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ABSTRACT

The erosion, transport and deposition of pebbles in rivers have often
been studied by considering the motion adeir particlesThere are
reports of bedload tracing programs in field and laboratory since the late
1930s.The theoretical basis for the study of the dispersal of sediment
tracer particles was delinedtedhe first time in 1950 by Einsteivho
formulded the problem in terms of a standard 1D random walk in
which each particle moves in a series of steps punctuated by waiting
tmesSubsequent to Einsteinds origin
random walks has been extended to the tasatmuous the random

walks CTRW). CTRW, accompanied by appropriate probability
distribution functionsRDF9 for walker step length and waiting time,
yields asymptotically the standard advediffusion equation (ADE)

for thintailed PDFs and the fractional adweo-diffusion equation
(fADE) for heawytailed PDFs the latter allowing the possibilities of
subdiffusion or superdiffusion of particles, which is often referred as
nonlocal behavioor anomalous diffusion.

In latest years, considerable emphasis haglaeed on ncfocality
associated with heatayledPDFsfor particlestep length. This appears

to be in part motivated by the desoeconstruct fractional advective
diffusive equations for pebble tracer dispersion corresponding to the
now-classical fBE model. Regardless of the thin tail of RBF, the
degree of nofocality nevertheless increases with increasing mean step
length In the thesis,we firstly consider thegeneral case dfD
morphodynamics of an erodible bed subject to bedlaadport
analysinghe effectsof nonlocality mediated dyoth heavyandthin-

tailed PDFs for particle step lengthon transient aggradational
degradationdled profiles

Then,we focus on tracer®) We showthat the CTRW Master Equation

is inappropriate forwer pebbles moving as bed material aoad(ii) ly
usingthe ParkePaolalLeclair (PPL) framewofkr the Exner equein

of sediment conservatiowhich capturethe vertical structure of bed
elevation variation as particles erode and depedivelopa new ME

for tracer transport and dispersion for alluvial morphodynamics.



The new MEs derived from the Exner equation of sediment continuity
and it yields asymptotic forms for ADE and fADE that differ
significantly from CTRW. It allows a) vertical dssper as well as
streamwise advectidiffusion, and b) mean waiting time to vary in the
vertical. We alsoshow that ‘ertical dispersion is nonlo¢slibdiffuive)

but cannot be expressed with fractional derivatigggcal dispersiois

the likely reasofor the slowdown of streamwise advection ofrtrace
pebbles observed in the field, whichhés key result of our modeling
when ceevolution of vertical and streamwise dispersion are considered.
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1 INTRODUCTION

Gravelbed rivershave a surface mediaadimentsize that is in the
range of gravel or coarser material (2,<<256 mm).The particles
that make up thded are transporteats bedloadiuring floodsTheir
movement as schematized in Figure lddnsists of (i) rolling, (ii)
sliding or (iii) saltation within a thin layer near the streariVioed et
al., 2007Ganti et al., 2010).

Figure 11 Gravelbed rivers: a) Elbow River, Alberta, Canada at low flow
(Parker, 2004) b) Schematization ofsediment transport (Copyright © 2006
Pearson Prentice Hall ing
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Reliable and accurate estimates of thedeettbmsport ratere essential

to evaluat the morphodynamic evolution of thiad of rivers (Parker,
2004).In particular, ediment movement in grated rivers can be
measured by direct sampling of the trangjbet or by using tracer
gravelswhich can giveinsight into many different aspects of gravel
transport such as entrainment rates, downstream dispéision
determinggrain displacement leng#rslvirtual velocitigsdownstream
sediment sortingiertical mixing, burial, and prefererdiatage in bars

or other location@~erguson and Hoey, 200&jcock, 1997

The working hypothesisis that tracersvertical and streamwise
displacement history may serves as good indicator of the bedload
transport response of a stream to given water disematgediment
supply conditionfdeVries, 2000; Parker, 2004; Wong et &l).200

There are reports of bedload tracing programs in field and laboratory
since the late 1930s. Einstein (1937) was the first to use tracers in a
flume, while Takayama (1965) amopold et al. (1966) were pioneers in
usirg painted tracers in the fi¢ldassan and Ergenzinger, 2085jce

then, the techniqaenavemproved guaranteeingigherrecovery rates

and bble taces have found increased use in fifflok a close
exami@ation and summary about tracer techniques, recovery rates and
field programs, refer to Hassan dadjenzinger, 20D5Also in
laboratorythe interest in tracers dispersionihagaseth recent years
(e.g.Ganti et al., 2010; Martin et al., 20iecaus of a rediscovered
concern aboutt@chasticity in particle motiofracersarewell suited to

the stochastic and spatially variable nature of bedload transport because
they are based on a predetermined bed esamplposed of dividual

grains (Wilcock, 99). Theyn factprovide a way of characterizing not
only mean parameters pertaining to transport, but also the stibghast

of particle motion itselfThis stochasticity was first elaborated by
Einstein(1937. Einstein based his analysis on experihodrsarvations

of painted tracer particles. He noted thiEhe results demonstrated clearly
that even under theesgm@mental conditions stones having essentially identical
characteristics were transported to widely vaj§ingQlistsemqesnity
seemed reasonable to approach the subjecatenfeparéislea mpoobability
probledr{Ganti et al. 201.0)

Einstein(18B7) consideredhe particle motion asséochasticequence

of discrete stepsterruptedby periods ofrest He quantified the
problem in terms of the statistics of step le(djtance that a particle
travels once entrained before depositmg) restingoeriod (waiting
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time).Both step length and waiting time are stochastic vaandlédse
shape of theiprobabilities densat$ affectadveabn and difusion of

river tracer pebblgand, in general, sediment partidgles) way that,
only recentlyhas been described by applyfregdeageriving from the
standard formulation for Continuous Time Random Walk (CTRW).
CTRW, acompanied by appropriate probability distribution iomet
(PDFs) for walker step length and waiting time, yields asymptotically the
standard advectiadiffusion equation (ADE) for thitailed PDFs, and
the fractional advectiahffusion equadn (fADE) for heavytailed
PDFs, the Ilatter allowing the possibilities of subdiffusion or
superdiffusiorof particles, which is often referred aslooal behavior

or anomalous diffusidie.g. Schumer et al., 2009)

1.1 OBJECTIVES OF THE THESIS

In latestyears, considdrl@ emphasis has been placed onloaality
associated with heaafledPDFs for particlestep length (e.g. Schumer

et al., 2009; Bradley et al. 2010; Ganti et al. 2010). This appears to be in
part motivated by the desiee construct fractional adveetiffusive
equations for pebble tracer dispersion corresponding to tietassigal

fADE model (e.g. Schumer et al., 2009).

In the thesiswefirstly consider the 1D morphodynamics of an erodible
bed subject to bedloadansport andve focus on the casé non
locality mediated Hyoth heavyandthin-tailedPDFsfor particlestep
length. Regardless of the thin tail ofRBé-, the degree of ndncality
nevertheless increases with increasing mean step length

The first objective of the thesis is thenefanalysing the effects oisth
non-locality on transient aggradational/degradational bed profiles and
trying to givean explanation to anomalously flat aggradational long
profiles that have been observed in some short laboratory flume
experiments andntil now, modelledby considering fADE.

The second objective is strictly related to pebble tracer dispeesion:
show that the CTRW Master Equation is inappropriate for river pebbles
moving as bed material loadVe want todevelop a new aster
Equation for tracer transport and dispgers for alluvial
morphodynamics, which lmsed on th&xner equation of sediment
mass conservation as well as orefitence of a mean bed at®on
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averaged over fluctuatjovhichprecludes the possibility of streamwise
subdiffusion mediated by a waiting time PDF with no mean. Theonew
called ExneBased Master Equation (EB) yields asymptotic forms
for ADE and fADE that differ significantly from CTRW. It allows a)
vertical dispersion, as well as streamwise adwfftision, and b)
mean waiting time to vary in the verti€he possibility to look at the
vertical exchangas needed to describe the advective slowdown of
tracer particles described by Ferguson and Hoey. (2002)

Then, the third objective is to constractimplified model for showing
the role of ertical dispersioon tracers motion. The vertical dispersion
is another example @fortlocalbehaviour, whiclbannot be expressed
with fractional derivatives.

The last objectivis to show someumericabkolutians of the proposed
EBME for streamwise and vertit@nsport andispersiorof tracers

1.2 STRUCTURE OF THE THESIS

The thesigs organized inixchaptersaand here briefly the content of
each chapter is presented

In Chapter2, somebasicand wetknown noions are reported: different
formulations of the Exner equation of sediment mass conservation are
stategd with specific interest only in bedload transport which
characterizes gralbed streams For completeness, some general
definition for bedload transpaelations are given as well.

In Chapter 3, we considiae 1D morphodynamics of an erodible bed
subject to bedloadainsportWe show all the results concerning the first
objective of the thesisooking at the effects of ntwcality due to
variable sgelengthon bed evolution.

In Chapter 4 we introduce the tracers problem providing some
experimental and theoretical findings on advection and diffusion of river
pebble tracer

In Chapter 5,we set thepebble tracer dispersian the CTRW
framework and &define a generaliz€éxner basedMaster Equation

for the case of bedload transport (moving as bed material load) in rivers,
so as to includeDFsof particle step length and particle waiting time, as
well as vertical exchange of particles, accoadihgabove mentioned
second objectivd@hen,we illustrate the key aspect of vertical dispersion
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by means of a numerical solution of the simplified version of EBME, in

which streamwise variation in neglected.

In Chapter6, using existing experimental dataVong et al. (2007), we

try to extract new information from time series of bed elevation about
the structure functionsf the parameters of the modeBME-N and

then we report some numerical results for the case of vertical and
streamwis&ransport andlispersion of tracers.






2 MORPHODYNAMICS OF RIVER BED
VARIATION

The field of morphodynamicgonsists of the class of problems for
which the flow over a bed interacts strongly with the shape of the bed,
both of which evolve in tin{€arker, 2004).

The flow field determines the sediment transport rate by means of
sedimentransport relations and the sediment transport rate controls the
morphodynamics of the bed surface (e.g., slope, bedforms) by means of
the equation of sediment mass conservatioranigels in flow fiel¢br,

directly, in sediment transport ratedur, then, the morphodynamics of
bedchanges. fiis alterationnduces a changed flow fielchich again
changes the bed until an equilibrium condgicrached

Felix Exner was the firstsearcher to state a morphodynamic problem

in quantitative terms h at pirsspitebffe t er m omor phody
itself evolved many decades aftervwerdeservesreditas the founder

of morphodynamics. In particularthe early part of the 2Centuryhe

derived one version of the various statements of conservation of bed
sediment(Exner, 1920; 1925hat are now refer ed t o as 0 E
equationg (Parker, 2004The equation was brought to #iteention of

the Engliskspeaking world via the book lkeliavsky(1959, as pointed

out by Paola and Voller (2005)

In the currentChapter,some different formulations of the Exner
equation of sediment mass conservation are presented, with specific
interesonlyin bedload transport whicharacterizegravebed streams

For the sake of completeness, some general definition for bedload
transport relations are given as well.

