ELEVATION FROM WHICH  A PARTICLE JUMPS 

The EBME formulation based on PPL results in asymptotic fractional 
PDEõs that are show substantial differences from the CTRW ME 
formulation. The three most important of these are a) the absence of 
subdiffusion, b) the effect of vertical dispersal of particles, and c) the 
contribution of elevation-varying waiting time to this dispersal. 
We do not implement the complete formulation herein. Instead, we 
show several simplified examples that illustrate the effect of nonlocal 
vertical dispersion in EBME-N. We do this by neglecting all the terms 

on the right-hand side of (5.37) except the term ( )K f f- : 

()e c J

J

f
P D Jp y f (y, t) f

t

f f (y , t)p (y )dy
¤

-¤

µ
è ø=- -ê úµ

¡ ¡=ñ

 (5.43a,b) 

Note that the form of the equation is nonlocal, in that the values of f at 
all elevations yõ contribute to the time rate of change of f at any given 
elevation y. In addition, pJ(y) may be thin-tailed or heavy-tailed, but there 
is no obvious way to convert the governing equation into an asymptotic 
form involving fractional derivatives. 
It is important to keep in mind that the conserved quantity in (5.43a) is 
not the density of fraction of tracers in the sediment f(y,t), but rather the 
density of fraction of tracers 

sw ef P f=  (5.44) 

averaged along a line of constant y that includes portions that are 
instantaneously in sediment, and other portions that are instantaneous in 
the water column (Figure 2.5). 

We first cast the problem in dimensionless form. Let g* denote an 
appropriate length scale (as specified below). Defining  
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p*

J J*

Dy 1
f f , y , t Jt , p p* * * *

* *
=g = = =

g g g
 (5.45a,b,c,d) 

it is found that (5.43a,b) reduces to 

( )J
J

e

f p
f f , f fp dy

t P

*
¤

* *

* -¤

µ
= - =

µ ñ  (5.46a,b) 

We specify the length scale in terms of two alternatives. To study thin-
tailed behavior, we consider a Gaussian distribution for pJ, in which case 

g* is the standard deviation sJ of pJ and 

( )
( )

2

* *

J

y*1
p y exp

22

å õ
æ ö=
æ öp ç ÷

 (5.47) 

To study heavy-tailed behavior, we let g* correspond to the scale 

parameter gõ of a L®vy ǟ-stable distribution, which is defined by its 
Fourier transform as (Nolan, 1997): 

() ()Jp k i ' k ' k 1 i sgn k tan
2

a* ë ûpaè øå õ
= -d - g + bì üæ öé ù

ç ÷ê úí ý
 (5.48) 

where k is an integer value which defines the type of parameterization 
(here, equal to 1), ǟ denotes the stability parameter (here chosen equal to 
1.1) and Ǡ denotes the skewness parameter (here set equal to zero). In 
addition, the location and scale parameters Ǣõ and ǡõ are respectively set 
equal to 0 and 1, so as to obtain correspondence with (5.47).  
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Figure 5.1 Thin -tailed (Gaussian) and heavy-tailed PDFs for p*J. The heavy-

tailed distribution corresponds to a Lévy a-stable distribution with a = 1.1. 

  

Note that the Gaussian distribution is a limit case of a stable distribution 
obtained with ǟ = 2. Both these distributions are shown in Figure 5.1. 
The first case we consider is one for which Pe = 1. In this case, there is 
no defined bed (interface between water and sediment); instead the 
lattice is filled with particles, and particle pairs at elevations y and yõ 
exchange according to the PDF (y). In addition, fsw = f according to 
(5.44). The initial condition used in the calculations was arbitrarily set to 
the following top-hat distribution: 

1 , 1 y 1
f (y ,0)

0 , y 1

*

* *

*

ë - ¢ ¢î
=ì

>îí

 (5.49) 

Results of the calculations are shown in Figure 5.2 for the Gaussian 

distribution, and Figure 5.3 for the a-stable distribution.  
Figures 5.2 and 5.3 both illustrate the tendency for tracer particles to be 
dispersed from high to low concentration in the vertical. The pattern of 
dispersion is non-Fickian, as evidenced by the tendency for the 
formation of a depression in tracer fraction at y* = 0. The effect of 
heavy- versus thin-tailed PDFs for pJ is readily apparent; the heavy-tailed 
case of Figure 5.3 shows much more rapid, and much more far-reaching 
dispersal than the thin-tailed case of Figure 5.2. 
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Figure 5.2 Evolution in time of distribution of tracer fraction f* for the case of a 
thin-tailed (i.e. Gaussian) form for the PDF pJ* describing the probability that 
an entrained particle jumps from elevation y*. Here Pe = 1, resulting in a 
symmetric pattern. 

 

 

Figure 5.3 Evolution in time of distribution of tracer fraction f* for the case of a 

heavy-tailed (i.e. a-stable) form for the PDF pJ* describing the probability that 
an entrained particle jumps from elevation y*. Here Pe = 1, resulting in a 
symmetric pattern. 




















































