2.1 THE EXNER EQUATION OF SEDIMENT CONTINUITY

The Exner equation of sediment conservation, when combined with a
hydrodynamic model and a sssht transport modefi.e. bedload
transport relations)s a central tool to evaluate the bed evolution (e.qg.
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aggradation and degradation) in the field of morphodynamics of the
Earthds surface.

| t i erivation can be easily shown considerass roonseation
withinacontrol volume with a unit wid{Rigure 2.1).

Let g [L°T™"] denotethe volume sediment transport rate per unit width

| , [1] denotebed porosityif.,fraction of bed volume thas pores
rather than sedimerathdr . [ML?] the materiaflensity of sedimernthe

mass sediment transport rate per unit width ig th¢ML™"T].

water
R ——
q

h bed sediment + pores
1
_
Dx X+ D

Figure 2.1 Control volume for the derivation of theExner equation od sediment
mass conservation (Parker, 23)

Sediment nss conservation withihe control volumeequires that the
variation in time of the sediment mass within the control volume is given
by the difference between the sediment mass inflow rate and the
sediment mass outflow rate:

L) D G, @ @1)

whereh [L] denotes the bed elevatian{T] denotes the time, x [L]
denotes the streamwise distance
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From Equation 2.1he 1D Exner equation of sediment conservation in
its (classicaljlux form (or equivalentlyn the 2D casedivergnce
formulation can be writteas

(- )" 'Ef:’t) - qé;’t) 22)

There is, however, a completely equivalent entrainment form of
sediment conservation (e.g. Tsujimotd3, Parker et al. 2000, Ganti et
al. 2010; Pelosi and Parker, 2013

(1- QE%?Q B(x,t) E{x,1) 23

where E [LT] denotes the volume rate of entrainment of bed particles
into bedload per unit area per unit time and D][H&notes the volume

rate of deposition of bedload material onto the bed per unit area per unit
time.

The depasion rate can be related to the entrainment rate by means of
the probability density of the step lenmh [L7], that is the probability
density of the distance that an entrained particle moves before-being re
deposited.

e

X

Figure 2.2 Particle step length

Assuming that, once entrained, a particle undergoes a step with length r
before depositingFigure 2.2) and that this step length has the
probability densitp(r) (pdf of sep length), the volume deposition rate

D can be specified as follows in terms of entrainment rate upstream and
travel distance (g.Parker et al., 2000; Ganti et al. 2010),

D(X) = fj E(x -)p, (r)dr 29

so that the entrainment form of sediment massecvation can be
written as:



Chapter 2

L:n = E(x) FE(x () 25

As has been shown by Tsujimoto78)9the two forms2(2 and 2.3,
are in principle completely equivalent in so far as the following equation
precisely describes the bedload transpert ra

q(x):l’fj E(x -r) ruﬁ(r)dr'dr (2.6

Cases in which the two forms are not equivalent will be shown in
Chapter 3, which is about the morphodymanics of bed river variation
with variable step length.

Many other diferent formulations for the Exner equatizeawe been
developed during the years in order to address complexyroblems
(Paola and Voller, 200Such asnodeling(i) the bed evolution and
stratigraphyin rivers containing a mixture of grain sizes over a wide
range (Hirano, 1971; Parker et alQ;2Bdom et al., 200Rarker, 2008

or (ii) the evolution of tracers particle moving as bedloaa isti@am
(Parker et al., 2000; Ganti et al., 201@) major advance in this regard
was made by Hirano (1971), who introduced
laye ¢Figure 2.3)

bedload layer

— —
N
Lad o}active
layer
h o substrate gb
o o S o

Figure 2.3 Active layer concept

According to higndication the bed can hdeallydivided into two parts:
(i) a superficial wethixed layer (i.e., the igetlayer) of thickness L
which exchanges actively (aamlally) with the bedload laged (i) a
deeper layer (i.e., thebstratge which exchanges with the bedloaly
in case of bed aggradation/degradation

10
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The thickness of the active layer jgpesed to be a function ofPthe
diametesuch that 90 percent of thed sedimens finer(Parker, 2008).
Considering a waethixed active layer means giving to the particles
contained in it, the same probability of entrainment into bedload, which
shaply vanishemto the substrate (Figure 2.4b

The reality is that thdeeper the particle is buried, the lower is its
probability & being entrained into bedload, itee probability of
exposure of a grain deases with depths shown in Figure 2.4ailiker

et al., 2000)

prbbabiﬁty of erosion

-

real
(a) { (b)

Figure 2.4 Variation in probability of Entrainment as in Parker et al. (2000): (a)
actual variation; (b) approximation given by active layer formulation

simplified
[z

Parker et al.(2000) however, specified a general probabilistic
formulation of the Exner equation of sediment continuity with no
discrete layers. It is able to capture vertical exchange of sediment
particles dnd specifically tracer particks,laterwith no need of the
relatvely heavhanded assumption of an active ldyere we refer to

this framework as PPL (ParRaolaleclair).

2.1.1 ParkerPaolalLeclair (PPL) Framework for Exner
equation of sediment continuity

Let z [L] denote a coordinate oriented upward normal to thenleaa

bed andPe(x,z,t) [1] denote the probability that a point at elevation z is
in the sediment bed (rather than the water above it; Bi§uréhus
Pe(x,z,t) approaches unity when zo (deep in the deposit) and zero

when z o (in the water column). Because of its definitipa|sP

11
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indicates the probability that the bed surface elevation is higher than z,
hence the probability density{lp'] that instantaneous bed elevation is

at level z is:
p.(2) = ar . D.p(Pdz = (27a,b)

V74
------------ L A
SR A N S i IyéT.pe
7 AAAZIN

[ "
n z

o
—_

Figure 2.5 Definition diagram for the ParkerPaolaLeclair framework for
sediment and sediment tracer conservation.

A new vertical coordinate system can now be introduced terms of the

variabl¢y [ L], representing the deviation from th
y=z - (Rt) (2.9
Consequently,.BPecomes function of y and#&®) takes the form:
MP.
P\Y)= —= (29)
()= £

Now let g, (y) [L"] be the probability density thatarticle that is
entrained into bedload comes from level y, an@)pL™] be the
probability density that a particle that is deposited is emplaced in the bed
at level y. As shown in Fig2éy the volume of sediment per unit
length and width contamhen a strip with height dy is given as (1

| )Pdy, and the entrainment and deposition rates within this strip are
given as (L) p,oEdy and (4 ;) p, Edy. A formulation of mass balance

in correspondence witl2.8, then, yields the PPL elevatspeciic

form of the Exner equation of mass balance:

12
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“:f= E(x0)po(y) Ba(Y)) B x s (nd (219

Thusparticles can jump out from any elevatiovitly probability g,

and jump back into the bed at any elevatisithyprobabilityp,, after

having been entrained ata@ny st ance r upstidheam frc
above equation involves a simplification, in that it assumes that the
elevation of deposition is uncorrelated with step length.

In general, As a function of x, y and t, where y is according8oati(2

elevan relative to the mean bed. Thys Px, zh(t), t). Note that P

can vary in time in two ways; the structure, agé&f can vary in time,

and the value of [Pcan change at a given elevation due to bed
aggradation. The chain rule appliedjt@agong2.8) and 2.9) yields

e y(1).t gP(xy.)) R(xyjph
He S yH ooty (219
K h

_ R il
¥ . (y) o

which substituted ir2.(L0 gives:

h 2
e 1= E(c)mo) () Ex rinod @13
In the followingwe make the simplificatitimat the probability density
that a particle igmps into the bed at level y isqual to the probability
density that a particle jungs from level y :

Pa (¥) =Pso(Y) () .13

so that2.19 becomes

Rap =B )n ) eI Hx rirod @19
This assumption must be valid for a bed that is in macroscopic
equilibrium (constartt), ard is a firsorder approximation for a bed

that is only slowly aggrading or degrading (in which case bed elevation is
driven by slow spatiotemporal variatioB)in

It is shown in Blom and Parké&004 that integrating2(13 in y
recovers the Exner equoat(2.5.
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Equation 2.14 is, in and of itself, a fairly trivial extension of the Exner
formulation. Its true value becomes apparent when applied to bedload
tracers. The PPL frameworkajgplied to this case Chapter 4. Here,

we just wanted to presahe general framework and to show together
the main different formulations of the Exner equation of sediment
continuity, which will be recalled in the followsictions

2.2 BEDLOAD TRANSPORT RELATIONS

Bedload transport relations allow to relate the sedimesport rate q
with the flow field. In particular, having defirfgda dimensionless
sediment transport rate g* (i.e., Einstein number) as follows

___ ¢
= 2.15
q RD, D, (2.15)

where Q) [L] is the particle diameteR [1]the submerged specific
gravity of the sedimeand g [LT] the acceleration of gravityd i) a
dimensionless shear stress (i.e., Shields number):
— tb
rRgDb,

(2.16)

wheretb [ML'T? is the shear streasdr [ML?] is water density
common approach is eirically relating* with either the Shields stress
t* or the excess of the Shields sttgssbove some appropriately
defined critical Shields stregs

q=f(t) or q & 1. (2.17a,b)

Famous empirical bedload relations are the onbteysfPder and

Miller (1948)Einstein (1950)Ashida & Michiue (1972Wong and
Parker (2006) and so on. In the following, as later specified, the relation
by Wong and Parker (2006) is usedotornumerical model of bed
evolution with variable step len@tfr. Section 3.2)because is wel

suited for gravdded rivers.

The volume bedload transport rate per unit width g at equilibrium can
also be written as:

14
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q=E T (2.18)

Einstein (1950WhereT [L] is mean padie step lengtithe relation
(2.18) is used to the define the entrainment rate E inuowrical
model of bed evolution with variable step len@eéction 3.2)2
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3 MORPHODYNAMICS OF RIVER BED
VARIATION WITH VARIA BLE BEDLOAD
STEP LENGTH

Here we considen¢ 1D morphodynamics of an erodible bed subject to
bedload transporEluvial bed elevation variation is typically modeled by
the Exner equation which, in its classical form, expresses mass
conservation in terms of the divergence of the bedload sediument fl

An entrainment form of the Exner equation can be written as an
alternative description of the same bedload processes, by introducing the
notions of an entrainment rate into bedload and of a particle step length,
and assuming a certain probabilityidigton for the step length. This
entrainment form implies some degree oflacality which is absent

from the standard flux form, so that these two expresgibits, are
different ways to look at same conservation principle (i.e. sediment
continuity), my no longer become equivalent in cases when channel
complexity and flow conditions allow for long particle saltation steps
(including, but not limited to the case where particle step length has a
heavy tailed distribution) or when the domain of intexasbtilong
compared to the step length (e.g. laboratory scales, or saltation over
relatively smooth surfaces). We perform a systematic analysis of the
effects of the nofocality in the entrainment form of Exner equation on
transient aggradational/degramtal bed profiles by using the flux form

as a benchmark. As expected, the two forms converge to the same
results as the step length converges to zero, in which césealiynis
negligible. As step length increases relative to domain length, the mode
of aggradation changes from an upwarttave form to a rotational,

and then eventually a downweoticave form. Corresponding behavior

is found for the case of degradation. These resajs explain
anomalously flat aggradational long profiles that hemeobserved in

some short laboratory flume experiments.

The Chapter is a version afecent paper (Pelosi and Parker, 2013),
published on ESurfD journal, andder revisioffor the publication on

ESurf journal.
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3.1 INTRODUCTION

The Exner equation, in its digsl formulation, relates the bed evolution

to the divergence of the bedload sediment flux (q), which is assumed to
be a local function of the flow and the topography. However, certain
sediment dynamics, such as (i) particle diffusion in river bedjoad (e.
Nikora et al., 2002; Bradley et al., 2010; Ganti et al. 2010; Martin et al.,
2012), (i) bed sediment transport along bedrock chéateek et al.,

2009) and (iii) particle displacements on hillslopes (Fe@émnrigiou et

al., 2010) may show nlmed behaviour that is not easily captured by
the classical form of the Exner equation.

The nonlocality of interest here is embedded in the step length r of a
bedload particle, i.e. the distance that a particle, once entrained into
motion, travels before depting. The existence of a finite step length r
implies a noihocal connection between point x (where a particle is
deposited) and point&r (where it was entrained). The degree of non
locality can be characterized in terms of the probability deDsijyof

step lengthg(r). ThisPDF can be hypothesized to be ttaied (e.g.
exponential) or heatgiled (e.g. power).

In recent years, considerable emphasis has been placedomalityn
associated with heatayled PDFsfor step length (e.g. Schune¢ al.,

2009; Bradley et al. 2010; Ganti et al. 2010). This appears to be in part
motivated by the desire to construct fractional advddfiveve
equations for pebble tracer dispersion corresponding to tletassigal

fADE model (e.g. Schumer ef a2D09).

Experiments conducted under the simplest possible conditions
(including steady, uniform flow, sirgjleed sediment and the absence of
bedforms) vyield thitailed, and more specifically exponential
distributions for step lengBPDF (Nakagawa anfisujimoto, 1980; Hill

et al., 2010). Ganti et al. (2010), however showed that were a) the bed to
consist of a range of sizes, b) Big- of size distribution to obey a
gamma distribution and c) tABF of for step length of each grain size

to be exponentiathe resulting®DF for step length would be heavy
tailed. Hassan et al. (2013) analysed 64 sets of field data on pebble tracer
dispersion in mountain rivers (which by nature contain a range of sizes).
They found that all but 5 cases either showedkileid PDFs or could

be rescaled as thHmledPDFs Their results, combined with those of
Ganti et al. (2010), however, do suggest that the gradual incorporation of

18
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the many factors in nature that lead to complexity can also lead to non
local behaviour é&ated by heawgiledPDFs

Here, however, we focus on the case oflowality mediated by thin

tailed (exponentiaPDFsfor step length. Regardless of the thin tail of
the PDF, the degree of ndncality nevertheless increases with
increasing mean pteengtht. This noAlocality may become dominant
when T approaches the same order of magnitude as the domain length
L, under consideration. We show that patterns of bed aggradation and

degradation are strgly dependent on the rafid L ,, a parameter that

may be surprisingly large in some ssnalé experiments. Our results
may explain anomalously flat aggradational long profiles that have been
observed in some short laboratory flexmgerimentswithout relying on

either of the fractional partial differential equations or -tebeg
distributions invoked or implied Wypller and Paol@010)We use our
framework to explore the consequences of HadegPDFsfor step

lengths as &\l

3.2 METHODS

3.2.1 Theoretical framework

The current Section recalls part
refer for more details.

1D river bed elevation variatiortligssicallgescribedas pointed out in
Chapter 2by the 1D Exner equation of sadnt conservation in flux
form:

M Ifix, t) _ alx, t) (31)
Mt K

whereh [L] denotes the bed elevation, t [T] denotes the time, x [L]
denotes the streamwise distance andTq][is the volume bedload
transport rate per unit width. (Here, the porosithebed sediment is

set = Oand bedload only is considered, lotlthe sake o$implicity).
There is, however, a completely equivalent entrainment form of
sediment conservation (e.g. Tsujimotég)19
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X, t
“ﬁ):Du@-axQ (32)
where E [LT] derotes the volume rate of entrainment of bed particles
into bedload per unit area per unit time and D][H&notes the volume
rate of deposition of bedload material onto the bed per unit area per unit
time.
The deposition rate can be related to the emainrate by means of
the probability density of the step lemmth) [L7]:

m@:ﬁeu-ogmm (33

so that the entrainment form of sediment mass conservation can be
written as:

“Eh= E(x) FE(x () (34)

As has been shown by Tsujim(X678), the two forms3(1) and §4),
are in principle completely equivalent in so far as the following equation
precisely describes the bedload transport rate:

q(x):r’jx E(x -r) rnﬁ(r)dr'dr (35)

Yet in any given implementation, they are rarely equivdiznet.
specifically, in most implementations of the flux f8th), @ is taken to

be a local function of the flow (e.g. bed shear stress), whereas in most
implementations of the entrainment foBA)( E is taken to be a local
function of the flow (agaie.g. bed shear stress). The presence of the
spatialconvolution term in the entrainment fowh (3.3) and 34)
ensures ncfocality in the entrainment form as compared to the flux
form. This nonlocality is present regardless of whethdp@iteof step
length p(r) is thintailed or heavtailed, and vanishes only wipg(n)
becomes proportional tfr), wherad denotes the Dirac function.

Here weexplore tle consequencesminlocalty, and compare tHecal

and nonlocal form8({) and 84) for Exnerover a range of conditians

To do this, we assume that PIBF p(r) has a mean step length, and
consider the dimensionless paranaeter

20
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.
e — 36

» (36)
wherer [L] denotes the mean particle step length gfid Henotes the
length of the domain of interest (e.g. flume length or length of river
reach). The flux and entrainment forms becomeys&ativalent only
under the constraint:
e = «1 37)

d

Here we demonstrate that this equivalence $ofl breaks down with
increasinge This is because a finite mean step lengthand ofitself
implies norocality, regardless of whether or not the probabilistic
distribution of particle step lengtir) is thin or heawytailed. A further
degree of nofocality can be introduced by adopting a Hedegd
distribution fomp(r).

The standrd thintailed form for the particle step length probability
density function is the exponential distribution (e.g. Nakagawa and
Tsujimoto, 1980; Hill et al., 2010):

1 ar

r) = = expe— 38
p(r) == P (38)
The heawailed Pareto distribution with a shift, wreasureshat the
maximum value of the distributisrealizeat r = 0, can be considered
as an alternative:

ar;  ér,>0
ps r :—a’\l (3'9)
( ) (r+ro) tia >0
wherea is the shape parameter apfl} is the scale parameter. The
mean valué of the distributiorof Equation(39) can be written as:

ar, ér,>0

= ,
a1l °f ao

(310)

21
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3.2.2 Numerical model

Here we solve the flux and entrainment formulations under parallel
conditions, the only exception being the formulation for step length. To
simplify the poblem and focus on this point, we approximate the flow
as obeying the normal (steady, uniform) approximafiomentum

conservation then dictates thmgd shear stresg [ML'T?] can be
represented as proportional to the product of depth H [L] andSslope

[1]:
t, =uf gHB8, S ul (311a,b)
X

whereu, [LT™] is the shear velocity.
The dimensionless Shields nungimerning particle mobilitgefined as
— tb

312
rRgD, ( )

wherer [ML7] is water density, L] is characteristic bewrticlesize

(here taken to be uniform for simplicity) and R denotes the submerged
specific gravity of the sediment (~ 1.65 for quartz).

The flow can be computedy introducing the ManningStrickler
resistance relation:

o y$
U aH O

— = = 313
oS -

where U [LT] is the depttaveraged flow velociy,is a dimensionless
coefficient between 8 and 9 (Chaudhry, 1993), amttnbtes a
composite roughness height. In absence of bedfonaigdckivalent to

the roughness heightvhich is proportional to grain size iy means

of a dimensionless coefficient with typical values between 2 and 5
(Parker, 2004Here 3, is set equal to 8.4s suggested by Parker (1991)
for gravebed streams, whilg, kn absence of bedforms, is tateibe

2.5 times the grain size(Parker, 2004).

The equation for water conservation for gstasidy flow is:

Q, = UBH (314)

22
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where Q [L°*T"] is the water discharge and B [L] denotes the channel
width.

Combiningequationg3.11)- (3.14), we relatde dimensionless Shields
number to the flow properties:

e( kc )1/3 in 360 SEE
T U
) argB Y] RDp

t (315)
The basis for our morphodynamic calculations is the form of-Meyer

Peter and Mduller (1948), as modified by Wong and Parker (2006). It
takes the form:

a= ¢grRoD,O,( "t ) (316)

where g [LT] denotes the gravitational acceleration. The pardfeter
denotes the threshold Shields number anid a coefficient of
proportionality; these parameters take the respective values 0.0495 and
3.97 (as spdied by Wong and Parker, 2006).

The volume bedload transport rate per unit width g at equilibrium can
also be written as:

q=E T (317)

(Einstein, 1950), so that the entrainment rate takes the form:

- =\¥2 I
E= RoD,(t 3)¥, —D% (318)
Here Ais a dimensionless parameter. Einstein (1950), suggested, based
on a simple flumkke configuration, thaT/Dp takes a value on the

order of 100 ~ 1000, so that a step length is about 100 ~ 1000 grain
sizes. This order of magnitudes been confirmed by the experiments of
Nakagawa and Tsujimoto (1980), Wong et al. (2007) and Hill et al.
(2010).

In systems with higher degrees of complexity, howeasdikely to vary

over a wide range. Combinations of multiple grain sizes, bedfmuns

and fill and partially exposed bedrock are likely to give rise to connected
pathways along which particles may travel for an extended distance, so
giving rise to larger valuesTof(e.g. Parker, 2008). In order to capture

this effect in a simplified 1D model, we allow the matiand thus
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b =/D, to vary freely, so that the rafidl_ , of step length to domain

length can vary from O (in which case the #iod entrainment
formulations become equivalent) to unity (in which a particle starting at
the upstream end of the domain reaches the downstream end in a single
step)..
Linking Equations (3.16) - (318), the following relation arises at
equilibrium condibins:
E
4 - (319)
RgD, D, RgD

p

Our formulation is such that increased step length is adjusted against
reduced entrainment, so that the equilibrium bedload transport rate is
the same whether the flux or entrainment formulation is used. A
difference however, arises under disequilibrium conditions, in which
caseEquation(3.16) is solved in conjunction wilgquation(3.1) in the

flux case, aneiquation(3.18) is solved in conjunction wilyuation

(34) in the entrainment case. This allows us tareafte difference
between the two formulations in a comparable way.

The flux formulation,Equation (31) corresponds to a nonlinear
diffusion equation, i.e.

llt NQ XH
where according tBquations(311), 8.15) and 3.16), the kinmatic
diffusivityn is a function of bed slope S gh/ px:
302

«/RQD D, 99 )@ ﬁ SR 321)
¢~ u
lg a;g8’ p RD, §'/

The governing equation is second order in x, and thus requires two
boundary conditions. Here we require that the bed elevation at the
downstream end is zero, aha@t the sediment transport rate at the
upstream end is given as a constant, specified feed rate:

hle,, 0. d,, @ (322a,b)
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The entrainment formulation &quation(34), however, is only first
order in x, in so far as the entrainment rateakEsjgecified function of

bed slope S = ph/px according teEquations(34) ar (324) Thus

there can be only one boundary condition in x; here weguagon
(322a) for this, so that both the flux and entrainment formulations
satisfy the condition of nighing bed elevation (corresponding to set
base level) at the downstream end.

Although no boundary condition can be set at the upstream end for the
entrainment formulation, it is still possible to choose conditions so that
the sediment transport rate Iz upstream equals the feed value under
equilibrium conditions.

To do this, we assume that the entrainment rate everywhere upstream of
x = 0 equals a specified valyesgecified as follows:

= (329)

The deposition rate D(x) &quation (3.3) can then be +written in
terms of the sum of particles that originate within the domair? (@)
and those that originate upstream of the domain<$0):

D(x) = E(X Np,(dr =[x np@dr EE DR (ndr

= FEx Dp.0)dr E R () (3.2)
where
P+ (9= f} P, () (325)

is the prohbility [L], that a particle travels at least a distance x.
The entrainment form of sediment mass conservation thus takes the
ultimate form:

h X .
”E = E(x) BEX na®d Ef (X (326)
For the numerical computation, we {tlimensionaliz&quations(1)
and (26). W assume that the computation begins from some equilibrium
initial condition with spatially constant slopeb8dload transport rate

and entrainment ratg, =TE_ . At t = 0, however, the supply of
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sediment is impulsively altered, cgusubsequent bed aggradation or
degradation, but with an altered sediment feed rate for t > 0. We
normalize against initial equilibrium conditions using the following
definitions:

=N g X (gLl (327a,b.x
Ld (Sin I_d Ld

E-EnO¢ g3 (327d,8
I—d (Sin Sn

In addition, we nodimensionalize the entrainment rate (for the
entrainment formulation) and the bedload transport rate (for the flux
formulation) as

v_ E - _
E-F G- (327f)

n

Then, the nordimensional flux and entrainment forms of the sediment
mass conservatioBquationg3.1) and 826) take the respective forms:

ukh 1 qf E
e 1 ak_ E 328
E SE1 X (328)
neh 1z 1 f 2 = ArEj <1 s _ raE
L—‘E_ -—éE(x) #%E& R'(; rE= ;—E _EEEI (329)
where
_8E g1 r&

Q4 ! 330
pséa% g~ Exp 2 (330)

&E o ak (331)

is the corresponding form for the Pareto distribution, whéethe

dimensionless scale parameter eqyaLtp
These are the upstream conditions, for the entrainment faymulat
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E(x.1), =& (332a)
and for the flux formulation

&(x.t), = & (332b)
The downstream boundary condition is the same for both
B(x.t)_, 0 (332¢)

Here Ef IS an imposed upstream entrainimeate, andeEf is an

imposed upstream bedload feed rate, chosen to be different from the
initial equilibrium values so that the bed is forced to aggrade (or degrade)
toward a new equilibrium state.

Manipulating the relation81® and 8.18), with the definitions of

Equationg327), E, can be at any given time as:

Pl B (333)
c tin _ct =

where t; is thedimensionless Shields number, calculated 845) (

with the initiaflow and bed conditions arfkis the local dimensionless
slope.

The key parameter of interest here in describing the difference between
the entrainment and flux formulationseisin the casee<1, both

formuldions become identical. We show below, however, that as
increases, the response to change in sediment supply differs between the
two cases.

We discretize the relation between dimensionless slope and
dimensionless bed elevation as follows:

EC. —lﬁ - ﬁ|:1
! DE '
1 - o
= 1k, - B . _
She il =2..M (334)
EEVI B V\ﬁl i=M 4
[ DE
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The discretization of the domain is schematizEdyure3.1: a central
finite-difference scheme is used to sBlyeationg328) and329).

Upstream conditions Downstream
A condition
qlie0= gEf
El.=E, A% =1/M nj,, =0
¢ *———o—o—o— -—-——9——=
ghost =1 2 3 M -1 M i=M+1
1

Figure 3.1Discretization of the domain

3.3 RESULTS

Here we compare the results for aggradation and degradation for the
entrainment formulation with varying values afainst thoseof the
flux formulation. In Figur82, bed elevation profiles are shown, having

set as an upstream boundary ct}mdiEf =2, so forcing the bed to

aggrade. Case (a) is the solution for the flux foBgurtion(328),

while cases (b), (c) and (d) are the solutions for the entrainment form of
Equation(329), solved, respectivelyder 0.01, 0.5and 1.

As expected, the solutions Bfuation (328) andEquation (329)
collapse to the same results in the case €01, i.e. when the mean
particle step length is short compared to the length of the domain. Thus
under this condin the local (flux) form, essentially coincides with the
nonlocal form. For higher valuesephowever, the differences between

the results increase because the entrainment form is able to capture the
nonlocal feature of the particle movement. Forfltheform and the
case= = 0.01, the aggradational profile is strongly upward concave, with
bed slop declining downstream. The transient aggradational bed profiles
tend to assuma nearly linear profile, and thus the bed rotates upward,
for values olose to 0.5. For higher values a dowmeandave form

profile is realized.
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i=0.05 f=0.05
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Figure 3.2 Bed profile evolution for the case[Ef = 2: a) flux form; b) entrainment
form for e F/L,= 0.01, c) entrainment form fore = 0.5 and d) entrainment

form for e = 1., using the thintailed exponential step length function of
Equation (3.8). Increasing e, the differences between the results from the two
forms increase because of the nelocality of particle movement: from upward
concave transient profiles to downward concave ones.

To highlight and quantify this change in shape, we introduce a concavity
parameter A& which measures the de\
¥= 0.5 relative to the constant initial slope:

25 539

where E[Ezodenotes the dimensionless bed elevationc=a®and

IE[E_O.Sdenotes the same quantity in taeter of the profile $=0.5).
Positive /E indicates upward concavity, while negativindicates
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downward concavity. IIRigure3.3, the variation in time @&s shown

for the flux case, and different valuegdof the entrainment case. It is
seen thatEis positive for smalleeand but becoes negative fo®
greater than 0.5. The results for the flux form overlap with the form for

e=0.01.

| — flux form

-=£=0.01 |

"""" = 0.1

--£= 0.2

—e= 03

-=g= 0.4

"""" e= 0.5

—-e= 0.6

—e= 07

-=g= 0.8

e= 09

- --g= 1
003 0.5 1 5 2 25 3

Figure 3.3 Aggradation case: variation in time of the concavity parametetin
the case of the flux fomulation and in the cases of the entrainment formulation
for different values ofe ranging from 0.01 to 1. The result for the flux form
overlaps with the result for the entrainment form witle = 0.01.

In Figure 34, the slope evolution is plotted: thecgipupward concave
shape for the flux case aad$.01 is due to the preferential proximal
deposition of sediment, which causes the sediment load, and thus the
Shields numbet* to decrease downstream (Parker, 2004). Thus,
according tdquation(315), a downstream decreasing slope is realized
(Figure34a,b). On the other hand, a downward concave shagpe for

is characterized by an increasing slope downstgpre84d). This
corresponds to bedload particles that can jump frompsteeam end

of the domain to the downstream end in one step.
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Sist b) e=001 =}

0 0z 04 0.6 0g 1

a) Flux form

— final
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——i=025
***** t=10.5

1.1 st =075

) ge=05 | '=!
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Figure 3.4 Slope profile evolution for the casef_éf =2: a) flux form; b)
entrainment form for e ¥ /L, = 0.01, c) entrainment form fore = 0.5 and d)

entrainment form for e = 1., using the thintailed exponential step length
function of Equation (3.8).

For completeness, the case of degradation, due to an imposed
entrainment and feed rate upstreﬁm: 1/ 2, is described bligure

35, Figure36 andFigure3.7. The results show a congruent behavior
with the aggradation case. In Fi@Before ©.01andE =1/ 2, itis

seen that the two profiles mordess agree.
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Fluxform [__j_
et = 0,05
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b= 00051 |
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Figure 3.5 Bed profile evolution for the caseE =1/2: a) flux form; b)
entrainment form for e ¥/L,= 0.01, c) entrainment form fore = 0.5 and d)

entrainment form for e = 1., using the thintailed exponential step length

function of Equation (3.8). Increasing e, the differences between the results
from the two forms increase because of the ndocality of particle movement:
from upward concave transienprofiles to downward concave ones.

32



Morphodynamics ofverbedvariation with variableedloadstep length

In Figure36, the concavity parametdr@lso more or less agree for this
case. Whegancreases to 1, the concavity of the transient degradational
profiles clanges from downward to upward.

0.02, :

~ |— flux form
|==-¢=0.01
[g= 01 ]
--eg=02
—e= 03 |
-—¢g= 04
““““ e= 05
--e=06 |
|—e= 07
——&=08
T = 0.9
| —-e= 1
-0.049 0.5 1 15 2 25 3

Figure 3.6 Degradation case: variation in time of the concavity parametet in
the case of the flux formulation and in the cases of the entrainment formulation

for different values ofe ranging from 0.01 to 1. The result for the fluform
overlaps with the result for the entrainment form witle = 0.01.

In Figure3.7, slope changes from increasing downstream to decreasing
upstream. Wheee= 0.5, it is shown irigure3.7 that the transient
profile tend to keep a straight shape, and the evolution of the bed is
essentially rotational about the downstream end.

Summarizing i) the flux model and the entrainment model yield
essentially the samesults fore = 0.01; ii) fore = 0.5, nearly rotational
aggradation and degradation are obtained; and ai fbrthe pattern

of concavity is reversed compared to the flux case.
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——i=0 ——i=0

a) Flux form | ——;—_g.25 b) £=0.01 ——j—025 |
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Figure 3.7 Slope pofile evolution for the case|’1_:=f =1/2: a) flux form; b)
entrainment form for e ¥ /L, = 0.01, c) entrainment form fore = 0.5 and d)

entrainment form for e = 1., using the thintailed exponential step length
function of Equation (3.8).

Then, a Pareto distribution with a shift, Eguation(39) for particle
step length distribution is considered as well, so as to compare the case
of heavy tail of th&€DF of step length with the thiail exponential

form. In the calulations for the entrainment rate wWih= 2, two cases

are evaluated , @j¥ 0.015 and (kge= 1. It is seen that the two profiles

more or less agree for the case (a). A more substantial difference is seen
for case (b), but the concavity is quite small for both the cases of thin
tailed and heaxgiledPDF for step length. Assung L = 200 m, with a
thin-tailedPDF the valuese= 0.015 corresponds to a mean step length
equal to 3 m, and the valize 1 corresponds to 200 m. We have set the
shape parametéris in the Paret®®DF equal to 1.5, and the scale
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parameter,requal to & m for case (a), and t100 m for case (b). This
yields values of from Equation(3.10), that are respectively equal to 3
m and 200 m, i.e. the same values as tHaitbohcase.

Ty Exponential pdf

£=0.015 _
02 04, .06 o8 1
2l

Exponential pdf | —.—ji_q ' Pareto pdf
f=0.05
—=ef=0.1
--i=0.15
—t=0.2

— f_ilm]

0 0.2 04 .06 08 3
z[-]

Figure 3.8 Bed profile evolution for the casef_éf =2. 1) e =0.015: a) Thintailed

exponential step lengthPDF; b) heavytailed Pareto step lengthPDF (a =1.5,
re=1.5m). ii) e = 1 a) Thin-tailed exponential step lengthPDF; b) heavytailed
Pareto step lengthPDF (a =1.5, t&=100m).

The analysis shows that the shape of the tail of the stePlBRgthes

not significantly change the resultefer0.015 but does result in some
change compared to the ttéed case = 1. Figure 8 $rows the long
profiles resulting from both the thamled and heasgiled case, and
Figure39 shows the corresponding evolution of concavity. As seen
from Figure 3.90c) and (d) corresponding to the case of aggradation with
e=1, the profiles are dowave-concave for the thitailedPDF of step
length, and upwaizbncave for the heatgiled case. The concavity in
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both cases, however, is so small that the same rotational behavior for
profile adjustmens seen, as documented in Fig@gBand (d).

0.05 | 0.01y
- -Exponential step length function |

— Pareto step length function

-0 02; A /
0.01 | .
S | - -Exponential step length pdf
a) &=0.015 ool b) &=1  —Paretostep length pdf

0 02 04 06 08 1 0 02 04 ___ 06 08 1

i ‘ tl

Figure 3.9 Variation in time of the concavity parameted for the case of the thin
tailed exponential distribution for step length, and the case of heatgiled
Pareto distribution for step length. The pararater e ¥ /L, takes the value

0.015in a) and 1.0 in b).

3.4 DISCUSSIONAND CONCLUDING REMARKS

The main goal of th€hapteris to show how the entrainment form of
the Exner equation of sediment continuity diverges from the flux form
of the Exner equation when ndéocal behavior in particle motion arises:

(i) as the mean particle step lengtimcreases from O to the order of
magnitude of the domain lengifdr a thintailed step lengtRDF and

(i) as a heawgiledPDF for particle step length is used.

The dimensionless parametes defined as the ratio between the mean
step lengthrand the length of the domain of interestWe analyzed

the effect of variation &f on bed aggradationaggradational profiles

by solving the entrainment form of the Exner equation, with the
assumption of thitailedPDF for particle step length. As expected, the
two forms collapse in the casecl.

For high values d& however, the dérences between the results from
the two forms increase because of thelomality of particle movement
which is not captured by the classical flux form of the Exner equation:
the transient aggradational (degradational) bed profiles tend to assume,
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for eegreater than 0.5, a downward (upward) concave shape, rather than
the upward (downward) concave shape of the flux form. When the value
of &is close to 0.5, an interesting behavior for both the cases of
aggradation and degradation has been found: thertrgmefiles tend

to rotate around the downstream point, keeping almost a straight shape.
For value ogan the range [0,0.5), the concavity of the bed profiles is still
upward for aggradation and downward, for degradation, but by
increasinggo 0.5, theconcavity is nearly vanishing. . These results may
serve as an explanation for relatively flat aggradational bed profiles
which have been achieved in some short laboratory experiments (e.qg.
Muto, 2001 and Voller and Paola, 26Hini et al., 200 3vkere the

value of the ratio between mean particle step length and length of the
domain of interest may not be negligible. At the laboratory scale, the
mean step length becomes comparable to domain length so that the
inclusion ofnorocal effects in th&DF of step length which this
circumstance entails, should clearly be evaluated in order to properly
model the bed evolution.

The analysis also investigates the effect of the heavy tailedness in the
PDF of step length on bed profile. For the case studiedyometsat

the variation of the shape of the step length distribution fromtdhin
heavytailed does not significantly influence the results when step length
is small . This is probably due to
the tail of the power lawistiibution. There is a somewhat larger
difference in the case when step length equals domain length, but the
bed elevation profiles are nearly linear for botHhaled and heavy
tailedPDF. Voller and Paola (2010) introduced htalgd behavior to
explain profiles that evolve with concavity that is small compared to the
standard flux case &fquation(3.1). Here we find that a hedsjled
behavior is not necessary to obtain this result.

Long step lengths of bedload particles in the field may resulariy

bed pattern that induces preferential paths for transport, including grain
size mixtures (Ganti et al, 2010), bedforms, scour and fill, and
intermittent bedrock exposure (Stark et al, 2009). Thus our results may
be applicable to these cases. Tée alasediment suspension can also be
represented in entrainment form (e.g. Parker, 2004). This case is
generally associated with much longer mean path lengths than the case
of bedload. As a result, the susperdamminated case may show much
more nonrlocd behavior than the bedload caBkis case deserves
further investigation.
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4 ON ADVECTION AND DI FFUSION OF
RIVER PEBBLE TRACERS

The erosion, transport and deposition of pebbles in rivers have often
been studied by considering the motion of tracerlpsrtiuch studies
have been staptomponents of field researely( Ferguson and Hoey,
2002; Hassan et al., 2048 well as experimental investigat{ergs

Wong et al., 2007; Martin et al., 20IRBe existing knowledge and
researchintuition suggestthat tracer particls motion could be
considered as an advectiftusivephenomenon (Nikora et al., 2002)

While migrating downsimthe particles tend to slowdown because of
several circumstances (e.g. reallocation in more stable locations, such as
degoer layers in the bed) and to diffuse with different regimes, depending
on the observed spatial and temporal scale.

4.1 STREAMWISE ADVECTION SLOWDOWN OF TRACERS

The shorterm behavior ofracers seeded on the surfdiffers from

the longeterm behavior afracers that have undergone vertical mixing,
local spatiakdistribution, and largscale advection.

For instanceirivers with bapootriffle morphology there may be a
tendency for tracet® be reallocatethto more stable tations (e.qg.
riffles aml bar$, and insome cases into leteym storage in abandoned
channelspactive bars, or even the floodplain. Teads to éongdterm
reduction in mobilityThen advection of tracers feubstantial distances
along a river whose character attevengream carti) alter the size of a
tracer relative to the bad is traveling over, ofii) expose it to
systematically differerftydraulic conditions. In particular, tracers
traveling along rver with strong downstream fining toward a local base
level wil become ratively coarser and less mobiieally there may be
vertical mixingthatresults in progressive burialtrafcers at a range of
depths. Bried tracers move less often than those on the s(tiHace
probability of entrainment decreases wépth, as shown in Section
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2.1), sdhere isagaima reduction in overddingtermmobility (Ferguson

and Hoey, 2002)

The first quantitative evidence of tAmountof tracer slowdown
through the combined effects of these processsspresented by
Fergson et al.(2003 who compared theshort and longerm
movement of 1220 magnetic trapgebbles seeded in 1991 at six sites
along a 2:&m-long reach of Allt Dubhaig, a small gravel bed river in
ScotlandUK.

Ferguson et gR2003 compared movement to9dBafter more than 100
competent flow events, with resutism the first two years of the
experiment (1991993;~ 30 floods) In Figure 4.1, the observed
percentage of slowdown for the six different sites is shown with the
simulated slowdown by two diftnt models, suggested by Ferguson
and Hoey (2002).

The models considdghe tmacerpebble dowdown (i) through only
advectiorof any given size Di from a relativadarse upstream site to a
finer cownstream siteheretracers have higher relatiyrainsze and so

less mobility and (ilitoughadvection anderticalmixing, which entails
reaching portion of the bed with less chance of entrainment in bedload.

T1 T2 T3 T4 T5 T6
0 .‘;_ﬁ‘ V__‘I»—'-\; ,I,/-' L
_ e
7 advection
20+
| advection + mixing
c
= 404
[+
©
3 -
o
c.;} 60 M
o~ observed
80 -
100

Figure 4.1 Observed and simulated slowdown afecovered tracers (with relative
errors bands)d from Ferguson and Hoey (2002)
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4.2 PARTICLES DIFFUSION

Mathematically, diffusion processes are described by the scaling growth
in timeg t [T], of the central moments dhe coordinate®f a patch of
particles More, specifically, to describe such processes, it is often

considered thgrowthin timeof thespatial standard deviat®ifL]:
s “to? 4.1)

In case of normal (Fickian) diffusion, we haegual to unity, while
diffusion withc , 1is knownas anomalous diffusion, which can be (i)
ballistic diffusion, when = 2, (ii) superdiffusion, when > 1 and(iii)
subdiffusion, whea < 1.

It is important to note that the diffusi@xponentdirectly relate to
parameters of probabilidystibutions of particle motion characteristics
such assteplengthand/or rest periodgas clarified in the following
Chapter). For now, what we want goint out is thatthere may
potentially be several diffusi@gimes in bed particle motidtikora et
al,2002)

In particular, Nikora et al. (2002provided an usefutonceptual
framework for understanding different scatiegjmes in bed load
particle diffusionsuggesting that the character of sediment diffusion
may change with time scéigure 4.2)Corsidering saltating partigles
they firstlyidentified three ranges of spatial and temporal: §0alesal
range, whicttorresponds to ballistic particle trajectdsetsveen two
successive collisions with the ;béid) intermediate range, which
correspads to particle trajectories between two successive rests and it
may consist of many local trajectories; (iii) global range, which
corresponds to particlgajectories consisting of many intermediate
trajectoriesThen, intheir conceptual modé¢hey hypthesized ballistic
diffusion at short time scalgscal regimetausedy correlated particle
motionsarising from particle inertia, and subdiffusion at longstales
(global regime) resulted from periods of partrol@obility. Over
medium timescals (intermediate regimdjey suggestedhat the
character of diffusion may depend on sypteppertiesFor instancegt

this scalethe bed topography and néad turbulence may have
opposite effects on bed particle diffusian. 6 6 f r act al 66 be

down diffusion processés< 1),whileturbulence may enhance them (g
> 1) or they camutually cancel their effe@ts= 1).
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Figure 4.2 Conceptual representation of a particle trajectory consisgyy of three
distinct ranges of scale: (i) local; (ii) intermediate; (iii) global. Nikoa et al.
hypothesized ballistic diffusion regime for the local range, normal or anomalous
diffusion regime for the intermediate range and subdiffusion regime for the
global ranged from Nikora et al. (2002)
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5 EXNER BASED MASTER EQUATION FOR
TRANSPORT AND DISPERSION OF
RIVER PEBBLE TRACERS. PART 1.
DERIVATION, ASYMPTOT IC FORMS,
AND QUANTIFICATION O F NONLOCAL
VERTICAL DISPERSION

Ideas deriving from the standardnfalation for Continuous Time
Random Walk (CTRW) based on the Mortkaiss Master Equation
(ME), have been recently applied to transport and diffusion of river
tracer pebbles. CTRW, accompanied by appropriate probability
distribution functionsRDF9 for walker step length and waiting time,
yields asymptotically the standard advediffusion equation (ADE)

for thintailed PDFs and the fractional advectdiffusion equation
(fADE) for heawvytailed PDFs the latter allowing the possibilities of
subdifusion or superdiffusion. Here we show that the CTRW Master
Equation is inappropriate for river pebbles moving as bed material load:
a deposited particle raises local bed elevation and an entrained patrticle
| ower s it, so that tparcteioc|loefs timea es
water interface. Here we use the Pdtkeflaleclair (PPL) framework,
which captures the Exner equation of sediment conservation, to develop
a new ME for tracer transport and dispersion for alluvial
morphodynamics. The formulatienbased on the existence of a mean
bed elevation averaged over fluctuation, which precludes the possibility
of streamwise subdiffusion mediated by a waitingPidfewith no

mean. The new ME yields asymptotic forms for ADE and fADE that
differ significanyl from CTRW. It allows a) vertical dispersion, as well as
streamwise advectidiffusion, and b) mean waiting time to vary in the
vertical.Vertical dispersion is nonlocal, but cannot be expressed with
fractional derivatives. In order to illustrate themedel, we apply it to

the restricted case of vertical dispersion only, with both thin and heavy
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tails for relevarPDFs Vertical dispersion show subdiffusive behavior,

as quantified by the time variation of the vertical variance of tracer
distribution.

The current Chapter isvarsion of ananuscript that is ready tdomit

for publication ira refereefpurnal0 Ex ner Based Master
transport and dispersion of river pebble tracers. Part 1. Derivation,
asymptotic forms, and quantificatione@fml ocal verti cal

5.1 INTRODUCTION

The theoretical basis for the study of the dispersal of sediment tracer
particles was delineated by EingtE35(0, who formulated the problem

in terms of a standard 1D random walk in which each particle maves i
series of steps punctuated by waiting tiges also Nakagawa and
Tsujimoto, 1976; Tsujimoto, 1978/ore specifically, each particle
moves a step of length r [L] after waiting tinf€], the statistics of
which govern tracer particle dispersal.

Letpyr) L] and R(t) [T"] denote the probability distribution functions
(PDF9 of step length andaiting time. When both theB®Fs have

thin tails, such that(p) decays exponentially as © and p/t) decays
exponentially as- =, the formulationan be reduced asymptotically

to a standard advectidiffusion equation (ADE), according to which

the streamwise spatial standard deviatipln] of a patch of tracer
particles increases with the square root of time t [T], . as t
Subsequentto Eirst nds ori gi nal wor k on tr
walks has been extended to the chsertinuous time random walks
(CTRW; Montroll and Weiss, 196%his more general formulation,
which derives from a Master Equation (ME) governing the statistics of a
walker, leads to a much richer range of behaviors. More specifically, the
CTRW formulation allows exploration of the consequences of heavy
tailedPDFsfor pr) or p,(t), i.e.PDFsthat decay in r draccording to

a power law rather than exponentiallysuch cases, moments above
some value fail to exist. The asymptotic consequence of such a
formulation is a fractional advectdiffusion equation (fADE) allowing

for the possibility of anomalous diffusion, suchghkaf’?, wherec [1]

can deviate fromnity. The case encompassing anomalously long step
length r corresponding to hedaited Qr) gives rise to superdiffusion,
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for whichc > 1, and the encompassing anomalously long waiting time
corresponding to heatagiled p(t) gives rise to subdiffasi, for which

c < 1 (e.g. Schumer et al., 2D0@arious combinations of heaajled

jump length and waiting time distributions can lead tanhotive
ballistic, supediffusive, or suldiffusive behavior, particularly in the
case of asymmetric randemlks (Weeks et al, 1996).

In recent years, the concepts of CTRW and fADE have filtered into the
study of tracer sediment transport in rivers, as well as the study of
particle tracer transport in the more general context of Earth surface
processege.g.Nikora et al., 2002; Schumer et al., 2009; Furbish et al.,
2009; Bradley et al., 20Ganti et al., 2010; Furbish et al., 2012; Martin
et al.,, 2012; Zhang et al., 20IPb provide context for these
applications, we here summarize some results of Satwhé009
pertaining to MontroNeiss CTRW. The standard random walk model
with thintailed functions for {r) and p(t) applied in the context of
CTRW gives rise to ADE, i.e.

&+c—p‘a :Ddija 51)

DR ¢ xfi

In the above equation x [L] denotes ttieasnwise coordinate, t [T]
denotes time,(k,t) [1] denotes the fraction of particles within some
reservoilayer near the bed surfaaetife layer; see Ganti et al., 2010)
that are tracers at (x, t), ¢ flL@ienotes a particle advection velocity and
D, [L°T"] denotes a particle diffusivity (or more properly, dispersivity).
When Q) is heawailed such that it has a mean but no standard
deviation, i.e.

p(N~r® , 1< a 2 (52a,b)
or p,(t) is heawailed such that it has no mean, i.e.
p,(t)~ 19, 0 <t (53a,b)

the relation governing tracer particle dispersal obtained from the ME of
CTRW is no longer5(), but rather the more general fADE
formulation;

o
%m—% :DdTﬂ:; (54)
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Strictly speaking, in the above equations c Ienger an advection
velocity and P is no longer a diffusivity, becaube respective
dimensions areT? and I°TY but they can be treated as such in a
general sense. It can be found frém) (that the growth rate of the
streamwise standard deviatomwf a patch of tracers now obeys the
relation

g
s ~ta (55)

The case of standard ADE is captured by the chpicésanda = 2.

In the anomalous formulation, the derivatives are fractional; the choices
g= 1 anda < 2 lead to superdiision, and the choicgs 1 anda = 2

lead to subdiffusion.

Superdiffusive behavior of particle tracer dispersion might be generated
by mechanisms which allow for some particles to travel very long
distances in a single step. One example of such a sracisathiat of
preferential connected lanes of transf@arker, 2008)Ganti et al.

(2010 present another example associated with step length variation in
grain size mixtures. Subdiffusion might be generated by burial of
particles in zones whereeschunation is unlikelye.g. Voepel et al.,
2013; Stark et a(2009 have considered related problem in which long
residence time of alluvium inhibits bedrock incision. Both these
behaviors can be studied directly by analyzing data for dispersal patterns,
without invoking either the framework of CTRW or a governing Master
Equation(e.g. Nikora et al., 2002; Bradley et al., 2010; Martin et al.,
2012.

The above notwithstanding, a deeper understanding of tracer particle
dispersion in the context of CTRW requilesdelineation of an ME
suitable to the problem. To date, there have been two notable attempts
to do so for the case of sediment transport in rivers, i.e. those of Ganti et
al. (2010 and Furbish et a(2013. Both of these expositions helped
motivate he research presented here. This notwithstanding, neither
include a) the concept of waiting time and b) the degree of freedom
associated with particle deposition and entrainment from an arbitrary
bed elevation. Here we tackle the problem of delineateng@lged

ME for the case of bedload transport in rivers. Our model, the- Exner
based Master Equation (EBME) encompasses botithineavailed

step length and waiting time behavior. More importantly, it considers the
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entrainment and deposition of pdes on an elevatigpecific basis, a

key feature needed to describe the exchange of particles in the vertical
direction as they disperse downstream. This feature is needed to describe
the advective slowdown of tracer particles described by Ferguson and

Hoey (2003 as particles are buried ever more deeply.

5.2 MASTER EQUATION FOR THE STAN DARD CTRW
MODEL

As noted above, fADE was originally derived in terms of a specific ME
governing CTRW. This Master Equation, while of historical value in the
development of TRW, is inappropriate for the description of bedload
tracer particle dispersion in rivers. In order to illustrate this, it is useful to
briefly review the formulation. In the process of doing so, we introduce
the tools necessary to develop our EkasedMaster Equation
(EBME). The analysis presented here mostly follows that of Schumer et
al. (2009; standard results from fractional calculus are used without
specific citation.

In the standard 1D CTRW formulati@gMontroll and Weiss, 1965;
Klafter and Sible 1980; Klafter et al., 19&7e ME takes the following

form: where (x,t)[L™] denotes the probability density that a particle is at
x attime t,

ro6) AR ORI DRt drd 181 pr)AtS () 6)

In fact £6) involves two simplifications of Klafter e{(®87; a) sep

length and waiting time are taken toubeoupledprocesses, and b)
particles are assumed to move only downstream, sQhaamishes

for r < 0. The above equation is nonlocal in so far as the kernel in the
convolution integral is not concentratgda single poinfDu et al.,

2013. Here we distinguish between two kinds of nonlocality; simple
nonlocality associated with a ttailed form for p or p, and
asymptotic nonlocality associated with the correspondingtdiksivy
form. Att =0, 66) reduces to

r(x,0) = (d) 67
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so that a particle originates from the origin.

Laplace transforgnin time and Fourier transforimsspace are used to
reduce{6) and %.7). Where A(t) is any function of time and B(x) is any
function of space,heéir Laplace and Fourier transforms are given
respectively as

A(s)= ﬁ] AMedt , B(k) = m(x)e™ dx (58a,b)
Applying $8b) to 6.7) yields

Hk,0) 2 (59)
Applying $.8a,b) to%6) yields,

~ 1-p, 1

HKk,s) s T &n (5.10)

corresponding to (21) &fafter et al(1987 and(30) of Schumer et al.
(2009.
The case of thin tails is considered first. Taylor expansipr(&)oto

second order anpL(s) to first order give

B () @ -ikr %(ik)z M+, Pu(s) L =S - (51lab)

whereT [L] and T [T] denote mean step length and waiting time, and
m [L?] is the second moment qf p

T:fjrps(r)dr , m :Ouﬁps(r)dr (5.12a,p
T ﬁ pt ()dt (5.12%

Substituting511) into $.10),using the following properties of Fourier
and Laplace transforms,

d"B
dx"
reducing with§9) and truncating the expansions yields the formulation:

9A _ i -A(0)
dt

Gk)" B (513a,b)
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2 2

r I r r
Hhlc K Wl ML p o sisang
i N X xu u t° 2
Writing T =c t andassuming that ¢ and, Bemain finite in the limit as
T -0 allows the crosderivative in x and t to be dropped. so resulting
in the ADE formulation. In work below, the crdssivatives are
retained for consistency, and to allowlerdase of large mean waiting
time.
For the case of heavy tails, we now repfatea(b) with the forms
(resulting from fractional Taylor expansion)

Bk @ -kr e (Kk® , p,(s) =¢d - (515a,b)

IJIWI

where 0 <g < 1 (subdiffusive waiting time) and 1a& < 2
(superdiffgive step length). Substitutirigl%) into $.10), using the
following properties of fractional Fourier and Laplace transforms,

dA® _ - dB . . .=
— =gA -A0) , — 6K B 16a,
5 =S © . 4e & (516a,b)

reducing with§9) and truncating the expansions yields the formulation:

a -
T
KT

g
wr . B Ropgr ’ T_
X C,

L B0 S }

i m o xptu

Dropping the crosderivate in x and t yields the fADE formulation.
Equations §14) and §17) might be applied to the case of bedload
tracers by assuming that a) bedload particles exchange only with an
dbacti ve | ay datthe suffaceketiickness[l] Parker

2008; Ganti et al., 201@nd b) the bed undergoes no aggradation or
degradation, i.e. change in mean bed eleVat{aneraged over an
appropriate window). Let,N1] denote the total number of tracer
partides releasedl, [1] denote the porosity of the bed,[\] denote

particle volume and B [L] denote the width of the channel. The fraction
of grains {x,t) [1] that are tracers at (x,t) is then given as

—_ NtI‘Vp
“LBa- n 0 (x,t) (518)

, D, &: (517aby)
Cg
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5.3 PROBLEMS ASSOCIATED WITH APPLICATION OF THE
CRTW ME TO BEDLOAD TRACERS

CRTW was originally derived as the continuous limit for a random
walker on a lattice. The lattice simply defines streamwise locations where
the particle might come to rest or pass through. The pddédenot

interact with the lattice.

Bedload transport in a river functions differently. Sediment transport can
be divided into two components. Bed material load interacts with the
bed by changing its elevation as each grain deposits or erodes. Wash load
or throughput load either a) passes through the reach of interest without
changing bed elevation, or b) exchanges between the water column and
the bed only via the pores of the bed material, again without changing
bed elevation. Here we consider the chdwedioad moving as bed
material load.

In the case of bedload, the lattice has vertical as well as streamwise
location, and its structure interacts strongly with the particles. A
previously moving particle that comes to rest (deposits) raises the bed,
anda previously resting particle that moves (is entrained) lowers the bed.
Since bedload transport itself is a random process, the lattice structure
through which particles move, and in particular bed elevation at a lattice
point, also becomes a random véiabhe ME of CTRW is incapable

of handling this interaction.

The starting point for the Exabased Master Equation (EBME}he

analysis of Parker et 1000, here referred to as the PafRaola

Leclair (PPL) framework. This framework providestiatistlybased
equation of sediment conservation that captures the vertical structure of
bed elevation variation as particles erode and deposit. Integral of this
equation in the vertical yields the standard Exner equation of sediment
mass conservations Apposed to the formulation in Ganti e{24110,

the formulation of Parker et @000 does not invoke the simplification

of an active layer.

5.4 PPL FRAMEWORK FOR EXNER EQUATION OF
SEDIMENT CONTINUITY : SOME MORE COMMENTS

Here we apply (3.8 the contet of bedload transport of particles with
uniform size D[L] and material density.
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The formulation of 4.3 is predicated on the assumption that bed
elevation, while fluctuating locally as particles are entrained or deposited,
does indeed have a mean e/diu (averaged over an appropriate
window). And in order for this mean value to exist, waiting time must
also have a mean value, so precluding the possibility of subdiffusion.
This can be illustrated as follows.
For simplicity, the particles are assumdxt tarranged in a rectangular
lattice, so that the removal or deposition of one particle of diarpeter D
results in a precise change in vertical elevation ®hiS corresponds
to a bed porositly, of 1- p/4. Other configurations can be considered
by induding an ordeone multiplicative factor. The mean waiting time
t.an[T] (Averaged over all possible positions of a particle, as illustrated
below) for a particle to be entrained can be used to define the frequency
J [TY of entrainment:
J(x,t):i (5.19

mean
This mean waiting time may slowly vary of time, in so far as it correlates
with mean flow parameters. The entrainment rate of sediment volume is
then given as:

E(x,)=@ - HD,I x.} (5.20

The deposition rate Ban in turn be rated to the entrainment rate, E
as shown in equation (2.4) so
From equation5(20) and (2)4the deposition rate takes the form:

D(x,t)=(1 - pI)Dp}'}](X ryt)R (r)dr (5.21

Combining 2.3, 6.20 and 5.2) yields the integral form of the Exner
equation

%: DpJ(x,t) Er)pnr”}](x r;HR (r)a (5.23

Pelosi and ParkdR013 have studied the behavior 6f2Q in the
context of the ratio of mean step lengtto the length of the reach
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under consideration. They considered bothtailed and heatgilel

PDFsp, for step length.

When extended to the case of tracer particles in uniform sediment or to
mixtures of grain sizes, the equattoBy is usually implemented in the
context of an active layer of thicknessak described abo(Rarker,

2008; Gantet al., 20130Section 2)1 Thus, the erodible bed is ideally
divided into layers: (i) an upper layer (active layer), which has no vertical
structure and actively exchanges with the bedload and (ii) a deeper layer
(substrate), that exchanges with théohddonly when aggradation or
degradation, occufes.g. Viparelli et al., 2011

Parker et al.(2000, however, specified a general probabilistic
formulation of the Exner equation of sediment continuity with no
discrete layers. It is able to capture aéregchange of sediment
particles, and specifically tracer particles, with no need of the relatively
heavyhanded assumption of an active laljere we refer to this
framewok as PPL (ParkétaolalLeclairJandas deeply shown in Section

2.1, we have thelfowing formulation:

P =0x )0 o) OF (x rjamd 623

5.5 EXNER-BASED MASTER EQUATIONS FOR RIVERS
CARRYING BEDLOAD

Equation .23 is, in and of itself, a fairly trivial extension of the Exner
formulation. Its true value becomes apparent when applied dadbedl|
tracers. The PPL framework is now applied to this case.

Let f(x,y,t) [[}] denote the fraction density of tracers at elevation y, such
that fdy defines the fraction of bed particles that are tracers between
elevations y and y + dy. The same formul#iairyieldsy.23)gives the
following result for tracer conservation:

af 1 ud ab p op h
P, st A DX x,9 f( x
gﬁ " ng agﬁ p " QJPJ('Y) pJ( D ( yI)

p(Y) Do, X 1) F(x =030 By (v, (Ndrdy |

Equation %.29 defines the first of two Exnbased Master Equations
(EBME) for the tracer problem obtained from the PPL framework.

(5.29
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Note that this fanulation is nonlocal in x and(®u et al., 2012
According to the above relation, a tracer particle may be entrained from
any l evel y6 and deposited at a
incorporates vertical exchange of tracers, a feature thaturedcapt
neither in the ME of CTRW or the active layer formulation of the Exner
equation. In addition, tracers are conserved as the bed aggrades and
degrades, allowing burial and exhumation to be driven not only by
random processes inherent in the dengify put also through mean

bed elevation variation.

Equation $.24 contains the assumption that particle entrainment is
determined as a local function of time, without considering the
possibility of a waiting time. As a result, it is referred to belowi&s EB

N, i.e. Exnebased Master Equation with No waiting. The generalization

to include waiting time is, however, straightforward. Jigy)p[T”]

denote the elevatigpecific probability density of waiting time, i.e. the
conditional PDF of waiting time taelevation y. The mean waiting
time¥) [T] at any elevation y is given as

) Firs( 1y}d (5.25

The jumpweighted average waiting time, is given as

Cmean %) (5.26

where the bracé&eagi ndgdi sechhj umpt af
G(y),

(G)=R.Gy) (y)dy (5.27

The parameter,,,, specifically defines jump frequencysidg, again
underlining the condition that the assumption of a mean bed elevation
precludes the possibility of waitiimge PDFswith no mean.

The direct extension d&.29 to include waiting time is
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. (5.29
-Dpy (V) I xt - )E(x .t Fpg( 1Y d ot o+

D0V, , B IRt ROyt YW pu( 1Y) rE) dy'dd

The above formulation is referred to below as EBMEe. Exner
based Master Equation with Waiting based on the PPL framework.
For the sake ofomparison, it is useful to delineate Master Equation
associated with the active layer formulation used in Gan{i26tél.

The general form is given in Parker ¢2@00: where f[1] denotes the
fraction of tracers in the bed material that isagxgdd between the
active layer and substrate as the bed aggrades or degrades,

Y Tk =D J(x,1)f,(x.1)
M H (5.29
+D, f{P(x -1, t)f, (X, 1) py(r)dr

We refer to the above relation as EBMEExnerbased Master
Equation, Active layer formulation) below.

5.6 VERTICAL AND STREAMWI SE DISPERSAL OF TRACERS
WITHIN AN EQUILIBRIUM BED

The physical contents of the above three formulations are best grasped
in the context of macroscopic equilibrium conditions, for which the bed
neither aggrades nor degrades. For this case,

MR,/ B =/puth 0, and tle parameters J{y), R(r) and p(tly) are

assumed to change neither in x nor in t. The respective forms for
EBME-N, EBME-W and EBMEA are shown below in order of
complexity. Fronb(29, EBMEA becomes;

LaW: D Jf,(x,1) Bgrj f(x rd)pndr (539
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From 6.294, EBME-N becomes;

PPV - b gixy.p (y) +
it (5.3)

+D, 90, A, , X -y ) p(y) R ) dy'd
From 6.29, EBMEW becomes;

M (X, Y,1) _ =
RO DI Tyt Jal Jtd t 4 53y

DI (NA, , i TRyt m(y)p( 1y} r() dy'dd

The difference between the EBMEand EBMEA formulations is best
illustrated by writing5(@3% and $.33 in forms that are as close as
possibleo (5.30, and then correcting with residual terms. In this way,
(5.3 can be expressed as

RIS = DIy 0m () BI8F (X ny) R} d
- DI, X £y )e(y)r()dyar (5332

where

o0y Fy ) @) L () FEY.0p0dy  (6.33)

Here (f) denotes the jumaveraged value of f, ands a deviatoric
tracer fraction density. A comparison58@Q and $.33& reveals that
(5.33% captures a nonlocal feature taB( cannot, i.e. the vertical
dispersal of tracers. That is, the tgfhpt is driven by (among other
things) the differenge=f - <f> between local tracer fraction and jump

averaged fraction. The minus sign in front of the terms containing the
deviatoric termp in (56.39 ensure that particles disperse in the vertical
from zones that are higher than the pawgraged na@ to those that

are lower than it. This dispersion is nonlocal and therefeFeckam.

The corresponding form for EBME (5.33 that isolates the vertical
dispersion terms is given below;
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&(Y)w= -DpJpJ(ybfj f(x,y,t - po( Iytd t +
+DIp (N[ , fx -yt Jme( Itr() ddr t G.3)
- DI A, , 1§ huflC 0B (RG( 18) R( ) dy'd @

where

jw #p, @) . () FEFCGY.DR, (1Y) (N)dy (5390

Here it is seen that the deviatoric tggnhat drives vertical dispersion
specifically involvethe vertical variation of the PIOF waiting time.

Equation $.33ais recovered frond.34a by assuming that p d(t).

5.7 ASYMPTOTIC FRACTIONAL FORMULATIONS

The convolution forms of EBMB, EBMEN and EBMEW are all

easy to solve numerically in a straightforward way. Their corresponding
asymptotic fractional forms, however, are not easily solved numerically.
This notwithstanding, the relevant forms @esented here for the
purpose of illustration and comparison with the CTRW ME formulation.
The results given below follow from the analysis given in Se2tion
with one exception: the case § < 1, which is associated with waiting
times with no meamand which gives rise to subdiffusion, is omitted, in
so far that EBME is predicated upon the existence of a finite value of

tmear‘l

EBME-A yields the following asymptotic result for the @l heawy
tailed cases, respectively, based on the spatiat Fansrm %.8b)
and the expansionSJla) or %.15a) for p The thintailed, or ADE
form is

£+C_iJ :Dj'l C Qﬂ , Dd _D

moor C xp L, L.
and the heawailed, or fADE form is

«
N

(5.39
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DJT
Mool p ™ o 2T p 1DJG gaapg

@ xp L, 2L,

The above relations correspond to the resuGiswofi et al(2010.
Similarly reducing EBMH yields the thhtailed form

Mo oyt B,y —H
t K b

«li4) oI oy T

c)=KW)T + Dy(y) SKG) . 53%e)
D,Jp, (y) o

K =P 370 f fp d

0=y » () Ay
and the heawiled form
E: _iJ B if“

r <(y) ” a(Y) )

(5.3&)

u(f ) W)
- K(f ~f D-
(f <)) cAy) x 2(Y) w
where ¢ and K are given(fn3'b,d) and

D4 (y) =K(y)c, (5.3%)

Now (5.373 does not define a standard ADE, ab@8a does not

define a standard fADE. The advection speed and diffusivity are
functions of the vertical coordinate y in this case. More importantly,
vertical mixing is driven by the deviatoric ternthis devigric term
captures mixing in the vertical, driven by the difference between the local

value f and its jursaveraged valuéf>:ﬁ?nf(X,y,t)pJ(Y)dY. In

addition,j can be both advected and diffused downstream, and this
diffusion can be either normal apenalous.

In order to reduce, EBM®/, it is advantageous to use Fourier
transforms in time rather than Laplace transforms. This can be done
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because a) the lower limit it time in the integral$.8&) can be
changed from O toa by the simple artificd epecifying that,p= 0 for
t <0, and b) as opposed to the Montvgktiss CTRW, i.e56) and

(5.7), the initial condition is not built into EBNME With this in mind,
we define the time Foaritransform of A(t) as follows:

A(s)= [ A(t)e™ dt (5.39

and modify (11b) and (15b) to the respective form

P, (s)=1-is ty) (5.40

Upon Fouriettransformation in both space and time, application of
(511a) andy40), inverse transformation, and truncation so that the sum
of the orders of deritiges in time and space does not exceed 2, the
thin-tailed asymptotic form for EBM®& reduces to

A T Ly
TIRT

Mt K XHt
) o MU e B
- Dd(Y) uz (f 2'<f >) _,Kp'_lFé—é t<_f > l]c (y)gp‘(;ec t <_f'> lffl
Mt ¢ K i

where ¢, Rand K are specified i5.87b,c,ld The corresponding heavy
tailed form is

o Lo A fu
E— <3()/)—¥l Kr —)E(E Ed)@) e )
] uf ) __ “fF ) ]
K{EA) o)== K= (5.43
a(f 4f : &t (E
-Dd(y)% *K“E%Fé@ () u¢(y)@p%&;

whee c, K and] are specified inr6@7b,c,dand DO, is specified in
(5.38h). In the above equation, the vertical variation in mean waiting
time is seen to contribute to vertical dispersion via the last two term on
the righthand side.
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5.8 SIMPLIFIED MODEL FOR VERTICAL DISPERSION : THIN -
VERSUS HEAVY-TAILED PROBABILITY DENSITIE S FOR
ELEVATION FROM WHICH A PARTICLE JUMPS

The EBME formulation based on PPL results in asymptotic fractional

PDEOGs that are show substanti al
formulation. The tlee most important of these are a) the absence of

subdiffusion, b) the effect of vertical dispersal of particles, and c) the
contribution of elevatiewarying waiting time to this dispersal.

We do not implement the complete formulation herein. Instead, we
show several simplified examples that illustrate the effect of nonlocal
vertical dispersion in EBME. We do this by neglecting all the terms

on the righthand side of5(37 except the term (f - (f)):

Pe%= D.Ip( Y&f(.0 (1) g

(f) =R Fyitp,(y)dy

Note that the form of the equation is nonlocal, in that the values of f at
al | el evations yd contribute to
elevation y. In addition(y) may be thitailed or heaviailed, but there

is no obvious way to convehnetgoverning equation into an asymptotic
form involving fractional derivatives.

It is important to keep in mind that the conserved quantBaBa) is

not the density of fraction of tracers in the sediment f(y,t), but rather the
density of fraction ofdcers

fo, =Pf (5449

averaged along a line of constant y that includes portions that are
instantaneously in sediment, and other portions that are instantaneous in
the water column (Figu2eh.

We first cast the problem in dimensionfess. Let g denote an
appropriate length scale (as specified below). Defining

(543,H

t

d

h
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. \ . D

f'=4d , vy l , t =3, p i*p (545,b,c,d)
g g d

it is found that%.43a,b) reduces to

B 4) ) Ay (546a,b)

We specify the length scale in terms of two alternativetudly thin
tailed behavior, we consider a Gaussian distributiop iformhich case
¢* is the standard deviatispof p,and

Wl a(y*)*
= 5.4

To study heaviailed behavior, we lgf correspond to the scale

parametegd o f  @statle®styibution, which is defined by its
Fourier transform gslolan, 199y

i -_k|""%1 i sgn(lk)targe%airé (548

where k is an integer value which defines the type of parameterization
(here, equal to 1), ¢erathosenquats t he

P (k) =1
|

stabi

1.)andA denotes the (bekeseweyueaktis zeypla r amet er
addition, the location and scale paramdiérs and a6 sre respectively

equal to 0 and %p as to obtain correspondence viadi).
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- :
\ —— Gaussian pdf
8\ - - ——stable distribution with o=1.1
1
1

0.65 0.1 0.1I 5 0.2 O.iS 0.3 0.55 0.4
P,
Figure 5.1 Thin-tailed (Gaussian) and heawailed PDFs for p*; The heavy
tailed distribution corresponds to a Léwya-stable distribution with a = 1.1.

Note that the Gaussialistribution is a limit case @$table distribution
obtained witld  =Both these distributions are shown in Fie

The first case we consider is one for which P In this case, there is

no defined bed (interface between water and sediment); instead the
lattice is filled with particles, and particle paieslate vat i ons vy
exchange according to the PDF (y). In additigr; f according to

(5.44. The initial condition used in the calculations was arbitrarily set to
the following toghat distribution:

R -1¢y 1

f(y,O)—% 0 o1 (549

*

y

Results of the calations are shown in Figuse for the Gaussian

distribution, and Figuke3for thea-stable distribution.

Figuresh.2 and5.3 both illustrate the tendency for tracer particles to be
dispersed from high to low concentration in the vertical. The pHttern
dispersion is noeRickian, as evidenced by the tendency for the
formation of a depression in tracer fraction at y* = 0. The effect of
heavy versus thistailedPDFsfor p,is readily apparent; the hetailed

case of Figurg.3shows much more rapahd much more faeaching
dispersal than the thiailed case of Figube2
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Figure 5.2 Evolution in time of distribution of tracer fraction f* for the case oh
thin-tailed (i.e. Gaussian form for the PDF ps* describing the probability that
an entrained particle jumps from elevation y*. Here £= 1, resulting in a
symmetric pattern.

Figure 5.3 Evolution in time of distribution of tracer fraction f* for the case ofa
heavytailed (i.e. a-stable) form for thePDF p;* describing the probability that
an entrained particle jumps from elevation y*Here Pe = 1, resulting in a
symmetric pattern.
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